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Notes  

COURSE INTRODUCTION 

 

Distribution Theory, also known as the theory of generalized 

functions, extends classical analysis by providing a rigorous 

framework for dealing with objects such as the Dirac delta function 

and other singularities. It plays a crucial role in mathematical physics, 

partial differential equations, and signal processing. 

The course is structured into five modules: 

Module 1: Test Functions and Distributions 

This module introduces test functions and the concept of distributions, 

essential tools for generalizing classical functions. Students will learn 

about localization, regularization, and convergence of distributions, 

along with tempered distributions. 

Module 2: Derivatives and Integrals of Distributions 

This module explores how differentiation and integration are extended 

to distributions. Basic definitions, examples, and applications in 

ordinary differential equations will be covered. 

Module 3: Convolutions and Fundamental Solutions 

Students will study convolution operations and fundamental solutions 

of differential equations, including the direct product and convolution 

of distributions. 

Module 4: Fourier and Laplace Transforms in Distribution 

Theory 

This module covers Fourier and Laplace transforms of test functions 

and tempered distributions. It also discusses the fundamental solutions 

for the wave equation and the role of convolution transforms. 

Module 5: Green’s Functions and Boundary-Value Problems 

This module introduces Green’s functions and their applications in 

solving boundary-value problems, including adjoint functions and 

boundary integral methods. 
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   any constants a and b.

• If φ and ψ are test functions, then aφ + bψ is a test function for

Closure under Operations:3.

bounded set K such that φ(x) = 0 for all x outside K.

Compact Support: For any test function φ, there exists a closed and 2.

for repeated differentiation without concerns about regularity.

Smoothness:  Test  functions  are  infinitely  differentiable,  allowing 1.

Properties of Test Functions

open subset of Rⁿ.

The space of all test functions is denoted by D(Ω) or C₀∞(Ω), where Ω is an 

φ(x) has compact support (vanishes outside a bounded region)2.

1. On Rⁿ, φ(x) is endlessly differentiable (C∞).1.

A function that fulfills the test function φ(x) is:

Definition of Test Functions

vanish outside a bounded region.

are  infinitely  differentiable  functions  with  compact  support,  meaning  they 

Test functions  serve  as the  foundation for  the theory of  distributions.  They 

1.1.1. Introduction to Test Functions

• Introduce tempered distributions and their significance.

• Study the convergence of distributions.

• Explore localization and regularization techniques.

• Learn about distributions and their applications.

• Understand the concept of test functions in distribution theory.

Objective

Test Functions And Distributions:Test functions -Distributions

UNIT 1.1

  MODULE 1
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Notes • If φ is a test function and α is a multi-index, then Dᵅφ (the 

derivative of φ with respect to α) is also a test function. 

• If φ is a test function and f is a C∞ function, then f·φ is a test 

function. 

4. Existence: For any closed and bounded set K and any open set U 

containing K, there exists a test function φ such that: 

• φ(x) = 1 for all x in K 

• φ(x) = 0 for all x outside U 

• 0 ≤ φ(x) ≤ 1 for all x 

Examples of Test Functions 

1. Bump Function: A classic example is: 

𝜑(𝑥) =  { 𝑒
−

1

1−|𝑥|2   𝑖𝑓 |𝑥| <  1 0 𝑖𝑓 |𝑥| ≥  1 } 

This function is infinitely differentiable everywhere, equals 1 at x = 

0, and smoothly transitions to 0 as |x| approaches 1. 

2. Mollifier Function: A commonly used test function is: 

𝜂(𝑥) =  { 𝐶 · 𝑒
−

1

1−|𝑥|2  𝑖𝑓 |𝑥| <  1 0 𝑖𝑓 |𝑥| ≥  1 } 

where C is chosen so that ∫η(x)dx = 1. This function is used for 

regularization of distributions. 

Convergence in the Space of Test Functions 

A sequence of test functions {𝜑𝑛 } is said to converge to a test function φ if: 

1.  A compact set K exists in which all of the 𝜑𝑛 and φ supports are 

contained. 

2.  The derivative sequence Dᵅ𝜑𝑛uniformly converges to Dᵅφ on K for 

each multi-index α. 

In order to characterize distributions as continuous linear functionals on the 

space of test functions, a topology on that space must be defined by this 

concept of convergence. 
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Notes  

1.1.2. Definition and Properties of Distributions 

Distributions extend the concept of functions to include objects that can be 

differentiated indefinitely, even if they are not smooth or even continuous in 

the classical sense. 

Definition of Distributions 

A distribution T is a continuous linear functional on the space of test 

functions D(Ω), i.e., a mapping T: D(Ω) → ℝ (or ℂ) that satisfies: 

1. Linearity: For any test functions φ, ψ and constants a, b: T(aφ + bψ) 

= aT(φ) + bT(ψ) 

2. Continuity: If a sequence of test functions {𝜑𝑛} converges to 0 in 

D(Ω), then T(𝜑𝑛) → 0. 

The space of all distributions on Ω is denoted by D'(Ω). 

Regular Distributions 

Any locally integrable function f defines a regular distribution Tᶠ by: 

Tᶠ(φ) = ∫f(x)φ(x)dx 

This allows us to view ordinary functions as distributions. However, not all 

distributions can be represented by functions in this way. 

Singular Distributions 

Distributions that cannot be represented as integrals against locally 

integrable functions are called singular distributions. The most famous 

example is the Dirac delta "function" δ, defined by: 

δ(φ) = φ(0) 

The Dirac delta can be thought of as a unit mass concentrated at the origin. 
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Notes  

Operations on Distributions 

1. Addition and Scalar Multiplication: For distributions S and T, and 

a scalar λ: 

• (S + T)(φ) = S(φ) + T(φ) 

• (λT)(φ) = λ·T(φ) 

2. Differentiation: For a distribution T, its derivative ∂T/∂xᵢ is defined 

by: (∂T/∂xᵢ)(φ) = -T(∂φ/∂xᵢ) 

This definition is motivated by integration by parts and allows for 

unlimited differentiation of distributions. 

3. Multiplication by C∞ Functions: For a distribution T and a C∞ 

function f: (fT)(φ) = T(fφ) 

4. Translation: For a distribution T and a vector ℎ: (𝜏ℎ𝑇)(𝜑) =

 𝑇(𝜏ℎ𝜑)𝑤ℎ𝑒𝑟𝑒 (𝜏ℎ𝜑)(𝑥) =  𝜑(𝑥 − ℎ) 

5. Convolution: For a distribution T and a test function 𝜑: (𝑇 ∗

 𝜑)(𝑥) =  𝑇(𝜏ₓ𝜑̌)𝑤ℎ𝑒𝑟𝑒 𝜑̌(𝑦) =  𝜑(−𝑦) 

Support of a Distribution 

The support of a distribution T, denoted supp(T), is the complement of the 

largest open set U such that T(φ) = 0 for all test functions φ with support 

contained in U. 

Order of a Distribution 

A distribution T is said to be of order ≤ m if there exists a constant C and a 

compact set K such that: 

|𝑇(𝜑)| ≤  𝐶 · ∑|𝛼| ≤ 𝑚 sup|𝐷ᵅ𝜑| 

for all test functions φ with support in K. The smallest such m is called the 

order of T. 
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where each ψᵢT has support contained in the support of ψᵢ.

T = ∑ᵢ ψᵢT

distributions with localized supports:

Partitions  of  unity  allow  us  to  decompose  a  distribution  into  a  sum  of

∑ᵢ ψᵢ(x) = 1 for all x in Ω4.

The collection {supp(ψᵢ)} is locally finite3.

Each ψᵢ has compact support2.

0 ≤ ψᵢ(x) ≤ 1 for all x1.

A partition of unity is a collection of C∞ functions {ψᵢ} such that:

Partition of Unity

  𝑇|ᵤ, 𝑖. 𝑒. , 𝑖𝑓 𝑆(𝜑) = 𝑇(𝜑) for all test functions φ with support in U.

Two  distributions  S  and  T  are  said  to  be  equal  on  an  open  set  U  if 𝑆|ᵤ =

𝑇|ᵤ(𝜑) = 𝑇(𝜑) for all test functions φ with support in U.

denoted T|ᵤ, is defined by:

Given  a  distribution  T  and  an  open  set  U ⊂ Ω, the  restriction  of  T  to  U,

Local Behavior of Distributions

analyzing its behavior in a specific region.

Localization  refers  to  restricting  a  distribution  to  a  smaller  domain  or

Localization of Distributions

regions and to approximate singular distributions by smooth functions.

distributions,  allowing  us  to  analyze  and  manipulate  distributions  in  local

Localization and regularization are fundamental techniques in the theory of

1.2.1. Localization and Regularization of Distributions

Localization and regularization - Convergence of distributions
UNIT 1.2

Notes
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Notes  

Regularization of Distributions 

Regularization is the process of approximating a distribution by smooth 

functions, typically through convolution with a mollifier. 

Mollifiers and Convolution 

A mollifier is a test function η such that: 

1. η(x) ≥ 0 for all x 

2. η(x) = 0 for |x| ≥ 1 

3. ∫η(x)dx = 1 

For ε > 0, we define ηε(x) = (1/εⁿ)η(x/ε), which concentrates around the 

origin as ε approaches 0. 

The regularization of a distribution T is given by: 

Tε = T * ηε 

This convolution produces a C∞ function that approximates T in the sense of 

distributions, i.e., Tε → T as ε → 0. 

Convergence in the Sense of Distributions 

A sequence of distributions {𝑇𝑛} is said to converge to a distribution T in the 

sense of distributions if: 

𝑇𝑛 (φ) → T(φ) for all test functions φ. 

For any distribution T, its regularization Tε converges to T in this sense as ε 

→ 0. 

Structure Theorems 

1. Localization Principle: Every distribution is locally of finite order, 

meaning that for any compact set K, there exists an integer m such 

that 𝑇|𝑘   is of order ≤ m. 
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Notes 2. Regularization Theorem: For any distribution T, there exists a 

sequence of C∞ functions {𝑓𝑛} that converges to T in the sense of 

distributions. 

3. Schwartz's Structure Theorem: Any distribution T of order m can 

be expressed as: 

𝑇 =  ∑(|𝛼| ≤ 𝑚)𝐷ᵅ𝑓𝛼 

where each fα is a continuous function. 

Applications of Localization and Regularization 

1. Solving Differential Equations: Localization allows us to solve 

differential equations with singular coefficients by analyzing them 

in regions where the coefficients are well-behaved. 

2. Regularization of Singular Integrals: Regularization techniques 

are used to give meaning to integrals that don't converge in the 

classical sense. 

3. Fourier Transform of Distributions: The Fourier transform can be 

extended to distributions through regularization and limiting 

processes. 

4. Analysis of Singularities: Localization helps in the classification 

and characterization of singularities of distributions. 

5. Numerical Approximation: Regularization provides a foundation 

for numerical methods that approximate singular functions or 

operators. 

Solved Problems 

Problem 1: Dirac Delta as a Limit of Functions 

Problem: Show that the sequence of functions 𝑓𝑛(𝑥) =

 (
𝑛

√𝜋
) 𝑒−𝑛2𝑥2

converges to the Dirac delta distribution as n → ∞. 

Solution: 

To show that 𝑓𝑛  →  𝛿 in the sense of distributions, we need to prove that for 

any test function φ: 
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Notes lim
𝑛→∞

∫ 𝑓𝑛(𝑥)𝜑(𝑥)𝑑𝑥 =  𝜑(0) 

Let's compute: 

∫ 𝑓𝑛(𝑥)𝜑(𝑥)𝑑𝑥 =  ∫ (
𝑛

√𝜋
) 𝑒−𝑛2𝑥2

𝜑(𝑥)𝑑𝑥 

Make the substitution y = nx: 

∫ (
𝑛

√𝜋
) 𝑒−𝑛2𝑥2

𝜑(𝑥)𝑑𝑥 =  ∫ (
1

√𝜋
) 𝑒−𝑦2

𝜑 (
𝑦

𝑛
) 𝑑𝑦 

Since φ is continuous, as n → ∞, φ(y/n) → φ(0) for each fixed y. Also, 
𝑒−𝑦2

√𝜋
 

is the standard normal distribution, which integrates to 1. 

Applying the theorem of dominated convergence: 

lim
𝑛→∞

 ∫ (
1

√𝜋
) 𝑒−𝑦2

𝜑 (
𝑦

𝑛
) 𝑑𝑦 =  𝜑(0)∫ (

1

√𝜋
) 𝑒−𝑦2

𝑑𝑦 =  𝜑(0) 

Therefore, 𝑓𝑛→ δ in the sense of distributions. 

Problem 2: Derivative of the Heaviside Function 

Problem: Show that the derivative of the Heaviside function H(x) (which 

equals 0 for x < 0 and 1 for x > 0) is the Dirac delta distribution. 

Solution: 

Let's denote the distribution corresponding to H(x) as T_H. For any test 

function φ: 

𝑇𝐻(𝜑) =  ∫ 𝐻(𝑥)𝜑(𝑥)𝑑𝑥 =  ∫ 𝜑(𝑥)𝑑𝑥
∞

0

 

The derivative of TH, denoted TH', is defined by: 

𝑇𝐻
′ (𝜑) =  −𝑇𝐻(𝜑′) =  −∫ 𝐻(𝑥)𝜑′(𝑥)𝑑𝑥 =  − ∫ 𝜑′(𝑥)𝑑𝑥

∞

0

 

Using the fundamental theorem of calculus: 
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Notes 
− ∫ 𝜑′(𝑥)𝑑𝑥

∞

0

=  −[𝜑(𝑥)]∞
0  =  −[lim(𝑥 → ∞)𝜑(𝑥) −  𝜑(0)] =  𝜑(0) 

The last step follows because φ has compact support, so lim(x→∞)φ(x) = 0. 

Since 𝑇𝐻′  (𝜑) =  𝜑(0) =  𝛿(𝜑) for all test functions φ, we have 𝑇𝐻′   =  𝛿. 

Therefore, the derivative of the Heaviside function is the Dirac delta 

distribution. 

Problem 3: Fundamental Solution of the Laplace Equation 

Problem: Show that in R³, the function 𝑢(𝑥) =  −
1

4𝜋|𝑥|
 is a fundamental 

solution of the Laplace equation, i.e., Δu = δ in the sense of distributions. 

Solution: 

We need to show that for any test function φ: 

∫ 𝛥𝑢(𝑥)𝜑(𝑥)𝑑𝑥 =  𝜑(0) 

Using the definition of the distribution derivative: 

∫ 𝛥𝑢(𝑥)𝜑(𝑥)𝑑𝑥 =  ∫ 𝑢(𝑥)𝛥𝜑(𝑥)𝑑𝑥 =  ∫ (−
1

4𝜋|𝑥|
) 𝛥𝜑(𝑥)𝑑𝑥 

We'll use spherical coordinates and Green's identity. For any r > 0, let Bᵣ be 

the ball of radius r centered at the origin. Then: 

∫ (𝐵ᵣ)𝛥𝑢 · 𝜑𝑑𝑥 − ∫ (𝐵ᵣ)𝑢 · 𝛥𝜑𝑑𝑥 =  ∫ (𝜕𝐵ᵣ) (
𝜑𝜕𝑢

𝜕𝑛
−

𝑢𝜕𝜑

𝜕𝑛
) 𝑑𝑆 

where ∂Bᵣ is the boundary of Bᵣ and ∂/∂n is the outward normal derivative. 

Since Δu = 0 for x ≠ 0 (as can be verified by direct calculation), the first 

term on the left is zero. Therefore: 

−∫ (𝐵ᵣ)𝑢 · 𝛥𝜑𝑑𝑥 =  ∫ (𝜕𝐵ᵣ) (
𝜑𝜕𝑢

𝜕𝑛
−

𝑢𝜕𝜑

𝜕𝑛
) 𝑑𝑆 

On the boundary ∂Bᵣ, we have |x| = r, so u = -1/(4πr) and ∂u/∂n = 1/(4πr²). 

For small r, φ(x) ≈ φ(0) on the boundary. 
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Notes The integral becomes: 

∫ (𝜕𝐵ᵣ) (
𝜑𝜕𝑢

𝜕𝑛
−

𝑢𝜕𝜑

𝜕𝑛
) 𝑑𝑆 ≈

𝜑(0)∫ (𝜕𝐵ᵣ)𝜕𝑢

𝜕𝑛𝑑𝑆
−

∫ (𝜕𝐵ᵣ)𝑢𝜕𝜑

𝜕𝑛𝑑𝑆
 

The first term equals φ(0), since 
∫ (𝜕𝐵ᵣ)𝜕𝑢

𝜕𝑛𝑑𝑆
=  1 for our choice of u (this 

follows from Gauss's theorem). The second term approaches 0 as r → 0 

because u is O(1/r) and ∂φ/∂n is bounded. 

Taking the limit as r → 0: 

lim(𝑟 → 0) ∫ (𝐵ᵣ)𝑢 · 𝛥𝜑𝑑𝑥 =  −𝜑(0) 

Therefore, ∫ 𝑢(𝑥)𝛥𝜑(𝑥)𝑑𝑥 =  −𝜑(0) for all test functions φ, which means 

Δu = δ in the sense of distributions. 

Problem 4: Convolution with Approximate Identity 

Problem: Let η be a mollifier and ηε(x) = (1/ε)η(x/ε). Show that if f is a 

continuous function, then f * ηε → f uniformly on compact sets as ε → 0. 

Solution: 

The convolution f * ηε is given by: 

(𝑓 ∗  𝜂𝜀)(𝑥) =  ∫ 𝑓(𝑥 − 𝑦)𝜂𝜀(𝑦)𝑑𝑦 =  ∫ 𝑓(𝑥 − 𝜀𝑧)𝜂(𝑧)𝑑𝑧 

where we've made the substitution y = εz. 

Let K be a compact set. We want to show that for any δ > 0, there exists 𝜀0 > 

0 such that |(𝑓 ∗  𝜂𝜀)(𝑥) −  𝑓(𝑥)| <  𝛿 for all x ∈ K and ε < 𝜀0. 

Since f is continuous on the compact set 𝐾 +  𝐵1 (where 𝐵1 is the unit ball), 

it is uniformly continuous. Thus, for any δ > 0, there exists 𝜀0 >  0 such that 

|𝑓(𝑥) −  𝑓(𝑦)| <  𝛿 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 |𝑥 −  𝑦| <  𝜀0𝑎𝑛𝑑 𝑥, 𝑦 ∈  𝐾 +  𝐵1. 

For x ∈ K and 𝜀 <  𝜀0: 
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Notes |(𝑓 ∗  𝜂𝜀)(𝑥) −  𝑓(𝑥)| =  |∫ 𝑓(𝑥 − 𝜀𝑧)𝜂(𝑧)𝑑𝑧 −  𝑓(𝑥)|

=  |∫ (𝑓(𝑥 − 𝜀𝑧) −  𝑓(𝑥))𝜂(𝑧)𝑑𝑧|

≤  ∫ |𝑓(𝑥 − 𝜀𝑧) −  𝑓(𝑥)|𝜂(𝑧)𝑑𝑧 

Since |𝜀𝑧| <  𝜀0𝑓𝑜𝑟 |𝑧| <  1 (as η is supported in the unit ball), we have 

|𝑓(𝑥 − 𝜀𝑧) −  𝑓(𝑥)| <  𝛿. Also, ∫ 𝜂(𝑧)𝑑𝑧 =  1. Therefore: 

|(𝑓 ∗  𝜂𝜀)(𝑥) −  𝑓(𝑥)| ≤  𝛿∫ 𝜂(𝑧)𝑑𝑧 =  𝛿 

This holds for all x ∈ K, so the convergence is uniform on K. 

 

Problem 5: Structure of Distributions with Point Support 

Problem: Characterize all distributions T whose support is the single point 

{0}. 

Solution: 

We'll use a fundamental result in distribution theory: a distribution 

supported at a single point is a finite linear combination of the Dirac delta 

and its derivatives. 

Let T be a distribution with sup p(T) = {0}. Since the support is compact, T 

is of finite order, say m. 

First, let's construct a test function φ that equals 1 near the origin. For any 

test function ψ, we can write: 

𝜓(𝑥) =  𝜓(0)𝜑(𝑥) +  (𝜓(𝑥) −  𝜓(0)𝜑(𝑥)) 

The second term vanishes in a neighborhood of the origin, so T applied to it 

gives zero: 

𝑇(𝜓) =  𝑇(𝜓(0)𝜑) =  𝜓(0)𝑇(𝜑) 

This would suggest T = c·δ for some constant c = T(φ). However, this is 

only true if T has order 0. 
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Notes For higher orders, we use Taylor's formula: 

𝜓(𝑥) =  ∑(|𝛼| ≤ 𝑚) (
1

𝛼!
) 𝐷ᵅ𝜓(0)𝑥ᵅ +  𝑅(𝑥) 

where R(x) is a remainder term that vanishes to order m+1 at the origin. 

Since T has order m, T(R) = 0. 

Therefore: 

𝑇(𝜓) =  ∑(|𝛼| ≤ 𝑚) (
1

𝛼!
) 𝐷ᵅ𝜓(0)𝑇(𝑥ᵅ) 

Setting cα = T(xᵅ/α!), we have: 

𝑇(𝜓) =  ∑|𝛼| ≤ 𝑚 𝑐𝛼𝐷ᵅ𝜓(0) =  ∑(|𝛼| ≤ 𝑚)𝑐𝛼(−1)|𝛼|𝐷ᵅ𝛿(𝜓) 

Therefore, 𝑇 =  ∑|𝛼| ≤ 𝑚𝑐𝛼(−1)|𝛼|𝐷ᵅ𝛿, which is a linear combination of 

the Dirac delta and its derivatives up to order m. 

Unsolved Problems 

Problem 1: Characterization of Positive Distributions 

Problem: Prove that a distribution T is positive (i.e., T(φ) ≥ 0 for all non-

negative test functions φ) if and only if it is a Radon measure. 

Problem 2: Fundamental Solution of the Heat Equation 

Problem: Find a fundamental solution of the heat equation ∂u/∂t - Δu = 0 in 

Rⁿ × (0,∞), i.e., a distribution E such that (∂/∂t - Δ)E = δ(x)⊗δ(t). 

Problem 3: Fourier Transform of Tempered Distributions 

Problem: Show that the Fourier transform is a bijective linear map from the 

space of tempered distributions S'(Rⁿ) onto itself. 

Problem 4: Wave Front Set of a Distribution 

Problem: Let T be a distribution on Rⁿ. Define its wave front set WF(T) and 

explain how it characterizes the singularities of T. 
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Notes Problem 5: Schwartz Kernel Theorem 

Problem: State and prove the Schwartz Kernel Theorem, which 

characterizes continuous linear operators between spaces of distributions in 

terms of distribution kernels. 

1.2.2  Convergence of Distributions 

Distributions, also known as generalized functions, extend the concept of 

functions to include objects like the Dirac delta function. This extension is 

crucial in mathematical physics, differential equations, and signal 

processing. Before discussing convergence, let's establish what distributions 

are.A distribution is a continuous linear functional on the space of test 

functions. Test functions, typically denoted as φ(x), are infinitely 

differentiable functions with compact support. The space of test functions is 

often written as D or C0
∞. 

For a distribution T, we write the action of T on a test function φ as <T,φ> 

or T(φ). Common examples include: 

1. Regular distributions: If f is a locally integrable function, it defines a 

distribution 𝑇𝑓 𝑏𝑦: < 𝑇𝑓 , 𝜑 > =  ∫ 𝑓(𝑥)𝜑(𝑥)𝑑𝑥 

2. Dirac delta distribution: Defined by <δ,φ> = φ(0) 

3. Derivatives of distributions: The derivative of a distribution T is 

defined by: <T',φ> = -<T,φ'> 

Convergence of Sequences of Distributions 

There are several notions of convergence for distributions. The most 

fundamental is weak convergence. 

Weak Convergence 

A sequence of distributions {𝑇𝑛} is said to converge weakly to a distribution 

T if: 

< 𝑇𝑛, 𝜑 > → < 𝑇, 𝜑 > as n → ∞, for all test functions φ 

This is sometimes called convergence in the sense of distributions. 
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Notes Example: Consider the sequence of functions 𝑓𝑛(𝑥) =  𝑛 for |x| < 1/(2n) and 

𝑓𝑛(𝑥) =  0 otherwise. These functions define distributions 𝑇𝑛. We can show 

that 𝑇𝑛  converges weakly to the Dirac delta distribution δ: 

<𝑇𝑛, 𝜑 > =  ∫ 𝑓𝑛(𝑥)𝜑(𝑥)𝑑𝑥  =    ∫
{|𝑥|<

1

2𝑛
}
𝑛 · 𝜑(𝑥)𝑑𝑥  

For sufficiently large n, φ(x) ≈ φ(0) within the interval |x| < 1/(2n). So: 

< 𝑇𝑛, 𝜑 > ≈  𝑛 · 𝜑(0) · (
1

𝑛
) =  𝜑(0) = < 𝛿, 𝜑 > 

Thus, 𝑇𝑛  →  𝛿 weakly. 

 

 

Strong Convergence 

Strong convergence is more restrictive than weak convergence. A sequence 

{𝑇𝑛} converges strongly to T if: 

sup|< 𝑇𝑛 − 𝑇, 𝜑 >| →  0 as n → ∞, for all φ in a certain class 

This type of convergence is less  common in distribution theory. 

Convergence of Specific Types of Distributions 

Convergence of Delta Sequences 

Delta sequences are sequences of functions {𝛿𝑛} that converge to the Dirac 

delta distribution. A sequence {𝛿𝑛} is a delta sequence if: 

1. ∫ 𝛿𝑛 (x) dx = 1 for all n 

2. 𝛿𝑛(𝑥) ≥  0 for all x and n 

3. For any 𝜀 >  0, ∫ 𝛿𝑛(𝑥)𝑑𝑥
{|𝑥|>𝜀}

  →  0 𝑎𝑠 𝑛 →  ∞ 

Examples include: 

• 𝛿𝑛(𝑥) =
𝑛

√𝜋
·  𝑒−𝑛2𝑥2

 (𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛) 
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Notes • 𝛿𝑛(𝑥) =
𝑛

𝜋(1+𝑛2𝑥2)
(𝐶𝑎𝑢𝑐ℎ𝑦) 

• 𝛿𝑛(𝑥) =
𝑛

2
𝑓𝑜𝑟 |𝑥| <

1

𝑛
, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟) 

Convergence of Fourier Series 

The Fourier series of a periodic function f with period 2π can be written as: 

𝑓(𝑥)~
𝑎0

2
+  𝛴[𝑎𝑛 cos(𝑛𝑥) +  𝑏𝑛 sin(𝑛𝑥)] 

In the sense of distributions, the Fourier series of a function in L¹ converges 

to the function. This is stronger than pointwise convergence, which may fail 

at discontinuities. 

 

 

 

Properties of Convergent Sequences of Distributions 

If 𝑇𝑛  →  𝑇 weakly, then: 

1. Linearity: 𝛼𝑇𝑛   +  𝛽𝑆𝑛  →  𝛼𝑇 +  𝛽𝑆 for any distributions 𝑆𝑛  →  𝑆 

and constants α, β 

2. Derivatives: 𝑇𝑛′   →  𝑇′ (derivatives commute with limits) 

3. Translations: 𝜏ℎ𝑇𝑛  →  𝜏ℎ  𝑇 𝑤ℎ𝑒𝑟𝑒 (𝜏ℎ𝑇)(𝑥) =  𝑇(𝑥 − ℎ) 

4. Convolutions: 𝑇𝑛  ∗  𝑆 →  𝑇 ∗  𝑆 under appropriate conditions 

Applications of Convergence of Distributions 

Solving Differential Equations 

The concept of convergence in distributions allows us to solve differential 

equations with singular coefficients or boundary conditions. 
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Notes Example: The equation y'' + y = δ can be solved using distributions. The 

solution is 
𝑦(𝑥)=sin(|𝑥|)

2
, which is not twice differentiable in the classical 

sense at x = 0 but is a solution in the distributional sense. 

Regularization Techniques 

Convergence of distributions provides theoretical justification for 

regularization methods, where singular objects are approximated by 

sequences of smooth functions. 

Example: The heat equation 𝑢𝑡  =  𝑢𝑥𝑥 with initial condition u(0,x) = δ(x) 

can be solved by considering a sequence of smooth initial conditions that 

converge to δ. 

Signal Processing 

In signal processing, ideal filters are often distributions, and practical filters 

are approximations that converge to these ideal distributions. 

Example: The frequency response of the optimal low-pass filter is a 

rectangular function rather than a Fourier transform of any L¹ function.  But 

in terms of distributions, it can be roughly represented as a series of 

functions whose Fourier transforms converge to the rectangle function. 

Solved Problems on Convergence of Distributions 

Problem 1 

In the notion of distributions, demonstrate how the sequence of functions 

𝑓𝑛(𝑥) =  𝑛 • 𝑒−𝑛|𝑥| converges to the Dirac delta distribution δ. 

Solution: To show convergence to the Dirac delta, we need to verify that for 

any test function 𝜑: < 𝑓𝑛, 𝜑 > → < 𝛿, 𝜑 > =  𝜑(0)𝑎𝑠 𝑛 →  ∞ 

We have: < 𝑓𝑛, 𝜑 > =  ∫ 𝑓𝑛(𝑥)𝜑(𝑥)𝑑𝑥 =  ∫ 𝑛 · 𝑒−𝑛|𝑥|𝜑(𝑥)𝑑𝑥 

Let's split this into two parts: ∫ 𝑛 · 𝑒−𝑛|𝑥|𝜑(𝑥)𝑑𝑥 =  ∫ 𝑛 · 𝑒−𝑛|𝑥|[𝜑(𝑥) −

 𝜑(0)]𝑑𝑥 +  𝜑(0)∫ 𝑛 · 𝑒−𝑛|𝑥| 𝑑𝑥 
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Notes For the second term: ∫ 𝑛 · 𝑒−𝑛|𝑥| 𝑑𝑥 =  2 ∫ 𝑛 · 𝑒−𝑛𝑥 𝑑𝑥 
∞

0
 =

 2[−𝑒−𝑛𝑥] ∞
0

 =  2  

So the second term equals 2φ(0). 

For the first term, since φ is infinitely differentiable: |φ(x) - φ(0)| ≤ C|x| for 

some constant C 

Therefore: |∫ 𝑛 · 𝑒−𝑛|𝑥|[𝜑(𝑥) −  𝜑(0)]𝑑𝑥| ≤  𝐶 ∫ 𝑛 · 𝑒−𝑛|𝑥||𝑥|𝑑𝑥 =  𝐶 ·

2 ∫ · 𝑒−𝑛𝑥 · 𝑥 𝑑𝑥
∞

0
 

Computing this integral: 2 ∫ · 𝑒−𝑛𝑥 · 𝑥 𝑑𝑥
∞

0
 =  2[−𝑒−𝑛𝑥 · 𝑥] ∞

0
 +

 2 ∫ · 𝑒−𝑛𝑥 · 𝑥 𝑑𝑥
∞

0
 =  2[0 −  0] +  2 [− (

1

𝑛
) 𝑒−𝑛𝑥] ∞

0
=

2

𝑛
 

Thus, the first term approaches 0 as n → ∞, and we get: < 𝑓𝑛, 𝜑 > →

 𝜑(0) = < 𝛿, 𝜑 > 

Therefore, f_n converges to the Dirac delta distribution δ. 

Problem 2 

Prove that if 𝑇𝑛  →  𝑇 𝑎𝑛𝑑 𝑆𝑛  →  𝑆 in the sense of distributions, then 𝛼𝑇𝑛  +

 𝛽𝑆𝑛  →  𝛼𝑇 +  𝛽𝑆 for any constants α and β. 

Solution: We need to show that for any test function φ: < 𝛼𝑇𝑛  +  𝛽𝑆𝑛, 𝜑 >

 → < 𝛼𝑇 +  𝛽𝑆, 𝜑 >  𝑎𝑠 𝑛 →  ∞ 

By the linearity of distributions: < 𝛼𝑇𝑛  +  𝛽𝑆𝑛, 𝜑 > =  𝛼 < 𝑇𝑛, 𝜑 >  + 𝛽 <

𝑆𝑛, 𝜑 > 

Since 𝑇𝑛  →  𝑇 𝑎𝑛𝑑 𝑆𝑛   →  𝑆 in the sense of distributions: < 𝑇𝑛, 𝜑 > → <

𝑇, 𝜑 >  𝑎𝑛𝑑 < 𝑆𝑛, 𝜑 > → < 𝑆, 𝜑 >  𝑎𝑠 𝑛 →  ∞ 

Therefore: 𝛼 < 𝑇𝑛, 𝜑 >  + 𝛽 < 𝑆𝑛, 𝜑 > →  𝛼 < 𝑇, 𝜑 >  + 𝛽 < 𝑆, 𝜑 > = <

𝛼𝑇 +  𝛽𝑆, 𝜑 > 

This proves that 𝛼𝑇𝑛  +  𝛽𝑆𝑛  →  𝛼𝑇 +  𝛽𝑆 in the sense of distributions. 

Problem 3 
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Notes Show that if 𝑇𝑛  →  𝑇 in the sense of distributions, then the derivatives 

𝑇𝑛′ →  𝑇′. 

Solution: We need to show that for any test function 𝜑: < 𝑇𝑛′ , 𝜑 > → <

𝑇′, 𝜑 >  𝑎𝑠 𝑛 →  ∞ 

By the definition of the derivative of a distribution: <𝑇𝑛′ φ> = −< 𝑇𝑛 ,

𝜑′ > and <T', φ> = -<T, φ'> 

Since 𝑇𝑛  →  𝑇 in the sense of distributions, we have: <Tn, ψ> → <T, ψ> for 

any test function ψ 

In particular, for ψ = φ', which is also a test function (since φ is infinitely 

differentiable): < 𝑇𝑛, 𝜑′ > → < 𝑇, 𝜑′ > 

Therefore: < 𝑇𝑛′ , 𝜑 > =  −< 𝑇𝑛, 𝜑′ > →  −< 𝑇, 𝜑′ > = < 𝑇′, 𝜑 > 

This proves that 𝑇𝑛  →  𝑇′ in the sense of distributions. 

Problem 4 

Determine whether the sequence of functions 
𝑔𝑛(𝑥 )  =sin(𝑛𝑥)

𝜋
converges in the 

sense of distributions, and if so, to what limit. 

Solution: Let's check if 
𝑔𝑛(𝑥)=sin(𝑛𝑥)

𝜋
 converges in the sense of distributions 

by examining: < 𝑔𝑛, 𝜑 > =  ∫ (
sin(𝑛𝑥)

𝜋
) 𝜑(𝑥)𝑑𝑥 

Using integration by parts: ∫ (
sin(𝑛𝑥)

𝜋
) 𝜑(𝑥)𝑑𝑥 =  [−

cos(𝑛𝑥)𝜑(𝑥)

𝑛𝜋
] +

 ∫ (
cos(𝑛𝑥)

𝑛𝜋
) 𝜑′(𝑥)𝑑𝑥 

For the boundary terms, since φ has compact support, the values at infinity 

vanish. So: < 𝑔𝑛, 𝜑 > =  ∫ (
cos(𝑛𝑥)

𝑛𝜋
) 𝜑′(𝑥)𝑑𝑥 

As n → ∞, the factor 1/n makes this integral approach 0 (by the Riemann-

Lebesgue lemma). Therefore: < 𝑔𝑛, 𝜑 > →  0 𝑎𝑠 𝑛 →  ∞ 
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Notes This means g_n(x) converges to the zero distribution in the sense of 

distributions. 

Problem 5 

Prove that the distribution defined by the Cauchy principal value P(1/x) is 

the distributional derivative of ln|x|. 

Solution: We need to show that (ln|𝑥|)′ =  𝑃 (
1

𝑥
) in the sense of 

distributions. 

For any test function 𝜑: < (ln|𝑥|)′, 𝜑 > =  −< ln|𝑥| , 𝜑′ > =

 − ∫ ln|𝑥| 𝜑′(𝑥)𝑑𝑥 

Let's use integration by parts. Since φ has compact support, we can write: 

− ∫ ln|𝑥| 𝜑′(𝑥)𝑑𝑥 =  −[ln|𝑥| 𝜑(𝑥)] + ∫ (
1

𝑥
) 𝜑(𝑥)𝑑𝑥 

The boundary terms vanish due to φ having compact support. However, the 

integral ∫ (
1

𝑥
) 𝜑(𝑥)𝑑𝑥 is improper at x = 0. 

Using the Cauchy principal value: 𝑃. 𝑉. ∫  (1/𝑥)𝜑(𝑥) 𝑑𝑥 =

 lim    [
𝜀→0

 ∫  (
1

𝑥
) 𝜑(𝑥)𝑑𝑥

−𝜀

−∞
+  ∫ (

1

𝑥
)

∞

𝜀
𝜑(𝑥) 𝑑𝑥]This is precisely the definition 

of <P(1/x), φ>, so: <(ln|x|)', φ> = <P(1/x), φ> 

Therefore, (ln|x|)' = P(1/x) in the distributional sense. 

Unsolved Problems on Convergence of Distributions 

Problem 1 

Determine whether the sequence ℎ𝑛(𝑥) =  𝑛2𝑥 𝑒−𝑛𝑥2
  converges in the 

sense of distributions, and if so, find its limit. 

 

 

Problem 2 
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Notes Prove or disprove: If  𝑓𝑛   →  𝑓 𝑖𝑛 𝐿1(𝑅)𝑎𝑛𝑑 𝑔𝑛  →  𝑔 in the sense of 

distributions, then 𝑓𝑛  ∗  𝑔𝑛  →  𝑓 ∗  𝑔 in the sense of distributions (where * 

denotes convolution). 

Problem 3 

Let 𝑇𝑛 be a sequence of distributions such that 𝑇𝑛  →  𝑇 and 𝑆𝑛 be a 

sequence of distributions such that 𝑆𝑛  →  𝑆. Show that under appropriate 

conditions, 𝑇𝑛  ∗  𝑆𝑛  →  𝑇 ∗  𝑆 (where * denotes convolution). 

Problem 4 

Show that the sequence of functions 𝜑𝑛(𝑥) =  (1 −
|𝑥|

𝑛
) for |x| < n and 

𝜑𝑛(𝑥) =  0 for |x| ≥ n, converges to 1 in the sense of distributions. 

Problem 5 

Let f be a continuous function on R with compact support. Show that the 

sequence of functions 𝑓𝑛(𝑥) =  𝑓 (𝑥 +
1

𝑛
) −  𝑓(𝑥) converges to f'(x) in the 

sense of distributions as n → ∞. 
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Notes                                                                 

  

 

 

    

 

 

The Space of Schwartz Functions 

The Schwartz space S(Rn) consists of infinitely differentiable functions φ: 

𝑅𝑛  →  𝐶 such that: 

S𝑢𝑝{𝑥∈𝑅𝑛}|𝑥𝛼 𝐷𝛽 𝜑(𝑥)| <  ∞ 

for all multi-indices 𝛼 =  (𝛼1, … , 𝛼𝑛)𝑎𝑛𝑑 𝛽 =  (𝛽1, … , 𝛽𝑛), where: 

• 𝑥𝛼  =  𝑥1
{𝛼1}    × … ×  𝑥𝑛

{𝛼𝑛}
 

• 𝐷𝛽 =  (
𝜕

𝜕𝑥1
)

{𝛽1}

×  … ×  (
𝜕

𝜕𝑥𝑛
)

{𝛽𝑛}

 

Examples of Schwartz functions include: 

1. 𝜑(𝑥) =  𝑒−𝑥2
 

2. 𝜑(𝑥) =  (1 + 𝑥2)−𝑘  𝑓𝑜𝑟 𝑘 >  0 

3. 𝐴𝑛𝑦 𝐶∞ function with compact support 

Properties of the Schwartz Space 

1. S is a vector space 

plays a crucial role.

physics,  quantum  mechanics,  and  signal  processing  where  Fourier  analysis 

their  derivatives.Tempered  distributions  are  essential  in  mathematical 

these  are  functions  that  decay  faster  than  any  polynomial,  along  with  all 

𝑥𝛼 𝐷𝛽 𝜑(𝑥) → 0 as |x| → ∞ for all multi-indices α and β. In simpler terms, 

Schwartz  space  S  consists  of  infinitely  differentiable  functions  φ  such  that 

functionals on the space of Schwartz functions, denoted by S or S(𝑅𝑛 ).The 

behavior under the Fourier transform. They are defined as continuous linear 

Tempered  distributions  are  a  special  class  of  distributions  that  have  nice 

Definition and Motivation

1.3.1 Introduction to Tempered Distributions

            Tempered distributions
UNIT 1.3
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Notes 2. S is closed under differentiation: if φ ∈ S, then 𝐷𝛼 𝜑 ∈  𝑆 for any 

multi-index α 

3. S is closed under multiplication by polynomials: if φ ∈ S, then 𝑥𝛼 φ 

∈ S for any multi-index α 

4. S is closed under the Fourier transform: if φ ∈ S, then its Fourier 

transform F[φ] ∈ S 

The Schwartz space can be equipped with a family of seminorms: 

𝜌{𝛼,𝛽}(𝜑) =  𝑠𝑢𝑝{𝑥∈𝑅𝑛} |𝑥𝛼 𝐷𝛽 𝜑(𝑥)|making it a Fréchet space (a complete 

metrizable locally convex topological vector space). 

Definition of Tempered Distributions 

A tempered distribution is a continuous linear functional on the Schwartz 

space S. The space of all tempered distributions is denoted by S' or S'(Rn). 

For a tempered distribution T, we write the action of T on a Schwartz 

function φ as <T,φ> or T(φ). 

Every distribution with compact support is a tempered distribution. Also, 

any distribution that grows no faster than a polynomial at infinity is a 

tempered distribution. 

Examples of tempered distributions include: 

1. Any function of polynomial growth: if |𝑓(𝑥)| ≤  𝐶(1 + |𝑥|)𝑁 for 

some C, N > 0, then f defines a tempered distribution 

2. The Dirac delta function δ 

3. The derivatives of the delta function 𝛿𝑛 

4. Any 𝐿𝑝  function for 1 ≤ p ≤ ∞ 

Non-examples 

Not all distributions are tempered. For instance, 𝑒𝑥2
   is not a tempered 

distribution because it grows too rapidly at infinity. 

Operations on Tempered Distributions 

Tempered distributions inherit many operations from general distributions: 
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Notes Differentiation 

The derivative of a tempered distribution T is defined by: <T',φ> = -<T,φ'> 

for all φ ∈ S 

This extends to higher derivatives: <𝐷𝛼  𝑇, 𝜑 > =  (−1)|𝛼 | < 𝑇, 𝐷𝛼 𝜑 > 

where |𝛼| =  𝛼1 + … +  𝛼𝑛 

Multiplication by Polynomials 

If T is a tempered distribution and P is a polynomial, then PT is also a 

tempered distribution: <PT,φ> = <T,Pφ> for all φ ∈ S 

Translation 

For a tempered distribution T, the translation 𝜏ℎT is defined by: < 𝜏ℎ𝑇, 𝜑 >

 = < 𝑇, 𝜏{−ℎ}𝜑 >  𝑤ℎ𝑒𝑟𝑒 (𝜏ℎ𝜑)(𝑥) =  𝜑(𝑥 − ℎ) 

Convolution 

If S is a tempered distribution and φ is a Schwartz function, their 

convolution S * φ is defined by: (𝑆 ∗  𝜑)(𝑥) = < 𝑆, 𝜏𝑥  𝜑̃ >  𝑤ℎ𝑒𝑟𝑒 𝜑̃(𝑦) =

 𝜑(−𝑦) 

This results in a smooth function of at most polynomial growth. 

The Fourier Transform of Tempered Distributions 

One of the main advantages of tempered distributions is that the Fourier 

transform can be extended to them. For a Schwartz function φ, the Fourier 

transform is: 

𝐹𝜑 =  ∫ 𝜑(𝑥)𝑒−2𝜋𝑖𝑥·𝜉  𝑑𝑥 

For a tempered distribution T, its Fourier transform F[T] is defined by: <

𝐹[𝑇], 𝜑 > = < 𝑇, 𝐹[𝜑] >  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜑 ∈  𝑆 

This definition ensures that the Fourier transform of a tempered distribution 

is again a tempered distribution. 

https://claude.ai/chat/%CE%BE
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Notes Properties of the Fourier Transform 

1. Linearity: 𝐹[𝛼𝑇 +  𝛽𝑆] =  𝛼𝐹[𝑇] +  𝛽𝐹[𝑆] 

2. 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛: 𝐹𝜏ℎ  𝑇 =  𝑒−2𝜋𝑖ℎ·𝜉𝐹𝑇 

3. 𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 𝐹𝑒2𝜋𝑖ℎ·𝑥𝑇 =  𝜏ℎ𝐹𝑇 

4. 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛: 𝐹𝐷𝛼 𝑇 =  (2𝜋𝑖𝜉)𝛼 𝐹𝑇 

5. 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑥𝛼: 𝐹𝑥𝛼  𝑇 =  𝑖|𝛼| 𝐷𝛼 𝐹𝑇 

Important Fourier Transform Pairs 

1. 𝐹𝛿 =  1 

2. 𝐹1 =  𝛿(𝜉) 

3. 𝐹𝐻𝑌𝑃𝐸𝑅𝐿𝐼𝑁𝐾 https://claude.ai/chat/%CE%BE𝑒(−𝜋𝑥2)     =

 𝑒−𝜋𝜉2
    

4. 𝐹𝛿𝑛(𝑛 )   =  (2𝜋𝑖𝜉)𝑛 

Regularity Properties of Tempered Distributions 

The behavior of a tempered distribution under the Fourier transform 

provides information about its regularity properties. Roughly speaking, the 

faster the Fourier transform decays at infinity, the smoother the distribution. 

Sobolev Spaces 

Sobolev spaces are particular spaces of tempered distributions that are 

essential in the theory of partial differential equations. For s ∈ R, the 

Sobolev space Hs(Rn) consists of tempered distributions T such that: 

∫|𝐹𝑇|2(1 +  |𝜉|2)𝑠 𝑑𝜉 <  ∞ 

For s > 0, Hs contains functions with "s derivatives in L²." For s < 0, Hs 

contains "singular" distributions. 

Applications of Tempered Distributions 

Partial Differential Equations 

https://claude.ai/chat/%CE%BE
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Notes Tempered distributions provide a natural framework for the study of partial 

differential equations. For instance, the fundamental solution of the heat 

equation: 

𝜕𝑢

𝜕𝑡
−  𝛥𝑢 =  0, 𝑢(0, 𝑥) =  𝛿(𝑥) 

𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦: 𝑢(𝑡, 𝑥) =  (4𝜋𝑡)−
𝑛

2  𝑒−
|𝑥|2

4𝑡  𝑓𝑜𝑟 𝑡 >  0 

This is a tempered distribution in the spatial variable for each fixed t > 0. 

Quantum Mechanics 

In quantum mechanics, the position and momentum operators act on wave 

functions that are typically elements of 𝐿2(𝑅𝑛). However, these operators 

are unbounded and defined on domains that are dense in 𝐿2(𝑅𝑛). The theory 

of tempered distributions provides a rigorous framework for dealing with 

these operators and their commutation relations. 

Signal Processing 

In signal processing, the Fourier transform is a fundamental tool for 

analyzing signals. Tempered distributions allow for the treatment of both 

continuous and discrete signals in a unified framework. The sampling 

theorem, which relates continuous signals to their discrete samples, can be 

elegantly formulated using tempered distributions. 

SOLVED PROBLEMS ON TEMPERED DISTRIBUTIONS 

Problem 1 

Show that the function 𝑓(𝑥) =  |𝑥|𝛼   𝑓𝑜𝑟 𝛼 >  −1 defines a tempered 

distribution. 

Solution: To show that 𝑓(𝑥) =  |𝑥|𝛼  defines a tempered distribution, we 

need to verify that f has at most polynomial growth. 

For |x| ≥ 1, we have |𝑓(𝑥)| =  |𝑥|𝛼. Since α > -1, this is bounded by a 

polynomial. 
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Notes For |x| < 1, we have |𝑓(𝑥)| =  |𝑥|𝛼 . Since α > -1, the function is locally 

integrable. 

Therefore, there exist constants C and N such that |𝑓(𝑥)|  ≤  𝐶(1 +

 |𝑥|)𝑁  for all x, which means f defines a tempered distribution. 

To be more precise, we can take N = α for α ≥ 0, and N = 0 for -1 < α < 0. 

Problem 2 

Compute the Fourier transform of the tempered distribution T defined by <

𝑇, 𝜑 > =  ∫ 𝑒−|𝑥|𝜑(𝑥)𝑑𝑥 . 

Solution: The distribution T is defined by the function 𝑓(𝑥) =  𝑒−|𝑥|, which 

is a tempered distribution because it decays exponentially. 

The Fourier transform F[T] is defined by: < 𝐹[𝑇], 𝜑 > = < 𝑇, 𝐹[𝜑] > =

 ∫ 𝑒−|𝑥|𝐹𝜑 𝑑𝑥 

To find an explicit formula for F[T], we need to compute the Fourier 

transform of e(-|x|). 

𝐹𝑒−|𝑥|   =  ∫ 𝑒−|𝑥|𝑒−2𝜋𝑖𝑥𝜉  𝑑𝑥  

=  ∫ 𝑒𝑥𝑒−2𝜋𝑖𝑥𝜉  𝑑𝑥 
0

{−∞}

+ ∫ 𝑒−𝑥𝑒−2𝜋𝑖𝑥𝜉  𝑑𝑥 

∞

0

 

=  ∫ 𝑒𝑥−2𝜋𝑖𝑥𝜉  𝑑𝑥
∞

0

 +  ∫ 𝑒−𝑥−2𝜋𝑖𝑥𝜉  𝑑𝑥
∞

0

 

Let's evaluate the first integral: ∫ 𝑒𝑥−2𝜋𝑖𝑥𝜉  𝑑𝑥
∞

0
=  ∫ 𝑒𝑥𝑒−2𝜋𝑖𝑥𝜉  𝑑𝑥 

0

{−∞}
=

∫ 𝑒𝑥  
0

{−∞}
cos(2𝜋𝑥𝜉) 𝑑𝑥 − 𝑖 ∫ 𝑒𝑥  

0

{−∞}
sin(2𝜋𝑥𝜉) 𝑑𝑥 

For the real part: ∫ 𝑒𝑥 
0

{−∞}
cos(2𝜋𝑥𝜉) 𝑑𝑥 =  [

𝑒𝑥 cos(2𝜋𝑥𝜉)

1 + 4𝜋2𝜉2 ] −∞
0

 −

 [
−2𝜋𝜉𝑒𝑥 sin(2𝜋𝑥𝜉)

1 + 4𝜋2𝜉2 ] −∞
0

=
1

1 + 4𝜋2𝜉2 

Similarly, for the imaginary part: −𝑖 ∫ 𝑒𝑥  
0

{−∞}
sin(2𝜋𝑥𝜉) 𝑑𝑥 =

 −𝑖 [
𝑒𝑥 sin(2𝜋𝑥𝜉)

1 + 4𝜋2𝜉2 ] −∞
0

 +  𝑖 [
2𝜋𝜉𝑒𝑥 cos(2𝜋𝑥𝜉)

1 + 4𝜋2𝜉2 ] 0
−∞

=
𝑖2𝜋𝜉

1 + 4𝜋2𝜉2 

https://claude.ai/chat/x
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Notes Calculating the second integral similarly, we get: ∫ 𝑒−𝑥−2𝜋𝑖𝑥𝜉  𝑑𝑥
∞

0
 =

1

1 + 4𝜋2𝜉2 −
𝑖2𝜋𝜉

1 + 4𝜋2𝜉2 

Combining both integrals: 𝐹𝑒−|𝑥|  =
2

1 + 4𝜋2𝜉2 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒,   𝐹𝑇 =
2

1 +  4𝜋2𝜉2
. 

Problem 3 

Prove that if T is a tempered distribution and φ is a Schwartz function, then 

the convolution T * φ is a 𝐶∞  function with at most polynomial growth. 

Solution: For a tempered distribution T and a Schwartz function φ, their 

convolution is defined by: (𝑇 ∗  𝜑)(𝑥) = < 𝑇, 𝜏𝑥  𝜑̃ >  𝑤ℎ𝑒𝑟𝑒 𝜑̃(𝑦) =

 𝜑(−𝑦) 

First, let's show that T * φ is infinitely differentiable. For any multi-index α: 

𝐷𝛼(𝑇 ∗  𝜑)(𝑥) =  𝐷𝛼 < 𝑇, 𝜏𝑥  𝜑̃ > = < 𝑇, 𝐷𝛼(𝜏𝑥 𝜑̃) > = < 𝑇, 𝜏𝑥(𝐷𝛼 𝜑̃) >

 =  (𝑇 ∗  (𝐷𝛼  𝜑̃))(𝑥) 

Since 𝐷𝛼 𝜑̃ is also a Schwartz function for any α, the convolution 𝑇 ∗

 (𝐷𝛼  𝜑̃) is well-defined. This shows that T * φ is infinitely differentiable. 

Now, let's show that T * φ has at most polynomial growth. Since T is a 

tempered distribution, there exist constants C and N such that: |< 𝑇, 𝜓 >| ≤

𝐶 {|𝛼| ≤ 𝑁}sup ∑{𝑥 ∈ 𝑅𝑛} |(1 +  |𝑥|)𝑁  𝐷𝛼 𝜓(𝑥)| 

for all Schwartz functions ψ. 

Taking 𝜓 =  𝜏𝑥  𝜑 ̃, 𝑤𝑒 𝑔𝑒𝑡: |(𝑇 ∗  𝜑)(𝑥)|  =  | < 𝑇, 𝜏_𝑥 𝜑 ̃ > |  ≤

 𝐶∑{|𝛼| ≤ 𝑁} sup {𝑦 ∈ 𝑅𝑛} |(1 + |𝑦|)𝑁 𝐷𝛼(𝜏𝑥 𝜑 ̃)(𝑦)|  =  𝐶∑{|𝛼| ≤

𝑁} sup {𝑦 ∈ 𝑅𝑛} |(1 +  |𝑦|)𝑁  (𝐷𝛼 𝜑 ̃)(𝑦 − 𝑥)| 

Using the property of Schwartz functions, for any p > 0 there exists a 

constant Cp such that: |(𝐷𝛼  𝜑̃)(𝑦 − 𝑥)| ≤  𝐶𝑝(1 +  |𝑦 − 𝑥|)−𝑝 

https://claude.ai/chat/%CE%BE
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Notes Choosing p > N and using the 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 (1 +  |𝑦|)𝑁  ≤  𝐶′(1 +

 |𝑦 − 𝑥|)𝑁(1 +  |𝑥|)𝑁, 𝑤𝑒 𝑔𝑒𝑡: |(𝑇 ∗  𝜑)(𝑥)| ≤  𝐶′′(1 +  |𝑥|)𝑁 

This shows that T * φ has at most polynomial growth. Therefore, T * φ is a 

C^∞ function with at most polynomial growth. 

Problem 4 

Let H be the Heaviside function (H(x) = 1 for x > 0, H(x) = 0 for x < 0). 

Compute the Fourier transform of H as a tempered distribution. 

Solution: The Heaviside function H is a tempered distribution since it is 

bounded. 

To find its Fourier transform, we use the definition: <F[H],φ> = <H,F[φ]> 

for any Schwartz function φ 

< 𝐻, 𝐹[𝜑] > =  ∫ 𝐹𝜑 𝑑𝑥
∞

0

 

Using the definition of the Fourier transform: 𝐹𝜑 =  ∫ 𝜑(𝑦)𝑒−2𝜋𝑖𝑥𝑦 𝑑𝑦 

𝑆𝑜: < 𝐻, 𝐹[𝜑] > =  ∫ ∫ 𝜑(𝑦)𝑒−2𝜋𝑖𝑥𝑦 𝑑𝑦 𝑑𝑥
∞

0
  =

 ∫ 𝜑(𝑦) ∫  𝑒−2𝜋𝑖𝑥𝑦 𝑑𝑥 𝑑𝑦
∞

0
   

The inner integral can be evaluated as: ∫ 𝑒−2𝜋𝑖𝑥𝑦 𝑑𝑥 
∞

0
 =  [

𝑒−2𝜋𝑖𝑥𝑦

−2𝜋𝑖𝑦
] ∞

0
   =

1

2𝜋𝑖𝑦
+

𝑙𝑖𝑚{𝑅→∞}𝑒−2𝜋𝑖𝑦𝑅

2𝜋𝑖𝑦
r y ≠ 0, the limit term vanishes. At y = 0, we need to 

be careful, but the result is: ∫ 𝑒−2𝜋𝑖𝑥𝑦 𝑑𝑥
∞

0
  =

1

2𝜋𝑖𝑦
+  𝜋𝛿(𝑦) 

Therefore: < 𝐻, 𝐹[𝜑] > =  ∫ 𝜑(𝑦) [
1

2𝜋𝑖𝑦
+  𝜋𝛿(𝑦)] 𝑑𝑦 =  ∫

𝜑(𝑦)

2𝜋𝑖𝑦
𝑑𝑦 +  𝜋 ·

𝜑(0) = <
1

2𝜋𝑖𝑦
+  𝜋𝛿(𝑦), 𝜑 > 

Thus, the Fourier transform of the Heaviside function is: FH = 1/(2πiy) + 

πδ(y) 

which can also be written as: FH = P.V.(1/(2πiy)) + πδ(y) 

https://claude.ai/chat/x
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Notes where P.V. denotes the Cauchy principal value. 

Problem 5 

Show that a tempered distribution T with compact support is a finite sum of 

derivatives of continuous functions with compact support. 

Solution: This is a consequence of the structure theorem for distributions 

with compact support, specialized to tempered distributions. 

Let T be a tempered distribution with compact support contained in a 

compact set K. By the structure theorem for distributions with compact 

support, there exist a multi-index α and a continuous function f with 

compact support such that: 𝑇 =  𝐷𝛼  𝑓 

However, this is not directly applicable to tempered distributions. To adapt 

the proof, we need to use the fact that any distribution with compact support 

is a tempered distribution. 

Step 1: Since T has compact support, there exists a cutoff function 𝜒 ∈

𝐶𝑐
∞(𝑅𝑛)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜒 =  1 on a neighborhood of the support of T. Then T = 

χT. 

Step 2: There is a continuous function f with compact support and a multi-

index α such that 𝑇 =  𝐷𝛼  f. Apply the structure theorem for distributions 

with compact support to T. 

Step 3: Since f has compact support, it is a tempered distribution. Therefore, 

𝐷𝛼 f is also a tempered distribution. 

Step 4: The function f can be chosen to have its support contained in any 

prescribed neighborhood of the support of T. 

This completes the proof that a tempered distribution with compact support 

is a finite sum. 

1.3.2 Applications of Distributions in Mathematical Analysis 

Distributions, also known as generalized functions, extend the concept of 

functions to include objects like the Dirac delta function that cannot be 
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Notes treated within classical calculus. They were formalized by Laurent Schwartz 

in the mid-20th century, revolutionizing mathematical analysis by providing 

rigorous methods for handling singularities, discontinuities, and highly 

oscillatory phenomena.The theory of distributions finds applications in 

various branches of mathematics and physics, including partial differential 

equations, Fourier analysis, quantum mechanics, and signal processing. This 

systematic framework allows mathematicians to work with "functions" that 

may not have values at every point but still possess meaningful derivatives 

and integrals in a generalized sense. 

Basic Concepts of Distribution Theory 

Test Functions 

Distribution theory begins with the concept of test functions, which are 

infinitely differentiable functions with compact support. The space of test 

functions, denoted by 𝐷(𝛺)𝑜𝑟 𝐶∞0(𝛺), consists of all functions φ: Ω → ℝ 

such that: 

• φ is infinitely differentiable (smooth) 

• The support of φ (the closure of the set where φ is non-zero) is 

compact (bounded and closed) 

Test functions serve as "probes" to extract information about distributions. 

Distributions 

A distribution T is a continuous linear functional on the space of test 

functions. This means T assigns a real number ⟨T, φ⟩ to each test function φ, 

satisfying: 

• Linearity: ⟨𝑇, 𝑎𝜑 +  𝑏𝜓⟩ =  𝑎⟨𝑇, 𝜑⟩ +  𝑏⟨𝑇, 𝜓⟩ for all constants a, b 

and test functions φ, ψ 

• Continuity: If a sequence of test functions 𝜑𝑛 converges to φ in a 

suitable topology, then ⟨T, 𝜑𝑛⟩ converges to ⟨T, φ⟩ 

The space of all distributions is denoted by D'(Ω). 

Regular Distributions 
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Notes Any locally integrable function f can be associated with a regular 

distribution Tf defined by: ⟨Tf, φ⟩ = ∫ f(x)φ(x) dx 

This allows us to view ordinary functions as special cases of distributions. 

Singular Distributions 

Some distributions cannot be represented by ordinary functions. The most 

famous example is the Dirac delta distribution δ, defined by: ⟨δ, φ⟩ = φ(0) 

The delta distribution can be thought of as a "function" that is zero 

everywhere except at x = 0, where it is "infinite" in such a way that its 

integral equals 1. 

Operations on Distributions 

Differentiation 

One of the most powerful aspects of distribution theory is the ability to 

differentiate any distribution. The derivative of a distribution T is defined 

by: ⟨T', φ⟩ = -⟨T, φ'⟩ 

This definition ensures that the usual integration by parts formula holds in 

the generalized sense. Using this definition, even discontinuous functions 

can be differentiated infinitely many times. 

Multiplication by Smooth Functions 

If T is a distribution and α is a smooth function, their product αT is defined 

by: ⟨αT, φ⟩ = ⟨T, αφ⟩ 

Convolution 

The convolution of a distribution T with a test function φ results in a smooth 

function defined by: (T * φ)(x) = ⟨T, φ(x - ·)⟩ 

This operation is particularly useful in solving differential equations. 

Fourier Transform 
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Notes The Fourier transform of a distribution T is defined by: ⟨F[T], φ⟩ = ⟨T, F[φ]⟩ 

where F[φ] is the Fourier transform of the test function φ. 

Applications in Partial Differential Equations 

Fundamental Solutions 

A fundamental solution of a linear differential operator L is a distribution E 

such that: L(E) = δ 

where δ is the Dirac delta distribution. Once a fundamental solution is 

known, the solution to the inhomogeneous equation L(u) = f can be 

expressed as: u = E * f 

For example, for the heat equation ∂u/∂t - k∂²u/∂x² = 0, the fundamental 

solution is: 𝐸(𝑥, 𝑡) =  (
1

√4𝜋𝑘𝑡
) 𝑒−

𝑥2

4𝑘𝑡 𝑓𝑜𝑟  𝑡 >  0 

Green's Functions 

Green's functions are special types of fundamental solutions that incorporate 

boundary conditions. If G(x, y) is a Green's function for a boundary value 

problem, then the solution can be written as: u(x) = ∫ G(x, y)f(y) dy 

For example, the Green's function for the one-dimensional boundary value 

problem −𝑢′′(𝑥) =  𝑓(𝑥)𝑤𝑖𝑡ℎ 𝑢(0) =  𝑢(1) =  0 𝑖𝑠: 𝐺(𝑥, 𝑦) =

 { 𝑦(1 − 𝑥)𝑖𝑓 0 ≤  𝑦 ≤  𝑥 ≤  1 𝑥(1 − 𝑦)𝑖𝑓 0 ≤  𝑥 ≤  𝑦 ≤  1 } 

Weak Solutions 

Distributions allow for the concept of weak solutions to differential 

equations, which are particularly useful when classical solutions do not 

exist. A distribution u is a weak solution to L(u) = f if: ⟨u, L*(φ)⟩ = ⟨f, φ⟩ 

for all test functions φ, where L* is the adjoint operator of L. 

Applications in Fourier Analysis 

Tempered Distributions 
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Notes The space of tempered distributions 𝑆′(ℝⁿ) consists of continuous linear 

functionals on the Schwartz space 𝑆(ℝⁿ) of rapidly decreasing functions. 

Tempered distributions are precisely the distributions that have a Fourier 

transform within the distribution space. 

Fourier Series of Periodic Distributions 

For a periodic distribution T with period 2π, the Fourier coefficients are 

given by: 𝑐𝑛  =  (
1

2𝜋
) ⟨𝑇, 𝑒−𝑖𝑛𝑥⟩ 

The Fourier series of T is then: T = ∑ 𝑐𝑛𝑒𝑖𝑛𝑥   

Poisson Summation Formula 

The Poisson summation formula for distributions states that: ∑ 𝑇(𝑥 +

 2𝜋𝑛) =  (
1

2𝜋
) ∑ 𝑇̂(𝑛)𝑒𝑖𝑛𝑥 

where T̂ is the Fourier transform of T. 

Applications in Mathematical Physics 

Quantum Mechanics 

In quantum mechanics, the wave function of a particle is often represented 

as a distribution rather than a classical function, especially when dealing 

with idealized states like a particle at a precise position. 

The position operator in the distribution sense allows for a rigorous 

treatment of the uncertainty principle: ⟨𝛿, (−
𝑖ℏ𝑑

𝑑𝑥
) 𝜑⟩ =  −𝑖ℏ𝜑′(0) 

Electromagnetism 

The charge density of a point charge can be modeled using the Dirac delta 

distribution: 𝜌(𝑟) =  𝑞𝛿(𝑟 − 𝑟0) 

This leads to the electric potential: 𝜑(𝑟) =  (
1

4𝜋𝜀0) (
𝑞

|𝑟 − 𝑟0|
) 

which is the fundamental solution to Poisson's equation ∇²φ = -ρ/ε₀. 
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Notes Continuum Mechanics 

In the theory of elasticity, the response to a point force is described using 

Green's functions, which are fundamental solutions to the equations of 

equilibrium. The displacement field due to a point force F at position r₀ is: 

u(r) = G(r, r₀) · F 

where G is the elastic Green's tensor. 

Applications in Signal Processing 

Impulse Response 

The impulse response h(t) of a linear time-invariant system is its response to 

a Dirac delta input δ(t). The output y(t) for any input x(t) is given by the 

convolution: y(t) = (h * x)(t) 

Sampling Theory 

The sampling of a signal f(t) at equally spaced points can be represented as 

multiplication by a Dirac comb: fs(t) = f(t) · ∑ δ(t - nT) 

The Fourier transform of fs is: Fs(ω) = (1/T)∑F(ω - 2πn/T) 

This leads to the Nyquist-Shannon sampling theorem, which says that 

samples taken at intervals of T < π/Ω may completely reconstruct a 

bandlimited signal with maximum frequency Ω. 

Filter Design 

Distributions are used in the design of ideal filters. For example, an ideal 

low-pass filter with cutoff frequency ωc has the frequency response: H(ω) = 

{ 1 if |𝜔| ≤  𝜔𝑐  0 𝑖𝑓 |𝜔| > 𝜔𝑐  }   

Its impulse response is: ℎ(𝑡) =
sin(𝜔𝑐𝑡 )

𝜋𝑡
 

Solved Problems 

Problem 1: Derivatives of the Heaviside Function 



 

35 
 

Notes Problem: Calculate the first and second derivatives of the Heaviside 

function H(x) in the sense of distributions. 

Solution: 

The definition of the Heaviside function is: H(x) = { 0 if x < 0 1 if x ≥ 0 } 

To find the first derivative, we use the definition of the derivative of a 

distribution: ⟨𝐻′, 𝜑⟩ =  −⟨𝐻, 𝜑′⟩ =  − ∫ 𝜑′(𝑥)𝑑𝑥 
∞

0
 =  −[𝜑(𝑥)] ∞

0
  =

 −𝜑(∞) +  𝜑(0) =  𝜑(0) 

Since φ is a test function, φ(∞) = 0 (as test functions have compact support). 

Therefore: ⟨H', φ⟩ = φ(0) = ⟨δ, φ⟩ 

This shows that H'(x) = δ(x), the Dirac delta distribution. 

For the second derivative: ⟨H'', φ⟩ = -⟨H', φ'⟩ = -⟨δ, φ'⟩ = -φ'(0) = ⟨δ', φ⟩ 

Therefore, H''(x) = δ'(x), the derivative of the delta distribution. 

Problem 2: Fundamental Solution of the Laplace Equation 

Problem: Find the fundamental solution of the Laplace equation ∇²u = 0 in 

three dimensions. 

Solution: 

We look for a distribution E such that ∇²E = δ, where δ is the distribution of 

the three-dimensional Dirac delta. 

Based on the symmetry of the problem, E should be radially symmetric, i.e., 

E(x) = E(|x|) = E(r). 

In spherical coordinates, the Laplacian of a radially symmetric function is: 

𝛻2𝐸 =  (
1

𝑟2) (
𝑑

𝑑𝑟
) (𝑟2 (

𝑑𝐸

𝑑𝑟
)) 

For r > 0, we have ∇²E = 0, so: (
𝑑

𝑑𝑟
) (𝑟2 (

𝑑𝐸

𝑑𝑟
)) =  0 

Integrating once: 𝑟2 (
𝑑𝐸

𝑑𝑟
) =  𝐶1 
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Notes Thus: 
𝑑𝐸

𝑑𝑟
=

𝐶1

𝑟2  

Integrating again: 𝐸(𝑟) =  −
𝐶1

𝑟
+ 𝐶2 

The constant 𝐶2 can be set to zero since we're interested in a solution that 

vanishes at infinity. 

To determine 𝐶1, we use the fact that ∇²E = δ. Consider a small sphere 𝐵𝜀  of 

radius ε around the origin. By the divergence theorem: ∫ 𝐵𝜀𝛻2𝐸 𝑑𝑉 =

 ∫ 𝜕𝐵𝜀𝛻𝐸 ·  𝑛 𝑑𝑆 =  ∫ (
𝑑𝐸

𝑑𝑟
) 𝑑𝑆

𝜕𝐵𝜀
=  4𝜋𝜀2 (

𝐶1

𝜀2) =  4𝜋𝐶1 

Since this must equal ⟨δ, 1⟩ = 1, we have C₁ = 1/(4π). 

Therefore, the fundamental solution is: E(r) = -1/(4πr) 

This is the Green's function for the Laplace equation in three dimensions. 

Problem 3: Fourier Transform of the Dirac Delta Distribution 

Problem: Calculate the Fourier transform of the Dirac delta distribution δ(x) 

and its derivative δ'(x). 

Solution: 

The Fourier transform of a distribution T is defined by: ⟨F[T], φ⟩ = ⟨T, F[φ]⟩ 

For the Dirac delta: ⟨F[δ], φ⟩ = ⟨δ, F[φ]⟩ = Fφ = ∫ φ(x)𝑒−𝑖0·𝑥  dx = ∫ φ(x) dx 

= ⟨1, φ⟩ 

This shows that F[δ(x)] = 1, a constant function. 

For the derivative of the delta: ⟨F[δ'], φ⟩ = ⟨δ', F[φ]⟩ = -⟨δ, (F[φ])'⟩ = -

(F[φ])'(0) 

The derivative of the Fourier transform is: (𝐹[𝜑])′(𝜉) =  ∫ −𝑖𝑥 ·

𝜑(𝑥)𝑒−𝑖𝜉·𝑥  𝑑𝑥 =  𝐹 − 𝑖𝑥 · 𝜑(𝑥) 

Therefore: ⟨𝐹[𝛿′], 𝜑⟩ =  −𝐹 − 𝑖𝑥 · 𝜑(𝑥)  =  − ∫ −𝑖𝑥 · 𝜑(𝑥)𝑑𝑥 =  ∫ 𝑖𝑥 ·

𝜑(𝑥)𝑑𝑥 =  ⟨𝑖𝜉, 𝜑⟩ 

https://claude.ai/chat/0
https://claude.ai/chat/%CE%BE
https://claude.ai/chat/0
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Notes This shows that F[δ'(x)] = iξ. 

Problem 4: Weak Solution of a Boundary Value Problem 

Problem: Find the weak solution of the boundary value problem: -u''(x) = 

f(x) for x ∈ (0, 1) u(0) = u(1) = 0 

Solution: 

A weak solution satisfies: ⟨u, -φ''⟩ = ⟨f, φ⟩ 

for all test functions φ that vanish at x = 0 and x = 1. 

Using the definition of the derivative of a distribution: ⟨u, -φ''⟩ = ⟨u', φ'⟩ 

Therefore, we need to find u such that: ⟨u', φ'⟩ = ⟨f, φ⟩ 

Let's define: 𝑣(𝑥) =  ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
 

Then: ⟨𝑣′, 𝜑⟩ =  −⟨𝑣, 𝜑′⟩ =  − ∫ ∫ 𝑓(𝑡) 𝑑𝑡)𝜑′(𝑥) 𝑑𝑥
𝑥

0

1

0
 

Integrating by parts: -∫₀1 (∫ f(t)
𝑥

0
 dt)φ'(x) dx = [(∫ f(t)

𝑥

0
 dt)φ(x)]₀1 - ∫ f(x)

𝑥

0
 

φ(x) dx 

Since φ(0) = φ(1) = 0, the first term vanishes, and: ⟨v', φ⟩ = -∫ f(x)
𝑥

0
φ(x) dx 

= -⟨f, φ⟩ 

Now, let's set u'(x) = -v(x) + C, where C is a constant. Then: ⟨u', φ'⟩ = ⟨-v + 

C, φ'⟩ = -⟨v, φ'⟩ + C⟨1, φ'⟩ 

The second term vanishes since φ has compact support in (0, 1). For the first 

term: -⟨v, φ'⟩ = ⟨v', φ⟩ = -⟨f, φ⟩ 

Therefore: ⟨u', φ'⟩ = ⟨f, φ⟩ 

which is what we wanted. Integrating u'(x) = -v(x) + C: u(x) = -∫ v(t)
𝑥

0
dt + 

Cx + D 
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Notes To satisfy the boundary conditions: u(0) = D = 0 u(1) = -∫ v(t)
1

0
dt + C + D = 

0 

Therefore: C = ∫ v(t)
1

0
dt = ∫ ( ∫ f(s)

𝑡

0
ds dt 

1

0
 

Changing the order of integration: C = ∫ f(s)
1

0
 (∫ dt ) ds = 

1

𝑠
 ∫ f(s)

1

0
 (1-s) ds 

The weak solution is: u(x) = - ∫ ( 
𝑥

0 ∫ f(s)
𝑡

0
 ds) dt + x∫ f(s)

1

0
(1-s) ds 

This can be rewritten using the Green's function: u(x) ∫ G
1

0
(x,y)f(y) dy 

where: G(x,y) = { y(1-x) if 0 ≤ y ≤ x ≤ 1 x(1-y) if 0 ≤ x ≤ y ≤ 1 } 

Problem 5: Convolution with the Heat Kernel 

Problem: Solve the initial value problem for the heat equation: ∂u/∂t = 

∂²u/∂x² for 𝑥 ∈  ℝ, 𝑡 >  0 𝑢(𝑥, 0) =  𝜑(𝑥) 

where φ is a smooth function with compact support. 

Solution: 

The fundamental solution (heat kernel) for the heat equation is: E(x, t) = 

(1/√(4πt))e(-x²/4t) for t > 0 

The solution to the initial value problem is given by the convolution of the 

initial condition with the heat kernel: u(x, t) = (E(·, t) * φ)(x) = ∫ₑₓₓ E(x-y, 

t)φ(y) dy 

Substituting the heat kernel: u(x, t) = ∫ₑₓₓ (1/√(4πt))e^(-(x-y)²/4t)φ(y) dy 

Let's verify that this satisfies the heat equation: 

1. Differentiating with respect to t: 
𝜕𝑢

𝜕𝑡
=

 ∫ ₑₓₓ 
𝜕

𝜕𝑡[(
1

√4𝜋𝑡
)𝑒

−
(𝑥−𝑦)2

4𝑡 ]𝜑(𝑦)𝑑𝑦

=  ∫ ₑₓₓ [− (
1

2
) 𝑡−

3

2 (
1

√4𝜋
) 𝑒−

(𝑥−𝑦)2

4𝑡  +

(
1

√4𝜋𝑡
)(𝑥−𝑦)2

(4𝑡2)𝑒
−

(𝑥−𝑦)2

4𝑡

] 𝜑(𝑦)𝑑𝑦 
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Notes 2. Differentiating twice with respect to x: ∂²u/∂x² = ∫ₑₓ2 

∂²/∂x²[(1/√(4πt))e(-(x-y)²/4t)]φ(y) dy = ∫ₑₓ2 (1/√(4πt))[-1/(2t)e(-(x-y)²/4t) + 

(x-y)²/(4t²)e(-(x-y)²/4t)]φ(y) dy 

After simplification, we find that ∂u/∂t = ∂²u/∂x², confirming that u satisfies 

the heat equation. 

For the initial condition, we have: lim(t→0) u(x, t) = lim(t→0) ∫ₑₓₓ 

(1/√(4πt))e^(-(x-y)²/4t)φ(y) dy = φ(x) 

This can be proven using the fact that (1/√(4πt))e(-(x-y)²/4t) is an approximation 

to the identity as t → 0, meaning it converges to the Dirac delta distribution. 

Therefore, the convolution converges to φ(x). 

Thus, u(x, t) = (E(·, t) * φ)(x) is the solution to the initial value problem. 

Unsolved Problems 

Problem 1: Fundamental Solution of the Wave Equation 

Find the fundamental solution of the wave equation in three dimensions: 

∂²u/∂t² - ∇²u = δ(x)δ(t) 

Problem 2: Distribution Solution of a Nonlinear Equation 

Examine whether distribution solutions to the nonlinear equation exist and 

what their characteristics are.  u' + u² = δ 

where u is a distribution on ℝ. 

Problem 3: Fourier Transform of a Periodic Distribution 

Calculate the Fourier transform of the periodic distribution: T = ∑ δ(x - 2πn) 

and interpret the result in terms of the Poisson summation formula. 

Problem 4: Distributional Solution with Discontinuous Coefficient 

Find the boundary value problem's distributional solution:  f(x) = (a(x)u')' 

for x ∈ (0, 1)  u(0) = u(1) = 0. 
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Notes where a(x) = { 1 if 0 ≤ x < 1/2 2 if 1/2 ≤ x ≤ 1 } 

and f is a continuous function on [0, 1]. 

Problem 5: Asymptotic Behavior of a Convolution 

Determine the asymptotic behavior as |x| → ∞ of the convolution: (T * φ)(x) 

where T is the tempered distribution defined by the principal value: T = 

P.V.(1/x) 

and φ is a smooth function with compact support. 

Advanced Topics in Distribution Theory 

Distributions with Values in a Banach Space 

The concept of distributions can be extended to Banach space-valued 

distributions. A distribution T with values in a Banach space X is a 

continuous linear map from the space of test functions to X.These 

distributions are particularly useful in the study of evolution equations, 

where the solution at each time t is an element of a function space. 

Microlocal Analysis 

Microlocal analysis studies the singularities of distributions from a local 

perspective in both position and frequency domains. The key concept is the 

wave front set WF(u) of a distribution u, which describes not only where u is 

singular but also the directions in which its Fourier transform does not decay 

rapidly.This theory has applications in hyperbolic partial differential 

equations, where singularities propagate along characteristic curves, and in 

tomography, where it helps determine the regions that can be reconstructed 

from limited-angle data. 

Colombeau Algebras 

Colombeau algebras provide a framework for multiplying distributions, 

which is generally not possible in the standard theory. A Colombeau algebra 

G(Ω) is constructed by considering equivalence classes of nets of smooth 

functions (fε)ε>0 that satisfy certain growth conditions as ε → 0. 
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Notes This approach allows for a consistent treatment of products like δ² or 

H(x)δ(x), which arise in nonlinear partial differential equations with 

discontinuous solutions. 

Sobolev Spaces and Distributions 

Sobolev spaces Wᵏ,ᵖ(Ω) consist of functions whose derivatives up to order k 

(in the distributional sense) belong to Lᵖ(Ω). These spaces play a crucial role 

in the theory of partial differential equations.The embedding theorems for 

Sobolev spaces, such as the Sobolev-Gagliardo-Nirenberg inequality, 

provide conditions under which functions in Sobolev spaces are continuous 

or differentiable in the classical sense. 

Distribution theory provides a powerful framework for extending classical 

calculus to handle singularities, discontinuities, and generalized functions. 

Its applications span various branches of mathematics and physics, from 

solving partial differential equations to analyzing signals and quantum 

systems.The flexibility of distributions enables mathematicians to work with 

objects like the Dirac delta function and the Heaviside step function in a 

rigorous manner, making it an essential tool in mathematical analysis. The 

development of related areas such as microlocal analysis and Colombeau 

algebras continues to expand the scope and applicability of distribution 

theory to more complex problems in mathematics and its applications. 

Understanding Distributions in Mathematical Analysis: Theory and 

Applications Introduction to Distribution Theory  

Distribution theory, also known as the theory of generalized functions, 

emerged in the mid-20th century as a powerful framework for extending the 

classical notion of functions. This theoretical innovation addresses 

fundamental limitations in analysis by providing a rigorous foundation for 

dealing with operations that are problematic or undefined in conventional 

function theory. The concept arose from practical needs in physics, 

engineering, and mathematics, where traditional functions proved 

inadequate for modeling certain phenomena. Unlike ordinary functions that 

assign specific values to each point in their domain, distributions are 

mathematical objects defined through their action on test functions. This 

indirect definition enables the extension of calculus operations to a broader 
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Notes class of objects, including those with singularities or other irregularities that 

would be problematic in classical analysis. The development of distribution 

theory is primarily attributed to Laurent Schwartz, whose seminal work in 

the 1940s formalized and unified earlier approaches. The theory has since 

become essential in numerous fields, including partial differential equations, 

quantum mechanics, signal processing, and mathematical physics. By 

providing a consistent framework for operations like differentiation of non-

differentiable functions, distribution theory bridges gaps in mathematical 

analysis and offers tools to solve problems that were previously intractable.  

The Foundation:  

At the heart of distribution theory lies the concept of test functions, which 

serve as probing tools to extract information about distributions. These 

specialized functions possess remarkably smooth properties that make them 

ideal for this purpose. Formally, test functions belong to the space denoted 

as D(Ω) or C₀^∞(Ω), consisting of infinitely differentiable functions with 

compact support defined on an open subset Ω of ℝⁿ. The defining 

characteristics of test functions include their infinite differentiability, 

ensuring they possess derivatives of all orders, and their compact support, 

meaning they vanish outside a bounded closed subset of the domain. This 

latter property is particularly significant as it ensures that when test 

functions interact with distributions, the resulting operations remain well-

defined even when the distributions exhibit singularities or other 

pathological behaviors. The space of test functions carries a specific 

topology defined through a sequence of seminorms, making it a locally 

convex topological vector space. This topological structure is essential for 

defining convergence within the space, which in turn determines how 

distributions behave under limiting processes. A sequence of test functions 

{φₙ} is said to converge to a test function φ if all derivatives of all orders 

converge uniformly to the corresponding derivatives of φ, and if there exists 

a common compact set containing the supports of all functions in the 

sequence after some index. This sophisticated convergence concept, while 

technically demanding, provides the necessary framework for defining 

distributions as continuous linear functionals on the space of test functions. 

The rigorous mathematical foundation established through test functions 

enables distribution theory to handle operations that would be problematic 

or impossible in classical analysis.  
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Notes Defining Distributions through Linear Functionals  

Distributions are precisely defined as continuous linear functionals on the 

space of test functions. If we denote the space of test functions as D(Ω), then 

a distribution T is a linear mapping from D(Ω) to the real or complex 

numbers that satisfies the continuity requirement with respect to the 

topology on D(Ω). For any test function φ, the action of a distribution T on φ 

is denoted by ⟨T, φ⟩, representing the value obtained when the distribution 

"tests" or "probes" the test function. The linearity property means that for 

any test functions φ and ψ and scalars α and β, we have ⟨T, αφ + βψ⟩ = α⟨T, 

φ⟩ + β⟨T, ψ⟩. This algebraic structure allows distributions to behave 

predictably under combinations of test functions, mirroring the behavior of 

traditional integration operations. The continuity requirement ensures that if 

a sequence of test functions converges in the topology of D(Ω), then the 

sequence of corresponding values under the distribution also converges. This 

property is crucial for ensuring that distributions respect limiting processes, 

which is essential for applications in differential equations and other areas 

where limits are fundamental. The space of all distributions on Ω is denoted 

by D'(Ω), forming the dual space to D(Ω). This dual relationship establishes 

a rich structure that enables the extension of many operations from classical 

analysis to distributions. A simple yet illustrative example of a distribution is 

the Dirac delta "function" δ, defined by its action on test functions: ⟨δ, φ⟩ = 

φ(0). Despite not being a function in the classical sense, the Dirac delta is 

well-defined as a distribution and serves as a fundamental building block in 

distribution theory, particularly in applications involving point sources or 

impulse responses. 

Regular Distributions and Their Connections to Classical Functions  

An important bridge between classical function theory and distribution 

theory is provided by regular distributions. For any locally integrable 

function f on Ω, we can define a corresponding distribution Tₑ by the 

formula ⟨Tₑ, φ⟩ = ∫Ω f(x)φ(x)dx for all test functions φ. This association 

allows us to view ordinary functions as special cases of distributions. The 

mapping from functions to their corresponding regular distributions is 

injective, meaning different functions give rise to different distributions. 

This allows us to identify locally integrable functions with their associated 

distributions, effectively embedding the space of such functions into the 
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Notes larger space of distributions. Regular distributions inherit properties from 

their generating functions while benefiting from the extended operations 

available in distribution theory. For instance, while a function might not be 

differentiable in the classical sense, its associated distribution can always be 

differentiated in the distributional sense, offering a powerful extension of 

calculus. The relationship between functions and distributions becomes 

particularly valuable when dealing with sequences and limits. A sequence of 

regular distributions converges if and only if the corresponding sequence of 

functions converges in a suitable sense, establishing a compatibility between 

classical and distributional convergence concepts. This connection between 

functions and distributions provides both theoretical elegance and practical 

utility, allowing us to reinterpret classical analysis problems within the more 

flexible framework of distribution theory while maintaining consistency 

with established results where they apply.  

Operations on Distributions: Extending Calculus  

One of the most powerful aspects of distribution theory is how it extends 

fundamental calculus operations to generalized functions. These extensions 

preserve the essential properties of the operations while broadening their 

applicability to objects that would be problematic in classical analysis. 

Differentiation in the Distributional Sense For a distribution T, its derivative 

is defined through the relationship ⟨T', φ⟩ = -⟨T, φ'⟩ for all test functions φ. 

This definition, which appears to apply integration by parts "in reverse," 

ensures that when T corresponds to a differentiable function, the 

distributional derivative coincides with the classical derivative. The 

remarkable consequence of this definition is that every distribution 

possesses derivatives of all orders, regardless of smoothness properties. This 

removes the classical restrictions on differentiation and allows for the 

differentiation of functions with discontinuities, corner points, or even more 

severe singularities. For example, the Heaviside step function H(x), which 

equals 0 for x < 0 and 1 for x > 0, is not differentiable at x = 0 in the 

classical sense. However, its distributional derivative is precisely the Dirac 

delta distribution, a result that formalizes the intuitive understanding of the 

step function's behavior at the origin. Multiplication and Convolution 

Multiplication between distributions and smooth functions can be defined as 

⟨fT, φ⟩ = ⟨T, fφ⟩, where f is a smooth function and T is a distribution. This 

operation extends the notion of pointwise multiplication and is compatible 
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Notes with the definition of regular distributions. Convolution, another 

fundamental operation, can also be extended to distributions under certain 

conditions. For distributions S and T with appropriate supports, their 

convolution S * T is defined to satisfy ⟨S * T, φ⟩ = ⟨S(x), ⟨T(y), φ(x+y)⟩⟩. 

Convolution plays a crucial role in applications involving linear time-

invariant systems, partial differential equations, and signal processing. These 

extended operations maintain key algebraic properties similar to their 

classical counterparts, such as commutativity and associativity for 

convolution, while also introducing new relationships specific to the 

distributional setting. For instance, the convolution of a distribution with the 

Dirac delta reproduces the original distribution, mirroring the sifting 

property in classical analysis.  

Localization and Support Properties of Distributions  

The concept of support extends naturally from functions to distributions, 

though with some subtle differences. For a distribution T, its support is 

defined as the complement of the largest open set where T vanishes. A 

distribution T vanishes on an open set U if ⟨T, φ⟩ = 0 for all test functions φ 

with support contained in U. This notion of support allows for the 

localization of distributions, meaning we can restrict attention to their 

behavior in specific regions. Localization is particularly valuable when 

dealing with partial differential equations, where we might need to analyze 

solutions near singularities or boundaries. Distributions with compact 

support form an important subclass, denoted by E'(Ω). These distributions 

behave somewhat like "generalized functions with finite extent" and include 

examples such as the Dirac delta and its derivatives, as well as regular 

distributions corresponding to functions with compact support. The 

localization properties of distributions lead to practical techniques for 

analyzing their behavior. For instance, a partition of unity—a collection of 

smooth functions that sum to 1 everywhere while each having compact 

support—can be used to decompose a distribution into components localized 

to different regions, facilitating region-by-region analysis. The support of a 

distribution also influences its interaction with operations like convolution. 

The support of the convolution of two distributions is contained in the sum 

of their supports, a property that has implications for the propagation of 

singularities in partial differential equations.  
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Notes Regularization Techniques in Distribution Theory  

Regularization provides methods for approximating singular distributions by 

sequences of smooth functions, offering both theoretical insights and 

practical computational approaches. These techniques form a bridge 

between the abstract world of distributions and the more concrete realm of 

classical functions. A common regularization approach involves convolution 

with a mollifier, which is a smooth function with compact support that 

integrates to 1. Given a distribution T, its regularization Tε is defined as the 

convolution T * ηε, where ηε(x) = ε(-n)η(x/ε) and η is a standard mollifier. As ε 

approaches zero, Tε converges to T in the sense of distributions. 

Regularization has multiple applications in both theory and practice. 

Theoretically, it helps establish existence and uniqueness results for 

solutions to partial differential equations involving distributions. Practically, 

it provides numerical methods for approximating distributions in 

computational contexts, where direct representation of singular objects 

might be challenging. For example, the Dirac delta can be regularized by a 

sequence of functions that become increasingly concentrated around the 

origin while maintaining unit integral. The resulting functions, often called 

"nascent delta functions," approximate the delta's singularity while being 

tractable for numerical methods. Regularization also clarifies the 

relationship between distributions and measurable functions. Under suitable 

conditions, regularized distributions converge not only in the distributional 

sense but also almost everywhere as functions, establishing stronger modes 

of convergence than distributional convergence alone.  

Convergence Concepts in Distribution Theory  

Distribution theory introduces several notions of convergence, each 

capturing different aspects of how generalized functions can approach limits. 

Understanding these convergence concepts is essential for applications 

involving approximation, asymptotic analysis, and numerical methods.  

Weak Convergence of Distributions  

The primary notion of convergence in distribution theory is weak 

convergence. A sequence of distributions {Tₙ} is said to converge weakly to 

a distribution T if for every test function φ, the sequence of numbers {⟨Tₙ, 

φ⟩} converges to ⟨T, φ⟩. This concept generalizes the notion of convergence 
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Notes in the sense of averages or integrals, focusing on the overall behavior rather 

than pointwise values. Weak convergence is particularly useful because 

many sequences that do not converge in stronger senses will still converge 

weakly. For instance, a sequence of increasingly concentrated regular 

distributions might converge weakly to a Dirac delta, even though no 

classical function can equal the delta. Strong Convergence and Other Modes 

Beyond weak convergence, distribution theory also considers stronger 

notions of convergence for specific applications. Strong convergence 

involves convergence with respect to certain topologies on the space of 

distributions, often related to norms or seminorms that measure the "size" of 

distributions in various ways. For regular distributions corresponding to 

functions in Lᵖ spaces, convergence in the Lᵖ norm implies weak 

convergence of the associated distributions, establishing a connection 

between classical and distributional convergence concepts. Other specialized 

modes of convergence include convergence in the sense of tempered 

distributions (discussed later) and convergence in spaces of distributions 

with particular regularity or growth properties. Each mode captures different 

aspects of limiting behavior and is suited to different classes of problems.  

Applications to Approximation Theory  

Convergence concepts in distribution theory have direct applications in 

approximation theory, where we seek to represent complicated objects by 

simpler ones. For instance, distributions with singularities can be 

approximated by sequences of smooth functions, with the approximation 

improving as more terms are included. These approximation techniques 

underpin numerical methods for solving differential equations involving 

distributions, where direct computational handling of singularities might be 

challenging. By replacing singular terms with regularized approximations, 

we can apply standard numerical methods while controlling the 

approximation error.  

Tempered Distributions and Fourier Analysis  

A particularly important class of distributions, tempered distributions, forms 

the foundation for extending Fourier analysis beyond square-integrable 

functions. Tempered distributions, denoted by 𝑆′(ℝⁿ), are distributions that 

can be applied not just to compactly supported test functions but to the 

broader class of Schwartz functions—infinitely differentiable functions that, 



  

48 
 

Notes along with all their derivatives, decrease faster than any polynomial at 

infinity. The space of tempered distributions includes all distributions with 

polynomial growth, making it suitable for applications in physics and 

engineering where functions might grow at infinity but not arbitrarily 

rapidly. Regular distributions corresponding to functions with polynomial 

growth, as well as derivatives of such distributions, are tempered.  

The Fourier Transform for Tempered Distributions  

The Fourier transform, a cornerstone of signal processing and mathematical 

physics, extends naturally to tempered distributions. For a tempered 

distribution T, its Fourier transform F[T] is defined by ⟨F[T], φ⟩ = ⟨T, F[φ]⟩, 

where F[φ] denotes the classical Fourier transform of the test function φ. 

This definition preserves key properties of the classical Fourier transform, 

such as linearity and the mapping between multiplication and convolution. It 

also extends the transform's applicability to objects like the Dirac delta, 

whose Fourier transform is the constant function 1, and to functions that 

grow too rapidly for the classical transform to be defined.  

Applications in Differential Equations and Signal Processing  

Tempered distributions and their Fourier transforms are particularly valuable 

in solving differential equations. The transform converts differential 

operations into algebraic ones, simplifying many problems. For instance, the 

equation f' + af = g transforms into (iω + a)F[f] = F[g] in the frequency 

domain, which can be solved algebraically before applying the inverse 

transform. In signal processing, tempered distributions provide the 

mathematical foundation for concepts like frequency analysis, filtering, and 

sampling. They justify operations performed on signals with discontinuities 

or other irregularities, which are common in practical applications. The 

connection between distributions and Fourier analysis also illuminates the 

behavior of physical systems. For example, the response of a linear time-

invariant system to an impulse (modeled by the Dirac delta) gives the 

system's impulse response, whose Fourier transform is the system's 

frequency response—a key concept in understanding how systems process 

signals.  

Applications of Distribution Theory in Partial Differential Equations 
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Notes Distribution theory has revolutionized the study of partial differential 

equations (PDEs) by providing a framework for handling equations with 

singular terms, discontinuous coefficients, or irregular solutions. This 

broader perspective has both theoretical and practical implications for 

understanding physical phenomena modeled by PDEs.  

Weak Solutions and Distributional Formulations  

The concept of weak solutions, formulated in terms of distributions, extends 

the notion of solutions to PDEs beyond classical differentiable functions. A 

distribution T is a weak solution to a differential equation L[T] = f if ⟨L[T], 

φ⟩ = ⟨f, φ⟩ for all appropriate test functions φ, where L is a differential 

operator. This approach allows for solutions with lower regularity than the 

equation would nominally require. For instance, the wave equation modeling 

a vibrating string admits weak solutions even when the initial shape has 

corners or discontinuities, situations where classical solutions would not 

exist. Weak formulations also provide a foundation for numerical methods 

like the finite element method, where the solution is sought within a finite-

dimensional space of functions, and the equation is enforced in a weighted 

average sense rather than pointwise.  

Fundamental Solutions and Green's Functions  

Distribution theory provides a rigorous framework for fundamental solutions 

and Green's functions, which are distributional solutions to equations with 

singularities on the right-hand side. For a differential operator L, its 

fundamental solution E satisfies L[E] = δ, where δ is the Dirac delta 

distribution. Green's functions, which are fundamental solutions adjusted to 

satisfy boundary conditions, serve as building blocks for constructing 

solutions to inhomogeneous equations through convolution. This approach is 

particularly valuable in electromagnetism, heat conduction, and quantum 

mechanics, where point sources or instantaneous inputs are common. The 

distributional perspective clarifies the behavior of solutions near 

singularities and provides tools for analyzing how singularities propagate in 

wave-like equations, a phenomenon crucial for understanding seismic 

waves, acoustics, and other wave propagation problems.  

Practical Applications in Physics and Engineering  
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Notes The abstractions of distribution theory find concrete applications across 

numerous fields in physics and engineering, where they provide the 

mathematical language for describing physical phenomena with 

singularities, discontinuities, or rapid variations. Quantum Mechanics and 

Quantum Field Theory In quantum mechanics, distributions emerge 

naturally in the description of observables and quantum states. The position 

and momentum operators, fundamental to quantum theory, are related by 

Fourier transformation and have distributional eigenfunctions. The Dirac 

delta function appears in the position representation of momentum 

eigenstates, reflecting the uncertainty principle's implications. Quantum field 

theory, which extends quantum mechanics to systems with infinitely many 

degrees of freedom, relies heavily on distributional concepts. Field operators 

are operator-valued distributions, and the theory's mathematical foundation 

rests on the distributional formulation of quantum fields and their 

correlations.  

Signal Processing and Control Theory  

Signal processing employs distributions to model ideal signals like impulses, 

steps, and periodic patterns, which serve as building blocks for more 

complex signals. The Dirac delta models an ideal impulse, while its 

derivatives provide higher-order impulses used in specialized applications. 

Transfer functions in control theory, which describe how systems respond to 

inputs across different frequencies, often involve distributions for systems 

with instantaneous components. State-space models with impulsive controls 

or discontinuous inputs also rely on distributional formulations for 

mathematical consistency.  

Electromagnetism and Wave Propagation  

In electromagnetism, point charges and line currents are modeled using the 

Dirac delta and similar distributions, providing a rigorous foundation for 

concepts like Coulomb's law and the fields of idealized sources. Maxwell's 

equations with singular sources are properly formulated and solved using 

distributional derivatives and the corresponding Green's functions. Wave 

propagation phenomena involving shocks, fronts, or other discontinuities are 

naturally described using distributions. The propagation of discontinuities in 

nonlinear wave equations, relevant to shock waves in fluids or fracture 
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Notes propagation in solids, is analyzed using the distributional formulation of 

conservation laws.  

Advanced Topics in Distribution Theory  

Beyond the foundational concepts, distribution theory encompasses various 

advanced topics that extend its applicability and connect it to other areas of 

mathematics.  

Distributions on Manifolds  

The theory of distributions extends from Euclidean spaces to smooth 

manifolds, providing tools for analysis on curved spaces without a global 

coordinate system. Distributions on manifolds are defined as continuous 

linear functionals on the space of compactly supported smooth differential 

forms of complementary degree, allowing for integration against 

"generalized differential forms." This extension is crucial for applications in 

differential geometry, general relativity, and gauge theories, where the 

underlying space may have curvature or non-trivial topology. Operations 

like the exterior derivative extend to distributional forms, preserving the 

fundamental relationship between differentiation and integration captured by 

Stokes' theorem.  

Microlocal Analysis and Wave Front Sets  

Microlocal analysis refines the study of singularities in distributions by 

examining not just where they occur but also in which directions 

singularities propagate. The wave front set of a distribution characterizes its 

singularities in phase space (position and direction), providing detailed 

information about their behavior. This advanced perspective is essential for 

understanding how singularities evolve in hyperbolic equations like the 

wave equation. It clarifies when products of distributions can be defined, 

which is fundamental for formulating and solving nonlinear equations 

involving distributions. Microlocal techniques have applications in optics, 

quantum mechanics, and inverse problems, where understanding the 

directional nature of singularities provides insights into wave propagation, 

scattering, and imaging principles.  

Distributions with Values in Vector Spaces  
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Notes The theory extends to distributions taking values in vector spaces, including 

Banach spaces and more general topological vector spaces. These vector-

valued distributions model phenomena where the measured quantity at each 

point is not a scalar but a vector or tensor, such as in fluid dynamics, 

elasticity, or electromagnetic field theory. Vector-valued distributions 

provide the mathematical foundation for disciplines like continuum 

mechanics, where stress and strain tensors may exhibit singularities along 

interfaces or within localized regions. They also appear in the theory of 

partial differential equations with multiple coupled components, where the 

solution itself is vector-valued. Theoretical Developments and Modern 

Perspectives Distribution theory continues to evolve, with ongoing research 

expanding its foundations and applications in various directions.  

Nonlinear Theory and Products of Distributions  

A significant challenge in distribution theory is defining products and 

nonlinear operations, which are not generally well-defined for arbitrary 

distributions. Various approaches to this problem have been developed, 

including:  

• Colombeau algebras, which embed distributions into algebras where 

products are well-defined, providing a consistent framework for 

nonlinear problems involving distributions. 

• Regularization methods that define products through limits of 

regularized approximations, capturing the intuitive meaning of 

distributional products in specific contexts.  

• Microlocal approaches that define products when the wave front sets 

of the distributions satisfy certain compatibility conditions, ensuring 

that singularities do not interact in problematic ways.  

These developments are crucial for nonlinear partial differential equations 

and quantum field theory, where products of distributions naturally arise in 

the formulation of equations and interaction terms.  

Connections to Other Mathematical Theories  

Distribution theory connects with numerous other areas of mathematics, 

enriching both fields through the exchange of ideas and techniques:  

• Functional analysis provides the topological and algebraic 

framework for distribution spaces, while distributions in turn offer 
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Notes concrete examples of non-normed topological vector spaces with 

rich structure.  

• Harmonic analysis extends through distributions to include singular 

objects and generalized notions of Fourier transforms, wavelets, 

and other decompositions.  

• Category theory offers perspectives on distributions as objects in 

categories of sheaves or as functors between appropriate categories, 

illuminating their structural properties from an abstract viewpoint.  

These connections facilitate the transfer of techniques and insights between 

fields, leading to novel approaches to longstanding problems in analysis, 

geometry, and mathematical physics.  

Computational Aspects and Numerical Methods  

Modern computational approaches to distributions focus on effective 

numerical representations and algorithms for handling singularities:  

• Finite element methods with singular enrichment functions capture 

the behavior of solutions near known singularities, improving 

accuracy without requiring extremely fine meshes.  

• Wavelet methods provide efficient representations of distributions 

with localized singularities, exploiting the multiscale nature of 

wavelets to adapt to varying levels of regularity.  

• Spectral methods based on specialized basis functions adapted to 

specific types of singularities offer high accuracy for problems with 

known singular behavior.  

These computational techniques bridge the gap between the abstract theory 

of distributions and practical numerical implementations, enabling 

simulations of complex physical phenomena with singular features.  

Distribution theory represents one of the most significant developments in 

20th-century mathematics, providing a rigorous framework that extends 

classical analysis to include objects with singularities and other 

irregularities. By reformulating fundamental concepts like functions, 

derivatives, and Fourier transforms in terms of continuous linear functionals 

on test functions, the theory offers both greater generality and deeper 

insights into the underlying structure of mathematical analysis. The theory's 

impact extends far beyond pure mathematics, revolutionizing how we 
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Notes formulate and solve problems in physics, engineering, and applied sciences. 

From quantum mechanics to signal processing, from partial differential 

equations to continuum mechanics, distributions provide the language for 

describing phenomena that classical functions cannot adequately capture. 

The ongoing development of distribution theory, particularly in areas like 

nonlinear operations and computational implementations, ensures its 

continued relevance to contemporary challenges in mathematics and its 

applications. As we tackle increasingly complex problems involving 

multiscale phenomena, singularities, and coupled systems, the flexibility and 

power of distributional methods remain essential tools in the mathematical 

sciences. Through its elegant formulation and far-reaching applications, 

distribution theory exemplifies how abstract mathematical structures can 

provide practical frameworks for understanding the physical world, 

demonstrating the profound connection between mathematical elegance and 

scientific utility. 

SELF ASSESSMENT QUESTIONS 

Multiple Choice Questions (MCQs) 

1. Which of the following is true about test functions? 

a) They are infinitely differentiable functions with compact support 

b) They are discontinuous functions with finite support 

c) They are only defined on the real number line 

d) They are solutions to ordinary differential equations 

Answer: a) They are infinitely differentiable functions with compact support 

2. A distribution is best described as: 

a) A function that maps real numbers to real numbers 

b) A generalized function that acts on test functions 

c) A continuous function with a defined limit 

d) A function that is differentiable everywhere 

Answer: b) A generalized function that acts on test functions 

3. The localization property of distributions allows: 

a) The definition of a distribution in a neighborhood of a point 

b) The restriction of distributions to smooth functions 

c) The extension of distributions beyond their original domain 

d) The transformation of distributions into regular functions 
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Notes Answer: a) The definition of a distribution in a neighborhood of a point 

4. Which space of test functions is used in defining tempered 

distributions? 

a) The space of compactly supported functions Cc∞C_c^\inftyCc∞ 

b) The space of rapidly decreasing functions S\mathcal{S}S 

c) The space of continuous functions C0C^0C0 

d) The space of Lebesgue-integrable functions L1L^1L1 

Answer: b) The space of rapidly decreasing functions S\mathcal{S}S 

5. Which of the following applications commonly use the theory of 

distributions? 

a) Fourier transforms and differential equations 

b) Graph theory and combinatorial optimization 

c) Number theory and cryptography 

d) Game theory and decision analysis 

Answer: a) Fourier transforms and differential equations 

6. Which of the following is an example of regularization of a 

distribution? 

a) Approximating the Heaviside function using a sequence of 

smooth functions 

b) Transforming a function into its Fourier series representation 

c) Computing the Laplace transform of an exponential function 

d) Differentiating a continuous function repeatedly 

Answer: a) Approximating the Heaviside function using a sequence of 

smooth functions 

7. The weak-* topology in the space of distributions ensures 

convergence is defined based on: 

a) Pointwise limits of functions 

b) The behavior of test functions under integration 

c) The norm convergence of function sequences 

d) The uniform boundedness principle 

Answer: b) The behavior of test functions under integration 

8. Tempered distributions are particularly useful in which 

mathematical area? 
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Notes a) Fourier analysis 

b) Algebraic topology 

c) Graph theory 

d) Probability theory 

Answer: a) Fourier analysis 

Short Questions 

1. What are test functions in the context of distribution theory? 

2. How are distributions different from classical functions? 

3. What is meant by localization in distribution theory? 

4. Define regularization of distributions. 

5. What is the significance of the convergence of distributions? 

6. How do tempered distributions differ from general distributions? 

7. Give an example of a commonly used distribution. 

8. Why are distributions important in solving differential equations? 

9. What is the role of test functions in functional analysis? 

10. What is the Schwartz space in the context of tempered distributions? 

Long Questions: 

1. Explain the concept of test functions and their role in distribution 

theory. 

2. Discuss the definition and properties of distributions with examples. 

3. What is localization in distributions? Explain with applications. 

4. Define regularization and discuss its significance in mathematical 

analysis. 

5. Explain the different types of convergence of distributions. 

6. What are tempered distributions? Discuss their applications. 

7. How do distributions extend the classical concept of functions? 

8. Describe the role of distributions in solving partial differential 

equations. 
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Notes 9. Explain the importance of Schwartz space in tempered distributions. 

10. Provide a real-world application where distributions are used in 

physics or engineering. 
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Expressions  like  ∫δ(x)φ(x)dx  =  φ(0),  which  were  previously  treated

value  at  the  origin,  φ(0),  is  known  as  the  Dirac delta  "function"  δ(x). 

defines it.  For instance, the distribution that maps a test function φ(x) to its 

approach,  a  distribution's  behavior  on  test  functions  during  integration 

differentiation, in a broader sense thanks to this viewpoint. According to this 

of functions to their global behavior.  We can define operations, especially 

test functions, this method moves the emphasis from the pointwise behavior 

realization  of  distribution  theory.   By  integrating  functions  against  smooth 

functionals  on  a  space  of  well-behaved  test  functions  is  the  fundamental 

encompass  them.  The  definition  of  distributions  as  continuous  linear 

distribution  theory  enables  us  to  expand  the  idea  of  differentiation  to 

these  functions  as  "distributions"  as  opposed  to  regular  functions, 

functions that are not differentiable in the conventional sense.  By viewing 

step  function  are  two  examples  of  significant  physics  and  engineering 

defined  in  classical  calculus.   The  Dirac  delta  function  and  the  Heaviside 

functions with singularities.Derivatives for sufficiently smooth functions are 

and  engineering,  particularly  when  dealing  with  discontinuous functions  or 

rigorous mathematical foundation for operations frequently used in physics 

developed  by  Laurent  Schwartz  in  the  mid-20th  century  to  provide  a 

might not be differentiable in the classical sense. This theory was primarily 

extends  the  concept  of  functions  and  derivatives  to  include  objects  that 

Distribution  theory,  also  known  as  the  theory  of  generalized  functions, 

2.1.1 Introduction to Derivatives in Distribution Theory

• Apply the theory to ordinary differential equations.

• Explore the concept of primitives in distribution theory.

• Learn different examples of distributions and their derivatives.

  distribution theory.

• Understand the fundamental concepts of derivatives and integrals in

Objective

Derivatives And Integrals:Basic Definitions -Examples

UNIT 2.1

MODULE 2
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Notes informally, may now be rigorously understood thanks to this. The way 

distribution theory treats derivatives is among its most potent features.  For 

distributions without derivatives in the traditional sense, we can define 

derivatives by utilizing integration by parts and shifting the differentiation 

from the distribution to the test function.  This method extends their 

application to a far wider class of functions while preserving crucial 

characteristics like linearity and the Leibniz rule.Distribution theory finds 

extensive applications in differential equations, Fourier analysis, quantum 

mechanics, and signal processing. It provides a unified framework for 

understanding phenomena that involve discontinuities, impulses, or 

singularities, allowing for more rigorous mathematical treatment of physical 

problems that were previously handled using ad hoc methods. 

2.1.2 Definition and Properties of Distributional Derivatives 

Definition of Distributions 

We must first define distributions before we can define distributional 

derivatives.  In an open set 𝛺 ⊂  ℝⁿ, let D(Ω) be the space of infinitely 

differentiable functions with compact support.  We refer to these as test 

functions. 

A distribution T is a continuous linear functional on D(Ω), meaning it maps 

each test function φ to a scalar T(φ) in a way that: 

1. T(αφ + βψ) = αT(φ) + βT(ψ) for all test functions φ, ψ and scalars α, 

β (linearity) 

2. If a sequence of test functions φₙ converges to φ in a suitable sense, 

then T(φₙ) converges to T(φ) (continuity) 

The space of all distributions is denoted by D'(Ω). 

Regular Distributions 

A function f that is locally integrable on Ω can define a distribution Tₑ by: 

Tₑ(φ) = ∫ f(x)φ(x)dx 
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Notes Such distributions are called regular distributions. This allows us to view 

ordinary functions as special cases of distributions. 

Definition of Distributional Derivatives 

Integration by parts is used to define the distributional derivative.  Let α be a 

multi-index and T be a distribution.  The definition of the α-th distributional 

derivative of T, represented by Dα T, is: 

(Dα T)(φ) = (-1)|α| T(Dα φ) 

where Dα φ is the classical derivative of the test function φ, and |α| is the 

order of the multi-index. 

For a regular distribution Tₑ corresponding to a smooth function f, this 

definition coincides with the classical derivative: 

(Dα Tₑ)(φ) = ∫ (Dα f)(x)φ(x)dx 

However, the power of this definition is that it extends to distributions that 

don't correspond to differentiable functions. 

Properties of Distributional Derivatives 

1. Linearity: Dα(αT + βS) = αDα T + βDα S for all distributions T, S 

and scalars α, β. 

2. Consistency with Classical Derivatives: If f is a Ck function and |α| 

≤ k, then Dα Tₑ = T{Dα f}, where T{Dα f} is the regular distribution 

corresponding to the classical derivative Dα f. 

3. Chain Rule: The chain rule for distributional derivatives is more 

complex than in classical calculus and requires careful treatment, 

especially for compositions involving non-smooth functions. 

4. Product Rule: The product of distributions is not always defined, 

but when one of the factors is a smooth function, the product rule is 

valid: Dα(gT) = ∑β (Cα
β)(D{α-β}g)(Dβ T), where Cαβ are binomial 

coefficients. 

5. Fundamental Theorem of Calculus: If T is a distribution on ℝ, 

then the distributional derivative of the indefinite integral of T 

equals T. 
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derivatives also coincide on that set. 

7. Support Property: The support of Dα T is contained in the support 

of T. 

8. Infinite Differentiability: Every distribution has derivatives of all 

orders. This is a key advantage over classical differentiation. 

The Importance of Distributional Derivatives 

The concept of distributional derivatives is crucial because it allows us to 

solve differential equations with non-smooth or even singular coefficients 

and source terms. Many physical phenomena, such as point sources, shock 

waves, or interface problems, are naturally modeled using distributions. 

Moreover, distributional derivatives provide a rigorous foundation for 

Fourier and Laplace transforms of functions that grow rapidly or have 

singularities. This is particularly important in signal processing, where 

signals with discontinuities are common. 

2.1.3 Examples of Distributions and Their Derivatives 

1. The Dirac Delta Distribution 

The Dirac delta distribution, denoted by δ, is defined by: 

δ(φ) = φ(0) 

for any test function φ. It represents a unit impulse at the origin. 

The derivatives of the delta distribution are defined by: 

(𝐷𝛼 𝛿)(𝜑)  =  (−1)|𝛼| 𝛿(𝐷𝛼 𝜑)  =  (−1)|𝛼| (𝐷𝛼 𝜑)(0) 

For example, the first derivative of the delta function, δ', acts on a test 

function φ as: 

δ'(φ) = -φ'(0) 

The delta distribution and its derivatives play a fundamental role in 

representing point sources and their effects in physical problems. 
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Notes 2. The Heaviside Step Function 

The Heaviside step function H(x) is defined as: 

H(x) = { 0 if x < 0 1 if x ≥ 0 } 

As a distribution, it acts on a test function φ as: 

𝐻(𝜑) = ∫ 𝜑(𝑥)𝑑𝑥
∞

0

  

The distributional derivative of H is the Dirac delta distribution: 

𝐻′(𝜑) =  −𝐻(𝜑′) =  − ∫ 𝜑′(𝑥)𝑑𝑥
∞

0

  =  𝜑(0) =  𝛿(𝜑) 

This makes rigorous the informal statement that "the derivative of the step 

function is the delta function." 

3. The Principal Value Distribution 

The principal value distribution P(1/x) is defined by: 

𝑃 (
1

𝑥
) (𝜑) =  𝑙𝑖𝑚𝜀→0   ∫ (

𝜑(𝑥)

𝑥
) 𝑑𝑥

{|𝑥|>𝜀}

 

Its derivative can be computed as: 

(𝑃 (
1

𝑥
))

′

(𝜑) =  −𝑃 (
1

𝑥
) (𝜑′) =  −𝑙𝑖𝑚𝜀→0  ∫ (

𝜑′(𝑥)

𝑥
) 𝑑𝑥

{|𝑥|>𝜀}

 

Using integration by parts and careful analysis of boundary terms: 

(P(1/x))'(φ) = P(1/x²)(φ) - πδ'(φ) 

This shows that the derivative of P(1/x) is a combination of another singular 

distribution and the derivative of the delta distribution. 

4. Homogeneous Distributions 
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Notes A distribution T is called homogeneous of degree α if for any λ > 0 and test 

function φ: 

T(φλ) = λ(-n-α)T(φ) 

where φλ(x) = φ(x/λ) and n is the dimension of the space. 

For example, |x|α for α > -n is a homogeneous distribution of degree α. Its 

distributional derivatives satisfy specific recurrence relations that generalize 

the formulas for differentiating power functions. 

5. Periodic Distributions 

A distribution T is periodic with period L if T(φ(x+L)) = T(φ(x)) for all test 

functions φ. 

For example, the periodic extension of a function f(x) defined on [0,L] 

generates a periodic distribution. The distributional derivatives of periodic 

distributions remain periodic with the same period. Fourier series of periodic 

distributions can be differentiated term by term, which is useful in solving 

periodic boundary value problems. 

6. Fundamental Solutions of Differential Operators 

Let P(D) be a differential operator with constant coefficients. A fundamental 

solution E of P(D) is a distribution satisfying: 

P(D)E = δ 

For example, for the Laplace operator Δ in ℝⁿ (n ≥ 3), a fundamental 

solution is: 

E(x) = -1/((n-2)ωn |x|(n-2)) 

where ωn is the surface area of the unit sphere in ℝⁿ. 

The derivatives of fundamental solutions are essential in representation 

formulas for solving partial differential equations. 

7. Tempered Distributions 
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Notes Tempered distributions are distributions that can be applied to rapidly 

decreasing test functions (Schwartz functions). They are particularly 

important because they can be Fourier transformed. 

For example, polynomials, exponentials, and their products are tempered 

distributions. Their derivatives remain tempered, allowing for a powerful 

interplay between differentiation and Fourier transformation through the 

relation: 

F(Dα T) = (2πi)|α| xα F(T) 

where F denotes the Fourier transform. 

8. Convolution of Distributions 

If T is a distribution with compact support and S is any distribution, their 

convolution T * S is defined by: 

(T * S)(φ) = T(S̃ * φ) 

where S̃ * φ(x) = ∫ S(y)φ(x-y)dy for test functions φ. 

The derivative of a convolution satisfies: 

Dα(T * S) = (Dα T) * S = T * (Dα S) 

This property is particularly useful in solving differential equations using 

Green's functions. 

9. Distributions with Point Support 

A distribution T has its support contained in a point {a} if and only if it is a 

finite linear combination of the delta distribution and its derivatives at that 

point: 

𝑇 =  ∑ 𝑐𝛼  𝐷𝛼 𝛿𝑎

{|𝛼|≤𝑚}

  

where δa is the delta distribution centered at a. 

The derivatives of such distributions remain supported at the same point. 
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Solved Problems 

Problem 1: Computing the Distributional Derivative of |x| 

Problem: Find the distributional derivative of f(x) = |x|. 

Solution: 

Let's denote the distribution corresponding to |x| as T|x|. For any test function 

φ: 

𝑇|𝑥|(𝜑) =  ∫ |𝑥|𝜑(𝑥)𝑑𝑥 

𝑇𝑜 𝑓𝑖𝑛𝑑 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒, 𝑤𝑒 𝑢𝑠𝑒 𝑡ℎ𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛: 

(𝑇|𝑥|)
′
(𝜑) =  −𝑇|𝑥|(𝜑′) =  −∫ |𝑥|𝜑′(𝑥)𝑑𝑥 

𝐿𝑒𝑡′𝑠 𝑠𝑝𝑙𝑖𝑡 𝑡ℎ𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙: 

−∫ |𝑥|𝜑′(𝑥)𝑑𝑥 =  − ∫ (−𝑥)𝜑′(𝑥)𝑑𝑥
0

−∞

  − ∫ 𝑥𝜑′(𝑥)𝑑𝑥
∞

0

 

𝑈𝑠𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑝𝑎𝑟𝑡𝑠: 

− ∫ (−𝑥)𝜑′(𝑥)𝑑𝑥
0

−∞

 =  −[−𝑥𝜑(𝑥)]−∞
0  + ∫ 𝜑(𝑥)𝑑𝑥

0

−∞

   

=  −[0 −  0] +  ∫ 𝜑(𝑥)𝑑𝑥
0

−∞

 =  ∫ 𝜑(𝑥)𝑑𝑥
0

−∞

 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦: 

− ∫ (𝑥)𝜑′(𝑥)𝑑𝑥
∞

0

 =  −[−𝑥𝜑(𝑥)]0
∞  +  ∫ 𝜑(𝑥)𝑑𝑥

∞

0

 

=  −[0 −  0] +  ∫ 𝜑(𝑥)𝑑𝑥
∞

0

 =  ∫ 𝜑(𝑥)𝑑𝑥
∞

0
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Notes 𝐶𝑜𝑚𝑏𝑖𝑛𝑖𝑛𝑔 𝑡ℎ𝑒𝑠𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠: 

(𝑇|𝑥|)
′
(𝜑) =  ∫ 𝜑(𝑥)𝑑𝑥

0

−∞

 + ∫ 𝜑(𝑥)𝑑𝑥
∞

0

 

=  ∫ 𝜑(𝑥)𝑑𝑥
0

−∞

 −  ∫ (−𝜑(𝑥))𝑑𝑥
0

−∞

 

=  ∫ 𝜑(𝑥)𝑑𝑥
0

−∞

 −  ∫ (𝜑(−𝑥))𝑑𝑥
0

−∞

 =  ∫ 𝑠𝑔𝑛(𝑥)𝜑(𝑥)𝑑𝑥 

Therefore, the distributional derivative of |x| is sgn(x), the signum function: 

d/dx |x| = sgn(x) = { -1 if x < 0 1 if x > 0 0 if x = 0 } 

This result confirms our intuition from classical calculus, where |x| is not 

differentiable at x = 0, but its derivative elsewhere is the sign function. 

Problem 2: Showing that the Distributional Derivative of H(x-a) is δ(x-

a) 

Problem: Prove that the distributional derivative of the shifted Heaviside 

function H(x-a) is the shifted Dirac delta function δ(x-a). 

Solution: 

The shifted Heaviside function H(x-a) is defined as: 

H(x-a) = {0 if x < a 1 if x ≥ a} 

As a distribution, it acts on a test function φ as: 

𝐻(𝑥 − 𝑎)(𝜑) =  ∫ 𝜑(𝑥)𝑑𝑥
∞

𝑎

 

To find its distributional derivative, we use the definition: 

(𝐻(𝑥 − 𝑎))
′
(𝜑) =  −𝐻(𝑥 − 𝑎)(𝜑′) =  − ∫ 𝜑′(𝑥)𝑑𝑥

∞

𝑎

 

Using the fundamental theorem of calculus: 
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Notes 
− ∫ 𝜑′(𝑥)𝑑𝑥

∞

𝑎

 =  −[𝜑(𝑥)]𝑎
∞  =  −[0 −  𝜑(𝑎)] =  𝜑(𝑎) 

On the other hand, the shifted delta distribution δ(x-a) acts on φ as: 

δ(x-a)(φ) = φ(a) 

Since (H(x-a))'(φ) = δ(x-a)(φ) for all test functions φ, we have: 

(H(x-a))' = δ(x-a) 

This result is fundamental in understanding impulse responses in physical 

systems, where the Heaviside function represents a step input at time a, and 

its derivative, the delta function, represents an impulse input at the same 

time. 

 

Problem 3: Finding the Second Derivative of |x|3 

Problem: Compute the second distributional derivative of f(x) = |x|3. 

Solution: 

Let's denote the distribution corresponding to |x|3 as [𝑇]|x|
3 (φ). For any test 

function φ: 

𝑇|𝑥|
3 (𝜑) =  ∫|𝑥|3  𝜑(𝑥)𝑑𝑥  

First, we find the first distributional derivative: 

(𝑇|𝑥|
3 )

′
(𝜑) =  −𝑇|𝑥|

3   (𝜑′) =  − ∫|𝑥|3𝜑′(𝑥)𝑑𝑥 

Let's split this integral: 

− ∫|𝑥|3𝜑′(𝑥)𝑑𝑥  =  − ∫ (−𝑥)3𝜑′(𝑥)𝑑𝑥
0

−∞

−  ∫ 𝑥3𝜑′(𝑥)
∞

0

=  ∫ (−𝑥)3𝜑′(𝑥)𝑑𝑥
0

−∞

−  ∫ 𝑥3𝜑′(𝑥)𝑑𝑥
∞

0
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Notes Using integration by parts: 

∫ 𝑥
0

−∞
3φ'(x)dx = [x3φ(x)](-∞)0 - 3∫ 𝑥

0

−∞
2φ(x)dx = [0 - 0] - 3∫ 𝑥

0

−∞
2φ(x)dx = -

3∫ 𝑥
0

−∞
2φ(x)dx 

Similarly: 

-∫ 𝑥
∞

0
3φ'(x)dx = -[x3φ(x)]_0(∞) + 3∫ 𝑥

∞

0
2φ(x)dx = -[0 - 0] + 3∫ 𝑥

∞

0
2φ(x)dx = 

3∫ 𝑥
∞

0
2φ(x)dx 

Combining these results: 

(T|x|3)'(φ) = -3∫ 𝑥
0

−∞
2φ(x)dx + 3∫ 𝑥

0

−∞
2φ(x)dx = 3∫ 𝑥2gn(x)φ(x)dx 

Therefore, the first distributional derivative of |x|3 is 3x2 sgn(x). 

Now, for the second derivative, we need to find the distributional derivative 

of 3x2 sgn(x). Let's denote this distribution as S: 

S(φ) = 3∫ x2 sgn(x)φ(x)dx 

S'(φ) = -S(φ') = -3∫ x2 sgn(x)φ'(x)dx 

Let's split this integral: 

-3∫ x2 sgn(x)φ'(x)dx = -3∫ −𝑥
0

−∞
2φ'(x)dx - 3∫ 𝑥

∞

0
2φ'(x)dx = 3∫ −𝑥

0

−∞
2φ'(x)dx - 

3∫ 𝑥
∞

0
2φ'(x)dx 

Using integration by parts: 

3∫ 𝑥
0

−∞
2φ'(x)dx = 3[x2φ(x)](-∞)0 - 6∫ 𝑥

0

−∞
φ(x)dx = 3[0 - 0] - 6∫ 𝑥

0

−∞
φ(x)dx = -

6∫ 𝑥
0

−∞
φ(x)dx 

Similarly: 

-3∫ 𝑥
∞

0
2φ'(x)dx = -3[x2φ(x)]_0(∞) + 6∫ 𝑥

∞

0
 φ(x)dx = -3[0 - 0] + 6∫ 𝑥

∞

0
φ(x)dx 

= 6∫ 𝑥
∞

0
φ(x)dx 

Combining these results: 
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Notes S'(φ) = -6∫ 𝑥
0

−∞
φ(x)dx + 6∫ 𝑥

∞

0
φ(x)dx = 6∫ |x|φ(x)dx 

Therefore, the second distributional derivative of |x|3 is 6|x|. 

This shows that |x|3 is "more differentiable" in the distributional sense than 

in the classical sense. Classically, |x|3 has a continuous first derivative but a 

discontinuous second derivative, while distributionally, we can compute 

derivatives of all orders. 

Problem 4: Verifying that x⋅δ(x) = 0 in the Sense of Distributions 

Problem: Prove that the distribution x⋅δ(x) is equal to the zero distribution. 

Solution: 

To verify that x⋅δ(x) = 0 in the sense of distributions, we need to show that 

(x⋅δ(x))(φ) = 0 for all test functions φ. 

Let's define the distribution T = x⋅δ(x). For any test function φ: 

T(φ) = ∫ x⋅δ(x)φ(x)dx 

Using the defining property of the delta distribution: 

∫ x⋅δ(x)φ(x)dx = ∫ δ(x)(xφ(x))dx = xφ(x)|{x=0} = 0⋅φ(0) = 0 

Therefore, (x⋅δ(x))(φ) = 0 for all test functions φ, which means x⋅δ(x) = 0 as 

a distribution. 

This result illustrates an important property of the delta distribution: 

multiplication by a function that vanishes at the support of δ results in the 

zero distribution. This property is often used in physics, particularly in 

quantum mechanics, where operators acting on wave functions containing 

delta distributions must be treated with care. 

Problem 5: Finding the Distributional Derivative of xⁿ⁺ for n ≥ 0 

Problem: Compute the distributional derivative of xⁿ⁺ for n ≥ 0, where xⁿ⁺ is 

defined as: 
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Notes xⁿ⁺ = { xⁿ if x > 0 0 if x ≤ 0 } 

Solution: 

Let's denote the distribution corresponding to xⁿ⁺ as T{xn+}. For any test 

function φ: 

T{xn+}(φ) = ∫ xⁿ⁺φ(x)dx = ∫ 𝑥
∞

0
ⁿ  φ(x)dx 

To find the distributional derivative, we use the definition: 

(T{xn+})'(φ) = -T{xn+}(φ') = - ∫ 𝑥
∞

0
ⁿ φ'(x)dx 

Using integration by parts: 

- ∫ 𝑥
∞

0
ⁿ φ'(x)dx = -[xⁿφ(x)]0∞ + n ∫ 𝑥

∞

0
(n-1)φ(x)dx = -[0 - 0] + n ∫ 𝑥

∞

0
(n-

1)φ(x)dx = n ∫ 𝑥
∞

0
(n-1)φ(x)dx 

For n > 0, this simplifies to: 

T{xn+}'(φ) = n ∫ 𝑥
∞

0
(n-1)φ(x)dx = n T{xn+} (φ) 

Therefore, for n > 0: 

(xⁿ⁺)' = nx(n-1)⁺ 

For the special case n = 0, we have x⁰⁺ = H(x), the Heaviside function. 

We've already shown that H'(x) = δ(x). 

So, in general: 

(xⁿ⁺)' = { nx(n-1)⁺ if n > 0 δ(x) if n = 0 } 

This result generalizes the classical formula for differentiating power 

functions to include functions with discontinuities at the origin. 

Unsolved Problems 

Problem 1 
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Notes Compute the distributional derivative of f(x) = ln|x|. 

Problem 2 

Show that the distributional derivative of sgn(x)ln|x| is 2/x. 

Problem 3 

Find all distributional solutions to the differential equation y'' + y = δ(x). 

Problem 4 

Prove that if T is a distribution and φ is a smooth function such that φT = 0, 

then T is supported in the set {x : φ(x) = 0}. 

Problem 5 

Compute the distributional Laplacian (second derivative) of 1/|x| in ℝ³ and 

verify that it equals -4πδ(x). 

 

 

 

Additional Mathematical Formulas and Properties 

Fourier Transform of Distributions 

The Fourier transform of a tempered distribution T, denoted by F(T) or T̂, is 

defined by: 

F(T)(φ) = T(F(φ)) 

where F(φ) is the Fourier transform of the test function φ. 

Important properties include: 

1. F(D^α T) = (2πi)|α| ξ^α F(T) 

2. F(x^α T) = (i)|α| Dα F(T) 



  

72 
 

Notes 3. F(T * S) = F(T) · F(S) 

4. F(T · S) = F(T) * F(S) 

Convolution of Distributions 

The convolution of distributions S and T, denoted by S * T, is defined when 

at least one of them has compact support: 

(S * T)(φ) = S(T̃ * φ) 

where T̃ * φ(x) = ∫ T(y)φ(x-y)dy. 

Key properties include: 

1. S * T = T * S (commutativity) 

2. (S * T) * R = S * (T * R) (associativity) 

3. 𝐷𝛼(𝑆 ∗  𝑇) =  (𝐷𝛼  𝑆) ∗  𝑇 =  𝑆 ∗  (𝐷𝛼 𝑇) 

4. F(S * T) = F(S) · F(T) 

Sobolev Spaces 

Sobolev spaces provide a connection between distribution theory and 

functional analysis. The Sobolev space W{k,p}(Ω) consists of all functions u 

such that u and its distributional derivatives up to order k belong to L^p(Ω). 

For p = 2, these spaces are denoted by Hk(Ω) and are Hilbert spaces with the 

inner product: 

(𝑢, 𝑣){𝐻𝑘} =  ∑{|𝛼| ≤ 𝑘} ∫ 𝐷𝛼  𝑢 𝐷𝛼 𝑣 𝑑𝑥 

Sobolev spaces are crucial in the study of partial differential equations, 

providing the natural setting for weak solutions. 

Fundamental Solutions 

A fundamental solution of a linear differential operator P(D) is a distribution 

E such that: 

P(D)E = δ 
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Notes Fundamental solutions are essential in representing solutions of 

inhomogeneous equations: 

P(D)u = f 

The solution can be written as: 

u = E * f 

when appropriate boundary conditions are satisfied. 

The Malgrange-Ehrenpreis Theorem 

Every non-zero linear differential operator with constant coefficients has a 

basic solution, according to this important distribution theory finding.  This 

guarantees that convolution may be used to solve the associated 

inhomogeneous equations. 

Regularity Theory 

The regularity of distributions is a key area that studies how the smoothness 

of solutions to differential equations relates to the smoothness of the 

coefficients and source terms. 

A fundamental result is the Weyl-Hörmander theorem, which characterizes 

the wavefront set of a distribution and provides detailed information about 

its singularities. 

Schwartz Kernel Theorem 

This theorem proves that distributional kernels can represent continuous 

linear operators between spaces of test functions.  This finding is essential to 

quantum field theory and partial differential equation theory. 

According to the Schwartz kernel theorem, there is a unique distribution K ∈ 

D'(X × Y) for each continuous linear operator T: D(X) → D'(Y) such that: 

T(φ)(ψ) = K(φ ⊗ ψ) 

for all test functions φ on X and ψ on Y. 
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Notes Green's Functions 

Green's functions are special types of fundamental solutions that satisfy 

specific boundary conditions. They provide a powerful method for solving 

boundary value problems. 

For a differential operator L with boundary conditions B, the Green's 

function G(x,y) satisfies: 

𝐿𝑥  𝐺(𝑥, 𝑦) =  𝛿(𝑥 − 𝑦) 

along with the boundary conditions B applied to the x variable. 

The solution to the equation Lu = f with boundary conditions B can then be 

written as: 

𝑢(𝑥) =  ∫ 𝐺(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦 

Distributions with Point Support 

A distribution T has support at a single point {a} if and only if it is a finite 

linear combination of derivatives of the delta distribution at that point: 

𝑇 =  ∑ 𝑐𝑘  𝛿𝑎
𝑘

𝑛

𝑘=0

 

where δ^(k)_a is the k-th derivative of the delta distribution centered at a. 

This characterization is useful in understanding the structure of distributions 

and in solving differential equations with point sources. 

2.1.4 Integrals of Distributions and Their Properties 

Introduction to Integration of Distributions 

Integration in distribution theory extends the classical concept of integration 

to generalized functions. This extension allows us to handle functions that 

may not be integrable in the traditional sense, providing powerful tools for 

solving differential equations and analyzing physical phenomena.When 
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Notes working with distributions, integration takes on a different meaning than in 

classical calculus. Rather than directly integrating the distribution itself, we 

integrate against test functions. This approach maintains mathematical rigor 

while expanding the scope of functions we can work with. 

Definition of the Integral of a Distribution 

Let T be a distribution and φ be a test function. The integral of T with 

respect to φ is defined as: 

∫ T(x)φ(x)dx = <T,φ> 

Where <T,φ> denotes the action of the distribution T on the test function φ. 

For a regular distribution Tf associated with a locally integrable function f, 

this becomes: 

∫ Tf(x)φ(x)dx = ∫ f(x)φ(x)dx 

This definition preserves the intuitive understanding of integration while 

extending it to generalized functions. 

Properties of Distribution Integrals 

Linearity 

Integrals of distributions maintain the property of linearity: 

∫[𝛼𝑇(𝑥) +  𝛽𝑆(𝑥)]𝜑(𝑥)𝑑𝑥 =  𝛼 ∫ 𝑇(𝑥)𝜑(𝑥)𝑑𝑥 +  𝛽 ∫ 𝑆(𝑥)𝜑(𝑥)𝑑𝑥 

Where α and β are constants, and T and S are distributions. 

This property follows directly from the definition of distributions as linear 

functionals. 

Invariance under Translation 

If τh represents a translation operator such that (𝜏ℎ𝑇)(𝑥) =  𝑇(𝑥 − ℎ), then: 
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Notes ∫(𝜏ℎ𝑇)(𝑥)𝜑(𝑥)𝑑𝑥 =  ∫ 𝑇(𝑥 − ℎ)𝜑(𝑥)𝑑𝑥 =  ∫ 𝑇(𝑦)𝜑(𝑦 + ℎ)𝑑𝑦 

This property is crucial for analyzing systems with translational invariance. 

Behavior under Scaling 

For a scaling operation defined as (𝛿𝜆𝑇)(𝑥) =
𝑇(

𝑥

𝜆
)

|𝜆|
, we have: 

∫(𝛿𝜆𝑇)(𝑥)𝜑(𝑥)𝑑𝑥 =  ∫
𝑇 (

𝑥

𝜆
) 𝜑(𝑥)𝑑𝑥

|𝜆|
=  |𝜆| ∫ 𝑇(𝑦)𝜑(𝜆𝑦)𝑑𝑦 

This property helps in analyzing homogeneous systems and in establishing 

fundamental scaling relationships. 

Integration by Parts for Distributions 

The classical integration by parts formula extends to distributions in a 

natural way: 

∫ 𝑇′(𝑥)𝜑(𝑥)𝑑𝑥 =  − ∫ 𝑇(𝑥)𝜑′(𝑥)𝑑𝑥 

This formula is particularly useful when working with differential equations 

involving distributions. 

Convolution and Integration 

The convolution of distributions T and S, denoted T * S, satisfies: 

∫ (T * S)(x)φ(x)dx = ∫∫ T(y)S(x-y)φ(x)dxdy 

When the convolution exists, it provides a powerful tool for solving 

differential equations and analyzing linear systems. 

Support of Distribution Integrals 

The support of a distribution integral follows specific rules. If sup(T) 

denotes the support of distribution T, then: 
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Notes sup (∫ 𝑇(𝑥)𝑑𝑥) ⊆  {𝑥: 𝑥 ≥  𝑦 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦 𝑖𝑛 sup(𝑇)} 

This property helps in determining where a distribution integral is non-zero. 

Regularization of Distributions Through Integration 

Integration can serve as a regularization method for certain distributions. For 

a distribution T, its regularization Tε can be defined as: 

𝑇𝜀(𝑥) =  (𝑇 ∗  𝜌𝜀)(𝑥) =  ∫ 𝑇(𝑦)𝜌𝜀(𝑥 − 𝑦)𝑑𝑦 

Where ρε is a mollifier function that approaches the delta distribution as ε 

approaches zero. 

Fourier Transforms and Integration 

The Fourier transform of a distribution T, denoted by F[T], relates to 

integration through: 

𝐹𝑇 =  ∫ 𝑇(𝑥)𝑒−𝑖𝜔𝑥𝑑𝑥 

This relationship is fundamental in spectral analysis and in solving 

differential equations. 

Integrals of Specific Distributions 

Dirac Delta Distribution 

For the Dirac delta distribution δ: 

∫ 𝛿(𝑥)𝜑(𝑥)𝑑𝑥 =  𝜑(0) 

This property defines the sifting nature of the delta distribution. 

Heaviside Step Function 

For the Heaviside step function H(x): 

https://claude.ai/chat/%CF%89
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Notes ∫ 𝐻(𝑥)𝜑(𝑥)𝑑𝑥 =  ∫ 𝜑(𝑥)𝑑𝑥
∞

0
   

This integral represents the action of the Heaviside distribution on test 

functions. 

Principal Value Distribution 

For the principal value distribution P(1/x): 

∫ 𝑃 (
1

𝑥
) 𝜑(𝑥)𝑑𝑥 = lim(𝜀 → 0) ∫ |𝑥| > 𝜀 (

𝜑(𝑥)

𝑥
) 𝑑𝑥 

This definition handles the singularity at x = 0 in a mathematically 

consistent way. 

Applications of Distribution Integrals 

Distribution integrals find applications in various fields: 

1. Signal processing: For analyzing discontinuous signals 

2. Quantum mechanics: In formulating operator algebra 

3. Partial differential equations: For handling boundary conditions 

4. Control theory: In analyzing impulse responses 

5. Wave propagation: For modeling discontinuities 

Solved Problems on Integrals of Distributions 

Problem 1: Evaluating an Integral with Dirac Delta Function 

Calculate the integral: ∫ 𝛿(𝑥 − 3)𝑐𝑜𝑠(2𝑥)𝑑𝑥
∞

−∞
  

Solution: Using the sifting property of the Dirac delta function:  

∫ 𝛿(𝑥 − 3)𝑐𝑜𝑠(2𝑥)𝑑𝑥
∞

−∞

 = cos(2 × 3) = cos(6) =  0.9602 

The integral equals the value of cos(2x) evaluated at x = 3. 

Problem 2: Integration with Heaviside Function 
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Notes Evaluate: ∫ 𝐻(𝑥 − 1)𝑥2𝑑𝑥
5

−2
    

Solution: The Heaviside function H(x-1) equals 0 for x < 1 and 1 for x ≥ 1. 

Therefore: ∫ 𝐻(𝑥 − 1)𝑥2𝑑𝑥
5

−2
 =∫ 𝑥2𝑑𝑥

5

1
  =  [

𝑥3

3
] 5

1
 =

53

3
−

13

3
=

125

3
−

1

3
=

124

3
=  41.33   

Problem 3: Derivative of a Distribution 

Find the derivative of the distribution 𝑇 =  𝐻(𝑥)𝑒−𝑥  in the sense of 

distributions. 

Solution: Using the product rule for the derivative of a distribution: 

 𝑇′(𝑥) =  𝐻′(𝑥)𝑒−𝑥  +  𝐻(𝑥)(𝑒−𝑥)′ =  𝛿(𝑥)𝑒−𝑥  +  𝐻(𝑥)(−𝑒−𝑥) 

𝑆𝑖𝑛𝑐𝑒 𝑒−𝑥  evaluated at x = 0 is 1, we get: 

 𝑇′(𝑥)  =  𝛿(𝑥)  −  𝐻(𝑥)𝑒−𝑥 

Therefore, the derivative of 𝐻(𝑥)𝑒−𝑥 𝑖𝑠 𝛿(𝑥)  −  𝐻(𝑥)𝑒−𝑥  in the sense of 

distributions. 

Problem 4: Convolution of Distributions 

Calculate the convolution of the Heaviside function H(x) with itself:  

(𝐻 ∗  𝐻)(𝑥). 

Solution: Using the definition of convolution: 

 (𝐻 ∗  𝐻)(𝑥)  =  ∫ 𝐻(𝑦)𝐻(𝑥 − 𝑦)𝑑𝑦 
∞

−∞
=  ∫ 𝐻(𝑥 − 𝑦)𝑑𝑦 

∞

0
  

Since H(x-y) = 1 when x-y > 0, or y < x, the integral becomes: (H * H)(x) = 

∫₀^min(∞,x) 1dy 

For x ≤ 0: (H * H)(x) = 0 For x > 0: (H * H)(x) = min(x, ∞) = x 

Therefore: (H * H)(x) = xH(x) 

Problem 5: Integration by Parts with a Distribution 



  

80 
 

Notes Evaluate ∫ δ′
∞

∞
 (x)sin(x)dx using integration by parts. 

Solution: Using the integration by parts formula for distributions: ∫ δ′
∞

∞
 

(x)sin(x)dx = - ∫ δ′
∞

∞
 (x) (sin(x))'dx = - ∫ δ′

∞

∞
 (x)cos(x)dx 

By the sifting property of the delta function: - ∫ δ′
∞

∞
 (x)cos(x)dx = -cos(0) = 

-1 

Therefore, ∫ δ′
∞

∞
 (x)sin(x)dx = -1 

Unsolved Problems on Integrals of Distributions 

Problem 1 

Calculate the convolution (δ' * ex)(t), where δ' is the derivative of the Dirac 

delta function. 

Problem 2 

Find the Fourier transform of the distribution T(x) = |x|(-1/2) in the sense of 

distributions. 

Problem 3 

Evaluate the integral  ∫ P
∞

∞
(1/x²)sin(x)dx, where P denotes the principal 

value. 

Problem 4 

Determine the general solution of the differential equation y'' + 4y = δ(x-π) 

in the space of distributions. 

Problem 5 

Calculate the convolution of the distributions T = x₊(-1/2) and S = H(x)cos(x), 

where x₊(-1/2) equals |x|(-1/2) for x > 0 and 0 for x ≤ 0. 
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space of distributions and the properties of the distributional derivative.

distribution has a primitive. This result follows from the completeness of the 

One  of  the  fundamental  theorems  in  distribution  theory  states  that  every 

Existence of Primitives

<S, -φ'> = <T, φ>

Or equivalently:

<S', φ> = <T, φ>

In other words, S is a primitive of T if, for all test functions φ:

Where S' denotes the distributional derivative of S.

S' = T

antiderivative) of T if:

Let  T  be  a  distribution.  A  distribution  S  is  called  a  primitive  (or 

Definition of Primitives for Distributions

antiderivatives within the same function space.

contrasting  with  classical  calculus  where  not  all  functions  possess 

distributions  is  one  of  the  remarkable  features  of  distribution  theory, 

and  analyzing  generalized  functions.The  existence  of  primitives  for  all 

theory,  providing  a  powerful  framework  for  solving  differential  equations 

function  F  such  that  F'  =  f.  This  concept  extends  naturally  to  distribution 

In  classical  calculus,  a  primitive  (or  antiderivative)  of  a  function  f  is  a 

Introduction to Primitives in Distribution Theory

2.2.1 Concept of Primitives in Distribution Theory

Primitives and ordinary differential equations
UNIT 2.2
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Notes For any distribution T, a primitive S can be constructed as: 

<S, φ> = -<T, Φ> 

Where Φ is an antiderivative of φ that vanishes at infinity. 

Uniqueness of Primitives 

While the existence of primitives is guaranteed, they are not unique. If S is a 

primitive of T, then S + C is also a primitive of T for any constant C, since 

(S + C)' = S' = T. 

More generally, if S₁ and S₂ are two primitives of the same distribution T, 

then S₁ - S₂ is a constant distribution. 

Construction of Primitives 

For Regular Distributions 

If T = Tf is a regular distribution associated with a locally integrable 

function f, then a primitive S = Tg can be constructed with: 

g(x) = ∫ f
𝑥

∞
 (t)dt + C 

Where C is an arbitrary constant. 

For Singular Distributions 

For singular distributions like the Dirac delta function δ, primitives can still 

be constructed. For example, a primitive of δ is the Heaviside step function 

H, since H' = δ in the distributional sense. 

Properties of Primitives 

Linearity 

The operation of finding primitives is linear. If S₁ and S₂ are primitives of T₁ 

and T₂ respectively, then αS₁ + βS₂ is a primitive of αT₁ + βT₂ for any 

constants α and β. 

Behavior Under Translation 
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Notes If S is a primitive of T, then τₐS (the translation of S by a) is a primitive of 

τₐT: 

(τₐS)' = τₐ(S') = τₐT 

This property is useful in solving differential equations with shifted 

arguments. 

Behavior Under Scaling 

If S is a primitive of T and λ ≠ 0, then the scaled distribution λS(λx) is a 

primitive of λ²T(λx): 

(λS(λx))' = λ²T(λx) 

This property helps in analyzing scale-invariant systems. 

Multiple Primitives 

The concept of primitives extends naturally to higher-order primitives. An 

nth-order primitive of a distribution T is a distribution S such that: 

S(n) = T 

Where S(n) denotes the nth distributional derivative of S. 

The space of nth-order primitives of a distribution has dimension n, 

reflecting the n arbitrary constants that can be added. 

Regularization through Primitives 

Primitives can serve as regularization tools for certain singular distributions. 

For example, the distribution 1/x is not well-defined at x = 0, but its 

primitive ln|x| is locally integrable and defines a regular distribution.This 

regularization through primitives is particularly useful in renormalization 

techniques in quantum field theory. 

Connection to Fundamental Solutions 
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Notes Primitives are closely related to fundamental solutions of differential 

operators. If L is a differential operator and δ is the Dirac delta function, 

then a fundamental solution E of L satisfies: 

LE = δ 

In many cases, E can be expressed in terms of primitives of certain 

distributions. 

Applications of Primitives in Distribution Theory 

Solving Differential Equations 

Primitives provide a natural framework for solving differential equations in 

the space of distributions, especially equations involving discontinuous 

coefficients or singular sources. 

Signal Processing 

In signal processing, primitives help in analyzing the response of systems to 

impulse inputs and in constructing transfer functions. 

Mathematical Physics 

Primitives of distributions arise naturally in the formulation of Green's 

functions for boundary value problems in mathematical physics. 

Integral Transforms 

The relationship between a distribution and its primitives plays a crucial role 

in the theory of integral transforms, particularly the Fourier and Laplace 

transforms. 

Solved Problems on Primitives in Distribution Theory 

Problem 1: Finding a Primitive of a Basic Distribution 

Find a primitive of the distribution T(x) = cos(x). 
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Notes Solution: Let S be a primitive of T, so S' = cos(x). From classical calculus, 

we know that a primitive of cos(x) is sin(x) + C, where C is a constant. 

Therefore, S(x) = sin(x) + C is a primitive of T in the sense of distributions. 

Problem 2: Primitive of the Dirac Delta Function 

Find a primitive of the Dirac delta function δ(x). 

Solution: Let S be a primitive of δ, so S' = δ. For any test function φ: <S', φ> 

= <δ, φ> = φ(0) 

Using the definition of the distributional derivative: <S', φ> = -<S, φ'> = 

φ(0) 

This is satisfied when S is the Heaviside step function H(x): <H, -φ'> =  

∫ −φ
𝑥

∞
'(x)dx = [φ(x)]₀∞ = -φ(∞) + φ(0) = φ(0) 

Since test functions vanish at infinity, -φ(∞) = 0. Therefore, the Heaviside 

step function H(x) is a primitive of the Dirac delta function δ(x). 

Problem 3: Higher-Order Primitive 

Find a second-order primitive of the Dirac delta function δ(x). 

Solution: We need to find a distribution S such that S'' = δ. From Problem 2, 

we know that H(x) is a primitive of δ(x), so H'(x) = δ(x). Now we need to 

find a primitive of H(x). 

For any test function φ, a primitive T of H satisfies: <T', φ> = <H, φ> -<T, 

φ'> = -φ (x)dx 

This is satisfied by T(x) = x₊ = max(0, x), the ramp function: <x₊, -φ'> = 

∫ x
∞

0
(-φ'(x))dx = [xφ(x)]₀∞ -  ∫ φ

∞

0
'(x) dx =  -  ∫ φ

∞

0
'(x) dx 

Since xφ(x) vanishes at 0 and at infinity (for test functions). Therefore, S(x) 

= x₊ + C₁x + C₂ is a second-order primitive of δ(x), where C₁ and C₂ are 

arbitrary constants. 

Problem 4: Primitive of a Piecewise Function 
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Notes Find a primitive of the distribution T associated with the function: f(x) = { 1 

for x < 0 2 for x ≥ 0 } 

Solution: Let S be a primitive of T, so S' = T. For x < 0: S(x) = ∫ 1 dx = x + 

C₁ For x ≥ 0: S(x) = ∫ 2 dx = 2x + C₂ 

For S to be continuous at x = 0, we need: lim(x→0⁻) S(x) = lim(x→0⁺) S(x) 

0 + C₁ = 0 + C₂ Therefore, C₁ = C₂ = C 

The primitive is: S(x) = { x + C for x < 0 2x + C for x ≥ 0 } 

Which can be written as S(x) = x + H(x)x + C, where H is the Heaviside 

function. 

Problem 5: Primitive with Support Condition 

Find a primitive S of the distribution T = δ'(x) (the derivative of the Dirac 

delta) such that S has support in [0, ∞). 

Solution: We need S such that S' = δ'. Any primitive of δ' is of the form S = 

δ + C. 

For S to have support in [0, ∞), we need C to be a distribution with support 

in [0, ∞) and C' = 0. Since C' = 0, C must be a constant multiple of the 

Heaviside function: C = kH(x). 

Therefore, S = δ + kH(x) is a primitive of δ' with support in [0, ∞) when k = 

-1. To verify: S' = δ' + kδ = δ' - δ = δ' 

The primitive is S = δ - H(x). 

Unsolved Problems on Primitives in Distribution Theory 

Problem 1 

Find a primitive of the distribution T associated with the function f(x) = 

|x|⁻¹/² in the sense of distributions. 

Problem 2 
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Notes Determine all primitives of the distribution T(x) = P(1/x²), where P denotes 

the principal value. 

Problem 3 

Find a third-order primitive of the Dirac delta function δ(x) with the 

condition that it vanishes for x < 0. 

Problem 4 

Compute a primitive of the distribution T = ∑ δ(x-n), which is a sum of delta 

functions positioned at integer points. 

Problem 5 

Find a primitive of the distribution T associated with the function: f(x) = { 

sin(1/x) for x ≠ 0 0 for x = 0 } 

2.6 Application of Distributions in Ordinary Differential Equations 

Introduction to Distributions in Differential Equations 

Ordinary differential equations (ODEs) often involve functions that are 

discontinuous or possess singularities. Traditional solution methods may fail 

in these cases, but distribution theory provides a powerful framework for 

handling such equations.By extending the concept of functions to include 

distributions, we can solve a broader class of differential equations and 

interpret their solutions in a mathematically rigorous way. This approach has 

significant applications in physics, engineering, and other scientific 

disciplines. 

Formulation of Differential Equations in the Space of Distributions 

A linear ordinary differential equation of order n can be written in the form: 

L[y] = f 

Where L is a linear differential operator defined as: 

L = a₀(x)Dn + a₁(x)D(n-1) + ... + aₙ₋₁(x)D + aₙ(x) 
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Notes Here, D represents the differentiation operator, and the coefficients aᵢ(x) are 

functions that may include discontinuities or singularities. 

In the distributional setting, the equation L[y] = f is interpreted as: 

<L[y], φ> = <f, φ> 

For all test functions φ in the appropriate space. 

Fundamental Solutions and Green's Functions 

A fundamental solution (or elementary solution) E of the differential 

operator L satisfies: 

L[E] = δ 

Where δ is the Dirac delta distribution. Once we find a fundamental 

solution, we can express the solution to the general equation L[y] = f as: 

y = E * f 

Where * denotes the convolution operation. 

For a second-order operator L = D² - k², a fundamental solution is: 

E(x) = { e^(kx)/(2k) for x < 0 e^(-kx)/(2k) for x ≥ 0 } 

Jump Conditions and Matching Conditions 

When solving differential equations with discontinuous coefficients or 

source terms, jump conditions (also called matching conditions) must be 

imposed to ensure the continuity of the solution and its derivatives up to an 

appropriate order.For a second-order equation, these conditions typically 

involve the continuity of the solution and the jump in its first derivative: 

[y]{x=a} = 0 [y']{x=a} = σ 

Where [y]{x=a} represents the jump in y at x = a, and σ depends on the source 

term. 

Distributional Solutions to Specific Types of ODEs 
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Notes First-Order Linear Equations 

Consider the equation: 

y' + p(x)y = f(x) 

Where p and f may include distributions. 

The solution in the distributional sense is: 

y(x) = e(-P(x))[C + ∫ f(t)e(P(t))dt] 

Where P(x) = ∫ p(t)dt and C is a constant. 

Second-Order Linear Equations with Constant Coefficients 

For the equation: 

y'' + ay' + by = f 

Where a and b are constants, the general solution is: 

y = C₁e(r₁x) + C₂e(r₂x) + (E * f)(x) 

Where r₁ and r₂ are the roots of the characteristic equation r² + ar + b = 0, 

and E is the fundamental solution. 

Equations with Singular Coefficients 

Consider the equation: 

x²y'' + xy' + (x² - ν²)y = 0 

This is Bessel's equation, which has a regular singularity at x = 0. In the 

framework of distributions, we can analyze the behavior near the singularity 

and construct solutions that are valid across the entire domain. 

Distributional Initial Value Problems 

Initial value problems in the distributional setting take the form: 

L[y] = f y^(k)(0) = y₀^(k) for k = 0, 1, ..., n-1 



  

90 
 

Notes The solution can be expressed using the Green's function G(x, ξ) as: 

y(x) = ∑ y₀^(k)G^(k)(x, 0) + ∫ G(x, ξ)f(ξ)dξ 

Where G^(k) denotes the kth derivative of G with respect to its second 

argument. 

Distributional Boundary Value Problems 

Boundary value problems involve conditions at multiple points. In the 

distributional framework, these can be handled using Green's functions with 

appropriate boundary conditions. 

For a second-order equation on [a, b] with homogeneous boundary 

conditions, the Green's function G(x, ξ) satisfies: 

L[G(x, ξ)] = δ(x-ξ) G(a, ξ) = G(b, ξ) = 0 

The solution to L[y] = f with homogeneous boundary conditions is then: 

y(x) = ∫_a^bG(x, ξ)f(ξ)dξ 

Impulse Response and Transfer Functions 

In systems theory, the impulse response of a linear time-invariant (LTI) 

system described by the differential equation: 

L[y] = f 

Is the solution y when f = δ (the Dirac delta function). 

The impulse response characterizes the system completely, and its Laplace 

transform gives the transfer function of the system. 

Stability Analysis Using Distributions 

Stability analysis of systems governed by ODEs can be performed in the 

distributional setting by examining the behavior of solutions to perturbations 

involving delta functions and their derivatives.For a system y' = Ay with 

initial condition y(0) = y₀, the stability can be analyzed through the 

eigenvalues of A, even when y₀ includes distributions. 
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Notes Solved Problems on Applications of Distributions in ODEs 

Problem 1: Solving an ODE with Delta Function Source 

Solve the initial value problem: y'' + 4y = δ(x-π) y(0) = 0, y'(0) = 0 

Solution: The homogeneous equation y'' + 4y = 0 has general solution: yh(x) 

= A cos(2x) + B sin(2x) 

To find a particular solution, we use the method of variation of parameters. 

The Green's function for this problem is: G(x,ξ) = (1/2)sin(2(x-ξ))H(x-ξ) 

Where H is the Heaviside step function. 

The particular solution is: yp(x) = ∫ G(x,ξ)δ(ξ-π)dξ = G(x,π) = (1/2)sin(2(x-

π))H(x-π) 

Thus, the complete solution is: y(x) = yh(x) + yp(x) = A cos(2x) + B sin(2x) 

+ (1/2)sin(2(x-π))H(x-π) 

Applying the initial conditions y(0) = 0 and y'(0) = 0: 0 = A 0 = 2B 

Therefore, A = B = 0, and: y(x) = (1/2)sin(2(x-π))H(x-π) 

This means y(x) = 0 for x < π, and y(x) = (1/2)sin(2(x-π)) for x ≥ π. 

Problem 2: Jump Discontinuity in the Solution 

Solve the equation: y'' + y = δ'(x) With initial conditions y(0⁻) = 0, y'(0⁻) = 0 

Solution: We first find the fundamental solution E satisfying E'' + E = δ: 

E(x) = (1/2)sin(|x|) 

For the equation y'' + y = δ', the particular solution is: yp = -E' * δ = -E' 

Since E'(x) = (1/2)sign(x)cos(|x|), we have: yp(x) = -(1/2)sign(x)cos(|x|) 

The general solution is: y(x) = A cos(x) + B sin(x) - (1/2)sign(x)cos(|x|) 

Applying the initial conditions for x < 0: y(x) = A cos(x) + B sin(x) + 

(1/2)cos(|x|) for x < 0 0 = A + 1/2 0 = B 
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Notes Therefore, A = -1/2, B = 0, and: y(x) = { -1/2 cos(x) + 1/2 cos(|x|) = 0 for x 

< 0 -1/2 cos(x) - 1/2 cos(x) = -cos(x) for x ≥ 0 } 

We can verify that y is continuous at x = 0, but y' has a jump of -1. 

Problem 3: Solving an Equation with Heaviside Function 

Solve the initial value problem: y'' + 4y = H(x-2) y(0) = 1, y'(0) = 0 

Solution: The general solution to the homogeneous equation y'' + 4y = 0 is: 

yh(x) = A cos(2x) + B sin(2x) 

For the particular solution, we use: yp(x) = ∫₀^x G(x,ξ)H(ξ-2)dξ 

Where G(x,ξ) = (1/2)sin(2(x-ξ)) is the Green's function. 

Computing: yp(x) =∫ (1/2)
𝑥

0
sin(2(x-ξ))H(ξ-2)dξ = { 0 for x < 2 (1/2) 

∫ (sin
𝑥

2
(2(x-ξ))dξ for x ≥ 2 } 

For x ≥ 2: yp(x) = (1/2)[-cos(2(x-ξ))/2]₂x = (1/4)[cos(2(x-2)) - cos(0)] = 

(1/4)[cos(2x-4) - 1] 

The complete solution is: y(x) = { A cos(2x) + B sin(2x) for x < 2 A cos(2x) 

+ B sin(2x) + (1/4)[cos(2x-4) - 1] for x ≥ 2 } 

Applying the initial conditions y(0) = 1, y'(0) = 0: 1 = A 0 = 2B 

Therefore, A = 1, B = 0, and: y(x) = { cos(2x) for x < 2 cos(2x) + 

(1/4)[cos(2x-4) - 1] for x ≥ 2 } 

Simplifying for x ≥ 2: y(x) = cos(2x) + (1/4)cos(2x-4) - 1/4 = (1/4)[4cos(2x) 

+ cos(2x-4) - 1] 

Problem 4: Impulse Response of a System 

Find the impulse response of the system described by: y'' + 3y' + 2y = f y(0) 

= 0, y'(0) = 0 

Solution: The impulse response is the solution when f = δ(x). 
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Notes The characteristic equation is r² + 3r + 2 = 0, with roots r₁ = -1 and r₂ = -2. 

The general solution to the homogeneous equation is: yh(x) = Ae(-x) + Be(-2x) 

Using the Green's function method, the impulse response is: h(x) = [e(-x) - e(-

2x)]H(x) 

We can verify that h satisfies the original equation with f = δ(x) and the 

initial conditions. For x ≠ 0, h satisfies the homogeneous equation. At x = 0, 

h(0⁺) = 0 = h(0⁻), so h is continuous. The derivative h' has a jump at x = 0 

equal to 1, which corresponds to the delta function on the right-hand side. 

Problem 5: Boundary Value Problem with Singular Source 

Solve the boundary value problem: y'' = δ(x-1/2) y(0) = 0, y(1) = 0 

Solution: The general solution to y'' = 0 is y = Ax + B. 

For 0 ≤ x < 1/2: y(x) = A₁x + B₁ 

For 1/2 < x ≤ 1: y(x) = A₂x + B₂ 

Distribution theory represents one of the most significant advancements in 

mathematical analysis during the 20th century, providing a rigorous 

framework for handling generalized functions that extend beyond classical 

calculus. This theory, largely developed by Laurent Schwartz in the 1940s, 

has transformed our approach to differential equations, allowing 

mathematicians and physicists to work with objects like the Dirac delta 

function within a consistent mathematical foundation. In contemporary 

applications, distribution theory serves as the backbone for understanding 

phenomena in quantum mechanics, signal processing, partial differential 

equations, and numerous other fields where traditional functions prove 

inadequate. The power of distribution theory lies in its ability to assign 

meaning to operations that would otherwise be problematic in classical 

analysis. By extending the notion of functions to distributions, we gain the 

capacity to differentiate functions that lack smoothness properties, integrate 

across singularities, and formulate solutions to differential equations that 

would be impossible to solve with conventional methods. This extension 

provides not just theoretical elegance but practical tools that have 

revolutionized multiple scientific disciplines.  
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Notes Fundamental Concepts of Distributions  

Distribution theory begins with the recognition that many important objects 

in physics and mathematics cannot be adequately represented as classical 

functions. The fundamental idea is to define distributions not directly but 

through their action on a class of well-behaved test functions. This approach 

allows us to work indirectly with objects that might lack point values or 

contain singularities. A distribution is formally defined as a continuous 

linear functional on a space of test functions, typically denoted as D(Ω), 

consisting of infinitely differentiable functions with compact support within 

an open subset Ω of Rⁿ. The continuity requirement ensures that 

distributions behave predictably under limits, while linearity maintains the 

algebraic structure needed for meaningful calculations. The space of test 

functions D(Ω) possesses a specific topology determined by a sequence of 

seminorms, making it what mathematicians call a locally convex topological 

vector space. A distribution T is then a mapping from D(Ω) to the real or 

complex numbers that satisfies continuity with respect to this topology and 

linearity in the sense that T(αφ + βψ) = αT(φ) + βT(ψ) for test functions φ, ψ 

and scalars α, β. Every locally integrable function f can be associated with a 

distribution Tf defined by the action Tf(φ) = ∫ f(x)φ(x)dx. This association 

embeds the space of ordinary functions within the larger space of 

distributions, allowing us to view traditional functions as special cases of 

distributions. However, the real power emerges when we consider 

distributions that cannot be represented as functions, such as the Dirac delta 

distribution.  

Regular and Singular Distributions  

Distributions fall into two broad categories: regular distributions, which can 

be represented by locally integrable functions, and singular distributions, 

which cannot. Regular distributions act on test functions through integration, 

following the pattern described above. A singular distribution, however, 

cannot be expressed as an integral involving an ordinary function. The Dirac 

delta distribution, denoted δ, exemplifies singular distributions. It acts on 

test functions by evaluation at zero: δ(φ) = φ(0). Despite its simple 

definition, the delta distribution cannot be represented as an ordinary 

function because no function can have the property that its integral against 

any test function yields the test function's value at a single point. This 
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Notes observation highlights why distribution theory was necessary—to provide a 

rigorous foundation for objects that had been used heuristically by physicists 

and engineers for decades. Other examples of singular distributions include 

the Heaviside step function's derivative, which equals the delta distribution, 

and distributions defined by principal value integrals. These objects serve 

crucial roles in various applications but require the framework of 

distribution theory to be treated with mathematical rigor.  

Derivatives of Distributions  

One of the most powerful aspects of distribution theory is that every 

distribution possesses derivatives of all orders. This universal 

differentiability stands in stark contrast to classical functions, which may not 

even be differentiable once. The derivative of a distribution T, denoted T', is 

defined through its action on test functions by the relationship: T'(φ) = -T(φ') 

This definition transfers the differentiation operation from the distribution to 

the test function, utilizing the smoothness of test functions rather than 

requiring smoothness of the distribution itself. For regular distributions 

corresponding to differentiable functions, this definition aligns with classical 

differentiation. Consider the Heaviside step function H(x), which equals 0 

for x < 0 and 1 for x > 0. In classical analysis, H(x) is not differentiable at x 

= 0. However, in distribution theory, its derivative H'(x) exists and equals 

the Dirac delta distribution δ(x). This relationship can be verified by 

checking that for any test function φ: H'(φ) = -H(φ') = - ∫ φ′
∞

0
(x)dx = φ(0) = 

δ(φ) Higher-order derivatives follow naturally by iterating this process. The 

nth derivative of a distribution T is characterized by: T(n)(φ) = (-1)^n T(φ(n)) 

This formulation allows us to work with differential equations involving 

functions with discontinuities or singularities, providing a unified approach 

to problems that would otherwise require case-by-case analysis. Examples 

of Distributions and Their Derivatives To illustrate the power of distribution 

theory, let's examine several important examples and their derivatives: 1. 

The Dirac Delta Function: The delta distribution δ(x) represents a unit 

impulse at x = 0. Its derivatives δ(n)(x) play crucial roles in describing 

higher-order impulses. For instance, δ'(x) represents a dipole, appearing in 

electromagnetic theory and fluid dynamics. These derivatives follow the 

pattern δ(n)(φ) = (-1)n φ(n)(0). 2. The Heaviside Step Function: As mentioned 

above, H(x) has derivative H'(x) = δ(x). More generally, for a shifted step 

function H(x-a), the derivative is δ(x-a), representing an impulse at position 
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Notes a. 3. The Sign Function: The function sgn(x), which equals -1 for x < 0 and 

1 for x > 0, has a distributional derivative 2δ(x), illustrating how 

distributions capture jumps in functions.  

The Principal Value Distribution 

For functions with singularities, like 1/x, the principal value distribution 

P(1/x) is defined through a limiting procedure. Its derivative includes terms 

involving δ(x) and reflects how singularities transform under differentiation. 

5. Periodic Distributions: For periodic functions like sin(x) or cos(x), their 

distributional derivatives match their classical derivatives. However, 

distributions can also represent periodic arrangements of singularities, like a 

periodic array of delta functions, used in crystallography and signal 

processing. 6. Homogeneous Distributions: Distributions like x_+λ (which 

equals xλ for x > 0 and 0 otherwise) have distributional derivatives that 

extend analytical continuation results from complex analysis, providing 

insights into regularization techniques in quantum field theory.  

Tempered Distributions 

These form a subclass of distributions that grow at most polynomially at 

infinity, making them suitable for Fourier transformation. The derivatives of 

tempered distributions remain within this class, facilitating frequency-

domain analysis in signal processing. Each of these examples demonstrates 

how distribution theory provides a consistent framework for operations that 

would be problematic or impossible in classical analysis. They form the 

building blocks for more complex applications in various fields.  

Integrals and Primitives in Distribution Theory  

Just as differentiation extends naturally to distributions, integration also 

finds a generalized meaning within this framework. The primitive or 

antiderivative of a distribution T is another distribution S such that S' = T. 

The existence of primitives for all distributions represents another advantage 

over classical function theory, where not all functions possess antiderivatives 

within the same function class. For a distribution T, its primitive can be 

constructed using convolution with the Heaviside function: S = H * T This 

operation is well-defined for distributions with compact support. For more 

general distributions, additional care regarding growth conditions becomes 

necessary. Unlike classical integration, which introduces an arbitrary 
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addition of a polynomial. This difference arises because the distributional 

derivative of a polynomial of degree ≤ n vanishes on test functions with 

sufficiently rapid decay at infinity. The relationship between primitives and 

integrals appears in the fundamental theorem of calculus for distributions. If 

T is a distribution and F is its primitive, then for test functions φ with 

appropriate support: T(φ) = -F(φ') This relationship mirrors the classical 

integration by parts formula but operates within the more general context of 

distributions.  

Convolution of Distributions  

Convolution represents another fundamental operation in distribution theory, 

extending the classical notion of convolution between functions. For 

distributions S and T, their convolution S * T (when it exists) is defined by 

its action on test functions: (S * T)(φ) = S(x → T_y(φ(x+y))) where Ty 

denotes T acting on the variable y. The convolution operation proves 

especially valuable because it transforms differentiation into algebraic 

manipulation: (S * T)' = S' * T = S * T' This property makes convolution a 

powerful tool for solving differential equations, as it converts differential 

operations to multiplication in the Fourier domain—a principle underlying 

the wide application of Fourier methods in partial differential equations. Not 

all pairs of distributions can be convolved—certain support and growth 

conditions must be satisfied. However, when one distribution has compact 

support, convolution with any distribution becomes well-defined, providing 

flexibility in applications.  

Support and Singularities of Distributions  

The support of a distribution T, denoted supp(T), consists of points around 

which T cannot be represented as zero. More precisely, a point x belongs to 

the complement of supp(T) if there exists an open neighborhood where T 

vanishes on all test functions supported within that neighborhood. 

Understanding the support of distributions proves crucial in applications, as 

it indicates where a physical phenomenon (like a charge distribution or 

force) actually acts. The singular support, a refinement of this concept, 

identifies points where a distribution cannot be represented by a smooth 

function, highlighting the locations of discontinuities, kinks, or more severe 

singularities. When differentiating distributions, the support generally 
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Notes remains unchanged, but the singular support may expand. This behavior 

explains why solutions to differential equations can develop singularities 

even when the inputs are smooth—a phenomenon with significant 

implications in shock wave theory and nonlinear PDEs.  

Fourier Transformation of Distributions  

The Fourier transform extends naturally to certain classes of distributions, 

particularly tempered distributions that grow at most polynomially at 

infinity. For a tempered distribution T, its Fourier transform F[T] is defined 

by: FT = T(F[φ]) where F[φ] denotes the classical Fourier transform of the 

test function φ. This definition preserves the fundamental properties of 

Fourier transformation, including its invertibility and the relationship 

between differentiation and multiplication by polynomials: F[T'] = iωF[T] 

This property transforms differential equations into algebraic equations in 

the frequency domain, greatly simplifying many problems in partial 

differential equations, signal processing, and quantum mechanics.  

Notable examples of distributional Fourier transforms include:  

1. F[δ] = 1, illustrating how impulses correspond to constant functions in the 

frequency domain.  

2. F[1] = 2πδ, showing the reciprocal relationship between constants and 

impulses.  

3. F[e{iax}] = 2πδ(ω-a), demonstrating how pure frequencies map to specific 

impulses.  

These relationships form the foundation for spectral methods in numerical 

analysis and the study of systems governed by linear differential equations 

with constant coefficients.  

Application to Ordinary Differential Equations  

Distribution theory transforms our approach to differential equations by 

providing a unified framework for handling various types of solutions, 

including those with discontinuities or singularities. Consider a simple 

second-order linear differential equation: ay''(x) + by'(x) + cy(x) = f(x) In 

classical theory, if f(x) contains singularities or discontinuities, finding 

solutions becomes problematic. However, in distribution theory, we can treat 

this equation directly by interpreting all derivatives in the distributional 
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Green's functions can be expressed as distributions. These solutions then 

serve as building blocks for constructing particular solutions to 

inhomogeneous equations through convolution: y = G * f where G 

represents the appropriate  

Green's function. This approach handles various input types seamlessly:  

1. Point Sources: If f(x) = δ(x-x₀), the solution directly gives the Green's 

function centered at x₀.  

2. Discontinuous Inputs: For functions with jumps, like the Heaviside 

function, distribution theory automatically accounts for the resulting kinks in 

solutions.  

3. Periodic Inputs: By expressing periodic functions through Fourier series 

in terms of complex exponentials, distribution theory facilitates finding 

periodic solutions.  

4. Impulsive Forces: Physical systems subject to sharp, brief forces can be 

modeled using delta distributions and their derivatives, leading to solutions 

that accurately capture the resulting discontinuities in velocity or 

displacement.  

The distributional approach also clarifies boundary and initial value 

problems. Jump conditions across interfaces emerge naturally from the 

distributional formulation, replacing separate interface conditions with 

unified distributional equations.  

Distributional Solutions to PDEs  

While ordinary differential equations represent an important application 

area, partial differential equations (PDEs) showcase the full power of 

distribution theory. Many foundational PDEs in physics—including the 

wave equation, heat equation, and Laplace equation—admit distributional 

solutions that extend beyond classical function spaces. For example, the 

wave equation: ∂²u/∂t² - c²∇²u = f(x,t) has a fundamental solution expressed 

using the Dirac delta distribution. For a point source f(x,t) = δ(x)δ(t), the 

solution in three dimensions follows the pattern: u(x,t) = (1/4πc²|x|)δ(t-|x|/c) 

This solution represents a spherical wave emanating from the origin at speed 

c, with the delta function capturing the sharp wavefront. Such solutions 
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Notes would be impossible to express rigorously without distribution theory. 

Similarly, the heat equation's fundamental solution exhibits a Gaussian 

profile that approaches a delta distribution as time approaches zero. This 

behavior reflects the physical reality that heat from a point source becomes 

increasingly concentrated as we look backward in time. For elliptic 

equations like Laplace's equation, Green's functions expressed as 

distributions allow solutions for arbitrary boundary conditions through 

surface integrals. This approach unifies the treatment of various boundary 

value problems within a single framework.  

Weak Solutions and Variational Formulations  

Distribution theory naturally leads to the concept of weak solutions to 

differential equations. A function u is a weak solution to a differential 

equation Lu = f if for all appropriate test functions φ: ⟨Lu, φ⟩ = ⟨f, φ⟩ where 

⟨·,·⟩ denotes the distributional pairing. By transferring derivatives from u to 

φ through integration by parts, this formulation requires less smoothness 

from the solution than classical approaches. This relaxation proves crucial in 

problems where optimal regularity cannot be expected, such as conservation 

laws with shocks or equations with rough coefficients. The weak 

formulation also underpins variational methods, where solutions are 

characterized as minimizers of certain functionals. The Euler-Lagrange 

equations for these variational problems emerge naturally in distributional 

form, connecting distribution theory to calculus of variations and numerical 

methods like finite elements.  

Sobolev Spaces and Regularity Theory  

Distribution theory leads directly to Sobolev spaces, which consist of 

functions whose distributional derivatives up to a certain order belong to 

specific Lᵖ spaces. These function spaces provide the natural setting for 

studying differential equations and have transformed our understanding of 

regularity properties for PDEs. For a domain Ω, the Sobolev space Wᵏ,ᵖ(Ω) 

consists of functions u whose distributional derivatives D^α u belong to 

Lᵖ(Ω) for all multi-indices α with |α| ≤ k. The Hilbert space case p = 2 leads 

to the commonly used spaces Hᵏ(Ω). The embedding and trace theorems for 

Sobolev spaces establish precise conditions under which functions in these 

spaces possess additional regularity, such as continuity or boundary values. 

These results directly impact our understanding of when solutions to PDEs 
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cornerstone of PDE analysis, utilizes distributional derivatives to establish 

that solutions to elliptic equations inherit smoothness from their data. In 

contrast, hyperbolic equations generally propagate singularities along 

characteristic curves, a phenomenon elegantly captured through wave front 

sets in distribution theory.  

Microlocal Analysis and Wave Front Sets  

Distribution theory has evolved into more refined tools for analyzing the 

directional singularity structure of distributions. The wave front set WF(u) of 

a distribution u characterizes not just where u is singular but in which 

directions the Fourier transform fails to decay rapidly. This microlocal 

viewpoint proves invaluable in understanding how singularities propagate in 

solutions to PDEs, particularly in wave propagation phenomena. For 

hyperbolic equations, the wave front set of solutions obeys precise 

propagation laws along bicharacteristic strips, formalizing the physical 

intuition that waves travel along rays. In applications to optics and acoustics, 

wave front analysis predicts how singularities like caustics form and evolve. 

In seismology, it helps track how seismic waves reflect, refract, and convert 

at interfaces between different media. This analysis reaches its culmination 

in Fourier integral operators, which provide a general framework for solving 

linear PDEs with variable coefficients.  

Schwartz Distributions and Test Function Spaces  

The original framework developed by Laurent Schwartz uses the space D(Ω) 

of infinitely differentiable functions with compact support as test functions. 

However, several important variants exist, each with specific advantages for 

different applications:  

1. Schwartz Space S(Rⁿ): Consisting of rapidly decreasing smooth functions, 

this space serves as the domain for tempered distributions, which admit 

Fourier transformation. This setting proves ideal for problems in quantum 

mechanics and signal processing.  

2. Analytic Test Functions A(Ω): These generate distributions of analytic 

functionals, important in complex analysis and the study of partial 

differential equations with analytic coefficients. The corresponding 
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functions.  

3. Gevrey Classes Gˢ(Ω): These intermediate spaces between smooth and 

analytic functions yield distributions useful in studying hypoelliptic 

operators and equations of non-constant coefficients. They provide finer 

gradations of regularity than the smooth-analytic dichotomy. Each test 

function space generates a corresponding dual space of distributions, 

creating a hierarchy that allows mathematicians to select the most 

appropriate setting for specific problems. This flexibility illustrates the 

richness of distribution theory as a unifying framework. Pseudodifferential 

Operators Building on distribution theory, pseudodifferential operators 

generalize differential operators by allowing variable coefficients in both 

position and momentum variables. A pseudodifferential operator P acts on 

functions through the formula: Pu(x) = (2π)(-n) ∫∫ e{i(x-y)·ξ} p(x,ξ) u(y) dydξ 

where p(x,ξ) denotes the symbol of the operator, encoding its behavior in 

phase space. These operators provide powerful tools for studying elliptic, 

parabolic, and certain classes of hyperbolic equations. The symbol calculus 

associated with pseudodifferential operators allows for the construction of 

parametrices (approximate inverses) and the precise analysis of regularity 

properties for solutions. In quantum mechanics, pseudodifferential operators 

correspond to observables in phase space quantization, providing a bridge 

between classical and quantum descriptions. In signal processing, they 

represent time-varying filters, essential for analyzing non-stationary signals 

like speech or music.  

Practical Applications in Science and Engineering  

Distribution theory finds applications across numerous scientific and 

engineering disciplines:  

1. Quantum Mechanics: Distributions formalize operators and states in 

quantum theory, with the Dirac delta function representing position 

eigenstates and its Fourier transform representing momentum eigenstates. 

The theory of unbounded operators on Hilbert spaces draws heavily from 

distributional concepts.  

2. Signal Processing: The sampling theorem, fundamental to digital signal 

processing, relies on the distributional interpretation of the Dirac comb. 

Wavelets and time-frequency analysis extend these ideas to provide tools for 
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Transfer functions and impulse responses, central to linear systems theory, 

find natural expression in distributional language. The stability and 

controllability of systems can be analyzed through the distributional 

formulation of differential equations governing the dynamics.  

4. Computational Electromagnetics: Maxwell's equations involving 

surface charges and currents require distributional sources to accurately 

model discontinuities in electromagnetic fields across material interfaces. 

Finite element methods implicitly utilize weak formulations based on 

distributional derivatives.  

5. Seismology: Wave propagation in heterogeneous media, including 

reflection and transmission at interfaces, relies on distributional formulations 

to handle discontinuities in material properties. The resulting models predict 

how seismic waves travel through the Earth's interior.  

6. Materials Science: Phase transitions and interface dynamics in materials 

involve sharp fronts that travel through the medium. Distributional 

formulations capture these phenomena while maintaining conservation 

principles across discontinuities.  

7. Financial Mathematics: Option pricing models sometimes involve non-

smooth payoff functions, which require distributional derivatives for proper 

mathematical treatment. The Black-Scholes equation, fundamental in 

financial theory, benefits from this approach when dealing with digital 

options.  

Numerical Methods Based on Distribution Theory  

The weak formulation of PDEs directly inspires several numerical methods:  

1. Finite Element Method (FEM): By seeking approximate solutions in 

finite-dimensional subspaces of appropriate Sobolev spaces, FEM 

implements the weak formulation numerically. The resulting discrete 

problems preserve essential properties of the continuous problems, 

explaining FEM's success across engineering disciplines.  

2. Discontinuous Galerkin Methods: These extend finite elements to allow 

discontinuities across element boundaries, with flux conditions enforced 
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shocks and provides high-order accuracy for complex geometries.  

3. Boundary Element Methods: By reformulating PDEs as integral equations 

on the boundary using fundamental solutions (distributions), these methods 

reduce the dimensionality of problems, offering efficiency advantages for 

certain applications like scattering and potential problems.  

4. Spectral Methods: Based on expansions in eigenfunctions of differential 

operators, these methods achieve exponential convergence rates for smooth 

problems. The underlying orthogonality relationships often involve 

distributional formulations, particularly for singular Sturm-Liouville 

problems. Each method leverages distributional concepts to handle different 

aspects of differential equations, from discontinuities and singularities to 

boundary conditions and unbounded domains.  

Recent Developments and Future Directions  

Distribution theory continues to evolve, with several active research 

directions:  

1. Nonlinear Theory of Distributions: While classical distribution theory 

primarily addresses linear operations, recent advances in Colombeau 

algebras and other frameworks extend the theory to handle nonlinear 

operations on distributions. These extensions prove crucial for nonlinear 

PDEs and mathematical models in continuum mechanics.  

2. Distributions on Manifolds: The extension of distribution theory to 

manifolds provides tools for global analysis, geometric PDEs, and 

mathematical physics on curved spacetimes. This approach unifies 

differential geometry with distribution theory, yielding insights into 

problems ranging from general relativity to geometric analysis.  

3. Computational Aspects: With increasing computational power, numerical 

methods based on distributional formulations tackle increasingly complex 

problems. Adaptive methods that focus computational effort where 

distributions exhibit singularities offer efficiency improvements for 

multiscale phenomena.  

4. Applications in Data Science: Kernel methods in machine learning 

implicitly utilize distributional ideas, with reproducing kernel Hilbert spaces 
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theory of distributions underlies many regularization approaches in inverse 

problems and imaging.  

5. Stochastic Distributions: The integration of distribution theory with 

stochastic analysis leads to frameworks for solving stochastic PDEs and 

understanding rough paths. These tools find applications in turbulence 

modeling, quantum field theory, and financial mathematics.  

These developments highlight the ongoing relevance of distribution theory 

as a unifying language for mathematics and its applications.  

Distribution theory stands as one of the most significant achievements in 

20th-century mathematics, providing a rigorous foundation for operations 

that previously relied on formal manipulations. By extending the notion of 

functions to distributions, this theory has transformed how we approach 

differential equations, handle singularities, and understand generalized 

solutions. The practical impact of this theory spans numerous scientific 

disciplines, from quantum physics to signal processing, from continuum 

mechanics to control theory. Its mathematical ramifications extend through 

functional analysis, PDE theory, harmonic analysis, and numerical 

mathematics, creating connections between disparate fields. As 

computational methods continue to advance and new applications emerge, 

distribution theory will undoubtedly remain a cornerstone of applied 

mathematics, offering a flexible framework for tackling complex problems 

that involve discontinuities, singularities, or generalized functions. The 

balance of mathematical rigor with practical utility ensures that this theory 

will continue to influence both theoretical developments and real-world 

applications for generations to come. 

SELF ASSESSMENT QUESTIONS 

Multiple Choice Questions (MCQs) 

1. Which of the following is a fundamental characteristic of the 

derivative in distribution theory? 

a) It is always a smooth function 

b) It extends the classical notion of differentiation 

c) It applies only to continuous functions 

d) It requires the function to be differentiable everywhere 
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2. Which property does the distributional derivative satisfy? 

a) Linearity 

b) Multiplicativity 

c) Commutativity 

d) Non-linearity 

Answer: a) Linearity 

3. Which of the following is an example of a distribution whose 

derivative is the Dirac delta function δ(x)? 

a) ex 

b) x2 

c) The Heaviside step function H(x) 

d) The sine function 

Answer: c) The Heaviside step function H(x) 

4. What is the primary reason for defining derivatives in 

distribution theory? 

a) To allow differentiation of functions with discontinuities 

b) To make calculus easier 

c) To eliminate integrals in physics problems 

d) To restrict differentiation to smooth functions 

Answer: a) To allow differentiation of functions with discontinuities 

5. Which integral property is essential when integrating a 

distribution? 

a) Integration by parts 

b) Homogeneity 

c) Discreteness 

d) Compact support 

Answer: a) Integration by parts 

6. What is the primitive of the Dirac delta function δ(x) in the 

sense of distributions? 

a) The Heaviside step function H(x)  

b) The function xxx 
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Notes c) The exponential function exe^xex 

d) The sine function 

Answer: a) The Heaviside step function H(x) 

7. Which of the following statements is true regarding the integral 

of a distribution? 

a) It is always a continuous function 

b) It can be interpreted in terms of test functions 

c) It requires the function to be differentiable 

d) It does not follow the fundamental theorem of calculus 

Answer: b) It can be interpreted in terms of test functions 

8. Which equation is commonly solved using the theory of 

distributions? 

a) x2 + y2 = r2 

b) Laplace's equation 

c) Schrödinger equation 

d) Differential equations involving singular sources 

Answer: d) Differential equations involving singular sources 

9. In distribution theory, the derivative of a distribution T is 

defined using which of the following? 

a) Limit of a sequence of functions 

b) Integration by parts with test functions 

c) Partial differentiation 

d) Fourier transform 

Answer: b) Integration by parts with test functions 

10. How do distributions help in solving Ordinary Differential 

Equations (ODEs)? 

a) By allowing solutions with discontinuities and singularities 

b) By eliminating differential operators 

c) By converting ODEs into algebraic equations 

d) By only considering polynomial solutions 

Answer: a) By allowing solutions with discontinuities and singularities 

Short Questions: 
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Notes 1. What is the derivative of a distribution? 

2. How is the derivative of the Dirac delta function defined? 

3. What are the main properties of distributional derivatives? 

4. What is a primitive of a distribution? 

5. How is integration of distributions different from classical 

integration? 

6. Give an example of a distribution and its derivative. 

7. What is the significance of the Heaviside function in distribution 

theory? 

8. How are distributions applied in solving differential equations? 

9. What is meant by a weak derivative? 

10. Why are derivatives and integrals of distributions useful in 

mathematical physics? 

Long Questions: 

1. Define and explain the concept of a derivative of a distribution with 

examples. 

2. Discuss the fundamental properties of distributional derivatives. 

3. Explain how the Dirac delta function is used in distributional 

derivatives. 

4. Describe the integration of distributions and its significance. 

5. What are primitives in distribution theory? Explain with examples. 

6. Discuss the role of weak derivatives in functional analysis. 

7. Explain how distributions help in solving ordinary differential 

equations. 

8. Compare classical derivatives with distributional derivatives. 

9. Discuss the importance of integration in distribution theory. 

10. Provide a real-world example where derivatives and integrals of 

distributions are applied. 
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 by ⟨T, f⟩, the direct product can be written as:

In more operational terms, if we denote the action of T on a test function f 

function of x. Then we apply T to this function.

Here, we first apply S to φ(x,y) with respect to the y variable, which gives a 

(T ⊗S)(φ) = T(S(φ(x,y)))

functions φ(x,y) where x ∈ Rⁿ and y ∈ Rᵐ:

product  T ⊗ S  is  a  distribution  on  Rⁿ⁺ᵐ  defined  by  its  action  on  test 

Let  T  be  a  distribution  on  Rⁿ  and  S  be  a  distribution  on  Rᵐ.  The  direct 

Basic Definition

usual sense.

include  objects  like  the  Dirac  delta  function,  which  isn't  a  function  in  the 

compact  support  in  Ω.   Distributions  broaden  the  notion  of  functions  and 

represented  by  D(Ω),  consists  of  indefinitely  differentiable  functions  with 

on  a  space  of  test  functions.   The  space  of  test  functions,  frequently 

basics  about  distributions.   A  distribution  is  a  continuous  linear  functional 

on the product space.To understand the direct product, let's first review some 

to combine distributions defined on different spaces to create a distribution 

multiplying functions to the realm of distributions. This operation allows us 

fundamental  operation  in  distribution  theory  that  extends  the  concept  of 

The  direct  product  of  distributions,  also  known  as  the  tensor  product,  is  a 

3.1.1 Introduction to the Direct Product of Distributions

  equations.

• Explore  fundamental  solutions  and their role  in solving  differential

• Learn how to compute the convolution of distributions.

• Understand the concept of the direct product of distributions.

Objective

            Convolutions and fundamental solutions 

UNIT 3.1

MODULE 3
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Notes ⟨T ⊗ S, φ⟩ = ⟨T, ⟨S, φ(x,y)⟩⟩ 

This means that for each fixed x, we compute ⟨S, φ(x,y)⟩ with respect to y, 

which gives a function of x. Then we apply T to this function. 

Examples of Direct Products 

Example 1: Direct Product of Regular Distributions 

If T and S are regular distributions corresponding to locally integrable 

functions f(x) and g(y) respectively, then T ⊗ S corresponds to the function 

h(x,y) = f(x)g(y). In this case, the direct product acts on a test function φ as: 

⟨T ⊗ S, φ⟩ = ∫∫ f(x)g(y)φ(x,y) dx dy 

This is the natural extension of the product of functions to distributions. 

Example 2: Direct Product with the Dirac Delta 

Let's consider the direct product of the Dirac delta distribution δ with a 

distribution T. The Dirac delta is defined by: 

⟨δ, φ⟩ = φ(0) 

The direct product δ ⊗ T acts on a test function φ(x,y) as: 

⟨δ ⊗ T, φ⟩ = ⟨δ, ⟨T, φ(x,y)⟩⟩ = ⟨T, φ(0,y)⟩ 

This means the direct product δ ⊗ T evaluates T on the slice of φ where x = 

0. 

Similarly, T ⊗ δ acts as: 

⟨T ⊗ δ, φ⟩ = ⟨T, ⟨δ, φ(x,y)⟩⟩ = ⟨T, φ(x,0)⟩ 

So T ⊗ δ evaluates T on the slice where y = 0. 

Example 3: Direct Product of Derivatives 

Consider the distributions T = δ' (the derivative of the Dirac delta) and S = δ. 

The direct product δ' ⊗ δ acts on a test function φ(x,y) as: 
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Notes ⟨δ' ⊗ δ, φ⟩ = ⟨δ', ⟨δ, φ(x,y)⟩⟩ = ⟨δ', φ(x,0)⟩ = -∂φ/∂x(0,0) 

Here, we first apply δ to φ with respect to y, which gives φ(x,0). Then we 

apply δ' to this function, which gives -∂φ/∂x(0,0). 

Formal Properties 

The direct product of distributions satisfies several important properties: 

1. Bilinearity: The direct product is linear in both arguments: (aT₁ + 

bT₂) ⊗ S = a(T₁ ⊗ S) + b(T₂ ⊗ S) T ⊗ (aS₁ + bS₂) = a(T ⊗ S₁) + 

b(T ⊗ S₂) 

2. Associativity: (T ⊗ S) ⊗ R = T ⊗ (S ⊗ R) 

3. Compatibility with Translation: If τₐ is the translation operator 

defined by (τₐf)(x) = f(x-a), then: τₐT⊗τᵦS = τ(ₐ,ᵦ)(T ⊗ S) 

4. Compatibility with Derivatives: If ∂ₓ and ∂ᵧ denote the partial 

derivatives with respect to x and y, then: ∂ₓ(T ⊗ S) = (∂ₓT) ⊗ S 

∂ᵧ(T ⊗ S) = T ⊗ (∂ᵧS) 

These properties make the direct product a powerful tool for constructing 

new distributions and analyzing their properties. 

3.1.2 Properties and Applications of the Direct Product 

The direct product of distributions has numerous important properties that 

make it a versatile tool in distribution theory and its applications in physics, 

engineering, and mathematics. 

Fundamental Properties 

Continuity 

The direct product is continuous in the appropriate topologies. If Tₙ → T and 

Sₙ → S in the sense of distributions, then Tₙ ⊗ Sₙ → T ⊗ S. This property 

ensures that approximation techniques work well with direct products. 

Support of the Direct Product 

If T and S are distributions with supports supp(T) and supp(S), then the 

support of their direct product is: 
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This means that the direct product is "active" only in the Cartesian product 

of the supports of the individual distributions. 

Fourier Transform of Direct Products 

If F denotes the Fourier transform, then: 

F(T ⊗S)(ξ,η) = F(T)(ξ) ⊗ F(S)(η) 

This property is particularly useful in signal processing and differential 

equations, as it allows us to transform complex operations in the spatial 

domain into simpler operations in the frequency domain. 

Relationship with the Convolution 

The direct product and convolution (which we'll discuss in more detail in 

Section 3.3) are related through the Fourier transform. If * denotes the 

convolution, then: 

F(T * S) = F(T) · F(S) 

And conversely: 

F(T · S) = F(T) * F(S) 

where · denotes the pointwise product of distributions (which is defined only 

under certain conditions). 

Extensions and Generalizations 

Direct Product with Positive Measures 

If T and S are positive measures (a special class of distributions), then their 

direct product coincides with the product measure from measure theory. 

This connection bridges distribution theory with measure theory. 

 

 



  

114 
 

Notes Direct Product in Sobolev Spaces 

The direct product extends naturally to Sobolev spaces, which are spaces of 

distributions with derivatives of certain orders in Lᵖ spaces. This extension is 

crucial in the study of partial differential equations. 

Schwartz Kernel Theorem 

The Schwartz Kernel Theorem establishes a deep connection between linear 

operators and distributions. It states that for every continuous linear operator 

A: D(Rⁿ) → D'(Rᵐ), there exists a unique distribution K in D'(Rⁿ⁺ᵐ) such 

that: 

⟨A(φ), ψ⟩ = ⟨K, φ ⊗ ψ⟩ 

for all test functions φ and ψ. This theorem is fundamental in the theory of 

partial differential operators and integral transforms. 

Applications of the Direct Product 

Partial Differential Equations 

The direct product is essential in the study of partial differential equations 

(PDEs), especially in finding fundamental solutions. For instance, the 

fundamental solution of the wave equation in three dimensions can be 

expressed using direct products of simpler distributions. 

Signal Processing 

In signal processing, the direct product helps model multidimensional 

signals and systems. For example, a 2D image can be processed using 

separable filters, which are direct products of 1D filters. 

Quantum Mechanics 

In quantum mechanics, the tensor product of Hilbert spaces corresponds to 

the direct product of distributions of wave functions. This is used to describe 

multi-particle systems. 
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Notes Numerical Analysis 

In numerical analysis, the direct product helps construct multidimensional 

quadrature rules and finite element basis functions from one-dimensional 

counterparts. 

Examples of Applications 

Application 1: Wave Equation 

Consider the wave equation in two dimensions: 

∂²u/∂t² - ∂²u/∂x² - ∂²u/∂y² = 0 

Its fundamental solution can be expressed as a direct product of distributions 

involving the Heaviside function H(t) and a distribution related to the unit 

circle in the (x,y) plane. 

Application 2: Heat Equation 

For the heat equation in multiple dimensions: 

∂u/∂t - Δu = 0 

where Δ is the Laplacian, the fundamental solution in n dimensions is the 

direct product of the one-dimensional heat kernels: 

G(x₁,...,xₙ,t) = (4πt)(-n/2) exp(-(x₁² + ... + xₙ²)/(4t)) 

This can be viewed as the direct product of n one-dimensional heat kernels. 

Application 3: Quantum Harmonic Oscillator 

In quantum mechanics, the wave function of a multi-dimensional harmonic 

oscillator can be expressed as the direct product of one-dimensional wave 

functions. This simplifies the analysis of the system considerably. 

3.1.3 Definition of Convolution of Distributions 

The convolution of distributions extends the familiar convolution operation 

for functions to the more general setting of distributions. This operation is 



  

116 
 

Notes central in various applications, including differential equations, signal 

processing, and probability theory. 
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Notes  

3.2.1Definition of Convolution 

Let T and S be distributions on Rⁿ. The convolution T * S, if it exists, is 

defined as: 

⟨T * S, φ⟩ = ⟨T(x) ⊗ S(y), φ(x+y)⟩ 

for all test functions φ. Here, we apply the direct product T ⊗ S to the 

function (x,y) ↦ φ(x+y). 

This definition captures the essential property of convolution: it measures 

how two distributions overlap when one is shifted relative to the other. 

Existence of Convolution 

The convolution of two arbitrary distributions may not always exist. 

However, it exists in the following important cases: 

1. If at least one of T or S has compact support. 

2. If both T and S are tempered distributions (distributions that grow at 

most polynomially at infinity) and at least one of them has compact 

support. 

3. In certain other cases where the overlap of the supports leads to a 

well-defined distribution. 

Properties of Convolution 

The convolution of distributions, when it exists, satisfies many important 

properties: 

1. Commutativity: T * S = S * T 

2. Associativity: (T * S) * R = T * (S * R) when all convolutions exist 

3. Identity Element: T * δ = δ * T = T, where δ is the Dirac delta 

distribution 

4. Derivative Rule: ∂(T * S)/∂xᵢ = (∂T/∂xᵢ) * S = T * (∂S/∂xᵢ) 

5. Translation Invariance: τₐ(T * S) = (τₐT) * S = T * (τₐS) 

of distributions
The direct product of distributions - Convolution
                         UNIT 3.2
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Notes 6. Fourier Transform: F(T * S) = F(T) · F(S), where · denotes the 

pointwise product 

These properties make convolution a powerful tool in analyzing 

distributions and solving differential equations. 

Examples of Convolutions 

Example 1: Convolution with the Dirac Delta 

The Dirac delta distribution δ acts as the identity element for convolution. 

For any distribution T: 

T * δ = δ * T = T 

This property makes the Dirac delta analogous to the number 1 in ordinary 

multiplication. 

Example 2: Convolution of Heaviside Functions 

Let H be the Heaviside function, defined as: 

H(x) = { 0 if x < 0 1 if x ≥ 0 } 

The convolution H * H is given by: 

(H * H)(x) = ∫ H(x-y)H(y) dy = ∫₀ˣ H(y) dy = { 0 if x < 0 x if 0 ≤ x < 1 1 if x 

≥ 1 } 

This result is a ramp function, which is continuous, unlike the original 

Heaviside function. 

Example 3: Convolution of the Dirac Delta and its Derivative 

Consider the convolution δ * δ'. By the properties of convolution with the 

Dirac delta: 

δ * δ' = δ' 

This means that convolving the Dirac delta with its derivative gives the 

derivative itself. 
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Notes Example 4: Convolution of Gaussian Distributions 

The convolution of two Gaussian distributions N(μ₁, σ₁²) and N(μ₂, σ₂²) is 

again a Gaussian distribution: 

N(μ₁, σ₁²) * N(μ₂, σ₂²) = N(μ₁+μ₂, σ₁²+σ₂²) 

This property is heavily used in probability theory and signal processing. 

Applications of Convolution 

Differential Equations 

Convolution is essential in solving linear differential equations with constant 

coefficients. If L is a linear differential operator and we want to solve L(u) = 

f, we can use the fundamental solution G (satisfying L(G) = δ) to find: 

u = G * f 

This approach is particularly useful for PDEs like the heat equation, wave 

equation, and Poisson equation. 

Signal Processing 

In signal processing, convolution models the response of linear time-

invariant systems. If h(t) is the impulse response of a system and x(t) is the 

input signal, the output y(t) is given by: 

y(t) = (h * x)(t) 

This principle underpins many signal processing techniques, including 

filtering, modulation, and demodulation. 

Probability Theory 

The distribution of the sum of independent random variables is equivalent to 

the convolution of probability distributions in probability theory.  The PDF 

of X+Y is the convolution f_X * fY if X and Y are independent random 

variables with PDFs f_X and fY. 

Image Processing 
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Notes In image processing, convolution with specific kernels (small matrices) is 

used for various operations, including blurring, sharpening, edge detection, 

and noise reduction. 

Advanced Aspects of Convolution 

Regularization 

Convolution often has a regularizing effect. When singular distributions are 

convolved with smooth functions, the result is typically smoother. This 

property is useful in regularization techniques for ill-posed problems. 

Approximate Identity 

A sequence of distributions {Kε} is called an approximate identity if Kε * f 

→ f as ε → 0 for any suitable function or distribution f. Examples include 

the Gaussian kernel and the Poisson kernel. Approximate identities are 

crucial in approximation theory and numerical analysis. 

Convolution Algebras 

Under certain conditions, the space of distributions with the convolution 

operation forms an algebra. This algebraic structure helps analyze the 

behavior of distributions under repeated convolutions. 

Solved Problems 

Problem 1: Direct Product with Dirac Delta 

Calculate the direct product δ(x) ⊗ δ(y) and determine its action on a test 

function φ(x,y). 

Solution: The direct product δ(x) ⊗ δ(y) acts on a test function φ(x,y) as 

follows: 

⟨δ(x) ⊗ δ(y), φ(x,y)⟩ = ⟨δ(x), ⟨δ(y), φ(x,y)⟩⟩ 

For fixed x, ⟨δ(y), φ(x,y)⟩ = φ(x,0). Then: 

⟨δ(x), φ(x,0)⟩ = φ(0,0) 
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Notes Therefore, δ(x) ⊗ δ(y) evaluates the test function at the origin (0,0). This 

distribution is often denoted as δ(x,y) and is the two-dimensional Dirac delta 

distribution. 

Problem 2: Support of a Direct Product 

Find the support of T ⊗ S if T is a distribution with support [0,1] and S is a 

distribution with support [2,3]. 

Solution: The support of the direct product T ⊗ S is the Cartesian product 

of the supports of T and S: 

supp(T ⊗ S) = supp(T) × supp(S) = [0,1] × [2,3] 

This is the rectangle in R² with corners at (0,2), (0,3), (1,2), and (1,3). 

Problem 3: Convolution with a Shifted Dirac Delta 

Calculate the convolution T * δₐ, where δₐ is the Dirac delta shifted to the 

point a, i.e., δₐ(x) = δ(x-a). 

Solution: The convolution T * δₐ is: 

⟨T * δₐ, φ⟩ = ⟨T(x) ⊗ δₐ(y), φ(x+y)⟩ 

For fixed x, ⟨δₐ(y), φ(x+y)⟩ = φ(x+a). Then: 

⟨T(x), φ(x+a)⟩ = ⟨T(x), φ(τₐx)⟩ = ⟨τ₍₋ₐ₎T(x), φ(x)⟩ 

where τₐ is the translation operator. Therefore: 

T * δₐ = τₐT 

This means that convolving a distribution with a shifted Dirac delta results 

in a shift of the distribution. Specifically, T * δₐ(x) = T(x-a). 

Problem 4: Convolution of Heaviside and Exponential Decay 

Calculate the convolution H(x) * exp(-ax)H(x) for a > 0, where H(x) is the 

Heaviside function. 
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Notes Solution: We have: 

(H * exp(-a·)H)(x) = ∫ H(x-y) · exp(-ay)H(y) dy 

Since H(y) = 0 for y < 0, we can rewrite this as: 

(H * exp(-a·)H)(x) = ∫₀^∞ H(x-y) · exp(-ay) dy 

If x < 0, then H(x-y) = 0 for all y ≥ 0, so the convolution is 0. 

If x ≥ 0, then H(x-y) = 1 for y ≤ x, so: 

(H * exp(-a·)H)(x) = ∫₀ˣ exp(-ay) dy = [-(1/a)exp(-ay)]₀ˣ = (1/a)(1 - exp(-ax)) 

Therefore: 

(H * exp(-a·)H)(x) = { 0 if x < 0 (1/a)(1 - exp(-ax)) if x ≥ 0 } 

This function represents the response of a first-order system to a step input. 

Problem 5: Fourier Transform of a Direct Product 

Calculate the Fourier transform of the direct product T(x) ⊗ S(y) where T 

and S are distributions on R. 

Solution: The Fourier transform of the direct product T(x) ⊗ S(y) is given 

by: 

F(T(x) ⊗ S(y))(ξ,η) = F(T)(ξ) ⊗ F(S)(η) 

This means that the Fourier transform of a direct product is the direct 

product of the Fourier transforms. This property is useful in solving multi-

dimensional problems by reducing them to one-dimensional problems. 

For example, if T(x) = exp(-x²) and S(y) = exp(-y²), then: 

F(T)(ξ) = √π · exp(-ξ²/4) F(S)(η) = √π · exp(-η²/4) 

So: 

F(T(x) ⊗ S(y))(ξ,η) = π · exp(-ξ²/4) · exp(-η²/4) = π · exp(-(ξ² + η²)/4) 
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Notes This is the Fourier transform of the two-dimensional Gaussian distribution. 

Unsolved Problems 

Problem 1: Direct Product Calculation 

Calculate the direct product (x²T) ⊗ S, where T and S are distributions, and 

determine its relationship with T ⊗ S. 

Problem 2: Derivative of a Direct Product 

If T and S are distributions on R, calculate the mixed derivative ∂²(T ⊗ 

S)/∂x∂y and express it in terms of the derivatives of T and S. 

Problem 3: Convolution with a Tempered Distribution 

If T is a tempered distribution and S(x) = |x|(-1/2) for x ≠ 0, determine whether 

the convolution T * S exists and, if it does, find its Fourier transform. 

Problem 4: Wave Equation Solution 

Using the convolution of distributions, find the fundamental solution to the 

wave equation in two dimensions: 

∂²u/∂t² - ∂²u/∂x² - ∂²u/∂y² = δ(x,y,t) 

Problem 5: Sequential Convolutions 

If {Tₙ} is a sequence of distributions such that Tₙ → T in the sense of 

distributions, and S is a distribution with compact support, prove that Tₙ * S 

→ T * S. 

The direct product and convolution of distributions are powerful operations 

that extend concepts from classical analysis to the realm of distributions. 

The direct product allows us to combine distributions defined on different 

spaces, while convolution captures the idea of overlap between shifted 

distributions.These operations have profound applications in various fields, 

including partial differential equations, signal processing, probability theory, 

and quantum mechanics. Their properties, such as compatibility with 

derivatives and Fourier transforms, make them indispensable tools in 
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Notes modern analysis.By understanding these operations and their properties, we 

can tackle complex problems in a unified framework, revealing deep 

connections between seemingly disparate areas of mathematics and its 

applications. 

3.4 Properties of Convolutions and Their Computation 

Convolution is a mathematical operation that expresses how the shape of 

one function is modified by another. It is denoted by the asterisk symbol (*) 

and plays a crucial role in many areas of mathematics, especially in 

differential equations, signal processing, and probability theory. 

For two functions f and g, their convolution is defined as: 

(f * g)(x) = ∫ f(y)g(x-y)dy 

where the integration is performed over the entire domain where both 

functions are defined. 

Key Properties of Convolutions 

1. Commutativity 

One of the most fundamental properties of convolutions is commutativity: 

f * g = g * f 

This means that the order of functions in a convolution doesn't matter. We 

can prove this through a change of variables: 

(f * g)(x) = ∫ f(y)g(x-y)dy 

Let z = x-y, then y = x-z, and dy = -dz. When we substitute: 

(f * g)(x) = ∫ f(x-z)g(z)(-dz) = ∫ g(z)f(x-z)dz = (g * f)(x) 

2. Associativity 

Convolutions are associative, meaning: 

(f * g) * h = f * (g * h) 
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Notes This property allows us to compute multiple convolutions in any order 

without affecting the result. 

3. Distributivity over Addition 

Convolution distributes over addition: 

f * (g + h) = f * g + f * h 

This follows directly from the linearity of integration. 

4. Identity Element 

The Dirac delta function δ serves as the identity element for convolution: 

f * δ = f 

This is because the delta function has the sifting property: 

∫ f(y)δ(x-y)dy = f(x) 

5. Differentiation Property 

Derivatives and convolutions interact according to: 

(f * g)' = f' * g = f * g' 

This important property means we can pass derivatives between functions in 

a convolution. 

6. Convolution Theorem 

One of the most powerful properties relates convolution to the Fourier 

transform: 

F{f * g} = F{f} · F{g} 

where F denotes the Fourier transform and · represents pointwise 

multiplication. This transforms the often complicated convolution operation 

into simple multiplication in the frequency domain. 
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Notes Computational Methods for Convolutions 

Direct Integration 

For simple functions, we can compute convolutions directly using the 

definition: 

(f * g)(x) = ∫ f(y)g(x-y)dy 

Using Fourier Transforms 

For more complex functions, we can use the convolution theorem: 

1. Compute the Fourier transforms F{f} and F{g} 

2. Multiply them pointwise: F{f} · F{g} 

3. Compute the inverse Fourier transform: F^(-1){F{f} · F{g}} 

Discrete Convolution 

For numerical computations, we often work with discrete convolutions: 

(f * g)[n] = ∑ f[m]g[n-m] 

where the sum is taken over all possible values of m. 

Fast Fourier Transform (FFT) 

For large datasets, direct computation of convolution can be computationally 

expensive. The Fast Fourier Transform (FFT) algorithm allows us to 

compute convolutions efficiently: 

1. Compute FFT(f) and FFT(g) 

2. Multiply them: FFT(f) · FFT(g) 

3. Compute the inverse FFT: IFFT(FFT(f) · FFT(g)) 

This reduces the computational complexity from O(n²) to O(n log n). 

Solved Examples for Convolutions 

Solved Example 1: Basic Convolution Calculation 
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Notes Find the convolution of f(x) = e(-x) and g(x) = e(-2x) for x ≥ 0, and both 

functions are 0 for x < 0. 

Solution: Using the definition of convolution: 

(f * g)(x) = ∫ f(y)g(x-y)dy 

For our functions, we need to ensure both f(y) and g(x-y) are non-zero, 

which means 0 ≤ y ≤ x: 

(f * g)(x) = ∫₀ˣ e(-y) · e(-2(x-y))dy = ∫₀ˣ e(-y) · e(-2x+2y)dy = e(-2x) ∫₀ˣ eydy 

Evaluating the integral: e(-2x) [ey]₀ˣ = e(-2x) · (ex - 1) = e(-x) - e(-2x) for x ≥ 0 

Therefore: (f * g)(x) = { e(-x) - e(-2x) for x ≥ 0 0 for x <0 } 

Solved Example 2: Convolution Using Fourier Transform 

Find the convolution of f(x) = e(-|x|) and g(x) = e(-|x|). 

Solution: Using the Fourier transform approach: 

1. The Fourier transform of e(-|x|) is F{e(-|x|)} = 2/(1+ω²) 

2. By the convolution theorem: F{f * g} = F{f} · F{g} = [2/(1+ω²)]² 

3. Taking the inverse Fourier transform: F^(-1){[2/(1+ω²)]²} = 

(1+|x|)e(-|x|) 

Therefore: (f * g)(x) = (1+|x|)e(-|x|) 

Solved Example 3: Differentiation Property 

If f(x) = e(-x²) and g(x) = e(-x²), use the differentiation property to find the 

convolution of f' and g. 

Solution: Using the differentiation property: f' * g = (f * g)' 

First, let's find f * g. Both functions are Gaussian functions, and their 

convolution is: (f * g)(x) = (1/√2)·e(-x²/2) 

Now, using the differentiation property: (f' * g)(x) = (f * g)'(x) = 

d/dx[(1/√2)·e(-x²/2)] = -(x/√2)·e(-x²/2) 
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Notes Therefore: (f' * g)(x) = -(x/√2)·e(-x²/2) 

Solved Example 4: Convolution with Delta Function 

Find the convolution of f(x) = x² and the shifted delta function δ(x-3). 

Solution: Using the sifting property of the delta function: 

(f * δ(x-3))(t) = ∫ f(y)δ(t-y-3)dy = f(t-3) = (t-3)² 

Therefore: (f * δ(x-3))(t) = (t-3)² 

This demonstrates how convolution with a shifted delta function results in a 

shifted version of the original function. 

Solved Example 5: Solving a Differential Equation Using Convolution 

Solve the inhomogeneous differential equation: y'' + 4y = δ(x) 

Solution: Let's find the Green's function G(x) that satisfies: G'' + 4G = δ(x) 

The homogeneous solution is of the form: G(x) = A cos(2x) + B sin(2x) 

For x ≠ 0, G satisfies the homogeneous equation G'' + 4G = 0. At x = 0, we 

have continuity of G, but G' has a jump of 1. 

For x > 0: G(x) = C sin(2x) For x < 0: G(x) = D sin(2x) + E cos(2x) 

Applying continuity at x = 0: D·0 + E·1 = C·0, so E = 0 For the jump in 

G'(x) at x = 0: (2C - 2D) = 1, so C - D = 1/2 

For physical reasons, we require G(x) → 0 as x → -∞, which means D = 0. 

Therefore, C = 1/2. 

Thus: G(x) = { (1/2)sin(2x) for x > 0 0 for x <0 } 

The solution to our original equation is the convolution: y(x) = (G * δ)(x) = 

G(x) = { (1/2)sin(2x) for x > 0 0 for x <0 } 
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Notes  

  

 

 

 

 

 

 

 

 

 

 

 

 

Properties of Fundamental Solutions 

1. Existence and Uniqueness 

solving inhomogeneous differential equations.

where  δ  is  the  Dirac  delta  function.  Fundamental  solutions  are  crucial  for 

L(E) = δ

L is a distribution E such that:

A fundamental solution (or Green's function) of a linear differential operator 

Fundamental Solutions

sense but is well-defined as a distribution.

for any test function φ. The delta function is not a function in the classical 

∫ δ(x)φ(x)dx = φ(0)

The Dirac delta function δ(x) is defined by its action on test functions:

The Dirac Delta Function

consists of infinitely differentiable functions with compact support.

of test functions. The space of test functions, typically denoted by D or C∞₀, 

the classical sense.A distribution is a continuous linear functional on a space 

dealing with functions that may not be differentiable or even continuous in 

functions  like  the  Dirac  delta  function.  This  framework  is  essential  for 

Distribution  theory  extends  classical  calculus  to  handle  generalized 

3.3.1 Fundamental Solutions in Distribution Theory

Fundamental solutions Of problems
UNIT 3.3
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Notes For most common differential operators, fundamental solutions exist but 

may not be unique. The difference between any two fundamental solutions 

is a solution to the homogeneous equation. 

2. Translation Invariance 

If E is a fundamental solution of a translation-invariant operator L, then: 

L(E(x-y)) = δ(x-y) 

This property allows us to solve inhomogeneous equations with arbitrary 

source terms through convolution. 

3. Convolution with Test Functions 

If E is a fundamental solution of L and f is a suitable function, then: 

L(E * f) = f 

This forms the basis for solving differential equations using fundamental 

solutions. 

Fundamental Solutions for Common Operators 

Laplace Operator in R² 

For the Laplace operator ∇² in two dimensions, the fundamental solution is: 

E(x) = -(1/2π)ln(|x|) 

satisfying: ∇²E = δ 

Laplace Operator in R³ 

In three dimensions, the fundamental solution is: 

E(x) = -(1/4π)(1/|x|) 

satisfying: ∇²E = δ 

Heat Operator 
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Notes For the heat operator ∂/∂t - k∇², the fundamental solution (heat kernel) is: 

E(x,t) = { (1/(4πkt)(n/2))e(-|x|²/(4kt)) for t > 0 0 for t ≤ 0 } 

where n is the dimension of the space. 

Wave Operator 

For the wave operator ∂²/∂t² - c²∇², the fundamental solution in three 

dimensions is: 

E(x,t) = (1/4πc²|x|)δ(t-|x|/c) 

This represents a spherical wave propagating at speed c. 

Computation of Fundamental Solutions 

Method of Fourier Transform 

The Fourier transform is a powerful tool for computing fundamental 

solutions: 

1. Let L be a linear differential operator with constant coefficients 

2. Apply the Fourier transform to L(E) = δ 

3. Solve for F{E} = 1/L̂, where L̂ is the symbol of L 

4. To determine E, use the inverse Fourier transform. 

Method of Characteristic Functions 

For hyperbolic operators, the method of characteristics helps determine the 

propagation of singularities in the fundamental solution. 

Method of Parametrix 

For more complex operators, especially those with variable coefficients, the 

parametrix method provides a systematic approach to constructing 

approximate fundamental solutions. 

Solved Examples for Fundamental Solutions 

Solved Example A: Fundamental Solution for the 1D Heat Equation 
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Notes Find the fundamental solution for the heat equation: ∂u/∂t - k(∂²u/∂x²) = 0 

Solution: We seek a fundamental solution E(x,t) satisfying: ∂E/∂t - 

k(∂²E/∂x²) = δ(x)δ(t) 

Using the Fourier transform in the spatial variable: ∂Ê/∂t + kω²Ê = δ(t) 

For t > 0, this gives: Ê(ω,t) = e(-kω²t) 

Taking the inverse Fourier transform: E(x,t) = (1/√(4πkt))e(-x²/(4kt)) for t > 0 

Therefore, the fundamental solution is: E(x,t) = { (1/√(4πkt))e(-x²/(4kt)) for t > 

0 0 for t ≤ 0 } 

Solved Example B: Fundamental Solution for Poisson's Equation in R³ 

Find the fundamental solution for Poisson's equation in three dimensions: 

∇²u = f 

Solution: We seek a fundamental solution E(x) satisfying: ∇²E = δ(x) 

Due to the radial symmetry, we can write E(x) = E(r) where r = |x|. In 

spherical coordinates, for r ≠ 0: ∇²E = (1/r²)(d/dr)(r²(dE/dr)) = 0 

This gives: r²(dE/dr) = C₁ dE/dr = C₁/r² E(r) = -C₁/r + C₂ 

The constant C₂ can be set to 0. To determine C₁, we integrate ∇²E over a 

small sphere B₍ₑ₎ of radius ε: 

∫{B₍ₑ₎} ∇²E dV = ∫{B₍ₑ₎} δ(x) dV = 1 

Using the divergence theorem: ∫{B₍ₑ₎} ∇²E dV = ∫{∂B₍ₑ₎} ∇E·ndS = ∫{∂B₍ₑ₎} 

(dE/dr) dS = 4πε²(C₁/ε²) = 4πC₁ 

Setting this equal to 1: 4πC₁ = 1 C₁ = 1/(4π) 

Therefore: E(x) = -1/(4π|x|) 

Solved Example C: Fundamental Solution for the Wave Equation in R³ 
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Notes Find the fundamental solution for the wave equation in three dimensions: 

∂²u/∂t² - c²∇²u = 0 

Solution: We seek a fundamental solution E(x,t) satisfying: ∂²E/∂t² - c²∇²E = 

δ(x)δ(t) 

Using the Fourier transform in spatial variables: ∂²Ê/∂t² + c²|ω|²Ê = δ(t) 

This gives: Ê(ω,t) = (sin(c|ω|t))/(c|ω|) for t > 0 

Taking the inverse Fourier transform and using properties of spherical 

means: E(x,t) = (1/(4πc²|x|))δ(t-|x|/c) 

This represents a spherical wave propagating outward from the origin at 

speed c. 

Solved Example D: Fundamental Solution for Helmholtz Equation 

Find the fundamental solution for the Helmholtz equation in three 

dimensions: ∇²u + k²u = 0 

Solution: We seek a fundamental solution E(x) satisfying: ∇²E + k²E = δ(x) 

Using the Fourier transform: -|ω|²Ê + k²Ê = 1 Ê(ω) = 1/(k²-|ω|²) 

Taking the inverse Fourier transform and using contour integration: E(x) = -

(1/(4π|x|))e(ik|x|) 

This represents an outgoing spherical wave, known as the outgoing Green's 

function for the Helmholtz equation. 

Solved Example E: Tempered Distributions and Fourier Transform 

Show that the Fourier transform of the Heaviside function H(x) is given by: 

F{H}(ω) = (1/(iω)) + πδ(ω) 

Solution: The Heaviside function is defined as: H(x) = { 1 for x > 0 0 for x 

<0 } 
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Notes To find its Fourier transform, we write: F{H}(ω) = ∫_{-∞}{∞} H(x)e(-iωx) dx = 

∫ e
∞

0
(-iωx) dx 

For ω ≠ 0: F{H}(ω) = [-e(-iωx)/iω]₀∞ = 1/(iω) 

However, this is incomplete as it doesn't account for the behavior at ω = 0. 

To find the complete Fourier transform, we use regularization techniques 

and properties of distributions: 

F{H}(ω) = lim
ε→0+

∫ e
∞

0
(-iωx-εx) dx = lim

ε→0+
 1/(iω+ε) 

Using the Sokhotski–Plemelj formula: 1/(iω+ε) → 1/(iω) + πδ(ω) as ε → 0⁺ 

Therefore: F{H}(ω) = (1/(iω)) + πδ(ω) 

3.3.5  Applications of Fundamental Solutions in Partial Differential 

Equations 

Solving Inhomogeneous Differential Equations 

Fundamental solutions provide a powerful method for solving 

inhomogeneous differential equations of the form: 

Lu = f 

where L is a linear differential operator and f is a source term. 

The solution can be expressed as a convolution of the fundamental solution 

E with the source term: 

u = E * f 

This approach is especially valuable when dealing with complex domains or 

source terms. 

Green's Functions and Boundary Value Problems 

For boundary value problems, we need to modify the fundamental solution 

to satisfy the boundary conditions. The resulting function is called the 

Green's function. 
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Notes For a boundary value problem: Lu = f in Ω Bu = g on ∂Ω 

where B represents boundary conditions, the solution can be written as: 

u(x) = ∫Ω G(x,y)f(y)dy + ∫∂Ω H(x,y)g(y)dσ(y) 

where G is the Green's function and H is derived from G and the boundary 

conditions. 

Method of Images 

For problems with simple boundary conditions, such as Dirichlet or 

Neumann conditions on a half-space, the method of images provides an 

elegant way to construct Green's functions from fundamental 

solutions.Thebasic idea is to place "image charges" outside the domain in 

such a way that the resulting solution automatically satisfies the boundary 

conditions. 

Eigenfunction Expansions 

For operators with a complete set of eigenfunctions, the Green's function can 

be expressed as an eigenfunction expansion: 

G(x,y) = ∑ φₙ(x)φₙ(y)/λₙ 

where φₙ are the eigenfunctions and λₙ are the corresponding eigenvalues. 

Applications in Physical Sciences 

Electrostatics 

In electrostatics, the electric potential φ due to a charge distribution ρ 

satisfies Poisson's equation: 

∇²φ = -ρ/ε₀ 

The solution can be expressed using the fundamental solution of the Laplace 

operator: 

φ(x) = (1/(4πε₀)) ∫ ρ(y)/|x-y| dy 
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Notes Heat Conduction 

For heat conduction problems, the temperature distribution u(x,t) satisfies 

the heat equation: 

∂u/∂t - k∇²u = f 

where f represents heat sources. The solution can be expressed using the 

heat kernel: 

u(x,t) = ∫  
𝑡

0 ∫ Ω E(x-y,t-s)f(y,s)dyds + ∫Ω E(x-y,t)u₀(y)dy 

where u₀ is the initial temperature distribution. 

Wave Propagation 

For wave propagation problems, the displacement u(x,t) satisfies the wave 

equation: 

∂²u/∂t² - c²∇²u = f 

The solution in three dimensions can be expressed using the fundamental 

solution: 

u(x,t) =  ∫  
𝑡

0 ∫ Ω (1/(4πc²|x-y|))δ(t-s-|x-y|/c)f(y,s)dyds 

This represents waves propagating from sources at speed c. 

Singularity Methods in Potential Theory 

Singularity methods, such as the single-layer and double-layer potentials, 

provide analytical tools for solving potential problems in complex 

geometries. 

For a domain with boundary ∂Ω, the single-layer potential is defined as: 

u(x) = ∫∂Ω E(x-y)σ(y)dσ(y) 

where E is the fundamental solution of the Laplace operator and σ is a 

density function. 
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Notes Similarly, the double-layer potential is defined as: 

v(x) = ∫∂Ω ∂E(x-y)/∂ny σ(y)dσ(y) 

where ∂/∂ny denotes the normal derivative at y. 

Regularization of Singular Integrals 

When working with fundamental solutions, we often encounter singular 

integrals that require regularization techniques. 

Common regularization methods include: 

1. Principal value integrals 

2. Hadamard finite part integrals 

3. Dimensional regularization 

4. Cut-off regularization 

Solved Examples for Applications 

Solved Example α: Poisson Equation with Dirichlet Boundary 

Conditions 

Solve the Poisson equation on a disk of radius R: ∇²u = -4 in Ω = {(x,y): 

x²+y² < R²} u = 0 on ∂Ω 

Solution: The Green's function for the Laplacian on a disk with Dirichlet 

boundary conditions is: 

G(x,y) = -(1/(2π))[ln|x-y| - ln|R²x/|x|² - y|] 

The solution is given by: 

u(x) = ∫Ω G(x,y)·4 dy 

Due to the symmetry of the problem, we expect a radially symmetric 

solution: u(x) = u(r) where r = |x|. 

For radially symmetric problems, the Poisson equation becomes: 

(1/r)(d/dr)(r(du/dr)) = -4 
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Notes Integrating twice: r(du/dr) = -2r² + C₁ du/dr = -2r + C₁/r u(r) = -r² + C₁ln(r) + 

C₂ 

Applying the boundary condition u(R) = 0: -R² + C₁ln(R) + C₂ = 0 

For the solution to be smooth at r = 0, we need C₁ = 0 (to avoid logarithmic 

singularity). This gives C₂ = R². 

Therefore: u(r) = -r² + R² 

The solution represents a paraboloid with maximum value R² at the center of 

the disk. 

Solved Example β: Heat Equation with Initial Condition 

Solve the heat equation on the real line: ∂u/∂t - k(∂²u/∂x²) = 0 for x ∈ R, t > 

0 u(x,0) = e(-x²) 

Solution: Using the fundamental solution (heat kernel): 

E(x,t) = (1/√(4πkt))e(-x²/(4kt)) 

The solution is given by the convolution: 

u(x,t) = ∫ 𝐸
∞

−∞
 (x-y,t)e(-y²)dy = (1/√(4πkt)) ∫ 𝑒

∞

−∞
(-(x-y)²/(4kt))e(-y²)dy 

Completing the square in the exponent: -(x-y)²/(4kt) - y² = -(y² + (x-

y)²/(4kt)) = -(y² + x²/(4kt) - xy/(2kt) + y²/(4kt)) = -(y²(1+1/(4kt)) + x²/(4kt) - 

xy/(2kt)) = -((√(1+1/(4kt))·y - x/(2√(kt(1+1/(4kt)))))² + x²/(4kt) - 

x²/(4kt(1+1/(4kt)))) = -((√(1+1/(4kt))·y - x/(2√(kt(1+1/(4kt)))))² - x²/(4kt+1)) 

Using this substitution: 

u(x,t) = (1/√(4πkt)) · e(x²/(4kt+1)) · ∫ 𝑒
∞

−∞
(-(√(1+1/(4kt))·y - x/(2√(kt(1+1/(4kt)))))²)dy 

With the substitution z = √(1+1/(4kt))·y - x/(2√(kt(1+1/(4kt)))), dy = 

dz/√(1+1/(4kt)): 
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Notes u(x,t) = (1/√(4πkt)) · e(x²/(4kt+1)) · (1/√(1+1/(4kt))) · 𝑒(-z²)dz = (1/√(4πkt)) · 

e(x²/(4kt+1)) · (1/√(1+1/(4kt))) · √π = (1/√(4πkt(1+1/(4kt)))) · e(x²/(4kt+1)) · √π = 

(1/√(4kt+1)) · e(x²/(4kt+1)) 

Therefore: u(x,t) = (1/√(4kt+1)) · e(x²/(4kt+1)) 

This represents the spreading and flattening of the initial Gaussian profile 

over time. 

 

Solved Example γ: Wave Equation with Initial Conditions 

Solve the wave equation in one dimension: ∂²u/∂t² - c²(∂²u/∂x²) = 0 for x ∈ 

R, t > 0 u(x,0) = 0 ∂u/∂t(x,0) = sin(x) for |x| < π, 0 elsewhere 

Solution: Using D'Alembert's formula: 

u(x,t) = (1/(2c)) ∫_{x-ct}{x+ct} sin(y)dy 

For |x| < π and t small enough that [x-ct, x+ct] ⊂ [-π, π]: 

u(x,t) = (1/(2c)) [−cos(y)]_{x-ct}{x+ct} = (1/(2c))[−cos(x+ct) + cos(x-ct)] = 

(1/c)sin(x)sin(ct) 

As t increases, the solution becomes more complex as the interval [x-ct, 

x+ct] extends beyond [-π, π]. 

For large t, the solution represents standing waves with decaying amplitude 

as waves spread out. 

Solved Example δ: Laplace Equation in a Half-Space 

Solve the Laplace equation in the upper half-space with a prescribed 

boundary condition: ∇²u = 0 in R³₊ = {(x,y,z): z > 0} u(x,y,0) = f(x,y) 

Solution: Using the method of images, the Green's function for the upper 

half-space with Dirichlet boundary conditions is: 

G(x,ξ) = (1/(4π|x-ξ|)) - (1/(4π|x-ξ'|)) 
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Notes where ξ' is the reflection of ξ across the boundary plane: ξ' = (ξ₁, ξ₂, -ξ₃). 

For the Laplace equation, we can use the Poisson formula for the half-space: 

u(x,y,z) = (z/(2π)) ∫R² f(a,b)/((x-a)² + (y-b)² + z²)(3/2) dadb 

This is known as the Poisson integral formula for the half-space. It expresses 

the solution at any point (x,y,z) in the upper half-space in terms of the 

boundary values f(x,y). 

 

Solved Example ε: Helmholtz Equation with Radiation Condition 

Solve the Helmholtz equation outside a sphere of radius R: ∇²u + k²u = 0 in 

R³\BR u = g on ∂BR u satisfies the Sommerfeld radiation condition 

Solution: The fundamental solution (outgoing Green's function) for the 

Helmholtz equation is: 

G(x,y) = -(1/(4π|x-y|))e(ik|x-y|) 

Using the method of images for a sphere, the appropriate Green's function is: 

G(x,y) = -(1/(4π|x-y|))e(ik|x-y|) + (R/|y|)·(1/(4π|x-y'|))e(ik|x-y'|) 

where y' = R²y/|y|² is the inversion of y with respect to the sphere. 

The solution is given by: 

u(x) = ∫_∂B_R (∂G(x,y)/∂n_y)g(y)dσ(y) 

Expanding in spherical harmonics: 

u(x) = ∑ {m = −n}∞
𝑛=0

n A{n,m}hn
{(1)}(k|x|)Y_nm(θ,φ) 

where h_n{(1)} are spherical Hankel functions of the first kind, Yn
m are 

spherical harmonics, and A{n,m} are determined from the boundary condition. 

Unsolved Problems 
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Notes Unsolved Problem 1 

Find the convolution of the functions f(x) = |x|e(-|x|) and g(x) = e(-2|x|). 

Unsolved Problem 2 

The wave equation in a semi-infinite string (x > 0) with fixed end at x = 0 is: 

∂²u/∂t² - c²(∂²u/∂x²) = δ(x-a)δ(t-τ) u(0,t) = 0 u(x,0) = 0 ∂u/∂t(x,0) = 0 

where a > 0 and τ > 0. Find the fundamental solution and use it to determine 

u(x,t). 

Unsolved Problem 3 

Consider the heat equation on the real line with a time-dependent source: 

∂u/∂t - (∂²u/∂x²) = e(-t)δ(x) u(x,0) = 0 

Find u(x,t) using the convolution with the fundamental solution. 

Unsolved Problem 4 

A circular membrane of radius R has an initial 

Comprehending the Direct Product, Convolution of Distributions, and 

Fundamental Solutions in the Resolution of Differential Equations  

The theory of distributions, also referred to as generalized functions, 

constitutes one of the most crucial mathematical advancements of the 20th 

century. This framework expands traditional calculus to incorporate entities 

such as the Dirac delta function, facilitating a formal approach to operations 

that were before addressed by intuitive yet mathematically ambiguous 

approaches. This research will analyze three interrelated facets of 

distribution theory: direct products, convolutions, and fundamental solutions 

to differential equations.  

Direct Product of Distributions  

The direct product of distributions broadens the conventional tensor product 

notion to the domain of generalized functions. In the study of distributions, 

we are fundamentally engaging with continuous linear functionals on spaces 

of test functions. The direct product enables the formation of distributions in 
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Notes higher-dimensional spaces from lower-dimensional elements.  

Examine two distributions S and T defined on the spaces ℝⁿ and ℝᵐ, 

respectively. Their direct product, represented as S⊗T, generates a 

distribution on ℝⁿ⁺ᵐ. This product is mathematically defined by its operation 

on test functions φ(x,y) as follows:  

(S⊗T)(φ) = S(T(φ(x,·)))  

Initially, we apply T to the function φ about the y variables, while 

considering x as constant. This establishes a function solely of x, to which 

we subsequently apply S. The outcome provides a clearly delineated 

distribution throughout the combined space.  

The direct product is distinct from the conventional multiplication of 

functions. Although multiplication is simple for standard functions f(x)g(y), 

the notion becomes more complex with distributions that may contain 

singularities. The direct product offers a methodical framework for 

addressing such instances. A practical use is seen in quantum physics, where 

the wave function of a multi-particle system can be represented as a direct 

product of individual particle wave functions when the particles do not 

interact. In signal processing, separable filters can be executed as direct 

products, therefore considerably diminishing computer complexity. The 

efficacy of the direct product is apparent when engaging with fundamental 

distributions such as the Dirac delta function. For example, δ(x)⊗δ(y) 

generates a distribution localized at the origin in ℝ². This approach extends 

to generate distributions supported by manifolds in higher-dimensional 

spaces. In the context of partial differential equations in several dimensions, 

direct products facilitate the decomposition of intricate problems into more 

manageable components. The fundamental solution to the Laplace equation 

in ℝⁿ can be comprehended via direct products of solutions from lower 

dimensions.  

The direct product also maintains numerous significant characteristics of the 

original distributions. If S and T are tempered distributions, their direct 

product is also tempered. Likewise, if both are compactly supported, their 

direct product retains compact support, although in the product space.  

Convolution of Distributions  
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Notes Convolution constitutes a key process in distribution theory, extending the 

classical convolution of functions. For regular functions f and g, their 

convolution is defined as:  

(f * g)(x) = ∫ f(x-y)g(y)dy 

This integral formulation extends to distributions through duality principles. 

If S and T are distributions, their convolution S*T operates on a test function 

φ as follows:  

(S*T)(φ) = S(T(-x)φ)  

T(-x) denotes the reflection of T about the origin.  

Not all distribution pairs are amenable to convolution. A necessary condition 

for the existence of S*T is that at least one of the distributions possesses 

compact support. This guarantees that the operation is clearly defined. The 

convolution operation maintains several algebraic properties, such as 

commutativity (ST = TS) and associativity ((ST)U = S(TU)). It also interacts 

seamlessly with differentiation, adhering to the principle:  

Dα(S*T) = (DαS)T = S(DαT)  

D^α denotes a partial derivative operator.  

The Dirac delta function is arguably the most crucial aspect of convolution. 

For any distribution T, the following holds:  

δ*T = T  

This attribute designates the Dirac delta as the identity element for 

convolution, similar to the role of the integer 1 as the identity for 

multiplication. In solving differential equations, convolution plays a key 

function. Consider a linear differential operator L with constant coefficients. 

If we know its fundamental solution E (meaning L(E) = δ), then the solution 

to L(u) = f can be written as:  

u = E*f  

This offers a strong method for solving a wide range of differential 

equations by reducing them to convolution operations.  

The Fourier transform interacts wonderfully with convolution, changing it 

into multiplication:  
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Notes ℱ(S*T) = ℱ(S)·ℱ(T)  

This characteristic underlies various applications in signal processing, where 

filtering tasks can be accomplished quickly by frequency-domain 

multiplication rather than time-domain convolution.  

In partial differential equations, the Heat kernel shows the value of 

convolution. The answer to the heat equation:  

∂u/∂t - Δu = 0  

with the starting condition u(x,0) = f(x) can be articulated as:  

u(x,t) = (Gt * f)(x)  

Gt denotes the heat kernel, a Gaussian function characterized by variance 

proportional to t. This convolution formula explains how heat distributes 

from an initial temperature profile.  

Essential Solutions and Differential Equations  

Fundamental solutions constitute the foundation of distribution theory in the 

context of differential equations. A fundamental solution E to a linear 

differential operator L is characterized by:  

L(E) = δ  

where δ denotes the Dirac delta distribution. Upon identifying a basic 

solution, we can resolve inhomogeneous equations of the form L(u) = f via 

convolution: u = E*f.  

The fundamental solution of the Laplace operator Δ in ℝⁿ varies according to 

the dimension. In ℝ², it is proportional to ln|x|, but in ℝ³, it is proportional to 

1/|x|. These functions display singularities at the origin, underscoring the 

necessity of distribution theory, as traditional function theory fails to address 

such behavior.  

The wave equation ∂²u/∂t² - Δu = 0 possesses fundamental solutions that 

elucidate profound physical insights. In ℝ³, the basic solution signifies a 

spherical wave originating from a point source, whereas in ℝ², it produces a 

ripple effect characterized by a unique light cone structure.  

Fundamental solutions are related to Green's functions, which include 

boundary conditions. A basic solution pertains to an equation across the 

entire space, whereas Green's functions resolve issues within confined areas 
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Notes according to particular boundary conditions. The association transforms 

into:  

G(x,y) = E(x-y) + v(x,y)  

where v fulfills the homogeneous equation and modifies the solution to 

satisfy boundary conditions.  

The method of fundamental solutions encompasses classical partial 

differential equations as well as fractional differential equations, integro-

differential equations, and systems with variable coefficients. In each 

instance, recognizing the suitable fundamental solution converts a complex 

issue into a more tractable convolution procedure.  

In quantum field theory, the fundamental solutions to the Klein-Gordon and 

Dirac equations correspond to propagators that delineate the motion of 

particles across spacetime. These objects exhibit singularities precisely near 

light cones, illustrating the causal framework of relativistic physics. 

Contemporary computational techniques increasingly utilize fundamental 

solutions. Boundary element methods discretize integral equations based on 

fundamental answers, providing efficient techniques for addressing issues in 

elasticity, acoustics, and electromagnetics. These approaches are particularly 

effective for external problems involving unbounded domains.  

Pragmatic Implementations and Contemporary Advancements  

The theoretical framework of distributions, direct products, convolutions, 

and fundamental solutions has practical applications in various disciplines. 

In signal and image processing, distribution theory offers the mathematical 

basis for operations such as filtering, edge detection, and wavelet 

transforms. The convolution theorem, which connects spatial convolution to 

frequency multiplication, is fundamental to the effectiveness of Fast Fourier 

Transform algorithms prevalent in digital signal processing. Computational 

physics fundamentally depends on essential solutions to simulate wave 

propagation, heat diffusion, and electromagnetic processes. Electromagnetic 

scattering problems can be articulated through the fundamental solution of 

Maxwell's equations, resulting in efficient numerical methods that 

necessitate discretization solely of the scattering object's boundary, rather 

than the full domain. In finance, distribution theory aids in modeling stock 

price fluctuations via stochastic differential equations. The fundamental 



  

146 
 

Notes solution to the Black-Scholes equation, effectively a modified heat kernel, 

facilitates option pricing formulas that have revolutionized financial 

markets. Medical imaging modalities such as computed tomography (CT) 

employ the Radon transform and its convolution characteristics. The filtered 

backprojection procedure, essential for CT reconstruction, utilizes 

convolution processes to generate cross-sectional pictures from projection 

data. Geophysics use distribution theory for seismic wave propagation and 

inversion challenges. Fundamental solutions to the elastodynamic equations 

elucidate the propagation of seismic waves within the Earth's interior, 

facilitating the mapping of subsurface structures. Machine learning methods, 

especially convolutional neural networks, inherently utilize the 

mathematical characteristics of convolution. The hierarchical feature 

extraction in these networks arises from convolution procedures that identify 

progressively intricate patterns at varying scales. Recent research has 

extended distribution theory to fractional calculus, wherein derivatives and 

integrals of non-integer orders provide novel classes of differential equations 

applicable to viscoelasticity, anomalous diffusion, and complex systems 

exhibiting memory effects. Fundamental solutions to fractional differential 

operators have unique long-tail tendencies that represent non-local 

interactions.  

Quantum computing utilizes distribution theory via quantum wavefunctions 

that progress in accordance with the Schrödinger equation. The propagator 

for this equation, fundamentally its solution, dictates quantum state 

evolution and forms the basis of quantum algorithms.  

Environmental modeling utilizes convolution-based methods to monitor 

pollution dispersion, employing fundamental solutions to advection-

diffusion equations. These models assist in forecasting the dispersion of 

toxins through air, water, and soil. Robotics and control theory leverage 

distribution theory in optimal control challenges and trajectory planning. 

The Hamilton-Jacobi-Bellman equation, pivotal to optimum control, can be 

analyzed via its fundamental solution, resulting in effective control 

strategies. With the progression of computational power, numerical 

approaches founded on fundamental solutions are perpetually advancing. 

Meshless methods, such as the method of fundamental solutions and radial 

basis function techniques, provide benefits for problems involving intricate 

geometries or dynamic boundaries. These methods express answers as linear 
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Notes combinations of fundamental solutions, therefore encapsulating the 

characteristics of the governing differential equation.  

Theoretical Challenges and Frontiers  

Notwithstanding its potency, distribution theory persists in encountering 

theoretical obstacles. The multiplication of distributions is generally 

troublesome, as products such as δ²(x) lack a coherent definition within the 

standard framework. Laurent Schwartz's initial formulation forbids such 

products; however, alternative methodologies, such as Colombeau algebras, 

have been devised to incorporate them. The expansion of distribution theory 

to encompass manifolds and broader geometries is a new frontier. Although 

classical distribution theory functions effectively on Euclidean spaces, its 

application to curved spaces presents more complexity concerning 

coordinate transformations and differentiation operators.  

Nonlinear problems present specific difficulties as convolution methods 

predominantly tackle linear equations. Diverse methodologies, such as fixed 

point methods and iterative schemes, strive to utilize fundamental answers 

for nonlinear problems; nonetheless, no universal method is available. 

Singular perturbation issues, characterized by small parameters multiplying 

the highest-order derivatives, result in scenarios where conventional 

asymptotic approaches are ineffective. Distribution theory provides alternate 

methodologies via matching asymptotic expansions and boundary layer 

analysis. The interplay between distribution theory and stochastic processes 

constitutes a dynamic field of research. The integration of randomness into 

partial differential equations results in stochastic PDEs, wherein 

fundamental solutions transform into random fields, necessitating advanced 

probability theory. In quantum field theory, distributions emerge inherently 

via operator-valued distributions that represent quantum fields. 

Renormalization addresses divergences in these theories by meticulously 

manipulating distributional products, linking fundamental physics to 

profound elements of distribution theory.  

The theory of distributions, which includes direct products, convolutions, 

and basic solutions, offers a mathematically valid framework for addressing 

singularities and generalized functions. This theory consolidates diverse 

methodologies previously formulated ad hoc across multiple disciplines, 

establishing them on robust theoretical underpinnings.  
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Notes The direct product of distributions generalizes tensor product principles for 

generalized functions, facilitating the creation of higher-dimensional 

distributions from simpler elements. This operation is essential for isolating 

variables in partial differential equations and formulating solutions in 

product domains. The convolution of distributions extends the traditional 

convolution of functions, maintaining its algebraic characteristics but 

allowing for singularities. Its engagement with differential operators and the 

Fourier transform renders it an effective instrument for resolving linear 

differential equations and executing signal processing tasks. Fundamental 

solutions act as essential components for resolving differential equations, 

converting intricate problems into convolution procedures. They encapsulate 

the fundamental characteristics of differential operators and elucidate 

physical insights about wave propagation, diffusion phenomena, and 

potential theory.  

Collectively, these principles constitute a unified framework that perpetually 

evolves and discovers novel applications in science, engineering, and 

mathematics. The practical applications of distribution theory, spanning 

quantum mechanics, financial modeling, medical imaging, and 

environmental research, illustrate the significant relationship between 

abstract mathematics and tangible issues. As computational techniques 

progress and theoretical boundaries extend, distribution theory continues to 

be a dynamic field of inquiry with considerable prospects for future 

advancements. Distributions offer a rigorous treatment of activities that were 

once managed by intuitive yet imprecise approaches, so reconciling physical 

intuition with mathematical precision and facilitating enhanced 

comprehension and problem-solving across various fields.  

SELF ASSESSMENT QUESTIONS 

Multiple Choice Questions (MCQs) 

1. What is the direct product of distributions primarily used for? 

a) Defining convolution of distributions 

b) Computing integrals of functions 

c) Finding limits of sequences of distributions 

d) Solving algebraic equations 

Answer: a) Defining convolution of distributions 



 

149 
 

Notes 2. Which of the following is a key property of the direct product of 

distributions? 

a) It is always symmetric 

b) It generalizes the tensor product of functions 

c) It is only defined for smooth functions 

d) It does not satisfy linearity 

Answer: b) It generalizes the tensor product of functions 

3. The convolution of two distributions is well-defined if: 

a) At least one of them has compact support 

b) Both distributions are smooth functions 

c) Their product is always zero 

d) Their Fourier transforms are equal 

Answer: a) At least one of them has compact support 

4. What is the convolution of the Dirac delta function δ(x) with a 

function f(x)? 

a) The function f(x) itself 

b) The derivative of f(x) 

c) The integral of f(x) 

d) Zero everywhere 

Answer: a) The function f(x) itself 

5. Which of the following is a fundamental property of convolution 

in distribution theory? 

a) Associativity 

b) Non-linearity 

c) Commutativity holds only for functions, not distributions 

d) It is always defined for any two distributions 

Answer: a) Associativity 

6. What is a fundamental solution in the context of distribution 

theory? 

a) A distribution that acts as the inverse of a differential operator 

b) A function that satisfies Laplace’s equation 

c) A smooth and differentiable function 

d) A function that is always zero 
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Notes Answer: a) A distribution that acts as the inverse of a differential operator 

7. Which of the following equations is commonly solved using 

fundamental solutions? 

a) Schrödinger equation 

b) Laplace equation 

c) Heat equation 

d) All of the above 

Answer: d) All of the above 

8. How is convolution used in solving partial differential equations 

(PDEs)? 

a) By smoothing the solution using fundamental solutions 

b) By eliminating boundary conditions 

c) By converting PDEs into algebraic equations 

d) By reducing the number of variables 

Answer: a) By smoothing the solution using fundamental solutions 

9. What is the fundamental solution of the one-dimensional 

Laplace equation Δu=δ(x)? 

a) −log∣x∣ 

b) ∣x∣ 

c) The Heaviside function 

d) The exponential function exe^xex 

Answer: b) ∣x∣ 

10. Which of the following operations is commonly performed to 

compute the fundamental solution of a differential operator? 

a) Taking the Fourier transform 

b) Direct differentiation 

c) Computing Riemann sums 

d) Using Taylor series expansion 

Answer: a) Taking the Fourier transform 

Short Questions: 

1. What is the direct product of distributions? 

2. How is the convolution of two distributions defined? 
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Notes 3. What are the main properties of convolutions? 

4. What is a fundamental solution in distribution theory? 

5. Why is convolution important in solving differential equations? 

6. How does the Dirac delta function act in convolution operations? 

7. What is the significance of fundamental solutions in physics? 

8. How can fundamental solutions be used to solve PDEs? 

9. Give an example of a fundamental solution for a differential 

operator. 

10. What is the relationship between convolution and Fourier 

transforms? 

Long Questions: 

1. Explain the concept of the direct product of distributions with 

examples. 

2. Define convolution of distributions and discuss its properties. 

3. How does convolution simplify solving differential equations? 

4. What are fundamental solutions? Explain their role in mathematical 

analysis. 

5. Derive the fundamental solution for a simple differential operator. 

6. Discuss the relationship between convolution and Green’s functions. 

7. Explain how convolutions are used in signal processing and physics. 

8. Compare convolution in classical functions and in distribution 

theory. 

9. How do fundamental solutions apply to linear differential equations? 

10. Provide a real-world example where convolution of distributions is 

applied. 
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One effective mathematical method for breaking down functions into their 

frequency components is the Fourier transform.  This transform, which bears 

the name of the French mathematician Jean-Baptiste Joseph Fourier, finds 

use in a wide range of domains, such as image processing, quantum physics, 

signal processing, and partial differential equations.. 

Basic Definition 

For a function f(x) that is integrable on the real line, the Fourier transform, 

denoted by F[f] or f̂, is defined by: 

Ff = ∫ f(x) 
∞

−∞
e{-iωx} dx 

Here, ω represents the angular frequency variable, and i is the imaginary unit 

(i² = -1). The function f̂(ω) represents the amplitude and phase of the 

frequency components that make up the original function f(x). 

Similarly, the inverse Fourier transform, which allows us to recover the 

original function from its Fourier transform, is given by: 

f(x) = (1/(2π)) ∫ f(̂ω) 
∞

−∞
e{iωx} dω 

4.1.1 Introduction to the Fourier Transform

• Introduce the Laplace transform and its applications.

• Study the relationship between Fourier transforms and convolutions.

• Explore the fundamental solution for the wave equation.

• Learn about the Fourier transform of tempered distributions.

• Understand the Fourier transform of test functions and distributions.

Objective

The Fourier transform Fourier transforms of test functions

UNIT 4.1

MODULE 4

https://claude.ai/chat/%CF%89
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Notes According to these definitions, integrals exist in the common meaning.  But 

a lot of useful functions don't meet this requirement, therefore we have to 

use distribution theory to expand these ideas. 

Existence Conditions 

For a function f(x) to have a well-defined Fourier transform in the classical 

sense, it typically needs to satisfy certain conditions: 

1. The function f(x) should be absolutely integrable, i.e., ∫  
∞

−∞
 |f(x)| dx 

< ∞ 

2. The function should have a finite number of discontinuities and a 

finite number of extrema in any finite interval 

Functions that satisfy these conditions belong to the space L¹(ℝ), which 

consists of all absolutely integrable functions on the real line. 

Example: Gaussian Function 

One of the most important examples is the Gaussian function: 

f(x) = e-ax²} (a > 0) 

The Fourier transform of this function is: 

Fe{-ax²} = √(π/a) e{-ω²/(4a)} 

This result demonstrates an amazing property: a Gaussian function's Fourier 

transform is also a Gaussian function.  Gaussian functions are very helpful 

in applications where frequency analysis is crucial because of their self-

similarity. 

The Fourier Transform as a Linear Operator 

The Fourier transform is a linear operator, which means: 

1. F[αf + βg] = αF[f] + βF[g] for any constants α and β 

2. If f(x) is shifted by a constant a, then Ff(x-a) = e{-iωa}Ff 

3. If f(x) is scaled by a factor a, then Ff(ax) = (1/|a|)Ff 

https://claude.ai/chat/%CF%89
https://claude.ai/chat/%CF%89
https://claude.ai/chat/%CF%89
https://claude.ai/chat/%CF%89
https://claude.ai/chat/%CF%89/a
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Notes These properties make the Fourier transform a versatile tool for solving a 

wide variety of mathematical problems, particularly differential equations. 

Connection to Other Transforms 

The Fourier transform is closely related to other important transforms in 

mathematics: 

1. The Laplace transform, defined as Lf =  ∫  
∞

0
f(t) e{-st} dt, can be 

viewed as a one-sided variant of the Fourier transform. 

2. The z-transform, used in discrete-time signal processing, is related 

to the Fourier transform of discrete sequences. 

3. The Fourier series, which decomposes periodic functions into 

infinite sums of sines and cosines, can be viewed as a special case of 

the Fourier transform for periodic functions. 

Limitations of Classical Fourier Transform 

While the classical definition of the Fourier transform is powerful, it has 

limitations: 

1. Many important functions, like constants or polynomials, are not 

absolutely integrable and thus don't have a classical Fourier 

transform. 

2. Functions with certain types of singularities may not have well-

defined Fourier transforms. 

3. The definition doesn't easily accommodate generalized functions 

like the Dirac delta function. 

These limitations motivate the extension of the Fourier transform to 

distributions, which we'll explore in subsequent sections. 

4.1.2 Fourier Transforms of Test Functions 

Before delving into the Fourier transform of distributions, we need to 

understand how the Fourier transform operates on test functions, which form 

the foundation of distribution theory. 
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Notes Test Functions and Their Properties 

Test functions are indefinitely differentiable functions (C∞) with compact 

support (they are 0 outside a finite interval), commonly represented by φ(x).  

The notation D(ℝ) or occasionally Cc
∞(ℝ) represents the space of all test 

functions. 

Key properties of test functions include: 

1. Smoothness: They are infinitely differentiable, meaning all 

derivatives of any order exist and are continuous. 

2. Compact support: There exists some finite interval [a,b] such that 

φ(x) = 0 for all x outside [a,b]. 

3. Rapidly decreasing: Both the function and all its derivatives 

decrease faster than any power of |x| as |x| approaches infinity. 

Test functions serve as the "probing functions" in distribution theory, 

allowing us to extract information about distributions through integration. 

Schwartz Space 

The Schwartz space, represented by S(ℝ), is an extension of the space of test 

functions and is made up of any indefinitely differentiable functions that, 

together with all of their derivatives, drop more quickly than any polynomial 

at infinity. 

Formally, a function φ belongs to S(ℝ) if for any non-negative integers m 

and n, the quantity: 

sup_{x∈ℝ} |xm (dn φ/dxn)(x)| 

is finite. The Schwartz space is particularly important because: 

1. It contains the space of test functions D(ℝ) 

2. It is invariant under the Fourier transform, meaning if φ ∈ S(ℝ), then 

F[φ] ∈ S(ℝ) 

3. The Fourier transform is a continuous linear mapping from S(ℝ) to 

itself 
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Fourier Transform of Test Functions 

A test function itself is not always the outcome of applying the Fourier 

transform to a test function φ(x).  Rather, a test function's Fourier transform 

is a part of the Schwartz space S(ℝ). 

If φ(x) is a test function, then its Fourier transform is given by: 

Fφ = ∫ φ
∞

−∞
 (x) e{-iωx} dx 

This integral always exists since test functions are well-behaved and decay 

rapidly at infinity. Moreover, Fφ is infinitely differentiable and decreases 

rapidly as |ω| approaches infinity. 

Important Properties 

The Fourier transform of test functions enjoys several important properties: 

1. Differentiation property: Fφ' = iω·Fφ This means that 

differentiation in the spatial domain corresponds to multiplication by 

iω in the frequency domain. 

2. Multiplication property: Fx·φ(x) = i(d/dω)Fφ Multiplication by x 

in the spatial domain corresponds to differentiation in the frequency 

domain. 

3. Convolution property: Fφ * ψ = Fφ · Fψ The Fourier transform of 

a convolution is the product of the individual Fourier transforms. 

4. Parseval's identity: ∫ φ
∞

−∞
(x)·ψ(x) dx = (1/(2π)) ∫ Fφ · Fψdω 

∞

−∞
 

This establishes a relationship between the inner products in the 

spatial and frequency domains. 

Example of Test Function and its Fourier Transform 

A classic example of a test function is the bump function: 

φ(x) = { e{-1/(1-x²)} if |x| < 1 0 if |x| ≥ 1 } 

https://claude.ai/chat/%CF%89
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Notes This function has compact support [-1,1], is endlessly differentiable, and all 

of its derivatives have bounds.  Although this function's Fourier transform 

lacks a straightforward closed-form equation, it is known to decay quickly 

as |ω| rises, making it a component of the Schwartz space. 

 

Role in Distribution Theory 

In order to apply the Fourier transform to distributions, it is essential to 

understand how it behaves on test functions.  Given that distributions are 

defined as continuous linear functionals on the space of test functions, we 

may define the Fourier transform of distributions through duality by 

comprehending how the Fourier transform impacts test functions. 

4.1.3 Properties of Fourier Transforms in Distribution Theory 

Having established the foundation of test functions and their Fourier 

transforms, we can now extend the concept to distributions, which gives a 

formal framework for dealing with generalized functions like the Dirac delta 

function and functions that don't have classical Fourier transforms. 

Distributions and Their Fourier Transforms 

A distribution (or generalized function) is a continuous linear functional on 

the space of test functions. If T is a distribution and φ is a test function, we 

denote the action of T on φ by ⟨T, φ⟩. 

The Fourier transform of a distribution T, denoted by F[T] or T̂, is defined 

by: 

⟨F[T], φ⟩ = ⟨T, F[φ]⟩ 

To put it another way, a distribution's Fourier transform is another 

distribution that acts on test functions by first applying the Fourier transform 

to the test function and then allowing the original distribution to act on the 

outcome. 
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Notes Tempered Distributions 

To put it another way, a distribution's Fourier transform is another 

distribution that acts on test functions by first applying the Fourier transform 

to the test function and then allowing the original distribution to act on the 

outcome. 

The space of tempered distributions is denoted by S'(ℝ), and it includes: 

1. All distributions with compact support 

2. All slowly growing distributions, such as polynomials and functions 

that grow no faster than some polynomial at infinity 

3. Derivatives of all orders of L² functions 

Important Properties of Fourier Transforms in Distribution Theory 

The Fourier transform in distribution theory retains many of the properties 

of the classical Fourier transform, but with appropriate reinterpretations: 

1. Linearity: F[αT + βU] = αF[T] + βF[U] for distributions T, U and 

constants α, β 

2. Translation: If Tₐ(x) = T(x-a), then FTₐ = e{-iωa}FT 

3. Modulation: If T_ω₀(x) = e{iω₀x}T(x), then FT_ω₀ = FT 

4. Scaling: If Tₐ(x) = T(ax), then FTₐ = (1/|a|)FT 

5. Derivatives: FT' = iωFT and FxT(x) = i(d/dω)FT 

6. Convolution: If at least one of T or U has compact support, then 

F[T * U] = F[T] · F[U] 

Examples of Distributions and Their Fourier Transforms 

1. Dirac Delta Function (δ): The Dirac delta function is defined by ⟨δ, 

φ⟩ = φ(0) for any test function φ. Its Fourier transform is Fδ = 1, a 

constant function. 

2. Heaviside Step Function (H): The Heaviside function is defined as 

H(x) = 0 for x < 0 and H(x) = 1 for x > 0. Its Fourier transform is 

FH = (1/iω) + πδ(ω) in the sense of distributions. 

3. Constant Function (1): The constant function 1 is not integrable, so 

it doesn't have a classical Fourier transform. In distribution theory, 

F1 = 2πδ(ω), where δ is the Dirac delta function. 

https://claude.ai/chat/%CF%89
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Notes 4. Power Functions (|x|^α): For -1 < α < 0, F|x|^α = C_α|ω|^{-α-1}, 

where C_α is a constant depending on α. For α = -1/2, F|x|^{-1/2} = 

C|ω|^{-1/2}, showing a kind of self-duality. 

The Fourier Transform and Differential Equations 

One of the most powerful applications of the Fourier transform in 

distribution theory is in solving differential equations. Consider the 

differential equation: 

a₀y(x) + a₁y'(x) + ... + aₙy^(n)(x) = f(x) 

Taking the Fourier transform of both sides and using the differentiation 

property, we get: 

a₀Fy + a₁(iω)Fy + ... + aₙ(iω)^n Fy = Ff 

This transforms the differential equation into an algebraic equation, which is 

much easier to solve. We can isolate Fy and then take the inverse Fourier 

transform to find y(x). 

The Fourier Transform and Generalized Eigenfunction Expansions 

The generalized eigenfunctions e^{iωx} of the differential operator d/dx can 

be thought of as an extension of a function in terms of the Fourier transform.  

This interpretation becomes rigorous in distribution theory. 

If L is a linear differential operator with constant coefficients, then the 

exponential functions e{iωx} are generalized eigenfunctions of L, meaning: 

L[e{iωx}] = P(iω)e{iωx} 

where P is a polynomial determined by the coefficients of L. This 

relationship is fundamental in the application of Fourier transforms to partial 

differential equations. 
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Notes Limitations and Extensions 

While distribution theory greatly extends the applicability of the Fourier 

transform, there are still limitations: 

1. Not all distributions are tempered, so not all distributions have 

Fourier transforms 

2. The convolution theorem requires at least one distribution to have 

compact support 

3. Some operations, like the product of distributions, are not always 

well-defined 

Extensions of the Fourier transform to address these limitations include: 

1. The Fourier-Laplace transform for distributions with exponential 

growth 

2. The wavelet transform, which provides localization in both time and 

frequency 

3. The short-time Fourier transform, which analyzes how frequency 

content changes over time 

Solved Problems 

Problem 1: Fourier Transform of a Gaussian Function 

Problem: Find the Fourier transform of the function f(x) = e{-πx²}. 

Solution: 

We need to compute: Ff = ∫ e{−πx²}
∞

−∞
 e{-iωx} dx 

To solve this integral, we complete the square in the exponent: -πx² - iωx = -

π(x² + (iω/π)x) = -π(x + iω/(2π))² + (iω)²/(4π) 

Now we can rewrite the integral: Ff = e{-ω²/(4π)} ∫ e
∞

−∞
{-π(x + iω/(2π))²} dx 

Making the substitution y = x + iω/(2π), we get: Ff = e{-ω²/(4π)} 

∫ e{−πy²} 
{∞ + iω/(2π)} 

{−∞ + iω/(2π)}
 dy 
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Notes Since e{-πy²} is an entire function, we can shift the contour of integration back 

to the real line without changing the value of the integral: Ff = e{-ω²/(4π)} 

∫ 𝑒{−πy2}∞

−∞
dy 

The integral ∫ 𝑒{−πy2}∞

−∞
 dy = 1 (this is a standard result for the Gaussian 

integral). 

Therefore: Ff = e{-ω²/(4π)} 

This shows that the Fourier transform of a Gaussian function is another 

Gaussian function, demonstrating the self-similarity property of Gaussian 

functions under the Fourier transform. 

 

Problem 2: Fourier Transform of the Dirac Comb 

Problem: Find the Fourier transform of the Dirac comb function defined as: 

ШT(x) =∑ δ(x −  nT)∞
∞=0  , where T > 0 is a constant and δ is the Dirac delta 

function. 

Solution: 

The Dirac comb is a periodic distribution with period T. To find its Fourier 

transform, we'll use the fact that a periodic distribution can be expanded as a 

Fourier series: 

ШT(x) = (1/T)∑ 𝑒{i(2πk/T)x}∞
k=−∞  

Now, we need to find the Fourier transform of each term in this series: 

Fe{i(2πk/T)x} = 2πδ(ω - 2πk/T) 

Using the linearity of the Fourier transform: FШ_T(x) = (1/T) 

∑ 𝐹𝑒{i(2πk/T)x}∞
k=−∞  = (1/T) ∑ 2πδ(ω −  2πk/T) ∞

k=−∞ = (2π/T) 

∑ δ(ω −  2πk/T) ∞
k=−∞  = (2π/T) Ш{2π/T}(ω) 

The Fourier transform of a Dirac comb with spacing T is another Dirac 

comb with spacing 2π/T, scaled by 2π/T, according to this statement, which 
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Notes is called the Poisson summation formula.  This demonstrates how the 

Fourier transform's time and frequency domains are dual. 

Problem 3: Solving a Differential Equation Using Fourier Transforms 

Problem: Solve the differential equation y'' + 4y = δ(x), where δ(x) is the 

Dirac delta function, with the conditions that y(x) → 0 as |x| → ∞. 

Solution: 

Taking the Fourier transform of both sides of the equation: F[y'' + 4y] = 

F[δ(x)] 

Using the property Fy'' = -ω²Fy and the fact that F[δ(x)] = 1: -ω²Fy + 4Fy = 

1 

Solving for Fy: Fy = 1/(4-ω²) 

To find y(x), we need to compute the inverse Fourier transform: y(x) = 

(1/(2π))∫ (1/(4 − ω²))  eiωx} dω
∞

∞
  

This integral can be evaluated using contour integration or by recognizing it 

as the inverse Fourier transform of a known function. 

For ω² = 4, we have poles at ω = ±2. Using the residue theorem or tables of 

Fourier transforms, we find: y(x) = (1/4) e{-2|x|} 

This solution represents a damped oscillation centered at x = 0, which 

decays to zero as |x| → ∞, satisfying our boundary conditions. 

Problem 4: Fourier Transform of a Tempered Distribution 

Problem: Find the Fourier transform of the tempered distribution T defined 

by: ⟨T, φ⟩ = ∫  
∞

−∞
 (x²+1){-1} φ(x) dx for any test function φ. 

Solution: 

The tempered distribution T corresponds to the function f(x) = 1/(x²+1), 

which is a Lorentzian or Cauchy distribution. 
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Notes To find the Fourier transform of T, we need to compute: FT =∫  
∞

−∞
 (1/(x²+1)) 

e{-iωx} dx 

This integral can be evaluated using contour integration. We consider the 

function g(z) = (1/(z²+1))e^{-iωz} and integrate it around a semicircular 

contour in the upper half-plane for ω > 0 (or lower half-plane for ω < 0). 

For ω > 0, the contour encloses a pole at z = i with residue (1/2i)e{-ω}. For ω 

< 0, the contour encloses a pole at z = -i with residue (-1/2i)e{ω}. 

Combining these results: FT = π e{-|ω|} 

This shows that the Fourier transform of the Lorentzian function 1/(x²+1) is 

π e{-|ω|}, an exponential decay function. 

 

 

Problem 5: Parseval's Identity for a Specific Function 

Problem: Verify Parseval's identity for the function f(x) = e{-|x|} by 

calculating both ∫  
∞

−∞
|f(x)|² dx and (1/(2π)) ∫  

∞

−∞
 |Ff|² dω. 

Solution: 

First, we need to find the Fourier transform of f(x) = e{-|x|}: Ff =∫  
∞

−∞
e{-|x|} e{-

iωx} dx 

This integral can be split into two parts: Ff = ∫  
0

−∞
 e{x} e{-iωx} dx + ∫  

∞

0
e{-x} e{-

iωx} dx = ∫  
0

−∞
e{(1-iω)x} dx + ∫  

∞

0
e{-(1+iω)x} dx = [e{(1-iω)x}/(1-iω)]{-∞0 + [e{-

(1+iω)x}/(-1-iω)]0{∞} = 1/(1-iω) + 1/(1+iω) = 2/(1+ω²) 

Now we calculate the energy in the time domain: ∫  
∞

−∞
 |f(x)|² dx = ∫  

∞

−∞
 (e{-

|x|})² dx =  ∫  
∞

−∞
 e{-2|x|} dx = 2 ∫  

∞

0
e{-2x} dx = 2·(1/2) = 1 
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Notes Next, we calculate the energy in the frequency domain: (1/(2π)) ∫  
∞

−∞
|Ff|² dω 

= (1/(2π) ∫  
∞

−∞
 |2/(1+ω²)|² dω = (1/(2π)) ∫  

∞

−∞
4/(1+ω²)² dω = (2/π) 

∫  
∞

0
1/(1+ω²)² dω 

Using the standard integral  ∫  
∞

0
 1/(1+ω²)²dω = π/2: (1/(2π) ∫  

∞

−∞
 |Ff|² dω = 

(2/π) · (π/2) = 1 

Since both integrals equal 1, Parseval's identity is verified for the function 

f(x) = e{-|x|}. 

Unsolved Problems 

Problem 1 

Find the Fourier transform of the function f(x) = e{-x²/2} sin(3x). 

Problem 2 

Compute the Fourier transform of the tempered distribution corresponding 

to the function f(x) = log(|x|) for x ≠ 0. 

 

Problem 3 

Solve the partial differential equation ∂u/∂t = ∂²u/∂x² with the initial 

condition u(x,0) = e{-|x|} using the Fourier transform method. 

Problem 4 

Find the Fourier transform of the distribution T defined by: ⟨T, φ⟩ = 

lim_{ε→0+} ∫  
∞

−∞
 (1/|x|{1/2+ε}) φ(x) dx for any test function φ. 

Problem 5 

Verify that if f is a tempered distribution and g(x) = f(-x), then Fg = Ff. 

Apply this to find the Fourier transform of the function h(x) = x/(x²+4). 

Further Applications and Extensions 
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Notes The Fourier transform in distribution theory has numerous applications 

beyond what we've covered. Some notable extensions include: 

1. Multi-dimensional Fourier transforms: Extending the Fourier 

transform to functions of several variables, essential for applications 

in partial differential equations and image processing. 

2. Discrete Fourier transform (DFT): A discretized version of the 

Fourier transform used for digital signal processing and numerical 

computation. 

3. Fast Fourier transform (FFT): An efficient algorithm for 

computing the DFT, reducing the computational complexity from 

O(n²) to O(n log n). 

4. Wavelet transforms: Providing time-frequency localization that the 

standard Fourier transform lacks, useful for analyzing non-stationary 

signals. 

5. Fractional Fourier transform: A generalization where the 

transform is applied at an arbitrary angle in the time-frequency 

plane. 

Distribution theory provides a rigorous mathematical framework for these 

extensions, allowing us to deal with functions and operations that would be 

problematic in classical analysis. The combination of distribution theory and 

Fourier analysis continues to be a powerful tool in mathematics, physics, 

and engineering. 
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one-to-one and continuous manner.

automorphism on the Schwartz space, meaning it maps S(Rⁿ) onto itself in a 

This definition leverages the fact that the Fourier transform is a continuous 

Fφ = ∫{Rⁿ} φ(x) e{-2πix·ξ} dx

classical Fourier transform of φ, given by:

for all test functions φ in the Schwartz space S(Rⁿ). Here, F[φ] represents the 

⟨F[T], φ⟩ = ⟨T, F[φ]⟩

is defined by:

For a tempered distribution T, its Fourier transform F[T] (also denoted as T̂ )

Definition of Fourier Transform for Tempered Distributions

continuous with regard to the topology of S(Rⁿ) is a tempered distribution T.

by  S'(Rⁿ).   In  other  words,  a  linear  functional  T:  S(Rⁿ)  →  C  that  is 

The dual space of S(Rⁿ) is the space of tempered distributions, represented 

where xα = x₁α₁ × x₂α₂ × ... × xₙαₙ and Dβ is the partial derivative operator.

sup{x∈Rⁿ} |xα Dβ φ(x)| < ∞

of the Schwartz space S(Rⁿ) if, for every multi-index α and β, we have:

derivatives, is called a tempered distribution.  A function φ is formally a part 

up of smooth functions that decay quickly at infinity along with all of their 

A continuous linear functional on the Schwartz space S(Rⁿ), which is made 

integrable functions.

enable  us  to  employ  the  Fourier  transform  outside  of  the  domain  of 

distributions  are  a  particularly  significant  class  among  them  since  they 

to  encompass  more  generalized  objects  known  as  distributions.   Tempered 

distribution theory was created, which expands on the concept of functions 

when  studying  mathematical  analysis.   Because  of  this  restriction,

We  frequently  come  into  functions  that  lack  a  classical  Fourier  transform

4.2.1 Fourier Transform of Tempered Distributions

Fourier transforms of tempered distributions
UNIT 4.2

https://claude.ai/chat/%CE%BE


 

167 
 

Notes Properties of the Fourier Transform of Tempered Distributions 

1. Linearity: For tempered distributions T₁ and T₂, and complex 

constants a and b: F[aT₁ + bT₂] = aF[T₁] + bF[T₂] 

2. Translation: If T is a tempered distribution and a ∈ Rⁿ, then: FT(x-

a) = e{-2πia·ξ} FT 

3. Modulation: If T is a tempered distribution and a ∈ Rⁿ, then: 

Fe{2πia·x} T(x) = FT 

4. Scaling: If T is a tempered distribution and a ≠ 0 is a real number, 

then: FT(ax) = |a|{-n} FT 

5. Derivative: If T is a tempered distribution, then: FDα T = (2πiξ)α FT 

6. Multiplication by polynomial: If T is a tempered distribution, then: 

Fxα T(x) = i{|α|} Dα FT 

7. Convolution: If S and T are tempered distributions (with at least 

one having compact support), then: F[S * T] = F[S] · F[T] 

8. Inversion Formula: If T is a tempered distribution, then: F[FT] = 

T(x) 

Important Examples of Fourier Transforms of Tempered Distributions 

 

1. Dirac Delta Function: The Fourier transform of the Dirac delta 

function δ(x) is: Fδ(x) = 1 

2. Constant Function: For the constant function 1, we have: F1 = δ(ξ) 

3. Heaviside Step Function: For the Heaviside step function H(x), 

which is 1 for x > 0 and 0 for x < 0: FH(x) = 1/(2πiξ) + (1/2)δ(ξ) 

4. Sine and Cosine Functions: Fsin(2πax) = (i/2)[δ(ξ-a) - δ(ξ+a)] 

Fcos(2πax) = (1/2)[δ(ξ-a) + δ(ξ+a)] 

5. Gaussian Function: For the Gaussian function e{-πx²}, we have: Fe{-

πx²} = e{-πξ²} 

Applications of Tempered Distributions in Fourier Analysis 

Tempered distributions provide a powerful framework for analyzing 

differential equations, signal processing, and quantum mechanics. Some key 

applications include: 

https://claude.ai/chat/%CE%BE
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Notes 1. Solving Differential Equations: The Fourier transform converts 

differential equations into algebraic equations, simplifying their 

solution. 

2. Analyzing Signals with Discontinuities: Tempered distributions 

allow for the analysis of signals with jumps or discontinuities. 

3. Quantum Mechanics: In quantum mechanics, operators and 

wavefunctions can be understood as tempered distributions. 

4. Crystallography: The diffraction pattern of a crystal can be 

interpreted using the Fourier transform of tempered distributions. 

5. Partial Differential Equations: Many PDEs can be solved using 

Fourier methods applied to tempered distributions. 
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through superposition.

It can be used to construct solutions for more general source terms 2.

It represents the response to an impulsive source.1.

The fundamental solution has two key properties:

representing a point source at the origin at time t = 0.

where  δ(x)δ(t)  is  the  product  of  Dirac  delta  functions  in  space  and  time, 

∂²E/∂t² - c² ∇²E = δ(x)δ(t)

solution to:

A  fundamental  solution  (or  Green's  function)  for  the  wave  equation  is  a 

The Concept of a Fundamental Solution

waves.

vibrating strings and membranes to electromagnetic waves and gravitational 

The  wave  equation  models  a  wide  range  of  physical  phenomena,  from 

  ∂²/∂xₙ²

• ∇² is the Laplacian operator, given by ∇² = ∂²/∂x₁² + ∂²/∂x₂² + ... +

• c is the wave propagation speed

• u(x,t) is the wave amplitude at position x and time t

where:

∂²u/∂t² - c² ∇²u = 0

is:

equation.  The wave equation in n-dimensional space, in its most basic form, 

described  by  the  wave  equation,  a  second-order  linear  partial  differential 

The  propagation  of  waves,  including  light,  sound,  and  water  waves,  is 

The Wave Equation: Basic Form and Properties

4.3.1 Fundamental Solution for the Wave Equation

convolutions-Laplace transforms
The fundamental solution for the wave equationFourier transform of 

UNIT 4.3
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Notes Fundamental Solution in Different Dimensions 

One-Dimensional Case (n = 1) 

In one dimension, the fundamental solution to the wave equation is: 

E(x,t) = (1/2c) H(ct-|x|) 

where H is the Heaviside step function. 

This solution represents two waves traveling in opposite directions from the 

origin, each with half the amplitude. The Heaviside function ensures that the 

solution is non-zero only within the "light cone" defined by |x| ≤ ct. 

Two-Dimensional Case (n = 2) 

In two dimensions, the fundamental solution is: 

E(x,t) = (1/2π) H(ct-|x|) / √(c²t² - |x|²) 

where |x| is the Euclidean distance from the origin. 

This solution exhibits a characteristic feature of wave propagation in two 

dimensions: as the wave expands radially, its amplitude decreases as 1/√r, 

where r is the distance from the source. 

Three-Dimensional Case (n = 3) 

In three dimensions, the fundamental solution takes the form: 

E(x,t) = (1/4πc|x|) δ(t - |x|/c) 

This solution represents a spherical wave that propagates outward from the 

origin at speed c. Unlike the one and two-dimensional cases, the three-

dimensional solution is non-zero only on the expanding spherical wavefront, 

not throughout the interior of the light cone. 

4.3.2  Properties of the Fundamental Solution 

1. Causality: The fundamental solution vanishes for t < 0, reflecting 

the physical principle that effects cannot precede their causes. 
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Notes 2. Propagation Speed: The support of the fundamental solution is 

contained within the set {(x,t) : |x| ≤ ct}, meaning that disturbances 

propagate at a finite speed c. 

3. Huygens' Principle: In odd dimensions (particularly n = 3), the 

solution at a point depends only on the values of the source on the 

backward light cone. This is Huygens' principle. 

4. Decay Rate: As t increases, the amplitude of the fundamental 

solution decreases at different rates depending on the dimension: 

• In one dimension: no decay 

• In two dimensions: decays as 1/√t 

• In three dimensions: decays as 1/t 

4.3..3Derivation of the Fundamental Solution 

The fundamental solution can be derived using Fourier transform methods. 

The approach involves: 

1. Taking the Fourier transform of the wave equation with respect to 

the spatial variables. 

2. Solving the resulting ordinary differential equation in the frequency 

domain. 

3. Applying the inverse Fourier transform to obtain the solution in the 

physical domain. 

For the three-dimensional case, we start with: 

∂²u/∂t² - c² ∇²u = δ(x)δ(t) 

Taking the Fourier transform with respect to x: 

∂²û/∂t² + c²|ξ|²û = δ(t) 

where û(ξ,t) is the Fourier transform of u(x,t) and ξ is the spatial frequency. 

Solving this ODE and applying the inverse Fourier transform leads to the 

fundamental solution. 

4.3.4 Using the Fundamental Solution: The Method of Green's 

Functions 
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Notes Given a wave equation with a source term: 

∂²u/∂t² - c² ∇²u = f(x,t) 

The solution can be expressed using the fundamental solution as: 

u(x,t) = ∫∫ E(x-y, t-s) f(y,s) dy ds 

This convolution integral represents the superposition of responses to all the 

individual point sources that make up the source distribution f(x,t). 

Additionally, for an initial value problem with zero source term but non-zero 

initial conditions: 

u(x,0) = g(x) ∂u/∂t(x,0) = h(x) 

The solution can be expressed as: 

u(x,t) = ∂/∂t∫ E(x-y,t)g(y)dy + ∫ E(x-y,t)h(y)dy 

Applications of the Fundamental Solution 

1. Seismic Wave Propagation: Modeling earthquake waves through 

the Earth. 

2. Acoustics: Analyzing sound propagation in different environments. 

3. Electromagnetic Theory: Studying the propagation of 

electromagnetic waves. 

4. General Relativity: Understanding gravitational waves. 

5. Medical Imaging: Techniques like ultrasound imaging rely on wave 

propagation models. 

4.3.5  Relationship between Fourier Transform and Convolution 

Convolution: Definition and Basic Properties 

The convolution of two functions f and g, denoted f * g, is defined as: 

(f * g)(x) =∫  
∞

−∞
f(y)g(x-y)dy 

In higher dimensions, for functions f, g: Rⁿ → C, the convolution is: 
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Notes (f * g)(x) = ∫{Rⁿ} f(y)g(x-y)dy 

Key properties of convolution include: 

1. Commutativity: f * g = g * f 

2. Associativity: (f * g) * h = f * (g * h) 

3. Distributivity over addition: f * (g + h) = f * g + f * h 

4. Associativity with scalar multiplication: a(f * g) = (af) * g = f * 

(ag) 

5. Identity element: f * δ = f, where δ is the Dirac delta function 

6. Differentiation: Dα(f * g) = (Dαf) * g = f * (Dαg) 

The Convolution Theorem 

The convolution theorem is a fundamental result in Fourier analysis that 

establishes a direct relationship between convolution in the time/space 

domain and multiplication in the frequency domain. Formally, the theorem 

states: 

F[f * g] = F[f] · F[g] 

where F denotes the Fourier transform, and · represents pointwise 

multiplication. 

Equivalently, in the inverse direction: 

F{-1}[f · g] = F{-1}[f] * F{-1}[g] 

Proof of the Convolution Theorem 

Starting with the definition of the Fourier transform of the convolution: 

Ff * g = ∫{Rⁿ} (f * g)(x) e{-2πix·ξ} dx 

Substituting the definition of convolution: 

Ff * g = ∫{Rⁿ} [∫{Rⁿ} f(y)g(x-y)dy] e{-2πix·ξ} dx 

Rearranging the integrals (using Fubini's theorem): 

Ff * g = ∫{Rⁿ} f(y) [∫{Rⁿ} g(x-y)e{-2πix·ξ} dx] dy 

https://claude.ai/chat/%CE%BE
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Notes Making the substitution z = x-y: 

Ff * g = ∫{Rⁿ} f(y) [∫{Rⁿ} g(z)e{-2πi(z+y)·ξ} dz] dy = ∫{Rⁿ} f(y)e{-2πiy·ξ} [∫{Rⁿ} 

g(z)e{-2πiz·ξ} dz] dy = [∫{Rⁿ} f(y)e{-2πiy·ξ} dy][∫{Rⁿ} g(z)e{-2πiz·ξ} dz] = Ff · Fg 

This completes the proof of the convolution theorem. 

 4.3.6  Implications and Applications of the Convolution Theorem 

Simplification of Calculations 

The convolution theorem allows us to transform complex convolution 

operations in the time/space domain into simpler multiplication operations in 

the frequency domain: 

1. Compute F[f] and F[g] 

2. Multiply F[f] · F[g] 

3. Compute F{-1}[F[f] · F[g]] to obtain f * g 

This approach is particularly efficient when using the Fast Fourier 

Transform (FFT) algorithm. 

Filtering and Signal Processing 

In signal processing, convolution is used to implement filters. The 

convolution theorem enables filter design in the frequency domain: 

1. Low-pass filtering: Attenuating high-frequency components to 

smooth a signal. 

2. High-pass filtering: Attenuating low-frequency components to 

enhance edges. 

3. Band-pass filtering: Selecting a specific frequency range. 

System Analysis 

For a linear time-invariant (LTI) system with impulse response h(t), the 

output y(t) to an input x(t) is: 

y(t) = (h * x)(t) 
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Notes Using the convolution theorem: 

Y(ω) = H(ω) · X(ω) 

where Y, H, and X are the Fourier transforms of y, h, and x, respectively. 

H(ω) is known as the transfer function of the system. 

Image Processing 

In image processing, convolution is used for operations such as: 

1. Blurring: Convolving with a Gaussian kernel. 

2. Edge detection: Convolving with kernels like Sobel or Laplacian. 

3. Sharpening: Enhancing high-frequency components. 

The convolution theorem allows efficient implementation of these 

operations using FFT methods. 

Convolution of Tempered Distributions 

The concept of convolution can be extended to tempered distributions. For 

tempered distributions S and T, their convolution S * T is defined as: 

⟨S * T, φ⟩ = ⟨S(x), ⟨T(y), φ(x+y)⟩⟩ 

for all test functions φ in the Schwartz space S(Rⁿ). 

The convolution theorem remains valid in this extended context: 

F[S * T] = F[S] · F[T] 

This generalization allows us to handle important cases like the convolution 

of a function with the Dirac delta function or its derivatives. 

Connection to Partial Differential Equations 

The relationship between Fourier transform and convolution is crucial in 

solving partial differential equations (PDEs). Consider a linear PDE with 

constant coefficients: 

Lu = f 
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Notes where L is a differential operator and f is a source term. Using the Fourier 

transform: 

L̂û = f̂ 

where L̂ is the symbol of the operator L. 

The solution is: 

û = f̂/L̂ 

Taking the inverse Fourier transform: 

u = F{-1}[f̂/L̂] = F{-1}[f̂ · (1/L̂)] = f * F{-1}[1/L̂] 

This shows that the solution u is the convolution of f with the fundamental 

solution E = F{-1}[1/L̂]. 

Convolution and Regularization 

Convolution has a regularizing effect on functions. If f is in Lp(Rⁿ) and g is 

in L1(Rⁿ), then f * g is in Lp(Rⁿ) and is more regular than f. 

This property is used in the theory of PDEs to establish regularity results for 

solutions. It also has applications in numerical analysis, where convolution 

with smooth kernels is used to regularize data or approximate solutions. 

Solved Problems 

Problem 1: Fourier Transform of a Tempered Distribution 

Problem: Find the Fourier transform of the tempered distribution T(x) = |x|{-

1} in R³. 

Solution: The function |x|{-1} is locally integrable in R³ but does not decay 

fast enough at infinity to be a tempered distribution directly. However, we 

can define it as a principal value distribution. 

We know that the Laplacian of |x|{-1} in R³ is related to the Dirac delta 

function: ∇²(|x|{-1}) = -4πδ(x) 
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Notes Taking the Fourier transform of both sides and using the property F[∇²u] = -

4π²|ξ|²F[u]: -4π²|ξ|²F[|x|{-1}] = -4πF[δ(x)] = -4π 

Therefore: F[|x|{-1}] = 1/(π|ξ|²) 

This result is the Fourier transform of the Coulomb potential in 

electrostatics, which has significant applications in quantum mechanics and 

field theory. 

Problem 2: Fundamental Solution of the Wave Equation in 2D 

Problem: Derive the fundamental solution for the two-dimensional wave 

equation. 

Solution: We need to find a solution to: ∂²E/∂t² - c²∇²E = δ(x)δ(t) in R² × R 

Taking the Fourier transform with respect to the spatial variables: ∂²Ê/∂t² + 

c²|ξ|²Ê = δ(t) 

This is a second-order ODE with the initial conditions: Ê(ξ,0) = 0 ∂Ê/∂t(ξ,0) 

= 1 

The solution to this ODE is: Ê(ξ,t) = sin(c|ξ|t)/(c|ξ|) for t > 0 

To find E(x,t), we need to compute the inverse Fourier transform: E(x,t) = 

F^{-1}[sin(c|ξ|t)/(c|ξ|)] 

Using polar coordinates and the properties of Bessel functions: E(x,t) = 

(1/2π) H(ct-|x|) / √(c²t² - |x|²) 

where H is the Heaviside step function. 

This solution shows that in two dimensions, the wave propagates with a 

decreasing amplitude proportional to 1/√r, and unlike in three dimensions, 

the disturbance persists throughout the interior of the light cone. 

Problem 3: Convolution with a Gaussian Kernel 

Problem: Let f(x) = e{-|x|} and g(x) = (1/√(2π))e{-x²/2} (a Gaussian kernel). 

Compute (f * g)(x). 
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Notes Solution: We'll use the Fourier transform method to compute this 

convolution. 

The Fourier transform of f(x) = e{-|x|} is: Ff = 2/(1 + 4π²ξ²) 

The Fourier transform of g(x) = (1/√(2π))e{-x²/2} is: Fg = e{-2π²ξ²} 

By the convolution theorem: Ff * g = Ff · Fg = (2/(1 + 4π²ξ²)) · e{-2π²ξ²} 

Taking the inverse Fourier transform: (f * g)(x) = ∫_{-∞}^{∞} (2/(1 + 

4π²ξ²)) · e{-2π²ξ²} · e{2πixξ} dξ 

This integral can be evaluated using complex analysis techniques, 

specifically by using contour integration and the residue theorem. The result 

is: (f * g)(x) = e{x²/2} ∫ (1/√(2π))
∞

𝑥
 e{-t²/2} dt 

This can be expressed in terms of the complementary error function: (f * 

g)(x) = e{x²/2} · (1/2)erfc(|x|/√2) 

This result illustrates how convolution with a Gaussian kernel smooths out 

the original function while preserving its overall shape. 

Problem 4: Tempered Distribution and Test Function 

Problem: Verify that the function T(x) = (1 + x²){-1} defines a tempered 

distribution, and compute ⟨T, φ⟩ for φ(x) = e{-x²}. 

Solution: To verify that T(x) = (1 + x²){-1} defines a tempered distribution, 

we need to check that it grows at most polynomially at infinity. 

As |x| → ∞, T(x) behaves like |x|{-2}, which decays faster than any 

polynomial growth. Therefore, T(x) defines a tempered distribution. 

To compute ⟨T, φ⟩ for φ(x) = e{-x²}, we evaluate the integral: ⟨T, φ⟩ =} (1 + 

x²){-1} · e{-x²} dx 

This integral can be evaluated using contour integration. We consider the 

contour integral: ∫C (1 + z²)-1} · e{-z²} dz 

where C is a suitable contour in the complex plane. 

https://claude.ai/chat/%CE%BE
https://claude.ai/chat/%CE%BE
https://claude.ai/chat/%CE%BE
https://claude.ai/chat/%CE%BE
https://claude.ai/chat/%CE%BE


 

179 
 

Notes By residue theorem and choosing an appropriate contour, we get: ⟨T, φ⟩ = 

∫ (1 +  x²)−1∞

−∞
 e{-x²} dx = (π/e) · erfi(1) 

where erfi is the imaginary error function defined as: erfi(z) = (2/√π) ∫ 𝑒t²𝑧

0
dt 

This result is approximately 1.493. 

Problem 5: Wave Equation with Non-Zero Initial Conditions 

Problem: Solve the initial value problem for the one-dimensional wave 

equation: ∂²u/∂t² - c² ∂²u/∂x² = 0 u(x,0) = e{-x²} ∂u/∂t(x,0) = 0 

Solution: We'll use the method of the fundamental solution. In one 

dimension, the solution to the initial value problem can be expressed as: 

u(x,t) = (1/2)[f(x+ct) + f(x-ct)] + (1/2c) ∫∫ g(y) dy
𝑥−𝑐𝑡

𝑥+𝑐𝑡
  

where f(x) = u(x,0) and g(x) = ∂u/∂t(x,0). 

In our case, f(x) = e{-x²} and g(x) = 0, so: u(x,t) = (1/2)[e{-(x+ct)²} + e{-(x-ct)²}] = 

(1/2)[e{-(x²+2xct+c²t²)} + e{-(x²-2xct+c²t²)}] = e{-(x²+c²t²)} · (1/2)[e{-2xct} + e{2xct}] = e{-

(x²+c²t²)} · cosh(2xct) 

Therefore, the solution is: u(x,t) = e{-(x²+c²t²)} · cosh(2xct) 

This solution represents a wave that initially has a Gaussian profile and 

spreads out symmetrically in both directions while maintaining its overall 

shape, modulated by the hyperbolic cosine term. 

Unsolved Problems 

Problem 1: Fourier Transform of a Singular Distribution 

Find the Fourier transform of the tempered distribution T(x) = |x|α for -n < α 

< 0 in Rⁿ. 

Problem 2: Wave Equation with a Time-Dependent Source 

Solve the three-dimensional wave equation with a time-dependent source: 

∂²u/∂t² - c² ∇²u = f(x,t) where f(x,t) = e{-|x|²-t²} with zero initial conditions: 

u(x,0) = 0, ∂u/∂t(x,0) = 0. 
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Notes Problem 3: Convolution of Distributions 

Compute the convolution of the tempered distributions T₁(x) = H(x) (the 

Heaviside step function) and T₂(x) = e{-x}H(x) in R. 

Problem 4: Wave Equation in Non-Homogeneous Medium 

Find the fundamental solution for the wave equation in a non-homogeneous 

medium: ∂²u/∂t² - c²(x) ∇²u = 0 where c(x) = c₀/(1 + |x|²) for some constant c₀ 

> 0. 

Problem 5: Fourier Transform and Convolution with Boundary 

Conditions 

Consider the heat equation on a half-line: ∂u/∂t - ∂²u/∂x² = 0, x > 0, t > 0 

u(x,0) = f(x), x > 0 u(0,t) = 0, t > 0 

Express the solution in terms of the Fourier transform and convolution, and 

analyze how the boundary condition at x = 0 affects the solution. 

Introduction to the Laplace Transform 

Definition and Basic Properties 

A function of time f(t) can be transformed into a function of complex 

frequency s, represented by F(s), using the Laplace transform, a potent 

mathematical tool.  It is very helpful for analyzing linear time-invariant 

systems and solving differential equations. 

For a function f(t), the Laplace transform is defined as: 

F(s) = L{f(t)} = ∫(0 to ∞) f(t)e(-st) dt 

Where: 

• F(s) is the Laplace transform of f(t) 

• s is a complex variable (s = σ + jω) 

• The integral is evaluated from 0 to infinity 

Key Properties of Laplace Transform 
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Notes 1. Linearity: L{af(t) + bg(t)} = aL{f(t)} + bL{g(t)} 

2. Time Shifting: L{f(t-a)u(t-a)} = e(-as)F(s) Where u(t-a) is the unit 

step function 

3. Frequency Shifting: L{e(at)f(t)} = F(s-a) 

4. Time Scaling: L{f(at)} = (1/a)F(s/a), a > 0 

5. Differentiation in Time Domain: L{df/dt} = sF(s) - f(0) 

6. Integration in Time Domain: L{∫(0 to t)f(τ)dτ} = F(s)/s 

7. Convolution: L{f(t) * g(t)} = F(s)G(s) Where * denotes convolution 

Common Laplace Transform Pairs 

Here's a table of frequently used Laplace transform pairs: 

f(t) F(s) = L{f(t)} 

1 (unit step) 1/s 

t 1/s² 

tn n!/s(n+1) 

e(at) 1/(s-a) 

sin(ωt) ω/(s² + ω²) 

cos(ωt) s/(s² + ω²) 

t·sin(ωt) 2ωs/(s² + ω²)² 

t·cos(ωt) (s² - ω²)/(s² + ω²)² 

e(at)sin(ωt) ω/((s-a)² + ω²) 

e(at)cos(ωt) (s-a)/((s-a)² + ω²) 

sinh(ωt) ω/(s² - ω²) 

cosh(ωt) s/(s² - ω²) 

Inverse Laplace Transform 

The inverse Laplace transform, denoted by L(-1){F(s)}, gives us the original 

time function f(t) from its transform F(s). 

f(t) = L(-1){F(s)} = (1/2πj)∫(γ-j∞ to γ+j∞) F(s)e^(st) ds 

In practice, the inverse transform is usually found using: 

1. Partial fraction decomposition 
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Notes 2. Table lookups 

3. Convolution theorem 

4. Complex inversion formula 

Partial Fraction Decomposition 

This technique is useful for finding inverse Laplace transforms of rational 

functions. For a proper rational function F(s) = P(s)/Q(s), where degree of P 

< degree of Q: 

1. Factor Q(s) into linear and quadratic factors 

2. Express F(s) as a sum of simpler terms 

3. Find the inverse transform of each term using standard tables 

Types of Factors and Their Partial Fractions 

1. For distinct linear factors (s-a): F(s) = ... + A/(s-a) + ... 

2. For repeated linear factors (s-a)n: F(s) = ... + A₁/(s-a) + A₂/(s-a)² + ... 

+ Aₙ/(s-a)^n + ... 

3. For distinct quadratic factors (s² + bs + c): F(s) = ... + (As + B)/(s² + 

bs + c) + ... 

4. For repeated quadratic factors (s² + bs + c)n: F(s) = ... + (A₁s + 

B₁)/(s² + bs + c) + ... + (Aₙs + Bₙ)/(s² + bs + c)n + ... 

Solving Differential Equations Using Laplace Transforms 

The Laplace transform converts differential equations into algebraic 

equations, making them easier to solve. The general procedure is: 

1. Take the Laplace transform of both sides of the differential equation 

2. Solve for the Laplace transform of the unknown function 

3. Find the inverse Laplace transform to obtain the solution 

Initial Value Problems 

For a linear differential equation with constant coefficients: 

a₍ₙ₎(dn y/dtn) + a₍ₙ₋₁₎(d(n-1)y/dt(n-1)) + ... + a₁(dy/dt) + a₀y = f(t) 

With initial conditions: y(0) = y₀, y'(0) = y₁, ..., y(n-1)(0) = y(n-1) 
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Notes The Laplace transform converts this to: 

a₍ₙ₎[sn Y(s) - s(n-1)y(0) - ... - y(n-1)(0)] + ... + a₁[sY(s) - y(0)] + a₀Y(s) = F(s) 

Solving for Y(s) and taking the inverse transform gives the solution y(t). 

Solved Problems 

Solved Problem 1: Find the Laplace Transform of f(t) = t²e^(3t) 

Solution: We need to find L{t²e(3t)}. 

We can use the property that L{tn f(t)} = (-1)n (dn/dsn) L{f(t)} 

First, let's find L{e(3t)} = 1/(s-3) for s > 3 

Now, L{t²e(3t)} = (-1)² (d²/ds²)[1/(s-3)] 

Taking the first derivative: d/ds[1/(s-3)] = -1/(s-3)² 

Taking the second derivative: d²/ds²[1/(s-3)] = 2/(s-3)³ 

Therefore: L{t²e(3t)} = 2/(s-3)³ 

Solved Problem 2: Solve the differential equation y'' + 4y = sin(2t) with 

initial conditions y(0) = 1 and y'(0) = 0 

Solution: Taking the Laplace transform of both sides: L{y''} + 4L{y} = 

L{sin(2t)} 

Using the differentiation property: [s²Y(s) - sy(0) - y'(0)] + 4Y(s) = 2/(s² + 4) 

Substituting the initial conditions y(0) = 1 and y'(0) = 0: s²Y(s) - s + 4Y(s) = 

2/(s² + 4) 

Rearranging: (s² + 4)Y(s) = s + 2/(s² + 4) 

Y(s) = s/(s² + 4) + 2/((s² + 4)(s² + 4)) = s/(s² + 4) + 2/(s² + 4)² 

Using the inverse Laplace transform: y(t) = L(-1){s/(s² + 4)} + L(-1){2/(s² + 

4)²} = cos(2t) + (1/2)·sin(2t)·t 
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Notes Therefore, the solution is: y(t) = cos(2t) + (t/2)sin(2t) 

Solved Problem 3: Find the inverse Laplace transform of F(s) = (3s + 

7)/((s + 1)(s² + 4)) 

Solution: We'll use partial fraction decomposition to write F(s) in the form: 

F(s) = A/(s + 1) + (Bs + C)/(s² + 4) 

The common denominator is (s + 1)(s² + 4), so: (3s + 7) = A(s² + 4) + (Bs + 

C)(s + 1) = A(s² + 4) + Bs² + Bs + Cs + C = (A + B)s² + (B + C)s + (4A + C) 

Comparing coefficients: A + B = 0 B + C = 3 4A + C = 7 

From the first equation: B = -A 

Substituting into the second equation: -A + C = 3, so C = 3 + A 

Substituting into the third equation: 4A + (3 + A) = 7 5A + 3 = 7 5A = 4 A = 

4/5 

Therefore: B = -4/5 C = 3 + 4/5 = 19/5 

Now we have: F(s) = (4/5)/(s + 1) + ((-4/5)s + 19/5)/(s² + 4) = (4/5)/(s + 1) + 

(-4/5)·s/(s² + 4) + (19/5)/(s² + 4) 

Using the inverse Laplace transform: f(t) = (4/5)e(-t) + (-4/5)cos(2t) + 

(19/10)sin(2t) 

Solved Problem 4: Find the convolution of f(t) = e^(-t) and g(t) = sin(t) 

Solution: The convolution f(t) * g(t) can be found using Laplace transforms: 

L{f(t) * g(t)} = L{f(t)} · L{g(t)} 

First, we find: L{e(-t)} = 1/(s+1) L{sin(t)} = 1/(s² + 1) 

Therefore: L{f(t) * g(t)} = 1/(s+1) · 1/(s² + 1) = 1/((s+1)(s² + 1)) 

Using partial fraction decomposition: 1/((s+1)(s² + 1)) = A/(s+1) + (Bs + 

C)/(s² + 1) 
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Notes The common denominator is (s+1)(s² + 1), so: 1 = A(s² + 1) + (Bs + C)(s+1) 

= As² + A + Bs² + Bs + Cs + C = (A + B)s² + (B + C)s + (A + C) 

Comparing coefficients: A + B = 0 B + C = 0 A + C = 1 

From the first equation: B = -A From the second equation: C = -B = A 

Substituting into the third equation: A + A = 1 2A = 1 A = 1/2 

Therefore: B = -1/2 C = 1/2 

Now we have: L{f(t) * g(t)} = (1/2)/(s+1) + ((-1/2)s + 1/2)/(s² + 1) = 

(1/2)/(s+1) + (-1/2)·s/(s² + 1) + (1/2)/(s² + 1) 

Taking the inverse Laplace transform: f(t) * g(t) = (1/2)e(-t) + (-1/2)cos(t) + 

(1/2)sin(t) = (1/2)[e(-t) - cos(t) + sin(t)] 

Solved Problem 5: Find the Laplace transform of the periodic function 

f(t) shown below: 

f(t) = { t, 0 ≤ t < 1 2-t, 1 ≤ t <2 } 

with period T = 2 

Solution: For a periodic function with period T, the Laplace transform is: 

L{f(t)} = (1/(1-e(-sT))) · L{f₀(t)} 

Where f₀(t) is the function over one period [0,T]. 

In our case, T = 2 and: f₀(t) = { t, 0 ≤ t < 1 2-t, 1 ≤ t <2 } 

We can write this as: f₀(t) = t·[u(t) - u(t-1)] + (2-t)·[u(t-1) - u(t-2)] 

Taking the Laplace transform of each part: L{t·[u(t) - u(t-1)]} = ∫(0 to 1) t·e(-

st) dt = [(-t/s)e(-st) - (1/s²)e(-st)]₀¹ = (-1/s)e(-s) - (1/s²)e(-s) + 0 + (1/s²) = (1/s²) - 

(1/s + 1/s²)e(-s) 

L{(2-t)·[u(t-1) - u(t-2)]} = ∫(1 to 2) (2-t)·e^(-st) dt = e(-s) · ∫(0 to 1) (2-

(τ+1))·e(-sτ) dτ = e(-s) · ∫(0 to 1) (1-τ)·e(-sτ) dτ = e(-s) · [((-1+τ)/s)e(-sτ) - (1/s²)e(-

sτ)]₀¹ = e(-s) · [((-1+1)/s)e(-s) - (1/s²)e(-s) - ((-1)/s) - (1/s²)] = e(-s) · [-(1/s²)e(-s) + 

(1/s) + (1/s²)] = (e(-s)/s + e(-s)/s²) - (e(-2s)/s²) 
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Notes Combining the two parts: L{f₀(t)} = (1/s²) - (1/s + 1/s²)e(-s) + (e(-s)/s + e^(-

s)/s²) - (e(-2s)/s²) = (1/s²) + (e(-s)/s) - (e(-2s)/s²) 

Therefore, the Laplace transform of the periodic function is: L{f(t)} = (1/(1-

e(-2s))) · [(1/s²) + (e(-s)/s) - (e(-2s)/s²)] 

Simplifying: L{f(t)} = (1/(1-e(-2s))) · [(1/s²)(1 - e(-2s)) + (e(-s)/s)] = (1/s²) + (e(-

s)/s) · (1/(1-e(-2s))) = (1/s²) + (e(-s)/s) · (1/(1-e(-2s))) 

The final result is: L{f(t)} = (1/s²) + (e(-s)/(s(1-e(-2s)))) 

Unsolved Problems 

Unsolved Problem 1 

Find the Laplace transform of f(t) = t·cos(2t)·e(-3t). 

Unsolved Problem 2 

Solve the differential equation y'' + 4y' + 13y = e(-2t)sin(t) with initial 

conditions y(0) = 0 and y'(0) = 1. 

Unsolved Problem 3 

Find the inverse Laplace transform of F(s) = s²/((s² + 4)(s² + 9)). 

Unsolved Problem 4 

A series RLC circuit has R = 4Ω, L = 1H, and C = 1/16F. If the initial 

current is zero and the initial voltage across the capacitor is 10V, find the 

current i(t) when a voltage source V(t) = 5sin(4t) is applied. 

Unsolved Problem 5 

Find the convolution of f(t) = te(-2t) and g(t) = t²e(-t). 

Applications of Fourier and Laplace Transforms in Engineering and 

Physics 

Introduction to Transform Methods 



 

187 
 

Notes Fourier and Laplace transforms are powerful mathematical tools that convert 

complex differential equations into simpler algebraic equations. They 

provide elegant solutions to a wide range of problems in various fields of 

engineering and physics. 

The key distinctions between these transforms are: 

• Fourier transforms handle periodic functions and map the time 

domain to the frequency domain 

• Laplace transforms handle non-periodic functions and map the time 

domain to the complex frequency domain (s-domain) 

Fourier Transform: A Brief Overview 

The Fourier transform of a function f(t) is defined as: 

F(ω) = ∫ f
∞

−∞
(t)e-jωt) dt 

Where: 

• F(ω) is the Fourier transform of f(t) 

• ω is the angular frequency in radians per second 

• j is the imaginary unit (√-1) 

The inverse Fourier transform is: 

f(t) = (1/2π) ∫ f
∞

−∞
 (ω)e(jωt) dω 

Applications of Fourier Transforms 

1. Signal Processing 

Fourier transforms convert time-domain signals into frequency-domain 

representations, enabling: 

Filtering: Unwanted frequencies can be removed from signals by: 

• Multiplying the Fourier transform by a filter function 

• Taking the inverse Fourier transform to recover the filtered signal 
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Notes Spectral Analysis: Identifying component frequencies in complex signals 

for: 

• Audio processing and music analysis 

• Speech recognition 

• Vibration analysis in mechanical systems 

Convolution: Simplified through multiplication in the frequency domain: 

• y(t) = x(t) * h(t) ⟺ Y(ω) = X(ω) · H(ω) 

• Facilitates analysis of linear time-invariant systems 

2. Image Processing 

Fourier transforms are extensively used in image processing for: 

Image Filtering: 

• Low-pass filters smoothen images by removing high-frequency 

components 

• High-pass filters enhance edges by emphasizing high-frequency 

components 

• Band-pass filters select specific frequency ranges 

Image Compression: 

• JPEG compression uses the Discrete Cosine Transform (DCT) 

• Quantization of frequency components reduces file size 

• Maintains visual quality by preserving essential frequency 

information 

Feature Extraction: 

• Identifying patterns, shapes, and edges 

• Texture analysis 

• Pattern recognition and object detection 

3. Optics and Wave Propagation 

Fourier transforms model various optical phenomena: 
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Notes Diffraction: 

• The diffraction pattern of light passing through an aperture is the 

Fourier transform of the aperture function 

• Enables analysis of optical systems like lenses and microscopes 

Holography: 

• Recording and reconstruction of wavefronts 

• Creation of three-dimensional images 

X-ray Crystallography: 

• Determining molecular and crystal structures 

• The diffraction pattern is related to the Fourier transform of the 

electron density 

4. Quantum Mechanics 

Fourier transforms connect position and momentum representations: 

Wave Functions: 

• Transforms between position space and momentum space 

• The momentum-space wave function is the Fourier transform of the 

position-space wave function 

Uncertainty Principle: 

• The mathematical basis for Heisenberg's uncertainty principle 

• The product of uncertainties in position and momentum is related to 

properties of Fourier transform pairs 

Applications of Laplace Transforms 

1. Control Systems 

Laplace transforms are fundamental to control systems analysis: 

Transfer Functions: 
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Notes • The ratio of output to input in the s-domain 

• Characterizes system behavior without solving differential equations 

• H(s) = Y(s)/X(s) 

Stability Analysis: 

• System stability determined by poles of transfer function 

• Poles in the left half of the s-plane indicate stable systems 

Frequency Response: 

• Obtained by evaluating H(s) at s = jω 

• Bode plots display magnitude and phase information 

Block Diagram Algebra: 

• Simplified analysis of complex systems 

• Series, parallel, and feedback connections are easily represented 

2. Circuit Analysis 

Laplace transforms simplify electronic circuit analysis: 

Complex Impedance: 

• Resistors: Z(s) = R 

• Capacitors: Z(s) = 1/(sC) 

• Inductors: Z(s) = sL 

Transient Response: 

• Analyzing circuits with switching events 

• Determining time-domain behavior of voltages and currents 

AC Circuit Analysis: 

• Steady-state response to sinusoidal inputs 

• Phasor analysis as a special case of Laplace transforms 

Network Functions: 
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Notes • Input-output relationships for complex networks 

• Calculation of voltage transfer, current transfer, and impedance 

functions 

3. Mechanical Systems 

Laplace transforms analyze vibrations and mechanical systems: 

Vibration Analysis: 

• Determining natural frequencies and mode shapes 

• Response to impact and periodic forcing 

Structural Dynamics: 

• Modeling building and bridge responses to loads 

• Earthquake engineering applications 

Vehicle Suspension Systems: 

• Ride comfort and handling characteristics 

• Response to road irregularities 

Damped Oscillations: 

• Analysis of systems with viscous or structural damping 

• Determining critical damping conditions 

4. Heat Transfer 

Laplace transforms solve heat conduction problems: 

Transient Heat Conduction: 

• Temperature distribution in solids over time 

• Response to sudden heating or cooling 

Heat Exchangers: 

• Dynamic behavior during startup and load changes 

• Effectiveness and performance analysis 
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Notes Thermal Stress Analysis: 

• Stresses induced by temperature gradients 

• Thermal fatigue prediction 

5. Fluid Dynamics 

Laplace transforms analyze fluid flow problems: 

Potential Flow: 

• Irrotational, incompressible flow modeling 

• Solutions to Laplace's equation in fluid mechanics 

Wave Propagation in Fluids: 

• Acoustic waves and pressure pulses 

• Shock wave analysis 

Groundwater Flow: 

• Analysis of aquifer dynamics 

• Contaminant transport modeling 

Case Studies: Real-World Applications 

Case Study 1: Magnetic Resonance Imaging (MRI) 

MRI technology relies heavily on Fourier transforms: 

Signal Generation: 

• Radio-frequency pulses excite hydrogen nuclei 

• Precession of magnetization produces detectable signals 

Image Reconstruction: 

• 2D or 3D Fourier transforms convert k-space data to spatial images 

• Inverse Fourier transforms convert frequency-encoded data to 

anatomical images 
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Notes Pulse Sequence Design: 

• Gradient-echo and spin-echo sequences 

• Control of contrast, resolution, and scan time 

Case Study 2: Audio Equalizers and Sound Processing 

Fourier-based techniques in audio engineering: 

Equalizers: 

• Adjusting amplitudes of specific frequency bands 

• Fast Fourier Transform (FFT) for real-time frequency analysis 

Noise Reduction: 

• Identifying and attenuating noise components in the frequency 

domain 

• Preserving signal integrity while removing unwanted sounds 

Compression and Effects: 

• Dynamic range compression based on frequency analysis 

• Reverb, echo, and other effects applied in the frequency domain 

Case Study 3: PID Controllers in Industrial Automation 

Laplace transforms enable effective controller design: 

Controller Transfer Function: 

• Proportional term: Kp 

• Integral term: Ki/s 

• Derivative term: Kd·s 

Closed-Loop Analysis: 

• Stability and performance assessment 

• Root locus design methods 

Tuning Methods: 
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Notes • Ziegler-Nichols and other tuning techniques 

• Optimization of response characteristics 

Case Study 4: Seismic Data Processing 

Transform methods in geophysical exploration: 

Fourier Analysis: 

• Frequency content analysis of seismic waves 

• Filtering of unwanted noise and reflections 

Laplace Domain Methods: 

• Migration and imaging algorithms 

• Inverse problems in seismic reconstruction 

Advanced Topics and Developments 

Discrete Transforms 

Discrete Fourier Transform (DFT): 

• For sampled signals of finite length 

• Fast Fourier Transform (FFT) algorithm for efficient computation 

• O(N log N) complexity versus O(N²) for direct computation 

Z-Transform: 

• Discrete counterpart to the Laplace transform 

• Analysis of discrete-time systems and digital filters 

• Transfer functions for digital signal processing 

Wavelet Transforms 

Time-Frequency Localization: 

• Overcomes limitations of Fourier transforms for non-stationary 

signals 

• Provides both time and frequency information 
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Notes Multiresolution Analysis: 

• Analyzing signals at different scales 

• Effective for transient phenomena and discontinuities 

Applications: 

• Image compression (JPEG2000) 

• Feature detection and pattern recognition 

• Biomedical signal processing 

Fractional Transforms 

Fractional Fourier Transform: 

• Generalization of the Fourier transform 

• Rotation in the time-frequency plane 

• Applications in optics and signal processing 

Fractional Laplace Transform: 

• Extended to fractional-order systems 

• Models systems with memory effects and anomalous diffusion 

Computational Aspects 

Numerical Methods 

Fast Algorithms: 

• FFT and related algorithms for efficient computation 

• Cooley-Tukey algorithm and its variants 

Discretization Issues: 

• Sampling rate considerations (Nyquist theorem) 

• Aliasing and leakage errors 

• Windowing techniques (Hamming, Blackman, etc.) 

Software Tools 
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Notes Scientific Computing Packages: 

• MATLAB, Python (NumPy, SciPy) 

• Specialized DSP libraries 

Hardware Acceleration: 

• FPGA and GPU implementations for real-time applications 

• Dedicated DSP processors 

Emerging Trends and Future Directions 

Machine Learning Integration 

Neural Networks and Transforms: 

• Convolutional Neural Networks (CNNs) based on Fourier principles 

• Deep learning for inverse problems in transform domains 

Sparse Representations: 

• Compressive sensing techniques 

• Sparse Fourier transforms for efficient computation 

Quantum Computing Applications 

Quantum Fourier Transform: 

• Exponential speedup for certain problems 

• Foundation for Shor's factoring algorithm 

Quantum Signal Processing: 

• Potential for quantum advantage in transform calculations 

• Applications in quantum sensing and metrology 

Mathematical Fundamentals and Extensions 

Generalized Transforms 

Short-Time Fourier Transform (STFT): 
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Notes • Analyzing time-varying spectra 

• Applications in speech analysis and music processing 

Hilbert Transform: 

• Relationship to Fourier transform 

• Applications in signal envelope detection and modulation 

Mellin Transform: 

• Related to the Fourier and Laplace transforms 

• Scale-invariant analysis of signals 

Relationship between Transforms 

Fourier-Laplace Connection: 

• Laplace transform as an extension of Fourier transform to complex 

frequencies 

• Convergence considerations and regions of validity 

Transform Pairs and Duality: 

• Establishing connections between different domains 

• Exploiting symmetry properties for efficient computation 

Practical Implementation Challenges 

Boundary Conditions and Convergence 

Ensuring Transform Existence: 

• Conditions for transform existence and uniqueness 

• Handling functions with discontinuities 

Numerical Stability: 

• Ill-conditioned problems in inverse transforms 

• Regularization methods for stable solutions 

Real-Time Processing Considerations 
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Notes Computational Efficiency: 

• Balancing accuracy and speed 

• Block processing and overlap-add methods 

Hardware Constraints: 

• Memory limitations 

• Processing power requirements for embedded systems 

Interdisciplinary Applications 

Telecommunications 

Modulation Schemes: 

• Frequency Division Multiplexing (FDM) 

• Orthogonal Frequency Division Multiplexing (OFDM) 

• Spectrum analysis and allocation 

Channel Estimation: 

• Characterizing transmission channels in the frequency domain 

• Equalization techniques based on transform methods 

Biomedical Engineering 

Medical Imaging: 

• Beyond MRI: CT scanning, ultrasound imaging 

• Image reconstruction algorithms using transform techniques 

Biosignal Analysis: 

• EEG, ECG, and EMG signal processing 

• Feature extraction for diagnostic purposes 

Financial Engineering 

Time Series Analysis: 
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Notes • Spectral analysis of financial data 

• Identifying cyclical patterns in markets 

Option Pricing Models: 

• Transform methods for solving Black-Scholes equations 

• Efficient computation of option values 

Practical Examples of Computational Implementation 

Example 1: Implementing FFT for Power Spectrum Analysis 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.fft import fft, fftfreq 

# Generate a signal with multiple frequency components 

t = np.linspace(0, 1, 1000, endpoint=False) 

signal = 3*np.sin(2*np.pi*5*t) + 2*np.sin(2*np.pi*10*t) + 

np.sin(2*np.pi*20*t) 

# Add some noise 

noisy_signal = signal + 0.5*np.random.randn(len(t)) 

# Compute the FFT 

N = len(t) 

yf = fft(noisy_signal) 

xf = fftfreq(N, t[1] - t[0]) 

# Compute power spectrum (magnitude squared) 

power_spectrum = np.abs(yf)**2 

# Plot only the positive frequencies 

plt.figure(figsize=(10, 6)) 

plt.subplot(2, 1, 1) 

plt.plot(t, noisy_signal) 

plt.title('Noisy Time Domain Signal') 

plt.xlabel('Time (s)') 

plt.ylabel('Amplitude') 

plt.subplot(2, 1, 2) 

plt.plot(xf[:N//2], power_spectrum[:N//2]) 

plt.title('Power Spectrum') 

plt.xlabel('Frequency (Hz)') 
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Notes plt.ylabel('Power') 

plt.xlim(0, 30)  # Limit to relevant frequency range 

plt.tight_layout() 

This example demonstrates how to: 

1. Generate a time-domain signal with multiple frequency components 

2. Add noise to simulate real-world conditions 

3. Compute the FFT using an efficient algorithm 

4. Calculate and visualize the power spectrum 

Example 2: Solving an RLC Circuit Using Laplace Transforms 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy import signal 

# Circuit parameters 

R = 10.0    # Resistance in ohms 

L = 0.1     # Inductance in henries 

C = 1e-4    # Capacitance in farads 

# Transfer function numerator and denominator 

num = [1/(L*C), 0]  # [1/(LC), 0] for voltage across capacitor 

den = [1, R/L, 1/(L*C)]  # [s^2 + (R/L)s + 1/(LC)] 

# Create the system 

system = signal.TransferFunction(num, den) 

# Time points 

t = np.linspace(0, 0.05, 1000) 

# Step response (unit step input) 

t, y = signal.step(system, T=t) 

# Impulse response 

t_imp, y_imp = signal.impulse(system, T=t) 

# Plot the responses 

plt.figure(figsize=(10, 8)) 

plt.subplot(2, 1, 1) 

plt.plot(t, y) 

plt.title('Step Response of RLC Circuit') 

plt.xlabel('Time (s)') 

plt.ylabel('Capacitor Voltage (V)') 
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Notes plt.grid(True) 

plt.subplot(2, 1, 2) 

plt.plot(t_imp, y_imp) 

plt.title('Impulse Response of RLC Circuit') 

plt.xlabel('Time (s)') 

plt.ylabel('Capacitor Voltage (V)') 

plt.grid(True) 

plt.tight_layout() 

Comprehending the Fourier Transform of Test Functions and 

Distributions: Applications in Contemporary Analysis 

The Fourier transform is a highly potent instrument in mathematical 

analysis, applicable in fields ranging from signal processing to quantum 

mechanics.  This transform, when applied to test functions and distributions, 

offers a framework for resolving several differential equations and 

examining phenomena that would otherwise be intractable using traditional 

methods.  The contemporary method of Fourier analysis via distribution 

theory has transformed our comprehension of partial differential equations, 

providing sophisticated answers to challenges in physics, engineering, and 

applied mathematics. 

The Fourier Transform of Test Functions 

The traditional Fourier transform, although effective for functions in L¹ or L² 

spaces, encounters limits when dealing with functions exhibiting certain 

growth tendencies or singularities.  Extending this transformation to the 

domain of test functions provides a more adaptable analytical approach.  

Test functions, represented as elements of the Schwartz space S(ℝⁿ), are 

infinitely differentiable functions that, along with all their derivatives, 

diminish more rapidly than any polynomial at infinity.  This rapid fading 

characteristic renders them very suitable for Fourier analysis. 

 The Fourier transform of a test function φ(x) is defined as: 

Fφ = ∫(ℝⁿ) φ(x)e^(-2πix·ξ) dx 

 This transform possesses the notable characteristic of mapping Schwartz 

space onto itself, indicating that the Fourier transform of a test function 

remains a test function.  This characteristic enables numerous procedures 

that would otherwise encounter convergence problems.  Moreover, the 
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Notes transformation maintains the fundamental smoothness and decay properties, 

enabling the interchange of differentiation and multiplication operations in a 

regulated way. In practical applications, test functions function as idealized 

representations of actual signals with compact support or rapid decay.  In 

signal processing, a finite-duration pulse can be represented by a test 

function, facilitating the analysis of its frequency content without regard for 

edge effects or convergence problems.  This method is especially beneficial 

in communication systems when signal analysis requires simultaneous 

consideration of both time and frequency domains. The Fourier transform of 

test functions offers a coherent foundation for comprehending uncertainty 

principles.  The esteemed Heisenberg uncertainty principle in quantum 

physics is accurately articulated via the Fourier transform features of test 

functions.  The principle serves as a basic limitation on the concurrent 

localization of a function and its Fourier transform, illustrating the physical 

fact that a particle's position and momentum cannot be measured 

concurrently with arbitrary precision. 

Distributions and Their Fourier Transforms 

The notion of distributions, or generalized functions, signifies a significant 

advancement in classical function theory.  Distributions arise as continuous 

linear functionals on test functions, enabling us to assign exact meaning to 

operations on entities that may lack clear definition in the classical context.  

The Dirac delta "function," arguably the most renowned distribution, 

exemplifies a case where it is not a function in the conventional sense, yet 

acquires a precise interpretation as a distribution. 

The Fourier transform naturally extends to the space of distributions via 

duality.  For a distribution T, its Fourier transform is characterized by its 

application to test functions: 

⟨F[T], φ⟩ = ⟨T, F[φ]⟩ 

This formulation leverages the orderly characteristics of test functions in 

relation to the Fourier transform.  This method provides well-defined 

Fourier transforms for items such as the Dirac delta distribution and the 

Heaviside step function.  The Fourier transform of the Dirac delta function 

manifests as a constant function, signifying its characterization as a 

"impulse" encompassing all frequencies uniformly.This distribution theory 
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Notes methodology addresses numerous dilemmas in classical analysis.  Examine 

differential equations characterized by discontinuous coefficients or single 

sources—circumstances commonly observed in physical problems involving 

shocks, interfaces, or point sources.  Distribution theory offers robust 

methodologies for addressing these situations, facilitating answers that are 

absent in the classical framework.In electrical engineering, distributions 

represent idealized circuit components and signals.  An ideal voltage source 

that switches instantaneously is represented by a Heaviside function, but an 

ideal impulse is represented by a Dirac delta function.  The Fourier 

transform elucidates the frequency response of systems exposed to these 

idealized inputs, offering insights into system behavior across all frequencies 

concurrently. 

Tempered Distributions and Their Fourier Characteristics 

Tempered distributions constitute a subset of all distributions, distinguished 

by their regulated growth characteristics.  A tempered distribution can be 

represented as a derivative of a continuous function exhibiting polynomial 

growth of a certain degree.  This class achieves an ideal equilibrium—

sufficiently expansive to encompass the majority of physically relevant 

distributions yet sufficiently constrained to permit a well-defined Fourier 

transform. The space of tempered distributions, represented as S'(ℝⁿ), 

constitutes the dual of the Schwartz space.  The Fourier transform creates an 

isomorphism in this space, mapping tempered distributions to tempered 

distributions in a bijective manner while keeping the linear structure.  This 

condition guarantees that the Fourier transform and its inverse are clearly 

defined operations for a broad range of generalized functions. Tempered 

distributions include functions with polynomial growth, periodic functions, 

and distributions with singularities, rendering them suitable for describing 

physical phenomena.  In crystal structure analysis, the electron density 

within a crystal lattice can be shown as a tempered distribution, facilitating a 

systematic examination of its Fourier transform, known as the structure 

factor. The Fourier transform pairs associated with tempered distributions 

demonstrate significant relationships in mathematical physics.  Examine the 

correlation between position and momentum spaces in quantum 

mechanics—the wave function in position space and its momentum space 

representation are intricately connected via the Fourier transform.  The 

clarity of this translation for tempered distributions guarantees that quantum 
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mathematical representation in both frameworks. A notable use is found in 

partial differential equations.  The fundamental solution, or Green's function, 

for constant-coefficient partial differential equations can be succinctly 

articulated through the Fourier transform of tempered distributions.  The 

heat kernel, which signifies the temperature dispersion from a point source, 

is derived directly from the Fourier transform method applied to the heat 

equation. 

The Wave Equation and Its Fundamental Solution 

The wave equation regulates phenomena from electromagnetic waves to 

seismic events.  In its conventional format: 

∂²u/∂t² = c²∇²u 

In this equation, c denotes the wave speed, modeling wave propagation in 

homogeneous mediums.  The fundamental solution to this equation 

delineates the response to a point impulse, effectively elucidating the 

propagation of a wave from a confined disturbance. 

Distribution theory offers a refined method for determining this essential 

solution.  In three-dimensional space, the solution is expressed as: 

G(x,t) = (1/4πc|x|)δ(|x| - ct) 

This statement denotes a spherical wave emanating outward at speed c from 

the origin.  The Dirac delta function in the equation signifies that the 

perturbation is localized on the expanding spherical wavefront, consistent 

with Huygens' principle.The formulation of this solution fundamentally 

depends on the Fourier transform of tempered distributions.  Transforming 

the wave problem into the frequency-wavenumber domain changes the 

differential equation into an algebraic equation, allowing for explicit 

resolution.  The inverse Fourier transform produces the fundamental solution 

in physical space. This method uncovers significant insights into wave 

propagation.  In odd-dimensional spaces, the Huygens principle is strictly 

applicable—disturbances propagate exclusively along the wavefront without 

trailing effects.  In even-dimensional spaces, the solution include terms that 

diminish behind the wavefront, resulting in a "wake" effect.  This 

mathematical distinction elucidates apparent variations in wave behavior 

across diverse dimensional contexts. In practical applications, the 
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more intricate wave problems.  The notion of superposition allows for the 

resolution of any initial circumstances or source distributions by suitable 

integration with the fundamental solution.  This methodology is utilized in 

seismology, where earthquake waves are represented by the fundamental 

solution of the wave equation, facilitating the examination of seismic wave 

propagation within the Earth's interior. The fundamental solution of the 

wave equation elucidates the connection between waves and particles.  In 

quantum physics, the wave function of a free particle adheres to the wave 

equation (the Schrödinger equation), and its fundamental solution indicates 

the probability amplitude for particle propagation.  This relationship 

highlights the wave-particle duality fundamental to quantum theory. 

Fourier Transforms and Convolutions 

The Fourier transform possesses a significant capability in its handling of 

convolutions.  For appropriate functions f and g, the Fourier transform of 

their convolution is equivalent to the product of their respective Fourier 

transforms: 

F[f * g] = F[f] · F[g] 

This principle, sometimes referred to as the convolution theorem, converts a 

potentially complex integral operation (convolution) into a straightforward 

multiplication in the frequency domain.  This finding has far-reaching 

ramifications in signal processing, differential equations, and probability 

theory.This relationship acquires further significance within the setting of 

distributions.  Numerous differential operators, when applied to 

distributions, provide convolutions with particular distributions.  The 

fundamental solution of a differential equation serves as the convolution 

kernel that, when applied to a source term, produces the solution to the 

equation corresponding to that source. 

Examine the heat equation: 

 ∂u/∂t = k∇²u 

 The essential solution, known as the heat kernel, functions as a convolution 

kernel.  The solution with a given initial temperature distribution f(x) is 

expressed as: 
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K_t denotes the heat kernel at time t.  The Fourier transform transforms this 

convolution into multiplication, offering an efficient computational method 

and illustrating the evolution of various frequency components in the 

original data over time. 

In signal processing, convolution represents the impact of transmitting a 

signal through a linear time-invariant system.  The system's impulse 

response, when convolved with an input signal, generates the output signal.  

The Fourier transform facilitates the multiplication of the signal's spectrum 

by the system's frequency response, enabling engineers to create filters with 

defined frequency-domain attributes. 

The convolution theorem is exceptionally helpful in the realm of probability 

theory.  The probability density function of the sum of independent random 

variables is the convolution of their respective density functions.  The 

Fourier transform of a probability density function produces the 

characteristic function, and the convolution theorem corresponds to the 

multiplication of characteristic functions.  This property enables the 

examination of sums of random variables, underpinning the Central Limit 

Theorem and other findings in statistical theory. 

The convolution structure is also present in image processing, where tasks 

such as blurring or edge detection need convolving a picture with suitable 

kernels.  Fast Fourier Transform techniques utilize the convolution theorem 

to execute operations effectively in the frequency domain, facilitating real-

time image processing applications. 

The Laplace Transform and Its Connection to Fourier Analysis 

The Fourier transform is proficient in evaluating periodic events and 

stationary processes, whereas the Laplace transform provides benefits for 

systems exhibiting growth or decay characteristics and initial-value 

difficulties.  The Laplace transform of a function f(t), defined for t ≥ 0, is 

expressed as: 

Lf = ∫(0 to ∞) f(t)e^(-st) dt 
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as a generalization of the Fourier transform, with an exponential damping 

factor to accommodate functions exhibiting exponential development. 

The connection between these transforms is elucidated when we examine s = 

σ + iω.  The Laplace transform along the imaginary axis (when σ = 0) is 

equivalent to the Fourier transform.  This relationship facilitates the transfer 

of techniques between domains, with the Laplace transform providing 

broader applicability to functions that are not suitable for direct Fourier 

analysis. 

The Laplace transform is most appropriately applied to initial-value 

problems in ordinary and partial differential equations.  Examine a linear 

ordinary differential equation with constant coefficients: 

 

Having beginning conditions y(0), y'(0), ..., y^(n-1)(0) delineated.  The use 

of the Laplace transform transforms this differential equation into an 

algebraic equation within the s-domain: 

 

Y(s) and F(s) denote the Laplace transforms of y(t) and f(t), respectively.  

The algebraic problem can be resolved for Y(s), and the answer y(t) is 

subsequently obtained by the inverse Laplace transform. 

This method's efficacy is rooted on its methodical management of beginning 

conditions and discontinuous forcing functions.  In electrical circuit analysis, 

the Laplace transform transforms integro-differential equations that dictate 

circuit behavior into algebraic equations in the s-domain.  The circuit's 

reaction to step inputs, impulses, or other signals can be obtained by a 

cohesive methodology.Control theory constitutes another field in which the 

Laplace transform is essential.  Transfer functions, which delineate the 

relationship between a system's input and output in the s-domain, enable the 

examination of system stability, frequency response, and transient behavior.  

The poles and zeros of these transfer functions—the values of s that render 

the function infinite or zero—offer essential insights into system dynamics. 
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study of viscoelasticity.  The relaxation modulus (stress response to a step 

strain) and creep compliance (strain response to a step stress) are 

interconnected via their Laplace transforms, enabling the prediction of 

material properties measured in one domain based on behavior in the other. 

The Laplace transform is applicable to distributions, analogous to the 

evolution of the Fourier transform for generalized functions.  This extension 

facilitates a cohesive approach to systems exhibiting discontinuities or 

unique behaviors, including those characterized by impulses or step shifts. 

Contemporary Applications in Science and Engineering 

The theoretical framework of Fourier and Laplace transforms for test 

functions and distributions is applicable in various domains of modern 

research and engineering.  In every subject, these tools offer not only 

computational techniques but also conceptual frameworks for 

comprehending intricate phenomena. In contemporary signal processing, 

wavelet transforms have developed as an enhancement of Fourier 

techniques, providing focused frequency analysis.  The mathematical basis 

for wavelets is thoroughly established in distribution theory and the 

characteristics of test functions.  Wavelet analysis facilitates the 

identification of fleeting characteristics in signals, applicable in areas such 

as image compression and gravitational wave detection. Quantum field 

theory heavily depends on distribution theory to address the singular 

characteristics of quantum fields.  The propagator functions, which delineate 

the propagation of quantum effects through spacetime, are characterized as 

tempered distributions, with their Fourier transforms providing probability 

amplitudes for particle interactions.  Renormalization processes fundamental 

to quantum field theory entail meticulous manipulation of distributions to 

derive physically significant outcomes from ostensibly disparate 

expressions. Computational fluid dynamics utilizes the fundamental 

solutions of partial differential equations to simulate flow events.  The 

Green's function method, utilizing distribution theory, facilitates the 

effective numerical resolution of the Navier-Stokes equations in intricate 

geometries.  Contemporary meteorological forecasting models and 

aerodynamic simulations are predicated on these mathematical principles. 
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and Computed Tomography (CT) primarily depend on transformation 

algorithms.  The reconstruction of three-dimensional tissue structures from 

projection data entails inverse issues that directly utilize the mathematics of 

the Radon transform and its connection to Fourier analysis.  The efficacy 

and precision of these reconstruction methods dictate the diagnostic 

significance of the resultant images. The creation of contemporary 

modulation schemes and coding techniques in telecommunications relies on 

an advanced comprehension of signal spaces and their transformation 

features.  The mathematical framework of distributions enables engineers to 

examine idealized signals with exact bandwidth constraints or defined 

correlation characteristics, resulting in communication systems that near 

theoretical capacity limits.Financial mathematics has used transformation 

methods for option valuation and risk assessment.  The Black-Scholes 

equation, which dictates the evolution of option prices, can be resolved by 

methods derived from partial differential equation theory that utilize 

fundamental solutions and transformation techniques.  The characteristic 

function method for option pricing utilizes the Fourier transform of 

probability distributions to effectively manage intricate stochastic models. 

Computational Considerations and Numerical Execution 

 The execution of transformation methods for practical computation poses 

both obstacles and opportunities.  The theoretical framework of distributions 

offers elegant closed-form solutions, whereas numerical calculation 

necessitates discretization and finite approximations. The Fast Fourier 

Transform (FFT) technique transformed numerical computing by decreasing 

the complexity of discrete Fourier transform calculations from O(n²) to O(n 

log n).  This efficiency advancement facilitated real-time signal processing 

applications that would otherwise be computationally impractical.  The FFT 

inherently executes a discrete and periodic variant of the transform, 

necessitating careful management of aliasing and wraparound effects. 

Numerical approaches must tackle the singular characteristics of 

fundamental solutions in PDEs.  Regularization approaches, which 

substitute singular distributions with smooth approximations, represent one 

methodology.  Alternatively, integral equation approaches reconfigure the 

issue to circumvent direct assessment at singularities.  Contemporary 

numerical software employs adaptive algorithms that focus computing 
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Notes resources on areas where solution behavior varies significantly. The 

numerical inversion of Laplace transforms poses specific difficulties, as the 

inverse transform entails an integral in the complex plane.  Techniques such 

as the Talbot algorithm and Weeks' method offer reliable solutions for 

particular categories of functions, however general-purpose algorithms face 

challenges due to the intrinsic ill-posedness of the inversion problem.  

Regularization approaches, which integrate a priori knowledge on solution 

characteristics, enhance the stability of these inversions. Recent 

advancements in machine learning methodologies have surfaced for 

approximating solutions to partial differential equations (PDEs) utilizing the 

fundamental solution framework.  By parameterizing the solution as a neural 

network and integrating the PDE constraints via suitable loss functions, 

these methods can tackle challenges in intricate geometries where 

conventional numerical techniques encounter obstacles.  The mathematical 

basis for these systems continues to depend on distribution theory, despite 

significant differences in computer execution compared to classical 

methods. 

Theoretical Expansions and Unresolved Issues 

The theory of distributions and transform methods is always advancing, with 

numerous active research avenues expanding the framework into new areas 

and tackling enduring issues. 

Nonlinear problems represent a domain where distribution theory encounters 

substantial difficulties.  The multiplication of distributions lacks a 

universally applicable definition that aligns with all requisite criteria, hence 

constraining the direct utilization of distribution methods in nonlinear 

differential equations.  Colombeau algebras offer frameworks for managing 

nonlinear operations on distributions, albeit with some concessions 

regarding classical features.  These expansions are utilized in shock wave 

theory and nonlinear acoustics, where conventional distribution theory is 

inadequate. Fractional calculus generalizes differentiation and integration to 

non-integer orders, resulting in fractional differential equations that 

represent phenomena exhibiting memory effects or anomalous diffusion.  

The Fourier and Laplace transforms of fractional derivatives possess clearly 

defined representations in terms of power functions, rendering transform 

methods especially appropriate for these equations.  Applications encompass 
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memory stochastic processes. Stochastic partial differential equations 

(SPDEs) integrate random noise components, representing systems 

influenced by random variations or uncertainty.  The fundamental solutions 

method applies in this scenario, with the Green's function serving as a 

propagator for both deterministic dynamics and stochastic influences.  

Distribution theory offers a robust framework for constructing these 

equations and their solutions, especially for stochastic processes 

characterized by rough noise, such as white noise. Time-frequency analysis 

expands Fourier techniques to analyze signals with time-varying frequency 

content.  Distributions are fundamental in the formulation of transforms such 

as the Wigner-Ville distribution and the short-time Fourier transform, which 

convert signals into joint time-frequency representations.  The theoretical 

characteristics of these transformations, encompassing uncertainty concepts 

and inversion formulas, originate from the foundational framework of 

distribution theory.Microlocal analysis enhances distribution theory to 

identify not only the locations of singularities but also the directions that 

influence singular behavior in phase space.  This advanced framework 

enables accurate assessment of singularity propagation in solutions to PDEs, 

applicable in seismic imaging, medical ultrasound, and radar systems. 

The examination of Fourier transforms for test functions and distributions, in 

conjunction with other transforms such as the Laplace transform, offers a 

cohesive mathematical framework for tackling a wide range of issues in both 

pure and applied mathematics.  This framework surpasses conventional 

limits among many mathematical domains, providing a unified vocabulary 

for phenomena from quantum fields to financial markets. This approach's 

efficacy resides in its capacity to reduce intricate processes such as 

differentiation and convolution into more manageable algebraic operations 

inside the transform domain.  This transformation enables both theoretical 

examination and practical calculation, uncovering structural characteristics 

that may be concealed in the original formulation. The extension to 

distributions enables these methods to tackle single behaviors and idealized 

models that encapsulate fundamental characteristics of physical systems 

without becoming mired in mathematical complexities.  The essential 

solutions of partial differential equations, articulated via distribution theory, 

serve as foundational elements for comprehending wave propagation, 
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Notes diffusion phenomena, and potential fields. As computational capabilities 

increase, the application of these theoretical tools grows more advanced, 

allowing for the simulation of complicated systems with unparalleled 

accuracy.  The theoretical framework is concurrently advancing, tackling 

nonlinear phenomena, stochastic systems, and multiscale issues. The 

interaction between theory and application in this field illustrates the 

significant relationship between abstract mathematical frameworks and our 

comprehension of the physical realm.  This unified framework illustrates the 

efficacy of mathematical analysis in revealing the patterns that control both 

natural events and engineering systems, from the refined characteristics of 

test functions to the actual calculation of wave propagation. 

SELF ASSESSMENT QUESTIONS 

Multiple Choice Questions (MCQs) 

 

1. What is the primary purpose of the Fourier transform in 

distribution theory? 

a) To convert functions from the time domain to the frequency 

domain 

b) To approximate differential equations using algebraic methods 

c) To find the roots of polynomials 

d) To eliminate singularities in distributions 

Answer: a) To convert functions from the time domain to the frequency 

domain 

2. Which of the following is a fundamental property of the Fourier 

transform? 

a) Linearity 

b) Non-commutativity 

c) Only defined for continuous functions 

d) Always results in a real-valued function 

Answer: a) Linearity 

3. The Fourier transform of the Dirac delta function 

δ(x)\delta(x)δ(x) is: 

a) 1 
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Notes b) e{-x} 

c) sin x 

d) x2 

Answer: a) 1 

4. Which of the following statements about the Fourier transform 

of test functions is true? 

a) Test functions have rapidly decaying Fourier transforms 

b) The Fourier transform of a test function is always periodic 

c) The Fourier transform does not exist for test functions 

d) Test functions and their Fourier transforms must be identical 

Answer: a) Test functions have rapidly decaying Fourier transforms 

5. What is the Fourier transform of the derivative of a distribution 

T(x)? 

a) iξ times the Fourier transform of T(x) 

b) The integral of the Fourier transform of T(x) 

c) The Laplace transform ofT(x) 

d) Unchanged from the original function 

Answer: a) iξ times the Fourier transform of T(x) 

6. What class of distributions is best suited for the Fourier 

transform in distribution theory? 

a) Tempered distributions 

b) Compactly supported distributions 

c) Discrete functions 

d) Periodic functions 

Answer: a) Tempered distributions 

7. What is the relationship between the Fourier transform and 

convolution? 

a) The Fourier transform of a convolution is the product of the 

individual Fourier transforms 

b) The Fourier transform of a convolution is always zero 

c) The Fourier transform and convolution are unrelated 

d) Convolution eliminates the need for Fourier transforms 
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individual Fourier transforms 

8. How does the Laplace transform differ from the Fourier 

transform? 

a) The Laplace transform includes an exponential weighting factor 

b) The Laplace transform is only defined for periodic functions 

c) The Laplace transform is the inverse of the Fourier transform 

d) The Laplace transform can only be applied to polynomials 

Answer: a) The Laplace transform includes an exponential weighting factor 

9. Which of the following is an application of Fourier and Laplace 

transforms in engineering and physics? 

a) Signal processing 

b) Solving differential equations 

c) Analyzing electrical circuits 

d) All of the above 

Answer: d) All of the above 

 

Short Questions: 

1. What is the Fourier transform of a function? 

2. How does the Fourier transform extend to distributions? 

3. What is the Fourier transform of the Dirac delta function? 

4. What are tempered distributions and why are they useful in Fourier 

analysis? 

5. What is the fundamental solution of the wave equation? 

6. How is the Fourier transform related to convolutions? 

7. What is the difference between the Fourier and Laplace transforms? 

8. What is the inverse Fourier transform? 

9. Give an example of an application of Fourier transforms in physics. 

10. How does the Fourier transform help in solving PDEs? 
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Notes Long Questions: 

1. Explain the concept of the Fourier transform and its importance in 

distribution theory. 

2. Describe how the Fourier transform is applied to test functions. 

3. Define tempered distributions and explain their role in Fourier 

analysis. 

4. Discuss the fundamental solution of the wave equation and its 

derivation. 

5. Explain the convolution theorem and its implications for Fourier 

transforms. 

6. Compare the Fourier transform and Laplace transform, highlighting 

their differences. 

7. Derive the Fourier transform of a simple function such as the 

Gaussian function. 

8. How does the Fourier transform help in solving differential 

equations? Provide examples. 

9. Discuss the applications of Fourier transforms in signal processing 

and engineering. 

10. Write a MATLAB script to compute the Fourier transform of a given 

function numerically.  
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unit impulse (the Green's function).

can ascertain how a system reacts to any input if we know how it reacts to a 

by integrating the product of the Green's function and the input function, we 

This seemingly straightforward equation encapsulates a significant concept:

LG(x,x') = δ(x-x')

linear differential operator L satisfies:

fundamental  mathematical  component.   The  Green's  function  G(x,x')  for  a 

between  a  Green's  function  and  the  Dirac  delta  function  δ(x-x')  is  its 

react  to  localized  shocks,  this  idea  is  especially  helpful.The  connection 

physics and engineering, where we frequently need to ascertain how systems 

impulse applied at point x' is represented by a Green's function G(x,x').  In 

derivatives.Fundamentally,  the  reaction  of  a  system  at  position  x  to  a  unit 

inhomogeneous  differential  equations,  particularly  those  involving  partial 

physics.  Green's  functions  serve  as  a  fundamental  technique  for  solving 

education,  Green  made  remarkable  contributions  to  mathematics  and 

mathematician  George  Green  (1793-1841).  Despite  having  minimal  formal 

Green's  functions  are  powerful  mathematical  tools  named  after  the  British 

5.1.1 Introduction to Green's Functions

• Study boundary integral methods and their applications.

  conditions.

• Explore the construction of Green’s functions for different boundary

• Learn about boundary-value problems and their adjoints.

  equations.

• Understand the concept  of  Green’s  functions  in  solving  differential

Objective

Green’s Function Boundary-Value problems
UNIT 5.1

MODULE 5
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Before delving deeper into Green's functions, we must understand the Dirac 

delta function δ(x-x'). This "function" has the following properties: 

1. δ(x-x') = 0 for x ≠ x' 

2. δ(x-x') → ∞ for x = x' 

3. ∫δ(x-x')dx = 1 (when the integration interval includes x') 

The delta function can be thought of as the limit of a sequence of functions 

that become increasingly concentrated at a point while maintaining a unit 

area. For instance, the function: 

f_n(x) = (n/√π)e(-n²x²) 

approaches the delta function as n approaches infinity. 

Basic Properties of Green's Functions 

Green's functions possess several important properties: 

1. Linearity: If L is a linear operator, then G scales linearly with the 

input. 

2. Symmetry: For self-adjoint operators, G(x,x') = G(x',x). 

3. Superposition: The total of the individual reactions to several 

impulses is the response to those impulses. 

4. Uniqueness: The differential equation and boundary conditions 

determine Green's functions in a unique way. 

5. Physical Interpretation: G(x,x') frequently denotes the response at 

position x caused by a unit impulse at position x' in physical 

systems. 

Historical Context 

George Green introduced these functions in his 1828 essay "An Essay on the 

Application of Mathematical Analysis to the Theories of Electricity and 

Magnetism." Remarkably, Green was largely self-taught and worked as a 

miller before his mathematical talents were recognized. His work remained 
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1840s. 

Green's functions have since become indispensable in various fields, 

including: 

• Quantum mechanics 

• Electrodynamics 

• Heat conduction 

• Wave propagation 

• Structural mechanics 

• Signal processing 

In the following sections, we'll explore how these functions are constructed 

and applied to solve differential equations with various boundary conditions. 

5.1.2  Role of Green's Functions in Solving Differential Equations 

Green's functions provide a systematic approach to solving inhomogeneous 

differential equations. Their true power lies in transforming differential 

problems into integral equations, which are often easier to handle. 

General Framework 

A general linear differential equation is examined. : 

Lu(x) = f(x) 

where f(x) is a known source term, u(x) is the unknown function, and L is a 

linear differential operator.  We can determine whether the Green's function 

G(x,x') satisfies: 

LG(x,x') = δ(x-x') 

then the solution to the original equation can be expressed as: 

u(x) = ∫G(x,x')f(x')dx' + uh(x) 

The solution to the homogeneous equation Lu(x) = 0 that meets the specified 

boundary conditions is denoted by uh(x). 
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For ordinary differential equations (ODEs), the process is particularly 

straightforward. Consider a second-order ODE: 

a(x)u''(x) + b(x)u'(x) + c(x)u(x) = f(x) 

with boundary conditions at x = a and x = b. 

The Green's function approach involves: 

1. Finding G(x,x') that satisfies LG(x,x') = δ(x-x') and the 

homogeneous boundary conditions. 

2. Computing the solution as: u(x) = ∫  G(x, x′)f(x′)dx′
𝑏

𝑎
 

For second-order ODEs, G(x,x') typically takes the form: 

G(x,x') = { A(x')u_1(x) for a ≤ x < x' B(x')u_2(x) for x' < x ≤ b } 

where u1(x) and u2(x) are linearly independent solutions of the homogeneous 

equation, and A(x') and B(x') are determined by: 

• Continuity of G at x = x' 

• A jump in the derivative of G at x = x' 

• The boundary conditions 

Example: Simple Harmonic Oscillator 

For the equation: 

u''(x) + k²u(x) = f(x) 

with u(0) = u(L) = 0, the Green's function is: 

G(x,x') = (1/k sin(kL)) × { sin(kx)sin(k(L-x')) for 0 ≤ x ≤ x' sin(kx')sin(k(L-

x)) for x' ≤ x ≤ L } 

Partial Differential Equations 

For partial differential equations (PDEs), the Green's function depends on 

multiple variables. For example, for the Poisson equation: 
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The solution using Green's function is: 

u(x) = ∫G(x,x')f(x')dx' + boundary terms 

For the three-dimensional case, the Green's function for the Laplacian with 

no boundaries is: 

G(x,x') = -1/(4π|x-x'|) 

This represents the potential at point x due to a unit point charge at x'. 

Time-Dependent Problems 

For time-dependent problems like the heat equation: 

∂u/∂t - α∇²u = f(x,t) 

The Green's function G(x,t;x',t') represents the response at position x and 

time t due to an impulse at position x' and time t'. The solution is: 

u(x,t) = ∫∫G(x,t;x',t')f(x',t')dx'dt' + initial condition terms 

For the one-dimensional heat equation on an infinite domain, the Green's 

function is: 

G(x,t;x',t') = (1/√(4πα(t-t'))) × exp(-(x-x')²/(4α(t-t'))) for t > t' 

Advantages of the Green's Function Approach 

1. Linearity: The method inherently leverages the principle of 

superposition for linear systems. 

2. Systematic: It provides a systematic approach to solving 

inhomogeneous equations. 

3. Physical Insight: Green's functions often have direct physical 

interpretations. 

4. Efficiency: Once the Green's function is known, it can be used to 

solve the same differential equation with different source terms. 
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incorporates the boundary conditions into the solution. 

In the next section, we'll explore how boundary conditions affect Green's 

functions and introduce the concept of adjoint operators, which play a 

crucial role in constructing Green's functions for boundary-value problems. 
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Adjoint Operators 

The connection defines the adjoint operator L* for a linear differential 

operator L. 

∫Ω v(Lu) dx = ∫Ω u(L*v) dx + boundary terms 

• Mixed: different conditions on different parts of the boundary

• Robin: α u + β ∂u/∂n = 0 on the boundary

  direction)

• Neumann:  ∂u/∂n  =  0  on  the  boundary  (where  n  is  the  normal

• Dirichlet: u = 0 on the boundary

The boundary conditions can be of several types:

• ∂Ω is the boundary of the domain

• Ω is the domain

• B represents boundary conditions

• L is a differential operator

where:

Lu(x) = f(x) for x ∈ Ω Bu(x) = 0 for x ∈ ∂Ω

Typical boundary-value issues look like this:

Boundary-Value Problems

conditions to Green's functions.

adjoint  operators is  necessary  to  comprehend how  to  apply these  boundary 

boundaries  are  known  as  boundary-value  problems,  or  BVPs.   The  idea  of 

Differential  equations  with  predetermined  conditions  at  the  domain 

5.2.1 Boundary-Value Problems and Their Adjoint Operators

Green’s Function and their adjoints
UNIT 5.2
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on the specific form of L and the domain Ω. 

For example, if L = d²/dx² on the interval [a,b], then: 

∫_a^b v(d²u/dx²) dx = ∫_a^b u(d²v/dx²) dx + [v(du/dx) - u(dv/dx)]_a^b 

The adjoint L* is also d²/dx², but the boundary terms are crucial for 

constructing Green's functions. 

Self-Adjoint Operators 

An operator L is self-adjoint if L = L* for all functions satisfying the 

boundary conditions. Many physical problems involve self-adjoint 

operators, which have important properties: 

• The eigenvalues are real 

• The eigenfunctions form an orthogonal basis 

• Green's functions are symmetric: G(x,x') = G(x',x) 

For operators that aren't self-adjoint, we need both the original Green's 

function and the adjoint Green's function. 

Sturm-Liouville Problems 

A special class of boundary-value problems are Sturm-Liouville problems, 

which take the form: 

d/dx[p(x)du/dx] + q(x)u + λw(x)u = f(x) 

with appropriate boundary conditions. These problems are self-adjoint when 

the boundary conditions are properly chosen, and they have a complete set 

of orthogonal eigenfunctions. 

The Green's function for a Sturm-Liouville problem can be expressed in 

terms of these eigenfunctions: 

G(x,x') = Σ(φn(x)φn(x')/λn) 

where φn are the eigenfunctions and λn are the eigenvalues. 
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Notes Green's Identity and Integration by Parts 

Green's identities are fundamental for deriving adjoint operators and 

constructing Green's functions. The first Green's identity states: 

∫Ω (v∇²u) dV = ∫∂Ω v(∇u·n) dS - ∫Ω (∇v·∇u) dV 

where n is the outward normal to the boundary ∂Ω. 

The second Green's identity is: 

∫Ω (v∇²u - u∇²v) dV = ∫∂Ω (v∇u - u∇v)·n dS 

These identities allow us to switch the differential operator from one 

function to another, which is essential for constructing Green's functions. 

Relationship Between Green's Functions and Eigenfunction Expansions 

For self-adjoint operators, Green's functions can be expressed as series of 

eigenfunctions: 

G(x,x') = Σ φn(x)φn(x')/(λ - λn) 

where φn are the eigenfunctions of L with eigenvalues λn. 

This representation connects Green's functions to spectral theory and 

provides an alternative method for constructing them. 

Adjoint Boundary Conditions 

The adjoint boundary conditions B* for a differential operator L with 

boundary conditions B are those that cause the boundary terms to disappear 

in the integration by parts formula.: 

∫Ω v(Lu) dx = ∫Ω u(L*v) dx 

The Green's function for the original problem satisfies: 

• LG(x,x') = δ(x-x') in Ω 

• BG(x,x') = 0 on ∂Ω (with respect to x) 
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Notes While the adjoint Green's function satisfies: 

• LG(x,x') = δ(x-x') in Ω 

• BG(x,x') = 0 on ∂Ω (with respect to x) 

The relationship between these functions is: G*(x,x') = G(x',x) 

In the next section, we'll explore specific techniques for constructing Green's 

functions for various boundary-value problems. 

5.2.2  Construction of Green's Functions for Boundary-Value Problems 

Constructing Green's functions for boundary-value problems requires 

matching solutions across the singularity at x = x' while satisfying the 

boundary conditions. Several methods exist for this purpose, each with its 

own advantages. 

Method of Undetermined Coefficients 

This direct approach involves: 

1. Solving the homogeneous equation Lu = 0 to find a set of 

fundamental solutions 

2. Constructing G(x,x') as a piecewise function that satisfies the jump 

conditions at x = x' 

3. Determining the coefficients by applying boundary conditions 

For a second-order operator on [a,b], we typically write: 

G(x,x') = { A(x')u₁(x) + B(x')u₂(x) for a ≤ x < x' C(x')u₁(x) + D(x')u₂(x) for x' 

< x ≤ b } 

where u₁ and u₂ are linearly independent solutions of Lu = 0. 

The coefficients are determined by: 

• Boundary conditions at x = a and x = b 

• Continuity of G at x = x' 

• Jump condition in the derivative at x = x' 
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Notes For a second-order operator, the jump condition is: 

∂G/∂x|{x=x'+} - ∂G/∂x|{x=x'-} = 1/p(x') 

where p(x) is the coefficient of the highest derivative in the operator L. 

Method of Eigenfunction Expansion 

For self-adjoint problems with discrete spectra, we can expand G(x,x') in 

terms of the eigenfunctions: 

G(x,x') = Σ φₙ(x)φₙ(x')/λₙ 

where φₙ are the normalized eigenfunctions of L with eigenvalues λₙ. 

This method is particularly useful for problems where the eigenfunctions are 

known, such as Sturm-Liouville problems. 

Method of Images 

For problems with symmetry, the method of images constructs G(x,x') by 

combining the free-space Green's function with its "images" to satisfy the 

boundary conditions. 

For example, for the Laplace equation on a half-space with Dirichlet 

boundary conditions, we have: 

G(x,x') = 1/(4π|x-x'|) - 1/(4π|x-x*|) 

where x* is the reflection of x' across the boundary. 

This method is especially effective for problems in simple geometries with 

standard boundary conditions. 

Integral Transform Methods 

Fourier, Laplace, and other integral transforms can convert differential 

equations into algebraic equations, making it easier to find Green's 

functions. 
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Notes For example, using the Fourier transform for the one-dimensional heat 

equation: 

∂u/∂t - α∂²u/∂x² = f(x,t) 

leads to the Green's function: 

G(x,t;x',t') = (1/√(4πα(t-t')))exp(-(x-x')²/(4α(t-t'))) for t > t' 

Example: Constructing Green's Function for a Simple BVP 

Consider the boundary-value problem: 

-u''(x) = f(x) for 0 < x < 1 u(0) = u(1) = 0 

Step 1: Find the general solution to the homogeneous equation -u'' = 0 The 

general solution is u(x) = Ax + B 

Step 2: Apply boundary conditions to get the fundamental solutions For u₁, 

we set u₁(0) = 0, giving u₁(x) = x For u₂, we set u₂(1) = 0, giving u₂(x) = 1-x 

Step 3: Construct G(x,x') as a piecewise function G(x,x') = { A(x')x + 

B(x')(1-x) for 0 ≤ x < x' C(x')x + D(x')(1-x) for x' < x ≤ 1 } 

Step 4: Apply continuity at x = x' A(x')x' + B(x')(1-x') = C(x')x' + D(x')(1-x') 

Step 5: Apply the jump condition for the derivative at x = x' C(x') - D(x') - 

(A(x') - B(x')) = 1 

Step 6: Apply boundary conditions G(0,x') = 0 implies B(x') = 0 G(1,x') = 0 

implies C(x') = 0 

Step 7: Solve for the remaining coefficients From steps 4-6, we get: A(x')x' 

= D(x')(1-x') -A(x') - D(x') = 1 

Solving these equations: A(x') = -x' D(x') = -(1-x') 

Step 8: Construct the final Green's function G(x,x') = { -x'x for 0 ≤ x < x' -

(1-x')(1-x) for x' < x ≤ 1 } 

This can be simplified to: G(x,x') = -min(x,x')(1-max(x,x')) 
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Notes Green's Functions for PDEs 

For partial differential equations, the construction of Green's functions 

follows similar principles but with additional complexity due to the higher 

dimensions. 

For the Poisson equation ∇²u = f in domain Ω with Dirichlet boundary 

conditions, the Green's function satisfies: 

∇²G(x,x') = δ(x-x') in Ω G(x,x') = 0 for x on ∂Ω 

The solution can be constructed as: G(x,x') = G₀(x,x') + H(x,x') 

where G₀ is the free-space Green's function (-1/(4π|x-x'|) in 3D) and H is a 

harmonic function chosen to satisfy the boundary conditions. 

Time-Dependent Green's Functions 

The Green's function G(x,t;x',t') expresses the response at location x and 

time t caused by an impulse at position x' and time t' for time-dependent 

issues such as the heat or wave equation. 

With the initial condition u(x,0) = g(x), the solution to the heat equation 

∂u/∂t - α∇²u = f is: 

u(x,t) = ∫G(x,t;x',0)g(x')dx' + ∫∫G(x,t;x',t')f(x',t')dx'dt' 

Usually, the Green's function has the shape of a basic solution that has been 

altered to meet the boundary constraints. 

Regularity and Singularities 

Green's functions typically have different types of singularities depending on 

the order of the differential operator: 

• For second-order operators, G has a jump in the first derivative 

• For fourth-order operators, G is continuous with a jump in the 

second derivative 
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Notes Understanding these singularities is crucial for correctly constructing and 

using Green's functions. 

Computer-Aided Construction 

For complex geometries and boundary conditions, numerical methods are 

often used to construct Green's functions. These include: 

• Finite element methods 

• Boundary element methods 

• Spectral methods 

These approaches approximate the Green's function on a discretized domain 

and can handle problems that are intractable analytically. 

In the remainder of this chapter, we'll examine specific applications and 

work through detailed examples to illustrate the power and versatility of 

Green's functions. 

Solved Problems 

Solved Problem 1: Green's Function for a Second-Order ODE 

Problem: Find the Green's function for the boundary-value problem: d²u/dx² 

+ u = f(x) for 0 < x < π u(0) = u(π) = 0 Then use it to solve the equation 

when f(x) = sin(2x). 

Solution: 

Step 1: We need to find the Green's function G(x,x') that satisfies: d²G/dx² + 

G = δ(x-x') for 0 < x < π G(0,x') = G(π,x') = 0 

Step 2: Away from x = x', G satisfies the homogeneous equation: d²G/dx² + 

G = 0 The general solution is G(x,x') = A(x')sin(x) + B(x')cos(x) 

Step 3: Construct G as a piecewise function: G(x,x') = { A₁(x')sin(x) + 

B₁(x')cos(x) for 0 ≤ x < x' A₂(x')sin(x) + B₂(x')cos(x) for x' < x ≤ π } 

Step 4: Apply boundary conditions: G(0,x') = 0 implies B₁(x') = 0 G(π,x') = 

0 implies A₂(x')sin(π) + B₂(x')cos(π) = 0, so B₂(x') = 0 
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Notes Now we have: G(x,x') = { A₁(x')sin(x) for 0 ≤ x < x' A₂(x')sin(x) for x' < x ≤ 

π } 

Step 5: Apply continuity at x = x': A₁(x')sin(x') = A₂(x')sin(x') 

If sin(x') ≠ 0, then A₁(x') = A₂(x'). 

Step 6: Apply the jump condition for the derivative: ∂G/∂x|{x=x'+} - 

∂G/∂x|{x=x'-} = 1 

This gives: A₂(x')cos(x') - A₁(x')cos(x') = 1 

Step 7: Solve for the coefficients: From step 5, A₁(x') = A₂(x') = A(x') From 

step 6, 0 = 1, which is a contradiction 

This means our assumption in step 5 was incorrect. The issue is that we're 

trying to satisfy both continuity and the jump condition with a single 

parameter. We need to revisit the general solution. 

The proper method is to acknowledge that sin(x) and sin(π-x) are the 

fundamental answers.  These meet both the x = 0 and x = π boundary 

criteria. 

So our Green's function should be: G(x,x') = { C₁(x')sin(x)sin(π-x') for 0 ≤ x 

< x' C₂(x')sin(x')sin(π-x) for x' < x ≤ π } 

Applying continuity at x = x': C₁(x')sin(x')sin(π-x') = C₂(x')sin(x')sin(π-x') 

This gives C₁(x') = C₂(x') if sin(x') ≠ 0. 

The jump condition now gives: C₂(x')sin(x')[-cos(π-x')] - C₁(x')cos(x')sin(π-

x') = 1 

Since cos(π-x') = -cos(x'), this becomes: C₂(x')sin(x')cos(x') - 

C₁(x')cos(x')sin(π-x') = 1 

If C₁(x') = C₂(x') = C(x'), then: C(x')[sin(x')cos(x') + cos(x')sin(π-x')] = 1 

Using the identity sin(π-x') = sin(x'), we get: C(x')[sin(x')cos(x') + 

cos(x')sin(x')] = 1 C(x')sin(2x') = 1 C(x') = 1/sin(2x') 
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Notes But this approach has issues when sin(2x') = 0. 

Let's restart with a different approach. The correct fundamental solutions for 

this problem are actually sin(x) and sin(π-x). These both satisfy one of the 

boundary conditions. 

Let's construct: G(x,x') = { A(x')sin(x)sin(π-x') for 0 ≤ x < x' 

B(x')sin(x')sin(π-x) for x' < x ≤ π } 

Continuity at x = x' gives: A(x')sin(x')sin(π-x') = B(x')sin(x')sin(π-x') 

This means A(x') = B(x') if sin(x') ≠ 0. 

The jump condition for the derivative gives: B(x')sin(x')(-cos(π-x')) - 

A(x')[cos(x')sin(π-x')] = 1 

Using cos(π-x') = -cos(x') and assuming A(x') = B(x'): A(x')[sin(x')cos(x') + 

cos(x')sin(π-x')] = 1 

Since sin(π-x') = sin(x'), this becomes: A(x')sin(2x') = 1 A(x') = 1/sin(2x') 

However, this is problematic when sin(2x') = 0. Let's try yet another 

approach. 

The Wronskian approach can be used to find the Green's function for this 

situation: 

The Wronskian of sin(x) and sin(π-x) is: W(x) = sin(x)(-cos(π-x)) - 

cos(x)sin(π-x) = sin(x)cos(x) + cos(x)sin(x) = sin(2x) 

The Green's function is: G(x,x') = { (1/W(x'))sin(x)sin(π-x') for 0 ≤ x < x' 

(1/W(x'))sin(x')sin(π-x) for x' < x ≤ π } 

Substituting W(x') = sin(2x'), we get: G(x,x') = { sin(x)sin(π-x')/sin(2x') for 

0 ≤ x < x' sin(x')sin(π-x)/sin(2x') for x' < x ≤ π } 

Using sin(π-x) = sin(x), this simplifies to: G(x,x') = { sin(x)sin(x')/sin(2x') 

for 0 ≤ x < x' sin(x')sin(x)/sin(2x') for x' < x ≤ π } 

So for both regions, G(x,x') = sin(x)sin(x')/sin(2x') 



  

232 
 

Notes Now, to solve the original equation with f(x) = sin(2x), we compute: u(x) = 

∫ G(x, x′)sin(2x′)dx′ 
𝜋

0
=∫ sin(x)sin(x′)/sin(2x′)]sin(2x′)dx′ 

𝜋

0
= 

sin(x)∫  sin(x′)dx′ 
𝜋

0
 = sin(x)[1-cos(π)] = 2sin(x) 

Therefore, the solution is u(x) = 2sin(x). 

Solved Problem 2: Green's Function for the Heat Equation 

Problem: Find the Green's function for the heat equation on an infinite 

domain: ∂u/∂t - α∂²u/∂x² = f(x,t) for -∞ < x < ∞, t > 0 u(x,0) = g(x) 

Solution: 

Step 1: We seek the Green's function G(x,t;x',t') that satisfies: ∂G/∂t - 

α∂²G/∂x² = δ(x-x')δ(t-t') 

For t > t', G represents the response at (x,t) due to an impulse at (x',t'). 

Step 2: Use the Fourier transform method. Let Ĝ(k,t;x',t') be the Fourier 

transform of G with respect to x: Ĝ(k,t;x',t') = ∫ G(x, t; x′, t′)
∞

−∞
 e(-ikx)dx 

The Fourier transform of the heat equation gives: ∂Ĝ/∂t + αk²Ĝ = e(-ikx')δ(t-t') 

Step 3: For t > t', this is a first-order ODE in t: ∂Ĝ/∂t + αk²Ĝ = 0 

The solution is: Ĝ(k,t;x',t') = C(k,x',t')e^(-αk²(t-t')) 

Step 4: To determine C, we note that as t approaches t' from above: 

Ĝ(k,t';x',t') = e(-ikx') 

This gives: C(k,x',t') = e(-ikx') 

So: Ĝ(k,t;x',t') = e(-ikx')e(-αk²(t-t')) 

Step 5: Perform the inverse Fourier transform: G(x,t;x',t') = (1/2π) ∫  
∞

−∞
 e(-

ikx')e(-αk²(t-t'))e(ikx)dk = (1/2π)e(ik(x-x'))e(-αk²(t-t'))dk 

This integral is the Fourier transform of a Gaussian: G(x,t;x',t') = (1/√(4πα(t-

t')))exp(-(x-x')²/(4α(t-t'))) for t > t' 
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Notes Step 6: For t < t', causality requires G(x,t;x',t') = 0. 

Step 7: The full solution to the original problem is: u(x,t) =∫ G(x, t; x′, 0)
∞

−∞
 

g(x')dx' + ∫ G(x, t; x′, t′)
𝑡

0
 f(x',t')dx'dt' 

Substituting the Green's function: u(x,t) = ∫  
∞

−∞
(1/√(4παt))exp(-(x-

x')²/(4αt))g(x')dx' + ∫  
𝑡

0 ∫  
∞

−∞
∫(1/√(4πα(t-t')))exp(-(x-x')²/(4α(t-t')))f(x',t')dx'dt' 

This is the complete solution to the heat equation using Green's function. 

Solved Problem 3: Green's Function for Poisson's Equation in 2D 

Problem: Find the Green's function for Poisson's equation in a 2D circular 

domain of radius R: ∇²u = f(x,y) in Ω: x² + y² < R² u = 0 on ∂Ω: x² + y² = R² 

Solution: 

Step 1: The Green's function G(x,y;x',y') must satisfy: ∇²G = δ(x-x',y-y') in 

Ω G = 0 on ∂Ω 

Step 2: Due to the circular symmetry, it's convenient to use polar coordinates 

(r,θ) for (x,y) and (r',θ') for (x',y'). 

Step 3: In free space, the Green's function for the 2D Laplacian is: 

G₀(r,θ;r',θ') = -(1/2π)ln(√((x-x')² + (y-y')²)) = -(1/2π)ln(√(r² + r'² - 2rr'cos(θ-

θ'))) 

Step 4: We employ the method of pictures in order to meet the boundary 

criterion.  A harmonic function H must be added so that, with G = 0, G = G₀ 

+ H. 

5.2.3 Properties and Interpretation of Green's Functions 

One of the most effective mathematical tools for resolving differential 

equations is Green's functions.  They are named for the British 

mathematician George Green and show how a system reacts to an impulse 

or point source.  Let's examine their salient characteristics and meanings. 
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Notes Definition of Green's Functions 

A Green's function G(x,x') for a linear differential operator L is defined as 

the solution to: 

L[G(x,x')] = δ(x-x') 

Where δ(x-x') is the Dirac delta function centered at point x'. 

Fundamental Properties of Green's Functions 

1. Linearity: If G₁ and G₂ are Green's functions for the operators L₁ 

and L₂ respectively, then αG₁ + βG₂ is a Green's function for the 

operator αL₁ + βL₂, where α and β are constants. 

2. Symmetry: For self-adjoint operators, Green's functions exhibit 

symmetry such that G(x,x') = G(x',x). This is particularly useful in 

physical applications where reciprocity principles apply. 

3. Causality: For time-dependent problems, the Green's function is 

often causal, meaning G(x,t; x',t') = 0 for t < t'. This enforces that 

effects cannot precede their causes. 

4. Homogeneous Solution Addition: If G(x,x') is a Green's function 

for L, then G(x,x') + h(x,x') is also a Green's function if L[h(x,x')] = 

0. This allows Green's functions to incorporate boundary conditions. 

5. Superposition Principle: For linear operators, the general solution 

can be expressed as the sum of the homogeneous solution and the 

particular solution obtained through the Green's function. 

Physical Interpretation 

The Green's function G(x,x') represents the response at point x due to a unit 

impulse applied at point x'. In different physical contexts, it takes on specific 

interpretations: 

• In electrostatics, G(x,x') represents the electric potential at x due to a 

unit point charge at x'. 

• In elasticity theory, G(x,x') represents the displacement at x due to a 

unit force applied at x'. 
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Notes • In heat conduction, G(x,t; x',t') represents the temperature at position 

x and time t due to an instantaneous unit heat source at position x' 

and time t'. 

Mathematical Interpretation 

Green's functions can be thought of as the inverse of a differential operator. 

If L is a differential operator, then G serves as L⁻¹, allowing us to write the 

solution to L[u] = f as: 

u(x) = ∫ G(x,x')f(x') dx' 

This integral represents the superposition of responses to all point sources 

distributed according to f(x'). 

Eigenfunction Expansion 

For certain boundary value problems, Green's functions can be expressed as 

an infinite sum of eigenfunctions: 

G(x,x') = Σ (φₙ(x)φₙ(x'))/λₙ 

Where φₙ are eigenfunctions of L satisfying L[φₙ] = λₙφₙ, and λₙ are the 

corresponding eigenvalues. 

5.2.4 Boundary Integral Methods and Their Applications 

Boundary integral methods are powerful techniques that reformulate partial 

differential equations defined throughout a domain into integral equations 

defined only on the boundary of that domain. This transformation reduces 

the dimensionality of the problem and offers significant computational 

advantages. 

Fundamental Concepts 

The boundary integral method leverages Green's identities to convert 

differential equations into integral equations. For a function u satisfying 

Laplace's equation ∇²u = 0 in a domain Ω with boundary Γ, we can write: 

u(x) = ∫Γ [G(x,y)∂u(y)/∂n - u(y)∂G(x,y)/∂n] dS(y) 
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Notes Where G is the Green's function for the Laplace operator, and ∂/∂n 

represents the normal derivative at the boundary. 

Boundary Element Method (BEM) 

The Boundary Element Method is a numerical approach to solving boundary 

integral equations: 

1. Discretization: The boundary is divided into smaller elements. 

2. Approximation: The solution is approximated using basis functions 

defined on these elements. 

3. Collocation or Galerkin Methods: These are used to transform the 

integral equations into a system of linear algebraic equations. 

4. Matrix Solution: The resulting system is solved to obtain values at 

boundary nodes. 

5. Interior Evaluation: If needed, interior values are calculated using 

the boundary integral formula. 

Advantages of Boundary Integral Methods 

1. Dimensionality Reduction: A 3D problem is reduced to a 2D 

surface problem, and a 2D problem to a 1D boundary problem. 

2. Automatic Satisfaction of Infinity Conditions: For exterior 

problems, the behavior at infinity is automatically satisfied. 

3. High Accuracy: For smooth problems, these methods can achieve 

high accuracy. 

4. Efficient for Certain Problems: Particularly effective for problems 

with high surface-to-volume ratios or infinite domains. 

Limitations 

1. Dense Matrices: Unlike finite element methods, BEM typically 

produces dense matrices. 

2. Singularities: The kernels in the integrals have singularities that 

require special treatment. 

3. Limited Problem Types: Most effective for linear, homogeneous 

problems with constant coefficients. 
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Notes Applications in Various Fields 

1. Acoustics: Sound radiation and scattering problems. 

2. Electromagnetics: Antenna design, radar cross-section analysis, 

and electromagnetic compatibility studies. 

3. Fluid Mechanics: Potential flow problems, such as flow around 

airfoils and marine hydrodynamics. 

4. Elastostatics: Stress analysis in structural mechanics. 

5. Heat Conduction: Thermal analysis with constant material 

properties. 

6. Fracture Mechanics: Analysis of crack propagation. 

Advanced Techniques 

1. Fast Multipole Method (FMM): Reduces the computational 

complexity from O(n²) to O(n log n). 

2. Adaptive Methods: Refine the discretization in regions of high 

solution gradient. 

3. Coupling with Other Methods: BEM can be coupled with finite 

element methods for problems with complex geometries or material 

nonlinearities. 

5.2.3  Green's Functions for the Laplace and Poisson Equations 

The Laplace and Poisson equations are fundamental in many areas of 

physics and engineering. Green's functions provide an elegant approach to 

solving these equations. 

Poisson's Equation 

Poisson's equation is given by: 

∇²u = -f 

Where u is the unknown function, f is the source term, and ∇² is the 

Laplacian operator. 

Green's Function for the Laplace Operator 
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Notes The Green's function G(x,x') for the Laplace operator satisfies: 

∇²G(x,x') = δ(x-x') 

Where δ is the Dirac delta function. 

Free-Space Green's Functions 

In unbounded domains, the Green's functions for the Laplace operator are: 

1. In 1D: G(x,x') = -|x-x'|/2 

2. In 2D: G(x,x') = -(1/2π)ln|x-x'| 

3. In 3D: G(x,x') = -1/(4π|x-x'|) 

These represent the fundamental solutions to the Laplace equation with a 

point source. 

Green's Functions with Boundary Conditions 

For bounded domains, Green's functions must satisfy appropriate boundary 

conditions: 

1. Dirichlet Boundary Conditions: G = 0 on the boundary 

2. Neumann Boundary Conditions: ∂G/∂n = 0 on the boundary 

3. Mixed Boundary Conditions: αG + β∂G/∂n = 0 on the boundary 

Method of Images 

For simple geometries, the method of images can construct Green's 

functions. For example, for the half-space x > 0 with Dirichlet boundary 

condition u(0,y,z) = 0: 

G(x,y,z; x',y',z') = -1/(4π|r-r'|) + 1/(4π|r-r''|) 

Where r' = (x',y',z') is the source point and r'' = (-x',y',z') is its image. 

Constructing Solutions 

The solution to Poisson's equation ∇²u = -f with appropriate boundary 

conditions can be written as: 
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Notes u(x) = ∫Ω G(x,x')f(x') dx' + boundary terms 

Where the boundary terms depend on the specific boundary conditions. 

Series Expansions 

For certain domains, Green's functions can be expressed as infinite series: 

1. Rectangular Domain: Using Fourier series 

2. Circular Domain: Using Bessel functions 

3. Spherical Domain: Using spherical harmonics 

Applications in Electrostatics 

In electrostatics, the electric potential Φ due to a charge distribution ρ(x) 

satisfies Poisson's equation: 

∇²Φ = -ρ/ε₀ 

The solution using Green's function is: 

Φ(x) = (1/4πε₀) ∫ ρ(x')/|x-x'| dx' 

Applications in Heat Conduction 

For steady-state heat conduction, the temperature T satisfies: 

∇²T = -q/k 

Where q is the heat source distribution and k is thermal conductivity. 

Green's functions provide the temperature distribution due to distributed heat 

sources. 

5.2.4  Applications of Green's Functions in Physics and Engineering 

Green's functions have found widespread applications across various 

domains in physics and engineering. Here, we explore some of the most 

important applications. 

Electromagnetism 
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Notes 1. Electrostatics: Computing electric potentials and fields from 

arbitrary charge distributions. 

• The electric potential due to a charge distribution ρ(r) is: 

Φ(r) = ∫ G(r,r')ρ(r') dV' 

• Where G(r,r') = 1/(4πε₀|r-r'|) in 3D free space. 

2. Magnetostatics: Calculating magnetic vector potentials and fields. 

• The magnetic vector potential due to current density J(r) is: 

A(r) = (μ₀/4π) ∫ J(r')/|r-r'| dV' 

3. Electromagnetic Wave Propagation: Analyzing radiation from 

antennas and scattering problems. 

• The retarded Green's function G(r,t; r',t') = δ(t-(t'+|r-

r'|/c))/(4π|r-r'|) accounts for finite propagation speed. 

Quantum Mechanics 

1. Schrödinger Equation: The propagator (time-dependent Green's 

function) describes quantum time evolution. 

• For time-independent potentials, the propagator K(x,t; x',0) 

satisfies: iℏ∂K/∂t = -ℏ²/(2m)∇²K + V(x)K 

• With initial condition K(x,0; x',0) = δ(x-x') 

2. Scattering Theory: Green's functions determine scattering 

amplitudes and cross-sections. 

• The T-matrix in scattering theory is related to the Green's 

function of the Hamiltonian. 

3. Density of States: The imaginary part of the Green's function is 

proportional to the density of states. 

• ρ(E) = -(1/π)Im[Tr(G(E))] 

Structural Mechanics 

1. Beam Deflection: Calculating beam displacement under various 

loading conditions. 

• For a beam with load f(x), the deflection w(x) is: w(x) = ∫ 

G(x,s)f(s) ds 

• Where G is the Green's function for the beam operator. 

2. Plate Bending: Analyzing deflection of thin plates. 

• The Green's function satisfies: D∇⁴G(r,r') = δ(r-r') 

• Where D is the flexural rigidity. 
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Notes 3. Vibration Analysis: Determining dynamic response of structures. 

• The frequency domain Green's function G(x,x';ω) gives the 

displacement at x due to a harmonic force at x'. 

Heat Transfer 

1. Transient Heat Conduction: Analyzing temperature evolution in 

materials. 

• The temperature field T(r,t) due to an initial temperature 

distribution T₀(r) is: T(r,t) = ∫ G(r,t; r',0)T₀(r') dV' 

• Where G satisfies the heat equation with G(r,0; r',0) = δ(r-r') 

2. Steady-State Heat Transfer: Computing equilibrium temperature 

distributions. 

• For a heat source distribution q(r), the temperature is: T(r) = 

∫ G(r,r')q(r') dV' 

• Where G satisfies ∇²G = -δ(r-r')/k 

3. Heat Transfer with Convection: Incorporating boundary 

conditions with convective heat transfer. 

Fluid Dynamics 

1. Potential Flow: Calculating velocity fields for irrotational, 

incompressible flows. 

• The stream function or velocity potential can be computed 

using Green's functions. 

2. Stokes Flow: Analyzing slow, viscous flows. 

• The Stokeslet is the Green's function for the Stokes 

equations. 

3. Wave Propagation in Fluids: Studying acoustic wave propagation. 

• The acoustic pressure due to a source distribution is 

computed using the wave equation Green's function. 

Signal Processing and Control Theory 

1. System Response: The impulse response of a linear time-invariant 

system is its Green's function. 

• The output y(t) due to input x(t) is the convolution: y(t) = ∫ 

G(t-τ)x(τ) dτ 
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Notes 2. Filter Design: Designing filters with specific impulse responses. 

3. Transfer Functions: The Laplace transform of the Green's function 

gives the transfer function. 

Image Processing 

1. Image Restoration: Removing blur and noise from images. 

• A blurred image g can be modeled as g = h * f + n, where h 

is the point spread function (Green's function), f is the 

original image, and n is noise. 

2. Edge Detection: Using the Green's function of the Laplacian for 

edge detection. 

Solved Problems 

Problem 1: Free-Space Green's Function for Laplace Equation in 2D 

Problem: Verify that G(r,r') = -(1/2π)ln|r-r'| is the free-space Green's 

function for the Laplace operator in 2D. 

Solution: 

The Green's function G(r,r') must satisfy: 

∇²G(r,r') = δ(r-r') 

Let's compute the Laplacian of the proposed Green's function. We'll use 

polar coordinates centered at r', so |r-r'| = ρ. 

In 2D, the Laplacian in polar coordinates is: 

∇² = (1/ρ)∂/∂ρ(ρ∂/∂ρ) + (1/ρ²)∂²/∂θ² 

For our Green's function G = -(1/2π)ln(ρ), we have: 

∂G/∂ρ = -(1/2π)(1/ρ) ∂/∂ρ(ρ∂G/∂ρ) = -(1/2π)∂/∂ρ(1) = 0 for ρ > 0 

Since G is independent of θ, the second term in the Laplacian is zero. 
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Notes This seems to indicate that ∇²G = 0 for ρ > 0, which is correct since the 

Dirac delta function is zero everywhere except at ρ = 0. 

To verify the behavior at ρ = 0, we use Gauss's theorem. Consider a small 

circle C of radius ε centered at r': 

∫∫ ∇²G dA = ∫ ∇G·n ds 

The left side should equal 1 if G is the Green's function. On the right side: 

∇G·n = ∂G/∂ρ = -(1/2π)(1/ρ) 

Evaluating on the circle of radius ε: 

∫ ∇G·n ds = ∫  
2𝑝

0
-(1/2π)(1/ε)·ε dθ = -(1/2π)·2π = -1 

The negative sign is because our normal was pointing outward, while the 

convention in Gauss's theorem is for the normal to point inward. Therefore: 

∫∫ ∇²G dA = 1 

Which confirms that G(r,r') = -(1/2π)ln|r-r'| is indeed the free-space Green's 

function for the Laplace operator in 2D. 

Problem 2: Green's Function for 1D Heat Equation 

Problem: Find the Green's function for the one-dimensional heat equation: 

∂u/∂t - α∂²u/∂x² = f(x,t) 

with initial condition u(x,0) = 0 and boundary conditions u(0,t) = u(L,t) = 0. 

Solution: 

The Green's function G(x,t; x',t') must satisfy: 

∂G/∂t - α∂²G/∂x² = δ(x-x')δ(t-t') 

with G(x,t; x',t') = 0 for t < t', G(0,t; x',t') = G(L,t; x',t') = 0, and G(x,t'; x',t') = 

δ(x-x'). 
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Notes Due to causality, G = 0 for t < t'. For t > t', we can exploit the fact that G is a 

function of (t-t'), so we'll solve for G(x,t-t'; x',0). 

We'll use the method of eigenfunction expansion. The eigenfunctions of the 

spatial operator -∂²/∂x² with the given boundary conditions are: 

φₙ(x) = sin(nπx/L), with eigenvalues λₙ = (nπ/L)² 

So we can write: 

G(x,t; x',t') = ∑  ∞
𝑛=1  Tₙ(t,t')φₙ(x)φₙ(x') 

Substituting into the heat equation and using the orthogonality of 

eigenfunctions: 

dTₙ/dt + αλₙTₙ = δ(t-t') 

This is a first-order ODE with the solution: 

Tₙ(t,t') = H(t-t')exp(-αλₙ(t-t')) 

where H is the Heaviside step function. 

Therefore: 

G(x,t; x',t') =∑  ∞
𝑛=1  (2/L)sin(nπx/L)sin(nπx'/L)exp(-αn²π²(t-t')/L²)H(t-t') 

Simplifying and recognizing this as a Fourier series: 

G(x,t; x',t') = (2/L) ∑  ∞
𝑛=1 sin(nπx/L)sin(nπx'/L)exp(-αn²π²(t-t')/L²) for t > t' 

This is our Green's function for the 1D heat equation with the specified 

boundary conditions. 

Problem 3: Electrostatic Potential Due to a Point Charge Near a 

Grounded Conducting Plane 

Problem: Find the electrostatic potential due to a point charge q located at 

position (0,0,d) above a grounded conducting plane at z = 0. 

Solution: 
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Notes The electrostatic potential satisfies Poisson's equation: 

∇²Φ = -ρ/ε₀ = -qδ(r-r₀)/ε₀ 

Where r₀ = (0,0,d) is the position of the charge. 

The boundary condition is Φ = 0 on the plane z = 0 (grounded conducting 

plane). 

We'll use the method of images. The Green's function for this problem can 

be constructed by placing an "image charge" of -q at position (0,0,-d), which 

ensures that the potential is zero on the plane z = 0. 

The potential is the sum of potentials due to the real charge and the image 

charge: 

Φ(r) = (1/4πε₀)[ q/|r-r₀| - q/|r-r₁| ] 

Where r₀ = (0,0,d) and r₁ = (0,0,-d). 

In Cartesian coordinates: 

Φ(x,y,z) = (q/4πε₀)[ 1/√(x² + y² + (z-d)²) - 1/√(x² + y² + (z+d)²) ] 

This satisfies Poisson's equation with the point charge source and the 

boundary condition Φ = 0 at z = 0, as can be verified by direct substitution. 

The electric field can be computed as E = -∇Φ, giving: 

Ex = (q/4πε₀)[ x/(x² + y² + (z-d)²)(3/2) - x/(x² + y² + (z+d)²)(3/2) ] Ey = (q/4πε₀)[ 

y/(x² + y² + (z-d)²)(3/2) - y/(x² + y² + (z+d)²)(3/2) ] Ez = (q/4πε₀)[ (z-d)/(x² + y² 

+ (z-d)²)(3/2) - (z+d)/(x² + y² + (z+d)²)(3/2) ] 

This solution demonstrates the power of the method of images, which is a 

direct application of Green's function techniques for problems with simple 

boundary geometries. 

Problem 4: Boundary Value Problem Using Green's Function 

Problem: Solve the boundary value problem: 
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Notes d²u/dx² = -f(x) for 0 < x < 1 u(0) = u(1) = 0 

using Green's function. 

Solution: 

First, we need to find the Green's function G(x,ξ) satisfying: 

d²G/dx² = δ(x-ξ) G(0,ξ) = G(1,ξ) = 0 

For x ≠ ξ, G satisfies the homogeneous equation d²G/dx² = 0, so G is 

piecewise linear: 

G(x,ξ) = A(ξ)x + B(ξ) for 0 ≤ x < ξ G(x,ξ) = C(ξ)x + D(ξ) for ξ < x ≤ 1 

From the boundary conditions: G(0,ξ) = 0 ⟹ B(ξ) = 0 G(1,ξ) = 0 ⟹ C(ξ) + 

D(ξ) = 0 ⟹ D(ξ) = -C(ξ) 

So: G(x,ξ) = A(ξ)x for 0 ≤ x < ξ G(x,ξ) = C(ξ)(x-1) for ξ < x ≤ 1 

The Green's function must be continuous at x = ξ: A(ξ)ξ = C(ξ)(ξ-1) 

Also, the derivative has a jump discontinuity at x = ξ: ∂G/∂x|x=ξ+ - 

∂G/∂x|x=ξ- = 1 

Which gives: C(ξ) - A(ξ) = 1 

Solving the system of equations: A(ξ)ξ = C(ξ)(ξ-1) C(ξ) - A(ξ) = 1 

We get: A(ξ) = (ξ-1)/(ξ-1) = -(1-ξ) C(ξ) = -ξ 

Therefore: G(x,ξ) = -x(1-ξ) for 0 ≤ x < ξ G(x,ξ) = -ξ(1-x) for ξ < x ≤ 1 

This can be written compactly as: G(x,ξ) = -min(x,ξ)·(1-max(x,ξ)) 

With the Green's function, the solution to our problem is: u(x) = ∫₀¹ 

G(x,ξ)f(ξ) dξ 

For a specific f(x), we would evaluate this integral. For example, if f(x) = 1 

(constant): u(x) =∫ [−min(x, ξ) · (1 − max(x, ξ))] dξ 
1

0
 = ∫  

𝑥

0
[-x(1-ξ)] dξ + 
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Notes ∫ [−ξ(1 − x)] dξ 
1

𝑥
 = -x ∫ (1 − ξ) dξ −  (1 − x)∫ ˣ¹ ξ dξ 

𝑥

0
 = -x[ξ-ξ²/2]₀ˣ - (1-

x)[ξ²/2]ˣ¹ = -x[x-x²/2] - (1-x)[1/2-x²/2] = -x²+x³/2 - (1-x)/2 + (1-x)x²/2 = -

x²+x³/2 - 1/2 + x/2 + x²/2 - x³/2 = -x² + x²/2 + x³/2 - x³/2 - 1/2 + x/2 = -x²/2 - 

1/2 + x/2 = x/2 - x²/2 - 1/2 = (x-x²-1)/2 = (x(1-x)-1)/2 

This is the solution to the boundary value problem with f(x) = 1. 

Problem 5: Wave Equation with Green's Function 

Problem: Find the solution of the 1D wave equation: 

∂²u/∂t² - c²∂²u/∂x² = f(x,t) 

for -∞ < x < ∞, t > 0, with initial conditions u(x,0) = φ(x) and ∂u/∂t(x,0) = 

ψ(x). 

Solution: 

The Green's function for the 1D wave equation satisfies: 

∂²G/∂t² - c²∂²G/∂x² = δ(x-ξ)δ(t-τ) 

with initial conditions G = ∂G/∂t = 0 at t = 0. 

The free-space Green's function for the 1D wave equation is: 

G(x,t; ξ,τ) = (1/2c)H(c(t-τ)-|x-ξ|) 

where H is the Heaviside step function. 

This represents a wave propagating outward from the source point (ξ,τ) at 

speed c. 

The solution to the wave equation can be written as: 

u(x,t) =∫  
∞

−∞
 - ∫  

𝑡

0
 G(x,t; ξ,τ)f(ξ,τ) dτdξ + homogeneous solution 

The homogeneous solution accounts for the initial conditions and is given by 

D'Alembert's formula: 
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Notes uh(x,t) = (1/2)[φ(x+ct) + φ(x-ct)] + (1/2c) ∫  
{x+ct}

{x−ct}
ψ(ξ) dξ 

Combining these, the complete solution is: 

u(x,t) = (1/2)[φ(x+ct) + φ(x-ct)] +  (1/2c) ∫  
{x+ct}

{x−ct}
ψ(ξ) dξ + ∫  

∞

−∞
  - ∫  

𝑡

0
 G(x,t; 

ξ,τ)f(ξ,τ) dτdξ 

Simplifying the last term using the Heaviside function: 

u(x,t) = (1/2)[φ(x+ct) + φ(x-ct)] + (1/2c) ∫  
{x+ct}

{x−ct}
ψ(ξ) dξ + (1/2c) ∫  

∞

−∞
 

∫  
𝑡

τmin
 f(ξ,τ) dτdξ 

where τmin = max(0, t-|x-ξ|/c). 

For a specific source term f(x,t), we would evaluate these integrals to obtain 

the complete solution. 

Unsolved Problems 

Problem 1 

To calculate the scattered field from a spherical obstruction of radius a, find 

the Green's function for the Helmholtz equation ∇²u + k²u = 0 in three 

dimensions given radiation boundary conditions. 

Problem 2 

Determine the Green's function for the biharmonic equation ∇⁴u = f in a 

circular domain of radius R with clamped boundary conditions (u = ∂u/∂n = 

0 on the boundary). Use this Green's function to solve for the deflection of a 

clamped circular plate under a concentrated load at its center. 

Problem 3 

In a rectangular domain with insulated boundaries (∂u/∂n = 0), find the 

Green's function for the 2D heat equation ∂u/∂t - α∇²u = f(x,y,t).  Determine 

the temperature distribution caused by an instantaneous point source at 

position (x₀,y₀) and time t₀ using this Green's function. 
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Notes Problem 4 

Using a harmonic oscillator potential V(r) = mω²r²/2, find the Green's 

function for the Schrödinger equation iℏ∂ψ/∂t = -ℏ²/(2m)∇²ψ + V(r)ψ.  

Determine the probability amplitude that a particle initially localized at 

position r₀ will be discovered at position r after time t using this Green's 

function. 

Problem 5 

With initial conditions u(x,0) = φ(x) and ∂u/∂t(x,0) = ψ(x), find the Green's 

function for the telegraph equation ∂²u/∂t² + 2α∂u/∂t - c²∂²u/∂x² = f(x,t) on 

an infinite domain.  To find the response to a signal, use this Green's 

function: f(x,t) = δ(x)e^(-βt)H(t) 

Green's Functions: Theory and Applications in Differential Equations 

Green's functions represent one of the most powerful analytical tools in 

mathematical physics, providing an elegant framework for solving 

differential equations subject to boundary conditions. Named after the 

English mathematician George Green (1793-1841), who first introduced 

them in his 1828 essay "An Essay on the Application of Mathematical 

Analysis to the Theories of Electricity and Magnetism," these functions have 

since become fundamental in numerous fields including quantum 

mechanics, electrodynamics, heat conduction, acoustics, and fluid dynamics. 

The significance of Green's functions lies in their ability to transform 

complex differential problems into more manageable integral equations, 

effectively serving as the mathematical response of a system to a point-

source excitation.The core idea behind Green's functions is remarkably 

elegant: if we can determine how a system responds to an elementary 

impulse (represented mathematically by the Dirac delta function), then we 

can build up the solution for any arbitrary forcing term through the principle 

of superposition. This approach not only provides mathematical convenience 

but also offers valuable physical insights into the behavior of systems across 

various domains of science and engineering. 

Fundamental Concepts of Green's Functions 
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Notes At its essence, a Green's function G(x,x') for a linear differential operator L 

is defined as the solution to: 

L[G(x,x')] = δ(x-x') 

where δ(x-x') represents the Dirac delta function. This definition 

encapsulates the fundamental property of the Green's function: it describes 

the response of the system governed by L to a unit impulse applied at 

position x'. Once the Green's function is determined, the solution to the 

inhomogeneous differential equation L[u(x)] = f(x) can be expressed as an 

integral: 

u(x) = ∫ G(x,x')f(x') dx' 

This formulation transforms the original differential problem into an integral 

equation, which often proves more tractable. The beauty of this approach 

lies in its versatility and the physical interpretation it provides—the Green's 

function essentially describes how a disturbance propagates through the 

medium or system under consideration.The construction of Green's 

functions typically follows several key steps. First, we identify the 

homogeneous solution to the differential equation. Next, we incorporate the 

jump conditions that arise from the delta function, ensuring that the Green's 

function satisfies the appropriate continuity properties. Finally, we impose 

the relevant boundary conditions, which uniquely determine the Green's 

function for the specific problem at hand. 

Green's Functions for Ordinary Differential Equations 

For ordinary differential equations (ODEs), the Green's function technique 

provides a systematic approach to solving boundary-value problems. 

Consider a second-order linear differential equation: 

L[u] = a(x)u''(x) + b(x)u'(x) + c(x)u(x) = f(x) 

with boundary conditions specified at the endpoints of an interval [a,b]. The 

corresponding Green's function G(x,ξ) satisfies: 

L[G(x,ξ)] = δ(x-ξ) 
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Notes with the same boundary conditions as the original problem. 

The construction of the Green's function for ODEs typically involves 

piecing together solutions from the homogeneous equation L[u] = 0. For a 

second-order ODE, let u₁(x) and u₂(x) be linearly independent solutions to 

the homogeneous equation. The Green's function can be expressed as: 

G(x,ξ) = { C₁u₁(x)u₂(ξ) for a ≤ x < ξ ≤ b C₂u₁(ξ)u₂(x) for a ≤ ξ < x ≤ b } 

where C₁ and C₂ are constants determined by the jump conditions at x = ξ 

and the specified boundary conditions. 

The jump conditions arise from the properties of the delta function and 

typically involve continuity of the Green's function itself and a specified 

jump in its derivative. For a second-order ODE, we generally have: 

G(ξ⁺,ξ) - G(ξ⁻,ξ) = 0 G'(ξ⁺,ξ) - G'(ξ⁻,ξ) = 1/a(ξ) 

where ξ⁺ and ξ⁻ denote the limits as x approaches ξ from above and below, 

respectively. 

Symmetry Properties of Green's Functions 

One of the remarkable properties of Green's functions is their symmetry 

under certain conditions. Specifically, for self-adjoint differential operators, 

the Green's function exhibits reciprocity: 

G(x,ξ) = G(ξ,x) 

This symmetry, known as the principle of reciprocity, has profound physical 

implications in various domains. In electromagnetics, it manifests as the 

interchangeability of source and observation points; in structural mechanics, 

it relates to Maxwell-Betti's theorem of reciprocal displacements.The self-

adjointness of an operator is intimately connected to energy conservation 

principles in physical systems. When a differential operator is not self-

adjoint, we can still establish relationships between the Green's functions of 

the operator and its adjoint, leading to generalized reciprocity relations. 

Green's Functions for Partial Differential Equations 
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Notes Extending the concept to partial differential equations (PDEs) broadens the 

applicability of Green's functions to multidimensional problems. For a linear 

partial differential operator L operating on functions in a domain Ω, the 

Green's function G(x,ξ) satisfies: 

L[G(x,ξ)] = δ(x-ξ) for x, ξ ∈ Ω 

subject to appropriate boundary conditions on ∂Ω. 

The solution to the inhomogeneous PDE L[u(x)] = f(x) can then be 

expressed as: 

u(x) = ∫Ω G(x,ξ)f(ξ) dξ + boundary terms 

The "boundary terms" account for the non-homogeneous boundary 

conditions and depend on the specific nature of the problem. 

For elliptic PDEs, such as Laplace's equation (∇²u = 0) or Poisson's equation 

(∇²u = f), the Green's function represents the potential at position x due to a 

unit point source at position ξ. For the Laplacian in three dimensions, the 

free-space Green's function is: 

G(x,ξ) = -1/(4π|x-ξ|) 

This fundamental solution represents the inverse-distance potential, a 

cornerstone in electrostatics and gravitation. 

For parabolic PDEs, such as the heat equation (∂u/∂t - k∇²u = f), the Green's 

function describes how heat propagates from a point source. The free-space 

Green's function for the heat equation in n dimensions is: 

G(x,t;ξ,τ) = H(t-τ)(4πk(t-τ))(-n/2) exp(-|x-ξ|²/(4k(t-τ))) 

where H(t-τ) is the Heaviside step function, ensuring causality (heat cannot 

propagate backward in time). 

For hyperbolic PDEs, such as the wave equation (∂²u/∂t² - c²∇²u = f), the 

Green's function characterizes wave propagation from a point source. In 

three dimensions, the free-space Green's function is: 
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Notes G(x,t;ξ,τ) = δ(|x-ξ| - c(t-τ))/(4π|x-ξ|) 

This representation embodies Huygens' principle—waves propagate at finite 

speed c, and the influence from a point source is concentrated on an 

expanding spherical shell. 

Boundary-Value Problems and Boundary Conditions 

Boundary-value problems involve differential equations subjected to 

conditions specified at the boundaries of the domain. These conditions are 

essential for determining a unique solution and typically represent physical 

constraints or known behaviors at the boundaries. 

Common types of boundary conditions include: 

1. Dirichlet boundary conditions: The value of the function is specified 

on the boundary (u = g on ∂Ω). 

2. Neumann boundary conditions: The normal derivative of the 

function is specified on the boundary (∂u/∂n = h on ∂Ω). 

3. Robin or mixed boundary conditions: A linear combination of the 

function and its normal derivative is specified on the boundary (αu + β∂u/∂n 

= γ on ∂Ω). 

4. Periodic boundary conditions: The function and its derivatives 

match at corresponding points on different parts of the boundary. 

Each type of boundary condition leads to a different Green's function. The 

influence of boundary conditions on the Green's function can be understood 

through the method of images, where the effect of boundaries is represented 

by strategically placed image sources.For example, for Poisson's equation in 

a half-space with Dirichlet boundary conditions, the Green's function can be 

constructed by introducing an image source of opposite sign, positioned 

symmetrically with respect to the boundary. This technique, known as the 

method of images, effectively enforces the boundary condition by canceling 

the contributions of the real and image sources at the boundary. 

Adjoint Operators and Green's Identities 
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Notes The concept of adjoint operators plays a crucial role in understanding and 

constructing Green's functions. For a linear differential operator L, its formal 

adjoint L* is defined through the relationship: 

∫Ω v(x)L[u(x)] dx = ∫Ω L*[v(x)]u(x) dx + boundary terms 

where the boundary terms arise from integrations by parts. 

This relationship leads to Green's identities, which establish connections 

between a function, its derivatives, and the corresponding adjoint 

expressions. For second-order operators, Green's second identity states: 

∫Ω (uL[v] - vL*[u]) dx = ∫∂Ω (uB[v] - vB*[u]) dS 

where B and B* are boundary operators derived from L and L*, 

respectively. 

Green's identities facilitate the construction of Green's functions by 

providing a framework for incorporating boundary conditions and 

understanding the reciprocity relations. They also form the foundation for 

integral theorems in vector calculus, such as the divergence and Stokes 

theorems.For self-adjoint operators (L = L*), Green's identities simplify 

considerably and lead to symmetric Green's functions. This symmetry has 

profound implications in physical applications, as it relates to the principle 

of reciprocity mentioned earlier. 

Construction of Green's Functions for Different Boundary Conditions 

The construction of Green's functions varies depending on the type of 

differential equation and the imposed boundary conditions. Here, we 

examine several important cases: 

1. One-Dimensional Boundary-Value Problems 

For a second-order ODE on [a,b] with homogeneous boundary conditions: 

a(x)u''(x) + b(x)u'(x) + c(x)u(x) = f(x) u(a) = u(b) = 0 (Dirichlet conditions) 

Let u₁(x) and u₂(x) be solutions to the homogeneous equation satisfying u₁(a) 

= 0 and u₂(b) = 0, respectively. The Green's function takes the form: 
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Notes G(x,ξ) = { Cu₁(x)u₂(ξ) for a ≤ x < ξ ≤ b Cu₁(ξ)u₂(x) for a ≤ ξ < x ≤ b } 

where C is determined from the jump condition in the derivative. 

For Neumann boundary conditions (u'(a) = u'(b) = 0), we similarly construct 

the Green's function using solutions that satisfy the homogeneous Neumann 

conditions at the respective endpoints. 

2. Poisson's Equation in Various Domains 

For Poisson's equation ∇²u = f in a domain Ω with Dirichlet boundary 

conditions, the Green's function can be constructed using the method of 

images for simple geometries or eigenfunction expansions for more complex 

domains. 

In a rectangular domain with homogeneous Dirichlet conditions, the Green's 

function can be expressed as a double Fourier series: 

G(x,y;ξ,η) = (4/ab) 

∑         ∞
𝑚=1 ∑         ∞

𝑛=1 sin(mπx/a)sin(nπy/b)sin(mπξ/a)sin(nπη/b) / (λ_{mn}) 

where λ{mn} = (mπ/a)² + (nπ/b)². 

For a circular domain of radius R with homogeneous Dirichlet conditions, 

the Green's function involves Bessel functions: 

G(r,θ;ρ,φ) = (1/2π) ∑         ∞
𝑛=1 εn cos(n(θ-φ)) 

∑         ∞
𝑚=1  Jn(j{nm}r/R)Jn(j{nm}ρ/R) / (J{n+1}²(j{nm})) 

where j{nm} is the mth zero of the Bessel function Jn, and εn = 1 for n = 0 and 

ε_n = 2 for n ≥ 1. 

3. Heat Equation with Time-Dependent Boundary Conditions 

For the heat equation ∂u/∂t - k∇²u = f with time-dependent boundary 

conditions, the Green's function approach can be combined with Duhamel's 

principle to handle the evolving boundary values. 

The solution takes the form: 
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Notes u(x,t) =∫  
𝑡

0
∫Ω G(x,t;ξ,τ)f(ξ,τ) dξdτ + boundary contribution 

where the boundary contribution accounts for the non-homogeneous 

boundary conditions and can be computed using the method of images or 

eigenfunction expansions. 

4. WaveEquation with Initial-Boundary Value Conditions 

For the wave equation ∂²u/∂t² - c²∇²u = f with initial conditions and 

boundary conditions, the Green's function approach leads to: 

u(x,t) = ∫  
𝑡

0
 ∫Ω G(x,t;ξ,τ)f(ξ,τ) dξdτ + initial value contribution + boundary 

contribution 

The initial value contribution involves the initial displacement and velocity 

fields, while the boundary contribution accounts for the specified boundary 

conditions. 

Green's Functions in Quantum Mechanics 

In quantum mechanics, Green's functions take on additional significance as 

propagators, describing the evolution of quantum states over time. The time-

dependent Schrödinger equation: 

iℏ∂ψ(x,t)/∂t = Hψ(x,t) 

where H is the Hamiltonian operator, admits a Green's function solution: 

ψ(x,t) = ∫ G(x,t;x',t')ψ(x',t') dx' 

The quantum mechanical propagator G(x,t;x',t') represents the probability 

amplitude for a particle to move from position x' at time t' to position x at 

time t. 

For a free particle, the propagator takes the form: 

G(x,t;x',t') = (m/(2πiℏ(t-t')))(d/2) exp(im|x-x'|²/(2ℏ(t-t'))) 

where d is the spatial dimension. 
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Notes In quantum field theory, Green's functions generalize to correlation 

functions, providing a framework for computing scattering amplitudes and 

other physical observables. The Feynman propagator, a specific type of 

Green's function, plays a central role in perturbative calculations in quantum 

electrodynamics and other field theories. 
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Boundary Element Method

Efficient treatment of problems in unbounded domains.4.

High accuracy for solutions with smooth boundaries.3.

Automatic satisfaction of radiation conditions for exterior problems.2.

from a d-dimensional volume to a (d-1)-dimensional boundary.

1. Reduction in dimensionality: The computational domain is reduced 

offers several advantages:

can  be  evaluated  using  the  same  integral  representation.  This  approach 

Once  the  boundary  values  are  computed,  the  solution  at  any  interior  point 

unknown boundary values.

∂u/∂n  is  specified  on  the  boundary,  and  the  BIE  is  used  to  determine  the 

normal  derivatives.  For  well-posed  boundary-value  problems,  either  u  or 

the solution at any point in the domain in terms of boundary values and their 

This formulation, known as the boundary integral equation (BIE), expresses 

∂Ω.

where  G  is  the free-space Green's  function  and  n  is  the  outward  normal  to 

u(x) = ∫∂Ω (G(x,y)∂u(y)/∂n - u(y)∂G(x,y)/∂n) dS(y)

third identity yields:

For  Laplace's  equation ∇²u  =  0  in  a  domain  Ω  with  boundary  ∂Ω,  Green's 

thereby reducing the dimensionality of the problem.

original PDE as an integral equation defined on the boundary of the domain, 

or  domains  with  complex  geometries.  The  key  idea  is  to  reformulate  the 

on Green's functions, particularly suited for problems in unbounded domains 

Boundary  integral  methods  represent a  powerful  numerical  approach  based 

5.3.1 Boundary Integral Methods

methods
Green’s functions for boundary-Value problems Boundary integral 

UNIT 5.3
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Notes The boundary element method (BEM) is a numerical implementation of 

boundary integral equations, discretizing the boundary into elements and 

approximating the unknown boundary values using suitable basis functions. 

For Laplace's equation, the discretized BIE takes the form: 

∑  𝑛
𝑗=1  (Gij ∂uj/∂n - ∂Gij/∂n uj) ΔSj = 0 

where Gij represents the influence of element j on element i, and ΔSj is the 

area of element j. 

The BEM leads to dense linear systems, as opposed to the sparse systems in 

finite element methods. However, the reduced dimensionality often 

compensates for this density, particularly for problems with high aspect 

ratios or unbounded domains. 

Modern implementations of BEM incorporate advanced techniques such as 

fast multipole methods or hierarchical matrices to handle the dense matrices 

efficiently, enabling the solution of large-scale problems with millions of 

boundary elements. 

Applications of Boundary Integral Methods 

Boundary integral methods find applications in diverse fields: 

1. Electrostatistics and magnetostatics: Computing electric and magnetic 

fields in complex geometries. 

2. Acoustics: Analyzing sound radiation and scattering problems. 

3. Fluid dynamics: Simulating potential flows and Stokes flows around 

complex bodies. 

4. Elastostatics: Computing stress distributions in structures under 

various loading conditions. 

5. Fracture mechanics: Analyzing crack propagation in materials. 

6. Quantum mechanics: Computing scattering cross-sections and 

resonances. 

The method is particularly effective for problems involving multiple scales 

or singularities, as the integral formulation naturally captures the singular 

behavior of the solution. 
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Advanced Topics in Green's Functions 

1. Regularized Green's Functions 

In many practical applications, the singular nature of Green's functions poses 

computational challenges. Regularized Green's functions address this issue 

by removing or smoothing the singularity while preserving the essential 

properties. 

For the 3D Laplacian, a regularized Green's function might take the form: 

Gε(x,y) = -1/(4π√(|x-y|² + ε²)) 

where ε is a small regularization parameter. As ε approaches zero, G_ε 

converges to the standard Green's function, but for finite ε, it remains 

bounded everywhere. 

Regularization techniques play a crucial role in numerical implementations, 

ensuring stability and accuracy in the presence of singularities. 

2. Green's Functions in Random Media 

For differential equations with random coefficients, representing 

heterogeneous or disordered media, the concept of Green's functions extends 

to stochastic settings. The average Green's function ⟨G(x,y)⟩ describes the 

mean response of the random system to a point source.The computation of 

average Green's functions involves techniques from perturbation theory and 

multiple scattering theory. Higher-order moments of the Green's function 

provide information about fluctuations and correlations in the 

response.Applications include wave propagation in disordered media, 

diffusion in heterogeneous environments, and electron transport in 

disordered materials. 

3. Non-local Green's Functions 



 

261 
 

Notes Traditional Green's functions describe local responses to point sources. In 

systems with non-local interactions, such as those governed by integro-

differential equations, non-local Green's functions emerge, relating the 

response at one point to excitations distributed over a region.For example, in 

non-local elasticity, the Green's function G(x,y) describes the displacement 

at x due to a force applied at y, accounting for long-range interactions in the 

material.Non-local Green's functions find applications in nanomechanics, 

fractal media, and biological systems with non-local interactions. 

4. Time-Domain Green's Functions for Dispersive Media 

In dispersive media, where the wave speed depends on frequency, time-

domain Green's functions exhibit complex behavior due to frequency-

dependent propagation. The resulting Green's functions can display 

phenomena such as pulse broadening, distortion, and non-causal 

precursors.Computational techniques for time-domain Green's functions in 

dispersive media include inverse Fourier transforms of frequency-domain 

solutions and direct time-domain methods based on auxiliary differential 

equations.Applications range from electromagnetic pulse propagation in 

dielectrics to seismic wave propagation in viscoelastic earth models. 

Numerical Computation of Green's Functions 

The analytical construction of Green's functions is feasible only for a limited 

class of problems with simple geometries and boundary conditions. For 

complex domains or variable coefficients, numerical methods become 

essential. 

1. Direct Numerical Methods 

Direct methods compute the Green's function G(x,y) by solving the defining 

differential equation with a delta function source at y. Since the delta 

function is a distribution rather than a regular function, special techniques 

are required: 

• Regularization: Replacing the delta function with a narrow but 

smooth approximation. 
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Notes • Singularity extraction: Separating the Green's function into 

singular and regular parts, treating the singular part analytically. 

• Distributional approach: Working directly with the weak form of 

the equation, incorporating the jump conditions explicitly. 

2. Eigenfunction Expansions 

For self-adjoint operators with known eigenfunctions, the Green's function 

can be expressed as: 

G(x,y) = ∑{n} φn(x)φn(y) / (λn) 

where φ_n are the normalized eigenfunctions and λ_n are the corresponding 

eigenvalues. 

This approach is particularly effective for problems in regular domains with 

separable boundary conditions, where the eigenfunctions and eigenvalues 

are known analytically or can be computed efficiently. 

3. Finite Element and Boundary Element Methods 

Finite element methods can compute Green's functions by solving the 

discretized weak form of the defining equation with appropriate source 

terms. The resulting solution represents a numerical approximation of the 

Green's function.Boundary element methods, as described earlier, directly 

utilize the integral representation involving the Green's function, making 

them naturally suited for computing Green's functions in complex 

geometries.Advanced numerical techniques such as adaptive mesh 

refinement, high-order methods, and parallel computing are essential for 

accurate and efficient computation of Green's functions, particularly in 

multiscale problems or problems with singularities. 

Applications of Green's Functions 

The versatility of Green's functions makes them indispensable across 

numerous domains of science and engineering: 

1. Electromagnetism: In electrostatics, the Green's function for Poisson's 

equation represents the electric potential due to a point charge. For the 3D 
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Notes case, G(x,y) = 1/(4π|x-y|) corresponds to the Coulomb potential.In 

electromagnetic wave propagation, Green's functions for the vector wave 

equation describe the radiation from elementary current sources, forming the 

basis for antenna theory and radar cross-section calculations. 

2. Heat Transfer: Green's functions for the heat equation characterize the 

temperature distribution due to instantaneous or continuous heat sources, 

enabling the analysis of thermal processes in complex 

geometries.Applications include heat sink design, thermal management in 

electronics, and thermal stress analysis in structures. 

3. Acoustics: In acoustics, Green's functions for the Helmholtz equation 

describe sound radiation and scattering by obstacles, forming the foundation 

for computational acoustics, noise control, and architectural acoustics.The 

acoustic Green's function G(x,y,ω) represents the complex amplitude of the 

sound field at x due to a harmonic point source at y with frequency ω. 

4. Solid Mechanics:Green's functions in elasticity, known as fundamental 

solutions or influence functions, describe the displacement field due to point 

forces or dislocations, facilitating the analysis of stress concentrations, crack 

propagation, and material defects. 

Applications range from geomechanics and fracture mechanics to 

microstructural analysis and composite materials. 

5. Fluid Dynamics: In fluid dynamics, Green's functions for the Stokes 

equations represent flow fields induced by point forces (Stokeslets), 

enabling the simulation of microfluidic systems, biological flows, and 

sedimentation processes.For potential flows, Green's functions facilitate the 

analysis of lifting surfaces, wave-body interactions, and underwater 

acoustics. 

6. Quantum Physics: Beyond the quantum propagators mentioned earlier, 

Green's functions in quantum mechanics describe electron densities, 

scattering amplitudes, and response functions, playing a central role in 

condensed matter physics and quantum field theory.Applications include 

electronic structure calculations, transport phenomena in nanostructures, and 

many-body effects in quantum systems. 
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Notes Green's functions have established themselves as a cornerstone of 

mathematical physics, providing both analytical insights and computational 

tools for a vast array of differential equations. Their significance stems from 

the elegant transformation of differential problems into integral equations, 

effectively leveraging the principle of superposition to build complex 

solutions from elementary responses. 

As science and engineering continue to tackle increasingly complex 

systems, several directions for future development of Green's function 

methods emerge: 

1. Multiphysics and coupled problems: Extending Green's function 

techniques to systems of differential equations describing coupled 

physical phenomena, such as thermoelasticity, electroelasticity, or 

fluid-structure interaction. 

2. Nonlinear problems: Adapting Green's function approaches to 

nonlinear differential equations through perturbation methods, 

homotopy techniques, or iterative schemes. 

3. Machine learning integration: Combining Green's function methods 

with machine learning algorithms to handle high-dimensional 

problems, approximate complex Green's functions, or accelerate 

numerical computations. 

4. Fractional differential equations: Developing Green's functions for 

fractional derivatives, describing anomalous diffusion, viscoelasticity, 

and other phenomena with memory effects or long-range interactions. 

5. Quantum computing applications: Exploring quantum algorithms for 

computing Green's functions in high-dimensional systems, potentially 

overcoming the computational limitations of classical methods for 

many-body quantum systems. 

The versatility and elegance of Green's functions ensure their continued 

relevance in addressing the mathematical challenges of modern science and 

engineering, serving as a bridge between theoretical understanding and 

practical applications across diverse fields.Through the lens of Green's 

functions, we gain not only a powerful computational tool but also a deeper 

appreciation of the underlying unity in seemingly disparate physical 
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Notes phenomena, all connected through the fundamental notion of response to 

elementary excitations.Heaviside step function. 

SELF ASSESSMENT QUESTIONS 

Multiple Choice Questions (MCQs) 

1. What is the primary purpose of Green’s functions in differential 

equations? 

a) To transform differential equations into algebraic equations 

b) To express solutions in terms of source terms and boundary 

conditions 

c) To eliminate singularities in functions 

d) To approximate functions using polynomials 

Answer: b) To express solutions in terms of source terms and boundary 

conditions 

2. Green’s functions are particularly useful in solving which type 

of problems? 

a) Polynomial equations 

b) Boundary-value problems 

c) Matrix equations 

d) Fourier series expansions 

Answer: b) Boundary-value problems 

3. Which of the following is a defining property of Green’s 

functions? 

a) It satisfies the given differential equation with a delta function as 

a source term 

b) It must be a periodic function 

c) It is always a constant function 

d) It must be discontinuous at all points 

Answer: a) It satisfies the given differential equation with a delta function 

as a source term 
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Notes 4. The adjoint operator in boundary-value problems is used to: 

a) Solve the problem numerically 

b) Determine properties of the differential operator 

c) Compute Fourier coefficients 

d) Approximate solutions with polynomials 

Answer: b) Determine properties of the differential operator 

5. Which method is commonly used for constructing Green’s 

functions in boundary-value problems? 

a) Method of separation of variables 

b) Boundary integral method 

c) Euler’s method 

d) Taylor series expansion 

Answer: b) Boundary integral method 

6. Which equation is commonly associated with Green’s functions? 

a) Laplace equation 

b) Schrödinger equation 

c) Poisson equation 

d) All of the above 

Answer: d) All of the above 

7. What is the interpretation of Green’s function in physics? 

a) It represents the response of a system to a point source 

b) It gives the eigenvalues of a matrix 

c) It describes the motion of a pendulum 

d) It is a probability density function 

Answer: a) It represents the response of a system to a point source 

8. Which of the following is an application of Green’s functions in 

engineering? 

a) Electromagnetic field analysis 

b) Structural mechanics 

c) Heat conduction problems 

d) All of the above 
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Notes Answer: d) All of the above 

9. Boundary integral methods are particularly useful in: 

a) Reducing partial differential equations to integral equations 

b) Finding exact polynomial solutions 

c) Discretizing functions in finite difference methods 

d) Avoiding the need for boundary conditions 

Answer: a) Reducing partial differential equations to integral equations 

Short Questions: 

1. What is a Green’s function? 

2. How are Green’s functions used to solve differential equations? 

3. What is a boundary-value problem? 

4. What are adjoint operators in boundary-value problems? 

5. How is a Green’s function constructed for a given differential 

operator? 

6. What is the significance of Green’s functions in physics? 

7. What are the key properties of Green’s functions? 

8. How does the Green’s function approach differ from the Fourier 

transform method? 

9. What is the importance of boundary integral methods? 

10. How do Green’s functions apply to electromagnetism and quantum 

mechanics? 

Long Questions: 

1. Define and explain the concept of Green’s functions with examples. 

2. Discuss the role of Green’s functions in solving boundary-value 

problems. 

3. Explain how to construct Green’s functions for different boundary 

conditions. 

4. Derive the Green’s function for a one-dimensional Laplace equation. 
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Notes 5. Discuss the relationship between Green’s functions and fundamental 

solutions. 

6. Explain boundary integral methods and their applications in 

numerical analysis. 

7. How are Green’s functions used in solving Poisson’s equation? 

8. Provide a detailed example of a physical system where Green’s 

functions are used. 

9. Compare the Green’s function method with the method of separation 

of variables. 

10. Write a MATLAB script to compute and visualize a Green’s 

function for a simple boundary-value problem. 
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