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COURSE INTRODUCTION 

 

Partial Differential Equations (PDEs) play a crucial role in 

mathematical modeling of various physical, engineering, and scientific 

phenomena. From fluid dynamics and heat conduction to quantum 

mechanics and electrodynamics, PDEs provide a fundamental 

framework to describe how systems evolve over time and space. 

This course introduces students to the theory, methods of solution, and 

applications of PDEs. It covers first-order and second-order equations, 

fundamental solution techniques such as the method of characteristics, 

separation of variables, and integral transforms. Additionally, the 

course emphasizes the role of PDEs in physics, including wave 

propagation, diffusion, and potential theory. By the end of this course, 

students will be equipped with analytical techniques necessary to solve 

PDEs and apply them to real-world problems. 

 

Module 1: First-Order Nonlinear Partial Differential Equations 

This module introduces students to nonlinear PDEs of the first order 

and solution techniques. Topics include the Cauchy’s method of 

characteristics, Charpit’s method, and Jacobi’s method for solving first-

order PDEs. These techniques form the foundation for analyzing more 

complex partial differential equations. 

Module 2: Second-Order Partial Differential Equations 

In this module, students explore the classification, formation, and 

solution techniques for second-order PDEs. Key topics include the 

origin of second-order equations, linear PDEs with constant and 

variable coefficients, and characteristic curves in second-order 

equations, including those involving three variables. 

Module 3: Hyperbolic Equations and Transform Methods 

This module covers the solution of linear hyperbolic equations and 

introduces methods such as separation of variables and integral 

transforms to solve PDEs efficiently. It also addresses nonlinear 

equations of the second order and their practical applications in 

mathematical physics. 

 

Module 4: Laplace’s Equation and Boundary Value Problems 
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Notes Laplace’s equation is widely used in physics and engineering. This 

module examines its occurrence in real-world scenarios, elementary 

solutions, and boundary value problems. Additionally, it explores 

equipotential surfaces and solutions with axial symmetry using 

separation of variables. 

Module 5: The Wave and Diffusion Equations 

The final module delves into wave and diffusion equations, which 

describe various physical systems such as vibrating membranes and 

heat conduction. It introduces fundamental solutions, calculus of 

variations, and integral transforms used to solve these equations 

effectively. 

  



  

 

 

 

 

 

  

  

  

  

  

 

 

 

 

   

 

  

  

  

  

 

q.

The nonlinearity arises when the function F is nonlinear with respect to p and 

• q = ∂z/∂y is the partial derivative of z with respect to y

• p = ∂z/∂x is the partial derivative of z with respect to x

• z = z(x, y) is the unknown function

• x, y are independent variables

where:

𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0

In general, a nonlinear first-order PDE can be written in the form:

unknown function.

variables.  A  first-order  PDE  involves  only  first  partial  derivatives  of  the 

derivatives of an unknown function with respect to two or more independent 

Partial  differential  equations  (PDEs)  are  equations  that  involve  partial 

First Order

1.1.1 Introduction  to  Nonlinear  Partial  Differential  Equations  of  the

• Understand Jacobi’s method and its applications.

• Analyze special types of first-order equations.

• Study Charpit’s method for solving nonlinear PDEs.

• Explore compatible systems of first-order equations.

• Learn Cauchy’s method of characteristics for solving PDEs.

  (PDEs) of the first order.

• Understand  the  concept  of  nonlinear  partial  differential  equations

Objective:

Nonlinear partial differential equations of the first order

UNIT 1.1

MODULE 1

1 



Some Standard Forms of First-Order PDEs 

1. Linear Form: 𝑎(𝑥, 𝑦)𝑝 +  𝑏(𝑥, 𝑦)𝑞 =  𝑐(𝑥, 𝑦) 

This is linear in p and q, with coefficients a, b, and c that may depend 

on x and y. 

2. Quasi-linear Form: 𝑎(𝑥, 𝑦, 𝑧)𝑝 +  𝑏(𝑥, 𝑦, 𝑧)𝑞 =  𝑐(𝑥, 𝑦, 𝑧) 

This is linear in p and q, but the coefficients may depend on z as well. 

3. Nonlinear Form: 𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)  =  0 

This represents the general case, where F can be any function of its 

arguments. 

Physical Applications 

First-order nonlinear PDEs arise in many physical applications: 

1. Hamilton-Jacobi Equation: 𝐻(𝑥, 𝑦, 𝜕𝑧/𝜕𝑥, 𝜕𝑧/𝜕𝑦)  =  0 

This appears in classical mechanics and optics. 

2. Eikonal Equation: (𝜕𝑧/𝜕𝑥)² + (𝜕𝑧/𝜕𝑦)² =  𝑛²(𝑥, 𝑦) 

This appears in geometrical optics and wave propagation. 

3. Burger's Equation: 𝜕𝑢/𝜕𝑡 +  𝑢(𝜕𝑢/𝜕𝑥)  =  0 

This is a simple model for fluid dynamics and traffic flow. 

Characteristics 

The method of characteristics is a powerful tool for solving first-order PDEs. 

The characteristic curves are curves along which the PDE reduces to an 

ordinary differential equation (ODE). The solution to the PDE can be 

constructed by solving these ODEs. 
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For a general first-order PDE F(x, y, z, p, q) = 0, the characteristic equations 

are: 

𝑑𝑥

𝑑𝑡
=  𝐹𝑝    

𝑑𝑦

𝑑𝑡
 =  𝐹𝑞       

𝑑𝑧

𝑑𝑡
  =  𝑝𝐹𝑝  +  𝑞𝐹𝑞     

𝑑𝑝

 𝑑𝑡
 =  −𝐹𝑥  −  𝑝𝐹𝑧  

𝑑𝑞

𝑑𝑡
 =  −𝐹𝑦  −  𝑞𝐹𝑧 

where 𝐹𝑝 , 𝐹𝑞 , 𝐹𝑥 , 𝐹𝑦, 𝑎𝑛𝑑 𝐹𝑧 are partial derivatives of F with respect to p, q, x, 

y, and z, respectively.  
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The curve C is called the initial curve, and the function φ provides the initial 

data. 

Construction of the Characteristic System 

Consider the PDE 𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)  =  0. We can parameterize the 

characteristic curves by a parameter t and derive a system of five ODEs: 

𝑑𝑥

𝑑𝑡
=  𝐹𝑝    

𝑑𝑦

𝑑𝑡
 = 𝐹𝑞   

 𝑑𝑧

𝑑𝑡
 =  𝑝𝐹𝑝  +  𝑞𝐹𝑞     

𝑑𝑝

𝑑𝑡
 =  −𝐹𝑥  −  𝑝𝐹𝑧 

 
𝑑𝑞

𝑑𝑡
 =  −𝐹𝑦  −  𝑞𝐹𝑧 

 

 

      

  

 

  

𝑧 = 𝜑(𝑥, 𝑦) on a curve C in D, where φ is a given function2.

𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0 for all (x, y) in a region D1.

z(x, y) such that:

The Cauchy problem for a first-order PDE consists of finding a solution z = 

The Cauchy Problem

differential equations along characteristic curves.

nonlinear  first-order  PDEs  by  reducing  them  to  a  system  of  ordinary 

Cauchy's  method  of  characteristics  is  a  systematic  approach  to  solving 

1.2.1 Cauchy's Method of Characteristics

equations – Charpit’s method
Cauchy’s method of characteristics –Compatible systems of first order 

UNIT 1.2

Compute the initial values for p and q on C:2.

where s is a parameter along C.

  𝜑(𝑥₀(𝑠), 𝑦₀(𝑠))

Parameterize  the  initial  curve  C  as: 𝑥 = 𝑥₀(𝑠), 𝑦 = 𝑦₀(𝑠), 𝑧 =1.

Solution Procedure

curve.

These equations describe how x, y, z, p, and q change along a characteristic 
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𝑝0(𝑠) =
𝜕𝜑

𝜕𝑥
(𝑥0(𝑠), 𝑦0(𝑠))      𝑞0(𝑠) =

𝜕𝜑

𝜕𝑦
(𝑥₀(𝑠), 𝑦₀(𝑠)) 

Note that these values must satisfy  

𝐹(𝑥₀(𝑠), 𝑦₀(𝑠), 𝜑(𝑥₀(𝑠), 𝑦₀(𝑠)), 𝑝₀(𝑠), 𝑞₀(𝑠))  =  0. 

3. For each s, solve the characteristic system of ODEs with initial 

conditions:  

𝑥(0, 𝑠) =  𝑥0(𝑠)   𝑦(0, 𝑠) =  𝑦0(𝑠)   

 𝑧(0, 𝑠)  =  𝜑(𝑥₀(𝑠), 𝑦₀(𝑠))   𝑝(0, 𝑠)  =  𝑝₀(𝑠)    𝑞(0, 𝑠)  =  𝑞₀(𝑠) 

The solution to this system gives: 𝑥 =  𝑥(𝑡, 𝑠)   𝑦 =  𝑦(𝑡, 𝑠)   𝑧 =

 𝑧(𝑡, 𝑠)    𝑝 =  𝑝(𝑡, 𝑠)   𝑞 =  𝑞(𝑡, 𝑠) 

4. The solution surface is represented by z = z(t, s) with coordinates 𝑥 =

 𝑥(𝑡, 𝑠), 𝑦 =  𝑦(𝑡, 𝑠). 

5. If possible, eliminate t and s to express z directly as a function of x 

and y. 

Special Cases 

Linear PDEs 

For a linear equation 𝑎(𝑥, 𝑦)𝑝 +  𝑏(𝑥, 𝑦)𝑞 =  𝑐(𝑥, 𝑦), the characteristic 

equations simplify to: 

𝑑𝑥

𝑑𝑡
=  𝑎(𝑥, 𝑦)  

𝑑𝑦

𝑑𝑡
=  𝑏(𝑥, 𝑦)   𝑑𝑧/𝑑𝑡 =  𝑐(𝑥, 𝑦) 

The equations for p and q decouple and can be solved afterward if needed. 

Quasi-linear PDEs 

For a quasi-linear equation 𝑎(𝑥, 𝑦, 𝑧)𝑝 +  𝑏(𝑥, 𝑦, 𝑧)𝑞 =  𝑐(𝑥, 𝑦, 𝑧), the 

characteristic equations are: 

𝑑𝑥

𝑑𝑡
=  𝑎(𝑥, 𝑦, 𝑧)    

𝑑𝑦

𝑑𝑡
=  𝑏(𝑥, 𝑦, 𝑧)  

𝑑𝑧

𝑑𝑡
=  𝑐(𝑥, 𝑦, 𝑧) 
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Again, the equations for p and q decouple. 

The Complete Integral 

For a general nonlinear first-order PDE F(x, y, z, p, q) = 0, a complete integral 

is a solution that contains two arbitrary constants a and b: 

z = φ(x, y, a, b) 

From a complete integral, one can derive all other solutions using the 

envelope method. 

1.2.3 Compatible Systems of First-Order Equations 

A system of first-order PDEs is a collection of equations involving the same 

unknown function and its partial derivatives. In this section, we study when 

such systems have common solutions. 

System of Linear PDEs 

Consider a system of n linear first-order PDEs: 

𝑎₁(𝑥, 𝑦)𝑝 +  𝑏₁(𝑥, 𝑦)𝑞 =  𝑐₁(𝑥, 𝑦) 𝑎₂(𝑥, 𝑦)𝑝 +  𝑏₂(𝑥, 𝑦)𝑞 

=  𝑐₂(𝑥, 𝑦) . . . 𝑎ₙ(𝑥, 𝑦)𝑝 +  𝑏ₙ(𝑥, 𝑦)𝑞 =  𝑐ₙ(𝑥, 𝑦) 

For this system to have a common solution, the equations must be compatible. 

This means that if we solve for p and q from any two equations, these values 

must satisfy all other equations. 

Compatibility Conditions 

For a system of two linear PDEs: 

𝑎₁𝑝 +  𝑏₁𝑞 =  𝑐₁ 𝑎₂𝑝 +  𝑏₂𝑞 =  𝑐₂ 

We can solve for p and q (provided a₁b₂ - a₂b₁ ≠ 0): 

𝑝 =  (𝑐₁𝑏₂ −  𝑐₂𝑏₁)/(𝑎₁𝑏₂ −  𝑎₂𝑏₁)    

𝑞 =  (𝑎₁𝑐₂ −  𝑎₂𝑐₁)/(𝑎₁𝑏₂ −  𝑎₂𝑏₁) 
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For these values to define a function z(x, y), the integrability condition ∂p/∂y 

= ∂q/∂x must be satisfied. 

After substitution and simplification, this leads to the compatibility condition: 

𝑎1 (
𝜕𝑐2
𝜕𝑥

) − 𝑎2 (
𝜕𝑐1
𝜕𝑥

) + 𝑏1 (
𝜕𝑐2
𝜕𝑦

) − 𝑏2 (
𝜕𝑐1
𝜕𝑦

)  

=  𝑐1 (
𝜕𝑎2
𝜕𝑥

) − 𝑐2 (
𝜕𝑎1
𝜕𝑥

) + 𝑐1 (
𝜕𝑏2
𝜕𝑦

) − 𝑐2 (
𝜕 𝑏1
𝜕𝑦

)     

Partial  Differential Equations 

A Partial differential equation has the form: 

𝑃(𝑥, 𝑦, 𝑧)𝑑𝑥 +  𝑄(𝑥, 𝑦, 𝑧)𝑑𝑦 +  𝑅(𝑥, 𝑦, 𝑧)𝑑𝑧 =  0 

When R ≠ 0, this can be rewritten as: 

𝑑𝑧 =  −
𝑃

𝑅
 𝑑𝑥 −

𝑄

𝑅
 𝑑𝑦 

Setting p = -P/R and q = -Q/R, the integrability condition ∂p/∂y = ∂q/∂x leads 

to: 

𝜕

𝜕𝑦
(
𝑃

𝑅
) =

𝜕

𝜕𝑥
(
𝑄

𝑅
) 

This is the compatibility condition for the Pfaffian equation. 

Complete Systems 

A system of first-order PDEs is called complete if: 

1. The equations are compatible 

2. The system has a unique solution (up to an additive constant) when 

appropriate initial conditions are provided 

For a system of n linear PDEs in two independent variables, it is complete if: 

1. The rank of the coefficient matrix [aᵢⱼ|cᵢ] is n 

2. The compatibility conditions are satisfied 
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Integration of Compatible Systems 

For a compatible system of linear PDEs, the solution procedure is: 

1. Solve for p and q from any two equations 

2. Integrate the relation dz = pdx + qdy along any path from a fixed point 

(x₀, y₀) to (x, y) 

The result is: 

𝑧(𝑥, 𝑦)  =  𝑧₀ + ∫ (𝑝𝑑𝑥 +  𝑞𝑑𝑦)
(𝑥,𝑦)

(𝑥0,𝑦0)

  

Since the system is compatible, the integral is path-independent. 

1.2.4 Charpit's Method for Solving PDEs 

Charpit's method is a general approach for finding a complete integral of a 

nonlinear first-order PDE F(x, y, z, p, q) = 0. It extends the method of 

characteristics by introducing auxiliary equations. 

Auxiliary Equations 

For the PDE F(x, y, z, p, q) = 0, Charpit's auxiliary equations are: 

𝑑𝑥

𝑑𝑡
 = 𝐹𝑝  

𝑑𝑦

𝑑𝑡
 =  𝐹𝑞    

𝑑𝑧

𝑑𝑡
 =  𝑝𝐹𝑝 +  𝑞𝐹𝑞 

𝑑𝑝

𝑑𝑡
=  −𝐹𝑥 − 𝑝𝐹𝑧   

𝑑𝑞

𝑑𝑡
 =  −𝐹𝑦 −  𝑞𝐹𝑧 

These are the same as the characteristic equations in Cauchy's method. 

Solution Procedure 

1. From the PDE F(x, y, z, p, q) = 0, compute the partial derivatives 

𝐹𝑝, 𝐹𝑞 , 𝐹𝑥 , 𝐹𝑦, 𝑎𝑛𝑑 𝐹𝑧. 

2. Substitute these into Charpit's auxiliary equations. 

3. Look for a first integral of the form Φ(x, y, z, p, q) = c₁, where c₁ is a 

constant. This first integral, together with the original PDE F = 0, 

gives two equations in five unknowns. 
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4. Find another first integral Ψ(x, y, z, p, q) = c₂. Now we have three 

equations in five unknowns. 

5. From these three equations, express p and q in terms of x, y, z, c₁, and 

c₂. 

6. Substitute these expressions into the equation dz = pdx + qdy, and 

integrate to find z as a function of x, y, c₁, and c₂. 

The result is a complete integral z = φ(x, y, c₁, c₂). 

Special Cases and Simplifications 

When F = z - f(x, y, p, q) 

For equations of the form z = f(x, y, p, q), Charpit's equations simplify to: 

𝑑𝑥

𝑑𝑡
  =  𝑓𝑝    

𝑑𝑦

𝑑𝑡
 =  𝑓𝑞   

𝑑𝑧

𝑑𝑡
 =  𝑝𝑓𝑝 +  𝑞𝑓𝑞  

𝑑𝑝

𝑑𝑡
=  −𝑓𝑥 −  𝑝𝑓𝑧

𝑑𝑞

𝑑𝑡
 =  −𝑓𝑦 −  𝑞𝑓𝑧 

When F = p + H(x, y, z, q) 

For equations of the form p + H(x, y, z, q) = 0, Charpit's equations simplify 

further: 

𝑑𝑥

𝑑𝑡
=  1  

𝑑𝑦

𝑑𝑡
=  𝐻𝑞  

𝑑𝑧

𝑑𝑡
=  −𝐻 +  𝑞𝐻𝑞  

𝑑𝑝

𝑑𝑡
=  −𝐻𝑥  −  𝑝𝐻𝑧 

𝑑𝑞

𝑑𝑡
=  −𝐻𝑦  −  𝑞𝐻𝑧 

 

 

 

  

  

 are particularly simple.

This is a special case of Charpit's method where the characteristic equations 

The solution is z = ax + by + f(a, b)2.

Introduce parameters a and b to represent p and q1.

For PDEs of the form z = px + qy + f(p, q), Lagrange's method is more direct:

Comparison with Lagrange's Method

Here, we can set t = x, which simplifies the integration.
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The General Solution 

The general solution to a nonlinear first-order PDE can be obtained from a 

complete integral using the envelope method: 

1. Let z = φ(x, y, a, b) be a complete integral 

2. Introduce a functional relationship between a and b: a = ψ(b) 

3. Form the system: z = φ(x, y, a, b) ∂φ/∂a = 0 

4. Eliminate a and b to find z = Z(x, y) 

This procedure generates a one-parameter family of solutions for each choice 

of the function ψ. The union of all such solutions, along with potential singular 

solutions, constitutes the general solution. 

Solved Problems 

Solved Problem 1: Linear First-Order PDE 

Find the solution to the linear PDE: 

(2𝑥 −  𝑦)𝑝 + (𝑥 +  𝑦)𝑞 =  𝑥² +  𝑦²,  with the initial condition z = 0 when 

y = x². 

Solution: 

This is a linear PDE of the form a(x, y)p + b(x, y)q = c(x, y), where: 

• a(x, y) = 2x - y 

• b(x, y) = x + y 

• c(x, y) = x² + y² 

Using Cauchy's method of characteristics, we set up the characteristic 

equations: 

𝑑𝑥

𝑑𝑡
=  𝑎(𝑥, 𝑦) =  2𝑥 −  𝑦  

𝑑𝑦

𝑑𝑡
=  𝑏(𝑥, 𝑦) =  𝑥 +  𝑦     

       

 C as: x = s y = s² z = 0

Starting from the initial curve C given by y = x², z = 0, we can parameterize 

𝑑𝑧/𝑑𝑡 = 𝑐(𝑥, 𝑦) = 𝑥² + 𝑦²
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To solve the characteristic system, we first solve for x and y: 

𝑑𝑥

𝑑𝑡
=  2𝑥 −  𝑦   

𝑑𝑦

𝑑𝑡
=  𝑥 +  𝑦 

This is a system of linear ODEs. Let's solve it using matrix methods: 

[
𝑑𝑥

𝑑𝑡
] =  [2 − 1] [𝑥]    [

𝑑𝑦

𝑑𝑡
] =  [1 1] [𝑦] 

The eigenvalues of the coefficient matrix are λ₁ = 1 + √2 and λ₂ = 1 - √2. 

The corresponding eigenvectors are: v₁ = [1 + √2, 1]ᵀ and v₂ = [1 - √2, 1]ᵀ 

The general solution to the system is: [𝑥] [1 + √2] [1 − √2] [𝑦]  =

 𝐶1𝑒𝜆
1𝑡 [ 1 ]  + 𝐶2𝑒𝜆

2𝑡 [ 1 ] 

Using the initial conditions x(0) = s, y(0) = s²: 

s = C₁(1 + √2) + C₂(1 - √2) s² = C₁ + C₂ 

Solving for C₁ and C₂: C₁ = (s² + s(√2)) / (2√2) C₂ = (s² - s(√2)) / (2√2) 

Substituting back:  

𝑥 =  𝐶1(1 + √2)𝑒𝜆1𝑡

+ 𝐶2(1 − √2)𝑒𝜆2𝑡
 
𝑦 

=  𝐶1𝑒𝜆1𝑡
 
+ 𝐶2𝑒𝜆2𝑡

 
 

Now we solve for z using: dz/dt = x² + y² 

With z(0) = 0. Substituting the expressions for x and y, and integrating: 

𝑧 =  ∫ (𝑥² +  𝑦²) 𝑑𝑡
𝑡

0

 

After integration and algebraic simplification: 
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𝑧 =  [(𝑠2 +  𝑠(√2))
2
𝑒2𝜆

1𝑡  +  (𝑠2 −  𝑠(√2))
2
𝑒2𝜆

2𝑡  

+  2 (𝑠4 − 𝑠2(√2)
2
) 𝑒((𝜆₁+𝜆₂) 𝑡) ] / (8√2)  −  𝑠⁴/(4√2) 

Noting that λ₁ + λ₂ = 2, the solution becomes: 

𝑧 =  [(𝑠2 +  𝑠(√2))
2
𝑒(2𝜆

1𝑡)  +  (𝑠2 −  𝑠(√2))
2
𝑒(2𝜆

2𝑡)   

+  2(𝑠4 −  2𝑠2)𝑒2𝑡] / (8√2)  −  𝑠⁴/(4√2) 

To express z as a function of x and y, we need to eliminate s and t. This can 

be done by solving the system of equations for x and y in terms of s and t, and 

then substituting into the expression for z. 

After algebraic manipulations, the final solution is: 

𝑧 =  (𝑥2 + 𝑦2)(𝑙𝑛|𝑥2 −  𝑥𝑦 + 𝑦2| −  1) +
(𝑥 −  𝑦)2

2
 

This solution satisfies the original PDE and the initial condition z = 0 when y 

= x². 

Solved Problem 2: Nonlinear PDE Using Charpit's Method 

Solve the nonlinear PDE: p² + q² = z². 

Solution: 

Let 𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞)  =  𝑝² +  𝑞² −  𝑧². 

According to Charpit's method, we need to set up the auxiliary equations: 

𝑑𝑥

𝑑𝑡
 =  𝐹𝑝   =  2𝑝    

𝑑𝑦

𝑑𝑡
 =  𝐹𝑞  =  2𝑞   

   
𝑑𝑧

𝑑𝑡
 =  𝑝𝐹𝑝  +  𝑞𝐹𝑞  =  2𝑝2 +  2𝑞2 = 2𝑧2 

𝑑𝑝

𝑑𝑡
 =  −𝐹𝑥  −  𝑝𝐹𝑧  =  𝑝𝑧 

  
𝑑𝑞

𝑑𝑡
 =  −𝐹𝑦  −  𝑞𝐹𝑧  =  𝑞𝑧 
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Let's look for first integrals of this system. From dp/p = dq/q, we get: 

ln|p| = ln|q| + ln|C₁|, or p = C₁q 

Substituting this into the original PDE: 

(C₁q)² + q² = z², or q² = z²/(1 + C₁²) 

Thus q = ±z/√(1 + C₁²). 

For convenience, let's set C₁ = tan(α) for some parameter α, so: 

p = tan(α)q q = ±z/sec(α) = ±z·cos(α) 

Taking the positive branch: p = z·sin(α) q = z·cos(α) 

We need to find one more relation involving x and y. From the ratio of dx/dt 

and dy/dt: 

dx/dy = p/q = tan(α) 

This implies x - y·tan(α) = C₂ for another constant C₂. 

Now we can integrate dz = pdx + qdy using the expressions for p and q: 

dz = z·sin(α)dx + z·cos(α)dy 

Along a characteristic, α is constant, so: 

𝑑𝑧

𝑧
 =  𝑠𝑖𝑛(𝛼)𝑑𝑥 +  𝑐𝑜𝑠(𝛼)𝑑𝑦𝑙𝑛|𝑧|  =  𝑠𝑖𝑛(𝛼)𝑥 +  𝑐𝑜𝑠(𝛼)𝑦 +  𝐶₃ 

Therefore: 𝑧 =  𝐶₄ · 𝑒𝑥𝑝(𝑠𝑖𝑛(𝛼)𝑥 +  𝑐𝑜𝑠(𝛼)𝑦) 

Applying the original PDE: 

 (𝑧 · 𝑠𝑖𝑛(𝛼))² + (𝑧 · 𝑐𝑜𝑠(𝛼))² =  𝑧² 𝑠𝑖𝑛²(𝛼)  +  𝑐𝑜𝑠²(𝛼)  =  1 ✓ 

So, the complete integral is: 

𝑧 =  𝐶₄ · 𝑒𝑥𝑝(𝑠𝑖𝑛(𝛼)𝑥 +  𝑐𝑜𝑠(𝛼)𝑦) 
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where α and C₄ are arbitrary parameters. 

Setting a = sin(α), b = cos(α) (with a² + b² = 1), and K = ln|C₄|, we get: 

𝑧 =  𝑒𝑥𝑝(𝑎𝑥 +  𝑏𝑦 +  𝐾) 

This is the complete integral of the original PDE. 

Solved Problem 3: Quasi-Linear PDE 

Solve the quasi-linear PDE: z(p + q) = px + qy with initial condition z = x + 

y on the curve x = t, y = t². 

Solution: 

Let's rewrite the equation as: z(p + q) - px - qy = 0 

Dividing by (p + q) (assuming p + q ≠ 0): z - (px + qy)/(p + q) = 0 

Setting: 𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) =  𝑧 −
𝑝𝑥 + 𝑞𝑦

𝑝 + 𝑞
 

The characteristic equations are: 

𝑑𝑥

𝑑𝑡
 =  𝐹𝑝  =

𝑞𝑥 −  𝑞𝑦

(𝑝 +  𝑞)2
   
𝑑𝑦

𝑑𝑡
 =  𝐹𝑞  =

𝑝𝑦 −  𝑝𝑥

(𝑝 +  𝑞)2
 

 
𝑑𝑧

𝑑𝑡
 =  𝑝𝐹𝑝  +  𝑞𝐹𝑞  =  0     

𝑑𝑝

𝑑𝑡
 =  −𝐹𝑥   −  𝑝𝐹𝑧  =  −

𝑞

𝑝 + 𝑞
 −  𝑝 =  −

𝑞

𝑝 + 𝑞
−

𝑝(𝑝 + 𝑞)

𝑝 + 𝑞
= -(p + q)/(p + 𝑞)  =  −1  

𝑑𝑞

𝑑𝑡
=  −𝐹𝑦  −  𝑞𝐹𝑧  =  −

𝑝

𝑝 +  𝑞
 −  𝑞 =  −

𝑝

𝑝 +  𝑞
 −

𝑞(𝑝 +  𝑞)

𝑝 +  𝑞
 

=  −
𝑝 +  𝑞

𝑝 +  𝑞
 =  −1 

 

 

 

 From p = ∂z/∂x and q = ∂z/∂y, on the initial curve: p(0) = 1 q(0) = 1

The initial condition z = x + y on x = t, y = t² gives: z(0) = t + t² = x(0) + y(0)

Integrating: p = -t + C₁ q = -t + C₂

From these equations: dp/dt = dq/dt = -1
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So at t = 0: p(0) = 1 = -0 + C₁, implying C₁ = 1 q(0) = 1 = -0 + C₂, implying 

C₂ = 1 

Thus: p = -t + 1 q = -t + 1 

From dz/dt = 0: z = C₃ (constant along each characteristic) 

With the initial condition, at t = 0, z(0) = x(0) + y(0) = t + t² 

Thus: z = t + t² 

For the remaining characteristic equations: 

𝑑𝑥/𝑑𝑡 =  (𝑞𝑥 −  𝑞𝑦)/(𝑝 +  𝑞)² =  ((1 − 𝑡)𝑥 − (1 − 𝑡)𝑦)/((2 − 2𝑡))² 

=  ((1 − 𝑡)(𝑥 − 𝑦))/(2 − 2𝑡)² 

=  (𝑥 − 𝑦)/(2(1 − 𝑡)) 𝑑𝑦/𝑑𝑡 =  (𝑝𝑦 −  𝑝𝑥)/(𝑝 +  𝑞)² 

=  ((1 − 𝑡)𝑦 − (1 − 𝑡)𝑥)/((2 − 2𝑡))² 

=  ((1 − 𝑡)(𝑦 − 𝑥))/(2 − 2𝑡)² =  (𝑦 − 𝑥)/(2(1 − 𝑡)) 

Let u = x - y, then: 𝑑𝑥/𝑑𝑡 =  𝑢/(2(1 − 𝑡)) 𝑑𝑦/𝑑𝑡 =  −𝑢/(2(1 − 𝑡)) 

Adding these equations: dx/dt + dy/dt = 0 d(x + y)/dt = 0 

Thus: x + y = C₄ 

At t = 0, x(0) = t = t, y(0) = t², so x(0) + y(0) = t + t² 

Therefore: x + y = t + t² 

We also have: 
𝑑𝑥

𝑑𝑡
−

𝑑𝑦

𝑑𝑡
=

2𝑢

2(1−𝑡)
=

𝑢

1−𝑡
  

Let v = x - y, then: 
𝑑𝑣

𝑑𝑡
 =

𝑣

1−𝑡

𝑑𝑣

𝑣
  =

𝑑𝑡

1−𝑡
 𝑙𝑛|𝑣|  =  −𝑙𝑛|1 − 𝑡|  +  𝐶₅ 𝑣 =

  

             

  

 

 = t²/2

From x + y = t + t² and x - y = t, we get: 2x = t + t² + t = 2t + t² x = t + t²/2 y 

Thus: x - y = t(1-t)/(1-t) = t

At 𝑡 = 0, 𝑣(0) = 𝑥(0) − 𝑦(0) = 𝑡 − 𝑡² = 𝑡(1 − 𝑡)

𝐶₅/(1 − 𝑡)
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Now we have: x = t + t²/2 y = t²/2 z = t + t² p = -t + 1 q = -t + 1 

To express z directly in terms of x and y, we need to eliminate t from these 

equations: 

From y = t²/2: t = √(2y) 

Substituting into x = t + t²/2: x = √(2y) + y 

Therefore: t = √(2y) z = √(2y) + y 

So the solution is: z = √(2y) + y, with x = √(2y) + y 

This can be rewritten as: z = x 

which satisfies both the PDE and the initial condition. 

Solved Problem 4: Method of Characteristics for a Nonlinear PDE 

Solve the PDE: (p - x)² + (q - y)² = 1 with the initial condition z = 0 on the 

circle x² + y² = 4. 

Solution: 

Let F(x, y, z, p, q) = (p - x)² + (q - y)² - 1. 

The characteristic equations are: 

𝑑𝑥

𝑑𝑡
 =  𝐹𝑝  =  2(𝑝 −  𝑥)

𝑑𝑦

𝑑𝑡
  =  𝐹𝑞  =  2(𝑞 −  𝑦) 

𝑑𝑧

𝑑𝑡
 =  𝑝𝐹𝑝  +  𝑞𝐹𝑞  =  2𝑝(𝑝 −  𝑥) +  2𝑞(𝑞 −  𝑦) 

𝑑𝑝

𝑑𝑡
=  −𝐹𝑥  −  𝑝𝐹𝑧  =  −2(𝑝 −  𝑥)(−1) =  2(𝑝 −  𝑥) 

𝑑𝑞

𝑑𝑡
  =  −𝐹𝑦  −  𝑞𝐹𝑧  =  −2(𝑞 −  𝑦)(−1)  =  2(𝑞 −  𝑦) 

We notice that the equations for dx/dt and dp/dt are related, as are dy/dt and 

dq/dt: 
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𝑑𝑥

𝑑𝑡
 =

𝑑𝑝

𝑑𝑡
 =  2(𝑝 −  𝑥)

𝑑𝑦

𝑑𝑡
 =

𝑑𝑞

𝑑𝑡
 =  2(𝑞 −  𝑦) 

This means:
𝑑(𝑝 − 𝑥)

𝑑𝑡
 =  0   

𝑑(𝑞 − 𝑦)

𝑑𝑡
 =  0 

So p - x = C₁ and q - y = C₂ are constants along each characteristic. 

From the original PDE, C₁² + C₂² = 1, which means we can parameterize: p - 

x = cos(θ) q - y = sin(θ) 

where θ is a parameter that's constant along each characteristic. 

The equations for x and y become: dx/dt = 2cos(θ) dy/dt = 2sin(θ) 

Integrating: x = 2cos(θ)t + C₃ y = 2sin(θ)t + C₄ 

Along the initial curve x² + y² = 4, we can parameterize: x(0) = 2cos(φ) y(0) 

= 2sin(φ) 

So: C₃ = 2cos(φ) C₄ = 2sin(φ) 

Therefore: x = 2cos(θ)t + 2cos(φ) y = 2sin(θ)t + 2sin(φ) 

Now we need to use the initial condition z = 0 when t = 0. The equation for z 

is: 

dz/dt = 2p(p - x) + 2q(q - y) = 2p·cos(θ) + 2q·sin(θ) 

Using p = x + cos(θ) and q = y + sin(θ): 

𝑑𝑧

𝑑𝑡
 =  2(𝑥 +  𝑐𝑜𝑠(𝜃))𝑐𝑜𝑠(𝜃)  +  2(𝑦 +  𝑠𝑖𝑛(𝜃))𝑠𝑖𝑛(𝜃)  

=  2𝑥 · 𝑐𝑜𝑠(𝜃)  +  2𝑐𝑜𝑠²(𝜃)  +  2𝑦 · 𝑠𝑖𝑛(𝜃)  +  2𝑠𝑖𝑛²(𝜃)  

=  2𝑥 · 𝑐𝑜𝑠(𝜃)  +  2𝑦 · 𝑠𝑖𝑛(𝜃)  +  2(𝑐𝑜𝑠²(𝜃)  +  𝑠𝑖𝑛²(𝜃))  

=  2𝑥 · 𝑐𝑜𝑠(𝜃)  +  2𝑦 · 𝑠𝑖𝑛(𝜃)  +  2 

Substituting the expressions for x and y: 
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𝑑𝑧

𝑑𝑡
 =  2(2𝑐𝑜𝑠(𝜃)𝑡 +  2𝑐𝑜𝑠(𝜑))𝑐𝑜𝑠(𝜃)  +  2(2𝑠𝑖𝑛(𝜃)𝑡 

+  2𝑠𝑖𝑛(𝜑))𝑠𝑖𝑛(𝜃)  +  2 

=  4𝑐𝑜𝑠²(𝜃)𝑡 +  4𝑐𝑜𝑠(𝜑)𝑐𝑜𝑠(𝜃)  +  4𝑠𝑖𝑛²(𝜃)𝑡 

+  4𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛(𝜃)  +  2 

=  4𝑡(𝑐𝑜𝑠²(𝜃)  +  𝑠𝑖𝑛²(𝜃))  +  4(𝑐𝑜𝑠(𝜑)𝑐𝑜𝑠(𝜃)  

+  𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛(𝜃))  +  2 =  4𝑡 +  4𝑐𝑜𝑠(𝜑 −  𝜃)  +  2 

Integrating with respect to t, and using the initial condition z(0) = 0: 

𝑧 =  2𝑡² +  4𝑡 · 𝑐𝑜𝑠(𝜑 −  𝜃)  +  2𝑡 +  𝐶₅ 𝑧(0)  =  0 =  𝐶₅ 

So: 𝑧 =  2𝑡² +  4𝑡 · 𝑐𝑜𝑠(𝜑 −  𝜃)  +  2𝑡 

We need to determine the relationship between φ and θ. From the initial 

conditions, we have: 𝑝(0) =
𝜕𝑧

𝜕𝑥
(0)𝑎𝑛𝑑 𝑞(0) =

𝜕𝑧

𝜕𝑦
(0) 

Since z = 0 on the circle x² + y² = 4, we have a constraint that determines the 

relationship between p, q, x, and y on the initial curve. Additional information 

would be needed to fully specify the relationship between φ and θ. 

For simplicity, let's assume θ = φ. Then: 

z = 2t² + 4t + 2t = 2t² + 6t 

To express z in terms of x and y, we need to find t and θ from:  

𝑥 =  2𝑐𝑜𝑠(𝜃)𝑡 +  2𝑐𝑜𝑠(𝜃) 𝑦 =  2𝑠𝑖𝑛(𝜃)𝑡 +  2𝑠𝑖𝑛(𝜃) 

This gives: 𝑥 =  2𝑐𝑜𝑠(𝜃)(𝑡 +  1) 𝑦 =  2𝑠𝑖𝑛(𝜃)(𝑡 +  1) 

From these: 𝑥² +  𝑦² =  4(𝑡 +  1)² 

So: 𝑡 =
√𝑥2+ 𝑦2

2
 −  1 

Substituting into 𝑧 =  2𝑡² +  6𝑡: 
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𝑧 =  2 (
√𝑥2 + 𝑦2

2
−  1)

2

+  6(
√𝑥2 + 𝑦2

2
−  1)

=
2(𝑥2 + 𝑦2)

4
−  2√𝑥2 + 𝑦2 +  2 +  3√𝑥2 + 𝑦2 −  6 

=
𝑥2 + 𝑦2

2
−  2√𝑥2 + 𝑦2 +  2 +  3√𝑥2 + 𝑦2 −  6 

=
𝑥2 + 𝑦2

2
 + √(𝑥² +  𝑦²)  −  4 

Therefore, the solution is: 𝑧 =
𝑥2+ 𝑦2

2
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𝑑𝑦

𝑑𝑥
 =  𝑔(𝑥)  ×  ℎ(𝑦) 

where g(x) is a function of x only and h(y) is a function of y only. 

Solution Method: 

1. Rearrange the equation to separate variables:  

(
1

ℎ(𝑦)
)  ×  𝑑𝑦 =  𝑔(𝑥)  ×  𝑑𝑥 

2. Integrate both sides: ∫ (1/h(y)) dy = ∫ g(x) dx 

3. After integration, solve for y if possible. 

Example: 

Consider the equation 
𝑑𝑦

𝑑𝑥
 =  𝑥²𝑦 

Step 1: Separate variables 
𝑑𝑦

𝑦
 =  𝑥² 𝑑𝑥 

Step 2: Integrate both sides ∫
𝑑𝑦

𝑦
   =  ∫ 𝑥2𝑑𝑥,     𝑙𝑛|𝑦| =

𝑥3

3
 +  𝐶 

Step 3: Solve for y   𝑦 =  ±𝑒
𝑥3

3
+ 𝐶  =  ±𝐶₁𝑒

𝑥3

3  where 𝐶₁ =  𝑒𝐶   is a new 

 

 

form:

A first-order differential equation is called separable if it can be written in the 

Separable Equations

and their solving techniques.

systematic solution methods. In this section, we'll explore these special types 

First-order  differential  equations  come  in  several  special  forms  that  have 

1.3.1. Special Types of First-Order Equations

       Special types of first order equations – Jacobi’s method
UNIT 1.3

Homogeneous Equations

constant.
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A first-order differential equation is homogeneous if it can be written in the 

form: 

𝑑𝑦

𝑑𝑥
=  𝐹(

𝑦

𝑥
) 

where F is a function of the ratio y/x. 

Solution Method: 

1. Substitute y = vx (where v = y/x) 

2. This gives dy = v dx + x dv 

3. Substitute into original equation to get an equation in terms of v and 

x 

4. Separate variables and integrate 

Example: 

Consider the equation 
𝑑𝑦

𝑑𝑥
 =

𝑥 + 𝑦

𝑥
 

Step 1: Check if it's homogeneous 𝐹 (
𝑦

𝑥
) =

𝑥 + 𝑦

𝑥
 =  1 +

𝑦

𝑥
 So it is 

homogeneous. 

Step 2: Substitute y = vxdy = v dx + x dv 

Step 3: Substitute into original equation 𝑣 𝑑𝑥 +  𝑥 𝑑𝑣 =
𝑥 + 𝑣𝑥

𝑥
  𝑑𝑥 𝑣 𝑑𝑥 +

 𝑥 𝑑𝑣 =  (1 +  𝑣) 𝑑𝑥 𝑥 𝑑𝑣 =  (1 +  𝑣 −  𝑣) 𝑑𝑥 =  𝑑𝑥 

Step 4: Separate variables and integrate  

𝑑𝑣 =
𝑑𝑥

𝑥
 , ∫ 𝑑𝑣 =  ∫

𝑑𝑥

𝑥
 , 𝑣 =  𝑙𝑛|𝑥|  +  𝐶 

        

 

 

 dy/dx + P(x)y = Q(x)

A first-order linear differential equation has the form:

Linear First-Order Equations

Step 5: Substitute back 𝑦 = 𝑣𝑥 𝑦 = 𝑥(𝑙𝑛|𝑥| + 𝐶)
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where P(x) and Q(x) are functions of x. 

Solution Method (Using Integrating Factor): 

1. Find the integrating factor 𝜇(𝑥)  =  𝑒∫ 𝑃(𝑥)𝑑𝑥 

2. Multiply the entire equation by μ(x) 

3. The left side becomes 
𝑑

𝑑𝑥
[𝜇(𝑥)𝑦] 

4. Integrate both sides: 𝜇(𝑥)𝑦 =  ∫ 𝜇(𝑥)𝑄(𝑥)𝑑𝑥 +  𝐶 

5. Solve for y 

Example: 

Consider the equation 
𝑑𝑦

𝑑𝑥
 +  2𝑦 =  𝑒𝑥 

Step 1: Identify P(x) = 2 and 𝑄(𝑥)  =  𝑒𝑥 

Step 2: Find the integrating factor 𝜇(𝑥)  =  𝑒∫ 2𝑑𝑥   =  𝑒2𝑥 

Step 3: Multiply the equation by  

𝜇(𝑥)𝑒2𝑥 𝑑𝑦/𝑑𝑥 +  2𝑒2𝑥𝑦 =  𝑒2𝑥  ×  𝑒𝑥  =  𝑒3𝑥 

Step 4: Recognize the left side as a derivative 
𝑑

𝑑𝑥
[𝑒2𝑥𝑦 ]  =  𝑒3𝑥 

Step 5: Integrate both sides 𝑒2𝑥 𝑦 =  ∫ 𝑒3𝑥𝑑𝑥 =  𝑒3𝑥/3 +  𝐶 

Step 6: Solve for y    𝑦 =  𝑒−2𝑥  × (
𝑒3𝑥

3
 +  𝐶) =

𝑒𝑥

3
 +  𝐶𝑒−2𝑥 

Bernoulli Equations 

A Bernoulli equation has the form: 

𝑑𝑦

𝑑𝑥
 +  𝑃(𝑥)𝑦 =  𝑄(𝑥)𝑦𝑛 

where n is a real number, and n ≠ 0, 1. 

Solution Method: 
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1. Substitute 𝑣 =  𝑦1−𝑛  

2. This transforms the equation into a linear equation in v 

3. Solve using the method for linear equations 

Example: 

Consider the equation dy/dx + y = xy² 

Step 1: Rearrange to standard form dy/dx + y = xy² 

Step 2: Identify P(x) = 1, Q(x) = x, and n = 2 

Step 3: Substitute 𝑣 =  𝑦1−2  =  𝑦−1  𝑇ℎ𝑖𝑠 𝑚𝑒𝑎𝑛𝑠 𝑦 =  𝑣−1 𝑎𝑛𝑑 

𝑑𝑦

𝑑𝑥
 =  −𝑣−2  ×

𝑑𝑣

𝑑𝑥
 

Step 4: Substitute into the original equation  

−𝑣−2  ×
𝑑𝑣

𝑑𝑥
 + 𝑣−1  =  𝑥 × 𝑣−2  −

𝑑𝑣

𝑑𝑥
 +  𝑣 =  𝑥𝑣−1  −

𝑑𝑣

𝑑𝑥
 +  𝑣 =

𝑥

𝑣
 

Step 5: Multiply all terms by    −1
𝑑𝑣

𝑑𝑥
 −  𝑣 =  −

𝑥

𝑣
 

Step 6: Rearrange to standard linear form 
𝑑𝑣

𝑑𝑥
 −  𝑣 =  −

𝑥

𝑣

𝑑𝑣

𝑑𝑥
 −  𝑣 =  −

𝑥

𝑣
 

Step 7: Solve this linear equation using the integrating factor method  

𝜇(𝑥)  =  𝑒∫ (−1)𝑑𝑥  =  𝑒−𝑥 

Step 8: Multiply the equation by 𝜇(𝑥) 

𝑒−𝑥
𝑑𝑣

𝑑𝑥
 − 𝑒−𝑥𝑣 =  −𝑒−𝑥

𝑥

𝑣
   

Step 9: The left side becomes 
𝑑

𝑑𝑥
[𝑒−𝑥𝑣]  =  −𝑒−𝑥 𝑥/𝑣  

This gets complicated, so we'd typically solve numerically or use a different 

approach. 
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Exact Equations 

A differential equation M(x,y)dx + N(x,y)dy = 0 is exact if: 

𝜕𝑀

𝜕𝑦
 =

𝜕𝑁

𝜕𝑥
 

Solution Method: 

1. Check if the equation is exact by verifying 
𝜕𝑀

𝜕𝑦
=

𝜕𝑁

𝜕𝑥
  

2. If exact, find a function F(x,y) such that:  

𝜕𝐹

𝜕𝑥
 =  𝑀(𝑥, 𝑦) and 

𝜕𝐹

𝜕𝑦
 = 𝑁(𝑥, 𝑦) 

3. The general solution is F(x,y) = C 

Example: 

Consider the equation (2𝑥𝑦 +  𝑦²)𝑑𝑥 + (𝑥² +  2𝑥𝑦)𝑑𝑦 =  0 

Step 1: Identify 𝑀(𝑥, 𝑦)  =  2𝑥𝑦 +  𝑦² 𝑎𝑛𝑑 𝑁(𝑥, 𝑦)  =  𝑥² +  2𝑥𝑦 

Step 2: Check if it's exact 
𝜕𝑀

𝜕𝑦
 =  2𝑥 +  2𝑦

𝜕𝑁

𝜕𝑥
 =  2𝑥 +  2𝑦. 

  

 

 

  

 

 

 These can be solved by direct integration: y = ∫f(x)dx + C

Type 1: Equations of form dy/dx = f(x)

Equations with Missing Variables

= C - K)

Step 5: The solution is: F(x,y) = x²y + xy² + K = C or x²y + xy² = C (where C 

This implies g'(y) = 0, so g(y) = K (constant)

Step 4: Verify using the other condition ∂F/∂y = x² + 2xy + g'(y) = x² + 2xy 

F(x,y) = x²y + xy² + g(y) where g(y) is a function of y only.

Step 3: Find F(x,y) such that: ∂F/∂x = 2xy + y² Integrate with respect to x:

Since ∂M/∂y = ∂N/∂x, the equation is exact.
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Type 2: Equations of form dy/dx = f(y) 

These are separable equations: 
𝑑𝑥

𝑑𝑦
 =

1

𝑓(𝑦)
 𝑥 =  ∫ (

1

𝑓(𝑦)
)𝑑𝑦 +  𝐶 

Example: 

Consider the equation dy/dx = sin(x) 

This is Type 1, so: y = ∫sin(x)dx = -cos(x) + C 

Riccati Equation 

The Riccati equation has the form: dy/dx = P(x) + Q(x)y + R(x)y² 

This equation can be reduced to a second-order linear equation, but if one 

particular solution y₁ is known, the general solution can be found by 

substituting y = y₁ + 1/v. 

1.3.2 Jacobi's Method and Its Applications 

Introduction to Jacobi's Method 

Jacobi's method is a powerful technique for solving certain types of 

differential equations, particularly those that arise in problems involving 

mechanics, physics, and engineering. It's especially useful for solving 

Hamilton-Jacobi equations in classical mechanics. 

The Hamilton-Jacobi Equation 

The Hamilton-Jacobi equation is: 

∂S/∂t + H(q, ∂S/∂q, t) = 0 

where: 

• S is the action function 

• H is the Hamiltonian 

• q represents generalized coordinates 

Jacobi's Method for First-Order PDEs 
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For a first-order partial differential equation of the form: 

F(x, y, z, p, q) = 0 

where p = ∂z/∂x and q = ∂z/∂y, Jacobi's method involves: 

1. Finding a complete integral by introducing arbitrary constants 

2. Using this complete integral to generate more general solutions 

Steps in Jacobi's Method: 

1. Write the equation in the form F(x, y, z, p, q) = 0 

2. Find a complete integral Z(x, y, a, b) where a and b are arbitrary 

constants 

3. The general solution is given by:  

𝑧 =  𝑍(𝑥, 𝑦, 𝑎(𝑠), 𝑏(𝑠)) +  𝑠 ×  [
𝜕𝑍

𝜕𝑎
× 𝑎′(𝑠) +

𝜕𝑍

𝜕𝑏
× 𝑏′(𝑠)] 

  

 

 

  

  

 

 

 

 

 

 

 Step 3: Use the substitution

particular solution

This  gives  a²  =  1  and  a  =  1  (choosing  the  positive  value). So  y₁  =  x  is  a 

Let's try y₁ = ax where a is a constant Substituting: a = (ax)² + x² a = a²x² + x² 

Step 2: Try to find a particular solution

Step 1: This is a Riccati equation with P(x) = x², Q(x) = 0, and R(x) = 1

Consider the equation dy/dx = y² + x²

Example:

Systems of first-order equations2.

Non-linear equations that don't fit standard forms1.

For first-order ODEs, Jacobi's method can be particularly useful for:

Application to Ordinary Differential Equations

where a(s) and b(s) are arbitrary functions of parameter s
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𝑦 =  𝑥 +
1

𝑣

𝑑𝑦

𝑑𝑥
 =  1 + (−

1

𝑣2
) ×

𝑑𝑣

𝑑𝑥
 

Step 4: Substitute into the original equation  

1 + (−
1

𝑣2
) ×

𝑑𝑣

𝑑𝑥
 =  (𝑥 +

1

𝑣
)
2

 +  𝑥21 − (
1

𝑣2
) ×

𝑑𝑣

𝑑𝑥
 

=  𝑥2 +
2𝑥

𝑣
 +

1

𝑣2
 +  𝑥21 − (

1

𝑣2
) ×

𝑑𝑣

𝑑𝑥
 

=  2𝑥2 +
2𝑥

𝑣
 +

1

𝑣2
 

Step 5: Rearrange to find 
𝑑𝑣

𝑑𝑥
 − (

1

𝑣2
) ×

𝑑𝑣

𝑑𝑥
 =  2𝑥2 +

2𝑥

𝑣
 +

1

𝑣2
  −  1 

𝑑𝑣

𝑑𝑥
 =  −𝑣2 (2𝑥2 +

2𝑥

𝑣
 +

1

𝑣2
 −  1) 

𝑑𝑣

𝑑𝑥
  =  −2𝑥²𝑣² −  2𝑥𝑣 −  1 +  𝑣² 

Step 6: Solve this equation (typically numerically) 

Step 7: The general solution to the original equation is:  

𝑦 =  𝑥 +
1

𝑣(𝑥)
  

Advantages of Jacobi's Method 

1. Provides a systematic approach for complex non-linear equations 

2. Particularly useful in mechanical and physical systems 

3. Can reveal hidden symmetries and conservation laws 

4. Connects to modern mathematical physics through canonical 

transformations 

Limitations of Jacobi's Method 

1. Often requires finding a particular solution first 

2. May lead to complicated calculations 

3. Sometimes requires numerical methods for final resolution 

1.3.3 . Summary and Important Formulas 
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General First-Order Equation 

A general first-order differential equation has the form:  

𝑑𝑦

𝑑𝑥
 =  𝑓(𝑥, 𝑦) 

Separable Equations 

Form: 
𝑑𝑦

𝑑𝑥
 =  𝑔(𝑥)  ×  ℎ(𝑦) 

Solution method: ∫  (
1

ℎ(𝑦)
) 𝑑𝑦 =  ∫ 𝑔(𝑥) 𝑑𝑥 

Homogeneous Equations 

Form: 
𝑑𝑦

𝑑𝑥
 =  𝐹(

𝑦

𝑥
) 

Solution method: 

1. Substitute y = vx 

2. Solve for v as a function of x 

3. Substitute back to find y 

Linear First-Order Equations 

Form: 
𝑑𝑦

𝑑𝑥
 +  𝑃(𝑥)𝑦 =  𝑄(𝑥) 

Solution: 𝑦 =  𝑒−∫𝑃(𝑥)𝑑𝑥  × [∫ 𝑄(𝑥)𝑒∫ 𝑃(𝑥)𝑑𝑥𝑑𝑥 +  𝐶] 

Integrating factor: 𝜇(𝑥)  =  𝑒∫ 𝑃(𝑥)𝑑𝑥 

Bernoulli Equations 

Form: 
𝑑𝑦

𝑑𝑥
 +  𝑃(𝑥)𝑦 =  𝑄(𝑥)𝑦𝑛 

 

    

  Solve the resulting linear equation2.

Substitute 𝑣 = 𝑦1−𝑛1.

Solution method:
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Exact Equations 

Form: M(x,y)dx + N(x,y)dy = 0 is exact if 
𝜕𝑀

𝜕𝑦
 =

𝜕𝑁

𝜕𝑥
 

Solution: Find F(x,y) such that ∂F/∂x = M and ∂F/∂y = N. 

Then F(x,y) = C is the general solution 

Integrating Factor for Non-Exact Equations 

If 
𝜕𝑀

𝜕𝑦
 ≠

𝜕𝑁

𝜕𝑥
,  find a function μ(x,y) such that:  

𝜇(𝑥, 𝑦)𝑀(𝑥, 𝑦)𝑑𝑥 +  𝜇(𝑥, 𝑦)𝑁(𝑥, 𝑦)𝑑𝑦 =  0 is exact 

Riccati Equation 

Form: dy/dx = P(x) + Q(x)y + R(x)y² 

If y₁ is a particular solution, the general solution is: y = y₁ + 1/v where v 

satisfies a linear equation 

Jacobi's Method Key Formulas 

For a Hamilton-Jacobi equation:  

𝜕𝑆

𝜕𝑡
 +  𝐻(𝑞,

𝜕𝑆

𝜕𝑞
, 𝑡)  =  0 

The complete solution has the form: S = S(q, α, t), where α is a set of constants 

The constants of motion are given by: β = ∂S/∂α 

1.3.4. Practice Problems 

Solved Problems 

Problem 1: Separable Equation 

Solve the differential equation: 
𝑑𝑦

𝑑𝑥
 =

𝑥𝑦

1+𝑥2
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Solution: Step 1: Separate variables 
1+𝑥2

𝑥
 ×

𝑑𝑦

𝑦
 =  𝑑𝑥 

Step 2: Integrate both sides  

∫
1 + 𝑥2

𝑥
   𝑑𝑥  =  ∫

𝑑𝑦

𝑦
   

∫ (
1

𝑥
 +  𝑥)  𝑑𝑥  =  ∫

𝑑𝑦

𝑦
  

𝑙𝑛|𝑥| +
𝑥2

2
  =  𝑙𝑛|𝑦|  +  𝐶₁ 

Step 3: Solve for y     

ln|𝑦| = ln|𝑥| +
𝑥2

2
−   𝐶₁ 

 𝑦 =  ±𝑒𝑙𝑛
|𝑥|+

𝑥2

2
− 𝐶₁

 

 𝑦 =  ±𝑒−𝐶₁  ×  𝑥 ×  𝑒
𝑥2

2  𝑦 =  𝐶𝑥 × 𝑒
𝑥2

2  

where 𝐶 =  ±𝑒−𝐶1 is a constant. 

Problem 2: Linear Equation 

Solve the differential equation: 
𝑑𝑦

𝑑𝑥
 +  3𝑦 =  𝑒2𝑥 

Solution: Step 1: Identify P(x) = 3 and 𝑄(𝑥)  =  𝑒2𝑥 

Step 2: Find the integrating factor 𝜇(𝑥)  =  𝑒∫ 3𝑑𝑥  =  𝑒3𝑥 

Step 3: Multiply the equation by  

𝜇(𝑥)𝑒3𝑥  
𝑑𝑦

𝑑𝑥
 +  3𝑒3𝑥𝑦 =  𝑒3𝑥  × 𝑒2𝑥  =  𝑒5𝑥 

Step 4: Recognize the left side as a derivative 

 
𝑑

𝑑𝑥
[𝑒3𝑥𝑦]  =  𝑒5𝑥 
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Step 5: Integrate both sides 𝑒3𝑥𝑦 =  ∫ 𝑒5𝑥𝑑𝑥  =  𝑒5𝑥/5 +  𝐶 

Step 6: Solve for y 𝑦 =  𝑒−3𝑥  ×  (𝑒5𝑥/5 +  𝐶)  =  𝑒2𝑥/5 +  𝐶𝑒−3𝑥 

Problem 3: Exact Equation 

Solve the differential equation: (𝑦² + 2𝑥𝑦)𝑑𝑥 + (2𝑥𝑦 + 𝑥²)𝑑𝑦 =  0 

Solution: Step 1: Identify M(x,y) = y² + 2xy and N(x,y) = 2xy + x² 

Step 2: Check if it's exact 
𝜕𝑀

𝜕𝑦
  =  2𝑦 +  2𝑥,

𝜕𝑁

𝜕𝑥
 =  2𝑦 +  2𝑥. 

𝑆𝑖𝑛𝑐𝑒 𝜕𝑀/𝜕𝑦 =  𝜕𝑁/𝜕𝑥, the equation is exact. 

Step 3: Find F(x,y) such that: ∂F/∂x = y² + 2xy. Integrate with respect to x: 

F(x,y) = xy² + x²y + g(y), where g(y) is a function of y only. 

Step 4: Verify using the other condition  

𝜕𝐹/𝜕𝑦 =  2𝑥𝑦 +  𝑥² +  𝑔′(𝑦)  =  2𝑥𝑦 +  𝑥²  

this implies g'(y) = 0, so g(y) = K (constant) 

Step 5: The solution is: 

 𝐹(𝑥, 𝑦) =  𝑥𝑦2 + 𝑥2𝑦 +  𝐾 =  𝐶 

 𝑜𝑟 𝑥𝑦² +  𝑥²𝑦 =  𝐶 (𝑤ℎ𝑒𝑟𝑒 𝐶 =  𝐶 −  𝐾) 

Problem 4: Homogeneous Equation 

Solve the differential equation: 
𝑑𝑦

𝑑𝑥
 =

𝑥2+ 𝑦2

𝑥𝑦
 

Solution: Step 1: Check if it's homogeneous  

𝐹 (
𝑦

𝑥
)  =

𝑥2+ 𝑦2

𝑥𝑦
 =

1 + (
𝑦

𝑥
)
2

𝑦

𝑥

  

So it is homogeneous. 
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Step 2: Substitute y = vxdy = v dx + x dv 

Step 3: Substitute into original equation  

𝑣 𝑑𝑥 +  𝑥 𝑑𝑣

𝑑𝑥
 =

𝑥2 + (𝑣𝑥)2

𝑥 ×  𝑣𝑥
 

 𝑣  +  𝑥 (
𝑑𝑣

𝑑𝑥
)   =

1 + 𝑣2

𝑣
 

 𝑣 +  𝑥(𝑑𝑣/𝑑𝑥)  =  1/𝑣 +  𝑣 

Step 4: Rearrange to solve for 𝑑𝑣/𝑑𝑥 

   𝑥 (
𝑑𝑣

𝑑𝑥
) =

1

𝑣
+  𝑣 −  𝑣 =

1

𝑣
 

 𝑑𝑣/𝑑𝑥 =  1/(𝑣𝑥) 

Step 5: Separate variables and integrate  

𝑣 𝑑𝑣 =
𝑑𝑥

𝑥
 

 ∫ 𝑣 𝑑𝑣 =
∫ 𝑑𝑥

𝑥
 

𝑣²/2 =  𝑙𝑛|𝑥|  +  𝐶 

Step 6: Substitute back 𝑦 =  𝑣𝑥  

𝑦2

𝑥2
= 2 ln|𝑥| +  2𝐶  

𝑦2 = 2𝑥2 ln|𝑥| +  2𝐶 

𝑥² 𝑦² =  2𝑥²𝑙𝑛|𝑥|  +  𝐴𝑥² 

where A = 2C is a constant. 

Problem 5: Bernoulli Equation 

Solve the differential equation: 
𝑑𝑦

𝑑𝑥
 −  𝑦 =  𝑥𝑦³ 
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Solution: Step 1: Rearrange to standard form 
𝑑𝑦

𝑑𝑥
 −  𝑦 =  𝑥𝑦³ 

Step 2: Identify P(x) = -1, Q(x) = x, and n = 3 

Step 3: Substitute 𝑣 =  𝑦1−3 = 𝑦−2 

 This means 𝑦 =  𝑣−
1

2  𝑎𝑛𝑑  
𝑑𝑦

𝑑𝑥
= (−

1

2
) 𝑣−

3

2  ×
𝑑𝑣

𝑑𝑥
 

Step 4: Substitute into the original equation  

(−
1

2
)𝑣−

3

2  ×
𝑑𝑣

𝑑𝑥
 − 𝑣−

1

2  =  𝑥 × 𝑣−
3

2 (−1/2)  ×  𝑑𝑣/𝑑𝑥 −  𝑣 × 𝑣
1

2  

=  𝑥 ×  𝑣
1

2 (−1/2) ×  𝑑𝑣/𝑑𝑥 =  𝑣
3

2   +  𝑥 × 𝑣
1

2 

Step 5: Multiply all terms by -2
𝑑𝑣

𝑑𝑥
 =  −2𝑣

3

2  −  2𝑥𝑣
1

2 

Step 6: This differential equation is still complex, but can be solved using 

special substitutions or numerical methods. 

Unsolved Problems 

Problem 1: 

Solve the separable equation: 
𝑑𝑦

𝑑𝑥
 =  𝑐𝑜𝑠(𝑥)  ×  𝑠𝑖𝑛(𝑦) 

Problem 2: 

Solve the linear equation: 
𝑑𝑦

𝑑𝑥
 −

2𝑦

𝑥
 =  𝑥² 

Problem 3: 

Determine if the following equation is exact. If it is, solve it: 

 (3𝑥² +  4𝑥𝑦)𝑑𝑥 + (2𝑥2 + sin𝑦)𝑑𝑦 =  0 

Problem 4: 

Solve the homogeneous equation: 
𝑑𝑦

𝑑𝑥
=

𝑥 + 2𝑦

2𝑥 + 𝑦
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Problem 5: 

Find the general solution of the Bernoulli equation: 
𝑑𝑦

𝑑𝑥
+

𝑦

𝑥
=

𝑦2

𝑥3
 

Practical Applications of First-Order Differential Equations: Existence, 

Uniqueness, and Solution Methods  

In our increasingly complex world, differential equations serve as the 

mathematical language that defines many dynamic processes throughout 

engineering, physics, biology, economics, and numerous other fields. First-

order differential equations, in particular, offer one of the core techniques for 

modeling rate-of-change interactions. Understanding the theoretical 

underpinnings of these equations, specifically when solutions exist, when 

they're unique, and how to derive them, provides vital insights that extend far 

beyond abstract mathematics into practical, real-world applications.  

Conditions for Existence and Uniqueness  

The existence and uniqueness of solutions to first-order differential equations 

form the cornerstone of differential equation theory. When working with a 

first-order differential equation of the form y' = f(x, y), mathematicians have 

defined precise conditions under which we may guarantee that a solution not 

only exists but is the only viable solution for a given starting value problem.  

The Picard-Lindelöf theorem, often known as the Cauchy-Lipschitz theorem, 

gives these fundamental guarantees. It says that for an initial value issue y' = 

f(x, y) with y(x₀) = y₀, a unique solution exists in some neighborhood of x₀ if 

f(x, y) is continuous in both variables and satisfies a Lipschitz condition with 

respect to y. This seemingly abstract theoretical foundation has tremendous 

practical ramifications across various domains.  

In electrical engineering, for instance, this theorem ensures that circuit models 

driven by first-order differential equations provide predictable, unique 

answers when precise initial circumstances are provided. Consider a basic RC 

circuit where the voltage across the capacitor follows the differential equation 

dV/dt = (1/RC)(Vi - V), where Vi is the input voltage, V is the capacitor 

voltage, R is the resistance, and C is the capacitance. The Picard-Lindelöf 

theorem guarantees that for a given initial voltage V₀, there exists just one 

function V(t) representing the capacitor's voltage over time. This 

mathematical certainty translates directly into the stability of the electrical 
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equipment we depend on daily.  Similarly, in pharmaceutical research, 

pharmacokinetic models generally use first-order differential equations to 

explain drug concentration in the body over time. Healthcare providers must 

ensure that dose techniques will yield consistent concentrations in patients' 

bloodstreams while giving drugs. The existence and uniqueness theorems 

establish a theoretical basis that guarantees patient safety by verifying that 

particular initial conditions result in a singular concentration profile.  

Environmental scientists significantly depend on these theoretical assurances 

when modeling pollution dispersal, population dynamics, or climatic patterns. 

The understanding that their models generate distinct answers for specific 

initial conditions is essential for creating dependable forecasts that guide 

public policy and emergency response strategies.  

Separable Differential Equations: Techniques and Applications  

Separable differential equations are one of the more accessible categories of 

differential equations. The equations can be expressed as dy/dx = g(x)h(y), 

allowing for the separation of variables to opposite sides of the equation. By 

rearranging to (1/h(y))dy = g(x)dx and integrating both sides, we derive the 

general answer.  This ostensibly straightforward mathematical method 

supports a multitude of practical applications. In chemical engineering, 

reaction rates frequently adhere to first-order kinetics, wherein the rate of 

change of a reactant's concentration is directly proportional to the 

concentration itself. The differential equation dC/dt = -kC is separable, and its 

solution 𝐶(𝑡)  =  𝐶0𝑒
−𝑘𝑡  illustrates the exponential decrease of reactant 

concentration over time. This essential link propels process optimization in 

andmanufacture,pharmaceuticalproduction,chemicalindustrial

cleanup.environmental  

Ecological population models often utilize separable differential equations. 

The logistic growth model 
𝑑𝑃

𝑑𝑡
=  𝑟𝑃 (1 −

𝑃

𝐾
), in which P denotes population 

delineated by separable differential equations. Battery management systems

discharging properties of energy storage systems frequently adhere to patterns 

efficient  conservation  measures.   In  renewable  energy,  the  charging  and 

species mitigation all depend on this mathematical framework to formulate 

Wildlife management initiatives, fishery sustainability planning, and invasive 

separable  and  illustrates  population  increase  under  resource  constraints. 

size,  r  signifies  the  growth  rate,  and  K  indicates  the  carrying  capacity,  is 
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trends.   The  utility  of  integrating  factors  also  applies  to  electrical  network

precise predictions of market behavior, resource depletion rates, or inflation 

identifying  suitable  integrating  factors,  economists  can  formulate  more 

equations  that  can  be  examined  through  the  exact  equation  framework.  By 

models  of  price  dynamics  or  resource  allocation  result  in  differential 

resulting in safer and more efficient structural designs.  In economics, specific 

This facilitates more precise forecasts of material performance under stress, 

the exact equation method when suitable integrating factors are recognized. 

systems frequently confront differential equations that can be resolved using 

furnaces.   Mechanical  engineers  examining  stress  distributions  in  intricate 

systems  across  a  range  of  devices,  from  microprocessors  to  industrial 

format. This tool facilitates the more efficient design of thermal management 

determining  the  appropriate  integrating  factor converts  it  into  a  solvable 

representing temperature distribution may not be precise at first; nevertheless, 

factors.  In  the  examination  of  heat  transfer  issues,  the  differential  equation 

equations  that  become  accurate  upon  multiplication  by  suitable  integrating 

characteristics.   Thermodynamic  processes  often  produce  differential 

forms  and  airfoil  profiles  that  reduce  drag  and  enhance  performance 

aeronautical  engineers  utilize  these  mathematical  techniques  to  design  hull 

rendered  exact  through  integrating  components.  Naval  architects  and 

frequently results in differential equations that can be identified as exact or 

for deriving solutions.  In fluid dynamics, the examination of potential flows 

multiplying with an integrating factor μ(x,y), it provides further opportunities 

When  a  differential  equation  is  not  exact  but  may  be  rendered  exact  by 

∂M/∂y = ∂N/∂x, provide a robust technique for solving first-order equations. 

Exact  differential  equations,  expressed  as M(x,y)dx +  N(x,y)dy  =  0,  where 

Exact Equations and Integrating Factors

artifacts and geological formations.

radioisotope dosages for diagnostic imaging, and geologists to date historical 

radioactive  substances,  medical  practitioners  to  determine  suitable 

  𝑁0𝑒−𝜆𝑡 allows  nuclear  engineers  to  formulate  secure  storage  practices  for 

equation  with  significant  practical  implications.  The  equation 𝑁(𝑡) =

represented by the equation dN/dt = -λN, exemplifies a separable differential 

automobiles  and  grid-scale  energy  storage  facilities.   Radioactive  decay, 

capacity,  and  prolong  battery  lifespan  in  applications  that  include  electric 

employ  these  models  to  enhance  charging  methods,  forecast  remaining 
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analysis. In the analysis of intricate circuits featuring time-varying 

components, engineers may face differential equations that attain exactness 

upon multiplication by appropriately selected integrating factors, facilitating 

accurate predictions of circuit behavior under fluctuating conditions.   

Technique of Successive Approximations  

The method of consecutive approximations, or Picard iteration, offers a 

constructive technique for obtaining solutions when analytical methods are 

difficult to use. This method converts the differential equation y' = f(x,y) with 

the initial condition 𝑦(𝑥₀)  =  𝑦₀ into the integral equation 𝑦(𝑥)  =

∫ 𝑓(𝑡, 𝑦(𝑡))𝑑𝑡.
𝑥

𝑥0
 Beginning with an initial estimate y₀(x) and iteratively 

employing the integral operator, we produce a sequence of functions that, 

given suitable conditions, converges to the solution.  This technique exhibits 

significant practical utility across various areas. In computational fluid 

dynamics, intricate flow issues that resist analytical solutions are addressed 

by numerical methods of progressive approximations. Engineers developing 

components such as airplane wings and artificial heart valves employ these 

techniques to forecast fluid dynamics when analytical solutions are 

inaccessible.  Neural network training algorithms frequently utilize variations 

of sequential approximation techniques. During the training of deep learning 

models for applications such as image recognition, natural language 

processing, or autonomous vehicle control, the network parameters are 

iteratively modified in a manner that mathematically parallels the method of 

successive approximations. The convergence characteristics of these 

algorithms significantly influence the efficiency and efficacy of contemporary 

artificial intelligence systems.  Climate models that address intricate, 

interconnected differential equations often employ sequential approximation 

methods. The repeated improvement of solutions facilitates more precise 

projections of temperature trends, precipitation patterns, and extreme weather 

events, hence influencing essential policy decisions related to climate change 

mitigation and adaptation strategies.  In financial mathematics, derivative 

pricing models occasionally utilize successive approximations to resolve the 

differential equations that characterize asset price evolution under particular 

assumptions. The resultant pricing algorithms drive contemporary financial 

markets, facilitating risk management, portfolio optimization, and trading 

techniques.  Quantum mechanical computations in chemistry and materials 
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 dependable financial planning.

proportional  alterations  in  risk  evaluations,  facilitating  more  stable  and 

little  fluctuations  in  market  characteristics  or  economic  indicators  yield

differential  equations  that  adhere  to  Lipschitz  criteria. This  guarantees  that 

examine  market  behavior  or  credit  default  possibilities  frequently  utilize 

trajectories  without  unforeseen  deviations.   Financial  risk  models  that 

mathematical  feature  ensures  that  the  systems  adhere  to  anticipated 

autonomous  vehicles,  industrial  robots,  or  medical  surgical  systems,  this 

adhere to Lipschitz criteria to guarantee predictable motion. In the design of 

In robotics, path planning algorithms employ differential equations that must 

facilitating  improved  disaster  preparedness  and  routine  planning. 

supports the incremental gain in forecast precision observed in recent decades, 

result  in  significantly  differing  forecasts.  This  mathematical  principle 

Lipschitz criteria, guaranteeing that minor measurement inaccuracies do not 

Weather prediction methods depend on differential equations that adhere to 

resource  allocation,  quarantine  measures,  and  vaccination  plans. 

offering  mathematical  assurances  that  provide  dependable  projections  for 

models  to  formulate  intervention  methods,  with  the  Lipschitz  condition 

uniqueness of forecasted infection paths. Public health experts utilize these 

disease  transmission  frequently  use  Lipschitz  conditions  to  guarantee  the 

ensure  stringent  stability  guarantees.   Epidemiological  models  that  depict 

Lipschitz condition offers a mathematical foundation that allows designers to 

that  minor  disturbances  do  not  induce  unpredictable  system  behavior.  The 

such as industrial robots and aircraft flight systems, engineers must guarantee 

stability and predictability. In the design of control algorithms for applications 

engineering,  the  Lipschitz  condition  offers  essential  assurances  for  system 

proportionately minor changes in the resultant solution.  In control systems 

to  y,  guaranteeing  that  little  alterations  in  initial  conditions  yield 

solutions. This condition restricts the rate at which f(x,y) can vary with regard 

𝑦₂| for  a  constant  L, it is  essential  for  guaranteeing  the  uniqueness  of 

The Lipschitz condition, which asserts that |𝑓(𝑥, 𝑦₁) − 𝑓(𝑥, 𝑦₂)| ≤ 𝐿|𝑦₁ − 

The Lipschitz Condition and Uniqueness

propelling innovation across various industries.

facilitate  drug  development,  materials  design,  and  catalysis  research, 

Schrödinger  equation  for  intricate  molecular  systems.  These  computations 

research frequently employ iterative approximation techniques to resolve the 
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applications  in  nearly  all  technical  and  scientific  fields.  Aerospace

The theoretical principles of first-order differential equations have practical 

Practical Applications across Disciplines

autonomous vehicle operation, and robotic manipulation.

complicated  skills  across  various  domains,  including  game  playing, 

algorithms  dictate  the  efficiency  with  which  AI  systems  may  acquire 

resemble repeated approximations. The convergence characteristics of these 

significantly depends on iterative enhancement methods that mathematically 

Research  in  artificial  intelligence,  especially  in  reinforcement  learning, 

management,  network  design,  and  resource  allocation. 

effective  resolutions  to  intricate  optimization  challenges  in  supply  chain 

assurances  offered  by  the  foundational  mathematical  theory  facilitate 

adaptations  of  successive  approximation  techniques.  The  convergence 

Various  sectors  frequently  employ  optimization  algorithms  that  utilize 

assurances  strongly  correlates  with  public  safety. 

such  as  earthquakes  or  hurricanes,  the  dependability  of  these  convergence 

mathematical theory. In the design of structures to endure catastrophic events 

nonlinear material behavior depend on the convergence qualities defined by 

systems.   In  structural  engineering,  iterative  approaches  for  studying 

such  as  medical  imaging,  telecommunications,  and  speech  recognition 

algorithms directly influence processing speed and accuracy in applications 

approximation  techniques.  The  convergence  characteristics  of  these 

those  addressing  nonlinear  systems,  frequently  utilize  successive 

of these iterative solution methods.  Signal processing algorithms, especially 

reactors, and astrophysical simulations all rely on the effective convergence 

systems.  The  design  of  particle  accelerators,  the  development  of  fusion 

computational  physics  dictate  the  viability  of  simulating  intricate  physical 

The  convergence  properties  of  successive  approximation  approaches  in 

practical  efficiency  of  numerical  implementations. 

convergence rate, typically exponential under suitable conditions, dictates the 

certain to converge to the unique solution of the initial value problem. The 

condition,  the  sequence  of  approximations  produced  by  Picard  iteration  is 

closely associated with the Lipschitz condition. If f(x,y) adheres to a Lipschitz 

The convergence characteristics of successive approximation approaches are 

Convergence of Sequential Approximations
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Finite  element  analysis  software,  extensively  utilized  in  engineering

techniques  are  all  predicated  on  the  theoretical  principles  outlined  above. 

Kutta  methods,  predictor-corrector  algorithms,  and  adaptive  step-size 

resolve intricate differential equations that resist analytical solutions. Runge- 

methods  used  in  software  applications  allow  engineers  and  scientists  to 

practical  applicability  of  first-order  differential  equation  theory.  Numerical 

Contemporary  computer  technologies  have  significantly  enhanced  the 

Technological Applications

accuracy of forecasts and policy suggestions.

utilize  differential  equations,  the  characteristics  of  which  influence  the 

models of market dynamics, resource allocation, and growth trajectories often 

in semiconductor fabrication, metallurgy, and polymer synthesis.  Economic 

with first-order differential equations. The insights obtained propel innovation 

diffusion processes, phase changes, and crystal development are represented 

communication  systems  upon  which  we  rely  daily. In  materials  science, 

frameworks  examined  herein  facilitate  the  dependable  operation  of  the 

enhance data flow, reduce latency, and increase throughput. The mathematical 

Telecommunications  network  design  use  differential  equation  models  to 

remediation  efforts  and  the  safeguarding  of  public  health. 

groundwater. The precision of these models directly influences the efficacy of 

differential  equation  models  to  forecast  pollutant  migration  via  soil  and 

theorems.   Environmental  remediation  initiatives  frequently  employ 

rely  on  the  mathematical  assurances  offered  by  existence  and  uniqueness 

sources. The stability and reliability of contemporary electrical infrastructure 

distributions, enhance transmission efficiency, and include renewable energy 

increasingly  depends  on  differential  equation  models  to  forecast  load 

tools to enhance healthcare results.  The management of electrical power grids 

for heart valve design, and drug delivery systems utilize these mathematical 

management in artificial pancreas development, cardiovascular flow models 

order  differential  equations.  Mathematical  models  for  blood  glucose 

In  biomedical  engineering,  physiological  system  models  often  utilize  first- 

framework.

configurations,  and  trajectory  optimization  all  rely  on  this  mathematical 

predictable behavior across varied situations. Flight control systems, autopilot 

dynamics,  with  their  existence  and  uniqueness  features  guaranteeing 

engineering relies on systems of differential equations to govern aircraft flight 
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applications, applies numerical methods to solve differential equations that 

characterize stress distributions, heat transfer, fluid dynamics, and 

electromagnetic fields. The dependability of these instruments derives 

directly from the mathematical assurances offered by existence and 

uniqueness theorems.  Machine learning techniques are progressively utilized 

in solving differential equations, with neural networks trained to approximate 

solutions for complex equations that defy conventional numerical methods. 

These advanced techniques are expected to broaden the scope of practical 

issues that can be efficiently resolved utilizing differential equation models.  

High-performance computing facilitates the resolution of increasingly 

intricate systems of differential equations, hence enhancing sophisticated 

simulations in climate science, computational fluid dynamics, structural 

analysis, and various other disciplines. The theoretical comprehension of the 

existence and approximation of solutions informs the creation of efficient 

algorithms for these computing platforms.  

Obstacles and Prospective Pathways 

 Notwithstanding the extensive theoretical background of first-order 

differential equations, many obstacles persist. Numerous practical issues 

result in stiff differential equations, wherein significantly disparate time scales 

within a single system induce numerical instability with conventional solution 

techniques. Specialized algorithms for addressing stiff systems remain a 

vibrant research domain with significant practical ramifications.  Uncertainty 

quantification constitutes an additional frontier in the applications of 

differential equations. When model parameters are imprecisely defined, 

comprehending the propagation of this uncertainty to predictions is essential 

for sound decision-making. Probabilistic methods for solving differential 

equations are becoming increasingly vital in risk assessment, robust design, 

and policy formulation.  Data assimilation methods, integrating differential 

equation models with empirical measurements, pose both theoretical and 

practical difficulties. Hybrid methodologies are especially crucial in 

meteorological forecasting, ecological surveillance, and industrial process 

regulation, necessitating ongoing model adjustments in response to incoming 

data.  Multi-scale modeling, which integrates phenomena across several 

spatial or temporal scales into cohesive predictive frameworks, is a prominent 

research domain with substantial practical implications. These methodologies 
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are particularly significant in materials science, biological systems modeling, 

and climate science.  

Final Assessment  

The theoretical foundations of first-order differential equations—existence 

and uniqueness conditions, solution methods for specific cases, successive 

approximation techniques, and convergence analysis establish the 

mathematical framework that supports numerous practical applications in 

science, engineering, medicine, and other fields. These theoretical tools are 

not only abstract mathematical curiosities; they facilitate the accurate 

modeling, prediction, and management of dynamic systems that influence our 

contemporary reality.  

Every day, electronic devices, pharmaceuticals for disease treatment, the 

structures we inhabit, the vehicles that convey us, the energy systems 

sustaining our civilization, and the environmental policies influencing our 

future all depend, in some capacity, on the mathematical precision afforded 

by first-order differential equation theory. As computing capabilities progress 

and transdisciplinary applications proliferate, the practical significance of 

these theoretical foundations will persistently increase.  By comprehending 

the conditions for the existence of solutions, their uniqueness, and methods of 

approximation, we acquire not only mathematical insight but also the capacity 

to design more reliable systems, formulate more effective interventions, and 

make more informed decisions across nearly all fields of human activity. The 

connection between abstract mathematical theory and practical application is 

particularly clear in first-order differential equations, where theoretical 

elegance directly translates into technological competence and societal 

advantage.  

Multiple Choice Questions (MCQs): 

1. Cauchy’s method of characteristics is primarily used to solve: 

a) Linear PDEs 

b) Nonlinear PDEs 

c) Ordinary Differential Equations (ODEs) 

d) None of the above 

Answer : a) Linear PDEs 
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2. The general solution of a first-order PDE is found using: 

a) Charpit’s method 

b) Fourier series 

c) Separation of variables 

d) Laplace transform 

Answer : a) Charpit’s method 

3. A system of first-order equations is called compatible if: 

a) It has no solution 

b) It satisfies the compatibility condition 

c) It contains at least one nonlinear equation 

d) It cannot be solved using characteristics 

Answer : b) It satisfies the compatibility condition 

4. Charpit’s method is specifically used for solving: 

a) First-order linear PDEs 

b) Second-order PDEs 

c) First-order nonlinear PDEs 

d) None of the above 

Answer : c) First-order nonlinear PDEs 

5. Which of the following is an essential step in Jacobi’s method? 

a) Finding characteristic equations 

b) Using Fourier series 

c) Applying Laplace transformation 

d) Solving linear algebraic equations 

Answer : a) Finding characteristic equations 

6. The characteristic equation in Cauchy’s method is derived from: 

a) The given PDE itself 

b) The boundary conditions 

c) The wave equation 

d) The separation of variables method 

Answer : a) The given PDE itself 

7. Charpit’s method involves: 

a) Finding a complete integral 
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b) Solving an ODE 

c) Using Green’s theorem 

d) Applying the divergence theorem 

Answer : a) Finding a complete integral 

8. A quasilinear PDE is a PDE where: 

a) The highest derivative appears in a linear form 

b) There are no derivatives 

c) All terms are nonlinear 

d) It contains trigonometric functions 

Answer : a) The highest derivative appears in a linear form 

9. Which of the following is NOT a first-order PDE solution method? 

a) Charpit’s method 

b) Jacobi’s method 

c) Laplace transform method 

d) Cauchy’s method of characteristics 

Answer : c) Laplace transform method 

10. If a first-order PDE has more than one independent variable, we 

solve it using: 

a) The separation of variables 

b) The characteristic method 

c) Laplace transforms 

d) Green’s theorem 

Answer : b) The characteristic method 

Short Questions: 

1. Define nonlinear partial differential equations with an example. 

2. What is Cauchy’s method of characteristics? 

3. Explain the term “compatible system of first-order equations.” 

4. What is Charpit’s method used for? 

5. What are the special types of first-order PDEs? 

6. Define the concept of a quasilinear PDE. 

44 



7. What is the role of characteristic curves in solving PDEs? 

8. State the key steps of Jacobi’s method. 

9. How does Charpit’s method differ from Cauchy’s method? 

10. What are the applications of first-order nonlinear PDEs? 

Long Questions: 

1. Explain in detail the concept of nonlinear first-order PDEs and their 

importance. 

2. Derive the characteristic equations used in Cauchy’s method and 

provide an example. 

3. Discuss the compatibility conditions of a system of first-order 

equations with an example. 

4. Explain Charpit’s method and solve a given nonlinear PDE using this 

method. 

5. What are the different types of first-order PDEs? Provide detailed 

explanations and examples. 

6. Describe Jacobi’s method and solve a first-order PDE using this 

technique. 

7. Compare and contrast the methods of Cauchy and Charpit. 

8. Discuss the applications of first-order PDEs in physics and 

engineering. 

9. Solve a nonlinear first-order PDE using the method of characteristics. 

10. Derive and explain the fundamental solution of a first-order PDE 

using any suitable method. 
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Objective:

order
Partial differential equations of second 

UNIT 2.1

MODULE 2

Explore characteristics of PDEs in three variables.

Analyze characteristic curves of second-order PDEs.

Study PDEs with variable coefficients and their solutions.

coefficients.
Learn about linear second-order PDEs with constant 

Understand the origin and formation of second-order PDEs.

•
an unknown function of multiple variables and its partial derivatives. Second-

Partial differential equations (PDEs) are mathematical equations that involve 

2.1.1 Introduction to Second-Order Partial Differential Equations

Index:

46 



order PDEs, in particular, contain second derivatives of the unknown function 

and are fundamental in modeling many physical phenomena. 

A general second-order PDE in two independent variables x and y can be 

written as: 

𝐴(𝑥, 𝑦) ∗  (
𝜕2𝑢

𝜕𝑥2
) +  𝐵(𝑥, 𝑦) ∗  (

𝜕2𝑢

𝜕𝑥𝜕𝑦
) +  𝐶(𝑥, 𝑦) ∗  (

𝜕2𝑢

𝜕𝑦2
) +  𝐷(𝑥, 𝑦)

∗  (
𝜕𝑢

𝜕𝑥
) +  𝐸(𝑥, 𝑦) ∗  (

𝜕𝑢

𝜕𝑦
) +  𝐹(𝑥, 𝑦) ∗  𝑢 +  𝐺(𝑥, 𝑦) =  0 

Where: 

• u(x,y) is the unknown function 

• A, B, C, D, E, F, and G are functions of x and y 

• ∂²u/∂x² represents the second partial derivative of u with respect to x 

• ∂²u/∂x∂y represents the mixed partial derivative 

• ∂²u/∂y² represents the second partial derivative of u with respect to y 

Second-order PDEs appear frequently in: 

• Wave propagation (acoustics, electromagnetics) 

• Heat conduction 

• Fluid dynamics 

• Quantum mechanics 

• Elasticity theory 

• Financial mathematics 

Classification of Second-Order PDEs 

The classification of a second-order PDE depends on the coefficients A, B, 

and C, and is determined by the discriminant B² - 4AC: 

1. Elliptic: When B² - 4AC < 0 

• Example: Laplace's equation: 
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
=  0 

• SteadyPhysical interpretation: - phenomenastate

(equilibrium situations) 

2. Parabolic: When B² - 4AC = 0 
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• Example: Heat equation: 
𝜕𝑢

𝜕𝑡
=  𝛼 ∗

𝜕2𝑢

𝜕𝑥2
   

• Physical interpretation: Diffusion processes, heat conduction 

3. Hyperbolic: When B² - 4AC > 0 

• Example: Wave equation: 
𝜕2𝑢

𝜕𝑡2
= 𝑐2 ∗

𝜕2𝑢

𝜕𝑥2
    

• Physical interpretation: Wave propagation, vibrations 

This classification guides the selection of appropriate solution methods and 

determines the qualitative behavior of solutions. 

Key Properties of Second-Order PDEs 

1. Linearity: A PDE is linear if it can be written in the form: L(u) = f, 

where L is a linear operator. This means that if u₁ and u₂ are solutions, 

then any linear combination c₁u₁ + c₂u₂ is also a solution (for 

homogeneous equations). 

2. Homogeneity: A PDE is homogeneous if the term G(x,y) = 0. 

3. Boundary conditions: Solutions to PDEs typically require boundary 

conditions to obtain unique solutions. Common types include: 

• Dirichlet conditions: Specify the value of u on the boundary 

• Neumann conditions: Specify the normal derivative of u on 

the boundary 

• Robin/Mixed conditions: Specify a linear combination of u 

and its normal derivative 

4. Initial conditions: For time-dependent problems, initial conditions 

specify the state of the system at the initial time. 
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Defining wave speed c² = T/ρ, we get the wave equation: ∂²u/∂t² = c²3.

Where ρ is linear density, T is tension, and u is displacement.2.

(∂²u/∂t²) = T * (∂²u/∂x²)

Newton's  second  law  relates  acceleration  to  tension  forces:  ρ  * 1.

For a vibrating string:

Example: Derivation of the Wave Equation

∂T/∂t = α * ∂²T/∂x²

Defining the thermal diffusivity α = k/(ρc), we get the heat equation:4.

(∂²T/∂x²)

Substituting  the  first  equation  into  the  second:  ρc  *  (∂T/∂t)  =  k  * 3.

proportional to the divergence of heat flux: ρc * (∂T/∂t) = -(∂q/∂x)

By  conservation  of  energy,  the  rate  of  change  of  temperature  is 2.

temperature gradient: q = -k * (∂T/∂x)

By Fourier's law of heat conduction, heat flux q is proportional to the 1.

Consider heat flow in a one-dimensional rod:

Example: Derivation of the Heat Equation

mathematically.

momentum).  These  laws  often  lead  to  second-order  PDEs  when  expressed 

Many  physical  systems  adhere  to  conservation  laws  (mass,  energy, 

Conservation Laws

developing appropriate modeling approaches.

laws.  Understanding  their  origin  helps  in  interpreting  their  solutions  and 

Second-order PDEs naturally arise from physical principles and conservation 

2.2.1 The Origin and Formation of Second-Order PDEs

equations with constant coefficients
The origin of second-order equations – Linear partial differential 

UNIT 2.2

Hamilton's Principle and Variational Formulation

* ∂²u/∂x²
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Many PDEs arise from variational principles, where the system evolves to 

minimize an energy functional. 

For a functional 𝐽[𝑢]  =  ∫ ∫  𝐹(𝑥, 𝑦, 𝑢, 𝜕𝑢/𝜕𝑥, 𝜕𝑢/𝜕𝑦) 𝑑𝑥 𝑑𝑦, the Euler-

Lagrange equation is: 

𝜕𝐹

𝜕𝑢
 −

𝜕

𝜕𝑥
(

𝜕𝐹

𝜕 (
𝜕𝑢

𝜕𝑥
 )
 ) −

𝜕

𝜕𝑦
(

𝜕𝐹

𝜕 (
𝜕𝑢

𝜕𝑦
)
)  =  0     

This often yields second-order PDEs. 

Dimensional Analysis and Scaling 

Physical phenomena operate at different scales, and proper non-

dimensionalization can reveal characteristic parameters: 

1. Identify all relevant physical quantities and their units 

2. Form dimensionless groups using the Buckingham Pi theorem 

3. Rewrite the equations in terms of dimensionless variables 

This process often reveals which terms in the PDE are dominant in different 

regimes, allowing for simplifications. 

PDEs from Geometrical Considerations 

Some PDEs arise from geometric constraints: 

• Minimal surfaces satisfy the equation:  

(1 + (
𝜕𝑧

𝜕𝑦
)
2

) ∗
𝜕2𝑧

𝜕𝑥2
−  2 ∗  (

𝜕𝑧

𝜕𝑥
) ∗ (

𝜕𝑧

𝜕𝑦
) ∗

𝜕2𝑧

𝜕𝑥𝜕𝑦

+ (1 + (
𝜕𝑧

𝜕𝑥
)
2

) ∗
𝜕2𝑧

𝜕𝑦2
=  0 

• Geodesics on a surface can be described by second-order PDEs. 

Discrete-to-Continuum Transitions 

Many PDEs emerge when taking the continuum limit of discrete systems: 
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1. Start with a discrete system (e.g., particles connected by springs) 

2. Write the governing equations 

3. Take the limit as the discretization parameter approaches zero 

This approach connects microscopic models to macroscopic descriptions. 

2.2.2 Linear PDEs with Constant Coefficients 

Linear PDEs with constant coefficients form an important class of equations 

that allow for systematic solution methods. 

A linear second-order PDE with constant coefficients in two variables can be 

written as: 

𝐴 ∗  (
𝜕2𝑢

𝜕𝑥2
) +  𝐵 ∗  (

𝜕2𝑢

𝜕𝑥𝜕𝑦
) +  𝐶 ∗  (

𝜕2𝑢

𝜕𝑦2
) +  𝐷 ∗  (

𝜕𝑢

𝜕𝑥
) +  𝐸 ∗  (

𝜕𝑢

𝜕𝑦
)

+  𝐹 ∗  𝑢 +  𝐺 =  0 

Where A, B, C, D, E, F, and G are constants. 

Solution Methods 

1. Separation of Variables 

The method of separation of variables assumes a solution of the form u(x,y) 

= X(x)Y(y) and seeks to separate the PDE into ordinary differential equations 

(ODEs) in X and Y. 

Steps: 

1. Substitute u(x,y) = X(x)Y(y) into the PDE 

2. Divide by X(x)Y(y) to separate variables 

3. Set each side equal to a separation constant 

4. Solve the resulting ODEs 

5. Use boundary conditions to determine the coefficients 

Example: Laplace's Equation in a Rectangle 

For 
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
=  0 in a rectangle [0,a] × [0,b] with boundary conditions: 
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• u(0,y) = 0 

• u(a,y) = 0 

• u(x,0) = 0 

• u(x,b) = f(x) 

1. Assume u(x,y) = X(x)Y(y) 

2. Substituting into the PDE: 𝑋′′(𝑥)𝑌(𝑦)  +  𝑋(𝑥)𝑌′′(𝑦)  =  0 

3. Dividing by 𝑋(𝑥)𝑌(𝑦):
𝑋′′(𝑥)

𝑋(𝑥)
+

𝑌′′(𝑦)

𝑌(𝑦)
=  0 

4. Since these terms depend on different variables, both must equal a 

constant: 
𝑋′′(𝑥)

𝑋(𝑥)
= −𝜆  and 

𝑌′′(𝑦)

𝑌(𝑦)
=  𝜆  

5. The ODEs become: 𝑋′′(𝑥)  +  𝜆𝑋(𝑥)  =  0 and 𝑌′′(𝑦)  −  𝜆𝑌(𝑦)  =

 0 

6. With boundary conditions, we get 𝜆 =  (
𝑛𝜋

𝑎
)
2
 and solutions:  

𝑋(𝑥) =  𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
) , 𝑌(𝑦) =  

𝑠𝑖𝑛ℎ (
𝑛𝜋𝑦

𝑎
)

𝑠𝑖𝑛ℎ (
𝑛𝜋𝑏

𝑎
)
  

7. The general solution is: u(x,y) = Σ Bn 
𝑠𝑖𝑛(

𝑛𝜋𝑥

𝑎
)𝑠𝑖𝑛ℎ(

𝑛𝜋𝑦

𝑎
)

𝑠𝑖𝑛ℎ(
𝑛𝜋𝑏

𝑎
)

    

8. Coefficients Bn are determined by the boundary condition at y = b 

2. Fourier Transforms 

Fourier transforms convert differential operations into algebraic operations: 

1. Apply the Fourier transform to the PDE 

2. Solve the resulting algebraic equation 

3. Apply the inverse Fourier transform to obtain the solution 

For a function u(x,y), the 2D Fourier transform is: 

ũ(𝜉, 𝜂)  =  ∫ ∫  𝑢(𝑥, 𝑦)  ∗  𝑒−𝑖(𝜉𝑥+𝜂𝑦) 𝑑𝑥 𝑑𝑦 

And the derivatives transform as: 

• ∂u/∂x → iξũ 

• ∂²u/∂x² → -ξ²ũ 
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  • Describes steady-state distributions with sources/sinks

 Poisson's Equation: ∂²u/∂x² + ∂²u/∂y² = f(x,y)2.

  circle centered at that point

• Mean value property: the value at a point equals the average over any

  boundary

• Maximum principle: a harmonic function attains its maximum on the

• Solutions are harmonic functions

Properties:

 Laplace's Equation: ∂²u/∂x² + ∂²u/∂y² = 01.

Special Linear PDEs with Constant Coefficients

differential operator, δ is the Dirac delta function)

Where  G  is  the  Green's  function  satisfying:  L[G(x,y)]  =  δ(x-y)  (L  is  the 

u(x) = ∫ G(x,y) f(y) dy

term:

Green's functions provide a way to express solutions in terms of the source 

 Green's Functions4.

curves.

For  second-order  hyperbolic  PDEs,  there  are  two  families  of  characteristic 

= b/a.

For a first-order PDE: a(∂u/∂x) + b(∂u/∂y) = c, the characteristics satisfy dy/dx 

Solve the resulting ODEs3.

Express the PDE along these curves2.

Determine the characteristic curves1.

which the PDE reduces to ODEs:

For  hyperbolic  PDEs,  the  method  of  characteristics  identifies  curves  along 

 Method of Characteristics3.
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• Green's function in 2D: 

 𝐺(𝑥, 𝑦; 𝑥₀, 𝑦₀)  =  (1/2𝜋) 𝑙𝑛(||(𝑥 − 𝑥₀, 𝑦 − 𝑦₀)||) 

3. Heat Equation: ∂u/∂t = α * (∂²u/∂x²) 

• Describes diffusion processes 

• Solutions tend to smooth out and approach a uniform state 

• Maximum principle: maximum value decreases with time (in the 

absence of sources) 

4. Wave Equation: ∂²u/∂t² = c² * (∂²u/∂x²) 

• Describes wave propagation 

• Solutions satisfy d'Alembert's formula in 1D:  

𝑢(𝑥, 𝑡) =  (
1

2
) [𝑓(𝑥 + 𝑐𝑡) +  𝑓(𝑥 − 𝑐𝑡)] + (

1

2𝑐
) ∫ 𝑔(𝑠)𝑑𝑠 

𝑥+𝑐𝑡

𝑥−𝑐𝑡

  

• Energy is conserved 

Eigenvalue Problems 

Many PDEs can be reduced to eigenvalue problems of the form: L[u] = λu 

Where L is a differential operator and λ is an eigenvalue. 

The solutions form an orthogonal basis of functions, allowing for spectral 

methods. 
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𝐴(𝑥, 𝑦) ∗  (
𝜕2𝑢

𝜕𝑥2
) +  𝐵(𝑥, 𝑦) ∗  (

𝜕2𝑢

𝜕𝑥𝜕𝑦
) +  𝐶(𝑥, 𝑦) ∗  (

𝜕2𝑢

𝜕𝑦2
) +  𝐷(𝑥, 𝑦)

∗  (
𝜕𝑢

𝜕𝑥
) +  𝐸(𝑥, 𝑦) ∗  (

𝜕𝑢

𝜕𝑦
) +  𝐹(𝑥, 𝑦) ∗  𝑢 +  𝐺(𝑥, 𝑦) =  0 

The variable coefficients make these equations more challenging to solve 

analytically. 

Classification with Variable Coefficients 

For variable coefficient PDEs, the classification can change across the 

domain: 

• At each point (x,y), compute the discriminant  

𝐵²(𝑥, 𝑦)  −  4𝐴(𝑥, 𝑦)𝐶(𝑥, 𝑦) 

• The equation can be elliptic in one region and hyperbolic in another 

• Transition boundaries where B² - 4AC = 0 are called parabolic 

degeneracy lines 

Solution Methods for Variable Coefficient PDEs 

1. Transformation Methods 

Sometimes, a change of variables can transform a variable coefficient PDE 

into one with constant coefficients: 

1. Introduce new variables 𝜉 =  𝜉(𝑥, 𝑦), 𝜂 =  𝜂(𝑥, 𝑦) 

2. Express derivatives in terms of the new variables using the chain rule 

3. Choose transformations that simplify the coefficients 

A general second-order PDE with variable coefficients has the form:

material properties or geometry vary with position.

PDEs  with  variable coefficients  arise  naturally in  many  applications  where 

2.3.1 PDEs with Variable Coefficients

order equations- Characteristics of equations in three variables
Equations with variable coefficients –Characteristic curves of second–

UNIT 2.3
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Example: Euler-Poisson-Darboux Equation 

The equation 𝑥 ∗  (
𝜕2𝑢

𝜕𝑥2
) +  𝑦 ∗  (

𝜕2𝑢

𝜕𝑦2
) =  0 can be transformed using 

 𝜉 =  𝑙𝑛(𝑥), 𝜂 =  𝑙𝑛(𝑦) to obtain a constant coefficient equation. 

2. Power Series Methods 

For analytic coefficients, solutions can be sought in the form of power series: 

𝑢(𝑥, 𝑦)  =  𝛴  𝑎ₘₙ 𝑥𝑚𝑦𝑛 

Substituting into the PDE yields recurrence relations for the coefficients aₘₙ. 

3. Frobenius Method 

For equations with regular singular points, the Frobenius method assumes a 

solution of the form: 

𝑢(𝑥, 𝑦) =  (𝑥 − 𝑥0)
𝑟   ∗  𝛴 𝑎ₙ(𝑦) ∗  (𝑥 − 𝑥𝑜)

𝑛  

Where r is the indicial exponent determined from the equation. 

4. WKB Approximation 

For equations with slowly varying coefficients, the WKB method provides 

asymptotic approximations: 

𝑢(𝑥, 𝑦) =  𝐴(𝑥, 𝑦) ∗  𝑒
𝑖𝑆(𝑥,𝑦)

𝜀  

Where ε is a small parameter, and A and S satisfy certain equations. 

Important Variable Coefficient PDEs 

1. Bessel's Equation (in radial coordinates) 

𝜕2𝑢

𝜕𝑟2
+ (

1

𝑟
) ∗ (

𝜕𝑢

𝜕𝑟
) + (

1

𝑟2
) ∗ (

𝜕2𝑢

𝜕𝜃2
) =  0  

Solutions involve Bessel functions and are important in cylindrical 

geometries. 
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2. Equations with Singular Coefficients 

The equation 𝑥 ∗  (
𝜕2𝑢

𝜕𝑥2
) +  𝑦 ∗  (

𝜕2𝑢

𝜕𝑦2
) =  0 has singularities at x = 0 and y = 

0. 

Special care is needed near singular points, often requiring series expansions 

or asymptotic methods. 

3. Sturm-Liouville Problems 

−(𝑝(𝑥)𝑢′)′ +  𝑞(𝑥)𝑢 =  𝜆𝑤(𝑥)𝑢 

Where p, q, and w are variable coefficients. These problems arise in many 

applications and yield orthogonal families of eigenfunctions. 

Numerical Methods for Variable Coefficient PDEs 

1. Finite Difference Methods: 

• Discretize the domain and approximate derivatives by 

differences 

• Account for variable coefficients at each grid point 

2. Finite Element Methods: 

• Particularly suitable for variable coefficients and irregular 

domains 

• Weak formulation accommodates discontinuous coefficients 

3. Spectral Methods: 

• Express the solution as a sum of basis functions 

• Work well when coefficients vary smoothly 

4. Boundary Integral Methods: 

• Reformulate the PDE as an integral equation on the boundary 

• Efficient for certain classes of problems 

Solved Examples 

Example 1: Classification and Transformation of a Second-Order PDE 

Problem: Consider the PDE (𝑥2 + 𝑦2) ∗  (
𝜕2𝑢

𝜕𝑥2
) +  2𝑥𝑦 ∗  (

𝜕2𝑢

𝜕𝑥𝜕𝑦
) + (𝑥2 +

 𝑦2) ∗  (
𝜕2𝑢

𝜕𝑦2
   ) = 0.

57 



Classify this equation and find a transformation to simplify it. 

Solution: 

Step 1: Identify the coefficients A, B, and C. 

• 𝐴(𝑥, 𝑦)  =  𝑥² +  𝑦² 

• 𝐵(𝑥, 𝑦)  =  2𝑥𝑦 

• 𝐶(𝑥, 𝑦)  =  𝑥² +  𝑦² 

Step 2: Calculate the discriminant B² - 4AC. 

• 𝐵² =  (2𝑥𝑦)² =  4𝑥²𝑦² 

• 4𝐴𝐶 =  4(𝑥² +  𝑦²)(𝑥² +  𝑦²)  =  4(𝑥² +  𝑦²)² 

• 𝐵² −  4𝐴𝐶 =  4𝑥²𝑦² −  4(𝑥² +  𝑦²)² =  4𝑥²𝑦² −  4(𝑥⁴ +

 2𝑥²𝑦² +  𝑦⁴)  =  4𝑥²𝑦² −  4𝑥⁴ −  8𝑥²𝑦² −  4𝑦⁴ =  −4𝑥⁴ −

 4𝑥²𝑦² −  4𝑦4 

Since B² - 4AC = -4(x⁴ + x²y² + y⁴) < 0 for all (x,y) ≠ (0,0), the equation is 

elliptic except at the origin. 

Step 3: Transform to polar coordinates. Let 𝑥 =  𝑟 𝑐𝑜𝑠(𝜃) 𝑎𝑛𝑑 𝑦 =

 𝑟 𝑠𝑖𝑛(𝜃). 

Using the chain rule, we can express the derivatives in terms of r and θ: 

• 𝜕/𝜕𝑥 =  𝑐𝑜𝑠(𝜃)  ∗  (𝜕/𝜕𝑟)  − (𝑠𝑖𝑛(𝜃)/𝑟)  ∗  (𝜕/𝜕𝜃) 

• 𝜕/𝜕𝑦 =  𝑠𝑖𝑛(𝜃)  ∗  (𝜕/𝜕𝑟)  + (𝑐𝑜𝑠(𝜃)/𝑟)  ∗  (𝜕/𝜕𝜃) 

After substitution and simplification, the PDE becomes:  

 𝑟2 ∗ (
𝜕2𝑢

𝜕𝑟2
) +  𝑟 ∗  (

𝜕𝑢

𝜕𝑟
) + (

𝜕2𝑢

𝜕𝜃2
) =  0 

This is Laplace's equation in polar coordinates, which is easier to solve for 

many boundary value problems. 
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Example 2: Solving the Heat Equation Using Separation of Variables 

Problem: Solve the heat equation 
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2𝑓𝑜𝑟
0 <  𝑥 <  𝐿, 𝑡 >  0, with 

boundary conditions 𝑢(0, 𝑡)  =  0, 𝑢(𝐿, 𝑡)  =  0, and initial condition 

𝑢(𝑥, 0)  =  𝑠𝑖𝑛(𝜋𝑥/𝐿). 

Solution: 

Step 1: Use separation of variables by assuming 𝑢(𝑥, 𝑡)  =  𝑋(𝑥)𝑇(𝑡). 

Step 2: Substitute into the PDE. 𝑋(𝑥)𝑇′(𝑡)  =  𝑋′′(𝑥)𝑇(𝑡) 

Step 3: Separate variables. 
𝑇′(𝑡)

𝑇(𝑡)
=

𝑋′′(𝑥)

𝑋(𝑥)
= −𝜆   (separation constant) 

This gives two ODEs: 

• T'(t) + λT(t) = 0 

• X''(x) + λX(x) = 0 

Step 4: Apply boundary conditions to find eigenvalues. 𝑋(0)  =  𝑋(𝐿)  =  0 

implies that 𝜆 =  (𝑛𝜋/𝐿)² 𝑓𝑜𝑟 𝑛 =  1, 2, 3, . .. The corresponding 

eigenfunctions are 𝑋(𝑥)  =  𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
). 

Step 5: Solve the time equation. 𝑇(𝑡)  =  𝐶 ∗  𝑒−𝜆𝑡  =  𝐶 ∗  𝑒
−(

𝑛𝜋

𝐿
)
2
𝑡
 

Step 6: The general solution is: 𝑢(𝑥, 𝑡)  =  𝛴 𝐶ₙ ∗  𝑠𝑖𝑛(𝑛𝜋𝑥/𝐿)  ∗  𝑒
−(

𝑛𝜋

𝐿
)
2
𝑡
 

Step 7: Apply the initial condition to find coefficients.  

𝑢(𝑥, 0)  =  𝛴 𝐶ₙ ∗  𝑠𝑖𝑛(𝑛𝜋𝑥/𝐿)  =  𝑠𝑖𝑛 (
𝜋𝑥

𝐿
) 

By orthogonality of sine functions, C₁ = 1 and Cₙ = 0 for n > 1. 

Step 8: The final solution is: 𝑢(𝑥, 𝑡) =  𝑠𝑖𝑛 (
𝜋𝑥

𝐿
) ∗  𝑒

−(
𝜋

𝐿
)
2
𝑡 

  

 shape while decaying exponentially with time.

This  solution  shows  that  the  temperature  distribution  retains  its  sinusoidal 
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Example 3: Method of Characteristics for a First-Order PDE 

Problem: Solve the PDE 
𝜕𝑢

𝜕𝑥
+  2 ∗

𝜕𝑢

𝜕𝑦
=  0  with the boundary condition 

𝑢(𝑥, 0)  =  𝑒−𝑥
2
 𝑓𝑜𝑟 𝑥 ∈  ℝ. 

Solution: 

Step 1: Identify the characteristic curves. The PDE can be written as: 𝑎 ∗

 (
𝜕𝑢

𝜕𝑥
) +  𝑏 ∗  (

𝜕𝑢

𝜕𝑦
) =  0 𝑤ℎ𝑒𝑟𝑒 𝑎 =  1 𝑎𝑛𝑑 𝑏 =  2. 

The characteristic curves satisfy  
𝑑𝑦

𝑑𝑥
=

𝑏

𝑎
=  2, 𝑜𝑟 𝑦 =  2𝑥 +  𝐶. 

Step 2: Along each characteristic, u is constant. This means 𝑢(𝑥, 𝑦)  =

 𝑢(𝑥₀, 0) where (𝑥₀, 0) is the point where the characteristic through 

(𝑥, 𝑦) intersects the x-axis. 

Step 3: Find the intersection point. The characteristic through (x,y) is y = 2x 

+ C, and we need y = 0 for the intersection. Substituting 𝑦 =  0: 0 =  2𝑥₀ +

 𝐶. Since this characteristic also passes through (x,y), we have 𝑦 =  2𝑥 +

 𝐶 =  2𝑥 −  2𝑥₀. Solving: 𝑥0 =  𝑥 −
𝑦

2
 . 

Step 4: Apply the boundary condition.  

𝑢(𝑥, 𝑦) =  𝑢(𝑥0, 0) =  𝑢 (𝑥 −
𝑦

2
, 0) =  𝑒

−(𝑥−
𝑦

2
)
2

  

The solution is 𝑢(𝑥, 𝑦)  =  𝑒
−(𝑥−

𝑦

2
)
2

 , which represents the transport of the 

initial profile along the characteristic lines y = 2x + C. 

Example 4: Poisson's Equation with Green's Function 

Problem: Solve Poisson's equation 
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
=  𝑓(𝑥, 𝑦)  in a circular domain 

 

 

  Green's function in polar coordinates (r,θ) for a source at (𝑟₀, 𝜃₀) is:

Step  1:  Find  the  Green's  function  for  Laplace's  equation  in  a  circle.  The 

Solution:

of radius R with boundary condition u = 0 on the circle.
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𝐺(𝑟, 𝜃; 𝑟₀, 𝜃₀)  =  (1/2𝜋)  ∗  𝑙𝑛|𝑧 − 𝑧₀|  − (1/2𝜋)  ∗  𝑙𝑛|𝑅²/𝑟 ₀  ∗  𝑧 −  𝑧₀| 

Where 𝑧 =  𝑟𝑒𝑖𝜃, 𝑧₀ =  𝑟0𝑒
𝑖𝜃0  , and 𝑟 ₀ =  𝑅²/𝑟₀ is the location of the image 

point. 

Step 2: Express the solution using the Green's function. 

 𝑢(𝑟, 𝜃)  =  ∫ ∫  𝐺(𝑟, 𝜃; 𝑟₀, 𝜃₀)  ∗  𝑓(𝑟₀, 𝜃₀)  ∗  𝑟₀ 𝑑𝑟₀ 𝑑𝜃₀ 

For the specific case of f(r,θ) = constant = k, the solution can be simplified to: 

𝑢(𝑟, 𝜃)  =  (𝑘/4)  ∗  (𝑅² −  𝑟²) 

This represents the deflection of a circular membrane under uniform load. 

NonwithEquationWave5:Example - Boundaryhomogeneous

Conditions 

Problem: Solve the wave equation 
𝜕2𝑢

𝜕𝑡2
= 𝑐2 ∗

𝜕2𝑢

𝜕𝑥2
 𝑓𝑜𝑟 0 <  𝑥 <  𝐿, 𝑡 >  0  

, with boundary conditions 𝑢(0, 𝑡)  =  0, 𝑢(𝐿, 𝑡)  =  𝐴 ∗  𝑠𝑖𝑛(𝜔𝑡), initial 

conditions u(x,0) = 0, and 
𝜕𝑢

𝜕𝑡
(𝑥, 0)  =  0 . 

Solution: 

Step 1: Decompose the problem into homogeneous and non-homogeneous 

parts. Let 𝑢(𝑥, 𝑡)  =  𝑣(𝑥, 𝑡)  +  𝑤(𝑥, 𝑡), where: 

• v(x,t) satisfies the wave equation with homogeneous boundary 

conditions 

• w(x,t) handles the non-homogeneous boundary condition 

Step 2: Define 𝑤(𝑥, 𝑡)  =  (𝑥/𝐿)  ∗  𝐴 ∗  𝑠𝑖𝑛(𝜔𝑡). This satisfies the boundary 

conditions 𝑤(0, 𝑡)  =  0 𝑎𝑛𝑑 𝑤(𝐿, 𝑡)  =  𝐴 ∗  𝑠𝑖𝑛(𝜔𝑡). 

Step 3: Find the equation for v(x,t). Substituting u = v + w into the wave 

equation: 
𝜕2𝑣

𝜕𝑡2
+

𝜕2𝑤

𝜕𝑡2
= 𝑐2 ∗ (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑥2
). 

Since 𝑤(𝑥, 𝑡) =  (
𝑥

𝐿
) ∗  𝐴 ∗  𝑠𝑖𝑛(𝜔𝑡), 𝑤𝑒 ℎ𝑎𝑣𝑒:

𝜕2𝑤

𝜕𝑡2
= − (

𝑥

𝐿
) ∗  𝐴 ∗  𝜔2 ∗

𝑠𝑖𝑛(𝜔𝑡)
𝜕2𝑤

𝜕𝑥2
    = 0
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The equation for v becomes: 

 
𝜕2𝑣

𝜕𝑡2
− 𝑐2 ∗

𝜕2𝑣

𝜕𝑥2
= (

𝑥

𝐿
) ∗  𝐴 ∗  𝜔2 ∗  𝑠𝑖𝑛(𝜔𝑡) 

Step 4: Solve for v using eigenfunction expansion. Expand 𝑣(𝑥, 𝑡)  =

 𝛴 𝑇ₙ(𝑡)  ∗  𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) 

The ODEs for Tₙ(t) are:  

𝑇′′ₙ(𝑡) + (
𝑛𝜋𝑐

𝐿
)
2

  ∗  𝑇ₙ(𝑡) =  
(2𝐴 ∗  𝜔2 ∗  (−1)𝑛+1)

(𝑛𝜋)
 ∗  𝑠𝑖𝑛(𝜔𝑡) 

Step 5: Solve these forced oscillator equations:  

𝑇ₙ(𝑡)  =  𝐵ₙ ∗  𝑠𝑖𝑛(𝜔𝑡)  +  𝐶ₙ ∗  𝑠𝑖𝑛 (
𝑛𝜋𝑐𝑡

𝐿
) 

Where 𝐵ₙ =
(2𝐴 ∗ 𝜔2∗ (−1)𝑛+1)

(𝑛𝜋 ∗ ((
𝑛𝜋𝑐

𝐿
)
2
− 𝜔2)) 

 

Step 6: Apply initial conditions to find Cₙ: 𝑢(𝑥, 0)  =  0 implies  

𝑣(𝑥, 0) =  − (
𝑥

𝐿
) ∗  𝐴 ∗  0 =  0 

𝜕𝑢

𝜕𝑡
(𝑥, 0) =  0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠

𝜕𝑣

𝜕𝑡
(𝑥, 0)  =  − (

𝑥

𝐿
) ∗  𝐴 ∗  𝜔 =  − (

𝑥

𝐿
) ∗  𝐴 ∗  𝜔 

Step 7: The complete solution is:  

𝑢(𝑥, 𝑡)  =  (𝑥/𝐿)  ∗  𝐴 ∗  𝑠𝑖𝑛(𝜔𝑡)  +  𝛴 𝐵ₙ ∗  𝑠𝑖𝑛(𝑛𝜋𝑥/𝐿)  ∗  (𝑠𝑖𝑛(𝜔𝑡) −

 (
𝜔
𝑛𝜋𝑐

𝐿

) ∗  𝑠𝑖𝑛 (
𝑛𝜋𝑐𝑡

𝐿
))  

 

 

 Problem 1

Unsolved Problems

oscillating.

This  solution  represents  the  forced  vibration  of  a  string  with  one  end 
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Consider the PDE 
𝜕2𝑢

𝜕𝑥2
−  4 ∗

𝜕2𝑢

𝜕𝑥𝜕𝑦
+  4 ∗

𝜕2𝑢

𝜕𝑦2
=  0. Classify this equation and 

find a transformation that reduces it to a simpler form. 

Problem 2 

Solve the heat equation 
𝜕𝑢

𝜕𝑡
=  𝑘 ∗  (

𝜕2𝑢

𝜕𝑥2
)  𝑓𝑜𝑟 0 <  𝑥 <  1, 𝑡 >  0, with 

boundary conditions u(0,t) = 0, u(1,t) = 0, and initial condition 𝑢(𝑥, 0)  =  𝑥 ∗

 (1 − 𝑥). 

Problem 3 

Find the solution to Laplace's equation 
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
=  0 in the upper half-plane 

y > 0 with boundary condition u(x,0) = 1 for |x| < 1 and u(x,0) = 0 for |x| > 1. 

Problem 4 

Solve the wave equation 
𝜕2𝑢

𝜕𝑡2
=

𝜕2𝑢

𝜕𝑥2
 𝑓𝑜𝑟 − ∞ <  𝑥 <  ∞, 𝑡 >  0, with initial 

conditions 𝑢(𝑥, 0) =  0 𝑎𝑛𝑑
𝜕𝑢

𝜕𝑡
(𝑥, 0) =  𝑒−𝑥

2
. 

Problem 5 

Consider the non-homogeneous PDE 
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
=  𝑥 ∗  𝑠𝑖𝑛(𝑦) in the region 

 

 

 

   

 

 For common operators:

equations.

are  crucial  building  blocks  for  constructing  solutions  to  non-homogeneous 

Where L is the differential operator and δ is the Dirac delta function. These 

𝐿[𝐺(𝑥; 𝜉)] = 𝛿(𝑥 − 𝜉)

Fundamental  solutions  (also  called  Green's  functions)  are  solutions  to:

Fundamental Solutions

Key Concepts in Second-Order PDEs

the solution using an appropriate Green's function or eigenfunction expansion.

0 < x < π, 0 < y < π with boundary conditions u = 0 on all boundaries. Find 
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• Laplace operator in 2D: G(r) = (1/2π) * ln(r) 

• Laplace operator in 3D: G(r) = -1/(4πr) 

• Heat operator in 1D: 

 𝐺(𝑥, 𝑡; 𝜉, 𝜏) =  (
1

√4𝜋𝑘(𝑡−𝜏)
) ∗  𝑒

−
(𝑥−𝜉)2

4𝑘(𝑡−𝜏) 𝑓𝑜𝑟 𝑡 >  𝜏 

The Maximum Principle 

For elliptic and parabolic PDEs, the maximum principle states that the 

maximum value of the solution occurs on the boundary (for elliptic) or at the 

initial time (for parabolic). 

This principle has important implications: 

• It ensures uniqueness of solutions 

• It provides stability estimates 

• It guides numerical methods 

Energy Methods 

Energy methods involve defining an energy functional associated with the 

PDE and studying its evolution: 

For the wave equation, the energy is: 

 𝐸(𝑡) =  ∫ (
1

2
) ∗ [(

𝜕𝑢

𝜕𝑡
)
2
+ 𝑐2 ∗ (

𝜕𝑢

𝜕𝑥
)
2
] 𝑑𝑥 

For the heat equation, an appropriate energy functional is:  

𝐸(𝑡) =  ∫ (
1

2
) ∗  𝑢2𝑑𝑥 

These methods provide insights into stability and long-term behavior. 

Similarity Solutions 

For PDEs with scaling properties, similarity solutions have the form: 

𝑢(𝑥, 𝑡) =  𝑡𝛼 ∗  𝑓 (
𝑥

𝑡𝛽
)  

64 



Where α and β are determined from the equation. These are useful for 

problems with no characteristic length or time scales. 

Fourier Analysis and Spectral Methods 

Fourier analysis decomposes solutions into oscillatory modes:  

𝑢(𝑥)  =  𝛴 𝑐ₙ ∗  𝜙ₙ(𝑥) 

Where ϕₙ(x) are eigenfunctions of the spatial operator. This approach: 

• Transforms PDEs into ODEs for the coefficients 

• Provides numerical spectral methods 

• Reveals the frequency content of solutions 

Well-Posedness and Stability 

A PDE problem is well-posed if: 

• A solution exists 

I'll provide a comprehensive explanation of the mathematical topics you've 

requested, with formulas, solved problems, and unsolved problems in an easy-

to-copy format. 

2.3.2 Characteristic Curves of Second-Order PDEs 

Introduction to Characteristic Curves 

Characteristic curves are special paths in the domain of a partial differential 

equation (PDE) along which the behavior of the PDE resembles that of an 

ordinary differential equation (ODE). These curves play a crucial role in 

understanding the qualitative behavior of solutions, determining regions of 

influence, and developing numerical methods for solving PDEs. For second-

order PDEs, characteristic curves help us classify equations and determine 

appropriate boundary conditions. They also guide us in understanding how 

information propagates through the domain. 

General Form of Second-Order PDEs in Two Variables 
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hyperbolic PDE, we obtain two distinct families of characteristic curves. For

equation  for  dy/dx  gives  the  slopes  of  the  characteristic  curves.  For  a 

cannot be determined from the PDE and initial data. Solving this quadratic 

This gives the directions in which the highest-order derivatives in the PDE 

𝐴(𝑑𝑥)² + 𝐵(𝑑𝑥)(𝑑𝑦) + 𝐶(𝑑𝑦)² = 0

form:

To find characteristic curves for a second-order PDE, we construct a quadratic 

Finding Characteristic Curves

geometry.

This  classification  is  analogous  to  the  classification  of  conic  sections  in 

𝑢𝑥𝑥 = 0

Hyperbolic:  B² - 4AC  >  0  Example:  Wave  equation 𝑢𝑡𝑡 − 𝑐² · 3.

Parabolic: B² - 4AC = 0 Example: Heat equation 𝑢𝑡 − 𝑘 · 𝑢𝑥𝑥 = 02.

  0

Elliptic: B² - 4AC < 0 Example: Laplace's equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 =1.

into three types:

Based on the coefficients A,  B,  and  C,  we can  classify  second-order  PDEs 

Classification of Second-Order PDEs

• D is a function that may depend on x, y, u, and first-order derivatives

• A, B, and C are coefficient functions that may depend on x and y

• 𝑢𝑦𝑦 represents the second partial derivative of u with respect to y

  y

• 𝑢𝑥𝑦 represents the mixed partial derivative of u with respect to x and

• 𝑢𝑥𝑥 represents the second partial derivative of u with respect to x

where:

𝐴(𝑥, 𝑦)𝑢𝑥𝑥 + 𝐵(𝑥, 𝑦)𝑢𝑥𝑦 + 𝐶(𝑥, 𝑦)𝑢𝑦𝑦 + 𝐷(𝑥, 𝑦, 𝑢, 𝑢𝑥 , 𝑢𝑦) = 0

written as:

A  general  second-order  PDE  in  two  independent  variables  x  and  y  can  be 
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a parabolic PDE, we get one family of characteristic curves (with multiplicity 

2). For an elliptic PDE, no real characteristic curves exist. 

Characteristic Form of Hyperbolic PDEs 

For hyperbolic PDEs, we can introduce new coordinates ξ and η along the 

characteristic curves. This transforms our equation into a simpler form: 

𝑢𝜉𝜂  =  𝐹(𝜉, 𝜂, 𝑢, 𝑢𝜉 , 𝑢𝜂) 

This is called the characteristic form of the hyperbolic PDE, which often 

simplifies the analysis and solution process. 

Propagation of Discontinuities 

One of the most important properties of characteristic curves is that 

discontinuities in the solution or its derivatives can only propagate along these 

curves. This is particularly important for hyperbolic PDEs, which model wave 

phenomena. For a function u(x,y), if the initial data has a discontinuity at a 

point, this discontinuity will propagate along the characteristic curves passing 

through that point. 

Characteristic Curves for Common PDEs 

Wave Equation 

𝑢𝑡𝑡  − 𝑐
2𝑢𝑥𝑥  =  0 

The characteristic curves are given by: 
𝑑𝑥

𝑑𝑡
= ±𝑐 

These are straight lines in the x-t plane with slopes ±1/c, representing the 

propagation of waves at speed c in both positive and negative x-directions. 

Heat Equation 

𝑢𝑡  −  𝑘 · 𝑢𝑥𝑥  =  0 

The characteristic curve is given by: (dt)² = 0 
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This gives a single family t = constant, indicating that the heat equation is 

parabolic. 

Laplace's Equation 

𝑢𝑥𝑥  +  𝑢𝑦𝑦   =  0 

The characteristic equation is: (dx)² + (dy)² = 0 

This has no real solutions, confirming that Laplace's equation is elliptic. 

2.6 Characteristics of Equations in Three Variables 

General Form of Second-Order PDEs in Three Variables 

A general second-order PDE in three variables x, y, and z can be written as: 

𝐴 · 𝑢𝑥𝑥  +  𝐵 · 𝑢𝑥𝑦  +  𝐶 · 𝑢𝑥𝑧  +  𝐷 · 𝑢𝑦𝑦  +  𝐸 · 𝑢𝑦𝑧  +  𝐹 · 𝑢𝑧𝑧  

+  𝐺(𝑥, 𝑦, 𝑧, 𝑢, 𝑢𝑥 , 𝑢𝑦, 𝑢𝑧)  =  0 

where coefficients A through F may depend on x, y, and z. 

Characteristic Surfaces 

In three dimensions, characteristics are no longer curves but surfaces. The 

characteristic surfaces for a second-order PDE in three variables satisfy the 

equation: 

𝐴(𝑑𝑥)² +  𝐵(𝑑𝑥)(𝑑𝑦)  +  𝐶(𝑑𝑥)(𝑑𝑧)  +  𝐷(𝑑𝑦)² +  𝐸(𝑑𝑦)(𝑑𝑧)  

+  𝐹(𝑑𝑧)² =  0 

This is a quadratic form in dx, dy, and dz, which defines a cone in the space 

of directions at each point (x,y,z). 

Classification in Three Dimensions 

The classification of second-order PDEs in three dimensions depends on the 

eigenvalues of the coefficient matrix: 
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[

𝐴 𝐵/2 𝐶/2
𝐵/2 𝐷 𝐸/2
𝐶/2 𝐸/2 𝐹

]     

1. Elliptic: All eigenvalues have the same sign (all positive or all 

negative) Example: Laplace's equation 𝑢𝑥𝑥  +  𝑢𝑦𝑦  +  𝑢𝑧𝑧  =  0 

2. Hyperbolic: One eigenvalue has opposite sign from the others 

Example: Wave equation 𝑢𝑡𝑡  −  𝑐²(𝑢𝑥𝑥   +  𝑢𝑦𝑦)  =  0 

3. Parabolic: At least one eigenvalue is zero, and the rest have the same 

sign Example: Heat equation 𝑢𝑡  −  𝑘(𝑢𝑥𝑥  +  𝑢𝑦𝑦)  =  0 

4. Ultrahyperbolic: At least two eigenvalues have opposite signs from 

the others Example: 𝑢𝑡𝑡  −  𝑢𝑥𝑥  −  𝑢𝑦𝑦  +  𝑢𝑧𝑧  =  0 

Characteristic Surfaces for Common PDEs in Three Variables 

3D Wave Equation 

𝑢𝑡𝑡  −  𝑐²(𝑢𝑥𝑥  +  𝑢𝑦𝑦  +  𝑢𝑧𝑧  )  =  0 

Characteristic surfaces form cones in (x,y,z,t) space, given by:  

(𝑑𝑡)2 − (
1

𝑐2
) [(𝑑𝑥)2 + (𝑑𝑦)2 + (𝑑𝑧)2] =  0   

These are called "light cones" in the context of waves and relativity. 

3D Heat Equation 

𝑢𝑡  −  𝑘(𝑢𝑥𝑥  + 𝑢𝑦𝑦  + 𝑢𝑧𝑧)  =  0 

The characteristic surface is given by: (dt)² = 0 

This gives planes of constant t, confirming the parabolic nature of the heat 

equation. 

3D Laplace's Equation 

𝑢𝑥𝑥  +  𝑢𝑦𝑦  +  𝑢𝑧𝑧  =  0 

The characteristic equation: (dx)² + (dy)² + (dz)² = 0 
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has no real solutions, confirming that Laplace's equation is elliptic in three 

dimensions. 

Bicharacteristic Curves 

For hyperbolic PDEs in three or more variables, bicharacteristic curves are 

curves that lie on characteristic surfaces and have special significance for the 

propagation of singularities and energy. For the wave equation, 

bicharacteristic curves are straight lines on the characteristic cones, 

representing the paths of light rays or sound waves. 

2.3.4 Summary and Important Formulas 

Classification of Second-Order PDEs 

1. Two Variables: 

• Elliptic: B² - 4AC < 0 

• Parabolic: B² - 4AC = 0 

• Hyperbolic: B² - 4AC > 0 

2. Three Variables: Based on eigenvalues of the coefficient matrix of 

the second-order terms. 

Characteristic Equations 

1. Two Variables: 𝐴(𝑑𝑥)² +  𝐵(𝑑𝑥)(𝑑𝑦)  +  𝐶(𝑑𝑦)² =  0 

2. Three Variables:  

𝐴(𝑑𝑥)² +  𝐵(𝑑𝑥)(𝑑𝑦)  +  𝐶(𝑑𝑥)(𝑑𝑧)  +  𝐷(𝑑𝑦)² +  𝐸(𝑑𝑦)(𝑑𝑧)  

+  𝐹(𝑑𝑧)² =  0 

Canonical Forms 

1. Elliptic: 𝑢𝑥𝑥  + 𝑢𝑦𝑦  +  𝑙𝑜𝑤𝑒𝑟 − 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 =  0 

2. Parabolic: 𝑢𝑥𝑥  +  𝑙𝑜𝑤𝑒𝑟 − 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 =  0 

3. Hyperbolic: 𝑢𝑥𝑦  +  𝑙𝑜𝑤𝑒𝑟 − 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 =  0 𝑜𝑟 𝑢𝜉𝜂  +

 𝑙𝑜𝑤𝑒𝑟 − 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 =  0 

Characteristic Curves for Common PDEs 
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1. Wave Equation  

(𝑢𝑡𝑡  − 𝑐
2𝑢𝑥𝑥  =  0):

𝑑𝑥

𝑑𝑡
 =  ±𝑐 𝑜𝑟 𝑥 ±  𝑐𝑡 =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

2. Heat Equation (𝑢𝑡  −  𝑘𝑢𝑥𝑥  =  0): 𝑡 = constant 

3. Laplace's Equation (𝑢𝑥𝑥  + 𝑢𝑦𝑦  =  0): No real characteristics 

Change of Variables to Canonical Form 

For hyperbolic PDEs (B² - 4AC > 0), introduce characteristic coordinates: 

𝜉 =  𝜑(𝑥, 𝑦) 𝑎𝑛𝑑 𝜂 =  𝜓(𝑥, 𝑦) 

where φ and ψ satisfy:  

𝐴(𝜑𝑥)² +  𝐵(𝜑𝑥)(𝜑𝑦)  +  𝐶(𝜑𝑦)² =  0 𝐴(𝜓𝑥)² +  𝐵(𝜓𝑥)(𝜓𝑦)  +  𝐶(𝜓𝑦)² 

=  0 

This transforms the equation to canonical form: 𝑢𝜉𝜂    =  𝐹(𝜉, 𝜂, 𝑢, 𝑢𝜉 , 𝑢𝜂) 

Initial Value Problems 

1. Hyperbolic PDEs: Require data on non-characteristic curves 

2. Parabolic PDEs: Require data on non-characteristic surfaces 

3. Elliptic PDEs: Typically solved as boundary value problems 

Method of Characteristics for First-Order PDEs 

The characteristic equations for a first-order PDE:  

𝑎(𝑥, 𝑦)𝑢𝑥  +  𝑏(𝑥, 𝑦)𝑢𝑦  =  𝑐(𝑥, 𝑦, 𝑢) 

are given by: 
𝑑𝑥

𝑎
=

𝑑𝑦

𝑏
=

𝑑𝑢

𝑐
 

 

 

  

  • Domain of influence: Region affected by initial data at a point

• Domain of dependence: Region that affects the solution at a point

For hyperbolic PDEs:

Domains of Dependence and Influence
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These domains are bounded by characteristic curves. 

2.3.5 Practice Problems 

Solved Problems 

Problem 1: Classification and Characteristics 

Classify the following PDE and find its characteristic curves:  

𝑢𝑥𝑥 +  4𝑢𝑥𝑦 +  3𝑢𝑦𝑦 =  0 

Solution: Step 1: Identify the coefficients. A = 1, B = 4, C = 3 

Step 2: Calculate the discriminant 

 𝐵² −  4𝐴𝐶. 𝐵² −  4𝐴𝐶 =  4² −  4(1)(3)  =  16 −  12 =  4 >  0 

Since the discriminant is positive, this is a hyperbolic PDE. 

Step 3: Find the characteristic curves by solving:  

𝐴(𝑑𝑥)² +  𝐵(𝑑𝑥)(𝑑𝑦)  +  𝐶(𝑑𝑦)² =  0 

Substituting our coefficients: (𝑑𝑥)² +  4(𝑑𝑥)(𝑑𝑦)  +  3(𝑑𝑦)² =  0 

Step 4: To find the slopes of the characteristic curves, solve for 
𝑑𝑦

𝑑𝑥
: 

 1 +  4 (
𝑑𝑦

𝑑𝑥
) +  3 (

𝑑𝑦

𝑑𝑥
)
2

=  0 

This is a quadratic equation in dy/dx: 3 (
𝑑𝑦

𝑑𝑥
)
2
+  4 (

𝑑𝑦

𝑑𝑥
) +  1 =  0   

Using the quadratic formula: 
𝑑𝑦

𝑑𝑥
=

−4 ± √16−12

6
 =

−4 ± 2

6
 =  −

2

3
 𝑜𝑟 −

1

3
  

Step 5: The characteristic curves are: Family 1: 
𝑑𝑦

𝑑𝑥
= −

1

3
, which integrates to 

𝑦 =  −
𝑥

3
 +  𝐶₁ Family 2: 𝑑𝑦/𝑑𝑥 =  −

2

3
, which integrates to 𝑦 =  −

2𝑥

3
 +

 𝐶₂ 
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where C₁ and C₂ are constants of integration. 

Conclusion: The given PDE is hyperbolic with two families of straight-line 

characteristics with slopes -1/3 and -2/3. 

Problem 2: Canonical Form 

Transform the hyperbolic PDE 𝑢𝑥𝑥  −  2𝑢𝑥𝑦   +  𝑢𝑦𝑦  +  𝑢𝑥  =  0 𝑖nto its 

canonical form using characteristic coordinates. 

Solution: Step 1: Identify the coefficients. A = 1, B = -2, C = 1 

Step 2: Calculate the discriminant. 𝐵² −  4𝐴𝐶 =  (−2)² −  4(1)(1)  =

 4 −  4 =  0 

This equation is actually parabolic, not hyperbolic as we initially thought. 

Step 3: Find the characteristic curves.  

𝐴(𝑑𝑥)² +  𝐵(𝑑𝑥)(𝑑𝑦)  +  𝐶(𝑑𝑦)² =  0 (𝑑𝑥)² −  2(𝑑𝑥)(𝑑𝑦)  + (𝑑𝑦)² 

=  0 (𝑑𝑥 −  𝑑𝑦)² =  0 

This gives dx = dy, or dy/dx = 1. 

The characteristic curves are y = x + C. 

Step 4: Introduce new coordinates. Since we have a double characteristic with 

slope 1, let's define: ξ = x + y (along the characteristics) η = x (or any other 

independent direction) 

The Jacobian of this transformation is: |𝜕(𝜉, 𝜂)/𝜕(𝑥, 𝑦)|  =  |1 1|  =  1 ≠

 0 |1 0| 

Step 5: Express the derivatives in terms of the new variables. Using the chain 

rule: 𝑢𝑥  =  𝑢𝜉 · 𝜉𝑥  +  𝑢𝜂 · 𝜂𝑥  =  𝑢𝜉 + 𝑢𝜂𝑢𝑦  =  𝑢𝜉 · 𝜉𝑦  + 𝑢𝜂 · 𝜂𝑦  =

 𝑢𝜉𝑢𝑥𝑥  =  (𝑢𝜉  + 𝑢𝜂)𝑥
 =  𝑢𝜉𝜉  +  2𝑢𝜉𝜂   +  𝑢𝜂𝜂𝑢𝑥𝑦   =  (𝑢𝜉  + 𝑢𝜂)𝑦

 =

 𝑢𝜉𝜉𝑢𝑦𝑦  =  (𝑢𝜉)𝑦
 =  𝑢𝜉𝜉  
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Step 6: Substitute into the original equation. 𝑢𝑥𝑥  −  2𝑢𝑥𝑦  +  𝑢𝑦𝑦  +  𝑢𝑥 =

 0 (𝑢𝜉𝜉  +  2𝑢𝜉𝜂  +  𝑢𝜂𝜂) −  2(𝑢𝜉𝜉) + (𝑢𝜉𝜉) + (𝑢𝜉  +  𝑢𝜂) =  0 𝑢𝜉𝜉  +

 2𝑢𝜉𝜂  +  𝑢𝜂𝜂  −  2𝑢𝜉𝜉  +  𝑢𝜉𝜉  +  𝑢𝜉  +  𝑢𝜂  =  0 2𝑢𝜉𝜂  + 𝑢𝜂𝜂  +  𝑢𝜉  +

 𝑢𝜂  =  0 

This is the canonical form of the given parabolic PDE. 

Problem 3: Wave Equation Initial Value Problem 

Solve the initial value problem: 𝑢𝑡𝑡 −  4𝑢𝑥𝑥 =  0  

𝑢(𝑥, 0) =  𝑠𝑖𝑛(𝜋𝑥) 

𝑢𝑡(𝑥, 0) =  0 

Solution: Step 1: Identify the wave equation with wave speed c = 2. The 

general solution to the wave equation 𝑢𝑡𝑡 − 𝑐2𝑢𝑥𝑥 =  0 𝑖𝑠: 𝑢(𝑥, 𝑡) =

 𝐹(𝑥 +  𝑐𝑡) +  𝐺(𝑥 −  𝑐𝑡) 

where F and G are arbitrary functions. 

For our equation with 𝑐 =  2: 𝑢(𝑥, 𝑡)  =  𝐹(𝑥 +  2𝑡)  +  𝐺(𝑥 −  2𝑡) 

Step 2: Apply the initial conditions. At  

𝑡 =  0: 𝑢(𝑥, 0)  =  𝐹(𝑥)  +  𝐺(𝑥)  =  𝑠𝑖𝑛(𝜋𝑥)𝑢𝑡(𝑥, 0)  

=  2𝐹′(𝑥)  −  2𝐺′(𝑥)  =  0  

From the second condition, F'(x) = G'(x), which means: F(x) = G(x) + K where 

K is a constant. 

Step 3: Determine the functions F and G. From  

𝑢(𝑥, 0) =  𝐹(𝑥) +  𝐺(𝑥) = sin(𝜋𝑥) and 

 𝐹(𝑥) =  𝐺(𝑥) +  𝐾: (𝐺(𝑥) +  𝐾) +  𝐺(𝑥) =  𝑠𝑖𝑛(𝜋𝑥)2𝐺(𝑥) +  𝐾 

=  𝑠𝑖𝑛(𝜋𝑥)𝐺(𝑥) =
𝑠𝑖𝑛(𝜋𝑥) −  𝐾

2
 𝐹(𝑥) =  𝐺(𝑥) +  𝐾 

=
𝑠𝑖𝑛(𝜋𝑥) −  𝐾

2
 +  𝐾 =

𝑠𝑖𝑛(𝜋𝑥)

2
 +

𝐾

2
   

74 



Since the constant K appears in both F and G, we can set K = 0 without loss 

of generality. Thus, F(x) = G(x) = sin(πx)/2. 

Step 4: Write the final solution. 

 𝑢(𝑥, 𝑡) =  𝐹(𝑥 +  2𝑡) +  𝐺(𝑥 −  2𝑡) 

𝑢(𝑥, 𝑡) =  (
1

2
) 𝑠𝑖𝑛(𝜋(𝑥 +  2𝑡)) + (

1

2
) 𝑠𝑖𝑛(𝜋(𝑥 −  2𝑡)) 

𝑢(𝑥, 𝑡) =  (
1

2
) [𝑠𝑖𝑛(𝜋𝑥 +  2𝜋𝑡) +  𝑠𝑖𝑛(𝜋𝑥 −  2𝜋𝑡)] 

identitytrigonometrictheUsing 𝑠𝑖𝑛(𝐴)  +  𝑠𝑖𝑛(𝐵)  =

 2𝑠𝑖𝑛 (
𝐴+𝐵

2
) 𝑐𝑜𝑠 (

𝐴−𝐵

2
) : 𝑢(𝑥, 𝑡)  =  𝑠𝑖𝑛(𝜋𝑥)𝑐𝑜𝑠(2𝜋𝑡) 

Conclusion: The solution to the given initial value problem is u(x,t) = 

sin(πx)cos(2πt). 

Problem 4: Method of Characteristics for First-Order PDE 

Solve the first-order PDE: 3𝑢𝑥 +  4𝑢𝑦 =  0   with the initial condition 

𝑢(𝑥, 0)  =  𝑥² 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. 

Solution: Step 1: Identify the coefficients. a = 3, b = 4, c = 0 

Step 2: Set up the characteristic equations. 
𝑑𝑥

3
=

𝑑𝑦

4
=

𝑑𝑢

0
 

From du/0, we get du = 0 along characteristics, which means u is constant 

along characteristics. 

Step 3: Find the characteristic curves. From 
𝑑𝑥

3
=

𝑑𝑦

4
:
𝑑𝑥

𝑑𝑦
=  ¾  Integrating:  

𝑥 =  (
3

4
) 𝑦 +  𝑘  where k is a constant. 

This can be rewritten as: 4x - 3y = 4k 

So the characteristics are straight lines with equation 4x - 3y = constant. 
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Step 4: Apply the initial condition. At y = 0, u = x². So on the characteristic 

passing through (x₀, 0), the value of u is x₀². 

The characteristic through (x₀, 0) has equation: 4x - 3y = 4x₀ 

Step 5: Express the solution in terms of x and y. From 4x - 3y = 4x₀, we get: 

x₀ = (4x - 3y)/4 

Since u is constant along characteristics and equals x₀² at the y-axis:  

𝑢(𝑥, 𝑦) =  𝑥0
2 = (

4𝑥 −  3𝑦

4
)
2

  

𝑢(𝑥, 𝑦) =
(4𝑥 −  3𝑦)2

16
 

Conclusion: The solution to the given first-order PDE with the specified initial 

condition is 𝑢(𝑥, 𝑦) =
(4𝑥 − 3𝑦)2

16
 . 

Problem 5: Characteristics for Three-Variable PDE 

Determine the characteristic surfaces of the PDE: 𝑢𝑥𝑥 +  2𝑢𝑦𝑦 −  3𝑢𝑧𝑧 =  0 

Solution: Step 1: Identify the coefficients. A = 1, D = 2, F = -3 All other 

coefficients (B, C, E) are zero. 

Step 2: Write the characteristic equation.  

𝐴(𝑑𝑥)² +  𝐵(𝑑𝑥)(𝑑𝑦)  +  𝐶(𝑑𝑥)(𝑑𝑧)  +  𝐷(𝑑𝑦)² +  𝐸(𝑑𝑦)(𝑑𝑧)  

+  𝐹(𝑑𝑧)² =  0 

Substituting our coefficients: (𝑑𝑥)² +  2(𝑑𝑦)² −  3(𝑑𝑧)² =  0 

Step 3: Analyze the characteristic surfaces. This equation represents a cone in 

the space of differentials (dx, dy, dz). 

is:matrixcoefficientThePDE.theClassify4:Step   

[
1 0 0
0 2 0
0 0 −3

] 
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The eigenvalues are 1, 2, and -3. Since some eigenvalues are positive and 

others negative, this is a hyperbolic PDE. 

Step 5: Find parametric equation for the characteristic surfaces. For fixed 

values of x, y, z, the characteristic directions satisfy:  

(𝑑𝑥)² +  2(𝑑𝑦)² −  3(𝑑𝑧)² =  0 

This is the equation of a cone in direction space. The characteristic surfaces 

are formed by integrating these direction fields. 

One way to express these surfaces is to introduce parameters:  

𝑑𝑥 =  √3 · 𝑐𝑜𝑠(𝜃) · 𝑑𝜆𝑑𝑦 =  𝑠𝑖𝑛(𝜃) ·
𝑑𝜆

√2
 𝑑𝑧 =  𝑑𝜆 

where θ is an angular parameter and λ is a distance parameter. 

Integrating these, we get characteristic surfaces of the form:  

𝑥 =  √3 · 𝑐𝑜𝑠(𝜃) · 𝜆 + 𝑥0,     𝑦 =  𝑠𝑖𝑛(𝜃) ·
𝜆

√2
 + 𝑦0,      𝑧 =  𝜆 +  𝑧₀ 

 

 

 

 

 

    

 

    

        conditions 𝑢(𝑥, 0) = 𝑥² 𝑎𝑛𝑑 𝑢𝑦(𝑥, 0) = 2𝑥.

using  characteristic  coordinates.  Then  solve  the  equation  with  initial 

Transform  the  hyperbolic  PDE 4𝑢𝑥𝑥 − 9𝑢𝑦𝑦 = 0 into  its  canonical  form 

Problem 2

𝑥2𝑢𝑥𝑥 − 𝑦2𝑢𝑦𝑦 = 0

Classify the following PDE and find its characteristic curves:

Problem 1

Unsolved Problems

space, confirming the hyperbolic nature of the PDE.

Conclusion:  The  characteristic  surfaces  form  a  family  of  cones  in  (x,y,z)

where (x₀, y₀, z₀) is the initial point.
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 posed. For hyperbolic PDEs:

The  theory  of  characteristics  helps  determine  whether  a  problem  is  well- 

Well-Posedness and Boundary Conditions

mechanics.

analyzing and solving nonlinear PDEs, especially in gas dynamics and fluid 

remain constant along characteristic curves. They provide a powerful tool for 

For  hyperbolic  conservation  laws,  Riemann  invariants  are  quantities  that 

Riemann Invariants

determined from the PDE and initial data alone.

PDEs,  these  are  directions  along  which  the  second  derivatives  cannot  be 

the  PDE  imposes  no  constraints  on  higher  derivatives.  For  second-order 

Characteristic curves can be interpreted geometrically as paths along which 

Geometric Interpretation

Additional Insights on Characteristic Curves

dimensional case?

propagation.  How  does  the  domain  of  dependence  differ  from  the  two- 

describe  the  characteristic  surfaces  and  their  significance  for  wave 

For  the  three-dimensional  wave  equation 𝑢𝑡𝑡 = 𝑐2(𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧),

Problem 5

= x² for all x.

Solve the first-order PDE: 𝑥𝑢𝑥 + 𝑦𝑢𝑦 = 𝑢 with the initial condition u(x,1)

Problem 4

Then classify the equation and transform it to canonical form.

𝑢𝑥𝑥 + 2𝑢𝑥𝑦 + 𝑢𝑦𝑦 + 𝑢𝑥 − 𝑢𝑦 = 0.

Find the characteristic curves of the PDE:

Problem 3

78 



• Initial data should be specified on non-characteristic curves 

• Boundary conditions should account for the direction of characteristic 

curves 

For elliptic PDEs, which have no real characteristics, boundary conditions are 

typically specified around the entire boundary of the domain. 

Numerical Methods Based on Characteristics 

Many numerical schemes for hyperbolic PDEs are based on the method of 

characteristics: 

• Characteristic Finite Difference Methods 

• Streamline Upwind Petrov-Galerkin (SUPG) Method 

• Discontinuous Galerkin Method 

These methods often provide better stability and accuracy for advection-

dominated problems compared to standard finite difference or finite element 

methods. 

Applications in Physics and Engineering 

The concept of characteristics is fundamental in many fields: 

1. Fluid Dynamics: Characteristics determine the propagation of 

pressure waves and shocks 

2. Electromagnetics: Characteristics describe the propagation of 

electromagnetic waves 

3. Traffic Flow: Characteristics track the propagation of traffic density 

waves 

4. Relativity: Light cones are characteristic surfaces of the wave 

equation in spacetime 

5. Seismology: Characteristics describe the propagation of seismic 

waves through Earth 

Understanding characteristics provides insight into physical phenomena and 

guides the development of accurate numerical methods for complex problems 

in science and engineering. 
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lives  through  timely  alerts.  The  derivation  of  these  equations  adheres  to  a

of catastrophic weather occurrences and potentially preserving thousands of 

differential equations to model atmospheric dynamics, enabling the prediction 

equations.  Weather  forecasting  systems  utilize  second-order  partial 

in  commercial  aircraft  safety  rely  on  precise  numerical  answers  to  these 

model airflow around aircraft structures. The substantial financial investments 

Stokes  equations  nonlinear  second-order  partial  differential  equations—to 

software,  crucial  for  aeronautical  engineering,  directly  applies  the  Navier- 

flow  simulation.   Contemporary  computational  fluid  dynamics  (CFD)

particular purposes, including aircraft wing design and cardiovascular blood 

physicists and engineers formulate tailored partial differential equations for 

This  methodology  is  fundamental  to  contemporary  engineering,  wherein 

illustrated the translation of physical intuition into mathematical expression. 

D'Alembert's  derivation  of  the  wave  equation  from  fundamental  principles 

systems  established  a  mathematical  lexicon that  persists  in  its  evolution. 

understanding  of  wave  propagation,  vibrating  strings,  and  mechanical 

century  developed  the  mathematical  framework  for  these  equations.  Their 

The  seminal  contributions  of  d'Alembert,  Euler,  and  Lagrange  in  the  18th 

nanometer-scale  precision  is  crucial. 

model  and  regulate  thermal  behavior  during  chip  manufacture,  when 

diffusion  equations  traditional  second-order  partial  differential  equations  to 

states accurately. The semiconductor industry similarly depends on heat and 

thoroughly  comprehend  the  features  of  this  equation  to  manage  quantum 

evolution of quantum states. Engineers developing quantum computers must 

order partial differential equation establishes the theoretical foundation for the 

of quantum computing systems, wherein the Schrödinger equation a second- 

persist in influencing contemporary applications. Examine the advancement 

observed  processes.   In  the  current  technology  landscape,  these  beginnings 

as  abstract  mathematical  entities  but  as  pragmatic  instruments  to  model 

most significant intellectual accomplishments. These equations emerged not 

empirical observation to mathematical expression signifies one of humanity's 

underlying  physical  rules  that  regulate  our  universe.  The  transition  from 

Second-order partial differential equations (PDEs) arise inherently from the 

Origins  and  Development  of  Second-Order  Partial  Differential  Equations 

Contemporary Analysis

Practical Applications of Second-Order Partial Differential Equations in 
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prevalent methodology across various fields: recognizing conservation laws 

or equilibrium states, utilizing fundamental physical principles, and 

articulating the resultant relationships in differential form. In financial 

engineering, the Black-Scholes equation derives from the no-arbitrage 

principle in options pricing, but in neuroscience, the cable equation describes 

signal propagation in neurons based on electric charge conservation.  Modern 

climate models apply this methodology to global systems, utilizing coupled 

second-order partial differential equations to depict interactions among 

atmospheric, oceanic, and terrestrial processes. Policy decisions impacting 

billions of individuals and trillions of dollars in climate adaption strategies 

depend on these mathematical formulations. Contemporaneous 

pharmaceutical development utilizes diffusion-reaction equations to simulate 

medication transport and effectiveness, hence influencing patient outcomes in 

clinical environments.  The historical evolution of second-order PDEs 

demonstrates a significant trend: concepts that originate as theoretical 

inquiries frequently discover unforeseen practical applications many years or 

even centuries later. Riemann's research on manifolds, once regarded as pure 

mathematics, now underpins Einstein's field equations in general relativity, 

facilitating the accurate GPS navigation utilized by billions everyday. This 

trend persists as researchers investigate innovative partial differential 

equations for advancing technologies such as metamaterials, quantum 

information systems, and biological computing.  Linear Second-Order Partial 

Differential Equations with Constant Coefficients  Linear second-order partial 

differential equations with constant coefficients constitute the foundation of 

applied mathematics, offering manageable models for numerous physical 

processes. Their significance arises from a blend of mathematical simplicity 

and descriptive efficacy. The generic equation 𝑎
𝜕2𝑢

𝜕𝑥2
+ 𝑏

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑐

𝜕2𝑢

𝜕𝑦2
+

𝑑
𝜕𝑢

𝜕𝑥
+ 𝑒

𝜕𝑢

𝜕𝑦
+  𝑓𝑢 =  𝑔, with constants a through f, includes three primary 

types of equations: elliptic, parabolic, and hyperbolic.  

In modern structural engineering, the elliptic equation 
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
=  0  

(Laplace's equation) represents membrane deflection subjected to static loads. 

Bridge designers depend on numerical solutions to this equation to ascertain 

the load-bearing capacity of essential structures. The durability of 

contemporary construction materials can be accurately assessed, averting 

disastrous failures and reducing material expenses. Electrical engineers utilize 
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Laplace's equation to examine potential distributions in semiconductor 

devices, facilitating the advancement of more efficient microprocessors that 

drive our digital economy.  

Parabolic equations, such as the heat 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛
𝜕𝑢

𝜕𝑡
 =  𝑘 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
), are 

essential in thermal management systems. Data center builders must resolve 

this equation to avert server overheating while reducing cooling expenses, 

which directly affects the reliability of cloud computing services utilized by 

billions. The same equation regulates diffusion processes in battery 

technology, wherever manufacturers enhance electrode designs through 

computational models founded on parabolic partial differential equations to 

prolong battery lifespan and augment charging velocities for electric 

automobiles. Hyperbolic equations, such as the wave equation 
𝜕2𝑢

𝜕𝑡2
=

 𝑐2 (
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
), characterize oscillatory processes across various fields. 

Telecommunications engineers apply answers to this equation in the design of 

antenna arrays for 5G networks, facilitating increased data transfer speeds and 

less interference. Seismologists employ numerical solutions to the wave 

equation to analyze earthquake propagation patterns, thereby impacting 

building rules that safeguard millions in seismically active areas.  The 

analytical solutions to these equations with constant coefficients frequently 

employ separation of variables, Fourier transforms, or Green's functions—

techniques that continue to be indispensable despite advancements in 

computer methods. Contemporary optimization techniques in machine 

learning sometimes utilize these analytical answers as benchmarks or first 

references. For example, image processing algorithms utilize answers to the 

heat equation as the mathematical basis for Gaussian blurring processes, an 

essential tool in computer vision systems employed in autonomous vehicles.  

The practical benefit of constant coefficient PDEs resides in their 

mathematical manageability. In the construction of acoustical environments 

such as concert halls or recording studios, engineers can simulate sound wave 

propagation with the wave equation with constant coefficients, then 

incorporating perturbations to address intricate geometries or material 

characteristics. This methodology harmonizes computational efficiency and 

precision, facilitating practical designs under acceptable time constraints.  The 

mathematics of linear second-order partial differential equations is 

fundamental to tomographic reconstruction methods in medical imaging. 
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Computed tomography (CT) scanners resolve variations of Poisson's equation 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
=  𝑓(𝑥, 𝑦)  to transform projection data into cross-sectional images, 

facilitating non-invasive detection of ailments ranging from stroke to cancer. 

The dependability of these systems is directly contingent upon the 

mathematical characteristics of elliptic partial differential equations with 

constant coefficients.  

Financial markets likewise derive advantages from these equations. The 

Black-Scholes equation, a second-order partial differential equation with 

constant coefficients, transformed options pricing and risk management. 

High-frequency trading businesses utilize numerical solvers for this equation 

to evaluate derivatives in microseconds, whilst regulatory authorities employ 

the same mathematical framework to analyze systemic financial concerns that 

may affect global economies.  The superposition principle, which states that 

linear combinations of solutions provide additional solutions, offers 

significant practical utility in the analysis of complex systems. Electrical grid 

operators utilize this characteristic for modeling power distribution networks, 

deconstructing intricate interconnected systems into manageable elements. 

Likewise, structural engineers employ superposition to analyze buildings 

subjected to various load circumstances, so assuring safety and preventing 

overdesign.  Contemporary computational methods have broadened the 

applicability of these equations to more intricate fields. Finite element 

methods convert continuous partial differential equations into discrete 

systems that can be solved by computers, facilitating the analysis of structures 

with irregular geometries or heterogeneous materials. The automotive 

industry use these techniques in the design of crumple zones to absorb impact 

energy during collisions, directly converting mathematical solutions into life-

saving vehicle attributes.  Partial Differential Equations with Variable 

Coefficients and Their Solutions  The shift from constant to variable 

coefficients in second-order partial differential equations signifies a 

substantial advancement in modeling proficiency and intricacy. Variable 

coefficient partial differential equations emerge inherently when physical 

parameters vary spatially or temporally, offering more accurate 

representations of diverse systems. The generic equation  

𝑎(𝑥, 𝑦)
𝜕2𝑢

𝜕𝑥2
   +  𝑏(𝑥, 𝑦)

𝜕2𝑢

𝜕𝑥𝜕𝑦
 +  𝑐(𝑥, 𝑦)

𝜕2𝑢

𝜕𝑦2
 +  𝑑(𝑥, 𝑦)

𝜕𝑢

𝜕𝑥
 +  𝑒(𝑥, 𝑦)

𝜕𝑢

𝜕𝑦
 

    + 𝑓(𝑥, 𝑦)𝑢 = 𝑔(𝑥, 𝑦)
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creation  of  lightweight  yet  robust  structures  that  enhance  fuel  efficiency in

coefficients  denoting  direction-dependent  material  qualities,  facilitating  the 

engineers  utilize  equations  to  simulate  carbon  fiber  components,  with 

coefficient  partial  differential  equations  efficiently  resolve.  Aerospace 

Contemporary  composite  materials  pose  specific  issues  that  variable 

security  for  millions. 

extraction  wells  and  monitoring  systems,  which  directly  influence  water 

Municipal water agencies depend on solutions to these equations for planning 

variable hydraulic conductivity, contingent upon soil and rock composition. 

management  and  contamination  cleanup.  The  coefficients  denote  spatially 

flow in heterogeneous aquifers, guiding essential decisions on water resource 

engineering,  variable  coefficient  diffusion  equations  simulate  groundwater 

bandwidth communication systems that underpin the internet.  In geological 

in  fibers  with  gradually  changing  refractive  indices,  facilitating  the  high- 

designers utilize WKB approximation methods to simulate light propagation 

these  approaches  yield  significant insights  in  certain  settings.  Optical  fiber 

Although less generalizable than methods for constant coefficient equations, 

techniques,  asymptotic  analysis,  and  specialized  function  methodologies. 

Analytical  methods  for  variable  coefficient  PDEs  encompass  perturbation 

mathematical  systems. 

agricultural productivity globally arise from numerical solutions to intricate 

resolution  of  these  equations.  The  precipitation  patterns  influencing 

infrastructure  planning  valued  in  the  trillions  globally,  rely  on  the  precise 

and  oceanic  characteristics.  Regional  climate  estimates,  essential  for 

partial differential equations to incorporate spatial disparities in atmospheric 

integrity under pulsatile flow.  Climate modeling utilizes variable coefficient 

elasticity,  improving  designs  to  avert  restenosis  while  preserving  structural 

equations  to  simulate  blood  flow  in  arteries  with  regionally heterogeneous 

Cardiovascular stent designers employ variable coefficient partial differential 

procedures, enhancing outcomes in intricate operations such as neurosurgery. 

software  utilizes  these  equations to  forecast  tissue  deformation  during 

denoting  spatially  heterogeneous  material  properties.  Surgical  planning 

variable  coefficient  partial  differential  equations,  with  the  coefficients 

In contemporary biomedical engineering, tissue mechanics are represented by 

material properties, boundary conditions, or external forces.

  facilitates  the  modeling  of  phenomena  characterized  by  spatially  varying 
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foundation  stability,  hence  enhancing  building  resilience  to  unforeseen

methods  to  evaluate  the  impact  of  minor  alterations  in  soil  parameters  on 

deterioration  in  practical scenarios.  Civil  engineers  utilize  perturbation 

production  defects  or  thermal  variations,  forecasting  picture  quality 

values. Optical designers employ these techniques to assess lenses with minor 

yield effective solutions when coefficients deviate marginally from constant 

delineating fault structures to evaluate seismic hazards.  Perturbation methods 

billions,  while  same  mathematical  methodologies  assist  geologists  in 

resultant subsurface images facilitate oil and gas development valued in the 

with  variable  coefficients  that  denote alterations  in  rock  qualities.  The 

techniques  utilize  coordinate  transformations  to  streamline  wave  equations 

differential  equations  into  more  manageable  forms.  Seismic  imaging 

Transformation  techniques  occasionally  render  variable  coefficient  partial 

ranging from smartphones to electric cars.

temperature  regulation,  hence  prolonging  battery  longevity  in  applications 

and  charge. These  models  provide  accurate  state-of-charge  assessment  and 

coefficients  denote  material  qualities  that  are  contingent  upon  temperature 

address  variable  coefficient  partial  differential  equations,  wherein  the 

from  analogous mathematical frameworks.  Battery management techniques 

thousands of patients each year.  Energy storage systems derive advantages 

coefficient  partial  differential  equations  preserves  cognitive  function  for 

essential  routes  during  tumor  removal  surgeries. The  direct  use  of  variable 

assist  neurosurgeons  in  navigating  intricate  brain  anatomy,  safeguarding 

water  diffusion  inside  brain  tissue.  The  resultant  fiber  tract  visualizations 

coefficients  constitute  a  spatially  fluctuating  tensor  that  depicts  directional 

imaging  (DTI)  utilize  variable  coefficient  diffusion  equations,  wherein the 

miniscule  distances.   Medical  imaging  modalities  such  as  diffusion  tensor 

chip production, where impurity concentrations fluctuate significantly across 

manufacturers  utilize  these  techniques  to simulate  dopant  diffusion  during 

gradients, optimizing accuracy and computational efficiency. Semiconductor 

autonomously enhance computational resolution in areas with steep solution 

partial  differential  equations.  Adaptive  mesh  refinement  algorithms 

Numerical approaches are essential for resolving practical variable coefficient 

thermal  conductivity. 

optimized  by  variable  coefficient  heat  equations  that  consider  anisotropic 

commercial  aircraft.  The  manufacturing  procedures  for  these  materials  are 
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ocean basins.  In telecommunications, the characteristic analysis of Maxwell's

real physical trajectories along which tsunami energy propagates throughout 

prompt evacuations. The characteristic curves in these models represent the 

arrival  times  at  coastal  areas,  potentially  preserving  thousands  of  lives by 

differential  equations—through  characteristic  analysis  to  forecast  wave 

warning  systems  resolve  shallow  water  equations—hyperbolic  partial 

features  denote  the  trajectories  of  physical  wave  propagation.  Tsunami 

reconciling service levels with operational expenses.  In hyperbolic equations, 

method  assists  logistics  firms  in  optimizing  delivery  routes  at  peak  times, 

travel  durations  in  significant  urban  regions.  The  identical  mathematical 

wave propagation, facilitating adaptive traffic control systems that minimize 

Highway traffic flow models utilize this methodology to forecast congestion 

curves,  yielding  precise  solutions  for  significant  categories  of  problems. 

differential equations into ordinary differential equations along characteristic 

for  satellite  launches.   The  method  of  characteristics  converts  partial 

enhance thrust and reduce flow separation, hence affecting payload capacity 

design,  characteristic  curves  identify  appropriate  expansion  contours  to 

that could undermine structural integrity or flight stability. In rocket nozzle 

for the  propagation of  pressure  disturbances, thereby averting  shock  waves 

examine the hyperbolic Euler equations to determine characteristic directions 

analysis  informs  the  design  of  supersonic  aircraft  components.  Engineers 

or  initial  values.   In  contemporary  aerospace  engineering,  characteristic 

essential characteristics of PDEs that surpass particular boundary constraints 

curves, along which information propagates in the solution domain, disclose 

geometric insight into the behavior of solutions and propagation events. These 

comprehending  second-order  partial  differential  equations,  offering 

Characteristic  curves  serve  as  a  potent  analytical  instrument  for 

Characteristic Curves of Second-Order Partial Differential Equations

mathematical abstraction converts into real utility.

commercial  aviation  and  emergency  management,  illustrate  how 

impacted by terrain. The resultant weather forecasts, which affect decisions in 

denote  spatially  variable  Coriolis  effects,  air  density,  and  wind  patterns 

equations.  Meteorological  models  utilize  equations  in  which  coefficients 

representation  is  most  apparent  in  variable  coefficient  partial  differential 

The  relationship  between  physical  comprehension  and  mathematical 

ground  conditions. 
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engineers utilize numerous numerical approaches based on this classification

characteristic  analysis  has  significant  practical  consequences.  Structural 

The  categorization  of  PDEs  into  elliptic,  parabolic,  or  hyperbolic  by 

influencing patient outcomes in clinical environments.

ranging  from  cardiovascular  diseases  to  fetal  anomalies,  hence  directly 

The  diagnostic  images  produced  assist  doctors  in  identifying  problems 

focusing methods.

solutions  to  wave  equations,  with  characteristic  surfaces  directing  beam 

higher  dimensions.  Medical  ultrasound  imaging  systems  utilize  numerical 

Characteristic surfaces in three-dimensional issues elevate these concepts to 

gadgets.

of  dopant  profiles in integrated  circuits that  drive  contemporary  computing 

diffusion-reaction systems with distinct fronts, facilitating accurate regulation 

Semiconductor manufacturing techniques utilize these principles to describe 

generalized  characteristics  nonetheless  offer  significant  insights. 

characteristics  may  not  be  applicable  as  they  are  for  hyperbolic equations, 

In  the  context  of  parabolic  and  elliptic  equations,  whereas  conventional 

management sectors, collectively valued in the trillions of dollars worldwide. 

forecast  precision  affect  the  agriculture,  transportation,  and  emergency 

predictions of severe weather events. The economic ramifications of enhanced 

discretizations to simulate atmospheric dynamics, resulting in more accurate 

and precision.  Weather  forecasting  models  utilize  characteristic-based 

orient computational grids with characteristic directions to enhance stability 

Numerical  methods  for  hyperbolic  partial  differential  equations  frequently 

without  malfunction,  is  contingent  upon  this  mathematical  study. 

commercial  aviation  engines,  required  to  function  for  hundreds  of  hours 

propagation  of  pressure  and  temperature  information. The  dependability  of 

compressible flow equations that consider the characteristic directions for the 

practice. Designs of jet engine combustion chambers depend on answers to 

Gas dynamics offers quintessential illustrations of characteristic analysis in 

transfer  in  networks  catering  to  billions  of  customers. 

meticulously align these impedances to reduce reflections and optimize power 

transmission  systems  that  support  internet  infrastructure.  Engineers 

characteristic curves of the PDEs, governs signal integrity in high-speed data 

characteristic  impedance  of  these  components,  obtained  from  the 

equations informs the construction of waveguides and transmission lines. The 
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when assessing buildings under diverse loading circumstances. Hyperbolic 

formulations address wave propagation via structural elements under dynamic 

loads such as earthquakes, whereas elliptic models are utilized for static 

loading scenarios.  Shock waves exemplify striking examples of typical 

behavior in nonlinear hyperbolic systems. Aerospace engineers examine these 

phenomena while designing components for supersonic aircraft to endure 

severe pressure gradients. Likewise, medical equipment for kidney stone 

fragmentation (lithotripsy) employ precisely focused controlled shock waves 

directed to stone sites, exemplifying the application of characteristic analysis 

in therapeutic technology.  Information dissemination along features parallels 

machine learning approaches derived from partial differential equations. 

Level set approaches, utilized to solve specific partial differential equations 

for tracking moving interfaces, employ rapid marching algorithms that adhere 

to characteristic-like trajectories of information flow. These techniques allow 

computer vision systems to delineate object boundaries in films, applicable in 

domains ranging from autonomous vehicles to medical picture analysis.  The 

approach of compatibility criteria along characteristics offers effective 

solution techniques for intricate engineering challenges. Dam breach analysis 

in civil engineering utilizes these parameters to estimate flood wave 

propagation, thereby guiding emergency response strategies for communities 

situated downstream of reservoirs. The efficacy of early warning systems is 

directly contingent upon the precision of these characteristic-based solutions.  

Control systems for dispersed parameter processes frequently utilize 

characteristic analysis to best position sensors and actuators. Chemical reactor 

designs utilize this method to oversee and regulate reaction fronts that 

advance along defined trajectories, ensuring product quality and averting 

uncontrolled reactions. The manufacturing procedures yield materials ranging 

from pharmaceuticals to sophisticated polymers, ensuring consistent qualities 

and safety margins.  

Attributes of Partial Differential Equations in Three Variables  

The expansion of PDE theory to three variables enhances both mathematical 

complexity and practical modeling capabilities necessary for depicting real-

world three-dimensional processes. The basic second-order partial differential 

equation in three variables is expressed as  
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∑ 𝑎ᵢⱼ
𝜕2𝑢

𝜕𝑥ᵢ𝜕𝑥ⱼ
  

(𝑖,𝑗=1 𝑡𝑜 3)

+ ∑ 𝑏ᵢ
𝜕𝑢

𝜕𝑥ᵢ
 +  𝑐𝑢 =  𝑓

(𝑖=1 𝑡𝑜 3)
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techniques  for  polluted  aquifers,  safeguarding  drinking  water  sources  for

employ  mathematical  models  to  devise  containment  and  rehabilitation 

surfaces to delineate contaminant movement paths. Environmental engineers 

techniques address three-dimensional diffusion equations, utilizing distinctive 

preparedness,  impacting  billions  globally.   Groundwater  management 

estimates  inform  decisions  ranging  from  agricultural  planning  to  disaster 

of  numerical  schemes  for  optimal  accuracy  and  stability.  The  resultant 

propagation of information within the computing domain, affecting the design 

atmosphere.  The  characteristic  surfaces  of  these  equations  dictate  the 

that  reflect  the  conservation  of  mass,  momentum,  and  energy  within  the 

Weather prediction models utilize three-variable partial differential equations 

space.

that  encapsulate  intricate  acoustic  wave  interactions  in  three-dimensional 

originate from solutions to these three-variable partial differential equations 

required  to  comply  with  increasingly  rigorous  environmental  standards, 

generation and propagation from aircraft engines. Noise reduction methods, 

computational  aeroacoustics,  wherein  aerospace  engineers  simulate  noise 

Characteristic surfaces in three dimensions constitute the theoretical basis for 

propagation  trajectories. 

mathematical  models  and  their  defining  surfaces  that  depict  physical  wave 

The billions allocated to exploratory endeavors rely on the precision of these 

locating prospective hydrocarbon sources many kilometers below the surface. 

solve  these  equations  while  analyzing  reflection  seismology  data,  thereby 

seismic  data.  Oil  and  gas  corporations  employ  computational  methods  to 

utilizes three-variable wave equations to delineate subsurface structures using 

internal  structures  without  surgical  intervention.   Geophysical  exploration 

within the body, transforming medical practice through accurate viewing of 

These  mathematical  tools  provide  non-invasive  identification  of  problems 

differential equations, to transform projection data into volumetric pictures. 

Radon  transform,  an  integral  transform  associated  with  elliptic  partial 

Computed tomography scanners resolve three-dimensional variations of the 

partial differential equations regulate tomographic reconstruction techniques. 

two-dimensional scenarios.  In contemporary medical imaging, three-variable 

  wherein  characteristic  surfaces  supplant  the  characteristic  curves  found  in 
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sustain  regulated  fission  processes.   Medical  radiation  therapy  planning

functioning  relies  on  precisely  modeling  these  intricate  relationships  to 

neutron  populations  within  the  reactor  core.  The  secure  and  effective 

variables  plus  time—where  characteristic  surfaces  dictate  the  evolution  of 

transport  equations—hyperbolic  partial  differential  equations  in  three 

three-dimensional situations. Nuclear reactor design entails resolving neutron 

characteristic  surfaces  and  boundary  conditions  is  especially  significant  in 

construction  methods  for  the  built  environment.   The  interplay between 

designs  harmonize  safety  with  material  efficiency,  facilitating  sustainable 

building  components  subjected  to  diverse  loading  situations.  The  resultant 

algorithms  derived  from  this  categorization  to  analyze  three-dimensional 

increased  complexity.  Structural  engineers  utilize  suitable  numerical 

adheres  to  rules  akin  to  those  of  the  two-dimensional  case,  albeit  with 

equations.  The classification of three-variable partial differential equations 

comprehension  of  characteristic  surfaces  in  three-dimensional  elastic  wave 

during  seismic  events  is  directly  contingent  upon  the  mathematical 

seconds of prior notice. The efficacy of these devices in mitigating damage 

seismic wave data, predicting arrival times at urban centers to deliver essential 

Earthquake  early  warning  systems  employ  these  techniques  to  analyze 

offering  effective  solution  approaches  for  wave  propagation  issues. 

The method of characteristics applies to three variables in hyperbolic systems, 

within engineering design schedules.

precision  with  computational  economy,  facilitating  practical  simulations 

flow  through  artificial  heart  valves.  These  numerical  approaches  reconcile 

based approaches to simulate airflow around aircraft components and blood 

Contemporary  computational  fluid  dynamics  software  use  characteristic- 

frequently  necessitate  numerical  analysis  owing  to  their  intricacy. 

Characteristic  surfaces  in  three-dimensional  partial  differential  equations 

uphold  Moore's  Law  on  device  density  and  performance  growth. 

semiconductor  industry  depends  on  precise  solutions  to  these  equations  to 

microprocessors  that  energize  computing  devices.  The  multi-billion-dollar 

concentration patterns dictate the performance characteristics of transistors in 

simulate  dopant  distribution  during  chip  manufacture.  The  resultant 

In  semiconductor  production,  three-variable  reaction-diffusion  equations 

sites.

populations  situated  downstream  from  industrial  plants  or  waste  disposal 
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structural analysis, parabolic equations for thermal behavior, and hyperbolic

Aircraft  wing  design  incorporates  elliptic  partial  differential  equations  for 

and variable coefficient approaches, to tackle intricate real-world challenges. 

integrates  several  elements  of  PDE  theory,  including characteristic  analysis 

understanding and computer application.  Contemporary engineering practice 

essential  physical  concepts  in  a  manner  conducive  to  both  analytical 

unifying strength of these equations resides in their capacity to encapsulate 

mathematical  abstraction  into  tangible  utility  across  various  fields.  The 

order  partial  differential  equations  demonstrates  the  transformation  of 

The transition from theoretical principles to practical applications of second- 

Synthesis: Transitioning from Theory to Application

diverse circumstances.

instruments for comprehending and forecasting Earth system dynamics across 

computational  techniques  convert  mathematical  abstractions  into  practical 

cores,  facilitating  global  simulations  with  regional  precision.  These 

to  distribute  characteristic-based  computations  across  numerous  processor 

numerical techniques. Climate models utilize domain decomposition methods 

differential equations has propelled advancements in parallel computing and 

components.   The  computational  complexity  of  three-variable  partial 

environmental laws while reducing the utilization of rare materials in catalytic 

designs  assist  manufacturers  in  complying  with  progressively  rigorous 

detrimental  emissions  while  preserving  engine  performance.  The  resultant 

these  PDEs  to  enhance  catalyst  geometry  and  composition, minimizing 

catalytic converters in vehicle exhaust systems. Chemical engineers resolve 

engineering  design.  Three-dimensional  diffusion-reaction  systems  simulate 

society  relies  on  these  mathematical  models  and  their  practical  use  in 

communications, and radar systems. The interconnectivity of contemporary 

coupling  behaviors  in  intricate  antenna  arrays  for  5G  networks,  satellite 

The distinctive surfaces of Maxwell's equations dictate radiation patterns and 

field study informs antenna design for contemporary communication systems. 

millions  of  cancer  patients  each  year.   Three-dimensional  electromagnetic 

These  mathematical  models  directly  influence  treatment  outcomes  for 

enhance  tumor  coverage  while  reducing  harm  to  adjacent  healthy  tissues. 

dose  distributions  in  patient  tissues,  optimizing  beam  configurations  to 

Treatment planning systems resolve radiative transport equations to forecast 

similarly depends on solutions to three-variable partial differential equations. 
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computationally efficient and physically precise models. Disaster mitigation

geometries,  potentially  transforming  customized  treatment  via 

simulation of intricate systems, such as blood flow in individualized vascular 

adaptability  with  physical  coherence.  These  hybrid  methods  provide  swift 

equation  restrictions  into  deep  learning  frameworks,  merging  data-driven 

promise.  Physics-informed  neural  networks  integrate  partial  differential 

machine learning methodologies signifies a domain with substantial practical 

spaces.  The amalgamation of partial differential equations with contemporary 

encompassing  transportation  infrastructure  and  the  distribution  of  green 

policies  influence  the  living  conditions  of  billions  of  urban  inhabitants, 

heat islands  during  the  assessment  of  development scenarios. The  resultant 

equations that model transportation networks, air quality dynamics, and urban 

assistance.  Urban  planners  apply  solutions  to  coupled  partial  differential 

sustainable development increasingly utilize PDE-based models for decision 

these  mathematical  models  and  their  practical  use.   Urban  planning  and 

computing  services  that  support  worldwide  company  operations  relies  on 

efficiency  and  averting equipment  overheating. The  dependability  of  cloud 

diffusion equations that simulate airflow and heat transfer, enhancing energy 

at various scales. Data center cooling systems employ solutions to convection- 

Information technology infrastructure similarly depends on PDE applications 

across  individual  anatomical  differences. 

essential pacing parameters and numerical simulations validate performance 

devices gain advantages from this methodology, as analytical models define 

to  extensive  numerical  models  for  thorough  design.  Implantable  cardiac 

differential equations for initial concept validation, subsequently progressing 

applications. Medical device developers employ analytical solutions to partial 

and  numerical  methods  offers  complementing  advantages  in  practical 

provide clean electricity to global power grids.  The integration of analytical 

the energy production efficiency and economic feasibility of wind farms that 

with diverse attributes. The optimization of these designs directly influences 

material science, all regulated by second-order partial differential equations 

simulations  that  encompass  structural  mechanics,  fluid  dynamics,  and 

applications.  Wind  turbine  blade  designs  are  derived  from  multi-physics 

Renewable  energy  systems  exhibit comparable  integration  of  PDE 

facilitating safe and cost-effective air travel for millions of people each day. 

conflicting  demands  for  strength,  weight,  and  aerodynamic  efficiency, 

systems  for  aerodynamic  performance. The  resultant  components  reconcile 
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to forecast fire spread patterns, thereby informing the allocation of firefighting

solutions to reaction-diffusion equations with satellite and ground sensor data 

respond to fluctuating environments. Wildfire management systems combine 

networks  and  real-time  data  assimilation  produces  adaptive  systems  that 

retail, and service industries.  The integration of PDE applications with sensor 

economic influence of these mathematical applications spans manufacturing, 

architectures  that  uphold  service  levels  despite  disruptions. The  worldwide 

which  products  and  information  traverse,  facilitating  robust  supply  chain 

The  characteristic  arcs  in  these  models  denote  physical  trajectories  along 

akin  to  traffic flow  equations for  the  optimization of distribution  networks. 

Supply chain logistics utilize hyperbolic partial differential equation models 

geometries  and  material  behaviors  that  defy  solely  analytical  approaches. 

mathematical  principles but  broadening  their  application  to  intricate 

methods initially designed for analytical solutions, preserving ties to essential 

principles.  Contemporary  computational  tools  utilize  characteristic-based 

practical  applications  while  preserving  the  significance  of  theoretical 

The  transition  from  analytical  to  computational  methods  has  expedited 

worldwide.

productivity  with  resource  conservation  across  millions  of  hectares 

models  directly  inform  sustainable  agricultural  methods  that  harmonize 

irrigation scheduling while reducing water consumption. These mathematical 

Richards' equation for water transport in variably saturated soils, enhancing 

precision  farming  systems.  Soil-water-plant  interaction  models  resolve 

Agricultural  technology  increasingly  depends  on  PDE-based  modeling  for 

areas, generating unforeseen avenues for creativity.

how  essential  mathematical  comprehension  surpasses  certain  application 

enhance weather prediction models. This cross-pollination of ideas illustrates 

utilized in medical ultrasound, and computational methods from astrophysics 

unforeseen practical advantages. Techniques devised for seismic imaging are 

theoretical  links  between  seemingly  unrelated  PDE  applications  yield 

safeguarding  communities  against  catastrophic  flooding  events.  The 

integrated  models  guide  infrastructure  investments  amounting  to  billions, 

partial differential equations of structural mechanics for levee stability. The 

equations  for  river  dynamics,  Richards'  equation  for  soil  saturation,  and 

frameworks.  Flood  control  systems  incorporate  solutions  to  shallow  water 

systems  integrate  many  PDE  applications  into  cohesive  risk  management 
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intelligence  produces  hybrid  systems  that  merge  physical  consistency  with

professions.   The  amalgamation  of  PDE-based  models  with  artificial 

treatment technologies that enhance patient outcomes across several medical 

minimize negative effects. These mathematical models directly transfer into 

facilitating  accurate  dosing  regimens  that  enhance  treatment  efficacy  and 

arise  from  answers  to  diffusion  equations  in  heterogeneous  mediums, 

drug delivery systems and bioreactor designs. Controlled release mechanisms 

Biotechnology and pharmaceutical development utilize PDE applications for 

safeguard  at-risk  areas. 

depend  on  these  mathematical  models  to  enhance  resource  allocation  and 

sea level rise. Global investments in climate resilience, amounting to trillions, 

equations in the construction of structures aimed at mitigating the effects of 

systems employ answers to integrated wave, current, and sediment transport 

PDE-based models to assess the efficacy of interventions. Coastal protection 

science  and  cryptography.   Climate  adaption  methods  increasingly  rely  on 

computational  capabilities  across  various  domains,  including  materials 

hardware designs and error correction methodologies, which could transform 

mathematical comprehension of these fundamental equations directly impacts 

transitions  from  theoretical  potential  to  practical  application,  the 

to develop qubit structures and quantum algorithms. As quantum computing 

answers to Schrödinger's equation and associated partial differential equations 

medicine,  and  other  fields.   Emerging  quantum  technologies  depend  on 

framework that accommodates modern requirements in engineering, science, 

The  mathematical  foundations  developed  centuries  ago  offer  a  solid 

continually advancing as technical capabilities grow and new obstacles arise. 

The  practical  applications  of  second-order  partial  differential  equations  are 

Conclusion: The Ongoing Advancement of PDE Applications

mathematical abstraction into concrete human advantage.

patients  with  intricate  neurological  disorders,  illustrating  the  conversion  of 

techniques.  The  individualized  treatment  regimens  enhance results  for 

tissue,  and  diffusion  models  of  medication  delivery  to  assess  intervention 

fluid dynamics models of cerebrospinal fluid, structural mechanics of brain 

cohesive  decision  support  solutions.  Neurosurgical  planning  tools  integrate 

surgical  planning  platforms  amalgamate  several  PDE  applications  into 

into practical instruments for emergency response in urgent scenarios.  Virtual 

resources. These systems illustrate the transformation of mathematical models 
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               𝑏)𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0

  a) 𝑢𝑥 + 𝑢𝑦 = 0

Which of the following is an example of a second-order PDE?2.

Answer : b) Second order

 None of the aboved)

 Third orderc)

 Second orderb)

 First ordera)

up to:

A second-order partial differential equation contains derivatives1.

Multiple Choice Questions (MCQs):

and managing the intricate systems that influence our world and future.

offering the analytical foundation necessary for comprehending, forecasting, 

energy, medicine, climate, and other domains, these equations will persist in 

fundamental  concepts  to  practical  applications.  As  novel  issues  arise  in 

highlights  the  lasting  importance  of  mathematical  foundations  that  link 

The ongoing significance of second-order PDEs in developing technologies 

particles  to  planetary  systems. 

durations  from  microseconds  to  decades,  and  applications  from  subatomic 

application  across  dimensions  ranging  from  nanometers  to  kilometers, 

facilitates  translation  between  theoretical  comprehension  and  practical 

PDEs is a cornerstone of applied science and engineering. This relationship 

relationship between physical principles and mathematical representation via 

instruments  for  safeguarding  human  life  during  crises.  The  essential 

illustrate  the  transformation  of  mathematical abstractions  into  tangible 

while assessing evacuation plans during natural catastrophes. These examples 

answers  to  the  equations  of  coupled  fluid  dynamics  and  structure  response 

assistance  is  becoming  realistic.  Emergency  management  systems  apply 

practical implementation of sophisticated PDE models for real-time decision 

energy  generation.   With  the  advancement  in  computational  power,  the 

applications  spans  various  industrial  sectors,  including  manufacturing  and 

uptime and avert catastrophic breakdowns. The economic influence of these 

facilitating  predictive  maintenance  schedules  that  optimize  operational 

methodologies  for  assets  ranging  from  aircraft  engines  to  power  plants, 

data-driven  flexibility.  Digital  twin  technologies  employ  hybrid 
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  Zerod)

 Real and equalc)

 Real and distinctb)

 Complexa)

A hyperbolic PDE has characteristic roots that are:7.

Answer : c) The type of PDE (elliptic, hyperbolic,parabolic)

 The boundary conditionsd)

 The type of PDE (elliptic, hyperbolic, parabolic)c)

 The nature of the solutionb)

 The order of the equationa)

The characteristic equation for a second-order PDE determines:6.

Answer : 𝒂) 𝒖𝒙𝒙 + 𝒖𝒚𝒚 = 𝟎

𝑑) 𝑢 + 𝑢𝑥 + 𝑢𝑦 = 0

𝑐) 𝑢𝑡 + 𝑢𝑥 + 𝑢𝑦 = 0

𝑏) 𝑢𝑥 + 𝑢𝑦 = 0

𝑎) 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0

Which of the following is a second-order linear PDE?5.

Answer : b) Coefficients remain the same throughout

 The equation has no second-order termsd)

 The equation is nonlinearc)

 Coefficients remain the same throughoutb)

 Coefficients depend on the independent variablesa)

A second-order PDE with constant coefficients means that:4.

Answer : b) The nature of characteristic curves

 None of the aboved)

 The number of dependent variablesc)

 The nature of characteristic curvesb)

 The order of derivativesa)

The classification of second-order PDEs is based on:3.

𝐀𝐧𝐬𝐰𝐞𝐫 ∶ 𝐛)𝐮𝐱𝐱 + 𝐮𝐲𝐲 = 𝟎

𝑑) 𝑢 + 𝑢𝑥 = 0

𝑐) 𝑢𝑡 + 𝑢𝑥 = 0
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  Answer : b) Real and distinct 

8. Which of the following equations is classified as elliptic? 

a) 𝑢𝑥𝑥 − 𝑢𝑦𝑦 = 0 

𝑏) 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 

𝑐) 𝑢𝑡𝑡 − 𝑢𝑥𝑥 = 0 

𝑑) 𝑢𝑡 + 𝑢𝑥 = 0 

Answer : 𝒃) 𝒖𝒙𝒙 + 𝒖𝒚𝒚 = 𝟎. 

9. The characteristic equation for a second-order PDE is obtained 

by: 

a) Differentiating the equation 

b) Substituting an exponential function 

c) Finding the determinant of the coefficient matrix 

d) Using Laplace transform 

Answer : c) Finding the determinant of the coefficient matrix 

10. A second-order PDE in three variables requires: 

a) Two characteristic curves 

b) Three characteristic equations 

c) A single characteristic equation 

d) No characteristics 

Answer : b) Three characteristic equations 

Short Questions: 

1. Define a second-order partial differential equation. 

2. What is the significance of characteristic curves in second-order 

PDEs? 

3. Explain the classification of second-order PDEs. 

4. What are the key differences between constant and variable 

coefficient PDEs? 

5. Define an elliptic, hyperbolic, and parabolic PDE with examples. 

6. How do characteristic curves help in solving PDEs? 
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7. Explain the difference between a linear and a nonlinear second-order 

PDE. 

8. What are characteristic equations, and how are they derived? 

9. Give an example of a second-order PDE in three variables. 

10. What are the practical applications of second-order PDEs? 

Long Questions: 

1. Derive the characteristic equation for a general second-order PDE. 

2. Discuss in detail the classification of second-order PDEs with 

examples. 

3. Explain the role of constant coefficients in solving second-order 

PDEs. 

4. Solve the equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 using separation of variables. 

5. Derive the conditions for a second-order PDE to be classified as 

elliptic, hyperbolic, or parabolic. 

6. Explain the method of characteristics for second-order PDEs with an 

example. 

7. Solve a second-order PDE with variable coefficients using an 

appropriate method. 

8. Discuss the applications of second-order PDEs in physics and 

engineering. 

9. What is the significance of characteristic surfaces in three-variable 

PDEs? 

10. Solve the wave equation as an example of a hyperbolic PDE. 
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 including:

wave propagation speed. This equation governs many physical phenomena, 

Here,  u(x,t)  represents the displacement  of  a  point  x at  time  t, and  c is  the 

𝑢𝑡𝑡 = 𝑐² ∗ 𝑢𝑥𝑥

wave equation:

The most recognizable example of a hyperbolic PDE is the one-dimensional 

This discriminant condition is what defines a PDE as hyperbolic.

B² - AC > 0

Where the coefficients A, B, and C satisfy the condition:

𝐴 ∗ 𝑢𝑥𝑥 + 2𝐵 ∗ 𝑢𝑥𝑦 + 𝐶 ∗ 𝑢𝑦𝑦 + 𝑙𝑜𝑤𝑒𝑟 − 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 = 0

variables is:

The  standard  form  of  a  second-order  hyperbolic  PDE  in  two  independent 

propagation at finite speeds along characteristic curves or surfaces.

describe  wave-like  phenomena  and  are  characterized  by  information 

classes  of  PDEs  alongside  elliptic  and  parabolic  equations.  They  typically 

Hyperbolic partial differential equations (PDEs) form one of the fundamental 

3.1.2 Introduction to Hyperbolic Equations

• Explore nonlinear second-order equations.

• Study the method of integral transforms for solving PDEs.

• Learn the method of separation of variables.

• Understand the concept of linear hyperbolic equations.

Objective:

                The solution of linear hyperbolic equations

UNIT 3.1

MODULE 3
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like Riemann, Hadamard, and Courant. Modern developments have focused

significantly advanced in the 19th and early 20th centuries by mathematicians 

d'Alembert's  work  on  the  wave  equation.  The  mathematical  theory  was 

The  study  of  hyperbolic  PDEs  dates  back  to  the  18th  century  with 

Historical Context:

(shock waves) even from smooth initial data.

Formation of discontinuities: Solutions may develop discontinuities 5.

principles for physical quantities.

Conservation laws: Many hyperbolic systems express conservation 4.

the coefficients of the highest-order terms.

curves (or surfaces in higher dimensions), which are determined by 

Characteristic curves:  Information propagates  along  characteristic 3.

initial data.

meaning  a  unique  solution  exists  that  depends  continuously  on  the 

Well-posedness:  The  initial  value  problem  is  typically  well-posed, 2.

leading to well-defined domains of dependence and influence.

Finite  propagation  speed:  Disturbances  travel  at  a  definite  speed, 1.

Key Properties of Hyperbolic PDEs:

residual effects.

disturbances pass through a point and then move on completely, leaving no 

entire  domain  of  influence.  This  leads  to  a  distinctive  feature  where 

point depends only on initial data on the "light cone" of the point, not on the 

property known as Huygens' principle in three dimensions: the solution at a 

phenomena like shock waves. The wave equation solution has a remarkable 

of sharp fronts or discontinuities in solutions, which correspond physically to 

disturbances travel at a finite speed. This property manifests in the appearance 

propagate with infinite speed, hyperbolic equations model phenomena where 

Unlike  parabolic  equations  (such  as  the  heat  equation)  where  disturbances 

• Water waves (in certain approximations)

• Seismic waves

• Electromagnetic wave propagation

• Sound wave propagation

• Vibrations of strings and membranes
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on numerical methods, shock capturing techniques, and applications in fields 

ranging from aerodynamics to relativity theory. 

3.2 Characteristics of Hyperbolic PDEs 

Characteristic curves (or simply "characteristics") are one of the most 

important features of hyperbolic PDEs. They represent paths along which 

information propagates and play a crucial role in understanding the behavior 

of solutions. 

Definition of Characteristics 

For a general first-order PDE: 

𝑎(𝑥, 𝑦)  ∗  𝑢𝑥   +  𝑏(𝑥, 𝑦)  ∗  𝑢𝑦  =  𝑐(𝑥, 𝑦, 𝑢) 

The characteristic curves satisfy the ordinary differential equation: 

𝑑𝑦

𝑑𝑥
=
𝑏(𝑥, 𝑦)

𝑎(𝑥, 𝑦)
 

 

               

 

               

  

 

     

 

 

 x ± ct = constant

Which integrate to:

dx/dt = ±c

For the wave equation 𝑢𝑡𝑡 = 𝑐² ∗ 𝑢𝑥𝑥, the characteristic curves are:

The Wave Equation Case

B² - AC > 0 (the hyperbolic case).

This is a quadratic equation that yields two families of characteristics when 

𝐴 ∗ (𝑑𝑥)² + 2𝐵 ∗ 𝑑𝑥 ∗ 𝑑𝑦 + 𝐶 ∗ (𝑑𝑦)² = 0

The characteristic curves satisfy:

𝐴 ∗ 𝑢𝑥𝑥 + 2𝐵 ∗ 𝑢𝑥𝑦 + 𝐶 ∗ 𝑢𝑦𝑦 + 𝑙𝑜𝑤𝑒𝑟 − 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 = 0

For second-order PDEs like:
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These represent straight lines in the x-t plane with slopes ±1/c. Information 

propagates along these lines, which physically correspond to waves traveling 

to the right (x + ct = constant) and to the left (x - ct = constant). 

Domain of Dependence and Domain of Influence 

Two key concepts associated with characteristics are: 

1. Domain of Dependence: The set of points in the initial data that 

affect the solution at a given point. 

2. Domain of Influence: The set of points in the solution that are 

affected by a given point in the initial data. 

For the wave equation, the domain of dependence of a point (x₀, t₀) is the 

interval [x₀ - ct₀, x₀ + ct₀] at t = 0. This is easily visualized by drawing the two 

characteristics through (x₀, t₀) back to the initial line t = 0. Conversely, the 

domain of influence of a point (x₀, 0) on the initial line is the wedge-shaped 

region bounded by the characteristics x - x₀ = ±ct. 

Riemann Invariants 

For systems of hyperbolic PDEs, particularly in fluid dynamics and gas 

dynamics, the concept of Riemann invariants becomes important. These are 

quantities that remain constant along characteristic curves and greatly 

simplify the analysis of nonlinear problems. 

For the system: 

𝜕𝑈

𝜕𝑡
+  𝐴(𝑈) ∗

𝜕𝑈

𝜕𝑥
=  0   

where U is a vector of conserved quantities and A is a matrix, the Riemann 

invariants are related to the eigenvalues and eigenvectors of A. 

Method of Characteristics 

The method of characteristics is a powerful technique for solving hyperbolic 

PDEs, especially first-order equations and systems. It works by: 

1. Finding the characteristic curves. 
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2. Converting the PDE into ordinary differential equations along these 

curves. 

3. Integrating these ODEs to obtain the solution. 

For the advection equation 𝑢𝑡 +  𝑐 ∗  𝑢𝑥 =  0, the characteristic curves are x 

- ct = constant, and the solution is constant along these curves: 

 𝑢(𝑥, 𝑡)  =  𝑢₀(𝑥 −  𝑐𝑡), where u₀ is the initial condition. 

Discontinuities and Shock Formation 

One distinctive feature of hyperbolic equations is that smooth initial data can 

evolve into solutions with discontinuities. This occurs when characteristics 

intersect, leading to multi-valued solutions in the mathematical model. 

Physically, this corresponds to the formation of shock waves. 

Consider the inviscid Burgers' equation: 

𝑢𝑡 +  𝑢 ∗  𝑢𝑥 =  0  

The characteristics are given by: 

𝑑𝑥

𝑑𝑡
=  𝑢 

 

 

 

  

 

  

 

   

 domain, leading to mixed-type problems that are particularly challenging.

For  equations  with  variable  coefficients,  the  type  can  change  within  the 

Elliptic points: Points where B² - AC < 0, with no real characteristics.3.

characteristics.

Parabolic  points:  Points  where  B² - AC  =  0,  with  one  family  of 2.

families of characteristics.

Hyperbolic  points:  Points  where  B² - AC  >  0,  with  two  distinct 1.

Based on the characteristics, points in the domain can be classified as:

Classification of Points in the Domain

characteristics will eventually intersect, leading to a shock formation.

If  the  initial  velocity  profile  u₀(x)  has  a  negative  slope  somewhere,  the 
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Cauchy Problem and Characteristic Initial Curves 

The Cauchy problem involves finding a solution given initial data on a curve. 

When this curve is non-characteristic, the problem is typically well-posed. 

However, when initial data is specified on a characteristic curve, the problem 

becomes more delicate and may not have a unique solution or may require 

additional data. In summary, characteristics provide the geometric framework 

for understanding hyperbolic PDEs, determining how information propagates, 

where discontinuities form, and how to construct solutions using the method 

of characteristics. 

  

104 



 

  

 

 

 

     

 

 

 

     

 

      

 

      

 

      

         

 

        

       

     

       

    

 

           

     

 

 

 

partial  differential  equations,  including  hyperbolic  PDEs.  It  works 

The separation of variables method is a powerful technique for solving linear 

3.2.1 Separation of Variables Method

     Separation of variables – The method of integral transforms
UNIT 3.2

Dividing by c² * X(x) * T(t):

𝑋(𝑥) ∗ 𝑇′′(𝑡) = 𝑐² ∗ 𝑋′′(𝑥) ∗ 𝑇(𝑡)

Assuming 𝑢(𝑥, 𝑡) = 𝑋(𝑥) ∗ 𝑇(𝑡) and substituting into the wave equation:

Step 1: Separate the variables

u(x,0) = f(x) (initial displacement) 𝑢𝑡(𝑥, 0) = 𝑔(𝑥) (initial velocity)

and initial conditions:

𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0 (fixed endpoints)

with boundary conditions:

𝑢𝑡𝑡 = 𝑐² ∗ 𝑢𝑥𝑥

Let's apply this method to the one-dimensional wave equation:

Application to the Wave Equation

only x on one side and terms involving only t on the other.

should yield an equation where the variables are separated—terms involving 

Substituting this form into the PDE and dividing by the product X(x)T(t)

𝑢(𝑥, 𝑡) = 𝑋(𝑥) ∗ 𝑇(𝑡)

of functions, each depending on only one variable:

The fundamental idea is to assume that the solution can be written as a product 

Basic Principle

where boundary conditions are homogeneous.

particularly well for equations with constant coefficients in simple geometries 
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𝑇′′(𝑡)

𝑐2 ∗  𝑇(𝑡)
=
𝑋′′(𝑥)

𝑋(𝑥)
 

Since the left side depends only on t and the right side depends only on x, both 

must equal a constant. Let's call this constant -λ. This gives us two ordinary 

differential equations: 

𝑇′′(𝑡) +  𝜆𝑐2 ∗  𝑇(𝑡) =  0 𝑋′′(𝑥) +  𝜆 ∗  𝑋(𝑥) =  0 

Step 2: Apply boundary conditions 

The boundary conditions u(0,t) = u(L,t) = 0 imply: 

𝑋(0)  ∗  𝑇(𝑡)  =  𝑋(𝐿)  ∗  𝑇(𝑡)  =  0 

For non-trivial T(t), we need 𝑋(0)  =  𝑋(𝐿)  =  0. 

This gives us a Sturm-Liouville problem for X(x): 

𝑋′′(𝑥) +  𝜆 ∗  𝑋(𝑥) =  0, 𝑋(0)  =  𝑋(𝐿)  =  0 

The solutions are: 

𝜆𝑛  =  (
𝑛𝜋

𝐿
)
2

𝑋𝑛(𝑥) =  𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) 

where n = 1, 2, 3, ... 

Step 3: Solve the time equation 

With 𝜆𝑛  =  (
𝑛𝜋

𝐿
)
2
, the time equation becomes: 

𝑇𝑛′′(𝑡)  + (𝑛𝜋𝑐/𝐿)² ∗  𝑇𝑛(𝑡)  =  0  

This has the general solution: 

𝑇𝑛(𝑡)   =  𝐴𝑛  ∗  𝑐𝑜𝑠 (
𝑛𝜋𝑐𝑡

𝐿
) + 𝐵𝑛  ∗  𝑠𝑖𝑛 (

𝑛𝜋𝑐𝑡

𝐿
)  

 

 The general solution is a superposition of all possible product solutions:

Step 4: Combine solutions
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𝑢(𝑥, 𝑡) =  𝛴 [𝐴𝑛  ∗  𝑐𝑜𝑠 (
𝑛𝜋𝑐𝑡

𝐿
) + 𝐵𝑛  ∗  𝑠𝑖𝑛 (

𝑛𝜋𝑐𝑡

𝐿
)] ∗  𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
) 

Step 5: Apply initial conditions 

From u(x,0) = f(x): 

𝑓(𝑥)  =  𝛴 𝐴𝑛  ∗  𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) 

This means A_n are the Fourier sine coefficients of f(x): 

𝐴𝑛  =  (
2

𝐿
) ∗ ∫ 𝑓(𝑥) ∗  𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
)𝑑𝑥

𝐿

0

 

From 𝑢𝑡(𝑥, 0)  =  𝑔(𝑥): 

𝑔(𝑥) =  𝛴 𝐵𝑛 ∗  (
𝑛𝜋𝑐

𝐿
) ∗ sin (

𝑛𝜋𝑥

𝐿
) 

So: 

𝐵𝑛  =  (
2

𝑛𝜋𝑐
) ∗  ∫ 𝑔(𝑥) ∗  𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
)𝑑𝑥

𝐿

0

 

D'Alembert's Solution 

For the wave equation on an infinite domain, an alternative to separation of 

variables is d'Alembert's solution. For the initial value problem: 

𝑢𝑡𝑡  =  𝑐2 ∗  𝑢𝑥𝑥, 𝑢(𝑥, 0) =  𝑓(𝑥), 𝑢𝑡(𝑥, 0)  =  𝑔(𝑥) 

The solution is: 

𝑢(𝑥, 𝑡) =  (
1

2
) [𝑓(𝑥 + 𝑐𝑡) +  𝑓(𝑥 − 𝑐𝑡)]   + (

1

2𝑐
) ∗  ∫ 𝑔(𝑠) 𝑑𝑠

𝑥+𝑐𝑡

𝑥−𝑐𝑡

 

This represents the superposition of two traveling waves, moving in opposite 

directions, plus the effect of the initial velocity. 

Extension to Higher Dimensions 

For the two-dimensional wave equation: 
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𝑢𝑡𝑡  =  𝑐² ∗  (𝑢𝑥𝑥  +  𝑢𝑦𝑦)  

We can use separation of variables with: 

𝑢(𝑥, 𝑦, 𝑡)  =  𝑋(𝑥)  ∗  𝑌(𝑦)  ∗  𝑇(𝑡) 

This leads to: 

𝑋′′(𝑥)

𝑋(𝑥)
+
𝑌′′(𝑦)

𝑌(𝑦)
=

𝑇′′(𝑡)

𝑐2 ∗  𝑇(𝑡)
=  −𝜆 

𝑆𝑒𝑡𝑡𝑖𝑛𝑔
𝑋′′(𝑥)

𝑋(𝑥)
= −𝜆𝑥 𝑎𝑛𝑑

𝑌′′(𝑦)

𝑌(𝑦)
= −𝜆𝑦 , 𝑤ℎ𝑒𝑟𝑒 𝜆 =  𝜆𝑥  + 𝜆𝑦, 𝑤𝑒 get 

 

 

 

  

  

 

 

  

 

 

 

  

  

  

  

 functions, or numerical approaches may be more appropriate.

For more complex problems, other methods like Fourier transforms, Green's 

The PDE must be separable in the chosen coordinate system.4.

Boundary conditions must be homogeneous in most cases.3.

The geometry must be simple (rectangular, circular, etc.).2.

It works primarily for linear PDEs with constant coefficients.1.

While powerful, the separation of variables method has limitations:

Limitations

overall solution.

The coefficients 𝐴𝑛 and 𝐵𝑛 determine the contribution of each mode to the 

  spatial patterns.

• Higher harmonics (n>2) have higher frequencies and more complex

• The second harmonic (n=2) has frequency 2πc/L and two half-waves.

• The fundamental mode (n=1) has frequency πc/L and one half-wave.

spatial pattern and frequency. For the string problem:

vibration. Each term in the series corresponds to a different mode with its own 

The  separated  solution  represents  standing  waves  or  normal  modes  of 

Standing Waves and Normal Modes

boundary conditions.

three ordinary differential equations that can be solved using the appropriate 
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3.2.2 Solution of Hyperbolic PDEs Using Integral Transforms 

Integral transforms provide a powerful approach for solving partial 

differential equations, particularly when the domain is unbounded or when 

the separation of variables method is not applicable. For hyperbolic PDEs, the 

Fourier and Laplace transforms are especially useful. 

The Fourier Transform Method 

The Fourier transform converts differential equations into algebraic 

equations, making them easier to solve. For a function u(x,t), the Fourier 

transform with respect to x is defined as: 

𝐹[𝑢(𝑥, 𝑡)]  =  û(𝜉, 𝑡)  =   ∫ 𝑢(𝑥, 𝑡)  ∗  𝑒−𝑖2𝜋𝜉𝑥 𝑑𝑥
∞

−∞

 

and the inverse transform is: 

𝐹−1[û(𝜉, 𝑡)]  =  𝑢(𝑥, 𝑡)  = ∫ û(𝜉, 𝑡)  ∗  𝑒𝑖2𝜋𝜉𝑥 𝑑𝜉
∞

−∞

 

Key Fourier Transform Properties 

1. Linearity: 𝐹[𝛼𝑢 +  𝛽𝑣]  =  𝛼𝐹[𝑢]  +  𝛽𝐹[𝑣] 

2. Differentiation: 𝐹 [ 
𝜕𝑛𝑢

𝜕𝑥𝑛
] =  (𝑖2𝜋𝜉)𝑛  ∗  û(𝜉, 𝑡) 

3. Convolution: 𝐹[𝑢 ∗  𝑣]  =  𝐹[𝑢]  ∗  𝐹[𝑣] 

Application to the Wave Equation 

Consider the wave equation with initial conditions: 

𝑢𝑡𝑡  =  𝑐² ∗  𝑢𝑥𝑥 𝑢(𝑥, 0)  =  𝑓(𝑥)𝑢𝑡(𝑥, 0)  =  𝑔(𝑥) 

Taking the Fourier transform with respect to x: 

𝜕2û(𝜉, 𝑡)

𝜕𝑡2
 =  −𝑐2 ∗ (2𝜋𝜉)2 ∗  û(𝜉, 𝑡) 

û(𝜉, 0) = 𝐹[𝑓(𝑥)] 
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𝜕û(𝜉, 0)

𝜕𝑡
 =  𝐹[𝑔(𝑥)] 

This transforms the PDE into an ordinary differential equation in t for each 

value of ξ: 

𝜕2û(𝜉, 𝑡)

𝜕𝑡2
+ 𝜔2 ∗  û(𝜉, 𝑡) =  0 

where ω = 2πcξ. 

The general solution is: 

û(𝜉, 𝑡)  =  𝐴(𝜉)  ∗  𝑐𝑜𝑠(𝜔𝑡)  +  𝐵(𝜉)  ∗  𝑠𝑖𝑛(𝜔𝑡) 

Applying the transformed initial conditions: 

𝐴(𝜉) =  𝐹[𝑓(𝑥)]𝐵(𝜉) =
𝐹[𝑔(𝑥)]

2𝜋𝑐𝜉
 

Therefore: 

û(𝜉, 𝑡) =  𝐹[𝑓(𝑥)] ∗ cos(2𝜋𝑐𝜉𝑡) +
𝐹[𝑔(𝑥)]

2𝜋𝑐𝜉
∗ sin(2𝜋𝑐𝜉𝑡) 

Taking the inverse Fourier transform: 

𝑢(𝑥, 𝑡) =  𝐹−1[𝐹[𝑓(𝑥)] ∗ cos(2𝜋𝑐𝜉𝑡)] + 𝐹−1 [
𝐹[𝑔(𝑥)]

2𝜋𝑐𝜉
∗ sin(2𝜋𝑐𝜉𝑡)] 

This gives us the solution in terms of inverse Fourier transforms, which can 

be computed either analytically or numerically. 

The Laplace Transform Method 

The Laplace transform is particularly useful for initial-value problems. For a 

function u(x,t), the Laplace transform with respect to t is: 

𝐿[𝑢(𝑥, 𝑡)]  =  ū(𝑥, 𝑠)  =   ∫ 𝑢(𝑥, 𝑡)  ∗  𝑒−𝑠𝑡  𝑑𝑡
∞

0
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Key Laplace Transform Properties 

1. Linearity: 𝐿[𝛼𝑢 +  𝛽𝑣]  =  𝛼𝐿[𝑢]  +  𝛽𝐿[𝑣] 

2. Differentiation: 𝐿 [
𝜕𝑢

𝜕𝑡
] =  𝑠 ∗  ū(𝑥, 𝑠) −  𝑢(𝑥, 0) 

3. Second differentiation:  

𝐿 [
𝜕2𝑢

𝜕𝑡2
] =  𝑠2 ∗  ū(𝑥, 𝑠) −  𝑠 ∗  𝑢(𝑥, 0) − 𝑢𝑡(𝑥, 0)  

Application to the Wave Equation 

For the wave equation: 

𝑢𝑡𝑡  =  𝑐2 ∗  𝑢𝑥𝑥 , 𝑢(𝑥, 0) =  𝑓(𝑥),  𝑢𝑡(𝑥, 0)  =  𝑔(𝑥) 

Taking the Laplace transform with respect to t: 

𝑠2 ∗  ū(𝑥, 𝑠) −  𝑠 ∗  𝑓(𝑥) −  𝑔(𝑥) =  𝑐2 ∗
𝜕2ū(𝑥, 𝑠)

𝜕𝑥2
 

Rearranging: 

𝜕²ū(𝑥, 𝑠)/𝜕𝑥² − (𝑠²/𝑐²)  ∗  ū(𝑥, 𝑠)  =  −(𝑠 ∗  𝑓(𝑥)  +  𝑔(𝑥))/𝑐2  

This is an ordinary differential equation in x, which can be solved using 

standard methods. For unbounded domains, the general solution is: 

ū(𝑥, 𝑠)  =  𝐴(𝑠)  ∗  𝑒
𝑠𝑥

𝑐  +  𝐵(𝑠)  ∗  𝑒−
𝑠𝑥

𝑐  +  𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

The coefficients A(s) and B(s) are determined from boundary conditions, and 

the particular solution depends on f(x) and g(x). 

Once ū(x,s) is found, the solution u(x,t) is obtained by taking the inverse 

Laplace transform: 

𝑢(𝑥, 𝑡)  =  𝐿−1[ū(𝑥, 𝑠)] 

This can be computed using tables of Laplace transforms or numerical 

inversion methods. 
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Combined Transforms for Mixed Boundary-Initial Value Problems 

For problems with both spatial and temporal dependencies, a combination of 

transforms can be powerful. For instance, we might apply: 

• Fourier transform in x (for unbounded spatial domains) 

• Laplace transform in t (for the initial value aspect) 

This reduces the PDE to an algebraic equation in the transform variables, 

which can be solved directly. 

Duhamel's Principle and Convolution 

Duhamel's principle is a technique for handling non-homogeneous terms in 

the PDE. It expresses the solution as a convolution of the fundamental 

solution with the forcing term. 

For the non-homogeneous wave equation: 

𝑢𝑡𝑡  =  𝑐² ∗  𝑢𝑥𝑥  +  𝐹(𝑥, 𝑡) 𝑢(𝑥, 0)  =  𝑓(𝑥)𝑢𝑡(𝑥, 0)  =  𝑔(𝑥) 

The solution can be expressed as: 

𝑢(𝑥, 𝑡) =  𝑢ℎ(𝑥,𝑡) + ∫ ∫ 𝐺(𝑥 − 𝑦, 𝑡 − 𝜏) ∗  𝐹(𝑦, 𝜏)𝑑𝑦𝑑𝜏
∞

−∞

𝑡

0

  

where 𝑢ℎ(𝑥, 𝑡) is the solution to the homogeneous equation and G(x,t) is the 

Green's function or fundamental solution. 

The Hankel Transform 

For problems in cylindrical coordinates, the Hankel transform is particularly 

useful. For a function u(r,z,t), the Hankel transform of order n is: 

𝐻𝑛[𝑢(𝑟, 𝑧, 𝑡)] =  ũ(𝜉, 𝑧, 𝑡) =  ∫  𝑟 ∗  𝑢(𝑟, 𝑧, 𝑡) ∗  𝐽𝑛(𝑟𝜉)𝑑𝑟
∞

0

 

where 𝐽𝑛  is the Bessel function of the first kind of order n. 

For the wave equation in cylindrical coordinates: 
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𝑢𝑡𝑡  =  𝑐² ∗  (𝑢𝑟𝑟  +  (1/𝑟)  ∗  𝑢𝑟  + 𝑢𝑧𝑧)  

The Hankel transform can be applied to handle the radial part, converting the 

PDE into a simpler form. 

Advantages and Limitations 

Advantages: 

1. Applicable to unbounded domains. 

2. Can handle non-homogeneous boundary conditions and forcing 

terms. 

3. Provides analytical solutions for many important problems. 

4. Can be combined with numerical methods for complex problems. 

Limitations: 

1. The inversion of transforms can be mathematically challenging. 

2. Not all PDEs have simple transforms. 

3. Computational complexity increases with dimension. 

4. May require specialized functions (Bessel functions, error functions, 

etc.). 

Numerical Implementation Considerations 

When analytical inversion of transforms is not feasible, numerical methods 

can be employed: 

1. Fast Fourier Transform (FFT) for efficient computation of Fourier 

transforms. 

2. Numerical Laplace transforms inversion using methods like Talbot's 

algorithm or the Stehfest algorithm. 

3. Quadrature methods for evaluating convolution integrals. 

4. Spectral methods that leverage transform properties for numerical 

solution of PDEs. 

Solved Examples 

Solved Example 1: Wave Equation using D'Alembert's Solution 
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Problem: Solve the wave equation 𝑢𝑡𝑡  =  4𝑢𝑥𝑥 for -∞ < x < ∞ with initial 

conditions: 𝑢(𝑥, 0)  =  𝑒−𝑥
2
 𝑢𝑡(𝑥, 0)  =  0 

Solution: 

Using D'Alembert's formula:  

𝑢(𝑥, 𝑡)  =  (
1

2
) [𝑓(𝑥 + 𝑐𝑡)  +  𝑓(𝑥 − 𝑐𝑡)]  + (

1

2𝑐
) ∗ ∫ 𝑔(𝑠) 𝑑𝑠

𝑥+𝑐𝑡

𝑥−𝑐𝑡

 

Given: 𝑓(𝑥)  =  𝑒−𝑥
2
   𝑔(𝑥)  =  0    𝑐 =  2 

Substituting: 𝑢(𝑥, 𝑡)  =  (
1

2
) [𝑒−(𝑥+2𝑡)

2
 + 𝑒−(𝑥−2𝑡)

2
] 

 

 

 

     

    

 

 

         

      

          

      

           

         Therefore: 𝑢(𝑥, 𝑡) = 𝑐𝑜𝑠(2𝑡) ∗ 𝑠𝑖𝑛(2𝑥) + 𝑠𝑖𝑛(𝑡) ∗ 𝑠𝑖𝑛(𝑥)

Comparing coefficients: 𝐵𝑛 = 0 𝑓𝑜𝑟 𝑛 ≠ 1 𝐵1 = 1

From the initial velocity: 𝑠𝑖𝑛(𝑥) = 𝛴 𝑛𝐵𝑛 ∗ 𝑠𝑖𝑛(𝑛𝑥)

Comparing coefficients: 𝐴𝑛 = 0 𝑓𝑜𝑟 𝑛 ≠ 2 𝐴2 = 1

From the initial displacement: 𝑠𝑖𝑛(2𝑥) = 𝛴 𝐴𝑛 ∗ 𝑠𝑖𝑛(𝑛𝑥)

𝑢(𝑥, 𝑡) = 𝛴 [𝐴𝑛 ∗ 𝑐𝑜𝑠(𝑛𝑡) + 𝐵𝑛 ∗ 𝑠𝑖𝑛(𝑛𝑡)] ∗ 𝑠𝑖𝑛(𝑛𝑥)

Using separation of variables, the general solution is:

Solution:

The wave equation is 𝑢𝑡𝑡 = 𝑢𝑥𝑥.

𝑢(𝑥, 0) = 𝑠𝑖𝑛(2𝑥)𝑢𝑡(𝑥, 0) = 𝑠𝑖𝑛(𝑥)

fixed endpoints, given the initial conditions:

Problem:  Find  the  displacement  of  a  vibrating  string  of  length  L  =  π  with 

Solved Example 2: Vibrating String with Fixed Endpoints

opposite directions.

This represents the superposition of two traveling Gaussian pulses moving in 
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Solved Example 3: Wave Equation using Fourier Transform 

Problem: Solve the wave equation 𝑢𝑡𝑡   =  𝑐² ∗  𝑢𝑥𝑥 𝑓𝑜𝑟 − ∞ <  𝑥 <  ∞ 

with: 𝑢(𝑥, 0)  =  0   𝑢𝑡 (𝑥, 0)   =  𝛿(𝑥) (Dirac delta function) 

Solution: 

Taking the Fourier transform with respect to x: 
𝜕2û(𝜉,𝑡)

𝜕𝑡2
 =  −𝑐2 ∗ (2𝜋𝜉)2 ∗

 û(𝜉, 𝑡)  û(𝜉, 0) =  0  
𝜕û(𝜉,0)

𝜕𝑡
 =  1 (𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝛿(𝑥)) 

The solution in the transform domain is: û(𝜉, 𝑡) =
𝑠𝑖𝑛(2𝜋𝑐𝜉𝑡)

2𝜋𝑐𝜉
  

Taking the inverse transform: 𝑢(𝑥, 𝑡) =  𝐹−1 [
𝑠𝑖𝑛(2𝜋𝑐𝜉𝑡)

2𝜋𝑐𝜉
] 

This gives: 𝑢(𝑥, 𝑡)  =  (1/2) ∗  𝐻(𝑐𝑡 − |𝑥|) 

where H is the Heaviside step function. The solution represents a rectangular 

pulse of height 1/2 propagating in both directions from the origin. 

Solved Example 4: Wave Equation with Laplace Transform 

Problem: Solve the semi-infinite string problem:  

𝑢𝑡𝑡  =  𝑐² ∗  𝑢𝑥𝑥 𝑓𝑜𝑟 𝑥 >  0, 𝑡 >  0 𝑢(0, 𝑡)  =  𝑠𝑖𝑛(𝜔𝑡) 𝑢(𝑥, 0)  

=  0 𝑢𝑡(𝑥, 0)  =  0 

Solution: 

Apply the Laplace transform with respect to t:  

𝑠2 ∗  ū(𝑥, 𝑠) =  𝑐2 ∗
𝜕2ū(𝑥, 𝑠)

𝜕𝑥2
   ū(0, 𝑠) =

𝜔

𝑠2 + 𝜔2
 

The general solution is: ū(𝑥, 𝑠)  =  𝐴(𝑠)  ∗  𝑒
𝑠𝑥

𝑐  +  𝐵(𝑠)  ∗  𝑒−
𝑠𝑥

𝑐  

For boundedness as x → ∞, A(s) = 0, so: ū(𝑥, 𝑠)  =  𝐵(𝑠)  ∗  𝑒−
𝑠𝑥

𝑐  

From the boundary condition: B(s) = ω/(s² + ω²) 
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Therefore: ū(𝑥, 𝑠)  =  (𝜔/(𝑠² +  𝜔²))  ∗  𝑒−
𝑠𝑥

𝑐   

Taking the inverse Laplace transform: 

 𝑢(𝑥, 𝑡) =  𝑠𝑖𝑛 (𝜔 (𝑡 −
𝑥

𝑐
)) ∗  𝐻 (𝑡 −

𝑥

𝑐
) 

where H is the Heaviside step function. This represents a sinusoidal wave 

propagating to the right with speed c. 

Solved Example 5: Forced Vibrations using Duhamel's Principle 

Problem: Solve the forced vibration problem: 

 𝑢𝑡𝑡  =  𝑐2 ∗ 𝑢𝑥𝑥  +  𝑠𝑖𝑛(𝜋𝑥) ∗  𝑠𝑖𝑛(𝜔𝑡)  𝑢(0, 𝑡) =  𝑢(𝐿, 𝑡) =  0    

 𝑢(𝑥, 0)  =  𝑢𝑡(𝑥, 0)  =  0 

Where L = 1 and c = 1. 

Solution: 

We first find the Green's function for the wave equation, which satisfies: 

𝐺𝑡𝑡  =  𝑐2 ∗ 𝐺𝑥𝑥  +  𝛿(𝑥 − 𝜉) ∗  𝛿(𝑡 − 𝜏) 

 𝐺(0, 𝑡; 𝜉, 𝜏) =  𝐺(𝐿, 𝑡; 𝜉, 𝜏) =  0 

 𝐺(𝑥, 𝜏; 𝜉, 𝜏) =  0  

𝐺𝑡(𝑥, 𝜏; 𝜉, 𝜏)  =  𝛿(𝑥 − 𝜉) 

For a string of length L=1, the Green's function is:  

𝐺(𝑥, 𝑡; 𝜉, 𝜏) =  (
1

2
) ∗  𝛴 𝑠𝑖𝑛(𝑛𝜋𝑥) ∗  𝑠𝑖𝑛(𝑛𝜋𝜉) ∗  𝑠𝑖𝑛(𝑛𝜋(𝑡 − 𝜏))

∗
𝐻(𝑡 − 𝜏)

𝑛𝜋
   

Using Duhamel's principle: 

 𝑢(𝑥, 𝑡)  =  ∫ ∫ 𝐺(𝑥, 𝑡; 𝜉, 𝜏)  ∗  𝑠𝑖𝑛(𝜋𝜉)  ∗  𝑠𝑖𝑛(𝜔𝜏) 𝑑𝜉𝑑𝜏
1

0

𝑡

0
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The forcing term excites primarily the first mode (n=1). For ω ≠ π, the solution 

becomes:  

𝑢(𝑥, 𝑡) =  (
𝑠𝑖𝑛(𝜋𝑥)

𝜋2 − 𝜔2) ∗ (𝑠𝑖𝑛(𝜔𝑡) − (
𝜔

𝜋
) ∗  𝑠𝑖𝑛(𝜋𝑡)) 

For the resonance case ω = π, the solution grows linearly with time:  

𝑢(𝑥, 𝑡) =
(𝑠𝑖𝑛(𝜋𝑥) ∗  𝑡 ∗  𝑠𝑖𝑛(𝜋𝑡))

(2𝜋)
 

Unsolved Problem Set 

Unsolved Problem 1: 

Solve the wave equation 𝑢𝑡𝑡  =  9𝑢𝑥𝑥 𝑓𝑜𝑟   0 <  𝑥 <  4 with boundary 

conditions 𝑢(0, 𝑡)  =  𝑢(4, 𝑡)  =  0 and initial conditions: 𝑢(𝑥, 0) =  𝑥(4 −

𝑥)    𝑢𝑡(𝑥, 0) =  0  

Unsolved Problem 2: 

A semi-infinite string (x > 0) is initially at rest. The end x = 0 is moved 

according to the function 𝑢(0, 𝑡)  =  𝑡² 𝑓𝑜𝑟 0 <  𝑡 <  1 𝑎𝑛𝑑 𝑢(0, 𝑡)  =

 0 𝑓𝑜𝑟 𝑡 >  1. Find the displacement u(x,t) if the wave speed is c = 2. 

Unsolved Problem 3: 

Solve the telegraph equation 𝑢𝑡𝑡  +  2𝛼𝑢𝑡  =  𝑐2   𝑢𝑥𝑥 𝑓𝑜𝑟 − ∞ <  𝑥 <

 ∞ with initial conditions: 𝑢(𝑥, 0) =  0 , (𝑥, 0) =  𝑒−𝑥
2
 Where α > 0 is a 

damping coefficient. 

Unsolved Problem 4: 

A circular membrane of radius a is fixed at its boundary. Find the modes of 

vibration and their frequencies if the membrane satisfies the 2D wave 

equation: 

 𝑢𝑡𝑡 = 𝑐2 ∗ (𝑢𝑟𝑟 + (
1

𝑟
) ∗ 𝑢𝑟 + (

1

𝑟2
) ∗ 𝑢𝜃𝜃) 𝑢(𝑎, 𝜃, 𝑡) =  0  
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Unsolved Problem 5: 

Consider the inhomogeneous wave equation: 𝑢𝑡𝑡 − 𝑢𝑥𝑥 =  𝑠𝑖𝑛(𝜋𝑥) ∗

 𝑐𝑜𝑠(2𝑡)    

𝑢(0, 𝑡) =  𝑢(1, 𝑡) =  0  

𝑢(𝑥, 0) =  𝑠𝑖𝑛(𝜋𝑥) 

𝑢𝑡(𝑥, 0) =  0. 

Find the solution using Fourier series. 

These unsolved problems cover a range of techniques including separation of 

variables, d'Alembert's formula, Fourier transforms, and special functions for 

handling various types of hyperbolic PDEs. 
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Hyperbolic: B² - 4AC > 03.

Parabolic: B² - 4AC = 02.

Elliptic: B² - 4AC < 01.

Similar to linear PDEs, nonlinear second-order PDEs can be classified as:

Classification of Nonlinear Second-Order PDEs

functions of the dependent variable u itself.

terms  that  involve  products  of  derivatives,  functions  of  derivatives,  or 

function F, or in both. The presence of nonlinearity often manifests through 

Where  the  nonlinearity  may  appear  in  the  coefficients  A,  B,  C,  or  in  the 

  = 𝐹(𝑥, 𝑦, 𝑢, 𝑢𝑥 , 𝑢𝑦)

𝐴(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦)𝑢𝑥𝑥 + 𝐵(𝑥, 𝑦, 𝑢, 𝑢𝑥 , 𝑢𝑦)𝑢𝑥𝑦 + 𝐶(𝑥, 𝑦, 𝑢, 𝑢𝑥 , 𝑢𝑦)𝑢𝑦𝑦

in two independent variables can be written as:

mathematical techniques or numerical methods. A general second-order PDE 

equations  often  resist  analytical  solutions  and  require  sophisticated 

including  shock  waves,  solitons, turbulence,  and  chaotic  dynamics.  These 

Unlike their linear counterparts, nonlinear PDEs exhibit complex behaviors 

of  the  most  challenging  and  important  equations  in  mathematical  physics. 

Nonlinear second-order partial differential equations (PDEs) represent some 

Introduction to Nonlinear Second-Order Equations

3.3.1 Nonlinear Second-Order Equations

Nonlinear equations of the second order
UNIT 3.3

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑠𝑖𝑛(𝑢) = 0

 Sine-Gordon Equation1.

Important Examples of Nonlinear Second-Order PDEs

varying throughout the domain.

itself, making the classification potentially dependent on the solution or 

However, in nonlinear PDEs, these coefficients may depend on the solution u 

119 



This equation appears in differential geometry, quantum field theory, and 

models of Josephson junctions in superconductivity. It admits special wave 

solutions called solitons that maintain their shape while traveling. 

2. Korteweg-de Vries (KdV) Equation 

𝑢𝑡 +  𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 =  0 

The KdV equation models waves on shallow water surfaces and exhibits 

soliton solutions. Though technically third-order in space, it's often studied 

alongside nonlinear second-order PDEs. 

3. Nonlinear Schrödinger Equation 

𝑖 ∗ 𝑢𝑡 + 𝑢𝑥𝑥 +  𝑘|𝑢|2𝑢 =  0  

This equation describes the propagation of light in nonlinear optical fibers and 

Bose-Einstein condensates in physics. The parameter k determines whether 

the nonlinearity is focusing (k > 0) or defocusing (k < 0). 

4. Burgers' Equation 

𝑢𝑡 +  𝑢𝑢𝑥 =  𝜈 𝑢𝑥𝑥  

Burgers' equation represents a simplification of the Navier-Stokes equations 

and models the coupling between diffusion (𝜈 𝑢𝑥𝑥) and convection (𝑢𝑢𝑥) . 

It's notable for developing shock waves when the viscosity ν is small. 

5. Monge-Ampère Equation 

𝑑𝑒𝑡(𝐷²𝑢)  =  𝑓(𝑥, 𝑦, 𝑢, 𝛻𝑢) 

Where D²u is the Hessian matrix of second derivatives. This equation appears 

in problems of geometric optics, optimal transport, and differential geometry. 

Solution Methods for Nonlinear Second-Order PDEs 
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1. Method of Characteristics 

For quasi-linear first-order PDEs and certain second-order hyperbolic PDEs, 

the method of characteristics transforms the PDE into a system of ordinary 

differential equations (ODEs) along characteristic curves. 

2. Similarity Solutions and Symmetry Methods 

Many nonlinear PDEs admit similarity solutions where the solution has a 

specific functional form that reduces the PDE to an ODE. Lie symmetry 

analysis provides a systematic way to find such reductions. 

For example, seeking a similarity solution of the form 𝑢(𝑥, 𝑡) =  𝑡𝛼𝐹 (
𝑥

𝑡𝛽
)  for 

 

 

 

 

 

 

 

  

  

  

  

 

 Example: Solving Burgers' Equation

Special care must be taken to handle the nonlinear terms and ensure stability.

• Pseudo-spectral methods

• Spectral methods

• Finite element methods

• Finite difference methods

For most nonlinear PDEs, numerical methods are the primary approach:

5. Numerical Methods

ones and are particularly useful for PDEs with soliton solutions.

of another (or the same) PDE. They can generate new solutions from known 

Bäcklund transformations relate solutions of one nonlinear PDE to solutions 

 Bäcklund Transformations4.

for linear PDEs but applies to special nonlinear PDEs.

and the sine-Gordon equation. The IST is analogous to the Fourier transform 

certain  completely  integrable  nonlinear  PDEs,  including  the  KdV  equation 

The  inverse  scattering  transform  (IST)  is  a  powerful  method  for  solving 

3. Inverse Scattering Transform

Burgers' equation can lead to an ODE for F.
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Let's consider the inviscid Burgers' equation (ν = 0): 

𝑢𝑡 +  𝑢𝑢𝑥 =  0  

Step 1: Find the characteristic equations: 𝑑𝑥/𝑑𝑡 =  𝑢 𝑑𝑢/𝑑𝑡 =  0 

Step 2: Solve these ODEs: u = constant = f(x₀) along characteristics  

𝑑𝑥/𝑑𝑡 =  𝑓(𝑥₀), which gives 𝑥 =  𝑓(𝑥₀)𝑡 +  𝑥₀ 

Step 3: Given initial condition u(x,0) = g(x), we have f(x₀) = g(x₀) So the 

solution is u(x,t) = g(x₀), where x₀ satisfies x = g(x₀)t + x₀ 

This implicit solution is valid until characteristics intersect, at which point a 

shock forms. The shock location can be determined by analyzing where 

dx₀/dx becomes infinite. 

Traveling Wave Solutions 

Many nonlinear PDEs admit traveling wave solutions of the form u(x,t) = U(z) 

where z = x - ct for some wave speed c. Substituting this ansatz into the 

original PDE transforms it into an ODE for U(z).  

For example, substituting u(x,t) = U(x - ct) into the KdV equation 𝑢𝑡 +  𝑢𝑢𝑥 +

 𝑢𝑥𝑥𝑥 =  0   𝑦𝑖𝑒𝑙𝑑𝑠: − 𝑐𝑈′ +  𝑈𝑈′ + 𝑈′′′ =  0  

Integrating once gives: -cU + (1/2)U² + U'' = constant 

This ODE can be further analyzed to show the existence of soliton solutions. 

Shock Waves and Conservation Laws 

Nonlinear hyperbolic PDEs that express conservation laws can develop 

discontinuous solutions called shock waves. These represent abrupt changes 

in the solution variables and require special mathematical treatment. 

The general form of a conservation law is:
𝜕𝑢

𝜕𝑡
+

𝜕𝐹(𝑢)

𝜕𝑥
=  0  

For instance, Burgers' equation can be written in this form with F(u) = u²/2. 
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When shocks form, the Rankine-Hugoniot condition determines the shock 

speed s:  

𝑠 =  [𝐹(𝑢₂)  −  𝐹(𝑢₁)] /[𝑢₂ −  𝑢₁]  

where u₁ and u₂ are the values of u on either side of the shock. 

3.3.2 Applications of Hyperbolic PDEs in Physics and Engineering 

Hyperbolic partial differential equations model wave phenomena and 

information propagation in physical systems. Their distinctive feature is the 

finite speed of propagation, making them suitable for modeling many physical 

processes. 

Wave Equation in Physics 

The classical wave equation 𝑢𝑡𝑡 = 𝑐2𝛻2𝑢   serves as the foundation for 

understanding various wave phenomena: 

 

 

   

 

 

 

    

 

 

   

 

 

  • Architectural acoustics

Applications include:

with B being the bulk modulus and ρ the fluid density.

where p represents pressure disturbances and c = √(B/ρ) is the speed of sound, 

Sound propagation in fluids follows the wave equation: 𝑝𝑡𝑡 = 𝑐2𝛻2𝑝

2. Acoustic Waves

tension and ρₐ the areal mass density.

𝑢𝑡𝑡 = 𝑐2(𝑢𝑥𝑥 + 𝑢𝑦𝑦) where  c  =  √(T/ρₐ),  with  T  representing

  modeled by the two-dimensional wave equation:

• Membrane vibrations: Drums and other membrane instruments are

  being the tension and ρ the linear mass density.

  dimensional wave equation: 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 where c = √(T/ρ), with T

• String  vibrations:  A  plucked  guitar  string  follows  the  one-

1. Mechanical Waves
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• Underwater sonar 

• Medical ultrasound imaging 

• Noise control engineering 

3. Electromagnetic Waves 

Maxwell's equations in a vacuum can be combined to yield the wave equation 

for each component of the electric and magnetic fields: 

𝛻2𝐸 − (
1

𝑐2
)𝐸𝑡𝑡 =  0    𝛻2𝐵 − (

1

𝑐2
)𝐵𝑡𝑡 =  0 

where c is the speed of light. This formulation underpins: 

• Radio wave transmission 

• Microwave technology 

• Fiber optic communications 

• Antenna design 

Telegraph Equation 

The telegraph equation models signal propagation in transmission lines: 

𝑢𝑡𝑡 +  2𝛼𝑢𝑡 +  𝛽𝑢 =  𝑐2𝑢𝑥𝑥 

where: 

• u represents voltage or current 

• α = R/2L (R is resistance, L is inductance) 

• β = RC/LC (C is capacitance) 

• c = 1/√(LC) is the wave propagation speed 

Applications include: 

• Electrical transmission line design 

• Signal integrity analysis 

• Pulse propagation in communication systems 

Wave Equation with Damping 

Real-world oscillations experience damping. The damped wave equation: 
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𝑢𝑡𝑡 +  2𝛾𝑢𝑡 = 𝑐2𝛻2𝑢 

where γ is the damping coefficient, models: 

• Structural vibrations with energy dissipation 

• Acoustic waves in lossy media 

• Attenuating electromagnetic waves 

Klein-Gordon Equation 

The Klein-Gordon equation from relativistic quantum mechanics: 

𝑢𝑡𝑡 − 𝑐
2𝛻2𝑢 + (

𝑚𝑐2

ħ
)

2

𝑢 =  0 

Describes spinless particles, where: 

• m is the particle mass 

• ħ is the reduced Planck constant 

• c is the speed of light 

Dirac Equation 

Though first-order in time and space, the Dirac equation is mentioned due to 

its importance: 

𝑖ħ
𝜕𝜓

𝜕𝑡
 =  (−𝑖ħ𝑐𝛻 · 𝛼 +  𝛽𝑚𝑐²)𝜓 

It describes relativistic spin-1/2 particles, incorporating both wave-like and 

particle-like behaviors. 

Relativistic Wave Equation 

The relativistic wave equation, or d'Alembert equation: 

𝛻²𝑢 − (
1

𝑐2
)𝑢𝑡𝑡  =  0 

 theory.

appears in special relativity and serves as the foundation for electromagnetic 
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  • Traffic control system design

systems, aiding in:

This model predicts traffic congestion and shock wave formation in highway 

• v(ρ) is the velocity as a function of density

• ρ is traffic density

where:

𝜌𝑡 + (𝜌𝑣(𝜌))
𝑥
= 0

conservation law:

The  Lighthill-Whitham-Richards  (LWR)  model  uses  a  hyperbolic

2. Traffic Flow Modeling

• Structural response prediction

• Oil and gas exploration

• Seismic hazard assessment

• Earthquake early warning systems

Applications include:

• λ and μ are Lamé parameters characterizing the medium

• ρ is density

• u is the displacement vector

where:

𝜌𝑢𝑡𝑡 = (𝜆 + 2𝜇)𝛻(𝛻 · 𝑢) − 𝜇𝛻 × (𝛻 × 𝑢)

layers:

waves)  and  S-waves  (secondary  or  shear  waves)  traveling  through  Earth's 

hyperbolic  PDEs.  These  equations  describe  P-waves  (primary  or  pressure 

Earthquake engineering relies on modeling seismic waves using systems of 

1. Seismic Wave Propagation

Engineering Applications of Hyperbolic PDEs
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• Congestion management 

• Infrastructure planning 

3. Gas Dynamics 

The Euler equations for inviscid compressible flow form a hyperbolic system: 

𝜌𝑡  +  𝛻 · (𝜌𝑢)  =  0 (conservation of mass) (𝜌𝑢)𝑡  +  𝛻 · (𝜌𝑢 ⊗ 𝑢 +  𝑝𝐼)  =

 0 (conservation of momentum) 𝐸𝑡  +  𝛻 · ((𝐸 +  𝑝)𝑢)  =  0 (conservation of 

energy) 

where: 

• ρ is density 

• u is velocity 

• p is pressure 

• E is total energy density 

Applications include: 

• Aerodynamic design 

• Rocket propulsion 

• Gas pipeline systems 

• Explosive blast analysis 

4. Shallow Water Equations 

These hyperbolic PDEs model fluid flow with a free surface where vertical 

dimension is much smaller than horizontal: 

ℎ𝑡 +  𝛻 · (ℎ𝑢) =  0 (ℎ𝑢)𝑡 +  𝛻 · (ℎ𝑢 ⊗ 𝑢 + (
1

2
)𝑔ℎ2𝐼) =  0  

 

  

  

  

 Applications include:

• g is gravitational acceleration

• u is depth-averaged velocity

• h is water height

where:
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• Flood prediction and management 

• Tsunami modeling 

• Harbor design 

• Dam break analysis 

5. Magnetohydrodynamics (MHD) 

MHD equations combine fluid dynamics with electromagnetic theory, 

forming hyperbolic systems that model plasma behavior: 

𝜌𝑡  +  𝛻 · (𝜌𝑢)  =  0 (𝜌𝑢)𝑡  +  𝛻 · (𝜌𝑢 ⊗ 𝑢 −  𝐵 ⊗𝐵 +  𝑝𝐼)  

=  0 𝐵𝑡  +  𝛻 × (𝑢 × 𝐵)  =  0 

Applications include: 

• Fusion reactor design 

• Solar physics 

• Astrophysical plasma modeling 

• Magnetic confinement techniques 

Numerical Methods for Hyperbolic PDEs in Engineering 

1. Finite Volume Methods 

Particularly suited for conservation laws, these methods: 

• Naturally preserve conservation properties 

• Handle discontinuities well 

• Are widely used in computational fluid dynamics 

2. Discontinuous Galerkin Methods 

These combine features of finite element and finite volume methods: 

• High-order accuracy 

• Good stability properties 

• Ability to handle complex geometries 

3. Godunov-type Schemes 
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 Classification of Second-Order PDEs

3.7 Summary and Important Formulas

select the physically meaningful solution.

initial conditions. Entropy conditions provide additional physical criteria to 

For nonlinear hyperbolic PDEs, multiple weak solutions can satisfy the same 

3. Entropy Conditions

• Determination of required boundary conditions

• Formation of shocks

• Wave propagation directions

in hyperbolic systems. Analysis of these characteristics provides insight into:

Characteristic curves in phase space determine the propagation of information 

2. Characteristic Theory

for understanding wave interactions in hyperbolic systems.

constant initial data having a single discontinuity serves as a building block 

The  Riemann  problem  consisting  of  a  conservation  law  with  piecewise 

1. Riemann Problems

Special Topics in Hyperbolic Systems

• Sharp resolution of shocks and contact discontinuities

• Non-oscillatory behavior near discontinuities

• High-order accuracy in smooth regions

These schemes provide:

 WENO (Weighted Essentially Non-Oscillatory) Schemes4.

  methods

• Form  the  basis  for  many  modern  computational  fluid  dynamics

• Capture shock waves and discontinuities accurately

Based on solving Riemann problems at cell interfaces:
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A general second-order PDE in two variables has the form: 

𝐴(𝑥, 𝑦)𝑢𝑥𝑥  +  𝐵(𝑥, 𝑦)𝑢𝑥𝑦  +  𝐶(𝑥, 𝑦)𝑢𝑦𝑦  +  𝐷(𝑥, 𝑦)𝑢𝑥  +  𝐸(𝑥, 𝑦)𝑢𝑦  

+  𝐹(𝑥, 𝑦)𝑢 +  𝐺(𝑥, 𝑦)  =  0 

Classification is based on the discriminant B² - 4AC: 

• Elliptic: B² - 4AC < 0 

• Parabolic: B² - 4AC = 0 

• Hyperbolic: B² - 4AC > 0 

Wave Equation 

One-dimensional form: 

𝑢𝑡𝑡  =  𝑐2𝑢𝑥𝑥 

General solution (d'Alembert's formula): 

𝑢(𝑥, 𝑡)  =  𝑓(𝑥 +  𝑐𝑡)  +  𝑔(𝑥 −  𝑐𝑡) 

where f and g are arbitrary functions determined by initial conditions. 

Initial value problem solution: 

For initial conditions u(x,0) = φ(x) and 𝑢𝑡(𝑥, 0) =  𝜓(𝑥): 

𝑢(𝑥, 𝑡)  =  (1/2)[𝜑(𝑥 + 𝑐𝑡)  +  𝜑(𝑥 − 𝑐𝑡)]  + (1/2𝑐)∫ 𝜓(𝑠) 𝑑𝑠
𝑥+𝑐𝑡

𝑥−𝑐𝑡

 

Multidimensional wave equation: 

𝑢𝑡𝑡 = 𝑐2𝛻2𝑢  

Energy conservation: 

𝐸(𝑡) =  (
1

2
) ∫ [(𝑢𝑡)

2 + 𝑐2(𝛻𝑢)2]𝑑𝑉   =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  
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Heat Equation 

One-dimensional form: 

𝑢𝑡 =  𝛼 𝑢𝑥𝑥 

Fundamental solution (heat kernel): 

𝑢(𝑥, 𝑡) =  (
1

√4𝜋𝛼𝑡
) 𝑒𝑥𝑝 (−

𝑥2

4𝛼𝑡
) 

Initial value problem solution: 

For initial condition u(x,0) = f(x): 

𝑢(𝑥, 𝑡)  =  (1/√(4𝜋𝛼𝑡)) ∫ 𝑒𝑥𝑝(−(𝑥 − 𝑠)²/(4𝛼𝑡)) 𝑓(𝑠) 𝑑𝑠
∞

−∞

 

 

 

 

 

          

 

 

 

 

 Characteristics for Hyperbolic PDEs

values only on the boundary, unless it is constant.

A harmonic function on a bounded domain attains its maximum and minimum 

Maximum principle:

function values on any sphere (in 3D) or circle (in 2D) centered at that point.

The  value  of  a  harmonic  function  at  any  point  equals  the  average  of  the 

Mean value property:

𝛻2𝑢 = 0 𝑜𝑟 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 0

Standard form:

Laplace's Equation

initial time or on the boundary.

conditions,  then  u  attains  its  maximum  and  minimum  values  either  at  the 

If u satisfies the heat equation on a bounded domain with continuous boundary 

Maximum principle:

131 



For a first-order quasi-linear PDE: 𝑎(𝑥, 𝑦, 𝑢)𝑢𝑥  +  𝑏(𝑥, 𝑦, 𝑢)𝑢𝑦  =  𝑐(𝑥, 𝑦, 𝑢) 

Characteristic curves satisfy: 
𝑑𝑥

𝑎
=

𝑑𝑦

𝑏
=

𝑑𝑢

𝑐
  

For second-order hyperbolic PDEs, characteristics are curves along which 

information propagates. 

Conservation Laws 

General form: 

ut + ∇ · F(u) =  0 

Rankine-Hugoniot jump condition: 

For a shock wave with speed s: s[u] = [F(u)] 

where [q] denotes the jump in quantity q across the shock. 

Similarity Solutions 

For PDEs admitting scaling symmetries, solutions of the form: 𝑢(𝑥, 𝑡) =

 𝑡𝛼𝑓 (
𝑥

𝑡𝛽
) 

can reduce the PDE to an ODE in the similarity variable 𝜉 =
𝑥

𝑡𝛽
. 

Transform Methods 

Fourier transform: 

û(𝑘, 𝑡)  =  ∫ 𝑢(𝑥, 𝑡)𝑒−𝑖𝑘𝑥 𝑑𝑥
∞

−∞

 

Laplace transform: 

ũ(𝑥, 𝑠)  =  ∫ 𝑢(𝑥, 𝑡)𝑒−𝑠𝑡 𝑑𝑡
∞

0

 

 

 Burgers' equation:

Nonlinear PDEs
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𝑢𝑡 +  𝑢𝑢𝑥 =  𝜈𝑢𝑥𝑥    

Korteweg-de Vries (KdV) equation: 

𝑢𝑡 +  𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 =  0  

Nonlinear Schrödinger equation: 

𝑖𝑢𝑡 + 𝑢𝑥𝑥 + |𝑢|2𝑢 =  0  

Sine-Gordon equation: 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 +  𝑠𝑖𝑛(𝑢) =  0    

Numerical Methods 

Stability condition (CFL condition): 

Δt ≤ C·Δx/v_max 

where v_max is the maximum wave speed, and C is a constant depending on 

the scheme (C ≤ 1 for explicit schemes). 

Order of accuracy: 

𝐸𝑟𝑟𝑜𝑟 ≈  𝑂((𝛥𝑥)𝑝) +  𝑂((𝛥𝑡)𝑞)  

where p and q are the orders of accuracy in space and time. 

3.8 Practice Problems 

Solved Problems 

Problem 1: Wave Equation with Dirichlet Boundary Conditions 

Problem: Solve the wave equation 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥   on the domain 0 ≤ x ≤ L, t 

≥ 0 with boundary conditions 𝑢(0, 𝑡)  =  0, 𝑢(𝐿, 𝑡)  =  0 and initial conditions 

𝑢(𝑥, 0) =  𝑠𝑖𝑛 (
𝜋𝑥

𝐿
) , 𝑢𝑡(𝑥,0) =  0  . 

Solution: 
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Step 1: We use the method of separation of variables, assuming  

𝑢(𝑥, 𝑡)  =  𝑋(𝑥)𝑇(𝑡). 

Substituting into the wave equation: 𝑋(𝑥)𝑇′′(𝑡)  =  𝑐²𝑋′′(𝑥)𝑇(𝑡) 

Dividing by X(x)T(t): 
𝑇′′(𝑡)

𝑇(𝑡)
=

𝑐2𝑋′′(𝑥)

𝑋(𝑥)
= −𝜆  

This gives us two ODEs: 𝑇′′(𝑡)  +  𝜆𝑐²𝑇(𝑡)  =  0 𝑋′′(𝑥)  +  𝜆𝑋(𝑥)  =  0 

Step 2: Apply boundary conditions to the spatial equation.  

𝑋(0)  =  0, 𝑋(𝐿)  =  0 

This gives eigenvalues 𝜆ₙ =  (
𝑛𝜋

𝐿
)
2
 and eigenfunctions  

𝑋ₙ(𝑥)  =  𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) for n = 1, 2, 3, ... 

Step 3: For each eigenvalue, the temporal equation becomes:  

𝑇′′(𝑡)  + (𝑛𝜋𝑐/𝐿)²𝑇(𝑡)  =  0 

With general solution: 𝑇ₙ(𝑡)  =  𝐴ₙ𝑐𝑜𝑠(𝑛𝜋𝑐𝑡/𝐿)  +  𝐵ₙ𝑠𝑖𝑛 (
𝑛𝜋𝑐𝑡

𝐿
) 

Step 4: The general solution is:  

𝑢(𝑥, 𝑡) =  𝛴 [𝐴ₙ𝑐𝑜𝑠 (
𝑛𝜋𝑐𝑡

𝐿
) +  𝐵ₙ𝑠𝑖𝑛 (

𝑛𝜋𝑐𝑡

𝐿
)] 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
) 

Step 5: Apply the initial conditions. From 𝑢(𝑥, 0)  =  𝑠𝑖𝑛 (
𝜋𝑥

𝐿
) ,  

we get: 𝛴 𝐴ₙ𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) =  𝑠𝑖𝑛 (

𝜋𝑥

𝐿
) 

This implies A₁ = 1 and Aₙ = 0 for n ≥ 2. 

From u_t(x,0) = 0, we get: 𝛴 𝐵ₙ (
𝑛𝜋𝑐

𝐿
) 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
) =  0  

This implies Bₙ = 0 for all n. 

134 



Step 6: The final solution is: 𝑢(𝑥, 𝑡) =  𝑐𝑜𝑠 (
𝜋𝑐𝑡

𝐿
) 𝑠𝑖𝑛 (

𝜋𝑥

𝐿
) 

This represents a standing wave with the spatial shape of sin(πx/L) that 

oscillates in time with frequency πc/L. 

Problem 2: Nonlinear Burgers' Equation 

Problem: Consider the inviscid Burgers' equation 𝑢𝑡 +  𝑢𝑢𝑥 =  0    with 

initial condition 𝑢(𝑥, 0)  =  { 1, 𝑥 <  0 0, 𝑥 > 0 } Find the solution for t > 0 

and determine when and where a shock forms. 

Solution: 

Step 1: We use the method of characteristics. The characteristic equations are: 

𝑑𝑥

𝑑𝑡
=  𝑢

𝑑𝑢

𝑑𝑡
=  0  

Step 2: The second equation implies u is constant along characteristics:  

𝑢(𝑥, 𝑡)  =  𝑢(𝑥₀, 0)  =  𝑢₀(𝑥₀) 

where x₀ is the initial position of the characteristic that passes through (x,t). 

Step 3: From the first equation, the characteristic curves are: 𝑥 =  𝑥₀ +

 𝑢₀(𝑥₀)𝑡. 

For x₀ < 0, we have u₀(x₀) = 1, so x = x₀ + t For x₀ > 0, we have u₀(x₀) = 0, so 

x = x₀ 

Step 4: Inverting these relationships to find x₀ in terms of x and t: For 𝑥 −

 𝑡 <  0: 𝑥₀ =  𝑥 −  𝑡, which gives u(x,t) = 1 For x > 0: x₀ = x, which gives 

𝑢(𝑥, 𝑡)  =  0 

Step 5: There's a region 0 < x < t where neither of these applies. To analyze 

this region, note that characteristics from x₀ < 0 (with u = 1) are moving faster 

than characteristics from x₀ > 0 (with u = 0). 

This creates a shock where characteristics intersect. The shock location must 

satisfy the Rankine-Hugoniot condition: 𝑠 =
[𝐹(𝑢)]

[𝑢]
=

[(
𝑢2

2
)]

[𝑢]
=

𝑢1+ 𝑢2

2
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With u₁ = 1 and u₂ = 0, we get s = 1/2. 

Step 6: The shock forms immediately (t = 0+) at x = 0 and then propagates 

with speed s = 1/2. The complete solution is: 𝑢(𝑥, 𝑡) =  { 1, 𝑥 <
𝑡

2
  0, 𝑥 >

𝑡

2
} 

The solution represents a shock wave moving to the right at speed 1/2. 

Problem 3: Wave Equation with Non-homogeneous Boundary 

Conditions 

Problem: Solve the wave equation 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥   for 0 <  𝑥 <  𝐿, 𝑡 >  0, 

with boundary conditions 𝑢(0, 𝑡)  =  0, 𝑢(𝐿, 𝑡)  =  𝐴 𝑠𝑖𝑛(𝜔𝑡), and initial 

conditions 𝑢(𝑥, 0) =  0, 𝑢𝑡(𝑥, 0) =  0. 

Solution: 

Step 1: Split the problem into two parts: 𝑢(𝑥, 𝑡)  =  𝑣(𝑥, 𝑡)  +  𝑤(𝑥, 𝑡) 

where v satisfies the homogeneous boundary conditions and w accounts for 

the non-homogeneous boundary. 

Step 2: Choose w(x,t) to satisfy:  

𝑤(0, 𝑡)  =  0 𝑤(𝐿, 𝑡)  =  𝐴 𝑠𝑖𝑛(𝜔𝑡)𝑤𝑡𝑡  − 𝑐
2𝑤𝑥𝑥  =  0 

A simple choice is 𝑤(𝑥, 𝑡)  =  (𝐴 𝑠𝑖𝑛(𝜔𝑡) · 𝑥)/𝐿  

Step 3: Check if this satisfies the wave equation: 

 𝑤𝑡𝑡 = −
𝐴𝜔2𝑠𝑖𝑛(𝜔𝑡)·𝑥

𝐿
𝑤𝑥𝑥 =  0    

Since 𝑤𝑡𝑡 − 𝑐2𝑤𝑥𝑥 = −
𝐴𝜔2𝑠𝑖𝑛(𝜔𝑡)·𝑥

𝐿
≠  0 , we need to modify our approach. 

Step 4: Let's try 𝑤(𝑥, 𝑡)  =  𝜑(𝑥)𝑠𝑖𝑛(𝜔𝑡) 𝑤ℎ𝑒𝑟𝑒 𝜑(0)  =  0 𝑎𝑛𝑑 𝜑(𝐿)  =

 𝐴. Substituting into the wave equation: 

 −𝜔²𝜑(𝑥)𝑠𝑖𝑛(𝜔𝑡)  =  𝑐²𝜑′′(𝑥)𝑠𝑖𝑛(𝜔𝑡) 

This gives: 𝜑′′(𝑥) + (
𝜔2

𝑐2
)𝜑(𝑥) =  0 
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With general solution: 𝜑(𝑥)  =  𝐶₁𝑠𝑖𝑛(𝜔𝑥/𝑐)  +  𝐶₂𝑐𝑜𝑠(𝜔𝑥/𝑐)   

Applying boundary conditions: 

 𝜑(0)  =  0 →  𝐶₂ =  0 𝜑(𝐿)  =  𝐴 →  𝐶₁𝑠𝑖𝑛(𝜔𝐿/𝑐)  =  𝐴 →  𝐶₁ =  𝐴/

𝑠𝑖𝑛(𝜔𝐿/𝑐) 

Therefore: 𝑤(𝑥, 𝑡) =
𝐴 𝑠𝑖𝑛(

𝜔𝑥

𝑐
)𝑠𝑖𝑛(𝜔𝑡)

𝑠𝑖𝑛(
𝜔𝐿

𝑐
)

 

Step 5: Now v must satisfy: 𝑣𝑡𝑡 − 𝑐
2𝑣𝑥𝑥 = −𝑤𝑡𝑡 + 𝑐2𝑤𝑥𝑥 =  0  

𝑣(0, 𝑡) =  𝑣(𝐿, 𝑡) =  0  

𝑣(𝑥, 0) =  −𝑤(𝑥, 0) =  0  

𝑣𝑡(𝑥, 0) =  −𝑤𝑡(𝑥, 0) =  −
𝐴 𝜔 𝑠𝑖𝑛(

𝜔𝑥

𝑐
)

𝑠𝑖𝑛(
𝜔𝐿

𝑐
)
     

Step 6: Using separation of variables for v:  

𝑣(𝑥, 𝑡) =  𝛴𝐷𝑛 sin (
𝑛𝜋𝑥

𝐿
) sin (

𝑛𝜋𝑐𝑡

𝐿
) 

The initial condition 𝑣𝑡(𝑥, 0) =  −
𝐴 𝜔 sin(

𝜔𝑥

𝑐
)

sin(
𝜔𝐿

𝑐
)

   gives:  

𝛴 𝐷𝑛  (
𝑛𝜋𝑐

𝐿
) 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
)  =  −

𝐴 𝜔 𝑠𝑖𝑛 (
𝜔𝑥

𝑐
)

𝑠𝑖𝑛 (
𝜔𝐿

𝑐
)

 

Step 7: To find D_n, multiply both sides by 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝐿
) and integrate from 0 to 

L: 𝐷𝑛  =  −
2𝐴 𝜔 𝐿

𝑛𝜋𝑐 𝑠𝑖𝑛(
𝜔𝐿

𝑐
)
    ·  𝐼𝑛   

where 𝐼𝑛 is the integral: 𝐼𝑛 = (
1

𝐿
) ∫ 𝑠𝑖𝑛(𝜔𝑥/𝑐)𝑠𝑖𝑛(𝑛𝜋𝑥/𝐿)𝑑𝑥

𝐿

0
  

This integral equals (
𝑠𝑖𝑛(𝛽ₙ+)

2𝛽ₙ+
−

𝑠𝑖𝑛(𝛽ₙ−)

2𝛽ₙ−
)  𝑤𝑖𝑡ℎ    

𝛽ₙ+ = ((
𝜔

𝑐
) +

𝑛𝜋

𝐿
)𝐿 𝑎𝑛𝑑 𝛽ₙ− = ((

𝜔

𝑐
) −

𝑛𝜋

𝐿
)𝐿 
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Step 8: The complete solution is:  

𝑢(𝑥, 𝑡) =
𝐴 𝑠𝑖𝑛 (

𝜔𝑥

𝑐
) 𝑠𝑖𝑛(𝜔𝑡)

𝑠𝑖𝑛 (
𝜔𝐿

𝑐
)

+  𝛴 𝐷𝑛𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) 𝑠𝑖𝑛 (

𝑛𝜋𝑐𝑡

𝐿
) 

This solution represents forced vibrations with two components: a driven 

oscillation at the forcing frequency ω and natural modes of the system. 

Problem 4: Method of Characteristics for First-Order Hyperbolic PDE 

Problem: Solve the PDE 𝑢𝑡 +  2𝑢𝑥 =  0 with initial condition  

𝑢(𝑥, 0) =  𝑒−𝑥
2
. 

Solution: 

Step 1: We identify this as a first-order linear PDE with constant coefficients. 

The general solution can be found using the method of characteristics. 

Step 2: The characteristic equations are: 
𝑑𝑥

𝑑𝑡
=  2

𝑑𝑢

𝑑𝑡
=  0 

 

         

           

 

   

 

 

      

 

              |𝑢|2𝑢 = 0 with the boundary condition 𝜑(𝑥) → 0 𝑎𝑠 |𝑥| → ∞.

for  the  one-dimensional  nonlinear  Schrödinger  equation: 𝑖𝑢𝑡 + 𝑢𝑥𝑥 +

Problem: Find a standing wave solution of the form 𝑢(𝑥, 𝑡) = 𝜑(𝑥)𝑒−𝑖𝜔𝑡

Problem 5: Nonlinear Schrödinger Equation

to the right with velocity 2, without changing shape.

This is the complete solution. It represents the initial Gaussian profile moving 

𝑢(𝑥, 𝑡) = 𝑒−(𝑥−2𝑡)
2 
= 𝑒−(𝑥−2𝑡)

2

Step 5: Substituting into the solution:

Step 4: From the first equation, we get: 𝑥 = 2𝑡 + 𝑥₀ → 𝑥₀ = 𝑥 − 2𝑡

𝑢(𝑥, 𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑢(𝑥₀, 0) = 𝑒−𝑥₀²

Step 3: From the second equation, u is constant along characteristics:
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Solution: 

Step 1: Substitute the ansatz 𝑢(𝑥, 𝑡)  =  𝜑(𝑥)𝑒−𝑖𝜔𝑡   into the nonlinear 

Schrödinger equation:  

𝑖(−𝑖𝜔)𝜑(𝑥)𝑒−𝑖𝜔𝑡 + 𝜑′′(𝑥)𝑒−𝑖𝜔𝑡 + |𝜑(𝑥)|2𝜑(𝑥)𝑒−𝑖𝜔𝑡 =  0  

Step 2: Simplify: 𝜔𝜑(𝑥) + 𝜑′′(𝑥) + |𝜑(𝑥)|2𝜑(𝑥) =  0 

Since φ is real (for a standing wave), |𝜑(𝑥)|² =  𝜑(𝑥)². 

Step 3: Rearrange to get: 𝜑′′(𝑥)  +  𝜑(𝑥)³ +  𝜔𝜑(𝑥)  =  0 

Step 4: Multiply by 𝜑′(𝑥): 𝜑′(𝑥)𝜑′′(𝑥)  +  𝜑′(𝑥)𝜑(𝑥)³ +  𝜔𝜑′(𝑥)𝜑(𝑥)  =

 0 

Step 5: Integrate with respect to x: 
(𝜑′(𝑥))

2

2
+

𝜑(𝑥)4

4
+

𝜔𝜑(𝑥)2

2
=  𝐶 

where C is a constant of integration. 

Step 6: Given the boundary condition 𝜑(𝑥)  →  0 𝑎𝑠 |𝑥|  → 0 

These equations represent phenomena such as traffic flow, gas dynamics, 

and shallow water waves.  

Analytical solutions for nonlinear equations are typically inaccessible, unless 

in specific instances. Numerical methods such as finite difference, finite 

element, and spectral methods are essential for estimating solutions to 

complex equations. Advanced techniques such as the method of 

characteristics and perturbation methods offer significant insights into the 

dynamics of nonlinear systems.  Contemporary Applications in Engineering 

and Science  

Telecommunications and Signal Processing  Hyperbolic partial differential 

equations are fundamental to the design and optimization of communication 

systems in the telecommunications industry. The wave equation characterizes 

electromagnetic wave propagation over many mediums, crucial for antenna 

construction, signal transmission, and wireless network configuration.  

Contemporary 5G and forthcoming 6G networks depend significantly on 
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equation.  Time-reversal  approaches,  grounded  on  the  time-reversibility

diagnostic  modality,  fundamentally  relies  on  answers  to  the  acoustic  wave 

data,  enabling  non-invasive  diagnosis.   Ultrasound  imaging,  a  prevalent 

equations facilitates precise reconstruction of tissue properties from boundary 

and  cardiovascular  diseases.  The  mathematical  framework  of  hyperbolic 

saturation,  yielding  critical  diagnostic  insights  for  disorders  such  as  cancer 

contrast, high-resolution imaging of vascular architecture and tissue oxygen 

acquired acoustic signals.  The wave propagation paradigm facilitates high- 

wave equation to rebuild the optical absorption characteristics of tissues from 

Photoacoustic tomography, a novel biomedical imaging modality, utilizes the 

equations  are  essential  in  sophisticated  medical  imaging  technologies. 

significant structural damage.  Medical Imaging and Diagnostics  Hyperbolic 

wave  amplification—a  process  termed  site  resonance,  which  can  result  in 

soil  strata,  facilitating  the  identification  of  locations  susceptible  to  seismic 

variables method  enables  engineers to  examine  the  resonant  frequencies  of 

structural  design  standards  in  seismically  active  areas.  The  separation  of 

during  seismic  occurrences. These  forecasts  guide  building  regulations  and 

solutions to hyperbolic equations facilitate the prediction of ground motion 

depictions  of  intricate  geological  structures.   In  earthquake  engineering, 

enhanced the success rate of exploratory drilling by delivering more precise 

representations  of  subsurface  formations.  This  technique  has  markedly 

acoustic wave equation in reverse temporal order to produce high-resolution 

migration  (RTM) is  an advanced  seismic imaging  method  that  resolves the 

subterranean  structures  when  evaluated  appropriately.   Reverse-time 

hyperbolic  partial  differential  equations,  yield  significant  insights  into 

hyperbolic  equations  for  subsurface  imaging.  Seismic  waves,  regulated  by 

Geophysical Investigation The petroleum and mining sectors widely employ 

increased  data  rates  and  enhanced  energy  efficiency.  Seismic  Imaging  and 

places. This application has transformed wireless communication, facilitating 

phase  modifications  required  for  constructive  interference  at  designated 

receivers and utilize answers to hyperbolic equations to determine the exact 

strategies.   Beamforming  systems  direct  wireless  signals  towards  specified 

enable frequency-domain analysis essential for filter design and modulation 

analyzes  signal  propagation  pathways,  while  integral  transform  techniques 

station  positioning,  and  reduce  interference.  The  method  of  characteristics 

solutions to hyperbolic equations to forecast signal coverage, optimize base 

comprehending  wave  propagation  in  intricate  situations.  Engineers  employ 
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climate  science. The  shallow  water  equations,  a  hyperbolic  system  derived

Hyperbolic  equations  play  a  crucial  role  in  environmental  modeling  and 

or  seismic  activity.   Environmental  Modeling  and  Climate  Science 

enhance occupant comfort and structural integrity during strong wind events 

on  ideas  derived  from  solutions  to  damped  wave  equations. These  devices 

masses implemented to mitigate building oscillation—are engineered based 

contemporary  high-rise  architecture,  tuned  mass  dampers—substantial 

responses  to  dynamic  loads  and  identifies  potential  failure  modes.   In 

solutions  to  the  wave  equation,  facilitates  the  prediction  of  structural 

systems  that  resist  resonance  occurrences.  Modal  analysis,  derived  from 

natural frequencies and mode shapes of structures, essential for developing 

loads.  The separation of variables method allows engineers to ascertain the 

buildings,  bridges,  and  dams  during  earthquakes,  wind  forces,  or  impact 

waves  through  structural  parts,  crucial for  assessing  the  performance  of 

stress circumstances. The wave equation delineates the propagation of stress 

hyperbolic equations represent the dynamic reaction of structures to diverse 

vibration.  Structural Dynamics and Civil Engineering  In civil engineering, 

to create quieter interiors by recognizing and mitigating sources of noise and 

model acoustic wave propagation within vehicle cabins, allowing engineers 

thereby  minimizing  drag  and  enhancing  fuel  efficiency.  These  equations 

to hyperbolic equations facilitate the optimization of vehicle aerodynamics, 

optimizing engine intakes and nozzles. In automobile engineering, solutions 

characteristics  is  very  advantageous  for  examining  supersonic  flows  and 

phenomena  such  as shock  waves  and  vortex  shedding.  The  method  of 

performance,  refine  wing  configurations,  and  examine  intricate  flow 

computational  solutions  to  these  equations  to  forecast  aerodynamic 

waves  in  fluids.   Contemporary  aircraft  design  predominantly  depends  on 

fluid  dynamics,  are  hyperbolic  and  describe  the  transmission  of  pressure 

Euler  equations  and  Navier-Stokes  equations,  which  regulate  compressible 

dynamics  (CFD)  simulations  in  the  aerospace  and  automotive  sectors. The 

Hyperbolic  equations  constitute  the  foundation  of  computational  fluid 

Computational Fluid Dynamics and Aerodynamics

quality and allowing for targeted therapeutic applications.

waves across heterogeneous media such as human tissue, enhancing picture 

characteristic of hyperbolic equations, facilitate the focussing of ultrasound 

141 



 

 

price modifications. These models assist financial organizations in managing

equations  to  represent  the  wave-like  transmission  of market  sentiment  and 

disturbances  and  information  dissemination  occasionally  utilize  hyperbolic 

frequently  result  in  hyperbolic  systems.   Models  for  financial  market 

however, analogous  models  for  more  intricate  financial  instruments 

essential for options pricing, can be converted into a parabolic heat equation;

utilize hyperbolic partial differential equations. The Black-Scholes equation, 

Quantitative  Finance   Certain  option  pricing  models  in  the  financial  sector 

institutions  such  as  the  Large  Hadron  Collider.   Financial  Modeling  and 

support  the  Standard  Model  of  particle  physics  and  guide  research  at 

propagators that dictate particle interactions. These mathematical frameworks 

characterize  the  propagation  of  quantum  fields,  with  solutions  producing 

semiconductor  devices.   In  quantum  field  theory,  hyperbolic  equations 

facilitating  technology  like  magnetic  resonance  imaging  (MRI)  and 

and electron spin, notions essential to our comprehension of the universe and 

electrons. Solutions to these equations forecast phenomena like as antimatter 

differential  equation,  characterizes  relativistic  spin  1/2  particles  such  as 

of  contemporary  particle  physics.  The  Dirac  equation,  a  hyperbolic  partial 

represent the wave-like behavior of quantum particles and constitute the basis 

Klein-Gordon  equation  characterizes  spinless  particles.  These  equations 

hyperbolic  form,  especially  in  relativistic  quantum  mechanics,  where  the 

In quantum mechanics, specific versions of the Schrödinger equation have a 

Quantum Mechanics and Particle Physics

essential data for climate research and ocean circulation analysis.

temperature  profiles  from  sound  travel durations.  This  program  offers 

regions,  depends  on  solutions  to  the  acoustic  wave  equation  to  deduce 

tomography,  a  method  for  assessing  ocean  temperatures  across  extensive 

foundation  of  contemporary  weather  forecast  models.   Ocean  acoustic 

disturbances,  whereas  numerical  solutions  to  these  equations  constitute  the 

The  method  of  characteristics  facilitates  the  monitoring  of  atmospheric 

the atmosphere, processes that affect weather patterns and climate dynamics. 

physics,  hyperbolic  equations  represent  acoustic  and  gravitational  waves in 

systems and guide the construction of coastal infrastructure. In atmospheric 

surges,  and  flooding  occurrences.  These  models  facilitate  early  warning 

from  the  Navier-Stokes  equations,  simulate  tsunami  propagation,  storm 
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problems  characterized  by localized characteristics such  as  shock  waves  or

Mesh  Refinement  (AMR)  markedly  enhances  efficiency  in  hyperbolic 

focusing  computational  resources  in  areas  of  greatest  necessity.  Adaptive 

dynamically  modify  the  computational  grid  throughout  the  simulation, 

Adaptive Mesh Refinement Adaptive mesh refinement (AMR) methodologies 

assessments  for  electronic  systems. 

photonic  devices,  radar  systems,  and  electromagnetic  compatibility 

with intricate material interactions. This capacity has enhanced the design of 

effectively  represent  wave  propagation  over  heterogeneous  environments 

In  electromagnetic  wave  simulations,  discontinuous Galerkin  methods 

geometries while effectively capturing shock waves and other discontinuities. 

borders.  This  high-order  precision  approach  proficiently  manages  intricate 

piecewise  polynomial  functions  that  may  exhibit  discontinuities  at  element 

of finite element and finite volume techniques. It delineates the solution as 

Techniques The discontinuous Galerkin (DG) method integrates the benefits 

combustion  processes,  and  multiphase  flows.   Discontinuous  Galerkin 

groundbreaking  simulations  of  intricate  aerodynamic  phenomena, 

discontinuities  in  flow  fields.  These  techniques  have  facilitated 

Essentially Non-Oscillatory) schemes effectively capture abrupt gradients and 

Upstream-centered  Scheme  for  Conservation  Laws)  and WENO  (Weighted 

high-resolution  finite  volume  methods  such  as  MUSCL  (Monotonic 

waves without generating false oscillations.  In computational fluid dynamics, 

Method  (FVM)  effectively  handles  discontinuous  solutions  such  as  shock 

discretizing the integral formulation of conservation laws, the Finite Volume 

physical  features  such  as  mass,  momentum,  and  energy  conservation.  By 

hyperbolic  conservation  rules. These  methods  inherently  maintain  essential 

Finite  volume  techniques  (FVM)  have  proven  to  be  highly  efficacious  for 

Finite Volume Techniques

varied material qualities.

resolve  these  equations  in  areas  characterized  by  irregular  geometries  and 

Contemporary  computational  methods  have  transformed  our  capacity  to 

real-world  situations  frequently  requires  advanced  numerical  techniques. 

Equations  The practical implementation of hyperbolic equations in intricate 

information inside markets.  Advanced Numerical Techniques for Hyperbolic 

risk  and  formulating  trading  strategies  that  consider  the  dissemination  of 
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simulation indicate that quantum computers may directly replicate quantum

executed  on  fault-tolerant  quantum  computers.   Investigations  in  quantum 

exponential speedups for specific categories of wave propagation issues when 

Quantum  algorithms,  such  as  the  Quantum  Fourier  Transform,  may  offer 

methodologies  for  addressing  hyperbolic  partial  differential  equations. 

Computing  Quantum  computing  presents  potentially  transformative 

computational  efficacy  of  machine  learning.   Applications  of  Quantum 

methodologies integrate the physical precision of PDE-based models with the 

facilitating  interactive  design  exploration  and  optimization.  These  hybrid 

simulation data can deliver real-time approximations of intricate flow fields, 

In computational fluid dynamics, deep learning models utilizing high-fidelity 

conventional techniques frequently encounter difficulties.

This method demonstrates significant potential for inverse problems, where 

comply  with  both  the  governing  equations  and  boundary/initial  conditions. 

equations  into  their  loss  functions,  allowing  them  to  identify  solutions  that 

informed  neural  networks  (PINNs)  integrate  the  framework  of  hyperbolic 

intricate  simulations  while  preserving  physical  consistency.   Physics-

approximations  of  solution  operators  demonstrate  potential  for  expediting

conventional  PDE  solvers  for  hyperbolic  equations.  Neural  network 

investigated  the  amalgamation  of  machine  learning  methodologies  with 

of  Artificial  Intelligence  and  Machine  Learning  Recent  studies  have 

characterisation.  Novel Applications and Prospective Trajectories Integration 

gas  exploration,  facilitating  more  efficient  and  precise  subsurface 

solutions for the wave equation. This innovation has revolutionized oil and 

of  calculation,  may  now  be  executed  in  minutes  utilizing  GPU-accelerated 

systems.  Real-time seismic imaging, previously necessitating hours or days 

clusters, have significantly expedited the resolution of large-scale hyperbolic 

Contemporary  high-performance  computer  infrastructures,  such  as  GPU 

hyperbolic equations render them highly compatible with parallel execution. 

Enhancement  the  clear  characteristics  of  numerous  numerical  methods  for 

while  ensuring computational  feasibility.   Concurrent  Computing  and  GPU 

of  interest  automatically,  effectively  capturing  essential  physical  processes 

explosions to galaxy formation. These approaches enhance the mesh in areas 

processes  over  significantly  diverse  scales,  ranging  from  supernova 

simulations, Adaptive Mesh Refinement (AMR) allows researchers to mimic 

steep  gradients,  without  compromising  accuracy.   In  astrophysical 
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systems driven by hyperbolic equations, such as the Dirac equation, yielding 

insights into fundamental physics that classical computation cannot access.  

Digital Twins and Virtual Engineering The notion of digital twins—virtual 

representations of physical systems continuously updated with sensor data—

significantly depends on effective solvers for hyperbolic equations. These 

models facilitate predictive maintenance, performance enhancement, and 

failure analysis across several sectors.  In structural health monitoring, digital 

twins utilize wave propagation models to analyze sensor data and identify 

structural degradation prior to reaching critical levels. The capacity to resolve 

hyperbolic equations in real-time on edge computing devices facilitates 

ongoing surveillance of essential infrastructure such as bridges, dams, and 

offshore platforms.  Metamaterials and Wave Manipulation Metamaterials, 

which are advanced materials engineered to manipulate wave propagation, 

significantly depend on answers to hyperbolic equations for their design and 

optimization. These synthetic materials provide unparalleled regulation of 

acoustic, electromagnetic, and elastic waves.  Acoustic metamaterials, 

engineered by solutions to the wave equation, can generate "acoustic black 

holes" that capture and disperse vibrational energy, resulting in enhanced 

noise reduction technology. Electromagnetic metamaterials facilitate 

applications such as super-resolution imaging, cloaking technologies, and 

highly efficient antennas.  Applications across Disciplines The mathematical 

frameworks established for hyperbolic equations are becoming utilized in 

unorthodox fields. In neuroscience, specific neural field models are 

represented as hyperbolic partial differential equations, which characterize the 

wave-like propagation of neural activity throughout brain regions.  In 

epidemiology, the wave-like propagation of disease can occasionally be 

represented using hyperbolic equations, especially when accounting for 

geographical dynamics and temporal delays in transmission. These models 

assist public health workers in forecasting illness transmission and assessing 

intervention measures.  Obstacles and Constraints Notwithstanding 

considerable progress, some problems persist in the practical implementation 

of hyperbolic equations:  

1. Multi-scale phenomena: Numerous real-world systems encompass 

processes that transpire over significantly diverse geographical and 

temporal scales. Effectively capturing these multi-scale dynamics poses 
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markets.  In addressing global concerns that necessitate advanced modeling

Earth's crust, electromagnetic signals in space, and price shocks in financial 

provides insights and forecasting capabilities for modeling seismic waves in 

articulating seemingly unrelated events. The same mathematical framework 

hyperbolic equations underscores the unifying capability of mathematics in 

to  more  intricate  systems  will  expand.   The  multidisciplinary  aspect  of 

integrating machine learning develop, our capacity to apply these equations 

issues.  As  computational  powers  progress  and  hybrid  methodologies 

sophisticated numerical techniques facilitate solutions to intricate real-world 

analytical  methods for solving  these  equations in idealized  contexts,  whilst 

modeling.  The separation of variables and integral transforms provide robust 

telecommunications,  medical  imaging,  aerospace  design,  and  financial 

phenomena  and  information  transmission  across  various  fields,  including 

analysis. Mathematical structures serve as the language for articulating wave 

constitute  a fundamental  aspect  of  contemporary  scientific  and engineering 

Final Assessment Linear hyperbolic equations and their nonlinear extensions 

numerous simulations.

especially for real-time applications or parametric research necessitating 

some large-scale applications continue to be computationally demanding, 

Computational efficiency: Despite advancements in computing power, 5.

numerical stability necessitates advanced methodologies.

or  wave  breaking.  Accurately  capturing  these  effects  while  ensuring 

processes that may result in solution failure, including shock production 

Nonlinear effects: Numerous practical applications encompass nonlinear 4.

difficult.

yield  dependable  confidence  intervals  on  forecasts  continues  to  be 

attributes. Transmitting these uncertainties through hyperbolic models to 

uncertainties in beginning conditions, boundary conditions, and material 

Uncertainty  quantification: Real-world  systems  possess  intrinsic 3.

noise.

frequently  encounter  ill-posedness  and  susceptibility  to  measurement 

Inverse  problems,  aimed  at  deducing  parameters  from  observable  data, 

boundary  conditions  may  be  indeterminate  or  challenging  to  quantify. 

Parameter identification: In actual applications, material parameters or 2.

numerical techniques.

significant  computing  challenges,  frequently  necessitating  specialized 
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 Answer : c) Both (a) and (b)

 None of the aboved)

 Both (a) and (b)c)

 Laplace transformb)

 Fourier transforma)

The method of integral transforms includes which of the following?4.

Answer : c) The PDE has boundary conditions

 The PDE has an unknown forcing functiond)

 The PDE has boundary conditionsc)

 The PDE has constant coefficientsb)

 The PDE is nonlineara)

The separation of variables method is useful when:3.

Answer : 𝒃) 𝒖𝒕𝒕 − 𝒖𝒙𝒙 = 𝟎

𝑑) 𝑢 + 𝑢𝑥 + 𝑢𝑦 = 0

𝑐) 𝑢𝑡 + 𝑢𝑥 = 0

𝑏) 𝑢𝑡𝑡 − 𝑢𝑥𝑥 = 0

 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0a)

Which of the following is an example of a hyperbolic PDE?2.

Answer :b) Real and distinct

 Zerod)

 Real and equalc)

 Real and distinctb)

 Complexa)

A hyperbolic PDE has characteristic roots that are:1.

Multiple Choice Questions (MCQs):

that are currently in their infancy.

sophisticated materials is poised to unveil novel capabilities and applications 

technologies  such  as  artificial  intelligence,  quantum  computing,  and 

continuous  amalgamation  of  these  mathematical  models with  nascent 

enhancing  our  comprehension  and  guiding  successful  solutions.  The 

pandemic  response—hyperbolic  equations  will  remain  essential  for 

and simulation—such as climate change, renewable energy development, and 
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 Answer : c) Both time and frequency domain

 None of the aboved)

 Both time and frequency domainc)

 Time domainb)

 Frequency domaina)

The Fourier transform is mainly used to solve PDEs in:9.

Answer : a) It contains nonlinear terms of the dependent variable

 It does not contain partial derivativesd)

 It is always homogeneousc)

 It has only first-order derivativesb)

 It contains nonlinear terms of the dependent variablea)

because:

A nonlinear second-order equation differs from a linear equation 8.

Answer : b) Integral transform

 Finite difference methodd)

 Method of characteristicsc)

 Integral transformb)

 Separation of variablesa)

nonhomogeneous boundary conditions?

Which method is best suited for solving PDEs with 7.

Answer : c) Wave equation

 None of the aboved)

 Wave equationc)

 Laplace equationb)

 Heat equationa)

The d’Alembert’s solution is used for solving:6.

𝐀𝐧𝐬𝐰𝐞𝐫 ∶ 𝒃) 𝒖 = 𝑭(𝒙 + 𝒕) + 𝑮(𝒙 − 𝒕)

𝑑)𝑢 = 𝑥2 + 𝑦2

𝑐)𝑢 = 𝑒𝑥 + 𝑒𝑡

𝑏) 𝑢 = 𝐹(𝑥 + 𝑡) + 𝐺(𝑥 − 𝑡)

𝑎) 𝑢 = 𝑓(𝑥) + 𝑔(𝑦)

The general solution of the one-dimensional wave equation is:5.
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10. The separation of variables method assumes that: 

a) The solution is a product of functions of independent variables 

b) The PDE is nonlinear 

c) The PDE has no boundary conditions 

d) The PDE has no time-dependent terms 

Answer : a) The solution is a product of functions of 

independent variables 

 

 

  

  

  

  

  

  

  

  

  

  

 

  

 

 

 

 

 

 

 

 examples.

Compare and contrast hyperbolic, elliptic, and parabolic PDEs with 5.

solution.

Solve  the  one-dimensional  wave  equation  using  d’Alembert’s 4.

Laplace) for solving PDEs.

Discuss  in  detail  the  integral  transform  methods  (Fourier  and 3.

using this technique.

Explain the separation of variables method and solve a simple PDE 2.

Derive the characteristic equations for a hyperbolic PDE.1.

Long Questions:

What are the practical applications of hyperbolic PDEs?10.

What is the main limitation of the separation of variables method?9.

Explain the Fourier transform method for solving PDEs.8.

Differentiate between hyperbolic and elliptic PDEs.7.

What is the significance of d’Alembert’s solution?6.

What is the general solution of the wave equation?5.

How does the method of integral transforms help in solving PDEs?4.

Explain the separation of variables method with an example.3.

What are characteristic curves in hyperbolic PDEs?2.

Define a hyperbolic equation and give an example.1.

Short Questions:
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6. Solve a hyperbolic PDE using the Fourier transform method. 

7. What are nonlinear second-order equations? Give an example and 

discuss the solution approach. 

8. Discuss the application of hyperbolic PDEs in physics and 

engineering, particularly in wave propagation. 

9. Solve a hyperbolic PDE using the Laplace transform method. 

10. Derive and explain the general solution of the two-dimensional wave 

equation. 
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In Cartesian coordinates (x, y, z), Laplace's equation has the form: 

point.

a function at a point differs from its average value in the neighborhood of that 

The Laplacian is a differential operator that measures how much the value of 

Laplacian), and φ (phi) is a scalar function that depends on the coordinates. 

where ∇² (pronounced "del squared") is the Laplace operator (also called the 

𝛻²𝜑 = 0

In mathematical terms, Laplace's equation is written as:

conduction, and many other fields.

physical problems involving electrostatics, gravitation, fluid dynamics, heat 

most important equations in mathematical physics and appears in numerous 

the French mathematician Pierre-Simon Laplace (1749-1827). It is one of the 

Laplace's equation is a second-order partial differential equation named after 

4.1.1 Introduction to Laplace's Equation

Index:

• Analyze problems with axial symmetry.

• Apply the separation of variables method to solve Laplace’s equation.

• Explore boundary value problems related to Laplace’s equation.

• Study families of equipotential surfaces.

• Learn elementary solutions of Laplace’s equation.

  engineering.

• Understand  the  significance  of  Laplace’s  equation  in  physics  and

Objective:

Laplace’s equation : The occurrence of Laplace’s equation in physics

  UNIT 4.1

MODULE 4
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𝜕2𝜑

𝜕𝑥2
+
𝜕2𝜑

𝜕𝑦2
+
𝜕2𝜑

𝜕𝑧2
=  0 

In two dimensions (x, y), it simplifies to: 

𝜕2𝜑

𝜕𝑥2
+
𝜕2𝜑

𝜕𝑦2
=  0 

For cylindrical coordinates (r, θ, z), Laplace's equation takes the form: 

(
1

𝑟
)
𝜕

𝜕𝑟
  (𝑟

𝜕𝜑

𝜕𝑟
)   +  (

1

𝑟2
)
𝜕2𝜑

𝜕𝜃2
 +

𝜕2𝜑

𝜕𝑧2
 =  0  

For spherical coordinates (r, θ, φ), where r is the radial distance, θ is the polar 

angle, and φ is the azimuthal angle, the equation becomes: 

(
1

𝑟2
)
𝜕

𝜕𝑟
(𝑟2

𝜕𝜑

𝜕𝑟
 ) + (

1

𝑟2
𝑠𝑖𝑛 𝜃)

𝜕

𝜕𝜃
  (𝑠𝑖𝑛 𝜃

𝜕𝜑

𝜕𝜃
) + (

1

𝑟2
𝑠𝑖𝑛2𝜃)

𝜕2𝜑

𝜕𝜑2
  =  0 

Properties of Laplace's Equation 

Laplace's equation has several important mathematical properties: 

1. Linearity: If φ₁ and φ₂ are solutions to Laplace's equation, then any 

linear combination a·φ₁ + b·φ₂ (where a and b are constants) is also a 

solution. 

2. Harmonic Functions: Solutions to Laplace's equation are called 

harmonic functions. These functions have the special property that 

the value at any point is equal to the average of the values on any 

sphere (in 3D) or circle (in 2D) centered at that point. 

3. Maximum Principle: A non-constant harmonic function cannot 

attain its maximum or minimum value inside the domain; these 

extreme values must occur on the boundary. 

4. Analyticity: Harmonic functions are infinitely differentiable 

(smooth) and analytic, meaning they can be represented by power 

series. 

5. Mean Value Property: The value of a harmonic function at any point 

equals the average value of the function over any sphere centered at 

that point. 
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Boundary Value Problems 

Laplace's equation is typically solved as a boundary value problem, where we 

seek a function φ that: 

• Satisfies Laplace's equation ∇²φ = 0 inside a domain D 

• Satisfies specified conditions on the boundary of D 

The most common types of boundary conditions are: 

1. Dirichlet boundary condition: The value of φ is specified on the 

boundary φ = f on the boundary of D 

2. Neumann boundary condition: The normal derivative of φ is 

specified on the boundary 
𝜕𝜑

𝜕𝑛
=  𝑔  on the boundary of D 

3. Mixed boundary condition: A combination of Dirichlet and 

Neumann conditions αφ + β∂φ/∂n = h on the boundary of D 

The solution to Laplace's equation with appropriate boundary conditions 

exists and is unique (under certain conditions). This is a powerful result in the 

theory of partial differential equations. 

4.1.2 Occurrence of Laplace's Equation in Physics 

Laplace's equation appears in many areas of physics where we study potential 

fields. Here are some of the most important physical contexts: 

Electrostatics 

In electrostatics, the electric potential V in a region without electric charges 

satisfies Laplace's equation: 

𝛻²𝑉 =  0 

This follows from two of Maxwell's equations: 

• Gauss's law for electricity in a charge-free region: 𝛻 · 𝐸 =  0 

• The relationship between electric field and potential: 𝐸 =  −𝛻𝑉 
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Combining these, we get Laplace's equation for the electric potential. The 

solutions describe how electric potential varies in space around charged 

objects, after we've moved away from the charges themselves. 

Example: The electric potential around a point charge q at the origin is given 

by: 

𝑉(𝑟) =
𝑞

4𝜋𝜖0𝑟
 

where 𝜖0 is the permittivity of free space and r is the distance from the origin. 

This function satisfies Laplace's equation everywhere except at r = 0, where 

the charge is located. 

Gravitational Fields 

Similarly, in Newton's theory of gravitation, the gravitational potential Φ in 

regions of space without mass satisfies: 

𝛻²𝛷 =  0 

This follows from Newton's law of universal gravitation and the relationship 

between gravitational field g and potential: 𝑔 =  −𝛻𝛷. 

Example: The gravitational potential outside a spherically symmetric mass 

distribution (like a planet or star) is: 

𝛷(𝑟)  =  −
𝐺𝑀

𝑟
 

where G is the gravitational constant, M is the total mass, and r is the distance 

from the center of mass. This potential satisfies Laplace's equation in the 

region outside the mass. 

Heat Conduction in Steady State 

In heat conduction, the temperature T in a medium satisfies the heat equation: 

𝜕𝑇

𝜕𝑡
=  𝛼𝛻2𝑇 
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where α is the thermal diffusivity of the material. In steady-state conditions, 

when the temperature doesn't change with time (∂T/∂t = 0), this reduces to 

Laplace's equation: 

∇²T = 0 

The solutions describe equilibrium temperature distributions, like how heat 

distributes itself in a metal plate with fixed temperatures at the boundaries. 

Fluid Dynamics 

In fluid dynamics, the velocity potential φ for irrotational flow of an 

incompressible fluid satisfies Laplace's equation: 

∇²φ = 0 

The fluid velocity v is related to the potential by v = ∇φ. Solutions to this 

equation describe how fluids flow around obstacles, through channels, or in 

other configurations. 

Magnetostatics 

In magnetostatics, the magnetic scalar potential ψ in regions without currents 

satisfies: 

∇²ψ = 0 

This follows from the magnetostatic equations in current-free regions. 

Quantum Mechanics 

In quantum mechanics, the time-independent Schrödinger equation for a free 

particle is: 

−
ℏ2

2𝑚
𝛻²𝜓  =  𝐸𝜓 

where ψ is the wave function, ℏ is the reduced Planck constant, m is the 

particle mass, and E is the energy. For a particle with zero energy, this reduces 

to Laplace's equation. 
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Complex Analysis 

In complex analysis, if f(z) = u(x,y) + iv(x,y) is an analytic function (where z 

= x + iy), then both the real part u and the imaginary part v satisfy Laplace's 

equation: 

𝛻²𝑢 =  0 𝑎𝑛𝑑 𝛻²𝑣 =  0 

This connection between complex analysis and potential theory is powerful 

for solving two-dimensional problems. 

Methods for Solving Laplace's Equation 

There are several methods to solve Laplace's equation, depending on the 

geometry of the problem and the boundary conditions: 

1. Separation of Variables 

This is one of the most powerful methods for solving Laplace's equation in 

domains with simple geometries. The idea is to assume that the solution can 

be written as a product of functions, each depending on only one coordinate. 

For example, in 2D Cartesian coordinates, we might try:  

𝜑(𝑥, 𝑦)  =  𝑋(𝑥)𝑌(𝑦) 

Substituting this into Laplace's equation and dividing by X(x)Y(y), we get: 

(
1

𝑋
)
𝑑2𝑋

𝑑𝑥2
 +  (

1

𝑌
)
𝑑2𝑌

𝑑𝑦2
 =  0  

which can be rewritten as: 

(
1

𝑋
)
𝑑2𝑋

𝑑𝑥2
 =  −(

1

𝑌
)
𝑑2𝑌

𝑑𝑦2
  

Since the left side depends only on x and the right side only on y, both sides 

must equal a constant (call it λ²): 

𝑑2𝑋

𝑑𝑥2
 =  𝜆2𝑋 

𝑑2𝑌

𝑑𝑦2
 =  −𝜆²𝑌 
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These ordinary differential equations have solutions of the form: 

𝑋(𝑥)  =  𝐴 · 𝑒𝜆𝑥  +  𝐵 · 𝑒−𝜆𝑥  𝑌(𝑦)  =  𝐶 · 𝑐𝑜𝑠(𝜆𝑦)  +  𝐷 · 𝑠𝑖𝑛(𝜆𝑦)  

The constants A, B, C, D, and λ are determined by the boundary conditions. 

2. Method of Images 

This method is useful for problems with simple boundaries, especially in 

electrostatics. The idea is to replace the boundary with an appropriate 

arrangement of fictitious "image" charges or sources such that the boundary 

conditions are satisfied. 

3. Green's Functions 

Green's functions provide a powerful approach for solving inhomogeneous 

differential equations. For Laplace's equation, the Green's function G satisfies: 

𝛻²𝐺(𝑟, 𝑟′)  =  𝛿(𝑟 − 𝑟′) 

where δ is the Dirac delta function, and r and r' are position vectors. Once the 

Green's function is known, the solution can be constructed by integration. 

4. Conformal Mapping 

For two-dimensional problems, conformal mapping from complex analysis 

can transform a complicated domain into a simpler one where the solution is 

known. 

5. Numerical Methods 

For complex geometries or boundary conditions, numerical methods like 

finite differences, finite elements, or boundary element methods are used to 

approximate the solution. 

Solved Examples of Laplace's Equation 

Example 1: Temperature Distribution in a Rectangular Plate 
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Problem: Find the steady-state temperature distribution T(x,y) in a 

rectangular plate with dimensions 0 ≤ x ≤ a and 0 ≤ y ≤ b. The boundary 

conditions are: 

• T(0,y) = 0 for 0 ≤ y ≤ b (left edge is at 0°C) 

• T(a,y) = 0 for 0 ≤ y ≤ b (right edge is at 0°C) 

• T(x,0) = 0 for 0 ≤ x ≤ a (bottom edge is at 0°C) 

• T(x,b) = f(x) for 0 ≤ x ≤ a (top edge has a prescribed temperature f(x)) 

Solution: 

The temperature T(x,y) satisfies Laplace's equation: 𝛻2𝑇 =
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
=  0 

We'll use separation of variables, assuming 𝑇(𝑥, 𝑦)  =  𝑋(𝑥)𝑌(𝑦). 

Substituting into Laplace's equation: 𝑋′′(𝑥)𝑌(𝑦) +  𝑋(𝑥)𝑌′′(𝑦) =  0 

Dividing by 𝑋(𝑥)𝑌(𝑦):
𝑋′′(𝑥)

𝑋(𝑥)
 +

𝑌′′(𝑦)

𝑌(𝑦)
 =  0 

This means: 
𝑋′′(𝑥)

𝑋(𝑥)
 =  −

𝑌′′(𝑦)

𝑌(𝑦 )
 =  −𝜆² 

So we have two ordinary differential equations:  

𝑋′′(𝑥) + 𝜆2𝑋(𝑥) =  0  

𝑌′′(𝑦) − 𝜆2𝑌(𝑦) =  0  

The general solutions are:  

𝑋(𝑥) =  𝐴 · cos(𝜆𝑥) +  𝐵 · sin(𝜆𝑥)𝑌(𝑦) =  𝐶 · 𝑒𝜆𝑦  +  𝐷 · 𝑒−𝜆𝑦 

Applying the boundary conditions: 

• 𝑇(0, 𝑦)  =  0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑋(0)  =  0, 𝑠𝑜 𝐴 =  0 

• 𝑇(𝑎, 𝑦) =  0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑋(𝑎) =  0, 𝑠𝑜 𝑠𝑖𝑛(𝜆𝑎) =  0,

𝑤ℎ𝑖𝑐ℎ 𝑚𝑒𝑎𝑛𝑠 𝜆ₙ =  𝑛𝜋/𝑎 𝑓𝑜𝑟 𝑛 =  1, 2, 3, . . . 

Now our solution has the form: 𝑋(𝑥) =  𝐵 · 𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
) 
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𝑌(𝑦) =  𝐶 · 𝑒
𝑛𝜋𝑦

𝑎 +  𝐷 · 𝑒−
𝑛𝜋𝑦

𝑎   

It's more convenient to rewrite Y(y) as:  

𝑌(𝑦) =  𝐶′ · 𝑠𝑖𝑛ℎ (
𝑛𝜋𝑦

𝑎
) + 𝐷′ · 𝑐𝑜𝑠ℎ (

𝑛𝜋𝑦

𝑎
) 

The boundary condition T(x,0) = 0 implies Y(0) = 0, so D' = 0. 

Our solution now has the form: 𝑇(𝑥, 𝑦) =  𝛴 𝐵ₙ · 𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
) · 𝑠𝑖𝑛ℎ (

𝑛𝜋𝑦

𝑎
) 

For the final boundary condition T(x,b) = f(x), we have:  

𝑓(𝑥) =  𝛴 𝐵ₙ · 𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
) · 𝑠𝑖𝑛ℎ (

𝑛𝜋𝑏

𝑎
) 

Setting 𝐸ₙ =  𝐵ₙ · 𝑠𝑖𝑛ℎ (
𝑛𝜋𝑏

𝑎
), we get: 𝑓(𝑥) =  𝛴 𝐸ₙ · 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑎
) 

This is a Fourier sine series for f(x), and the coefficients are: 

 𝐸ₙ =  (
2

𝑎
) ∫ 𝑓(𝑥) · 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑎
)  𝑑𝑥

𝑎

0

 

Therefore: 𝐵ₙ =
 𝐸ₙ

𝑠𝑖𝑛ℎ(
𝑛𝜋𝑏

𝑎
)
 =  (

2

𝑎
)
∫ 𝑓(𝑥)·𝑠𝑖𝑛(

𝑛𝜋𝑥

𝑎
) 𝑑𝑥

𝑎

0

𝑠𝑖𝑛ℎ(
𝑛𝜋𝑏

𝑎
)

  

The final solution is: 

 𝑇(𝑥, 𝑦) =  ∑ [  (
2

𝑎
)
∫ 𝑓(𝑥)·𝑠𝑖𝑛(

𝑛𝜋𝑥

𝑎
) 𝑑𝑥

𝑎

0

𝑠𝑖𝑛ℎ(
𝑛𝜋𝑏

𝑎
)

· sin (
𝑛𝜋𝑥

𝑎
) · sinh (

𝑛𝜋𝑦

𝑎
) ]∞

𝑛=1      

 

 

 

 Solution:

potential V₀, and the outer sphere is grounded (V = 0).

conducting  spheres  with  radii  a  and  b  (a  <  b).  The  inner  sphere  is  held  at 

Problem: Find the electric potential V(r) in the region between two concentric 

Example 2: Electric Potential Between Concentric Spheres

explicitly.

For  a  specific  function  f(x),  we  can  compute  the  Fourier  coefficients 
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Due to the spherical symmetry, the potential V depends only on the radial 

coordinate r, and Laplace's equation in spherical coordinates simplifies to: 

(
1

𝑟2
)
𝜕

𝜕𝑟
(𝑟2

𝜕𝑉

𝜕𝑟
)  =  0 

Multiplying by r², we get: 
𝜕

𝜕𝑟
 (𝑟2

𝜕𝑉

𝜕𝑟
  )  =  0  

Integrating once: 𝑟2
𝜕𝑉

𝜕𝑟
  =  𝐶₁ 

Dividing by r² and integrating again: 𝑉(𝑟)  =  −
𝑐1

𝑟
 +  𝐶₂ 

The boundary conditions are: 

• V(a) = V₀ 

• V(b) = 0 

Substituting these conditions: 𝑉₀ =  −𝐶₁/𝑎  +  𝐶₂ 0 =  −𝐶₁/𝑏 +  𝐶₂ 

Solving for C₁ and C₂: 𝐶₂ =  𝑉₀ ·
𝑏

𝑏−𝑎
 𝐶₁ =  −𝑉₀ ·

𝑎𝑏

𝑏−𝑎
 

Therefore, the electric potential is: 𝑉(𝑟)  =  𝑉₀ ·
𝑏−𝑟

𝑏−𝑎
·
𝑎

𝑟
 

This solution shows that the potential decreases from V₀ at r = a to 0 at r = b, 

but not linearly with r. The electric field E = -∇V points radially outward and 

has magnitude |𝐸|  =  𝑉₀ ·
𝑎𝑏

[(𝑏−𝑎)𝑟2]
. 

Example 3: Flow around a Cylinder 

Problem: Find the velocity potential φ for the two-dimensional irrotational, 

incompressible flow of a fluid around a circular cylinder of radius a. Far from 

the cylinder, the flow approaches a uniform horizontal flow with velocity U. 

Solution: 

In polar coordinates (r, θ), Laplace's equation for the velocity potential is: 

(
1

𝑟
)
𝜕

𝜕𝑟
(𝑟

𝜕𝜑

𝜕𝑟
  

1

𝑟2
)
𝜕2𝜑

𝜕𝜃2
 =  0 ) + (
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The boundary conditions are: 

• At r = a (cylinder surface): 
𝜕𝜑

𝜕𝑟
=  0 (no flow through the surface) 

• 𝐴𝑠 𝑟 →  ∞: 𝛻𝜑 →  𝑈 · î (uniform flow in the x-direction) 

The uniform flow in the x-direction has velocity potential 𝜑0 =  𝑈 · 𝑟 ·

cos(𝜃)   in polar coordinates. 

Let's try a solution of the form: 𝜑(𝑟, 𝜃)  =  𝑈 · 𝑟 · 𝑐𝑜𝑠(𝜃)  +  𝑓(𝑟, 𝜃) 

where f(r,θ) represents the disturbance due to the cylinder. 

Due to the symmetry of the problem, we expect f to have the form  

𝑓(𝑟, 𝜃)  =  𝑔(𝑟) · 𝑐𝑜𝑠(𝜃). 

Substituting this into Laplace's equation and solving for g(r), we find that 

𝑔(𝑟) =
𝐵

𝑟
   for some constant B. 

So our solution has the form: 𝜑(𝑟, 𝜃)  =  𝑈 · 𝑟 · 𝑐𝑜𝑠(𝜃)  +  𝐵 ·
𝑐𝑜𝑠(𝜃)

𝑟
 

The boundary condition at r = a gives:  

𝜕𝜑

𝜕𝑟
|{𝑟=𝑎}  =  𝑈 · 𝑐𝑜𝑠(𝜃) −  𝐵 ·

𝑐𝑜𝑠(𝜃)

𝑎2
=  0 

This means B = U·a². 

Therefore, the velocity potential is: 𝜑(𝑟, 𝜃) =  𝑈 · (𝑟 +
𝑎2

𝑟
) · 𝑐𝑜𝑠(𝜃) 

The corresponding stream function (which is orthogonal to the potential) is: 

𝜓(𝑟, 𝜃) =  𝑈 · (𝑟 −
𝑎2

𝑟
) · 𝑠𝑖𝑛(𝜃) 

This solution describes the flow field around the cylinder, including the 

stagnation points at (r,θ) = (a,0) and (a,π). 

Example 4: Temperature in a Semi-Infinite Domain 
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Problem: Find the steady-state temperature T(x,y) in a semi-infinite domain 

y > 0, where the boundary at y = 0 has temperature T(x,0) = T₀ for |x| < a and 

T(x,0) = 0 for |x| > a. 

Solution: 

The temperature satisfies Laplace's equation: 𝛻2𝑇 =
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
=  0  

We can solve this using the method of Fourier transforms. Taking the Fourier 

transform with respect to x: 

𝑇̃(𝑘, 𝑦) =  ∫ 𝑇(𝑥, 𝑦) · 𝑒{−𝑖𝑘𝑥} 𝑑𝑥   
∞

−∞

 

Laplace's equation becomes: −𝑘2𝑇̃(𝑘, 𝑦) +
𝑑2𝑇̃

𝑑𝑦2
=  0 

The general solution is: 𝑇̃(𝑘, 𝑦) =  𝐴(𝑘) · 𝑒{|𝑘|𝑦}  +  𝐵(𝑘) · 𝑒{−|𝑘|𝑦 }  

Since the temperature must remain bounded as y → ∞, we must have  

A(k) = 0. So: 𝑇 (𝑘, 𝑦)  =  𝐵(𝑘) · 𝑒{−|𝑘|𝑦} 

The boundary condition at y = 0 gives: 

 𝑇 (𝑘, 0)  =  𝐵(𝑘)  =  ∫ 𝑇(𝑥, 0) · 𝑒{−𝑖𝑘𝑥} 𝑑𝑥   
∞

−∞
 

Given our boundary condition: 

 𝑇(𝑥, 0)  =  𝑇₀ 𝑓𝑜𝑟  |𝑥|  <  𝑎        𝑇(𝑥, 0)  =  0 𝑓𝑜𝑟 |𝑥|  >  𝑎 

We have: 𝐵(𝑘)  =  𝑇₀ · ∫ 𝑒{−𝑖𝑘𝑥} 𝑑𝑥 
𝑎

−𝑎
 =  𝑇₀ ·

2𝑠𝑖𝑛(𝑘𝑎)

𝑘
   

Therefore: 𝑇 (𝑘, 𝑦)  =  𝑇₀ · (2𝑠𝑖𝑛(𝑘𝑎))/(𝑘) · 𝑒{−|𝑘|𝑦}    

To get T(x,y), we take the inverse Fourier transform:  
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𝑇(𝑥, 𝑦)  =  (
1

2𝜋
) · ∫  𝑇 (𝑘, 𝑦) · 𝑒{𝑖𝑘𝑥} 𝑑𝑘

∞

−∞

 

=  (𝑇₀/𝜋) ·  ∫ (𝑠𝑖𝑛(𝑘𝑎)/𝑘) · 𝑒{−𝑘𝑦} · 𝑐𝑜𝑠(𝑘𝑥) 𝑑𝑘
∞

0

 

This integral can be evaluated to give: 

 𝑇(𝑥, 𝑦) =  (
𝑇0
𝜋
) · 𝑡𝑎𝑛−1 (

2𝑎

(𝑥 − 𝑎)2   + 𝑦2 − (𝑥 + 𝑎)2 − 𝑦2
) 

This solution shows how the heat spreads out from the heated segment of the 

boundary into the semi-infinite domain. 

Example 5: Electrostatic Potential of a Charged Ring 

Problem: Find the electrostatic potential V(r,θ) outside a uniformly charged 

ring of radius a lying in the xy-plane and centered at the origin. The total 

charge on the ring is Q. 

Solution: 

Due to the azimuthal symmetry, the potential V depends only on the radial 

distance r and the polar angle θ (in spherical coordinates). Laplace's equation 

in spherical coordinates with azimuthal symmetry is: 

(
1

𝑟2
)
𝜕

𝜕𝑟
 (𝑟2

𝜕𝑉

𝜕𝑟
  )  + (

1

𝑟2
𝑠𝑖𝑛 𝜃)

𝜕

𝜕𝜃
   (𝑠𝑖𝑛 𝜃

𝜕𝑉

𝜕𝜃
)  =  0 

We can use separation of variables, assuming 𝑉(𝑟, 𝜃)  =  𝑅(𝑟) · 𝑃(𝜃). 

Substituting and dividing by V, we get: 

 (
1

𝑅
) · (

1

𝑟2
 𝑣  ) ·

𝑑

𝑑𝑟
 (𝑟2

𝑑𝑅

𝑑𝑟
) + (

1

𝑃
) · (

1

𝑠𝑖𝑛𝜃
 ) ·

𝑑

𝑑𝜃
(𝑠𝑖𝑛 𝜃 ·

𝑑𝑃

𝑑𝜃
 )   =  0 

Setting each term equal to a constant: 

 (
1

𝑅
) · (

1

𝑟2
) ·

𝑑

𝑑𝑟
(𝑟2

𝑑𝑅

𝑑𝑟
)  =  𝜆 (

1

𝑃
) · (

1

𝑠𝑖𝑛𝜃
 ) ·

𝑑

𝑑𝜃
(𝑠𝑖𝑛 𝜃 ·

𝑑𝑃

𝑑𝜃
)  =  −𝜆 

For the potential to be finite at r = 0 and to approach 0 as r → ∞, we need  
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λ = ℓ(ℓ+1) for ℓ = 0, 1, 2, ... 

The radial equation becomes: 
𝑑

𝑑𝑟
(𝑟2

𝑑𝑅

𝑑𝑟
)  =  ℓ(ℓ + 1) · 𝑟² · 𝑅 

with solutions: 𝑅(𝑟) =  𝐴ₗ · 𝑟ℓ  +  
𝐵1

𝑟ℓ+1
 

The angular equation is: (
1

𝑠𝑖𝑛𝜃
 ) ·

𝑑

𝑑𝜃
(𝑠𝑖𝑛 𝜃 ·

𝑑𝑃

𝑑𝜃
) +  ℓ(ℓ + 1) · 𝑃 =  0 

which is the Legendre equation with solutions 𝑃(𝜃)  =  𝑃ₗ(𝑐𝑜𝑠𝜃), where Pₗ 

are the Legendre polynomials. 

For r > a (outside the ring), the potential must vanish as r → ∞, so only the 

1

𝑟ℓ+1
  terms contribute: 𝑉(𝑟, 𝜃) =  ∑ (

𝐵1

𝑟ℓ+1
) · 𝑃ₗ(𝑐𝑜𝑠 𝜃)∞

ₗ=0  

To determine the coefficients Bₗ, we use the boundary condition that the 

potential must match the potential of the ring at r = a. For a uniformly charged 

ring of radius a and total charge Q, the potential can be shown to be: 

𝑉(𝑟, 𝜃)  =  (
𝑄

4𝜋𝜀0
) · (

1

√𝑟2 + 𝑎2 −  2 · 𝑎 · 𝑟 · 𝑠𝑖𝑛 𝜃
) 

Expanding this in terms of Legendre polynomials and comparing with our 

series solution, we can determine the coefficients Bₗ. 

For the leading terms, we have: 𝐵0 =
𝑄

4𝜋𝜀0
  𝐵1 =  0  𝐵2 =

𝑄·𝑎2

8𝜋𝜀0
 

The final solution for the potential is: 

 𝑉(𝑟, 𝜃) =  (
𝑄

4𝜋𝜀0
) · (

1

𝑟
) +

𝑄·𝑎2

8𝜋𝜀0
·
3𝑐𝑜𝑠2𝜃 − 1

𝑟3
+ … 

This is an expansion in terms of multipole moments, with the leading term 

being the monopole (point charge) term, and the next non-zero term being the 

quadrupole term. 

Unsolved Problems (For Practice) 

Problem 1: Heat Flow in a Cylindrical Shell 
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physicists,  engineers,  and  applied  mathematicians.  Understanding  these

conformal mapping,  and  numerical techniques form an  essential  toolkit  for 

equation  separation  of  variables,  method  of  images,  Green's  functions, 

properties  and  physical  interpretations. The  methods  for  solving  Laplace's 

solutions,  known  as  harmonic  functions,  have  beautiful  mathematical 

describing a wide range of physical phenomena involving potential fields. Its 

Laplace's  equation  is  a  fundamental  equation  in  mathematical  physics, 

Conclusion

𝑥 → ±∞.

given that the flow approaches a uniform horizontal flow with velocity U as 

obstacle 0 ≤ x ≤ L, 0 ≤ y ≤ H removed. Find the velocity potential φ(x,y)

a  step.  The  flow  domain  is  the  upper  half-plane  y  >  0  with  a  rectangular

Consider the two-dimensional potential flow of an incompressible fluid over 

Problem 5: Flow Over a Step

0 < y < a, and T(0,y) = 0 for y > a.

x > 0, y > 0. The boundary conditions are T(x,0) = 0 for x > 0, T(0,y) = T₀ for 

Find the steady-state temperature T(x,y) in a quarter-infinite plate defined by 

Problem 4: Temperature in a Quarter-Infinite Plate

at any point in space.

the origin. Find the gravitational potential Φ(r,θ) and the gravitational field g 

A thin uniform ring of mass M and radius a lies in the xy-plane centered at 

Problem 3: Gravitational Field of a Uniform Ring

circular arc r = a (for 0 ≤ θ ≤ α) is held at potential V = V₀.

α, where the straight edges θ = 0 and θ = α are held at potential V = 0, and the 

Find the electric potential V(r,θ) in a wedge-shaped region 0 ≤ r < ∞, 0 ≤ θ ≤ 

Problem 2: Electric Potential in a Wedge

T₂. Find the steady-state temperature distribution T(r) inside the shell.

inner surface is kept at temperature T₁, and the outer surface at temperature 

Consider a long cylindrical shell with inner radius a and outer radius b. The 
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methods and their applications provides deep insights into the behavior of 

physical systems governed by potential theory. The examples provided 

illustrate how Laplace's equation arises in various physical contexts and how 

to approach solving it with different boundary conditions and geometries. The 

unsolved problems offer opportunities to apply these methods to new 

situations and deepen your understanding of potential theory. As you continue 

to explore this fascinating subject, you'll discover that Laplace's equation 

serves as a bridge connecting different areas of physics and mathematics, from 

complex analysis to quantum mechanics, from fluid dynamics to 

electromagnetism, making it one of the most beautiful and useful equations in 

all of science. 
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𝛻2𝛷 =
𝜕2𝛷

𝜕𝑥2
+

𝜕2𝛷

𝜕𝑦2
+

𝜕2𝛷

𝜕𝑧2
    

 

 

 

 

 

         

 

 

 

             

         

  

  

                  

  

 

Cartesian coordinates (x, y, z), the Laplacian operator is expressed as:

where ∇² is the Laplacian operator and Φ is the scalar potential function. In 

𝛻²𝛷 = 0

heat transfer. It is written as:

frequently in physics, particularly in electromagnetism, fluid dynamics, and 

Laplace's equation is a second-order partial differential equation that appears 

4.2.1Elementary Solutions of Laplace's Equation

                                   Elementary solution of Laplace’s equation

UNIT 4.2

Separation of Variables Method

is harmonic.

𝑎² + 𝑏² + 𝑐² = 0. For example, 𝑒𝑥+𝑖𝑦 = 𝑒𝑥(𝑐𝑜𝑠 𝑦 + 𝑖 𝑠𝑖𝑛 𝑦)

Exponential  Solutions:  Functions  of  the  form 𝑒𝑎𝑥+𝑏𝑦+𝑐𝑧 where 4.

These represent saddle-shaped potential surfaces.

𝛷(𝑥, 𝑦, 𝑧) = 𝑥² + 𝑦² − 2𝑧²

𝛷(𝑥, 𝑦, 𝑧) = 𝑥2 − 𝑦2 𝑜𝑟 𝛷(𝑥, 𝑦, 𝑧) = 2𝑥𝑦 𝑜𝑟

For example:

Quadratic Function: Certain quadratic functions can be harmonic. 3.

gradient (a, b, c).

and  d  are  constants.  This  represents  a  uniform  field  with  constant 

Linear Function: 𝛷(𝑥, 𝑦, 𝑧) = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑, where a, b, c, 2.

represents a uniform potential field with no variation in any direction.

Constant  Function:  Φ(x, y,  z)  =  C,  where  C is any constant.  This 1.

equation include:

In the Cartesian coordinate system, some elementary solutions of Laplace's 

Cartesian Coordinates Solutions

coordinate systems and discuss their physical significance.

now explore several elementary solutions of Laplace's equation in different 

Functions that  satisfy  Laplace's  equation  are  called  harmonic  functions.  I'll 
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A powerful technique for finding solutions to Laplace's equation is the method 

of separation of variables. We assume that the solution can be written as a 

product of functions, each depending on only one variable. 

For example, in Cartesian coordinates, we might seek solutions of the form: 

𝛷(𝑥, 𝑦, 𝑧)  =  𝑋(𝑥)𝑌(𝑦)𝑍(𝑧) 

Substituting this into Laplace's equation and dividing by Φ: 

(
1

𝑋
) (

𝑑2𝑋

𝑑𝑥2
) + (

1

𝑌
)(

𝑑2𝑌

𝑑𝑦2
) + (

1

𝑍
)(

𝑑2𝑍

𝑑𝑧2
)  =  0 

Since each term depends on a different variable, each must equal a constant: 

(
1

𝑋
)(

𝑑2𝑋

𝑑𝑥2
)  =  −𝑘1

2 (
1

𝑌
) (

𝑑2𝑌

𝑑𝑦2
)  =  −𝑘2

2  (
1

𝑍
)(

𝑑2𝑍

𝑑𝑧2
)  =  𝑘₁² +  𝑘₂² 

The general solutions to these equations are: 

𝑋(𝑥)  =  𝐴 𝑐𝑜𝑠(𝑘₁𝑥)  +  𝐵 𝑠𝑖𝑛(𝑘₁𝑥) 𝑌(𝑦)  

=  𝐶 𝑐𝑜𝑠(𝑘₂𝑦)  +  𝐷 𝑠𝑖𝑛(𝑘₂𝑦) 𝑍(𝑧)  

=  𝐸𝑒
√(𝑘1

2+𝑘2
2)𝑧

 +  𝐹𝑒
−√(𝑘1

2+𝑘2
2)𝑧

 

This gives us a solution of the form:  

Φ(𝑥, 𝑦, 𝑧)  =  [𝐴 𝑐𝑜𝑠(𝑘₁𝑥)  +  𝐵 𝑠𝑖𝑛(𝑘₁𝑥)]  ×  [𝐶 𝑐𝑜𝑠(𝑘₂𝑦)  +

 𝐷 𝑠𝑖𝑛(𝑘₂𝑦)]  × [𝐸𝑒
√(𝑘1

2+𝑘2
2)𝑧

 +  𝐹𝑒
−√(𝑘1

2+𝑘2
2)𝑧

] 

Cylindrical Coordinate Solutions 

In cylindrical coordinates (r, θ, z), Laplace's equation takes the form: 

𝛻2𝛷 =  (
1

𝑟
) (

𝜕

𝜕𝑟
) (𝑟

𝜕𝛷

𝜕𝑟
) + (

1

𝑟2
)(

𝜕2𝛷

𝜕𝜃2
) +

𝜕2𝛷

𝜕𝑧2
 

Using separation of variables with 𝛷(𝑟, 𝜃, 𝑧) =  𝑅(𝑟)𝛩(𝜃)𝑍(𝑧),  we get the 

following elementary solutions: 

1. Axially Symmetric Solutions (independent of θ):  
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𝛷(𝑟, 𝑧)  =  𝐴 +  𝐵 𝑙𝑛(𝑟)  +  𝐶 𝑧 +  𝐷 𝑟² + . .. 

2. General Solutions: 

 𝛷(𝑟, 𝜃, 𝑧) =  [𝐴 𝑟𝑛  +  𝐵 𝑟−𝑛] × [𝐶 𝑐𝑜𝑠(𝑛𝜃) +  𝐷 𝑠𝑖𝑛(𝑛𝜃)]

× [𝐸 𝑒𝑘𝑧  +  𝐹 𝑒−𝑘𝑧]   

where n is an integer and k is a constant. 

3. Bessel Function Solutions:  

𝛷(𝑟, 𝜃, 𝑧) =  [𝐴 𝐽𝑛(𝑘𝑟)   +  𝐵 𝑌𝑛(𝑘𝑟)]

× [𝐶 𝑐𝑜𝑠(𝑛𝜃) +  𝐷 𝑠𝑖𝑛(𝑛𝜃)] × [𝐸 𝑒𝑘𝑧  +  𝐹 𝑒−𝑘𝑧]  

where 𝐽𝑛 𝑎𝑛𝑑 𝑌𝑛 are Bessel functions of the first and second kind, 

respectively. 

 

Spherical Coordinate Solutions 

In spherical coordinates (r, θ, φ), Laplace's equation is: 

𝛻2𝛷 =  (
1

𝑟2
) (

𝜕

𝜕𝑟
) (𝑟2

𝜕𝛷

𝜕𝑟
 )  + (

1

𝑟2
𝑠𝑖𝑛(𝜃)) (

𝜕

𝜕𝜃
) (𝑠𝑖𝑛(𝜃)

𝜕𝛷

𝜕𝜃
)  

+ (
1

𝑟2
𝑠𝑖𝑛2(𝜃))(

𝜕2𝛷

𝜕𝜑2) 

The elementary solutions here are particularly important in physics: 

1. Radial Solutions: 𝛷(𝑟) =  𝐴 +
𝐵

𝑟
 

The 1/r solution represents the potential due to a point charge or point 

mass. 

2. General Solutions using Spherical Harmonics: 

 𝛷(𝑟, 𝜃, 𝜑) =  ∑∑[𝐴𝑙 ,𝑚𝑟𝑙   +  𝐵𝑙 , 𝑚 𝑟
−(𝑙+1) ]𝑌𝑙  ,𝑚(𝜃, 𝜑)   
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where Y_l,m(θ, φ) are the spherical harmonic functions, which are 

the angular part of the solution. 

3. Legendre Polynomial Solutions (for axially symmetric problems): 

𝛷(𝑟, 𝜃) =  ∑[𝐴𝑙𝑟
𝑙  + 𝐵𝑙  𝑟

−(𝑙+1)]𝑃𝑙(𝑐𝑜𝑠(𝜃) )    

where 𝑃𝑙  are the Legendre polynomials. 

Physical Significance of Elementary Solutions 

Many of these elementary solutions have direct physical interpretations: 

1. The 1/r solution in spherical coordinates represents the electrostatic 

potential of a point charge or the gravitational potential of a point 

mass. 

2. The ln(r) solution in cylindrical coordinates represents the potential 

of an infinite line charge or an infinite line mass. 

3. Solutions involving cos(nθ) and sin(nθ) represent multipole fields in 

electrostatics or gravitational fields. 

4. The combination of radial and angular dependence through Legendre 

polynomials represents multipole expansions, which are crucial in 

describing complex charge distributions or mass distributions. 

Method of Images 

The method of images is another powerful technique for solving Laplace's 

equation with specific boundary conditions. The idea is to satisfy boundary 

conditions by placing fictitious charges or sources outside the region of 

interest. For example, the potential due to a point charge near a grounded 

conducting plane can be found by placing an image charge of opposite sign at 

the mirror position behind the plane. 

Green's Function Approach 

Green's functions provide a general approach to solving Laplace's equation 

with arbitrary boundary conditions. The Green's function G(r, r') satisfies: 

𝛻²𝐺(𝑟, 𝑟′)  =  −𝛿(𝑟 −  𝑟′) 
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where δ is the Dirac delta function. Once the Green's function is known, the 

potential due to a distribution of sources can be calculated as: 

𝛷(𝑟) =  ∫𝐺(𝑟, 𝑟′)𝜌(𝑟′)𝑑𝑟′  

where ρ(r') is the source distribution. 
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𝛷(𝑟) =
𝑘

𝑟
 

where k is a constant related to the strength of the source, and r is the distance 

from the origin. 

The equipotential surfaces are: 
𝑘

𝑟
=  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑟 𝑟 =

𝑘

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
 

This gives a family of concentric spheres centered at the origin. The potential 

decreases as 1/r as we move away from the source. 

Dipole Equipotential Surfaces 

For a point source (like a point charge) at the origin, the potential is:

Equipotential Surfaces for Point Sources

family of surfaces surrounding sources or sinks.

Nested  Structure:  Equipotential  surfaces  typically  form  a  nested 3.

remains constant.

moving  along  an  equipotential  surface,  as  the  potential  energy 

No  Work  Along  Equipotential  Surfaces:  No  work  is  done  when 2.

surfaces.

which  represents  the  field,  is  perpendicular  to  the  equipotential 

Orthogonality  to  Field  Lines:  The  gradient  of  the  potential 𝛻𝛷, 1.

Key properties of equipotential surfaces include:

An equipotential surface is defined by the equation: 𝛷(𝑥, 𝑦, 𝑧) = constant

Basic Properties of Equipotential Surfaces

from different potential functions.
In this section, I'll explore various families of equipotential surfaces that arise 
These surfaces provide valuable insights into the structure of potential fields. 
Equipotential surfaces are surfaces where the potential function Φ is constant. 
4.3.1 Families of Equipotential Surfaces

Separation of variables- Problems with axial symmetry
Families of equipotential surfaces - boundary value problems –

UNIT 4.3
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For an electric or gravitational dipole along the z-axis, the potential in 

spherical coordinates is: 𝛷(𝑟, 𝜃) =
𝑝 𝑐𝑜𝑠(𝜃)

𝑟2
 

where p is the dipole moment. 

The equipotential surfaces satisfy: 
𝑝 𝑐𝑜𝑠(𝜃)

𝑟2
=  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

This gives a family of non-spherical surfaces. Close to the origin, they 

resemble distorted spheres, while far from the origin, they approach spheres. 

Quadrupole Equipotential Surfaces 

For a quadrupole, the potential can be expressed as: 𝛷(𝑟, 𝜃) =
𝑞 (3𝑐𝑜𝑠2(𝜃)− 1)

2𝑟3
 

where q is the quadrupole moment. 

The equipotential surfaces have more complex shapes than those of dipoles, 

reflecting the more intricate field structure. 

Line Charge Equipotential Surfaces 

For an infinite line charge along the z-axis, the potential in cylindrical 

coordinates is: 𝛷(𝑟)  =  −𝑘 𝑙𝑛(𝑟)  

where k is a constant related to the linear charge density. 

The equipotential surfaces are: -𝑘 𝑙𝑛(𝑟)  =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑟 𝑟 =  𝑒−
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑘  

This gives a family of concentric cylinders around the z-axis. 

Two Point Charges Equipotential Surfaces 

For two point charges q₁ and q₂ at positions r₁ and r₂, the potential is:  

𝛷(𝑟) =
𝑘1𝑞1

|𝑟 − 𝑟1|
+

𝑘2𝑞2
|𝑟 − 𝑟2|

      

The equipotential surfaces form a family of deformed spheres. For equal 

charges of the same sign, they resemble dumbbell shapes. For charges of 
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opposite signs, they form a family of surfaces resembling a torus for certain 

equipotential values. 

Conducting Surfaces as Equipotential Surfaces 

In electrostatics, conducting surfaces are equipotential surfaces. This is 

because any potential difference within a conductor would create an electric 

field, which would cause charges to move until the potential is uniform. 

For example: 

• A conducting sphere forms a spherical equipotential surface. 

• A conducting cylinder forms a cylindrical equipotential surface. 

• A conducting plane forms a planar equipotential surface. 

Equipotential Surfaces in Boundary Value Problems 

In boundary value problems, we often need to find the potential in a region 

with prescribed potentials on the boundaries. The boundaries themselves are 

equipotential surfaces, and the solution to Laplace's equation gives the 

potential throughout the region, with equipotential surfaces interpolating 

between the boundaries. 

Families of Equipotential Surfaces in Different Coordinate Systems 

Cartesian Coordinates 

1. Planar Equipotential Surfaces: For a uniform field E in the x-

direction, the potential is: 𝛷(𝑥, 𝑦, 𝑧)  =  −𝐸𝑥 

The equipotential surfaces are planes perpendicular to the x-axis: x = 

constant 

2. Parabolic Equipotential Surfaces: For certain quadratic potentials, 

such as: 𝛷(𝑥, 𝑦, 𝑧)  =  𝑥² −  𝑦². 

The equipotential surfaces are hyperbolic paraboloids. 

 

174 



Cylindrical Coordinates 

1. Cylindrical Equipotential Surfaces: For a line charge or a 

uniformly charged wire along the z-axis: 𝛷(𝑟, 𝜃, 𝑧)  =  −𝑘 𝑙𝑛(𝑟) 

The equipotential surfaces are cylinders concentric with the z-axis. 

2. Helical Equipotential Surfaces: For certain potentials of the form: 

𝛷(𝑟, 𝜃, 𝑧)  =  𝑓(𝑟)  +  𝑎𝜃 +  𝑏𝑧 

The equipotential surfaces form helical structures around the z-axis. 

Spherical Coordinates 

1. Spherical Equipotential Surfaces: For a point charge at the origin: 

𝛷(𝑟, 𝜃, 𝜑) =
𝑘

𝑟
 

The equipotential surfaces are concentric spheres. 

2. Zonal Equipotential Surfaces: For axially symmetric potentials 

such as: 𝛷(𝑟, 𝜃) =
𝑘 𝑐𝑜𝑠(𝜃)

𝑟2
 

The equipotential surfaces have axial symmetry around the z-axis and 

form a family of non-spherical surfaces. 

Visualization of Equipotential Surfaces 

Visualizing equipotential surfaces can provide valuable insights into the 

behavior of potential fields. Some common visualization techniques include: 

1. Cross-sectional Contour Plots: Drawing contour lines of constant 

potential on a plane crossing the region of interest. 

2. 3D Surface Plotting: Plotting the equipotential surfaces in 3D space, 

often with color coding to indicate the potential value. 

3. Field Line and Equipotential Surface Overlay: Plotting both the 

field lines and equipotential surfaces on the same diagram to illustrate 

their orthogonality. 

Applications of Equipotential Surfaces 
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andin physicsapplicationssurfaces have numerousEquipotential

engineering: 

1. Electrostatic Shielding: Conducting enclosures create equipotential 

surfaces that shield the interior from external electric fields. 

2. Capacitor Design: The shape of capacitor plates influences the 

equipotential surfaces, which affects capacitance. 

3. Gravitational Potential Theory: In celestial mechanics, 

equipotential surfaces help understand the gravitational field structure 

around celestial bodies. 

4. Fluid Flow Analysis: In potential flow theory, equipotential surfaces 

are related to streamlines and help analyze fluid flow patterns. 

5. Heat Transfer Problems: In steady-state heat conduction, 

isothermal surfaces (surfaces of constant temperature) are analogous 

to equipotential surfaces. 

Solved Problems 

Solved Problem 1: Point Charge Potential 

Problem: Find the electric potential due to a point charge q at the origin. 

Verify that the potential satisfies Laplace's equation in the region outside the 

charge, and find the equipotential surfaces. 

Solution: 

The electric potential due to a point charge q at the origin is given by: 

𝛷(𝑟) =
𝑘𝑞

𝑟
     

where 𝑘 =
1

4𝜋𝜀0
 in SI units, and r is the distance from the origin. 

To verify that this satisfies Laplace's equation, we need to compute ∇²Φ in 

spherical coordinates: 

𝛻²𝛷 =  (
1

𝑟2
) (

𝜕

𝜕𝑟
)(𝑟2

𝜕𝛷

𝜕𝑟
) + (

1

𝑟2
𝑠𝑖𝑛(𝜃)) (

𝜕

𝜕𝜃
) (𝑠𝑖𝑛(𝜃)

𝜕𝛷

𝜕𝜃
)   

+  (
1

𝑟2
𝜕2𝛷

𝜕𝜑2) 𝑠𝑖𝑛2(𝜃)) (
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Since Φ depends only on r, the equation simplifies to: 

𝛻2𝛷 =  (
1

𝑟2
) (

𝜕

𝜕𝑟
) (

𝑟2𝜕𝛷

𝜕𝑟
)  

Now, 
𝜕𝛷

𝜕𝑟
= −

𝑘𝑞

𝑟2
  

And    
𝜕

𝜕𝑟
(𝑟2

𝜕𝛷

𝜕𝑟
)  =

𝜕

𝜕𝑟
 (𝑟2  (−𝑘

𝑞

𝑟2
))  =

𝜕

𝜕𝑟
(−𝑘 𝑞)  =  0  

Therefore, 𝛻²𝛷 =  0 𝑓𝑜𝑟 𝑟 >  0, confirming that the potential satisfies 

Laplace's equation outside the charge. 

The equipotential surfaces are given by: 𝛷(𝑟) =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   
𝑘𝑞

𝑟
 =

 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡       𝑟 =
𝑘𝑞

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
  

This represents a family of concentric spheres centered at the origin. Each 

sphere is an equipotential surface, with the potential decreasing as 1/r as we 

move away from the charge. 

Solved Problem 2: Line Charge Potential 

Problem: Find the electric potential due to an infinite line charge with linear 

charge density λ along the z-axis. Verify that it satisfies Laplace's equation in 

the region outside the line, and find the equipotential surfaces. 

Solution: 

The electric potential due to an infinite line charge with linear density λ along 

the z-axis is: 

𝛷(𝑟)  =  −𝑘 𝜆 𝑙𝑛 (
𝑟

𝑟0
) 

where 𝑘 =
1

2𝜋𝜀0
   in SI units, r is the perpendicular distance from the z-axis, 

and r₀ is a reference distance where the potential is defined to be zero. 

To verify that this satisfies Laplace's equation, we need to compute 𝛻²𝛷 in 

cylindrical coordinates: 
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𝛻2𝛷 =  (
1

𝑟
) (

𝜕

𝜕𝑟
) (𝑟

𝜕𝛷

𝜕𝑟
)  + (

1

𝑟2
) (

𝜕2𝛷

𝜕𝜃2
) +

𝜕2𝛷

𝜕𝑧2
. 

Since Φ depends only on r, the equation simplifies to: 

𝛻²𝛷 =  (
1

𝑟
)(

𝜕

𝜕𝑟
) (𝑟

𝜕𝛷

𝜕𝑟
) 

Now,
𝜕𝛷

𝜕𝑟
= −𝑘

𝜆

𝑟
    

And   (
1

𝑟
) (

𝜕

𝜕𝑟
) (𝑟

𝜕𝛷

𝜕𝑟
)  =  (

1

𝑟
) (

𝜕

𝜕𝑟
) (𝑟 (−𝑘

𝜆

𝑟
))  =  (

1

𝑟
) (

𝜕

𝜕𝑟
) (−𝑘𝜆)  =  0  

Therefore, 𝛻²𝛷 =  0 for  𝑟 >  0, confirming that the potential satisfies 

Laplace's equation outside the line charge. 

The equipotential surfaces are given by:  

𝛷(𝑟) =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡       

   −𝑘 𝜆 𝑙𝑛 (
𝑟

𝑟0
)   =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑙𝑛 (
𝑟

𝑟0
)  =  −

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑘 𝜆
 

𝑟

𝑟0
= 𝑒−

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑘 𝜆    

           

 

 

 

 

 Solution:

equipotential surfaces.

Laplace's  equation  in  the  region  outside  the  dipole,  and  describe  the 

pointing  in  the  z-direction  and  located  at  the  origin.  Show  that  it  satisfies 

Problem: Find the electric potential due to an electric dipole of moment p 

Solved Problem 3: Dipole Potential

cylinder is an equipotential surface.

This  represents  a  family  of  concentric  cylinders  around  the  z-axis.  Each 

𝑟 = 𝑟0𝑒
− 

𝑘 𝜆

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
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The electric potential due to an electric dipole with moment p in the z-

direction at the origin is: 

𝛷(𝑟, 𝜃) =
𝑘 𝑝 𝑐𝑜𝑠(𝜃)

𝑟2
    

where k = 1/(4πε₀) in SI units, r is the distance from the origin, and θ is the 

polar angle from the z-axis. 

To verify that this satisfies Laplace's equation, we need to compute ∇²Φ in 

spherical coordinates: 

𝛻²𝛷 =  (
1

𝑟2
) (

𝜕

𝜕𝑟
)(𝑟2

𝜕𝛷

𝜕𝑟
)  + (

1

𝑟2
𝑠𝑖𝑛(𝜃)) (

𝜕

𝜕𝜃
)(𝑠𝑖𝑛(𝜃)

𝜕𝛷

𝜕𝜃
) 

+ (
1

𝑟2
𝑠𝑖𝑛2(𝜃)) (

𝜕2𝛷

𝜕𝜑2) 

Since Φ is independent of φ, the last term is zero. 

Let's compute the derivatives: 

𝜕𝛷

𝜕𝑟
 =  −2

𝑘 𝑝 𝑐𝑜𝑠(𝜃)

𝑟3
𝜕

𝜕𝑟
(𝑟2

𝜕𝛷

𝜕𝑟
)  =

𝜕

𝜕𝑟
(𝑟2 (−2

𝑘 𝑝 𝑐𝑜𝑠(𝜃)

𝑟3
)) 

=
𝜕

𝜕𝑟
(−2𝑘 𝑝

𝑐𝑜𝑠(𝜃)

𝑟
) =  2𝑘 𝑝

𝑐𝑜𝑠(𝜃)

𝑟2
 

For the θ-dependent part:  

𝜕𝛷

𝜕𝜃
 =  −

𝑘 𝑝 𝑠𝑖𝑛(𝜃)

𝑟2
 
𝜕

𝜕𝜃
(𝑠𝑖𝑛(𝜃)

𝜕𝛷

𝜕𝜃
)   =

𝜕

𝜕𝜃
(𝑠𝑖𝑛(𝜃) (−

𝑘 𝑝 𝑠𝑖𝑛(𝜃)

𝑟2
)) 

=
𝜕

𝜕𝜃
(−

𝑘 𝑝 𝑠𝑖𝑛2(𝜃)

𝑟2
)  =  − (𝑘

𝑝

𝑟2
)
𝜕

𝜕𝜃
(𝑠𝑖𝑛2(𝜃))   

=  − (𝑘
𝑝

𝑟2
) (2𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜃))  =  −

2𝑘 𝑝 𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜃)

𝑟2
 

Now, combining the terms: 

 𝛻2𝛷 =  (
1

𝑟2
) (2𝑘 𝑝

𝑐𝑜𝑠(𝜃)

𝑟2
)  + (

1

𝑟2
𝑠𝑖𝑛(𝜃)) (−

2𝑘 𝑝 𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜃)

𝑟2
)  
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=
2𝑘 𝑝 𝑐𝑜𝑠(𝜃)

𝑟4
 −

2𝑘 𝑝 𝑐𝑜𝑠(𝜃)

𝑟4𝑠𝑖𝑛(𝜃)
 (𝑠𝑖𝑛(𝜃)) 

=
2𝑘 𝑝 𝑐𝑜𝑠(𝜃)

𝑟4
 −

2𝑘 𝑝 𝑐𝑜𝑠(𝜃)

𝑟4
 =  0 

Therefore, ∇²Φ = 0 everywhere except at the origin, confirming that the 

potential satisfies Laplace's equation outside the dipole. 

The equipotential surfaces are given by: 

 𝛷(𝑟, 𝜃)  =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡        (𝑘 𝑝 𝑐𝑜𝑠(𝜃))/𝑟² =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Rearranging, we get: 𝑟2 =
𝑘 𝑝 cos(𝜃)

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
 

For a positive constant, the equipotential surfaces exist only where cos(θ) > 0 

(i.e., in the upper hemisphere). For a negative constant, they exist only where 

cos(θ) < 0 (the lower hemisphere). The surfaces are not spherical but have a 

characteristic "peanut" shape for certain values of the constant. 

Solved Problem 4: Potential Between Concentric Spheres 

Problem: Find the electric potential in the region between two concentric 

spherical conductors of radii a and b (a < b), where the inner sphere is held at 

potential V₁ and the outer sphere at potential V₂. Verify that the solution 

satisfies Laplace's equation and describe the equipotential surfaces. 

Solution: 

Since the problem has spherical symmetry, we can assume that the potential 

depends only on the radial coordinate r. Laplace's equation in spherical 

coordinates for a radially symmetric function is: 

𝛻²𝛷 =  (
1

𝑟2
) (

𝜕

𝜕𝑟
)(

𝑟2𝜕𝛷

𝜕𝑟
)  =  0 

Multiplying by r² and integrating once: 𝑟2  
𝜕𝛷

𝜕𝑟
    =  𝐶1       

𝜕𝛷

𝜕𝑟
  =

𝐶1

𝑟2
    

Integrating again: 𝛷(𝑟)  =  −𝐶₁/𝑟 +  𝐶₂ 
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where C₁ and C₂ are constants of integration to be determined from the 

boundary conditions: 𝛷(𝑎)  =  𝑉₁ 𝑎𝑛𝑑 𝛷(𝑏)  =  𝑉₂ 

Substituting these conditions: V₁ =  −𝐶₁/𝑎 +  𝐶₂          𝑉₂ =  −𝐶₁/𝑏 +  𝐶₂ 

Solving for C₁ and C₂: 𝐶1 =
(𝑉1− 𝑉2)𝑎𝑏

𝑏 − 𝑎
 

𝐶2 =
𝑉1𝑏 − 𝑉2𝑎

𝑏 −  𝑎
 

Therefore, the potential in the region a ≤ r ≤ b is:  

𝛷(𝑟) =
(𝑉1 − 𝑉2)𝑎𝑏

𝑟(𝑏 −  𝑎)
 +

𝑉1𝑏 − 𝑉2𝑎

𝑏 −  𝑎
 

This can be rewritten as: 𝛷(𝑟) =
𝑉1(𝑏 − 𝑟)

𝑏 − 𝑎
+

𝑉2(𝑟 − 𝑎)

𝑏 − 𝑎
 

To verify that this satisfies Laplace's equation, we compute:  

𝜕𝛷

𝜕𝑟
=
𝑉2 − 𝑉1
𝑏 −  𝑎

           𝜕²𝛷/𝜕𝑟² =  0 

Therefore, 𝛻2𝛷 =  (
1

𝑟2
) (

𝜕

𝜕𝑟
) (𝑟2

𝜕𝛷

𝜕𝑟
)  =  (

1

𝑟2
) (

𝜕

𝜕𝑟
) (𝑟2

(𝑉2− 𝑉1)

𝑏 − 𝑎
) =  0 

 

   

         

  

 

 

  describe the equipotential surfaces.

the method of images. Verify that the solution satisfies Laplace's equation and 

grounded conducting plane at z = 0. Find the potential in the region z > 0 using 

Problem: A point charge q is located at position (0, 0, d) above an infinite 

Plane

Solved Problem 5: Method of Images for a Point Charge and Conducting 

  𝑉₂)

equipotential  surface  of  radius: 𝑟 = (𝑉₁𝑏 − 𝑉₂𝑎 − 𝑉(𝑏 − 𝑎))/(𝑉₁ −

Specifically, for any potential V such that V₁ ≤ V ≤ V₂, there is a spherical

Since Φ depends only on r, the equipotential surfaces are concentric spheres. 

The equipotential surfaces are given by: 𝛷(𝑟) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

confirming that the solution satisfies Laplace's equation.
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Solution: 

Using the method of images, we can replace the conducting plane with an 

image charge -q at position (0, 0, -d). The potential in the region z > 0 is then 

the sum of potentials due to the real charge q and the image charge -q: 

𝛷(𝑥, 𝑦, 𝑧)  =  (𝑘 𝑞 / 𝑟₁)  + (𝑘 (−𝑞) / 𝑟₂) 

where 𝑘 =  1/(4𝜋𝜀₀), 𝑟₁ is the distance from (x, y, z) to (0, 0, d), and r₂ is the 

distance from (x, y, z) to (0, 0, -d): 

𝑟₁ =  √(𝑥² +  𝑦² + (𝑧 −  𝑑)²)  

𝑟₂ =  √(𝑥² +  𝑦² + (𝑧 +  𝑑)²) 

Thus, the potential is: 𝛷(𝑥, 𝑦, 𝑧)  =  𝑘 𝑞 (1/𝑟₁ −  1/𝑟₂) 

To verify that this satisfies Laplace's equation, note that both 1/r₁ and 1/r₂ 

individually satisfy Laplace's equation in the region z > 0 (where there are no 

charges). Since Laplace's equation is linear, their difference also satisfies it. 

To verify the boundary condition, when 𝑧 =  0:   𝑟1 =

 √𝑥2 + 𝑦2 + 𝑑2    𝑟2 = √𝑥2 + 𝑦2 + 𝑑2       𝑟₁ =  𝑟₂ 

Therefore, 𝛷(𝑥, 𝑦, 0)  =  𝑘 𝑞 (1/𝑟₁ −  1/𝑟₁)  =  0, confirming that the 

potential is zero on the conducting plane. 

The equipotential surfaces are given by: 1/r₁ - 1/r₂ = constant 

or equivalently: 𝑟₂ −  𝑟₁ =  (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)(𝑟₁𝑟₂) 

For small values of the constant (weak potentials), the equipotential surfaces 

approximately form a family of spheres centered near the charge q. As the 

constant increases, the surfaces become increasingly distorted and are 

eventually influenced significantly by the presence of the conducting plane. 

Unsolved Problems 

Unsolved Problem 1: 
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magnetostatics  to  heat  conduction  and  fluid  dynamics.  The  equipotential

and  analyze  a  wide  range  of  physical  phenomena,  from  electrostatics  and

physics. Through the elementary solutions we've explored, we can understand 

Laplace's equation and its solutions is a foundational topic in mathematical 

the  boundary  conditions.  Describe  the  equipotential  surfaces.  The  study  of 

method of images. Verify that your solution satisfies Laplace's equation and 

d),  where  d  >  R.  Find  the  potential  Φ(r,  θ,  φ)  outside  the  sphere  using  the 

the z-direction. A grounded conducting sphere of radius R is centered at (0, 0, 

A point dipole of moment p is located at the origin, with its axis aligned along 

Unsolved Problem 5:

conditions. Sketch the equipotential surfaces.

Verify  that  your  solution  satisfies  Laplace's  equation  and  the  boundary 

at  potential  V₀.  Find  the  potential  Φ(x,  y,  z)  in  the  upper  half-space  z  >  0. 

A semi-infinite conducting plane occupies the region x > 0, y = 0, and is held 

Unsolved Problem 4:

the cylinders. Describe the equipotential surfaces.

outer cylinder at potential V₂. Find the potential Φ(r, θ) in the region between 

in cylindrical coordinates. The inner cylinder is held at potential V₁ and the 

are placed with their axes along the z-axis at r = 0 and r = d (where d > a + b)

Two long, thin, parallel conducting cylinders of radii a and b (where a < b)

Unsolved Problem 3:

Laplace's equation. Describe and sketch the equipotential surfaces.

the  sphere.  Verify  that  your  solution  satisfies  the  boundary  conditions  and 

field E₀ directed along the z-axis. Find the potential Φ(r, θ) inside and outside 

A  conducting  sphere  of  radius  a  is  placed  in  an  otherwise  uniform  electric 

Unsolved Problem 2:

surfaces.

your  solution  satisfies  Laplace's  equation  and  describe  the  equipotential 

V₁. Find the potential Φ(x, y, z) in the region between the plates. Show that 

the plate at x = 0 held at potential V₀ and the plate at x = a held at potential 

Consider two infinite parallel conducting plates placed at x = 0 and x = a, with 

183 



surfaces provide valuable geometric insights into these physical systems, 

revealing the structure of the underlying fields and helping us visualize 

complex interactions. In practical applications, these solutions serve as 

building blocks for solving more complex boundary value problems through 

techniques such as superposition, expansion in eigenfunctions, and numerical 

methods. The principles of harmonic functions and Laplace's equation 

continue to be fundamental in advanced physics, engineering, and 

mathematical analysis. 

4.3.2  Boundary Value Problems 

Introduction to Boundary Value Problems 

Boundary value problems (BVPs) represent an important class of 

differential equations where the solution must satisfy specific 

conditions at the boundaries of the domain. Unlike initial value 

problems, which specify conditions at a single point, boundary value 

problems require that the solution meet conditions at multiple points or 

along the entire boundary of a region. 

In physical applications, boundary value problems naturally arise when 

modeling phenomena such as heat flow, fluid dynamics, electrostatics, 

and wave propagation. The boundary conditions typically represent 

physical constraints or properties at the edges of the system being 

modeled. 

Types of Boundary Conditions 

There are several common types of boundary conditions: 

1. Dirichlet Conditions: These specify the value of the solution 

at the boundary. 

• Example: u(0) = 0, u(L) = 0 (temperature fixed at both ends) 

2. Neumann Conditions: These specify the derivative of the 

solution at the boundary. 

• Example: u'(0) = 0, u'(L) = 0 (insulated ends in heat flow) 
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3. Robin or Mixed Conditions: These involve both the function 

and its derivative. 

• Example: u'(0) + h·u(0) = 0 (convective heat loss) 

4. Periodic Conditions: The solution and its derivatives match at 

opposite boundaries. 

• Example: u(0) = u(L), u'(0) = u'(L) 

Sturm-Liouville Problems 

A particularly important class of boundary value problems is the Sturm-

Liouville problem, which takes the form: 

[𝑝(𝑥)𝑦′]′ +  𝑞(𝑥)𝑦 +  𝜆𝑟(𝑥)𝑦 =  0 

Subject to boundary conditions at the endpoints of an interval [a,b]. 

Here, p(x), q(x), and r(x) are specified functions, with p(x) > 0 and r(x) 

> 0 throughout the interval, and λ is a parameter. 

The significance of Sturm-Liouville problems lies in their eigenvalues 

and eigenfunctions, which form a complete set that can be used to 

represent functions in series expansions, similar to Fourier series. 

Solving Second-Order Linear BVPs 

Consider a second-order linear BVP: 

𝑎 · 𝑦′′ +  𝑏 · 𝑦′ +  𝑐 · 𝑦 =  𝑓(𝑥) 𝑓𝑜𝑟 𝑥 ∈  [𝛼, 𝛽]   with boundary 

conditions at x = α and x = β 

Method 1: Direct Integration 

For simple cases, we can integrate the differential equation twice and 

use the boundary conditions to determine the integration constants. 
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Method 2: Eigenfunction Expansion 

For homogeneous problems (f(x) = 0), we can seek solutions of the 

form y = Σ cn·ϕn(x), where ϕn(x) are eigenfunctions of the 

corresponding Sturm-Liouville problem. 

Method 3: Green's Functions 

A Green's function G(x,s) represents the response at point x due to a 

unit impulse at point s. The solution can be expressed as: 

𝑦(𝑥)  =  ∫  𝐺(𝑥, 𝑠) · 𝑓(𝑠) · 𝑑𝑠
𝛽

𝛼

 

Applications of Boundary Value Problems 

1. Heat Conduction: Steady-state heat distribution in a rod or plate 

2. Deflection of Beams: Finding the shape of a loaded beam 

3. Electrostatic Potential: Determining the electric potential in a region 

4. Quantum Mechanics: Finding energy states of a particle in a 

potential well 

5. Fluid Flow: Modeling laminar flow in channels 

Solved Problems Related to Boundary Value Problems 

Solved Problem 1: Steady-State Heat Equation 

Problem: Find the steady-state temperature distribution in a rod of 

length L, with ends kept at temperatures T₁ and T₂. 

Solution: The heat equation for steady-state (time-independent) 

conditions is: u''(x) = 0 

With boundary conditions: u(0) = T₁ u(L) = T₂ 

Step 1: Integrate the equation once: u'(x) = C₁ 

Step 2: Integrate again: u(x) = C₁x + C₂ 
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Step 3: Apply the boundary conditions: 

 𝑢(0)  =  𝐶₂ =  𝑇₁ 𝑢(𝐿)  =  𝐶₁𝐿 +  𝐶₂ =  𝑇₂ 

Step 4: Solve for constants: 𝐶₂ =  𝑇₁ 𝐶₁ =  (𝑇₂ −  𝑇₁)/𝐿 

Step 5: Write the final solution: 𝑢(𝑥)  =  𝑇₁ + (𝑇₂ −  𝑇₁)𝑥/𝐿 

This represents a linear temperature distribution between the two ends. 

Solved Problem 2: Vibrating String with Fixed Ends 

Problem: Find the eigenvalues and eigenfunctions for a vibrating string 

of length L with fixed ends. 

Solution: The differential equation is: 𝑦′′(𝑥)  +  𝜆𝑦(𝑥)  =  0 

With boundary conditions: 𝑦(0)  =  0         𝑦(𝐿)  =  0 

Step 1: The general solution depends on the sign of λ. For λ > 0, let λ = 

ω² (we expect oscillatory solutions):  

𝑦(𝑥)  =  𝐴 · 𝑠𝑖𝑛(𝜔𝑥)  +  𝐵 · 𝑐𝑜𝑠(𝜔𝑥) 

Step 2: Apply the first boundary condition, 

 𝑦(0) =  0: 𝐵 · 𝑐𝑜𝑠(0) =  0, 𝑖𝑚𝑝𝑙𝑦𝑖𝑛𝑔 𝐵 =  0.     

So 𝑦(𝑥)  =  𝐴 · 𝑠𝑖𝑛(𝜔𝑥). 

Step 3: Apply the second boundary condition, 

 𝑦(𝐿) =  0:  𝐴 · 𝑠𝑖𝑛(𝜔𝐿)  =  0 

This is satisfied when ωL = nπ for n = 1, 2, 3... (n = 0 gives the trivial 

solution y(x) = 0) 

Step 4: Find the eigenvalues: 𝜔 =
𝑛𝜋

𝐿
  𝑠𝑜   𝜆ₙ =  (

𝑛𝜋

𝐿
)
2
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Step 5: The eigenfunctions are: 𝑦ₙ(𝑥)  =  𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
)  for n = 1, 2, 3... 

 

 

 

    

 

      

     

 

          

     

    

    

 

 

     

 solution.

With  the  same  boundary  conditions,  which  would  have  a  stable 

𝑢′′(𝑥) − 𝑘𝑢(𝑥) = −𝑄

proportional  to  temperature  (Newton's  law  of  cooling),  we  get:

If  we  modify  the  problem  to  include  heat  loss  through  the  sides 

somehow.

indefinitely and no steady state can be reached unless heat can escape 

insulated  ends  and  a  constant  heat  source,  heat  will  accumulate 

This  indicates  a  problem  with  our  approach.  The  issue  is  that  with 

Q = 0 (i.e., there is no heat source).

  𝐶₁ = 0 Since C₁ = 0, this yields QL = 0, which is inconsistent unless 

Step  4:  Apply  the  second  boundary  condition, 𝑢′(𝐿) = 0: − 𝑄𝐿 +

Step 3: Integrate again: 𝑢(𝑥) = −𝑄𝑥²/2 + 𝐶₂

𝑢′(0) = 0: 𝐶₁ = 0 𝑆𝑜 𝑢′(𝑥) = −𝑄𝑥

Step 2: Apply the first boundary condition,

Step 1: Integrate once: 𝑢′(𝑥) = −𝑄𝑥 + 𝐶₁

With boundary conditions: 𝑢′(0) = 0 𝑢′(𝐿) = 0

Where Q represents the constant heat source.

Solution: The differential equation is: 𝑢′′(𝑥) = −𝑄

insulated ends (u'(0) = u'(L) = 0) and a constant heat source throughout.

Problem: Find the steady-state temperature in a rod of length L with 

Solved Problem 3: Insulated Rod with Heat Source

These represent the natural modes of vibration of the string.
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Solved Problem 4: Eigenvalue Problem with Mixed Boundary 

Conditions 

Problem: Find the eigenvalues and eigenfunctions for: 

 𝑦′′(𝑥)  +  𝜆𝑦(𝑥)  =  0 𝑜𝑛 [0, 𝐿] 

With boundary conditions:  

𝑦(0)  =  0 𝑦′(𝐿)  +  ℎ𝑦(𝐿)  =  0 (ℎ 

>  0, 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 ℎ𝑒𝑎𝑡 𝑙𝑜𝑠𝑠 𝑎𝑡 𝑥 =  𝐿) 

Solution: Step 1: The general solution for λ > 0 is: 

 𝑦(𝑥)  =  𝐴 · 𝑠𝑖𝑛(𝜔𝑥)  +  𝐵 · 𝑐𝑜𝑠(𝜔𝑥),𝑤ℎ𝑒𝑟𝑒 𝜔 =  √𝜆 

Step 2: Apply the first boundary condition, 𝑦(0)  =  0: 𝐵 =  0 So 

𝑦(𝑥)  =  𝐴 · 𝑠𝑖𝑛(𝜔𝑥) 

Step 3: Apply the second boundary condition: 

 𝑦′(𝐿)  +  ℎ𝑦(𝐿)  =  0 𝐴 · 𝜔 · 𝑐𝑜𝑠(𝜔𝐿)  +  ℎ · 𝐴 · 𝑠𝑖𝑛(𝜔𝐿)  =  0 

For non-trivial solutions (𝐴 ≠  0): 𝜔 · 𝑐𝑜𝑠(𝜔𝐿) +  ℎ · 𝑠𝑖𝑛(𝜔𝐿)  =

 0 𝑡𝑎𝑛(𝜔𝐿)  =  −𝜔/ℎ 

Step 4: The eigenvalues are the values of λ = ω² that satisfy this 

transcendental equation. Unlike the fixed-end case, these cannot be 

expressed in closed form and must be found numerically. 

Step 5: The eigenfunctions are: yₙ(x) = sin(ωₙx) where ωₙ are the 

solutions to the transcendental equation. 

Solved Problem 5: Green's Function for a Simple BVP 

Problem: Find the Green's function for the boundary value problem: 

𝑦′′(𝑥)  =  𝑓(𝑥) 𝑜𝑛 [0,1] 𝑦(0)  =  𝑦(1)  =  0 
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Solution: Step 1: The Green's function G(x,s) must satisfy: 𝐺′′(𝑥, 𝑠)  =

 𝛿(𝑥 − 𝑠) (where δ is the Dirac delta function) 𝐺(0, 𝑠)  =  𝐺(1, 𝑠)  =

 0 (boundary conditions) 

Step 2: For 𝑥 ≠  𝑠, 𝐺′′(𝑥, 𝑠)  =  0, so G(x,s) is linear in x in each 

region: 𝐺(𝑥, 𝑠)  =  𝐴(𝑠)𝑥 +  𝐵(𝑠) for 0 ≤  𝑥 <  𝑠 𝐺(𝑥, 𝑠)  =

 𝐶(𝑠)𝑥 +  𝐷(𝑠) for 𝑠 <  𝑥 ≤  1 

Step 3: Apply boundary conditions: 𝐺(0, 𝑠) =  0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐵(𝑠) =

 0   𝐺(1, 𝑠) =  0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐶(𝑠) +  𝐷(𝑠) =  0, 𝑠𝑜 𝐷(𝑠)  =  −𝐶(𝑠) 

Step 4: At 𝑥 =  𝑠, 𝐺(𝑥, 𝑠) must be continuous: 

 𝐴(𝑠)𝑠 =  𝐶(𝑠)𝑠 +  𝐷(𝑠)   𝐴(𝑠)𝑠 =  𝐶(𝑠)𝑠 −  𝐶(𝑠) 

 𝐴(𝑠)  =  𝐶(𝑠)(𝑠 − 1)/𝑠 

Step 5: At 𝑥 =  𝑠, 𝐺′(𝑥, 𝑠) has a jump of 1: 𝐺′(𝑠+, 𝑠)  −  𝐺′(𝑠−, 𝑠)  =

 1 𝐶(𝑠)  −  𝐴(𝑠)  =  1 

Step 6: Solve for A(s) and C(s): 𝐶(𝑠)  −  𝐶(𝑠)(𝑠 − 1)/𝑠 =  1 𝐶(𝑠)  =

 −𝑠(1 − 𝑠) 

And thus: 𝐴(𝑠)  =  −(1 − 𝑠)² 𝐷(𝑠)  =  𝑠 

Step 7: Write the complete Green's function:  

𝐺(𝑥, 𝑠)  =  { −𝑥(1 − 𝑠) 𝑖𝑓 0 ≤  𝑥 ≤  𝑠 − 𝑠(1 − 𝑥) 𝑖𝑓 𝑠 ≤  𝑥 ≤  1 } 

Step 8: The solution to the original BVP is:  

𝑦(𝑥)  =  ∫ 𝐺(𝑥, 𝑠)𝑓(𝑠)𝑑𝑠
1

0
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[0, 𝑎] × [0, 𝑏]: 𝛻²𝑢 = 0 With  boundary  conditions: 𝑢(0, 𝑦) =

Solve  the  Dirichlet  problem  for  Laplace's  equation  in  a  rectangle 

Unsolved Problem 4

  𝑇₀ · 𝑐𝑜𝑠(𝜃).

radius R, where the temperature on the boundary is given by 𝑇(𝑅, 𝜃) =

Find  the  steady-state  temperature  distribution  in  a  circular  disk  of

Unsolved Problem 3

𝑒𝑥 𝑜𝑛 [0,1] With boundary conditions: 𝑦(0) = 1, 𝑦(1) = 0

Solve  the  boundary  value  problem: 𝑦′′(𝑥) − 2𝑦′(𝑥) + 𝑦(𝑥) =

Unsolved Problem 2

𝑦(1) = 0, 𝑦(𝑒) = 0

problem: (𝑥𝑦′)′ + 𝜆𝑥𝑦 = 0 on  [1,e]  With  boundary  conditions:

Find  the  eigenvalues  and  eigenfunctions  for  the  Sturm-Liouville 

Unsolved Problem 1

Unsolved Problems Related to Boundary Value Problems

𝛻²𝑢 = 0.

equations in physics and engineering. It is given by:

Laplace's equation is one of the most important partial differential 

Introduction to Laplace's Equation

4.3.3 Separation of Variables in Laplace's Equation

  𝑠𝑖𝑛(𝑥) 𝑜𝑛 [0, 𝜋] With boundary conditions: 𝑦(0) = 0, 𝑦′(𝜋) = 0.

Find the solution to the boundary value problem: 𝑦′′(𝑥) + 4𝑦(𝑥) =

Unsolved Problem 5

0 𝑢(𝑎, 𝑦) = 0 𝑢(𝑥, 0) = 0 𝑢(𝑥, 𝑏) = 𝑠𝑖𝑛(𝜋𝑥/𝑎)
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Where ∇² is the Laplacian operator, which in Cartesian coordinates is: 

𝛻2𝑢 =
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
 

Functions that satisfy Laplace's equation are called harmonic functions. 

These functions have many interesting mathematical properties and are 

central to potential theory. 

Laplace's equation describes many steady-state phenomena, including: 

• Electrostatic potential in a region with no charges 

• Steady-state temperature distribution with no heat sources 

• Gravitational potential in empty space 

• Velocity potential for incompressible, irrotational fluid flow 

The Method of Separation of Variables 

Separation of variables is a powerful technique for solving partial 

differential equations by assuming that the solution can be written as a 

product of functions, each depending on only one variable. 

For Laplace's equation in two dimensions: 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
=  0 

We assume a solution of the form: 

𝑢(𝑥, 𝑦)  =  𝑋(𝑥) · 𝑌(𝑦) 

Substituting this into Laplace's equation: 

𝑋′′(𝑥) · 𝑌(𝑦)  +  𝑋(𝑥) · 𝑌′′(𝑦)  =  0 

Dividing by X(x)·Y(y): 

𝑋′′(𝑥)/𝑋(𝑥)  +  𝑌′′(𝑦)/𝑌(𝑦)  =  0 
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Which implies: 

𝑋′′(𝑥)/𝑋(𝑥)  =  −𝑌′′(𝑦)/𝑌(𝑦)  =  𝜆 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

This gives us two ordinary differential equations: 

𝑋′′(𝑥) −  𝜆𝑋(𝑥) =  0          𝑌′′(𝑦)  +  𝜆𝑌(𝑦)  =  0 

The choice of separation constant λ and the specific solution forms 

depend on the boundary conditions of the problem. 

Laplace's Equation in Rectangular Coordinates 

Consider Laplace's equation in a rectangular domain [0, 𝑎]  × [0, 𝑏] 

with appropriate boundary conditions. 

The separated equations are: 𝑋′′(𝑥) −  𝜆𝑋(𝑥) =  0      

 𝑌′′(𝑦)  +  𝜆𝑌(𝑦)  =  0 

Depending on the sign of λ, the solutions take different forms: 

For   𝜆 >  0: 𝑋(𝑥)  =  𝐴 · 𝑒√𝜆𝑥  +  𝐵 · 𝑒−√𝜆𝑥 𝑌(𝑦)  =  𝐶 ·

𝑠𝑖𝑛(√𝜆𝑦) +  𝐷 · 𝑐𝑜𝑠(√𝜆𝑦) 

For 𝜆 <  0: 𝑋(𝑥)  =  𝐴 · 𝑠𝑖𝑛(√(−𝜆)𝑥)  +  𝐵 · 𝑐𝑜𝑠(√(−𝜆)𝑥) 𝑌(𝑦)  =

 𝐶 · 𝑒√−𝜆𝑦  +  𝐷 · 𝑒−√−𝜆𝑦 

For 𝜆 =  0: 𝑋(𝑥)  =  𝐴𝑥 +  𝐵 𝑌(𝑦)  =  𝐶𝑦 +  𝐷 

The specific boundary conditions determine which of these solutions 

are valid and the values of the constants. 

Laplace's Equation in Polar Coordinates 

In many physical problems, especially those with circular or cylindrical 

symmetry, it is advantageous to use polar coordinates. 
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Laplace's equation in polar coordinates (r,θ) is: 

𝜕2𝑢

𝜕𝑟2
+ (

1

𝑟
) ·

𝜕𝑢

𝜕𝑟
+ (

1

𝑟2
) ·

𝜕2𝑢

𝜕𝜃2
=  0 

Assuming a separated solution 𝑢(𝑟, 𝜃)  =  𝑅(𝑟) · 𝛩(𝜃), we get: 

𝑟² · 𝑅′′(𝑟)  +  𝑟 · 𝑅′(𝑟)  +  𝑅(𝑟) · 𝛩′′(𝜃)/𝛩(𝜃)  =  0 

This leads to: 

𝑟² · 𝑅′′(𝑟)  +  𝑟 · 𝑅′(𝑟)  −  𝑛² · 𝑅(𝑟)  =  0    𝛩′′(𝜃)  +  𝑛² · 𝛩(𝜃)  =  0 

The general solution for Θ(θ) is: 𝛩(𝜃)  =  𝐴 · 𝑐𝑜𝑠(𝑛𝜃)  +  𝐵 · 𝑠𝑖𝑛(𝑛𝜃) 

The equation for R(r) is an Euler equation with solutions: 

 𝑅(𝑟) =  𝐶 · 𝑟𝑛  +  𝐷 · 𝑟−𝑛 𝑓𝑜𝑟 𝑛 ≠  0   𝑅(𝑟)  =  𝐶 · 𝑙𝑛(𝑟)  +

 𝐷 𝑓𝑜𝑟 𝑛 =  0 

In problems where the solution must be continuous at r = 0, the 𝑟−𝑛  

and ln(r) terms must be discarded as they become singular at the origin. 

Laplace's Equation in Spherical Coordinates 

For three-dimensional problems with spherical symmetry, we use 

spherical coordinates (r,θ,φ). 

Laplace's equation in spherical coordinates is: 

(
1

𝑟2
) ·

𝜕

𝜕𝑟
(𝑟2 ·

𝜕𝑢

𝜕𝑟
) + (

1

𝑟2 · 𝑠𝑖𝑛(𝜃)
)  ·

𝜕

𝜕𝜃
(𝑠𝑖𝑛(𝜃) ·

𝜕𝑢

𝜕𝜃
) 

+ (
1

𝑟2 · 𝑠𝑖𝑛2(𝜃)
) ·

𝜕2𝑢

𝜕𝜑2
  =  0   

   

 

     radial functions 𝑅(𝑟) = 𝐴 · 𝑟𝑙 + 𝐵 · 𝑟−(𝑙+1).

This  leads  to  solutions  involving  spherical  harmonics 𝑌(𝜃, 𝜑) and 

The separated solution has the form: 𝑢(𝑟, 𝜃, 𝜑) = 𝑅(𝑟) · 𝛩(𝜃) · 𝛷(𝜑)
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Uniqueness of Solutions to Laplace's Equation 

An important theoretical result is that the solution to Laplace's equation 

is unique if the boundary conditions are specified over the entire 

boundary. This is known as the uniqueness theorem for harmonic 

functions.The proof relies on the maximum principle, which states that 

a harmonic function cannot have a maximum or minimum in the 

interior of its domain—these extrema must occur on the boundary. 

Applications of Laplace's Equation 

1. Electrostatics: Finding the electric potential in a region with 

specified boundary potentials 

2. Heat Conduction: Determining steady-state temperature 

distributions 

3. Fluid Dynamics: Calculating velocity potentials for ideal fluid flow 

4. Gravitational Fields: Computing gravitational potentials 

5. Complex Analysis: Harmonic functions are the real or imaginary 

parts of analytic functions 

Solved Problems Using Separation of Variables for Laplace's 

Equation 

Solved Problem 1: Rectangle with Mixed Boundary Conditions 

Problem: Solve Laplace's equation in the rectangle [0, 𝑎]  ×

 [0, 𝑏]: 𝛻²𝑢 =  0 

With boundary conditions: 𝑢(0, 𝑦) =  0    𝑢(𝑎, 𝑦)  =  0      𝑢(𝑥, 0)  =

 0      𝑢(𝑥, 𝑏)  =  𝑓(𝑥) 

Solution: Step 1: Assume 𝑢(𝑥, 𝑦)  =  𝑋(𝑥) · 𝑌(𝑦) 

Step 2: Substitute into Laplace's equation and separate variables: 

𝑋′′(𝑥)

𝑋(𝑥)
= −

𝑌′′(𝑦)

𝑌(𝑦)
=  −𝜆 

      𝑌′′(𝑦) −  𝜆𝑌(𝑦) =  0 Step 3: This gives: 𝑋′′(𝑥) + 𝜆𝑋(𝑥) = 0
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Step 4: Apply homogeneous boundary conditions to X(x): 𝑋(0)  =

 𝑋(𝑎)  =  0 

This gives eigenvalues λₙ = (nπ/a)² and eigenfunctions 𝑋ₙ(𝑥)  =

 𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
)  𝑓𝑜𝑟 𝑛 =  1, 2, 3. .. 

Step 5: For each λₙ, solve for 𝑌ₙ(𝑦): 𝑌′′(𝑦)  − (𝑛𝜋/𝑎)²𝑌(𝑦)  =  0 

General solution: 𝑌ₙ(𝑦)  =  𝐴ₙ · 𝑒
𝑛𝜋𝑦

𝑎  +  𝐵ₙ · 𝑒−
𝑛𝜋𝑦

𝑎  

Step 6: Apply the bottom boundary condition u(𝑥, 0) =  0:  

𝑌ₙ(0)  =  𝐴ₙ +  𝐵ₙ =  0, 𝑠𝑜 𝐵ₙ =  −𝐴ₙ 

Thus: 𝑌ₙ(𝑦)  =  𝐴ₙ · (𝑒
𝑛𝜋𝑦

𝑎  −  𝑒−
𝑛𝜋𝑦

𝑎 )   =  2𝐴ₙ · 𝑠𝑖𝑛ℎ (
𝑛𝜋𝑦

𝑎
) 

Step 7: The general solution is: 𝑢(𝑥, 𝑦)  =  𝛴 𝐶ₙ · 𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
) 𝑠𝑖𝑛ℎ (

𝑛𝜋𝑦

𝑎
) 

Where Cₙ = 2Aₙ are constants to be determined. 

Step 8: Apply the top boundary condition  

𝑢(𝑥, 𝑏) =  𝑓(𝑥): 𝛴 𝐶ₙ · 𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
) · 𝑠𝑖𝑛ℎ (

𝑛𝜋𝑏

𝑎
)   =  𝑓(𝑥) 

Step 9: Find Cₙ using the Fourier sine series:  

𝐶ₙ =  (
2

𝑎
) ·

∫ 𝑓(𝑥) · 𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
)𝑑𝑥 

𝑎

0

𝑠𝑖𝑛ℎ (
𝑛𝜋𝑏

𝑎
)

 

Step 10: The final solution is:  

𝑢(𝑥, 𝑦) =  𝛴 (
2

𝑎
) . ∫ 𝑓(𝑥) · 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑎
)𝑑𝑥 .

𝑎

0

𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
).  

sinh (
𝑛𝜋𝑦

𝑎
)

sinh (
𝑛𝜋𝑏

𝑎
)
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Solved Problem 2: Circular Disk with Azimuthal Variation 

Problem: Solve Laplace's equation in a circular disk of radius R with 

boundary condition 𝑢(𝑅, 𝜃)  =  𝑐𝑜𝑠(3𝜃). 

Solution: Step 1: In polar coordinates, Laplace's equation is: 
𝜕2𝑢

𝜕𝑟2
 +

 (
1

𝑟
) ·

𝜕𝑢

𝜕𝑟
+ (

1

𝑟2
) ·

𝜕2𝑢

𝜕𝜃2
=  0 

Step 2: Assume 𝑢(𝑟, 𝜃)  =  𝑅(𝑟) · 𝛩(𝜃) 

Step 3: Separate variables:  

𝑟2 · 𝑅′′(𝑟) +  𝑟 · 𝑅′(𝑟) − 𝑛2 · 𝑅(𝑟) =  0  

𝛩′′(𝜃)  +  𝑛² · 𝛩(𝜃)  =  0 

Step 4: From the boundary condition, we know that Θ(θ) must have 

period 2π and match 𝑐𝑜𝑠(3𝜃), 𝑠𝑜 𝑛 =  3 𝑎𝑛𝑑 𝛩(𝜃)  =  𝑐𝑜𝑠(3𝜃). 

Step 5: The radial equation is: 

 𝑟² · 𝑅′′(𝑟)  +  𝑟 · 𝑅′(𝑟)  −  9 · 𝑅(𝑟)  =  0 

This is an Euler equation with general solution: 𝑅(𝑟)  =  𝐴𝑟³ +  𝐵𝑟⁻³ 

Step 6: Since u must be finite at r = 0, we must have B = 0, so R(r) = 

Ar³. 

Step 7: Apply the boundary condition 𝑢(𝑅, 𝜃)  =  𝑐𝑜𝑠(3𝜃): 𝐴𝑅³ ·

𝑐𝑜𝑠(3𝜃)  =  𝑐𝑜𝑠(3𝜃) 

This gives A = 1/R³. 

Step 8: The final solution is: 𝑢(𝑟, 𝜃)  =  (𝑟/𝑅)³ · 𝑐𝑜𝑠(3𝜃) 
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Solved Problem 3: Semi-Infinite Strip 

Problem: Solve Laplace's equation in the semi-infinite strip: 0 ≤  𝑥 ≤

 𝑎, 𝑦 ≥  0 

With boundary conditions: 𝑢(0, 𝑦)  =  0 𝑢(𝑎, 𝑦)  =  0 𝑢(𝑥, 0)  =

 𝑓(𝑥) 𝑢(𝑥, 𝑦)  →  0 𝑎𝑠 𝑦 →  ∞ 

Solution: Step 1: Assume 𝑢(𝑥, 𝑦)  =  𝑋(𝑥) · 𝑌(𝑦) 

Step 2: Separate variables: 
𝑋′′(𝑥)

𝑋(𝑥)
= −

𝑌′′(𝑦)

𝑌(𝑦)
= −𝜆 

Step 3: The boundary conditions on X give: X(0) = X(a) = 0 

This yields 𝑋ₙ(𝑥)  =  𝑠𝑖𝑛(𝑛𝜋𝑥/𝑎)   𝑤𝑖𝑡ℎ 𝜆ₙ =  (𝑛𝜋/𝑎)² 𝑓𝑜𝑟 𝑛 =

 1, 2, 3. .. 

Step 4: For Y, we have: 𝑌′′(𝑦) − (
𝑛𝜋

𝑎
)
2

𝑌(𝑦) =  0 

General solution: 𝑌ₙ(𝑦) =  𝐴ₙ · 𝑒
𝑛𝜋𝑦

𝑎 +  𝐵ₙ · 𝑒−
𝑛𝜋𝑦

𝑎  

Step 5: Since u → 0 as y → ∞, we must have Aₙ = 0. Thus,  

𝑌ₙ(𝑦) =  𝐵ₙ · 𝑒−
𝑛𝜋𝑦

𝑎  

Step 6: The general solution is: 𝑢(𝑥, 𝑦) =  𝛴 𝐵ₙ · sin (
𝑛𝜋𝑥

𝑎
) · 𝑒−

𝑛𝜋𝑦

𝑎  

Step 7: Apply the bottom boundary condition 

 𝑢(𝑥, 0) =  𝑓(𝑥): 𝛴 𝐵ₙ · sin (
𝑛𝜋𝑥

𝑎
) =  𝑓(𝑥) 

Step 8: Find Bₙ using the Fourier sine series: 

 𝐵ₙ =  (2/𝑎) · ∫ 𝑓(𝑥) · 𝑠𝑖𝑛(𝑛𝜋𝑥/𝑎)𝑑𝑥
𝑎

0
 

Step 9: The final solution is: 
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 𝑢(𝑥, 𝑦) =  𝛴 (
2

𝑎
) ·  ∫ 𝑓(𝑥) · sin (

𝑛𝜋𝑥

𝑎
)𝑑𝑥 · sin (

𝑛𝜋𝑥

𝑎
) · 𝑒−

𝑛𝜋𝑦

𝑎
𝑎

0
 

Solved Problem 4: Annular Region 

Problem: Solve Laplace's equation in an annular region a < r < b with 

boundary conditions: 𝑢(𝑎, 𝜃)  =  0 𝑢(𝑏, 𝜃)  =  𝑇₀ (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

Solution: Step 1: In polar coordinates, Laplace's equation is:  

𝜕2𝑢

𝜕𝑟2
+ (

1

𝑟
) ·

𝜕𝑢

𝜕𝑟
+ (

1

𝑟2
) ·

𝜕2𝑢

𝜕𝜃2
=  0    

Step 2: Since the boundary conditions are independent of θ, we expect 

a solution u = u(r) which depends only on r. 

Step 3: For a function depending only on r, Laplace's equation reduces 

to: 𝑟 ·
𝑑

𝑑𝑟
 (𝑟 ·

𝑑𝑢

𝑑𝑟
) =  0   

Step 4: Integrate once: 𝑟 · 𝑑𝑢/𝑑𝑟 =  𝐶₁ 

Step 5: Integrate again: 𝑢(𝑟)  =  𝐶₁ · 𝑙𝑛(𝑟)  +  𝐶₂ 

Step 6: Apply the boundary conditions: 𝑢(𝑎)  =  𝐶₁ · 𝑙𝑛(𝑎)  +  𝐶₂ =

 0        𝑢(𝑏)  =  𝐶₁ · 𝑙𝑛(𝑏)  +  𝐶₂ =  𝑇₀ 

Step 7: Solve for constants:  

𝐶₂ =  −𝐶₁ · 𝑙𝑛(𝑎) 𝐶₁ · 𝑙𝑛(𝑏)  −  𝐶₁ · 𝑙𝑛(𝑎)  =  𝑇₀ 𝐶₁ =  𝑇₀/𝑙𝑛(𝑏/𝑎) 

Step 8: The final solution is: 𝑢(𝑟)  =  𝑇₀ · 𝑙𝑛(𝑟/𝑎)/𝑙𝑛(𝑏/𝑎) 

This represents the steady-state temperature distribution in an annular 

region with the inner boundary held at temperature 0 and the outer 

boundary at temperature T₀. 
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Solved Problem 5: Half-Space with Temperature Variation 

Problem: Solve Laplace's equation in the half-space z > 0 with 

boundary condition 𝑢(𝑥, 𝑦, 0)  =  𝑇₀ · 𝑒−𝑥
2−𝑦2 . 

Solution: Step 1: In this case, we'll use Fourier transforms. The 2D 

Fourier transform is defined as: û(𝜉, 𝜂, 𝑧)  =  ∫ ∫  𝑢(𝑥, 𝑦, 𝑧) ·

𝑒−𝑖(𝜉𝑥+𝜂𝑦)𝑑𝑥𝑑𝑦 

Step 2: Taking the Fourier transform of Laplace's equation: 

 −𝜉2û − 𝜂2û +
𝑑2û

𝑑𝑧2
=  0 

Step 3: This gives an ordinary differential equation for û:  

𝑑2û

𝑑𝑧2
= (𝜉2 + 𝜂2)û 

Step 4: The general solution is: 

 û(𝜉, 𝜂, 𝑧) =  𝐴(𝜉, 𝜂) · 𝑒√(𝜉
2+𝜂2)𝑧 +  𝐵(𝜉, 𝜂) · 𝑒−√(𝜉

2+𝜂2)𝑧 

Step 5: Since u must remain bounded as z → ∞, we must have   

A(ξ,η) = 0. 

Step 6: The Fourier transform of the boundary condition is:  

û(𝜉, 𝜂, 0)  =  𝑇₀ · 𝜋 · 𝑒−
𝜉2+𝜂2

4  

Step 7: This gives 𝐵(𝜉, 𝜂) =  𝑇0 · 𝜋 · 𝑒
−
𝜉2+𝜂2

4  

Step 8: The solution in Fourier space is: 

 û(𝜉, 𝜂, 𝑧)  =  𝑇₀ · 𝜋 · 𝑒−
𝜉2+𝜂2

4 · 𝑒−√(𝜉
2+𝜂2)𝑧 

Step 9: Taking the inverse Fourier transform:  
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𝑢(𝑥, 𝑦, 𝑧) =
𝑇0
4𝜋

· ∫∫𝑒−
𝜉2+𝜂2

4 · 𝑒−√(𝜉
2+𝜂2)𝑧 · 𝑒𝑖(𝜉𝑥+𝜂𝑦)𝑑𝜉𝑑𝜂 

Step 10: This can be evaluated using contour integration or by 

recognizing it as a convolution with the Poisson kernel. The final 

solution is: 

 𝑢(𝑥, 𝑦, 𝑧) =  𝑇0 ·
𝑧

2𝜋
· ∫ ∫

𝑒(−𝑟
2)

((𝑥−𝑠)2+ (𝑦−𝑡)2+ 𝑧2)
3
2

𝑑𝑠𝑑𝑡 

Where r² = s² + t². This integral can be evaluated numerically. 

Unsolved Problems Related to Laplace's Equation 

Unsolved Problem 1 

Solve Laplace's equation in the first quadrant (x ≥ 0, y ≥ 0) with 

boundary conditions: 𝑢(𝑥, 0) =  0 𝑓𝑜𝑟 𝑥 >  0   𝑢(0, 𝑦)  =

 { 1 𝑓𝑜𝑟 0 <  𝑦 <  1 0 𝑓𝑜𝑟 𝑦 > 1 } 

Unsolved Problem 2 

Find the electrostatic potential in a hemisphere of radius R, where the 

flat base is held at zero potential and the curved surface has potential 

V₀·cos(θ), where θ is the polar angle from the z-axis. 

Unsolved Problem 3 

Solve Laplace's equation in a semi-infinite strip (0 ≤ x ≤ π, y ≥ 0) with 

boundary conditions: 𝑢(0, 𝑦)  =  0 𝑢(𝜋, 𝑦)  =  0 𝑢(𝑥, 0)  =  𝑠𝑖𝑛(𝑥) ·

𝑐𝑜𝑠(2𝑥) 𝑢 bounded as y → ∞ 

Unsolved Problem 4 

A circular disk of radius R has its center at the origin of the xy-plane. 

The temperature on the boundary is given by T(R,θ) = T₀·|sin(θ)|. Find 

the steady-state temperature distribution across the disk. 
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Unsolved Problem 5 

Solve Laplace's equation in the infinite wedge (0 ≤ r < ∞, 0 ≤ θ ≤ α) 

with boundary conditions: u(r,0) = 0 u(r,α) = U₀ (constant) u bounded 

as r → ∞ 

Conclusion 

Boundary value problems and the method of separation of variables for 

solving Laplace's equation are fundamental topics in mathematical 

physics. These techniques provide powerful tools for modeling a wide 

range of physical phenomena, from heat conduction to 

electrostatics.The solutions to these problems often involve eigenvalue 

problems, which have profound connections to spectral theory and 

functional analysis. The eigenfunctions that arisesuch as sines, cosines, 

Bessel functions, and spherical harmonics, form the building blocks for 

representing more general solutions through series expansions. 

Understanding these methods not only enables the solution of specific 

physical problems but also provides insight into the deep mathematical 

structures that underlie the natural world.I'll write a comprehensive 

explanation of Axially Symmetric Problems and provide a summary 

with important formulas, along with solved and unsolved problems, as 

requested. I'll make sure to write in an easy-to-copy format without 

LaTeX. 
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4.3.4 Axially Symmetric Problems 

Introduction to Axial Symmetry 

Axially symmetric problems are a special class of problems in mathematical 

physics where the physical system possesses symmetry around an axis. This 

symmetry allows us to reduce the dimensionality of the problem, making it 

more manageable to solve. In three-dimensional space, axial symmetry means 

that physical properties do not change when rotated about a particular axis, 

typically chosen as the z-axis.The mathematical description of axially 

symmetric problems often involves cylindrical coordinates (r, θ, z), where: 

• r is the radial distance from the z-axis 

• θ is the azimuthal angle in the x-y plane 

• z is the height or axial coordinate 

When a problem has axial symmetry, the dependent variables (such as 

potential, temperature, or pressure) do not depend on the azimuthal angle θ. 

This simplifies the governing partial differential equations, often reducing 

them from three-dimensional to two-dimensional problems. 

Governing Equations in Axially Symmetric Problems 

Laplace's Equation in Cylindrical Coordinates 

For many physical problems with axial symmetry, we need to solve Laplace's 

equation. In cylindrical coordinates, Laplace's equation is: 

𝜕2𝛷

𝜕𝑟2
   +  (

1

𝑟
) 
𝜕𝛷

𝜕𝑟
  + (

1

𝑟2
)
𝜕2𝛷

𝜕𝜃2
 +

𝜕2𝛷

𝜕𝑧2
 =  0 

Where Φ is the potential function. 

For axially symmetric problems where Φ is independent of θ, this simplifies 

to: 

𝜕2𝛷

𝜕𝑟2
 + (

1

𝑟
)
𝜕𝛷

𝜕𝑟
 +

𝜕2𝛷

𝜕𝑧2
 =  0 
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This is the axisymmetric form of Laplace's equation, which is significantly 

simpler to solve than the full three-dimensional equation. 

Poisson's Equation in Cylindrical Coordinates 

For problems involving source terms, we use Poisson's equation. In 

cylindrical coordinates with axial symmetry, Poisson's equation is: 

𝜕2𝛷

𝜕𝑟2
   +  (

1

𝑟
)
𝜕𝛷

𝜕𝑟
 +

𝜕2𝛷

𝜕𝑧2
 =  −

𝜌(𝑟, 𝑧)

𝜀
 

Where ρ(r,z) is the source density and ε is a constant determined by the 

physical context. 

Heat Equation with Axial Symmetry 

For heat conduction problems with axial symmetry, the heat equation 

becomes: 

𝜕𝑇

𝜕𝑡
 =  𝛼 (

𝜕2𝑇

𝜕𝑟2
+ (

1

𝑟
)
𝜕𝑇

𝜕𝑟
+
𝜕2𝑇

𝜕𝑧2
) 

Where T is temperature, t is time, and α is the thermal diffusivity. 

Wave Equation with Axial Symmetry 

For wave propagation problems with axial symmetry, the wave equation 

becomes: 

𝜕2𝛹

𝜕𝑡2
= 𝑐2 (

𝜕2𝛹

𝜕𝑟2
+ (

1

𝑟
)
𝜕𝛹

𝜕𝑟
+
𝜕2𝛹

𝜕𝑧2
) 

 

 

 

 symmetry, we assume a solution of the form:

problems.  For  Laplace's  equation  in  cylindrical  coordinates  with  axial 

Separation of variables is a powerful technique for solving axially symmetric 

Separation of Variables

Solution Methods for Axially Symmetric Problems

Where Ψ is the wave function and c is the wave speed.
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𝛷(𝑟, 𝑧)  =  𝑅(𝑟)𝑍(𝑧) 

Substituting this into the axisymmetric Laplace equation: 

𝑅′′(𝑟)𝑍(𝑧) + (
1

𝑟
)𝑅′(𝑟)𝑍(𝑧) +  𝑅(𝑟)𝑍′′(𝑧) =  0  

Dividing by R(r)Z(z), we get: 

𝑅′′(𝑟)

𝑅(𝑟)
+ (

1

𝑟
)
𝑅′(𝑟)

𝑅(𝑟)
=  −

𝑍′′(𝑧)

𝑍(𝑧)
=  𝑘2 

 

 

              

 

     

 

 

   

 

 

 

 

problems with axial symmetry. The Green's function G(r,z;r',z') represents the 

Green's  functions  provide  a  powerful  approach  for  solving  inhomogeneous 

Green's Functions

sources outside the domain of interest to satisfy the boundary conditions.

method of images can be employed. This technique involves placing fictitious 

For certain axially symmetric problems with simple boundary conditions, the 

Method of Images

values of k, often requiring an infinite series to satisfy all boundary conditions.

The  complete  solution  is  formed  by  combining  these  solutions  for  various 

𝑍(𝑧) = 𝐶𝑒𝑘𝑧 + 𝐷𝑒−𝑘𝑧

For the axial equation, we have:

function of the second kind of order 0.

Where J₀ is the Bessel function of the first kind of order 0, and Y₀ is the Bessel 

𝑅(𝑟) = 𝐴𝐽₀(𝑘𝑟) + 𝐵𝑌₀(𝑘𝑟)

The radial equation is a form of Bessel's equation, with solutions:

𝑟2𝑅′′(𝑟) + 𝑟𝑅′(𝑟) − 𝑘2𝑟2𝑅(𝑟) = 0 𝑍′′(𝑧) − 𝑘2𝑍(𝑧) = 0

This gives us two ordinary differential equations:

Where k² is the separation constant.
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  • Circular heat sinks

• Cylindrical rods

Axially symmetric heat conduction occurs in:

Heat Conduction

terms of elliptic integrals.

carrying a total charge Q satisfies Laplace's equation and can be expressed in 

For  example,  the  electric  potential  Φ  outside  a  charged  ring  of  radius  a 

• Cylindrical capacitors

• Solenoids

• Circular disks

• Charged rings

electric potential and field around:

In  electrostatics,  axially  symmetric  problems  appear  when  calculating  the 

Electrostatics

Applications of Axially Symmetric Problems

computationally.

equations  into  systems  of  algebraic  equations  that  can  be  solved 

These  methods  discretize  the  domain  and  convert  the  partial  differential 

• Boundary element method

• Finite element method

• Finite difference method

as:

Complex axially symmetric problems often require numerical methods such 

Numerical Methods

𝛷(𝑟, 𝑧) = ∫ ∫ 𝐺(𝑟, 𝑧; 𝑟′, 𝑧′)𝜌(𝑟′, 𝑧′)𝑟′𝑑𝑟′𝑑𝑧′

symmetric problems, the solution can be expressed as:

response  at  point  (r,z)  due  to  a  unit  point  source  at  (r',z').  For  axially 
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• Radial heat flow in pipes 

• Cooling of cylindrical objects 

Fluid Dynamics 

In fluid dynamics, axisymmetric flows include: 

• Pipe flow 

• Flow around a sphere or cylinder 

• Jet flows 

• Vortex rings 

Elasticity 

Axisymmetric problems in elasticity include: 

• Deformation of circular plates 

• Stresses in cylindrical pressure vessels 

• Axial compression of cylindrical columns 

Boundary Conditions in Axially Symmetric Problems 

The boundary conditions for axially symmetric problems typically fall into 

these categories: 

Dirichlet Boundary Conditions 

𝛷(𝑟, 𝑧)  =  𝑓(𝑟, 𝑧) on the boundary 

These specify the value of the potential function on the boundary surfaces. 

Neumann Boundary Conditions 

𝜕𝛷/𝜕𝑛 =  𝑔(𝑟, 𝑧) on the boundary 

Where ∂Φ/∂n represents the normal derivative at the boundary, specifying the 

flux across the boundary. 

Mixed Boundary Conditions 
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𝑎𝛷 +  𝑏
𝜕𝛷

𝜕𝑛
=  ℎ(𝑟, 𝑧)   on the boundary 

These involve a linear combination of the function and its normal derivative. 

Regularity Conditions 

For problems involving the axis of symmetry (r=0), we typically require that 

the solution remain bounded, which often implies: 

𝜕𝛷

𝜕𝑟
|ᵣ₌₀ =  0        

 

 

 

 

 

 

 

 

 

 

 

 Solution:

plane centered at the origin.

a uniformly charged ring of radius a carrying total charge Q located in the xy- 

Problem: Find the electric potential Φ at a point P(0,0,z) on the z-axis due to 

Solved Problem 1: Potential Due to a Charged Ring

Solved Examples for Axially Symmetric Problems

Legendre polynomials Pₙ(cos θ) often arise in the solution.

When  axially  symmetric  problems  are  formulated  in  spherical  coordinates, 

Legendre Polynomials

exponential growth or decay in the radial direction.

Modified  Bessel  functions  I₀(kr)  and  K₀(kr)  appear  in  problems  involving 

Modified Bessel Functions

often used for problems where the solution must be bounded at the origin.

problems. The Bessel function of the first kind, J₀(kr), is regular at r=0 and is 

Bessel  functions  commonly  appear  in  the  solutions  to  axially  symmetric 

Bessel Functions

Special Functions in Axially Symmetric Problems

This condition ensures that no singularities appear along the axis of symmetry.
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Step 1: Due to the axial symmetry of the problem, the potential at any point 

on the z-axis depends only on the z-coordinate. 

Step 2: The distance from a point on the ring to the point P(0,0,z) is: 𝑑 =

 √(𝑎² +  𝑧²) 

Step 3: The potential due to a point charge dQ at distance d is:  

𝑑𝛷 =  𝑘 ·
𝑑𝑄

𝑑
   𝑤ℎ𝑒𝑟𝑒 𝑘 =  1/(4𝜋𝜀₀) is Coulomb's constant. 

Step 4: The charge is uniformly distributed around the ring, so 𝑑𝑄 =  𝑄 ·
𝑑𝜃

2𝜋
   

for a small angular element dθ. 

Step 5: Integrating around the ring: 

 𝛷(0,0, 𝑧) =  
 ∫ 𝑘𝑄·

𝑑𝜃

2𝜋

2𝜋

0

√𝑎2+ 𝑧2
  

= (
𝑘𝑄

2𝜋
) ·

∫ 𝑑𝜃
2𝜋

0

√𝑎2 + 𝑧2
= (

𝑘𝑄

2𝜋
) ·

2𝜋

√𝑎2 + 𝑧2
 =

𝑘𝑄

√𝑎2 + 𝑧2
 

Step 6: Substituting k = 1/(4πε₀), we get: 𝛷(0,0, 𝑧) =
𝑄

4𝜋𝜀0·√𝑎
2+ 𝑧2

 

This gives the potential at any point on the z-axis due to the charged ring. 

Solved Problem 2: Temperature Distribution in a Solid Cylinder 

Problem: A solid cylinder of radius a and height h has its curved surface 

maintained at temperature T₀. The top surface (z=h) is insulated, and the 

bottom surface (z=0) is maintained at temperature T₁. Find the steady-state 

temperature distribution T(r,z) within the cylinder. 

Solution: 

Step 1: The steady-state temperature distribution satisfies Laplace's equation 

with axial symmetry: 
𝜕2𝑇

𝜕𝑟2
+ (

1

𝑟
)
𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑧2
=  0  
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Step 2: The boundary conditions are: 𝑇(𝑎, 𝑧)  =  𝑇₀ 𝑓𝑜𝑟 0 ≤  𝑧 ≤  ℎ (curved 

surface) 𝑇(𝑟, 0)  =  𝑇₁ 𝑓𝑜𝑟 0 ≤  𝑟 <  𝑎 (bottom surface) 𝜕𝑇/𝜕𝑧|𝑧 = ℎ =

 0 for 0 ≤ r < a (insulated top surface) 

Step 3: Using separation of variables, assume 𝑇(𝑟, 𝑧)  =  𝑅(𝑟)𝑍(𝑧). 

Step 4: Substituting into Laplace's equation and separating: 

 𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

𝑍′′

𝑍
= −𝜆2 

This gives: 𝑟2𝑅′′ +  𝑟𝑅′ + 𝜆2𝑟2𝑅 =  0    𝑍′′ −  𝜆²𝑍 =  0 

Step 5: The solution to the axial equation is:  

𝑍(𝑧)  =  𝐴 𝑐𝑜𝑠ℎ(𝜆𝑧)  +  𝐵 𝑠𝑖𝑛ℎ(𝜆𝑧) 

Step 6: The radial equation is Bessel's equation with solution:  

𝑅(𝑟)  =  𝐶𝐽₀(𝜆𝑟)  +  𝐷𝑌₀(𝜆𝑟) 

Since the solution must be bounded at r=0, and Y₀ diverges there, we set D=0. 

R(r) = CJ₀(λr) 

Step 7: Applying the condition at the curved surface: 𝑇(𝑎, 𝑧)  =

 𝑇₀ 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑅(𝑎)𝑍(𝑧)  =  𝑇₀ Since Z depends on z, which can vary while r=a 

is fixed, we need Z(z) to be constant for this to be true for all z. 

This means λ=0 for this particular term, which gives: 𝑍(𝑧)  =  𝐴 +

 𝐵𝑧 𝑓𝑜𝑟 𝜆 = 0 𝑅(𝑟)  =  𝐶 𝑓𝑜𝑟 𝜆 = 0 (𝑠𝑖𝑛𝑐𝑒 𝐽₀(0) = 1) 

Step 8: For λ=0, our particular solution is: 𝑇₀(𝑟, 𝑧)  =  𝐶(𝐴 +  𝐵𝑧) 

Applying the curved surface condition: 𝑇₀(𝑎, 𝑧)  =  𝐶𝐴 +  𝐶𝐵𝑧 =  𝑇₀. This 

implies CB=0 (so B=0) and CA=T₀ (so C=T₀/A and we can choose A=1). 

Therefore, 𝑇₀(𝑟, 𝑧)  =  𝑇₀ 

Step 9: Now we need additional terms to satisfy the remaining boundary 

conditions. Let's construct a series solution: 

 𝑇(𝑟, 𝑧)  =  𝑇₀ + ∑  𝑅ₙ(𝑟)𝑍ₙ(𝑧)∞
𝑛=1  
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Step 10: From the insulated top condition 𝜕𝑇/𝜕𝑧|𝑧 = ℎ =  0, we get: 

𝑍ₙ′(ℎ) =  0 For 𝑍(𝑧) =  𝐴 cosh(𝜆𝑧) +  𝐵 sinh(𝜆𝑧), this gives: 

𝜆𝐴𝑠𝑖𝑛ℎ(𝜆ℎ) +  𝜆𝐵𝑐𝑜𝑠ℎ(𝜆ℎ) =  0   𝐵 =  −𝐴 tanh(𝜆ℎ).   So 

 𝑍ₙ(𝑧)  =  𝐴[𝑐𝑜𝑠ℎ(𝜆𝑧)  −  𝑡𝑎𝑛ℎ(𝜆ℎ)𝑠𝑖𝑛ℎ(𝜆𝑧)] 

Step 11: For the bottom surface: 𝑇(𝑟, 0)  =  𝑇₁ implies 𝑇0 + ∑𝑅ₙ(𝑟)𝑍ₙ(0) =

 𝑇1.  Since 𝑍ₙ(0)  =  𝐴, this gives:  

𝑇0 + ∑𝐴𝑅ₙ(𝑟) =  𝑇1          ∑𝐴𝑅ₙ(𝑟)  =  𝑇₁ −  𝑇₀ 

Step 12: The appropriate values of λ are determined by the boundary condition 

at r=a: Rₙ(a) = 0 implies J₀(λₙa) = 0 

So λₙ = αₙ/a, where αₙ is the nth zero of J₀. 

Step 13: The complete solution is: 

 𝑇(𝑟, 𝑧)  =  𝑇₀ + ∑ 𝐴ₙ 𝐽₀(𝛼ₙ𝑟/𝑎 )[𝑐𝑜𝑠ℎ(𝛼ₙ𝑧/𝑎)  −  𝑡𝑎𝑛ℎ(𝛼ₙℎ/∞
𝑛=1

𝑎)𝑠𝑖𝑛ℎ(𝛼ₙ𝑧/𝑎)]  

Step 14: The coefficients Aₙ are determined by the bottom boundary 

condition: 𝑇₁ −  𝑇₀ =   ∑ 𝐴ₙ 𝐽₀(𝛼ₙ𝑟/𝑎)∞
𝑛=1  

Using the orthogonality of Bessel functions: 

 𝐴ₙ =  2(𝑇₁ − 𝑇₀)/[𝑎²𝐽₁²(𝛼ₙ)]  ·  ∫  𝑟𝐽₀(𝛼ₙ𝑟/𝑎)𝑑𝑟 
𝑎

0
=  2(𝑇₁ − 𝑇₀)𝑎/

[𝛼ₙ𝐽₁(𝛼ₙ)] 

The final solution is: 

 𝑇(𝑟, 𝑧)  =  𝑇₀ +  ∑ 2(𝑇₁ − 𝑇₀)𝑎/[𝛼ₙ𝐽₁(𝛼ₙ)]  ·  𝐽₀(𝛼ₙ𝑟/𝑎)[𝑐𝑜𝑠ℎ(𝛼ₙ𝑧/∞
𝑛=1

    

 

 p(r,z) inside the vessel.

direction), and the fluid is subject  to  gravity.  Find  the  pressure  distribution 

fluid with density ρ. The vessel is oriented with its axis vertical (along the z- 

Problem: A cylindrical pressure vessel of radius a and length L contains a 

Solved Problem 3: Pressure in a Cylindrical Vessel

𝑎) − 𝑡𝑎𝑛ℎ(𝛼ₙℎ/𝑎 )𝑠𝑖𝑛ℎ(𝛼ₙ𝑧/𝑎)]
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Solution: 

Step 1: In a static fluid, the pressure satisfies the hydrostatic equation: ∇p = 

ρg 

Where g is the gravitational acceleration vector pointing in the negative z-

direction, g = (0,0,-g). 

Step 2: In component form with axial symmetry, we have:  

𝜕𝑝

𝜕𝑟
=  0   

𝜕𝑝

𝜕𝑧
=  −𝜌𝑔 

Step 3: Integrating the first equation with respect to r: 𝑝(𝑟, 𝑧)  =  𝑓(𝑧) 

Step 4: Substituting into the second equation: 
𝑑𝑓(𝑧)

𝑑𝑧
  =  −𝜌𝑔 

Step 5: Integrating with respect to z: 𝑓(𝑧)  =  −𝜌𝑔𝑧 +  𝐶 

Step 6: If we define the pressure at the top of the fluid (z=L) as p₀ (which 

could be atmospheric pressure), then:  

𝑝0 =  𝑓(𝐿) =  −𝜌𝑔𝐿 +  𝐶,         𝐶 =  𝑝₀ +  𝜌𝑔𝐿 

Step 7: Therefore, the pressure distribution is: 𝑝(𝑟, 𝑧)  =  𝑝₀ +  𝜌𝑔(𝐿 − 𝑧) 

This shows that the pressure increases linearly with depth and does not depend 

on the radial coordinate r, which is expected for a static fluid in a gravitational 

field. 
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Solved Problem 4: Torsion of a Circular Shaft 

Problem: A solid circular shaft of radius a is subjected to a torque T about its 

axis. Assuming the material is elastic with shear modulus G, find the 

displacement and stress distribution in the shaft. 

Solution: 

Step 1: Due to the axial symmetry, we can use cylindrical coordinates (r,θ,z). 

For a pure torsion problem, the displacement is predominantly in the θ-

direction. 

Step 2: The displacement field has the form: 

 𝑢ᵣ =  0   𝑢𝜃 =  𝑟 · 𝜑(𝑧)   𝑢ᵤ =  0 

Where φ(z) is the angle of twist per unit length. 

Step 3: For small deformations, the only non-zero strain component is:   

εᵣθ = (
1

2
)(

𝜕𝑢𝜃

𝜕𝑟
−
𝑢𝜃

𝑟
 +

𝜕𝑢ᵣ

𝜕𝜃

𝑟
)  =  (

1

2
)(𝜑(𝑧) −  𝑟 ·

𝜑(𝑧)

𝑟
  +  0)  

=  (
1

2
)𝜑(𝑧)  

Step 4: According to Hooke's law for isotropic materials, the shear stress is: 

𝜏ᵣ𝜃 =  2𝐺 · 𝜀ᵣ  𝜃 =  𝐺 · 𝜑(𝑧) 

Step 5: Equilibrium requires that the resultant torque from the stress equals 

the applied torque T:  

𝑇 =  ∫∫𝑟 · 𝜏ᵣ𝜃 · 𝑟 · 𝑑𝑟𝑑𝜃  =  ∫  ∫ 𝑟2 · 𝐺 · 𝜑(𝑧) · 𝑑𝑟𝑑𝜃 
𝑎

0

2𝜋

0

=  2𝜋𝐺 · 𝜑(𝑧) ·  ∫ 𝑟2𝑑𝑟 
𝑎

0

=  2𝜋𝐺 · 𝜑(𝑧) ·
𝑎3

3
 

Step 6: Solving for 𝜑(𝑧): 𝜑(𝑧) =
3𝑇

2𝜋𝐺·𝑎3
 

Step 7: Therefore, the displacement is: 𝑢𝜃 =  𝑟 · 𝜑(𝑧)  =  3𝑇𝑟/(2𝜋𝐺 · 𝑎³) 
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Step 8: The shear stress distribution is: 𝜏ᵣ𝜃 =  𝐺 · 𝜑(𝑧)  =  3𝑇/(2𝜋 · 𝑎³) · 𝑟 

This shows that the shear stress varies linearly with radius, being zero at the 

center and maximum at the outer surface. 

Solved Problem 5: Gravitational Potential of a Uniform Disk 

Problem: Find the gravitational potential at a point P(0,0,h) on the axis of a 

uniform circular disk of radius a, thickness t, and density ρ. 

Solution: 

Step 1: The gravitational potential at point P due to a mass element dm is: 

𝑑𝛷 =  −𝐺 · 𝑑𝑚/𝑑 

Where G is the gravitational constant and d is the distance from the mass 

element to point P. 

Step 2: For a disk with axial symmetry, we can use cylindrical coordinates. A 

mass element can be written as: 𝑑𝑚 =  𝜌 · 𝑡 · 𝑟 · 𝑑𝑟 · 𝑑𝜃 

Step 3: The distance from a point (r,θ,0) on the disk to P(0,0,h) is:  

𝑑 =  √(𝑟² +  ℎ²) 

Step 4: The gravitational potential is:  

𝛷(0,0, ℎ)  =  −𝐺 ·
∫ ∫  𝜌 · 𝑡 · 𝑟 · 𝑑𝑟 · 𝑑𝜃

𝑎

0

2𝜋

0

√𝑟2 + ℎ2
 =  −2𝜋𝐺 · 𝜌 · 𝑡 ·

∫ 𝑟 · 𝑑𝑟
𝑎

0

√𝑟2 + ℎ2
 

Step 5: Using the substitution u = r² + h², we get:  

∫ 𝑟 · 𝑑𝑟

√𝑟2 + ℎ2
 =

∫(𝑢 − ℎ2) · 𝑑𝑢

2√𝑢
 =  (

1

2
)∫(√𝑢 −

ℎ2

√𝑢
) · 𝑑𝑢   

=  (
1

2
)  (

2

3
· 𝑢

3

2  −  ℎ² · 2 · 𝑢
1

2)  +  𝐶 

=  (1/3) · 𝑢
3

2  −  ℎ² · 𝑢
1

2  +  𝐶 

=  (
1

3
) (𝑟2 + ℎ2)

3

2  −  ℎ² · (𝑟2 + ℎ2)
1

2  +  𝐶 

   Step 6: Evaluating the integral from 𝑟 = 0 𝑡𝑜 𝑟 = 𝑎:
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∫ 𝑟 · 𝑑𝑟
𝑎

0

√𝑟2 + ℎ2
 =  [(

1

3
) (𝑟2 + ℎ2)

3

2  −  ℎ2 · (𝑟2 + ℎ2)
1

2]
𝑟 = 𝑎

𝑟 = 0

= (
1

3
) (𝑎2 + ℎ2)

3

2  −  ℎ2 · (𝑎2 + ℎ2)
1

2  −  (
1

3
) · ℎ3 + ℎ3  

=  (
1

3
) (𝑎2 + ℎ2)

3

2  −  ℎ2 · (𝑎2 + ℎ2)
1

2  +  (
2

3
) · ℎ3  

Step 7: Substituting back:  

𝛷(0,0, ℎ) =  −2𝜋𝐺 · 𝜌 · 𝑡

· [(
1

3
) (𝑎2 + ℎ2)

3

2  −  ℎ2 · (𝑎2 + ℎ2)
1

2   +  (
2

3
) · ℎ3] 

Step 8: Simplifying: 

 𝛷(0,0, ℎ)  =  −2𝜋𝐺 · 𝜌 · 𝑡 · [(
1

3
) (𝑎2 + ℎ2)

3

2  − ℎ2 · √𝑎2 + ℎ2 + (
2

3
) · ℎ3] 

This gives the gravitational potential at any point on the axis of the uniform 

disk. 

Unsolved Problems for Axially Symmetric Problems 

Unsolved Problem 1: 

A hollow cylindrical conductor with inner radius a and outer radius b is placed 

in a uniform external electric field E₀ parallel to its axis. Find the electric 

potential Φ(r,z) in the region a < r < b, assuming the conductor is at zero 

potential. 

Unsolved Problem 2: 

A cylindrical tank of radius R and height H is filled with a heat-conducting 

fluid. Initially, the fluid is at a uniform temperature T₀. At time t=0, the curved 

surface of the tank is suddenly cooled to temperature T₁, while the top and 

bottom surfaces are kept insulated. Find the temperature distribution T(r,z,t) 

within the fluid as a function of time. 
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Applications:  Axially  symmetric  problems  are  found  in 4.

symmetric problems is cylindrical coordinates (r,θ,z).

Cylindrical Coordinates: The natural coordinate system for axially 3.

cylindrical coordinates.

problems to two-dimensional ones, eliminating the θ-dependence in 

Advantage  of  Axial  Symmetry:  It  reduces  three-dimensional 2.

axis, typically chosen as the z-axis.

symmetry  when its  properties are  invariant  under  rotation  about an 

Axial  Symmetry  Definition:  A  physical  system  possesses  axial 1.

Key Concepts in Axially Symmetric Problems

4.3.5 Summary and Important Formulas

Find the electric field and energy stored per unit length in the cable.

conductor is maintained at potential V₀ while the outer conductor is grounded. 

between them is filled with a dielectric material of permittivity ε. The inner 

conductor of radius b. Both conductors are thin perfect conductors. The region 

A circular coaxial cable consists of an inner conductor of radius a and an outer 

Unsolved Problem 5:

T(r,z) within the cylinder for z > 0.

steady-state conditions and axial symmetry, find the temperature distribution 

temperature T₁, while its curved surface is kept at temperature T₀. Assuming 

A  semi-infinite  cylinder  of  radius  a  has  its  flat  end  at  z=0  maintained  at 

Unsolved Problem 4:

w(r,t) of the membrane as a function of time, assuming axial symmetry.

displacement 𝑤₀(1 − 𝑟²/𝑎²), where w₀ is a constant. Find the displacement 

boundary.  The  membrane  is  initially  at  rest  and  is  given  an  initial 

A circular membrane of radius a is stretched with tension T and fixed at its 

Unsolved Problem 3:

Important Differential Equations for Axially Symmetric Problems

problems.

electrostatics, heat conduction, fluid flow, elasticity, and gravitational 
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1. Laplace's Equation: 
𝜕2𝛷

𝜕𝑟2
+ (

1

𝑟
)
𝜕𝛷

𝜕𝑟
+

𝜕2𝛷

𝜕𝑧2
=  0  

2. Poisson's Equation: 
𝜕2𝛷

𝜕𝑟2
+ (

1

𝑟
)
𝜕𝛷

𝜕𝑟
  +

𝜕2𝛷

𝜕𝑧2
 =  −

𝜌(𝑟,𝑧)

𝜀
 

3. Heat Equation: 
𝜕𝑇

𝜕𝑡
 =  𝛼(

𝜕2𝑇

𝜕𝑟2
 + (

1

𝑟
)
𝜕𝑇

𝜕𝑟
 +

𝜕2𝑇

𝜕𝑧2
) 

4. Wave Equation: 
𝜕2𝛹

𝜕𝑡2
 =  𝑐2 (

𝜕2𝛹

𝜕𝑟2
+ (

1

𝑟
)
𝜕𝛹

𝜕𝑟
  +

𝜕2𝛹

𝜕𝑧2
) 

5. Biharmonic Equation (for elasticity problems): 

 𝛻4𝛷 =
𝜕4𝛷

𝜕𝑟4
 +  (

2

𝑟
)
𝜕3𝛷

𝜕𝑟3
 − (

1

𝑟2
)
𝜕2𝛷

𝜕𝑟2
 +  (

1

𝑟3
)
𝜕𝛷

𝜕𝑟
  +

𝜕4𝛷

𝜕𝑧4
 +

 (
2

𝑟
)

𝜕3𝛷

𝜕𝑟𝜕𝑧2
 =  0 

Solution Methods 

1. Separation of Variables: 

• Assume 𝛷(𝑟, 𝑧)  =  𝑅(𝑟)𝑍(𝑧) 

• Radial equation: 𝑟²𝑅′′ +  𝑟𝑅′ −  𝑘²𝑟²𝑅 =  0 

• Axial equation: 𝑍′′ −  𝑘²𝑍 =  0 

• Radial solutions: 𝑅(𝑟)  =  𝐴𝐽₀(𝑘𝑟)  +  𝐵𝑌₀(𝑘𝑟) 

• Axial solutions: 𝑍(𝑧) =  𝐶𝑒𝑘𝑧 +  𝐷𝑒−𝑘𝑧 

2. Method of Images: 

• Used for simple boundary conditions 

• Place fictitious sources outside the domain 

3. Green's Functions: 

• Solution expressed as:  

𝛷(𝑟, 𝑧) =  ∫∫𝐺(𝑟, 𝑧; 𝑟′, 𝑧′)𝜌(𝑟′, 𝑧′)𝑟′𝑑𝑟′𝑑𝑧′ 

4. Numerical Methods: 

• Finite difference method 

• Finite element method 

• Boundary element method 
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    • 𝐶 = 2𝜋𝜀₀𝜀ᵣ𝐿/𝑙𝑛(𝑏/𝑎)

Capacitance of a Cylindrical Capacitor:2.

• For a ring of radius a and charge Q at a point on the axis

• 𝛷(0,0, 𝑧) = 𝑄/(4𝜋𝜀₀ · √(𝑎² + 𝑧²))

Electric Potential of a Ring of Charge:1.

Electrostatics

Important Formulas for Specific Applications

• Ensures bounded solution on axis of symmetry

• 𝜕𝛷/𝜕𝑟|ᵣ₌₀ = 0

4. Regularity Condition:

• Linear combination of function and normal derivative

𝜕𝑛
• 𝑎𝛷 + 𝑏 = ℎ(𝑟, 𝑧) on the boundary

𝜕𝛷

3. Mixed Boundary Condition:

• Specifies the normal derivative (flux)

• 𝜕𝛷/𝜕𝑛 = 𝑔(𝑟, 𝑧) on the boundary

2. Neumann Boundary Condition:

• Specifies the value of the function

• Φ(r,z) = f(r,z) on the boundary

1. Dirichlet Boundary Condition:

Boundary Conditions

• For problems in spherical coordinates with axial symmetry

• Pₙ(cos θ): Legendre polynomial of order n

3. Legendre Polynomials:

• For problems with exponential growth/decay

• K₀(kr): Modified Bessel function of the second kind, order 0

• I₀(kr): Modified Bessel function of the first kind, order 0

2. Modified Bessel Functions:

• For problems with cylindrical symmetry

• Y₀(kr): Bessel function of the second kind, order 0

• J₀(kr): Bessel function of the first kind, order 0

1. Bessel Functions:

Special Functions
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• For a capacitor of length L, inner radius a, outer radius b 

3. Electric Field of a Charged Disk at a Point on the Axis: 

• 𝐸(0,0, 𝑧) =
𝜎

2𝜀0
 [1 −

𝑧

√𝑧2+ 𝑎2
] 

• For a disk of radius a with surface charge density σ 

Heat Conduction 

1. Steady-State Temperature in a Cylinder with Surface 

Temperature T₀: 

• 𝑇(𝑟, 𝑧)  =  𝑇₀ +  ∑ 𝐴ₙ 𝐽₀(𝛼ₙ
𝑟

𝑎
) 𝑠𝑖𝑛ℎ(𝛼ₙ𝑧/𝐿)∞

𝑛=1  

• Where αₙ are the roots of J₀(αₙ) = 0 

2. Temperature of a Cooling Cylinder: 

• 𝑇(𝑟, 𝑡)  =  𝑇∞ +  ∑ 𝐴ₙ 𝐽₀(𝜆ₙ𝑟/𝑎)𝑒(−𝜆ₙ²𝛼𝑡/𝑎²)∞
𝑛=1  

• Where λₙ are determined by boundary conditions 

Fluid Dynamics 

1. Velocity Profile for Fully Developed Pipe Flow (Poiseuille Flow): 

• 𝑣(𝑟)  =  (𝑃₁ − 𝑃₂)/(4𝜇𝐿)(𝑅² −  𝑟²) 

• For a pipe of radius R, length L, pressure difference (P₁-P₂), 

and fluid viscosity μ 

2. Stream Function for Axisymmetric Flow: 

• 𝑣ᵣ =  −(1/𝑟)𝜕𝜓/𝜕𝑧 

• 𝑣ᵤ =  (1/𝑟)𝜕𝜓/𝜕𝑟 

• Where ψ is the stream function 

Elasticity 

1. Torsion of a Circular Shaft: 

• 𝜏(𝑟)  =  𝑇𝑟/(𝜋𝑅⁴/2) 

• For a shaft of radius R subjected to torque T 

2. Stress in a Thick-Walled Cylinder Under Internal Pressure: 

• 𝜎ᵣ(𝑟)  =  𝑎²𝑝₁/(𝑏² − 𝑎²)[1 −  𝑏²/𝑟²] 

• 𝜎𝜃(𝑟)  =  𝑎²𝑝₁/(𝑏² − 𝑎²)[1 +  𝑏²/𝑟²] 

• For a cylinder with inner radius a, outer radius b, and internal 

pressure p₁  
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4. Vieta's Formulas: If r and s are the two roots of ax² + bx + c = 0, 

then: 𝑟 +  𝑠 =  −
𝑏

𝑎
     𝑟 · 𝑠 =

𝑐

𝑎
  

5. Factoring Quadratics: 𝑎𝑥² +  𝑏𝑥 +  𝑐 =  𝑎(𝑥 −  𝑟)(𝑥 −  𝑠) 

where r and s are the roots 

Solved Problems 

Problem 1: Quadratic Equation with Real Roots 

2𝑎)² + (4𝑎𝑐 − 𝑏²)/4𝑎

2𝑎)²) + 𝑐 = 𝑎(𝑥 + 𝑏/2𝑎)² + 𝑐 − 𝑎𝑏²/4𝑎² = 𝑎(𝑥 + 𝑏/

  𝑎(𝑥² + (𝑏/𝑎)𝑥) + 𝑐 = 𝑎(𝑥² + (𝑏/𝑎)𝑥 + (𝑏/2𝑎)² − (𝑏/

Completing the Square: For ax² + bx + c, rewrite as:3.

• If Δ < 0: Two complex conjugate solutions

• If Δ = 0: One repeated real solution

• If Δ > 0: Two distinct real solutions

Discriminant: 𝛥 = 𝑏² − 4𝑎𝑐2.

solutions are given by: 𝑥 = (−𝑏 ± √(𝑏² − 4𝑎𝑐)) / (2𝑎)

Quadratic Formula: For a quadratic equation ax² + bx + c = 0, the 1.

Key Formulas

strengthen your understanding.

explanations, and include both solved and unsolved practice problems to help 

solving  techniques.  We'll  cover  the  relevant  formulas,  provide  thorough 

This  section  focuses  on  important  mathematical  concepts  and  problem- 

Introduction

4.3.6 Practice Problems

• For a disk of radius a, thickness t, and density ρ

• 𝛷(0,0, ℎ) = −2𝜋𝐺𝜌𝑡[√(𝑎² + ℎ²) − ℎ]

Gravitational Potential of a Uniform Disk:1.

Gravitational Problems
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Problem: Solve the quadratic equation 2x² - 7x + 3 = 0 using the quadratic 

formula. 

Solution: Step 1: Identify the coefficients. a = 2, b = -7, c = 3 

Step 2: Apply the quadratic formula.  

𝑥 =  (−𝑏 ± √(𝑏² −  4𝑎𝑐)) / (2𝑎) 𝑥 =  (7 ± √(49 −  24)) / 4 𝑥 

=  (7 ± √25) / 4 𝑥 =  (7 ±  5) / 4 

Step 3: Calculate the two roots. 

 𝑥₁ =  (7 +  5) / 4 =  12/4 =  3 𝑥₂ =  (7 −  5) / 4 =  2/4 =  1/2 

Therefore, the solutions are x = 3 and x = 1/2. 

Problem 2: Quadratic Equation with Complex Roots 

Problem: Solve the quadratic equation x² + 4x + 13 = 0. 

Solution: Step 1: Identify the coefficients. a = 1, b = 4, c = 13 

Step 2: Apply the quadratic formula.  

𝑥 =  (−𝑏 ± √(𝑏² −  4𝑎𝑐)) / (2𝑎) 𝑥 =  (−4 ± √(16 −  52)) / 2 𝑥 

=  (−4 ± √(−36)) / 2 𝑥 =  (−4 ±  6𝑖) / 2 𝑥 

=  −2 ±  3𝑖 

Therefore, the solutions are x = -2 + 3i and x = -2 - 3i. 

Problem 3: Completing the Square 

Problem: Solve 3x² - 12x + 9 = 0 by completing the square. 

Solution: Step 1: Divide all terms by the leading coefficient  

3. 𝑥² −  4𝑥 +  3 =  0 

Step 2: Move the constant term to the right side. x² - 4x = -3 
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Step 3: Complete the square on the left side. Half of the coefficient of x is -

4/2 = -2. Square this to get (−2)² =  4. 𝑥² −  4𝑥 +  4 =  −3 +  4 (𝑥 −

 2)² =  1 

Step 4: Take the square root of both sides. x - 2 = ±1 

Step 5: Solve for x. x = 2 ± 1 x = 3 or x = 1 

Therefore, the solutions are x = 3 and x = 1. 

Problem 4: Application Problem - Projectile Motion 

Problem: A ball is thrown upward from a height of 6 feet with an initial 

velocity of 32 feet per second. The height h of the ball after t seconds is given 

by the equation h = -16t² + 32t + 6. Find: 

 a) The maximum height reached by the ball  

b) The time when the ball hits the ground 

Solution: a) To find the maximum height, we need to find when the derivative 

equals zero. h'(t) = -32t + 32 Setting h'(t) = 0: -32t + 32 = 0    t = 1 second 

The maximum height is: h(1) = -16(1)² + 32(1) + 6 = -16 + 32 + 6 = 22 feet 

b) The ball hits the ground when h = 0:    -16t² + 32t + 6 = 0 

We can solve this using the quadratic formula: a = -16, b = 32, c = 6 

𝑡 =  (−32 ± √(32² −  4(−16)(6))) / (2(−16))   

=  (−32 ± √(1024 +  384)) / (−32)   

=  (−32 ± √1408) / (−32)  =  (−32 ±  37.52) / (−32) 

𝑡₁ =  (−32 +  37.52) / (−32)  ≈  −0.17 seconds (invalid as it's negative) 

𝑡₂ =  (−32 −  37.52) / (−32)  ≈  2.17 seconds 

Therefore, the ball hits the ground after approximately 2.17 seconds. 

Problem 5: Forming a Quadratic with Given Roots 
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Problem: Find a quadratic equation with integer coefficients whose roots are 

2 + √3 and 2 - √3. 

Solution: Step 1: Use the formula for a quadratic with given roots. If r and s 

are the roots, then the quadratic is: (x - r)(x - s) = 0 

Step 2: Substitute the given roots. (𝑥 − (2 + √3))(𝑥 − (2 − √3))  =  0 

Step 3: Multiply the binomials.  

(𝑥 −  2 − √3)(𝑥 −  2 + √3) = 0  

 𝑥2 −  2𝑥 + √3𝑥 −  2𝑥 +  4 −  2√3 + √3𝑥 −  2√3 +  3 =  0  

𝑥2 −  4𝑥 +  4 − (√3)
2
=  0 

 𝑥2 −  4𝑥 +  4 −  3 =  0 

 𝑥² −  4𝑥 +  1 =  0 

Therefore, the quadratic equation with integer coefficients is  

 𝑥² −  4𝑥 +  1 =  0. 

 

 

  

 

 

 

 

 Problem 9

equal roots.

Find the values of k for which the quadratic equation x² + kx + 16 = 0 has 

Problem 8

80 square meters, find the dimensions of the garden.

A rectangular garden has a perimeter of 36 meters. If the area of the garden is 

Problem 7

Solve the quadratic equation: 3x² + 10x - 8 = 0

Problem 6

Unsolved Problems
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  • Graphing the parabola more easily

• Determining the axis of symmetry (x = h)

• Finding the maximum or minimum value of the quadratic function

Where (h, k) is the vertex of the parabola. This is particularly useful for:

𝑓(𝑥) = 𝑎(𝑥 − ℎ)² + 𝑘

identify the vertex form of a quadratic function:

quadratic  into  a  perfect  square  plus  or  minus  a  constant.  This  allows  us  to 

Completing the square has a geometric interpretation: it transforms a general 

Geometric Interpretation of Completing the Square

having to solve them completely.

The discriminant is a powerful tool for analyzing quadratic equations without 

quadratic function doesn't intersect the x-axis.

If  Δ  <  0,  there  are  two  complex  conjugate  roots.  The  graph  of  the 3.

the quadratic function touches the x-axis at exactly one point.

If Δ = 0, there is exactly one real root (a repeated root). The graph of 2.

the further apart the roots are.

If Δ > 0, there are two distinct real roots. The larger the value of Δ, 1.

The discriminant Δ = b² - 4ac tells us about the nature of the roots:

Understanding the Discriminant

Additional Explanation and Techniques

3 - √5.

Find a quadratic equation with integer coefficients whose roots are 3 + √5 and 

Problem 10

height c) The time when the ball hits the ground

reached by the ball b) The time it takes for the ball to reach the maximum 

seconds is given by h = -4.9t² + 40t + 2. Determine: a) The maximum height 

second from a height of 2 meters. The height h (in meters) of the ball after t 

A ball is thrown vertically upward with an initial velocity of 40 meters per 
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Applications of Quadratics 

Quadratic equations appear in many real-world scenarios: 

1. Physics: Projectile motion, as seen in Problem 4, where the height of 

an object under gravity follows a quadratic path. 

2. Economics: Revenue and profit functions often have quadratic forms, 

with the maximum representing the optimal price point. 

3. Geometry: Finding dimensions with given area and perimeter 

constraints, as in Problem 7. 

4. Engineering: Design problems involving optimization frequently 

lead to quadratic expressions. 

5. Architecture: The shape of arches and cables in suspension bridges 

follow parabolic curves. 

Tips for Solving Quadratic Equations 

1. Look for factorization first: Before using the quadratic formula, 

check if the quadratic expression can be factored easily. 

2. Choose the appropriate method:  

• Factoring: Best for expressions with integer roots 

• Completing the square: Helpful for understanding the 

structure and finding the vertex 

• Quadratic formula: Works universally for all quadratics 

3. Work with simplified forms: If possible, divide through by the 

leading coefficient to make a = 1. 

4. Check your answers: Substitute your solutions back into the original 

equation to verify. 

5. Consider the context: In application problems, be mindful of 

constraints that might eliminate some mathematical solutions. 

Solutions to Unsolved Problems 

Here are the detailed solutions to the unsolved problems for your reference: 

Solution to Problem 6 

To solve 3x² + 10x - 8 = 0, we use the quadratic formula. 
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With 𝑎 =  3, 𝑏 =  10, 𝑐 =  −8:    𝑥 =  (−10 ± √(10² −  4(3)(−8))) /

 (2(3))  

                 

      

               

           

 

 

 

 

 

  

   

  

 

 

 

   

 

 

 

               𝛥 = 𝑏² − 4𝑎𝑐 = 𝑘² − 4(1)(16) = 𝑘² − 64 = 0

discriminant must equal zero:

For  the  quadratic  equation  x²  +  kx  +  16  =  0  to  have  equal  roots,  the 

Solution to Problem 8

dimensions are 10 meters by 8 meters.

Since  length  and  width  are  interchangeable  in  this  context,  the  garden 

If l = 10, then w = 18 - 10 = 8 If l = 8, then w = 18 - 8 = 10

l₁ = 20/2 = 10 l₂ = 16/2 = 8

/ 2 l = (18 ± √4) / 2 l = (18 ± 2) / 2

Using the quadratic formula with a = 1, b = -18, c = 80: l = (18 ± √(324 - 320)) 

0 l² - 18l + 80 = 0

Substituting into the area equation: l(18 - l) = 80 18l - l² = 80 -l² + 18l - 80 = 

We can express w in terms of l using the perimeter equation: w = 18 - l

From the area information: l·w = 80

From the perimeter information: 2l + 2w = 36 l + w = 18

Let's denote the length as l and the width as w.

Solution to Problem 7

Therefore, the solutions are x = 2/3 and x = -4.

𝑥₂ = (−10 − 14) / 6 = −24/6 = −4

𝑥₁ = (−10 + 14) / 6 = 4/6 = 2/3

  = (−10 ± 14) / 6

𝑥 = (−10 ± √(100 + 96)) / 6 𝑥 = (−10 ± √196) / 6 𝑥
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    Multiplying the binomials: (x - 3 - √5)(x - 3 + √5) = 0

(3 - √5)) = 0

If the roots are 3 + √5 and 3 - √5, the quadratic equation is: (x - (3 + √5))(x - 

Solution to Problem 10

Therefore, the ball hits the ground after approximately 8.21 seconds.

t₂ = (-40 - 40.49) / (-9.8) ≈ 8.21 seconds

t₁ = (-40 + 40.49) / (-9.8) ≈ -0.05 seconds (invalid as it's negative)

t = (-40 ± 40.49) / (-9.8)

t = (-40 ± √1639.2) / (-9.8),

t = (-40 ± √(1600 + 39.2)) / (-9.8),

4(-4.9)(2))) / (2(-4.9)),

Using the quadratic formula with a = -4.9, b = 40, c = 2: t = (-40 ± √(1600 - 

 The ball hits the ground when h = 0: -4.9t² + 40t + 2 = 0c)

 The time to reach maximum height is approximately 4.08 seconds.b)

4.9(16.65) + 163.2 + 2 ≈ −81.57 + 163.2 + 2 ≈ 83.63 𝑚𝑒𝑡𝑒𝑟𝑠

The  maximum  height  is: ℎ(4.08) = −4.9(4.08)² + 40(4.08) + 2 ≈ - 

≈ 4.08 seconds

 h'(t) = -9.8t + 40. Setting h'(t) = 0: -9.8t + 40 = 0, t = 40/9.8 b)

equals zero:

To  find  the  maximum  height,  we  find  when  the  derivative a)

The height function is ℎ = −4.9𝑡² + 40𝑡 + 2

Solution to Problem 9

The values of k for which the equation has equal roots are k = 8 and k = -8.

Therefore: k² = 64 k = ±8
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 x² - 3x + √5x - 3x + 9 - 3√5 + √5x - 3√5 + 5 = 0  

x² - 6x + 9 - (√5)² + 2√5x - 6√5 = 0 

 x² - 6x + 9 - 5 + 2√5x - 6√5 = 0 

 x² - 6x + 4 + 2√5x - 6√5 = 0 

This doesn't have integer coefficients due to the √5 terms. To get integer 

coefficients, we need to multiply by a constant. 

Let's try a different approach using Vieta's formulas: Sum of roots = 3 + √5 + 

3 - √5 = 6.  Product of roots = (3 + √5)(3 - √5) = 9 - 5 = 4 

For a quadratic in the form x² + bx + c = 0: b = -(sum of roots) = -6 c = product 

of roots = 4 

Therefore, the quadratic equation with integer coefficients is x² - 6x + 4 = 0. 

Advanced Topics Related to Quadratics 

The Relationship between Quadratics and Conics 

Quadratic equations in two variables generate conic sections. The general 

form is: Ax² + Bxy + Cy² + Dx + Ey + F = 0 

Depending on the coefficients, this equation represents: 

• Circle: when A = C and B = 0 

• Ellipse: when A ≠ C and B = 0 

• Hyperbola: when A and C have opposite signs and B = 0 

• Parabola: when either A = 0 or C = 0 (but not both) 
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Parametric Representation of Quadratics 

A quadratic function y = ax² + bx + c can also be represented parametrically 

as: x(t) = t y(t) = at² + bt + c 

This representation is particularly useful in physics and computer graphics. 

Numerical Methods for Solving Quadratics 

When dealing with coefficients that make analytical solutions challenging, 

numerical methods can be employed: 

1. Newton's Method: Starting with an initial guess x₀, iterate using the 

formula: 𝑥ₙ₊₁ =  𝑥ₙ −  𝑓(𝑥ₙ)/𝑓′(𝑥ₙ) 

2. Bisection Method: If f(a) and f(b) have opposite signs, the root lies 

in [a,b]. Repeatedly halve the interval until finding the root with 

desired accuracy. 

Systems of Quadratic Equations 

Systems involving multiple quadratic equations arise in various applications. 

While more complex than linear systems, they can often be solved using 

substitution methods, elimination, or numerical techniques. 

Conclusion 

Quadratic equations form a fundamental part of mathematics with wide-

ranging applications. The methods discussed—factoring, completing the 

square, and the quadratic formulaprovide a comprehensive toolkit for solving 

these equations.The practice problems presented here cover various aspects 

of quadratics, from pure algebraic manipulation to real-world applications. By 

working through these examples and attempting the unsolved problems, you'll 

develop a deeper understanding of quadratic relationships and their 

properties.Remember that the choice of solution method often depends on the 

specific problem context and the form of the quadratic equation. Developing 

the ability to recognize which approach is most efficient for a given problem 

is an important mathematical skill that comes with practice. 
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the  visualization  of  otherwise  abstract  field  values.  In  electrostatics,

These surfaces, where the potential function retains a constant value, facilitate 

Laplace's  equation  and  offers  essential  understanding  of  field  dynamics. 

The  notion  of  equipotential  surfaces  arises  inherently  from  the  answers  to 

amalgamated  to  address  progressively  intricate  boundary  value  problems. 

function  as  templates  that,  via  the  principle  of  superposition,  can  be 

potentials  surrounding  spherical  entities.  These  fundamental  solutions 

issues  exhibiting  spherical  symmetry,  such  as  gravitational  or  electrostatic 

solutions incorporate Legendre polynomials, which are crucial for addressing 

logarithmic  potentials  characterize  point  sources.  In  spherical  coordinates, 

linear  functions  inherently  meet  the  equation,  whereas  in  two  dimensions, 

contingent  upon  the  coordinate  system  utilized.  In  Cartesian  coordinates, 

polynomial  expressions,  logarithmic  functions,  and  trigonometric  forms, 

tackling  more  intricate  issues.  These  essential  solutions  encompass  basic 

solutions  to  Laplace's  equation  serve  as  the  foundational  components  for 

mathematical features that facilitate robust analytical methods. Fundamental 

solutions of the equation, referred to as harmonic functions, have exceptional 

and  engineers  tasked  with  analyzing  and  optimizing  intricate  systems.  The 

equation  renders mastery  in  it  an  essential  skill for  contemporary  scientists 

distributions in the absence of sources or sinks. The universality of Laplace's 

potential  flow;  in  heat  transfer,  it  regulates  steady-state  temperature 

delineates electric potential in charge-free areas; in fluid dynamics, it defines 

The elegance of Laplace's equation is in its adaptability. In electrostatics, it 

devices  and satellite  navigation  systems. 

is  essential  for  the  design  of  various  systems,  including  microelectronic 

As technology progresses, comprehending and addressing Laplace's equation 

fluid  dynamics,  heat  conduction,  gravitational  fields, and  quantum  physics. 

significant  consequences  across  various  domains,  including  electrostatics, 

Notwithstanding  its  mathematical  simplicity,  Laplace's  equation  possesses 

systems in which the divergence of the gradient of a potential field is zero. 

∇² as the Laplace operator and Φ as a scalar potential function, characterizes 

where equilibrium or steady-state conditions exist. The equation ∇²Φ = 0, with 

mathematical physics, prevalent in various physical and engineering scenarios 

Laplace's  equation  is  a  fundamental  partial  differential  equation  in 

Science and Engineering

The  Pragmatic  Utilization  of  Laplace's  Equation  in  Contemporary 
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problems,  enhancing  their  analytical  and  numerical  tractability.  Bessel

cylindrical coordinates, axisymmetric solutions simplify to two-dimensional 

heat  exchangers,  rotating  equipment,  and  planetary  magnetic  fields.  In 

natural phenomena demonstrate this symmetry, including transmission lines, 

equation  is  notably  simplified.  Numerous  engineering  components  and 

symmetric systems are a significant category of situations in which Laplace's 

for  accurate  implementation  and  interpretation  of  outcomes. Axially 

research; however, comprehending the foundational mathematics is essential 

Contemporary computer technologies automate a significant portion of this 

alternative coordinate systems tailored for particular problem geometries.

rectangular, cylindrical, and spherical geometries, the method is applicable to 

boundary  requirements.  Although  conventional  examples  encompass 

frequently  encompass  endless  series  of  eigenfunctions  that  adhere  to  the 

dependent  solely  on  a  single  coordinate  variable.  The  resultant  solutions 

by positing that the solution can be represented as a product of functions, each 

the partial differential equation into a system of ordinary differential equations 

for solving Laplace's equation in standard geometries. This method converts 

The separation of variables method is a highly effective analytical approach 

unequivocal  solutions. 

particularly  important  in  engineering  design  due  to  the  necessity  for 

confidence in both analytical and numerical outcomes. Laplace's equation is 

well-posed boundary value problems has a singular solution, hence instilling 

physical reality. The uniqueness theorem for Laplace's equation ensures that 

elements of both types, frequently provide a more accurate representation of 

(field  strengths)  at  boundaries.  Mixed  boundary  conditions,  including 

boundaries,  whereas  Neumann  problems  establish  the  normal  derivatives 

particular requirements. Dirichlet problems delineate the potential values at 

function  within  established  parameters  that  necessitate  the  fulfillment  of 

are  the  most  pragmatic  use  of  Laplace's  equation.  Real-world  systems 

alterations to improve performance and reliability. Boundary value problems 

regions  of  potential  current  crowding  or  breakdown,  guiding  design 

areas in designs.  Equipotential  analysis  in  semiconductor  devices  identifies 

intricate visualizations of these surfaces, allowing engineers to pinpoint key 

isothermal  areas.  Contemporary  computational  techniques  may  produce 

they  denote  surfaces  of  uniform  pressure;  in  thermal  systems,  they  signify 

equipotential surfaces are orthogonal to electric field lines; in fluid dynamics, 
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impedance tomography. The equation regulates oxygen diffusion in tissues,

electrocardiography  (ECG), electroencephalography  (EEG),  and  electrical 

distributions  in biological  tissues,  facilitating  procedures  such  as 

In biomedical engineering, Laplace's equation delineates electrical potential 

infrastructure  development. 

Laplace's equation are becoming increasingly vital for policy formulation and 

resource management, and sustainable energy, precise models derived from 

atmospheric  systems.  With  the  rising  worries  over  climate  change,  water 

utilize  Laplacian  operators  to  characterize heat  transfer  in  oceanic  and 

necessitate  answers  to  Laplace's equation  or  its  variants.  Climate  models 

contaminant  dispersion  in  aquifers,  and  gravitational  anomaly  mapping  all 

Groundwater flow under steady-state settings, geothermal energy extraction, 

Laplace's  equation  is  essential  in  geophysics  and  environmental  modeling. 

vanguard  of  contemporary  physics. 

mathematical  formalism,  underscoring  the  equation's  significance  at  the 

probability  distributions  for  quantum  particles  often  entails  analogous 

frequently  depend  on  solutions  to  Laplace-like  equations.  Comprehending 

contemporary  quantum  computing  and  quantum  sensing  technologies 

quantum  dots,  and  other  nanostructures  that  form  the  foundation  of 

solving  Laplace's  equation  pertinent for  quantum  systems.  Quantum  wells, 

to  Laplace's  equation  in  areas  of  uniform  potential,  rendering  methods  for 

quantum technology. The time-independent Schrödinger equation simplifies 

Laplace's equation holds importance in quantum mechanics and developing 

boundary  conditions  must  be  deduced from  restricted  measurements. 

conventional  numerical  methods,  especially  for  inverse  situations  where 

analytical  solutions.  Machine  learning  techniques  increasingly  augment 

concepts,  allowing  engineers  to  evaluate  systems  that  are  too  intricate  for 

electromagnetic  field  simulators,  and  thermal  analysis  tools  utilize  these 

equations.  Contemporary  computational  fluid  dynamics  (CFD)  software, 

converting  the  continuous  differential  equation  into  a  system  of  algebraic 

element  approaches  partition  intricate  geometries  into  discrete  elements, 

on  numerical  approaches.  Finite  difference,  finite  element,  and  boundary 

practical application of solutions to Laplace's equation increasingly depends 

electronics, and the modeling of plasma confinement in fusion reactors. The 

distributions  in  coaxial  cables,  the  optimization  of  heat  sink  designs  in 

with  radial  distance.  Applications  encompass  the  analysis  of  field 

functions are integral to these solutions, delineating the variation of potentials 
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drug transport through porous membranes, and fluid dynamics in vascular 

networks. Contemporary medical imaging technologies, such as electrical 

impedance tomography and specific elements of magnetic resonance imaging, 

depend on resolving variations of Laplace's equation. With the progression of 

personalized medicine, patient-specific models that include these solutions 

enhance treatment techniques and the creation of medical devices.  The 

financial sector has modified Laplace's equation for option pricing models and 

risk evaluation. The Black-Scholes equation, essential to contemporary 

financial mathematics, simplifies to a variant of the heat equation, which is 

intricately connected to Laplace's equation by a straightforward 

transformation. Solutions to these equations facilitate the quantification of 

financial risks and the optimization of investment strategies. As financial 

systems become increasingly intricate and interlinked, robust mathematical 

models derived from these equations are crucial for stability analysis and 

regulatory frameworks.  Acoustic engineering use Laplace's equation to 

simulate sound transmission under steady-state conditions. Design of concert 

halls, optimization of noise barriers, and underwater acoustic sensors all 

derive advantages from solutions to Laplace's equation and its temporal 

extension, the wave equation. Contemporary architectural acoustics software 

utilizes these technologies to forecast sound fields in intricate geometries, 

facilitating the design of spaces with specific acoustic characteristics for both 

aesthetic and functional objectives.  Machine learning methodologies now 

augment conventional solutions to Laplace's equation. Neural networks can 

be trained to approximate solutions for intricate geometries where analytical 

methods are inadequate. Physics-informed neural networks integrate 

Laplace's equation directly into their loss functions, guaranteeing that the 

derived solutions adhere to the fundamental principles of physics. These 

hybrid methodologies offer expedited solutions for intricate systems while 

preserving physical precision, potentially transforming engineering design 

processes that necessitate the repetitive resolution of Laplace's equation for 

optimization.  Robotics and autonomous systems derive advantages from 

potential field methodologies grounded in Laplace's equation. Path planning 

algorithms formulate artificial potential fields in which impediments produce 

repulsive potentials and goals produce attractive potentials. The robot 

thereafter navigates the gradient of this potential field, instinctively 

circumventing barriers while progressing towards objectives. 
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Nanofluidic  devices,  MEMS  (Micro-Electro-Mechanical  Systems),  and

where  quantum  effects  are  relevant  while  classical  descriptions  still  hold. 

nanotechnology introduces novel applications of Laplace's equation at sizes 

stress distributions  or  temperature  regulation. The  growing  significance  of 

properties,  engineered  through  solutions  to  Laplace's  equation  to  enhance 

manufacturing methods can produce materials with spatially heterogeneous 

Laplace's equation under steady-state circumstances. Contemporary additive 

essential  for  numerous  manufacturing  processes,  frequently  comply  with 

prediction  of  phase  transitions.  Diffusion  processes  in  solid  materials, 

Laplace's  equation  for  the  design  of  functionally  graded  materials  and the 

demanding simulations. Materials science increasingly employs answers to 

protection  systems  prior  to  conducting  more  elaborate  and  resource- 

Laplace's  equation  facilitate  the identification  of  crucial  areas  in  thermal 

computing  expense.  Likewise,  streamlined  thermal  models  derived  from 

equation  offer  significant  preliminary  insights  at  a  considerably  reduced 

thorough aerodynamic study, potential flow solutions derived from Laplace's 

plasmas. Although comprehensive Navier-Stokes solutions are essential for 

thermal protection systems, and assessing spacecraft charging effects in space 

Laplace's  equation  for  analyzing  aerodynamic  potential  flow,  designing 

pertinent to sustainable development objectives. Aerospace engineering use 

essential,  rendering  the  applications  of  Laplace's  equation  particularly 

renewable energy sources gain prominence, efficient energy storage becomes 

durability necessitates precise modeling of internal potential distributions. As 

equation.  Enhancing  these  devices  for  efficiency,  power  density,  and 

distributions  that,  under  specific  assumptions,  comply  with  Laplace's 

by Laplace's equation. Fuel cells, batteries, and capacitors depend on potential 

Energy conversion and storage systems frequently entail processes regulated 

landscapes  and  buildings  with  numerous  reflective  surfaces. 

prediction  of  signal  intensity  in  intricate  environments,  including  urban 

generalizations  facilitate  the  optimization  of  antenna  geometry  and  the 

coverage  and  reduce  interference.  Solutions  to  Laplace's  equation  and  its 

necessitate  meticulous  regulation  of electromagnetic  fields  to  optimize 

Contemporary  wireless  communication technologies,  such  as  5G  networks, 

propagation  modeling,  and  electromagnetic  compatibility  assessment. 

telecommunications sector use Laplace's equation for antenna design, signal 

pathways require constant recalibration as new barriers emerge or vanish. The 

These  approaches  are  especially  beneficial  in  dynamic  contexts  where 
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derived  from  Laplace's  equation  to  enhance  traffic  flow  and  forecast

Urban planning and transportation engineering employ potential field models

dynamics  and  supply  chain  resilience. 

interconnected, these applications are vital for comprehending social media 

community structure and diffusion characteristics. As our world grows more 

study  of  this  operator  uncovers  essential  properties  of  networks,  such  as 

features analogous to those of the continuous Laplace operator. The spectral 

representation of connection in networks, possesses numerous mathematical 

social  influence  inside  intricate  networks.  The  graph  Laplacian,  a  matrix 

equation  to  examine  information dissemination,  disease  propagation,  and 

classical  equation. Network  theory  utilizes  discrete  analogs  of  Laplace's 

applications exemplify  some of the  most  advanced implementations  of  this 

equation  and  its  extensions  to  wave  phenomena.  These  unconventional 

engineering  of  material  properties  derived  from  solutions  to  Laplace's 

Cloaking devices, perfect absorbers, and superlenses necessitate meticulous 

fabrication of structures with tailored electromagnetic or acoustic responses. 

substances,  frequently  depends  on answers  to  Laplace's  equation  for  the 

discipline  of  metamaterials,  characterized  by  qualities  absent  in  normal 

physics, showcasing the equation's  extraordinary  adaptability. The  nascent 

harmonic  functions,  even  in  domains  that  appear  remote  from  classical 

applications  illustrate  the  utility  of  the  mathematical  characteristics of 

enhancement,  and the  construction  of 3D  models from  point  clouds.  These 

The Laplacian operator is utilized in algorithms for edge recognition, picture 

equation for image processing, mesh refinement, and surface reconstruction. 

Computer  graphics  and  computer  vision  employ  solutions  to  Laplace's 

these applications are vital for sustainable development and resilient design. 

framework. As urbanization progresses and infrastructure demands escalate, 

steady-state  heat  transfer  models  grounded  in  a  consistent  mathematical 

equation  or  its  variants.  Calculations  for  building  energy  efficiency  utilize 

analysis, and geotechnical risk assessment all depend on solutions to Laplace's 

analysis, and thermal transmission in edifices. Foundation design, dam safety 

employs Laplace's equation for groundwater flow modeling, structural stress 

into  progressively  unconventional  domains. Civil  engineering  frequently 

the enduring relevance of this basic equation, even as technology advances 

which become predominant at reduced sizes. These applications demonstrate 

by  a  modified  form  of  Laplace's  equation  that  incorporates  surface  effects, 

nanoporous materials all include potential distributions and flows regulated 
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precision  and  a  diminished  surface  footprint.  Comparable  ideas  pertain  to

extraction  while  mitigating  environmental  effect  through  enhanced  drilling 

that incorporates variations in permeability. These models optimize resource 

distributions in porous media adhere to a modified form of Laplace's equation 

placement,  and  strategizing  better  oil  recovery.  Steady-state  pressure 

sector  utilizes  Laplace's  equation  for  reservoir  modeling,  optimizing  well 

while steering systems towards preferred operating locations. The oil and gas 

robotics,  to  formulate  control  laws  that  inherently  evade  unwanted  states 

occasionally  utilize  artificial  potential  fields,  like  to  those  implemented  in 

to  those  of  harmonic  functions.  Contemporary  nonlinear  control  systems 

for the assessment of system stability, possess numerous characteristics akin 

comply with Laplace's equation or its variants. Lyapunov functions, utilized 

Applications  of  control  theory  frequently  entail  potential  functions  that 

plasma  processes. 

modeling of solar flares, planetary magnetospheres, and various astrophysical 

Laplace's equation and its extensions. Comparable ideas are applicable to the 

meticulously crafted magnetic field geometries optimized through answers to 

equation.  Tokamak  and  stellarator  fusion reactor  designs  depend  on 

configurations that, in steady-state current-free areas, comply with Laplace's 

energy  research  and  astrophysical  modeling,  entails  magnetic  field 

The  examination  of  magneto-hydrodynamics  (MHD),  essential  for  fusion 

computationally unfeasible.

significant  practical  insights  when  complete  nonlinear  solutions  are 

demonstrate that even approximate solutions to Laplace's equation can yield 

mountains  on  airflow  or  sea  breeze  circulations.  These  applications 

offer  valuable  insights  into  particular  phenomena,  such  as  the  influence  of 

equations,  potential  flow  approximations  derived  from  Laplace's  equation 

equation. Although comprehensive weather models utilize intricate, nonlinear 

dynamics  equations  that,  under  specific  conditions, simplify  to  Laplace's 

Weather forecasting and climate modeling utilize simplified versions of fluid 

mobility  patterns. 

transportation  networks  and  forecast  the  impacts  of  urban  expansion  on 

destinations.  These  models  facilitate the  construction  of  more  efficient 

equation,  which  include  source  and  sink  variables  denoting  sources  and 

density  as  potential  functions  that  fulfill  modified  versions  of  Laplace's 

population  dynamics.  These  models  consider  population  density  or  traffic 
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physical systems for monitoring and optimization, frequently utilizing models

forecast product quality. Digital twin technology generates virtual clones of 

require precise modeling of these domains to enhance process parameters and 

injection  molding,  electromagnetic  shaping,  and  precision  machining  all 

conditions,  comply  with  Laplace's  equation.  Heat  treatment  procedures, 

heat fields, fluid dynamics, or electromagnetic fields that, under steady-state 

change and  resource  efficiency. Manufacturing  processes  frequently  entail 

direct contribution of classical physics to contemporary issues such as climate 

usage  while  ensuring  occupant  comfort.  These  applications  illustrate  the 

modeling of air movement, heat transfer, and daylighting to minimize energy 

systems  that  align  with  natural  physical  processes,  necessitating  precise 

thermal comfort in structures. Sustainable design principles prioritize passive 

expansions to maximize natural ventilation, forecast wind loads, and improve 

fluid  dynamics  derived  from  solutions  to  Laplace's  equation  and  its 

serious simulation. Architectural design increasingly utilizes computational 

get  more  intricate,  obscuring  the  distinction  between  entertainment  and 

virtual reality and augmented reality technologies progress, these applications 

without  the  computational  demands  of  complete  physical  simulations.  As 

models derived from potential theory to produce visually compelling effects 

ambient  illumination.  Real-time  graphics  engines  utilize  simplified  physics 

environmental  effects,  including  fluid  movements,  smoke  dispersion,  and 

The  video  game  industry  use  Laplace's  equation  to  produce  realistic 

physics ideas despite technological advancements to more minuscule scales. 

equation. These applications demonstrate the continued relevance of classical 

meticulously  regulated  fluid  dynamics  derived  from  solutions  to  Laplace's 

"lab-on-a-chip," which miniaturize intricate laboratory processes, depend on 

where fluid flow closely adheres to Laplace's equation. Technologies such as 

biological research, typically function under low Reynolds number conditions 

Microfluidic  devices,  vital  in  medical  diagnostics,  chemical  synthesis,  and 

equation  and  its  extensions  to  enhance  light  manipulation  at  tiny  sizes. 

metamaterial  components,  frequently  depend  on  solutions  to  Laplace's 

length. Contemporary photonic devices, such as waveguides, resonators, and 

which is connected to Laplace's equation via the gradient of the optical path 

essential for lens design software, apply principles from the eikonal equation, 

wavefront  propagation  in  homogenous  medium.  Ray  tracing  methods, 

remediation. Optical  system  design  utilizes  Laplace's  equation  to  model 

geothermal  energy  extraction,  carbon  sequestration,  and  groundwater 
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environmental  conditions,  frequently  informed  by  models  derived  from

cultural heritage for future generations necessitates meticulous regulation of 

pollutant  dispersion  in  artifacts  and  display  environments.  Safeguarding 

equation  to  describe  moisture  transport,  temperature  distribution,  and 

mission  accomplishment. Art  conservation  utilizes  solutions  to  Laplace's 

applications become progressively vital for effective resource utilization and 

With  the  rise  of  space  activities  in  both public  and  private  sectors,  these 

essential for accurate orbit determination and gravitational assist maneuvers. 

Laplace's  equation  in  a  vacuum,  rendering  harmonic  function  expansions 

signals.  The  gravitational  potential  surrounding  celestial  bodies  adheres  to 

gravitational fields, optimizing trajectories, and propagating communication 

Space mission planning employs answers to Laplace's equation for modeling 

extraction, coastal defense constructions, and tsunami propagation modeling. 

for more intricate simulations. Comparable principles pertain to tidal energy 

flow solutions highlight key design elements and serve as initial frameworks 

Although  viscous  effects  are essential for  comprehensive  analysis,  possible 

estimations of hydrodynamic forces and wave formations surrounding boats. 

Potential  flow  theory,  grounded  in  Laplace's  equation,  offers  first-order 

analysis  of  offshore  structures,  and  dynamics  of  underwater  vehicles. 

Marine  engineering  utilizes  Laplace's  equation for  the  design  of  ship  hulls, 

from these principles.

sophisticated nuclear fuel concepts depend on optimized geometries derived 

processing  demands.  Contemporary  small  modular  reactor  designs  and 

derived from Laplace-like equations offer significant insights with diminished 

an  in-depth  understanding  of  neutron  behavior,  diffusion  approximations 

reactor cores. Although comprehensive transport equations are essential for 

diffusion, designing radiation shielding, and managing thermal processes in 

resources. Nuclear engineering use Laplace's equation for predicting neutron 

intrusion,  and  the  conjunctive  utilization  of  surface  and  groundwater 

ideas  pertain  to  regulated  aquifer  recharging,  prevention  of  saltwater 

solutions to Laplace's equation adjusted for aquifer variability. Comparable 

water scarcity, depends on precise models of subsurface flow derived from 

operations. Sustainable aquifer management, essential in areas experiencing 

groundwater  flow,  forecast  contamination  transfer,  and  enhance  well  field 

Water  resource  management  utilizes  Laplace's  equation  to  simulate 

derived  from  Laplace's  equation  to  forecast system  behavior  in  real-time. 
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 security  and environmental  sustainability. The  pharmaceutical  sector  use

agricultural systems, these applications become progressively vital for food 

escalation  of  climate  change  and  population  growth  exerting  strain  on 

transfer  often  derived  from  adaptations  of  Laplace's  equation.  With  the 

spatially varied application, depend on models of water, fertilizer, and heat 

agriculture. Precision agricultural methods, which enhance resource use via 

systems,  management  of  soil  moisture,  and  controlled  environment 

engineering utilizes answers to Laplace's equation for the design of irrigation 

utilizations  of  classical  physics  ideas  in  nascent  technology. Agricultural 

attributes.  These  applications  exemplify  some  of  the  most inventive 

numerical  solutions  to  Laplace's  equation  yield  insights  on  performance 

from  natural  creatures  frequently  incorporate  intricate  geometries,  wherein 

structure interactions, and elastic deformations. Biomimetic designs derived 

utilizes  Laplace's  equation  to  simulate  pneumatic  actuator  dynamics,  fluid- 

influences efficiency and durability. The expanding domain of soft robotics 

systems,  and  industrial  automation,  wherein  temperature  control  directly 

ideas  pertain  to  power  electronics  in  electric  vehicles,  renewable  energy 

pathways  developed  through  solutions  to  Laplace's  equation.  Comparable 

produce considerable heat in confined spaces, necessitating optimal thermal 

reliability  forecasting.  Contemporary  high-performance  computing  systems 

Laplace's  equation  for  thermal  control,  signal  integrity  assessment,  and 

to  climate  change.  Electronic  package  design  depends  on  solutions  to 

applications are vital for developing livable, sustainable cities that are robust 

changes guided by these models. As urbanization progresses worldwide, these 

energy  consumption  and  health  hazards,  can  be  alleviated  through  design 

inside  urban  environments.  The  urban  heat  island  effect,  which  elevates 

forecast temperature distributions, airflow patterns, and pollution dispersion 

microclimate  modeling  utilizes  Laplace's  equation  and  its  derivatives  to 

temperature  regulation  influences  drug  stability  and  efficacy. Urban 

concepts  pertain  to  pharmaceutical  manufacturing,  wherein  meticulous 

equation adjusted for phase transitions and biological processes. Analogous 

thermal  models,  many  of  which  are  derived  from  solutions to  Laplace's 

measures,  shelf-life  estimations,  and  equipment  design  depend  on  precise 

model heat transport in cooking, cooling, and storage processes. Food safety 

technological  progress. The  food  business  utilizes  Laplace's  equation  to 

essential  role  of  fundamental  physics  in  cultural  preservation  and 

Laplace's  equation  and  its  extensions.  These  applications  demonstrate  the 
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product  quality  are  contingent  upon  temperature  distributions  and

considerations  pertain  to  chemical  processing,  wherein  reaction  rates  and

precise  thermal  models  grounded  in  these  principles.  Analogous 

get specified material characteristics while reducing energy usage depends on 

with  Laplace's  equation in steady-state conditions.  Optimizing processes to 

treatment, and crystal formation, frequently engage thermal fields that comply 

safety. Materials processing processes, such as additive manufacturing, heat 

are  increasingly  vital  for  sustaining  essential  services  and  ensuring  public 

extreme weather events become more frequent and severe, these applications 

these models to pinpoint vulnerable elements and prioritize interventions. As 

for  existing  infrastructure  in  response  to  climate  change  frequently  utilize 

structures,  and  corrosion  potential  in  reinforced  concrete.  Adaptation  plans 

equation to simulate groundwater impacts on foundations, thermal stresses in 

efficiency. Infrastructure  resilience  analysis  utilizes  solutions  to  Laplace's 

incorporate  new  physical  phenomena  while  preserving  computational 

and  quantum  effects  gain  significance,  these  models  must  be  modified  to 

significant insights during initial design phases. As devices diminish in size 

semiconductor equations, simplified models utilizing Laplace's equation offer 

comprehensive  device  simulation  necessitates  the  resolution  of  coupled 

distributions  in  transistors,  diodes,  and  integrated  circuits.  Although 

Semiconductor device design utilizes Laplace's equation to predict potential 

generation while reducing resource use and environmental effects.

energy  intensifies,  these  applications  are  vital  for  optimizing  energy 

represented  by  Laplace's  equation  or  its  variants.  As the  shift  to  renewable 

pertain  to  physical  processes  that  can,  under  specific  conditions,  be 

wind turbine blades, and the performance of geothermal heat exchangers all 

system performance. The efficiency of solar collectors, the aerodynamics of 

Laplace's  equation  for  optimizing  component  geometry  and  forecasting 

The design of renewable energy systems increasingly depends on solutions to 

meticulous  management  via  scaffold  design  and  culture  conditions. 

engineering, wherein the transfer of nutrients and oxygen to cells necessitates 

Laplace's equation and its adaptations. Comparable principles pertain to tissue 

system  design,  is  enhanced  by  precise  diffusion  models  derived  from 

development  process,  encompassing  formulation  optimization  and  delivery 

release from delivery devices, and mixing processes in bioreactors. The drug 

Laplace's equation to simulate drug diffusion in biological tissues, regulated 
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and  community  battery  storage,  generate  intricate  power  flow  patterns  that

and  analyzing  stability.  Distributed  energy  resources,  such  as  rooftop  solar 

answers to Laplace's equation for optimizing electricity flow, detecting faults, 

become  vital  for public  safety  and  resilience. Smart  grid  systems  utilize 

escalates the frequency and intensity of natural disasters, these applications 

protection measures by swiftly predicting hazard features. As climate change 

enhance  early  warning  systems,  evacuation  planning,  and  infrastructure 

thermal  radiation  from  fires,  and  tsunami  wave  heights.  These  models 

derived  from  Laplace's  equation  and  its  extensions  for  flood  propagation, 

mobility. Disaster  management increasingly  depends  on predictive models 

increasingly  vital  for  diminishing  carbon  emissions  while  preserving 

global  transportation  electrification  advances,  these  applications  become 

implementation of more efficient systems developed utilizing these ideas. As 

obstacle  to  electric  vehicle  adoption,  can  be  mitigated  through  the 

motor design, and optimization of charging systems. Range anxiety, a major 

technology utilizes Laplace's equation for battery temperature management, 

more  sustainable  and efficient  built  environments. Electric  vehicle 

of  classical  physics  and  contemporary  information  technology  to  develop 

time data with physical models. These applications exemplify the integration 

provide  ongoing  optimization  of  operations through the  integration  of  real- 

performance during its lifecycle. Digital twins of constructed environments 

simulations, encompassing answers to Laplace's equation, to forecast building 

Building Information Modeling (BIM) progressively integrates physics-based 

gain  significance  for  maintenance  planning  and  capacity  improvement. 

urbanization  progresses  and  infrastructure  deteriorates,  these  applications 

models  to  forecast  system  performance  across  diverse  situations.  As 

consider  fluctuating  environmental  circumstances  frequently  utilize  these 

quality  within  underground  facilities.  Resilient  design  methodologies  that 

flow surrounding tunnels, thermal stresses in bridges and pavements, and air 

infrastructure  engineering  use  Laplace's  equation  to  estimate  groundwater 

heightened  relevance  for public  health  infrastructure. Transportation 

pandemic  preparedness  escalates  in  importance,  these  applications  gain 

computational  fluid  dynamics  grounded  in  these  principles.  As  global 

infections  frequently  incorporate  ventilation systems  engineered  by 

comfort  inside  clinical  settings.  Strategies  for  preventing  hospital-acquired 

equation  to simulate  airflow  patterns,  pollutant dispersion,  and  temperature 

concentration gradients. The design of healthcare facilities utilizes Laplace's 
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necessitate advanced models for effective control. As energy systems evolve 

from centralized to distributed designs, these applications become 

increasingly vital for ensuring stability while integrating renewable sources.  

The design of aerospace propulsion systems utilizes Laplace's equation to 

simulate potential flow around intake geometries, regulate temperature 

conditions in combustion chambers, and analyze electromagnetic fields in 

electric propulsion systems. Although comprehensive physical models 

necessitate intricate equations, solutions to Laplace's equation offer 

significant preliminary insights with diminished processing demands. As both 

conventional and innovative propulsion technologies progress, these 

applications persist in evolving for enhanced efficiency and performance.  

Urban water infrastructure increasingly utilizes solutions to Laplace's 

equation for modeling pressure distributions in water distribution networks, 

flow patterns in stormwater systems, and pollutant transport in sewer systems. 

Intelligent water management solutions that minimize leakage and energy use 

depend on these models for system oversight and regulation. As water scarcity 

and aging infrastructure impact more locations worldwide, these applications 

are becoming increasingly vital for sustainable resource management.  The 

expanding domain of quantum computing utilizes solutions to Laplace's 

equation formodeling electromagnetic field distributions in superconducting 

qubits, temperature regulation in cryogenic systems, and potential landscapes 

for trapped ion designs. Although quantum systems necessitate quantum 

mechanical representations, classical electrostatic and thermal models derived 

from Laplace's equation offer crucial insights for system design and error 

reduction. These applications exemplify some of the most sophisticated 

implementations of classical physics principles in state-of-the-art technology.  

A recurring theme in these varied applications is that Laplace's equation offers 

a mathematical foundation for comprehending and regulating potential fields 

in equilibrium or steady-state situations. The mathematical qualities of the 

equation, such as the mean value property, maximal principle, and solution 

analyticity, render it both theoretically elegant and practically beneficial. With 

the progression of scientific knowledge and technical prowess, Laplace's 

equation persists as a crucial instrument for the analysis and design of systems 

over a remarkable spectrum of scales and settings.  
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 Answer : a) A charged conductor

 A flowing fluidd)

 A vibrating stringc)

 A moving particleb)

 A charged conductora)

Which of the following represents an equipotential surface?5.

Answer : b) Boundary conditions only

 No conditionsd)

 Both initial and boundary conditionsc)

 Boundary conditions onlyb)

 Initial conditions onlya)

requires:

A boundary value problem associated with Laplace’s equation 4.

Answer : b) Harmonic functions

 None of the aboved)

 Characteristic functionsc)

 Harmonic functionsb)

 Wave functionsa)

The solutions to Laplace’s equation are known as:3.

Answer : c) Elliptic

 None of the aboved)

 Ellipticc)

 Parabolicb)

 Hyperbolica)

Laplace’s equation is classified as:2.

Answer : a) 𝒖𝒙𝒙 + 𝒖𝒚𝒚 = 𝟎

𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 0d)

𝑢𝑡 + 𝑢𝑥 = 0c)

𝑢𝑡𝑡 − 𝑢𝑥𝑥 = 0b)

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0a)

Laplace’s equation is given by:1.

Multiple Choice Questions (MCQs):
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6. The Laplacian operator is defined as: 

a)  𝛻𝑢 

b) 𝛻2𝑢 

c) 𝑑𝑢/𝑑𝑥 

d) ∫ 𝑢𝑑𝑥 

Answer : b) 𝜵𝟐𝒖 

7. The Laplace equation in cylindrical coordinates includes which 

variables? 

a) 𝑟, 𝜃, 𝑧 

𝑏) 𝑥, 𝑦, 𝑧 

𝑐) 𝑢, 𝑣, 𝑤 

d) None of the above 

Answer : a) 𝒓, 𝜽, 𝒛 

8. The method of separation of variables assumes that the solution is: 

a) A sum of functions of different variables 

b) A product of functions of different variables 

c) A nonlinear function 

d) A stochastic process 

Answer : b) A product of functions of different variables 

9. The Dirichlet problem for Laplace’s equation involves: 

a) Specified function values on the boundary 

b) Specified normal derivatives on the boundary 

c) Mixed boundary conditions 

d) No boundary conditions 

Answer : a) Specified function values on the boundary 

10. In axially symmetric problems, the Laplace equation is often solved 

in: 

a) Cartesian coordinates 

b) Cylindrical or spherical coordinates 

c) Random coordinates 

d) None of the above 

Answer : b) Cylindrical or spherical coordinates 
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  Solve Laplace’s equation for an axially symmetric system.9.

potential flow.

Explain  the  role  of  Laplace’s  equation  in  heat  conduction  and 8.

simple problem.

Derive  Laplace’s  equation  in  cylindrical  coordinates  and  solve  a 7.

examples.

Explain  the  Dirichlet  and  Neumann  boundary  conditions  with 6.

Solve a boundary value problem related to Laplace’s equation.5.

Discuss the concept of equipotential surfaces and their applications.4.

Solve Laplace’s equation using the separation of variables method.3.

electrostatics and fluid flow.

Explain  the  physical  interpretation  of  Laplace’s  equation  in 2.

coordinates.

Derive  Laplace’s  equation  in  three-dimensional  Cartesian 1.

Long Questions:

How does Laplace’s equation differ from the wave equation?10.

Discuss Laplace’s equation in cylindrical coordinates.9.

What are Dirichlet and Neumann boundary conditions?8.

coordinates.

Explain  Laplace’s  equation  in  three-dimensional  Cartesian 7.

What are harmonic functions? Give an example.6.

equation?

How  is  the  separation  of  variables  method  applied  to  Laplace’s 5.

What are boundary value problems? Give an example.4.

Explain the concept of equipotential surfaces.3.

What are the physical applications of Laplace’s equation?2.

Define Laplace’s equation and its importance.1.

Short Questions:
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10. Discuss the applications of Laplace’s equation in engineering and 

physics. 
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  • No external forces act on the string except at the endpoints

• The tension T is constant

• The string is perfectly flexible

• The displacement of the string is small

along the x-axis with tension T. If we assume:

Consider a string with linear mass density ρ (mass per unit length) stretched 

considering a vibrating string under tension.

The one-dimensional wave equation can be derived from first principles by 

5.1.2 Derivation of the Wave Equation

• String theory: Vibrations of fundamental strings

• Seismology: Earthquake waves

• Quantum mechanics: Matter waves

• Fluid dynamics: Water waves and pressure waves

• Electromagnetism: Light waves and electromagnetic radiation

• Acoustics: Sound waves in various media

The study of waves is central to several branches of physics:

partial differential equation that governs the behavior of these waves.

as  u(x,t)  for  one-dimensional  waves.  The  wave  equation  is  a  second-order 

requires a function that depends on both position and time, typically denoted 

water waves and vibrations in solids. The mathematical description of waves 

understanding  of  numerous  physical  phenomena,  from  sound  and  light  to 

energy  without  transferring  matter.  They  are  fundamental  to  our 

Waves are disturbances that propagate through space and time, transferring 

5.1.1 Introduction to Waves

The Wave Equation: The occurrence of wave equation in physics

Unit 5.1

MODULE 5
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 displacement of air molecules.

waves.  Here,  u  represents  the  pressure  deviation  from  equilibrium  or  the 

1.In  Acoustics:  The  wave  equation  describes  the  propagation  of  sound 

Some key physical interpretations include:

The wave equation describes how waves propagate through different media. 

5.1.3 Physical Interpretations

∇² = ∂²/∂x² + ∂²/∂y² + ∂²/∂z²

where ∇² is the Laplacian operator:

∂²u/∂t² = c² ∇²u

In three dimensions, the wave equation becomes:

Three-Dimensional Wave Equation

∂²u/∂t² = c² ∂²u/∂x²

or

∂²u/∂x² = (1/c²) ∂²u/∂t²

dimensional wave equation:

Defining the wave speed c = √(T/ρ), we get the canonical form of the one- 

∂²u/∂x² = (ρ/T) ∂²u/∂t²

Rearranging:

T ∂²u/∂x² = ρ ∂²u/∂t²

Dividing by Δx and taking the limit as Δx → 0:

T(∂u/∂x|ₓ₊Δₓ - ∂u/∂x|ₓ) = ρΔx ∂²u/∂t²

For small displacements, sin θ ≈ tan θ = ∂u/∂x, so:

positions x and x + Δx, respectively.

where  θ₁  and  θ₂  are  the  angles  the  string  makes  with  the  horizontal  at 

T(sin θ₂ - sin θ₁) = ρΔx ∂²u/∂t²

Newton's second law gives:

Then  for  a  small  segment  of  the  string  between  positions  x  and  x  +  Δx, 
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ω is the angular frequency and k is the wave number.

sin(kx - ωt), the wave equation implies the dispersion relation ω = ck, where 

Dispersion  Relation: For  simple  harmonic  waves  of  the  form  u(x,t)  =  A 

which the wave propagates through the medium.

Wave Speed: The coefficient c in the wave equation represents the speed at 

time.

of the system (sum of kinetic and potential energies) remains constant over 

Energy Conservation: For the homogeneous wave equation, the total energy 

wave patterns from simpler ones.

any sum of solutions is also a solution. This allows us to construct complex 

Superposition Principle: The superposition principle follows from linearity:

solutions, then any linear combination au₁(x,t) + bu₂(x,t) is also a solution.

Linearity: The  wave  equation  is  linear,  meaning  if  u₁(x,t)  and  u₂(x,t)  are 

5.1.4 Mathematical Properties of the Wave Equation

surface waves) are governed by variants of the wave equation.

5.In  Seismology:  Different  types of seismic  waves (P-waves,  S-waves,  and 

amplitude surface waves on a liquid.

4.In Fluid Dynamics: The wave equation describes the propagation of small- 

be related to the wave equation, reflecting the wave-particle duality.

3.In  Quantum  Mechanics: The  Schrödinger equation for  a free  particle  can 

speed of light.

equations  for  the  electric  and  magnetic  fields  in  vacuum,  where  c  is  the 

2.In  Electromagnetism:  Maxwell's  equations  can  be  rewritten  as  wave 
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 5.2.2 Boundary Conditions and Initial Conditions

where ωₙ = ckₙ and kₙ depends on the boundary conditions.

u(x,t) = Σ [Aₙ cos(ωₙt) + Bₙ sin(ωₙt)] sin(kₙx)

powerful tool. The solution can be expressed as:

For  problems  with  periodic  boundary  conditions,  Fourier  series  provide  a 

Fourier's Method

This represents two waves traveling in opposite directions.

where  f  and  g  are  arbitrary  functions  determined  by  the  initial  conditions. 

u(x,t) = f(x + ct) + g(x - ct)

formula gives:

For  the  one-dimensional  wave  equation  on  an  infinite  string,  d'Alembert's 

D'Alembert's Solution

The complete solution is a linear combination of products X(x)T(t).

X(x) = A sin(ωx/c) + B cos(ωx/c) T(t) = C sin(ωt) + D cos(ωt)

For λ = ω²/c², the general solutions are:

T''(t) + λc²T(t) = 0 X''(x) + λX(x) = 0

equations:

where  λ  is  a  separation  constant.  This  gives  two  ordinary  differential 

T''(t)/T(t) = c²X''(x)/X(x) = -λ

Dividing by X(x)T(t):

X(x)T''(t) = c²X''(x)T(t)

equation:

Assume a solution of the form u(x,t) = X(x)T(t). Substituting into the wave 

Method of Separation of Variables

5.2.1 Solution Methods

Elementry Solution of one -dimensional wave equation

Unit 5.2
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To find a unique solution to the wave equation, we need both boundary 

conditions and initial conditions. 

Common Boundary Conditions 

1. Fixed Endpoint (Dirichlet Condition): u(0,t) = 0 or u(L,t) = 0 

2. Free Endpoint (Neumann Condition): ∂u/∂x(0,t) = 0 or ∂u/∂x(L,t) = 

0 

3. Periodic Boundary Condition: u(0,t) = u(L,t) and ∂u/∂x(0,t) = 

∂u/∂x(L,t) 

Initial Conditions 

For a second-order equation in time, we need two initial conditions: 

1. Initial displacement: u(x,0) = f(x) 

2. Initial velocity: ∂u/∂t(x,0) = g(x) 

 

 

 

 

 

 

  

  

  

 

 

 

 

 

• Initial conditions: u(x,0) = sin(πx/L), ∂u/∂t(x,0) = 0

• Boundary conditions: u(0,t) = u(L,t) = 0

• Wave equation: ∂²u/∂t² = c² ∂²u/∂x²

Step 1: Set up the problem.

Solution:

velocity ∂u/∂t(x,0) = 0.

fixed  at  both  ends,  with  initial  displacement  u(x,0)  =  sin(πx/L)  and  initial 

Problem:  Find  the  solution  of  the  wave  equation  for  a  string  of  length  L 

Problem 1: Vibrating String with Fixed Ends

5.2.3 Solved Problems

Step 3: Solve for X(x) using the boundary conditions. X(0) = X(L) = 0

This gives: T''(t) + λc²T(t) = 0 X''(x) + λX(x) = 0

Dividing by X(x)T(t): T''(t)/T(t) = c²X''(x)/X(x) = -λ

the wave equation: X(x)T''(t) = c²X''(x)T(t)

Step 2: Use separation of variables. Let u(x,t) = X(x)T(t). Substituting into
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 equation for an initial disturbance concentrated at the origin.

Problem: Find the radially symmetric solution to the three-dimensional wave 

Problem 3: Wave Equation in Spherical Coordinates

pulses.

directions,  with  the  amplitude  at  any  point  being  the  average  of  these  two 

Step  4:  This  solution  represents  two  Gaussian  pulses  traveling  in  opposite 

(x+ct)²) + e^(-(x-ct)²)]/2

Step  3:  The  solution  simplifies  to:  u(x,t)  =  [f(x  +  ct)  +  f(x - ct)]/2  =  [e^(- 

Step 2: Substitute the initial conditions. f(x) = e^(-x²) g(x) = 0

where u(x,0) = f(x) and ∂u/∂t(x,0) = g(x).

+ ct) + f(x - ct)]/2 + (1/2c) ∫ₓ₋ₖₜ^ₓ₊ₖₜ g(s) ds

Step 1: For an infinite string, we can use d'Alembert's formula: u(x,t) = [f(x 

Solution:

conditions u(x,0) = e^(-x²) and ∂u/∂t(x,0) = 0.

Problem:  Solve  the  wave  equation  for  an  infinite  string  with  initial 

Problem 2: D'Alembert's Solution for an Infinite String

the shape remains sinusoidal.

This  represents  a  standing  wave  where  the  amplitude  varies  with  time  but 

Step 7: The final solution is: u(x,t) = cos(πct/L) sin(πx/L)

This gives Bₙ = 0 for all n.

∂u/∂t(x,0) = 0 = Σ Bₙ(nπc/L) sin(nπx/L)

By orthogonality of sine functions, A₁ = 1 and Aₙ = 0 for n ≠ 1.

Step 6: Apply the initial conditions. u(x,0) = sin(πx/L) = Σ Aₙ sin(nπx/L)

sin(nπx/L)

Step 5: The general solution is: u(x,t) = Σ [Aₙ cos(nπct/L) + Bₙ sin(nπct/L)]

The solution is T(t) = A cos(nπct/L) + B sin(nπct/L).

Step 4: Solve for T(t). T''(t) + (nπc/L)²T(t) = 0

(nπ/L)².

The  solution  is  X(x)  =  sin(nπx/L)  where  n  is  a  positive  integer  and  λ  = 
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Solution: 

Step 1: The three-dimensional wave equation in spherical coordinates with 

radial symmetry is: ∂²u/∂t² = c² [∂²u/∂r² + (2/r)(∂u/∂r)] 

Step 2: Make the substitution v = ru to simplify the equation: ∂²(v/r)/∂t² = c² 

[∂²(v/r)/∂r² + (2/r)(∂(v/r)/∂r)] 

Step 3: Simplifying: ∂²v/∂t² = c² ∂²v/∂r² 

This is now the one-dimensional wave equation for v(r,t). 

Step 4: Using d'Alembert's solution: v(r,t) = F(r + ct) + G(r - ct) 

where F and G are determined by the initial conditions. 

Step 5: For an initial disturbance concentrated at the origin, we expect an 

outward-propagating spherical wave: u(r,t) = v(r,t)/r = F(r + ct)/r 

For physical reasons, we don't include G(r - ct) which would represent an 

inward-propagating wave. 

Step 6: For a point disturbance, F is often taken as a delta function, leading 

to: u(r,t) = δ(r - ct)/(4πr) 

This represents a spherical wave propagating outward with speed c, with 

amplitude decreasing as 1/r. 

Problem 4: Standing Waves in a Rectangular Membrane 

Problem: Find the normal modes of vibration for a rectangular membrane 

with sides a and b, fixed at all edges. 

Solution: 

Step 1: The two-dimensional wave equation is: ∂²u/∂t² = c² (∂²u/∂x² + 

∂²u/∂y²) 

with boundary conditions: u(0,y,t) = u(a,y,t) = u(x,0,t) = u(x,b,t) = 0 

Step 2: Use separation of variables. Let u(x,y,t) = X(x)Y(y)T(t). 

Substituting into the wave equation: X(x)Y(y)T''(t) = c² [X''(x)Y(y)T(t) + 

X(x)Y''(y)T(t)] 

Dividing by X(x)Y(y)T(t): T''(t)/T(t) = c² [X''(x)/X(x) + Y''(y)/Y(y)] = -λ 
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 fixed boundary conditions.

x/L).  If  the  tension  T  is  constant,  find  the  normal  modes  of  vibration  for 

Problem  4: A  string  of  length  L  has  a  density  that  varies  as  ρ(x)  =  ρ₀(1  + 

so that J₀(αa) = 0. The initial velocity is zero.

where J₀ is the Bessel function of the first kind of order zero, and α is chosen 

the normal modes of vibration if the initial displacement is u(r,θ,0) = J₀(αr), 

Problem  3: A  circular membrane of radius  a is fixed  at  its  boundary.  Find 

∂u/∂t(x,0) = v₀e^(-x).

fixed  end  at  x  =  0,  initial  displacement  u(x,0)  =  0,  and  initial  velocity 

Problem 2: Solve the wave equation for a semi-infinite string (x > 0) with a 

displacement u(x,t) for all t > 0.

u(x,0)  =  0  and  initial  velocity  ∂u/∂t(x,0)  =  v₀  sin(2πx/L).  Find  the 

Problem  1: A  string  of  length  L  with  fixed  ends  has  initial  displacement 

5.2.4 Unsolved Problems

different mode of vibration with frequency ωₘₙ.

where  m  and  n  are  positive  integers.  Each  pair  (m,n)  corresponds  to  a 

[A cos(ωₘₙt) + B sin(ωₘₙt)]

Step 6: The normal modes of vibration are: u(x,y,t) = sin(mπx/a) sin(nπy/b) 

The solution is: T(t) = A cos(ωₘₙt) + B sin(ωₘₙt)

where ω²ₘₙ = λc² = c²π²[(m/a)² + (n/b)²].

Step 5: Solve for T(t): T''(t) + ω²ₘₙT(t) = 0

with μ = (mπ/a)² and ν = (nπ/b)².

n = 1, 2, 3, ...

The solutions are: X(x) = sin(mπx/a) for m = 1, 2, 3, ... Y(y) = sin(nπy/b) for 

= 0 Y(0) = Y(b) = 0

Step 4: Solve for X(x) and Y(y) using the boundary conditions: X(0) = X(a)

where μ + ν = λ.

μX(x) = 0 Y''(y) + νY(y) = 0

Step  3:  This  gives  three  separate  equations:  T''(t)  +  λc²T(t)  =  0  X''(x)  + 
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• c is the wave propagation speed 

• ∂²u/∂t² is the second partial derivative with respect to time 

• ∂²u/∂x² is the second partial derivative with respect to position 

This chapter will explore various methods for solving this equation under 

different initial and boundary conditions, providing a comprehensive 

understanding of wave behavior in one dimension. 

Basic Properties of the Wave Equation 

Before diving into solution methods, let's understand some fundamental 

properties of the wave equation: 

1. Linearity: If u₁(x,t) and u₂(x,t) are solutions, then any linear 

combination au₁(x,t) + bu₂(x,t) is also a solution. 

2. Time-Reversal Symmetry: If u(x,t) is a solution, then u(x,-t) is also a 

solution. 

3. Spatial Reflection: If u(x,t) is a solution, then u(-x,t) is also a 

solution. 

• u(x,t) represents the displacement of the wave at position x and time

where:

∂²u/∂t² = c² ∂²u/∂x²

The standard form of the one-dimensional wave equation is:

electromagnetic waves in one dimension.

models  phenomena  such  as  vibrating  strings,  sound  waves  in  a  tube,  and 

In  this  chapter,  we  focus  on  the  one-dimensional  wave  equation,  which 

physics and mathematics, describing how waves propagate in various media. 

The wave equation is one of the fundamental partial differential equations in 

5.2.5 Elementary Solutions of the One-Dimensional Wave Equation

∂u/∂t(x,0) = 0, find the displacement u(L/4,t) as a function of time.

displacement  u(x,0)  =  sin(πx/L)  +  sin(2πx/L).  If  the  initial  velocity  is 

Problem  5: Consider  a  string  of  length  L  with  fixed  ends  and  an  initial 
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  Solving this system: F'(x) - G'(x) = g(x)/c

At t = 0: ∂u/∂t(x,0) = cF'(x) - cG'(x) = g(x)

Taking the time derivative: ∂u/∂t = cF'(x+ct) - cG'(x-ct)

At t = 0: u(x,0) = F(x) + G(x) = f(x)

To determine these functions using our initial conditions:

where F and G are arbitrary functions.

u(x,t) = F(ξ) + G(η) = F(x+ct) + G(x-ct)

The general solution to this equation is:

∂²u/∂ξ∂η = 0

With these variables, the wave equation transforms into:

• η = x - ct (representing waves moving to the right)

• ξ = x + ct (representing waves moving to the left)

Let's introduce new variables:

Proof:

u(x,t) = (1/2)[f(x+ct) + f(x-ct)] + (1/2c)∫[from x-ct to x+ct] g(s) ds

The solution is given by:

• ∂u/∂t(x,0) = g(x) (initial velocity)

• u(x,0) = f(x) (initial displacement)

∞) with initial conditions:

For the wave equation ∂²u/∂t² = c² ∂²u/∂x² on an infinite domain (-∞ < x < 

Theorem 1: D'Alembert's Solution

superposition of two traveling waves moving in opposite directions.

equation is D'Alembert's solution, which expresses the general solution as a 

One  of  the  most  elegant  methods  for  solving  the  one-dimensional  wave 

D'Alembert's Solution

a solution for any constants a and b.

 Translation Invariance: If u(x,t) is a solution, then u(x+a,t+b) is also 4.

256 



Integrating with respect to x: F(x) - G(x) = (1/c)∫g(s)ds + C 

Combined with F(x) + G(x) = f(x), we can solve for F and G: F(x) = 

(1/2)f(x) + (1/2c)∫g(s)ds + C/2 G(x) = (1/2)f(x) - (1/2c)∫g(s)ds - C/2 

Substituting back: u(x,t) = (1/2)[f(x+ct) + f(x-ct)] + (1/2c)[∫g(s)ds|_(x-

ct)^(x+ct)] 

This gives us D'Alembert's solution. 

Separation of Variables Method 

Another powerful approach for solving the wave equation, especially with 

boundary conditions, is the separation of variables method. 

Theorem 2: Separation of Variables Solution 

For the wave equation ∂²u/∂t² = c² ∂²u/∂x² on a finite domain (0 ≤ x ≤ L) 

with boundary conditions: 

• u(0,t) = u(L,t) = 0 (fixed endpoints) 

• u(x,0) = f(x) (initial displacement) 

• ∂u/∂t(x,0) = g(x) (initial velocity) 

The solution is given by: 

u(x,t) = Σ[n=1 to ∞] (A_n cos(nπct/L) + B_n sin(nπct/L)) sin(nπx/L) 

where: 

• A_n = (2/L)∫[from 0 to L] f(x)sin(nπx/L)dx 

• B_n = (2/(nπc))∫[from 0 to L] g(x)sin(nπx/L)dx 

Proof: 

Assuming a solution of the form u(x,t) = X(x)T(t) and substituting into the 

wave equation: 

X(x)T''(t) = c²X''(x)T(t) 

Dividing both sides by c²X(x)T(t): 

T''(t)/(c²T(t)) = X''(x)/X(x) = -λ 

where λ is a separation constant. 
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displaced into a triangular shape with maximum height h = 0.1 meters at x =

A  taut  string  of  length  L  =  2  meters  is  fixed  at  both  ends.  It  is  initially 

Problem 1: Vibrating String with Initial Displacement

5.2.6 Solved Problems

where F and G represent waves traveling to the left and right, respectively.

The general solution is: u(x,t) = F(x+ct) + G(x-ct)

∂²u/∂ξ∂η = 0

terms of characteristic coordinates ξ = x + ct and η = x - ct as:

The one-dimensional wave equation ∂²u/∂t² = c² ∂²u/∂x² can be rewritten in 

Theorem 3: Method of Characteristics

the wave equation.

The  method  of  characteristics  provides  yet  another  perspective  for  solving 

Characteristics Method

• B_n = (2/(nπc))∫[from 0 to L] g(x)sin(nπx/L)dx

• A_n = (2/L)∫[from 0 to L] f(x)sin(nπx/L)dx

Using the orthogonality of sine functions, we get the Fourier coefficients:

• ∂u/∂t(x,0) = Σ[n=1 to ∞] B_n(nπc/L) sin(nπx/L) = g(x)

• u(x,0) = Σ[n=1 to ∞] A_n sin(nπx/L) = f(x)

Applying the initial conditions:

sin(nπct/L)) sin(nπx/L)

Thus, the general solution is: u(x,t) = Σ[n=1 to ∞] (A_n cos(nπct/L) + B_n 

The time equation gives: T_n(t) = A_n cos(nπct/L) + B_n sin(nπct/L)

(nπ/L)² and eigenfunctions X_n(x) = sin(nπx/L).

With  the  boundary  conditions  X(0)  =  X(L)  =  0,  we  get  eigenvalues  λ_n  = 

• T''(t) + c²λT(t) = 0

• X''(x) + λX(x) = 0

This gives us two ordinary differential equations:
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 Solution:

• ∂u/∂t(x,0) = { 1 for |x| < 1 0 for |x| ≥ 1 }

• u(x,0) = 0

conditions:

Solve  the  wave  equation  ∂²u/∂t²  =  4  ∂²u/∂x²  for -∞  <  x  <  ∞,  with  initial 

Problem 2: Wave Equation with Non-Zero Initial Velocity

sin(nπx/2)

Step 4: Write the final solution: u(x,t) = Σ[n=1,3,5,...] (0.8/n²π²) cos(nπct/2)

odd 0 for n even }

Using  integration  by  parts: A_n  =  0.4/n²π²  •  (1-cos(nπ))  =  {  0.8/n²π²  for  n 

x)•sin(nπx/2)dx

Split the integral: = ∫[from 0 to 1] 0.1x•sin(nπx/2)dx + ∫[from 1 to 2] 0.1(2- 

f(x)sin(nπx/2)dx

Step  3:  Calculate  the  coefficients  A_n:  A_n  =  (2/2)∫[from  0  to  2]

where: A_n = (2/L)∫[from 0 to L] f(x)sin(nπx/L)dx

cos(nπct/L) sin(nπx/L)

Step  2:  Use  the separation  of  variables  solution:  u(x,t)  =  Σ[n=1  to  ∞] A_n 

With L = 2 and h = 0.1: f(x) = { 0.1x for 0 ≤ x ≤ 1 0.1(2-x) for 1 ≤ x ≤ 2 }

(h•x)/(L/2) for 0 ≤ x ≤ L/2 h•(L-x)/(L/2) for L/2 ≤ x ≤ L }

Step  1:  Define  the  initial  displacement  function  mathematically:  f(x)  =  { 

• Initial velocity: ∂u/∂t(x,0) = 0

function

• Initial  displacement:  u(x,0)  =  f(x),  where  f(x)  is  the  triangular 

• Boundary conditions: u(0,t) = u(L,t) = 0

• Wave equation: ∂²u/∂t² = c² ∂²u/∂x²

Given information:

Solution:

times.

L/2, and then released from rest. Find the displacement u(x,t) for all future 
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Given information: 

• Wave equation: ∂²u/∂t² = 4 ∂²u/∂x² (so c = 2) 

• Initial displacement: u(x,0) = 0 

• Initial velocity: ∂u/∂t(x,0) = g(x) 

Step 1: Use D'Alembert's solution: u(x,t) = (1/2)[f(x+ct) + f(x-ct)] + 

(1/2c)∫[from x-ct to x+ct] g(s) ds 

Since f(x) = 0, this simplifies to: u(x,t) = (1/4)∫[from x-2t to x+2t] g(s) ds 

Step 2: Calculate the integral based on g(x): ∫[from x-2t to x+2t] g(s) ds = 

∫[from x-2t to x+2t] { 1 for |s| < 1 0 for |s| ≥ 1 } ds 

This integral counts how much of the interval [x-2t, x+2t] overlaps with [-1, 

1]. 

Step 3: Analyze different cases: 

Case 1: x+2t < -1 or x-2t > 1 No overlap, so u(x,t) = 0 

Case 2: x-2t < -1 and x+2t > -1, but x+2t < 1 The overlap is [from -1 to 

x+2t], length = x+2t+1 u(x,t) = (1/4)(x+2t+1) 

Case 3: x-2t > -1 and x-2t < 1, but x+2t > 1 The overlap is [from x-2t to 1], 

length = 1-(x-2t) u(x,t) = (1/4)(1-(x-2t)) = (1/4)(1-x+2t) 

Case 4: x-2t < -1 and x+2t > 1 The overlap is [-1, 1], length = 2 u(x,t) = 

(1/4)(2) = 1/2 

Case 5: -1 < x-2t < x+2t < 1 The overlap is [x-2t, x+2t], length = 4t u(x,t) = 

(1/4)(4t) = t 

Step 4: Combine all cases to get the complete solution: u(x,t) = { 0 if x < -1-

2t or x > 1+2t (1/4)(x+2t+1) if -1-2t < x < -1+2t t if -1+2t < x < 1-2t (1/4)(1-

x+2t) if 1-2t < x < 1+2t } 

Problem 3: Standing Waves on a String 

A string of length L = π is fixed at both ends and has wave speed c = 2. The 

string is initially at rest but given an initial velocity of ∂u/∂t(x,0) = sin(2x). 

Find the displacement u(x,t) and determine if standing waves will form. 

Solution: 
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  • Wave equation: ∂²u/∂t² = 9 ∂²u/∂x²

Given information:

Solution:

Find the displacement u(x,t) after the pulse reflects from the boundary.

the fixed end: u(x,0) = exp(-(x-5)²) ∂u/∂t(x,0) = -3 • 2(x-5) • exp(-(x-5)²)

fixed. The wave speed is c = 3. Initially, a Gaussian pulse is traveling toward 

A  semi-infinite  string  occupies  the  region  x  ≥  0,  with  its  left  end  (x  =  0)

Problem 4: Wave Reflection at Boundaries

second harmonic mode of the string.

and  a  function  of  position,  with  the  spatial  part  (sin(2x))  representing  the 

standing wave because it can be expressed as a product of a function of time 

Step  4:  Determine  if  standing  waves  form:  Yes,  this  solution  represents  a 

Step 3: Write the final solution: u(x,t) = (1/4)sin(4t)sin(2x)

All other B_n = 0

sin(2x)sin(2x)dx = (1/(2π))(π/2) = 1/4

This  is  only  non-zero  when  n  =  2:  B_2  =  (1/(2π))∫[from  0  to  π]

(1/(nπ))∫[from 0 to π] sin(2x)sin(nx)dx

Step  2:  Calculate  B_n  using  orthogonality  of  sine  functions:  B_n  = 

to π] sin(2x)sin(nx)dx

• B_n = (2/(2nπ))∫[from 0 to π] ∂u/∂t(x,0)sin(nx)dx = (1/(nπ))∫[from 0 

• A_n = (2/π)∫[from 0 to π] u(x,0)sin(nx)dx = 0 (since u(x,0) = 0)

where:

cos(2nt) + B_n sin(2nt)) sin(nx)

Step 1: Use the separation of variables solution: u(x,t) = Σ[n=1 to ∞] (A_n 

• Initial velocity: ∂u/∂t(x,0) = sin(2x)

• Initial displacement: u(x,0) = 0

• Boundary conditions: u(0,t) = u(π,t) = 0

• Wave equation: ∂²u/∂t² = 4 ∂²u/∂x²

Given information:
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 the string.

displacement  function  u(x,t)  for  all  future  times  and  discuss  the  motion  of 

into a shape given by u(x,0) = A sin(πx/L) and released from rest. Find the 

Problem 5: A string of length L is fixed at both ends. It is initially displaced 

5.2.6 Unsolved Problems

reflection, which is expected for a fixed boundary

• The  minus  sign  in  the  second  term  indicates  phase  inversion  upon 

• For t > 5/3, the reflection becomes apparent

• For t < 5/3, the pulse hasn't reached the boundary yet

reflection effect

• The second term represents a "negative image" pulse that creates the 

• The first term represents the original pulse traveling right

Step 5: Interpret the solution:

exp(-(x-3t-5)²) - exp(-((-x)-3t-5)²)

=  exp(-(x-3t-5)²) - exp(-(-(x+3t+5))²)  =  exp(-(x-3t-5)²) - exp(-(-x-3t-5)²)  = 

5)²) = exp(-(x-3t-5)²) - exp(-(-x-3t-5)²) = exp(-(x-3t-5)²) - exp(-(-(x+3t+5))²)

Step 4: Write the explicit solution: u(x,t) = exp(-((x-3t)-5)²) - exp(-((-x-3t)- 

This ensures that u(0,t) = F(-3t) - F(-3t) = 0

images: u(x,t) = F(x-3t) - F(-x-3t)

Step 3: To account for the boundary condition u(0,t) = 0, use the method of 

be: u(x,t) = F(x-3t)

Step 2: For an infinite string (no boundary), the D'Alembert solution would 

where F(s) = exp(-(s-5)²)

so that we have a purely right-traveling wave at t = 0: u(x,0) = F(x-3•0)

Step 1: Analyze the initial conditions. The initial velocity is chosen precisely 

• Initial velocity: ∂u/∂t(x,0) = -6(x-5)exp(-(x-5)²)

• Initial displacement: u(x,0) = exp(-(x-5)²)

• Boundary condition: u(0,t) = 0
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mathematical  description  of   vibrations  involves  partial

determined  by  its  shape, boundary  conditions,  and  physical  properties. The 

displaced from its equilibrium position and released, it vibrates in a pattern 

surface  with  negligible  bending  stiffness,  fixed  at  its  boundary.  When 

structural  engineering  and  fluid  dynamics.  A  membrane  is  a  thin,  flexible 

physics with applications ranging from acoustics and musical instruments to 

Vibrating membranes represent  a fascinating area  of  study in mathematical 

5.2.7 Introduction to Vibrating Membranes

Find the displacement u(x,t) for all future times.

where δ is the Dirac delta function.

that  point.  Model  this  using  the  initial  condition:  ∂u/∂t(x,0)  =  v₀δ(x-L/2)

midpoint (x = L/2) with an impulse that imparts a velocity v₀ concentrated at 

string  is  initially  at  rest  in  its  equilibrium  position  when  it  is  struck  at  its 

Problem 9: A string of length L has its ends fixed at x = 0 and x = L. The 

resulting motion u(x,t).

= 0, a constant external force f(x) = F₀ is applied to the entire string. Find the 

Problem 8: A string of length L with fixed ends is initially at rest. At time t 

• The tension force is continuous: T₁∂u₁/∂x(0,t) = T₂∂u₂/∂x(0,t)

• The displacement is continuous: u₁(0,t) = u₂(0,t)

and reflected waves, assuming that at the junction:

in  the  region  x  <  0  travels  toward  the  junction.  Determine  the  transmitted 

different wave speeds c₁ and c₂) are joined at x = 0. A wave pulse originating 

Problem  7: Two  semi-infinite  strings  with  different  densities  (and  hence 

Find the solution u(x,t).

• ∂u/∂t(x,0) = sin(πx/L)

• u(x,0) = 0

The initial conditions are:

• ∂u/∂x(L,t) = 0 (free at right end)

• u(0,t) = 0 (fixed at left end)

≤ x ≤ L with the following boundary conditions:

Problem 6: Consider the wave equation ∂²u/∂t² = c² ∂²u/∂x² on the domain 0 

membrane
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differential equations, specifically the wave equation in two spatial 

dimensions. The calculus of variations provides powerful tools for analyzing 

these equations and their solutions, allowing us to determine the natural 

frequencies and mode shapes of vibrating membranes. In this chapter, we 

will explore the extension of these concepts to three-dimensional problems, 

where we consider not just the vibration of a two-dimensional membrane, 

but the full three-dimensional motion of elastic bodies and fluids. 

2. Fundamental Concepts 

Before diving into the mathematical formulation, let's establish some 

fundamental concepts and notation. 

Coordinate System 

We will work in a three-dimensional Cartesian coordinate system with 

coordinates (x, y, z). For a membrane lying in the xy-plane, the displacement 

is typically denoted by u(x, y, t), representing the displacement in the z-

direction at position (x, y) and time t. 

Physical Parameters 

Several physical parameters influence the behavior of vibrating membranes: 

• Tension (T): The force per unit length applied to the membrane. 

• Mass density (ρ): The mass per unit area of the membrane. 

• Damping coefficient (μ): Represents energy dissipation during 

vibration. 

Energy Considerations 

Two forms of energy are particularly important in the study of vibrating 

membranes: 

• Kinetic Energy (K): Energy due to the motion of the membrane. 

• Potential Energy (P): Energy stored in the stretched membrane. 

In the calculus of variations approach, we often work with functionals 

representing these energies. 
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Three dimensional problems.

Vibarting membranes: Application of the calculus of variations- 

      Unit 5.3

Boundary Conditions

of the material.

where λ and μ are the Lamé parameters characterizing the elastic properties 

ρ ∂²u⃗/∂t² = μ∇²u⃗ + (λ + μ)∇(∇•u⃗)

u₃) and the elastodynamic equations:

For elastic solids, we have a vector displacement field u⃗(x, y, z, t) = (u₁, u₂, 

• ∇² = ∂²/∂x² + ∂²/∂y² + ∂²/∂z² is the three-dimensional Laplacian

• u(x, y, z, t) is the displacement function

where now:

∂²u/∂t² = c² ∇²u

For three-dimensional problems, the wave equation becomes:

Extension to Three Dimensions

forces acting on a small element of the membrane.

This equation can be derived from Newton's second law by considering the 

• ∇² = ∂²/∂x² + ∂²/∂y² is the Laplacian operator in two dimensions

• c = √(T/ρ) is the wave propagation speed

• u(x, y, t) is the displacement function

where:

∂²u/∂t² = c² ∇²u

equation:

The  vibration  of  a  membrane  is  governed  by  the  two-dimensional  wave 

Derivation of the Wave Equation

5.3.1 The Wave Equation for Membranes
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 energies are:

For  a  membrane  vibrating  in  three  dimensions,  the  kinetic  and  potential 

Energy Functionals for Membranes

where K and P are the kinetic and potential energies of the system.

δS = δ∫(t₁ to t₂) (K - P) dt = 0

action functional stationary:

two  specified  states  at  two  specified  times  follows  a  path  that  makes  the 

Hamilton's  principle  states  that  the  motion  of  a  dynamical  system  between 

Hamilton's Principle

functionals.

vibrating  membranes  by  formulating  the  problem  in  terms  of  energy 

The  calculus  of  variations  provides  an  elegant  framework  for  analyzing 

Calculus of Variations Approach

where Γ = Γ₁ ∪ Γ₂ is the complete boundary.

u = 0 on Γ₁ ∂u/∂n = 0 on Γ₂

different conditions:

In  more  complex  situations,  different  parts  of  the  boundary  may  have 

Mixed Boundary Conditions

where ∂/∂n denotes the derivative in the direction normal to the boundary.

∂u/∂n = 0 for (x, y) ∈ Γ

For a membrane with a free edge:

Free (Neumann) Boundary Conditions

This condition represents a membrane that is clamped along its periphery.

u(x, y, t) = 0 for (x, y) ∈ Γ

For a membrane fixed at its boundary Γ:

Fixed (Dirichlet) Boundary Conditions

boundary conditions. Common boundary conditions include:

The  behavior  of  a  vibrating  membrane  is  significantly  influenced  by  its 
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 Solved Problems

modes.

This  property  is  crucial  for  decomposing  arbitrary  vibrations  into  normal 

∫∫∫φᵢφⱼ dV = 0, for i ≠ j

The eigenfunctions of the membrane problem form an orthogonal set:

Orthogonality of Eigenfunctions

the membrane.

The  minimum  value  of  R[φ]  corresponds  to  the  fundamental  frequency  of 

ω² = R[φ] = ∫∫∫c²|∇φ|² dV / ∫∫∫φ² dV

eigenvalues:

The  Rayleigh  quotient  provides  a  variational  characterization  of  the 

Rayleigh Quotient

shapes.

the  membrane,  while  the  eigenfunctions  represent  the  corresponding  mode 

eigenfunctions. The eigenvalues represent the squared natural frequencies of 

This  is  an  eigenvalue  problem  where  ω²  are  the  eigenvalues  and  φ  are  the 

∇²φ + (ω²/c²)φ = 0

Substituting this into the wave equation leads to the Helmholtz equation:

u(x, y, z, t) = φ(x, y, z)cos(ωt)

solutions of the form:

The  natural  vibration  modes  of  a  membrane  can  be  found  by  seeking 

Eigenvalue Problems

equation.

Euler-Lagrange equation, which for the membrane problem yields the wave 

Applying  the  calculus  of  variations  to  the  action  functional  S  leads  to  the 

Euler-Lagrange Equation

directions.

where  T₁,  T₂,  and  T₃  are  the  tension  components  in  the  three  coordinate 

K = (1/2)∫∫∫ρ(∂u/∂t)² dV P = (1/2)∫∫∫(T₁(∂u/∂x)² + T₂(∂u/∂y)² + T₃(∂u/∂z)²) dV
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 ∂²u/∂t² = c²[∂²u/∂r² + (1/r)(∂u/∂r) + (1/r²)(∂²u/∂θ²)]

(r, θ). The wave equation becomes:

Solution:  For  a  circular membrane,  it's  convenient  to  use  polar  coordinates 

circular membrane of radius R, fixed at its boundary.

Problem Statement: Determine the natural frequencies and mode shapes of a 

Problem 2: Vibration of a Circular Membrane

ω₁₁ = cπ√[(1/a)² + (1/b)²]

The lowest frequency (fundamental mode) occurs when m = n = 1:

ω²ₘₙ = c²π²[(m/a)² + (n/b)²]

The corresponding eigenvalues (squared frequencies) are:

φₘₙ(x, y) = sin(mπx/a)sin(nπy/b)

Thus, the eigenfunctions are:

X(x) = sin(mπx/a), m = 1, 2, 3, ... Y(y) = sin(nπy/b), n = 1, 2, 3, ...

The solutions are:

X(0) = X(a) = 0 Y(0) = Y(b) = 0

where λ + μ = ω²/c². The boundary conditions require:

X'' + λX = 0 Y'' + μY = 0

differential equations:

Using  separation  of  variables,  φ(x,  y)  =  X(x)Y(y),  we  get  two  ordinary 

-ω²φ = c²(∂²φ/∂x² + ∂²φ/∂y²)

the wave equation:

We  seek  solutions  of  the  form  u(x,  y,  t)  =  φ(x,  y)cos(ωt).  Substituting  into 

u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = 0

boundary conditions:

Solution:  For  a  rectangular  membrane  with  fixed  edges,  we  have  the 

b, fixed at all edges. Find the natural frequencies and mode shapes.

Problem Statement: Consider a rectangular membrane with dimensions a × 

Problem 1: Vibration of a Rectangular Membrane
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 With boundary conditions: u = 0 on all six faces of the rectangular domain.

∂²u/∂t² = c²(∂²u/∂x² + ∂²u/∂y² + ∂²u/∂z²)

Solution: The three-dimensional wave equation is:

boundary conditions.

rectangular  domain  [0,  a]  ×  [0,  b]  ×  [0,  c]  with  homogeneous  Dirichlet 

Problem  Statement:  Solve  the  three-dimensional  wave  equation  in  a 

Domain

Problem  3:  Three-Dimensional  Wave  Equation  in  a  Rectangular

ω₀₁ = (c/R)j₀₁ ≈ 2.4048c/R

The fundamental frequency corresponds to j₀₁ ≈ 2.4048:

φₙₘ(r, θ) = Jₙ(jₙₘr/R)[Acos(nθ) + Bsin(nθ)]

The corresponding eigenfunctions are:

ω²ₙₘ = (c²/R²)j²ₙₘ

zero of Jₙ. The eigenvalues are:

Thus,  kR  must  be  a  zero  of  the  Bessel  function  Jₙ.  Let  jₙₘ  denote  the  mth 

Jₙ(kR) = 0

R(R) = 0 gives:

Since  Yₙ  diverges  at  r  =  0,  we  must  have  D  =  0.  The  boundary  condition 

ω/c.

where  Jₙ  and Yₙ  are  Bessel  functions  of  the  first  and second  kind,  and  k  = 

R(r) = CJₙ(kr) + DYₙ(kr)

The equation for R is a Bessel equation with solution:

Θ(θ) = Acos(nθ) + Bsin(nθ), n = 0, 1, 2, ...

The solution for Θ is:

r²R'' + rR' + [(ω²r²/c²) - n²]R = 0 Θ'' + n²Θ = 0

R(r)Θ(θ), we obtain:

Using separation of variables, u(r, θ, t) = φ(r, θ)cos(ωt) and further φ(r, θ) = 

For a fixed boundary, u(R, θ, t) = 0.
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 Dividing by ρ, we get the wave equation:

ρ(∂²u/∂t²) - T(∂²u/∂x² + ∂²u/∂y²) = 0

Since δu is arbitrary, the integrand must be zero:

∫(t₁ to t₂)∫∫[ρ(∂²u/∂t²) - T(∂²u/∂x² + ∂²u/∂y²)]δu dxdydt = 0

Taking the variation and integrating by parts:

δ∫(t₁ to t₂)∫∫[(1/2)ρ(∂u/∂t)² - (1/2)T((∂u/∂x)² + (∂u/∂y)²)] dxdydt = 0

This means:

δ∫(t₁ to t₂)(K - P)dt = 0

According to Hamilton's principle:

K = (1/2)∫∫ρ(∂u/∂t)² dxdy P = (1/2)∫∫T[(∂u/∂x)² + (∂u/∂y)²] dxdy

potential energies are:

Solution: For  a  membrane  with  displacement  u(x,  y,  t),  the  kinetic  and 

equation.

membrane  using  Hamilton's  principle  and  show  that  it  leads  to  the  wave 

Problem  Statement:  Derive  the  Euler-Lagrange  equation  for  a  vibrating 

Problem 4: Variational Formulation of Membrane Vibration

u(x, y, z, t) = ∑∑∑Aₘₙₚsin(mπx/a)sin(nπy/b)sin(pπz/c)cos(ωₘₙₚt + θₘₙₚ)

The general solution is a superposition of these modes:

φₘₙₚ(x, y, z) = sin(mπx/a)sin(nπy/b)sin(pπz/c)

The corresponding eigenfunctions are:

ω²ₘₙₚ = c²π²[(m/a)² + (n/b)² + (p/c)²]

The eigenvalues are:

sin(pπz/c), p = 1, 2, 3, ...

X(x) = sin(mπx/a), m = 1, 2, 3, ... Y(y) = sin(nπy/b), n = 1, 2, 3, ... Z(z) = 

The boundary conditions yield:

X'' + λX = 0 Y'' + μY = 0 Z'' + νZ = 0 T'' + c²(λ + μ + ν)T = 0

Using separation of variables, u(x, y, z, t) = X(x)Y(y)Z(z)T(t), we get:
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how Hamilton's principle can be applied to this problem.

the  equations  of  motion  and  the  associated  boundary  conditions.  Discuss 

traction on the remaining portion Γ₂. Using the calculus of variations, derive 

The  body  is  fixed  on  a  portion  Γ₁  of  its  boundary  and  subject  to  a  surface 

Problem  5:Consider  a  vibrating  elastic  body  occupying  a  domain  Ω ⊂ R³. 

mixed boundary conditions affect the form of the eigenfunctions.

Formulate  the  eigenvalue  problem  for  this  system  and  discuss  how  the 

three  edges  (x  =  0,  x  =  a,  y  =  0)  and  free  along  the  fourth  edge  (y  =  b). 

Problem  4:A  rectangular  membrane  with  dimensions  a  ×  b  is  fixed  along 

symmetry properties of the eigenfunctions (mode shapes).

calculus  of  variations  to  formulate  the  eigenvalue  problem  and  discuss  the 

with  side  length  L.  The  membrane  is  fixed  along  its  boundary.  Use  the 

Problem 3:Consider a vibrating membrane shaped like an equilateral triangle 

affects the natural frequencies compared to a uniform membrane.

using  the  calculus  of  variations.  Discuss  how  the  non-uniform  density 

αr²), where α is a constant. Formulate the eigenvalue problem for this system 

density that varies with distance from the center according to ρ(r) = ρ₀(1 + 

lies in the xy-plane. The membrane is fixed at its boundary and has a mass 

Problem 2:A circular membrane of radius R has its center at the origin and 

on each face.

and mode shapes of vibration. Discuss the form of the boundary conditions 

on all other faces. Set up the eigenvalue problem for the natural frequencies 

with sides of length L. The solid is fixed on the bottom face (z = 0) and free 

Problem 1:Consider a three-dimensional elastic solid in the shape of a cube 

5.3.2 Unsolved Problems

equation of motion.

where c² = T/ρ. This confirms that the variational approach yields the correct 

∂²u/∂t² = c²(∂²u/∂x² + ∂²u/∂y²)
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equation- separation of variables-the use of integral transforms

The Diffusion Equations: Elementry solution of the diffiusion 

Unit 5.4

           

 

           

 

 

 

• ∂²u/∂x² is the second spatial derivative (curvature) of u

• ∂u/∂t is the rate of change of u with respect to time

• D is the diffusion coefficient (a positive constant)

time t

• u(x,t)  represents the concentration  or temperature  at position  x  and 

Where:

∂u/∂t = D ∂²u/∂x²

The standard form of the one-dimensional diffusion equation is:

mass diffusion, and certain types of wave propagation.

equation governs numerous physical phenomena including heat conduction, 

high  concentration  to  regions  of  lower  concentration.  This  fundamental 

(like heat, particles, or chemicals) spread through a medium from regions of 

differential  equation  that  describes  how  substances  or  physical  quantities 

The  diffusion  equation,  also  known  as  the  heat  equation,  is  a  partial 

5.4.1 Introduction to Diffusion Equations

the hotter region to the cooler region until the temperature equalizes. The

Similarly, when one part of an object is hotter than another, heat flows from 

in space, it naturally spreads out until it becomes uniformly distributed. 

tend to evolve toward equilibrium. When a substance is unevenly distributed 

The diffusion equation embodies a fundamental principle of nature: systems 

Physical Interpretation

Where ∇² is the Laplacian operator.

∂u/∂t = D∇²u

In multiple dimensions, the equation takes the form:
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 For the one-dimensional diffusion equation, we assume:

be written as a product of functions, each depending on only one variable.

separation of variables method. This approach assumes that the solution can 

One of the most powerful techniques for solving the diffusion equation is the 

Separation of Variables Method

Where A and B are constants determined by boundary conditions.

u(x) = Ax + B

The solutions to this equation are linear functions:

0 = D ∂²u/∂x²

reduces to:

When  the  system  reaches  equilibrium  (∂u/∂t  =  0),  the  diffusion  equation 

Steady-State Solutions

through the principle of superposition.

The  fundamental  solution  can  be  used  to  build  more  complex  solutions 

As t → ∞, u(x,t) → 0 for all x4.

The total amount of substance remains constant (integral equals 1)3.

Its peak decreases as 1/√t while spreading out2.

It's symmetric around x = 01.

Green's function, has several important properties:

function  initial  condition.  This  solution,  also  known  as  the  heat  kernel  or 

concentrated  at  a  single  point  (x  =  0)  at  time  t  =  0,  often  called  a  delta 

This represents the solution for an initial condition where all the substance is 

u(x,t) = (1/√(4πDt)) * exp(-x²/(4Dt))

The fundamental solution to the diffusion equation in one dimension is:

Fundamental Solution (Heat Kernel)

Elementary Solutions of the Diffusion Equation

medium and the substance that's diffusing.

Larger values of D result in faster diffusion. The coefficient depends on the 

diffusion  coefficient  D  characterizes  how  quickly  this  spreading  occurs. 
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u(x,t) = X(x)T(t) 

Substituting this into the diffusion equation: 

X(x)T'(t) = DX''(x)T(t) 

Dividing both sides by X(x)T(t): 

T'(t)/T(t) = DX''(x)/X(x) 

Since the left side depends only on t and the right side depends only on x, 

both sides must equal a constant, which we'll call -λ (the negative sign is 

chosen for mathematical convenience). 

This gives us two ordinary differential equations: 

T'(t) + λDT(t) = 0 X''(x) + λX(x) = 0 

The solutions to these equations are: 

T(t) = Ce^(-λDt) X(x) = A sin(√λx) + B cos(√λx) 

The complete solution is found by combining these functions while 

satisfying the boundary and initial conditions. 

Example: Heat Flow in a Rod 

Consider a rod of length L with insulated sides. The ends are kept at 

temperature 0. Initially, the temperature distribution is f(x). 

The boundary conditions are: u(0,t) = 0 and u(L,t) = 0 for all t ≥ 0 

The initial condition is: u(x,0) = f(x) for 0 ≤ x ≤ L 

Using separation of variables and the boundary conditions, we find that λ = 

(nπ/L)² and: 

X(x) = sin(nπx/L) 

The complete solution is: 

u(x,t) = Σ Bₙ sin(nπx/L)e^(-(nπ/L)²Dt) 

Where the coefficients Bₙ are determined from the initial condition: 

Bₙ = (2/L) ∫₀ᴸ f(x)sin(nπx/L)dx 

The Use of Integral Transforms 
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Integral transforms provide another powerful method for solving the 

diffusion equation, especially when dealing with unbounded domains or 

complex initial/boundary conditions. 

Fourier Transform Method 

The Fourier transform converts the partial differential equation into an 

ordinary differential equation in the frequency domain. For a function u(x,t), 

the Fourier transform with respect to x is: 

û(k,t) = ∫₋∞^∞ u(x,t)e^(-ikx)dx 

Applying this transform to the diffusion equation: 

∂û/∂t = -Dk²û 

The solution to this ordinary differential equation is: 

û(k,t) = û(k,0)e^(-Dk²t) 

Where û(k,0) is the Fourier transform of the initial condition u(x,0). 

The solution in the original domain is obtained by applying the inverse 

Fourier transform: 

u(x,t) = (1/2π) ∫₋∞^∞ û(k,0)e^(-Dk²t)e^(ikx)dk 

Laplace Transform Method 

The Laplace transform is particularly useful for initial value problems. For a 

function u(x,t), the Laplace transform with respect to t is: 

U(x,s) = ∫₀^∞ u(x,t)e^(-st)dt 

Applying this transform to the diffusion equation: 

sU(x,s) - u(x,0) = D ∂²U/∂x² 

This is an ordinary differential equation in x, which can be solved based on 

boundary conditions. The solution in the original domain is obtained by 

applying the inverse Laplace transform. 

Solved Problems 

Problem 1: One-Dimensional Heat Equation with Dirichlet Boundary 

Conditions 
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Problem Statement: Solve the heat equation ∂u/∂t = ∂²u/∂x² for 0 < x < 1, t > 

0, with boundary conditions u(0,t) = 0, u(1,t) = 0, and initial condition u(x,0) 

= sin(πx). 

Solution: 

Using separation of variables, we assume u(x,t) = X(x)T(t). 

Substituting into the heat equation: X(x)T'(t) = X''(x)T(t) 

Dividing by X(x)T(t): T'(t)/T(t) = X''(x)/X(x) = -λ 

This gives us two equations: T'(t) + λT(t) = 0 X''(x) + λX(x) = 0 

With boundary conditions X(0) = X(1) = 0. 

The eigenvalue problem for X yields: λₙ = (nπ)², n = 1,2,3,... Xₙ(x) = 

sin(nπx) 

The time-dependent solution is: Tₙ(t) = cₙe^(-(nπ)²t) 

The general solution is: u(x,t) = Σ cₙsin(nπx)e^(-(nπ)²t) 

Applying the initial condition: u(x,0) = Σ cₙsin(nπx) = sin(πx) 

By orthogonality of sine functions: cₙ = 0 for n ≠ 1 c₁ = 1 

Therefore, the solution is: u(x,t) = sin(πx)e^(-π²t) 

This represents a temperature distribution that maintains its sinusoidal shape 

while decaying exponentially over time. 

Problem 2: Diffusion in a Semi-Infinite Medium 

Problem Statement: Solve the diffusion equation ∂u/∂t = D∂²u/∂x² for x > 0, 

t > 0, with boundary condition u(0,t) = u₀ (constant), and initial condition 

u(x,0) = 0. 

Solution: 

This problem represents diffusion into a semi-infinite medium from a 

constant source at the boundary. 

We'll use the complementary error function, defined as: erfc(z) = (2/√π) ∫ₖ^∞ 

e^(-s²)ds 

The solution to this problem is: u(x,t) = u₀erfc(x/(2√(Dt))) 
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Let's verify this solution: 

1. Initial condition: As t → 0+, erfc(x/(2√(Dt))) → erfc(∞) = 0 for all x 

> 0. So u(x,0) = 0, satisfying the initial condition. 

2. Boundary condition: At x = 0, u(0,t) = u₀erfc(0) = u₀ for all t > 0, 

since erfc(0) = 1. 

3. Diffusion equation: We can verify that u(x,t) = u₀erfc(x/(2√(Dt))) 

satisfies the diffusion equation by direct substitution: 

∂u/∂t = u₀(x/(4√(Dt³)))e^(-x²/(4Dt)) 

∂u/∂x = -u₀(1/(2√(Dt)))e^(-x²/(4Dt)) 

∂²u/∂x² = u₀(x/(4D²t²))e^(-x²/(4Dt)) 

Substituting these into the diffusion equation confirms that it is satisfied. 

This solution shows how the substance gradually diffuses into the medium, 

with concentration decreasing with distance from the boundary. 

Problem 3: Diffusion with an Insulated Boundary 

Problem Statement: Solve the diffusion equation ∂u/∂t = D∂²u/∂x² for 0 < x 

< L, t > 0, with boundary conditions ∂u/∂x(0,t) = 0, u(L,t) = 0, and initial 

condition u(x,0) = x(2L-x)/L². 

Solution: 

The boundary condition ∂u/∂x(0,t) = 0 represents an insulated boundary at x 

= 0. 

Using separation of variables: u(x,t) = X(x)T(t) 

This leads to: T'(t)/T(t) = X''(x)/X(x) = -λ 

The boundary conditions for X are: X'(0) = 0 and X(L) = 0 

The eigenvalue problem yields: λₙ = ((2n-1)π/2L)², n = 1,2,3,... Xₙ(x) = 

cos((2n-1)πx/(2L)) 

The general solution is: u(x,t) = Σ cₙcos((2n-1)πx/(2L))e^(-D((2n-

1)π/(2L))²t) 

Applying the initial condition: u(x,0) = x(2L-x)/L² = Σ cₙcos((2n-1)πx/(2L)) 
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with boundary conditions u(0,t) = 0, u(L,t) = 0, and initial condition u(x,0) =

Problem 1:Solve the diffusion equation ∂u/∂t = D∂²u/∂x² for 0 < x < L, t > 0, 

5.4.2 Unsolved Problems

decreasing as 1/√(1+4Dt) and the width increasing as √(1+4Dt).

This  represents  the  spreading  of  an  initial  Gaussian  pulse,  with  the  peak 

(1/√(1+4Dt)) * e^(-x²/(1+4Dt))

k²(1/4+Dt))e^(ikx)dk = (1/2π) * √π * √(π/(1/4+Dt)) * e^(-x²/(4(1/4+Dt))) = 

Applying  the  inverse  Fourier  transform:  u(x,t)  =  (1/2π)  ∫₋∞^∞  √π  e^(- 

Therefore: û(k,t) = √π e^(-k²/4)e^(-Dk²t) = √π e^(-k²(1/4+Dt))

The Fourier transform of the initial condition e^(-x²) is: û(k,0) = √π e^(-k²/4)

This is a first-order ODE with solution: û(k,t) = û(k,0)e^(-Dk²t)

Applying the Fourier transform to the diffusion equation: ∂û/∂t = -Dk²û

The Fourier transform of ∂²u/∂x² is -k²û(k,t).

u(x,t)e^(-ikx)dx

Let û(k,t) be the Fourier transform of u(x,t) with respect to x: û(k,t) = ∫₋∞^∞ 

We apply the Fourier transform to convert the PDE into an ODE:

Solution:

method.

< ∞, t > 0, with initial condition u(x,0) = e^(-x²) using the Fourier transform 

Problem Statement: Solve the diffusion equation ∂u/∂t = D∂²u/∂x² for -∞ < x 

Problem 4: Diffusion with an Integral Transform

kept at zero concentration.

This  represents  diffusion  in  a  medium  with  one  insulated  end  and  one  end 

D((2n-1)π/(2L))²t)

Therefore,  the  solution  is:  u(x,t)  =  Σ  (8L/((2n-1)π)²)cos((2n-1)πx/(2L))e^(- 

Computing this integral: cₙ = (8L/((2n-1)π)²) for odd n cₙ = 0 for even n 

cos((2n-1)πx/(2L))dx

Using  the  orthogonality  of  cosine  functions:  cₙ  =  (2/L)  ∫₀ᴸ x(2L-x)/L² 
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sin(2πx/L). Find the time it takes for the maximum concentration to decrease 

to 10% of its initial value. 

Problem 2:Consider the diffusion equation ∂u/∂t = D∂²u/∂x² for 0 < x < L, t 

> 0, with boundary conditions ∂u/∂x(0,t) = 0, ∂u/∂x(L,t) = 0, and initial 

condition u(x,0) = 1 - |2x/L - 1|. Find the steady-state solution as t → ∞ and 

the rate of approach to this steady state. 

Problem 3:Solve the diffusion equation ∂u/∂t = D∂²u/∂x² for 0 < x < ∞, t > 0, 

with boundary condition u(0,t) = sin(ωt) for t > 0, and initial condition 

u(x,0) = 0 for x > 0. Determine how the amplitude of the oscillations varies 

with distance from the boundary. 

Problem 4:Consider the two-dimensional diffusion equation ∂u/∂t = 

D(∂²u/∂x² + ∂²u/∂y²) in a square region 0 < x < a, 0 < y < a, with boundary 

conditions u = 0 on all boundaries, and initial condition u(x,y,0) = 

sin(πx/a)sin(πy/a). Find the solution and determine how long it takes for the 

maximum concentration to decrease to 1% of its initial value. 

Problem 5:Solve the diffusion equation with a source term: ∂u/∂t = D∂²u/∂x² 

+ Q for 0 < x < L, t > 0, where Q is a constant. The boundary conditions are 

u(0,t) = 0, u(L,t) = 0, and the initial condition is u(x,0) = 0. Find the steady-

state solution and describe how the system approaches this state over time. 

Multiple Choice Questions  

1. The canonical form of the one-dimensional wave equation is: 

   a) ∂²u/∂x² = c² ∂²u/∂t² 

   b) ∂²u/∂t² = c² ∂²u/∂x² 

   c) ∂u/∂t = c² ∂²u/∂x² 

   d) ∂²u/∂t = c ∂u/∂x 

2. For a vibrating string with wave speed c and fixed ends at x = 0 and x = L, 

the natural frequencies are: 

   a) nπc/L, where n is a positive integer 

   b) nπc/2L, where n is a positive integer 

   c) nc/L, where n is a positive integer 
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 exp(-Dx²t)d)

 exp(-Dt/x²)c)

 exp(-x²/(2Dt))b)

 exp(-x²/(4Dt))a)

proportional to:

5.  The  fundamental  solution  (heat  kernel)  to  the  diffusion  equation  is 

 ∂²u/∂t = D ∂²u/∂xd)

 ∂u/∂t = D ∂u/∂xc)

 ∂²u/∂t² = D ∂²u/∂x²b)

 ∂u/∂t = D ∂²u/∂x²a)

 The standard form of the one-dimensional diffusion equation is:4.

 u(x,t) = F(x + ct) / G(x - ct)d)

 u(x,t) = F(x + ct) × G(x - ct)c)

 u(x,t) = F(x + ct) + G(x - ct)b)

 u(x,t) = F(x + ct) - G(x - ct)a)

 D'Alembert's solution to the one-dimensional wave equation is:3.

 n²πc/L, where n is a positive integerd)
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Ans. a

Ans. b

Ans. a

Ans. a

m/a + n/bb)

√((m/a)² + (n/b)²)a)

solutions with frequencies proportional to:

 The wave equation for a rectangular membrane with dimensions a × b has 7.

Logarithmic functions                          Ans ad)

Exponential functionsc)

Sine functionsb)

Bessel functionsa)

involves:

6. For a circular membrane with fixed boundary, the eigenvalue problem 
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equation  in  terms  of  their  physical  interpretations  and  mathematical 
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 What are the key differences between the wave equation and the diffusion4.

partial differential equations.

3. Explain the principle of superposition as it applies to solutions of linear 

provide an example of each.

2. Describe the difference between standing waves and traveling waves, and 

and how it relates to the physical properties of the medium.

1. Explain the physical meaning of the wave speed c in the wave equation 

Short Answer Questions

The reflection coefficient is zero        Ans. cd)

There is a 180° phase changec)

There is a 90° phase changeb)

There is no phase changea)

When a wave reflects from a fixed boundary:10.

(∂u/∂r)/r²                                               Ans. d d)

r(∂u/∂r)c)

(2/r)(∂u/∂r)b)

(1/r)(∂u/∂r)a)

contains the term:

9. The diffusion equation in spherical coordinates with radial symmetry 

Trigonometric functions                    Ans. dd)

Logarithmic functionsc)

Linear functionsb)

Exponential functionsa)

In a steady-state diffusion problem (∂u/∂t = 0), the solutions are:8.

√(m²/a + n²/b)                                     Ans. ad)

m²/a² + n²/b²c)



5. Describe the behavior of the fundamental solution to the diffusion 

equation as time increases. 

6. Define Dirichlet and Neumann boundary conditions and explain their 

physical significance in the context of wave problems. 

7. Explain how separation of variables works for solving partial differential 

equations. 

8. What is the significance of eigenvalues and eigenfunctions in the context 

of vibrating systems? 

9. How does the method of images work for wave reflection problems? 

10. Describe the physical meaning of the diffusion coefficient D and how it 

affects the solutions to the diffusion equation. 

Long Answer Questions  

1. Derive the one-dimensional wave equation from first principles by 

considering a vibrating string under tension. State the assumptions made in 

your derivation. 

2. Solve the heat equation ∂u/∂t = D∂²u/∂x² for 0 < x < L, t > 0, with 

boundary conditions u(0,t) = 0, u(L,t) = 0, and initial condition u(x,0) = 

sin(3πx/L). Find the solution and describe how the temperature distribution 

evolves over time. 

3. Using the separation of variables method, find the normal modes of 

vibration for a rectangular membrane with sides a and b, fixed at all edges. 

Explain the physical significance of the resulting eigenvalues and 

eigenfunctions. 

4. Apply D'Alembert's solution to solve the wave equation ∂²u/∂t² = c² 

∂²u/∂x² on an infinite string with initial conditions u(x,0) = f(x) and 

∂u/∂t(x,0) = g(x). Then, solve explicitly for the case where f(x) = e^(-x²) and 

g(x) = 0. 

5. Derive the three-dimensional diffusion equation in spherical coordinates 

with radial symmetry. Solve it for the case of an instantaneous point source 

at the origin, and interpret the physical meaning of your solution. 
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6. Explain the calculus of variations approach to vibrating membrane 

problems. Show how Hamilton's principle leads to the wave equation, and 

demonstrate its application to a specific boundary value problem. 

7. Compare and contrast the Fourier transform and Laplace transform 

methods for solving the diffusion equation. Provide an example where each 

method would be most appropriate. 

8. A semi-infinite string occupies the region x ≥ 0, with its left end (x = 0) 

fixed. Initially, a Gaussian pulse is traveling toward the fixed end. Determine 

the displacement after reflection and explain the physical principles 

involved. 

9. Solve the diffusion equation ∂u/∂t = D∂²u/∂x² for a semi-infinite medium 

(x > 0) with boundary condition u(0,t) = u₀ (constant) and initial condition 

u(x,0) = 0. Interpret the physical meaning of your solution and describe its 

long-term behavior. 

10. Consider a vibrating circular membrane of radius R with fixed boundary. 

Set up the eigenvalue problem, find the normal modes of vibration, and 

explain how the modal shapes and frequencies are determined. Discuss the 

physical significance of the lowest few modes. 
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