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Notes

COURSE INTRODUCTION

Mathematical statistics provides the foundation for data analysis,
decision-making, and inference in various fields. This course
introduces fundamental statistical concepts, probability theory,
probability distributions, and hypothesis testing. Understanding these
concepts is essential for statistical modeling, research, and real-world

applications in science, business, and engineering.

Module 1: Probability Theory

This module covers the definition and various approaches to
probability, including the addition theorem, Boolean equality,
conditional probability, multiplication theorem, and independent
events. Students will also explore mutual and pairwise independence
of events and applications of Bayes’ theorem.

Module 2: Random Variables and Probability Functions

Students will learn about random variables, including discrete and
continuous types, probability mass and density functions, and
distribution functions. The module also introduces bivariate random
variables, joint, marginal, and conditional distributions, and
mathematical expectation, variance, covariance, and moment-
generating functions.

Module 3: Probability Distributions

This module explores important probability distributions, including
discrete distributions (Uniform, Bernoulli, Binomial, Poisson, and
Geometric) and continuous distributions (Uniform, Exponential, and
Normal), along with their properties and applications.

Module 4: Hypothesis Testing

Students will be introduced to statistical hypothesis testing, including
concepts such as parameters, statistics, sampling distribution, standard
error, and null and alternative hypotheses. The module also covers
simple and composite hypotheses.

Module 5: Tests of Significance

This module focuses on the critical region, level of significance, one-
tailed and two-tailed tests, and two types of errors. Students will study
large sample tests for single mean, single proportion, and differences

between two means and two proportions.
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MODULE 1

UNIT 1.1
Probability: Definition and various approaches of probability

Objectives
e To understand the concept of likelihood and its different approaches.
e To learn addition and multiplication theorems of likelihood.
e To study Boole’s inequality and its applications.
e To analyze conditional likelihood and its significance.
o To explore free and mutually free events.
e To apply Bayes’ theorem in real-world problems.
1.1.1: Introduction to Likelihood

It provides a framework for measuring and quantifying the likelihood of
events occurring in a given situation. The concept of likelihood is
fundamental to many fields including statistics, physics, economics,

computer science, and everyday decision-making.
Definition of Likelihood

An event's likelihood is a numerical indicator of how likely it is to happen.

The number is always in the range of 0 to 1, inclusive:

e An occurrence is certain when its likelihood is 1.
o The degree of possibility of the event is indicated by a likelihood

between 0 and 1.
Basic Terminology

Before diving deeper into likelihood theory, it's essential to understand some

fundamental concepts:

1.E xperiment: Any procedure that can be repeated and has a well-

defined set of possible outcomes.
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2. Event (E): representing a collection of outcomes. For example,
when rolling a die, the event "rolling an even number" would be E =

{2,4,6}.
3. Elementary Outcome: An individual outcome in the sample space.
Mathematical Expression of Likelihood

With n(E) representing number of elements in event E & n(S) representing
number of elements in sample space S, the likelihood of an event E in finite
sample space with equally likely outcomes is as follows: P(E) = Number of

favorable outcomes / Total number of possible outcomes = n(E) / n(S).
Properties of Likelihood

1. Additivity: For mutually exclusive events E & F (events that cannot

occur simultaneously), P(E U F) = P(E) + P(F)
2. Complement Rule: P(E") =1 - P(E)
The Role of Likelihood in Decision Making

Likelihood is crucial for making informed decisions under uncertainty.
individuals and organizations can make more rational choices based on

expected values and risk assessments.
1.1.2: Approaches to Likelihood

There are several fundamental approaches to defining and interpreting
likelihood, each with its own perspective and applications. These approaches
provide different ways to understand and calculate probabilities in various

contexts.
Classical Approach

The classical approach, also known as the a priori approach, defines

likelihood based on equally likely outcomes.

Definition: equally likely outcomes.
Definition: The likelihood of event E is P(E) = m/n, which is number of
favorable outcomes divided by total number of possible outcomes, if event E
includes m of the n equally likely outcomes of an experiment.

Presumptions: Every possible scenario has an equal chance of happening.



Examples: Coin tosses, dice rolls, card games, and most gambling scenarios Notes
where the underlying physical mechanisms produce essentially at random

results.
Limitations:

1. It only applies when outcomes are equally likely.

2. It cannot be applied to infinite sample spaces.

3. The concept of "equally likely" is somewhat circular in definition.
Relative Frequency Approach

The relative frequency approach, also known as the a posteriori approach or
empirical approach, defines likelihood based on observed data from repeated

experiments.

Definition: When an experiment is conducted n times with the same
parameters and event E happens m times, the relative frequency m/n gets

closer to the likelihood P(E) as n gets closer to infinity.:
P(E)= lim m/n
n—ooo
Applications:
1. Used in statistical studies and data analysis.
2. Useful when theoretical probabilities are difficult to determine.
3. Forms the basis for frequentist statistics.
Limitations:
1. Requires a large number of repetitions for accuracy.
2. Cannot be used for one-time events.
3. Practical constraints may prevent truly identical repetitions.
Subjective Approach

The subjective approach defines likelihood as a measure of personal belief

or confidence in the occurrence of an event.

Definition: Likelihood is a numerical measure of a person's degree of belief

that an event will occur, based on their knowledge and experience.
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Features:

1. Different individuals may assign different probabilities to the same
event.
2. Probabilities can be updated as new information becomes available
(Bayesian approach).
3. Used for events that cannot be repeated or where data is limited.
Applications:
1. Decision-making in business and policy.
2. Risk assessment in unique situations.
3. Bayesian statistical inference.
Limitations:
1. Subjective nature may lead to inconsistencies.
2. Difficult to validate objectively.

Axiomatic Approach

The axiomatic approach, developed by Andrey Kolmogorov in the 1930s,

provides a mathematical foundation for likelihood theory based on set

theory.

Kolmogorov's Axioms:

1.
2.
3.

P(A) > 0 (non-negativity) for any event A

entire sample space has a likelihood of 1 (P(S) = 1).

total of probabilities of two mutually exclusive events, Ai, Aa,...,
indicates the possibility that they will come together: P(Ai) U
AaU...... = P(A1) + P(A2) +...
All other likelihood principles can be derived from this method's
strict mathematical base. It allows for the development of likelihood
theory as a subfield of measure theory and unifies the many

approaches to likelihood.

Comparing the Approaches

Each approach has its strengths and contexts where it is most appropriate:



e The classical approach works well for simple games of chance with

known structures.

e The relative frequency approach is useful for empirical studies and

statistical analysis.

e The subjective approach helps with decision-making when data is

limited or for one-time events.

e The axiomatic approach provides the mathematical foundation that

unifies all other approaches.

In practice, these approaches are often complementary rather than
competing. The choice of approach depends on the specific problem,

available information, and the purpose of the likelihood calculation.
1.1.3: Addition Theorem of Likelihood

A key idea in likelihood theory that explains how to determine the likelihood
of an event joining together is the addition theorem. It offers a way to
calculate the likelihood that at least one of a number of occurrences will take

place.
Applications of the Addition Theorem

1. Risk Assessment: Calculating the likelihood of system failure when

there are multiple potential failure points.

2. Medical Diagnosis: Finding the likelihood that a patient has at least

one of several possible conditions based on symptoms.

3. Financial Planning: Assessing the likelihood of achieving financial

goals through different investment strategies.

4. Project Management: Calculating the likelihood of project

completion by a deadline when considering various possible delays.
The Complement Method

Using an event's complement can sometimes make calculating its likelihood

easier, particularly when working with "at least one" scenarios.
For an event A, the complement method uses:

P(A) =1 - P(A")

Notes
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where the complement of Ais A'.

This is particularly useful when calculating the likelihood of "at least one
success" by first finding the likelihood of "no successes" and then

subtracting from 1.
1.1.4: Boole's Inequality and Its Applications

An upper bound for the likelihood of the union of occurrences is provided
by Boole's inequality, sometimes referred to as the union bound. It is a
fundamental finding in likelihood theory. It bears the name of George Boole,

a mathematician.
Statement of Boole's Inequality

Boole's inequality says that for any finite or countably infinite sequence of

events Ai, Aa,..., A, P(A1 U A2U... U A,) <P(Ai1) + P(A2) +... + P(An)
In notation for mathematics:

P(Uiz1 A1) < Xiz1 P(4)
Proof and Intuition

Boole's inequality follows directly from the inclusion-exclusion principle.
Terms for every potential intersection are included in the whole inclusion-

exclusion calculation for the likelihood of a union:

P(U™, 4;) = YP(A) - YP(Ai N A) + TP(Ai N Aj N AY) - ... + (-1)*P(A: N
AN NAY

Since all likelihood values are non-negative, dropping the negative terms

yields an upper bound:
P(UiZ; 4) < X P(A)

If &only if the events are mutually exclusive, then this disparity turns into

equality.
Key Properties

1. Sharpness: The bound is tight (equality holds) when the events are

mutually exclusive.

2. Monotonicity: Adding more events can only increase the bound.



Conservation of Likelihood Mass: The bound can exceed 1, which
is impossible for an actual likelihood. This happens when there is

significant overlap between events.

Relationship to Addition Theorem: Boole's inequality is a
simplification of the addition theorem when the intersection terms

are unknown or difficult to calculate.

Applications of Boole's Inequality

1.

Error Likelihood Bounds: In communication systems, Boole's
inequality helps establish upper bounds on the likelihood of error

when multiple types of errors can occur.

Multiple Hypothesis Testing: In statistics, it's used to control the
family-wise error rate, providing a bound on the likelihood of

making at least one false discovery among multiple hypotheses.

System Reliability: For complex systems with multiple failure
modes, Boole's inequality bounds the overall system failure

likelihood.

Algorithm Analysis: In randomized algorithms, it helps analyze the

likelihood of failure when multiple failure conditions exist.

Risk Assessment: When evaluating the risk of complex scenarios
with multiple potential hazards, Boole's inequality provides a

conservative estimate of the overall risk.

Bonferroni Correction

A common application of Boole's inequality is the Bonferroni correction in

multiple hypothesis testing. If you conduct n free statistical tests at a

significance level a, the likelihood of at least one false positive (Type I

error) is bounded by n-a according to Boole's inequality.To maintain an

overall significance level a for the entire family of tests, each individual test

should be conducted at a significance level of a/n. This is known as the

Bonferroni correction.

Example of Boole's Inequality

Consider a system with three components, each with the following failure

probabilities:

Notes
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e Component 1: P(A1) =0.05
e Component 2: P(Az2) =0.03
e Component 3: P(As) =0.04

What is the maximum likelihood that at least one component will fail?

Using Boole's inequality:

P(A1 U A2U As) < P(A1) + P(A2) + P(A3) £0.05 + 0.03 +0.04 <0.12
So, the likelihood of at least one component failing is at most 0.12 or 12%.
Limitations and Refinements

While Boole's inequality is simple to apply and requires minimal
information (just the individual probabilities), it can be quite loose when
events have significant overlap. In such cases, more refined bounds like the
Bonferroni inequalities or the Hunter-Worsley bound might provide tighter

results by incorporating information about pairwise intersections.
1.1.5: Conditional Likelihood and Multiplication Theorem

Conditional likelihood is the likelihood that an event will occur provided
that another event has already occurred. This idea is central to likelihood
theory and serves as the foundation for Bayesian statistics as well as

numerous applications in engineering, science, and decision-making.
Definition of Conditional Likelihood

The conditional likelihood of event B given that event A has taken place,

denoted by P(BJA), is defined as follows:
P(BJA) =P(A N B)/P(A),

where P(A) is the likelihood that event A will occur and P(A) is the
likelihood that both events A &B will occur.

* P(A) > 0 This formula can be seen as the percentage of event A outcomes

that are also event B outcomes.

Intuitive Understanding



A conditional likelihood is a likelihood that has been adjusted in light of
fresh data. After discovering that event A has taken place, we limit our

sample space to just the results of A.

The likelihood of event B in this new limited sample space is denoted by

P(BJA).
The Theorem of Multiplication

The multiplication theorem can be obtained by rearranging Conditional

likelihood definition:
P(A) x P(BJA)=P(A) N B

This theorem allows us to calculate the likelihood of two events occurring at
the same time by multiplying the chance of one event by the conditional
likelihood of  the second event provided beforehand.

The multiplication theorem extends to the following for numerous events:
P(A) x P(BJA) x P(CIANB)=P(A)NBNC
Likelihood Chain Rule

The chain rule is the generic version of the multiplication theorem for n
events:
P(N7=; A;) = P(A1) x P(A2|A1) X P(As|A1 N Az) X... x P(AqJAi N A2 N... N
A1)

When determining the combined likelihood of a series of events, this rule is

crucial.

Separate Occurrences If the likelihood of one event does not change when

the other occurs, then occurrences A & B are free.
A and B are mathematically free if & only if P(B|A) = P(B).
The equivalent expression for independence is P(A N B) = P(A) x P(B).

Mutual independence for multiple events necessitates the independence of
each subset of events.
Rule of Multiplication for Free Events Given the independence of events Ai,
As,..., & An, P(A1 N A2 N... N Ap) =P(A1) X P(A2) X... X P(Ay)

Notes




Notes

This makes figuring out combined likelihood for individual events easier.
The Bayes theorem provides a way to update probabilities in light of new

data and is based on the idea of conditional likelihood..

P(AB) = [P(B|A) x P(A)]/ P(B) for occurrences A and B, where:

* posterior likelihood, or P(A|B), is likelihood that A given B

« likelihood, or likelihood of B given, is P(B|A). A

» prior likelihood is P(A), which is initial likelihood of A.

* The marginal likelihood, or the overall likelihood of B, is denoted by P(B).

In machine learning, medical diagnosis, and numerous other fields where
probabilities must be adjusted in light of new information, Bayes' theorem is
essential.

Law of Total Likelihood
According to law of total likelihood, for each event A, P(A) = P(A|B:)P(B:)
+ P(A|B2)P(B:) +... + P(A|B.)P(B,) if events B, B,..., B, constitute partition
of sample space (they are mutually exclusive & their union is entire sample
space).

This law assists in determining an event's overall likelihood by taking into

account all potential circumstances.
Applications of Conditional Likelihood

1. Medical Diagnosis: Interpreting test results based on disease

prevalence.

2. Weather Forecasting: Predicting tomorrow's weather given today's

conditions.

3. Risk Assessment: Evaluating the likelihood of accidents under

specific circumstances.

4. Finance: Estimating future market movements based on current

conditions.

5. Machine Learning: Algorithms like Naive Bayes classifiers rely on

conditional probabilities.
Solved Problems
Problem 1: Classical Likelihood with Playing Cards
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Each of four suits (hearts, diamonds, clubs, & spades) in typical 52-card
deck has 13 cards (Ace, 2-10, Jack, Queen, and King). Clubs and spades are

black cards, whereas diamonds and hearts are red cards.

What is the likelihood of drawing a face card (Jack, Queen, or King) or a red

card if you pull one card at at random from the deck?

Answer: Let R be the occurrence of a red card drawing. Let F be the face
card drawing event.

We must determine P(R U F).

Step 1: Determine the likelihood of drawing a red card, or P(R). The deck
has 26 red cards (13 diamonds and 13 hearts). P(R) =26/52 = 1/2

Step 2: Determine the likelihood of drawing a face card, or P(F). The deck
has twelve face cards: four Jacks, four Queens, and four Kings. P(F) = 12/52
=3/13

Step 3: Determine P(R N F), or the likelihood of drawing a face card and a
red card. Six cards—the Jack, Queen, King of Hearts, and Diamonds—are
both red and face cards. 3/26 = 6/52 =P(R N F)

Use the addition theorem in step four. 1/2 + 3/13 - 3/26 = 13/26 + 6/26 -
3/26=16/26=8/13 P(R U F)=P(R) + P(F) - P(R N F)

Consequently, the odds of drawing a face card or a red card are 8/13, or
roughly 0.615.
Issue 2: Medical Testing's Conditional Likelihood

Five percent of people suffer from a particular ailment. A test for this illness
has a 90% sensitivity, which means it can accurately identify 90% of those
who have it, and an 80% specificity, which means it can accurately identify
80% of those who do not.
What is the likelihood that an individual truly has the disease if they test
positive?

Answer: Let D be the occurrence of the illness. Let T+ be the result of a
positive test.
P(D|T+), the likelihood of having the disease in the event of a positive test,
must be determined.
Given the following data, P(D) = 0.05 (disease prevalence), P(T+/D) = 0.90
(sensitivity), and P(T-|D") = 0.80 (specificity), P(T+|D") = 0.20

11
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First, use the Bayes theorem. [P(T+D) x P(D)] / P(T+) = P(D|T+)
Step 2: Apply law of total likelihood to find P(T+). 0.045 + 0.19 = 0.235 =
0.90 x 0.05 + 0.20 x 0.95 = P(T+) = P(T+D) x P(D) + P(T+D') x P(D").

Step 3: Apply the Bayes theorem to calculate P(D|T+). 0.90 x 0.05/ 0.235 =
0.045/0.235=0.1915, or around 19.15%, is the value of P(D|T+).

As a result, the likelihood that an individual has the condition is only
19.15% if they test positive. The significance of taking the base rate
(prevalence) into account when interpreting test results is demonstrated by

this example.

Issue 3: Multiple Event Addition Theorem
Each of the three parts that make up a software system has the following
odds of failing in a 24-hour period:

Components A and B: 0.03 and  0.04, respectively
Component C: 0.02

There is a 0.005 chance that components A and B will both fail. There is a
0.004 chance that components A and C will both fail. There is a 0.006
chance that components B and C will both fail. All three components have a
0.001 chance of failing.
In a 24-hour period, what is the likelihood that at least one component
would fail?
Solution: Assume that components A, B, and C fail as a result of the

following circumstances. We have to determine P(A U B U C).

Given:
values of P(A) = 0.03, P(B) = 0.04, P(C) = 0.02, P(A N B) =0.005, P(A N
C)=0.004, & P(B N C)=0.006

«0.001is AN B N Q).

Three events are examined using inclusion-exclusion principle: The formula
for PAUBUC)is P(A)+P(B)+P(C)-P(ANB)-P(ANC)-PBNC)+
P(ANBNC).

P(AUB UC)=0.03+0.04 +0.02 - 0.005 - 0.004 - 0.006 + 0.001 =0.09 -
0.015+0.001 =0.076 or 7.6%

12



Consequently, there is a 7.6% chance that at least one component will

malfunction within a 24-hour period.

Issue 4: Multiplication Theorem and Free Events

Three times, fair die is rolled.

What is likelihood of receiving a number less than four on third roll, an even

number on second, and six first?

Answer: Let A represent the chance of receiving a 6 on the first roll. Let B
represent the chance of receiving an even number on the subsequent roll. Let

C be the occurrence of a number on the third roll that is less than 4.
Finding P(A N B N C) is necessary.

We can apply the multiplication rule for separate events as the three rolls are

free events: P(A) x P(B) x P(C)=P(AN BN C)

Step 1: Calculate P(A), or the likelihood of receiving a 6 on the first roll.
P(A)=1/6

Step 2: Determine P(B), or the likelihood that the second roll will provide an
even number. On a die, the even numbers are 2, 4, and 6 (three possible

outcomes). P(B) =3/6 =1/2

Step 3: Determine P(C), or the likelihood that the third roll will yield a

number smaller than 4.

The numbers 1, 2, and 3 (three outcomes) are fewer than 4. P(C) = 3/6 = 1/2
Use the multiplication theorem in step four. P(A) x P(B) x P(C) = (1/6) x
(1/2) x (1/2) = 1/24 or around 0.0417

Consequently, there is a 1/24 or around 4.17% chance of receiving a 6 on the
first roll, an even number on the second roll, and a number less than 4 on the

third roll.
Conditional Likelihood Chain Rule Problem No. 5

Three blue and five red balls are in a bag. Without a replacement, two balls

are drawn.

What is the likelihood that both balls will be red?

13
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Answer: When first ball is red, let Ri1 = event. Let R be chance that second

ball turns red.
Finding P(R: N R2) is necessary.
Applying the theorem of multiplication: P(R1) x P(Rz|R1) = P(R1 N R2)

Step 1: Determine the likelihood that the first ball will be red, or P(R:).
P(R1)=5/8

Step 2: Given that the first ball is red, find P(Rz|R1), the likelihood that the
second ball is also red. There are four red balls & three blue balls remaining

after drawing red ball, for a total of seven balls. P(Rz|R1) = 4/7

Use the multiplication theorem in step three. P(R: deviates from Rz) = P(R1)
x P(Rz|R1) = (5/8) x (4/7) =20/56 = 5/14, or roughly 0.357

Thus, there is a 5/14, or around 35.7%, chance of drawing two red balls.
Unsolved Problems
Problem 1: Classical Likelihood

Five times, a fair coin is tossed. How likely is it that at least three heads will
appear?

Second Issue: The Addition Theorem

Thirty of the fifty students in the class are enrolled in mathematics, twenty-
five are enrolled in physics, and ten are enrolled in both. What is the
likelihood that a randomly chosen student will be enrolled in either

mathematics, physics, or both?
Conditional Likelihood in Problem 3

Eight blue socks and ten red socks are in a drawer. Two socks are chosen at
at random and aren't replaced. Given that the first sock drawn was red, what

is the likelihood that the second sock will be blue?
Problem 4: Boole's Inequality Application

A security system has four sensors, each with the following probabilities of

false alarm:

e Sensor 1: 0.02

14



Sensor 2: 0.03

Sensor 3: 0.01

Sensor 4:

15
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UNIT 1.2

Addition theorem, Boolean equality, Conditional probability and
multiplication theorem, Independent events

1.2.1: Free and Mutually Free Events
Introduction to Free Events

According to likelihood theory, two events are free if their occurrences have
no bearing on each other's probabilities. Put differently, the fact that one
event has happened doesn't tell us anything more about whether the other

will.
Mathematical Definition of Free Events
A & B are two separate events if and only if:
P(A) x P(B) =P(A N B)
here:
* P(A N B) is likelihood that occurrences A and B will occur.
* P(A) is likelihood that event A will occur.

* P(B) is the likelihood that event B will occur.

This formula serves as both the definition and the test for independence of

two events.

Alternative Formulation

P(AB) = P(A) is another way to declare independence if P(B) > 0.
conditional likelihood of given that B has occurred is denoted by P(A|B).
Likewise, P(B|A) = P(B) if P(A) > 0.

These formulations highlight that the likelihood of one event remains

unchanged regardless of whether the other event has occurred.
Mutually Free Events

It is possible to apply the idea of independence to more than two occasions.
If each of three or more occurrences occurs freely of any combination of the

others, they are said to be mutually free (or jointly free).

Definition of Mutual Independence in Mathematics

16



If and only if likelihood of intersection for each subset of events Ai, Aa,...,

A, is equal to product of probabilities of individual events, then these events

are mutually free.

For instance, all of the following requirements must be met for three events,

A, B, and C, to be mutually free:

1
2
3.
4

P(A) x P(B) =P(A N B)

P(A) xP(C)=P(ANC)

P(B) x P(C)=P(B N C)

P(A) xP(B) xP(C)=P(ANBNC)

It's crucial to remember that mutual independence is not always
implied by pairwise independence, in which each pair of

occurrences is free.

Examples of Free Events

1.

2.

Coin Tosses: The results of separate coin tosses are free events.
Die Rolls: Each roll of a die is free of previous rolls.

At random Selection from Different Groups: Selecting a at
random male from a population and selecting a at random person
with blue eyes are free if gender and eye color are free

characteristics in the population.

Examples of Dependent Events (Not Free)

1.

Card Draws without Replacement: When drawing cards without

replacement, each draw depends on the previous draws.

Weather Conditions: Today's weather and tomorrow's weather are

typically dependent events.

Stock Market Movements: Price movements of related stocks are

usually dependent.

Health Outcomes: Health outcomes for family members may be

dependent due to shared genetics and environment.

Importance of Independence in Likelihood

The concept of independence is crucial in likelihood theory and statistics for

several reasons:
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Statistical Inference: Many statistical methods assume

independence of observations.

Likelihood Models: Many likelihood models (like the binomial

distribution) are built on the assumption of independence.

Risk Assessment: In risk analysis, understanding whether risks are

free is essential for accurate risk aggregation.
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UNIT 1.3 Notes
Mutual and pairwise independence of events, Bayes theorem and its
applications

1.3.1: Bayes' Theorem and Its Application
Introduction to Bayes' Theorem

A key finding in likelihood theory, Bayes' Theorem explains how to update a
hypothesis's likelihood in light of fresh data. It offers a mathematical
guideline for updating preexisting hypotheses or forecasts in light of fresh or

more data.
Bayes' Theorem in Mathematical Form

According to Bayes' Theorem, P(A|B) = [P(BJA) x P(A)] for occurrences A
and B where P(B) > 0.

Where:
* posterior likelihood, or P(A|B), is likelihood that event A will occur given

that B has occurred.

* The prior likelihood, or starting likelihood of event A, is denoted by P(A).
A Different Formulation Law of Total Likelihood in Action

law of total likelihood can be used to enlarge the denominator P(B):
[P(BJA) x P(A)] = P(A|B)

The formula is P(BJA) x P(A) + P(BJA®) x P(A9)].

where A° is event's complement.

Version of Multiple Hypotheses

Bayes Theorem can be stated as follows when working with several

mutually exclusive and exhaustive hypotheses:
P(A{B) = [P(BJA) x P(A)]/ X; P(BJAj) x P(Aj)
Key Components of Bayes' Theorem

1.P rior Likelihood P(A): The initial degree of belief in A before the

evidence B is considered.

2.LL  ikelihood P(B|A): How probable the evidence B is, assuming the
hypothesis A is true.
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Notes Intuitive Understanding of Bayes' Theorem

Bayes' Theorem can be understood as a method for updating beliefs based

on new evidence:
1. Start with a prior belief P(A)
2. Observe new evidence B
3. Consider how likely the evidence would be if A were true P(B|A)
4. Update the belief to obtain the posterior likelihood P(A[B)
Applications of Bayes' Theorem
1. Medical Diagnosis

Bayes' Theorem is used to calculate likelihood of disease given positive test

result:

P(Disease[Positive Test) = [P(Positive Test/Disease) x P(Disease)] /
P(Positive Test)

This calculation helps understand the true diagnostic value of medical tests,

accounting for factors like:
e true positive rate
e true negative rate
e Prevalence of the disease in the population
2. Spam Filtering
Email spam filters often use Bayesian methods to classify messages:
P(Spam|Words) = [P(Words|Spam) x P(Spam)] / P(Words)

The system learns from training data which words are more commonly
found in spam versus legitimate emails, and updates its classification

accordingly.

3. Machine Learning and Al

Bayesian methods are foundational in many machine learning algorithms:
e Naive Bayes classifiers
e Bayesian networks
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e Bayesian inference in probabilistic models
4. Risk Assessment and Decision Making

Bayes' Theorem helps update risk assessments as new information becomes

available:

o Financial risk models

e Insurance pricing

e Project management risk assessment
5. Forensic Evidence Analysis

In legal settings, Bayes' Theorem can help evaluate the strength of forensic

evidence:
P(Guilty|Evidence) = [P(Evidence|Guilty) x P(Guilty)] / P(Evidence)
6. Quality Control

In manufacturing, Bayesian methods help update beliefs about product

quality based on sample inspections.
The Bayesian Approach to Likelihood
Bayes' Theorem reflects a broader philosophical approach to likelihood:

e Frequentist View: Likelihood represents the long-run frequency of

events in repeated trials.

e Bayesian View: Likelihood represents a degree of belief that can be

updated based on new evidence.
The Bayesian approach treats likelihood as subjective and allows for:
e Incorporation of prior knowledge
e Sequential updating as new data arrives
¢ Quantification of uncertainty
Common Misconceptions and Challenges

1. Base Rate Fallacy: People often neglect the prior likelihood (base

rate) when making judgments based on new evidence.
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2. Appropriate Prior Selection: Choosing appropriate prior

probabilities can be challenging and sometimes controversial.

3. Computational Complexity: For complex problems, the
calculations required by Bayes' Theorem can be computationally

intensive.
Solved Problems
Problem 1: Free Events - Coin and Die

A fair six-sided die is rolled, and fair coin is tossed. How likely is it to

obtain an even number on the die and a head on the coin?
Solution:
Let's define our events:
e Event A: Getting a head on the coin
e Event B: Getting an even number on the die
Step 1: Find P(A) For a fair coin, P(A) = P(Head) = 1/2=0.5

Step 2: Find P(B) Even numbers on a six-sided die are 2, 4, and 6. P(B) =
P(Even number) =3/6=1/2=0.5

Step 3: We may use the multiplication formula for free events as the coin
toss and die roll are separate occurrences: The formula for P(A N B) is P(A)
X P(B) = 0.5 X 0.5 = 0.25.
Consequently, there is a 0.25 or 25% chance of getting a head on the coin

and an even number on the die..
Problem 2: Testing for Independence

A survey found that among 200 students, 120 play basketball, 80 play
football, and 40 play both sports. Are the events "playing basketball" and
"playing football" free?

Solution:
Let's define our events:
e Event A: A student plays basketball

e Event B: A student plays football
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Step 1: Find the probabilities P(A) = Number of students who play
basketball / Total number of students P(A) = 120/200 = 0.6

P(B) = Number of students who play football / Total number of students
P(B) = 80/200 = 0.4

P(A N B) = Number of students who play both sports / Total number of
students P(A N B) =40/200 = 0.2

Step 2: Determine whether P(A N B) = P(A) x P(B) = 0.6 x 0.4 = 0.24 to
test for independence.
The events "playing basketball" and "playing football" are not free as P(A N
B)=0.2 #0.24 =P(A) x P(B).

Actually, there is a negative connection between both activities because P(A

N B) < P(A) x P(B).

This means that students who participate in one activity are less likely to

participate in the other than we would anticipate if the choices were free.
Unsolved Problems
Problem 1: Free Events - Card Drawing

Each of four suits (hearts, diamonds, clubs, & spades) in typical 52-card
deck has 13 cards (Ace, 2-10, Jack, Queen, and King). Clubs and spades are

black cards, whereas diamonds and hearts are red cards.

The deck is shuffled and two cards are drawn. Given that both cards are face

cards (Jack, Queen, or King), determine the likelihood that both are kings.
Problem 2: Testing Independence in a 2x2 Contingency Table

A study surveyed 500 adults about their coffee and tea consumption habits,

with the following results:

Drinks Coffee Doesn't Drink Coffee Total
Drinks Tea 120 180 300
Doesn't  Drink 140 60 200
Tea
Total 260 240 500

Are the events "drinking coffee" and "drinking tea" free? Justify your

answer with calculations.

Problem 3: Bayes' Theorem - Email Spam Filter
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A spam filter has the following characteristics:

e 98% of spam emails are correctly identified as spam

(P(Flagged|Spam) = 0.98)

e 5% of non-spam emails are incorrectly flagged as spam

(P(Flagged/Not Spam) = 0.05)
e 40% of all emails received are spam (P(Spam) = 0.4)

If an email is flagged as spam by the filter, what is the likelihood that it is

actually spam?
Problem 4: Bayes' Theorem - Sequential Testing

A rare genetic condition affects 1 in 10,000 people in a population
(P(Disease) = 0.0001). A genetic test for this condition has a sensitivity of
99% (P(Positive|Disease) = 0.99) and a specificity of 99.9% (P(NegativeNo
Disease) = 0.999).

Problem-Solving Using Likelihood Theorems

Likelihood theorems provide powerful tools for solving complex problems
involving uncertainty and randomness. Let's explore these theorems in depth

with clear explanations, formulas, solved examples, and practice problems.
Key Likelihood Theorems and Formulas

1. The Rule of Addition in Likelihood

P(A U B)=P(A) + P(B) - P(A N B) for any two occurrences A & B.
For events that are mutually exclusive: P(A) + P(B) equals P(A U B)
2. The Rule of Likelihood for Multiplication

For any pair of occurrences A & B: P(A) x P(BJA) = P(A N B)

For separate occurrences: P(A) x P(B) = P(A N B)

3. Likelihood under Conditions

P(AN B)/P(A)=P(B|A)

4. The Law of Total Likelihood

If sample space S is divided into events Bi, Ba,..., B, then P(A) =
P(A|B1)P(B:1) + P(AB2)P(B2) +... + P(A|B,)P(B.)

5. The Bayes Theorem

[P(AIB) x P(B)]/ P(A) = P(B|A)

As an alternative, apply the law of total likelihood: [P(A|B) x P(B)] =
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P(B|A) The formula is P(A|B) x P(B) + P(A|B') x P(B")
6. Complementary Occasions

P(A)=1-P(A)

7. The likelihood of at least one occurrence

P(none of the events) - P(at least one of n events) = 1

Solved Problems
Solved Problem 1: medical testing

When administered to an individual with the disease, a medical test has a
98% chance of producing a positive result; when administered to an
individual without the ailment, the likelihood is 3%. Assume that the disease

affects 0.5% of the population.
Solution:
Let's define our events:
e D: Person has the disease
e D' Person does not have the disease
e T+: Test result is positive
e  T-: Test result is negative

We are provided with:

The test sensitivity is P(T+|D) = 0.98, & false positive rate is P(T+|D') =
0.03.

« disease prevalence, P(D), is 0.005.

* chance of not having disease is P(D') = 0.995.

P(D|T+), or the likelihood that a person has disease if they tested positive, is
what we're looking for.

Applying the Bayes Theorem: The formula is [P(T+|D) x P(D)] = P(D|T+)
P(T+D) x P(D) + P(T+D") x P(D") ]

Changing the values: 0.98 x 0.005 / [(0.98 x 0.005) + (0.03 x 0.995)] =
P(D|T+) 0.0049 / [0.0049 + 0.02985] is P(D|T+). A= 0.0049 / 0.03475
P(D|T+) P(D|T+) is approximately 14.1%, or 0.141.

As a result, there is a 14.1% chance that a randomly chosen individual who
tests positive indeed has the illness.

Problem 2: Card Drawing Solved

A conventional 52-card deck is used, and two cards are drawn consecutively
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without replacement. How likely is it that both cards are aces?

Answer:

Let's specify what our events are:

* A: An ace is first card.

* A: An ace is second card.

Our goal is to locate P(A1 N Az).

Applying the rule of multiplication to dependent events: P(A: N Az) = P(A1)
x P(Az|A1)

A normal 52-card deck has four aces. P(A1) =4/52 = 1/13

Three aces remain out of 51 cards after one ace is drawn. 1/17 =3/51 =
P(A:z|A1)

Consequently, P(A1 N Az) = (1/13) x (1/17) = 1/(13x17) = 1/221 = 0.00452
or almost 0.452%

resolved Issue 3: Likelihood and Three Friends

Charlie, Ben, and Alex, three buddies, show up for a party on their own.
Alex has a 0.7 chance of going, Ben has a 0.6 chance, and Charlie has a 0.8
chance. How likely is it that: a) All three will be at the party? b) Does at
least one of them show up for the celebration? ¢) There are precisely two of

them at the celebration?
Solution:
Let's define our events:
e A: Alex attends the party, P(A) = 0.7
e B: Ben attends the party, P(B) = 0.6
e C: Charlie attends the party, P(C) = 0.8

We can apply the multiplication rule for free events because arrivals are free.
a) The likelihood that all three will show up: 0.7 x 0.6 x 0.8 = 0.336 or
33.6%. b) = P(A N B N C) x P(B) x P(C) The likelihood that one or more
people will attend: The complement of the likelihood that no one shows up
is this: P(none attend) - P(at least one) = 1. 0.3 x 0.4 x 0.2 = 0.024. P(none
attend) = P(A' NB' N C") = P(A") x P(B') x P(C") = (1-0.7) x (1-0.6) x (1-0.8)

With that in mind, P(at least one) = 1 - 0.024 = 0.976 or 97.6%. The
likelihood that precisely two will be present: Three things can cause this: (A
NB'NC)UA'NBNC)U(ANBNCY
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The formula P(exactly two) isPLANB N C)+P(ANB'NC)+P(A'NBN
C). P (two precise) =(P(A) x P(B) x P(C")) = P(A) x P(B') x P(C) = P(A") x
P(B) x P(C)]. P(exactly two) = 0.084 + 0.224 + 0.144 = 0.452 or 45.2%
P(exactly two) =[0.7 x 0.6 x 0.2] + [0.7 x 0.4 x 0.8] +[0.3 x 0.6 x 0.8].

Solved Problem 4: Email Spam Filter

A spam filter is designed to identify unwanted emails. In a large sample of

emails, it was found that:
e 30% of all emails are spam
e The filter correctly identifies spam emails with a likelihood of 0.95

e The filter incorrectly marks legitimate emails as spam with a

likelihood of 0.05

a) What is the likelihood that an email flagged as spam is actually spam? b)
What is the likelihood that an email that passes the filter is actually

legitimate?
Solution:
Let's define our events:
e S: Email is spam, P(S) = 0.3
e L: Email is legitimate, P(L) = 0.7
e F: Filter flags email as spam
e P: Email passes the filter (not flagged)
We are given:
e P(F|S) = 0.95 (true positive)
e P(F|L) = 0.05 (false positive)
e P(P|S) = 0.05 (false negative)
e P(P|L)=0.95 (true negative)
Solved Problem 5: Safety Systems

A and B are two separate safety systems on a machine. System A detects
malfunctions with a likelihood of 0.95 and system B detects them with a

likelihood of 0.90.
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a) How likely is it that at least one of the systems will notice a malfunction?
b) How likely is it that both systems will notice a malfunction? ¢) How

likely is it that a single system will identify a malfunction?
Solution:
Let's define our events:
e A:System A detects the malfunction, P(A) = 0.95
e B: System B detects the malfunction, P(B) = 0.90

a) Likelihood that at least one system detects the malfunction: We can use

the addition rule: P(A U B) = P(A) + P(B) - P(A N B)
Since the systems are free: P(A N B) = P(A) x P(B) = 0.95 x 0.90 = 0.855
Therefore: P(A U B) =0.95+ 0.90 - 0.855 = 0.995 or 99.5%

Alternatively, we could compute this as the complement of neither system
detecting the malfunction: P(A U B) =1 -P(A' N B") =1 - [(1-0.95) x (1-
0.90)]=1-[0.05 % 0.10] =1 - 0.005 = 0.995

b) Likelihood that both systems detect the malfunction: P(A N B) = P(A) x
P(B) =0.95 x 0.90 = 0.855 or 85.5%

¢) Likelihood that exactly one system detects the malfunction: P(exactly
one) = P(A N B') + P(A' N B) P(exactly one) = [P(A) x P(B")] + [P(A") x
P(B)] P(exactly one) = [0.95 x (1-0.90)] + [(1-0.95) x 0.90]. P(exactly one)
=[0.95 x 0.10] + [0.05 x 0.90] P(exactly one) = 0.095 + 0.045 = 0.14 or
14%

Applying Likelihood Theorems Strategically
When solving likelihood problems, consider the following approach:
1. Clearly identify the events and their probabilities
2. Determine if events are free, dependent, mutually exclusive, etc.

3. Choose the appropriate theorem (addition rule, multiplication rule,

Bayes' theorem, etc.)

4. Consider using complementary probabilities for "at least one" type

problems
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5. Break complex problems into simpler components
The Role of Likelihood Trees

Likelihood trees are visual tools that can help solve complex likelihood
problems, especially those involving sequential events. Each branch in a tree

represents a possible outcome, and probabilities are multiplied along paths.

For example, consider the medical testing problem (Solved Problem 1). We

could draw a tree with:
e  First branch: Disease (0.005) vs. No Disease (0.995)

e Second branches from Disease: Positive test (0.98) vs. Negative test

(0.02)

e Second branches from No Disease: Positive test (0.03) vs. Negative

test (0.97)

The likelihood of testing positive and having disease would be: P(D and T+)
=P(D) x P(T+|D) = 0.005 x 0.98 = 0.0049

Geometric Likelihood

Some problems involve continuous likelihood where outcomes are points in

space. Geometric likelihood often uses the principle:

P(E) = Favorable geometric measure / Total geometric measure

The measure could be length, area, volume, etc., depending on the context.
Solving Real-World Problems with Likelihood

Likelihood theory helps us model and make decisions in uncertain
situations. In real-world applications, the key challenge is correctly
identifying events, assigning appropriate probabilities, and determining the

relationships between events.

Quality control, insurance, medical diagnosis, weather forecasting, and risk
assessment all rely on likelihood calculations similar to the problems we've

explored.
Multiple-Choice Questions (MCQs)

1. The classical definition of likelihood is based on:

a) Experimentation
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Notes b) Equally likely outcomes
¢) Subjective judgment

d) At random variations
Answer: b) Equally likely outcomes

2. likelihood of at least 1 event occurring is found using:
a) Addition theorem
b) Multiplication theorem
¢) Bayes’ theorem

d) None of the above
Answer: a) Addition theorem

3. Boole’s inequality states that:
a) P(AUB)>P(A)+P(B)
b) P(ANB)=P(A)P(B)
c) P(AUB)<P(A)+P(B)
d) P(AIB)=P(ANB)P(B)

Answer: ¢) P(AUB)<P(A)+P(B)

4. The multiplication theorem of likelihood states that:
a) P(ANB)=P(A)P(B)
b) P(ANB)=P(AIB)P(B)
c) P(ANB)=P(BIA)P(A)
d) Both (b) and (c)

Answer: d) Both (b) and (c)

5. Two events A & B are free if:
a) P(AIB)=P(A)
b) P(BIA)=P(B)
¢) P(ANB)=P(A)P(B)
d) All of the above

Answer: d) All of the above

6. Bayes’ theorem is used to:
a) Compute conditional probabilities

b) Find joint probabilities
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10.

¢) Determine prior and posterior probabilities

d) Both (a) and (c)

Answer: d) Both (a) and (c)

likelihood of complement of an event A is given by:

a) I-P(A)

b) P(A°)=P(A)

¢) P(A)+P(A%)=0

d) None of the above

Answer: a) 1-P(A)

If 2 events A & B are mutually exclusive, then:

a) P(ANB)=0

b) P(AUB)=P(A)+P(B)
¢) P(AIB)=0

d) All of the above

Answer: d) All of the above

law of total likelihoodstates that:

a) P(B)=P(B|A1)P(A1)+P(B|A2)P(Ax)+...
b) P(AUB)=P(A)+P(B)-P(ANB)

c) P(ANB)=P(A)P(B)

d) None of the above

Answer: a) P(B)=P(BIA)P(A)+P(BIA2)P(A2)+...

A real-life application of Bayes’ theorem is in:
a) Spam filtering

b) Weather prediction

¢) Medical diagnosis

d) All of the above

Answer: d) All of the above

Short Answer Questions

1.
2. What is the addition theorem of likelihood? Give an example.

3. Explain Boole’s inequality with a practical application.

Define likelihood and explain its different approaches.
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10.

What is conditional likelihood? Provide an example.
Differentiate between free and mutually free events.

State and explain Bayes’ theorem with an example.

Define mutually exclusive events and provide an example.
Explain the law of total likelihood with a real-life example.
How does Bayes’ theorem help in medical diagnosis?

What is the importance of likelihood theory in decision-making?

Long Answer Questions

1.

10.

Explain the three different approaches to likelihood with examples.

Derive and explain the addition theorem of likelihood with an

example.
Discuss Boole’s inequality and its significance in likelihood theory.

Explain conditional likelihood and the multiplication theorem with

real-life examples.
Discuss the concept of free and mutually free events in likelihood.

Derive Bayes’ theorem and provide a step-by-step example of its

application.

Solve a real-world problem using Bayes’ theorem (e.g., spam

filtering or medical diagnosis).

Explain how likelihood theory is used in risk assessment and

decision-making.
Discuss common misinterpretations of likelihood in everyday life.

How is likelihood theory applied in artificial intelligence and

machine learning?
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MODULE 2

UNIT 2.1

Random variable and probability functions: Definition and
properties of random variables, Discrete and continuous random
variables

Objectives
e To understand the concept of random variables and their types.

e To study likelihood mass functions (PMF) and likelihood density
functions (PDF).

e To explore distribution functions and their properties.

e To learn about bivariate at random variables and their distributions.
e To define mathematical expectation, variance, and covariance.

e To study moment-generating functions and their applications.
2.1.1: Introduction to random Variables

What is a random Variable?

A random variable is one whose values are determined by the results of
a random event. It gives us a method to assign numerical values to
results of random experiments, enabling us to use mathematics to
evaluate uncertain situations. Random variables serve as a bridge
between likelihood theory and statistical analysis. While likelihood
theory deals with the likelihood of events occurring, random variables

allow us to quantify and analyze these outcomes.
Properties of random Variables

I.R ange: The collection of every numerical result that the random

variable could provide

2.L.  ikelihood Assignment: Each value in the range has an associated
likelihood, indicating how likely the random variable is to take that

value.

Types of random Variables
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Random variables come in two primary varieties:

1. Random variables that are discrete

2. Random variables that are continuous

These types differ in the nature of values they can take and how we

calculate probabilities associated with them.
2.1.2: Discrete and Continuous random Variables
Discrete random Variables

Only a countable number of different values, such as integers or a finite
set of values, can be assigned to a discrete random variable. There could

be a countably infinite or finite number of potential values.
Characteristics:

e Takes distinct, separate values

e Can be counted

e Often represents counts, whole numbers, or categories converted to

numbers
e Has gaps between possible values
Continuous random Variables

A continuous random variable can take any value within a range or

interval. set of possible values is uncountable and forms a continuum.
Characteristics:

e Can take any value within a range

e Cannot be counted, only measured

e Often represents measurements like time, height, weight,

temperature
e Has no gaps between possible values
Examples:
e Height of a person

e Time required to complete a task
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e Amount of rainfall in a day
e  Weight of a product
Key Differences
1. Nature of Values:
o Discrete: Takes separate, distinct values
o Continuous: Can take any value within a range
2. Likelihood Calculation:
o Discrete: We can assign a likelihood to each specific value

o Continuous: The likelihood of any exact single value is

zero; we calculate probabilities for ranges of values
3. Mathematical Representation:
o Discrete: Represented by Likelihood Mass Function (PMF)

o Continuous: Represented by Likelihood Density Function

(PDF)
4. Cumulative Distribution:
o Discrete: The CDF has jumps at the possible values
o Continuous: The CDF is a smooth curve without jumps
Mixed random Variables

Some random variables exhibit both discrete and continuous properties.
These are called mixed random variables and have both discrete and
continuous components in their distributions.For example, the amount of
annual rainfall might be continuous for positive values but have a
discrete likelihood mass at zero (for regions that might experience no

rainfall in some years).

35

Notes




Notes

UNIT 2.2
Probability mass and density functions, Distribution function.
Concepts of bivariate random variable: joint, marginal and
conditional distributions. Mathematical expectation:
Definition and its properties

2.2.1: Likelihood Mass Function (PMF)
Definition

The likelihood distribution of discrete at random variable is described by
Likelihood Mass Function (PMF). PMF provides likelihood that
legct::rlgglallt random variable X will take on exact value x.

Usually, PMF is written as p(x) or P(X = x), where:

* chance that at random variable X will take value x is equal to p(x) =
P(X =x).

Qualities of a Reputable PMF

In order for a function p(x) to be a legitimate PMF, it needs to meet:

1. Non-negativity: for any x, p(x) > 0. No outcome can have a negative
likelihood.

2. Add up to 1: 3 p(x) = 1, where the total is the sum of all x's potential
values. All conceivable outcomes must have a total likelihood of 1.

3. Domain Restriction: for any value x outside of the range of X, p(x) =
0. The only values with non-zero probabilities are those that can truly
happen.

Likelihood Calculation with the PMF

We add the PMF over each value in A to get the likelihood that X will
take a value in A: For every x in A, P(X € A) =) p(x).

To determine the likelihood that a dice roll is even, for instance: P(X is
even)isequalto2+4+6=1/6+1/6+1/6=1/2

Value Expected Using PMF

When all potential values of discrete at random variable X are added
together, expected value (mean) is E[X] =3 x p(x).

Difference Making Use of PMF

Var(X) =3 (x - E[X]) is variance of discrete at random variable X. sum
of all possible values of x is x* p(x).

As an alternative: E[X?] - (E[X])? =3 x* * p(x) = Var(X) - (E[X]) 2

2.2.2: Likelihood Density Function (PDF)
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Definition

likelihood distribution of continuous at random variable is described by
Likelihood Density Function (PDF). PDF does not provide probabilities
directly, in contrast to PMF for discrete at random variables. Rather, the
integral of the PDF over a given range provides the likelihood that a
continuous at random variable will fall within that range.

Notation

The standard notation for PDF of continuous at random variable X is
f(x).

Characteristics of Legitimate PDF

The following conditions must be met for function f(x) to be a valid
PDF:

1. Non-negativity: for any x, f(x) > 0. Nowhere can the density function
be negative.

2. When the integral is taken across the whole domain, the area equals 1:
[ f(x) dx = 1. The PDF curve's entire area under the curve must be 1.
Analysis of the PDF

The likelihood that X = x is not provided by PDF f(x). likelihood of any
single point for a continuous at random variable is always zero.

Rather, the "density" of likelihood close to x is represented by f(x).
Approximately f(x) times interval width is the likelihood that X falls
within small interval surrounding x.

More specifically:

* P(x < X <x+Ax) =f(x) Ax for a narrow interval [x, X + Ax].

« P(a < X <b) =[ f(x) dx, where the integral is evaluated from a to b, is
precise likelihood that X falls in interval [a, b].

How to Determine Probabilities Making use of PDF

We integrate PDF throughout the range [a, b] to determine likelihood
that X takes a value in that range: P(a< X <b) = [ f(x) dx, where the
integral is evaluated from a to b.

For a uniform distribution across [0, 1], for instance: The expected value
using PDF is P(0.25 <X <0.75) =1 dx =0.75 - 0.25 = 0.5.

If X is continuous at random variable, its expected value (mean) is: E[X]
is the domain-wide integration of [x f(x) dx.

Variance with PDF

A continuous at random variable X's variance is: | (x - E[X]) = Var(X)
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domain-wide integration of x2 * f(x) dx

As an alternative: E[X?] - (E[X]) = Var(X) * f(x) dx -(E[X]) = [x? f(x)dx
2.2.3: Cumulative Distribution Function (CDF)
Definition

A at random variable X's Cumulative Distribution Function (or CDF)
indicates the likelihood that X will take a value that is less than or equal
to x. Both continuous and discontinuous at random variables are covered
by CDF.

Notation

For at random variable X, the CDF is commonly represented as F(x):
F(x)=P(X<x)

Qualities of a Reputable CDF

To be valid CDF, a function F(x) needs to meet the following
requirements:

1. Monotonicity: F(x) is non-decreasing; that is, F(a) < F(b) if a <b. The
cumulative likelihood cannot fall as x rises.

2. Range: for any x, 0 < F(x) < 1. The range of probabilities is 0 to 1.

3. Limits: lim F(x) = 0 when x gets closer to -0 and lim F(x) = 1 when x
gets closer to +oo There is a zero chance that X will be less than negative
infinity, and a one chance that X will be less than positive infinity.

4. Right Continuity: F(x) is right-continuous, meaning that as h gets
closer to 0 from the positive side, limF(x + h) = F(x).

Discrete At random Variables with CDF

With PMF p(x) for discrete at random variable X, the CDF is F(x) =}
p(t), where the total of all values t <x CDF for continuous at random
variables

When integral is assessed from -0 to X, the CDF for a continuous at
random variable X with PDF f{(t) is F(x) = | f(t) dt.

Partnership Comparing Continuous At randomVariables with PDF &
CDF

For a at random variable that is continuous:

1. The derivative of CDF is PDF: f(x) = d/dx F(x)

2. The CDF is the PDF's essential component: From -o to x, F(x) = ) f(t)
dt

How to Determine Probabilities Making use of the CDF
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1. The likelihood that X < b is P(X < b) = F(b).
2. The likelihood that X is greater than b: P(X > b) = 1-F(b)
The likelihood that a < X < b is as follows: P(a < X <b) = F(b) - F(a)

Quantiles and Percentiles Using the CDF

A at random variable X's p-th quantile, also known as its 100p-th
percentile, is value of xp such that F(xp) = P(X < xp) =p.

The 50th percentile, for instance, is the median (p = 0.5).

Issues Resolved

Problem 1: A Discrete At randomVariable's Likelihood Mass Function
(PMF)

Issue Remark: Two rolls of fair six-sided die are made. Assume that at
random variable X is sum of two displayed integers. Determine X's
PMF.

Answer: X can have any of the following values: 2, 3, 4,...,12.

We must divide total number of possible outcomes by number of ways

each sum can occur in order to determine the PMF.

Total number of possible outcomes = 6 x 6 = 36 (since each die can

show 6 different values)

For each possible value of X, we count the number of ways it can occur:
e X =2:Only possible with (1,1). Count = 1

e X =3: Possible with (1,2) or (2,1). Count = 2

e X =4: Possible with (1,3), (2,2), or (3,1). Count =3

e X =5:Possible with (1,4), (2,3), (3,2), or (4,1). Count = 4

e X =06: Possible with (1,5), (2,4), (3,3), (4,2), or (5,1). Count = 5

e X =7:Possible with (1,6), (2,5), (3,4), (4,3), (5,2), or (6,1). Count =
6

e X =8: Possible with (2,6), (3,5), (4,4), (5,3), or (6,2). Count = 5
e X =9: Possible with (3,6), (4,5), (5,4), or (6,3). Count = 4
e X =10: Possible with (4,6), (5,5), or (6,4). Count =3

e X =11: Possible with (5,6) or (6,5). Count = 2
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e X =12: Only possible with (6,6). Count = 1

Consequently, p(2) = 1/36 p(3) =2/36 = 1/18 p(4) = 3/36 = 1/12 p(5) = 4/36
=1/9 p(6) =5/36 p(7) = 6/36 = 1/6 p(8) = 5/36 p(9) = 4/36 = 1/9 p(10) =
3/36 =1/12 p(11) =2/36 = 1/18 p(12) = 1/36 is PMF of X.

We can confirm that sum of the likelihood equals one: 36/36 =1 = 1/36 +
2/36 +3/36 +4/36 + 5/36 + 6/36 + 5/36 + 4/36 + 3/36 + 2/36 + 1/36

Issue 2: A Discrete At random Variable's Expected Value & Variance

Issue Remark: Determine expected value &variance of X using PMF of total
of two dice rolls from Problem 1.

Answer: E[X]=3Y x * p(x) =2 * (1/36) + 3 * (2/36) +4 * (3/36) + 5 *
(4/36) + 6 * (5/36) + 7 * (6/36) + 8 * (5/36) + 9 * (4/36) + 10 * (3/36) + 11 *
(2/36) + 12 * (1/36) = 2/36 + 6/36 + 12/36 + 20/36 + 30/36 + 42/36 + 40/36
+36/36 +30/36 +22/36 + 12/36 =252/36=1.

We can use the following to find variance: E[X?] - (E[X]) = Var(X) ?

Let's first compute E[X?]: E[X?] = x> p(x) = 22 * (1/36) + 32 * (2/36) + 4?
*(3/36) + 52 * (4/36) + 62 * (5/36) + 72 * (6/36) + 82 * (5/36) + 92 * (4/36) +
102 * (3/36) + 112 * (2/36) + 122 * (1/36) = 4/36 + 18/36 + 48/36 + 100/36 +
180/36 +294/36 + 320/36 + 324/36 + 242/36 + 144/36 = 1974/36 = 54.83
Next, figure out variance: E[X?] - (E[X]) = Var(X) 54.83-49 = 5.83 2= 54.83
-T2

As a result, X's variance is 5.83 and its anticipated value is 7.

Issue 3: Cumulative Distribution Function (CDF) & Likelihood Density
Function (PDF)

Statement of the Problem: A certain electrical component's lifetime X
(measured in years) has the following PDF: When x > 0, f(x) = Ae™, and
when A =0.5, f(x) =0

(a) Make sure this PDF is legitimate. (b) Find F(x), the CDF. (c) Determine
P(1 <X <3)and P(X > 2). (d) Determine the component's anticipated
lifespan.

Answer:

(a) To confirm that f(x) is a legitimate PDF, we must make sure that:

1. For every x, f(x) >=0.

2. [ f(x) dx = 1, in which all values of x are regarded as integrals.

For condition 1, f(x) = 0 for x < 0 and f(x) = 0.5¢™ for x > 0. f(x) > 0 for
all x since e**> 0 for all x and 0.5 > 0.

Given that f(x) = 0 for x < 0, condition 2 is as follows: | f(x) dx =[ 0.5¢0
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dx from 0 to o is equal to - €% |p* = -e™ + ° =1

Consequently, f(x) is legitimate PDF.

(b) The CDF is: F(x) = [ f(t) dt

If x is less than 0: Since f(t) =0 for t <0, F(x) = 0.

For x > 0: From 0 to x = -e*% F(x) =[0.5¢% dt =-e*%, F(x) =0 for x <

0 because -0 (- = -+ 1=1-¢0%,

(c) To determine P(X >2): F2)=1-(1-e*¥)=1-(1-e!)=¢'=0.368.
P(X>2)=1-P(X<2)=P(1 <X <3)canbe found by: P(1 <X <3)=F(@3)
-F()=(1-¢")-1-e")=1-e')-(1-e*)=¢e%-¢e'5=0.607 -
0.223 = 0.384 (d) E[X] is the anticipated lifetime: From 0 to oo, E[X] = [x
f(x) dx =[x 0.5¢0% dx

05% dx and u

Integration by parts can be used to calculate this: Let dv = 0.5¢
=x. Then v = -¢** and du = dx.

[x * (-e*)]=E[X] [0-0]=_0"0 - [ (-e%) dx from 0 to . From 0 to oo, -
[ (-e0%) dx =[ &% dx = [-2e05]* =2

Consequently, two years is the component's anticipated lifespan.

Issue 4: Locating a PDF Given a problem statement for CDF: The CDF of a
at random variable X is as follows: For x <0, F(x) =0. For 0 <x <1, F(x) =
x%, Forx>1, F(x) = 1.

(a) Locate X's PDF. (b) P(0.3 <X <0.7) is calculated. (c) Determine X's
median.

Answer:

(a) The PDF is the CDF's derivative: f(x) = d/dx F(x)

If x is less than 0: f(x) = d/dx (0) = 0.

For 0 <x < 1: d/dx (x?) = 2x = f(x)

f(x) = d/dx (1) =0 for x > 1.

Since 0 <x <1, f(x) = 0; f(x) =2x; and f(x) =0 forx > 1,

By determining whether the integral equals 1, we can confirm that this is a
legitimate PDF: Since f(x) = 0 outside [0,1] = [x*]o! = 12- 0= 1. (b) ) f(x)
dx = [ 2x dx from 0 to 1 P(0.3< X< 0.7) can be found by using the formula
P(0.32X<0.7) =F(0.7) - F(0.3) = 0.7> - 0.32=0.49 - 0.09 = 0.4. (c). The
value m at which F(m) = 0.5 is the median. F(x) = x? for 0 <x < 1. Finding
m such that m? = 0.5 m = V0.5 m = 0.707 is necessary.

As a result, X's median is roughly 0.707.

Joint Likelihood Distribution is the fifth problem.

The issue is that two fair dice are rolled. If X and Y are the same, then X =
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Y. Let X be the greater of the two numbers that appear, & Y be smaller
number.

(a) Determine X and Y's joint PMF. (b) Determine X & Y's marginal PMFs.
(c) P(X+Y <5) is calculated. (c) Do X & Y stand alone? Describe.
Answer:

(a) The formula for joint PMF is p(x,y) =P(X =x, Y =y).

We must count the number of outcomes that meet X =x and Y =y for each
pair of values (x,y), then divide that number by total number of potential
outcomes.

Six X 6 = 36 is total number of possible outcomes.

We have Y < X since X is larger and Y is smaller. There is just a single die
combination that can produce this if X =Y (both dice display the same
value). There are two possible dice combinations if X >Y: (X, Y) or (Y, X).
This is joint PMF p(x,y):

Fory=1:p(1,1)=1/36 p(2,1) =2/36 = 1/18 p(3,1) =2/36 = 1/18 p(4,1) =
2/36 =1/18 p(5,1) = 2/36 = 1/18 p(6,1) = 2/36 = 1/18
Fory=2,p(2,2)=1/36 p(3,2) =2/36 = 1/18 p(4,2) = 2/36 = 1/18 p(5,2) =
2/36 =1/18 p(6,2) =2/36 =1/18

p(3,3)=1/36 p(4,3) =2/36 = 1/18 p(5,3) =2/36 = 1/18 p(6,3) = 2/36 = 1/18
fory=3.

p(4,4) = 1/36 p(5,4) =2/36 = 1/18 p(6,4) = 2/36 = 1/18 for y = (4).

p(5,5) =1/36 p(6,5) =2/36 =1/18 for y = 5.

If y = 6, then p(6,6) = 1/36

p(x,y) = 0 for every other combination.

(b) px(x) = X p(xy) for all y px(1) = p(1,1) = 1/36 px(2) = p(2,1) + p(2,2) =
2/36 +2/36 +3/36 = 1/12 px(3) = p(3,1) + p(4,2) + p(4,3) + p(4,4) = 2/36 +
2/36 +2/36 + 1/36 = 5/36 px(5) = p(5,1) + p(6,2) + p(5,3) + p(5.4) + p(5,5)
=2/36+2/36 +2/36+2/36+2/36 +2/36 + 2/36 + 2/36 + 2/36 + 2/36 +
2/36 +2/36 +2/36 +2/36 +2/36 +2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36
+2/36+2/36 +2/36+2/36 +2/36 +2/36 +2/36 +2/36 +2/36 + 2/36 +
1/36 =9/36 = 1/4 px(6) = p(6,1)

pv(y) =2 p(x.y) for all x, py(1) = p(1,1) + p(2,1) + p(3,1) + p(4,1) + p(6,1)
=1/36+2/36 +2/36 +2/36 + 2/36 + 2/36 + 2/36 = 11/36 pv(2) = p(2,2) +
p(3,2) +p(4,2) + p(5,2) + p(6,2) = 1/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 =
9/36 = 1/4 pv(3) = p(3,3) + p(4,3) + p(5,3) + p(6,3) = 1/36 +2/36 + 2/36 +
2/36 +2/36 = 7/36 pv(4) = p(4,4) + p(5,4) + p(6,4) = 1/36 + 2/36 = 2/36
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2.2.4: Bivariate random Variables
Introduction to Bivariate random Variables

In many practical situations, we need to study two or more random variables
simultaneously. For example, in economics, we might be interested in
relationship between income &expenditure; in meteorology, we might study

relationship between temperature and humidity.
Definition and Notation

Let's use (X, Y) to represent our bivariate random variable. A subset of R2
(the two-dimensional real plane) is the range or set of values that (X, Y) can
take on. S(X,Y) represents this set, which is known as support of (X, Y).
We can list all of the potential values for discrete at random variables: \(xi,
v1), (X2, ¥2),..., (Xn, ¥n),...} 18 the formula for S(X,Y).

An area on the plane could serve as the support for continuous random
variables: S(X,Y) = {(X, y): X € A, y € B}, where A &B are subsets of the
real line.

Bivariate random Variable Examples

1. Dice Rolling: When two fair dice are rolled, let X be number on first die
and Y be number on second. support S(X,Y) is made up of all 36 possible
pairs in this case, where both X and Y take values in {1, 2, 3, 4, 5, 6}.

2. Height and Weight: Assume that randomly chosen individual from a
population has height X & weight Y. X &Y are both random variables that
are continuous.

3. Weather Conditions: Let Y be discrete random variable that indicates
whether it rains (Y = 1) or not (Y = 0), and let X be the temperature on a

particular day. In this case, Y is discrete and X is continuous.

2.2.5: Joint, Marginal, and Conditional Distributions
Joint Likelihood Distribution

The likelihood behavior of two random variables taken into consideration
together is described by joint likelihood distribution of bivariate random
variable (X, Y).

For random Variables That Are Discrete

joint likelihood mass function (PMF) for discrete random variables is
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expressed as follows: p(x, y) =P(X=x,Y =y).

This is the likelihood that X will take the value x and Y will take the value y
at the same time.

The joint PMF's characteristics are as follows: 1. p(x, y) > 0 for all (x, y)

2. The sum of p(x, y) for all feasible (x, y) values is equal to 1: Y3 p(x, y) =
Ixy

For discrete at random variables, the joint cumulative distribution function
(or CDF) is as follows: F(x,y) =P(X <x, Y<y) =YY p(s, t) s<xt<y

For random Variables That Are Continuous

The joint likelihood density function (PDF) f(x, y) for continuous at random
variables fulfills following formula: P(a < X <b, ¢ <Y < d) = Jb, [ic f(x, y)
dy dx

joint PDF's characteristics are as follows: 1. f(x, y) > 0 for all (x, y)

2. The sum of the integrals is 1: 1 R? = II fix, y) dx dy

For continuous at random variables, joint CDF is as follows: F(x, y) = P(X <
X, Y <y) = [roox [-oov f(s, t) dt ds

Distributions of Marginals

Even when two at random variables are being studied together, we may still
be curious about how each variable behaves on its own. Marginal
distributions are the distributions of the two freeat random variables, X & Y.
For random Variables That Are Discrete

P(X=x)=3 p(X,y)yis & marginal PMF of X.

P(Y=y)=> p(x, y) x is & marginal PMF of Y.

For random Variables That Are Continuous

The formula for fi(x) = [ f(x, y) dy R is marginal PDF of X.

formula for Y's marginal PDF is fx(y) = [ f(x, y)dx R.

Distributions Under Conditions

likelihood behavior of one random variable given that other has taken a
certain value is described by conditional distributions.

For random Variables That Are Discrete

If pi(x) > 0, then conditional PMF of Y given X = x is as follows: p(y|x) =
P(Y =y |X=x)=p(x,y)/ pi(x).

If p2(y) > 0, then conditional PMF of X given Y =y is as follows: p(x|y) =
PX=x[Y=y)=pX y)/pAy)

For random Variables That Are Continuous

Given X = x, conditional PDF of Y is f(y[x) = f(x, y) / fi(x), provided that
fi(x) > 0.

44



Given Y =y, conditional PDF of X is f(x|y) = f(x, y) / f2(y), provided that Notes
fa(y) > 0.

Random Variables' Independence

If information about one random variable, X &Y, has no effect on the
likelihood distribution of the other, then the two variables are free.

In terms of mathematics, X & Y are free if & only if one of the
corresponding conditions listed below is true:

For random Variables That Are Discrete

* Forall (x, y), p(x, y) = pi(x) * p(y).

* For every x such that pi(x) > 0, p(y|x) = p=(y).

* For every y such that pz(y) > 0, p(x|y) = pi(x).

For random Variables That Are Continuous

* For all (x, y), f(x, y) = fi(x) x f2(y).

* For every x such that fi(x) > 0, f(y|x) = fx(y).

* For every y such that f2(y) > 0, f(x]y) = fi(x).

X and Y are free with respect to the CDF if & only if: For all (x, y), F(x, y) =

Fi(x) % Fa(y).
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UNIT 2.3
Variance, Covariance, Moment generating function- Definitions and
their properties

2.3.1: Expectation and Variance of a random Variable

Expectation (Mean)

Random variable's "center of mass" or average value is represented by its
expectation or mean.

For random Variable That Is Discrete

E[X] = =Y x X p(x) x is the expectation of discrete random variable X
with PMF p(x).

Regarding an Ongoing random Variable

E[X]=m= [x x f(x) dx is expected value of continuous random variable X
with PDF f(x). R

Expectation Properties

When c is a constant, E[c] =c¢

2. If ¢ is a constant, then E[cX] = ¢ x E[X]. Since E[X]+ E[Y]=E[X + Y],
In the event when X and Y are free, E[XY] = E[X] % E[Y]

At random Variable Functions

If X is random variable and g is a function, then g(X) is likewise random
variable. The following is the expected value of g(X) for discrete random
variable:

2 8(x) x p(x) x = E[g(X)]

Regarding an Ongoing random Variable

I g(x) x f(x) dx = E[g(X)] Standard Deviation and R Variance

A random variable's dispersion or spread around its mean is measured by its
variance.

Var(X) = 6% = E[(X - u)?] = E[X?] - (E[X]) for at random variable X >
The variance's square root is standard deviation:

Ox = \/Var(X)

Variance Properties

1. When c is a constant, Var(c) = 0.

2. With ¢ as a constant, Var(cX) = ¢ x Var(X).

3. Var(X +Y) = Var(X) + Var(Y) if X and Y are equal.

Correlation and Covariance

joint variability of two random variables is measured by covariance. It
shows which way the variables' linear relationship is going.

E[(X - p)(Y - w)] = Cov(X, Y) - E[X] * E[Y] = E[XY]
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The covariance is normalized to a value between -1 and 1 by correlation
coefficient:

Cov(X,Y)/(oxxop)=p(X,Y)

Covariance and correlation properties:

1. If &only if Y = aX + b with likelihood 1, where a # 0, then -1 < p(X, Y) <
1.2.p(X,Y)==1.

3.Cov(X,Y)=0and p(X, Y)=0if X and Y are free (but the opposite is not
always true).

Bivariate Function Expectations

For two at random variables, X & Y, and function g(X, Y):

For variables that are discrete, E[g(X, Y)] =22 g(X, y) X p(X, y) X y

The formula for E[g(X, Y)] for continuous at random variables is R =[] g(x,

y) * f(x, y) dx dy.
Solved Problems
Problem 1: Joint Likelihood Mass Function

Two fair dice are rolled. Let X stand for the smaller of the two numbers that
show up, and Y for the larger one.

a) Determine the (X, Y) joint PMF. c¢) Determine X and Y's marginal PMFs.
¢) Determine P(X +Y < 5). d) Do X &Y stand alone?

Answer:

a) P(X=x,Y =y) =the joint PMF p(x, y):

This issue allows X and Y to take values from {1, 2, 3,4, 5, 6} and {1, 2, 3,
4,5, 6}, respectively. But we know that X <Y since X is least &Y is
greatest.

When two dice are rolled, there are 36 equally likely outcomes in the sample
space.

If either the first die displays x and the second die displays y, or the first die
displays y and the second die displays x, then for x <y, event (X =x, Y =Yy)
takes place. Thus, 2/36 = 1/18=P(X =x, Y =Yy).

If both dice display same number x for x =y, the event (X =x, Y =y) takes
place. P(X=x, Y =y) = 1/36 as a result.

Thus, ifx=y,x,y € {1,2,3,4,5,6}, p(x,y)=1/36; if x <y, x,y € {1, 2, 3,
4,5, 6}, p(x, y) =2/36 = 1/18; otherwise, p(x, y) = 0.

b) p(1) = P(X = 1) is marginal PMF of X. = p(1, 1) +p(1,2)=X5_; p(1,k)
PX=2)+...+p(1,6)=1/36 + 5(1/18) = 11/36 p1(2) = 1/36 + 4(1/18) =
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9/36 =1/4p(3)=P(X=3)=Y%_, p(2,k)=p(2,2)+p(2,3)+.. +p(2, 6)
=p(3,k)=p(3,3) +p(3,4)=X5_: p(3,k)=1/36 +3(1/18) = 7/36 pi(4) +...
+p(3,6)=PX=4)=Y5_, p(4,k)=p(4,4)+p4,5)+p4 6)=1/36+
2(1/18) = 5/36 pi(5) =P(X =35) = ¥%_c p(5, k) =p(5,5) +p(5,6)=1/36 +
1/18 =3/36 = 1/12 p1(6) = P(X = 6) = p(6, 6) = 1/36

The marginal PMF of Y: p2(1)=P(Y =1)=p(1, 1) =1/36 p2(2) = P(Y =2) =
p(1,2) +p(2,2)=1/18 + 1/36 =3/36 = 1/12 p(3) =P(Y =3) = p(1, 3) +
p(2,3)+p3,3)=1/18+1/18 + 1/36 =5/36 p(4) =P(Y =4) =p(1, 4) +
p(2,4) +p(3,4) + p4,4)=3(1/18) + 1/36 = 7/36 p(5) =P(Y =5)=p(1, 5)
+p(2,5)+p(3,5) +p4,5) +p(5,5) =4(1/18) + 1/36 = 9/36 = 1/4 p2(6) =
P(Y =6)=p(1, 6) +p(2, 6) + p(3, 6) + p(4, 6) + p(5, 6) + p(6, 6) = 5(1/18) +
1736 =11/36 ¢) P(X + Y <5):

For every pair (X, y), we must add up the likelihood so that x + y < 5:
PX+Y<5)=p(1,1)+p(1,2)+p(1,3) +p(1,4) +p2, 2) + p2, 3) = 1/36
+1/18+ 1/18 + 1/36 + 1/18 = 1/36 + 4(1/18) = 1/36 + 4/18 = 1/36 + 8/36 =
9/36 =1/4 d) Do X and Y exist freely?

We must determine whether p(X, y) = pi(x) x p2(y) for every (X, y) in order
to determine whether X & Y are free.

Let's see if (X =1,Y =2) is true. 1/18 pi(1) x p2(2) = (11/36) x (1/12) =
11/432 = 0.0255 p(1, 2)

Given that p(1, 2) # pi(1) x p2(2), we can deduce that X and Y are not
connected. This makes intuitive sense since knowing minimum value X
limits range of values that can be assigned to the maximum value Y, and vice
versa.

Issue 2: Conditional Independence and Likelihood

Assume that X and Y are continuous at random variables with a joint PDF of
f(x, y) =2 for 0 <x <y <1 and 0 otherwise.

a) Confirm that this PDF is legitimate. ¢) Determine X and Y's marginal
PDFs. ¢) Locate f(x|y) & f(y[x), conditional PDFs. d) Do X & Y stand alone?
Solution: a) For a PDF to be considered legitimate, all (x, y) must have f(x,
y) > 0 and the whole integral must equal 1.

The first condition is obviously satisfied as f(x, y) =2 > 0 in the designated
region and 0 outside of it.

Regarding the second circumstance:
Bt y)ydedy= [y ) 2dxdy=f; [2x]dy=[y’]' = 1.

Given that both requirements are met, f(x, y) is a legitimate PDF.
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b) fi(x) =] f(x, y) dy = fxl 2 dy = [2y]x! =2 - 2x is marginal PDF of X. For 0
<x<1.

PDF of Y's marginal: f:(y) = [ f(x, y) dx =

[2x]=2dx,For0<y<1,
f2(y)= 2y,. Given the conditional PDF of Y X =x: for x <y < 1, f(y|x) = f(x,
v/ fix)=2/2-2x)=1/(1 -x).

For 0 <x <y d, conditional PDF of X given Y =y is f(x|y) = f(x, y) / f2(y) =
2 /2y = 1/y. We must confirm whether f(x, y) = fi(x) x f2(y) for each (x, y)
in support in order to check independence.

fi(x) X f2(y) =(2-2x) x 2y =4y -4xy for 0<x <y < 1.

X & Y are not free since, for general values of x& y, f(X, y) = 2 # 4y - 4xy.
Issue 3: Variance and Expected Value

likelihood mass function of a at random variable X is as follows: p(x) = ¢ x
x2ifx € {1, 2, 3, 4}, and p(x) = 0 otherwise.

a) Determine what c is worth. b) Determine E[X]. d) Determine Var(X). d)
Locate E[1/X].

Answer:

a) The sum of all likelihood must equal 1 since p(x) is PMF:

2xP(x)=p(1) +p(2) + p(3) + p(4) = c(1* + 22+ 32+ 4) = c(1 + 4+ 9 + 16)
=30c=1

Consequently, ¢ = 1/30.

b) X should have the following value:

DX XpX)=Yxxxcxx2=c=E[X] x>x*=(1/30) (1/30) x (13 + 23 + 3°
+43) x (10/3 = 3.33 ¢) = (1/30) x 100 = (1 + 8 + 27 + 64). We first compute
E[X2] in order to determine the variance:

SuxEXp(x)=Yxx2x c=E[X?] x x2=c x Y, x*=(1/30) x (1*+ 24+ 3+
44)=(1/30) x (1 + 16 + 81 + 256) = (1/30) x 354 =354/30=11.8

We can now determine the variance: E[X?] - (E[X]) = Var(X) >=11.8 -
(10/3) The formula is 11.8 - 100/9 = 11.8 - 11.11 = 0.69 d. To determine
E[1/X], we compute:

Since ¢ x Yx x = (1/30), E[1/X] = Y« (1/x) X p(x) = D« (1/x) X ¢ x x2 (1/30) x
10=1/3=033x(1+2+3+4)

Problem 4: Covariance & Correlation

Let X &Y be discrete at random variables with following joint PMF:

pPx,y)Y=1Y=2Y=3
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PX,YY=1Y=2Y=3
X=0 01 02 0.1
X=101 03 02

Two fair dice are rolled. Let X stand for smaller of two numbers that show
up, and Y for the larger one.

a) Determine the (X, Y) joint PMF. c¢) Determine X &Y's marginal PMFs. ¢)
Determine P(X +Y <5). d) Do X & Y stand alone?

Answer:

a) P(X=x,Y =y) =the joint PMF p(x, y):

This issue allows X and Y to take values from {1, 2, 3,4, 5, 6} and {1, 2, 3,
4,5, 6}, respectively. But we know that X <Y since X is least & Y is
greatest.

When two dice are rolled, there are 36 equally likely outcomes in the sample
space.

If either the first die displays x and the second die displays y, or the first die
displays y and the second die displays x, then for x <y, the event (X =x, Y
=) takes place. Thus, 2/36 =1/18 =P(X =x, Y =Yy).

If both dice display the same number x for x =y, the event (X =x,Y =vy)
takes place. P(X =%, Y =y) = 1/36 as a result.

Thus, ifx=y,x,y € {1,2,3,4,5,6}, p(x,y)=1/36; if x <y, x,y € {1, 2, 3,
4,5, 6}, p(x,y) =2/36 =1/18; otherwise, p(X, y) = 0.

b) p(1) = P(X = 1) is marginal PMF of X. =p(1, 1) + p(1, 2) = >=1° p(1, k)
P(X=2)+...+p(1,6)=1/36 + 5(1/18) = 11/36 p:(2) = 1/36 + 4(1/18) =
9/36 =1/4p1(3) =P(X=3) =22 p(2, k) =p(2,2) + p(2,3) +... + p(2, 6) =
p(3, k) =p@3,3) +p(3,4) =Dk =1/36 + 3(1/18) = 7/36 p1(4) +... + p(3, 6)
=P(X=4)=>4=5p4,k)=p4, 4) +p(4, 5) +p(4, 6)=1/36 +2(1/18) =
5/36 pi(5) = P(X=5) =>k=s° p(5, k) = p(5,5) + p(5, 6) = 1/36 + 1/18 = 3/36
=1/12 pi(6) = P(X =6) = p(6, 6) = 1/36

The marginal PMF of Y: p2(1)=P(Y =1)=p(1, 1) =1/36 p2(2) = P(Y =2) =
p(1,2) +p(2,2)=1/18 + 1/36 =3/36 = 1/12 p(3) =P(Y =3) = p(1, 3) +
p(2,3)+p3,3)=1/18+1/18 + 1/36 =5/36 p(4) =P(Y =4) =p(1, 4) +
p(2,4) +p(3,4) +p(4,4)=3(1/18)+ 1/36 =7/36 p(5) =P(Y =5)=p(1, 5)
+p(2,5)+p(3,5) +p4,5) +p(5,5) =4(1/18) + 1/36 = 9/36 = 1/4 p2(6) =
P(Y =6)=p(1, 6) +p(2, 6) + p(3, 6) + p(4, 6) + p(5, 6) + p(6, 6) = 5(1/18) +
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1736 =11/36 ¢) P(X + Y <5):

For every pair (X, y), we must add up the likelihood so that x + y < 5:
PX+Y<5)=p(,1)+pd,2)+p(l,3)+p(l,4) +p2,2)+p2,3)=1/36
+1/18 + 1/18 + 1/36 + 1/18 = 1/36 + 4(1/18) = 1/36 + 4/18 = 1/36 + 8/36 =
9/36 =1/4 d) Do X and Y exist freely?

We must determine whether p(x, y) = pi(x) x p2(y) for every (X, y) in order

to determine whether X &Y are free.

Let's see if (X =1,Y=2)is true. I/18 pi(1) x p2(2) = (11/36) x (1/12) =
11/432 = 0.0255 p(1, 2)

Given that p(1, 2) # pi(1) x p2(2), we can deduce that X and Y are not
connected. This makes intuitive sense since knowing the minimum value X
limits the range of values that can be assigned to the maximum value Y, and

vice versa.
Issue 2: Conditional Independence and Likelihood

Assume that X &Y are continuous at random variables with a joint PDF of

f(x, y) =2 for 0 <x <y <1 and 0 otherwise.

a) Confirm that this PDF is legitimate. ¢) Determine X and Y's marginal
PDFs. ¢) Locate f(x]y) and f(y[x), conditional PDFs. d) Do X and Y
stand alone?

Solution:

a) For a PDF to be considered legitimate, all (x, y) must have f(x, y) > 0 and

the whole integral must equal 1.

The first condition is obviously satisfied as f(x, y) = 2 > 0 in the designated
region and 0 outside of it.

Regarding the second circumstance:

I1 (x, y) dx dy = Jo' Jo¥ 2 dx dy = Jo' [2x]o* dy = [y*]o' = 1.

Given that both requirements are met, f(x, y) is a legitimate PDF.

b) fi(x) = | f(x, y) dy = Ji! 2 dy = [2y] is marginal PDF of X. For 0 <x < I,
fi(x)=2-2x

PDF of Y's marginal: f:(y) =[ f(x, y) dx = Jo! [2x] =2 dx For0<y <1 c,
f2(y) = 2y Given the conditional PDF of Y X =x: for x <y < 1, f(y[x) = f(x,
v/ fix)=2/2-2x)=1/(1 -x).

For 0 <x <y d, conditional PDF of X given Y =y is f(x|y) = f(x, y) / f2(y) =
2 /2y = 1/y. We must confirm whether f(x, y) = fi(x) x f2(y) for each (x, y)
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in support in order to check independence.

fix) X f2(y) =(2-2x) x 2y =4y -4xy for0<x <y < 1.

X& 'Y are not free since, for general values of x & y, f(x, y) = 2 # 4y - 4xy.
Issue 3: Variance and Expected Value

likelihood mass function of at random variable X is as follows: p(x) = ¢ x x?
if x € {1, 2, 3, 4}, and p(x) = 0 otherwise.

a) Determine what c is worth. b) Determine E[X]. d) Determine Var(X). d)
Locate E[1/X].

Answer:

a) The sum of all likelihood must equal 1 since p(x) is a PMF:
2xP(x)=p(1) +p(2) + p(3) + p(4) = c(1* + 22+ 32+ 4) = c(1 + 4+ 9 + 16)
=30c=1

Consequently, ¢ = 1/30.

b) X should have the following value:

DX XpX)=Yxxxcxx2=c=E[X] x>x*=(1/30) (1/30) x (13 + 23 + 3°
+4%) x (10/3 = 3.33 ¢) = (1/30) x 100 = (1 + 8 + 27 + 64) We first compute
E[X2] in order to determine the variance:

DX Xp(X)=2xx2Xc=E[X¥ xx2=cx Y x*=(1/30) x (1*+2*+ 34+
44)=(1/30) x (1 + 16 + 81 + 256) = (1/30) x 354 =354/30=11.8

We can now determine the variance: E[X?] - (E[X]) = Var(X)2=11.8 -
(10/3) The formulais 11.8 - 100/9 = 11.8 - 11.11 = 0.69 d. To determine
E[1/X], we compute:

Since ¢ x Y x =(1/30), E[1/X] =Y« (1/x) X p(x) = Yx (1/x) x ¢ x x> (1/30) x
10=13=033x(1+2+3+4)

2.3.2: Covariance and its Significance
Introduction to Covariance

Covariance is a statistical measure that quantifies the degree to which two at
random variables change together. It indicates both the direction of the linear
relationship between variables and its magnitude. When two variables tend
to increase or decrease together, their covariance is positive. Conversely,
when one variable tends to increase as the other decreases, their covariance
is negative. If the variables are free or have no linear relationship, their

covariance will be close to zero.

Mathematical Definition of Covariance
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covariance between two at random variables, X & Y, is defined as follows:
E[(X - E[X])(Y - E[Y]) = Cov(X, Y)

expected value (mean) of X is denoted by E[X], while expected value of Y is
denoted by E[Y].

This can be extended to:

E[XY]-E[X]=Cov(X,Y) E[Y]

This turns into the following for discrete at random variables:

X (x-puX)(y - pY)P(X=x, Y=y) = Cov(X, Y)

When joint likelihood mass function is denoted by P(X=x, Y=y).

We have following for continuous at random variables:

Il (x - pX)(y - uY)f(x,y) dx dy = Cov(X, Y)

where joint likelihood density function is denoted by f(x,y).

Properties of Covariance
1. Symmetry: X,Y Cov=Y, X Cov
2. Cov(X, X) = Var(X) is a specific instance of variance.

3. Cov(aX + b, Y)=Cov(X,Y) o Cov(X, aY¥Y + b) = a Cov(X, Y) o
Cov(X+Z,Y)=Cov(X,Y) + Cov(Z, Y) are examples of bilinearity.

4. Implication of independence: Cov(X, Y) = 0 if X& Y are free.
(Note: Zero covariance does not always indicate independence; the

opposite is not always true.)

5. Range: There is no fixed range for covariance values, making it

difficult to interpret the strength of relationships.
Covariance Matrix

For multiple at random variables Xi, Xa, ..., X,, we can organize their

pairwise covariances into a covariance matrix ¥ where:
Eij = COV(X;, Xj)
This matrix has several important properties:
e It is symmetric
e The diagonal elements are variances of individual variables

e Itis positive semi-definite
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e For multivariate normal distributions, it completely characterizes the

interdependence structure
Correlation vs. Covariance

Covariance does not standardize the strength of a linear relationship between
variables, but it does show the direction of such relationship. In order to
overcome this constraint, the correlation coefficient scales covariance to a

constant range [-1, 1]:

Cov(X,Y)/ (cXaY)=p(X,Y)

where 6X&cY are X and Y's respective standard deviations.
Significance of Covariance

Covariance is significant in various fields:

1. Finance: It helps in portfolio theory to understand how different
assets move together, allowing for diversification and risk

management.

2. Machine Learning: It's essential in dimensionality reduction

techniques like Principal Component Analysis (PCA).

3. Statistical Inference: It helps model relationships between

variables in regression analysis.
4. Signal Processing: It assists in separating signals from noise.

5. Multivariate Statistics: It forms the foundation for many

multivariate techniques.
Limitations of Covariance

1. Scale Dependency: Changing units can change covariance

magnitude, making comparisons difficult.

2. Non-linearity: It only captures linear relationships between

variables.
3. Qutlier Sensitivity: It can be heavily influenced by outliers.

4. Interpretation Difficulty: Without context, the raw covariance

value is challenging to interpret.
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2.3.3: Moment-Generating Functions and Their Properties

Introduction to Moment-Generating Functions

As the name implies, moment-generating function (MGF), potent
mathematical tool in likelihood theory, creates moments of a at random

variable. When t is a real parameter, moment-generating function for at

random variable X is defined as expected value of e®: Mx(t) = E[e*X]

The MGF's unique ability to ascertain a likelihood distribution and

streamline several likelihood computations, particularly those involving

sums of free random variables, is what makes it so beautiful.
Mathematical Definition and Derivation

Mx(t) = Z %) is the MGF for discrete random variable X with likelihood
mass function P(X = x;). P(X = xi)

Mx(t) = | e f(x) dx is the MGF for continuous random variable X with
likelihood density function f(x).

Not every distribution has the MGF, but when it does, it exists for t in a
neighborhood of zero.

Link to Moments

The derivatives of MGF evaluated at t = 0 provide the moments of
distribution, hence term "moment-generating function":

E[X"] = Mx™(0)

where the nth derivative of Mx(t) with respect to t is denoted by Mx®(t).
The Taylor series can be used to expand e in order to demonstrate this

relationship: eX =1 + tX + (2x2)/2! + (x3)/3! +...
Taking the expected value:

Mx (t) = E[1] + tE[X] + (t¥2)E[X?] + (£/3N)E[X?] + ...
Differentiating once & evaluating at t = 0:

Mx'(0) = E[X]

Differentiating twice &evaluating at t = 0:

Mx"(0) = E[X?]

And so on for higher moments.

Properties of Moment-Generating Functions
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1. Uniqueness: If two random variables have same MGF, they have

same likelihood distribution.

2. Convergence in Distribution: If sequence of random variables

converges in distribution, their MGFs converge pointwise.
Moment-Generating Functions for Common Distributions
1. Poisson Distribution
For X ~ Poisson(A):
Mx(t) = exp(M(e' - 1))
2. Binomial Distribution
For X ~ Binomial(n, p):
Mx(t) = (pe' + (1-p))”
3. Uniform Distribution
For X ~ Uniform(a, b):
Mx(t) = (e® - €?)/(t(b-a))
Applications of Moment-Generating Functions

1. Proving the Central Limit Theorem: MGFs are instrumental in

proving this fundamental theorem in likelihood theory.

2. Distribution Identification: MGFs can help identify unknown

distributions by comparing them with known forms.

3. Parameter Estimation: MGFs can be used in method-of-moments

estimation.

4. Cumulant-Generating Functions: The natural logarithm of the

MGF generates cumulants, which have useful statistical properties.
Limitations of Moment-Generating Functions

1. Existence: MGFs don't exist for all distributions, particularly those

with heavy tails.

2. Computational Complexity: Calculating MGFs can be

mathematically challenging for complex distributions.
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3. Numerical Stability: Computing high-order derivatives numerically

can lead to instability.

Use of Random Variables and Distributions in Real-World Applications
In many different domains, statistical analysis is based on random variables
and probability distributions. Based on each of the fundamental ideas, the
following real-world applications exist:

The Types of Random Variables

Accurate weather forecasting is made possible by meteorologists using
continuous random variables to model temperature changes and discrete

random variables to reflect the number of rainy days in a month.

Quality Control: To count flaws in product batches, manufacturing
businesses use discrete random variables. They can optimize production
processes and establish acceptable thresholds by using probability

distributions.

Financial Risk Assessment: To assist them set fair rates and preserve their
financial stability, insurance companies model claim frequencies as discrete

random variables and claim amounts as continuous random variables.

Functions for Probability Density (PDF) and Probability Mass (PMF)
Epidemiology: To forecast disease spread patterns, health experts utilize
PMFs to simulate the daily number of new infection cases (discrete) and

PDFs to depict the distribution of time till recovery (continuous).

Telecommunications: To optimize bandwidth distribution and lessen
network congestion, network engineers use PMFs to examine data packet
counts and PDFs to estimate transmission durations.
Reliability Engineering: To forecast failure rates and plan preventative
maintenance to avert expensive malfunctions, engineers utilize exponential
PDFs to simulate the lifespan of electronic components.

Functions of Distribution and Their Characteristics

Investment Strategy: In order to evaluate investment risks and create
diversified portfolios, financial analysts employ features such as symmetry
and the 68-95-99.7 rule to predict stock returns using normal distribution

functions.
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Load testing: To make sure apps can manage high loads and continue to
function, software engineers use distribution functions to simulate user
behavior and system response times.
Environmental Monitoring: By analyzing pollutant concentrations using
distribution functions, scientists can spot threshold violations and create
efficient environmental protection regulations.

The Distributions of Bivariate Random Variables

Market research: Based on demographic correlations, businesses create
customized marketing campaigns by analyzing bivariate distributions
between consumer age and spending patterns.
Agricultural Yield Optimization: To guide crop selection and irrigation
scheduling, farmers utilize bivariate distributions to comprehend the
connections between rainfall and crop yields.
Traffic Management: In order to install intelligent traffic signal systems that
adjust to changing conditions, urban planners research bivariate distributions
of traffic volume and time of day.

Covariance, Variance, and Expectation in Mathematics

Inventory management: In order to minimize storage expenses and prevent
stockouts, retailers estimate the anticipated demand and variance for

products.

Portfolio Optimization: In accordance with Modern Portfolio Theory,
investment managers construct portfolios that optimize returns while

lowering risk by utilizing covariance among various assets.

Healthcare Resource Allocation: To arrange the right staffing levels and
improve patient care while keeping expenses under control, hospital

administrators compute anticipated patient arrivals and variance.

Functions that Generate Moments and Their Uses
medication Development: To ensure safety and effectiveness in clinical
trials, pharmaceutical researchers employ moment-generating functions to

examine the distribution of medication concentrations in the bloodstream.

Actuarial Science: To calculate reserve requirements and reinsurance needs,
insurance analysts simulate aggregate claims using moment-generating

functions.
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Signal processing: To describe noise patterns in communication networks
and create better filters for clearer signal transmission, engineers use

moment-generating functions.
Integrated Applications in the Real World
Manufacturing Predictive Maintenance

IoT sensors are used in modern workplaces to continuously check the
condition of their equipment. Engineers can perform the following by

representing vibration levels as random variables with certain distributions:

e Use mathematical expectations to determine the predicted time to
failure.

e Using variance analysis, establish maintenance intervals.

e Use covariance studies to find relationships between various
machine parameters.

e Utilize moment-generating functions to forecast the likelihood of
catastrophic failure.

e This all-encompassing strategy increases equipment lifespan and

decreases downtime by 30-50%.
Optimizing Treatment and Precision Medicine

e Healthcare professionals use probability distributions to examine
patient data in order to:

e Use a particular PDF to model treatment response as a random
variable.

e Determine the variation and projected improvements for various
dosages of medications.

e Examine the bivariate relationships between treatment results and
genetic markers.

o To forecast the likelihood of an undesirable reaction, use moment-
generating functions.

e Personalized treatment regimens that increase effectiveness while
lowering negative effects are made possible by this statistical
method.

e Evaluation of Climate Risk to Agriculture
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to:

e Consider temperature and precipitation as continuous random
variables.

e Make bivariate distributions that link crop production with climate
conditions.

e Determine the anticipated yields and variations under various
climatic conditions.

e Covariance analysis can be used to identify the best crop
combinations for lowering risk.

e Despite growing climate variability, these technologies allow for

data-driven decisions that enhance food security.

Power utilities use random variable models in smart grid energy

management to:

o Display household energy usage using the relevant PDFs.

e Determine the likelihood of peak usage and anticipated demand.

e C(Calculate the bivariate association between consumption and
weather.

e Utilize moment-generating routines to forecast instances of high

demand.

Better grid stability, lower carbon emissions, and effective resource

allocation are made possible by this statistical methodology.
Multiple-Choice Questions (MCQs)

1. Random variable is:
a) A fixed value
b) A function that assigns numerical value to each outcome of an
experiment
¢) A constant
d) A likelihood distribution

Answer: b) A function that assigns numerical value to each outcome

of an experiment
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A likelihood mass function (PMF)applies to:

a) Continuous at random variables

b) Discrete at random variables

¢) Both discrete &continuous at random variables

d) None of the above

Answer: b) Discrete at random variables

likelihood density function (PDF)satisfies condition:
8) Pla<X<b)= [ f(x)dx

b) f(x)>1
0) Yf(x)=1

d) f(x) is always negative

Answer: a) P(a<X<b)= f; f(x)dx

cumulative distribution function (CDF)is defined as:

a) F(x)=P(X=x)
b) F(x)=P(X<x)

) F(x)= [ ftydt
d) Both (b) and (¢)

Answer: d) Both (b) and (¢)

If two at random variables X &Y are free, then:
a) P(XNY)=P(X)+P(Y)

b) P(X]Y)=P(X)

¢) P(X,Y)=P(X)P(Y)

d) Both (b) and (¢)

Answer: d) Both (b) and (¢)

expected value of a at random variable X, E(X), is given by:

a) Y xP(x) for discrete variables

b) [xf(x)dx for continuous variables
¢) Both (a) and (b)

d) None of the above

Answer: c) Both (a) and (b)
Variance of X, denoted as Var(X), measures:

a) The central tendency of X
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Notes b) The spread of X around its mean
¢) likelihood of X
d) cumulative likelihood of X

Answer: b) The spread of X around its mean

8. moment-generating function (MGF) is given by:
a) MX(t)=E(e' X)
b) MX(t)=>e™ P(x) for discrete variables
¢) MX(t)=Je™ f(x)dx for continuous variables

d) All of the above
Answer: d) All of the above

9. If covariance between two at random variables X &Y is zero, then:
a) X and Y are free
b) X & Y are uncorrelated
¢) X & Y are same variable

d) X and Y are negatively correlated
Answer: b) X & Y are uncorrelated

10. property of expectation states that for any constants a and b:
a) E(aX+b)=aE(X)+b
b) E(aX+b)=aE(X)
¢) E(aX+b)=E(X)+b
d) E(aX+b)=0

Answer: a) E(aX+b)=aE(X)+b
Short Answer Questions
1. Defineat random variable & give an example.
2. Differentiate between discrete &continuous at random variables.
3. What is likelihood mass function (PMF)? Give an example.

4. Explain the cumulative distribution function (CDF) and its

importance.
5. Define joint, marginal, and conditional distributions with examples.

6. What is the mathematical expectation of a at random variable?
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10.

Define variance and covariance. How are they useful?
What is a moment-generating function (MGF)?

Explain how MGFs can be used to find moments of at random

variable.

Why is covariance important in likelihood theory?

Long Answer Questions

1.

10.

Explain difference between discrete &continuous at random

variables with examples.

Discuss likelihood mass function (PMF) and likelihood density
function (PDF) with graphs.

Derive the properties of cumulative distribution function (CDF) and

explain its significance.

Define joint likelihood distribution and explain its applications in

statistics.
Explain the concept of expectation and variance with examples.

Describe  moment-generating functions (MGFs) and their

applications in likelihood.
Derive the formula for variance using expectation.

Explain how covariance measures relationship between two at

random variables.

Solve a numerical problem involving joint distributions and

conditional probabilities.

How are at random variables and likelihood distributions applied in

machine learning and AI?
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UNIT 3.1
Discrete distributions: Uniform, Bernoulli
Objectives

e To study discrete likelihood distributions (Uniform, Bernoulli,

Binomial, Poisson, and Geometric).

e To analyze continuous likelihood distributions (Uniform,

Exponential, and Normal).
e To explore the properties and applications of these distributions.

e To learn how to compute mean, variance, and moment-generating

functions for these distributions.
3.1.1: Introduction to Likelihood Distributions

A mathematical function known as likelihood distribution expresses
possibility of at random variable taking any of its potential values. Stated
otherwise, it provides information on the distribution of the total likelihood

of 1 throughout the at random variable's values.

The foundation of likelihood theory and statistics is likelihood distributions.
They offer a method for forecasting unpredictable outcomes and modeling at
random phenomena. Two primary categories of likelihood distributions

exist:

1.D iscrete Likelihood Distributions: These explain at random variables,
like integers, that can only have a countable number of different values.

2.C ontinuous Likelihood Distributions: These explain at random
variables, like real numbers, that can have any value within a given

range.

The likelihood mass function (PMF), represented as P(X = x) or f(x),
provides the likelihood distribution for a discrete at random variable X. It

indicates likelihood that the at random variable will take exactly value x.
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The likelihood density function (PDF), represented as f(x), provides
likelihood distribution for a continuous at random variable X. It indicates

relative chance that at random variable will have a value close to x.
In both cases, a likelihood distribution must satisfy two conditions:
e The likelihood of any outcome must be non-negative

e The sum (or integral) of probabilities over all possible outcomes

must equal 1
3.1.2: Discrete Likelihood Distributions
Uniform Distribution

The discrete uniform distribution assigns equal likelihood to each of finite

number of possible outcomes.

P(X =x) = 1/n for x = a, a+1, a+2,..., a+tn-1 is Likelihood Mass Function
(PMF).

where an is lowest value and n is the number of alternative outcomes.
Average (Predicted Value): (a + atn-1)/2 = a + (n-1)2 = E(X)
Difference: Var(X) = (n?>-1)/12

Bernoulli Distribution

One experiment with exactly two possible outcomes—"success" (often
represented by a letter 1) and "failure" (typically represented by a number
0)—is modeled by the Bernoulli distribution.

For x = 0, 1, Likelihood Mass Function (PMF) is P(X = x) = p* x (1-p)1™.
where p is the likelihood of success.

E(X) = p is the mean (expected value).

Variance: p(1-p) = Var(X)

As an illustration, think about tossing fair coin once. Let "heads" be
represented by X = 1 and "tails" by X = 0. p = 0.5 is likelihood of heads.

* Mean: E(X) =0.5; PMF: P(X=1)=0.5,P(X=0)=0.5

Var(X) = 0.5 x 0.5 =0.25 is the variance.
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UNIT 3.2
Binomial, Poisson and Geometric distributions with their properties

Distribution of Binomials

number of successes in a predetermined number of free Bernoulli trials

is modeled by binomial distribution.
P(X =x) ="Cyx x p* x (1-p)®® forx =0, 1, 2, ..., n is Likelihood Mass
Function (PMF).

Where:

* n is total number of tries; p is likelihood that each trial will be successful.
* The binomial coefficient is (n pick x) = n!/[x!(n-x)!].

E(X) = np is the mean (expected value).

Variance: np(1-p) = Var(X)

For illustration, think about tossing fair coin five times. Let X be quantity of
heads that were acquired. There is a p = 0.5 chance of heads on every flip.
* PMF: Forx=0, 1,2,3,4,5, P(X =x) =°Cy x 0.5% x 0.56
E(X)=5x0.5=2.5is mean.

Var(X) =5 x 0.5 x 0.5 =1.25 is variance.

Poisson Distribution

particular that events happen freely & at constant average rate, Poisson
distribution represents number of events that take place within particular
time or space interval.

For x =0, 1, 2,..., Likelihood Mass Function (PMF) is P(X = x) = (\* x e
)/x*.

Where:

* ¢ is the base of the natural logarithm (about 2.71828); ¢ A (lambda) is

average number of events in the interval.
E(X) = A is the mean (expected value).
Var(X) = A is the variance.

Solved Problems

Problem 1: Uniform Distribution

Problem: One roll of fair six-sided die is made. Determine outcome's

variance, expected value, and likelihood mass function.
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The answer is that there are six possible outcomes for this discrete uniform

distribution: 1, 2, 3, 4, 5, and 6.

First, locate the PMF. Each result has an equal chance because the die is fair:

Forx=1,2,3,4,5,and 6, P(X =x) = 1/6.
Step 2: Determine the mean, or expected value. (1 + 6)/2 = 3.5 is E(X).
Step 3: Determine the difference. (6>-1)/12 = 35/12 = 2.92 is Var(X).

Consequently, forx =1, 2, 3, 4, 5, 6, the PMF is P(X = x) = 1/6, the variance
is roughly 2.92, and the expected value is 3.5.

Bernoulli Distribution is the second issue.

Problem: The odds of a biased coin falling on heads are 70%. One toss of
the coin occurs. If the result is heads, let X = 1, and if it is tails, let X = 0.

Determine X's variance, anticipated value, and likelihood mass function.
Solution: likelihood of success for this Bernoulli distribution is p =0.7.
First, locate the PMF. p=0.7P(X=1)=1-p=03P(X=0)=0

For x =0, 1 we can also write: P(X = x) = 0.7% x 0.30),

Step 2: Determine mean, or expected value. E(X)=p=0.7

Step 3: Determine the difference. 0.7 x 0.3 = 0.21 Var(X) = p(1-p)

Consequently, variance is 0.21, expected value is 0.7, the PMF is P(X = 1) =
0.7, and P(X=0)=0.3.

Issue 3: The Binomial Distribution Issue: Ten questions with four alternative
answers—only one of which is correct—make up multiple-choice exam. For
every question, student makes a guess. Let X represent how many right
answers the student receives. Determine X's variance, anticipated value, and
likelihood mass function. Additionally, determine the likelihood that the
student will receive precisely three right answers as well as the likelihood

that they will receive at least eight.

Answer: With n = 10 trials &a likelihood of success of p = 1/4 = 0.25 for

each trial, this is an illustration of a binomial distribution.

First, locate the PMF. Forx =0, 1, 2,..., 10, P(X = x) = 1°C, x 0.25% x 0.75(%
X).
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Step 2: Determine the mean, or expected value. np =10 x 0.25 = 2.5 = E(X)

Step 3: Determine the difference. np(1-p) = 10 x 0.25 x 0.75 = 1.875 Var(X)
=np

Step 4: Determine the likelihood that the pupil will provide precisely three
right responses. 120 x 0.015625 x 0.1335 = 0.2503 = °C; x 0.25"3 x 0.75"7
=P(X=3).

Step 5: Calculate the likelihood that the student will provide at least eight
accurate responses. P(X > 8) = P(X = 8) + P(X = 9) + P(X = 10) = 1°Cg x
0.25% x 0.75% + %Cy x 0.25% x 0.75" + 1°Cjp x 025" x 0.75 = 45 x
0.000001526 x 0.5625 + 10 x 0.0000000954 x 0.75 + 1 x 0.0000000095 x 1
=~ 0.0000386 + 0.00000072 + 0.0000000095 = 0.0000393

Thus, for x =0, 1, 2,..., 10, the PMF is P(X = x) = 'C, x 0.25% x 0.7510)
The expected value is 2.5, the variance is 1.875, the likelihood that the
student receives exactly three right answers is roughly 0.2503, and the
likelihood that the student receives at least eight right answers is roughly

0.0000393.

Issue 4: Poisson Distribution Issue: Two and a half consumers visit a service
counter every fifteen minutes on average. Determine the likelihood that, in a
specific 15-minute period, (a) exactly four customers will arrive, (b) at most
one customer will arrive, and (c) more than three customers will arrive,

assuming that customer arrivals follow a Poisson distribution.
Solution: A Poisson distribution with A = 2.5 is shown here.

First, locate the PMF. The formula P(X = x) = (2.5% x ¢9)/x! for x = 0, 1,
2,...

Step 2: Determine the likelihood that precisely four clients will show up.
(2.5% x e29)/41 = 39.0625 x 0.082085 / 24 = 0.1336 is the value of P(X =
4).

Step 3: Calculate the likelihood that no more than one consumer will show
up. €29 +2.5 x 29 =(.082085 + 2.5 x 0.082085 = 0.082085 x (1 +2.5) =
0.082085 x 3.5= 02873 =P(X<1)=PX=0) + P(X =1) = (2.5° x e
/0! + (2.5 x e29)/1!
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Step 4: Determine the likelihood that more than three clients will show up.
€29 + 2.5 x 29 + (2.5% x e2N)/2! + (2.5 x e29)/31] =1 - [0.082085 +
0.205213 + 0.256516 + 0.213763]=1-[P(X>3)=1-PX<3)=1- [PX
=0)+PX=1)+PX=2)+P(X=3)]=1-0.757577 = 0.2424

Thus, (a) there is a roughly 0.1336 chance that exactly four customers will
attend, (b) there is a roughly 0.2873 chance that at most one customer will
arrive, and (c) there is a roughly 0.2424 chance that more than three

customers will arrive.
Issue 5: Distribution of Geometry

Problem: There is a 0.8 chance that a basketball player will make a free
throw. Until a free throw is made, the player continues to shoot. Let X be
required number of tries. Determine X's variance, anticipated value, and
likelihood mass function. Additionally, determine the likelihood that the
player will require precisely three tries as well as the likelihood that they

will require more than two.
Solution: The likelihood of success for this geometric distribution is p = 0.8.

First, locate the PMF. For x = 1, 2, 3,..., P(X = x) = (1-p)*V x p = 0.2&D x
0.8.

Step 2: Determine the mean, or expected value. 1/p = 1/0.8 = 1.25 is E(X).
Step 3: Determine the difference. Var(X) = 0.2/0.64 = 0.3125 = (1-p)/p?

Step 4: Determine the likelihood that the player will require precisely three
tries. 0.2°(3-1) x 0.8 = 0.22 x 0.8 = 0.04 x 0.8 = 0.032 is value of P(X = 3).

Step 5: Determine the likelihood that the player will require more than two
tries. P(X>2)=1-P(X<2)=1-[P(X=1)+P(X=2)]=1-[0.8+0.2 x
0.8]=1-[0.8+0.16]=1-0.96=0.04

Thus, for x = 1, 2, 3,..., the PMF is P(X = x) = 0.2%-D x 0.8, the variance is
0.3125, the expected value is 1.25, the likelihood that the player requires
precisely three tries is 0.032, and the likelihood that the player requires more
than two efforts is 0.04.
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Issue 1: Uniform Distribution

A fair spinner is divided into eight equal sectors, numbered 1 through 8. The
spinner is spun once, and the outcome is denoted as X. Determine the

following:

a) The probability mass function (PMF) of X.

b) The expected value of X.

¢) The variance of X.

d) The probability that the spinner lands on an even number.

¢) The probability that the spinner lands on a number greater than five.

Issue 2: Bernoulli Distribution

A quality control inspector examines randomly selected computer chips.

Each chip has a 5% probability of being defective. Define X as follows:

e X=1 if the chip is defective
e X=0 if the chip is not defective

Determine the following:

a) The probability mass function (PMF) of X.

b) The expected value of X.

¢) The variance of X.

d) The interpretation of the expected value in this context.

e) The expected number of defective chips if the inspector examines 100

chips.

Issue 3: Binomial Distribution

A biased coin has a 60% probability of landing on heads. The coin is flipped
15 times, and X represents the number of heads obtained. Determine the

following:

a) The probability mass function (PMF) of X.
b) The expected value of X.

¢) The variance of X.
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d) The probability of obtaining exactly 10 heads. Notes
e) The probability of obtaining no more than 7 heads.
f) The probability of obtaining between 8 and 12 heads (inclusive).

Issue 4: Poisson Distribution

A website receives an average of 5 comments per hour. Assume the number

of comments follows a Poisson distribution. Determine the following:

a) The probability that exactly 7 comments are posted in a given hour.

b) The probability that no comments are posted in an hour.

¢) The probability that at least 3 comments are posted in an hour.

d) The probability that the number of comments in an hour falls between 2
and 6 (inclusive).

¢) The expected number of comments in a 12-hour period.

Issue 5: Geometric Distribution

A salesman makes cold calls to potential customers, with each call having a
15% chance of resulting in a sale. The salesman continues calling until a
sale is made. Let X represent the number of calls needed to close a deal.

Determine the following:

a) The probability mass function (PMF) of X.

b) The expected value of X.

¢) The variance of X.

d) The probability that exactly 5 calls are needed to close a deal.
e) The probability that a sale is made within the first 3 calls.
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UNIT 3.3
Continuous distributions: Uniform, Exponential and Normal
distributions with their properties

3.3.1: Continuous Likelihood Distributions

Continuous likelihood distributions deal with at random variables that might
have any value within a given range, whereas discrete likelihood
distributions deal with countable outcomes. The likelihood that a at random
variable will take on any given precise value is zero in continuous
distributions. Rather, we determine likelihood that at random variable will

fall inside a specific range.

(PDF) is a mathematical tool used to characterize continuous likelihood
PGS pa < x <b)

Essential characteristics of any legitimate PDF f(x):

For any x, f(x) > 0 (the function is non-negative).

2. fjooo f(x) dx = 1 (the entire likelihood equals 1)

(CDF), represented as F(x), is another crucial function that provides the

likelihood that a at random variable X is less than or equal to a value x:
F(x)= [~ f(t)dt=P(X<x)

The three basic continuous distributions—normal, exponential, and
uniform—will be examined Nnow.

Even Distribution

The most basic continuous likelihood distribution is uniform distribution. It
characterizes a at random variable that has an equal chance of taking any

value between [a, b].
Function of Likelihood Density (PDF)

The uniform distribution's PDF is:

For <x <b, f(x) = 1/(b-a); otherwise, f(x) = 0.

Over the range [a, b], this produces a rectangle of height 1/(b-a).
The CDF, or Cumulative Distribution Function

The uniform distribution's CDF is:
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For x <a, F(x) = 0. The formula F(x) = (x-a)/(b-a) fora <x <b. When x> b,
Fx)=1.

Properties of the Uniform Distribution
1. Mean (Expected Value): p= (a+b)/2
2. Variance: 6> = (b - a)¥/12
3. Standard Deviation: ¢ = (b - a)/V12
4. Median: Median = (a + b)/2

5. Mode: The uniform distribution has no unique mode; every value in

[a, b] is equally likely.
Applications of the Uniform Distribution
e At random number generators (over a specific range)
¢ Rounding errors in measurements
e Arrival times when no specific time is more likely than another

e Modeling situations where all outcomes within a range are equally

likely
Exponential Distribution

In a process where events happen freely at a constant average rate, the time
between occurrences is modeled by the exponential distribution. It is
frequently applied in survival analysis, queuing theory, and reliability theory.
Function of Likelihood Density (PDF)

For x > 0, exponential distribution's PDF is f(x) = Ae™. For x <0, f(x) = 0.
where the rate parameter, A (lambda), is positive (A > 0).

The CDF, or Cumulative Distribution Function

For x <0, CDF of exponential distribution is F(x) = 0. For x > 0, F(x) =1 -

e,

Properties of Exponential Distribution
1. Mean (Expected Value): p= 1/A
2. Variance: 6> = 1/A?

3. Standard Deviation: c = 1/A
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Notes 4. Median: Median = In(2)/A
5. Mode: Mode =0
6. Moment Generating Function: M(t) = M/(A-t) for t <A
Applications of Exponential Distribution
e Time between arrivals in Poisson process
e Time until decay of radioactive particles
e Length of phone calls
e Time until equipment failure
Normal Distribution

Perhaps most significant likelihood distribution in statistics is normal
distribution, sometimes referred to as the Gaussian distribution. It is
symmetrical, bell-shaped, and naturally occurring in a wide range of social
and physical events.

Function of Likelihood Density (PDF)

The normal distribution's PDF is:

For -0 < x < o0, f(x) = (1/(c\(2n))) * e C-w2)

Where:

u (mu) represents mean.

» standard deviation is represented by ¢ (sigma).

62 represents variance.

Normal Distribution Standard

standard normal distribution, with =0 and p = 1, is a specific case of the
normal distribution. Here is its PDF:

For -0 < z < o0, f(z) = (1N(2n)) * e,

following formula can be used to transform any normal at random variable
X into a standard normal at random variable Z:

Z=(X-pwlo

The CDF, or Cumulative Distribution Function

Without a closed-form formula, CDF of normal distribution is typically
represented as follows: ®(x) = P(X < x) = f_xoo (1/(oN(2m))) e w720 dt
standard normal CDF is commonly tabulated and is represented by the

symbol O(z).
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Properties of the Normal Distribution

1. Mean (Expected Value): p (the parameter in the PDF)

2. Variance: 62 (the parameter in the PDF)

3. Standard Deviation: ¢ (the parameter in the PDF)

4. Median: Median = 1

5. Mode: Mode =

6. Moment Generating Function: M(t) = exp(ut + 6%t%2)
Applications of the Normal Distribution

e Heights and weights of populations

e Measurement errors

e 1IQ scores and other standardized test scores

¢ Financial returns

Many natural phenomena

3.3.2: Properties of Distributions

Common Properties of Likelihood Distributions
1. Mean Expected Value

With PDF f(x), the mean, or anticipated value, of continuous at random

variable X is:
w= " x+f(x) dx = E[X]

The long-term average of the at random variable is represented by the
expected value.
2. Standard Deviation and Variance variance quantifies a distribution's

dispersion or spread:
E[(X -py] = [, (x- ) = Var(X) = 0 *f(x) dx

An other method of calculating fjooo x?f(x) dx - p* = Var(X) = E[X?] -
(E[X])

variance's square root is the standard deviation:
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c= \/Var(X)

3. The median The value that splits the distribution in half is called the
median. The median m for continuous at random variable with CDF
F(x) satisfies F(m) = 0.5.
4. Mode

The value at which the PDF reaches its maximum is known as the mode.
f(x_mode) = 0 &f'(x_mode) < 0 are satisfied by the mode x mode for

continuous at random variable with PDF f(x).
5. Skewness
Skewness measures the asymmetry of a distribution:
Skewness = E[((X - pw)/c)*]
e Positive skewness: right-tailed distribution (tail extends to the right)
e Negative skewness: left-tailed distribution (tail extends to the left)
e Zero skewness: symmetric distribution (like the normal distribution)
6. Kurtosis
Kurtosis measures the "tailedness" of a distribution:
Kurtosis = E[((X - p)/o)*]

e Negative excess kurtosis (< 3): lighter tails than the normal

distribution

e Excess kurtosis = 0 (kurtosis = 3): similar tails to the normal

distribution
7. Moment Generating Function (MGF)

continuous at random variable X's MGF is: [ * e®ef(x) dx = M(t) = E[e¥]

The distribution's moments can be found using the MGF:
E[X"] = M™(0)
The nth derivative of M(t) evaluated at t = 0 is denoted by M™(0).

8. Percentiles and Quantiles value x, such that F(xp;) = p is the p-th

quantile of a distribution.
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Where F is the CDF. Common quantiles include:
e Median (p=0.5)
e Quartiles (p=0.25, 0.5, 0.75)
e Percentiles (p=10.01, 0.02, ..., 0.99)
Relationships Between Distributions
1. Sum of random Variables

PDF of Z = X + Y is the convolution if X & Y are free random variables
with PDFs fx(x) & fv(y):

fu(z) = [7,, fx(z-y) *fv(y) Dy

Particular situations:

* Total of the normal, freeat random variables: X +Y ~ N(ux + py, ox*> + oy?)
if X ~N(ux, ox?) and Y ~ N(uy, ov?).

* The total of free, parameter-sharing exponential random variables: More
intricate, resulting in a gamma distribution

2. Random Variable Transformation

IfY = g(X) is a strictly monotonic function and X is random variable with
PDF fx(x), then fy(y) = fx(g'(y)) is the PDF of Y. « |d/dy g"'(y)|

where the inverse function of g is g(-1).

3. Statistics on Orders

kth order statistic X has following PDF if X1, Xo,..., X, are free random
variables from same distribution with CDF F(x) & PDF f{(x): fx,(x) =
n!/(((k-1)!+(n-k)1)) * [F(x)]*D [1-F(x)] 9« f(x)

The minimum (k=1) and maximum (k=n) are examples of special situations.
Solved Examples
Solved Example 1: Uniform Distribution

Problem: A bus is scheduled to arrive at a stop between 10:00 AM and
10:30 AM with equal likelihood for any time in this interval. What is the
likelihood that, if you arrive at 10:15 AM, you will: a) have to wait longer
than ten minutes for the bus? c) Is the bus here already? c) If you arrive at

10:15 AM, how long should you expect to wait?

Solution:
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Let X be arrival time of bus in minutes after 10:00 AM. Then X follows a

uniform distribution on [0, 30].

a) You arrive at 10:15 AM, which is 15 minutes after 10:00 AM. You'll wait
more than 10 minutes if the bus arrives after 10:25 AM, which is 25 minutes

after 10:00 AM.
P(X>25)=1-P(X<25)=1-(25-0)/(30-0)=1-25/30=1-5/6=1/6

b) The bus has already arrived if it comes before 10:15 AM, which is before
15 minutes after 10:00 AM.

P(X<15)=(15-0)/(30-0)=15/30=1/2
The likelihood that the bus has already arrived is 1/2 or 0.5.

¢) If you arrive at 10:15 AM (15 minutes after 10:00 AM), there are two

cases:

e Case 1: The bus has already arrived (X < 15). In this case, you
missed the bus and will have to wait for the next one, but this

waiting time is not calculated here.

e Case 2: The bus has not arrived yet (X > 15). In this case, you'll wait
(X - 15) minutes.

The expected waiting time given that you haven't missed the bus is: E[X -
15X > 15] = [ (x-15)-(1/15) dx = (1/15)- [ (x - 15) dx = (1/15)-[x*/2
- 15x]32 = (1/15)-[(30%2 - 15-30) - (15%2 - 15-15)] = (1/15)-[450 - 450 -
112.5+225] = (1/15)-[112.5]=17.5

So, if you arrive at 10:15 AM and the bus hasn't arrived yet, you can expect

to wait an additional 7.5 minutes on average.
Solved Example 2: Exponential Distribution

Problem:With an average lifespan of 5000 hours, lifespan of a particular
electrical component follows an exponential distribution. a) What is this
distribution's rate parameter, A? b) How likely is it that a component will
have a lifespan of fewer than 3000 hours? c¢) What is the likelihood that a
component will endure a another 2000 hours if it has already been in use for

4000 hours? d) What is these components' median lifespan?
Solution:
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a) For an exponential distribution, the mean p = 1/A. Given that p = 5000 Notes
hours: A = 1/5000 = 0.0002 per hour

b) The likelihood that the lifetime X is less than 3000 hours: P(X < 3000) =
1 - e300 =1 000023000 = 1 _06=1_05488 =0.4512

So the likelihood is approximately 0.4512 or 45.12%.

¢) Due to memoryless property of exponential distribution: P(X > 4000 +
2000 | X >4000) = P(X > 2000) = e"(-A-2000) = 000022000 = ¢-04 = () 6703

So the likelihood is approximately 0.6703 or 67.03%.

d) The median of an exponential distribution is: Median = In(2)/A =

In(2)/0.0002 = 0.693/0.0002 = 3465 hours
So the median lifetime is approximately 3465 hours.
Solved Example 3: Normal Distribution

Problem: With mean of 75 kg &standard deviation of 8 kg, weights of adult
males in given population are normally distributed. a) What proportion of
male adults weigh over 85 kg? b) What proportion of male adults weigh
between 70 and 80 kilograms? c) What is the likelihood that five adult males
chosen at at random will weigh more than 78 kg on average? d) For this

population, what weight represents the 90th percentile?

Answer:

a) Let X be a male adult's weight. We are looking for P(X > 85). Standardize
first: (X >85)=P(Z>1.25)=1-P(Z<1.25)=1-0(1.25)Z=(X-pw/oc=
(85-75)/8=10/8=1.25

Using a calculator or the usual normal table: ®(1.25) ~ 0.8944
P(X>85)=1-0.8944 = 0.1056
So approximately 10.56% of adult males weigh more than 85 kg.

b) We want to find P(70 < X < 80). Standardize the endpoints: Z: = (70 -
75)/8 =-0.625 Z> = (80 - 75)/8 = 0.625

P(70 < X <80) =P(-0.625 < Z < 0.625) = ®(0.625) - ®(-0.625)
Using symmetry of the normal distribution: ®(-0.625) = 1 - ®(0.625)

P(70 < X < 80) = (0.625) - (1 - ®(0.625)) = 2-®(0.625) - 1
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®(0.625) =~ 0.7339
P(70 <X <80)=2-0.7339-1=1.4678 - 1 =0.4678
So approximately 46.78% of adult males weigh between 70 kg and 80 kg.

c) Let X be the mean weight of five adult males chosen at random. X has a
normal distribution according to Central Limit Theorem, which has:

uX = p = 75 kg is the mean.

« 6X = o/\n = 8/\5 = 8/2.236 = 3.578 kg is the standard deviation.

Our goal is to determine P(X > 78). Standardize: P(X > 78) = P(Z > 0.838) =
1-P(Z<0.838)=1-d(0.838) Z = (X - uX)/cX = (78 - 75)/3.578 = 3/3.578
=0.838

P(X>78)=1-0.7991 = 0.2009 ®(0.838) = 0.7991

Thus, the likelihood is roughly 0.2009, or 20.09%.

d) Let x90 be the 90th percentile, so P(X < x90) = 0.90. This means that O((Xs
- 75)/8) = 0.90. The z-score corresponding to the 90th percentile is ®'(0.90)
=1.282.

S0 (xs0 - 75)/8 = 1.282 Xo0 - 75 = 8-1.282 = 10.256 xe0 = 75 + 10.256 =
85.256 kg

The 90th percentile is approximately 85.26 kg.
Solved Example 4: Distribution Properties

Problem:When 0 < x < 1, PDF of a at random variable X is f(x) = 3x%
otherwise, it is f(x) = 0. a) Confirm that this PDF is legitimate. ¢) Determine
X's CDF. b) Determine X's variance and mean. c) Determine X's median. e)
Is there a bias in this distribution? In what direction, if at all?
Answer:

a) Two requirements must be met for a PDF to be considered valid:

1. For all x (non-negativity), f(x) > 0.
2. ffooo f(x) dx = 1 (total likelihood = 1)

Condition 1 is satisfied since f(x) = 3x> > 0 for 0 < x <1 and f(x) = 0

elsewhere.

For condition 2: fjooo f(x) dx = [(0 to 1) 3x> dx = 3-[01 x2 dx = 3-[x}/3]} =
3-(173)=1
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Since both conditions are met, this is a valid PDF. Notes
b) F(x) = P(X<x) = [~ f(t) dt is the CDF.

If x is less than 0: F(x) = 0.

For0<x<1:F(x)= fox 32dt=3. « [}/3]5 =3.» (x3/3) =%°

Ifx>1:Fx)=1.

Thus, the CDF is: For x <0, F(x) =0. For 0 <x <1, F(x) =x®* For x > 1 ¢),
F(x) = 1. Average

Predicted Value): E[X] = [~

[ee]

x+ ) x=f(x)dx*3xdx=3.+f] x*dx=3
[x¥/4]3 = 3. + (1/4) = 3/4=0.75

We first compute E[X2] in order to determine the variance: E[X2] = fjooo x2
« [} x2=f(x)dxf, x*dx=3+3x2dx=3 Between 0 and 1, [x¥5] = 3;
(1/5)=3/5=0.6

Difference: E[X?] = Var(X) - (E[X]) 2= 3/5 - (3/4) (3/5) =2=13/5-9/16 -
(9/16) = 3/80 = 0.0375 d (48/80) - (45/80) F(m) = 0.5 is satisfied by the

median m.
F(x) =x3 for 0 <x < 1 is known from component (b).

Thus, we must resolve: m* = 0.5 Using the cube root: m = J0.5=05"=

0.7937
The median is approximately 0.7937.

e) To determine if the distribution is skewed, we can compare the mean

(0.75) and median (0.7937).

Since mean < median, the distribution is negatively skewed (skewed to the
left).

We can also calculate the skewness coefficient, but the comparison of mean

and median gives us the direction of skewness.
Solved Example 5: Mixed Distributions

Problem:Electronic components having a mean lifespan of 2000 hours and
an exponential distribution are produced throughout a manufacturing

process. A box is deemed faulty if more than two components fail within the
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first 500 hours of operation. The components are packed in boxes of ten. a)
How likely is it that one part will malfunction in the first 500 hours? b) How
likely is it that a box is flawed? c) How many defective boxes should be
expected if 100 boxes are shipped? d) How likely is it that one box out of
every 100 is flawed?
Answer:

a) Assume that X is a component's lifetime in hours, with a mean of p =
2000 hours and an exponential distribution. A = 1/p = 1/2000 = 0.0005 per

hour is the rate parameter.

likelihood that a component fails within the first 500 hours is: P(X < 500) =
1 - e300 =1 .g00005500 =] _e025=1.(,7788 =0.2212

So the likelihood is approximately 0.2212 or 22.12%.

b) Let Y represent how many parts in a box break down in the first 500
hours. With n = 10 (number of components) and p = 0.2212 (likelihood of

failure for each component), Y has binomial distribution.

We want P(Y > 2) = 1 - P(Y < 2) since a box is faulty if Y > 2.
C(10,00=P(Y<2)=P(Y=0)+P(Y=1) +P(Y =2) [(1-p)'* + C(10,1) + p°
e p' e (1-p)° + C(10,2) (1) * (p*(1-p)* = (1) * (0.7788)'° + (10) * (0.2212) *
(0.7788)° + (45) + (0.2212) (0.7788)*

U

First term: (0.7788)!° =~ 0.0858 Second term: 10-0.2212-(0.7788)°
10-0.2212:0.1102 ~ 02439 Third term: 45-(0.2212)>(0.7788)"
45-0.0489-0.1415 = 0.3112

u

P(Y £2)~=0.0858 +0.2439 + 0.3112 = 0.6409
P(Y >2)=1-0.6409 = 0.3591
So the likelihood that a box is defective is approximately 0.3591 or 35.91%.

¢) Let Z be the number of defective boxes out of 100. Z follows binomial
distribution with n = 100 (number of boxes) & p = 0.3591 (likelihood of a

box being defective).

The expected number of defective boxes is: E[Z] = n-p = 100-0.3591 =
35.91

So we expect approximately 36 defective boxes out of 100.
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d) There is a 1 in 100 chance that at least one box is faulty: P(Z>1)=1 -
P(Z=0)=1-(1-p)"=1-(1-0.3591)" = 1 - (0.6409)'°

(0.6409)'% is extremely small (approximately 0 for practical purposes).
Therefore, P(Z>1)=1-0=1

So the likelihood that at least one box out of 100 is defective is essentially 1

(or 100%).

Unsolved Problems

Problem 1: Uniform Distribution

A random number generator produces numbers uniformly distributed

between -3 and 5.

a) Determine the probability density function (PDF) and cumulative
distribution function (CDF) of this distribution.

b) Calculate the probability that a randomly generated number is greater
than zero.

¢) Find the probability that the generated number falls between -1 and 2.
d) Compute the mean and variance of the distribution.

e) Determine the probability that at least one of ten randomly generated

numbers is less than -2.

Problem 2: Exponential Distribution

The time interval between customer arrivals at a bank follows an

exponential distribution with an average of three minutes.

a) What is the probability that the next customer arrives within two minutes?
b) What is the probability that the next customer arrives in five minutes or
more?

¢) Given that no customer has arrived in the last four minutes, what is the
probability that the bank will wait at least three more minutes for the next
arrival?

d) Determine the waiting time between arrivals at the 75th percentile.

e) If the bank opens at 9:00 AM, what is the probability that at least five

customers will arrive by 9:15 AM?
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Problem 3: Normal Distribution

The height of adult women in a certain population follows a normal

distribution with a mean of 165 c¢cm and a standard deviation of 6 cm.

a) What proportion of women are taller than 175 cm?

b) If a woman is considered "tall" when her height falls within the top 10%,
what is the minimum height required to be classified as tall?

¢) What is the probability that a randomly selected woman has a height
between 160 cm and 170 cm?

d) If four women are randomly selected, what is the probability that their
average height exceeds 168 cm?

e) If a sample of 100 women is randomly selected, what is the probability

that the sample mean deviates by more than 1 cm from the population mean?

3.3.3: Mean and Variance of Distributions

Two essential metrics that aid in describing likelihood distributions are
variance and mean (or expected value). They offer crucial details regarding

the dispersion and central tendency of at random variables.

Average (Predicted Value)

A at random variable's "average" value or center of mass of its distribution is

represented by its mean or anticipated value.

With likelihood mass function p(x), for discrete at random variables X, E[X]

=>(x * p(x)), where total is computed over all possible values of x.

The integral is taken across the whole domain of X for continuous at random

variables X with likelihood density function f(x): E[X] = J(x * f(x))dx.

Difference
A at random variable's variance quantifies how widely it deviates from its
mean.

For every arbitrary variable X:
E[(X - E[X]) = Var(X)?]
This can be expressed differently as follows: Var(X) = E[X?] - (E[X]) 2

standard deviation variance's square root is all that standard deviation is:
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SD(X) = VVar(X)

Expected Value Properties

1. Expectation Linearity:

oE[aX +b]=a°<E[X]+D

For example, E[X + Y] = E[X] + E[Y]

2. E[X*Y] = E[X]*E[Y] for freeat random variables

Variance Properties

1. Scaling characteristic:

A?eVar(X) = o Var(aX)

2. For at random variables that are free:

Var(X +Y) is equal to Var(X) + Var(Y).

3. The translation property states that for each constant a, Var(X + a) =
Var(X).

Averaging and Varying Typical Discrete Distributions

1. The Bernoulli Distribution

With likelihood p, a Bernoulli at random variable takes on value 1, and with
likelihood (1-p), it takes on the value 0.

E[X] = p is the mean.

* Var(X) = p(1-p) is the variance.

2. Distribution of Binomials

number of successes in n free Bernoulli trials, each with a chance of p, is
described by the binomial distribution with parameters n & p.

E[X] = np is the mean.

* Variance: np(1-p) = Var(X)

3. Distribution in Geometry

The number of tries required to get first success in series of free Bernoulli
trials is described by geometric distribution with parameter p.

E[X] = 1/p is the mean.

* Var(X) = (1-p)/p? is the variance.

4. The Poisson Distribution

The number of events that occur at constant average rate within a specific
interval is described by Poisson distribution with parameter A.

E[X] = A is the mean.

* Var(X) = A is the variance.

5. Distribution of Negative Binomials

The number of attempts required to get r successes is described by the
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negative binomial distribution with parameters r and p.

E[X] =1/p is the mean.

* Var(X) = r(1-p)/p? is the variance.

Common Continuous Distributions: Mean and Variance

1. Equitable Dispersion

It is equally likely that a continuous uniform at random variable on [a,b] will
take any value within that range.

E[X] = (atb)/2 is the mean.

* Var(X) = (b-a)*/12 is the variance.

2. Gaussian Normal Distribution

The well-known bell-shaped curve is present in the normal distribution with
parameters [ and 2.

E[X] = p is the mean.

¢ Variance: ¢> = Var(X)

3. The Exponential Distribution

The time interval between events in a Poisson process is described by the
exponential distribution with parameter A.

E[X] = 1/A is the mean.

* Variance: 1/A* = Var(X)

4. Distribution of Gamma

The exponential distribution is generalized by the gamma distribution with
parameters o (shape) and B (scale).

E[X] = of is the mean.

* Variance: aff? = Var(X)

5. Distribution of Beta

The interval [0,1] defines the beta distribution with parameters o and f.
E[X] = o/(a+p) is the mean.

Var(X) = ap/((a+p)*(a+p+1)) is the variance.

3.3.4: Moment-Generating Functions of Distributions

The following is the definition of a at random variable X's moment-
generating function (MGF):
E[e™] = Mx(t)

Regarding distinct at random variables: > (e™ * p(x)) = Mx(t)

For at random variables that are continuous: f(e”‘ * f(x)) = Mx(t) dx

Characteristics of Functions that Generate Moments
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1. Uniqueness: Two at random variables have the same likelihood

distribution if they have the same MGF.

2. Moments The formula E[X*] = Mx®(0) can be used to determine the
kth moment of X.

where the kth derivative of Mx(t) assessed at t=0 is denoted by Mx®(0).
3. For X and Y, freeat random variables: Mx.+v(t) = Mx(t) * My(t)

4. Linear Transformations: My(t) = e « Mx(at) if Y = aX + b

Functions of Common Distributions that Generate Moments
Bernoulli Distribution (p) = (1-p) + pee' = Mx(t)
2. Binomial Distribution (n,p) = (1-p + pe*e")" Mx(t)

3. Mx(t) = peet / (1 - (1-p)ee") (for t < -In(1-p)) is the geometric
distribution (p).

Fourth, Poisson Distribution (A) = exp(A(e' - 1)) Mx(t)
5. Even Dispersion on [a,b]

(e® - e®) / (t(b-a)) = Mx(t) (for t # 0) Mx(t) = exp(ut + (c*t?)/2) is the normal
distribution (u, 62).

7. For t <A, the Exponential Distribution (%) is Mx(t) = A/(A-t).
8. For t <1/B, the Gamma Distribution (a, ) Mx(t) = (1-pt)*
Finding Moments with MGFs

To determine X's mean (initial moment): Mx(0) = E[X]

To determine X's second moment: Mx+(0) = E[X?]

To determine the difference: Var(X) = Mx+(0) - (Mx(0)) 2
Finding Distributions with MGF's

The distribution of sums of free random variables can be found using MGFs.
The MGF of their sum can frequently be identified as a member of a known
distribution if Xi, Xa,..., X, are free random variables with the same

distribution.

3.3.5: Applications of Likelihood Distributions
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1. Quality Control and Manufacturing

Binomial Distribution: used to simulate the quantity of faulty products in a
sample.
As an illustration, a manufacturing process yields products with a 5% fault

rate.
e Expected number of defective items: E[X]=np =100 x 0.05=5
e Variance: Var(X) = np(1-p) =100 % 0.05 x 0.95 =4.75

Modeling the quantity of flaws per unit area or volume is done using the
Poisson Distribution.
For instance, a surface's defects have an average of 2.5 per square meter and
follow a Poisson distribution. P(X=3) = (e3> x 2.5%) / 3! = 0.2138 is the

likelihood that a given square meter would have precisely three flaws.
2. Finance and Economics

Normal Distribution: Used to model returns on investment, price

fluctuations, and other financial variables.

Example: A stock's daily returns have mean of 0.001 (0.1%) & standard
deviation of 0.02 (2%), indicating a normal distribution. This is the
likelihood that the return on a certain day will be greater than 3%: P(X >
0.03)=1-P(X<0.03)=1-d((0.03-0.001)/0.02) = 1 - ®(1.45) = 0.0735 =
7.35%

Exponential Distribution: Used to model the time between financial events,

such as trades or defaults.

Log-normal Distribution: Used to model asset prices, as they cannot be

negative.
3. Reliability Engineering

The lifespan of components with a constant failure rate is modeled using the
exponential distribution.
For instance, the annual failure rate of an electrical component is A = 0.05.
For the component to survive for more than five years, likelihood is P(X >
5)=eM =005 =02 x(.7788 = 77.88%.

Weibull Distribution: Used to model the lifetime of components with

increasing or decreasing failure rates.
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4. Queuing Theory

The number of arrivals within a certain time period is modeled using the
Poisson Distribution.
The time interval between arrivals and service times is modeled using the
exponential distribution.
Example: Twelve consumers an hour on average arrive at a service counter
based on a Poisson process. In a one-hour period, the likelihood of precisely

ten arrivals is P(X=10) = (% x 1219/ 10! = 0.1048 = 10.48%.
5. Insurance and Risk Assessment

e Normal Distribution: Used to model aggregate claims in large
portfolios.
e Pareto Distribution: Used to model the size of large insurance

claims.
6. Biostatistics and Medicine

Binomial Distribution: Used in clinical trials to model the number of

successes (e.g., recoveries).
Poisson Distribution: Used to model rare events like disease occurrences.

Example: A rare disease has an average of 3.5 new instances every month,
according to a Poisson distribution. P(X < 2) = P(X=0) + P(X=1) + P(X=2)
=e3 +e¥ x 35+ e x3.52/2!1=0.0302 + 0.1057 + 0.1850 = 0.3209 =
32.09% is the chance of having no more than two new cases in a given

month.
7. Physics and Engineering

e Normal Distribution: Used to model measurement errors and
physical quantities.
e Maxwell-Boltzmann Distribution: Used to model the speed of

molecules in a gas.
8. Computer Science and Networks

Geometric Distribution: Used to model the number of attempts until a

successful transmission.
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Example: The failure likelihood for each packet transmission is 0.2. E[X] =
1/p = 1/0.8 = 1.25 is the anticipated number of tries required before a

successful transmission.

The amount of network events in given time period is modelled using

Poisson Distribution.
Issues Resolved
Issue 1: A Custom Discrete Distribution's Mean and Variance

Issue: For discrete at random variable X, the likelihood mass function is as
follows: p(2) = 0.3, p(3) = 0.4, p(4) = 0.1, and p(1) = 0.2. Determine X's

variance and mean.
Solution:

Step 1: Determine the average. 0.2 + 0.6 + 1.2 +04=24=1x02+2 x
0.3+3x04+4x0.1=E[X]=Y(x*p(x))

Step 2: Determine E[X2]. 02 +12+3.6+1.6=6.6=12x02+22x0.3 +
32x04+4*x 0.1 =E[X?] =>(x**p(x))

Compute the variance in step three. E[X?] - (E[X]) = Var(X)(2.4)> = 6.6 -
5.76=0.842=6.6

As a result, X's variance is 0.84 and its mean is 2.4.
Issue 2: Locating Moments with the MGF

Problem: Mx(t) = (1-2t)3 for t < 1/2 is the moment-generating function ofat
random variable X. Determine X's third central moment, variance, and

mean.
Answer:

Step 1: Determine the MGF's first derivative. (-3)(1-2t)*(-2) = 6(1-2t)* =
MX'(t)

Step 2: Determine the MGF's second derivative. 6(-4)(1-2t)°(-2) = 48(1-2t)
~ Mie(t)

Step 3: Determine the MGF's third derivative. 48(-5)(1-2t)%(-2) = 480(1-2t)®
is Mixe(t).
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Step 4: To determine the moments, evaluate the derivatives at t = 0. Mx(0) =

6(1) = E[X]* = 6.
Mx(0) = 48(1)" = 48 E[X?]
Mx+(0) = 480(1) = E[X?] = 480

Determine the variance in step five. E[X?] = Var(X) - (E[X])36 - 48 =122 =
48-62

Determine the third central moment in step six. 3E[X] - E[X?®] = E[(X-
W E[X?] + 2(E[X])3(6)(48) + 2(6) = 480 - 864 + 432

Consequently, the third central moment is 48, variance is 12, and mean of X

is 6.
Issue 3: Using the Normal Distribution

The issue is that the average height of adult females in a given group is 165

cm, with a standard deviation of 6 cm.

a) What is the likelihood that a woman chosen at at random will be
taller than 175 cm? b) How many women with heights between 160 and

170 cm are predicted if 100 are chosen at random?
Answer:

To ascertain P(X > 175):

Standardize the value in step one. (175 - 165) / 6 =1.67 is z.

Step 2: Use the conventional normal table to get the likelihood. P(Z > 1.67)
=1-P(Z<1.67)=1-0.9525=10.0475=P(X> 175)).

Consequently, the likelihood is roughly 4.75%.

b) To determine how many women should have heights between 160 and
170 cm, start by calculating the likelihood that one woman will have a
height between 160 and 170 cm. -0.83 <Z < 0.83) = P(Z < 0.83) - P(Z < -
0.83) =0.7967 - 0.2033 = 0.5934 = P(160 < X < 170) = P((160-165)/6 <Z <
(170-165)/6)).

Step 2: Determine the anticipated number of women out of 100. The

anticipated value is 100 x 0.5934, or 59.34 = 59
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As a result, we anticipate that roughly 59 women will be between 160 and

170 cm tall.
Issue 4: Poisson and Binomial Approximation

Issue: Computer chips produced on a production line have a 2% failure rate.

Four hundred chips are examined as a sample.

a) What is the likelihood of discovering precisely ten faulty chips using the
binomial distribution? b) Use the Poisson distribution to approximate this

likelihood.

Using the binomial distribution as a solution: P(X = 10) = C(400,10) x
(0.02)'9 x (0.98)*° X ~ Bin(400, 0.02)

Calculating this directly: (400! / (10! x 3901)) x (0.02)!° x (0.98)*% = 0.1122
P(X = 10)

Consequently, the likelihood is roughly 11.22%.

b) We utilize A = np = 400 x 0.02 = 8. X ~ Poisson(8) P(X = 10) = (e® x 8!%)

/10! = 0.0992 for a Poisson approximation.
Consequently, the Poisson approximation yields roughly 9.92%.

Since p is tiny (0.02) and n is high (400), the approximation is fairly near to
the binomial likelihood.

Issue 5: Function that Generates Moments for the Total of Free random

Variables

The issue is that Xi, Xz, and Xs are free random variables that all have
exponential distributions with parameter A = 2. Determine the distribution of

Y and the moment-generating function of Y = Xi + Xz + X.
Answer:

First Step: Determine the MGF for every single Xi. Mx(t) = A/(A-t) for t <A

is the MGF of an exponential distribution with parameter A.
For t <2, the MGF for X; ~ Exp(2) is Mxi(t) = 2/(2-t).

Step 2: Determine Y = Xi + Xz + Xs's MGF. The MGF of their sum is the
product of their individual MGFs because X, X2, and X are free:

For t less than 2, My(t) = [2/(2-t)] x Mx,(t) X Mx,(t) X Mx,(t)* = 8/(2-t)?
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Step 3: Determine Y's distribution. One may identify the MGF of a Gamma
distribution with parameters oo = 3 and = 1/2 as My(t) = 8/(2-t)*.

Mx(t) = (1-Bt)* for t < 1/B is the generic form of the MGF for a Gamma

distribution with parameters o and .

This is contrasted with My(t) = 8/(2-t)*:

e Let's revise: One x (1-t/2)3 =1 x (1-t/2)3 = 8 x (2-1) = 8 x (2)3 = My(t)
* This corresponds to the form (1-ft)* where p = 1/2 and a. = 3.

Consequently, Y has a Gamma distribution with a =3 and f = 1/2. f Y(y) =
(1/B%) x (y*! x e¥®) / T'(a) = 1/(1/2)* is the PDF of Y. If y > 0, then (y*! x e
YA /T (3) =8 x (y2 x e®) /2 =4y> x &P,

Unresolved Issues

Issue 1: Discrete Random Variable

For a discrete random variable X, the probability mass function (PMF) is

given as:
px)=k(x+2),for x=0,1,2,3,4
where k is a constant.

a) Determine the value of k.
b) Compute the mean and variance of X.

¢) Derive the moment-generating function (MGF) of X.
Issue 2: Continuous Random Variable

The probability density function (PDF) of a continuous random variable X is

given by:
f(x)=3x2, 0<x<1,0 otherwise.

a) Calculate the mean and variance of X.

b) Find the probability P(X>0.8)

¢) Derive the moment-generating function (MGF) of X.
d) Compute the first three moments using the MGF.
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Issue 3: Normal Distribution

1Q scores in a given population follow a normal distribution with a mean of

100 and a standard deviation of 15.

a) What proportion of the population has an 1Q greater than 130?

b) What is the probability that a randomly selected person has an 1Q
between 85 and 115?

¢) If 25 individuals are randomly selected, what is the probability that their
average 1Q is greater than 105?

d) Determine the 90th percentile of the 1Q distribution.

Issue 4: Binary Communication System

A communications system transmits messages as a series of bits. Due to
noise, each bit has a 10% chance of flipping (changing from 0 to 1 or from 1

to 0). Errors occur independently.

a) What is the probability that exactly 3 out of 20 transmitted bits are
flipped?

b) In a 20-bit message, what is the probability that at least one bit is flipped?
¢) How many flipped bits should be expected in a 100-bit message?

d) For a critical application, no more than 5% of the bits in a message should
be flipped. What is the maximum message length that ensures this

requirement is met with at least 95% confidence?

Issue 5: Sum of Uniformly Distributed Random Variables

Let X1,Xa,...,X20 be independent random variables, each uniformly

distributed on [0,1].

Define:

Y=X1+Xo+:-+X2.

a) Compute the mean and variance of Y.
b) Using the Central Limit Theorem, identify an appropriate approximation
for the distribution of Y.

¢) Estimate P(9<Y<11) using this approximation.
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d) Derive the moment-generating function (MGF) of a single uniform Notes
random variable X.

e) Use the result from part (d) to derive the MGF of Y.

Application of Discrete and Continuous Probability

Distributions in Real-World Scenarios

Discrete Probability Distributions
1. Uniform Distribution

e Quality Control: Used in manufacturing when defects are equally
likely across different production batches.

¢ Randomized Clinical Trials: Ensures unbiased group assignment
in medical experiments.

e Cryptography: Forms the basis of secure random number
generators.

e Gaming: Governs fair outcomes in lotteries and dice rolls.
2. Bernoulli Distribution

e A/B Testing: Used in digital marketing for testing variations of
emails or website layouts.

e Medical Diagnostics: Models test results as positive/negative.

¢ Risk Assessment: Helps insurers estimate the probability of claims.

¢ Quality Assurance: Used for pass/fail testing in electronics

manufacturing.
3. Binomial Distribution

e Political Polling: Models the probability of survey respondents
supporting a candidate.

e Manufacturing Defect Analysis: Estimates the likelihood of a
certain number of defective products.

o Epidemiology: Used to model the spread of infections within
populations.

e Finance: Binomial pricing models are used in options trading.

4. Poisson Distribution
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Call Centers: Predicts the number of incoming calls to optimize
staffing.

Network Traffic: Helps analyze data packet arrivals and
congestion.

Emergency Services: Models hospital emergency room patient
arrivals.

Retail Inventory: Estimates demand for irregularly selling items.

5. Geometric Distribution

Quality Control: Predicts the number of inspections needed before
a defect is found.

Reliability Engineering: Models system failures after repeated
cycles.

Cybersecurity: Estimates the number of attempts before a system is
breached.

Customer Acquisition: Determines how many interactions are

needed to convert a lead into a customer.

Continuous Probability Distributions

1. Uniform Distribution

Signal Processing: Simulates quantization errors in digital
conversion.

Computer Simulations: Used in Monte Carlo methods.
Scheduling: Models arrival times when there are no peak periods.
Queueing Theory: Helps optimize resource allocation in service

industries.

2. Exponential Distribution

Reliability Engineering: Models machine failure times.
Customer Service: Estimates waiting times.
Telecommunications: Models call durations.

Nuclear Physics: Describes radioactive decay processes.

3. Normal Distribution
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e Financial Markets: Models stock returns and risk assessments.

e Manufacturing Tolerances: Predicts variations in product
dimensions.

e Educational Testing: Standardized test scores often follow a
normal distribution.

e Biometrics: Models human height, weight, and blood pressure

distributions.

Computing Statistical Measures in Real-World

Applications

1. Expected Value and Mean

o Inventory Management: Helps retailers optimize stock levels.
e Project Planning (PERT): Estimates realistic activity durations.
e Insurance Actuarial Science: Used to price policies based on

expected claims.

o Portfolio Management: Helps investors calculate expected returns.

2. Standard Deviation and Variance

e Quality Control: Ensures product consistency in manufacturing.
¢ Financial Risk Management: Measures investment volatility.
e Clinical Trials: Quantifies variability in treatment effects.

e Weather Forecasting: Assesses uncertainty in predictions.

3. Moment-Generating Functions (MGF)

e Option Pricing: Used in risk-neutral pricing models.
o Reliability Engineering: Models failure rates over time.
e Econometrics: Helps estimate economic indicators with

uncertainty.

Multiple-Choice Questions (MCQs)

1. The Bernoulli distribution is used for:
a) Multiple trials

b) A single trial with two possible outcomes
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d) None of the above
Answer: b) A single trial with two possible outcomes

2. Binomial distribution models number of:
a) Successes in fixed number of trials
b) Failures in an infinite number of trials
c¢) Continuous outcomes

d) Free events with varying probabilities
Answer: a) Successes in fixed number of trials

3. Poisson distribution is used to model:
a) number of occurrences in fixed interval of time & space
b) Continuous data
¢) The likelihood of an event occurring in a single trial

d) Data that follows a normal distribution
Answer: a) number of occurrences in fixed interval of time & space

4. mean of binomial distributionB(n,p) is:
a) np(1-p)
b) np
¢) p(1-p)
d) n2p

Answer: b) np

5. geometric distribution models:
a) number of failures before first success
b) total number of successes in fixed number of trials
¢) The likelihood of success in one trial

d) The distribution of continuous variables
Answer: a) number of failures before first success

6. exponential distribution is used to model:
a) The time between events in a Poisson process
b) number of successes in fixed trials
¢) distribution of binary data

d) sum of free variables
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Answer: a) The time between events in a Poisson process

7. normal distributionis also called:
a) Poisson distribution
b) Gaussian distribution
¢) Bernoulli distribution

d) Binomial distribution
Answer: b) Gaussian distribution

8. If normal distribution has mean of 0 and standard deviation of
1, it is called a:
a) Standard normal distribution
b) Skewed normal distribution
¢) Poisson distribution

d) Geometric distribution
Answer: a) Standard normal distribution

9. The moment-generating function (MGF) for normal distribution
helps find:
a) Mean & variance
b) Likelihood mass function
¢) Cumulative distribution function

d) None of above
Answer: a) Mean & variance

10. The Poisson distribution is an approximation of the binomial
distribution when:
a) nis large, and p is small
b) p is large, and n is small
¢) pis close to 0.5

d) The number of trials is small
Answer: a) n is large, and p is small
Short Answer Questions
1. Define likelihood distribution with an example.
2. What is a Bernoulli distribution, and where is it used?

3. Explain the Binomial distribution and its parameters.
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10.

Define Poisson distribution and state its properties.

What is the Geometric distribution, and what does it model?

How is the Exponential distribution related to the Poisson process?
What are the key properties of the Normal distribution?

Why is the Normal distribution important in statistics?

How does a moment-generating function (MGF) help in likelihood

distributions?

Compare discrete and continuous likelihood distributions with

examples.

Long Answer Questions

10.

Explain the Bernoulli and Binomial distributions with real-world

examples.

Derive mean &variance of a Binomial distribution.

Explain Poisson distribution and derive its likelihood mass function.
Discuss the Geometric distribution and find its expectation.

Derive mean &variance of Exponential distribution.

Explain Normal distribution and prove its properties.

How does Poisson distribution approximate Binomial distribution?

Explain moment-generating function (MGF) & use it to find

moments of the normal distribution.
Compare and contrast Binomial, Poisson, and Normal distributions.

How are likelihood distributions applied in real-world scenarios,

such as quality control, reliability engineering, and risk analysis?
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MODULE 4 Notes

UNIT 4.1
Testing of hypothesis: Parameter and statistic

Objectives
e To understand the concept of hypothesis testing.
e To define parameters and statistics in hypothesis testing.
e To learn about null and alternative hypotheses.
e To study sampling distributions and standard errors.

e To analyze critical regions, significance levels, and errors in

hypothesis testing.
e To apply large sample tests for mean and proportions.
4.1.1: Introduction to Hypothesis Testing

Hypothesis testing is a fundamental procedure in statistical analysis that
allows us to make decisions about populations based on sample data. It
provides a framework for determining whether experimental results contain
enough evidence to reject a null hypothesis.The basic idea behind hypothesis
testing is to state a hypothesis about a population parameter, collect sample
data, and then use that data to determine whether there is enough evidence to

suggest that the hypothesis is incorrect.
The Process of Hypothesis Testing
1.F ormulate the hypotheses (null and alternative)
2.C hoose a significance level (o)
3.C ollect sample data
4.C alculate the test statistic
5.D etermine the p-value or critical region
6.M ake a decision about the null hypothesis

7.1 nterpret the results in context
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Types of Hypothesis Testing Errors

There are two kinds of mistakes that might happen when performing a
hypothesis test:

* Type I Error (a): False positive, or rejecting a valid null hypothesis

* Type II Error (B): Neglecting to reject a false negative null hypothesis

The test's significance level, o, represents the likelihood of a Type I mistake.
The power of the test is 1-B, and [ represents the likelihood of a Type 11

mistake.
One-Tailed vs. Two-Tailed Tests
Hypothesis tests can be either one-tailed or two-tailed:

e One-tailed test: The alternative hypothesis specifies a direction

(either greater than or less than)

e Two-tailed test: The alternative hypothesis specifies a difference in

either direction (not equal to)
4.1.2: Parameters and Statistics
Population Parameters

Since examining an entire population is often impractical, parameters are
usually unknown and need to be estimated. Common population parameters

include:
e u (mu): Population mean
e o2 (sigma squared): Population variance
e o (sigma): Population standard deviation
e p: Population proportion
e p (rho): Population correlation coefficient
Sample Statistics

A sample's numerical properties that are utilized to estimate the associated

population parameter are called statistics. Common sample statistics include:
e X (x-bar): Sample mean

e s% Sample variance
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e s: Sample standard deviation

e P (p-hat): Sample proportion

e 1: Sample correlation coefficient
Relationship between Parameters and Statistics

Point estimators for population parameters are provided by sample statistics.
Since we utilize sample statistics to draw conclusions about population
parameters, the link between parameters and statistics is essential to

hypothesis testing.

For instance:
* The population mean () is estimated using the sample mean (X).

* The population proportion (p) is estimated using the sample proportion (p).
4.1.3: Null and Alternative Hypotheses
The Null Hypothesis (Ho)

The null hypothesis, represented by the letter Ho, asserts that there is no
relationship, no effect, or no difference in the population. It stands for the
current situation or the assertion that has to be verified. Until there is

evidence to the contrary, the null hypothesis is taken to be true.
Examples of null hypotheses:

e  Ho: p =100 (The population mean equals 100)

e Ho: p=0.5 (The population proportion equals 0.5)

e Ho: Wi - p2 = 0 (There is no difference between two population

means)
The Alternative Hypothesis (H: or H,)

The alternative hypothesis, denoted as H: or H, is a statement that
contradicts the null hypothesis. It represents what we are trying to establish

or prove.
Examples of alternative hypotheses:
e Hi: p# 100 (The population mean does not equal 100) - Two-tailed

e Hi: p> 100 (The population mean is greater than 100) - One-tailed
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Hi: p <0.5 (The population proportion is less than 0.5) - One-tailed

Formulating Hypotheses

When formulating hypotheses, consider the following guidelines:

1.

The null hypothesis should always contain an equals sign (=, <, or

)

The alternative hypothesis should never contain an equals sign (#, >,

or <)

The hypotheses should be mutually exclusive (they cannot both be

true)

The hypotheses should be collectively exhaustive (one of them must

be true)

Directional vs. Non-directional Hypotheses

Non-directional hypothesis: States that there is a difference but

does not specify the direction (Hi: u # 100)

Directional hypothesis: States that there is a difference in a specific

direction (Hi: p> 100 or Hi: p < 100)
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UNIT 4.2
Sampling distribution and standard error of estimate, Null and
alternative hypotheses Simple and composite hypotheses

4.2.1: Sampling Distributions and Standard Errors
Sampling Distribution

The likelihood distribution of a statistic derived from a at random sample of
the population is known as the sampling distribution. The sampling
distribution of the mean is the most often utilized sampling distribution in
hypothesis testing.

Important characteristics of the mean's sample distribution:

* The population mean (uX = p) and the sample distribution mean are
equivalent.

* The sample distribution's standard deviation, or standard error, is equal to
o/\n.

* The sample distribution is normal if the population is normally distributed.
* According to the Central Limit Theorem, the sampling distribution is
roughly normal if the population is not normal but the sample size is high (n

> 30).

StandardError
The standard deviation of a sample distribution is known as the standard
error. It gauges a statistic's precision or variability.

Typical standard errors:
1.( SEM):
o Population known: oX = 6/\n
o Population unknown: sx =s/ Vn
2.S tandard Error of the Proportion:
o op=[p(1-p)n]
o When p is unknown, we use p to estimate: sp = V[p(1-p)/n]
3.S tandard Error of the Difference Between Two Means:
o Free samples: o6Xi-X2 = V(0:1%/mi + 622/n2)
o  When population standard deviations are unknown: sXi-Xz> =

V(s?/mi + s22/n2)
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4. Standard Error of the Difference Between Two Proportions:

o opip2= \/[pl(l—p1)/n1 + p2(1-p2)/nz2]

o When population proportions are unknown: spi-pz = V[pu(1-
p)/mi + p2(1-p2)/n2]

The Central Limit Theorem (CLT)

According to the Central Limit Theorem, regardless of the initial population
distribution's shape, if you collect large enough at random samples from any
population, the sampling distribution of the sample mean will be roughly

normally distributed.
Important ramifications of the CLT for testing hypotheses:

* We can presume that the sampling distribution is about normal for large
samples (n > 30).

* For small samples (n < 30), the population should be regularly distributed
in order to employ t-tests; this enables us to use z-tests for big samples even
when the population distribution is unknown or not normal.

The t-Distribution

The t-distribution is used in place of the normal distribution when the
population standard deviation (o) is unknown and needs to be calculated
using the sample standard deviation (s).

The t-distribution's characteristics:

» Symmetric and bell-shaped, similar to the typical distribution

» More dispersed (heavier tails) than the average distribution

Degrees of freedom (df), which are correlated with sample size, determine
the form. The t-distribution gets closer to the conventional normal
distribution as df rises.

* The t-distribution is roughly equivalent to the conventional normal

distribution when df> 30.
Z-Scores and t-Scores

In hypothesis testing, test statistics are often calculated as z-scores or t-

scores:
e Z-score (used when o is known): z= (X - p) / (6/\/n)

e t-score (used when ¢ is unknown): t= (X - p) / (s/\n)
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These test statistics measure how many standard errors the sample statistic is

from the hypothesized parameter value.
Solved Problems
Solved Problem 1: One-Sample Z-Test for Population Mean

According to a researcher, adult males in a particular area are taller than 175
cm on average. The average height of 100 adult males from the area selected
at at random is 177.5 cm. Test the researcher's assertion at a 5% significance

level, assuming that the population standard deviation is 8 cm.
Solution:

Step 1: Set up the hypotheses. Ho: = 175 cm (The average height is 175
cm) Hi: p> 175 cm (The average height is greater than 175 cm)

This is a one-tailed test because the researcher's claim is directional.
Step 2: Determine the significance level. a = 0.05

Step 3: Calculate the test statistic. z = (X - w) / (6/\n) z = (177.5 - 175) /
(8N100)z=2.5/0.8 z=3.125

Step 4: Determine the p-value, or critical value. The critical value for a one-
tailed test with o = 0.05 is z_a = 1.645. P(Z > 3.125) = 0.00089 is the p-

value.

Step 5: Choose a choice. We reject the null hypothesis because z = 3.125 >
1.645 (or p-value = 0.00089 < 0.05).

Step 6: Evaluate the findings. The researcher's assertion that the average
height of adult males in the area is more than 175 cm is sufficiently
supported by the available data.
Resolved Issue 2: Population One-Sample t-Test Mean

500 grams of product are meant to be filled into containers by a machine. 25
containers are chosen at at random by a quality control inspector, who
discovers that each one has an average of 495 grams with a standard
deviation of 10 grams. Is there proof that the containers are being underfilled

by the machine? Employ a significance level of 1%.

Solution:
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Step 1: Set up the hypotheses. Ho: p = 500 grams (The machine is filling
properly) Hi: p <500 grams (The machine is underfilling)

This is a one-tailed test because we're specifically concerned with

underfilling.
Step 2: Determine the significance level. a = 0.01

Step 3: Determine the test statistic. We choose a t-test because the sample

size is limited (n < 30) and the population standard deviation is unknown.
(X- )/ (sWn)=t=t=(495-500)/ (10/-25) = t=-5/2=>t=-2.5

Step 4: Determine the p-value, or critical value. Freedom of degrees =n - 1
=25 -1 = 24 The critical value for a one-tailed test with df = 24 and o =
0.01 is around t, = -2.492. The value of p is equal to P(t <-2.5) = 0.0096.

Step 5: Choose a choice. We reject the null hypothesis because t = -2.5 < -
2.492 (or p-value = 0.0096 < 0.01).

Step 6: Evaluate the findings. There is enough data to draw the conclusion

that the containers are being underfilled by the machine.

Resolved Issue 3: Z-Test for Difference in Population Proportions in Two
Samples

The goal of the study is to ascertain whether the percentage of smokers in
two cities differs. Out of 400 randomly chosen adults in City A, 120 smoke.
Ninety of the 350 randomly chosen adults in City B smoke. Determine
whether there is a difference in the percentage of smokers between the two

cities at a 5% significance level.
Solution:

Step 1: Set up the hypotheses. Ho: p1 = p2 (There is no difference in the
proportion of smokers) Hi: p1 # p2 (There is a difference in the proportion of

smokers)

This is a two-tailed test because we're interested in any difference, regardless

of direction.
Step 2: Determine the significance level. a = 0.05

Step 3: Calculate the sample proportions. p1 = 120/400 = 0.3 (City A) p2 =
90/350 ~ 0.257 (City B)
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Step 4: Determine the pooled proportion, which is applied in the null
hypothesis. (120 + 90) / (400 + 350) = 210/750 = 0.28 is the value of p = (xa

+ X2) / (n1 + n2).

Determine the test statistic in step five. z = N[p(1-p)(1/mi + 1/n2)] / (P - p2)
To calculate z, divide (0.3 - 0.257) by [0.28(1-0.28)(1/400 + 1/350)].
[0.2016(0.0025 + 0.00286)] = 0.043 / N [0.2016 x 0.00536] = 0.043 /N z =
0.0329/0.043 Z = 1.31

Step 6: Determine the p-value, or critical value. The critical values for a
two-tailed test with o = 0.05 are z/2 =+1.96. 2 x P(Z> 1.31) =2 x 0.0951 =
0.19 is the p-value.

Make a choice in step seven. Given that |z| = 1.31 < 1.96 (or p-value = 0.19
> 0.05), the null hypothesis cannot be ruled out.

Step 8: Evaluate the findings. There is not enough data to draw the

conclusion that the two cities' smoking rates are different.
Solved Problem 4: One-Sample Z-Test for Population Proportion

A polling organization claims that more than 60% of adults support a new
environmental policy. In a at random sample of 1000 adults, 650 expressed
support for the policy. Test the polling organization's claim at a 1%

significance level.
Solution:

Step 1: Set up the hypotheses. Ho: p = 0.6 (60% of adults support the policy)
Hi: p > 0.6 (More than 60% of adults support the policy)

This is a one-tailed test because the claim is directional.
Step 2: Determine the significance level. a = 0.01
Step 3: Calculate the sample proportion. p = 650/1000 = 0.65

Step 4: Determine the test statistic. z = \/[p(l—p)/n] /(P -p) z =
V[0.6(0.4)/1000] / (0.65 - 0.6) 0.05 / N[0.24/1000] is z. z = 0.05 / 0.0155 Z =
3.23

Step 5: Determine the p-value, or critical value. The critical value for a one-

tailed test with o= 0.01 is z, = 2.326. P(Z > 3.23), the p-value, is 0.0006
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Make a choice in step six. We reject the null hypothesis because z = 3.23 >

2.326 (or p-value = 0.0006 < 0.01).

Step 7: Evaluate the findings. The polling group's assertion that over 60% of
adults favor the new environmental policy is well supported by the available

data.
Resolved Issue 5: Two-Sample t-Test for Population Mean Difference

A researcher wishes to evaluate the efficacy of two distinct teaching
strategies. A mean test score of 78 with a standard variation of 12 is obtained
when 30 students employ Method A. A mean test score of 85 with a standard
deviation of 15 is obtained when Method B is used to 25 pupils. Examine
whether there is a difference in the mean test scores between the two
approaches at a 5% significance level, assuming that the populations have

identical variances.
Solution:

Step 1: Set up the hypotheses. Ho: pu = p2 (There is no difference in mean

test scores) Hi: pi # P (There is a difference in mean test scores)

This is a two-tailed test because we're interested in any difference, regardless

of direction.
Step 2: Determine the significance level. a = 0.05

Step 3: Determine the standard deviation of the pooled data. To calculate s,
divide ((ni-1)s:2 by (nz-1)s2?) by (m: + n2 - 2) ((30-1)122 + (25-1)15%) / (30 +
25 -2) = [ sp] = ((29)(144) + (24)(225)) / 53 = [ s,] = [(4176 + 5400) /
531 =[ sp] = s, =V[9576 / 53]= s, ~ 13.44 = s, = V180.68

Step 4: Calculate the test statistic. t = (X1 - X2) / (sp * V(1/mi + 1/n2)) t = (78 -
85) / (13.44 x \(1/30 + 1/25)) t = -7 / (13.44 x N(0.0333 + 0.04)) t = -7 /
(13.44 x N0.0733) t =-7/ (13.44 x 0.2708) t=-7 / 3.64 t~-1.92

Step 5: Find the critical value or p-value. Degrees of freedom =n: + n2 - 2 =
30 + 25 -2 =153 For a = 0.05 in a two-tailed test with df = 53, the critical
values are approximately t,/2 = £2.006. The p-value =2 x P(t <-1.92) = 2 x
0.03=0.06

Step 6: Decide on something. Given that [t| = 1.92 <2.006 (or p-value = 0.06
> (.05), the null hypothesis cannot be ruled out.
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Step 7: Evaluate the findings. There is not enough data to draw the
conclusion that the two teaching strategies differ in terms of mean test

results.

Unresolved Problems

Problem 1:

A manufacturer claims that its light bulbs have an average lifespan of at
least 1000 hours. A random sample of 36 light bulbs shows an average
lifespan of 980 hours, with a standard deviation of 120 hours. Test the

manufacturer's claim at a 5% significance level.

Problem 2:

The effectiveness of a new medication in reducing cholesterol levels is
under investigation. A study of 20 individuals who took the medication
recorded an average cholesterol reduction of 25 mg/dL, with a standard
deviation of 12 mg/dL. Test whether the medication effectively lowers

cholesterol at a 1% significance level.

Problem 3:

A survey suggests that the proportion of adults who exercise regularly has
increased from 40% five years ago. In a random sample of 500 individuals,
220 report exercising regularly. Test whether the percentage has increased at

a 5% significance level.

Problem 4:

The effects of two different fertilizers on crop yield are being compared. A
sample of 40 plots treated with Fertilizer A shows an average yield of 25
bushels per acre, with a standard deviation of 4 bushels. A sample of 45
plots treated with Fertilizer B shows an average yield of 27 bushels per acre,
with a standard deviation of 5 bushels. Test whether the mean yields of the

two fertilizers differ at a 1% significance level.

Problem 5:
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A researcher aims to determine whether support for a new municipal policy
differs between men and women. In a random sample of 300 men, 165
support the policy, while in a random sample of 350 women, 175 express
support. Test for a significant difference in support between men and
women at a 5% significance level.

4.2.2: Critical Region and Level of Significance

Introduction to Critical Region

The set of test statistic values that result in the null hypothesis being rejected
is known as the critical zone (or rejection region) in hypothesis testing. We
compute a test statistic from our sample data and compare it with a crucial
value while doing a hypothesis test. The null hypothesis is rejected if the test
statistic is within the crucial zone; if not, it is not rejected.

The vital area is dependent upon:

1. The employed test statistic

2. The test's selected significance threshold (o)
3. s the test two-tailed or one-tailed?
4

Significance Level (o)

The chance of rejecting the null hypothesis when it is true is represented by
the level of significance, which is represented by a (alpha). Another name

for this is the likelihood of making a Type I error.
Typical values for a consist of:

e 0.10(10%)

e 0.05(5%)

e 0.01(1%)

e 0.001 (0.1%)

fields where errors can have serious consequences (e.g., medical research),

smaller values of a like 0.01 or 0.001 are often used.
Determining the Critical Region
To determine the critical region, we need to:

1. Choose the significance level (a)
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2. Determine the test statistic's distribution under the null hypothesis.
3. Identify the crucial value or values that divide the non-rejection region

from the rejection area.

For a z-test (when the normal distribution applies):
e For a two-tailed test with significance level a:
o Critical values: +z(o/2)
o Critical region: z < -z(a/2) or z > z(0/2)
e For aright-tailed test with significance level a:
o Critical value: z(a)
o Critical region: z > z(a)
e For a left-tailed test with significance level a:
o Critical value: -z(o)
o Critical region: z < -z(a)

The z-score with an area of a to its right under the conventional normal

curve is denoted by the symbol z(a).

The connection between the p-value and the critical region

The critical region and the p-value are directly correlated:

» Assuming the null hypothesis is correct, the p-value is the likelihood of

receiving a test statistic at least as extreme as the one observed.
* If a is less than or equal to the p-value, we reject the null hypothesis.

* The p-value will be less than or equal to a if the test statistic is within the

critical zone.
Critical Value Examples for Various Levels of Significance
Regarding the z-distribution, or standard normal distribution:
Two-Tailed Test:

e For a=0.10: Critical values = +1.645

e For a=0.05: Critical values = +1.96

e For a=0.01: Critical values = £2.576
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e Fora=0.001: Critical values =+3.291

One-Tailed Test:
e For a=0.10: Critical value = +1.28 (sign depends on direction)
e For a=0.05: Critical value =+1.645 (sign depends on direction)
e For a=0.01: Critical value =+2.33 (sign depends on direction)
e For a=0.001: Critical value = £3.09 (sign depends on direction)

For the t-distribution, critical values depend on both o and the degrees of

freedom.
4.2.3: Types of Errors in Hypothesis Testing

There are two kinds of mistakes that might happen when making decisions
in hypothesis testing:
Error Type I (False Positive)

Rejecting a correct null hypothesis is a Type I mistake. Stated differently, we
get the conclusion that there is an effect or difference when, in fact, none

exists.
* Type I error likelihood = o (significance level)

* In a symbolic sense, P(Type I Error) = P(Reject Ho|Ho is true) = o For
instance, convicting an innocent person in a criminal trial entails rejecting

the null hypothesis of innocence when the individual is in fact innocent.
Error Type II (False Negative)

Failure to reject a faulty null hypothesis is a Type II mistake. To put it
another way, we assume that there is no difference or effect when, in fact,

there is.
* Type II error likelihood = 3 (beta)

In a criminal trial, a Type II error is acquitting a guilty person (failing to
reject the null hypothesis of innocence when the individual is actually
guilty). This can be expressed symbolically as follows: P(Type II Error) =
P(Fail to reject Ho|Ho is false) = f.

Test Power
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The likelihood of successfully rejecting a false null hypothesis is known as a Notes
statistical ~ test's power. It's equivalent to 1 minus f.

* P(Reject Ho|Ho is false) = 1 - f = Power

A Type II error is unlikely to occur in a test with high power.

Type I and Type II Error-Related Factors

1. Sample Dimensions:

Greater sample numbers lower the likelihood of both kinds of errors.

Power increases (B lowers) as sample size grows.

2. Significance Level (a): o Type I errors are less likely when o is decreased.

Nevertheless, lowering a raises the possibility of Type II error (decreases

power) for a fixed sample size.

3. Effect Size: o Greater deviations from the null hypothesis are associated

with larger effect sizes. boost power
Power is reduced by smaller effect sizes (increasing f).

4. Variability: o Both kinds of errors are more likely to occur when data

variability is higher.

Power rises when variability decreases.

The Connection Between o and f3

Both Type I and Type I errors have a trade-off:

« It is easier to miss a real effect when a is decreasing, which makes it harder
to reject Ho; conversely, when a is increasing, which makes it easier to reject

Ho, B is decreasing, which makes it less likely to miss a real effect.

Increasing the sample size is the only method to concurrently reduce both

kinds of mistakes.

Error Types in Decision Table Format

Ho is True Ho is False
Reject Ho Type I Error (o) SD(Z::::) Decision (1-)
Fail to Reject Ho Correct Decision (1-a) Type II Error (B)

4.7 One-Tailed and Two-Tailed Tests
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Depending on the alternative hypothesis's shape, hypothesis testing can be

classified as either one-tailed (directed) or two-tailed (non-directional).
Test with Two Tails

When the alternative hypothesis asserts, without indicating a direction, that
the parameter of interest differs from the value given in the null hypothesis,

a two-tailed test is employed.
Form of hypotheses:
e Ho: Parameter = specified value

e Hi: Parameter # specified value

Example:
e Ho:p=100
e Hi:ip#100

The critical region in a two-tailed test is divided between the distribution's

two tails, each of which contains o/2 of the area.
When to use:
e  When you want to detect a difference in either direction
e When there is no prior expectation about the direction of the effect

e When you're equally interested in deviations above or below the

value specified in Ho
One-Tailed Test

When the alternative hypothesis indicates a direction for the difference from

the value in the null hypothesis, a one-tailed test is employed.
Right-Tailed Test
Form of hypotheses:
e Ho: Parameter < specified value
e Hi: Parameter > specified value
Example:
e Ho:pn<100
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e Hip>100 Notes

In a right-tailed test, the entire critical region (o) is in the right tail of the

distribution.
Left-Tailed Test
Form of hypotheses:
e Ho: Parameter > specified value

e Hi: Parameter < specified value

Example:
e Ho: n= 100
e Hi:p<100

In a left-tailed test, the entire critical region (o) is in the left tail of the

distribution.
When to use one-tailed tests:

e  When you have a specific direction of interest based on theory or

prior research

e When you're only concerned with detecting an effect in one

direction

e  When detecting an effect in the opposite direction would lead to the

same decision as no effect
Comparison of Critical Values

For the same significance level (o), the critical value for a one-tailed test is

less extreme than for a two-tailed test:
e Fora=0.05:
o Two-tailed test critical z-value: £1.96

o One-tailed test critical z-value: +1.645 (sign depends on

direction)

This makes one-tailed tests more powerful for detecting effects in the
specified direction, but they have no power to detect effects in the opposite

direction.
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Notes Choosing Between One-Tailed and Two-Tailed Tests
Consider using a one-tailed test when:

1. You have a clear directional hypothesis based on theory or prior

research
2. You're only interested in detecting an effect in one specific direction

3. An effect in the opposite direction would be treated the same as no

effect
Consider using a two-tailed test when:
1. You have no prior expectation about the direction of the effect
2. You want to detect any deviation from the null hypothesis value

3. An effect in either direction would be meaningful and lead to

different conclusions
Many researchers prefer two-tailed tests because:
1. They protect against unexpected findings in the opposite direction

2. They are more conservative and generally more accepted in

scientific publications

3. They allow for the possibility that your directional hypothesis might

be wrong
Solved Problems
Solved Problem 1: Critical Region for a Z-Test

Problem:A researcher is examining whether a novel approach to instruction
raises student achievement. The new method's mean test score is 75, the
same as the old method's, according to the null hypothesis. The mean score
is different from 75, according to the alternative hypothesis. Assume that 36
students will be chosen at at random and that the population standard

deviation is 15. Find the two-tailed test's crucial region when o = 0.05.
Solution:
1. The hypotheses are:

o Hepn=75
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o Hip#75 Notes

2. This is a two-tailed test with a = 0.05.
3. For a z-test, the critical values are +z(0/2) = £2(0.025) = £1.96.

4. The test statistic is: z = (X - po)/(c/Nn) = (X - 75)/(15/N36) = (X -
75)12.5

5. The critical region is: z < -1.96 or z > 1.96

6. In terms of the sample mean:
o (X-75)/2.5<-1960r (X-75)2.5>1.96
o X<75-(196x%x2.5)orx>75+(1.96 x2.5)
o Xx<70.1o0rx>79.9

Therefore, the critical region in terms of the sample mean is: X < 70.1 or X >

79.9.
Solved Problem 2: Type I and Type II Errors

Problem:A quality control engineer checks to see if the manufactured
bearings' mean diameter is 10 mm. Ho: p = 10 mm is the null hypothesis,
whereas Hi: p # 10 mm is the alternative. Clearly state the meaning of Type

I and Type II errors in this situation.
Solution:
Type I Error (Rejecting a true Ho):

e This occurs if the engineer concludes that the mean diameter is not

10 mm when it actually is 10 mm.

e This might lead to unnecessary adjustments to the manufacturing

process, wasting time and resources.

e The likelihood of this error is a (the significance level chosen for the

test).
Type II Error (Failing to reject a false Ho):

e This occurs if the engineer concludes that the mean diameter is 10

mm when it actually is not 10 mm.
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e This might lead to continued production of bearings with incorrect
diameters, potentially causing problems in applications where these

bearings are used.

e The likelihood of this error is B, which depends on the true value of

L, the sample size, and the significance level.
In quality control, both errors have consequences:
e Type I error leads to false alarms and unnecessary adjustments.
e Type II error allows defective products to pass inspection.

The engineer must balance these risks by choosing an appropriate

significance level and ensuring adequate sample size for sufficient power.
Solved Problem 3: One-Tailed vs. Two-Tailed Test

Problem:A new medication, according to a pharmaceutical company, lowers
blood pressure by at least 10 mmHg on average. The likelihood that the
reduction is less than 10 mmHg is something that a researcher want to test
against this assertion. Set up the appropriate hypotheses and determine
whether a one-tailed or two-tailed test is appropriate. Explain your

reasoning.

Solution:

The claim is that the drug reduces blood pressure by at least 10 mmHg.
Let pu = the mean reduction in blood pressure due to the drug.

The claim is p> 10 mmHg.

The researcher wants to test against the possibility that the reduction is less

than 10 mmHg.
Appropriate hypotheses:

e Ho: p > 10 mmHg (The drug reduces blood pressure by at least 10
mmHg)

e Hi: p <10 mmHg (The drug reduces blood pressure by less than 10
mmHg)

This is a left-tailed test because:
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1. The alternative hypothesis specifies a direction (less than 10

mmHg).
2. The critical region will be entirely in the left tail of the distribution.

3. The researcher is only interested in detecting if the drug's effect is

less than claimed.
Reasoning:

e The company claims a reduction of at least 10 mmHg, which forms

our null hypothesis.

e The researcher's concern is specifically about the drug not meeting
this claim (i.e., having a smaller effect than claimed), not about it

exceeding the claim.

e Since there's a specific directional concern, a one-tailed test is

appropriate.

o Specifically, it's a left-tailed test because the alternative hypothesis

involves values less than the null hypothesis value.
Solved Problem 4: Calculating Type II Error Likelihood

Problem:According to the manufacturer, their light bulbs have a typical
lifespan of at least 1000 hours. A researcher wishes to use a at random
sample of twenty-five bulbs to test this assertion. It is known that the
population standard deviation is 200 hours. For a left-tailed test, the
researcher will employ a significance level of a = 0.05. Determine the
likelihood of a Type II error in the event that the actual mean lifetime is 950

hours..
Solution:

1. For a z-test with o = 0.05, the critical value is -z(a) = -z(0.05) = -
1.645.

2. The critical region is: z < -1.645
3. In terms of the sample mean:
o (X-1000)/(200N25) < -1.645

o (X-1000)/40 <-1.645
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o X<1000 - (1.645 x 40)
o X<934.2
4. Calculate B, the likelihood of Type II error when p = 950:
o P =P(Fail to reject Ho|p = 950)
o PB=Px=>934.2|u=950)
5. Standardize this likelihood:
o B =P((X-950)/(200/N25) > (934.2 - 950)/(200/N25))
o PB=P(z>(934.2-950)/40)
o B=P(z=-0.395)
o B=1-P(z<-0.395)
o B=1-0.3464
o PB=0.6536 or approximately 65.36%

Consequently, the likelihood of failing to reject the null hypothesis
(committing a Type II error) is roughly 65.36% if the true mean lifetime is

950 hours.
Solved Problem S5: Comparing One-Tailed and Two-Tailed Tests

Problem:A researcher is examining the potential effects of a novel
medication on heart rate. The mean change in heart rate is zero beats per
minute, according to the null hypothesis. Calculate the critical regions and
critical values for: A test with two tails and a = 0.05, a test with a right tail

and a = 0.05, and a test with a left tail and o = 0.05

Presume that the test statistic has a normal distribution. What is the

comparison of the critical regions?
Solution:
a) Two-tailed test with a. = 0.05:

e Hop=0

e Hip#0

e Critical values: +z(a/2) = £z(0.025) = £1.96
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Critical region: z<-1.96 or z > 1.96

b) Right-tailed test with a = 0.05:

Ho: p<0
Hi:p>0
Critical value: z(a) = z(0.05) = 1.645

Critical region: z > 1.645

¢) Left-tailed test with a = 0.05:

Ho: n= 0
Hi:p<0
Critical value: -z(a) = -z(0.05) = -1.645

Critical region: z < -1.645

Comparison of critical regions:

1.

The two-tailed test has critical values that are more extreme (£1.96)

than the one-tailed tests (+1.645).

The two-tailed test divides the significance level between both tails
(0.025 in each tail), while the one-tailed tests place the entire

significance level (0.05) in one tail.

The one-tailed tests have more power to detect effects in the
specified direction but no power to detect effects in the opposite

direction.

If the true effect is in the direction specified by the alternative
hypothesis, a one-tailed test is more likely to detect it than a two-

tailed test at the same significance level.

Unsolved Problems

Problem 1:

The objective of the study is to determine whether a new fertilizer enhances

plant growth. The null hypothesis states that the mean growth with the new

fertilizer is 25 cm, the same as the conventional fertilizer. The alternative
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hypothesis asserts that the mean growth exceeds 25 cm. A random sample of

16 plants is selected, with a population standard deviation of 4 cm.

a) Identify the critical region for a right-tailed test at a significance level of a
=0.01.

b) Compute the test statistic and determine whether to reject the null
hypothesis if the sample mean is 27.5 cm.

c¢) Calculate and interpret the p-value.

Problem 2:

A company claims that its batteries have an average lifespan of at least 30
hours. A consumer group seeks to test this claim using a sample of 40

batteries, given that the population standard deviation is 5 hours.

a) Formulate the null and alternative hypotheses.

b) Determine the critical region for a left-tailed test at o = 0.05.

¢) Calculate the probability of making a Type II error if the true mean
lifespan is 28 hours.

d) Discuss how increasing the sample size to 60 batteries would affect the

probability of a Type II error.

Problem 3:

A researcher is investigating the effect of a new teaching method on student
performance. The null hypothesis states that the mean test score using the
new method is 70, which is the historical average for the traditional method.

The researcher is interested in any deviation from this historical average.

a) Determine whether a one-tailed or two-tailed test is appropriate by setting
up the correct hypotheses. Justify your choice.

b) Identify the critical values if the researcher uses o = 0.05 and the test
statistic follows a t-distribution with 24 degrees of freedom.

¢) If the researcher later decides that only an improvement in test scores is of

interest, how would the hypotheses and critical region change?

Problem 4:
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A quality control engineer is evaluating whether the average package weight
on a production line is 500 grams. The null hypothesis is Ho: 1 = 500 grams,
while the alternative hypothesis is Hi: p # 500 grams. The significance level
is set at o = 0.05.

a) Explain the meaning of Type I and Type II errors in this context.

b) Calculate the probability of a Type II error if a sample of 25 packages is
taken, the true mean weight is 505 grams, and the standard deviation is 10
grams.

¢) Discuss how the probability of a Type II error would change if the

significance level were increased to o= 0.10.

Problem 5:

A medical researcher is examining whether a new treatment lowers
cholesterol levels. The null hypothesis states that the mean reduction is 0
mg/dL (no effect), while the alternative hypothesis asserts that the treatment

is effective if the mean reduction is greater than 0 mg/dL.

a) Compute the test statistic for a right-tailed test at a = 0.05, given a sample
size of 30, a sample mean reduction of 8 mg/dL, and a sample standard
deviation of 15 mg/dL. Determine whether to reject the null hypothesis.

b) Calculate and interpret the p-value.

c¢) Explain how the results would differ if the researcher had used a two-
tailed test instead.

d) Given a population standard deviation of 15 mg/dL, a true mean reduction
of 5 mg/dL, and o = 0.05, determine the required sample size to achieve a

power of 0.90.

Formula Sheet
Critical Values
For z-tests (standard normal distribution):
Two-tailed test (a):
e The crucial variables are +z(a/2).

Test with a right tail (a):
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Notes e z(o) is the critical value.

Test with a left tail (a):

e C(ritical value: -z(a)
Common critical z-values:
For a=0.10:

o Two-tailed: £1.645

e  One-tailed: 1.28 (right) or -1.28 (left)
For a=0.05:

e Two-tailed: £1.96

e  One-tailed: 1.645 (right) or -1.645 (left)
Fora=10.01:

e Two-tailed: £2.576

e  One-tailed: 2.33 (right) or -2.33 (left)
For a=0.001:

e Two-tailed: £3.291

e One-tailed: 3.09 (right) or -3.09 (left)
Test Statistics
Z-test (known population standard deviation): z = (X - po)/(c/\/n)
T-test (unknown population standard deviation): t = (X - po)/(s/\/n)
Where:

e X =sample mean

e o = hypothesized population mean

e o = population standard deviation

e s =sample standard deviation

e n=sample size

Likelihood of Type II Error (B)
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For a right-tailed z-test with alternative pu = i > po: p = P(z < z(a) - (pi - Notes
o)/ (o)) = P(z(e) - (i - o)/(/ V1))

For a left-tailed z-test with alternative p = Wi < po: B = P(z > -z(a) - (i -
Ho)/(0/Vn)) = 1 - D(-2(0t) - (b - po)/(6/ V1))

When using the alternative p = pu # o for a two-tailed z-test: (z(0/2) - |p1 -
wol/(5/\n)) = IT + @ The value of O(-z(a/2) - |w - pol/(5/\n))

where

e  ®(z) is the standard normal distribution's cumulative distribution

function.
e [ = true value of the population mean
e o = hypothesized value in the null hypothesis
Power Calculation
Power=1-p
Sample Size Determination
To achieve a specific power (1-p) for detecting a difference of size | - pol:
For a two-tailed test: n = [(z(a/2) + z(B))*c*]/(i1 - Lo)?
For a one-tailed test: n = [(z(a) + z(B))?c?]/(fu - o)?
Where:
e z(a) = critical value for significance level a
e z(P) = critical value corresponding to B (Type II error likelihood)
e o = population standard deviation
e L - po = effect size (difference to be detected)
4.2.4 Large Sample Tests for Mean and Proportion

The Central Limit Theorem, which asserts that regardless of the population
distribution's form, the sampling distribution of the sample mean approaches
a normal distribution, can be used when working with large samples (usually
n > 30). Our hypothesis testing processes are made simpler by this potent
theorem, which enables us to execute statistical inference using the normal

distribution as an approximation.
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When the sample size is large enough, statistical procedures known as large
sample tests are employed to draw conclusions regarding population
parameters. These assessments are reliable and broadly relevant in a number
of disciplines, such as the social sciences, psychology, economics, and

medicine.
Key Concepts in Hypothesis Testing

Before diving into specific tests, let's review the fundamental concepts of

hypothesis testing:

1. Null Hypothesis (Ho): The default assumption or status quo that we

aim to test.

2. Alternative Hypothesis (H: or H,): The claim that challenges the
null hypothesis.

3. Test Statistic: A value calculated from sample data used to

determine whether to reject Ho.

4. Critical Region: The set of values for the test statistic that lead to

rejecting Ho.
Large Sample Test for Population Mean

The following test statistic is used for testing hypotheses on a population
mean u with a large sample:

(X - po)/(o/Nn) =z

Where:

X represents the sample mean.

o is the population standard deviation, and po is the estimated population
mean (derived from Ho).

* The sample size is n.

When n is big, we can use the sample standard deviation s in place of o,
which is frequently unknown:
x- uo)/(s/\/n) =z

Rule of Decision

For a two-tailed test (Ho: p = o, Hi: [t # po) at a significance threshold of a:

o Dismiss Ho if |z| > zy» or if p-value < a
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* For a test with a right tail (Ho: p < po, Hi: > po), reject Ho if z > z, or if

the p-value is less than a.

When a test is left-tailed (Ho: p > po, Hi: p < o), reject Ho if z < -z or if the
p-value is less than a.
where the critical values from the standard normal distribution are denoted
by Za and Zg.

Test of Population Proportion with a Large Sample

We utilize z = (p - po)/N[po(1-po)/n] to test hypotheses on a population
proportion p with a large sample.
Where:

The sample proportion is denoted by p.

* n is the sample size; ¢ po is the estimated population proportion (derived
from Ho).
Conditions for Validity

To ensure the validity of the large sample proportion test:
1. The sample needs to be chosen at random.

2. The sample size needs to be sufficiently big so that both npo and n(1-po) >
5.

Rule of Decision

The choice criteria are the same as for the mean, evaluating the p-value
against o or comparing the computed z-statistic with the relevant critical

value.
The Connection Between Hypothesis Testing and Confidence Intervals

The formula X + zy» x (6/\n) yields a (1-0)x100% confidence range for a

population mean L.
Alternatively, if ¢ is unknown:
Zan % (sN) X +

For a population proportion p, the (1-a)x100% confidence interval is p + Zq»

x \N[P(1-p)/n].

Two-tailed hypothesis tests and confidence intervals are directly related:
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Ho is rejected if the hypothesized value Lo (or po) lies outside the confidence

interval; if it lies inside the confidence interval, Ho is not rejected.

Errors of Type I and Type 11

There are two kinds of mistakes that might happen in hypothesis testing:

1. Type I Error: False positive, or rejecting Ho when it is true

Likelihood = a (level of significance)

2. Failure to reject Ho when it is incorrect (false negative) is a Type II error.

Test power = 1 - B (likelihood of successfully rejecting a fake Ho) o
Likelihood =

A test's power can be impacted by the following factors:
» Sample size (n): Power rises with larger samples.

* Significance level (a): raising o raises the possibility of Type I error while

also increasing power.

* Effect size: Power increases with more discrepancies between the actual

parameter value and the predicted value.

* Variability: Power rises with less variability (smaller ).
4.2.5: Hypothesis Testing in Real-Life Applications
Applications in Medicine and Healthcare

Hypothesis testing is fundamental in clinical trials and medical research.
Researchers use these statistical methods to determine whether new

treatments, drugs, or medical procedures are effective.
Application: COVID-19 Vaccine Efficacy

During the COVID-19 pandemic, large-scale clinical trials used hypothesis

testing to evaluate vaccine efficacy. For instance:
e Ho: Vaccine efficacy < 50% (FDA threshold for approval)
e Hi: Vaccine efficacy > 50%

Researchers calculated: Efficacy = 1 - (Infection rate in vaccinated

group)/(Infection rate in placebo group)
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Statistical significance in these trials provided evidence for vaccine approval

and distribution.
Applications in Business and Economics
Market Research

Companies use hypothesis testing to make data-driven decisions about

products, services, and marketing strategies.
A/B Testing Example
A company testing two different website designs might use:

e Ho: There is no difference in conversion rates between designs A and

B

e Hi: There is a difference in conversion rates between designs A and

B
After collecting data, they can calculate: z = (P, - pp)/N[P(1-p)(1/na + 1/n)]
Where p = (Xa + Xp)/(n, + 1) is the pooled proportion.
Economic Policy Analysis
Economists apply hypothesis testing to evaluate policy effectiveness:

e Analyzing unemployment rates before and after policy

implementation

e Comparing economic growth across different regions with different

policies
e Assessing the impact of interest rate changes on inflation
Applications in Quality Control

Manufacturing companies employ statistical quality control to maintain
product standards. Hypothesis testing helps monitor production processes

and detect deviations.
Example: Production Line Monitoring
Consider a process producing components with a target diameter of 10 mm:

e Ho: The mean diameter = 10 mm (process is in control)
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e Hi: The mean diameter # 10 mm (process needs adjustment)

Regular sampling and testing allow for timely intervention when the process

drifts out of specification.
Applications in Social Sciences

Hypothesis testing helps researchers in psychology, sociology, and education

validate theories and evaluate interventions.

Example: Educational Method Comparison

When comparing traditional teaching methods with a new approach:
e Ho: There is no difference in student performance between methods
e Hi: The new method results in different student performance

Test scores or other performance metrics can be analyzed using appropriate

statistical tests to guide educational policy.
Environmental Applications

Scientists use hypothesis testing to monitor climate change, pollution

effects, and conservation efforts.

Example: Climate Data Analysis

Testing whether average temperatures have increased:
e Ho: The mean annual temperature has not changed
e Hi: The mean annual temperature has increased

Long-term temperature data can be analyzed to detect significant trends that

inform environmental policy.

4.2.6: Examples and Case Studies

Solved Problems

Solved Problem 1: Large Sample Test for Population Mean

Problem: According to a manufacturer, the average lifespan of its light
bulbs is at least 1000 hours. After testing 100 bulbs, a consumer advocacy
group discovers that the sample mean lifespan is 985 hours, with a sample
standard variation of 120 hours. Does the manufacturer's assertion have

evidence to refute it at a 5% significance level?

132



Solution:
Step 1: Define the hypotheses
e  Ho: p> 1000 (manufacturer's claim)

e Hi: n <1000 (consumer group's suspicion)

The test is left-tailed.

Step 2: Determine that z = (X - po)/(s/\n) = z = (985 - 1000)/(120/N100) = z
=-15/(120/10) = z = -15/12 = z = -1.25 by computing the test statistic.

Step 3: Determine the critical value For a = 0.05 in a left-tailed test, z, = -

1.645
Step 4: Make a decision Since -1.25 > -1.645, we do not reject Ho.

Step 5: Give the conclusion. There is not enough data to refute the
manufacturer's assertion that the average lifespan of their light bulbs is at

least 1000 hours at the 5% significance level.
Solved Problem 2: Large Sample Test for Population Proportion

Problem: A political analyst claims that more than 60% of voters support a
new policy. In a at random sample of 500 voters, 325 express support for the

policy. Test the analyst's claim at a 1% significance level.
Solution:
Step 1: Define the hypotheses
e Ho:p=<0.60
e Hi:p>0.60
This is a right-tailed test.
Step 2: Check the conditions for using the normal approximation
e 1npo=500x0.60=300>5
e 1n(l-po)=500x%040=200>5
The conditions are satisfied.

Step 3: Calculate the sample proportion p = 325/500 = 0.65

133

Notes




Notes

Step 4: Determine z = (p - po)/\/[po(l—po)/n] z = (0.65 -
0.60)/\/[0.60(0.40)/500] as the test statistic. 0.05/0.022 z = 227 z =
0.05/70.00048 z

Step 5: Determine the critical value For a = 0.01 in a right-tailed test, z_a =

2.33
Step 6: Make a decision Since 2.27 < 2.33, we do not reject Ho.

Step 7: Explain the conclusion. There is not enough data to back up the
analyst's assertion that over 60% of voters like the new policy at the 1%

significance level.

Solved Problem 3: Confidence Interval and Hypothesis Testing
Relationship

Problem: According to one study, college students read 300 words per
minute on average. With a standard deviation of 48 words per minute, the
mean reading speed of 64 pupils selected at at random is 312 words per
minute. To test the researcher's claim, create a 95% confidence interval for

the mean reading speed.

Answer:

First Step: Determine what the 95% confidence interval is. zy2 = 1.96 X +
Zon X (s/ND) 312 + 1.96 x (48/N64) 312 + 1.96 x (48/8) 312+ 1.96 x 6 312 +
11.76 at a 95% confidence level
The range of the 95% CI is [300.24, 323.76].

Step 2: Use the confidence interval to test the hypothesis
e Ho: p=300
e Hi:p#300

At the 5% significance level, we do not reject Ho because 300 is (very

barely) included in the confidence interval.

Step 3: Provide a conclusion The researcher's assertion that the average
reading speed is 300 words per minute cannot be refuted due to the lack of

proof. .

Solved Problem 4: Comparing Two Population Proportions
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Problem: A new teaching method is being evaluated. Of 200 students taught
using the traditional method, 140 passed the exam. Of 250 students taught
using the new method, 195 passed. At a 5% significance level, is there

evidence that the new method has a higher pass rate?
Solution:
Step 1: Define the hypotheses

e Ho: p1 > p2 (traditional method's pass rate is greater than or equal to

the new method's)
e Hi: p1 <p2 (new method has a higher pass rate)

This test is left-tailed.
Step 2: Calculate sample proportions p: = 140/200 = 0.70, p = 195/250 =
0.78

Step 3: Calculate the pooled proportion (assuming Ho is true) p = (140 +
195)/(200 + 250) = 335/450 = 0.744

Step 4: Determine z = (p1 - p2)/N[P(1-p)(1/mi + 1/n2)] as the test statistic. 0.70
- 0.78 / \[0.744(0.256)(1/200 + 1/250)] is z. [0.190464(0.005 + 0.004)] = -
0.08/Y [0.190464 x 0.009] z = -0.08/=-0.08/N0.001714 =Z = -0.08/0.0414
=7z=-1.932

Step 5: Determine the critical value For a = 0.05 in a left-tailed test, z, = -

1.645
Step 6: Make a decision Since -1.932 < -1.645, we reject Ho.

Step 7: Give the conclusion. There is enough data to draw the conclusion
that the new teaching strategy outperforms the conventional one in terms of

pass rate at the 5% significance level.
Solved Problem S: Hypothesis Testing in Real-Life Application

ProblemA pharmaceutical company creates a novel cholesterol-lowering
medication. The medication was administered to 45 high-cholesterol
individuals for three months during clinical trials. Their mean cholesterol
level was 240 mg/dL prior to therapy. The mean level was 218 mg/dL with a
standard variation of 25 mg/dL following treatment. Check to see if the

medication lowers cholesterol at a 1% significance level.
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Step 1: Define the hypotheses
e  Ho: ud > 0 (drug does not lower cholesterol)
e Hi: ud< 0 (drug lowers cholesterol)

Where pd is the mean difference (after - before).

Step 2: Calculate the mean difference and test statistic Mean difference =

218 - 240 = -22 mg/dL

Since we're testing the mean difference: z = (-22 - 0)/(25/\45) = z = -
22/(25/6.71) = z=-22/3.713 =2 z=-5.90

Step 3: Determine the critical value For a = 0.01 in a left-tailed test, z, = -

2.33
Step 4: Make a decision Since -5.90 < -2.33, we reject Ho.

Step 5: Give the conclusion. There is enough data to draw the conclusion

that the medication lowers cholesterol at the 1% significance level.

Unsolved Problems

Problem 1: Large Sample Test for Population Mean

A corporation claims that its employees work an average of 45 hours per
week. However, a labor union suspects that this number is higher. A random
sample of 100 employees shows an average weekly work time of 47.2 hours

with a standard deviation of 8.5 hours.

a) Formulate the null and alternative hypotheses.
b) Compute the test statistic.
¢) Draw a conclusion at a 5% significance level.

d) Determine and interpret the p-value.
Problem 2: Test of Population Proportion with a Large Sample

A quality control manager asserts that no more than 5% of manufactured
products are defective. However, in a random sample of 400 products, 30

are found to be defective.
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a) Define the null and alternative hypotheses.

b) Calculate the sample proportion.

c) Identify the appropriate statistical test.

d) Make a conclusion at a 1% significance level.

e) Construct a 99% confidence interval to estimate the actual proportion of

defective products.

Problem 3: Comparing Two Population Means

A researcher is comparing the effectiveness of two different standardized

test preparation methods. A sample of 60 students using Method A achieves
an average score of 78.5 with a standard deviation of 8.2, while a sample of
75 students using Method B attains an average score of 82.1 with a standard

deviation of 9.5.

a) Establish the null and alternative hypotheses to test if the mean scores
differ between the two methods.

b) Compute the test statistic.

c¢) Make a conclusion at a 5% significance level.

d) Construct a 95% confidence interval for the difference in mean scores.

Problem 4: Application in Marketing

A company wants to determine whether a new advertising campaign has
increased daily sales. Before the campaign, the average daily sales were
$12,000. After 50 days of the campaign, the average daily sales increased to
$13,200, with a standard deviation of $1,800.

a) Set up the null and alternative hypotheses to evaluate the campaign’s
effectiveness.

b) Compute the test statistic.

¢) Determine if there is sufficient evidence to conclude that the campaign
increased sales at a 5% significance level.

d) Discuss the possible errors in this hypothesis test and their consequences.

Problem 5: Case Study in Public Health

A public health authority wants to assess whether a new health education

program has increased the community’s vaccination rate. Before the
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program, the vaccination rate was 65%. After implementation, a random
sample of 300 community members reveals that 210 have received the

vaccine.

a) Define the null and alternative hypotheses.

b) Identify the appropriate statistical test.

c) Evaluate the conclusion at a 1% significance level.

d) Compute and interpret the p-value.

e) Explain the implications of committing a Type I error in this context.
Additional Considerations in Hypothesis Testing

Practical Significance vs. Statistical Significance

It's important to distinguish between statistical significance and practical

significance:

e Statistical Significance: shows that it is unlikely that the observed
findings happened by accident.
* Practical Significance: Shows that the effect is significant enough

in a real-world setting.

With large samples, even small differences can be statistically significant but
may lack practical importance. Researchers should consider the magnitude

of the effect and its real-world implications.
Effect Size Measures

Effect size measures quantify the magnitude of the difference between

groups or the strength of a relationship.
Common effect size measures include:

1. Cohen's d for comparing means: d = | - p|/c
Where o is the pooled standard deviation.
Interpretations:

o d=0.2: Small effect
o d=0.5: Medium effect

o d=0.8: Large effect
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2. Correlation coefficient (r) for measuring association: Values range
from -1 to 1, with the magnitude indicating the strength of

association.

3. Odds ratio for comparing proportions: The ratio of the odds of an

event occurring in one group to the odds of it occurring in another

group.
Multiple Testing Problem

The likelihood of producing at least one Type I error rises while performing
numerous hypothesis tests. This is referred to as the multiplicity problem or

the numerous testing problem.
Methods to address this issue include:

1. Bonferroni Correction: Adjust the significance level by dividing a

by the number of tests. a' = a/m, where m is the number of tests.

2. False Discovery Rate (FDR) Control: Controls the expected

proportion of false discoveries among all discoveries.

3. Family-Wise Error Rate (FWER) Control: Controls the

likelihood of making one or more Type I errors.
Assumptions and Robustness

The Central Limit Theorem, which permits a normal distribution to
approximate the sampling distribution, is the foundation of large sample

tests. Other presumptions, nevertheless, might still be relevant:
1. Independence: Observations should be free of each other.

2. At random Sampling: The sample should be randomly selected

from the population.

3. Large Sample Size: The sample size should be sufficiently large
(generally n > 30).

Tests are considered robust if moderate violations of assumptions still yield

reliable results.

Power Analysis and Sample Size Determination
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Notes Power analysis helps determine the sample size needed to detect an effect of

a specific size with a given level of confidence.
The power of a test (1 - B) depends on:

e Sample size (n)

e Significance level ()

o Effect size

e Variability in the population
For a test of a population mean: n = (z, + zp)? X 6%/A?
Where:

e 7, is the critical value for Type I error

e 73 1is the critical value for Type II error

e o is the population standard deviation

e Ais the minimum detectable difference
Sequential and Adaptive Testing

In some applications, especially clinical trials, sequential or adaptive testing
approaches may be used. These methods allow for interim analyses and

potential early stopping of a study based on accumulated data.
Benefits include:

o Ethical considerations (stopping a trial early if treatment shows clear

benefit or harm)
o Efficiency in resource allocation
o Flexibility in study design

However, these approaches require careful planning and appropriate
statistical adjustments to maintain the integrity of the analysis. Large sample
tests for means and proportions form the foundation of many statistical
analyses in research and real-world applications. Understanding the
principles of hypothesis testing, interpreting results correctly, and
recognizing the limitations and assumptions of these methods are essential

skills for making data-driven decisions. The examples and case studies
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presented in this document illustrate how these statistical techniques can be
applied across various fields to answer important questions and guide
decision-making processes. By combining theoretical knowledge with
practical applications, researchers and professionals can effectively utilize
hypothesis testing to extract meaningful insights from data and make

informed conclusions about populations based on sample evidence.
Practical Applications of Hypothesis Testing

Hypothesis testing forms the backbone of inferential statistics across
numerous fields. Here are practical applications based on the key concepts

you've outlined:
Banking and Finance

Credit Scoring Models: Banks develop hypothesis tests to determine if new
scoring algorithms significantly improve default prediction rates. The null
hypothesis might state that the new algorithm performs no better than the
existing one. Investment Strategies: Portfolio managers test hypotheses
about whether certain investment approaches yield significantly higher
returns. They define parameters (like mean return) and calculate statistics

from market data to test claims about performance.

Fraud Detection: Financial institutions analyze transaction patterns using
hypothesis testing to identify anomalous behaviors. Critical regions are
established where unusual activity triggers additional verification, balancing
false positives (legitimate transactions flagged as fraud) against false

negatives (missed fraud).
Healthcare

e Pharmaceutical Trials: Drug developers test whether new
medications produce significant improvements over placebos or
existing treatments. The alternative hypothesis typically suggests the
new drug is more effective, while the null hypothesis indicates no
difference.

e Medical Screening: Hospitals analyze the sensitivity and specificity
of diagnostic tests through hypothesis testing. They carefully
monitor Type I errors (false positives) and Type II errors (false
negatives), adjusting significance levels based on the severity of

missing a diagnosis versus unnecessary treatment.
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Public Health Monitoring: Health departments use proportion tests
to determine if disease rates in specific populations differ
significantly from baseline levels, helping identify emerging

outbreaks early.

Manufacturing

Quality Control: Manufacturers implement statistical process control
using hypothesis testing to monitor if production remains within
acceptable parameters. Sampling distributions help them understand
expected variation in measurements.

Product Reliability: Engineers test whether design improvements
significantly extend product lifespan. Using standard error
calculations, they determine if observed differences in durability are
statistically meaningful or due to random variation.

Supply Chain Optimization: Companies analyze whether new
logistics approaches significantly reduce delivery times, using large
sample tests when working with historical shipment data.

Marketing and Retail

A/B Testing: E-commerce sites test whether different webpage
designs significantly impact conversion rates. Null hypotheses
typically assume no difference between designs, with critical
regions determined by desired significance levels.

Pricing Strategy: Retailers test hypotheses about optimal price
points by analyzing sales data across different store locations. The
parameter of interest is usually mean revenue or profit, with
statistics calculated from sample data.

Customer Retention: Subscription businesses test whether new
engagement programs significantly improve retention rates, using
proportion tests to determine if differences are statistically

meaningful.

Agriculture

Crop Yield Improvement: Farmers test whether new fertilizers or
farming techniques significantly increase yields. Sampling
distributions help account for natural variation in growing

conditions.
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e Pest Resistance: Agricultural researchers use hypothesis testing to
determine if certain crop varieties show significantly improved
resistance to pests, defining parameters like infestation rates.

e Soil Quality Management: Land managers test hypotheses about
whether soil amendment practices significantly improve nutrient
content, using appropriate significance levels to guide investment

decisions.
Environmental Science

e C(Climate Change Analysis: Researchers test whether observed
temperature changes differ significantly from historical patterns.
The null hypothesis typically represents natural variation, while the
alternative suggests human influence.

e  Water Quality Monitoring: Environmental agencies use hypothesis
testing to determine if pollutant levels exceed regulatory thresholds,
carefully defining significance levels to balance environmental
protection against false alarms.

e Conservation Efforts: Wildlife biologists test whether population
management strategies significantly increase endangered species
numbers, using appropriate statistical methods to account for

sampling challenges in wildlife counts.
Technology

e Algorithm Performance: Software engineers use hypothesis testing
to determine if new algorithms significantly improve processing
speed or accuracy. Critical regions help them decide when
improvements are substantial enough to implement.

e User Experience: Product designers test whether interface changes
significantly improve user satisfaction or task completion rates,
drawing conclusions from sample data to infer population-wide
effects.

e Network Reliability: Telecommunications companies test
hypotheses about whether infrastructure upgrades significantly
reduce outage rates, using large sample tests to analyze performance

data.
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Education

Teaching Methods: Educators test whether new instructional
approaches significantly improve student outcomes. The parameter
of interest is typically mean test scores, with statistics calculated
from class samples.

Admissions Criteria: Universities analyze whether certain admission
factors significantly predict student success, using hypothesis testing
to evaluate the predictive power of various metrics.

Resource Allocation: School districts test hypotheses about whether
additional funding in specific areas significantly improves
educational outcomes, guiding budget priorities based on statistical

evidence.

Academic Research

Psychology Studies: Researchers test whether experimental
conditions produce significant differences in human behavior or
cognitive processing, carefully defining null and alternative
hypotheses to align with research questions.

Social Science Research: Social scientists use hypothesis testing to
determine if demographic factors significantly influence social
outcomes, employing appropriate statistical methods based on
sampling distributions.

Scientific Discoveries: Researchers across disciplines test whether
observed phenomena differ significantly from theoretical
predictions, using significance levels to determine when findings

warrant publication and further investigation.

In all these applications, practitioners must carefully:

Define clear parameters and measurable statistics

Formulate appropriate null and alternative hypotheses

Understand the underlying sampling distributions

Select appropriate significance levels based on the consequences of

Type I and Type II errors

Apply the correct statistical tests based on sample size and data

characteristics
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Interpret results with consideration of both statistical and practical Notes

significance

By mastering these fundamentals of hypothesis testing, professionals across
diverse fields can make more informed, evidence-based decisions while

properly accounting for uncertainty and random variation.
Multiple-Choice Questions (MCQs)

1. A hypothesis is a:
a) Conclusion based on data
b) Statement about a population parameter
¢) At random guess

d) Statistical test
Answer: b) Statement about a population parameter

2. The null hypothesis (Ho) represents:
a) The claim being tested
b) The opposite of the research hypothesis
¢) A sample statistic

d) A confirmed conclusion
Answer: a) The claim being tested

3. The alternative hypothesis (H1) is:
a) The hypothesis we seek evidence for
b) The same as the null hypothesis
¢) Always accepted
d) A parameter of the population

Answer: a) The hypothesis we seek evidence for

4. The likelihood of rejecting a true null hypothesis is known as:
a) Type I error
b) Type II error
¢) Confidence level

d) Significance level
Answer: a) Type I error

5. The likelihood of accepting a false null hypothesis is called:
a) Type I error
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¢) Level of significance

d) Power of test
Answer: b) Type II error

6. The level of significance (o) represents:
a) likelihood of making Type I error
b) likelihood of making Type II error
¢) The acceptance region

d) The sampling error
Answer: a) likelihood of making Type I error

7. A one-tailed test is used when:
a) We are testing for an extreme deviation in one direction
b) The population mean is unknown
c¢) sample size is large

d) hypothesis is two-sided
Answer: a) We are testing for an extreme deviation in one direction

8. two-tailed test is applied when:
a) population standard deviation is unknown
b) critical region is in both tails of the distribution
¢) sample size is large

d) likelihood is greater than 1
Answer: b) critical region is in both tails of the distribution

9. The Z-test is used when:
a) sample size is small
b) population variance is known
¢) sample variance is unknown

d) data is not normally distributed
Answer: b) population variance is known

10. A large sample test for single mean is conducted using:
a) Chi-square test
b) Z-test
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c) t-test
d) F-test

Answer: b) Z-test

Short Answer Questions

1.

2.

Define hypothesis testing and explain its purpose.
Differentiate between null and alternative hypotheses.
What are Type I and Type II errors? Provide an example.
Explain one-tailed and two-tailed tests with examples.
What is the level of significance, and why is it important?
How do sampling distributions affect hypothesis testing?
What is a critical region, and how is it determined?
Explain the concept of standard error in hypothesis testing.

Describe the Z-test and its applications.

10. When should a large sample test for a single proportion be used?

Long Answer Questions

1.

2.

Explain the steps involved in hypothesis testing with an example.
Derive the standard error formula for mean and proportion.
Discuss one-tailed and two-tailed tests with real-life applications.

Explain Type I and Type II errors and their impact on decision-

making.

How is Z-test used for hypothesis testing of means and proportions?

Provide examples.

Discuss the role of significance level (o) and confidence intervals in

hypothesis testing.
Explain critical region and p-value with an example.

How can hypothesis testing be applied in business and healthcare?
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Notes 9. Compare and contrast parametric and non-parametric tests in

hypothesis testing.

10. Solve a numerical problem involving large sample test for a mean or

proportion.
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MODULE 5

Unit 5.1
Critical region, Level of significance, Onetailed and
two tailed tests, Two typesof errors

Objectives

e Understand the fundamental concepts of hypothesis testing as a
systematic method for making decisions about population
characteristics based on sample information.

e Learn to formulate null and alternative hypotheses that represent
competing statements about population parameters.

e Comprehend the significance level (o) and its role in determining
the probability of committing a Type I error.

e Distinguish between critical regions, critical values, and their
importance in hypothesis testing decision-making.

o Differentiate between one-tailed and two-tailed tests and understand

appropriate contexts for each.

5.1.1: Fundamentals of Hypothesis Testing

Hypothesis testing is one of the foundations of statistical inference — the
formal framework used by statisticians and researchers to make general
statements about populations based on information contained in the sample.
At its core, hypothesis testing is a systematic method for making decisions
about population characteristics based on limited information. This starts by
creating a pair of hypotheses that contradict each other on a single
characteristic of the population; these are usually on a parameter (mean,
proportion, or variance). The competing statements are hypotheses regarding
two different views of the population, and the evidence from our sample will
help us determine which hypothesis better explains our observed evidence.
Hypothesis testing is so beautiful. Using a systematic approach, hypothesis
testing applies the principles of mathematics to establish if the difference
observed is significant or can be explained by chance resulting from random

sampling. We will discuss the key notions that form the basis of hypothesis
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testing to help the reader gain insight on critical regions, significance levels,
types of tests and errors in statistical decisions (i.e., false positive and false
negative). Some of these may seem a bit technical, they help readers
understand how statistical decisions are made and how to assess the

reliability and limitations of these decisions.
The Framework Beyond Statistical Hypotheses

Before examining the details of hypothesis testing, we need to understand
what statistical hypotheses are. Hypothesis TestingA statistical hypothesis is
a formal statement about a population parameter (such as mean, proportion,
variance, ...etc) or about the distribution of a population. However, in our
statistical context, a hypothesis has to be defined in a way so that we can
test it using statistical procedures based on mathematics and probability.
Hypothesis testing always involves working with two alternative hypotheses
representing potential realities. The null hypothesis (Ho) is the default
position, the status quo, the statement that there is no effect, no difference,
no relationship. In general, it represents the existing belief or the fact to be
challenged. In medicinal trials, the null hypothesis may state that “a drug has
no effect on recovery time” or that “recovery time on the drug is equal to
recovery time without the drug.” The statement being directly tested in the
statistical procedure is known as the null hypothesis. The alternative
hypothesis (denoted as Hi or H.) is the position that stands in direct
opposition to the null hypothesis. The alternative hypothesis is often the one
that the researcher believes is true or hopes to show. In our medication
example, the alternative hypothesis would say something like, “the
medication decreases recovery time,” or “the recovery time for the
medication is different from that of the recovery time without it.” We cannot
directly test the alternative hypothesis; we obtain acceptance through
default by rejecting the null hypothesis if the evidence suggests doing so.
These competing hypotheses provide a decision framework such that our
statistical procedure will either result in our rejection of the null hypothesis
(thereby accepting the alternative) or fail to reject the null hypothesis (and

maintain our position of the status quo).
Critical Region:

Ho is said to be rejected if and only if the test statistic takes a value in a so-

called critical set (or rejection region) associated with the null hypothesis.
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Critical region is the collection of the values of the test statistic that cause
rejection of the null. That is to say, if our calculated test statistic from the
sample lies in this critical region we reject the null, otherwise we do not
reject. Critical region is the region whose determination depends on many
factors First, it relies on the theory of the distribution of the test statistic
under the null hypothesis. There are various test statistics (z, t, chi-square or
F) that follow different distributions, and the shapes of these distributions
dictate the location and size of the critical region. Second, the critical region
size is affected by the level of significance (a); a larger o means a larger
critical region, i.e., more likely to reject the null hypothesis. Third, whether
or not the test is one-tailed or two-tailed influences the distribution of the
critical region on the tails of the distribution. Critical values are the
thresholds separating the rejection region from the acceptance region in
hypothesis testing. Those are the location measures of the test statistic;
These values are the points on the distribution where the critical region is
separated from the non-critical region. Critical values for commonly used
distributions such as normal, t, chi-square, and F distributions hand in hand
can be looked up in statistical tables or be computed using statistical
software. Learn how to calculate and interpret critical values is an important

skill for correctly applying hypothesis tests and interpreting the results.
P-Value: One Number To Rule Them All

The comparison of observed to expected frequencies leads to the calculation
of p-values and significance levels, where significance level (a (alpha)) is
the accepted level of probability for rejecting a null hypothesis that is true
(Type I Error) in hypothesis testing. To summarize, o is the probability of
falsely claiming an effect or difference exists when it does not. For example,
if a researcher desires their overallo set at 0.05, this means they are
accepting an error rate of 5% to reject the null when in fact it is true.
Consequently, the choice of a significance level has far-reaching
implications for hypothesis-testing actions and interpretations made on its
outcomes. Values of a often used are 0.10, 0.05, and 0.01, with 0.05 being
most typically used across scientific fields. A significance level of 0.05
represents a compromise between the risks of Type I error (which is
rejecting, when we should not) and Type II error (which is do not reject,
when we should). In more stringent fields or applications, a lower a value

may be required, such as 0.01, thus only allowing a 1% risk of false
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rejection. In contrast, exploratory research or pilot studies could use a more
liberal a such as 0.10 to obtain a 10% risk of false rejection to avoid missing
an effect that could be substantial enough to warrant further testing. The
critical region depends on the chosen significance level. Increasing o
produces a wider critical region, making null hypothesis rejection easier and
therefore requiring less evidence, while decreasing o produces a narrower
critical region, making rejection harder and thus requiring greater evidence.
This reflects the qualitative trade-off in hypothesis testing; as the risk of one
kind of mistake (Type I) goes down, the other type (Type II) goes up.
Researchers need to evaluate the trade-off between type I and type Il errors
in their specific research questions, contexts, and design in a context tailored

to their work.
Directing Our Focus: One-Tailed vs Two-Tailed Tests

Based on the direction of the alternative hypothesis, the hypothesis test can
be classified as one-tailed (directional) or two-tailed (non-directional),
which affects the definition of the critical region and how the results are
interpreted. This difference indicates whether the researcher wants to detect
only a direction of difference (one-tailed) or any difference regardless of
direction (two-tailed). The alternative hypothesis in a one-tailed test
represents the directionality of the effect, stating that the population
parameter is either less than or greater than the value stated in the null
hypothesis. For instance, a researcher may suspect that using a new
pedagogy raises test scores (Hi: pu > o) or that using a new medication
decreases recovery time (Hi: p < po). The critical region is thus completely
within one tail of the distribution—the upper (right) tail, for a "greater than"
alternative, or the lower (left) tail, for a "less than" alternative. If theory,
previous research, or logical constraints suggest that an effect or difference
can only exist in one direction, then the one-tailed test is appropriate and
provides greater statistical power for detecting the effect compared to the
two-tailed test using the same level of significance. A two-tailed test uses an
alternative hypothesis that is not directional; it states only that the
population parameter is not equal to the null hypothesis value (Hi: p # po).
For example, a researcher may hypothesize that a new drug has an effect on
recovery time, but they may not specify whether that effect decreases or
increases recovery time. Here, the rejection region or critical region is

divided into two tails in each of which, we have placed a2 as our critical
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value. On the other hand, two-tailed tests are more conservative and should
be used when there is not a strong theoretical reason to predict the effect to
be positive or negative or when the researcher wishes to detect any

departure from the null hypothesis, regardless of its direction.

The implications of choosing one-tailed versus two-tailed tests are critical
both in terms of statistical power and interpretation. However, one-tailed
tests have the advantage of providing more power to detect an effect in the
specified direction, but they are unable to detect effects in the opposite
direction. While two-tailed tests are less powerful at detecting an effect in a
particular direction, they protect against the loss of power to detect
unanticipated effects in the opposite direction. Deciding which of the two
approaches is more appropriate for a particular context, researchers need to
think through their research questions, the theoretical underpinnings, and

what a potential Type I or Type II error entails.

5.1.2: Recognizing the Two Types of Errors: An Essential part of
Decision-Making

Hypothesis testing is a fundamental concept in statistics and researchers
must be able to effectively mitigate the risks of making an error when
drawing conclusions based on sample data. There are two types of
hypothesis testing errors: First, when a false null hypothesis is rejected, and
the second when the null hypothesis is not rejected despite true null

hypothesis.

Type 1 error: Finding a difference in the null hypothesis when that null
hypothesis is true: A false positive finding. Thus, o — the significance level
you choose for the test — is the probability of committing a Type I error.
Type I error occurs who make a Type I error: A drug company grows a
clinical trial and incorrectly concludes that their drug is effective when it is
not (the drug is useless), in this case they used o = 0.05. Type I errors can
result in the adoption of ineffective treatments (including drugs),
inappropriate process changes, or misguided research being published as
valid evidence. In medicine, for instance, erroneous positive results may
result in prescribing harmful treatments to patients, which could be
extremely damaging. On the other hand, a Type II error occurs when the null
hypothesis is not rejected when it is actually false, a “false negative”

finding. The Type II error probability (B) is a function of several parameters
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(a, sample size, effect size, and population variability). FTA-MultIX (Type 2
error detection) If a medical screening test fails to diagnose a disease that is
present, there is happened the Type II error. Type Il errors may lead to
missed treatment opportunities, failure to adopt beneficial changes, or failing
to recognize real effects that warrant further inquiry. The power of a
statistical test (1 — P) describes the likelihood of rejecting a false null
hypothesis and as such is the capacity of a test to detect a true effect (when
one exists). There is an underlying tension between Type I and Type II
errors, in that for a given sample size, decreasing the risk of one type of
error generally increases the risk of the other. Lowering o (requiring more
evidence to reject the null when that is false) increases P (increasing the
chance of missing a real effect), whereas increasing a (requiring less
evidence to reject the null when that is false) reduces B (upper bound to
detect a real effect when it exists). This interplay highlights the need for
careful research design and, where appropriate, sample size determination
via power analysis so that these opposing risks are weighed against one
another relative to the situation and the implications associated with either

decision in a given research context.
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Unit - 5.2
Tests of significance: Large sample tests for single mean, Single
proportion

Hypothesis Testing Steps: A Systematic Procedure

This is a systematic process developed to obtain objectivity and reliability
to the result deduct from sample data. Such systematic thinking lays out a
clear roadmap for exploring research inquiries and taking empirically
justified actions. This journey starts with the creation of a null and
alternative hypothesis. The competing statements must be clearly defined,
mutually exclusive, and focused on the research question. The null
hypothesis usually represents the existing state of affairs or a proposition of
no statistical difference, whereas the alternative hypothesis represents the
researcher’s hypothesis, or the position that is contrary to the null. In the
case of a test to see if a new medication reduces blood pressure, for
example, the null might be "the medication has no effect on blood pressure"
(Ho: p = o) and the alternative might be "the medication reduces blood
pressure” (Hi: p < po) After formulating the hypotheses, the researcher
chooses a suitable significance level (o), this is a probability threshold that
the researcher is willing to accept for rejecting the null hypothesis when it
is, in fact, true. This should be determined prior to conducting data
collection and analysis, based on the implications of Type I and Type II
errors in the particular research context. Five percent, one percent, and ten
percent are common values for levels of significance, but five percent is
used most broadly across disciplines. The next step is to choose the test
statistic, a mathematical tool used to assess the evidence against the null
hypothesis. When deciding on which test statistic to use, one has to take into
account factors such as if the data is independent or paired data, the sample
size and the type of parameter being tested (mean, variance, proportion etc.)
and assumptions made about the distribution of the population. Examples of
test statistics include the z-statistic, t-statistic, chi-square statistic and F-
statistic, which are used in specific circumstances. Once the test statistic is
selected, the investigator establishes the critical region, that is the collection
of values of the test statistic that would cause rejection of the null
hypothesis. Whether or not you can reject a null hypothesis is determined by

the significance level, the distribution of the test statistic under the null
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hypothesis, and whether the test is one-tailed or two-tailed. A hypothesis

test-related term, the critical region sets the decision rule.

Next, the researcher computes the value of the test statistic from the sample
data using the relevant formula associated with the selected test statistic. As
in hypothesis testing, a decision is then made by comparing the value to the
critical region: if the test statistic is in the critical region the null hypothesis
is rejected in favor of the alternative. In the last stage, the results are
interpreted based on the original research question. This interpretation
should balance the limitations of the test, describe what the decision means
in practice, and address common misinterpretations, such as confusing a
failure to reject Ho with proving Ho to be true. Also, a full interpretation
takes into account the practical import of the findings as well as their
statistical significance and may include effect size measures that quantify the

extent of the observed differences or relationships.
Solved Problems:
Problem 1: Testing a Claim About a Population Mean

A manufacturer claims their light bulbs have a mean lifetime of at least
1,000 hours. A quality control engineer tests this claim by randomly
sampling 36 bulbs, which have a mean lifetime of 950 hours with a
standard deviation of 120 hours. The engineer needs to verify the

manufacturer's claim at a 5% significance level.
Step 1: State the Hypotheses

Ho: n> 1000 hours (the manufacturer's claim)

Hi: p < 1000 hours (the alternative hypothesis)

This is a lower-tailed test since we're testing whether the true mean lifetime

is less than the claimed value.

Step 2: Select the Significance Level

-0=0.05

Step 3: Calculate the Test Statistic

Since our sample size is large (n = 36), we can use the z-statistic:

z=(X - po)/(s/\n)
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z=(950 - 1000)/(120/7/36) Notes
z=-50/20

z=-2.5

Step 4: Determine the Critical Value

For a lower-tailed test with oo = 0.05, the critical value is -1.645.

The critical region is z < -1.645.

Step 5: Make a Decision

Since our test statistic z = -2.5 is less than the critical value -1.645, it falls in

the critical region. Therefore, we reject the null hypothesis.
Step 6: State the Conclusion

There is sufficient evidence at the 5% significance level to reject the
manufacturer's claim. The data suggests that the mean lifetime of the light
bulbs is less than the claimed 1,000 hours. Based on our sample, the average
lifetime is approximately 950 hours, which is statistically significantly lower

than the advertised value.
Problem 2: Testing for a Difference from a Known Value

A psychologist wants to determine if students in an experimental
educational program have an average 1Q different from the national
average of 100. A random sample of 25 students from this program
yields a mean IQ score of 104 with a standard deviation of 12. The
psychologist will test this hypothesis at the 1% significance level.

Step 1: State the Hypotheses
Ho: p =100 (The mean IQ equals the national average)
Hi: p # 100 (The mean IQ differs from the national average)

This is a two-tailed test since we're interested in detecting a difference in

either direction.
Step 2: Select the Significance Level
-a=0.01

Step 3: Calculate the Test Statistic
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Since the population standard deviation is unknown and we have a small

sample size (n = 25), we use the t-statistic:
t= (X - po)/(s/\n)

t= (104 - 100)/(12N25)

t=4/2.4

t=1.667

Step 4: Determine the Critical Values

For a two-tailed test with a = 0.01 and degrees of freedom df =n - 1 =24,

the critical values are £2.797.
The critical regions are t <-2.797 or t > 2.797.
Step 5: Make a Decision

Since our test statistic t = 1.667 falls between -2.797 and 2.797, it is not in

the critical region. Therefore, we fail to reject the null hypothesis.

At the 1% significance level, there is insufficient evidence to conclude that
the mean 1Q of students in the experimental educational program differs
from the national average of 100. While the sample mean (104) is
numerically higher than 100, this difference is not statistically significant
given our small sample size and strict significance level. The psychologist
might consider using a less stringent significance level (e.g., 5%) or

gathering a larger sample to detect a potentially meaningful difference.
Problem 3: Testing a Claim About a Population Proportion

A manufacturing company claims that at most 5% of their production is
defective. A quality assurance manager randomly selects 200 items and finds
15 defective items. The manager wants to test the company's claim at a 5%

significance level.

Step 1: State the Hypotheses

Ho: p <0.05 (The company's claim that the defect rate is at most 5%)
Hi: p > 0.05 (The defect rate exceeds the company's claim)

This is an upper-tailed test since we're examining whether the true

proportion exceeds the claimed maximum.
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Step 2: Select the Significance Level
-a=0.05
Step 3: Calculate the Test Statistic

Since we're testing a proportion with a large sample size (n = 200), we use

the z-statistic:

Sample proportion: p = 15/200 = 0.075 (7.5%)
Claimed proportion: po = 0.05 (5%)

2= (p - po)/V[po(1-po)/n]

z=(0.075 - 0.05)/N[0.05(0.95)/200]
z=10.025/0.0154

z=1.623

Step 4: Determine the Critical Value

For an upper-tailed test with a = 0.05, the critical value is 1.645.
The critical region is z > 1.645.

Step 5: Make a Decision

Since our test statistic z = 1.623 is less than the critical value 1.645, it does

not fall in the critical region. Therefore, we fail to reject the null hypothesis.
Step 6: State the Conclusion

At the 5% significance level, there is insufficient evidence to contradict the
company's claim that at most 5% of their production is defective. Although
the observed defect rate (7.5%) is numerically higher than the claimed
maximum (5%), this difference is not statistically significant and could be

attributed to sampling variation.

However, the test statistic (1.623) is very close to the critical value (1.645),
indicating that the result is borderline. The quality assurance manager might
want to continue monitoring the production process or collect a larger

sample to reach a more definitive conclusion.

Problem 4: Testing the Effectiveness of a New Teaching Method
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An educational researcher has developed a new teaching method that she
claims increases students' test scores. The traditional teaching method yields
a mean score of 70 points. The researcher tests her new method on a random
sample of 20 students and finds a mean score of 75 points with a standard
deviation of 10 points. She wants to test if the new method is effective at the

1% significance level.

Step 1: State the Hypotheses

Ho: 1 < 70 (The new method does not increase scores)
Hi: p> 70 (The new method increases scores)

This is an upper-tailed test since we want to determine if the new method

produces higher scores.

Step 2: Select the Significance Level
-a=0.01

Step 3: Calculate the Test Statistic

Since we have a small sample size (n = 20) and the population standard

deviation is unknown, we use the t-statistic:
t= (X - po)/(s/\n)

t= (75 - 70)/(10/N20)

t=15/2.236

t=2236

Step 4: Determine the Critical Value

For an upper-tailed test with o = 0.01 and degrees of freedom df =n - 1 =
19, the critical value is 2.539.

The critical region is t > 2.539.
Step 5: Make a Decision

Since our test statistic t = 2.236 is less than the critical value 2.539, it does

not fall in the critical region. Therefore, we fail to reject the null hypothesis.

Step 6: State the Conclusion

160



At the 1% significance level, there is insufficient evidence to support the Notes
researcher's claim that the new teaching method increases test scores.
Although the sample mean (75) is higher than the traditional method's mean
(70), this difference is not statistically significant at the strict 1% level. It's
worth noting that the test statistic (2.236) is relatively close to the critical
value (2.539), suggesting that there might be a meaningful effect. The

researcher could consider:
1. Testing at a less stringent significance level (e.g., 5%)
2. Increasing the sample size to gain more statistical power

3. Evaluating whether the 5-point increase has practical significance, even if

it's not statistically significant at the 1% level
Statistical Hypothesis Tests Solutions

Problem 8.5: Problem Statement: A manufacturer claims that the mean
weight of their product is 500 grams. A random sample of 50 products has a
mean weight of 495 grams with a standard deviation of 15 grams. Test

whether the manufacturer's claim is valid at a 5% level of significance.
Solution:
1. State the hypotheses:
Ho: p =500 (The mean weight is 500 grams)
Hi: p# 500 (The mean weight is not 500 grams)

Determine the significance level:

a=0.05
3. Calculate the test statistic:
X =495
to =500
s=15
n=>50

Z=(X - o) / (sn) = (495 - 500) / (15N50) = -5/ (15/7.071) = -5/ 2.121 = -
2.36
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4. Find the critical values (two-tailed test):
For a.=0.05, Zo/2) = Z0.025)=+1.96
Critical values are -1.96 and 1.96

5. Make a decision:
|Z| =1-2.36] =2.36 > 1.96
Therefore, we reject the null hypothesis.

6. Interpret the results: There is sufficient evidence at the 5%
significance level to conclude that the mean weight of the product is not 500
grams as claimed by the manufacturer. The sample data suggests that the

actual mean weight is different from the claimed value.
Problem 8.6

Problem Statement: A medical researcher claims that a new treatment
reduces the recovery time compared to the standard treatment, which has a
mean recovery time of 14 days. A sample of 15 patients treated with the new
method has a mean recovery time of 12.5 days with a standard deviation of

2.8 days. Test the researcher's claim at a 5% level of significance.
Solution:
1. State the hypotheses:

Ho: p = 14 (The mean recovery time is equal to 14 days)

Hi: p < 14 (The mean recovery time is less than 14 days) [Left-

tailed test since we're testing if it "reduces" recovery time]

2. Determine the significance level:
a=0.05

3. Calculate the test statistic:
x=12.5
po =14
s=2.8
n=15
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Since n < 30, we should use the t-distribution instead of Z-distribution:

t=(X - o)/ (s/n) = (12.5 - 14) / (2.8/N15) = -1.5 / (2.8/3.873) = 1.5/ 0.723
=207

Degrees of freedom=n-1=15-1=14
4. Find the critical value (left-tailed test):

For o= 0.05 with df = 14, ta) = t0.05,=-1.761
5. Make a decision:

t=-2.07 <-1.761

Therefore, we reject the null hypothesis.

6. Interpret the results: There is sufficient evidence at the 5%
significance level to support the researcher's claim that the new treatment
reduces the recovery time compared to the standard treatment. The sample

data suggests that the new treatment is effective in reducing recovery time.
Problem 8.7

Problem Statement: A quality control engineer wants to test whether the
proportion of defective items in a production process exceeds 3%. In a
random sample of 300 items, 12 are found to be defective. Conduct the

appropriate hypothesis test at a 1% level of significance.
Solution:
1. State the hypotheses:

Ho: p =0.03 (The proportion of defective items is 3%)

Hi: p > 0.03 (The proportion of defective items exceeds 3%) [Right-

tailed test]

2. Determine the significance level:
a=0.01

3. Check the conditions:

npo = 300(0.03)=9>5

n(1-po) = 300(0.97) =291 > 5
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Conditions are satisfied for using the Z-test for proportions.
4. Calculate the test statistic:

p=12/300=10.04

po=0.03

n=300

Z = - po) / V[po(1-po)/n] = (0.04 - 0.03) / V[(0.03)(0.97)/300] = 0.01 /
\[0.0291/300] = 0.01 / /0.000097 = 0.01 / 0.00985 = 1.02

5. Find the critical value (right-tailed test):
For a=0.01, Zs = Zo.o1 = 2.33
6. Make a decision:
Z=1.02<2.33
Therefore, we fail to reject the null hypothesis.

7. Interpret the results: There is insufficient evidence at the 1%
significance level to conclude that the proportion of defective items exceeds
3%. The observed proportion of 4% defective items is not statistically

significantly higher than the 3% threshold at the 1% significance level.
Problem 8.8

Problem Statement: An educational psychologist claims that the mean score
of students who receive tutoring is different from the mean score of students
who do not receive tutoring, which is 65. A random sample of 30 students
who received tutoring has a mean score of 68.5 with a standard deviation of

8.2. Test the psychologist's claim at a 5% level of significance.
Solution:
1. State the hypotheses:

Ho: p = 65 (The mean score of tutored students is equal to 65)

Hi: p # 65 (The mean score of tutored students is different from 65)
[Two-tailed test]

2. Determine the significance level:

o=0.05
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3. Calculate the test statistic:

X=68.5
Mo =65
s=82
n=30

Since n = 30, we can use the Z-test:

Z=(X - o) / (sn) = (68.5 - 65) / (8.2N30) = 3.5 / (8.2/5.477) = 3.5 / 1.497
=234

4. Find the critical values (two-tailed test):
For 0.=0.05, Zu2 = Zoo2s = £1.96
Critical values are -1.96 and 1.96

5. Make a decision:
|Z|=2.34|=2.34>1.96
Therefore, we reject the null hypothesis.

6. Interpret the results: There is sufficient evidence at the 5%
significance level to support the psychologist's claim that the mean score of
students who receive tutoring is different from the mean score of students
who do not receive tutoring (65). The sample data suggests that tutoring

does have an effect on student scores.

Problem 8.9: A company claims that at least 80% of its customers are
satisfied with its service. In a random survey of 150 customers, 112 reported

being satisfied. Test the company's claim at a 5% level of significance.
Solution:
1. State the hypotheses:

Ho: p = 0.80 (The proportion of satisfied customers is 80%)

Hi: p < 0.80 (The proportion of satisfied customers is less than 80%)
[Left-tailed test since we're testing if it's less than the claimed "at least

80%"]

2. Determine the significance level:
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3. Check the conditions:

npo = 150(0.80) =120 > 5

n(1-po) = 150(0.20)=30>5

Conditions are satisfied for using the Z-test for proportions.
4. Calculate the test statistic:

p=112/150 = 0.747

po=10.80

n=150

Z = (p - po) / \[po(1-po)/n] = (0.747 - 0.80) / V[(0.80)(0.20)/150] = -0.053 /
V[0.16/150] = -0.053 / N0.00107 = -0.053 / 0.0327 = -1.62

5. Find the critical value (left-tailed test):
For a.=0.05, Z@y = Z0.05) = -1.645
6. Make a decision:
Z=-1.62>-1.645
Therefore, we fail to reject the null hypothesis.

7. Interpret the results: There is insufficient evidence at the 5%
significance level to conclude that the proportion of satisfied customers is
less than 80%. The company's claim that at least 80% of its customers are
satisfied with its service cannot be rejected based on the available sample

data.
Problem 7.5

A company claims the mean salary is $60,000 per year, but a labor union
suspects it's less. A sample of 50 employees shows a mean of $58,500 with

standard deviation $5,000. Test at 1% significance level.
Solution:
1. Hypotheses:

Ho: p = $60,000 (The mean salary is $60,000)
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Hi: 1 < $60,000 (The mean salary is less than $60,000) Notes
2. Significance level: a = 0.01
3. Test statistic:

X =$58,500

1o = $60,000

s = $5,000

n=>50

Z = (X - mo) / (s"\n) = ($58,500 - $60,000) / ($5,000N50) = -$1,500 /
$707.11 =-2.121

4. Critical value (left-tailed test):
Fora=0.01, Zy=Zo01 =-2.33
5. Decision:
Z=-2.121>-233
Therefore, we fail to reject the null hypothesis.

6. Interpretation: There is insufficient evidence at the 1% significance

level to conclude that the mean salary of employees is less than $60,000.
Problem 7.6

The mean height of a plant species is claimed to be 25 cm. A botanist
believes a new fertilizer can increase this height. After application, a sample
of 40 plants has mean height 26.2 cm with standard deviation 3.8 cm. Test at

5% significance level.

Solution:

1. Hypotheses:
Ho: p =25 cm (The fertilizer does not increase height)
Hi: p> 25 cm (The fertilizer increases height)

2. Significance level: a = 0.05

3. Test statistic:
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X =26.2 cm

Mo =25 cm
s=38cm
n =40

Z=(X - o)/ (s\Nn)=(26.2 - 25) / (3.8/N40)= 1.2/ 0.601 = 1.997

4, Critical value (right-tailed test):

For a.=0.05, Zo = Zo.0s = 1.645
5. Decision:

Z=1.997>1.645

Therefore, we reject the null hypothesis.
6. Interpretation: There is sufficient evidence at the 5% significance
level to conclude that the fertilizer is effective in increasing the mean height
of the plants.
Problem 7.7

A factory manager claims the defect rate is at most 3%. In a sample of 500

items, 20 are defective. Test at 5% significance level.

Solution:

Hypotheses:

Ho: p =0.03 (The defect rate is 3%)

Hi: p>0.03 (The defect rate is greater than 3%)
Significance level: a = 0.05

Check conditions:

npo =500 x0.03=15>5

n(1-po) =500 x 0.97 =485>5

Conditions are satisfied.

Test statistic:

p=20/500=0.04
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po=0.03

n=500

Z = (p - po) / V[po(1-po)/n] = (0.04 - 0.03) / \[0.03(0.97)/500] = 0.01 /
0.00762 =1.312

7.

Critical value (right-tailed test):

For 0.=0.05, Zo, = Zo.0s = 1.645

Decision:

Z=1.312<1.645

Therefore, we fail to reject the null hypothesis.

Interpretation: There is insufficient evidence at the 5% significance

level to conclude that the defect rate is greater than 3%.

Problem 7.8

A phone manufacturer claims mean battery life is 15 hours. A consumer

organization tests 64 phones and finds mean battery life of 14.6 hours with

standard deviation 1.6 hours. Test at 5% significance level.

Solution:

Hypotheses:

Ho: p = 15 hours (The mean battery life is 15 hours)
Hi: p # 15 hours (The mean battery life is not 15 hours)
Significance level: a = 0.05

Test statistic:

X = 14.6 hours
po = 15 hours
s = 1.6 hours
n=64

Z=(X- o)/ (sNn)=(14.6 - 15) / (1.6/N64)=-0.4/0.2 = -2

4.

Critical values (two-tailed test):
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Notes For a=0.05, Zaz = Zo.02s = £1.96
Critical values are -1.96 and 1.96
5. Decision:
|Z|=2>1.96
Therefore, we reject the null hypothesis.

6. Interpretation: There is sufficient evidence at the 5% significance
level to conclude that the manufacturer's claim about the mean battery life is

not valid.
Problem 7.9

A polling organization wants to determine if the proportion of voters
supporting a candidate differs from 45%. In a sample of 1200 voters, 510

support the candidate. Test at 1% significance level.
Solution:
1. Hypotheses:

Ho: p =0.45 (The proportion is 45%)

Hi: p # 0.45 (The proportion differs from 45%)
2. Significance level: o= 0.01
3. Check conditions:

npo = 1200 x 0.45=540>5

n(1-po) = 1200 x 0.55 = 660 > 5

Conditions are satisfied.
4. Test statistic:

p=>510/1200 = 0.425

po=0.45

n=1200

Z = (p - po) / N[po(1-po)/n] = (0.425 - 0.45) / \[0.45(0.55)/1200] = -0.025 /
0.01436 =-1.741
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Critical values (two-tailed test):

For . =0.01, Zo/2) = Z0.005) = +2.576
Critical values are -2.576 and 2.576

Decision:

|Z| = 1.741 <2.576

Therefore, we fail to reject the null hypothesis.

Interpretation: There is insufficient evidence at the 1% significance
level to conclude that the proportion of voters supporting the

candidate differs from 45%.
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Unit -5.3
Difference between two means and two
proportions

5.3.1: Two Types of Comparative Studies

1. Independent Samples: Two separate groups being compared (like

men vs. women)

2. Paired Samples: Same subjects measured twice (like before/after

treatment)
Comparing Two Independent Means

When comparing means from two separate populations, we're testing

whether the difference pu - p is significant.
For equal variances:
Use pooled variance: s?p = [(ni-1)s:1? + (n2-1)s2?] / (n1 + n2 - 2)
Test statistic: t = (X1 - X2) / V[s?p x (1/mi + 1/n2)]
Degrees of freedom: df =ni1 +nz -2
For unequal variances (Welch's t-test):
Standard error: SE = V(s:2/n1 + s:2/nz)

More complex df calculation using Welch-Satterthwaite

approximation
Paired Samples
For before/after or naturally matched pairs:
Analyze the differences between pairs
Test statistic: t = d / (sd/\n) where d is mean difference
Degrees of freedom: df =n - 1 (n = number of pairs)
Comparing Two Proportions
When comparing success rates or percentages between two groups:
Test statistic: z= (p1 - p2) / V[P(1-p)(1/mi + 1/n2)]

Where p = (x1 + Xx2) / (n1 + 1n2) is the pooled proportion
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Worked Example Analysis Notes

The first solved problem demonstrates testing the efficacy of two training

methods:

Method A: n=35, =82, s=8

Method B: n=40, X=78, s=7

Using pooled variance t-test (assuming equal variances)

t=2.31 > critical value 1.99

Result: Method A produces significantly higher scores
The second example compares blood pressure medications:

Drug X: n=25, x=15, s=6

Drug Y: n=30, x=12, s=3

95% CI for difference: (0.32, 5.68)

Since CI doesn't include zero, Drug X is significantly more effective
Problem 1: Comparing Two Independent Means (Confidence Interval)

Region A: m1 = 45, X1 = 2450, s1 = 320 Region B: n. = 50, X» = 2320, s2 =
280

Step 1: Calculate the standard error. SE = (si2/m1 + s22/n2)
SE = V((320%/45) + (280%50))

SE =(2275.56 + 1568)

SE = V/3843.56

SE = 62.00

Step 2: Find the critical value for 90% confidence interval. o = 0.10, so /2

= (0.05 Using Welch-Satterthwaite approximation for df:
df = (s1?/m1 + s22/m2)? / [($1%/m1)*/(mi-1) + (822/12)%/(n2-1)]
df = (3843.56)* / [(2275.56%/44) + (1568%/49)]

df =~ 89

For 90% CI with df = 89, to.os = 1.662
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Step 3: Calculate the confidence interval. CI = (X1 - X2) &+ t(0/2) x SE CI =
(2450 - 2320) £ 1.662 x 62.00 CI = 130 + 103.04 CI = (26.96, 233.04)

With 90% confidence, the difference in mean daily caloric intake between
Region A and Region B is between 26.96 and 233.04 calories, with students

from Region A consuming more calories on average.
Problem 2: Comparing Paired Means

Let me calculate the differences between before and after scores:

Student | 1 2 3 4 5 6 7 8 9 10 |11 |12

Before |72 |68 |74 |77 |82 |79 |65 |63 |88 |76 |71 |84

After 78 |73 |77 |81 |85 |82 |68 |66 |91 |79 |75 |87

Diff |6 |5 |3 [4 |3 |3 [3 |3 |3 [3 |4 |3
(d

Step 1: Calculate mean difference. d=(6 +5+3+4+3+3+3+3+3+3
+4+3)/12d=43/12d=3.58

Step 2: Calculate standard deviation of differences.
s =2(d-d)>/(n-1)

s = [(6-3.58)> + (5-3.58)> + (3-3.58)% + (4-3.58)? + (3-3.58)> + (3-3.58)* +
(3-3.58) + (3-3.58)% + (3-3.58)2 + (3-3.58)2 + (4-3.58)> + (3-3.58)"] / 11

s> =[5.86+2.02+0.34+0.18 + 0.34 + 0.34 + 0.34 + 0.34 + 0.34 + 0.34 +
0.184+0.34] /11 = s£=10.96/ 11

= 542 =0.996 = s¢=0.998

Step 3: Formulate hypotheses. Ho: p¢ = 0 (no improvement in test scores) Hi:

Ha > 0 (there is improvement in test scores)
Step 4: Calculate the test statistic.

t=d/ (s¢n)

t=3.58/(0.998/N12)

t=3.58/0.288

t=12.43
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Step 5: Find critical value. For a = 0.05, one-tailed test with df = 11: to.os,11 =
1.796

Step 6: Make decision. Since t = 12.43 > 1.796, we reject Ho.

There is significant evidence at o = 0.05 that the new teaching method

improves test scores. The average improvement was 3.58 points.
Problem 3: Comparing Two Proportions (Confidence Interval)

Urban: n: = 500, x1 = 320, p1 = 320/500 = 0.64 Rural: n- = 500, x> = 280, p2
=280/500=0.56

Step 1: Calculate the standard error.

SE = V[pi(1-p1)/m1 + pa(1-p2)/nz]

SE = V[0.64(0.36)/500 + 0.56(0.44)/500]

SE = V[0.00046 + 0.00049]

SE = V0.00095

SE =0.0308

Step 2: Find critical value for 95% CI. For 95% confidence, Zo.02s = 1.96

Step 3: Calculate the confidence interval. CI = (p1 - p2) = z(0/2) x SE CI =
(0.64 - 0.56) = 1.96 x 0.0308 CI=0.08 + 0.0604 CI = (0.0196, 0.1404)

With 95% confidence, the difference in proportion of supporters between
urban and rural residents is between 0.0196 (1.96%) and 0.1404 (14.04%),

with urban residents showing more support.
Problem 4: Comparing Two Proportions (Hypothesis Test)

Design A: ni = 1000, x: = 85, p1 = 85/1000 = 0.085 Design B: n. = 1000, x-
=110, p.=110/1000 = 0.11

Step 1: Formulate hypotheses. Ho: p1 = p2 (no difference in conversion rates)

Hi: p2 > p1 (Design B has higher conversion rate)
Step 2: Check conditions.
mp: = 1000(0.085)=85>5

ni(1-p1) = 1000(0.915) = 915 > 5
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nope = 1000(0.11) = 110> 5
no(1-p2) = 1000(0.89) = 890 > 5

Step 3: Calculate pooled proportion. p = (x1 + X2) / (n: + n2) p = (85 + 110) /
(1000 + 1000) p =195 /2000 p = 0.0975

Step 4: Calculate standard error.

SE = V[p(1-p)(1/mi + 1/n2)]

SE = V[0.0975(0.9025)(1/1000 + 1/1000)]
SE = V[0.0975(0.9025)(0.002)]

SE =0.000176

SE =0.0133

Step 5: Calculate test statistic. z = (p2 - p1) / SE z= (0.11 - 0.085) / 0.0133 z
=0.025/0.0133 z=1.88

Step 6: Find critical value. For o = 0.01, one-tailed test: zo.o1 = 2.33
Step 7: Make decision. Since z = 1.88 <2.33, we fail to reject Ho.

At the 1% significance level, there is insufficient evidence to conclude that
Design B has a higher conversion rate than Design A, despite an observed

difference of 2.5 percentage points.
Problem 5: Comparing Two Independent Means (Unequal Variances)
Treatment X: ni = 28, X1 =42, s1 = 12 Treatment Y: n2 =32, X2 =38, 5. =8

Step 1: Formulate hypotheses. Ho: i = p. (no difference between

treatments) Hi: pu # p (there is a difference between treatments)
Step 2: Calculate standard error.

SE = V(s:2/n1 + $:?/n2)

SE = V((122/28) + (8%/32))

SE=(5.14+2)

SE=17.14

SE =2.67
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Step 3: Calculate degrees of freedom using Welch-Satterthwaite

approximation.

df = (si?/m1 + $22/m2)? / [(81%/m1)*/(mi-1) + (822/12)%/(n2-1)]
df = (7.14)2/ [(5.14%/27) + (2¥/31)]
df=51.0/[0.98 +0.13]
df=51.0/1.11

df = 46

Step 4: Calculate test statistic.
t=(X1-X2)/SE
t=(42-38)/2.67

t=4/2.67

t=1.50

Step 5: Find critical value. For a = 0.05, two-tailed test with df = 46: to.o2s,46
~2.01

Step 6: Make decision. Since [t| = 1.50 < 2.01, we fail to reject Ho.

At the 5% significance level, there is insufficient evidence to conclude that
there is a significant difference between Treatment X and Treatment Y in
reducing cholesterol, despite Treatment X showing a 4 mg/dL greater

average reduction.
Multiple-Choice Questions (MCQs)

1. The null hypothesis (Ho) in statistical testing is best described as:
The hypothesis the researcher hopes to prove
b. The statement about population parameters that assumes no
effect or difference
The statement claiming a significant difference exists

d. A hypothesis that can never be directly proven true

Answer: b) The statement about population parameters that

assumes no effect or difference
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Notes 2. Aresearcher conducts a hypothesis test with o = 0.01 and calculates

a p-value of 0.025. The correct conclusion is:

a.
b.
c.

d.

Reject the null hypothesis
Fail to reject the null hypothesis
Accept the alternative hypothesis with 97.5% confidence

There is a 2.5% chance the null hypothesis is true

Answer: b) Fail to reject the null hypothesis

3. Which of the following represents a Type II error?

a.
b.
c.
d.

Rejecting a true null hypothesis
Failing to reject a false null hypothesis
Incorrectly accepting the alternative hypothesis

Correctly rejecting the null hypothesis

Answer: b) Failing to reject a false null hypothesis

4. In hypothesis testing, the power of a statistical test is:

a.

d.

The probability of rejecting the null hypothesis when it is
true

The probability of failing to reject the null hypothesis when
it is false

The probability of rejecting the null hypothesis when it is
false

Equal to the significance level (o)

Answer: ¢) The probability of rejecting the null hypothesis

when it is false

5. The critical region in hypothesis testing is:

a.

d.

The collection of values where we accept the null
hypothesis

The range of values where the test statistic must fall to
reject the null hypothesis

The difference between sample and population parameters

The uncertainty associated with the test statistic

Answer: b) The range of values where the test statistic must fall

to reject the null hypothesis
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6. Which formula correctly represents the test statistic for testing a Notes
single population mean with known population standard deviation?
a. t=(X - w)/(s\n)
b. z=(X - po)/(c/Nn)
c. z=(p - po)N[po(1-po)/n]
d. F=s:/s?

Answer: b) z = (X - w)/(c/\n)

7. For paired samples testing, the degrees of freedom for the t-test is:
a mtn-2
b. n- 1, where n is the number of pairs
c. m-1)+(m2-1)
d. The larger of (ni - 1) or (nz- 1)

Answer: b) n - 1, where n is the number of pairs

8. Which statement about p-values is correct?
a. A smaller p-value indicates stronger evidence against the
null hypothesis
b. The p-value is the probability that the null hypothesis is true
If p > a, we should accept the alternative hypothesis
d. The p-value equals the significance level in a well-designed

study

Answer: a) A smaller p-value indicates stronger evidence

against the null hypothesis

9. In atwo-tailed test with o = 0.05, the null hypothesis is rejected if:
The test statistic is greater than the critical value
b. The test statistic is less than the critical value
c. The absolute value of the test statistic is greater than the
critical value

d. The p-value is greater than 0.05

Answer: c¢) The absolute value of the test statistic is greater than

the critical value

10. When comparing two independent population means with unequal
variances, the appropriate test is:

a. Pooled variance t-test
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b. Paired samples t-test
c. Welch's t-test (separate variance t-test)

d. One-way ANOVA

Answer: c¢) Welch's t-test (separate variance t-test)

SHORT QUESTIONS

1. Define statistical hypothesis testing and explain its primary purpose
in research.

2. What is the difference between a null hypothesis and an alternative
hypothesis? Provide an example of each.

3. Explain what a p-value represents and how it is used in making
statistical decisions.

4. Describe the difference between one-tailed and two-tailed tests.
When would you use each?

5. What are Type I and Type II errors in hypothesis testing? Give a
practical example of each.

6. Explain the concept of significance level (o) and how it relates to
the critical region.

7. What factors affect the power of a statistical test and how can
researchers increase it?

8. Describe the key differences between independent samples and
paired samples tests.

9. What are the assumptions that must be met for a valid t-test?

10. Explain how confidence intervals relate to hypothesis testing results.

LONG QUESTIONS

1.

What are the fundamental concepts of hypothesis testing, and how
does it serve as a framework for statistical inference within the
scientific method?

How do critical regions function in hypothesis testing, and in what
ways are they mathematically determined based on significance
levels and test statistics such as z, t, F, and chi-square?

What is the relationship between Type I and Type II errors in

hypothesis testing, and how can researchers balance these errors
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10.

when designing studies across fields like medicine, law, and
business?

How do one-tailed and two-tailed testing approaches differ in terms
of theoretical justification, statistical power, ethical considerations,
and their impact on research conclusions?

What is the role of p-values in modern scientific research, and how
have issues like the replication crisis and significance threshold
controversies influenced their interpretation?

How can effect sizes complement p-values in hypothesis testing, and
what methods are used to determine practical significance in
different disciplines such as psychology, medicine, and economics?
How does statistical power influence experimental design, and what
is the mathematical relationship between power, effect size, sample
size, and significance level in hypothesis testing?

What are the major statistical methods for testing differences
between means—such as independent samples tests, paired samples
tests, and one-way ANOVA—and how should researchers choose
among them based on assumptions and data characteristics?

How does the frequentist approach to hypothesis testing compare
with Bayesian alternatives in terms of philosophical foundations,

interpretation, and practical application?

What is a comprehensive framework for comparing two populations
in applied research, and how should statistical methods for
comparing means, proportions, variances, and distributions be

selected and interpreted in real-world contexts?
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