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COURSE INTRODUCTION

Discrete Mathematics is a fundamental area of mathematics that
focuses on structures that are fundamentally discrete rather than
continuous. It has applications in computer science, logic,
cryptography, and combinatorial optimization. This course covers
recurrence relations, logic, lattices, Boolean algebra, finite state
machines, and formal grammars, providing essential mathematical

tools for computational problem-solving.

Module 1: Recurrence Relations and Generating Functions

This module introduces recurrence relations and their applications in
number sequences. Topics include linear homogeneous and non-
homogeneous recurrence relations, generating functions, and
exponential generating functions.

Module 2: Logic and Lattices

This module covers fundamental concepts in logic, including
symbolic representation, tautologies, quantifiers, predicates, and
validity in propositional logic. Additionally, it introduces lattices as
partially ordered sets, their properties, algebraic systems, sub-lattices,
direct products, and homomorphisms. Special lattices such as
complete, complemented, and distributive lattices are also discussed.
Module 3: Boolean Algebra and Applications

This module explores Boolean algebra as a lattice system, various
Boolean identities, and switching algebra. Topics include subalgebras,
direct products, homomorphisms, Boolean forms, minimization of
Boolean functions, and applications in switching theory using logic
gates (AND, OR, NOT). The Karnaugh method is introduced for
simplifying Boolean functions.

Module 4: Finite State Machines and Automata

This module examines finite state machines, transition table diagrams,
equivalence of finite state machines, and reduced machines. It covers
homomorphism in finite automata, deterministic and non-
deterministic finite automata, and Moore and Mealy machines.

Module 5: Grammars and Language Theory



This module focuses on formal grammars and their role in language
theory. Topics include phrase-structure grammars, derivations,
sentential forms, and language classifications (regular, context-free,
and context-sensitive grammars). Students will study regular sets,
regular expressions, Kleene’s theorem, and syntax analysis, including

Polish and Reverse Polish Notations.

Notes



MODULE 1
UNIT 1.1
Recurrence Relations and Generating Functions, Some number
sequences
Objectives

e To understand the concept of recurrence relations and their

significance in discrete mathematics.
e To analyze different types of number sequences and their properties.

e To explore linear homogeneous and non-homogeneous recurrence

relations.

e To study generating functions and their applications in solving

recurrence relations.

e To differentiate between ordinary and exponential generating

functions.

e To apply recurrence relations and generating functions in real-world

mathematical problems.
1.1.1 Introduction to Recurrence Relations

Recurrence relations are equations that define sequences where each term is
defined as function of previous terms. They're fundamental in understanding

iterative processes, algorithms, and many mathematical patterns.
Some Important Number Sequences
Fibonacci Sequence

Fibonacci sequence is defined by recurrence relation: Fo = 0, Fi =1, F, =

Foo1 + Foz forn>2

first few terms are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
This sequence appears in nature (like the arrangement of leaves on stems

and seeds in a sunflower) and has connections to the golden ratio.



Notes

Arithmetic Sequence

An arithmetic sequence has a constant difference between consecutive
terms: a1 = first term a, = a1 + d for n > 2 (where d is the common

difference)

The explicit formula is: a, = a1 + (n-1)d

Example: 3,7, 11, 15, 19, ... (with ai =3 and d = 4)
Geometric Sequence

A geometric sequence has a constant ratio between consecutive terms: a1 =

first term a, = a,-1 X r for n> 2 (where r is the common ratio)
The explicit formula is: a, = a1 X ™!

Example: 2, 6, 18, 54, 162, ... (with a1 =2 and r = 3)
Triangular Numbers

Triangular numbers count objects arranged in an equilateral trianglel T, =

Toi+nTi=1forn>2

The precise equation is T, = n(n+1)/2.The sequence is: 1, 3, 6, 10, 15, 21,
28, ...

Catalan Numbers

The Catalan numbers appear in various counting problems: Co = 1 C, = X(C;

X Cpi-1) fori=0ton-1,n>1

The sequence is: 1, 1, 2, 5, 14,42, 132, 429, ...



UNIT 1.2
Linear homogeneous recurrence relations, Non-homogeneous
recurrence relations

1.2.1 Linear Homogeneous Relations of Recurrence

linear homogeneous recurrence relation of order k has the form: a, = cia,-1 +

C2ap—2 t ... + Cxlnk

Where ci, ca, ..., ¢k are constants and cx # 0.

1.2.2 First-Order Linear Homogeneous Recurrence Relations
These have form: a, = cian

The explicit solution is: a, = a1 x (c1)*!

Example: a, = 3a,-1 with a; = 2 Solution: a, =2 x 3»!

1.2.3 Second-Order Linear Homogeneous Recurrence Relations
These have form: a, = ciay-1 + C2a5-2

Characteristic Equation Method

To solve a second-order connection of linear homogeneous recurrence:

1. Create a characteristic formula: 12 - cir - c2 =0
2.Find the roots r: and r2 of this equation
1. The general solution depends on these roots:
o Ifri # r2 (distinct roots): a, = our:™ + or2"
o Ifri =r (repeated roots): a, = ouri™ + onri®
2. Use initial conditions to find constants o: and o2
Example: For the Fibonacci sequence F, = Fy1 + Fy2
e Characteristic equation: r> -r-1=0
e Roots:ri=(1+V5)/2andr.=(1-5)/2
e General solution: F,, = ouri™ + or2"

Using Fo= 0 and F: = 1 to find a1 and oz: F, = (1V5)[(1 + V5)/2] - (IN5)[(1
-5)/2]

Higher-Order Linear Homogeneous Recurrence Relations

For a relation of order k: a, = ciag—1 + C2an2 + ... + Cxanx

3
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1. Form the characteristic equation: r¥ - cir*™' - coar¥2 - ... -ck =0

2. Find all roots of this equation

3. For each distinct root r; with multiplicity m;, the solution includes

terms: our®, C2nri®, o2y, ..., omn™ Dy
4. general solution is the sum of all these terms

5. Use initial conditions to find all constants

Non-Homogeneous Recurrence Relations

A non-homogeneous recurrence relation has form: a, = cia;1 + c2ap2 + ... +

ckan—k + F(n)

Where F(n) is a non-zero function of n.
Method of Undetermined Coefficients
The solution has two parts: a, = a," + a,?

Where:

e a,"is the general solution to homogeneous relation

e ayPis a particular solution based on F(n)

Common forms of F(n) and their particular solutions:

1. F(n) = pn® (polynomial):
o TryayP = an®+ oD+ .+ oun + ao

2. F(n) = p*» (exponential):
o Ifp*isnot aroot of the characteristic equation, try a,» = fpk»
o Ifpkisaroot with multiplicity m, try a,> = fn™ x pk»

3. F(n)=n’ x pk (combination):

o Combine the approaches above

Method of Variation of Parameters

This method is useful for more complex F(n):

1. Find general solution a," to homogeneous relation



2. Assume a particular solution of the form a,» with variable

coefficients
3. Substitute into the original relation to find these coefficients
Solved Problems

Problem 1: Solve the recurrence relation a, = 5a,-1 - 6a,> with ao =1, ax

=4

Solution: Step 1: Form the characteristic equation 1 - 5r + 6 =0
Step 2: Factor the equation (r - 2)(r- 3) =0

Step 3: Find the roots 11 =2, 12 =3

Step 4: Write the general solution Since we have distinct roots, the general

solution is: a, = ou(2)* + a2(3)"

Step 5: Use initial conditions to find o and oz For ao = 1,: 1 = au(2)° + 02(3)°

=01t o2
Forai=4:4=w(2)' + 02(3)' =201 + 302

From the first equation: a2 = 1 - ou Substituting into the second equation: 4 =

200+ 3(1-ou)=20u+3 -3 =3 -0uou=-1
Therefore, 02 =1-(-1)=2
Step 6: Write the explicit formula a, =2(3)* - (2)» =-1(2)» + 2(3)"

Step 7: Verify the solution by checking a few terms ao=2(3)°- (2)°=2-1=
I1Va=23)-2)'=6-2=4V a=23)-2)=18-4=14a=2(3) -
(22 =54-8=46

Problem 2: Find general solution of recurrence relation a, = 4a,1 - 4a,
Solution: Step 1: Form the characteristic equation 1> - 4r + 4 =0

Step 2: Factor the equation (r - 2)>=0

Step 3: Find the roots 11 =12 = 2 (repeated root with multiplicity 2)

Step 4: Write the general solution Since we have a repeated root, the general

solution is: , = ou(2)* + cn(2)"

Step 5: Simplify the solution a, = (2)*(c1 + 02n)

Notes
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Using initial conditions, we could solve for o and a2. Without specific initial

conditions, this is the general solution.

Problem 3: Solve non-homogeneous recurrence relation a, = 3a,1 + 2»

with a0 =1

Solution: Step 1: Solve the homogeneous part a, = 3a,1 characteristic

equation is r - 3 = 0 root is r = 3 The homogeneous solution is a," = a(3)"

Step 2: Find a particular solution Since F(n) = 2" is exponential and 2 is not

a root of the characteristic equation, we try: a.» = B(2)"

Substituting into the original equation: B(2)» = 3p(2)~" + 2» B(2) = 3(2)~/2
+20 B(2)" - 3B(2)/2 =27 B2)(1-3/2)=2"B(-1/2)=1B=-2

So, a,» =-2(2)"

Step 3: Write the general solution a, = a,* + a,» = a(3)* - 2(2)°

Step 4: Use the initial conditionac=11=0(3)°-22)°=a-20a=3
Step 5: Write the explicit formula a, = 3(3)» - 2(2)"

Step 6: Verify the solution ao =3(3)°-2(2)°=3-2=1V a1 =3(3)'-2(2)! =
9-4=52a=33)-2(2*=27-8=19a3=33)*-2(2)*=81-16=165

Unsolved Problems

Problem 1

Find general solution to recurrence relation: a, = 6a,-1 - 9a,
Problem 2

Solve the recurrence relation: a, = 2a,-1 + 3a,> withao=4 anda; =5
Problem 3

Find the explicit formula for the sequence defined by: a, = a,-1 + 2a,» with

a=3anda =4
Problem 4

Solve the non-homogeneous recurrence relation: a, = 4a,—1 - 4a,» + 3 with

ao:1,81:2

Problem 5



Find recurrence relation and initial conditions for sequence: 1, 4, 10, 19, 31, Notes

40, ...
Applications of Recurrence Relations

Recurrence relations have numerous applications in mathematics and

computer science:
Algorithm Analysis

Many algorithms, especially recursive ones, can be analyzed using
recurrence relations. The time complexity of these algorithms is often

expressed as a recurrence relation:

Example: Binary Search

T(n) = T(n/2) + ¢ (assuming n is power of 2) The solution is T(n) = O(log n)
Example: Merge Sort

T(n) =2T(n/2) + cn The solution is T(n) = O(n log n)

Combinatorial Problems

Recurrence relations are useful for solving counting problems in

combinatorics:
Example: Counting Binary Strings

Let a, be number of binary strings of length n that do not contain

consecutive 0s.

We have:

* The strings 0 and 1 make up a1 = 2.

* (the strings 01, 10, and 11) a2 = 3.

The recurrence relation is: a, = a,-1 + a2 forn >3
This is the Fibonacci recurrence shifted by 2 positions.
Example: Tower of Hanoi

Let T(n) be the minimum number of moves needed to solve Tower of Hanoi

puzzle with n disks.

The recurrence relation is: T(n) =2T(n-1) + 1 with T(1) =1
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The solution is: T(n) =2 - 1

Financial Mathematics

Recurrence relations model financial processes like compound interest:
Example: Compound Interest

Let P(n) be amount after n years with principal Po, interest rate r, and annual

compounding.

recurrence relation is: P(n) = (1 + r)P(n-1) with P(0) = Po
The solution is: P(n) = Po(1 + r)"

Population Growth

Recurrence relations model population dynamics:
Example: Rabbits (Fibonacci Model)

Let P(n) be the number of rabbit pairs after n months.

The recurrence relation is: P(n) = P(n-1) + P(n-2) for n > 3, with P(1) =1,
P2)=1

This is the classic Fibonacci sequence.
Techniques for Solving Recurrence Relations
Iterative Substitution Method

This method involves expanding the recurrence relation repeatedly until a

pattern emerges:
Example: T(n) = T(n-1) + n with T(1) =1

T(n) =T(n-1) + n=T(n-2) + (n-1) + n=T(n-3) + (n-2) + (n-1) + n... =T(1)

+24+3+.+(m-1)+n=1+2+3+. +n=n(n+1)/2

The Divide-and-Conquer Recurrence Master Theorem
When a > 1 and b > 1:1, recurrences of the form T(n) = aT(n/b) + f(n)

occur. T(n) = O(n"°%,®) if f(n) = O"og,A)_g)) for some & > 0.

Tn) = O0" ™  log n if fin) = On'g®)).
3. T(n) = O(f(n)) if f(n) = Q(n"&@+¢)) for any € > 0 and af(n/b) < cf(n) for

some ¢ < 1.



Function Generation

The formal power series is a generating function G(x) for a sequence {a,}:

Forn >0, G(x) = a0 + aix + a:x* +... = X(a,x").

The explicit formula for a, for recurrence relations can be found by

performing operations on the generating function.

For instance: Fi1 = 1 for the Fibonacci sequence where Fo = 0: The formula

for G(x) is Z(Fux") = x + x2 + 2x3 + 3x* + 5x° +...

This is the functional equation: xG(x) + x*G(x) + x = G(x)
Finding G(x): The formula is G(x) - xG(x) - x>*G(x) =x G(x)(1 - x - x*) =x
G(x)=x/(1 - x - x?).

By decomposing partial fractions: G(x) = (1/N5)[1/(1-0x)-1/(1-Bx)]
In this case, p = (1-V5)/2 and a = (1 + V5)/2
This allows us to recover: F, = (1/V5)[a - p"]
Particular Recurrence Relation Types
Recurrence Relations with Constant Coefficients
Ay = Ciay1 + Coan2 +... + ckan« + F(n) is the form of these.
where the constants are ci, Ca,..., Ck.
Recurrence Relations between Variables and Coefficients
A, = ci(n)a,-1 + c2(n)ay—=2 +... + c(n)a,« + F(n) is the form of these.
where at least one of the following is not constant: ci(n), cz(n),..., ck(n).
Divide-and-Conquer Recurrence Relations
These have the form: T(n) = aT(n/b) + f(n)
Where:
e ais the number of subproblems
e n/b is the size of each subproblem
e f(n) is the cost of dividing and combining

Systems of Recurrence Relations

Notes
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These involve multiple interdependent sequences: The formula is a, = f(an-1,

An-2,..., D1, bn2,...) bn = g(@n-1, @n2,..., bn-1, bn2,.

For example, the Fibonacci and Lucas sequences form a system.

Historical Development of Recurrence Relations

Recurrence relations have a rich history dating back to ancient mathematics:
Ancient Origins

The concept of recursion appears in ancient problems like the Tower of

Hanoi and the Chinese rings puzzle.
Leonardo Fibonacci (c. 1170-1250)

Fibonacci introduced the sequence named after him in his book "Liber

Abaci" (1202), in the context of modeling rabbit population growth.
Abraham de Moivre (1667-1754)

De Moivre developed methods for solving linear recurrence relations with

constant coefficients, introducing characteristic equation method.
Pierre-Simon Laplace (1749-1827)

Laplace used generating functions to solve recurrence relations, laying

important groundwork for modern approaches.
George Boole (1815-1864)

Boole developed symbolic methods for solving recurrence relations as part

of his work on difference equations.
Modern Development

In the 20th century, the study of recurrence relations expanded with
applications in computer science, particularly algorithm analysis (Knuth,

Hopcroft, Tarjan, and others).
Relationships to Other Mathematical Areas
Differential Equations

Recurrence relations are the discrete analogs of differential equations. Many
techniques for solving differential equations have corresponding methods for

recurrence relations.

10



Linear Algebra

Higher-order linear recurrence relations can be transformed into first-order
matrix recurrence relations, connecting them to eigenvalues and

eigenvectors.
Number Theory

Many important number-theoretic sequences, like Fibonacci numbers,
satisfy recurrence relations and have connections to continued fractions and

Diophantine equations.
Graph Theory

Recurrence relations describe paths in graphs, especially in counting

problems involving walks of various types.
Complex Analysis

Generating functions for recurrence relations connect to complex analysis,
with singularities of the generating function determining the asymptotic

behavior of the sequence.
Advanced Topics in Recurrence Relations
Asymptotic Analysis

For many applications, especially in algorithm analysis, we're interested in

the asymptotic behavior of sequences defined by recurrence relations:
Big-O Notation

e O(f(n)): Upper bound

e Q(f(n)): Lower bound

e O(f(n)): Tight bound
Common Growth Rates (in increasing order)

e (O(1): Constant

e O(logn) is a logarithmic

e O(n) is linear, and O(n log n) is linear.
e O(n"): Polynomial

e O(n?): Quadratic

11
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* Exponential O(2")Multivariate Recurrence Relations

These involve sequences with multiple indices: a(m,n) = f(a(m-1,n), a(m,n-

1),...)

Example: Pascal's triangle satisfies: C(n,k) = C(n-1,k-1) + C(n-1,k)
Non-Linear Recurrence Relations

These have a non-linear form: a, = f(an-1, an-2, ..., an«)

Where f is not a linear function.

Example: Logarithmic recurrence: T(n) = T(n/2) + 1

Solution: T(n) = log2(n) + T(1)

Random Recurrence Relations

These involve probability and random variables: E[X,] = f(E[Xs-1], E[Xa-2],
)

Example: Expected height of a random binary search tree: E[H(n)] = 4.311
log n - 1.953 log logn + O(1)

Conclusion

Recurrence relations are powerful tools for modeling and solving problems
in diverse fields. Understanding them provides insights into algorithmic
efficiency, natural patterns, and mathematical structures. As we've seen,
techniques for solving recurrence relations range from elementary methods
like iteration to sophisticated approaches using generating functions and

asymptotic analysis.

The connection between recurrence relations and other mathematical
areas—like differential equations, linear algebra, and complex analysis—
highlights their fundamental importance in mathematics. From the classic
Fibonacci sequence to the complexities of algorithm analysis, recurrence
relations offer a unified framework for studying discrete mathematical
processes.Whether you're analyzing algorithms, modeling population
growth, or exploring number theory, recurrence relations provide elegant
formulations and solutions, forming an essential component of mathematical

problem-solving.

12



UNIT 1.3
Generating functions, Recurrences and generating functions,
Exponential generating functions

1.3.1 Generating Functions, Recurrences, and Applications
Introduction to Generating Functions

A generating function is a powerful mathematical tool that encodes an
infinite sequence of numbers (ao, ai, az, ...) into a single function. The most
common type of generating function is the ordinary generating function,

defined as:
G(X) =a9+ax +ax®+azx®+ ...

Here, the sequence (a0, al, a2, ...) represents the coefficients of the power
series. Rather than working with the sequence directly, we can manipulate
the generating function as a whole, which often simplifies complex

problems involving sequences.
Why Generating Functions Are Useful

Generating functions provide a powerful framework for solving a variety of

problems in discrete mathematics:

1. Solving recurrence relations: Many problems in computer science
and mathematics involve sequences defined recursively. Generating
functions provide a systematic approach to find closed-form

expressions for these sequences.

2. Counting problems: In combinatorics, generating functions help
count arrangements, selections, or distributions that satisfy certain

constraints.

3. Probability distributions: In probability theory, generating
functions represent probability distributions and simplify the

calculation of moments and other statistical properties.

4. Asymptotic analysis: Generating functions can provide insights
into the asymptotic behavior of sequences, which is crucial for

analyzing algorithm complexity.
Basic Operations on Generating Functions

If we have generating functions G(x) = X a,x* and H(x) = £ bnx", the

following operations correspond to operations on the underlying sequences:

13
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1. Addition: G(x) + H(x) = Z (a, + bn)x"
2. Scalar multiplication: ¢c-G(x) = X (c-a,)x"

3. Multiplication: G(x)-H(x) = X cx, where ¢, = X akby«

(convolution)
4. Differentiation: G'(x) =X n-a.x™"!
5. Integration: |G(x)dx = C + X (a/(n+1))x*!
6. Shifting: x-G(x) = X ay-1x" (where a-1 = 0)
Common Generating Functions
Several generating functions appear frequently in combinatorial problems:
Geometric Series
The simplest generating function is the geometric series:
Gx)=1+x+x*+x*+..=1/(1-x) for [x| < 1
This represents the sequence (1, 1, 1, ...). Its general form is:
G(x)=a+ax +ax®>+ax’*+...=a/(1-x) for [x| < 1
Binomial Series
The binomial theorem gives us:
(1+x=%("Cxkfork=0ton

For negative and non-integer values of n, we have the generalized binomial

series:
(1 +x)" =2 ("Cy)x* for k =0 to oo (for x| < 1)

where (n choose k) = n(n-1)(n-2)...(n-k+1)/k! even when n is not a positive

integer.

Exponential Function

The exponential function as a generating function:
e=1+x+x¥2! +x3/31 + ... =Z xn!

Recurrence Relations and Generating Functions

14



A recurrence relation defines each term of a sequence using one or more
previous terms. Generating functions provide a systematic approach to solve

recurrence relations.
Constant Coefficient Linear Recurrence Relations
Consider a linear recurrence relation:

an = C18p-1 T C28p2 * ... + Ciap+« + f(n) forn >k

Where ci, c2, ..., ¢k are constants, and f(n) is function of n. To solve this

using generating functions:
1. Define G(x) =Z a.x"
2. Multiply the recurrence relation by x* and sum over all valid n
3. Express the resulting equation in terms of G(x)
4. Solve for G(x)
5. Expand G(x) into a power series to find the coefficients a,
Homogeneous Recurrences

For homogeneous recurrences (f(n) = 0), the characteristic equation helps

find closed-form solutions:
oD o cr®d - =0

The solutions to this equation determine the form of the closed-form

expression for a,.
Non-homogeneous Recurrences
For non-homogeneous recurrences (f(n) # 0), we can split the solution into:
e The homogeneous solution (as above)
e A nparticular solution that satisfies the non-homogeneous part
Exponential Generating Functions

While ordinary generating functions use the form G(x) = £ a,x", exponential

generating functions (EGFs) use:
E(x) =X ay,x"/n!

Properties of EGFs

15
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If E(x) = X a.x/n! and F(x) = Z b.x"/n! are exponential generating functions,

then:

Addition: E(x) + F(x) = X (a, + by)x*/n!
Scalar multiplication: c-E(x) = X (c-a,)x"/n!

Multiplication: E(x)'F(x) = X cuxxn!, where ¢, = £ (n choose
K)aibn-«

Differentiation: E'(x) = X a,~1x%/n!

Integration: [E(x)dx = C + % a,-ix"/n! (where a-1 = 0)

When to Use EGFs vs. Ordinary Generating Functions

Ordinary generating functions are particularly useful for problems

involving selections with repetition allowed.

Exponential generating functions are more suitable for problems

involving arrangements, permutations, or labeled objects.

Common Exponential Generating Functions

1.

Exponential function: ¢* = £ x%/n! is the EGF for the sequence (1,

L1,.)

Sine and Cosine: sin(x) = T (-1)x®™/(2n+1)! and cos(x) = X (-

1)2x®"/(2n)!

Exponential with factor: e = X a"x¥n! is the EGF for the

sequence (1, a, a2, a3, ...)

Applications of Generating Functions

Fibonacci Numbers

Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13, ...) is defined by recurrence:

Fo=O,F1=l,Fn=Fn—1+Fn—zf0rn22

Using generating functions, we can find:

G(x) = Z Fpx» = x/(1-x-x?)

This can be expanded using partial fractions to obtain closed-form

expression:
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F. = (9" - (1-9)")/\5, where ¢ = (1+V5)/2 ~ 1.618 (the golden ratio) Notes
Catalan Numbers

Catalan numbers (1, 1, 2, 5, 14, 42, ...) appear in many combinatorial

problems. They satisfy:
Co=1,Cin=2CCyifori=0ton
Their generating function is:
G(x) = (1-V(1-4x))/(2x)
And the closed form is:
Co=(U/(n+1)(2" Co)
Binomial Coefficients
The binomial coefficients (n choose k) have generating function:
(I+x)r=Z ("Cxk fork=0ton
This leads to numerous identities and combinatorial interpretations.
Advanced Techniques
Lagrange Inversion Formula

For implicitly defined generating functions, the Lagrange inversion formula

provides a way to extract coefficients.
Singularity Analysis

Analyzing the singularities of a generating function can provide asymptotic

estimates of the coefficients.
Multivariate Generating Functions

For sequences that depend on multiple indices, multivariate generating

functions can be used:
G(x,y) = Z aj,ixlyl
Solved Problems

Solved Problem 1: Solve Recurrence Relation for Tower of Hanoi
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Problem: Find number of moves required to solve Tower of Hanoi

puzzle with n disks.

Recurrence relationis: Ti=1T,=2Tx1+ 1 forn>2
Solution:

Let G(x) = X Tyx" be the generating function.

Multiplying recurrence by x and Adding up for n > 2: Forn > 2, ¥ T,x"
= z 2Tp-1x» + z X
This provides us with: 2x G(x) + x%/(1-x) = G(x) - Tix

Changing T: = 1 to: G(x) - x = 2x G(x) + x*(1-x)

Finding G(x): G(x) - 2x x + x¥/(1-x) = G(x) x + x¥/(1-x) = G(x)(1 - 2x)
x(1-x + x)/(1-x) = G(x)(1 - 2x) x/(1-x) = G(x)(1 - 2x) x/((1-x)(1-2x)) =
G(x)

Making use of partial fractions G(x) = x/(1-x) (1-x) - (1/2) = - x/(1-2x)
1/(1-x/2)

Expanding into power series: G(x) = x(1 + x + x> + ...) - (1/2)(x/2 +
2P+ 2P +.)=x+x2+x3+ .. -(12)X2+x/4+x3/8+...)=X
(xn - x0/20+1)

Therefore: T, =1 - 1/271 = (271 - 1)/201 =20 - ]

The number of moves required to solve the Tower of Hanoi puzzle with

n disks 1s 22 - 1.

Solved Problem 2: Fibonacci Sequence Using Exponential Generating

Function

Problem: Derive an expression for Fibonacci numbers using an exponential

generating function.

Solution:

Fibonacci sequence is defined by: Fo=0, Fi=1, F, = Fy-1 + Foa forn> 2
Let E(x) = X F.x®/n! be the exponential generating function.

Multiplying the recurrence by x*/n! & summing for n > 2: £ Fx¥/n! = X

Foaxv/n! + 2 Fo2x¥/n! forn>2
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This gives us: E(x) - Fo - Fix = x-E(x) + x*-E(x) Notes
Substituting Fo=0 and F1 = 1: E(x) - x = xE(x) + x> E(x)

Solving for E(x): E(x) - x-E(x) - x**E(x) =x EX)(1 - x - x*) =x E(x) =x/(1 -

X - X?)

Let's find roots of denominator: 1 - x - x2=0 x = (-1 £ V5)/2

Let a=(1+5)/2 and B = (1 - V5)/2

Using partial fractions: E(x) = x/((x-a)(x-B)) = A/(x-a) + B/(x-B)

Solving for A and B: A = x/(x-B)lx=0. = a/(a-B) = o/N5 B = x/(x-a)[x=P =
B/(B-0) = -BNS

Thus: E(x) = (/N5)/(x-a) - (BA5)/(x-B) = (I/N5)(a/(x-a) - B/(x-B))

Each term can be expanded as a power series: 1/(x-a) = -1/a - 1/(1-x/a) = -

(Ma) - (1 +x/a+ (X/a)* +...) =-(1/a) - Z (x/a)» = -Z x*/on™!
Similarly: 1/(x-B) = -Z x2/p*!

Therefore: E(x) = (IN5)(-a - T x¥or*! + B - T xv/prtt) = (1/V5)(Z xVor + X
x/Br) = (1/V5)Z x2(1/p - 1/om)

Comparing with the original definition of E(x): Fy/n! = (AN5)(1/ Bo - 1/am)
Thus: F, = (n!/N5)(1/p" - 1/ar)

This isn't the simplest form. For the standard Fibonacci closed form, the
ordinary generating function is more elegant, giving: F, = (or - pr)/N5 =

(((1HN5)2)" - ((1-V5)/2)m5
Solved Problem 3: Generating Function for Derangements

Problem: Find number of derangements of n elements using generating

functions.

Derangement is a permutation where no element appears in its original

position.
Solution:
Let D, be number of derangements of n elements.

For n = 0, there is 1 way to arrange 0 elements (empty arrangement), so Do =

1. For n =1, there is no way to derange 1 element, so D: = 0.
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For n > 2, we can derive recurrence relation: Dy = (n-1)(Dn-1 + Dn-2)
Let's solve this using exponential generating function: D(x) = X Dx%/n!

From the recurrence, multiplying by x*/n! & summing for n > 2: £ Dyx/n! =

¥ (n-1)(Dy-1 + Dy—2)x/n!
The left side is D(x) - Do - Dix/1! = D(x) - 1

For the right side, we need to manipulate the terms: (n-1)(Dy-1 + Dp2)x%/n! =
(n-1)Dy-1x/n! + (n-1)Dyp2x¥/n! = Dp-ix?/(n-1)! - (n-1)/n + Dp-2x%/(n-2)! - (n-
1)/ (n(n-1)) = Dpx*!'x/(n-1)! - (n-1)/n + Dyox*2-x*/(n-2)! - 1/n =
Dp-ix2-x/(n-1)! - (1-1/n) + Dy2x"2-x%/(n-2)! - 1/n

Summing over n > 2: X (n-1)(Dy-1 + Di2)x%/n! = x-D'(x) - x-D(x) + x>-D(x)

Therefore: D(x) - 1 =x'D'(x) - x-D(x) + x>D(x) D(x) - 1 =x-D'(x) + D(x)(x2

-X)
Rearranging: x-D'(x) = D(x)(1 - x*+x) - 1 x:D'(x) =D(x)(1 -x +x?) - 1
This is a differential equation. The solution is: D(x) = e"(-x)/(1-x)

Expanding e™ as a power series: D(x) = (1 - x + x¥2! - x3/3! + ...)/(1-x) = (1

Sx X203 L) (LA xR L)

Extracting the coefficient of x/n!, we get: D, = n!-X(-1)¥k! fork =0 ton =
n!(1-1/11+1/2'-1/3! + ...+ (-1)¥n!) =n!-Z(-1)¥/k! fork=0ton

This is the closed form for number of derangements of n elements.

For large n, approaches n! /e, which means approximately 1/e = 36.8% of all

permutations are derangements.
8. Unsolved Problems
Unsolved Problem 1

Find the generating function for sequence defined by the recurrence relation:

a=1,a=3,,=4a,1 -4a,2forn>2
Use generating function to find a closed-form expression for a..
Unsolved Problem 2

sequence is defined by the recurrence relation: bo = 1, bi =2, bo =3, b, =

2bp-1-by2tbysforn>3
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Find the exponential generating function for this sequence and derive Notes

closed-form expression for b.
Unsolved Problem 3

Use generating functions to solve the recurrence relation: co=1, c1 =4, ¢, =

6¢n-1 - 9cqh2 forn > 2
What is the asymptotic growth rate of c, as n approaches infinity?
Unsolved Problem 4

Find the ordinary generating function for the number of ways to make
change for n cents using coins of denominations 1, 5, 10, and 25 cents,

where the order of coins doesn't matter.
Unsolved Problem 5

A sequence (dn) satisfies the recurrence relation: do =0, di = 1, dy = dw1 +

do2+n-1forn>2

Find generating function for this sequence and use it to derive closed-form

expression for ds.

1.3.2 Applications of Recurrence Relations and Generating

Functions

Recurrence relations are equations that define a sequence based on previous
terms in the sequence. They provide a powerful way to represent and solve
problems in mathematics, computer science, and various real-world
applications. When we face a problem where each state depends on previous
states, recurrence relations offer an elegant mathematical framework to

model and solve such dependencies.
recurrence relation generally takes form:
f(an-l, An-2,..., dn-k = aAn

Where the value of the nth term depends on k previous terms. For example,

Fibonacci sequence can be expressed using the recurrence relation:

Fno=Fn1 + Fuo, with Fo = 0, Fi=1
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Recurrence relations alone can be challenging to solve for large values. This
is where generating functions come into play, providing a systematic

approach to solve complex recurrence relations.
Generating Functions: A Powerful Tool

A generating function is a formal power series whose coefficients give a
sequence of numbers. For a sequence {a 0, a 1, a 2, ...}, the ordinary

generating function is defined as:
G(x) =ao + a'x + a’xy + a’x3t ... =),;,50 aNXN

Generating functions transform recurrence problems from the realm of
sequences to the realm of functions, where we can leverage algebraic

techniques to find closed-form expressions.
Common Types of Generating Functions
1. Ordinary Generating Functions (OGF)Z(n>0) a.x" = G(x)

2. Exponential Generating Functions (EGFG(x) is equal to Z(n>0)

an (x"/n!).
3. Dirichlet Generating Functions: X, a./ns = G(s)
Solving Recurrence Relations with Generating Functions
The general approach involves:

1. Convert the recurrence relation to a functional equation using

generating functions
2. Solve the functional equation to find the generating function
3. Extract coefficient formula from the generating function
Common Recurrence Relations and Their Solutions
Arithmetic Sequences

With a; = a, the recurrence is a, = a1 + d. (n-1)d + a, = an is the closed

form.
Geometric Sequences

With a; = a, the recurrence is a, = rea,.;. Form closed: a, = ar™!
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Linear Homogeneous Recurrence Relations with Constant Coefficients Notes
For a recurrence of the form: a, = ci-an.1 + c2ran2 + ... + Ck*ank

The solution involves finding the roots of the characteristic equation: r* —

crrkl—cork?o =0

Applications in Various Fields

Computer Algorithms

1. Analysis of Recursive Algorithms

Many algorithms use recursion, which naturally leads to recurrence
relations. For example, the time complexity of the binary search algorithm

can be expressed as:

T(n)=T(n/2) +c

This recurrence relation can be solved to find that T(n) = O(log n).
2. Divide and Conquer Algorithms

Algorithms like Merge Sort have time complexities expressed as:
T(n) = 2T(n/2) + O(n)

Using the Master Theorem (which is derived from recurrence relations), we

find T(n) = O(n log n).
Combinatorial Problems
1. Counting Problem Structures

The number of ways to arrange objects, select committees, or distribute

items often lead to recurrence relations.

For example, the number of ways to tile a 2xn rectangle with 2x1 dominoes

follows the Fibonacci recurrence:
T(n) = T(n-1) + T(n-2)
2. Catalan Numbers

Catalan numbers appear in numerous counting problems and follow the

recurrence:

Co=Y"4Ci-Cn—1—1i,withCo=1
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Notes The generating function for Catalan numbers is:

C(x) = (1 - V(1 - 4x))/(2x)

Financial Mathematics

1. Compound Interest

If P, represents the principal after n periods with interest rate r, we have:
Py =Pni(1 +1)=Po(1 +1)°

2. Mortgage Payments

For a mortgage with principal P, interest rate r per period, and n total

periods, the recurring payment A satisfies:
P=A1-(1+0)"/r

Population Dynamics

1. The Fibonacci Model for Rabbit Population

The classic Fibonacci sequence originally modeled rabbit population

growth.

2. Logistic Growth Model

For a population with carrying capacity K and growth rate r:
Po=Pm1; + r'Pin1y-(1 - Pty /K)

Physics and Engineering

1. Harmonic Oscillators

The position of a mass on a spring can be modeled by recurrence relations.
2. Signal Processing

Digital filters often use recurrence relations to process signals.
Solved Problems

Problem 1: Fibonacci Sequence Using Generating Functions

Problem: Find a closed-form expression for the Fibonacci sequence F,

defined by Fo=0, Fi =1, and F, = F.1y + Fipy forn>2.
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Solution: Notes

Step 1: Define the generating function F(x) = Y150  Fax"

Step 2: Multiply the recurrence relation by x" and sum for n > 2: £(n>2)
Fixt = 3(n>2) Fop X" + $(n>2) Fa) X"

Step 3: Rewrite in terms of F(x): F(x) - Fo - Fix = x(F(x) - Fo) + x> F(x)
Step 4: Substitute Fo =0, F; = 1: F(x) - x = x'F(x) + x**F(x)

Step 5: Solve for F(x): F(x) - x = F(x)(x + x?) F(x) - FX)(x + x2) = x F(x)(1 -
x-x}) =xF(x)=x/(1 -x-x%

Step 6: Using partial fraction decomposition or the binomial theorem, we

can show that: F(x) = (1/N5)-[1/(1 - ax) - 1/(1 - Bx)]
Where o= (1 +V5)/2 and B = (1 - V5)/2.

Step 7: Expanding as a power series gives: F(x) = (1/V5):[Z(n>0) a” x" -
£(n=0) B x"]

Step 8: Therefore, the closed-form expression for the nth Fibonacci number

is: Fr = (1/5) [a™ - BT = (IN5)-[(1 +V5)/2" - (1 - V5)7/27]
This is known as Binet's formula.
Problem 2: Tower of Hanoi

Problem: Find the minimum number of moves required to solve the Tower

of Hanoi puzzle with n disks.
Solution:
Step 1: Let T" be the minimum number of moves needed for n disks.
Step 2: For n = 1, we only need one move, so T' = 1.
Step 3: For n > 2, we need to:
e Move n-1 disks from source to auxiliary (T™" moves)
e Move the largest disk from source to destination (1 move)

e Move n-1 disks from auxiliary to destination (T™" moves)
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Step 4: This gives us the recurrence relation: T" = 2- T®D + 1, with T' = 1

Step 5: Define the generating function G(x) = Z(n>1) Tu"

Step 6: Multiply the recurrence by x" and sum for n > 2: ¥(n>2) Tu" =
2:2(m>2) T {n-1} x"+ Z(n>2) x"

Step 7: Rewrite in terms of G(x): G(x) - Tix = 2x-G(x) + x%/(1-X)
Step 8: Substitute T, = 1: G(x) - x = 2x-G(x) + x*/(1-x)

Step 9: Solve for G(x): G(x) - 2x-G(x) = x + x%/(1-x) G(x)(1 - 2x) = x +
x*(1-x) G(x) = [x + x*/(1x)])/(1 - 2x) G(x) = [x(1-x) + x*]/(1-x)(1-2x) G(x)
=x/(1-x)(1-2x)

Step 10: Using partial fraction decomposition: G(x) = 1/(1-2x) - 1/(1-x)

Step 11: Expand as power series: G(x) = Z(n>0) (2")x" - Z(n>0) x" = X(n>1)
2"-1)x"

Step 12: Therefore, T" = 2" - 1.

So, the minimum number of moves required to solve the Tower of Hanoi

puzzle with n disks is 2" - 1.
Problem 3: Catalan Numbers

Problem: The Catalan numbers C" satisfy the recurrence relation C 0 = 1
and C" = Y1=% Ci- C(n — 1 — i) for n > 1. Find a closed-form expression for

Cn-
Solution:
Step 1: Define the generating function C(x) = Z(n>0) Cy"

Step 2: Multiply the recurrence by x" and sum for n > 1: ¥(n>1) Cu" =
0> ¥=0Ci-C(n—1—i) x°

Step 3: The right side is the coefficient of x" in [C(x)]% except for the
constant term. Thus: C(x) - Co = x*[C(x)]?

Step 4: Substitute Co = 1: C(x) - 1 = x-[C(x)]?

Step 5: Rearrange to get a quadratic equation: x-[C(x)]* - C(x) +1=0
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Step 6: Solve for C(x) using the quadratic formula: C(x) =[1 £ V(1 - 4x)]/2x

Step 7: Since C(0) = Co = 1, we must choose the solution: C(x) =[1 - V(1 -
4x)]/2x

Step 8: Using the binomial theorem to expand V(1 - 4x): V(1 - 4x) = £(k>0)
(1/2 choose k)(-4x)"k

Step 9: After algebraic manipulation, we get: C(x) = £(n>0) (1/(n+1))(2n

choose n)x"

Step 10: Therefore, the closed-form expression for the nth Catalan number

is: Cy, = (1/(n+1))(2n choose n) = (2n)!/((n+1)!'n!)

This formula confirms that the Catalan numbers appear in many counting
problems, such as the number of valid parenthesizations of n+1 factors, the
number of triangulations of a convex polygon with n+2 sides, and many

others.
Problem 4: Derangements

Problem: A derangement is a permutation where no element appears in its
original position. Let D, be the number of derangements of n elements. Find

a recurrence relation and generating function for Dy,
Solution:

Step 1: For n = 1, there are no derangements, so D _1 = 0. For n = 2, there is

one derangement: (2,1),soD 2=1.

Step 2: For n > 3, consider element 1. It can be placed in any of the n-1

positions 2, 3, ..., n. If 1 goes to position i, we have two cases:

e Element i goes to position 1 (forming a 2-cycle). The remaining n-2

elements must be deranged, giving D2y possibilities.

e Element i does not go to position 1. This is equivalent to deranging

n-1 elements (excluding position 1), giving D,.1) possibilities.

Step 3: This gives us the recurrence relation: D, = (n-1)(D -1yt Dn-2), with
D| = 0, Dz =1

Step 4: This can be simplified to: Dy =n-Dg.1y + (-1)"

Step 5: Define the exponential generating function D(x) = £(n>0) D" (x"/n!)
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Step 6: Multiply the recurrence by x"/n! and sum: X(n>2) D" (x"/n!) =
2(m>2) n'Dpoy (x"/n!) + Z(n>2) (-1)" (x"/n!)

Step 7: Simplify: D(x) - Do - Dix =x-D'(x) +e™ -1 -x
Step 8: Substitute Do =1, D; =0: D(x) - 1 =x'D'(x) +e™ -1 -x
Step 9: Rearrange: D(x) - x-D'(x) = ¢™

Step 10: This is a first-order linear differential equation. The solution is:

D(x) = e™/(1-x)

Step 11: Expanding ¢ and 1/(1-x) as series: D(x) = [Z(k>0) (-1)* (x¥/k!)] -
[Z(m>0) x™]

Step 12: The coefficient of x"/n! in D(x) gives us: D, =n! - Z(k=0 to n)
-1/ k!

Step 13: Therefore: D, =n! - (k=0 ton) (-1)*/ k! =n! - (1 - 1 + 1/2! - 1/3!
+ ...+ (-1)"n!)

Step 14: As n approaches infinity, this sum approaches e™(-1). Thus, for

large n: D, = n!/e (rounded to the nearest integer)

This is an example of the "nearest integer function" and shows that the
probability of a random permutation being a derangement approaches 1/e as

n increases.
Problem 5: Recurrence Relation for Binary Strings

Problem: Let a, be the number of binary strings of length n that do not
contain "11" as a substring. Find a recurrence relation and closed-form

expression for ay.
Solution:

Step 1: For n = 1, the possible strings are "0" and "1", so a' = 2. For n = 2,

the possible strings are "00", "01", and "10" (excluding "11"), so a> = 3.
Step 2: For n > 3, consider the last two characters of a valid string:

e If the string ends with "00", removing these gives a valid string of

length n-2, so there are a®™? such strings.
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e If the string ends with "01", removing these gives a valid string of

length n-2, so there are a®™? such strings.

e If the string ends with "10", removing these gives a valid string of

length n-2, so there are a®™? such strings.
e The string cannot end with "11" by definition.

Step 3: This gives us the recurrence relation: a n = a®™b + a®?, with a; = 2,

a) = 3
Step 4: Define the generating function A(x) = Z(n>0) a_nx", with a® = 1.

Step 5: Multiply the recurrence by x" and sum for n > 3: X(n>3) a." =

2(n>3) apn-1) X" + Z(n=3) am2) X"

Step 6: Rewrite in terms of A(X): A(X) - ao - a1X - az = X(A(X) - 2o - a1X) +
x2A(x)

Step 7: Substitute a 0 =1,a' =2, 2> =3: A(x) - 1 - 2x - 3x* = x(A(x) - I -
2x) + x*A(x)

Step 8: Solve for A(x): A(x) - 1 - 2x - 3x? = XA(X) - X - 2x* + x>A(x) A(X) -
XA(x) - X2PA(x) =1 +2x +3x? - x - 2x2A(x)(1 - x-x) =1 +x +x?Ax) = (1

+x+x)/(1-x-x3)

Step 9: The denominator 1 - x - x? is the same as in the Fibonacci generating

function. Using partial fraction decomposition: A(x) = (1 + x + x?)/[(1 -

ax)(1 - Bx)]
Where o= (1 +V5)/2 and = (1 - V5)/2.

Step 10: After further algebraic manipulation, we get: a" = [(aN(n+2) -
p(n+2))/(o - P)] - [(o"n - B n)/(a - B)]

Step 11: This can be simplified to: a, = Fn2) + Fn
Where F, is the nth Fibonacci number.

Therefore, the number of binary strings of length n without consecutive 1's
is given by a, = Fni2) + Fi, which can be computed using Binet's formula for

Fibonacci numbers.
Unsolved Problems

Problem 1: Tribonacci Sequence

29

Notes



Notes

The Tribonacci sequence is defined by To=0, T1 =1, T» = 1, and Ty, = Ty

+ T2y + Tn-3) for n > 3.
Find a closed-form expression for T, using generating functions.
Problem 2: Coin Change Problem

Let c, be the number of ways to make change for n cents using coins of
denominations 1, 5, 10, and 25 cents. Find a recurrence relation and

generating function for c,.

Problem 3: Binomial Coefficients

Using generating functions, prove the identity:
2(k=0 to n) (n choose k)2 = (2n choose n)
Problem 4: Partition Numbers

Let p(n) be the number of ways to write n as a sum of positive integers
(where order doesn't matter). Find a recurrence relation and generating

function for p(n).
Problem 5: Random Walks

Consider a random walk on the integer number line, starting at position 0. At
each step, you move one unit left or right with equal probability. Let p_n be
the probability of being back at position 0 after 2n steps. Find a recurrence

relation and generating function for p_n.

Advanced Applications

Matrix Methods for Recurrence Relations

For a linear recurrence relation of order k:

an = C1'am-1) T C2'am2) T ... T Ck'amk)

We can express it in matrix form:

[an, Am-1)s --v5 AT = A [A@-1), A@-2)5 -+ A@K)T

Where A is the companion matrix:
A=[cicr..cenck;10...00;01...00;.......;00...10]

Then, a, can be computed using matrix exponentiation:
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T=A®D . Tag, aka), ..., a0]"

[an, An-1), -+, Akt
Asymptotic Analysis

For large n, we often care about the asymptotic behavior of sequences. If a
sequence a_n satisfies a linear recurrence relation with constant coefficients,

then:
a,~Cr"

Where r is the dominant root of the characteristic equation (the root with the
largest absolute value), and C is a constant that depends on the initial

conditions.

This asymptotic behavior is crucial in algorithm analysis, as it determines

the efficiency of recursive algorithms.
Recurrence Relations in Number Theory

Number theory is rich with sequences defined by recurrence relations. The
study of these sequences reveals deep connections between different areas of

mathematics.

For instance, the number of partitions p(n) mentioned earlier satisfies Euler's

pentagonal number theorem:

p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + p(n-12) + p(n-15) - ...

Where the differences 1, 2, 5, 7, 12, 15, ... follow the pattern of generalized

pentagonal numbers.

Nonlinear Recurrence Relations

Not all recurrence relations are linear. For example, the logistic map:
Xm+) = TXn*(1 - Xn)

Is a nonlinear recurrence relation that exhibits complex behavior, including

chaos for certain values of r.

Techniques for solving nonlinear recurrence relations often involve:
e Linearization through substitution
e Asymptotic analysis

e Numerical methods
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e Specialized techniques for particular forms
1.3.3: Linear Homogeneous Recurrence Relations

Linear homogeneous recurrence relations (LHRRs) expressed as a(n) =
cia(n-1) + c2a(n-2) + ... + ca(n-k), where the coefficients c; are constants,
serve as robust mathematical instruments for modeling systems in which
each state is linearly dependent on a predetermined number of preceding
states. Their practical applications encompass various domains, illustrating
how these sophisticated mathematical constructs tackle intricate real-world
problems.

In financial markets, trading algorithms utilize LHRRs to identify market
patterns and produce signals. The Moving Average Convergence Divergence
(MACD) is a widely utilized technical indicator that calculates the
difference between exponential moving averages at varying time intervals,
hence employing a linear recurrence relation. The exponential moving
average adheres to the recurrence relation EMA(n) = axPrice(n) + (1-
a)xEMA(n-1), with o representing the smoothing factor. Quantitative
analysts at hedge funds build upon this foundation by devising intricate
trading techniques that utilize various recurrence relations to detect market
inefficiencies and produce alpha. Algorithmic trading systems analyze price
relationships using mathematical structures to make millisecond decisions,
which collectively represent over 70% of trading volume on major
exchanges, illustrating how mathematical recursion directly influences
capital allocation in global economies.
Structural engineers utilize LHRRs to assess the dynamic response of
structures to seismic activity and wind forces. The displacement of each
floor in a multi-story building can be represented as a system of
interconnected linear recurrence relations, with each level's movement
influenced by the forces conveyed from neighboring floors. By solving these
systems, engineers determine natural frequencies and mode shapes that
influence design decisions about structural reinforcement and damping
systems. This application preserves lives by facilitating the development of
robust structures in seismic regions. The recurrence model captures how
vibrations propagate through connected structural elements, allowing
engineers to predict and mitigate potentially catastrophic resonance effects

before construction begins.
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In digital audio processing, linear predictive coding (LPC) employs LHRRs
to compress speech signals for efficient transmission. LPC represents the
human vocal tract as a time-varying filter defined by a linear recurrence
relation, wherein each audio sample is forecasted as a linear combination of
preceding samples: s(n) = X(aixs(n-i)) for i from 1 to p, with p denoting the
prediction order. This technology reduces the data rate necessary for voice
transmission by more than 75%, enabling clear cellular conversations even
in bandwidth-constrained areas. Modern voice assistants like Siri and Alexa
use refined versions of these algorithms to process speech inputs,
demonstrating how recurrence relations make intuitive human-computer
interaction possible.Industrial process control systems frequently utilize
proportional-integral-derivative (PID) controllers, which can be represented
as linear recurrence relations. The control signal u(n) is determined by the
equation u(n) = u(n-1) + Ky(e(n) - e(n-1)) + Kie(n) + Kd(e(n) - 2e(n-1) + e(n-
2)), where e(n) denotes the error at time step n, and K,, Ki, and Kd signify
the proportional, integral, and derivative gains, respectively. This recurrence
relation enables precise temperature regulation in pharmaceutical
manufacturing, consistent product quality in food processing, and efficient
energy usage in climate control systems. The mathematical framework
allows controllers to anticipate system behavior and compensate for
disturbances, maintaining stable operations in complex industrial

environments.

Population genetics research employs LHRRs to model the propagation of
genetic traits through generations. The Wright-Fisher model, fundamental to
understanding genetic drift, uses a linear recurrence relation to describe how
allele frequencies change in populations of fixed size. The probability
distribution of allele counts in generation n+1 is linearly dependent on the
distribution in generation n, adhering to recurrence relations that account for
selection pressures and mutation rates. Researchers employ these models to
comprehend the dissemination of advantageous mutations among
populations, thereby guiding conservation tactics for endangered species and
selective breeding initiatives in agriculture. By resolving these recurrence
links, geneticists can ascertain the minimal sustainable population size
required to sustain genetic variety, thereby directly influencing wildlife
management practices.In computer graphics, subdivision algorithms for

curve and surface generation utilize LHRRs to produce smooth shapes from
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coarse control meshes. The Chaikin method, which builds quadratic B-spline
curves, follows the recurrence relation where each new point is a linear
combination of two neighboring points from the previous iteration: p;**D =
3/4xpi® + 1/4xpin® and pin/ 28D = 1/4xp® + 3/4xp;r ® This mathematical
method enables the construction of realistic 3D models in films and video
games, smooth font rendering in digital typography, and exact tool path
generation for computer-aided manufacturing. The recursive structure
enables designers to utilize basic control shapes while automatically
producing the smooth curves essential for visually appealing and

aerodynamically efficient designs.

Quantum physics incorporates LHRRs in computational models for time-
evolution of quantum systems. The discrete-time Schrodinger equation, used
in quantum simulations, can be represented as a linear recurrence relation
y(n+1) = (I - iH)y(n), where y represents the quantum state vector, H is the
Hamiltonian matrix, and I is the identity matrix. This formulation facilitates
the simulation of quantum systems for materials science research,
pharmaceutical discovery, and the advancement of quantum computer
methods. By solving these recurrence relations efficiently, researchers can
predict material properties without expensive physical experiments,
accelerating the development of new technologies from superconductors to
pharmaceutical compounds.In communications engineering, convolutional
codes for error correction implement LHRRs to generate redundant bits that
protect data against transmission errors. Each output bit is determined as a
linear mixture of the current input bit and multiple preceding input bits,
adhering to a recurrence relation specified by the code's generator
polynomials. These codes enable reliable communication over noisy
channels in satellite transmissions, deep space communications, and cellular
networks. The mathematical framework facilitates fast encoding and
decoding algorithms that attain near-Shannon-limit performance, optimizing
data throughput while ensuring dependability in demanding communication
contexts.Machine learning algorithms frequently incorporate LHRRS in their
architecture. Linear autoregressive models predict time series data by
expressing each value as a linear combination of previous values: y(t) =
Q1y(t-1) + @2y(t-2) + ... + @yy(t-p) + &(t), where @i are the model parameters
and &(t) is white noise. These models project electricity demand for power

grid administration, estimate seasonal product sales for inventory
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management, and predict financial market fluctuations for risk assessment.
The mathematical framework facilitates efficient parameter estimation by
proven approaches such as least squares, rendering these models effective

instruments for business planning and resource allocation.

Digital filters in signal processing implement LHRRs to remove noise,
extract features, or modify frequency components of signals. Infinite
impulse response (IIR) filters calculate each output sample y(n) as a linear
combination of previous outputs and inputs: y(n) = Z(bixx(n-1)) - X(ajxy(n-
j)) for i from 0 to M and j from 1 to N. These filters provide noise
cancellation in hearing aids, equalization in audio production, and signal
conditioning in medical devices that monitor vital signs. By selecting
appropriate coefficients in the recurrence relation, engineers can create
filters with precise frequency responses that enhance desirable signal
components while attenuating interference. Economic forecasting models
employ vector autoregression (VAR), a multivariate extension of linear
recurrence connections where each variable depends on lagged values of
itself and all other variables in the system. Central banks use these models to
predict how policy changes will affect inflation, unemployment, and
economic growth, informing decisions that impact millions of lives. The
mathematical structure allows economists to quantify correlations between
economic indicators and simulate alternative policy scenarios, giving data-
driven direction for monetary and fiscal policy decisions. The varied
applications of linear homogeneous recurrence relations illustrate their
adaptability as modeling instruments across several fields. Financial
algorithms that allocate capital and engineering systems that guarantee
structural safety utilize mathematical frameworks to comprehend and
regulate complex systems with memory. By articulating dynamic linkages
via recurrence relations, practitioners acquire analytical insights that
immediately inform practical solutions for real-world situations.

1.3.4: Non-Homogeneous Recurrence Relations

Non-homogeneous recurrence relations are defined by the equation a(n) =
cia(n-1) + c2a(n-2) + ... + ca(n-k) + f(n), where f(n) is a non-zero function,
offers robust mathematical frameworks for modeling systems influenced by
external inputs or pressures. Unlike their homogenous counterparts, these
connections feature driving words that represent external influences, making

them particularly appropriate for practical applications where systems
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respond to changing conditions or external stimuli. In epidemiological
modeling, non-homogeneous recurrence relations elucidate the dynamics of
disease transmission under diverse intervention tactics. The standard SIR
(Susceptible-Infected-Recovered) model becomes non-homogeneous when
incorporating vaccination campaigns or seasonal variations in transmission
rates. The revised equation I(t+1) = (1+r)I(t) - rl(t-1) + v(t), where I(t)
denotes the number of infected individuals at time t, r signifies the
reproduction rate, and v(t) represents the time-dependent vaccination
function, enables public health officials to model the effects of vaccination
schedules on disease progression. Throughout the COVID-19 pandemic,
these models informed decisions regarding lockdown timing and vaccine
distribution strategies, illustrating the direct impact of mathematical
recursion on public health policy. By solving these non-homogeneous
recurrence relations, epidemiologists projected infection peaks and
healthcare system capacity requirements, helping hospitals prepare proper
staffing and equipment levels to save lives. Environmental engineers utilize
non-homogeneous recurrence relations to model pollution concentrations in
water bodies affected by fluctuating discharge rates. The concentration C(t)
in a reservoir may be expressed as C(t) = aC(t-1) + BQ(t), where o denotes
natural degradation and Q(t) signifies the pollutant inflow function. This
framework enables water quality managers to establish discharge limits for
industrial facilities and predict how proposed development projects might
affect ecosystem health. Engineers build treatment systems with adequate
capability to manage seasonal fluctuations in pollutant loads, safeguarding
aquatic habitats while facilitating sustainable economic development. The
mathematical technique enables for optimizing treatment infrastructure

investments, combining environmental protection with financial restrictions.

In renewable energy management, battery storage systems are characterized
by non-homogeneous recurrence relations, where the state of charge is
defined by E(t+1) = aE(t) + n(P(t) - L(t)), with E(t) denoting stored energy,
o, representing the self-discharge rate, n indicating charging efficiency, P(t)
signifying time-varying power generation from renewable sources, and L(t)
reflecting load demand. This framework enables grid operators to enhance
battery dispatch algorithms, optimizing renewable energy use while ensuring
system stability. Energy businesses use these models to estimate ideal

battery sizing for solar and wind installations, balancing capital costs against
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performance benefits. The recurrence relation captures how varying weather
conditions affect renewable generation patterns, enabling reliable integration
of intermittent resources into power grids. Pharmacokinetic models employ
non-homogeneous recurrence relations to describe drug concentration in
different body compartments following variable dosing schedules. The
equation C(t) = e™C(t-1) + D(t)/V, where C(t) represents drug
concentration, k denotes the elimination rate constant, D(t) signifies the
dosing function, and V indicates the volume of distribution, allows
physicians to formulate individualized prescription regimens for patients
experiencing fluctuating clinical circumstances. This mathematical
framework supports precision medicine approaches for cancer
chemotherapy, antibiotic treatments, and pain management. By resolving
these relationships, clinical decision support systems propose dosage
modifications that sustain therapeutic medication concentrations while
reducing  adverse  effects, so enhancing patient outcomes.
In financial planning, retirement account balances under variable
contribution strategies adhere to non-homogeneous recurrence relations B(t)
= (1+r)B(t-1) + C(t), where B(t) denotes the balance at time t, r signifies the
return rate, and C(t) represents the time-dependent contribution function.
Financial advisors employ these models to construct lifecycle investment
strategies that modify contribution rates according to career phases and
market dynamics. The mathematical approach facilitates the stress testing of
retirement plans against diverse market situations, pinpointing
vulnerabilities and suggesting modifications prior to the onset of financial
distress. By resolving these relationships, robo-advisors offer automated
counsel that assists individuals in preparing for retirement amid
unpredictable future market returns. Inventory management systems
implement non-homogeneous recurrence relations to optimize stock levels
under seasonal demand patterns. The inventory level I(t) follows I(t) = I(t-1)
+ Q(t) - D(t), where Q(t) is the ordering function and D(t) is the forecasted
demand function. This framework enables retailers to implement just-in-
time ordering strategies that minimize holding costs while avoiding
stockouts during demand peaks. The mathematical methodology enhances
efficient supply chain operations for products characterized by brief shelf
lives or elevated holding costs, thereby augmenting profitability and
minimizing waste. By resolving these equations with suitable constraints,

inventory management algorithms reconcile the conflicting goals of cost
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reduction, service level requirements, and warehouse capacity restrictions.
Project management tools employ non-homogeneous recurrence relations to
represent resource allocation amidst fluctuating priorities. The resource
availability function R(t) = R(t-1) - A(t-1) + F(t), where A(t-1) represents
previously allocated resources and F(t) is the function of newly freed
resources, helps project managers optimize team assignments across
multiple concurrent projects. This mathematical framework supports agile
development approaches where requirements and priorities fluctuate during
the project lifecycle. By solving these equations with proper constraints,
project scheduling algorithms discover crucial pathways and resource
bottlenecks, enabling proactive interventions to maintain projects on

schedule despite changing conditions.

Adaptive filtering methods utilize non-homogeneous recurrence relations to
process data exhibiting time-varying features. The filter coefficients are
defined by the equation w(t) = w(t-1) + pe(t)x(t), where w(t) denotes the
coefficient vector, p signifies the adaptation rate, e(t) represents the error
signal, and x(t) indicates the input signal vector. This framework enables
noise canceling headphones to adjust to diverse settings, radar systems to
follow moving targets, and communication systems to compensate for
changing channel circumstances. The mathematical approach allows filters
to continually optimize their performance as signal characteristics evolve,
providing robust operation in dynamic environments. Digital signal
processors employ adaptive algorithms to enhance signals and eliminate
interference in real-time applications, ranging from medical monitoring to
autonomous car sensing. In irrigation control systems, soil moisture levels
follow non-homogeneous recurrence relations M(t) = aM(t-1) - ET(t) + I(t)
+ R(t), where M(t) represents moisture content, a is the retention factor,
ET(t) is evapotranspiration, I(t) is irrigation input, and R(t) is rainfall. This
framework enables precision agriculture systems to optimize water usage
based on weather forecasts and crop requirements. The mathematical
technique supports sustainable farming practices that optimize production
while decreasing water consumption, particularly crucial in water-stressed
countries. By solving these relations with appropriate constraints, smart
irrigation controllers determine optimal watering schedules that maintain
plant health while avoiding runoff and deep percolation losses.

Machine learning algorithms for online learning implement non-
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homogeneous recurrence relations to update model parameters as new data
arrives. The stochastic gradient descent update rule is expressed as 6(t) = 6(t-
1) - nVL(6(t-1), x(t)), where 0(t) denotes the parameter vector, 1 signifies the
learning rate, VL indicates the gradient of the loss function, and x(t)
represents the input data point at time t. This framework enables
recommendation systems to adapt to changing user preferences, fraud
detection systems to identify emerging attack patterns, and natural language
processing models to incorporate new vocabulary. The mathematical
approach allows models to continuously improve their performance without
requiring complete retraining, supporting efficient deployment in dynamic
environments. By successfully resolving these relationships at scale,
machine learning systems deliver tailored experiences that adjust to
individual behaviors and preferences.
Traffic management systems utilize non-homogeneous recurrence relations
to represent vehicle flow under diverse settings. The vehicle density p(x,t)
on a road segment is governed by the equation p(x,t+1) = p(x,t) - [f(p(x,t)) -
f(p(x-Ax,t))] + S(x,t), where f(p) denotes the flow-density relationship and
S(x,t) signifies sources and sinks from entrance and departure ramps. This
framework enables intelligent transportation systems to optimize signal
timing, ramp metering, and variable speed limits based on current
conditions. The mathematical framework facilitates congestion management
strategies that diminish travel durations and emissions in urban
environments. Traffic control centers utilize real-time solutions to these
relations, employing adaptive algorithms that react to incidents, special
events, and weather conditions, thereby enhancing mobility in intricate
transportation networks.
The diverse applications of non-homogeneous recurrence relations
demonstrate their value for modeling real-world systems with external
inputs or time-varying parameters. From public health interventions to
adaptive machine learning algorithms, these mathematical structures provide
frameworks for understanding and controlling complex systems that respond
to changing conditions. By expressing dynamic relationships through non-
homogeneous recurrence relations, practitioners gain analytical tools that
translate directly into practical solutions for evolving challenges across

numerous fields

Multiple-Choice Questions (MCQs)
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Notes 1. What is a recurrence relation?
a) A sequence with a fixed value
b) A formula that defines each term of a sequence using previous
terms
¢) A function that generates random numbers

d) A method for solving equations

2. Which of the following is an example of a linear homogeneous
recurrence relation?
a) an=2a,1+3
b) an=3a, -2
¢) an=a,-1+tn

d) an=a2+2

3. Fibonacci sequence is defined by which recurrence relation?
a) Fo=2F,-1+1
b) Fn =Fn-1+Fu
¢) Fu =Fu-1=Fu
d) F, =nFy

4. Exponential generating functions differ from ordinary
generating functions because:
a) They include exponential terms
b) They are only used for Fibonacci numbers
c¢) They generate non-recursive sequences

d) They are used for solving algebraic equations

5. Avrecurrence relation is said to be non-homogeneous if it:
a) Has constant coefficients
b) Contains a non-zero function term
c¢) Has a solution in exponential form

d) Does not have an explicit formula

6. The characteristic equation of recurrence relation
-3 Ap-112202=0 24 _3 Ap-yT 2am2) = 0, an-3 2 n-1+22a ,2=0 is:
a) x>-3x+2=0
b) x*+3x—2=0
¢) x*>=x+3=0
d) x*4+2x-3=0
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Which of the following sequences follows the recurrence relation
ap=a,1+2?

a) 1,3,5,7,9,...

b) 2,4,8,16,32,...

c) 1,1,2,3,5,...

d) 1,2,4,8,16,...

A closed-form solution of a recurrence relation means:
a) A solution without summation signs

b) A solution with at least one recurrence term

¢) A solution using limits

d) A solution that is always infinite

The recurrence relation an=2a,-1+5 is an example of:
a) Homogeneous recurrence relation

b) Non-homogeneous recurrence relation

c¢) Generating function

d) Fibonacci sequence

Short Answer Questions

10.

Define recurrence relation with an example.

What is the difference between homogeneous and non-

homogeneous recurrence relations?
Give an example of a number sequence and its recurrence relation.

What is the significance of generating functions in solving

recurrence relations?
Define exponential generating functions and their applications.
Write the recurrence relation for Fibonacci sequence.

What is a characteristic equation, and how is it used in solving

recurrence relations?
How do you find the closed-form solution of a recurrence relation?
Give an example of a recurrence relation that is non-homogeneous.

Explain the role of generating functions in combinatorial counting

problems.
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Long Answer Questions

Explain in detail the different types of recurrence relations with

examples.

Describe how to solve linear homogeneous recurrence relations

using the characteristic equation method.

What are generating functions? Explain their role in recurrence

relations with examples.

Compare and contrast ordinary generating functions and exponential

generating functions.
Solve the recurrence relation an=2an—1+3with a0=1.
Explain the Fibonacci sequence and derive its closed-form formula.

Discuss the applications of recurrence relations in computer science

and real-life problems.

Define and explain the use of the Karnaugh method in Boolean

algebra.
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MODULE 2
UNIT 2.1
Statements Symbolic Representation and Tautologies
Objectives

e To understand the concept of statements and their symbolic

representation.
e To learn about tautologies, quantifiers, and predicates.
e To explore propositional logic and its applications.
e To study lattices as partially ordered sets and their properties.
e To analyze lattices as algebraic systems.

e To examine different types of lattices, such as complete,

complemented, and distributive lattices.
2.1.1: Introduction to Statements and Symbolic Representation

In mathematical logic, a statement (or proposition) is declarative sentence
that is either true or false, but not both. Understanding statements is
fundamental to logical reasoning and forms the foundation of propositional

logic.
Types of Statements

1. Simple statements: Basic declarations that cannot be broken down

further. Example: "The sun rises in the east."

2. Compound statements: Formed by combining simple statements
using logical connectives. Example: "It is raining and [ am carrying

an umbrella."
Symbolic Representation

To work efficiently with statements, we use symbols to represent both the

statements themselves and the logical operations that connect them.
Statement Variables
e D, q,T,s, ... typically represent simple statements

Logical Connectives
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Notes 1. Negation (NOT): ~p or —p Meaning: "It is not the case that p"

Example: If p: "It is raining", then ~p: "It is not raining"

2. Conjunction (AND): p A q Meaning: "Both p and q" Example: If p:
"It is cold" & q: "It is windy", then p A q: "It is cold and windy"

3. Disjunction (OR): p V q Meaning: "Either p or q or both" Example:
If p: "I will study math" and q: "I will study physics", then p vV q: "I
will study math or physics (or both)"

4. Conditional (IF-THEN): p — q Meaning: "If p, then q" Example:
If p: "It rains" and q: "The ground gets wet", then p — q: "If it rains,

then the ground gets wet"

5. Biconditional (IF AND ONLY IF): p < q Meaning: "p if and only
if q" Example: If p: "The triangle has three equal sides" and q: "The
triangle is equilateral”, then p <> q: "The triangle has three equal

sides if and only if it is equilateral"
Truth Tables

Truth tables display all possible truth values for compound statements based

on the truth values of their components.

Truth Table for Negation (~p)

P(~P

T||F

F||T

Truth Table for Conjunction (p A q)

PlapAq

Truth Table for Disjunction (p V q)
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Truth Table for Conditional (p — q)

F||F||T

Truth Table for Biconditional (p < q)

F||F|T

Order of Operations

When evaluating complex logical expressions, we follow a standard order of

operations:
1. Parentheses
2. Negation (~)
3. Conjunction (A)

4. Disjunction (V)
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Notes 5. Conditional (—)
6. Biconditional (<)
Examples of Statement Symbolization

1. "If it is raining, then I will take an umbrella, and I will wear a
raincoat." Let p: "It is raining" Let q: "I will take an umbrella" Let r:

"I will wear a raincoat" Symbolic form: p — (q A1)

2. "I will go to the party if and only if my friend goes or my work is
finished." Let p: "I will go to the party" Let q: "My friend goes to
the party" Let r: "My work is finished" Symbolic form: p <> (q V 1)

3. "It is not true that both the sun is shining and it is raining." Let p:
"The sun is shining" Let q: "It is raining" Symbolic form: ~(p A q)

2.2 Tautologies and Contradictions

In propositional logic, certain compound statements have special properties
based on their truth values across all possible combinations of their

component statements.
Tautologies

tautology is a compound statement that is always true, regardless of truth

values of its component statements.
Examples of Tautologies:

1. Law of Excluded Middle: p V ~p "A statement is either true or

false"

Truth Table:

P|~P|pV~P

T|F |[T

F||T (T

2. Law of Non-Contradiction: ~(p A ~p) "A statement cannot be both

true and false"

Truth Table:
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F||T

PA~Pp

~(p A ~p)
T

T

3. Double Negation: p <> ~~p "A statement is equivalent to its double

negation"

4. Modus Ponens: (p A (p — q)) — q "If p is true and p implies q,

then q is true"

5. Contrapositive: (p — q) < (~q — ~p) "A conditional statement is

equivalent to its contrapositive"

Contradictions

A contradiction is compound statement that is always false, regardless of

the truth values of its component statements.

Examples of Contradictions:

1. p A~p"A statement is both true and false"

Truth Table:

P(~P

T||F

F||T

PA~P

2. (p+<q) A(p <+ ~q) "pis equivalent to both q and not-q"
3. (p— g A(pA~q) "If pthen q, and p is true but q is false"
Logical Equivalence

Two compound statements are logically equivalent if they have the same

truth value for all possible combinations of their component statements.

Notation: p=q

Important Logical Equivalences:

1. De Morgan's Laws:
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o ~pAQ=(~pV~q

o ~pVQY=(pA~q)

2. Distributive Laws:

o pA@QVD=(PAQV(PAT)

o pV(@AD=(PVgA(PVr)

3. Conditional Equivalences:

o (p—q=(CpVvq

o ~p—=9=(@A~q

4. Biconditional Equivalences:

o (peg=((r—>9AQ@—Dp)

o (peq=((PAgQV(EpA~)

Applications of Tautologies and Contradictions

1.

Logical Arguments: Tautologies form the basis of valid logical

arguments.

System Verification: In digital circuit design, tautologies help

verify correctness.

Proof by Contradiction: Mathematical proofs often use

contradictions to establish truths.

Consistency Checking: Identifying contradictions helps detect

inconsistencies in logical systems.
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UNIT 2.2
Quantifiers, Predicates and validity, Prepositional Logic

2.2.1 Quantifiers and Predicates

While propositional logic deals with complete statements, predicate logic
extends this by considering the internal structure of statements, including

variables, predicates, and quantifiers.
Predicates

A predicate is a statement containing variables and becomes a proposition

when specific values are assigned to those variables.
Example: P(x): "x is a prime number"

e P(2)is true (2 is prime)

e P(4) is false (4 is not prime)
Quantifiers
Quantifiers indicate the scope of a predicate over a domain.
Universal Quantifier (V)
universal quantifier "V" means "for all" or "for every."
Example: Vx P(x) Meaning: "For all values of x, P(x) is true"

Example statement: Vx (x>> 0) Meaning: "For all real numbers x, x* is

greater than or equal to 0"
Existential Quantifier (3)
The existential quantifier "3" means "there exists" or "for some."

Example: 3x P(x) Meaning: "There exists at least one value of x for which

P(x) is true"

Example statement: 3x (x> = 9) Meaning: "There exists a real number x such

that x> equals 9"
Negating Quantified Statements

The negation of quantified statements follows specific rules:
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1. Negation of Universal Statement: ~(Vx P(x)) =3x ~P(x) "It is not
the case that P(x) is true for all X" is equivalent to "There exists an x

for which P(x) is false"

2. Negation of Existential Statement: ~(3x P(x)) =vVx ~P(x) "It is not
the case that there exists an x for which P(x) is true" is equivalent to

"For all x, P(x) is false"
Multiple Quantifiers
Statements can contain multiple quantifiers, and the order matters.

Example: ¥x 3y R(x, y) Meaning: "For every x, there exists a y such that
R(x, y) is true"

Example: 3y Vx R(x, y) Meaning: "There exists a y such that for all x, R(x,

y) is true"

These statements are not equivalent. The first says that every x has its own y
that makes R(x, y) true, while the second says there's a single y that works

for all x.
Bounded Quantifiers
Quantifiers can be restricted to specific domains.
Notation:
e Vx €S, P(x)-"Forall x in set S, P(x) is true"
e 3Ix € S, P(x) - "There exists an x in set S such that P(x) is true"

Example: ¥x €N, (x> x) Meaning: "For all natural numbers, the square of

the number is greater than or equal to the number itself"
Predicates with Multiple Variables
Predicates can involve multiple variables.
Example: L(x, y): "x loves y"
e L(John, Mary) - "John loves Mary"
e Vx3yL(x,y) - "Everyone loves someone"

e Iy Vx L(x, y) - "There is someone who is loved by everyone"
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2.2.2 Propositional Logic and Validity

Propositional logic provides a formal system for determining the validity of

arguments based on the logical structure of statements.
Logical Arguments

A logical argument consists of premises and a conclusion. The argument is

valid if conclusion necessarily follows from premises.
Structure:
1. Premise 1

2. Premise 2

4. Premise n
5. Therefore, Conclusion
Validity vs. Truth

e Validity: An argument is valid if truth of all premises guarantees the

truth of the conclusion.

e Soundness: An argument is sound if it is valid and all its premises

are actually true.

An argument can be valid even if its premises or conclusion are false.

Validity concerns only the logical structure.
Testing Validity
Method 1: Truth Tables

Construct a truth table for the statement: (Premise 1 A Premise 2 A ... A
Premise n) — Conclusion If this compound statement is a tautology, the

argument is valid.
Method 2: Proof by Contradiction

Assume all premises are true but conclusion is false. If this leads to

contradiction, the argument is valid.

Common Valid Argument Forms
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Modus Ponens:

o Premise l:p—q

o Premise 2: p

o Conclusion: q
Modus Tollens:

o Premise l:p—q

o Premise 2: ~q

o Conclusion: ~p
Hypothetical Syllogism:

o Premise l:p—q

o Premise2:q—r

o Conclusion: p —r
Disjunctive Syllogism:

o Premise l:pVq

o Premise 2: ~p

o Conclusion: q
Addition:

o Premise: p

o Conclusion: pV q
Simplification:

o Premise:pAq

o Conclusion: p
Conjunction:

o Premise 1: p

o Premise 2: q

o Conclusion: pAq
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Common Fallacies (Invalid Arguments)

1.

Affirming the Consequent:
o Premise l:p—q
o Premise 2: q

o (Invalid) Conclusion: p

2. Denying the Antecedent:

o Premise l:p—q
o Premise 2: ~p

o (Invalid) Conclusion: ~q

Direct and Indirect Proofs

Direct Proof: Starts with premises and uses valid argument forms to

derive the conclusion.

Proof by Contradiction (Indirect): Assumes premises are true and

conclusion is false, then derives a contradiction.

Proof by Contraposition: To prove p — g, instead prove ~q — ~p.

Formal Proof Systems

Formal proof systems provide rigorous frameworks for constructing valid

arguments. Common systems include:

1.

Natural Deduction: Uses introduction and elimination rules for

each logical connective.

Axiomatic Systems: Starts with axioms and derives theorems using

inference rules.

Sequent Calculus: Manipulates sequents (expressions of the form I"

FA) using inference rules.

Solved Problems

Problem 1: Statement Symbolization and Truth Table

Problem: Symbolize the statement "If it is not raining, then I will go to the

park or I will visit the museum" and construct its truth table.
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Solution:
Let's define our variables:
e p:"Itis raining"
e q: "I will go to the park"
o 1: "I will visit the museum"

The statement "If it is not raining, then I will go to the park or I will visit the

museum" can be symbolized as: ~p — (q V r)
Now, let's construct the truth table:

First, list all possible combinations of truth values for p, q, and r:

p|q|r|~pP|lqVr|~p —(qVTr)
T|T|T|[F [T (T

T|T|[F||[F ||T T

F||F||F||T ||F F

statement is false only when ~p is true (meaning p is false) and (q V r) is

false (meaning both q and r are false). In all other cases, statement is true.
Problem 2: Determining Tautology, Contradiction, or Neither

Problem: Determine whether the statement (p — q) <> (~q — ~p) is a

tautology, contradiction, or neither.

Solution: Let's construct a truth table for the statement (p — q) <> (~q —

~p):
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p|a|p — 4|~q||~P|~4 — ~P||(p — @) < (~q — ~p)
T||T||T F ||F |T T
T|E|F T ||F |[F T
F||T||T F ||T ||T T
F|E|T T ||IT ||T T

Step-by-step analysis:

1. For (p — q): This is false only when p is true & q is false;

otherwise, it's true.

2. For (~q — ~p): This is false only when ~q is true (q is false) and ~p

is false (p is true); otherwise, it's true.

3. For the biconditional (p — q) <> (~q — ~p): This is true when both

expressions have the same truth value.

As we can see, for all possible truth value combinations of p and q, the
statement (p — q) <> (~q — ~p) is always true. Therefore, this statement is a

tautology.

This makes sense because this statement represents the contrapositive

property: a conditional statement is logically equivalent to its contrapositive.
Problem 3: Quantifier Negation

Problem: Negate the following quantified statements and simplify: a) Vx
€R, x> 0Db)Ix EN, x> =X

Solution:

a) Statement: Vx €R, x> 0 Negation: ~(Vx €R, x> ()
Using the quantifier negation rule: ~(Vx P(x)) =3x ~P(x)
Simplified negation: 3x €R, ~(x*> 0) =3x €R, x*< 0

In plain language: "There exists a real number whose square is less than or

equal to 0."
This negation is true because x = 0 makes x? = 0, which satisfies x> < 0.

b) Statement: 3x €N, x> = x Negation: ~(3x €N, x* = x)
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Using the quantifier negation rule: ~(3x P(x)) =Vx ~P(x)

Simplified negation: Vx €N, ~(x? = x) =Vx €N, x*# X

In plain language: "For all natural numbers, the square of the number is not

equal to the number itself."

This negation is false because there are natural numbers for which x* = x.

Specifically, x = 0 and x = 1 satisfy this equation.
Problem 4: Testing Argument Validity
Problem: Determine whether the following argument is valid:
1. IfI study, then I will pass the exam.
2. [IfIpass the exam, then I will graduate.
3. 1did not graduate.
4. Therefore, I did not study.
Solution:
Let's define our variables:
e p:"Istudy"”
e q: "I pass the exam"
e r1:"I graduate"

The premises of the argument can be symbolized as:

I. p—q
2. q—r
3. ~r

The conclusion is: ~p

To test the validity, we'll use the method of deductive reasoning:

From premises 1 and 2, using the hypothetical syllogism rule, we can derive:

p — 1 (If I study, then I will graduate)

Now, using premise 3 (~r) and the derived statement (p — r), we can apply

modus tollens: If p — r and ~r, then ~p.
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Therefore, the conclusion ~p (I did not study) logically follows from the

premises, making this argument valid.

Alternatively, we could construct truth table for ((p — q) A (@ — 1) A ~1)

— ~p) and verify that it's a tautology, confirming the argument's validity.
Problem 5: Logical Equivalence Using De Morgan's Laws

Problem: Use De Morgan's laws and other logical equivalences to simplify

the expression ~(~p V (q A ~1)).
Solution:
Starting with the expression: ~(~p V (q A ~1))

Step 1: Apply De Morgan's law to the outer negation: ~(~p V (q A ~1)) = ~~p
A ~(q A ~1)

Step 2: Simplify the double negation: ~~p A~(q A ~r) =p A ~(q A ~1)

Step 3: Apply De Morgan's law to ~(Q A ~1): p A~(Q A ~1) =p A (~q V ~~1)
Step 4: Simplify remaining double negation: p A (~qV ~~1r) =p A (~q V1)
Therefore, ~(~p V(QA~1))=p A(~q V1)

We can verify this equivalence using a truth table if needed.

Unsolved Problems

Problem 1

Determine whether the compound statement (p — q) A (Qq > 1) — (p — 1) is

a tautology, and explain your reasoning.
Problem 2

Symbolize the following statement using propositional logic: "Neither rain
nor snow will prevent the mail delivery, but fog will delay it unless there is a

full moon."
Problem 3

Translate the following into logical notation using predicates and quantifiers:
a) "Every mathematician has solved at least one problem that no other
mathematician has solved." b) "Some books are referenced by all scholars in

the field."
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Notes Problem 4
Determine the validity of the following argument:
1. If the economy improves, then unemployment will decrease.
2. If government spending increases, then the economy will improve.
3. Unemployment has not decreased.
4. Therefore, government spending has not increased.
Problem 5

Prove or disprove the logical equivalence of following statements: a) p — (q

—>1)b)(pAq)—oT
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UNIT 2.3 Notes

Lattices as partially ordered sets, their properties. Lattices as
Algebraic systems. Sub lattices, Direct products and Homomorphism

2.3.1 Lattices as Partially Ordered Sets

A partially ordered set, often known as a poset, is a set that has a transitive,
reflexive, and antisymmetric binary connection. A pair (P, <) is formally a
partially ordered set, where P is a set and < is a binary relation on P that
satisfies:

1. Reflexivity: Forallae P,a<a
2. Antisymmetry: Foralla,b€P,ifa<bandb<a,thena=b
3. Transitivity: Foralla,b,c €P,ifa<bandb <c,thena<c

The relation < is called a partial order. The term "partial" indicates that not
every pair of elements needs to be comparable. If a <b or b < a for every a,

b € P, then the order is called a total order or linear order.
Definitions Related to Partially Ordered Sets

e Comparable elements: Two elements a, b € P are comparable if a <

borb<a.

e Incomparable elements: Two clements a, b € P are incomparable if

neither a < b nor b < a holds. We denote this as a || b.

e Minimal element: An element a € P is minimal if there is no

element b € P such that b <a.

e Maximal element: An eclement a € P is maximal if there is no

element b € P such that a <b.

e Least element (or minimum): An element a € P is the least element

ifa<bforallb€eP

¢ Greatest element (or maximum): An element a € P is the greatest

elementifb<aforallb €P.
Upper and Lower Bounds
For a subset S of a partially ordered set P:
e Anelement x € P is an upper bound of S if s <x for all s € S.

e Anelement x € Pis alower b509und of Sifx<sforalls €S.



Notes

e The least upper bound (lub) or supremum (sup) of S, if it exists, is
an upper bound of S that is less than or equal to every other upper

bound of S.

e The greatest lower bound (glb) or infimum (inf) of S, if it exists, is a
lower bound of S that is greater than or equal to every other lower

bound of S.
Definition of a Lattice

A lattice is a partially ordered set (L, <) where every pair of elements has

both a supremum and an infimum. That is, for any a, b € L:
1. The supremum a V b (also called the join) exists in L
2. The infimum a A b (also called the meet) exists in L

A lattice can be represented graphically using a Hasse diagram, where:
e Elements of the set are represented as nodes

e If a <b and there is no ¢ such that a < ¢ < b, then there's an edge

going up fromato b

e Higher elements in the diagram represent greater elements in the

partial order
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UNIT 2.4
Some special lattices e.g. complete, Complemented and Distributive
Lattices

2.4.1: Types of Lattices Based on Order Properties

1. Complete Lattice: partially ordered set L is a complete lattice if
every subset of L (including the empty set) has both a supremum &

an infimum in L.

2. Bounded Lattice: A lattice L is bounded if it has a greatest element
(denoted 1 or T) and a least element (denoted 0 or L).

3. Distributive Lattice: A lattice L is distributive if for all a, b, ¢ € L:
o aA(bvc)=(aAb)Vv(aAc)
o aV(bAc)=(avb)A(aVvec)

4. Modular Lattice: A lattice L is modular if for all a, b, ¢ € L witha <

c:
o aV(bAc)=(avb)Ac

5. Complemented Lattice: If there is an element b € L such thata v b
=1 and a A b = 0, then a bounded lattice L is complemented. The

term "complement of a" refers to the element b.

6. Boolean Lattice: A lattice that 1s both distributive and

complemented.
Sublattices and Homomorphisms

e sublattice of a lattice L is subset S of L such that for any a, b € S,
both a v b and a A b (calculated in L) also belong to S.

e A function f* L — M between lattices L and M is a lattice

homomorphism if it preserves joins and meets:
o f(avb)=_f(a)Vf(b)
o f(aAb)=1f(a)Af(b)
2.4.2: Properties of Lattices
Basic Laws of Lattices

For any elements a, b, ¢ in lattice L, following properties hold:
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Notes 1. Idempotent Laws:
o aVa=a
o aAa=a

2. Commutative Laws:
o avb=bvVva
o aAb=bAa
3. Associative Laws:
o (avb)vc=av(bVve)
o (aAb)Ac=aAn(bAc)
4. Absorption Laws:
o aV(aAb)=a
o aA(avb)=a

5. Ordering Property:
o a<bifandonlyifavb=b
o a<bifandonlyifanb=a
Duality Principle

The Duality Principle in lattice theory states that if a statement is true for all
lattices, then the dual statement obtained by replacing V with A, A with v, <

with >, and reversing the order of operations, is also true for all lattices.
Properties of Special Types of Lattices
Distributive Lattices
lattice L is distributive if and only if it satisfies the distributive laws:
e aA(bvce)=(aAb)V(aAc)
e aVvV(bAc)=(avb)A(aVec)
Important properties of distributive lattices:

1. In a distributive lattice, if an element has complement, then the

complement is unique.
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2.

lattice is distributive if and only if it does not contain a sublattice
isomorphic to either of these two five-element non-distributive

lattices:
o The pentagon lattice (N5)
o The diamond lattice (M3)

Birkhoff's Representation Theorem: Every finite distributive
lattice is isomorphic to the lattice of all downsets of its poset of join-

irreducible elements.

Modular Lattices

A lattice L is modular if and only if for all a, b, ¢ € L with a <c:

av(bAac)=(avb)Ac

Important properties of modular lattices:

1. Every distributive lattice is modular, but not conversely.
2. A lattice is modular if and only if it does not contain a sublattice
isomorphic to the pentagon lattice (N5).
3. Modular lattices satisfy the Jordan-Dedekind chain condition: all
maximal chains between the same endpoints have the same length.
Complete Lattices

Properties of complete lattices:

1.

3.

In a complete lattice, every subset has both a supremum and an

infimum.
Every finite lattice is complete.

A complete lattice is automatically bounded, having a greatest
element (supremum of the entire set) and a least element (infimum

of the entire set).

Knaster-Tarski Fixed Point Theorem: Every monotone function

on a complete lattice has a fixed point.

Boolean Lattices

Properties of Boolean lattices:
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In Boolean lattice, every element has a unique complement.
For any elements a & b in a Boolean lattice:
o IfaAb=0andaVb=1,thenb is the complement of a.
o The complement of a is often denoted as a' or —a.
In a Boolean lattice, the following identities hold:
o (a')'=a(double negation)
o aVva =1andaAa' =0 (complement laws)
o (aAb)=a'vband(aVvb)=a Ab' (DeMorgan's laws)

Every finite Boolean lattice is isomorphic to the power set of a finite

set under the subset relation.

Other Important Properties

Isomorphism: Two lattices L and M are isomorphic if there exists a

bijective function f: L — M such that for all a, b € L:
o a<bifand only if f(a) < f(b)

o or equivalently, f(a V b) = f(a) v f(b) and f(a A b) = f(a) A
f(b)

Chain: A chain in a lattice is a subset in which any two elements are

comparable.

Antichain: An antichain in lattice is a subset in which no two

distinct elements are comparable.

Height: The height of a finite lattice is the length of the longest

chain in the lattice.
Width: The width of lattice is size of the largest antichain in lattice.

Dilworth's Theorem: In a finite lattice, the width equals the

minimum number of chains needed to cover all elements.

2.4.3: Lattices as Algebraic Systems

Algebraic Definition of a Lattice
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While we previously defined lattices in terms of partial orders, lattices can
alternatively be defined as algebraic structures with two binary operations,
join (V) & meet (A), satisfying certain axioms.Formally, a lattice is an
algebraic structure (L, vV, A) where L is a set, and V and A are binary

operations on L satisfying following axioms for all b, c € L:
1. Idempotent Laws:
o aVa=a
o aAa=a
2. Commutative Laws:
o avb=bva
o aAb=DbAa
3. Associative Laws:
o (avb)vc=av(bVve)
o (aAb)Ac=aAn(bAc)
4. Absorption Laws:
o avV(aAb)=a
o aA(avb)=a
Equivalence of the Two Definitions

The order-theoretic and algebraic definitions of lattices are equivalent.

Given a lattice defined algebraically, we can define partial order < by:
e ac<bifandonlyifanb=a
e orequivalently,a<bifandonlyifavb=>

Conversely, given a lattice defined as a partially ordered set, we can define

the join and meet operations as:
e aV bis the least upper bound of {a, b}
e aAbis the greatest lower bound of {a, b}

Algebraic Properties of Special Lattices
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Notes Distributive Lattices
In algebraic terms, a lattice (L, V, A) is distributive if and only if:
e aA(bvc)=(anb)v(aAc)foralla,b,ceL
e avV(bAac)=(avb)Aa(avec)foralla,b,ceL
Bounded Lattices
A bounded lattice is an algebraic structure (L, V, A, 0, 1) where:
e (L,Vv,A)isalattice
e (0 is the identity element for V:aV O=aforalla € L
e 1 is the identity element for A:aA 1 =aforalla€eL
Complemented Lattices
In a bounded lattice (L, V, A, 0, 1), an element b is a complement of a if:
e avb=1
e aAb=0

A bounded lattice is complemented if every element has at least one

complement.
Boolean Algebras
Boolean algebra is an algebraic structure (B, V, A, ', 0, 1) where:
e (B,V,A 0,1)is abounded distributive lattice
e 'isaunary operation (the complement) such that:
o ava=1
o aAa'=0
Lattice Morphisms

From an algebraic perspective, a homomorphism between lattices (L, VL,

AL) and (M, VM, AM) is a function f: L — M that preserves the operations:
e f(aVvLDb)=1(a) VM f(b)

e f(a ALb) = f(a) AM f(b)
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Congruence Relations and Quotient Lattices Notes

A congruence relation on a lattice L is an equivalence relation = that is

compatible with the lattice operations:
e Ifa=bandc=d,thenavc=bvd
e Ifa=bandc=d,thenaAc=bAd

For a congruence relation = on a lattice L, the quotient lattice L/= is the
lattice whose elements are the equivalence classes [a] of elements a € L,

with operations:
e [aJv[b]=[aVD]
e [a]A[b]=[aAD]
Filters & Ideals
Filters
A filter in a lattice L is a non-empty subset F of L such that:
1. Ifa,beF,thenaAb€EF
2. IfaeFanda<b,thenb €F

A filter is proper if it is not equal to the entire lattice. A maximal proper filter

1s called an ultrafilter.

In a Boolean lattice, every ultrafilter is prime: if a V b € F, then either a € F

orb€F

Ideals

An ideal in a lattice L is a non-empty subset I of L such that:
1. Ifa,bel,thenaVvVbel
2. Ifaelandb<a,thenb €l

An ideal is proper if it is not equal to the entire lattice. A maximal proper

ideal is called a prime ideal.
In a Boolean lattice, the complement of a filter is an ideal, and vice versa.
Birkhoff's Representation Theorems

Representation of Distributive Lattices
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Birkhoff's Representation Theorem for Finite Distributive Lattices:
Every finite distributive lattice is isomorphic to the lattice of downsets of its

poset of join-irreducible elements.
Representation of Boolean Algebras

Stone's Representation Theorem: Every Boolean algebra is isomorphic to

a subalgebra of a power set Boolean algebra.
Solved Problems
Problem 1: Testing if a Lattice is Distributive

Problem: Consider the lattice L = {a, b, c, d, e} with the following Hasse

diagram:

e ¢cisatthetop

e Dbandcare below e

e aand d are at the bottom, with a below b and d below ¢
Is this lattice distributive?
Solution:

Step 1: Identify the elements & their relationships. The partial order is:

e aand d are incomparable
e Db and c are incomparable
Step 2: Construct the meet and join tables.

Meet (A) table:
abcde
aaaaaa
babaab

caacdc
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abcde
daaddd
eabcde

Join (V) table:

a||b|(c||d||e

Step 3: Test the distributive law a A (b V ¢) = (a A b) V (a A ¢) for specific

elements.
Let's check with a, b, and ¢:

e aA(bvc)=aAe=a

e (aAb)Vv(aAc)=aVa=a
They're equal, but we need to check more cases.
Step 4: Check with different elements.
Let's try b, ¢, and d:

e bA(cvd)=bAc=a

e (bAc)v(bAad)=ava=a
Still equal. Let's try one more case.
Step 5: Check with b, d, and e:

e bA(dVe)=bAe=b

e (bAdV(bAe)=aVb=b
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All checked cases satisfy the distributive law. We could complete the
verification by checking all possible combinations, but based on the

structure (it's the lattice N5), we know it's not distributive.
Actually, let's verify this with a critical test:

e cA(avd)=cAe=c

e (cha)V(cAd)=avd=e
These are not equal (c # e), so the lattice is not distributive.
Problem 2: Finding Complements in a Boolean Lattice

Problem: Consider the power set lattice P({1, 2, 3}) ordered by inclusion.
Find the complements of: a) {1, 2} b) {3} ¢) @ d) {1, 2, 3}

Solution:
In a power set lattice P(S), the complement of a subset A is S-A.
a) The complement of {1, 2} is {1, 2, 3} - {1, 2} = {3}
b) The complement of {3} is {1, 2,3} - {3} = {1, 2}
¢) The complement of @ is {1, 2, 3} - @ = {1, 2, 3}
d) The complement of {1, 2,3} is {1,2,3} -{1,2,3} =0
Verification: For each pair of complements (A, A'"), we should have:
e AUA'={l,2,3} (the top element)
e ANA'=0Q (the bottom element)
Let's verify for {1, 2} and {3}:
e {1,2} U {3}={1,2,3} V
e {1,2}N{3}=0V
Problem 3: Constructing a Lattice Homomorphism

Problem: Let L be the lattice of all divisors of 12 ordered by divisibility, and
M be the lattice of all divisors of 20 ordered by divisibility. Construct a

lattice homomorphism from L to M.

Solution:
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Step 1: Identify the elements of both lattices. Notes

o L={1,2,3,4,6,12} (divisors of 12)

e M={1,2,4,5,10,20} (divisors of 20)
Step 2: Understand the lattice operations in both.

e InL,join (V) of a & bislcm(a, b), and meet (A) is gcd(a, b).

e In M, join (V) of a & b is Icm(a, b), and meet (A) is gcd(a, b).
Step 3: Define a homomorphism f: L — M that preserves joins and meets.
Let's define f as follows:

e f(1)=1

o f(2)=2

e f(3)=5

o f(4)=4

o f(6)=10

o f(12)=20
Step 4: Verify that f preserves meets (greatest common divisors).
Example verification:

o f(2A6)=1f(ged(2,6))=1(2)=2

o f(2)Af(6)=gecd(2,10)=2V

o f(3A4)=1f(ged(3,4))=1(1)=1

o f3)Af(4)=gecd(5,49)=1V
Step 5: Verify that f preserves joins (least common multiples).
Example verification:

o f(2V3)=A1f(lem(2, 3))=1(6)=10

e f(2)VI13)=Iecm(2,5)=10V

e f(4V6)="flem(4, 6)) = f(12) = 20
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Notes o f(4)V1(6)=Icm(4, 10)=20 vV

Therefore, f'is a valid lattice homomorphism from L to M.

Problem 4: Determining if a Poset is a Lattice

Problem: Consider the poset P = {a, b, c, d, e} with the following relations:
e a<c,a<d
e b<c,b<d
e c<ed<e

Is P lattice?

Solution:

Step 1: Draw the Hasse diagram of the poset P.
e cisatthetop
e candd are below e
e aand b are at the bottom, both below ¢ and d

Step 2: Check if every pair of elements has least upper bound (join).

For each pair of elements, let's find their join:

a V b: Upper bounds are c, d, e. least upper bounds are ¢ and d.

Since there are two, not unique, this fails the lattice condition.
e aVc: Upper bounds are ¢, e. The least upper bound is c.
e aVd: Upper bounds are d, e. The least upper bound is d.
e aVe: Upper bound is e. The least upper bound is e.
e bV c: Upper bounds are ¢, e. The least upper bound is c.
e bV d: Upper bounds are d, e. The least upper bound is d.
e bV e: Upper bound is e. The least upper bound is e.
e ¢V d: Upper bound is e. The least upper bound is e.
e c Ve: Upper bound is e. The least upper bound is e.

e dVe: Upper bound is e. The least upper bound is e.
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Since the pair {a, b} doesn't have a unique least upper bound, P is not a

lattice.

Step 3: (Optional) Let's also check if every pair has a greatest lower bound

(meet).
For the pair {c, d}:

e Lower bounds are a and b. Neither is greater than the other, so there

is no unique greatest lower bound.
This confirms that P is not a lattice.
Problem 5: Testing for Modularity

Problem: Consider the lattice L = {0, a, b, ¢, 1} with following Hasse

diagram:
e 1 is at the top
e a, b, care in the middle, all below 1
e 0 1s at the bottom, below a, b, and ¢
Is this lattice modular?
Solution:

Step 1: Identify the elements and their relationships. The partial order is:

a, b, and c are incomparable

Step 2: Recall the modularity condition. A lattice is modular if for all x, y, z

with x < z:

e XV(yAzZ)=xXVYy) Az
Step 3: Test the modular identity with specific elements.
Let's check withx =0,y =a, z=b:

e x <z 0<b (satisfied)
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Notes e xV(yAz)=0v(@aAb)=0v0=0
e (xVy)Az=(0Vva)Ab=aAb=0
These are equal. Let's try another case.
Step 4: Check withx =a,y=b,z=1:
e x<z:a<] (satisfied)
e xV(yAz)=avV(bAl)=avb=1
e (xVy)Az=(avVbAl=1A1=1
These are equal as well.
Step 5: Check one more case withx=a,y=c,z=1:
e x<z:a<1 (satisfied)
e xV(yAz)=aV(cAl)=avc=1
e (xVy)Az=(@Vc)Al=1A1=1

All cases satisfy the modularity condition. (In reality, we would check all

possible cases, but this is sufficient for demonstration.)
Therefore, this lattice is modular.

Unsolved Problems

Problem 1

Prove that a lattice L is distributive if and only if forall a,b,c € L,ifaAc=

bAcandaVvVc=bVc,thena=b.
Problem 2

Let L be a finite lattice. Prove that L is distributive if & only if the number

of join-irreducible elements equals the number of meet-irreducible elements.
Problem 3

For a finite lattice L, define the function f from L to the power set of its join-
irreducible elements as follows: f(x) = {€ L | a is join-irreducible and a < x}.

Show that if L is distributive, then f'is a lattice embedding.

Problem 4
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Let B be Boolean algebra and a, b, c € B. Prove that (aAb") V(a'Ac) V(b A
c)=(@vbvc)a(avbve)a(@vbvce)a(@vbve).

Problem 5

Let L be a lattice where foralla,b,c € L,aA(bVc)<(aAb)V(aAc).

Prove that L is distributive.
Important Formulas and Identities in Lattice Theory
Basic Operations and Properties
1. Join and Meet Definition from Order:
o aV b=least upper bound of {a, b}
o aADb= greatest lower bound of {a, b}
2. Order Definition from Operations:
o a<bifandonlyifaAb=a
o a<bifandonlyifavb=>
3. Basic Identities (All Lattices):
o aVa=a
o alNa=a
o avb=bVva
o aAb=b(bVvc)a
o (avb)vc=av(bVve)
o (aAb)Ac=aA(bVec)
2.4.4: Sub-lattices
1.1 Definition and Basic Properties

A sub-lattice is a subset of a lattice that forms a lattice in its own right under
the same operations. More formally, if (L, A, V) is a lattice and M is a non-

empty subset of L, then M is a sub-lattice of L if:
1. Foralla,b€M,aAb € M (closed under meet)

2. Foralla,b€M,aVb€ M (closed under join)
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This means that a sub-lattice must contain the results of both operations

when performed on its elements.
1.2 Examples of Sub-lattices

Example 1: Consider the lattice (P(S), €) of all subsets of a set S ordered by
inclusion. If T is subset of S, then P(T) is a sub-lattice of P(S).

Example 2: In the lattice of divisors of 60 ordered by divisibility, the set {1,
3,5, 15} forms a sub-lattice.

1.3 Properties of Sub-lattices

e Every interval [a,b] = {x € L | a < x < b} in a lattice L is a sub-

lattice.
e The intersection of sub-lattices is again a sub-lattice (or empty).

e If L is a bounded lattice with bounds 0 and 1, a sub-lattice need not

contain 0 and 1.
2.4.5: Direct Products of Lattices
Definition

Given lattices L1, Lo, ..., Ly, their direct product L: x L2 x ... x L, is a lattice
whose elements are ordered n-tuples (a1, a2, ..., a,) where a; € L fori=1, 2,

vy I
operations in the direct product are defined component-wise:

e (aiyaz ..., ay) A(bi, by, ..., by) =(a1A by, a2A b, ..., anA by)

e (ayaz ..., a,) V(by,by, .., by)=(a1V by av by, .., ayVv by)
The ordering relation in the direct product is also defined component-wise:
e (ayay, ..., an) <(bi, by, ..., by) ifand only if a1 < b, a2 < by, ..., a. < b,

Properties of Direct Products

1. Ifeach L;is bounded with bounds 0; and 1;, then the direct product is
bounded with 0 = (01, 02, ..., 0,) and 1 = (14, 12, ..., 1,).

2. The direct product preserves many lattice properties:
o If all L; are distributive, then their direct product is

distributive.
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o Ifall L are modular, then their direct product is modular.

o If all L; are complemented, then their direct product is

complemented.
Example of Direct Product

Consider two chains: C2 = {0, 1} and Cs = {0, 1, 2}. Their direct product C»
x Cs consists of ordered pairs: C2 x Cs = {(0,0), (0,1), (0,2), (1,0), (1,1),
(1,2)}

The Hasse diagram of this direct product forms a grid-like structure with the

ordering: (a,b) < (c,d) if and only ifa<cand b <d.
2.4.6: Lattice Homomorphisms
Definition

A homomorphism between lattices is a function that preserves the lattice
operations. Formally, if L and M are lattices, a function ¢: L — M is a lattice

homomorphism if for all a, b € L:

L. p(aAb)=o(a) Ap(b)

2. ¢(aVb)=o(a) V(b)
Types of Lattice Homomorphisms

1. Isomorphism: A bijective homomorphism. Two lattices L & M are
isomorphic (L = M) if there exists a bijective function ¢: L — M

such that ¢ and ¢! are homomorphisms.

2. Embedding: An injective homomorphism, which means that a
lattice L can be embedded in M if there exists an injective

homomorphism from L to M.

3. Epimorphism: A surjective homomorphism, where the image of the

homomorphism is the entire codomain.
Properties of Lattice Homomorphisms

1. The composition of Ilattice homomorphisms is a lattice

homomorphism.

2. For a homomorphism ¢: L — M:
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Notes o If L has a greatest element 1, then (1) is greatest element
of p(L).

o If L has a least element 0, then ¢(0) is the least element of
o(L).

3. Homomorphic images of sublattices are sublattices.
Kernel of a Lattice Homomorphism

The kernel of a lattice homomorphism ¢: L — M is set of all pairs (a,b) such
that ¢(a) = ¢@(b). kernel forms a congruence relation on L, which is an

equivalence relation that respects the lattice operations.
2.4.7: Special Lattices

Complete Lattices

Definition

A lattice L is complete if every subset S of L (including the empty set) has
both a supremum (least upper bound) & an infimum (greatest lower bound)

in L.
Formally:
e Forany S C L, there exists VS € L such that:
1. s<VSforalls€S
2. Ifs<xforalls €S, then VS <x
e Forany S C L, there exists AS € L such that:
1. AS<sforalls€S
2. Ifx<sforalls €S, then x <AS
Properties of Complete Lattices

1. Every complete lattice has a greatest element (VL) and a least

element (AL).
2. [If alattice is finite, it is automatically complete.

3. The power set of any set, ordered by inclusion, is a complete lattice.

78



4. The set of all subspaces of a vector space, ordered by inclusion,

forms a complete lattice.
Completeness in Infinite Lattices

For infinite lattices, completeness is a stronger condition than having just
binary operations. For example, the open interval (0,1) with the usual
ordering is a lattice but not a complete lattice because the set (0,1) itself has

no supremum within (0,1).
Complemented Lattices
Definition

Let L be a bounded lattice with bounds 0 and 1. An element b € L is a

complement of a € L if:

I. aAnb=0

2. avb=1
A lattice is complemented if every element has at least one complement.
Properties of Complemented Lattices

1. In general, an element may have multiple complements.

2. 0and 1 are complements of each other.

3. If L is a complemented distributive lattice, then each element has

exactly one complement.

4. The power set of any set, ordered by inclusion, is a complemented
lattice, where the complement of a subset A is its set-theoretic

complement Ac.
Distributive Lattices
Definition
lattice L is distributive if for all a, b, ¢ € L:
1. an(bVvc)=(aAb)V(aAc)(Adistributes over V)
2. avV(bAc)=(aVb)A(aVc)(V distributes over A)

In fact, either condition implies the other, so it's sufficient to verify just one.
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Notes Characterizations of Distributive Lattices

1. A lattice is distributive if & only if it does not contain a sublattice

isomorphic to Ms (the diamond lattice) or Ns (the pentagon lattice).

2. A lattice is distributive if & only if foralla,b,c EL:aAb=aAc

andavb=aVvcimplyb=c.
Examples of Distributive Lattices
1. Any chain (totally ordered set) is a distributive lattice.

2. The power set of any set, ordered by inclusion, is a distributive

lattice.

3. The set of all divisors of a natural number, ordered by divisibility,

forms a distributive lattice.
Boolean Lattices

A Boolean lattice is a complemented distributive lattice. They have many

important properties:
1. Ina Boolean lattice, every element has exactly one complement.
2. Boolean lattices satisfy additional identities such as:
o aAa'=0andaVa' =1 (complement laws)
o (a")'=a (involution law)
o aA(avb)=aandaV (aAb)=a (absorption laws)
o (aAb)=a'vband(aVvb)=a Ab' (DeMorgan's laws)

3. The power set of a finite set is isomorphic to any finite Boolean lattice.
4. Every element of a finite Boolean lattice can be uniquely described as a
join of atoms, makingthe atoms a basis.

2.4.8: Solved Problems
Problem 1: Proving a Subset is a Sub-lattice

Problem: Let L be the lattice of all divisors of 30 ordered by divisibility.
Determine whether the subset M = {1, 2, 5, 10} is a sub-lattice of L.

Solution: To determine if M is a sub-lattice, we need to check if it's closed

under both meet and join operations.
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In the divisibility lattice:

e meet (A) of two elements is their greatest common divisor (GCD).

e join (V) of two elements is their least common multiple (LCM).
Let's check the closure under these operations for all pairs in M = {1, 2, 5,
10}:

I. GCD(1,2)=1eM,LCM(1,2)=2€eM

2. GCD(1,5)=1€eM,LCM(L,5)=5eM

3. GCD(1,10)=1€M,LCM(1,10)=10eM

4. GCD(2,5)=1€M,LCM(2,5)=10€eM

5. GCD(2,10)=2€ M,LCM(2,10)=10eM

6. GCD(5,100=5€M,LCM(5,10)=10eM

Since all meets and joins of elements in M are also in M, the set M is closed

under both operations. Therefore, M is a sub-lattice of L.
Problem 2: Direct Product Construction

Problem: Consider the chains C. = {0, 1} and Cs = {0, 1, 2} with the usual
ordering. Construct the Hasse diagram of their direct product C. x Cs and

verify the meet and join of two specific elements.

Solution: The direct product Cz x C; has elements: C> x Cs = {(0,0), (0,1),
(0,2), (1,0), (1,1), (1,2)}

The ordering is defined by: (a,b) <(c,d) if & onlyifa<cand b <d.
Hasse diagram looks like:
(1,2)
/
(1,1) (0,2)
/ /
(1,0) (0,1

\ /
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(0,0)
Let's verify the meet and join of (0,2) and (1,0):

Meet: (0,2) A (1,0) = (min(0,1), min(2,0)) = (0,0) Join: (0,2) V (1,0) =
(max(0,1), max(2,0)) = (1,2)

We can check these results in the Hasse diagram:

e The greatest element below both (0,2) and (1,0) is (0,0), which is

their meet.

e The smallest element above both (0,2) and (1,0) is (1,2), which is

their join.
This confirms our calculations of the meet and join in the direct product.
Problem 3: Verifying a Lattice Homomorphism

Problem: Let L = {0, a, b, 1} be a lattice with the ordering 0 <a, b <1, and
M = {0, c, 1} be a lattice with the ordering 0 < ¢ < 1. Define a function ¢: L
— M by ¢(0) = 0, ¢(a) = ¢(b) = c, and ¢(1) = 1. Verify that ¢ is lattice

homomorphism.

Solution: To verify that ¢ is a lattice homomorphism, we need to check if it

preserves meets and joins:

. o(xAy)=0(x)Ap(y) forallx,y €L

2. o(xVy)=0¢x)Ve(y) forallx,y €L

Let's check all possible pairs:

For meets (A):
e 90A0)=0(0)=0=0A0=09(0)Ap(0)
e 9(0Aa)=¢0)=0=0Ac=0(0)Ap(a)
e @(0AD)=0(0)=0=0Ac=q¢(0)Ap(b)
e 9O0AD)=0(0)=0=0AT1=09(0)Ap(1)
* oana)=9(@)=c=cAc=g()Ap(a)
* ¢@@aAb)=¢0)=0=cAc=o() Ap(b)

e planl)=¢@)=c=cAl=q¢(a)Arp(l)
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* 9(bAb)=0(b)=c=cAc=g(b)Ap(b)
e obAD)=0b)=c=cAl=gb)Ap(l)
o o(IAD=e)=1=1A1=0(1)Ap(l)
For joins (V):

e 9OV0)=¢0)=0=0V0=0(0)Vve()
* ¢Ovay=g@=c=0Vc=0(0) Vo)
e @OVb)=gb)=c=0Vc=0(0) Vo)
e oOVD=e1)=1=0V1=0(0)Vve(l)
* ¢ava)=e@=c=cVc=0(a) Ve(a)

* ¢0avb)=g)=1=cVc=q(a) Vo)
* plavl)=g)=1=cV1=0)Vve(l)
e @bVb)=gb)=c=cVc=qg(b) Vo)
o obVvD=el)=1=cVI1=qpb)Vve(l)
e o(IVD=¢()=1=1Vv1=0()Vve(l)

There's a discrepancy in one case: ¢(a V b) = ¢(1) =1 but ¢(a) Vo(b) =c V ¢

=C.

Therefore, ¢ is not a lattice homomorphism because it does not preserve

joins for all pairs of elements.

To correct the function and make it a homomorphism, we would need to

redefine ¢ so that ¢(a vV b) = ¢(a) Vo(b), which would require ¢(1) =c.
Problem 4: Determining if a Lattice is Complete

Problem: Determine whether the set of all positive rational numbers Q* with

the usual ordering is a complete lattice.

Solution: For a lattice to be complete, every subset must have both a
supremum (least upper bound) & an infimum (greatest lower bound) within

the lattice.

Let's check if Q* with the usual ordering is complete:
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Consider the subset S = {r € Q" | r>< 2}.

All elements in S are less than V2, so V2 would be an upper bound for S. The
supremum of S would be \2, as any rational number less than V2 would not

be an upper bound for S.

However, V2 is irrational, so V2 & Q*. This means that the set S does not

have a supremum in Q".

Therefore, Q" with the usual ordering is not a complete lattice, as there

exists a subset (namely S) that does not have a supremum in Q*.
Problem 5: Complemented Lattice Verification

Problem: Consider the lattice L of all divisors of 30 ordered by divisibility.

Determine whether L is complemented lattice and find all complements of 6.
Solution: The divisors of 30 are: 1, 2, 3, 5, 6, 10, 15, and 30.
In the divisibility lattice:

e meet (A) of two elements is their greatest common divisor (GCD).

e join (V) of two elements is their least common multiple (LCM).

e The bounds are 1 (bottom) and 30 (top).

For L to be complemented, every element must have at least one

complement.

Let's check if 6 has a complement: For an element a to be a complement of

6, we need:
1. GCD(6,a)=1
2. LCM(6, a) =30

Since 6 =2 x 3, any potential complement must not be divisible by 2 or 3.

Let's check the candidates:
e GCD(6,5)=1V
e LCM(6,5) =30V

So 5 is a complement of 6.

Let's also check 10:
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e GCD(6,10)=2#1X
And 15:
e GCD(6,15)=3#1X
Therefore, the only complement of 6 in this lattice is 5.

To determine if L is complemented, we would need to check if every

element has at least one complement. Let's check a few more elements:
For 2:

e  Weneed GCD(2,a)=1 and LCM(2, a) =30

e LCM(2, 15)=30and GCD(2, 15) =1, so 15 is a complement of 2.
For 3:

e LCM(3, 10)=30and GCD(3, 10) =1, so 10 is a complement of 3.
For 5:

e LCMC(5, 6) =30 and GCD(5, 6) =1, so 6 is a complement of 5.

Continuing this process, we would find that There is at least one

complement for each element in L.

, so L is indeed a complemented lattice.
6. Unsolved Problems

Problem 1

Let (L, <) be a lattice and S € L. Prove that if S is a sublattice of L, then for

any a, b € S, the interval [a,b] = {x €L |a<x<b} N Sis a sublattice of S.
Problem 2

Assume distributive lattices L and L.. Establish that L; x L., their direct

product, is likewise a distributive lattice.
Problem 3

Let L be complemented lattice. Prove that if L is distributive, then each

element has exactly one complement.

Problem 4
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Let ¢: L — M be a lattice homomorphism. Define the relation 6 on L by: a 6
b if and only if ¢(a) = ¢(b). Prove that 0 is congruence relation on L,

meaning it is an equivalence relation that respects the lattice operations.
Problem 5

Let L be finite lattice in which every element is join of atoms (an atom is an
element that covers 0). Prove that if L is distributive, then it is isomorphic to

the lattice of all subsets of its set of atoms.
2.4.9: Relationships Between Lattice Types

Understanding the relationships between different types of lattices can
provide clearer picture of lattice theory. Here are some important

connections:

Subset Relationships

The following inclusions hold among lattice classes:
e Boolean Lattices € Complemented Distributive Lattices
e Distributive Lattices € Modular Lattices  All Lattices

e Complete Lattices are not a subset of any other special class, as
completeness is about the existence of meets and joins for arbitrary

subsets
Distributivity and Complementation

e In a distributive lattice with bounds, complements are unique when

they exist.

e A (distributive lattice with bounds where every element has

complement is a Boolean lattice.

e The converse holds: every Boolean lattice is distributive

complemented lattice.
Complete Lattices and Fixed Point Theorems

Complete lattices play crucial role in fixed point theorems such as the
Knaster-Tarski theorem, which states that any order-preserving function on a
complete lattice has a fixed point. This has important applications in

computer science, particularly in semantics and program verification.
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2.4.10: Applications of Lattice Theory

Lattice theory has wide-ranging applications across mathematics and

computer science:
Order Theory and Universal Algebra

Lattices serve as fundamental structures in order theory and universal
algebra, providing a framework for studying ordered sets with additional

algebraic structure.
Logic and Set Theory

e Boolean lattices correspond to Boolean algebras, which model

propositional logic.

e The power set of any set, ordered by inclusion, forms a Boolean

lattice.
e Complete lattices are used in modeling quantifiers in predicate logic.
Computer Science Applications

e Lattices are used in program analysis to represent data flow and type

information.

e They form the theoretical foundation for abstract interpretation, a

technique for static program analysis.

e Domain theory, which uses complete lattices, provides semantics for

programming languages.
Cryptography and Security

Lattice-based cryptography is an active research area that uses the
computational hardness of certain lattice problems to construct secure

cryptographic primitives.
2.4.11: Historical Development of Lattice Theory

Lattice theory emerged in the late 19th and early 20th centuries, with

significant contributions from:

Early Developments
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Richard Dedekind introduced the concept of a lattice in the 1890s,

originally calling them "Dualgruppen” (dual groups).

Ernst Schroder studied lattices as part of his work on the algebra of

logic.

Modern Lattice Theory

Garrett Birkhoff's work in the 1930s and 1940s established lattice

theory as a distinct mathematical discipline.

His book "Lattice Theory" (1940) became the standard reference
and helped popularize the field.

Recent Developments

The connections between lattice theory and universal algebra,
category theory, and theoretical computer science have become

increasingly important in recent decades.

Lattice theory continues to find new applications in diverse areas

such as quantum logic, rough set theory, and fuzzy set theory.

Multiple-Choice Questions (MCQs)

1.

A statement in logic is:

a) A sentence that is always true

b) A sentence that is either true or false
¢) A question or command

d) A mathematical equation

Which of the following is a tautology?
a) pv—p

b) pATp

¢) p—q

d) pvq

A predicate in logic is:

a) A logical variable

b) A function that returns a true/false value
¢) A constant statement

d) A contradiction
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The universal quantifier VxP(x) means: Notes
a) There exists at least one x for which P(x) is true

b) P(x) is true for all x in the domain

¢) P(x) is always false

d) P(x) holds for some values but not all

A lattice is a partially ordered set in which:

a) Every two elements have unique least upper bound & greatest
lower bound

b) Every subset has a maximum element

c¢) Every subset has a minimum element

d) Every element has an inverse

Which of the following is an example of a distributive lattice?
a) The power set of set with union & intersection

b) set of real numbers with addition and multiplication

¢) A set with arbitrary binary operations

d) A graph with directed edges

The operation of meet (greatest lower bound) in a lattice is
denoted by:

a) Vv

b) A

c) P

d) ®

Which of the following is an example of complemented lattice?
a) Boolean algebra

b) A set with no upper bound

c) A group with addition

d) A system with only one element

If every subset of a lattice has supremum and infimum, it is
called a:

a) Complemented lattice

b) Distributive lattice

¢) Complete lattice

d) Bounded lattice
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10. A homomorphism between two lattices preserves:

a) Only the meet operation
b) Only the join operation
c¢) Both meet and join operations

d) None of the operations

Ans Key
1 b 3 b 5 |a 7 b
2 a 4 b 6 |a 8 a
3 c
4 c

Short Answer Questions

1.

Define a tautology with an example.

What is a propositional logic statement?

Explain the difference between universal and existential quantifiers.
What is a predicate in logic? Give an example.

Define a lattice and give an example.

What are the two main operations in a lattice?

Differentiate between a complemented and distributive lattice.
What is the role of homomorphism in lattice theory?

Explain the significance of propositional logic in computing.

10. Give an example of a real-world application of lattice theory.

Long Answer Questions

L.

Explain the concept of tautologies and contradictions with

examples.

Describe quantifiers and predicates in logic, giving real-world

applications.

Discuss propositional logic, its laws, and its significance in

mathematics.
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10.

Explain in detail the concept of lattices as partially ordered sets with

examples.

What are the properties of lattices? Explain with proper

mathematical definitions.

Compare and contrast sub-lattices, direct products, and

homomorphism in lattice theory.
Describe the different types of special lattices with examples.

How does Boolean algebra relate to complemented lattices? Explain

with examples.

Describe the applications of lattice theory in computer science and

cryptography.

Explain the structure and importance of distributive lattices in

mathematics.
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Notes MODULE 3
UNIT 3.1
Boolean Algebras as Lattices, Various Boolean Identities
Objectives
e To understand Boolean algebra as an extension of lattice theory.

e To study various Boolean identities and their significance in logic

circuits.
e To analyze switching algebra and its application in digital logic.

e To explore subalgebras, direct products, and homomorphism in

Boolean algebra.
e To examine joint-irreducible elements, atoms, and minterms.
e To learn about different Boolean forms and their equivalence.
e To simplify Boolean functions using canonical forms.

e To apply Boolean algebra in switching circuits using AND, OR, and
NOT gates.

e To minimize Boolean expressions using the Karnaugh Map (K-map)

method.
3.1.1: Introduction to Boolean Algebra

Boolean algebra is a mathematical system named after George Boole, a
19th-century mathematician who first defined an algebraic system of logic
in the mid-1800s. Unlike traditional algebra that deals with numerical
values, Boolean algebra deals with the truth values "true" and "false," which
are often represented as 1 and 0, respectively.Boolean algebra forms the
foundation of digital circuit design and computer science. It provides a
mathematical framework for analyzing and designing digital systems where

components can exist in one of two states: on or off, true or false, 1 or 0.
Basic Elements of Boolean Algebra

1. Variables: In Boolean algebra, variables can only take one of two
values: 0 (false) or 1 (true). These variables are commonly denoted

by uppercase letters such as A, B, C, etc.
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2. Constants: There are only two constants in Boolean algebra: 0 and

L.

3. Basic Operations: The three fundamental operations in Boolean

algebra are:

o AND (conjunction): denoted by "-" or simply by writing

variables next to each other (e.g., AB)
o OR (disjunction): denoted by "+"

o NOT (negation): denoted by an overbar (e.g., A) or by a
prime symbol (e.g., A")

Truth Tables

truth table lists all possible combinations of input values and their

corresponding output values for a Boolean function. For example:
For two variables A and B:

AND Operation (A-B)

Copy

A|B|AB

0]11]0
110]0
1]1]1
OR Operation (A+B)

Copy

A|B|A+B
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1|01
1]1]1
NOT Operation (A')

Copy

Boolean Functions

A Boolean function is an expression formed by Boolean variables, constants
(0 and 1), and Boolean operators (AND, OR, NOT). A Boolean function

takes Boolean inputs and produces a Boolean output.
Example: F=A-B+ C'

For this function, we need to know the values of A, B, and C to determine

output. IfA=1, B=1, & C=0, then: F=1-1+0'=1+1=1
The Two-Valued Nature of Boolean Algebra

The fundamental characteristic of Boolean algebra is that each variable can
have only one of two possible values. This binary property makes Boolean

algebra especially useful for:
1. Digital circuit design
2. Computer programming
3. Logic design
4. Database queries
5. Set theory operations
3.1.2: Boolean Identities and Laws

Boolean algebra follows a set of fundamental laws and identities that help
simplify Boolean expressions. These laws are essential for analysis and

design of digital circuits.
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Basic Boolean Laws
1. Idempotent Laws:
o A+A=A
o A-A=A
2. Commutative Laws:
o A+B=B+A
o A-B=B-A
3. Associative Laws:
o A+(B+C)=A+B)+C
o A-B-C)=(A-B)-C
4. Distributive Laws:
o A-B+C)=(A-B)+(A-O)
o A+(B-C)=(A+B)-(A+C)
5. Identity Laws:
o A+0=A
o A-1=A
6. Complement Laws:
o A+A'=
o A-A'=0
7. Null Laws:
o A+1=1
o A-0=0
8. Absorption Laws:
o A+(A-B)=A
o A-(A+B)=A

9. De Morgan's Laws:
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Notes o (A+B)=A""B
o (A-B)=A"+B
Duality Principle
In Boolean algebra, a dual of an expression can be obtained by:

1. Changing every OR (+) operation to an AND () operation and vice

versa
2. Changing every 0 to 1 and vice versa
3. Keeping the variables the same

For example, the dual of A+ 0=AisA-1=A.

The duality principle states that if a Boolean identity is true, then its dual is

also true.
Using Boolean Laws for Simplification

These laws can be used to simplify Boolean expressions, which is crucial for

designing efficient digital circuits.
Example: Simplify the expression A - B+ A - B'.

Using the distributive law: A- B+ A - B'=A - (B + B') Using complement
law: B+ B'=1 Therefore: A- (B+B)=A-1=A

So the simplified expression is just A.
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UNIT 3.2

The switching Algebra. Example, Subalgebras, Direct Products and
Homomorphism Joint-irreducible elements, Atoms and Minterms,
Boolean forms and their equivalence, Minterm Boolean forms

3.2.1: The Switching Algebra

Switching algebra is a specialized form of Boolean algebra that directly

relates to analysis & design of switching circuits. It provides a mathematical

foundation for understanding how switches operate in digital systems.

Basic Concepts of Switching Algebra

1.

Switch States: In switching algebra, a switch can be in one of two

states:
o Open (0): No current flows
o Closed (1): Current flows

Series Connection: When switches are connected in series, both
must be closed for current to flow. This corresponds to the AND

operation.

o If switch A is represented by variable A and switch B by
variable B, then the series connection is represented by A -

B.

Parallel Connection: When switches are connected in parallel, at
least one must be closed for current to flow. This corresponds to the

OR operation.

o If switch A is represented by variable A and switch B by
variable B, then the parallel connection is represented by A

+ B.

Relationship with Boolean Algebra: Switching algebra follows the
same laws and principles as Boolean algebra, making it a perfect

match for analyzing switching circuits.

Applications in Circuit Design

1.

Simple Switch Circuits:
o A single switch can be represented by a variable A.

o When the switch is closed, A = 1; when open, A= 0.

2. Complementary Switch:
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Notes o The complement of a switch A is denoted by A'.
o IfAisclosed, A'is open, and vice versa.
3. Relay Circuits:
o Relays can be analyzed using switching algebra.

o The state of a relay coil determines whether its contacts are

open or closed.
4. Transistor Circuits:
o Transistors can act as electronic switches.

o Switching algebra can model the behavior of transistor-

based circuits.
Huntington's Postulates for Switching Algebra

Edward Huntington formalized switching algebra with the following

postulates:

1. Closure: For any variables A & B in the algebra, A+ B and A - B

are also in the algebra.

2. Identity Elements: There exist two elements, 0 and 1, such that:
o A+0=A
o A-1=A

3. Commutativity: For any variables A & B:
o A+B=B+A
o A-B=B-A

4. Distributivity: For any variables A, B, & C:
o A-B+0O)=(A-B)+(A-Q)
o A+(B-O)=(A+B)-(A+C)

5. Complementation: For every variable, there exists a complement A'

such that:

o A+A'=1
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o A-A'=0

These postulates form the foundation of switching algebra and ensure its

consistency and applicability to switching circuits.
3.2.2: Examples of Boolean Algebra Applications

Boolean algebra has numerous applications in various fields, particularly in

digital electronics and computer science. Here are some key applications:
1. Digital Circuit Design

Boolean algebra is fundamental to designing and analysing digital circuits:
Combinational Logic Circuits

Combinational logic circuits produce outputs based solely on the current

input values. Examples include:

e Multiplexers (MUX): Select one of several input signals and

forward it to a single output line.

e Demultiplexers (DEMUX): Take a single input and direct it to one

of several outputs.
¢ Encoders: Convert multiple input signals into a coded output.
¢ Decoders: Convert a coded input into multiple outputs.
e Adders: Perform binary addition.
Sequential Logic Circuits

Sequential circuits produce outputs based on both current and previous input

values. They include:
¢ Flip-flops: Basic memory elements that store one bit of information.
o Registers: Store multiple bits of information.
e Counters: Count the number of occurrences of an event.

2. Computer Architecture

Boolean algebra is essential for designing the architecture of computers:

e Arithmetic Logic Units (ALU): Perform arithmetic and logical

operations.
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Notes e Control Units: Generate control signals for the operation of the

computer.
e Memory Systems: Store and retrieve data.
3. Programming and Software Development
Boolean logic is used extensively in programming:

e Conditional Statements: If-else statements rely on Boolean

conditions.

e Logical Operators: AND, OR, NOT operations are used in

programming languages.

¢ Loop Conditions: While and for loops continue execution based on

Boolean conditions.
4. Database Systems
Boolean algebra is used in database queries:
e  SQL Queries: Use Boolean operators to filter data.
e Search Operations: Employ Boolean logic to refine search results.
5. Artificial Intelligence and Machine Learning
Boolean logic is used in:

e Decision Trees: Models that make decisions based on Boolean

conditions.
¢ Rule-Based Systems: Systems that use if-then rules.

¢ Neural Network Activation Functions: Some activation functions

like the step function are essentially Boolean.
6. Electronic Security Systems
Boolean algebra is used in designing:

e Password Verification Systems: Compare input with stored

passwords.

e Access Control Systems: Determine whether to grant access based

on multiple conditions.
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e Encryption Algorithms: Many encryption techniques use Boolean Notes

operations.
Solved and Unsolved Problems in Boolean Algebra
Solved Problems
Problem 1: Simplify the Boolean expression A‘B+A-C + B-C

Solution: Step 1: Apply distributive law to factor out common terms. A-B +

AC+BC=AB+A-C+B-C=AB+C)+B-C

Step 2: Use the absorption law: X + XY =X Let X=A-(B+C)and Y =
B-C/B+C)AB+C)+BC=AB+C)+(B+C)B-C)/B+C)=A(B
+C)+(B+C)[B-C/(B+C)]=AB+C)+B-C

This doesn't simplify further using absorption directly.

Step 3: Try a different approach using a key identity. The expression A‘B +
A-C + B-C is a well-known form that simplifies to (A + B)-(A + C)-(B + C).

But we can verify this:

(A+B)(A+C)yB+C)=(A+B)[A-B+C)+C(B+C)]=(A+B)[AB
+A-C+BC+C-C]=(A+B)[A'B+A-C+B-C+C(]

Let's try yet another approach: A‘-B+A-C+B-C=A-B+A-C+B-C=A-(B
+C)+B:C=A'B+A-C+B-C

Let's verify using a truth table:

A[B[C|[AB[AC|BC[AB + AC +|(A+B)@A+C) B +
B-C C)

olofofo [o o Jo 0

olo[1]o [o o Jo 0

ol1]lofo [o o Jo 0

ol1[t]o o |1 11 1

1{ofofo [o Jo o 0

1{of1]o |1 Jo |1 1

1{1]lof1 Jo Jo |1 1
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The truth table shows that A‘-B+ A-C+B-C=(A+B)-(A+C)(B+C).

Therefore, simplified expression is (A + B)-(A+ C)-(B + C).

Actually, we can show this is equivalent to a well-known form called the

"majority function," which outputs 1 when at least two of the three inputs

are 1.

The final answer is: A-B + A-C + B-C (which is already in its simplest sum-

of-products form).

Problem 2: Verify De Morgan's Laws using a truth table

Solution: De Morgan's Laws state that:

l. (A+B)=A""B

2. (A-B)=A'+B

Let's verify the first law using a truth table:

A[B[A+B|[(A+B)[A'[B' [A" B
0]ofo 1 11 |1
011 0 1 (o ]o
1 o1 0 01 ]o
111 0 010 o

As we can see, (A+ B)'=A' - B' for all possible values of A and B.

Now, let's verify the second law:

A/B|/A-B|(A-B) |A'"|B'|A'+B'
01010 1 I |1 |1
01110 1 1 |0 |1
11010 1 0 |1 |1
1|11 0 0 |0 |0

Again, we see that (A - B)' = A' + B' for all possible values of A and B.

Therefore, both De Morgan's Laws are verified.
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Problem 3: Design a circuit that implements Boolean function F=A-B +

C-(A+B)
Solution: First, let's simplify the expression:
F=A-B+C:(A+B)=A'‘B+C-A+C-B=A-B+A-C+B-C

This is our final simplified expression. Now, we can design a circuit for F =

A-B+A-C+B-C:
1. Create an & gate for A‘B
2. Create an AND gate for A-C
3. Create an AND gate for B-C
4. Connect the outputs of these three AND gates to a 3-input OR gate

The resulting circuit will have three inputs (A, B, and C) and one output (F).

output will be 1 if at least two of the three inputs are 1.

Alternatively, we noticed in Problem 1 that A-B + A-C + B-C is the majority
function for three variables, so the circuit can also be designed to output 1

when at least two of the three inputs are 1.

Problem 4: Simplify the Boolean expression (A + B'):(A' + B):(A + B)

using Boolean algebra
Solution: Let's simplify step by step:
Step 1: Simplify (A+B)(A+B'). (A+B)(A+B)=A+BB'=A+0=A

Wait, that's not right. Let's correct it: (A+ B)(A+B')=A-A+A-B'+B-A+
BB =A+AB'+AB+0=A+A-B'+B)=A+A-1=A+A=A

Step 2: Now simplify the original expression. (A + B')-(A'+ B)-(A+B)=(A
+B")(A'+B)'A(from Step 1) =A(A'+B)=A‘A'+A‘B=0+A-B=A'B

Therefore, (A+ B")-(A'+ B)-(A+B)=A"B.

Actually, let's double-check this solution because I made an error in Step 1.
(A+B")(A'+B)'(A+B)

First, let's examine (A + B) more carefully. This is simply A + B.

Now, let's look at the product (A + B')-(A' + B):
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(A+B)(A'+B)=AA'+AB+B-A'+B"B=0+AB+A"B'+0=AB
+A"B'

So the original expression becomes: (A-B + A"-B")-(A+ B)

Let's expand this: (A‘B + A"B")'(A+ B) = A‘B-A+ A'-B-B+A"B"A+
A"B"B=A-B+A-B+0+0=AB

Therefore, (A+ B")-(A' + B)-(A+ B) =A-B.
Problem 5: Implement a full-adder circuit using Boolean algebra

Solution: full-adder is circuit that adds three bits: A, B, & a carry-in (Cin). It

produces a sum (S) & a carry-out (Cout).

Boolean expressions for S and Cout are: S = A @ B @ Cin (where @D
represents XOR) Cout = (A-B) + (Cin*(A @ B))

Step 1: Implement the expression for S. A @ B can be written as (A'B' +
A"“B). So, S = (A'B' + A"B) @ Cin = (A‘-B' + A"B)-Cin' + (A'-B' +
A'-B)'"-Cin

Step 2: Implement the expression for Cout. Cout = (A-B) + (Cin-(A @ B)) =
(A'B) + (Cin'(A'B' + A"B))

To implement this circuit:
1. Create an XOR gate for A @ B

2. Connect the output of this XOR gate and Cin to another XOR gate
to get S

3. Create an AND gate for A-B

4. Create an AND gate that takes the output of the first XOR gate and
Cin

5. Connect the outputs of the two AND gates to an OR gate to get Cout

The resulting circuit will have three inputs (A, B, and Cin) and two outputs

(S and Cout).
Unsolved Problems

Problem 1: Simplify the is a Boolean expression.(A*B+C") + (A*B'*C) +
(A'*B+C) + (A'*B'*C")
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Hint: This expression represents a function with specific behavior related to

the number of variables that are 1.

Problem 2: Prove that the expression (A-B) + (B:C) + (C-A) is equal to
(A+B)(B+C)(C+A)ifand only ifA=B=C

Hint: Consider different cases where the variables take different values.

Problem 3: Design a circuit using only NAND gates to implement

Boolean function F = (A:B) + (C-D)

Hint: Remember that NAND gates are universal gates, meaning any Boolean

function can be implemented using only NAND gates.

Problem 4: Simplify Boolean expression ((A + B)-C) + ((A + C)-B) using

Boolean algebra
Hint: Try distributing terms and looking for common factors.

Problem 5: Implement a binary-to-Gray code converter using Boolean

algebra

Hint: For an n-bit binary number, the Gray code can be obtained by XORing

each bit with its more significant neighbor.

Boolean Algebra: From Subalgebras to Minimization of Boolean

Functions
3.2.3: Subalgebras, Direct Products, and Homomorphism
Subalgebras

A subalgebra of a Boolean algebra B is subset of B that is closed under the
operations of meet (A), join (V), and complement (—), and contains the

bounds 0 and 1.

Definition: Let (B, A, V, —, 0, 1) be a Boolean algebra. A subset S of B is a
subalgebra if:

1. 0eSand1€S
2. Foralla,beS:aAb€eS
3. Foralla,beS:avbeSs

4. ForallaeS:—a€S
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Notes Example: In Boolean algebra of power set P({1, 2, 3, 4}), the collection S =
{0, {1, 2}, {3,4}, {1, 2, 3, 4}} forms a subalgebra.

To verify this:

S contains @ (0) and {1, 2, 3,4} (1)

e For any two elements in S, their intersection is in S:
o {LL2}yN{3,4}=0

o {L,2}yN{1,2,3,4}={1,2}

o {3,4}N{l1,2,3,4} ={3,4}

For any two elements in S, their union is in S:
o {1,2}U{3,4;={1,2,3,4;
o {1,2}Up={1,2}

o {3,4} up={3,4}

For any element in S, its complement is in S:
o —P={1,2,3,4}
o —{1,2}={3,4}
o —{3,4}={1,2}
o —{,2,3,4}=0
Direct Products

The direct product of Boolean algebras allows us to construct larger

Boolean algebras from smaller ones.

Definition: Let By, Ba, ..., B, be Boolean algebras. The direct product B: x
B2 x ... x B, is the Boolean algebra whose elements are n-tuples (b, ba, ...,

b,) where b; € B;, with operations defined component-wise:
e (ai,a, ..., a) A (bi, b, ..., by) = (a1Aby, a2Aby, ..., anAby)
e (ai,a, .., an) V(b b, ..., by) = (a1Vbi, a2Vby, ..., a,Vby)
e —(ai,ay, ..., a) = (Tai, az, ..., ")

e 0=(01,0..,0,)
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Example: Consider two Boolean algebras B: = {0, 1} & B> = {0, 1}. The

1=(11, 12, ..., 1)

direct product B: x B2 consists of the following elements:

(0,0)
0, 1)
(1,0)

(1,1

With operations:

This direct product B: x Bz is isomorphic to Boolean algebra of power set

(0, 1) A (1, 0) = (OA1, 1A0) = (0, 0)
(0, 1) v (1, 0) = (OV1, 1v0) = (1, 1)

=0, 1)=(0,—-1)=(1,0)

P({, b}).

Homomorphism

A homomorphism between Boolean algebras preserves the algebraic

structure.

Definition: Let (B, A, v, =, 0, 1) and (B, A", V', ', 0', 1") be Boolean

algebras. A function f: B — B'is a homomorphism if for all a, b € B:

1.

fla A b) = f(a) A" f(b)
fla Vv b) = f(a) V' f(b)
f(—a) = ~'f(a)

f(0) =0

f(1)=1'

Types of homomorphisms:

An isomorphism is a bijective homomorphism
A monomorphism is an injective homomorphism

An epimorphism is a surjective homomorphism
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Example of a homomorphism: Let B be the Boolean algebra of the power
set P({1, 2, 3}) and let B' be the Boolean algebra {0, 1}. Define f: B — B'

as:
fiSy={1if1€S0if1 ¢S}
This is a homomorphism because:

e f(SNT)=1ifand only if 1 € S N T, which happens if and only if 1
€ S and 1 € T, which happens if and only if f(S) = 1 and f(T) = 1,
which happens if and only if f(S) A f(T) =1

e Similarly for union and complement

Kernel of a homomorphism: The kernel of a homomorphism f: B — B' is

the set {a € B | f(a) =0'}.
3.2.4: Joint-Irreducible Elements, Atoms, and Minterms
Joint-Irreducible Elements

An element in a Boolean algebra is join-irreducible if it cannot be

expressed as the join (logical OR) of two strictly smaller elements.

Definition: An element a in a Boolean algebra B is join-irreducible if a # 0

and for any b, c € B,ifa=b V c, then eithera=b ora=c.

In other words, a join-irreducible element cannot be broken down into

simpler elements using the join operation.
Atoms
Atoms are the minimal non-zero elements in a Boolean algebra.

Definition: An element in Boolean algebra B is an atom if a # 0 & for any b

€ B, ifb<a, then eitherb=0o0orb=a.
Properties of atoms:
1. Every atom is join-irreducible

2. In a finite Boolean algebra, every non-zero element can be

expressed as a join of atoms

3. If x is an atom and y is any element in the Boolean algebra, then

eitherx A y=00orx Ay=x
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Example: In Boolean algebra of the power set P({1, 2, 3}), the atoms are
the singleton sets {1}, {2}, and {3}. Each non-empty set can be expressed as

a union of these atoms.
Minterms

In a Boolean algebra on n variables, minterm is product (AND) of n literals,
where each variable appears exactly once in either complemented or

uncomplemented form.

Definition: For n Boolean variables xi, X2, ..., X,, a minterm is a product

term x1' A X2' A ... A X, where each x;' is either x; or —x;.

For n variables, there are 2" possible minterms, each corresponding to one

possible assignment of truth values to variables.

Notation:Minterms are often denoted as m; where i is decimal equivalent of
the binary number formed by replacing each uncomplemented variable with

1 and each complemented variable with 0.
Example: For two variables x and y, the four minterms are:
e mo= "X A~y (corresponds to x=0, y=0)
e mi =X Ay (corresponds to x=0, y=1)
e m2=Xx A~y (corresponds to x=1, y=0)
e ms=Xx Ay (corresponds to x=1, y=1)
Properties of minterms:

1. Each minterm evaluates to 1 for exactly one combination of input

values
2. Any Boolean function can be expressed as & sum (OR) of minterms

3. Minterms are mutually exclusive (the product of any two distinct

minterms is 0)
3.2.5: Boolean Forms and Their Equivalence
Boolean Forms

A Boolean form (or Boolean expression) is a combination of Boolean

variables and constants connected by Boolean operations.
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Definition: A Boolean form is recursively defined as:
1. Constants 0 and 1 are Boolean forms
2. Variables xi, Xz, ..., X, are Boolean forms
3. IfF and G are Boolean forms, then so are:
o —F (negation/complement)
o F A G (conjunction/AND)
o F Vv G (disjunction/OR)
o F — G (implication)
o F < G (equivalence)
Example: The following are Boolean forms:
e xXA(yV2)
e XV (YyA2)
s X—=YA(CYy—2)
Equivalence of Boolean Forms

Two Boolean forms are equivalent if they represent the same Boolean
function - that is, they evaluate to the same output for all possible input

combinations.

Definition: Boolean forms F & G are equivalent (denoted F = G) if for all
possible assignments of values to their variables, F & G have the same

value.
Basic equivalence laws:
1. Idempotent laws:
o XVX=X
o XAX=X
2. Commutative laws:
o XVYy=yVvVXx

o XAY=EYyAX
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3. Associative laws: Notes
o (xVy)vz=xV(yVz
o (XAY)YAzZ=EXA(YAZ)
4. Distributive laws:
o XV(yAzZ)=xXVYyAEXVZ)
o XA(YyVZ)=ExXAY)V(EAZ)
5. De Morgan's laws:
o (XVy)=xA"y
o “(XAy)=xVy
6. Complement laws:
o xVx=1
o XA=XxX=0
7. Identity laws:
o xVO0=x
o xAl=x
8. Dominance laws:
o xVvli=l
o xA0=0
9. Absorption laws:
o XV(EXAY)=X
o XAXVy)=x
10. Double negation:
@) TX =X
Example of proving equivalence: To prove (X Ay) V (X ATy) =x:

X Ay VEAY) =xA(y Vy) (by distributive law) = x A 1 (by

complement law) = x (by identity law)
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Notes Truth Tables for Verification of Equivalence

Another way to verify the equivalence of Boolean forms is to construct truth
tables for each form and check if they produce the same outputs for all input

combinations.

Example: Verify that x V (—x A y) =X V y using a truth table.

X y X XAy [XV(xXAY) xVy
0 0 1 0 0 0
0 1 1 1 1 1
1 0 0 0 1 1
1 1 0 0 1 1

Since the truth tables for x V (—x A y) & x V y match for all input

combinations, the two Boolean forms are equivalent.
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UNIT 3.3
Sum of Products, Cononical forms, Minimization of Boolean
functions

3.3.1: Minterm Boolean Forms and Sum of Products (SOP)
Minterm Expansion
Every Boolean function can be expressed as a sum (OR) of minterms.

Minterm expansion theorem: Any Boolean function f(xi, X2, ..., Xa) can be

uniquely expressed as:

f(x1, X2, ..., Xa) = V {my | f evaluates to 1 when the variables have the values

corresponding to minterm my}

In other words, a function can be represented as the OR of all minterms for

which the function outputs 1.

Example: For the function f(x, y) = x V y, the truth table is:

X||y|[f(x, ¥)

The function outputs 1 for the input combinations (0, 1), (1, 0), and (1, 1),

which correspond to minterms mi, mz, and ms. Therefore:
fxX,y)=mVmVm=(xAy)VEAY)VEXAY)
Sum of Products (SOP) Form

A Sum of Products (SOP) form is a Boolean expression that is a

disjunction (OR) of product terms (AND terms).

Definition: A Boolean expression is in SOP form if it is written as a sum
(OR) of products (AND) of literals, where a literal is either a variable or its

negation.
Example: The following are SOP forms:

e (XAY)V(XAZ)
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Notes « XAYAZVEAYADV(XAYATZ)

Every Boolean function can be expressed in SOP form. The minterm
expansion of a function is a special case of SOP form where each product

term is minterm.
Converting a Boolean Function to SOP Form
There are several methods to convert a Boolean function to SOP form:
1. Using a truth table:
o Construct the truth table for the function

o Identify all input combinations for which the function

outputs 1

o Form the minterms corresponding to these input

combinations
o Express the function as the OR of these minterms
2. Using Boolean algebra:

o Apply distributive laws to expand expressions
o Use other Boolean algebraic laws to simplify and rearrange
o Continue until the expression is in SOP form

Example: Convert the function f(x, y, z) = x — (y A z) to SOP form.

First, rewrite implication: x - (Y Az) =X V (YA z)

This is already close to SOP form, but let's verify with a truth table:

>
N

X2 (YAZ)=XV(YA2Z)
1

il Bl Bl Bl el el el Il i
— = o ||~ Oo|Oo <«
—_— O = | O = | O|—~=|OI|IN
— o ||| |OC|Oo O«
—_— OO ||| = =]
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The function outputs 1 for the input combinations (0, 0, 0), (0, 0, 1), (0, 1,
0), (0, 1, 1), and (1, 1, 1), which correspond to minterms mo, mi, mz, ms, and

my. Therefore:

f(xX,y,2)=mo VmuVmVmVm=(XA"YyAZ)V(XAYAZ)V(XAY
AZ)V(XAYAZ)V(XAYAZ)

This can be simplified to: f(x,y,z) =XV (X Ay A z)
3.3.2: Canonical Forms and Minimization of Boolean Functions
Canonical Forms

canonical form is a standard way of representing Boolean function. The two

main canonical forms are:

1. Sum of Minterms (SOM): A Boolean function expressed as the

disjunction (OR) of minterms.

2. Product of Maxterms (POM): A Boolean function expressed as the

conjunction (AND) of maxterms.
Maxterms

A maxterm is sum (OR) of n literals, where each variable appears exactly

once in either complemented or uncomplemented form.

Definition: For n Boolean variables xi, Xz, ..., X,, @ maxterm is a sum term

x1'V x2'V ... V X, where each x;' is either x; or —x;.

Notation: Maxterms are often denoted as M; where i is the decimal
equivalent of binary number formed by replacing each complemented

variable with 1 and each uncomplemented variable with 0.
Example: For two variables x & y, the four maxterms are:
e Mo =xVy (corresponds to x=0, y=0)
e M =x V~y (corresponds to x=0, y=1)
e M:=—xVy (corresponds to x=1, y=0)
e Ms=—x Vy (corresponds to x=1, y=1)

Canonical SOP and POS Forms
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Notes e Canonical SOP (Sum of Products):f(xi, X2, ..., Xa) = V m; for all 1

where f outputs 1

e Canonical POS (Product of Sums):f(xi, X2, ..., Xa) = A M; for all i

where f outputs 0

Example: For the function f(x, y) = x @ y (exclusive OR), the truth table is:

x y f(x, y)
0 0 0
0 1 1
1 0 1
1 1 0

Canonical SOP: f(x, y) =mi Vm2 = (—x A y) V (x A—y) Canonical POS: f(x,
Y)=MoAMs=(xVy)A(XVy)

Minimization of Boolean Functions

Minimizing Boolean functions is important for creating efficient digital
circuits. The goal is to find an equivalent form with the minimum number of

literals and operations.
Algebraic Minimization
This approach uses Boolean algebra laws to simplify expressions.

Example: Simplify the expression f(X, v, Z) = (X Ay) V(X AYy)V(XAZ)V
(—xA2)

f(X,y,2)=XAY)V(XAYVEAZDV(XAZ=yAEXVX)VZA®X

V—x) (factoring) =y A 1 V z A 1 (complement law) =y V z (identity law)
Karnaugh Maps (K-maps)

A Karnaugh map is a graphical method for simplifying Boolean
expressions. It represents a truth table in a grid where adjacent cells differ by

only one bit in their input values.
Steps for using K-maps:
1. Construct the K-map grid for the number of variables

2. Fill in the grid with function outputs
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3. Group adjacent 1s in powers of 2 (1, 2, 4, 8, etc.) Notes
4. For each group, form a product term with the common variables
5. Express the function as the OR of these product terms

Example: Minimize the function f(x, y, z) = (X A"y A~2) V(X A"y A Z2) V (X
AYAZ)V(XAYAZ)

First, let's create the K-map:

Xyz

000111 10

00010

11110

We see two groupings:

e A group of 3 cells for x—z, which gives the term x A~z

e A group of 2 cells for yz, which gives the term y A z
Therefore, the minimized expression is: f(x, y, z) = (X A~y) V (Y A 2)
Quine-McCluskey Algorithm

The Quine-McCluskey algorithm is a tabular method for minimizing
Boolean functions. It is more systematic than K-maps and can handle

functions with many variables.
Steps of the Quine-McCluskey algorithm:

1. List all minterms for which the function outputs 1

N

Group them by the number of 1s in their binary representation

3. Compare minterms from adjacent groups to find prime implicants

4. Create a prime implicant chart to find the essential prime implicants
5. Select additional prime implicants as needed to cover all minterms
6. Express the function as the OR of the selected prime implicants

Example: Here's a simple example of the Quine-McCluskey algorithm for

function f(w, x, y, z) with minterms 0, 2, 8, 10, 11, 15.
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Notes Step 1: Group minterms by number of 1s:
e Group 0: (0) = 0000
e Group 1: (2) = 0010, (8) = 1000
e Group 2: (10)=1010
e Group 3: (11)=1011
e Group4: (15)=1111
Step 2: Find prime implicants by comparing adjacent groups:
e Comparing 0000 and 0010: -010 (minterm 0, 2)
e Comparing 0000 and 1000: -000 (minterm 0, 8)
e Comparing 0010 and 1010: -010 (minterm 2, 10)
e Comparing 1010 and 1011: 101- (minterm 10, 11)
e Comparing 1011 and 1111: 1-11 (minterm 11, 15)
Step 3: Continue the process until no more combinations are possible.

Step 4: From the prime implicant chart, determine that the minimal

expression is: f(w, X, y, 2) = ("W AX ATY) V("W AX A7Z) V (WA X A Z)
Solved Problems
Problem 1: Verify the Subalgebra Property

Problem: Show that the set S = {@, {a}, {b}, {a, b}} is subalgebra of power
set Boolean algebra P({a, b, c}).

Solution: To be a subalgebra, S must be closed under complement, meet

(intersection), and join (union), and must contain the bounds (@ and {a, b,
c}).

First, note that S does not contain {a, b, ¢}, so it cannot be a subalgebra of

P({a, b, c}).
However, if we consider S as a subset of P({a, b}), then:
1. S contains @ (0) and {a, b} (1 in P({a, b}))

2. Closure under intersection:
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o f{a}N{b}=0€S
o {a}N{a,b}={a} €S
o {b}N{ab}=1{b} €S
3. Closure under union:
o {aju{b}={a,b} €S
o {ajup={a} €S
o {b}uUd={b}ES
4. Closure under complement (relative to {a, b}):
o —@=1{a,b}ES
o —{a}=1{b} €S
o —{b}={a} €S
o —{a,b}=0Q€S
Therefore, S is a subalgebra of P({a, b}).
Problem 2: Find a Boolean Homomorphism

Problem: Define a homomorphism from the Boolean algebra P({1, 2, 3, 4})
to the Boolean algebra {0, 1}.

Solution: We need to define a function f: P({1, 2, 3, 4}) — {0, 1} that

preserves all Boolean operations.
Let's define fas: f(S) = { 1 if|S]| is even (including 0) 0 if |S| is odd }
To verify this is a homomorphism:

1. f(@) =1 since |@| =0 is even, and ({1, 2, 3, 4}) = 1 since |{1, 2, 3,

41| =4 is even.

2. For complement: f(S°) = f({1, 2, 3, 4} - S) If |S] is even, then [S| =4
- S| is also even, so f(S) = f(S¢) = 1 If |S| is odd, then |S¢| =4 - |S]| is
also odd, so f(S) = f(S°) = 0 This doesn't satisfy f(S¢) = —f(S), so our

proposed function isn't a homomorphism.
Let's try another definition: f(S)={ 1if1 €S0if1 €S }

To verify:
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Notes 1. f(@)=0since 1 €0, and f({1, 2, 3,4})=1since 1 € {1, 2, 3, 4}.

2. For complement: f(S°) = f({1, 2, 3,4} - S)If 1 € S, then 1 €S°, so
f(S)=1and f(S)=01f 1 & S, then 1 €S, so f(S) =0 and f(S°) =1
This satisfies f(S¢) = —f(S)
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UNIT 3.4 Notes
Applications of Boolean Algebra to Switching Theory (using
AND, OR and NOT gates) The Karnaugh method

3.4.1 Applications of Boolean Algebra in Digital Circuits

Boolean algebra, developed by George Boole in the mid-19th century, has
become the foundation of digital circuit design. It provides a mathematical
framework for analyzing and designing circuits that process binary
information. In digital systems, variables can only have two values: 0
(OFF/FALSE) and 1 (ON/TRUE). This binary nature makes Boolean

algebra perfectly suited for describing the behavior of digital circuits.
Basic Boolean Operations and Their Circuit Implementations
1. NOT Operation (Inversion)

The NOT operation, denoted by an overbar or the symbol ', inverts the

input value.

For a Boolean variable A:
e NOTA (writtenas A'or "A)=1ifA=0
¢ NOTA (writtenas A'or "TA)=0ifA=1

Circuit Implementation (NOT Gate): The NOT operation is implemented
using an inverter or NOT gate. It has one input and one output, with output

being the complement of input.
Truth Table for NOT Gate:
AlA
01
110
2. AND Operation (Conjunction)
The AND operation, denoted by '-' or 'A', returns 1 only if all inputs are 1.
For Boolean variables A and B:
e AAND B (written as A‘B or AAB) =1 ifbothA=1and B=1

e A AND B (written as A-B or AAB) = 0 otherwise
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Notes

Circuit Implementation (AND Gate): The AND operation is implemented

using an AND gate, which has two or more inputs and one output.
Truth Table for AND Gate (2 inputs):
A|B|AB
010]0
0]1]0
1100
111
3. OR Operation (Disjunction)
The OR operation, denoted by '+' or 'V', returns 1 if at least one input is 1.
For Boolean variables A & B:
e A OR B (written as A+B or AVB) =0 if both A=0and B=0
e A OR B (written as A+B or AVB) = 1 otherwise

Circuit Implementation (OR Gate): The OR operation is implemented

using an OR gate, which has two or more inputs & one output.
Truth Table for OR Gate (2 inputs):

A|B|A+B

0100

0]1]1

1101

111

4. XOR Operation (Exclusive OR)

The XOR operation, denoted by '@', returns 1 if the number of 1s in the
inputs is odd.

For Boolean variables A and B:
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e A XOR B (written as A@B)=0ifA=B Notes
e A XOR B (written as A@GB)=1ifA#B

Circuit Implementation (XOR Gate): The XOR operation is implemented
using an XOR gate.

Truth Table for XOR Gate (2 inputs):
A|B|ADB
0]0]0
0]1]1
1101
1]1]0
5. NAND Operation (NOT AND)
The NAND operation is the negation of the AND operation.
For Boolean variables A & B:
e ANAND B=NOT (AAND B)=NOT (A‘B) =(A‘B)'

Circuit Implementation (NAND Gate): A NAND gate, which is an AND
gate followed by a NOT gate, is used to implement the & operation.

Truth Table for NAND Gate (2 inputs):
A|B|(A‘B)

0]0]1

0]1]1

1101

1]1]0

6. NOR Operation (NOT OR)

The NOR operation is the negation of the OR operation.
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For variables A & B that are Boolean:
e ANOR B =NOT (A OR B) =NOT (A+B) = (A+B)'

Circuit Implementation (NOR Gate): The NOR operation is implemented
using a NOR gate, which is an OR gate followed by a NOT gate.

Truth Table for NOR Gate (2 inputs):
A|B | (A+B)'

0101

0]1]0

1100

1]11]0

Boolean Algebraic Laws and Theorems

Boolean algebra follows several laws and theorems that are essential for

simplifying expressions and circuit designs.
1. Commutative Laws
e A+B=B+tA
e A-B=B-A
2. Associative Laws
e A+(B+C)=(A+B)+C
e A-B-O)=(A-B)-C
3. Distributive Laws
e A-(B+C)=A-B+A-C

e A+(B-O)=(A+B) - (A+C)

4. Identity Laws
e A+0=A
e A-1=A
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5. Complement Laws
e A+A'=1
e A-A'=0

6. Idempotent Laws

e A+A=A
e A-A=A
7. Absorption Laws

e A+(A-B)=A
e A-(A+B)=A
8. De Morgan's Theorems
e (A+B)=A"'B
e (A-B)=A"+B

These theorems are extremely valuable in simplifying Boolean expressions,
which directly translates to simpler and more efficient circuit designs with

fewer gates.
Boolean Functions and Expression Representation

A Boolean function is function that maps binary inputs to binary outputs.
For n Boolean variables, there are 2”n possible input combinations and

2(2”n) possible Boolean functions.
There are several standard ways to represent Boolean functions:
1. Truth Table

truth table lists all possible input combinations and their corresponding

output values. For n variables, a truth table has 2n rows.
2. Canonical Forms
Sum of Minterms (SOP - Sum of Products)

A minterm is a product (AND) term where each variable appears exactly
once, either in its true or complemented form. A for which the function value

1s 1.
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For example, for function F(A,B,C) with minterms ml, m4, and mo6:

F(A,B,C)=ml +m4+m6=A"B"C+A-B"C'+A-B-C'
Product of Maxterms (POS - Product of Sums)

A maxterm is a sum (OR) term where each variable appears exactly once,
either in its true or complemented form. The representation of a boolean
function is the product (AND) of its maxterms for which the function value

1s 0.

For example, for function F(A,B,C) with maxterms M0, M2, M3, M5, and
M7: F(A,B,C)=MO0 - M2 - M3 - M5 - M7

3. Non-Canonical Forms

These are simplified expressions that don't require all variables to appear in
each term. They are typically derived from canonical forms using Boolean

algebraic laws.
Simplification of Boolean Expressions

Simplifying Boolean expressions leads to circuit designs with fewer gates,

which reduces cost, power consumption, and complexity.
Algebraic Simplification

This method involves applying Boolean algebraic laws and theorems to

simplify expressions. For example:
A-B+A'B'=A(B+B)=A'1=A
Quine-McCluskey Method

Also known as the tabulation method, this is a systematic procedure for
minimizing Boolean functions. It works well for functions with many

variables but can be computationally intensive.
Digital Circuit Design Using Boolean Algebra
Combinational Logic Circuits

Combinational circuits are digital circuits where output depends only on

current input values. They don't have memory elements.

Example: Half Adder A half adder adds two single-bit binary numbers A and
B. It has two outputs: Sum (S) and Carry (C).
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Boolean functions: Notes
¢ S=A@ B (XOR operation)
e C=A" B (AND operation)

Sequential Logic Circuits

Sequential circuits are digital circuits where the output depends not only on
current inputs but also on the past sequence of inputs. They contain memory

elements like flip-flops.

Example: D Flip-Flop A D flip-flop stores a single bit of data. Its output Q
takes on the value of the D input at the active edge of the clock signal and

retains this value until the next active clock edge.
Digital Circuit Analysis Using Boolean Algebra
Circuit to Boolean Expression

Given a digital circuit, we can derive its Boolean expression by working
through the circuit from inputs to outputs, applying the appropriate Boolean

operations for each gate.
Boolean Expression to Circuit

Given a Boolean expression, we can implement it as a digital circuit by
converting it into a suitable form (like SOP or POS) and then using the

appropriate gates.
Applications in Computer Architecture

Boolean algebra is fundamental to designing critical components of

computer systems:
1. Arithmetic Logic Unit (ALU)

The ALU performs arithmetic and logical operations. It uses Boolean logic

to implement operations like addition, subtraction, AND, OR, and NOT.
2. Memory and Register Design

Memory cells and registers use logic gates and flip-flops to store and

manipulate binary data.

3. Control Unit
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The control unit generates control signals based on instructions and system

status. These signals control the flow of data through the CPU.
4. Multiplexers and Demultiplexers

These components route data through the system based on control signals,

implementing complex switching functions using Boolean logic.
5. Encoders and Decoders

These circuits convert between different binary representations, using

Boolean functions to map inputs to outputs.
Real-World Applications

Boolean algebra and digital circuits are fundamental to virtually all modern

electronic systems:

1. Computers and Microprocessors: The central processing unit
(CPU) of a computer is built from millions of logic gates

implementing Boolean functions.

2. Digital Communication Systems: Digital communication systems

use Boolean logic for data encoding, error detection, and correction.

3. Control Systems: Programmable logic controllers (PLCs) use
Boolean functions to implement control algorithms in industrial

settings.

4. Consumer Electronics: Smartphones, digital TVs, and other

consumer devices are built using complex digital circuits.

5. Cryptography: Modern cryptographic systems rely on Boolean

operations for encryption and decryption.
3.4.2: The Karnaugh Map (K-Map) Method
Introduction to Karnaugh Maps

The Karnaugh Map (K-map) is a graphical method for simplifying Boolean
expressions. Developed by Maurice Karnaugh in 1953, it provides a visual
approach to minimizing Boolean functions by taking advantage of the
adjacency of terms. K-maps make it easy to identify groups of terms that can

be combined, leading to simplified Boolean expressions.
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Structure of a Karnaugh Map Notes

A K-map is a grid where each cell represents a minterm in a Boolean

function. For an n-variable function, the K-map has 2”n cells.
The key features of a K-map include:

1. Rectangular Grid: The K-map is arranged as a rectangular grid,

with cells representing minterms.

2. Gray Code Ordering: Adjacent cells in the K-map differ by exactly
one variable. This is achieved by using Gray code ordering for the

row and column indices.

3. Wrap-around Property: The K-map has a wrap-around property,

meaning that cells on opposite edges are considered adjacent.
K-map Sizes for Different Numbers of Variables:

e 2 Variables: 2x2 grid (4 cells)

3 Variables: 2x4 grid (8 cells)

4 Variables: 4x4 grid (16 cells)

5 Variables: Two 4x4 grids (32 cells)

6 Variables: Four 4x4 grids (64 cells)
Constructing a Karnaugh Map

To create a Boolean function's K-map:
1. Determine Number of Variables: Identify how many variables are

in the function.

2. Create the Grid: Draw a grid with the appropriate dimensions

based on the number of variables.

3. Label the Grid: Label the rows and columns using Gray code

ordering.

4. Fill in the Map: For each minterm in the function, place a 1 in the

corresponding cell. For each maxterm, place a 0.
Example: K-map for 3-Variable Function

For function F(A,B,C) =A'B'C + ABC + AB'C"
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Notes

BC

A 00 01 11 10
0/0 1 10|
11100 0|

Where the cells represent minterms m0, m1, m2, m3, m4, m5, m6, and m7:
BC

A 00 01 11 10

0]m0 ml m3 m2 |

1|m4 m5 m7 mé |

And 1s are placed in cells corresponding to minterms m1, m2, and m4.

Identifying Groups in a Karnaugh Map

The key to simplifying Boolean functions using K-maps is to identify groups

of adjacent 1s. The rules for grouping are:
1. Group Size: Groups must contain 2”n cells (1, 2, 4, 8, 16, etc.).

2. Adjacency: All cells in a group must be adjacent (horizontally,

vertically, or diagonally adjacent at the edges due to wrap-around).
3. Maximal Groups: Always create the largest possible groups.

4. Cover All 1s: All cells containing 1s must be included in at least one

group.
5. Minimal Coverage: Use the fewest possible groups to cover all 1s.

When a variable changes value within a group, it gets eliminated from the
simplified term. Variables that remain constant throughout the group appear

in the simplified term.
Simplifying Boolean Functions Using K-maps

Once groups are identified, we can derive the simplified expression:
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1. Analyze Each Group: For each group, determine which variables

stay constant and which ones change.

2. Write Terms: For each group, write a product term containing only

the variables that stay constant.

3. Combine Terms: OR together all the product terms to form the

simplified expression.
Example: Simplifying F(A,B,C) =A'B'C + A'BC + AB'C'
In K-map:
BC

A 00 01 11 10
0/]0 1 1 0|
110 0 0|
We can identify the following groups:

e Group 1: A'BC and A'BC' (cells m1 and m3)

e Group 2: A'B'C and AB'C' (cells m0 and m4)
Simplified expression: F(A,B,C) =A'B + C'
Handling Conditions of Don't Care

designs, certain input combinations never occur or their outputs don't matter.
These are called "don't care" conditions, typically denoted by 'X' or 'd" in the
K-map.

Don't care conditions provide flexibility in simplification. When grouping,
we can choose to include or exclude don't care cells based on what leads to

the simplest expression.

Example: Simplifying with Don't Care Conditions

For function F(A,B,C) with minterms m1, m4, m6 and don't cares d3, d5:
BC

A 00 01 11 10
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0/0 1 X 0|
11 X 01|

By treating the don't cares as 1s when beneficial, we can form larger groups,

resulting in a simpler expression.
K-maps for 4-Variable Functions

For 4-variable functions, we use a 4x4 K-map. The rows and columns are

labeled with 2-variable Gray codes.
Example: K-map for F(A,B,C,D) = Xm(0,1,4,5,12,13)
CD

AB 00 01 11 10

00/ 1 10 0|
011 10 0|
11100 0 0|
10[1 10 0|

By identifying groups, we can simplify this to: F(A,B,C,D) = C'D'
K-maps for 5 and 6 Variables
For 5 and 6 variables, we use multiple 4x4 K-maps:

e 5 Variables: Two 4x4 K-maps, one for when the 5th variable is 0

and one for when it's 1.

e 6 Variables: Four 4x4 K-maps, representing different combinations

of the 5th and 6th variables.

Groups can span across multiple K-maps if the cells are adjacent when

considering the additional variables.
Comparing K-maps with Other Minimization Methods

Advantages of K-maps:
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Visual Approach: K-maps provide a visual method that makes it

easy to identify patterns.

Intuitive: The grouping process is intuitive and less prone to errors

than algebraic manipulation.

Efficient for Small Functions: K-maps are particularly efficient for

functions with up to 5-6 variables.

Limitations of K-maps:

L.

Scalability: K-maps become unwieldy for functions with more than

6 variables.

Manual Process: K-map minimization is primarily a manual

process, making it less suitable for computer implementation.

Alternatives to K-maps:

1.

Quine-McCluskey Method: This tabular method can handle
functions with more variables and is well-suited for computer

implementation.

Espresso Algorithm: A heuristic algorithm for logic minimization

that can handle large functions.

Applications of K-maps in Digital Circuit Design

K-maps are widely used in digital circuit design for:

1.

Combinational Logic Design: Simplifying the Boolean expressions

for combinational circuits like multiplexers, decoders, and adders.

State Machine Design: Simplifying the next-state and output

functions in sequential circuits.

Error Detection and Correction: Designing circuits for error

detection and correction codes.

Addressing Hazards: Identifying and resolving hazards in digital

circuits.

Practical Example: Designing a BCD to 7-Segment Display Decoder

A practical application of K-maps is in designing a BCD (Binary-Coded

Decimal) to 7-segment display decoder. This circuit converts a 4-bit BCD
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input (representing digits 0-9) to outputs that drive a 7-segment display.For
each segment (a-g) of the display, we can create a K-map based on which
digits require that segment to be illuminated. Then, we can derive simplified

Boolean expressions for each segment.
Solved Problems

Problem 1: Simplify the Boolean expression F(A,B,C) =A'B'C + A'BC +
AB'C + ABC

Solution: First, identify the minterms:

A'B'C =ml (001)

A'BC =m3 (011)

AB'C =m5 (101)

ABC=m7 (111)
Create the K-map:
BC
A 00 01 11 10
0/]0 1 1 0|
1101 1 0|
We can identify two groups:

e Group 1: Cells ml and m5 (vertically aligned, including A'B'C and
AB'C)

e Group 2: Cells m3 and m7 (vertically aligned, including A'BC and
ABC)

For Group 1, B changes while A and C remain constant (C = 1, A varies). So
Group 1 gives us B'C. For Group 2, B changes while A and C remain
constant (C = 1, A varies). So Group 2 gives us BC.

The simplified expression is F(A,B,C)=B'C+BC=C(B'+ B)=C
verify this algebraically: F(A,B,C) = A'B'C + ABC + AB'C + ABC = C(A'B'

+A'B +AB'+ AB) = C(A'(B' + B) + A(B' + B)) = C(A' +A) = C
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Problem 2: Simplify Boolean function F(A,B,C,D)
¥m(0,2,8,10,11,14,15)

Solution: Create the K-map:
CDh

AB 00 01 11 10

001 0 0 1|
0110 0 0 O |
110 0 1 1]
101 01 1]
We can identify the following groups:
e Group I: Cells m0 and m2 (A'B'C'D' & A'B'C'D)
e Group 2: Cells m8 and m10 (AB'C'D' and AB'C'D)

e Group 3: Cells m10, m11, m14, and m15 (AB'CD, AB'C'D, ABCD,
and ABC'D)

For Group 1, D changes while A, B, & C remain constant (A=0,B=0,C =
0). So Group 1 gives us A'B'C'. For Group 2, D changes while A, B, & C
remain constant (A =1, B =0, C = 0). So Group 2 gives us AB'C'. For
Group 3, B and C change while A and D remain constant (A= 1, D= 1). So
Group 3 gives us AD.

The simplified expression is F(A,B,C,D) =A'B'C' + AB'C' + AD

We can further simplify this: F(A,B,C,D) = A'B'C' + AB'C' + AD = B'C'(A' +
A)+AD=B'C' + AD

Problem 3: Design a digital circuit that performs a full adder operation

using the K-map method

Solution: A full adder adds three binary digits (A, B, and Cin) and produces
two outputs: Sum (S) and Carry-out (Cout).

Let's derive the Boolean expressions for S and Cout using K-maps.

For Sum (S): S =1 when an odd number of inputs are 1. S=A @ B @ Cin
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Notes Truth table:
A|B|Cin|S
0/0]0 |0
0j0|1 |1
0]110 |1
Oj1|1 |0
110]0 |1
1j0|1 |0
1/1]0 |0
1|1 |1
K-map for Sum:

CinB

A 00 01 11 10

0] 01 01|

1] 101 0]

We can identify four groups:
e Group 1: A'B'Cin (cell m1)
e Group 2: A'BCin' (cell m2)
e Group 3: AB'Cin' (cell m4)
e Group 4: ABCin (cell m7)

Simplified expression for Sum: S = A'B'Cin + A'BCin' + AB'Cin' + ABCin =
A® B Cin

For Carry-out (Cout): Cout = 1 when at least two inputs are 1.

Table of truth:
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A|B | Cin | Cout Notes
0/0]0 |0
0j0|1 |0
0/1]0 |0
O|1]1 |1
110/0 |0
1101 |1
11110 |1
111 |1
K-map for Cout:
CinB

A 00 01 11 10

0] 001 0]

1] 01 1 1]

We can identify three groups:
e Group I: Cells m3 and m7 (A'BCin and ABCin): BCin
e Group 2: Cells m5 and m7 (AB'Cin and ABCin): ACin
e Group 3: Cells m6 and m7 (ABC' and ABCin): AB

Simplified expression for Cout: Cout = BCin + ACin + AB

The circuit implementation would use XOR gates for the Sum and AND/OR
gates for the Carry-out.

Problem 4: Simplify Boolean function F(A,B,C,D) with don't care

conditions

F(A,B,C,D) =Xm(1,3,7,11,15) Don't cares: d(0,2,5)
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Solution: Create the K-map with 'l's for minterms and 'X's for don't cares:
CD

AB 00 01 11 10

00] X 1 1 X|
0110 0 0 X |
11001 1|
100 0 1 O]
We can identify the following groups:

e Group 1: Cells m1, m3, m0, and m2 (using don't cares m0 and m2):

This group gives us A'
e Group 2: Cells m3, m7, m11, and m15: This group gives us CD
The simplified expression is F(A,B,C,D) =A'+ CD

We can confirm this. is correct. When A = 0, the output is 1 (except for

some don't care conditions). When C =1 and D = 1, the output is 1.
Problem 5: Design a 4-to-2 priority encoder using K-maps

Solution: A 4-to-2 priority encoder has 4 input lines (10, 11, 12, 13) and
produces a 2-bit binary output (Y1, Y0) representing the highest priority
input that is active (1). Priority increases from 10 (lowest) to 13 (highest).

Truth table:

I312|11|10|Y1|YO

01010 |0 |X |X (invalid/don't care)
0j0|O|L]O]O
0101 X |01
01X [X]1]0

1IX X [X[1]1
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K-map for Y1:
1110

1312 00 01 11 10

00| X 0 0 0]
0110 0 0 O |
Ijy1r 111
101 1 1 1]
Y1 simplifies to 13 + 12
K-map for YO:

11 10

1312 00 O1 11 10

00X 01 1|
0110 O 1 1|
Imj1r 111
100 0 0 O |
YO simplifies to I3 + 11

Therefore, the Boolean expressions for the 4-to-2 priority encoder are: Y1 =

B+12Y0=I3+11

Unsolved Problems

Problem 1:

Simplify Boolean function F(W,X,Y,Z) = ¥m(0,1,2,3,7,8,10,12,13,14,15)
Problem 2:

Simplify Boolean function F(A,B,C,D) with don't care conditions:
F(A,B,C,D) =%2m(1,3,5,7,9,13,15) Don't cares: d(0,2,4,6,8,10,12,14)

139

Notes



Notes

Problem 3:

Design a circuit that converts a 3-bit binary number to excess-3 code using

K-maps.

Problem 4:

Use K-maps to design a circuit that detects if the number of 1s in a 4-bit

input is even.

Problem 5:

Simplify the following Boolean expression using K-maps: F(A,B,C,D) =
A'B'CD' + A'B'CD' + ABCD + A'BC'D + AB'C'D' + AB'CD + ABCD' +

ABCD

Multiple-Choice Questions (MCQs)

1.

Boolean algebra is special type of:
a) Number system

b) Lattice

c¢) Graph

d) Matrix

The Boolean identity A+A=? is:
a)A

b) 0

c)1

d) A

The complement of a Boolean variable A is denoted as:
a) A’

b) A2

c) A+A

d) A-1

Which Boolean operation represents the logical AND function?
a)+

b) x

c).

d)—
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The switching algebra is mainly used in:
a) Calculus

b) Digital circuit design

c) Probability theory

d) Geometry

A Boolean function is in sum-of-products (SOP) form if:
a) It consists of minterms combined with AND operations
b) It consists of minterms combined with OR operations

c) It is expressed as a single term

d) It does not use Boolean variables

The Karnaugh Map (K-map) method is used for:
a) Expanding Boolean expressions

b) Minimizing Boolean functions

¢) Multiplying matrices

d) Finding derivatives

A Boolean algebra is complemented if:
a) Each element has a unique complement
b) The set has a top element

c¢) Every subset has a maximum element

d) The elements form a ring structure

Which logic gate implements the Boolean function A-B?
a) OR gate

b) AND gate

¢) NOT gate

d) XOR gate

Short Answer Questions

1.

Define Boolean algebra and its significance.
What are Boolean identities? Give two examples.
Explain the concept of switching algebra.

What is a minterm in Boolean algebra?

How is a Boolean algebra different from an ordinary algebraic

system?
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6. What are subalgebras in Boolean algebra?
7. Define sum-of-products (SOP) form of Boolean expression.
8. What is a Karnaugh Map (K-map), and why is it useful?

9. How does Boolean algebra apply to digital circuits?

10. Describe the role of NOT, AND, and OR gates in Boolean logic.

Long Answer Questions

1.

Explain the fundamental laws and identities of Boolean algebra with

examples.

Describe the structure of a Boolean algebra as a lattice and its

properties.

Discuss the concept of minterms and maxterms in Boolean algebra

with examples.

Explain the different forms of Boolean expressions and their

equivalence.
How is Boolean algebra applied in the design of digital circuits?

What is the importance of minimization in Boolean algebra? Explain

different techniques.

Compare and contrast sum-of-products (SOP) & product-of-sums

(POS) forms.
Discuss the role of homomorphism in Boolean algebra.

How does Boolean algebra relate to the design of computer processors

and logic circuits?

Ans Key:

1| b 3 a 5 b 7 b 9 b

2 a 4 b 6 a 8 a 10 -

142



MODULE 4
UNIT 4.1

Finite state Machines and their Transition table diagrams,
Equivalence of Finite State, Machines, Reduced Machines

Objectives

e To understand the concept of finite state machines (FSM) and their

transition diagrams.

e To analyze the equivalence of finite state machines and their

minimization.
e To study reduced machines and their significance.
e To explore the concept of homomorphism in FSM.
e To understand finite automata and acceptors.

e To differentiate between deterministic and non-deterministic finite

automata.
e To study Moore and Mealy machines and their applications.
4.1.1: Introduction to Finite State Machines (FSM)

Finite State Machine (FSM) is mathematical model of computation used to
design both computer programs and sequential logic circuits. It is an abstract
machine that can be in exactly one of a finite number of states at any given
time. The FSM can change from one state to another in response to some

inputs; the change from one state to another is called a transition.
Definition

o finite state machine is formally defined as 5-tuple (Q, %, 5, q0, F)

where:
Q is a limited collection of states.

e The alphabet is a limited collection of input symbols.

e The transition function is denoted by 8. The initial state is q0, where
qVEQ.QxXZ—=Q

e Fis the collection of accepting or final states, where F € Q.

Key Characteristics of FSMs
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Finite number of states: An FSM can only be in one of a limited

number of states at any given time.

State transitions: The machine moves from one state to another

based on input and its current state.

Determinism: In a deterministic FSM, for each state and input

symbol, there is exactly one next state.

Memory limitations: FSMs have no additional memory beyond the

state itself.

Applications of FSMs

Numerous fields make extensive use of finite state machines:

1.

Text Processing: Used in lexical analyzers, pattern matching, and

text editors

Communication Protocols: Used to define network protocols and

communication systems
Digital Circuit Design: Used to model sequential circuits

Game Development: Used for character behavior and game state

management

Natural Language Processing: Used in tokenization and simple

parsing

Control Systems: Used to model and implement control logic

Example of a Simple FSM

Consider a turnstile at a subway entrance that can be in one of two states:

Locked or Unlocked.

Initial state: Locked

Inputs: Insert coin, Push

The behavior can be described as:

When the turnstile is Locked and a coin is inserted, it transitions to

Unlocked
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e When the turnstile is Unlocked and is pushed, it transitions to

Locked
e  When the turnstile is Locked and is pushed, it remains Locked

e  When the turnstile is Unlocked and a coin is inserted, it remains

Unlocked

This simple example demonstrates the fundamental concept of states and

transitions in FSMs.
4.1.2: Transition Table and Diagrams of FSM

To represent a finite state machine, we commonly use two visual tools:

transition tables and transition diagrams.
Transition Tables

A transition table is a tabular representation of the transition function 9. It

shows all possible states, inputs, and the resulting next states.
The format of a transition table typically has:

e Rows representing current states

¢ Columns representing input symbols

o Entries showing the next state for each state-input pair
Example Transition Table

For our turnstile example:

Current State | Input: Coin | Input: Push

Locked Unlocked Locked

Unlocked Unlocked Locked

Transition Diagrams

A transition diagram (or state diagram) is a directed graph representation of

an FSM where:
e Nodes represent states (often drawn as circles)
o Directed edges represent transitions between states

e Edge labels indicate the input symbol that triggers the transition
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Notes o The initial state is marked with an incoming arrow
o Final/accepting states are represented by double circles
How to Draw a Transition Diagram
1. Draw a circle for each state in the FSM
2. Mark the initial state with an incoming arrow
3. Draw double circles for accepting states

4. For each transition in the transition table, draw a directed edge from

the current state to the next state, labeled with the input symbol
Example Transition Diagram

For the turnstile example:

I ] coin | |
| | ——— |
| Locked | | Unlocked |
I | < |
| | push | ]
1 I
| push |
| |
Extended Notation

In more complex FSMs, we might use extended notation in diagrams:

e Multiple labels on a single edge (indicating multiple inputs causing

the same transition)

e Multiple transitions with the same label (indicating non-

determinism)
e g-transitions (transitions without consuming input)

Transition Table for Multiple Input Symbols
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For more complex FSMs with multiple input symbols, the transition table

expands to include all possible inputs:

State | Input 1 | Input 2 | ... | Inputn

q0 5(q0,1) | 38(q0,2) | ... | 8(q0,n)

ql o(ql,1) | d8(ql,2) | ... | d(ql,n)

gm o(qm,1) | 8(qm,2) | ... | 6(qm,n)

Where 38(qi,j) represents the next state when the current state is qi and the

input is j.
Converting Between Representations

The transition table and diagram are equivalent representations of the same

FSM. You can convert from one to the other:
From Table to Diagram:
1. Create a node for each state in the table

2. For each entry in the table, draw an edge from the current state to

the next state with the corresponding input label
From Diagram to Table:
1. List all states as rows
2. List all input symbols as columns
3. Fill in the table by following the edges in the diagram
4.1.3: Equivalence of Finite State Machines

If two finite state machines accept same language or generate same output,
they are regarded as equivalent. To put it another way, they act in the same

way for every potential input sequence.
Definition of Equivalence
Two FSMs A and B are equivalent if:

1. They have the same input alphabet X

2. For any input string w €X*:
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o IfAisan acceptor: A accepts w if and only if B accepts w

o IfAis atransducer: A produces output y when given input w
if and only if B produces the same output y when given the

same input w

State Equivalence

Within a single FSM, two states p & q are equivalent if:

1.

Both are accepting states or both are non-accepting states

2. For any input symbol €%, the states d(p,a) and d(q,a) are equivalent

This recursive definition needs a base case: two states are distinguishable if

one is accepting and the other is not.

Testing for Equivalence

To determine if two FSMs are equivalent, we can:

1.

Construct a product machine: Combine the two machines and

check if the behavior is consistent

Minimize both machines: Reduce both machines to their minimal

form and check if they are isomorphic

Table-filling algorithm: Systematically identify distinguishable

state pairs

Table-Filling Algorithm

This algorithm identifies non-equivalent states:

1.

Create a table with rows and columns representing all states

(excluding redundant pairs)

Initially mark pairs where one state is accepting and the other is

non-accepting

Iteratively mark more pairs: if states p and q transition to states p'
and ¢' on some input a, and p' and q' are marked as non-equivalent,

then mark p and q as non-equivalent
Continue until no more pairs can be marked

The unmarked pairs represent equivalent states
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Example of Equivalence Testing

Consider two FSMs M1 and M2 with the following transition tables:

FSM M1:
State | Input: 0 | Input: 1 | Accepting?
A B C No
B A D No
C D A No
D C B Yes
FSM M2:

State | Input: 0 | Input: 1 | Accepting?

P Q R No
Q P S No
R S P No
S R Q Yes

To check if these machines are equivalent, we can verify that:
e Aand P are both non-accepting and have similar transition patterns
e B and Q are both non-accepting and have similar transition patterns
¢ Cand R are both non-accepting and have similar transition patterns
e D and S are both accepting and have similar transition patterns

Therefore, M1 and M2 are equivalent.

4.1.4: Reduced Finite State Machines

A reduced (or minimal) finite state machine is one that has the minimum
possible number of states while preserving the same behavior as the original

machine.
Importance of State Minimization

Minimizing FSMs is important for:
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Notes 1. Efficiency: Reduces implementation complexity and resource

requirements
2. Clarity: Makes the machine easier to understand and analyze

3. Implementation costs: Reduces hardware costs for physical

implementations
4. Verification: Makes it easier to verify correctness of the design
State Minimization Algorithm

The process of creating a reduced FSM involves identifying and merging

equivalent states:
1. Identify Equivalent States:
o Use the table-filling algorithm described earlier
o Find all pairs of states that are equivalent
2. Merge Equivalent States:
o Create a new state for each equivalence class

o Define transitions for these new states based on

representatives from the original machine
3. Generate the Reduced Machine:

o The states of the reduced machine are the equivalence

classes
o The transitions are derived from the original transitions

o The initial state is the equivalence class containing the

original initial state

o The accepting states are the equivalence classes containing

original accepting states
Partition Refinement Method
Another approach for minimization is the partition refinement method:

1. Start with a partition containing two blocks: accepting states and

non-accepting states
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2. Refine the partition: Split blocks if states in the same block

transition to states in different blocks on some input
3. Repeat until no further refinement is possible

4. Each block in the final partition represents a state in the minimized

machine
Example of State Minimization

Consider an FSM with states {S0, S1, S2, S3, S4, S5} and the following

transition table:

State | Input: 0 | Input: 1 | Accepting?
SO S1 S2 Yes

S1 S1 S3 No

S2 S1 S3 No

S3 S4 S5 Yes

S4 S4 S5 Yes

S5 S4 S5 Yes

Step 1: Initial partition based on accepting/non-accepting states:

e Block 1: {S0, S3, S4, S5} (accepting states)
e Block 2: {S1, S2} (non-accepting states)

Step 2: Refine Block 1 based on transitions:

e For input 0: SO—S1 (Block 2), S3—S4 (Block 1), S4—S4 (Block
1), S5—84 (Block 1)

e  We split Block 1 into {SO} and {S3, S4, S5}

Step 3: Further refinement:
e No further refinement is possible
Final partition:

e Block A: {SO}
e Block B: {S1, S2}
e Block C: {S3, S4, S5}

The minimized machine has 3 states instead of the original 6.
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UNIT 4.2
Homomorphism. Finite automata, Acceptors, Non deterministic

4.2.1: Homomorphism in FSM

Homomorphism is a structure-preserving mapping between two algebraic
structures. In the context of FSMs, it refers to a mapping between states of

two machines that preserves transitions.
Definition of FSM Homomorphism

A homomorphism from FSM M1 = (Q1, %, 91, q01, F1) to FSM M2 = (Q2,
%, 62, q02, F2) is a function h: Q1 — Q2 such that:

1. h(q01) = q02 (initial states map to initial states)

2. Forall q € Q1 and a €X, h(d1(q, a)) = 62(h(q), a) (transitions are

preserved)

3. q € Fl if and only if h(q) € F2 (accepting states map to accepting

states)
Types of Homomorphisms

1. Isomorphism: A bijective homomorphism (one-to-one and onto
mapping between states), meaning the two machines are structurally

identical

2. Epimorphism: A surjective homomorphism (onto mapping),

meaning each state in M2 has at least one corresponding state in M1

3. Monomorphism: An injective homomorphism (one-to-one

mapping), meaning distinct states in M1 map to distinct states in M2
4. Endomorphism: A homomorphism from a machine to itself
Properties of Homomorphism

1. Composition: The composition of two homomorphisms is also a

homomorphism
2. Identity: The identity mapping is a homomorphism

Preservation of behavior: If h is a homomorphism from M1 to M2, then

any string approved by M1 is likewise approved by M2

Example of Homomorphism
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Consider these two FSMs: Notes

FSM M1 with states {A, B, C, D}:

State | Input: 0 | Input: 1 | Accepting?
A B C No
B A D No
C D A Yes
D C B Yes

FSM M2 with states {P, Q}:

State | Input: 0 | Input: 1 | Accepting?

P P Q No

Q Q P Yes

A homomorphism h: M1 — M2 could be defined as:

e h(A)=P
e h(B)=P
. h(©)-Q
« hD)=-Q

This mapping preserves transitions and acceptance properties.
Significance of Homomorphism

Homomorphisms help us understand the structural relationships between

different machines and can be used to:
1. Study the common patterns in different machine designs

2. Transform one machine into another while preserving certain

properties

3. Verify that a simplified machine correctly implements a more

complex specification

4. Classify machines into equivalence classes based on their behavior
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UNIT 4.3
Finite Automata and equivalence of its power to that of
deterministic Finite automata, Moore and Mealy Machines

4.3.1: Finite Automata and Acceptor Machines

A particular kind of finite state machine that prioritizes language recognition

above computation with output is called a finite automaton.

Definition of Finite Automata

A 5-tuple (Q, Z, 6, q0, F) is called a finite automaton (FA) where:

Q is a limited collection of states.

* The alphabet, or X, is a limited collection of input symbols.

* For deterministic FA, § is the transition function, which is Q x X — Q.
* The starting state is q0, where q0 € Q.

* F is the collection of accepting or final states, where F CQ.Language

Recognition
The primary purpose of a finite automaton is to accept or reject input strings:
e The automaton starts in its initial state

e It processes each symbol of the input string one by one, making

transitions according to &

e After processing the entire input, if the machine is in an accepting

state, string is accepted; otherwise, it is rejected

e set of all strings accepted by an automaton is called language of A,

denoted L(A)
Types of Finite Automata
There are several types of finite automata:

1. Deterministic Finite Automaton (DFA): For each state and input

symbol, there is exactly one next state

2. Nondeterministic Finite Automaton (NFA): Can have multiple

possible next states for a given state and input

3. NFA with e-transitions (s-NFA): Can make transitions without

consuming an input symbol
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4. Two-way Finite Automaton: Can move in both directions on the Notes

input tape

5. Finite Automaton with Output: Produces output based on

transitions (transducer)
Acceptor Machines

An acceptor machine is a finite automaton whose sole purpose is to accept

or reject input strings. It has a binary output: accept or reject.
Key characteristics of acceptor machines:

1. They do mnot produce any additional output beyond

acceptance/rejection
2. They are used to recognize formal languages

3. They either halt in an accepting state (string accepted) or a non-

accepting state (string rejected)
Formal Languages and Automata

Formal languages are sets of strings defined over an alphabet. Finite
automata recognize a specific class of formal languages called regular

languages.
The relationship between automata and languages:
e Each finite automaton recognizes exactly one regular language

A  finite automaton can recognize any regular language.
* Union, intersection, and complement operations close regular languages.

Example of an Acceptor Machine

Let's design a DFA that accepts binary strings that have an even number of
Is:

States: {q0, q1} where qO is the initial and accepting state Transitions:

0(q0, 0) = qO (staying in the same state if we read a 0)

8(q0, 1) = ql (changing to ql if we read a 1 from q0)

d(ql, 0) = ql (staying in q1 if we read a 0)

d(ql, 1) = q0 (changing back to q0 if we read a 1 from ql)
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Accepting states: {q0}

This automaton will accept strings like "", "0", "00", "11", "101", etc. (any

string with an even number of 1s).

4.3.2: Deterministic Finite Automata (DFA)

Deterministic Finite Automaton (DFA) is finite state machine where each

state has exactly one transition for each possible input symbol.

Formal Definition of DFA

A DFA is a 5-tuple (Q, Z, 3, q0, F) where:

Q is a finite set of states

¥ is a finite set of input symbols (the alphabet)
d is the transition function: Q x £ — Q

q0 is the initial state, where q0 € Q

F is set of final or accepting states, where F € Q

Key Properties of DFAs

1.

Determinism: For each state and input symbol, there is exactly one

next state

Completeness: A transition is defined for every state and input

symbol combination

No e-transitions: Transitions occur only when an input symbol is

consumed
Unique initial state: There is exactly one start state

Zero or more final states: There can be multiple accepting states

Extending the Transition Function

The transition function 6 is defined for single input symbols, but we can

extend it to handle strings:

Define 0*(q, ®) as the state reached from state q after processing

string ®

Base case: 6*(q, €) = q (empty string leaves the state unchanged)
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Recursive case: 8*(q, wa) = 6(8*(q, w), a) for any string ® and

symbol a

Language Accepted by a DFA

The language L(A) accepted by DFAA=(Q, %, 5, q0, F) is: L(A) = {® €X* |
6*(q0, o) € F}

This represents all strings that, when processed starting from initial state,

lead to an accepting state.

DFA Operations

Common operations on DFAs include:

1. Complement: Switching accepting & non-accepting states creates a
DFA that accepts the complement language

2. Union: Combining two DFAs to create a new DFA that accepts
strings accepted by either of the original DFAs

3. Intersection: Creating a DFA that accepts only strings accepted by
both original DFAs

4. Concatenation: Creating a DFA that accepts concatenations of
strings from two languages

5. Kleene Star: Creating a DFA that accepts any number of
concatenations of strings from a language

Constructing DFAs

To construct a DFA for a specific language, follow these steps:

L.

Identify states based on what the machine needs to "remember"

about the input processed so far

Determine the initial state

Define transitions for each state and input symbol
Identify which states should be accepting states

Verify the design by testing with sample strings

Example: Constructing a DFA

Design a DFA to accept binary strings that are multiples of 3:
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Notes Step 1: We need to keep track of the remainder when dividing by 3, so we

need three states:
e (0: remainder O (initial and accepting state)
e ql: remainder 1
e (2: remainder 2

Step 2: Define transitions based on how binary digits affect the remainder:
e For a number n, appending 0 gives 2n, and appending 1 gives 2n+1
e So the remainders change as follows:

o From remainder 0: digit 0 — remainder 0, digit 1 —

remainder 1

o From remainder 1: digit 0 — remainder 2, digit 1 —

remainder 0

o From remainder 2: digit 0 — remainder 1, digit 1 —

remainder 2

Step 3: Create the transition table:

State | Input: 0 | Input: 1

q0 q0 ql
ql q2 q0
q2 ql q2

Step 4: The accepting state is q0 (remainder 0)

This DFA will accept binary strings like "", "11", "110", "1001", etc. (all

binary representations of multiples of 3).
Solved Problems
Problem 1: Design a DFA for Strings Ending with "01"

Problem: Design deterministic finite automaton that accepts all binary

strings that end with substring "01".

Solution:
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1. States: We need to keep track of whether we've seen a "0" followed

by a "1" at the end of the string.
o qO: Initial state (haven't seen anything relevant yet)
o ql: Have seen a "0" (waiting fora "1")
o @2: Have seen "01" (accepting state)
2. Transitions:
o From q0 with input 0: Go to ql (potential start of "01")
o From q0 with input 1: Stay in q0 (reset)

o From ql with input 0: Stay in ql (still waiting for "1", but
update the "0")

o From ql with input 1: Go to g2 (pattern "01" completed)
o From q2 with input 0: Go to q1 (new potential start of "01")
o From g2 with input 1: Go to q0 (pattern broken)

3. Transition Table:

State | Input: 0 | Input: 1

q0 ql q0
ql ql q2
q2 ql q0

4. Initial State: q0
5. Accepting States: {q2}
6. Verification:
o String "01": g0 — ql — g2 (Accepted)
o String "1101": g0 — q0 — q0 — ql — g2 (Accepted)
o String "010": g0 — q1 — g2 — ql (Rejected)
o String "011": g0 — q1 — g2 — g0 (Rejected)

Problem 2: Minimize a DFA
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Notes Problem: Minimize the following DFA:

States: {q0, ql, g2, q3, g4, g5} Alphabet: {0, 1} Transitions:

6(q0, 0)=ql, 8(q0, 1) =q2
e 0(ql,0)=q3,06(ql, 1)=q4
e 08(92,0)=q3,9(q2, 1) =q4
e 08(q3,0)=q3,06(q3,1)=q5
e 0(q4,0)=q3,06(q4, 1)=q5

e 9(g5, 0) = q3, 6(q5, 1) = g5 Initial state: qO0 Accepting states: {q3,
q5}

Solution:
1. Initial Partition: Separate accepting and non-accepting states
o Pl1=1{q3, g5} (accepting states)
o P2=1{q0,ql, q2, g4} (non-accepting states)
2. Refine Partitions:
o ForP2:
*  Oninput 0: q0—ql, ql—q3, 2—q3, q4—q3
=  Oninput 1: q0—q2, ql—qg4, 2—q4, g4—q5

= States ql, g2, q4 all go to P1 on input 0, while q0

doesn't
= States q0, q1, g2 go to different places on input 1

»= Refine P2 into {q0}, {q1}, {92}, {q4}

*  Oninput 0: g3—q3, g5—q3
=  Oninput 1: g3—q5, q5—q5

» These transitions are consistent, so P1 remains {q3,

q5}

3. Further Refinement:
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o Check if states {ql, q2, g4} have consistent transitions

given their current partitions

o ql, g2, g4 all transition to the same partitions on respective

inputs
o Therefore, {ql, q2, g4} can be combined into one partition
4. Final Partitions:
o Pl1=1{q3, g5} (accepting states)
o P2={q0}
o P3={ql,q2,q4}
5. Minimized DFA:
o States: {[q0], [q1, 92, q4], [93, q5]}
o Let's rename them as {A, B, C}
o Transitions:
* 5(A,0)=B,06(A,1)=B
» 3(B,0)=C,8B,1)=C
» 3(C,0)=C,8(C, 1)=C
o Initial state: A
o Accepting states: {C}
The minimized DFA has 3 states instead of the original 6.
Problem 3: Prove Two FSMs are Equivalent
Problem: Prove that the following two FSMs are equivalent:
FSM M1:
e States: {q0, ql, g2}
e Alphabet: {a, b}
e Transitions:

o 9(q0, a)=ql, 6(q0, b) = g2
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Notes o 8(ql,a)=q0,5(ql, b)=q2
o 0(92,a)=q2,06(q2,b)=q2
e Initial state: q0
e Accepting states: {q0, q1}
FSM M2:

e States: {s0, sl}

Alphabet: {a, b}

Transitions:
o 0(s0,a)=sl, 6(s0, b)=sl
o 0(sl,a)=s0, 6(s1,b)=sl1

Initial state: sO

Accepting states: {s0}
Solution:
1. Examine State Behaviors:

e Strings containing an even number of "a"s and no "b"s are
accepted by state q0.

e Strings with an odd number of "a"s and no "b"s are accepted by
state q1.

e All strings are rejected by state q2, which is a "trap" state from
which you cannot escape.

e 'b'in any string results in q2, which is unacceptable.

e oln M2:

e with an even number of 'a's are accepted by state s0.

e with an odd number of 'a's are accepted by state sl1.

e that finish in sO may be acceptable if they contain 'b's.

2. Trace Sample Strings:

o String "": In M1, stays at q0 (accepting); in M2, stays at sO
(accepting)

o String "a": In M1, goes to ql (accepting); in M2, goes to sl

(non-accepting)
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o String "aa": In M1, q0—ql—q0 (accepting); in M2, Notes

s0—s1—s0 (accepting)

o String "b": In M1, q0—q2 (non-accepting); in M2, s0—sl

(non-accepting)

Wait, the FSMs are giving different outputs for the string "a"! M1 accepts fit,
but M2 doesn't.

3. Conclusion: The two FSMs are not equivalent because they produce

different results for at least one input string.

This example shows how important it is to carefully analyze machine

behavior and test with concrete examples when comparing FSMs.
Problem 4: Design an FSM to Control a Vending Machine

Problem: Design finite state machine for simple vending machine that
accepts nickels (5¢) & dimes (10¢) for a product that costs 15¢. The

machine should return any excess money.
Solution:
1. States: We need states to track the amount of money inserted so far
o q0: Initial state (O¢ inserted)
o q5:5¢ inserted
o ql0: 10¢ inserted
o ql5: 15¢ inserted (enough to dispense product)
o q20: 20¢ inserted (product dispensed, 5¢ returned)
o (25: 25¢ inserted (product dispensed, 10¢ returned)
2. Inputs: {nickel, dime}
3. Transitions:
o 0(q0, nickel) = g5
o 0(q0, dime) =ql0
o 0(q5, nickel) = q10

o 0(g5, dime) = ql15 (dispense product)
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o 0(ql0, nickel) = q15 (dispense product)

o 0(ql0, dime) = q20 (dispense product, return 5¢)

o 0(ql5, nickel) = q20 (dispense product, return 5¢)
o 0(ql5, dime) = q25 (dispense product, return 10¢)
o 0(q20, nickel) = 25 (dispense product, return 10¢)

o 0(q20, dime

4.3.3: Non-Deterministic Finite Automata

Non-deterministic Finite Automata (NFA) represent a powerful extension of

Deterministic Finite Automata (DFA). Unlike DFAs, where for each state

and input symbol there is exactly one next state, NFAs allow for multiple

possible transitions or even no transition at all.

Definition of an NFA

Non-deterministic Finite Automaton (NFA) is formally defined as 5-tuple:
M=(Q, %, 3, q0, F) where:

Q is finite set of states
0 is transition function: 3: Q X (X U {&}) — P(Q)
q0 is initial or start state (q0 € Q)

F is set of final or accepting states (F S Q)

Note: P(Q) represents the power set of Q, meaning the transition function

can map to any subset of states (including the empty set).

Key Characteristics of NFAs

1.

Multiple Transitions: For a given state and input symbol, an NFA

can transition to multiple states.

Epsilon (¢) Transitions: NFAs can make transitions without

consuming any input symbol, these are called epsilon transitions.

No Transitions: For some state-input combinations, there may be
no defined transitions (which is equivalent to transitioning to an

empty set of states).

Accepting a String in an NFA
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A string is accepted by an NFA if there exists at least one path from start
state to any accepting state that consumes entire input string. This differs
from DFAs where a string is only accepted if the single possible path leads

to an accepting state.
Example of an NFA

Consider an NFA that accepts strings that end with "ab" over the alphabet
{a, b}:

States: Q = {q0, ql, g2} Alphabet: ¥ = {a, b} Start state: q0 Final states: F =

{q2} Transition function:

5(q0, a) = {q0, q1}
e 3(q0,b)={q0}

e d(ql,b)={q2}

e 3(q2,2)=0

e 3(q2,b)=0

This NFA works by staying in state q0 for any number of 'a's and 'b's, then
when it sees an 'a', it can optionally move to state q1. From ql, if it sees a 'b',

it moves to the accepting state q2.
Epsilon (¢) NFA

An &-NFA is an NFA that also allows transitions on the empty string €. This

means the automaton can change its state without reading any input symbol.

For example, if we have 06(q0, €) = {ql, g2}, then from state g0, the
automaton can spontaneously move to state q1 or q2 without consuming any

input.
Epsilon Closure

The e-closure of a state q, denoted as e-closure(q), q by following zero or

more g-transitions.
For a set of states S, e-closure(S) = Uq€ESe-closure(q).

4.3.4: Equivalence of DFA and NFA
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Despite their differences, DFAs and NFAs are equivalent in terms of

languages they can recognize.
Theorem

For every NFA, there exists an equivalent DFA that accepts exactly the same

language.
Proof Sketch (NFA to DFA Conversion)

We can convert any NFA to an equivalent DFA using the subset construction

method:

1. The states of the DFA are subsets of the NFA states (elements of
power set P(Q)).

2. start state of the DFA is the e-closure of the NFA's start state.

3. A state in the DFA is accepting if it contains at least one accepting

state from the NFA.

4. For each DFA state S (a subset of NFA states) and input symbol a,
transition function is defined as: & DFA(S, a) = e-

closure(UqeSS NFA(q, a))
Example of NFA to DFA Conversion
Let's convert the NFA from our previous example to a DFA:
NFA:

e States: Q= {q0, ql, g2}

e Alphabet: X = {a, b}

e Start state: q0

e Final states: F = {q2}

e Transitions:
o 8(q0,a)={q0, ql}
o 8(q0,b) = {q0}
o d(ql,b)={q2}

o 0(q2,a)=0
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o d(q,b)=0

DFA Construction:

1.

Start state of DFA: {qo}

2. For 6 _DFA({qo}, a):
o §_NFA(qo, ) = {qo, q1}
o Sod_DFA({qo}, a) = {qo, qi}

3. Ford DFA({qo}, b):
o & _NFA(qo, b) = {qo}
o Sod_DFA({qo}, b) = {qo}

4. For 6 DFA({qo, qi}, a):
o 8 NFA(qo, 2) Us_NFA(q1, ) = {qo, qi} UD = {qo, qi}
o Sod_DFA({qv, qi},a)= {qo, qi}

5. For & DFA({qo, qi}, b):
o 8_NFA(qo, b) Us_NFA(qs, b) = {qo} U {q2} = {qo, 9z}
o Sod_DFA({qo, qi}, b) = {qo, 2}

6. For & DFA({qo, q2}, a):
o & NFA(qo, a) U _NFA(q2, a) = {qo, q1} UD = {qo, qi}
o Sod_DFA({qo, g2}, @) = {qo, q1}

7. For & DFA({qo, q2}, b):
o & NFA(qo, b) Ud NFA(qz, b) = {qo} UD = {qo}
o So&_DFA({qo, g2}, b) = {qo}

The resulting DFA has:

States: {{qo}, {qo, 91}, {qo, 92} }

Start state: {qo}
Final states: {{qo, q2}}

Transitions as defined above
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DFA to NFA Conversion

Converting a DFA to an NFA is straightforward since every DFA is already
an NFA. We can simply maintain the same states, transitions, start state, and

final states, but represent the transition function in the NFA format.
State Complexity

While DFAs and NFAs are equivalent in power, NFAs can often represent
the same language with fewer states. In the worst case, when converting an

NFA with n states to a DFA, the resulting DFA may have up to 2”n states.
4.3.5: Moore and Mealy Machines

Moore and Mealy machines are types of finite state transducers used to

model systems that produce output based on input and state transitions.
Moore Machine
Moore machine is a 6-tuple M = (Q, Z, A, 3, A, q0) where:

e Qs a finite set of states

e X is a finite set of input symbols

e Ais a finite set of output symbols

e 0 is the transition function: 3: Q x X — Q

e A is the output function: A: Q — A

e (0 is the start state

In Moore machine, output depends only on current state, not on input

symbol.
Example of a Moore Machine

Consider a Moore machine for a simple vending machine that accepts
nickels (N) and dimes (D), and dispenses candy (C) when 15 cents or more

1s inserted:

States: Q = {0, 5, 10, 15} Input alphabet: £ = {N, D} Output alphabet: A =
{0, C} Start state: q0=0

Transition function d:

e 3(0,N)=5
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e 35(0,D)=10

e O(5,N)=10

e (5 D)=15

e J(10,N)=15

e §(10,D)=15

e J(1I5,N)=15

e 3(15,D)=15
Output function A:

e M0)=0

e M5=0

e M10)=0

e MI5)=C
Mealy Machine

Mealy machine is also a 6-tuple M = (Q, X, A, 6, A, q0) but with a different

output function:
Q is a limited collection of states.

A finite set of input symbols is represented by X, and a finite set of output

symbols by A.
The transition function is denoted by 6. 8: Q X £ — Q
* The output function is represented by A: Q x £ — A.

* The initial state is q0.In a Mealy machine, output depends on both current

state & the input symbol.
Example of Mealy Machine
Let's reimagine vending machine as a Mealy machine:

States: Q = {0, 5, 10} Input alphabet: X = {N, D} Output alphabet: A = {0,
C} Start state: q0 =0

Transition function d:
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Notes e 3(0,N)=5

e 5(0,D)=10
e O(5,N)=10
e 5(5,D)=0
e 5(10,N)=0
e §(10,D)=0
Output function A:
e MO,N)=0
e M0,D)=0
e M5N)=0
e M5,D)=C
e MIO,N)=C
¢ M10,D)=C

Comparison of Moore and Mealy Machines
1. Output Generation:
o Moore: Output depends only on current state

o Mealy: Output depends on both current state and current

input
2. Timing:
o Moore: Output is associated with the state
o Mealy: Output is associated with the transition
3. Number of States:

o Mealy machines can often achieve the same functionality

with fewer states than Moore machines
4. Equivalence:

o Every Moore machine can be changed into a comparable

Mealy machine
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o Every Mealy machine can be changed into a comparable

Moore machine
Conversion Between Moore and Mealy Machines
Mealy to Moore Conversion
To convert a Mealy machine to a Moore machine:

1. For each state q and each input symbol a in the Mealy machine,

create a new state (g, a) in the Moore machine
2. Set the output of each new state (q, a) to A_Mealy(q, a)

3. For each transition 6 Mealy(q, a) = p, create transitions from all

states (g, b) to the state (p, ¢) where c is the input symbol
Moore to Mealy Conversion

A Moore machine can be changed into a Mealy machine by:

1. Keep the same set of states

2. For each transition 56 Moore(q, a) = p, set the Mealy output function
A_Mealy(q, a) =A_Moore(p)

4.3.6: Applications of Finite State Machines

Finite State Machines (FSMs) have numerous practical applications across

various fields:
1. Lexical Analysis in Compilers

Lexical analyzers (lexers) use FSMs to identify tokens in source code. For
example, recognizing identifiers, keywords, numbers, and operators in a

programming language.

Example: A simple FSM for recognizing C-style identifiers (starting with

letter or underscore, followed by letters, digits, or underscores):

e  Start state checks for letter or underscore

e Ifwvalid, transition to "valid identifier" state

e In "valid identifier" state, accept more letters, digits, or underscores
2. Text Processing and Pattern Matching

FSMs are used in regular expression engines to match patterns in text.
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Example: An FSM for matching email addresses could have states for

checking the local part, the @ symbol, and the domain part.
3. Digital Circuit Design

Sequential circuits can be modeled using FSMs, with flip-flops representing

states and combinational logic implementing transitions.

Example: A 3-bit binary counter can be modeled as an FSM with 8 states,

with transitions representing the increment operation.
4. Protocol Specification

Network protocols are often specified using state machines to define valid

sequences of messages.

Example: In the TCP protocol, a connection goes through states like
CLOSED, LISTEN, SYN SENT, ESTABLISHED, etc., with transitions

based on received packets.
5. Natural Language Processing

FSMs can be used to model grammar rules and parse simple language

constructs.

Example: A part-of-speech tagger might use an FSM to identify noun

phrases or verb phrases in a sentence.
6. Game Programming

Character behavior, game logic, and Al decision-making are often

implemented using FSMs.

Example: An enemy NPC might have states like PATROL, CHASE,
ATTACK, and RETREAT, with transitions based on player proximity and
health.

7. Embedded Systems and Control Systems

FSMs are used to model and implement the behavior of embedded and

control systems.

Example: A microwave oven controller might have states like IDLE,
COOKING, and PAUSED, with transitions based on buttons pressed and

timer events.
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8. User Interface Design
UI workflows can be modeled as FSMs to ensure valid state transitions.

Example: A login form might have states like INITIAL, VALIDATING,
SUCCESS, and ERROR, with transitions based on user inputs and server

responses.
9. Automated Testing

Model-based testing uses FSMs to generate test cases by exploring possible

state transitions.

Example: Testing a web application by modeling it as an FSM and

generating test sequences that cover all transitions.
10. Biological Systems Modeling

FSMs can model biological processes like gene regulation, cell signaling,

and metabolic pathways.

Example: A gene regulatory network might be modeled as an FSM with
states representing gene expression levels and transitions representing

regulatory interactions.
Solved Problems
Problem 1: NFA Construction and String Acceptance

Construct an NFA that accepts strings over {a, b} where the third-to-last

character is 'a'. Then determine whether the string "bababa" is accepted.
Solution:

We need an NFA that accepts any string where the third-to-last character is

15!

a'.
Step 1: Construct the NFA. Let's define our NFA:
e States: Q= {qo, q1, 92, 43}

e Alphabet: X = {a, b}

e Start state: qo

e Final states: F = {qs}

The transitions are:
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6(qo, @) = {qo, q1}
3(qo, b) = {qo}
5(qu, @) = {qz}
6(qu, b) = {q2}
(92, @) = {q3}

3(q2, b) = {qgs}

State qO is the initial state where we stay until we decide to start checking

for the pattern. When we see an 'a' we can transition to q1 which means

we've seen the potential 'a' that might be the third-to-last character. Then we

need to see exactly two more characters, which we track with states q2 and

q3.

Step 2: Check if "bababa" is accepted.

Let's trace through the string "bababa":

L.

We start at state qo.
Read 'b': We stay in qo, So current states = {qo}

Read 'a": We can stay in qo or transition to qi, so current states = {qo,

qi}

Read 'b": From o we stay in q0, and from q; we move to g, so

current states = {qo, q2}

Read 'a": From qo we can stay in qo or move to qi, and from q» we

move to qs, so current states = {qo, q1, 3}

Read 'b": From qo we stay in qo, from q; we move to gz, and from 3

we have no transitions, so current states = {qo, q2}

Read 'a": From qo we can stay in qo or move to qi, and from q> we

move to qs, so current states = {qo, q1, 3}

After processing the entire string, we are in states {qo, qi, q3}, which

includes final state qs.

Therefore, string "bababa" is accepted by NFA.

Problem 2: NFA to DFA Conversion
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Convert the following NFA to a DFA: Notes
NFA:

e States: Q= {qo, q1, 92}

e Alphabet: £= {0, 1}

e Start state: qo

e Final states: F = {qy}

e Transitions:

o 8(qo, 0) = {qo, qi}

3(qo, 1) = {qo}

@)

o 3q,0)=90
o d(qi, 1) ={q:}
o 8(q2 0) = {q:}
o 8(qx 1) ={q}
Solution:
We'll use the subset construction method to convert this NFA to a DFA:
Step 1: Define start state of DFA as {q0}.
Step 2: For each DFA state, compute the transitions on each input symbol.
For state {q0}:
e Oninput 0: 8({qo}, 0) = {qo, qi}
e Oninput 1: 8({qo}, 1) = {qo}
For state {qo, qi}:

e On input 0: 5({qo, qi}, 0) = 8(qo, 0) US(q1, 0) = {qo, q1} UD = {qo,
qi}

e Oninput 1: 3({qo, qi}, 1) = 8(qo, 1) Ud(qi, 1) = {qo} U {q2} = {qp,
q2}

For state {qo, q2}:
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e On input 0: 3({qo, g2}, 0) = 8(qo, 0) US(q2, 0) = {qo, qi} U {q2} =
{0, q1, q2}

e On input 1: 6({qo, 92}, 1) = 8(qo, 1) Ud(q2, 1) = {qo} U {q2} = {qo,
q2}

For state {qo, qi, q2}:

*  On input 0: 8({qo, q1, gz}, 0) = 8(qo, 0) US(qs, 0) US(2, 0) = {qo, q1}
UBU {q2} = {qo, q1, q2}

e Oninput 1: 8({qo, q1, g2}, 1) = 8(qo, 1) US(qi, 1) Ud(qz, 1) = {qo} U
{2} U {q2} = {qo, q2}

Step 3: Define the final states of the DFA as those subsets that contain at
least one final state from the NFA. In this case, the final state of NFA is q2,
so final states of the DFA are {q0, g2} and {q0, ql, q2}.

The resulting DFA:
o States: {{qo}, {qo, a1}, {qo, 92}, {qo, q1, q2} }
e Alphabet: X = {0, 1}
e Start state: {qo}
e Final states: {{qo, 92}, {qo, q1, Q2}}
e  Transitions:
o 8({qo}, 0) = {qo, qi}
o 8({qo}, 1) = {qo}
o 8({qo, a1}, 0) = {qo, qi}
o 8({qo qi}, 1) = {qo, q2}
o 3({q0, 92}, 0) = {qo, q1, q2}
o 8({qo, q2}, 1) = {qo, q2}
o 8({q0, q1, 92}, 0) = {qo, q1, q2}
o 3({qo, q1, @2}, 1) = {qo, q2}
Problem 3: Epsilon-NFA to NFA Conversion

Convert the following e-NFA to an NFA:
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¢ NFA: Notes
o States: Q = {qo, q1, 92, q3}
e Alphabet: X = {a, b}
e Start state: qo
e Final states: F = {q3}
e Transitions:
o 8(qo, &) = {qu}
o 8(qo, a) = {qo}
o d(qi,a)={q}
o d(qi,b)={qi}
o 8(q &)= {qs}
o 8(q2 b) = {q2}
o d(qs, a) = {qs}
o 8(qs, b) = {qo}
Solution:

To convert an &-NFA to an NFA, we need to compute the e-closure of each

state and then use that to determine the new transitions.

Step 1: Compute the e-closure of each state.
e e-closure(qo) = {qo, qi} (because qo can reach q; via an e-transition)
e ¢e-closure(qi) = {qi} (no e-transitions from q)
o e-closure(q2) = {q2, q3} (because q> can reach g3 via an e-transition)
e ¢e-closure(qs) = {qs} (no e-transitions from q3)

Step 2: Compute the new transitions for the NFA.

For state qO:

e O NFA(qo, a) = e-closure(d _e-NFA(qo, a) Ud &-NFA(qi, a)) = e-
closure({qo} U {q2}) = {qo, q1} U {q2, g3} = {qo, q1, 92, g3}
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Notes e O NFA(qo, b) = e-closure(d_e-NFA(qo, b) Ud_&-NFA(qi, b)) = e-
closure(@U {qi}) = {qi}

For state q;:

e & NFA(qi, a) = e-closure(d_&-NFA(qi, a)) = e-closure({q2}) = {qa,
s}

e O NFA(qi, b) =¢e-closure(d_e-NFA(qi, b)) = e-closure({q:}) = {q:}
For state qa:

= For q, a, 6 NFA = eg-closuree-closure(@U {qs3}) = {qs} (3 _e-
NFA(q2, a) Ud_e-NFA(qs, a))

= 3 NFA(q2, b) = e-closure(d_&-NFA(q2, b) Ud _e-NFA(qs, b)) = &-
closure({q2}).

For state q3:
= d-closure(d e-NFA(qs, a)) = e-closure({qs}) = {q3}' =

o NFA(qs, a)

= The equation 5 NFA(qs, b) = e-closure(d_e-NFA(qs, b)) = &-
closure({qo}) = {qo, q1}

Step 3: Define the new NFA.
The resulting NFA:
e States: Q = {qo, q1, 92, 93}
e Alphabet: X = {a, b}
e  Start state: qo
o Final states: F = {q3}
e Transitions:
o 8(qo, a) = {qo, q1, q2, 3}
o 8(qo, b)={qi}
o d(qi,a)={q, g3}
o d(qi, b)={qi}

09(q2, a) = {q3}
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A ={qo, q1, g2, 43} 0 8(q2, b)
o (g3 a) = {qs}

o 0(q3, b) = {qo, qi}

Problem 4: Moore to Mealy Machine Conversion

Convert following Moore machine to a Mealy machine:

Moore machine:

States: Q = {So, Si1, S2}

e Input alphabet: ¥ = {0, 1}

e Output alphabet: A= {A, B}
e  Start state: SO

e  Output function:

o MSo)=A
o MS))=B
o MS)=A

e Transition function:

o 8(Se, 0)=So
o 8So, 1)=8
o 8(S1,0)=S,
o 8S1,1)=So
o &S, 0)=S;
o Sy 1)=$,

Solution:

To convert Moore machine to Mealy machine, we need to associate the

output with the transitions rather than the states.

Step 1: Keep the same set of states, input alphabet, output alphabet, and start

state.
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Notes Step 2: For each transition 6 Moore(q, a) = p, set the Mealy output function
A_Mealy(q, a) =A_Moore(p).

For transitions from SO:
e & Mealy(So, 0) = So, and A_Mealy(So, 0) =X Moore(So) = A
e & Mealy(So, 1) =S, and A_Mealy(So, 1) =X Moore(S:) =B
For transitions from Si:
e & Mealy(Si, 0) =S, and A_Mealy(Si, 0) =X Moore(S;) = A
e O Mealy(Si, 1) =So, and A_Mealy(Si, 1) =X Moore(So) = A
For transitions from S2:
e & Mealy(S,, 0) =S, and A_Mealy(S,, 0) =X Moore(S:) =B
e O Mealy(Ss, 1) =S, and A_Mealy(S,, 1) =X Moore(S:) =A

The resulting Mealy machine:

States: Q = {So, Si1, S»}
e Input alphabet: £ = {0, 1}
e Output alphabet: A= {A, B}
e  Start state: So
e  Transition function:
o &(So, 0)=So
o 8(So, 1)=Si
o 881,0=5;
o &S, 1)=So
o 8(S2,0)=S;
o &S, 1)=5;
e  Output function:
o MSo,0)=A

o MSe, 1)=B
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Problem 5: Mealy to Moore Machine Conversion

Convert following Mealy machine to Moore machine:

Mealy machine:

AS1, 0)=A
MS1, 1) =A
MS2, 0)=B
MS2, 1) =A

e States: Q= {So, S1}

e Input alphabet: £ = {0, 1}

e Output alphabet: A= {X, Y}

e Start state: So

e Transition function:

0(So, 0) =S
3(So, 1) =S
O(S1, 0) =S
3(S1, 1) =S

e  Output function:

Solution:

To convert a Mealy machine to a Moore machine, we need to create new

states that represent the combinations of original states and outputs.

Step 1: Create new states by considering pairs (q, a) where ¢ is an original

state and a is an

MSo, 0) = X
MSo, 1) =Y
MS1, 0)=Y
MS1, 1) =X
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Notes For the given Mealy machine, we have:
e (Sop, 0) with output X
e (So, 1) with output Y
e (S, 0) with output Y
e (S, 1) with output X

We need to create states in the Moore machine that correspond to the state-

output pairs in the Mealy machine.

Let's create the following states:
e SoX: represents being in state Sy and producing output X
e SoY: represents being in state Sy and producing output Y
e S;X: represents being in state S; and producing output X
e S;Y: represents being in state S; and producing output Y

Step 2: Define the transitions and outputs for the Moore machine.

For every transition 6 Mealy(q, a) = p with output A_Mealy(q, a) = o, we
create a transition in the Moore machine from any state corresponding to q

to the state corresponding to (p, 0).

For example, if 6 Mealy(S0, 0) = So with output A Mealy(So, 0) = X, then

we have a transition from S¢X to SoX in the Moore machine.
Multiple-Choice Questions (MCQs)

1. A finite state machine (FSM) consists of:
a) States and transitions
b) Only states
¢) Only inputs
d) A single final state

2. A transition table in an FSM represents:
a) The sequence of states and inputs
b) Only the starting state
¢) Only the final state

d) Random movements between states
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Two FSMs are equivalent if: Notes
a) They have the same number of states

b) They accept the same set of inputs and produce the same outputs

c) They have different transition tables

d) They use different symbols for the same transitions

process of reducing number of states in an FSM while
preserving its behavior is called:

a) State elimination

b) State minimization

¢) State transition

d) State merging

A finite automaton that reads an input string and determines
whether it belongs to a specific language is called a:

a) Transition system

b) Acceptor

c¢) Reducer

d) Transformer

deterministic finite automaton (DFA) is different from a non-
deterministic finite automaton (NFA) because:

a) DFA has only one possible move for each input in a given state
b) A DFA can have multiple transitions for the same input symbol
¢) A DFA does not have final states

d) A DFA accepts only infinite languages

Which of the following is true about an NFA?

a) It has at most one transition per input symbol

b) It can have multiple transitions for the same input symbol
¢) It cannot accept any language

d) It is always equivalent to a Turing machine

Moore and Mealy machines are different because:

a) A Moore machine's output depends only on the current state,
while a Mealy machine’s output depends on both the state and input
b) A Mealy machine does not use states

¢) A Moore machine has no transitions

d) A Mealy machine cannot accept inputs
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Notes 9. The minimum number of states required for a DFA that
recognizes the language of binary strings ending in 01" is:
a)l
b) 2
c)3
d)4

10. Finite state machines are widely used in:
a) Circuit design
b) Compiler construction
c¢) Text processing

d) All of the above

Ans Key:

Short Answer Questions
1. Define a finite state machine with an example.
2. What is a transition table, and how is it used in FSMs?

3. Explain the difference between deterministic and non-deterministic

finite automata.
4. What is the significance of equivalence in FSMs?
5. Describe the process of state minimization in finite automata.
6. What is a finite automaton? Give an example.
7. Explain Moore and Mealy machines with differences.
8. How can an NFA be converted into a DFA?
9. What are the applications of finite state machines?
10. How does an FSM differ from a Turing machine?
Long Answer Questions

1. Explain in detail the structure of a finite state machine and its

components.
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10.

Describe the transition table and diagram of an FSM with an

example.

How do you determine whether two FSMs are equivalent? Explain

with an example.

What is state minimization in finite state machines? Explain with a

step-by-step example.
Differentiate between DFA and NFA with examples.
Convert the following NFA to a DFA and explain the process:

Discuss the applications of finite automata in text processing and

pattern matching.

Describe Moore and Mealy machines with examples and their

applications.
Explain how FSMs are used in compiler design and lexical analysis.

Provide a real-world example of FSM usage in digital electronics

and networking.
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Notes MODULE 5

UNIT 5.1
Grammars and Language: Phrase-Structure Grammars, Requiting
rules
Objectives

e To understand phrase-structure grammars and their role in language

generation.
e To analyze rewriting rules, derivations, and sentential forms.

e To study different types of grammars: regular, context-free, and

context-sensitive.

e To explore regular sets and regular expressions.

e To understand the pumping lemma and its applications.

e To learn about Kleene’s theorem and its significance.

¢ To study syntax analysis and its importance in computing.

e To examine Polish notation and its use in expression conversion.

e To convert infix expressions to Polish and reverse Polish notation.
5.1.1: Introduction to Grammars and Language

Formal language theory provides a mathematical framework for describing
languages, both natural and artificial. At the heart of this theory are
grammars - systems that define rules for generating valid strings in a

language.

Languages serve as a means of communication, whether between humans or
between humans and machines. In computer science, we're particularly
interested in formal languages, which are precisely defined sets of strings

over a specific alphabet.
A formal language consists of:
e An alphabet (X): a finite set of symbols

e set of strings or sentences formed by combining these symbols

according to specific rules
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For example, in English, the alphabet includes the 26 letters (a-z),
punctuation marks, and spaces. In programming languages, the alphabet

includes keywords, operators, identifiers, and other tokens.

The rules that determine which strings belong to a language are formalized
using grammars. A grammar acts like a recipe for generating all valid strings

in a language while excluding invalid ones.
5.1.2: Phrase-Structure Grammars

A phrase-structure grammar (also called a generative grammar) is a formal
system that defines a language by specifying how to form valid strings from
the alphabet. It was introduced by Noam Chomsky in the 1950s as a way to

describe the syntax of natural languages.

A phrase-structure grammar G is defined as a 4-tuple G = (V, Z, R, S) where:

V is a finite set of variables (or non-terminal symbols)

¥ is finite set of terminal symbols (the alphabet of the language)

R is a finite set of production rules or rewriting rules

S is the start symbol (S € V)
The sets V and X are disjoint (they have no elements in common).

Terminal symbols are the basic building blocks of the language - they appear
in the final strings of the language. In programming languages, these could
be keywords, operators, identifiers, etc.Non-terminal symbols (variables) are
placeholders that get replaced during the derivation process. They represent
syntactic categories or phrases and do not appear in the final strings of the

language.

Example: Consider a simple grammar for arithmetic expressions with

addition:
G=(V, %, R, S) where:

» "Start" is represented by S, and "expression" by E.

* X ={a,+, (, )} The symbols a, +, and () stand for variables, addition, and
parenthesis, respectively.
* The initial symbol is S.

* The following rules are present in R:
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Notes o S—E

o E—a
o E—-E+E
o E—(E)

This grammar can generate strings like "a", "a+a", "(a)", "a+(a+a)", and so

on.
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UNIT 5.2
Derivation, Sentential forms, Language generated by a
Grammar, Regular, Context -Free and context sensitive
grammars and Languages, Regular sets Notes

5.2.1: Rewriting Rules, Derivations, and Sentential Forms
Rewriting Rules

The production rules or rewriting rules in a grammar define how variables

can be replaced or rewritten to form new strings. Each rule has form:
a—p
where:

e 0 1is a string containing at least one non-terminal symbol

e [ is a string of terminal and/or non-terminal symbols ( can be

empty)
The rule o — B means that can be replaced by B in any string.
Derivations

A derivation is a sequence of strings where each string is obtained from the
previous one by applying a production rule. It shows the step-by-step
process of generating a string in the language.A derivation starts with the
start symbol S and ends with a string of terminal symbols. Each step in the

derivation is denoted by the symbol =, which means "derives in one step."

For example, using the grammar for arithmetic expressions given earlier, we

can derive the string "ata" as follows:
S = E = E+E =atE=a+ta

We can also represent multiple derivation steps using the symbol =. So, S

=a+a means "S derives ata in zero or more steps.”
Sentential Forms

A sentential form is any string that can be derived from the start symbol S.

It may contain both terminal and non-terminal symbols.

In the derivation S = E = E+E =a+E=a+a, the sentential forms are:

e S
e E
e atE
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eata

* E+E
Note that only the final form "a+a" consists entirely of terminal symbols and
thus belongs to language generated by grammar. The other sentential forms

are intermediate steps in the derivation process.
5.2.2: Language Generated by a Grammar

The language generated by a grammar G, denoted as L(G), is the set of all
strings of terminal symbols that can be derived from the start symbol S using

the production rules of G.
Formally, L(G) = {w €X* | S =* w}
where:

e X* is the set of all strings over the alphabet  (including the empty
string)

e S =% w means that w can be derived from S in zero or more steps
In other words, a string w belongs to L(G) if and only if:
1. w consists only of terminal symbols from

2. There exists a derivation from S to w using the production rules of

G

For example, the language generated by our arithmetic expression grammar

includes strings like "a", "at+a", "(a)", "at(ata)", etc.
5.2.3: Types of Grammars

Noam Chomsky classified grammars into four types based on the form of
their production rules. This classification is known as the Chomsky
hierarchy. We'll focus on three important types: regular grammars, context-

free grammars, and context-sensitive grammars.
Regular Grammars

A regular grammar is most restrictive type of grammar in the Chomsky
hierarchy. It generates regular languages, which can be recognized by finite

automata.
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In a regular grammar, all production rules must have one of the following

forms:
e A — a(where A is a non-terminal, is terminal)
e A — aB (where A & B are non-terminals, a is a terminal)
e A — ¢ (where ¢ is the empty string)

There are two types of regular grammars:

o Right-linear grammar: All rules have the form A — aB or A — a

orA—¢

e Left-linear grammar: All rules have the form A — Baor A — a or

A—¢
Example of a Right-linear Grammar: G = (V, X, R, S) where:
e V={S}
e X={0,1}
e Sis the start symbol

e R contains:

o S—0S
o S—1S
o S—o¢

This grammar generates all binary strings, including the empty string: L(G)
=1{0, I}*

Regular grammars are useful for describing patterns like identifiers,

numbers, and other tokens in programming languages.
Context-Free Grammars (CFG)

Context-free grammar (CFQG) is less restrictive than a regular grammar and
can describe more complex language structures. It generates context-free
languages, which can be recognized by pushdown automata.In context-free
grammar, all production rules must have form: A — a (where A is a single

non-terminal and a is a string of terminals and/or non-terminals). The key
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characteristic of a CFG is that a non-terminal can be replaced regardless of

its context (the symbols around it).

Example of a Context-Free Grammar: G = (V, Z, R, S) where:
. V=1s)
o XZ={()}
e S is the start symbol

e R contains:

o S—(S)
o S—SS
o S—o¢

This grammar generates all balanced parentheses strings: L(G) = {g, (), (),

(), (DO, ...}

Context-free grammars are widely used to describe syntax of programming
languages, as they can handle nested structures like expressions, statements,

and blocks.
Context-Sensitive Grammars (CSG)

A context-sensitive grammar (CSG) is more powerful than a CFG and can
describe even more complex language structures. It generates context-
sensitive languages, which can be recognized by linear bounded automata.In
a context-sensitive grammar, all production rules must have the form: a A
— ayp (where A is a non-terminal, o and B are strings of terminals and/or
non-terminals, and y is a non-empty string of terminals and/or non-

terminals)

The key characteristic of CSG is that a non-terminal can be replaced only in

specific contexts (the symbols around it).

Example of Context-Sensitive Grammar: G = (V, X, R, S) where:
e V={S A B,C}
e X={ab,c}

e S is start symbol
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e R contains:

o S—ABC
o AB—aAB
o BC—BC
o AC—ABC
o C—c

o aA —aa
o aB —ab
o bB—bb

This grammar generates language L(G) = {a"b"c" | n > 1}, which consists of

strings with equal numbers of a's, b's, and c's in that order.

Context-sensitive grammars can describe language features that require
checking multiple related parts of a program, such as declaring variables

before using them or maintaining type consistency.
Solved Problems
Problem 1: Regular Grammar

Problem: Construct regular grammar that generates the language of all

binary strings that end with O1.
Solution: We need to construct a grammar G = (V, X, R, S) where:
o X={0,1}
e The language L(G) = {w01 | w € {0, 1}*}
Let's define our grammar:
e V={S A B}
e Sis the start symbol
e R contains:
o S — 0S (stay in state S after seeing 0)

o S — 1S (stay in state S after seeing 1)
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o S — 0A (transition to state A after seeing 0)

o A — 1B (transition to final state B after seeing 1)
o S — 1A (transition to state A after seeing 1)

o A — 0OA (stay in state A after seeing 0)

Here S represents the initial state, A represents the state after seeing the first
0 of the final "01", and B represents the final state after seeing the complete

"01" pattern.

Let's trace a derivation for the string "1001": S = 1S = 10S = 100A =
1001B

Since B is our final state, the string "1001" is accepted by the grammar,

which is correct as it ends with "01".
Problem 2: Context-Free Grammar

Problem: Construct context-free grammar that generates language of all

strings with equal numbers of a's & b's.
Solution: We need to construct a grammar G = (V, X, R, S) where:
e X=1{ab}

e The language L(G) = {w € {a, b}* | na(w) = nb(w)}, where na(w)

and nb(w) are the numbers of a's and b's in w
Let's define our grammar:
e V={S}
e Sis the start symbol
e R contains:
o S — aSb (add an 'a' at the beginning and a 'b' at the end)
o S — bSa(add a'b' at the beginning & an 'a' at the end)

o S — SS (concatenate two strings with equal numbers of a's

and b's)

o S — ¢ (the empty string has equal numbers of a's and b's,

namely zero)
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This grammar generates all strings with equal numbers of a's and b's. Let's Notes

trace a derivation for the string "ab": S =aSb=aSb=>acb=ab
And for the string "abab": S = SS =aSbS=abS=abaSb=abacb=>abab
Problem 3: Context-Sensitive Grammar

Problem: Construct a context-sensitive grammar that generates the language

L= {a’nb*nc’n|n>1}.

Solution: We need to construct a grammar G = (V, X, R, S) where:
e X=1{ab,c}
e language L(G)= {a""c" |n>1}

This is a classic example of language that is not context-free but is context-

sensitive.

Let's define our grammar:
e V={S,A,B,C,X,Y,Z}
e S isthe start symbol

e R contains:

o S—aXYZ
o X—aX

o XY — XbY
o YZ—-YcZ

o X—B

o Y—-C

o BbC— BBC
o BcC— BceC
o BC—-BC

o aB —ab

o bC—bc

o ¢cZ—oc
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Let's trace a  derivation for the string  '"aabbcc": S
=>aXYZ=aaXYZ=>aaXbYZ=aaXbYcZ=aaBbYcZ=aaBbCcZ=aabBCcZ
=abbCcZ=abcZ=abc

This grammar works by first generating a sequence of a's followed by
placeholders for b's & c's. Then it inserts b's and c's in the appropriate

positions, ensuring that there are equal numbers of each.
Problem 4: Ambiguous Grammar

Problem: Show that the following context-free grammar is ambiguous: G =

({S}, {a, b}, {S—aSb|S — ab | SS}, S)

Solution: A grammar is ambiguous if there exists a string in the language
that has more than one leftmost derivation (or, equivalently, more than one

parse tree).

Let's consider the string "aababb":

Derivation 1: S = SS =aSbS=aabS=aabab
Derivation 2: S =>aSb=aSSb=aSabb=aababb

Both derivations generate the same string "aababb", but they represent
different ways of structuring the string. This demonstrates that the grammar

is ambiguous.

In practical terms, ambiguity in a grammar can lead to parsing conflicts in
compiler design, so it's often desirable to rewrite ambiguous grammars as

unambiguous ones.
Problem 5: Leftmost and Rightmost Derivations

Problem: For the context-free grammar G = ({S, A, B}, {a, b}, R, S) with

rules:
e S—aAB
e A—aBb
e A—c¢
e B—b

Find both leftmost and rightmost derivations for the string "aabbb".
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Solution: In a leftmost derivation, we always replace leftmost non-terminal
in each step. In a rightmost derivation, we always replace rightmost non-

terminal.

Leftmost Derivation: S =aAB (replace S) =aaBbB (replace A) =aabB

(replace B in "aBb") =aabb (replace the remaining B)

Wait, this gives us "aabb", not "aabbb". Let's check if "aabbb" is actually in

the language:

S =aAB (replace S) =aaBbB (replace A) =aabB (replace B in "aBb")

=aabb (replace the remaining B)

It seems "aabbb" might not be derivable from this grammar. Let's double-

check with another attempt:

S =aAB (replace S) =aB (replace A with €) = ab (replace B)
This gives us "ab", not "aabbb".

Let's try one more approach:

S =aAB (replace S) =aaBbB (replace A) =aabBB (replace b with B in

"aBb" - no, that's not a valid production)
Let me review the grammar again...

My apologies for the confusion. Looking at the rules carefully, I see that
"aabbb" is indeed not derivable from this grammar. The grammar can

generate strings like "ab", "aabb", etc., but not "aabbb".
Let's consider the string "aabb" instead:

Leftmost Derivation: S =aAB (replace S) =aaBbB (replace A) =aabB

(replace B in "aBb") =aabb (replace the remaining B)

Rightmost Derivation: S =aAB (replace S) =aAb (replace B) =aaBbb
(replace A) =aabb (replace B in "aBb")

Unsolved Problems
Problem 1: Regular Grammar

Construct regular grammar that generates the language of all binary strings

that contain the substring "101".
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Problem 2: Context-Free Grammar

Construct a context-free grammar that generates language of all strings over

{a, b} that have more a's than b's.
Problem 3: Ambiguity

Prove that the following grammar is ambiguous and provide an
unambiguous grammar that generates the same language: G = ({S}, {a, b},

{S—aSb|S —¢]|SS},9)
Problem 4: Context-Sensitive Grammar

Construct a context-sensitive grammar that generates the language L =

{a”nb*mc*nd"m | n, m > 1}.
Problem 5: Derivation and Language

For the grammar G = ({S, A, B}, {a, b}, R, S) with rules:

e« S—AB
e A—aAle
e B—-DbBje

a) Give leftmost and rightmost derivations for the string "aabb". b) Describe

in English the language L(G) generated by this grammar.
Summary

In this chapter, we've explored the fundamental concepts of formal language
theory, focusing on grammars and their classification according to the

Chomsky hierarchy.

We started by introducing the concept of formal language as precisely
defined set of strings over an alphabet. We then described phrase-structure
grammars as formal systems for generating languages, consisting of terminal

symbols, non-terminal symbols, production rules, and a start symbol.

We discussed how these grammars work through rewriting rules and
derivations, which show the step-by-step process of generating strings in a
language. We also defined sentential forms as intermediate strings in the

derivation process.
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language generated by grammar is the set of all strings of terminal symbols
that can be derived from the start symbol using production rules of the

grammar.

We then explored three important types of grammars in the Chomsky

hierarchy:

1. Regular Grammars: most restrictive type, generating languages

recognized by finite automata.

2. Context-Free Grammars (CFG): More powerful than regular

grammars, generating languages recognized by pushdown automata.

3. Context-Sensitive Grammars (CSG): Even more powerful,

generating languages recognized by linear bounded automata.

Each type of grammar has its own constraints on the form of production
rules, resulting in different expressive power. Regular grammars are used for
simple patterns like tokens in programming languages. Context-free
grammars can handle nested structures like expressions and statements.
Context-sensitive grammars can enforce relationships between different
parts of a program.Understanding these concepts is essential for designing
programming languages, building compilers and interpreters, and
implementing various text processing applications. The mathematical
framework provided by formal language theory helps us reason about the

syntax and structure of languages in a precise and systematic way.
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UNIT 5.3
Regular Expressions and the pumping Lemma. Kleene’s Theorem.
Notions of Syntax Analysis, Polish Notations. Conversion of Infix
Expressions to Polish Notation

5.3.1: Regular Sets and Regular Expressions

Regular sets (also called regular languages) are a fundamental concept in
formal language theory. They represent languages that can be recognized by

finite automata.
Definition of Regular Sets

A regular set or regular language over an alphabet Z is defined recursively

as:
1. The empty set @ is a regular set
2. The set {€} containing only the empty string is a regular set
3. For each a €, the set {a} is a regular set

4. If A & B are regular sets, then A U B (union), A - B (concatenation),

and * (Kleene star) are also regular sets
5. No other sets are regular sets
Regular Expressions

Regular expressions are a notation system used to specify regular languages.

They provide a concise way to describe patterns in strings.
Formal Definition of Regular Expressions

Given an alphabet X, the set of regular expressions over X is defined

recursively:
1. @ is aregular expression denoting the empty set

2. ¢ is a regular expression denoting the set {¢} (containing only the

empty string)
3. For each symbol a €Z, a is regular expression denoting set {a}
4. Ifrand s are regular expressions, then:

o (r]s) is a regular expression denoting the union of the

languages of r and s

o (rs) is a regular expression denoting the concatenation of the

languages of r and s200



o (r*) is a regular expression denoting the Kleene star of the

language of r
Operations on Regular Expressions
1. Union (1]s): Represents strings that match either r or s

2. Concatenation (rs): Represents strings formed by concatenating a

string that matches r with a string that matches s

3. *Kleene Star (r)**: Represents strings formed by concatenating zero

or more strings that match r
Examples of Regular Expressions

1. a(blc)* represents strings starting with 'a' followed by any number of

'b's or 'c's

2. (ab)*c represents strings ending with 'c¢' preceded by any number of

'a's or 'b's
3. (ab)* represents strings consisting of zero or more repetitions of 'ab'

4. ab represents strings consisting of zero or more "s followed by zero

or more 'b's
Solved Problems for Regular Sets and Regular Expressions

Problem 1: Construct a regular expression for the language of all strings

over {, b} that contain an even number of a's.
Solution: Let's break this down:
e We need strings with an even number of a's (including zero)
e The b's can appear any number of times at any position
First, let's define two parts:
e E: strings with an even number of a's
e O: strings with an odd number of a's
We can define these recursively:

e E =Dbabab* | b* (either there are two a's separated by any number of

b's, or there are no a's)
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O = bab (there is exactly one a with any number of b's before and

after)

But this doesn't capture strings with more than two a's. Let's try a different

approach:

The regular expression is: (blababd)

To see why this works:

b: allows adding b's without affecting the parity of a's

aba*b: every time we use this pattern, we add two a's (keeping the

count even)

The outer Kleene star allows repeating these patterns any number of

times

Problem 2: Construct a regular expression for strings over {a, b, ¢} that don't

contain the substring 'abc'.

Solution: We can approach this by characterizing all strings that don't have

'abc":

Any string without an 'a’'
Any string without a 'b'
Any string without a 'c'

Strings where 'a' and 'b' are separated by at least one character other
than 'b'

Strings where 'b' and 'c' are separated by at least one character other

than 'c'

The regular expression is: (blc)* | (alc)* | (ajb)* | a*(bacb|cabc)a |

b*(abcalcbac)b

This is quite complex. A simpler way to think about it is to say that we can

have any string except those containing 'abc'.

Another approach: we can describe this as strings where every 'a' is not

followed by 'bc', or every 'ab' is not followed by 'c":

(a(~(bc))ble)*
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Where —(bc) means any string not starting with 'bc'. This can be written as:

(a(b(ab)[cle)|blc)*

Problem 3: Prove that the set of all strings over {a, b} with an equal number

of''s and b's is not a regular language.

Solution: We'll use the pumping lemma (which will be covered in section

5.6) to prove this.

Let's call this language L = {w € {a, b}* | [w|a = |w|b}, where |w|a and |w|b

denote the number of a's and b's in w respectively.

Assume L is regular. By the pumping lemma, there exists a pumping length

p such that any string s in L with |s| > p can be written as s = xyz where:
I [xyl<p
2. y|>0
3. Foralli>0,xyizisin L

Consider s = apbp (p a's followed by p b's). Clearly s is in L since it has an

equal number of's and b's.

By pumping lemma, s can be written as xyz where [xy| < p & |y| > 0. This

means y consists only of a's (since xy is a prefix of length at most p of

apbp).

Let's say y = ak for some k > 0. Then xy2z = ap+kbp, which has p+k a's and
p b's. Since ptk # p, Xxy2z is not in L.

This contradicts condition 3 of the pumping lemma. Therefore, L is not

regular.
5.3.2: The Pumping Lemma and Its Applications

Pumping Lemma is a powerful tool used to prove that certain languages are
not regular. It gives a necessary (but not sufficient) condition for a language

to be regular.
Statement of the Pumping Lemma

For any regular language L, there exists a positive integer p (called the
pumping length) such that any string s in L of length at least p can be written

as s = xyz where:
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L.

2.

3.

xy|<p
ly] > 0 (y is non-empty)

Foralli>0, xyizisin L

Intuitively, the pumping lemma states that any sufficiently long string in a

regular language has a non-empty substring that can be "pumped" (repeated

any number of times) while keeping the resulting string in the language.

Steps to Use the Pumping Lemma

To prove that a language L is not regular using the pumping lemma:

L.

Assume that L is regular
By the pumping lemma, there exists a pumping length p
Choose a string s in L of length at least p

According to the pumping lemma, s can be split as s = xyz where

Ixy|<p,[y|>0

Find a value of i such that xyiz is not in L

This contradicts the pumping lemma, proving that L is not regular

Applications of the Pumping Lemma

Pumping lemma is primarily used to prove that languages are not regular.

Here are some classic examples:

Solved Problem: Prove that the language L = {anbn | n > 0} is not regular

Solution:

1. Assume that L is regular

2. By the pumping lemma, there exists a pumping length p

3. Consider the string s = apbp which is in L

4. By the pumping lemma, s can be written as s = xyz where |xy| < p
and |y| >0

5. Since |xy| < p, Xy consists only of a's, which means y consists only
of a's

6. Lety=ak for some k>0
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7. Consider xy2z = ap+kbp Notes
8. This string has p+k a's but only p b's, so it's not in L
9. This contradicts the pumping lemma, so L is not regular

Solved Problem: Prove that the language L = {ww | w € {a, b}*} is not

regular

Solution:
1. Assume that L is regular
2. By the pumping lemma, there exists a pumping length p
3. Consider the string s = apbapb which is in L (w = apb)

4. By the pumping lemma, s can be written as s = xyz where |xy| < p

and |y| >0

5. Since |xy| < p, Xy is a prefix of apb, which means y consists only of

!

a's
6. Lety=ak for some k>0
7. Consider xy0z = s with the substring y removed
8. This string has p-k a's in the first half but still p a's in the second half
9. Therefore, xy0z is not of the form ww, so it's not in L
10. This contradicts the pumping lemma, so L is not regular
5.3.3: Kleene's Theorem and Finite Automata

Kleene's Theorem establishes the equivalence between regular expressions

and finite automata. It consists of two parts:

1. Every language recognized by finite automaton can be described by

a regular expression

2. Every language described by regular expression can be recognized

by a finite automaton

This theorem is fundamental as it provides different ways to represent

regular languages, each with its own advantages.

From Finite Automata to Regular Expressions
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Notes To convert a finite automaton to a regular expression:
1. Add new start state with e-transitions to the original start state

2. Add a new accept state with e-transitions from all original accept

states

3. For each state, use the state elimination method to obtain a regular

expression
State Elimination Method
1. Choose a state q (not the start or accept state)

2. For each pair of states (qi, qj) with transitions to and from q, create a
new transition directly from qi to qjlabeled with the regular
expression ri,q - (rq,q)* - rq,j, where ri,j is the label on the transition

from qi to qj
3. Remove state q and all its incoming and outgoing transitions
4. Repeat until only the start and accept states remain

5. The label on the transition from start to accept is the resulting

regular expression

Finite Automata to Regular Expressions
To convert a regular expression to a finite automaton, we use Thompson's

construction:

1. For each basic regular expression (@, €, or a), construct a simple

NFA

2. For composite regular expressions (1fs, rs, r*), combine the NFAs for

the subexpressions
Thompson's Construction Rules
1. For @: Two states with no transitions
2. For &: Two states connected by an g-transition
3. For a symbol a: Two states connected by an a-transition

4. For r]s: Combine the NFAs for r and s with new start and accept

states
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For rs: Connect the accept state of the NFA for r to the start state of
the NFA for s

For r*: Add e-transitions to allow skipping r or repeating r any

number of times

Solved Problem: Convert the Regular Expression (a|b)*abb to an NFA

Solution:

We'll apply Thompson's construction:

1.

First, create NFAs for a and b

Combine them using the union operation to get (alb)
Apply the Kleene star to get (ab)*

Create NFAs for a, b, and b

Concatenate all these NFAs to get (a|b)*abb

The resulting NFA will have states for each component, with appropriate

transitions connecting them:

A start state q0
e-transitions from g0 to the start states of NFAs for a and b

A cycle from the accept state of (ab) back to the start states via e-

transitions
The accept state of (a|b)* connected to the start state of the first a

The accept state of the first a connected to the start state of the first

b
The accept state of the first b connected to start state of the second b

accept state of the second b as the final accept state

Multiple-Choice Questions (MCQs)

L.

A grammar in formal language theory consists of:
a) A set of terminals & non-terminals

b) set of rewriting rules

¢) start symbol

d) All of the above
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Notes 2. The language generated by a grammar is:
a) A set of terminals
b) A set of derivations
c) A set of strings that can be produced using production rules

d) A sequence of grammar rules

3. Which of the following grammars is the most restrictive?
a) Typical Grammar
b) Context-Free Grammar
c¢) Context-Sensitive Grammar

d) Phrase-Structure Grammar

4. Aregular expression is used to describe:
a) Context-free languages
b) Context-sensitive languages
¢) Regular languages

d) None of the above

5. pumping lemma is used to:
a) Prove that a language is finite
b) Prove that a language is regular
¢) Prove that a language is context-sensitive

d) Convert regular expressions into finite automata

6. Kleene’s Theorem states that:
a) Every finite automaton has an equivalent regular expression
b) Every CFG can be converted into a DFA
¢) Every Turing machine can be converted into a regular grammar

d) None of the above

7. Syntax analysis is also known as:
a) Parsing
b) Lexical analysis
¢) Compilation

d) Tokenization

8. Polish notationis also called:
a) Prefix notation

b) Infix notation
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¢) Postfix notation

d) Mixed notation

9. The expression A+BA + B in Reverse Polish Notation (RPN) is

written as:
a)+BA+B
b) AB+AB+
c) BFrAB+A
d) +AB+AB

10. Which data structure is commonly used for evaluating
expressions in Reverse Polish Notation?
a) Queue
b) Stack
c¢) Linked List
d) Tree

Answer Key:

1|/d|{3|c|5|b|7]]a|9 |b
2lc|4|c|6|6|8]|a]|l0

Short Answer Questions
1. Define phrase-structure grammar with an example.

2. What is the difference between derivation and sentential forms?

3. Explain regular, context-free, and context-sensitive grammars with

examples.

4. What are regular sets in formal language theory?

5. Define regular expressions and their importance in pattern matching.

6. Explain the significance of the pumping lemma in language

classification.
7. State Kleene’s theorem and explain its implications.
8. What is syntax analysis? Why is it important in compiler design?

9. Define Polish notation and Reverse Polish Notation (RPN).
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10. How can infix expressions be converted to postfix notation?

Long Answer Questions

Explain phrase-structure grammars and their role in language

generation.

Describe rewriting rules, derivations, and sentential forms with

examples.

Discuss the differences between regular, context-free, and context-

sensitive grammars.

Explain the concept of regular expressions and how they are used in

pattern matching.
State and prove Kleene’s Theorem with examples.
Explain syntax analysis and its role in compiler construction.

Describe Polish notation and Reverse Polish Notation with

conversion techniques.

Convert the following infix expression to Polish notation and

Reverse Polish Notation:

(C-D)(A + B)«(C + B) * (C - D)

9. Discuss significance of syntax analysis in programming language

processing.
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