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COURSE INTRODUCTION 

 

Discrete Mathematics is a fundamental area of mathematics that 

focuses on structures that are fundamentally discrete rather than 

continuous. It has applications in computer science, logic, 

cryptography, and combinatorial optimization. This course covers 

recurrence relations, logic, lattices, Boolean algebra, finite state 

machines, and formal grammars, providing essential mathematical 

tools for computational problem-solving. 

 

Module 1: Recurrence Relations and Generating Functions 

This module introduces recurrence relations and their applications in 

number sequences. Topics include linear homogeneous and non-

homogeneous recurrence relations, generating functions, and 

exponential generating functions. 

Module 2: Logic and Lattices 

This module covers fundamental concepts in logic, including 

symbolic representation, tautologies, quantifiers, predicates, and 

validity in propositional logic. Additionally, it introduces lattices as 

partially ordered sets, their properties, algebraic systems, sub-lattices, 

direct products, and homomorphisms. Special lattices such as 

complete, complemented, and distributive lattices are also discussed. 

Module 3: Boolean Algebra and Applications 

This module explores Boolean algebra as a lattice system, various 

Boolean identities, and switching algebra. Topics include subalgebras, 

direct products, homomorphisms, Boolean forms, minimization of 

Boolean functions, and applications in switching theory using logic 

gates (AND, OR, NOT). The Karnaugh method is introduced for 

simplifying Boolean functions. 

Module 4: Finite State Machines and Automata 

This module examines finite state machines, transition table diagrams, 

equivalence of finite state machines, and reduced machines. It covers 

homomorphism in finite automata, deterministic and non-

deterministic finite automata, and Moore and Mealy machines. 

Module 5: Grammars and Language Theory 



 

 
 

Notes This module focuses on formal grammars and their role in language 

theory. Topics include phrase-structure grammars, derivations, 

sentential forms, and language classifications (regular, context-free, 

and context-sensitive grammars). Students will study regular sets, 

regular expressions, Kleene’s theorem, and syntax analysis, including 

Polish and Reverse Polish Notations. 
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  and seeds in a sunflower) and has connections to the golden ratio.

This  sequence  appears  in  nature  (like  the  arrangement  of  leaves  on  stems 

first few terms are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Fₙ₋₁ + Fₙ₋₂ for n ≥ 2

Fibonacci  sequence  is  defined  by  recurrence  relation:  F₀  =  0,  F₁  =  1, Fₙ  = 

Fibonacci Sequence

Some Important Number Sequences

iterative processes, algorithms, and many mathematical patterns.

defined as function of previous terms. They're fundamental in understanding 

Recurrence relations are equations that define sequences where each term is 

1.1.1 Introduction to Recurrence Relations

  mathematical problems.

• To apply recurrence relations and generating functions in real-world

  functions.

• To  differentiate  between  ordinary  and  exponential  generating

  recurrence relations.

• To  study  generating  functions  and  their  applications  in  solving

  relations.

• To  explore  linear  homogeneous  and  non-homogeneous  recurrence

• To analyze different types of number sequences and their properties.

  significance in discrete mathematics.

• To  understand  the  concept  of  recurrence  relations  and  their

Objectives

sequences

Recurrence Relations and Generating Functions, Some number

UNIT 1.1

MODULE 1
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Notes Arithmetic Sequence 

An arithmetic sequence has a constant difference between consecutive 

terms: a₁ = first term aₙ = aₙ₋₁ + d for n ≥ 2 (where d is the common 

difference) 

The explicit formula is: aₙ = a₁ + (n-1)d 

Example: 3, 7, 11, 15, 19, ... (with a₁ = 3 and d = 4) 

Geometric Sequence 

A geometric sequence has a constant ratio between consecutive terms: a₁ = 

first term aₙ = aₙ₋₁ × r for n ≥ 2 (where r is the common ratio) 

The explicit formula is: aₙ = a₁ × rⁿ⁻¹ 

Example: 2, 6, 18, 54, 162, ... (with a₁ = 2 and r = 3) 

Triangular Numbers 

Triangular numbers count objects arranged in an equilateral triangle1 Tₙ = 

Tₙ₋₁ + n T₁ = 1 for n ≥ 2 

The precise equation is Tₙ = n(n+1)/2.The sequence is: 1, 3, 6, 10, 15, 21, 

28, ... 

Catalan Numbers 

The Catalan numbers appear in various counting problems: C₀ = 1 Cₙ = Σ(Cᵢ 

× Cₙ₋ᵢ₋₁) for i = 0 to n-1, n ≥ 1 

The sequence is: 1, 1, 2, 5, 14, 42, 132, 429, ... 
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For a relation of order k: aₙ = c₁aₙ₋₁ + c₂aₙ₋₂ + ... + cₖaₙ₋ₖ

Higher-Order Linear Homogeneous Recurrence Relations

- √5)/2]ⁿ

Using F₀ = 0 and F₁ = 1 to find α₁ and α₂: Fₙ = (1/√5)[(1 + √5)/2]ⁿ - (1/√5)[(1 

• General solution: Fₙ = α₁r₁ⁿ + α₂r₂ⁿ

• Roots: r₁ = (1 + √5)/2 and r₂ = (1 - √5)/2

• Characteristic equation: r² - r - 1 = 0

Example: For the Fibonacci sequence Fₙ = Fₙ₋₁ + Fₙ₋₂

Use initial conditions to find constants α₁ and α₂2.

o If r₁ = r₂ (repeated roots): aₙ = α₁r₁ⁿ + α₂nr₁ⁿ

o If r₁ ≠ r₂ (distinct roots): aₙ = α₁r₁ⁿ + α₂r₂ⁿ

The general solution depends on these roots:1.

2.Find the roots r₁ and r₂ of this equation

 Create a characteristic formula: r2 - c₁r - c₂ = 01.

To  solve  a  second-order connection  of  linear  homogeneous  recurrence:

Characteristic Equation Method

These have form: aₙ = c₁aₙ₋₁ + c₂aₙ₋₂

1.2.3 Second-Order Linear Homogeneous Recurrence Relations

Example: aₙ = 3aₙ₋₁ with a₁ = 2 Solution: aₙ = 2 × 3ⁿ⁻¹

The explicit solution is: aₙ = a₁ × (c₁)ⁿ⁻¹

These have form: aₙ = c₁aₙ₋₁

1.2.2 First-Order Linear Homogeneous Recurrence Relations

Where c₁, c₂, ..., cₖ are constants and cₖ ≠ 0.

c₂aₙ₋₂ + ... + cₖaₙ₋ₖ

linear homogeneous recurrence relation of order k has the form: aₙ = c₁aₙ₋₁ + 

1.2.1 Linear Homogeneous Relations of Recurrence

recurrence relations
Linear homogeneous recurrence relations, Non-homogeneous

UNIT 1.2
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Notes 1. Form the characteristic equation: rᵏ - c₁rᵏ⁻¹ - c₂rᵏ⁻² - ... - cₖ = 0 

2. Find all roots of this equation 

3. For each distinct root rᵢ with multiplicity mᵢ, the solution includes 

terms: α₁rᵢⁿ, α₂nrᵢⁿ, α₃n²rᵢⁿ, ..., αₘᵢn(mᵢ-1)rᵢⁿ 

4. general solution is the sum of all these terms 

5. Use initial conditions to find all constants 

Non-Homogeneous Recurrence Relations 

A non-homogeneous recurrence relation has form: aₙ = c₁aₙ₋₁ + c₂aₙ₋₂ + ... + 

cₖaₙ₋ₖ + F(n) 

Where F(n) is a non-zero function of n. 

Method of Undetermined Coefficients 

The solution has two parts: aₙ = aₙʰ + aₙᵖ 

Where: 

• aₙʰ is the general solution to homogeneous relation 

• aₙᵖ is a particular solution based on F(n) 

Common forms of F(n) and their particular solutions: 

1. F(n) = pns (polynomial): 

o Try aₙᵖ = αₛns + αₛ₋₁n(s-1) + ... + α₁n + α₀ 

2. F(n) = pᵏⁿ (exponential): 

o If pᵏ is not a root of the characteristic equation, try aₙᵖ = βpᵏⁿ 

o If pᵏ is a root with multiplicity m, try aₙᵖ = βnm × pᵏⁿ 

3. F(n) = ns × pᵏⁿ (combination): 

o Combine the approaches above 

Method of Variation of Parameters 

This method is useful for more complex F(n): 

1. Find general solution aₙʰ to homogeneous relation 
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Notes 2. Assume a particular solution of the form aₙᵖ with variable 

coefficients 

3. Substitute into the original relation to find these coefficients 

Solved Problems 

Problem 1: Solve the recurrence relation aₙ = 5aₙ₋₁ - 6aₙ₋₂ with a₀ = 1, a₁ 

= 4 

Solution: Step 1: Form the characteristic equation r² - 5r + 6 = 0 

Step 2: Factor the equation (r - 2)(r - 3) = 0 

Step 3: Find the roots r₁ = 2, r₂ = 3 

Step 4: Write the general solution Since we have distinct roots, the general 

solution is: aₙ = α₁(2)ⁿ + α₂(3)ⁿ 

Step 5: Use initial conditions to find α₁ and α₂ For a₀ = 1,: 1 = α₁(2)⁰ + α₂(3)⁰ 

= α₁ + α₂ 

For a₁ = 4: 4 = α₁(2)¹ + α₂(3)¹ = 2α₁ + 3α₂ 

From the first equation: α₂ = 1 - α₁ Substituting into the second equation: 4 = 

2α₁ + 3(1 - α₁) = 2α₁ + 3 - 3α₁ = 3 - α₁ α₁ = -1 

Therefore, α₂ = 1 - (-1) = 2 

Step 6: Write the explicit formula aₙ = 2(3)ⁿ - (2)ⁿ = -1(2)ⁿ + 2(3)ⁿ 

Step 7: Verify the solution by checking a few terms a₀ = 2(3)⁰ - (2)⁰ = 2 - 1 = 

1 ✓ a₁ = 2(3)¹ - (2)¹ = 6 - 2 = 4 ✓ a₂ = 2(3)² - (2)² = 18 - 4 = 14 a₃ = 2(3)³ - 

(2)³ = 54 - 8 = 46 

Problem 2: Find general solution of recurrence relation aₙ = 4aₙ₋₁ - 4aₙ₋₂ 

Solution: Step 1: Form the characteristic equation r² - 4r + 4 = 0 

Step 2: Factor the equation (r - 2)² = 0 

Step 3: Find the roots r₁ = r₂ = 2 (repeated root with multiplicity 2) 

Step 4: Write the general solution Since we have a repeated root, the general 

solution is: ₙ = α₁(2)ⁿ + α₂n(2)ⁿ 

Step 5: Simplify the solution aₙ = (2)ⁿ(α₁ + α₂n) 
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Notes Using initial conditions, we could solve for α₁ and α₂. Without specific initial 

conditions, this is the general solution. 

Problem 3: Solve non-homogeneous recurrence relation aₙ = 3aₙ₋₁ + 2ⁿ 

with a₀ = 1 

Solution: Step 1: Solve the homogeneous part aₙ = 3aₙ₋₁ characteristic 

equation is r - 3 = 0 root is r = 3 The homogeneous solution is aₙʰ = α(3)ⁿ 

Step 2: Find a particular solution Since F(n) = 2ⁿ is exponential and 2 is not 

a root of the characteristic equation, we try: aₙᵖ = β(2)ⁿ 

Substituting into the original equation: β(2)ⁿ = 3β(2)ⁿ⁻¹ + 2ⁿ β(2)ⁿ = 3β(2)ⁿ/2 

+ 2ⁿ β(2)ⁿ - 3β(2)ⁿ/2 = 2ⁿ β(2)ⁿ(1 - 3/2) = 2ⁿ β(-1/2) = 1 β = -2 

So, aₙᵖ = -2(2)ⁿ 

Step 3: Write the general solution aₙ = aₙʰ + aₙᵖ = α(3)ⁿ - 2(2)ⁿ 

Step 4: Use the initial condition a₀ = 1 1 = α(3)⁰ - 2(2)⁰ = α - 2 α = 3 

Step 5: Write the explicit formula aₙ = 3(3)ⁿ - 2(2)ⁿ 

Step 6: Verify the solution a₀ = 3(3)⁰ - 2(2)⁰ = 3 - 2 = 1 ✓ a₁ = 3(3)¹ - 2(2)¹ = 

9 - 4 = 5 a₂ = 3(3)² - 2(2)² = 27 - 8 = 19 a₃ = 3(3)³ - 2(2)³ = 81 - 16 = 65 

Unsolved Problems 

Problem 1 

Find general solution to recurrence relation: aₙ = 6aₙ₋₁ - 9aₙ₋₂ 

Problem 2 

Solve the recurrence relation: aₙ = 2aₙ₋₁ + 3aₙ₋₂ with a₀ = 4 and a₁ = 5 

Problem 3 

Find the explicit formula for the sequence defined by: aₙ = aₙ₋₁ + 2aₙ₋₂ with 

a₀ = 3 and a₁ = 4 

Problem 4 

Solve the non-homogeneous recurrence relation: aₙ = 4aₙ₋₁ - 4aₙ₋₂ + 3ⁿ with 

a₀ = 1, a₁ = 2 

Problem 5 
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Notes Find recurrence relation and initial conditions for sequence: 1, 4, 10, 19, 31, 

46, ... 

Applications of Recurrence Relations 

Recurrence relations have numerous applications in mathematics and 

computer science: 

Algorithm Analysis 

Many algorithms, especially recursive ones, can be analyzed using 

recurrence relations. The time complexity of these algorithms is often 

expressed as a recurrence relation: 

Example: Binary Search 

T(n) = T(n/2) + c (assuming n is power of 2) The solution is T(n) = O(log n) 

Example: Merge Sort 

T(n) = 2T(n/2) + cn The solution is T(n) = O(n log n) 

Combinatorial Problems 

Recurrence relations are useful for solving counting problems in 

combinatorics: 

Example: Counting Binary Strings 

Let aₙ be number of binary strings of length n that do not contain 

consecutive 0s. 

We have: 

• The strings 0 and 1 make up a₁ = 2. 

• (the strings 01, 10, and 11) a₂ = 3. 

The recurrence relation is: aₙ = aₙ₋₁ + aₙ₋₂ for n ≥ 3 

This is the Fibonacci recurrence shifted by 2 positions. 

Example: Tower of Hanoi 

Let T(n) be the minimum number of moves needed to solve Tower of Hanoi 

puzzle with n disks. 

The recurrence relation is: T(n) = 2T(n-1) + 1 with T(1) = 1 
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Notes The solution is: T(n) = 2ⁿ - 1 

Financial Mathematics 

Recurrence relations model financial processes like compound interest: 

Example: Compound Interest 

Let P(n) be amount after n years with principal P₀, interest rate r, and annual 

compounding. 

recurrence relation is: P(n) = (1 + r)P(n-1) with P(0) = P₀ 

The solution is: P(n) = P₀(1 + r)ⁿ 

Population Growth 

Recurrence relations model population dynamics: 

Example: Rabbits (Fibonacci Model) 

Let P(n) be the number of rabbit pairs after n months. 

The recurrence relation is: P(n) = P(n-1) + P(n-2) for n ≥ 3, with P(1) = 1, 

P(2) = 1 

This is the classic Fibonacci sequence. 

Techniques for Solving Recurrence Relations 

Iterative Substitution Method 

This method involves expanding the recurrence relation repeatedly until a 

pattern emerges: 

Example: T(n) = T(n-1) + n with T(1) = 1 

T(n) = T(n-1) + n = T(n-2) + (n-1) + n = T(n-3) + (n-2) + (n-1) + n... = T(1) 

+ 2 + 3 +... + (n-1) + n = 1 + 2 + 3 +... + n = n(n+1)/2  

The Divide-and-Conquer Recurrence Master Theorem  

When a ≥ 1 and b > 1:1, recurrences of the form T(n) = aT(n/b) + f(n) 

occur.T(n) = Θ(n(log
b

(a)) if f(n) = O(n(log
b
(a)-ε)) for some ε > 0.  

T(n) = Θ(n(log
b

(a)) log n if f(n) = Θ(n(log
b

(a))).  

3. T(n) = Θ(f(n)) if f(n) = Ω(n(log
b
(a)+ε)) for any ε > 0 and af(n/b) ≤ cf(n) for 

some c < 1. 
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Notes Function Generation  

The formal power series is a generating function G(x) for a sequence {aₙ}: 

For n ≥ 0, G(x) = a₀ + a₁x + a₂x² +... = Σ(aₙxⁿ).  

The explicit formula for aₙ for recurrence relations can be found by 

performing operations on the generating function.  

For instance: F₁ = 1 for the Fibonacci sequence where F₀ = 0: The formula 

for G(x) is Σ(Fₙxⁿ) = x + x² + 2x³ + 3x⁴ + 5x⁵ +...  

This is the functional equation: xG(x) + x²G(x) + x = G(x)  

Finding G(x): The formula is G(x) - xG(x) - x²G(x) = x G(x)(1 - x - x²) = x 

G(x) = x/(1 - x - x²).  

By decomposing partial fractions: G(x) = (1/√5)[1/(1-αx)-1/(1-βx)]  

In this case, β = (1-√5)/2 and α = (1 + √5)/2  

This allows us to recover: Fₙ = (1/√5)[αⁿ - βⁿ]  

Particular Recurrence Relation Types 

Recurrence Relations with Constant Coefficients  

Aₙ = c₁aₙ₋₁ + c₂aₙ₋₂ +... + cₖaₙ₋ₖ + F(n) is the form of these.  

where the constants are c₁, c₂,..., cₖ.  

Recurrence Relations between Variables and Coefficients  

Aₙ = c₁(n)aₙ₋₁ + c₂(n)aₙ₋₂ +... + cₖ(n)aₙ₋ₖ + F(n) is the form of these.  

where at least one of the following is not constant: c₁(n), c₂(n),..., cₖ(n). 

Divide-and-Conquer Recurrence Relations 

These have the form: T(n) = aT(n/b) + f(n) 

Where: 

• a is the number of subproblems 

• n/b is the size of each subproblem 

• f(n) is the cost of dividing and combining 

Systems of Recurrence Relations 
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Notes These involve multiple interdependent sequences: The formula is aₙ = f(aₙ₋₁, 

aₙ₋₂,..., bₙ₋₁, bₙ₋₂,...) bₙ = g(aₙ₋₁, aₙ₋₂,..., bₙ₋₁, bₙ₋₂,. 

For example, the Fibonacci and Lucas sequences form a system. 

Historical Development of Recurrence Relations 

Recurrence relations have a rich history dating back to ancient mathematics: 

Ancient Origins 

The concept of recursion appears in ancient problems like the Tower of 

Hanoi and the Chinese rings puzzle. 

Leonardo Fibonacci (c. 1170-1250) 

Fibonacci introduced the sequence named after him in his book "Liber 

Abaci" (1202), in the context of modeling rabbit population growth. 

Abraham de Moivre (1667-1754) 

De Moivre developed methods for solving linear recurrence relations with 

constant coefficients, introducing characteristic equation method. 

Pierre-Simon Laplace (1749-1827) 

Laplace used generating functions to solve recurrence relations, laying 

important groundwork for modern approaches. 

George Boole (1815-1864) 

Boole developed symbolic methods for solving recurrence relations as part 

of his work on difference equations. 

Modern Development 

In the 20th century, the study of recurrence relations expanded with 

applications in computer science, particularly algorithm analysis (Knuth, 

Hopcroft, Tarjan, and others). 

Relationships to Other Mathematical Areas 

Differential Equations 

Recurrence relations are the discrete analogs of differential equations. Many 

techniques for solving differential equations have corresponding methods for 

recurrence relations. 
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Notes Linear Algebra 

Higher-order linear recurrence relations can be transformed into first-order 

matrix recurrence relations, connecting them to eigenvalues and 

eigenvectors. 

Number Theory 

Many important number-theoretic sequences, like Fibonacci numbers, 

satisfy recurrence relations and have connections to continued fractions and 

Diophantine equations. 

Graph Theory 

Recurrence relations describe paths in graphs, especially in counting 

problems involving walks of various types. 

Complex Analysis 

Generating functions for recurrence relations connect to complex analysis, 

with singularities of the generating function determining the asymptotic 

behavior of the sequence. 

Advanced Topics in Recurrence Relations 

Asymptotic Analysis 

For many applications, especially in algorithm analysis, we're interested in 

the asymptotic behavior of sequences defined by recurrence relations: 

Big-O Notation 

• O(f(n)): Upper bound 

• Ω(f(n)): Lower bound 

• Θ(f(n)): Tight bound 

Common Growth Rates (in increasing order) 

• O(1): Constant 

• O(log n) is a logarithmic 

• O(n) is linear, and O(n log n) is linear. 

• O(nk): Polynomial 

• O(n²): Quadratic 
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Notes  • Exponential O(2n)Multivariate Recurrence Relations 

These involve sequences with multiple indices: a(m,n) = f(a(m-1,n), a(m,n-

1), ...) 

Example: Pascal's triangle satisfies: C(n,k) = C(n-1,k-1) + C(n-1,k) 

Non-Linear Recurrence Relations 

These have a non-linear form: aₙ = f(aₙ₋₁, aₙ₋₂, ..., aₙ₋ₖ) 

Where f is not a linear function. 

Example: Logarithmic recurrence: T(n) = T(n/2) + 1 

Solution: T(n) = log₂(n) + T(1) 

Random Recurrence Relations 

These involve probability and random variables: E[Xₙ] = f(E[Xₙ₋₁], E[Xₙ₋₂], 

...) 

Example: Expected height of a random binary search tree: E[H(n)] ≈ 4.311 

log n - 1.953 log log n + O(1) 

Conclusion 

Recurrence relations are powerful tools for modeling and solving problems 

in diverse fields. Understanding them provides insights into algorithmic 

efficiency, natural patterns, and mathematical structures. As we've seen, 

techniques for solving recurrence relations range from elementary methods 

like iteration to sophisticated approaches using generating functions and 

asymptotic analysis. 

The connection between recurrence relations and other mathematical 

areas—like differential equations, linear algebra, and complex analysis—

highlights their fundamental importance in mathematics. From the classic 

Fibonacci sequence to the complexities of algorithm analysis, recurrence 

relations offer a unified framework for studying discrete mathematical 

processes.Whether you're analyzing algorithms, modeling population 

growth, or exploring number theory, recurrence relations provide elegant 

formulations and solutions, forming an essential component of mathematical 

problem-solving. 
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Notes  

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

following operations correspond to operations on the underlying sequences:

If  we  have  generating  functions  G(x)  =  Σ  aₙxⁿ  and  H(x)  =  Σ  bₙxⁿ,  the 

Basic Operations on Generating Functions

analyzing algorithm complexity.

into  the  asymptotic  behavior  of  sequences,  which  is  crucial  for 

Asymptotic  analysis:  Generating  functions  can  provide  insights 4.

calculation of moments and other statistical properties.

functions  represent  probability  distributions  and  simplify  the 

Probability  distributions:  In  probability  theory,  generating 3.

constraints.

count  arrangements,  selections,  or  distributions  that  satisfy  certain 

Counting  problems:  In  combinatorics,  generating  functions  help 2.

expressions for these sequences.

functions  provide  a  systematic  approach  to  find  closed-form 

and mathematics involve sequences defined recursively. Generating 

Solving recurrence relations: Many problems in computer science 1.

problems in discrete mathematics:

Generating functions provide a powerful framework for solving a variety of 

Why Generating Functions Are Useful

problems involving sequences.

the  generating  function  as  a  whole,  which  often  simplifies  complex 

series.  Rather  than  working  with  the  sequence  directly,  we  can  manipulate 

Here,  the  sequence  (a0,  a1,  a2,  ...)  represents  the  coefficients  of  the  power 

G(x) = a0 + a1x + a2x² + a3x³ + ...

defined as:

common  type  of  generating  function  is  the  ordinary  generating  function, 

infinite sequence of numbers (a0, a1, a2, ...) into a single function. The most 

A  generating  function  is  a  powerful  mathematical  tool  that  encodes  an 

Introduction to Generating Functions

1.3.1 Generating Functions, Recurrences, and Applications

Exponential generating functions
Generating functions, Recurrences and generating functions,

UNIT 1.3
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Notes 1. Addition: G(x) + H(x) = Σ (aₙ + bₙ)xⁿ 

2. Scalar multiplication: c·G(x) = Σ (c·aₙ)xⁿ 

3. Multiplication: G(x)·H(x) = Σ cₙxⁿ, where cₙ = Σ aₖbₙ₋ₖ 

(convolution) 

4. Differentiation: G'(x) = Σ n·aₙxⁿ⁻¹ 

5. Integration: ∫G(x)dx = C + Σ (aₙ/(n+1))xⁿ⁺¹ 

6. Shifting: x·G(x) = Σ aₙ₋₁xⁿ (where a₋₁ = 0) 

Common Generating Functions 

Several generating functions appear frequently in combinatorial problems: 

Geometric Series 

The simplest generating function is the geometric series: 

G(x) = 1 + x + x² + x³ + ... = 1/(1-x) for |x| < 1 

This represents the sequence (1, 1, 1, ...). Its general form is: 

G(x) = a + ax + ax² + ax³ + ... = a/(1-x) for |x| < 1 

Binomial Series 

The binomial theorem gives us: 

(1 + x)ⁿ = Σ (nCk)xᵏ for k = 0 to n 

For negative and non-integer values of n, we have the generalized binomial 

series: 

(1 + x)ⁿ = Σ (nCk)xᵏ for k = 0 to ∞ (for |x| < 1) 

where (n choose k) = n(n-1)(n-2)...(n-k+1)/k! even when n is not a positive 

integer. 

Exponential Function 

The exponential function as a generating function: 

ex = 1 + x + x²/2! + x³/3! + ... = Σ xⁿ/n! 

Recurrence Relations and Generating Functions 
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Notes A recurrence relation defines each term of a sequence using one or more 

previous terms. Generating functions provide a systematic approach to solve 

recurrence relations. 

Constant Coefficient Linear Recurrence Relations 

Consider a linear recurrence relation: 

aₙ = c₁aₙ₋₁ + c₂aₙ₋₂ + ... + cₖaₙ₋ₖ + f(n) for n ≥ k 

Where c₁, c₂, ..., cₖ are constants, and f(n) is function of n. To solve this 

using generating functions: 

1. Define G(x) = Σ aₙxⁿ 

2. Multiply the recurrence relation by xⁿ and sum over all valid n 

3. Express the resulting equation in terms of G(x) 

4. Solve for G(x) 

5. Expand G(x) into a power series to find the coefficients aₙ 

Homogeneous Recurrences 

For homogeneous recurrences (f(n) = 0), the characteristic equation helps 

find closed-form solutions: 

rk - c₁r(k-1) - c₂r(k-2) - ... - cₖ = 0 

The solutions to this equation determine the form of the closed-form 

expression for aₙ. 

Non-homogeneous Recurrences 

For non-homogeneous recurrences (f(n) ≠ 0), we can split the solution into: 

• The homogeneous solution (as above) 

• A particular solution that satisfies the non-homogeneous part 

Exponential Generating Functions 

While ordinary generating functions use the form G(x) = Σ aₙxⁿ, exponential 

generating functions (EGFs) use: 

E(x) = Σ aₙxⁿ/n! 

Properties of EGFs 
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Notes If E(x) = Σ aₙxⁿ/n! and F(x) = Σ bₙxⁿ/n! are exponential generating functions, 

then: 

1. Addition: E(x) + F(x) = Σ (aₙ + bₙ)xⁿ/n! 

2. Scalar multiplication: c·E(x) = Σ (c·aₙ)xⁿ/n! 

3. Multiplication: E(x)·F(x) = Σ cₙxⁿ/n!, where cₙ = Σ (n choose 

k)aₖbₙ₋ₖ 

4. Differentiation: E'(x) = Σ aₙ₊₁xⁿ/n! 

5. Integration: ∫E(x)dx = C + Σ aₙ₋₁xⁿ/n! (where a₋₁ = 0) 

When to Use EGFs vs. Ordinary Generating Functions 

• Ordinary generating functions are particularly useful for problems 

involving selections with repetition allowed. 

• Exponential generating functions are more suitable for problems 

involving arrangements, permutations, or labeled objects. 

Common Exponential Generating Functions 

1. Exponential function: ex = Σ xⁿ/n! is the EGF for the sequence (1, 

1, 1, ...) 

2. Sine and Cosine: sin(x) = Σ (-1)ⁿx(2n+1)/(2n+1)! and cos(x) = Σ (-

1)ⁿx(2n)/(2n)! 

3. Exponential with factor: eax = Σ aⁿxⁿ/n! is the EGF for the 

sequence (1, a, a², a³, ...) 

Applications of Generating Functions 

Fibonacci Numbers 

Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13, ...) is defined by recurrence: 

F₀ = 0, F₁ = 1, Fₙ = Fₙ₋₁ + Fₙ₋₂ for n ≥ 2 

Using generating functions, we can find: 

G(x) = Σ Fₙxⁿ = x/(1-x-x²) 

This can be expanded using partial fractions to obtain closed-form 

expression: 
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Notes Fₙ = (φⁿ - (1-φ)ⁿ)/√5, where φ = (1+√5)/2 ≈ 1.618 (the golden ratio) 

Catalan Numbers 

Catalan numbers (1, 1, 2, 5, 14, 42, ...) appear in many combinatorial 

problems. They satisfy: 

C₀ = 1, Cₙ₊₁ = Σ CᵢCₙ₋ᵢ for i = 0 to n 

Their generating function is: 

G(x) = (1-√(1-4x))/(2x) 

And the closed form is: 

Cₙ = (1/(n+1))(2n Cn) 

Binomial Coefficients 

The binomial coefficients (n choose k) have generating function: 

(1+x)ⁿ = Σ (nCk)xᵏ for k = 0 to n 

This leads to numerous identities and combinatorial interpretations. 

Advanced Techniques 

Lagrange Inversion Formula 

For implicitly defined generating functions, the Lagrange inversion formula 

provides a way to extract coefficients. 

Singularity Analysis 

Analyzing the singularities of a generating function can provide asymptotic 

estimates of the coefficients. 

Multivariate Generating Functions 

For sequences that depend on multiple indices, multivariate generating 

functions can be used: 

G(x,y) = Σ aᵢ,ⱼxⁱyʲ 

Solved Problems 

Solved Problem 1: Solve Recurrence Relation for Tower of Hanoi 
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Notes Problem: Find number of moves required to solve Tower of Hanoi 

puzzle with n disks. 

Recurrence relation is: T₁ = 1 Tₙ = 2Tₙ₋₁ + 1 for n ≥ 2 

Solution: 

Let G(x) = Σ Tₙxⁿ be the generating function. 

Multiplying recurrence by xⁿ and Adding up for n ≥ 2: For n ≥ 2, Σ Tₙxⁿ 

= Σ 2Tₙ₋₁xⁿ + Σ xⁿ  

This provides us with: 2x G(x) + x²/(1-x) = G(x) - T₁x 

Changing T₁ = 1 to: G(x) - x = 2x G(x) + x²/(1-x)  

Finding G(x): G(x) - 2x x + x²/(1-x) = G(x) x + x²/(1-x) = G(x)(1 - 2x) 

x(1-x + x)/(1-x) = G(x)(1 - 2x) x/(1-x) = G(x)(1 - 2x) x/((1-x)(1-2x)) = 

G(x)  

Making use of partial fractions G(x) = x/(1-x) (1-x) - (1/2) = - x/(1-2x) 

1/(1-x/2) 

Expanding into power series: G(x) = x(1 + x + x² + ...) - (1/2)(x/2 + 

(x/2)² + (x/2)³ + ...) = x + x² + x³ + ... - (1/2)(x/2 + x²/4 + x³/8 + ...) = Σ 

(xⁿ - xⁿ/2ⁿ⁺¹) 

Therefore: Tₙ = 1 - 1/2ⁿ⁺¹ = (2ⁿ⁺¹ - 1)/2ⁿ⁺¹ = 2ⁿ - 1 

The number of moves required to solve the Tower of Hanoi puzzle with 

n disks is 2ⁿ - 1. 

Solved Problem 2: Fibonacci Sequence Using Exponential Generating 

Function 

Problem: Derive an expression for Fibonacci numbers using an exponential 

generating function. 

Solution: 

Fibonacci sequence is defined by: F₀ = 0, F₁ = 1, Fₙ = Fₙ₋₁ + Fₙ₋₂ for n ≥ 2 

Let E(x) = Σ Fₙxⁿ/n! be the exponential generating function. 

Multiplying the recurrence by xⁿ/n! & summing for n ≥ 2: Σ Fₙxⁿ/n! = Σ 

Fₙ₋₁xⁿ/n! + Σ Fₙ₋₂xⁿ/n! for n ≥ 2 
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Notes This gives us: E(x) - F₀ - F₁x = x·E(x) + x²·E(x) 

Substituting F₀ = 0 and F₁ = 1: E(x) - x = x·E(x) + x²·E(x) 

Solving for E(x): E(x) - x·E(x) - x²·E(x) = x E(x)(1 - x - x²) = x E(x) = x/(1 - 

x - x²) 

Let's find roots of denominator: 1 - x - x² = 0 x = (-1 ± √5)/2 

Let α = (1 + √5)/2 and β = (1 - √5)/2 

Using partial fractions: E(x) = x/((x-α)(x-β)) = A/(x-α) + B/(x-β) 

Solving for A and B: A = x/(x-β)|x=α = α/(α-β) = α/√5 B = x/(x-α)|x=β = 

β/(β-α) = -β/√5 

Thus: E(x) = (α/√5)/(x-α) - (β/√5)/(x-β) = (1/√5)(α/(x-α) - β/(x-β)) 

Each term can be expanded as a power series: 1/(x-α) = -1/α · 1/(1-x/α) = -

(1/α) · (1 + x/α + (x/α)² + ...) = -(1/α) · Σ (x/α)ⁿ = -Σ xⁿ/αⁿ⁺¹ 

Similarly: 1/(x-β) = -Σ xⁿ/βⁿ⁺¹ 

Therefore: E(x) = (1/√5)(-α · Σ xⁿ/αⁿ⁺¹ + β · Σ xⁿ/βⁿ⁺¹) = (1/√5)(Σ -xⁿ/αⁿ + Σ 

xⁿ/βⁿ) = (1/√5)Σ xⁿ(1/βⁿ - 1/αⁿ) 

Comparing with the original definition of E(x): Fₙ/n! = (1/√5)(1/βⁿ - 1/αⁿ) 

Thus: Fₙ = (n!/√5)(1/βⁿ - 1/αⁿ) 

This isn't the simplest form. For the standard Fibonacci closed form, the 

ordinary generating function is more elegant, giving: Fₙ = (αⁿ - βⁿ)/√5 = 

(((1+√5)/2)ⁿ - ((1-√5)/2)ⁿ)/√5 

Solved Problem 3: Generating Function for Derangements 

Problem: Find number of derangements of n elements using generating 

functions. 

Derangement is a permutation where no element appears in its original 

position. 

Solution: 

Let Dₙ be number of derangements of n elements. 

For n = 0, there is 1 way to arrange 0 elements (empty arrangement), so D₀ = 

1. For n = 1, there is no way to derange 1 element, so D₁ = 0. 
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Notes For n ≥ 2, we can derive recurrence relation: Dₙ = (n-1)(Dₙ₋₁ + Dₙ₋₂) 

Let's solve this using exponential generating function: D(x) = Σ Dₙxⁿ/n! 

From the recurrence, multiplying by xⁿ/n! & summing for n ≥ 2: Σ Dₙxⁿ/n! = 

Σ (n-1)(Dₙ₋₁ + Dₙ₋₂)xⁿ/n! 

The left side is D(x) - D₀ - D₁x/1! = D(x) - 1 

For the right side, we need to manipulate the terms: (n-1)(Dₙ₋₁ + Dₙ₋₂)xⁿ/n! = 

(n-1)Dₙ₋₁xⁿ/n! + (n-1)Dₙ₋₂xⁿ/n! = Dₙ₋₁xⁿ/(n-1)! · (n-1)/n + Dₙ₋₂xⁿ/(n-2)! · (n-

1)/(n(n-1)) = Dₙ₋₁xⁿ⁻¹·x/(n-1)! · (n-1)/n + Dₙ₋₂xⁿ⁻²·x²/(n-2)! · 1/n = 

Dₙ₋₁xⁿ⁻¹·x/(n-1)! · (1-1/n) + Dₙ₋₂xⁿ⁻²·x²/(n-2)! · 1/n 

Summing over n ≥ 2: Σ (n-1)(Dₙ₋₁ + Dₙ₋₂)xⁿ/n! = x·D'(x) - x·D(x) + x²·D(x) 

Therefore: D(x) - 1 = x·D'(x) - x·D(x) + x²·D(x) D(x) - 1 = x·D'(x) + D(x)(x² 

- x) 

Rearranging: x·D'(x) = D(x)(1 - x² + x) - 1 x·D'(x) = D(x)(1 - x + x²) - 1 

This is a differential equation. The solution is: D(x) = e^(-x)/(1-x) 

Expanding e-x as a power series: D(x) = (1 - x + x²/2! - x³/3! + ...)/(1-x) = (1 

- x + x²/2! - x³/3! + ...)(1 + x + x² + x³ + ...) 

Extracting the coefficient of xⁿ/n!, we get: Dₙ = n!·Σ(-1)ᵏ/k! for k = 0 to n = 

n!(1 - 1/1! + 1/2! - 1/3! + ... + (-1)ⁿ/n!) = n!·Σ(-1)ᵏ/k! for k = 0 to n 

This is the closed form for number of derangements of n elements. 

For large n, approaches n! /e, which means approximately 1/e ≈ 36.8% of all 

permutations are derangements. 

8. Unsolved Problems 

Unsolved Problem 1 

Find the generating function for sequence defined by the recurrence relation: 

a₀ = 1, a₁ = 3, ₙ = 4aₙ₋₁ - 4aₙ₋₂ for n ≥ 2 

Use generating function to find a closed-form expression for aₙ. 

Unsolved Problem 2 

sequence is defined by the recurrence relation: b₀ = 1, b₁ = 2, b₂ = 3, bₙ = 

2bₙ₋₁ - bₙ₋₂ + bₙ₋₃ for n ≥ 3 
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Notes Find the exponential generating function for this sequence and derive 

closed-form expression for bₙ. 

Unsolved Problem 3 

Use generating functions to solve the recurrence relation: c₀ = 1, c₁ = 4, cₙ = 

6cₙ₋₁ - 9cₙ₋₂ for n ≥ 2 

What is the asymptotic growth rate of cₙ as n approaches infinity? 

Unsolved Problem 4 

Find the ordinary generating function for the number of ways to make 

change for n cents using coins of denominations 1, 5, 10, and 25 cents, 

where the order of coins doesn't matter. 

Unsolved Problem 5 

A sequence (dₙ) satisfies the recurrence relation: d₀ = 0, d₁ = 1, dₙ = dₙ₋₁ + 

dₙ₋₂ + n-1 for n ≥ 2 

Find generating function for this sequence and use it to derive closed-form 

expression for dₙ. 

1.3.2 Applications of Recurrence Relations and Generating 

Functions 

Recurrence relations are equations that define a sequence based on previous 

terms in the sequence. They provide a powerful way to represent and solve 

problems in mathematics, computer science, and various real-world 

applications. When we face a problem where each state depends on previous 

states, recurrence relations offer an elegant mathematical framework to 

model and solve such dependencies. 

recurrence relation generally takes form: 

f(an-1, an-2,..., an-k = an 

Where the value of the nth term depends on k previous terms. For example, 

Fibonacci sequence can be expressed using the recurrence relation: 

Fn = Fn-1 + Fn-2, with F0 = 0, F1 = 1 
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Notes Recurrence relations alone can be challenging to solve for large values. This 

is where generating functions come into play, providing a systematic 

approach to solve complex recurrence relations. 

Generating Functions: A Powerful Tool 

A generating function is a formal power series whose coefficients give a 

sequence of numbers. For a sequence {a_0, a_1, a_2, ...}, the ordinary 

generating function is defined as: 

G(x) = a0 + a1x + a2x2 + a3x3+ ... =∑ anxn𝑛≥0   

Generating functions transform recurrence problems from the realm of 

sequences to the realm of functions, where we can leverage algebraic 

techniques to find closed-form expressions. 

Common Types of Generating Functions 

1. Ordinary Generating Functions (OGF)Σ(n≥0) anxn = G(x) 

2. Exponential Generating Functions (EGFG(x) is equal to Σ(n≥0) 

an (xn/n!). 

3. Dirichlet Generating Functions: Σn≥1 an/ns = G(s) 

Solving Recurrence Relations with Generating Functions 

The general approach involves: 

1. Convert the recurrence relation to a functional equation using 

generating functions 

2. Solve the functional equation to find the generating function 

3. Extract coefficient formula from the generating function 

Common Recurrence Relations and Their Solutions 

Arithmetic Sequences 

With a1 = a, the recurrence is an = an-1 + d. (n-1)d + an = an is the closed 

form. 

Geometric Sequences 

With a1 = a, the recurrence is an = r•an-1. Form closed: an = a•rn-1 



 

23 
 

Notes Linear Homogeneous Recurrence Relations with Constant Coefficients 

For a recurrence of the form: an = c1·an-1 + c2·a n-2 + ... + ck·an-k 

The solution involves finding the roots of the characteristic equation: rk –  

c1·r k-1 – c2·r k-2 - ... - ck = 0 

Applications in Various Fields 

Computer Algorithms 

1. Analysis of Recursive Algorithms 

Many algorithms use recursion, which naturally leads to recurrence 

relations. For example, the time complexity of the binary search algorithm 

can be expressed as: 

T(n) = T(n/2) + c 

This recurrence relation can be solved to find that T(n) = O(log n). 

2. Divide and Conquer Algorithms 

Algorithms like Merge Sort have time complexities expressed as: 

T(n) = 2T(n/2) + O(n) 

Using the Master Theorem (which is derived from recurrence relations), we 

find T(n) = O(n log n). 

Combinatorial Problems 

1. Counting Problem Structures 

The number of ways to arrange objects, select committees, or distribute 

items often lead to recurrence relations. 

For example, the number of ways to tile a 2×n rectangle with 2×1 dominoes 

follows the Fibonacci recurrence: 

T(n) = T(n-1) + T(n-2) 

2. Catalan Numbers 

Catalan numbers appear in numerous counting problems and follow the 

recurrence: 

Cn = ∑ Ci · Cn − 1 − i𝑛−1
𝑖=0 , with C0 = 1 
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Notes The generating function for Catalan numbers is: 

C(x) = (1 - √(1 - 4x))/(2x) 

 

Financial Mathematics 

1. Compound Interest 

If Pn represents the principal after n periods with interest rate r, we have: 

Pn = Pn-1(1 + r) = P0(1 + r)n 

2. Mortgage Payments 

For a mortgage with principal P, interest rate r per period, and n total 

periods, the recurring payment A satisfies: 

P = A·[1 - (1 + r)-n]/r 

Population Dynamics 

1. The Fibonacci Model for Rabbit Population 

The classic Fibonacci sequence originally modeled rabbit population 

growth. 

2. Logistic Growth Model 

For a population with carrying capacity K and growth rate r: 

Pn = P{n-1} + r·P{n-1}·(1 - P{n-1} /K) 

Physics and Engineering 

1. Harmonic Oscillators 

The position of a mass on a spring can be modeled by recurrence relations. 

2. Signal Processing 

Digital filters often use recurrence relations to process signals. 

Solved Problems 

Problem 1: Fibonacci Sequence Using Generating Functions 

Problem: Find a closed-form expression for the Fibonacci sequence Fn 

defined by F0 = 0, F1 = 1, and Fn = F{n-1} + F{n-2} for n ≥ 2. 
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Notes Solution: 

Step 1: Define the generating function F(x) =  ∑n≥0  Fnxn 

 

Step 2: Multiply the recurrence relation by xn and sum for n ≥ 2: Σ(n≥2) 

 Fnxn = Σ(n≥2) F(n-1) xn + Σ(n≥2) F(n-2) xn 

Step 3: Rewrite in terms of F(x): F(x) - F0 - F1x = x(F(x) - F0) + x2·F(x) 

Step 4: Substitute F0 = 0, F1 = 1: F(x) - x = x·F(x) + x2·F(x) 

Step 5: Solve for F(x): F(x) - x = F(x)(x + x2) F(x) - F(x)(x + x2) = x F(x)(1 - 

x - x2) = x F(x) = x/(1 - x - x2) 

Step 6: Using partial fraction decomposition or the binomial theorem, we 

can show that: F(x) = (1/√5)·[1/(1 - αx) - 1/(1 - βx)] 

Where α = (1 + √5)/2 and β = (1 - √5)/2. 

Step 7: Expanding as a power series gives: F(x) = (1/√5)·[Σ(n≥0) αn xn - 

Σ(n≥0) βn xn] 

Step 8: Therefore, the closed-form expression for the nth Fibonacci number 

is: Fn = (1/√5)·[αn - βn] = (1/√5)·[(1 + √5)n/2n - (1 - √5)n/2n] 

This is known as Binet's formula. 

Problem 2: Tower of Hanoi 

Problem: Find the minimum number of moves required to solve the Tower 

of Hanoi puzzle with n disks. 

Solution: 

Step 1: Let Tn be the minimum number of moves needed for n disks. 

Step 2: For n = 1, we only need one move, so T1 = 1. 

Step 3: For n ≥ 2, we need to: 

• Move n-1 disks from source to auxiliary (T(n-1) moves) 

• Move the largest disk from source to destination (1 move) 

• Move n-1 disks from auxiliary to destination (T(n-1) moves) 
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Notes Step 4: This gives us the recurrence relation: Tn = 2· T(n-1)  + 1, with T1 = 1 

Step 5: Define the generating function G(x) = Σ(n≥1) Tnx
n 

 

Step 6: Multiply the recurrence by xn and sum for n ≥ 2: Σ(n≥2) Tnx
n = 

2·Σ(n≥2) T_{n-1} xn + Σ(n≥2) xn 

Step 7: Rewrite in terms of G(x): G(x) - T1x = 2x·G(x) + x2/(1-x) 

Step 8: Substitute T1 = 1: G(x) - x = 2x·G(x) + x2/(1-x) 

Step 9: Solve for G(x): G(x) - 2x·G(x) = x + x2/(1-x) G(x)(1 - 2x) = x + 

x2/(1-x) G(x) = [x + x2/(1-x)]/(1 - 2x) G(x) = [x(1-x) + x2]/(1-x)(1-2x) G(x) 

= x/(1-x)(1-2x) 

Step 10: Using partial fraction decomposition: G(x) = 1/(1-2x) - 1/(1-x) 

Step 11: Expand as power series: G(x) = Σ(n≥0) (2n)xn - Σ(n≥0) xn = Σ(n≥1) 

(2n - 1)xn 

Step 12: Therefore, Tn = 2n - 1. 

So, the minimum number of moves required to solve the Tower of Hanoi 

puzzle with n disks is 2n - 1. 

Problem 3: Catalan Numbers 

Problem: The Catalan numbers Cn satisfy the recurrence relation C_0 = 1 

and Cn = ∑ Ci · C(n − 1 − i)i=0
n−1  for n ≥ 1. Find a closed-form expression for 

Cn. 

Solution: 

Step 1: Define the generating function C(x) = Σ(n≥0) Cnx
n 

Step 2: Multiply the recurrence by xn and sum for n ≥ 1: Σ(n≥1) Cnx
n = 

Σ(n≥1) ∑ Ci · C(n − 1 − i)i=0
n−1  xn 

Step 3: The right side is the coefficient of xn in [C(x)]2, except for the 

constant term. Thus: C(x) - C0 = x·[C(x)]2 

Step 4: Substitute C0 = 1: C(x) - 1 = x·[C(x)]2 

Step 5: Rearrange to get a quadratic equation: x·[C(x)]2 - C(x) + 1 = 0 
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Notes Step 6: Solve for C(x) using the quadratic formula: C(x) = [1 ± √(1 - 4x)]/2x 

Step 7: Since C(0) = C0 = 1, we must choose the solution: C(x) = [1 - √(1 - 

4x)]/2x 

Step 8: Using the binomial theorem to expand √(1 - 4x): √(1 - 4x) = Σ(k≥0) 

(1/2 choose k)(-4x)^k 

Step 9: After algebraic manipulation, we get: C(x) = Σ(n≥0) (1/(n+1))(2n 

choose n)xn 

Step 10: Therefore, the closed-form expression for the nth Catalan number 

is: Cn = (1/(n+1))(2n choose n) = (2n)!/((n+1)!·n!) 

This formula confirms that the Catalan numbers appear in many counting 

problems, such as the number of valid parenthesizations of n+1 factors, the 

number of triangulations of a convex polygon with n+2 sides, and many 

others. 

Problem 4: Derangements 

Problem: A derangement is a permutation where no element appears in its 

original position. Let Dn be the number of derangements of n elements. Find 

a recurrence relation and generating function for Dn. 

Solution: 

Step 1: For n = 1, there are no derangements, so D_1 = 0. For n = 2, there is 

one derangement: (2,1), so D_2 = 1. 

Step 2: For n ≥ 3, consider element 1. It can be placed in any of the n-1 

positions 2, 3, ..., n. If 1 goes to position i, we have two cases: 

• Element i goes to position 1 (forming a 2-cycle). The remaining n-2 

elements must be deranged, giving D(n-2) possibilities. 

• Element i does not go to position 1. This is equivalent to deranging 

n-1 elements (excluding position 1), giving D(n-1) possibilities. 

Step 3: This gives us the recurrence relation: Dn = (n-1)(D (n-1)+ D(n-2), with 

D1 = 0, D2 = 1 

Step 4: This can be simplified to: Dn = n·D(n-1) + (-1)n 

Step 5: Define the exponential generating function D(x) = Σ(n≥0) Dn (xn/n!) 
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Notes Step 6: Multiply the recurrence by xn/n! and sum: Σ(n≥2) Dn (xn/n!) = 

Σ(n≥2) n·D(n-1) (xn/n!) + Σ(n≥2) (-1)n (xn/n!) 

 

Step 7: Simplify: D(x) - D0 - D1x = x·D'(x) + e(-x) - 1 - x 

Step 8: Substitute D0 = 1, D1 = 0: D(x) - 1 = x·D'(x) + e(-x) - 1 - x 

Step 9: Rearrange: D(x) - x·D'(x) = e(-x) 

Step 10: This is a first-order linear differential equation. The solution is: 

D(x) = e(-x)/(1-x) 

Step 11: Expanding e(-x) and 1/(1-x) as series: D(x) = [Σ(k≥0) (-1)k (xk/k!)] · 

[Σ(m≥0) xm] 

Step 12: The coefficient of xn/n! in D(x) gives us: Dn = n! · Σ(k=0 to n)  

(-1)k / k! 

Step 13: Therefore: Dn = n! · Σ(k=0 to n) (-1)k / k! = n! · (1 - 1 + 1/2! - 1/3! 

+ ... + (-1)n/n!) 

Step 14: As n approaches infinity, this sum approaches e^(-1). Thus, for 

large n: Dn ≈ n!/e (rounded to the nearest integer) 

This is an example of the "nearest integer function" and shows that the 

probability of a random permutation being a derangement approaches 1/e as 

n increases. 

Problem 5: Recurrence Relation for Binary Strings 

Problem: Let an be the number of binary strings of length n that do not 

contain "11" as a substring. Find a recurrence relation and closed-form 

expression for an. 

Solution: 

Step 1: For n = 1, the possible strings are "0" and "1", so a1 = 2. For n = 2, 

the possible strings are "00", "01", and "10" (excluding "11"), so a2 = 3. 

Step 2: For n ≥ 3, consider the last two characters of a valid string: 

• If the string ends with "00", removing these gives a valid string of 

length n-2, so there are a(n-2) such strings. 
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Notes • If the string ends with "01", removing these gives a valid string of 

length n-2, so there are a(n-2) such strings. 

• If the string ends with "10", removing these gives a valid string of 

length n-2, so there are a(n-2) such strings. 

• The string cannot end with "11" by definition. 

Step 3: This gives us the recurrence relation: a_n = a(n-1) + a(n-2), with a1 = 2, 

a2 = 3 

Step 4: Define the generating function A(x) = Σ(n≥0) a_nxn, with a0 = 1. 

Step 5: Multiply the recurrence by xn and sum for n ≥ 3: Σ(n≥3) anx
n = 

Σ(n≥3) a(n-1) xn + Σ(n≥3) a(n-2) xn 

Step 6: Rewrite in terms of A(x): A(x) - a0 - a1x - a2x2 = x(A(x) - a0 - a1x) + 

x2A(x) 

Step 7: Substitute a_0 = 1, a1 = 2, a2 = 3: A(x) - 1 - 2x - 3x2 = x(A(x) - 1 - 

2x) + x2A(x) 

Step 8: Solve for A(x): A(x) - 1 - 2x - 3x2 = xA(x) - x - 2x2 + x2A(x) A(x) - 

xA(x) - x2A(x) = 1 + 2x + 3x2 - x - 2x2 A(x)(1 - x - x2) = 1 + x + x2 A(x) = (1 

+ x + x2)/(1 - x - x2) 

Step 9: The denominator 1 - x - x2 is the same as in the Fibonacci generating 

function. Using partial fraction decomposition: A(x) = (1 + x + x2)/[(1 - 

αx)(1 - βx)] 

Where α = (1 + √5)/2 and β = (1 - √5)/2. 

Step 10: After further algebraic manipulation, we get: an = [(α^(n+2) - 

β^(n+2))/(α - β)] - [(α^n - β^n)/(α - β)] 

Step 11: This can be simplified to: an = F(n+2) + Fn 

Where Fn is the nth Fibonacci number. 

Therefore, the number of binary strings of length n without consecutive 1's 

is given by an = F(n+2) + Fn, which can be computed using Binet's formula for 

Fibonacci numbers. 

Unsolved Problems 

Problem 1: Tribonacci Sequence 
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Notes The Tribonacci sequence is defined by T0 = 0, T1 = 1, T2 = 1, and Tn = T(n-1) 

+ T(n-2) + T(n-3) for n ≥ 3. 

Find a closed-form expression for Tn using generating functions. 

Problem 2: Coin Change Problem 

Let cn be the number of ways to make change for n cents using coins of 

denominations 1, 5, 10, and 25 cents. Find a recurrence relation and 

generating function for cn. 

Problem 3: Binomial Coefficients 

Using generating functions, prove the identity: 

Σ(k=0 to n) (n choose k)^2 = (2n choose n) 

Problem 4: Partition Numbers 

Let p(n) be the number of ways to write n as a sum of positive integers 

(where order doesn't matter). Find a recurrence relation and generating 

function for p(n). 

Problem 5: Random Walks 

Consider a random walk on the integer number line, starting at position 0. At 

each step, you move one unit left or right with equal probability. Let p_n be 

the probability of being back at position 0 after 2n steps. Find a recurrence 

relation and generating function for p_n. 

Advanced Applications 

Matrix Methods for Recurrence Relations 

For a linear recurrence relation of order k: 

an = c1·a(n-1) + c2·a(n-2) + ... + ck·a(n-k) 

We can express it in matrix form: 

[an, a(n-1), ..., a(n-k+1)]T = A · [a(n-1), a(n-2), ..., a(n-k)]T 

Where A is the companion matrix: 

A = [c1 c2 ... c(k-1) ck; 1 0 ... 0 0; 0 1 ... 0 0; . . ... . .; 0 0 ... 1 0] 

Then, an can be computed using matrix exponentiation: 
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Notes [an, a(n-1), ..., a(n-k+1)
T = A(n-k+1) · [a(k-1), a(k-2), ..., a0]T 

Asymptotic Analysis 

For large n, we often care about the asymptotic behavior of sequences. If a 

sequence a_n satisfies a linear recurrence relation with constant coefficients, 

then: 

an ~ C·rn 

Where r is the dominant root of the characteristic equation (the root with the 

largest absolute value), and C is a constant that depends on the initial 

conditions. 

This asymptotic behavior is crucial in algorithm analysis, as it determines 

the efficiency of recursive algorithms. 

Recurrence Relations in Number Theory 

Number theory is rich with sequences defined by recurrence relations. The 

study of these sequences reveals deep connections between different areas of 

mathematics. 

For instance, the number of partitions p(n) mentioned earlier satisfies Euler's 

pentagonal number theorem: 

p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + p(n-12) + p(n-15) - ... 

Where the differences 1, 2, 5, 7, 12, 15, ... follow the pattern of generalized 

pentagonal numbers. 

Nonlinear Recurrence Relations 

Not all recurrence relations are linear. For example, the logistic map: 

x(n+1) = r·xn·(1 - xn) 

Is a nonlinear recurrence relation that exhibits complex behavior, including 

chaos for certain values of r. 

Techniques for solving nonlinear recurrence relations often involve: 

• Linearization through substitution 

• Asymptotic analysis 

• Numerical methods 
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Notes • Specialized techniques for particular forms 

1.3.3: Linear Homogeneous Recurrence Relations  

Linear homogeneous recurrence relations (LHRRs) expressed as a(n) = 

c₁a(n-1) + c₂a(n-2) + ... + cₖa(n-k), where the coefficients cᵢ are constants, 

serve as robust mathematical instruments for modeling systems in which 

each state is linearly dependent on a predetermined number of preceding 

states. Their practical applications encompass various domains, illustrating 

how these sophisticated mathematical constructs tackle intricate real-world 

problems.  

In financial markets, trading algorithms utilize LHRRs to identify market 

patterns and produce signals. The Moving Average Convergence Divergence 

(MACD) is a widely utilized technical indicator that calculates the 

difference between exponential moving averages at varying time intervals, 

hence employing a linear recurrence relation. The exponential moving 

average adheres to the recurrence relation EMA(n) = α×Price(n) + (1-

α)×EMA(n-1), with α representing the smoothing factor. Quantitative 

analysts at hedge funds build upon this foundation by devising intricate 

trading techniques that utilize various recurrence relations to detect market 

inefficiencies and produce alpha. Algorithmic trading systems analyze price 

relationships using mathematical structures to make millisecond decisions, 

which collectively represent over 70% of trading volume on major 

exchanges, illustrating how mathematical recursion directly influences 

capital allocation in global economies.  

Structural engineers utilize LHRRs to assess the dynamic response of 

structures to seismic activity and wind forces. The displacement of each 

floor in a multi-story building can be represented as a system of 

interconnected linear recurrence relations, with each level's movement 

influenced by the forces conveyed from neighboring floors. By solving these 

systems, engineers determine natural frequencies and mode shapes that 

influence design decisions about structural reinforcement and damping 

systems. This application preserves lives by facilitating the development of 

robust structures in seismic regions. The recurrence model captures how 

vibrations propagate through connected structural elements, allowing 

engineers to predict and mitigate potentially catastrophic resonance effects 

before construction begins.  



 

33 
 

Notes In digital audio processing, linear predictive coding (LPC) employs LHRRs 

to compress speech signals for efficient transmission. LPC represents the 

human vocal tract as a time-varying filter defined by a linear recurrence 

relation, wherein each audio sample is forecasted as a linear combination of 

preceding samples: s(n) = Σ(aᵢ×s(n-i)) for i from 1 to p, with p denoting the 

prediction order. This technology reduces the data rate necessary for voice 

transmission by more than 75%, enabling clear cellular conversations even 

in bandwidth-constrained areas. Modern voice assistants like Siri and Alexa 

use refined versions of these algorithms to process speech inputs, 

demonstrating how recurrence relations make intuitive human-computer 

interaction possible.Industrial process control systems frequently utilize 

proportional-integral-derivative (PID) controllers, which can be represented 

as linear recurrence relations. The control signal u(n) is determined by the 

equation u(n) = u(n-1) + Kₚ(e(n) - e(n-1)) + Kᵢe(n) + Kd(e(n) - 2e(n-1) + e(n-

2)), where e(n) denotes the error at time step n, and Kₚ, Kᵢ, and Kd signify 

the proportional, integral, and derivative gains, respectively. This recurrence 

relation enables precise temperature regulation in pharmaceutical 

manufacturing, consistent product quality in food processing, and efficient 

energy usage in climate control systems. The mathematical framework 

allows controllers to anticipate system behavior and compensate for 

disturbances, maintaining stable operations in complex industrial 

environments.  

Population genetics research employs LHRRs to model the propagation of 

genetic traits through generations. The Wright-Fisher model, fundamental to 

understanding genetic drift, uses a linear recurrence relation to describe how 

allele frequencies change in populations of fixed size. The probability 

distribution of allele counts in generation n+1 is linearly dependent on the 

distribution in generation n, adhering to recurrence relations that account for 

selection pressures and mutation rates. Researchers employ these models to 

comprehend the dissemination of advantageous mutations among 

populations, thereby guiding conservation tactics for endangered species and 

selective breeding initiatives in agriculture. By resolving these recurrence 

links, geneticists can ascertain the minimal sustainable population size 

required to sustain genetic variety, thereby directly influencing wildlife 

management practices.In computer graphics, subdivision algorithms for 

curve and surface generation utilize LHRRs to produce smooth shapes from 
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Notes coarse control meshes. The Chaikin method, which builds quadratic B-spline 

curves, follows the recurrence relation where each new point is a linear 

combination of two neighboring points from the previous iteration: pᵢ(k+1) = 

3/4×pᵢ(k) + 1/4×pᵢ₊₁(k) and pᵢ₊₁/₂(k+1) = 1/4×pᵢ(k) + 3/4×pᵢ₊₁ (k). This mathematical 

method enables the construction of realistic 3D models in films and video 

games, smooth font rendering in digital typography, and exact tool path 

generation for computer-aided manufacturing. The recursive structure 

enables designers to utilize basic control shapes while automatically 

producing the smooth curves essential for visually appealing and 

aerodynamically efficient designs.  

Quantum physics incorporates LHRRs in computational models for time-

evolution of quantum systems. The discrete-time Schrödinger equation, used 

in quantum simulations, can be represented as a linear recurrence relation 

ψ(n+1) = (I - iH)ψ(n), where ψ represents the quantum state vector, H is the 

Hamiltonian matrix, and I is the identity matrix. This formulation facilitates 

the simulation of quantum systems for materials science research, 

pharmaceutical discovery, and the advancement of quantum computer 

methods. By solving these recurrence relations efficiently, researchers can 

predict material properties without expensive physical experiments, 

accelerating the development of new technologies from superconductors to 

pharmaceutical compounds.In communications engineering, convolutional 

codes for error correction implement LHRRs to generate redundant bits that 

protect data against transmission errors. Each output bit is determined as a 

linear mixture of the current input bit and multiple preceding input bits, 

adhering to a recurrence relation specified by the code's generator 

polynomials. These codes enable reliable communication over noisy 

channels in satellite transmissions, deep space communications, and cellular 

networks. The mathematical framework facilitates fast encoding and 

decoding algorithms that attain near-Shannon-limit performance, optimizing 

data throughput while ensuring dependability in demanding communication 

contexts.Machine learning algorithms frequently incorporate LHRRs in their 

architecture. Linear autoregressive models predict time series data by 

expressing each value as a linear combination of previous values: y(t) = 

φ₁y(t-1) + φ₂y(t-2) + ... + φₚy(t-p) + ε(t), where φᵢ are the model parameters 

and ε(t) is white noise. These models project electricity demand for power 

grid administration, estimate seasonal product sales for inventory 



 

35 
 

Notes management, and predict financial market fluctuations for risk assessment. 

The mathematical framework facilitates efficient parameter estimation by 

proven approaches such as least squares, rendering these models effective 

instruments for business planning and resource allocation. 

Digital filters in signal processing implement LHRRs to remove noise, 

extract features, or modify frequency components of signals. Infinite 

impulse response (IIR) filters calculate each output sample y(n) as a linear 

combination of previous outputs and inputs: y(n) = Σ(bᵢ×x(n-i)) - Σ(aⱼ×y(n-

j)) for i from 0 to M and j from 1 to N. These filters provide noise 

cancellation in hearing aids, equalization in audio production, and signal 

conditioning in medical devices that monitor vital signs. By selecting 

appropriate coefficients in the recurrence relation, engineers can create 

filters with precise frequency responses that enhance desirable signal 

components while attenuating interference. Economic forecasting models 

employ vector autoregression (VAR), a multivariate extension of linear 

recurrence connections where each variable depends on lagged values of 

itself and all other variables in the system. Central banks use these models to 

predict how policy changes will affect inflation, unemployment, and 

economic growth, informing decisions that impact millions of lives. The 

mathematical structure allows economists to quantify correlations between 

economic indicators and simulate alternative policy scenarios, giving data-

driven direction for monetary and fiscal policy decisions. The varied 

applications of linear homogeneous recurrence relations illustrate their 

adaptability as modeling instruments across several fields. Financial 

algorithms that allocate capital and engineering systems that guarantee 

structural safety utilize mathematical frameworks to comprehend and 

regulate complex systems with memory. By articulating dynamic linkages 

via recurrence relations, practitioners acquire analytical insights that 

immediately inform practical solutions for real-world situations.  

1.3.4: Non-Homogeneous Recurrence Relations 

Non-homogeneous recurrence relations are defined by the equation a(n) = 

c₁a(n-1) + c₂a(n-2) + ... + cₖa(n-k) + f(n), where f(n) is a non-zero function, 

offers robust mathematical frameworks for modeling systems influenced by 

external inputs or pressures. Unlike their homogenous counterparts, these 

connections feature driving words that represent external influences, making 

them particularly appropriate for practical applications where systems 
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Notes respond to changing conditions or external stimuli. In epidemiological 

modeling, non-homogeneous recurrence relations elucidate the dynamics of 

disease transmission under diverse intervention tactics. The standard SIR 

(Susceptible-Infected-Recovered) model becomes non-homogeneous when 

incorporating vaccination campaigns or seasonal variations in transmission 

rates. The revised equation I(t+1) = (1+r)I(t) - rI(t-1) + v(t), where I(t) 

denotes the number of infected individuals at time t, r signifies the 

reproduction rate, and v(t) represents the time-dependent vaccination 

function, enables public health officials to model the effects of vaccination 

schedules on disease progression. Throughout the COVID-19 pandemic, 

these models informed decisions regarding lockdown timing and vaccine 

distribution strategies, illustrating the direct impact of mathematical 

recursion on public health policy. By solving these non-homogeneous 

recurrence relations, epidemiologists projected infection peaks and 

healthcare system capacity requirements, helping hospitals prepare proper 

staffing and equipment levels to save lives. Environmental engineers utilize 

non-homogeneous recurrence relations to model pollution concentrations in 

water bodies affected by fluctuating discharge rates. The concentration C(t) 

in a reservoir may be expressed as C(t) = αC(t-1) + βQ(t), where α denotes 

natural degradation and Q(t) signifies the pollutant inflow function. This 

framework enables water quality managers to establish discharge limits for 

industrial facilities and predict how proposed development projects might 

affect ecosystem health. Engineers build treatment systems with adequate 

capability to manage seasonal fluctuations in pollutant loads, safeguarding 

aquatic habitats while facilitating sustainable economic development. The 

mathematical technique enables for optimizing treatment infrastructure 

investments, combining environmental protection with financial restrictions.  

In renewable energy management, battery storage systems are characterized 

by non-homogeneous recurrence relations, where the state of charge is 

defined by E(t+1) = αE(t) + η(P(t) - L(t)), with E(t) denoting stored energy, 

α representing the self-discharge rate, η indicating charging efficiency, P(t) 

signifying time-varying power generation from renewable sources, and L(t) 

reflecting load demand. This framework enables grid operators to enhance 

battery dispatch algorithms, optimizing renewable energy use while ensuring 

system stability. Energy businesses use these models to estimate ideal 

battery sizing for solar and wind installations, balancing capital costs against 
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Notes performance benefits. The recurrence relation captures how varying weather 

conditions affect renewable generation patterns, enabling reliable integration 

of intermittent resources into power grids. Pharmacokinetic models employ 

non-homogeneous recurrence relations to describe drug concentration in 

different body compartments following variable dosing schedules. The 

equation C(t) = e(-kt)C(t-1) + D(t)/V, where C(t) represents drug 

concentration, k denotes the elimination rate constant, D(t) signifies the 

dosing function, and V indicates the volume of distribution, allows 

physicians to formulate individualized prescription regimens for patients 

experiencing fluctuating clinical circumstances. This mathematical 

framework supports precision medicine approaches for cancer 

chemotherapy, antibiotic treatments, and pain management. By resolving 

these relationships, clinical decision support systems propose dosage 

modifications that sustain therapeutic medication concentrations while 

reducing adverse effects, so enhancing patient outcomes.  

In financial planning, retirement account balances under variable 

contribution strategies adhere to non-homogeneous recurrence relations B(t) 

= (1+r)B(t-1) + C(t), where B(t) denotes the balance at time t, r signifies the 

return rate, and C(t) represents the time-dependent contribution function. 

Financial advisors employ these models to construct lifecycle investment 

strategies that modify contribution rates according to career phases and 

market dynamics. The mathematical approach facilitates the stress testing of 

retirement plans against diverse market situations, pinpointing 

vulnerabilities and suggesting modifications prior to the onset of financial 

distress. By resolving these relationships, robo-advisors offer automated 

counsel that assists individuals in preparing for retirement amid 

unpredictable future market returns. Inventory management systems 

implement non-homogeneous recurrence relations to optimize stock levels 

under seasonal demand patterns. The inventory level I(t) follows I(t) = I(t-1) 

+ Q(t) - D(t), where Q(t) is the ordering function and D(t) is the forecasted 

demand function. This framework enables retailers to implement just-in-

time ordering strategies that minimize holding costs while avoiding 

stockouts during demand peaks. The mathematical methodology enhances 

efficient supply chain operations for products characterized by brief shelf 

lives or elevated holding costs, thereby augmenting profitability and 

minimizing waste. By resolving these equations with suitable constraints, 

inventory management algorithms reconcile the conflicting goals of cost 
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Notes reduction, service level requirements, and warehouse capacity restrictions. 

Project management tools employ non-homogeneous recurrence relations to 

represent resource allocation amidst fluctuating priorities. The resource 

availability function R(t) = R(t-1) - A(t-1) + F(t), where A(t-1) represents 

previously allocated resources and F(t) is the function of newly freed 

resources, helps project managers optimize team assignments across 

multiple concurrent projects. This mathematical framework supports agile 

development approaches where requirements and priorities fluctuate during 

the project lifecycle. By solving these equations with proper constraints, 

project scheduling algorithms discover crucial pathways and resource 

bottlenecks, enabling proactive interventions to maintain projects on 

schedule despite changing conditions. 

Adaptive filtering methods utilize non-homogeneous recurrence relations to 

process data exhibiting time-varying features. The filter coefficients are 

defined by the equation w(t) = w(t-1) + μe(t)x(t), where w(t) denotes the 

coefficient vector, μ signifies the adaptation rate, e(t) represents the error 

signal, and x(t) indicates the input signal vector. This framework enables 

noise canceling headphones to adjust to diverse settings, radar systems to 

follow moving targets, and communication systems to compensate for 

changing channel circumstances. The mathematical approach allows filters 

to continually optimize their performance as signal characteristics evolve, 

providing robust operation in dynamic environments. Digital signal 

processors employ adaptive algorithms to enhance signals and eliminate 

interference in real-time applications, ranging from medical monitoring to 

autonomous car sensing. In irrigation control systems, soil moisture levels 

follow non-homogeneous recurrence relations M(t) = αM(t-1) - ET(t) + I(t) 

+ R(t), where M(t) represents moisture content, α is the retention factor, 

ET(t) is evapotranspiration, I(t) is irrigation input, and R(t) is rainfall. This 

framework enables precision agriculture systems to optimize water usage 

based on weather forecasts and crop requirements. The mathematical 

technique supports sustainable farming practices that optimize production 

while decreasing water consumption, particularly crucial in water-stressed 

countries. By solving these relations with appropriate constraints, smart 

irrigation controllers determine optimal watering schedules that maintain 

plant health while avoiding runoff and deep percolation losses.  

Machine learning algorithms for online learning implement non-
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Notes homogeneous recurrence relations to update model parameters as new data 

arrives. The stochastic gradient descent update rule is expressed as θ(t) = θ(t-

1) - η∇L(θ(t-1), x(t)), where θ(t) denotes the parameter vector, η signifies the 

learning rate, ∇L indicates the gradient of the loss function, and x(t) 

represents the input data point at time t. This framework enables 

recommendation systems to adapt to changing user preferences, fraud 

detection systems to identify emerging attack patterns, and natural language 

processing models to incorporate new vocabulary. The mathematical 

approach allows models to continuously improve their performance without 

requiring complete retraining, supporting efficient deployment in dynamic 

environments. By successfully resolving these relationships at scale, 

machine learning systems deliver tailored experiences that adjust to 

individual behaviors and preferences.  

Traffic management systems utilize non-homogeneous recurrence relations 

to represent vehicle flow under diverse settings. The vehicle density ρ(x,t) 

on a road segment is governed by the equation ρ(x,t+1) = ρ(x,t) - [f(ρ(x,t)) - 

f(ρ(x-Δx,t))] + S(x,t), where f(ρ) denotes the flow-density relationship and 

S(x,t) signifies sources and sinks from entrance and departure ramps. This 

framework enables intelligent transportation systems to optimize signal 

timing, ramp metering, and variable speed limits based on current 

conditions. The mathematical framework facilitates congestion management 

strategies that diminish travel durations and emissions in urban 

environments. Traffic control centers utilize real-time solutions to these 

relations, employing adaptive algorithms that react to incidents, special 

events, and weather conditions, thereby enhancing mobility in intricate 

transportation networks.  

The diverse applications of non-homogeneous recurrence relations 

demonstrate their value for modeling real-world systems with external 

inputs or time-varying parameters. From public health interventions to 

adaptive machine learning algorithms, these mathematical structures provide 

frameworks for understanding and controlling complex systems that respond 

to changing conditions. By expressing dynamic relationships through non-

homogeneous recurrence relations, practitioners gain analytical tools that 

translate directly into practical solutions for evolving challenges across 

numerous fields  

Multiple-Choice Questions (MCQs) 
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Notes 1. What is a recurrence relation? 

a) A sequence with a fixed value 

b) A formula that defines each term of a sequence using previous 

terms 

c) A function that generates random numbers 

d) A method for solving equations 

2. Which of the following is an example of a linear homogeneous 

recurrence relation? 

a) an=2an−1+3 

b) an=3an−1−2 

c) an=an−1+n 

d) an=a2+2 

3. Fibonacci sequence is defined by which recurrence relation? 

a) Fn=2Fn−1+1 

b) Fn =Fn−1+Fn−1 

c) Fn =Fn−1−Fn−2 

d) Fn =nFn−1 

4. Exponential generating functions differ from ordinary 

generating functions because: 

a) They include exponential terms 

b) They are only used for Fibonacci numbers 

c) They generate non-recursive sequences 

d) They are used for solving algebraic equations 

5. A recurrence relation is said to be non-homogeneous if it: 

a) Has constant coefficients 

b) Contains a non-zero function term 

c) Has a solution in exponential form 

d) Does not have an explicit formula 

6. The characteristic equation of recurrence relation                    

an−3 an−1+2an−2=0 an – 3 a(n-1)+ 2a(n-2) = 0, an−3 a n−1+2a n−2=0 is: 

a) x2−3x+2=0 

b) x2+3x−2=0 

c) x2−x+3=0 

d) x2+2x−3=0 
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Notes 7. Which of the following sequences follows the recurrence relation 

an=an−1+2? 

a) 1,3,5,7,9,... 

b) 2,4,8,16,32,... 

c) 1,1,2,3,5,... 

d) 1,2,4,8,16,... 

8. A closed-form solution of a recurrence relation means: 

a) A solution without summation signs 

b) A solution with at least one recurrence term 

c) A solution using limits 

d) A solution that is always infinite 

9. The recurrence relation an=2an−1+5 is an example of: 

a) Homogeneous recurrence relation 

b) Non-homogeneous recurrence relation 

c) Generating function 

d) Fibonacci sequence 

Short Answer Questions 

1. Define recurrence relation with an example. 

2. What is the difference between homogeneous and non-

homogeneous recurrence relations? 

3. Give an example of a number sequence and its recurrence relation. 

4. What is the significance of generating functions in solving 

recurrence relations? 

5. Define exponential generating functions and their applications. 

6. Write the recurrence relation for Fibonacci sequence. 

7. What is a characteristic equation, and how is it used in solving 

recurrence relations? 

8. How do you find the closed-form solution of a recurrence relation? 

9. Give an example of a recurrence relation that is non-homogeneous. 

10. Explain the role of generating functions in combinatorial counting 

problems. 



  

42 
 

Notes Long Answer Questions 

1. Explain in detail the different types of recurrence relations with 

examples. 

2. Describe how to solve linear homogeneous recurrence relations 

using the characteristic equation method. 

3. What are generating functions? Explain their role in recurrence 

relations with examples. 

4. Compare and contrast ordinary generating functions and exponential 

generating functions. 

5. Solve the recurrence relation an=2an−1+3with a0=1. 

6. Explain the Fibonacci sequence and derive its closed-form formula. 

7. Discuss the applications of recurrence relations in computer science 

and real-life problems. 

8. Define and explain the use of the Karnaugh method in Boolean 

algebra. 
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 Logical Connectives

• p, q, r, s, ... typically represent simple statements

Statement Variables

statements themselves and the logical operations that connect them.

To  work  efficiently  with  statements,  we  use  symbols  to  represent  both  the 

Symbolic Representation

an umbrella."

using logical connectives. Example: "It is raining and I am carrying 

Compound  statements:  Formed  by  combining  simple  statements 2.

further. Example: "The sun rises in the east."

Simple statements: Basic declarations that cannot be broken down 1.

Types of Statements

logic.

fundamental to logical reasoning and forms the foundation of propositional 

that  is  either  true  or  false,  but  not  both.  Understanding  statements  is 

In  mathematical  logic,  a  statement  (or  proposition)  is  declarative  sentence 

2.1.1: Introduction to Statements and Symbolic Representation

  complemented, and distributive lattices.

• To  examine  different  types  of  lattices,  such  as  complete,

• To analyze lattices as algebraic systems.

• To study lattices as partially ordered sets and their properties.

• To explore propositional logic and its applications.

• To learn about tautologies, quantifiers, and predicates.

  representation.

• To  understand  the  concept  of  statements  and  their  symbolic

Objectives

Statements Symbolic Representation and Tautologies

UNIT 2.1

MODULE 2
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Notes 1. Negation (NOT): ~p or ¬p Meaning: "It is not the case that p" 

Example: If p: "It is raining", then ~p: "It is not raining" 

2. Conjunction (AND): p ∧ q Meaning: "Both p and q" Example: If p: 

"It is cold" & q: "It is windy", then p ∧ q: "It is cold and windy" 

3. Disjunction (OR): p ∨ q Meaning: "Either p or q or both" Example: 

If p: "I will study math" and q: "I will study physics", then p ∨ q: "I 

will study math or physics (or both)" 

4. Conditional (IF-THEN): p → q Meaning: "If p, then q" Example: 

If p: "It rains" and q: "The ground gets wet", then p → q: "If it rains, 

then the ground gets wet" 

5. Biconditional (IF AND ONLY IF): p ↔ q Meaning: "p if and only 

if q" Example: If p: "The triangle has three equal sides" and q: "The 

triangle is equilateral", then p ↔ q: "The triangle has three equal 

sides if and only if it is equilateral" 

Truth Tables 

Truth tables display all possible truth values for compound statements based 

on the truth values of their components. 

Truth Table for Negation (~p) 

p ~p 

T F 

F T 

Truth Table for Conjunction (p ∧ q) 

p q p ∧ q 

T T T 

T F F 

F T F 

F F F 

Truth Table for Disjunction (p ∨ q) 
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Notes p q p ∨ q 

T T T 

T F T 

F T T 

F F F 

Truth Table for Conditional (p → q) 

p q p → q 

T T T 

T F F 

F T T 

F F T 

Truth Table for Biconditional (p ↔ q) 

p q p ↔ q 

T T T 

T F F 

F T F 

F F T 

Order of Operations 

When evaluating complex logical expressions, we follow a standard order of 

operations: 

1. Parentheses 

2. Negation (~) 

3. Conjunction (∧) 

4. Disjunction (∨) 
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Notes 5. Conditional (→) 

6. Biconditional (↔) 

Examples of Statement Symbolization 

1. "If it is raining, then I will take an umbrella, and I will wear a 

raincoat." Let p: "It is raining" Let q: "I will take an umbrella" Let r: 

"I will wear a raincoat" Symbolic form: p → (q ∧ r) 

2. "I will go to the party if and only if my friend goes or my work is 

finished." Let p: "I will go to the party" Let q: "My friend goes to 

the party" Let r: "My work is finished" Symbolic form: p ↔ (q ∨ r) 

3. "It is not true that both the sun is shining and it is raining." Let p: 

"The sun is shining" Let q: "It is raining" Symbolic form: ~(p ∧ q) 

2.2 Tautologies and Contradictions 

In propositional logic, certain compound statements have special properties 

based on their truth values across all possible combinations of their 

component statements. 

Tautologies 

tautology is a compound statement that is always true, regardless of truth 

values of its component statements. 

Examples of Tautologies: 

1. Law of Excluded Middle: p ∨ ~p "A statement is either true or 

false" 

Truth Table: 

p ~p p ∨ ~p 

T F T 

F T T 

2. Law of Non-Contradiction: ~(p ∧ ~p) "A statement cannot be both 

true and false" 

Truth Table: 
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Notes p ~p p ∧ ~p ~(p ∧ ~p) 

T F F T 

F T F T 

3. Double Negation: p ↔ ~~p "A statement is equivalent to its double 

negation" 

4. Modus Ponens: (p ∧ (p → q)) → q "If p is true and p implies q, 

then q is true" 

5. Contrapositive: (p → q) ↔ (~q → ~p) "A conditional statement is 

equivalent to its contrapositive" 

Contradictions 

A contradiction is compound statement that is always false, regardless of 

the truth values of its component statements. 

Examples of Contradictions: 

1. p ∧ ~p "A statement is both true and false" 

Truth Table: 

p ~p p ∧ ~p 

T F F 

F T F 

2. (p ↔ q) ∧ (p ↔ ~q) "p is equivalent to both q and not-q" 

3. (p → q) ∧ (p ∧ ~q) "If p then q, and p is true but q is false" 

Logical Equivalence 

Two compound statements are logically equivalent if they have the same 

truth value for all possible combinations of their component statements. 

Notation: p ≡ q 

Important Logical Equivalences: 

1. De Morgan's Laws: 
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Notes o ~(p ∧ q) ≡ (~p ∨ ~q) 

o ~(p ∨ q) ≡ (~p ∧ ~q) 

2. Distributive Laws: 

o p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) 

o p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) 

3. Conditional Equivalences: 

o (p → q) ≡ (~p ∨ q) 

o ~(p → q) ≡ (p ∧ ~q) 

4. Biconditional Equivalences: 

o (p ↔ q) ≡ ((p → q) ∧ (q → p)) 

o (p ↔ q) ≡ ((p ∧ q) ∨ (~p ∧ ~q)) 

Applications of Tautologies and Contradictions 

1. Logical Arguments: Tautologies form the basis of valid logical 

arguments. 

2. System Verification: In digital circuit design, tautologies help 

verify correctness. 

3. Proof by Contradiction: Mathematical proofs often use 

contradictions to establish truths. 

4. Consistency Checking: Identifying contradictions helps detect 

inconsistencies in logical systems. 
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Quantifiers, Predicates and validity, Prepositional Logic
UNIT 2.2

The negation of quantified statements follows specific rules:

Negating Quantified Statements

that x² equals 9"

Example statement: ∃x (x² = 9) Meaning: "There exists a real number x such 

P(x) is true"

Example: ∃x P(x) Meaning: "There exists at least one value of x for which 

The existential quantifier "∃" means "there exists" or "for some."

Existential Quantifier (∃)

greater than or equal to 0"

Example  statement: ∀x  (x²≥  0)  Meaning:  "For  all  real  numbers  x,  x²  is 

Example: ∀x P(x) Meaning: "For all values of x, P(x) is true"

universal quantifier "∀" means "for all" or "for every."

Universal Quantifier (∀)

Quantifiers indicate the scope of a predicate over a domain.

Quantifiers

• P(4) is false (4 is not prime)

• P(2) is true (2 is prime)

Example: P(x): "x is a prime number"

when specific values are assigned to those variables.

A predicate is  a statement  containing  variables  and  becomes a  proposition 

Predicates

variables, predicates, and quantifiers.

extends  this  by  considering  the  internal  structure  of  statements,  including 

While  propositional  logic  deals  with  complete  statements,  predicate  logic 

2.2.1 Quantifiers and Predicates
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Notes 1. Negation of Universal Statement: ~(∀x P(x)) ≡∃x ~P(x) "It is not 

the case that P(x) is true for all x" is equivalent to "There exists an x 

for which P(x) is false" 

2. Negation of Existential Statement: ~(∃x P(x)) ≡∀x ~P(x) "It is not 

the case that there exists an x for which P(x) is true" is equivalent to 

"For all x, P(x) is false" 

Multiple Quantifiers 

Statements can contain multiple quantifiers, and the order matters. 

Example: ∀x ∃y R(x, y) Meaning: "For every x, there exists a y such that 

R(x, y) is true" 

Example: ∃y ∀x R(x, y) Meaning: "There exists a y such that for all x, R(x, 

y) is true" 

These statements are not equivalent. The first says that every x has its own y 

that makes R(x, y) true, while the second says there's a single y that works 

for all x. 

Bounded Quantifiers 

Quantifiers can be restricted to specific domains. 

Notation: 

• ∀x ∈ S, P(x) - "For all x in set S, P(x) is true" 

• ∃x ∈ S, P(x) - "There exists an x in set S such that P(x) is true" 

Example: ∀x ∈ℕ, (x²≥ x) Meaning: "For all natural numbers, the square of 

the number is greater than or equal to the number itself" 

Predicates with Multiple Variables 

Predicates can involve multiple variables. 

Example: L(x, y): "x loves y" 

• L(John, Mary) - "John loves Mary" 

• ∀x ∃y L(x, y) - "Everyone loves someone" 

• ∃y ∀x L(x, y) - "There is someone who is loved by everyone" 
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 Common Valid Argument Forms

contradiction, the argument is valid.

Assume  all  premises  are  true  but  conclusion  is  false.  If  this  leads  to 

Method 2: Proof by Contradiction

argument is valid.

Premise  n)  →  Conclusion  If  this  compound  statement  is  a  tautology,  the 

Construct  a  truth  table  for  the  statement:  (Premise  1 ∧ Premise  2 ∧ ... ∧ 

Method 1: Truth Tables

Testing Validity

Validity concerns only the logical structure.

An  argument  can  be  valid  even  if  its  premises  or  conclusion  are  false. 

  are actually true.

• Soundness: An argument is sound if it is valid and all its premises

  truth of the conclusion.

• Validity: An argument is valid if truth of all premises guarantees the

Validity vs. Truth

Therefore, Conclusion5.

Premise n4.

...3.

Premise 22.

Premise 11.

Structure:

valid if conclusion necessarily follows from premises.

A logical argument consists of premises and a conclusion. The argument is 

Logical Arguments

arguments based on the logical structure of statements.

Propositional logic provides a formal system for determining the validity of 

2.2.2 Propositional Logic and Validity
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Notes 1. Modus Ponens: 

o Premise 1: p → q 

o Premise 2: p 

o Conclusion: q 

2. Modus Tollens: 

o Premise 1: p → q 

o Premise 2: ~q 

o Conclusion: ~p 

3. Hypothetical Syllogism: 

o Premise 1: p → q 

o Premise 2: q → r 

o Conclusion: p → r 

4. Disjunctive Syllogism: 

o Premise 1: p ∨ q 

o Premise 2: ~p 

o Conclusion: q 

5. Addition: 

o Premise: p 

o Conclusion: p ∨ q 

6. Simplification: 

o Premise: p ∧ q 

o Conclusion: p 

7. Conjunction: 

o Premise 1: p 

o Premise 2: q 

o Conclusion: p ∧ q 
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Notes Common Fallacies (Invalid Arguments) 

1. Affirming the Consequent: 

o Premise 1: p → q 

o Premise 2: q 

o (Invalid) Conclusion: p 

2. Denying the Antecedent: 

o Premise 1: p → q 

o Premise 2: ~p 

o (Invalid) Conclusion: ~q 

Direct and Indirect Proofs 

1. Direct Proof: Starts with premises and uses valid argument forms to 

derive the conclusion. 

2. Proof by Contradiction (Indirect): Assumes premises are true and 

conclusion is false, then derives a contradiction. 

3. Proof by Contraposition: To prove p → q, instead prove ~q → ~p. 

Formal Proof Systems 

Formal proof systems provide rigorous frameworks for constructing valid 

arguments. Common systems include: 

1. Natural Deduction: Uses introduction and elimination rules for 

each logical connective. 

2. Axiomatic Systems: Starts with axioms and derives theorems using 

inference rules. 

3. Sequent Calculus: Manipulates sequents (expressions of the form Γ 

⊢Δ) using inference rules. 

Solved Problems 

Problem 1: Statement Symbolization and Truth Table 

Problem: Symbolize the statement "If it is not raining, then I will go to the 

park or I will visit the museum" and construct its truth table. 
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Notes Solution: 

Let's define our variables: 

• p: "It is raining" 

• q: "I will go to the park" 

• r: "I will visit the museum" 

The statement "If it is not raining, then I will go to the park or I will visit the 

museum" can be symbolized as: ~p → (q ∨ r) 

Now, let's construct the truth table: 

First, list all possible combinations of truth values for p, q, and r: 

p q r ~p q ∨ r ~p → (q ∨ r) 

T T T F T T 

T T F F T T 

T F T F T T 

T F F F F T 

F T T T T T 

F T F T T T 

F F T T T T 

F F F T F F 

statement is false only when ~p is true (meaning p is false) and (q ∨ r) is 

false (meaning both q and r are false). In all other cases, statement is true. 

Problem 2: Determining Tautology, Contradiction, or Neither 

Problem: Determine whether the statement (p → q) ↔ (~q → ~p) is a 

tautology, contradiction, or neither. 

Solution: Let's construct a truth table for the statement (p → q) ↔ (~q → 

~p): 
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Notes p q p → q ~q ~p ~q → ~p (p → q) ↔ (~q → ~p) 

T T T F F T T 

T F F T F F T 

F T T F T T T 

F F T T T T T 

Step-by-step analysis: 

1. For (p → q): This is false only when p is true & q is false; 

otherwise, it's true. 

2. For (~q → ~p): This is false only when ~q is true (q is false) and ~p 

is false (p is true); otherwise, it's true. 

3. For the biconditional (p → q) ↔ (~q → ~p): This is true when both 

expressions have the same truth value. 

As we can see, for all possible truth value combinations of p and q, the 

statement (p → q) ↔ (~q → ~p) is always true. Therefore, this statement is a 

tautology. 

This makes sense because this statement represents the contrapositive 

property: a conditional statement is logically equivalent to its contrapositive. 

Problem 3: Quantifier Negation 

Problem: Negate the following quantified statements and simplify: a) ∀x 

∈ℝ, x²> 0 b) ∃x ∈ℕ, x² = x 

Solution: 

a) Statement: ∀x ∈ℝ, x²> 0 Negation: ~(∀x ∈ℝ, x²> 0) 

Using the quantifier negation rule: ~(∀x P(x)) ≡∃x ~P(x) 

Simplified negation: ∃x ∈ℝ, ~(x²> 0) ≡∃x ∈ℝ, x²≤ 0 

In plain language: "There exists a real number whose square is less than or 

equal to 0." 

This negation is true because x = 0 makes x² = 0, which satisfies x² ≤ 0. 

b) Statement: ∃x ∈ℕ, x² = x Negation: ~(∃x ∈ℕ, x² = x) 
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Notes Using the quantifier negation rule: ~(∃x P(x)) ≡∀x ~P(x) 

Simplified negation: ∀x ∈ℕ, ~(x² = x) ≡∀x ∈ℕ, x²≠ x 

In plain language: "For all natural numbers, the square of the number is not 

equal to the number itself." 

This negation is false because there are natural numbers for which x² = x. 

Specifically, x = 0 and x = 1 satisfy this equation. 

Problem 4: Testing Argument Validity 

Problem: Determine whether the following argument is valid: 

1. If I study, then I will pass the exam. 

2. If I pass the exam, then I will graduate. 

3. I did not graduate. 

4. Therefore, I did not study. 

Solution: 

Let's define our variables: 

• p: "I study" 

• q: "I pass the exam" 

• r: "I graduate" 

The premises of the argument can be symbolized as: 

1. p → q 

2. q → r 

3. ~r 

The conclusion is: ~p 

To test the validity, we'll use the method of deductive reasoning: 

From premises 1 and 2, using the hypothetical syllogism rule, we can derive: 

p → r (If I study, then I will graduate) 

Now, using premise 3 (~r) and the derived statement (p → r), we can apply 

modus tollens: If p → r and ~r, then ~p. 
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Notes Therefore, the conclusion ~p (I did not study) logically follows from the 

premises, making this argument valid. 

Alternatively, we could construct  truth table for (((p → q) ∧ (q → r) ∧ ~r) 

→ ~p) and verify that it's a tautology, confirming the argument's validity. 

Problem 5: Logical Equivalence Using De Morgan's Laws 

Problem: Use De Morgan's laws and other logical equivalences to simplify 

the expression ~(~p ∨ (q ∧ ~r)). 

Solution: 

Starting with the expression: ~(~p ∨ (q ∧ ~r)) 

Step 1: Apply De Morgan's law to the outer negation: ~(~p ∨ (q ∧ ~r)) ≡ ~~p 

∧ ~(q ∧ ~r) 

Step 2: Simplify the double negation: ~~p ∧~(q ∧ ~r) ≡ p ∧ ~(q ∧ ~r) 

Step 3: Apply De Morgan's law to ~(q ∧ ~r): p ∧ ~(q ∧ ~r) ≡ p ∧ (~q ∨ ~~r) 

Step 4: Simplify remaining double negation: p ∧ (~q ∨ ~~r) ≡ p ∧ (~q ∨ r) 

Therefore, ~(~p ∨ (q ∧ ~r)) ≡ p ∧ (~q ∨ r) 

We can verify this equivalence using a truth table if needed. 

Unsolved Problems 

Problem 1 

Determine whether the compound statement (p → q) ∧ (q → r) → (p → r) is 

a tautology, and explain your reasoning. 

Problem 2 

Symbolize the following statement using propositional logic: "Neither rain 

nor snow will prevent the mail delivery, but fog will delay it unless there is a 

full moon." 

Problem 3 

Translate the following into logical notation using predicates and quantifiers: 

a) "Every mathematician has solved at least one problem that no other 

mathematician has solved." b) "Some books are referenced by all scholars in 

the field." 
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Notes Problem 4 

Determine the validity of the following argument: 

1. If the economy improves, then unemployment will decrease. 

2. If government spending increases, then the economy will improve. 

3. Unemployment has not decreased. 

4. Therefore, government spending has not increased. 

Problem 5 

Prove or disprove the logical equivalence of following statements: a) p → (q 

→ r) b) (p ∧ q) → r 
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• An element x ∈ P is a lower bound of S if x ≤ s for all s ∈ S.

• An element x ∈ P is an upper bound of S if s ≤ x for all s ∈ S.

For a subset S of a partially ordered set P:

Upper and Lower Bounds

  element if b ≤ a for all b ∈ P.

• Greatest  element (or  maximum): An element a ∈ P is the  greatest

  if a ≤ b for all b ∈ P.

• Least element (or minimum): An element a ∈ P is the least element

  element b ∈ P such that a < b.

• Maximal  element:  An  element  a ∈ P  is  maximal  if  there  is  no

  element b ∈ P such that b < a.

• Minimal  element:  An  element  a ∈ P  is  minimal  if  there  is  no

  neither a ≤ b nor b ≤ a holds. We denote this as a ∥ b.

• Incomparable elements: Two elements a, b ∈ P are incomparable if

  b or b ≤ a.

• Comparable elements: Two elements a, b ∈ P are comparable if a ≤

Definitions Related to Partially Ordered Sets

b ∈ P, then the order is called a total order or linear order.

every pair of elements needs to be comparable. If a ≤ b or b ≤ a for every a, 

The relation ≤ is called a partial order. The term "partial" indicates that not 

Transitivity: For all a, b, c ∈ P, if a ≤ b and b ≤ c, then a ≤ c3.

Antisymmetry: For all a, b ∈ P, if a ≤ b and b ≤ a, then a = b2.

Reflexivity: For all a ∈ P, a ≤ a1.

satisfies:

partially  ordered  set,  where  P  is  a  set  and  ≤  is  a  binary  relation  on  P  that 

reflexive,  and antisymmetric  binary  connection.  A  pair (P, ≤) is  formally  a 

A partially ordered set, often known as a poset, is a set that has a transitive, 

2.3.1 Lattices as Partially Ordered Sets

Algebraic systems. Sub lattices, Direct products and Homomorphism
Lattices as partially ordered sets, their properties. Lattices as

UNIT 2.3
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Notes • The least upper bound (lub) or supremum (sup) of S, if it exists, is 

an upper bound of S that is less than or equal to every other upper 

bound of S. 

• The greatest lower bound (glb) or infimum (inf) of S, if it exists, is a 

lower bound of S that is greater than or equal to every other lower 

bound of S. 

Definition of a Lattice 

A lattice is a partially ordered set (L, ≤) where every pair of elements has 

both a supremum and an infimum. That is, for any a, b ∈ L: 

1. The supremum a ∨ b (also called the join) exists in L 

2. The infimum a ∧ b (also called the meet) exists in L 

A lattice can be represented graphically using a Hasse diagram, where: 

• Elements of the set are represented as nodes 

• If a < b and there is no c such that a < c < b, then there's an edge 

going up from a to b 

• Higher elements in the diagram represent greater elements in the 

partial order 

  



 

61 
 

Notes  

 

 

 

 

 

   

       

       

  

 

      

   

 

 

 

 

 

   

   

 

  

    

    

  

 

 

For any elements a, b, c in lattice L, following properties hold:

Basic Laws of Lattices

2.4.2: Properties of Lattices

o f(a ∧ b) = f(a) ∧ f(b)

o f(a ∨ b) = f(a) ∨ f(b)

  homomorphism if it preserves joins and meets:

• A  function  f:  L  →  M  between  lattices  L  and  M  is  a lattice

  both a ∨ b and a ∧ b (calculated in L) also belong to S.

• sublattice of a lattice L is subset S of L such that for any a, b ∈ S,

Sublattices and Homomorphisms

complemented.

Boolean  Lattice:  A  lattice  that  is  both  distributive  and 6.

term "complement of a" refers to the element b.

=  1  and a ∧ b  =  0, then  a bounded lattice L  is  complemented. The 

Complemented Lattice: If there is an element b ∈ L such that a ∨ b 5.

o a ∨ (b ∧ c) = (a ∨ b) ∧ c

c:

Modular Lattice: A lattice L is modular if for all a, b, c ∈ L with a ≤ 4.

o a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

o a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

Distributive Lattice: A lattice L is distributive if for all a, b, c ∈ L:3.

(denoted 1 or ⊤) and a least element (denoted 0 or ⊥).

Bounded Lattice: A lattice L is bounded if it has a greatest element 2.

an infimum in L.

every subset of L (including the empty set) has both a supremum & 

Complete  Lattice:  partially  ordered  set  L  is  a  complete  lattice  if 1.

2.4.1: Types of Lattices Based on Order Properties

Lattices
Some special lattices e.g. complete, Complemented and Distributive 

UNIT 2.4
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Notes 1. Idempotent Laws: 

o a ∨ a = a 

o a ∧ a = a 

2. Commutative Laws: 

o a ∨ b = b ∨ a 

o a ∧ b = b ∧ a 

3. Associative Laws: 

o (a ∨ b) ∨ c = a ∨ (b ∨ c) 

o (a ∧ b) ∧ c = a ∧ (b ∧ c) 

4. Absorption Laws: 

o a ∨ (a ∧ b) = a 

o a ∧ (a ∨ b) = a 

5. Ordering Property: 

o a ≤ b if and only if a ∨ b = b 

o a ≤ b if and only if a ∧ b = a 

Duality Principle 

The Duality Principle in lattice theory states that if a statement is true for all 

lattices, then the dual statement obtained by replacing ∨ with ∧, ∧ with ∨, ≤ 

with ≥, and reversing the order of operations, is also true for all lattices. 

Properties of Special Types of Lattices 

Distributive Lattices 

lattice L is distributive if and only if it satisfies the distributive laws: 

• a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) 

• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) 

Important properties of distributive lattices: 

1. In a distributive lattice, if an element has complement, then the 

complement is unique. 
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Notes 2. lattice is distributive if and only if it does not contain a sublattice 

isomorphic to either of these two five-element non-distributive 

lattices: 

o The pentagon lattice (N5) 

o The diamond lattice (M3) 

3. Birkhoff's Representation Theorem: Every finite distributive 

lattice is isomorphic to the lattice of all downsets of its poset of join-

irreducible elements. 

Modular Lattices 

A lattice L is modular if and only if for all a, b, c ∈ L with a ≤ c: 

• a ∨ (b ∧ c) = (a ∨ b) ∧ c 

Important properties of modular lattices: 

1. Every distributive lattice is modular, but not conversely. 

2. A lattice is modular if and only if it does not contain a sublattice 

isomorphic to the pentagon lattice (N5). 

3. Modular lattices satisfy the Jordan-Dedekind chain condition: all 

maximal chains between the same endpoints have the same length. 

Complete Lattices 

Properties of complete lattices: 

1. In a complete lattice, every subset has both a supremum and an 

infimum. 

2. Every finite lattice is complete. 

3. A complete lattice is automatically bounded, having a greatest 

element (supremum of the entire set) and a least element (infimum 

of the entire set). 

4. Knaster-Tarski Fixed Point Theorem: Every monotone function 

on a complete lattice has a fixed point. 

Boolean Lattices 

Properties of Boolean lattices: 
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Notes 1. In Boolean lattice, every element has a unique complement. 

2. For any elements a & b in a Boolean lattice: 

o If a ∧ b = 0 and a ∨ b = 1, then b is the complement of a. 

o The complement of a is often denoted as a' or ¬a. 

3. In a Boolean lattice, the following identities hold: 

o (a')' = a (double negation) 

o a ∨ a' = 1 and a ∧ a' = 0 (complement laws) 

o (a ∧ b)' = a' ∨ b' and (a ∨ b)' = a' ∧ b' (De Morgan's laws) 

4. Every finite Boolean lattice is isomorphic to the power set of a finite 

set under the subset relation. 

Other Important Properties 

1. Isomorphism: Two lattices L and M are isomorphic if there exists a 

bijective function f: L → M such that for all a, b ∈ L: 

o a ≤ b if and only if f(a) ≤ f(b) 

o or equivalently, f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧ 

f(b) 

2. Chain: A chain in a lattice is a subset in which any two elements are 

comparable. 

3. Antichain: An antichain in lattice is a subset in which no two 

distinct elements are comparable. 

4. Height: The height of a finite lattice is the length of the longest 

chain in the lattice. 

5. Width: The width of lattice is size of the largest antichain in lattice. 

6. Dilworth's Theorem: In a finite lattice, the width equals the 

minimum number of chains needed to cover all elements. 

2.4.3:  Lattices as Algebraic Systems 

Algebraic Definition of a Lattice 
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Notes While we previously defined lattices in terms of partial orders, lattices can 

alternatively be defined as algebraic structures with two binary operations, 

join (∨) & meet (∧), satisfying certain axioms.Formally, a lattice is an 

algebraic structure (L, ∨, ∧) where L is a set, and ∨ and ∧ are binary 

operations on L satisfying following axioms for all  b, c ∈ L: 

1. Idempotent Laws: 

o a ∨ a = a 

o a ∧ a = a 

2. Commutative Laws: 

o a ∨ b = b ∨ a 

o a ∧ b = b ∧ a 

3. Associative Laws: 

o (a ∨ b) ∨ c = a ∨ (b ∨ c) 

o (a ∧ b) ∧ c = a ∧ (b ∧ c) 

4. Absorption Laws: 

o a ∨ (a ∧ b) = a 

o a ∧ (a ∨ b) = a 

Equivalence of the Two Definitions 

The order-theoretic and algebraic definitions of lattices are equivalent. 

Given a lattice defined algebraically, we can define  partial order ≤ by: 

• a ≤ b if and only if a ∧ b = a 

• or equivalently, a ≤ b if and only if a ∨ b = b 

Conversely, given a lattice defined as a partially ordered set, we can define 

the join and meet operations as: 

• a ∨ b is the least upper bound of {a, b} 

• a ∧ b is the greatest lower bound of {a, b} 

Algebraic Properties of Special Lattices 
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Notes Distributive Lattices 

In algebraic terms, a lattice (L, ∨, ∧) is distributive if and only if: 

• a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L 

• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for all a, b, c ∈ L 

Bounded Lattices 

A bounded lattice is an algebraic structure (L, ∨, ∧, 0, 1) where: 

• (L, ∨, ∧) is a lattice 

• 0 is the identity element for ∨: a ∨ 0 = a for all a ∈ L 

• 1 is the identity element for ∧: a ∧ 1 = a for all a ∈ L 

Complemented Lattices 

In a bounded lattice (L, ∨, ∧, 0, 1), an element b is a complement of a if: 

• a ∨ b = 1 

• a ∧ b = 0 

A bounded lattice is complemented if every element has at least one 

complement. 

Boolean Algebras 

Boolean algebra is an algebraic structure (B, ∨, ∧, ', 0, 1) where: 

• (B, ∨, ∧, 0, 1) is a bounded distributive lattice 

• ' is a unary operation (the complement) such that:  

o a ∨ a' = 1 

o a ∧ a' = 0 

Lattice Morphisms 

From an algebraic perspective, a homomorphism between lattices (L, ∨L, 

∧L) and (M, ∨M, ∧M) is a function f: L → M that preserves the operations: 

• f(a ∨L b) = f(a) ∨M f(b) 

• f(a ∧L b) = f(a) ∧M f(b) 
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Notes Congruence Relations and Quotient Lattices 

A congruence relation on a lattice L is an equivalence relation ≡ that is 

compatible with the lattice operations: 

• If a ≡ b and c ≡ d, then a ∨ c ≡ b ∨ d 

• If a ≡ b and c ≡ d, then a ∧ c ≡ b ∧ d 

For a congruence relation ≡ on a lattice L, the quotient lattice L/≡ is the 

lattice whose elements are the equivalence classes [a] of elements a ∈ L, 

with operations: 

• [a] ∨ [b] = [a ∨ b] 

• [a] ∧ [b] = [a ∧ b] 

Filters & Ideals 

Filters 

A filter in a lattice L is a non-empty subset F of L such that: 

1. If a, b ∈ F, then a ∧ b ∈ F 

2. If a ∈ F and a ≤ b, then b ∈ F 

A filter is proper if it is not equal to the entire lattice. A maximal proper filter 

is called an ultrafilter. 

In a Boolean lattice, every ultrafilter is prime: if a ∨ b ∈ F, then either a ∈ F 

or b ∈ F. 

Ideals 

An ideal in a lattice L is a non-empty subset I of L such that: 

1. If a, b ∈ I, then a ∨ b ∈ I 

2. If a ∈ I and b ≤ a, then b ∈ I 

An ideal is proper if it is not equal to the entire lattice. A maximal proper 

ideal is called a prime ideal. 

In a Boolean lattice, the complement of a filter is an ideal, and vice versa. 

Birkhoff's Representation Theorems 

Representation of Distributive Lattices 
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Notes Birkhoff's Representation Theorem for Finite Distributive Lattices: 

Every finite distributive lattice is isomorphic to the lattice of downsets of its 

poset of join-irreducible elements. 

Representation of Boolean Algebras 

Stone's Representation Theorem: Every Boolean algebra is isomorphic to 

a subalgebra of a power set Boolean algebra. 

Solved Problems 

Problem 1: Testing if a Lattice is Distributive 

Problem: Consider the lattice L = {a, b, c, d, e} with the following Hasse 

diagram: 

• e is at the top 

• b and c are below e 

• a and d are at the bottom, with a below b and d below c 

Is this lattice distributive? 

Solution: 

Step 1: Identify the elements & their relationships. The partial order is: 

• a ≤ b ≤ e 

• d ≤ c ≤ e 

• a and d are incomparable 

• b and c are incomparable 

Step 2: Construct the meet and join tables. 

Meet (∧) table: 

 a b c d e 

a a a a a a 

b a b a a b 

c a a c d c 
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Notes  a b c d e 

d a a d d d 

e a b c d e 

Join (∨) table: 

 a b c d e 

a a b c e e 

b b b e e e 

c c e c c e 

d e e c d e 

e e e e e e 

Step 3: Test the distributive law a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for specific 

elements. 

Let's check with a, b, and c: 

• a ∧ (b ∨ c) = a ∧ e = a 

• (a ∧ b) ∨ (a ∧ c) = a ∨ a = a 

They're equal, but we need to check more cases. 

Step 4: Check with different elements. 

Let's try b, c, and d: 

• b ∧ (c ∨ d) = b ∧ c = a 

• (b ∧ c) ∨ (b ∧ d) = a ∨ a = a 

Still equal. Let's try one more case. 

Step 5: Check with b, d, and e: 

• b ∧ (d ∨ e) = b ∧ e = b 

• (b ∧ d) ∨ (b ∧ e) = a ∨ b = b 
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Notes All checked cases satisfy the distributive law. We could complete the 

verification by checking all possible combinations, but based on the 

structure (it's the lattice N5), we know it's not distributive. 

Actually, let's verify this with a critical test: 

• c ∧ (a ∨ d) = c ∧ e = c 

• (c ∧ a) ∨ (c ∧ d) = a ∨ d = e 

These are not equal (c ≠ e), so the lattice is not distributive. 

Problem 2: Finding Complements in a Boolean Lattice 

Problem: Consider the power set lattice P({1, 2, 3}) ordered by inclusion. 

Find the complements of: a) {1, 2} b) {3} c) ∅ d) {1, 2, 3} 

Solution: 

In a power set lattice P(S), the complement of a subset A is S-A. 

a) The complement of {1, 2} is {1, 2, 3} - {1, 2} = {3} 

b) The complement of {3} is {1, 2, 3} - {3} = {1, 2} 

c) The complement of ∅ is {1, 2, 3} - ∅ = {1, 2, 3} 

d) The complement of {1, 2, 3} is {1, 2, 3} - {1, 2, 3} = ∅ 

Verification: For each pair of complements (A, A'), we should have: 

• A ∪ A' = {1, 2, 3} (the top element) 

• A ∩ A' = ∅ (the bottom element) 

Let's verify for {1, 2} and {3}: 

• {1, 2} ∪ {3} = {1, 2, 3} ✓ 

• {1, 2} ∩ {3} = ∅✓ 

Problem 3: Constructing a Lattice Homomorphism 

Problem: Let L be the lattice of all divisors of 12 ordered by divisibility, and 

M be the lattice of all divisors of 20 ordered by divisibility. Construct a 

lattice homomorphism from L to M. 

Solution: 
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Notes Step 1: Identify the elements of both lattices. 

• L = {1, 2, 3, 4, 6, 12} (divisors of 12) 

• M = {1, 2, 4, 5, 10, 20} (divisors of 20) 

Step 2: Understand the lattice operations in both. 

• In L, join (∨) of a & b is lcm(a, b), and meet (∧) is gcd(a, b). 

• In M, join (∨) of a & b is lcm(a, b), and meet (∧) is gcd(a, b). 

Step 3: Define a homomorphism f: L → M that preserves joins and meets. 

Let's define f as follows: 

• f(1) = 1 

• f(2) = 2 

• f(3) = 5 

• f(4) = 4 

• f(6) = 10 

• f(12) = 20 

Step 4: Verify that f preserves meets (greatest common divisors). 

Example verification: 

• f(2 ∧ 6) = f(gcd(2, 6)) = f(2) = 2 

• f(2) ∧ f(6) = gcd(2, 10) = 2 ✓ 

• f(3 ∧ 4) = f(gcd(3, 4)) = f(1) = 1 

• f(3) ∧ f(4) = gcd(5, 4) = 1 ✓ 

Step 5: Verify that f preserves joins (least common multiples). 

Example verification: 

• f(2 ∨ 3) = f(lcm(2, 3)) = f(6) = 10 

• f(2) ∨ f(3) = lcm(2, 5) = 10 ✓ 

• f(4 ∨ 6) = f(lcm(4, 6)) = f(12) = 20 
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Notes • f(4) ∨ f(6) = lcm(4, 10) = 20 ✓ 

Therefore, f is a valid lattice homomorphism from L to M. 

Problem 4: Determining if a Poset is a Lattice 

Problem: Consider the poset P = {a, b, c, d, e} with the following relations: 

• a ≤ c, a ≤ d 

• b ≤ c, b ≤ d 

• c ≤ e, d ≤ e 

Is P  lattice? 

Solution: 

Step 1: Draw the Hasse diagram of the poset P. 

• e is at the top 

• c and d are below e 

• a and b are at the bottom, both below c and d 

Step 2: Check if every pair of elements has  least upper bound (join). 

For each pair of elements, let's find their join: 

• a ∨ b: Upper bounds are c, d, e. least upper bounds are c and d. 

Since there are two, not unique, this fails the lattice condition. 

• a ∨ c: Upper bounds are c, e. The least upper bound is c. 

• a ∨ d: Upper bounds are d, e. The least upper bound is d. 

• a ∨ e: Upper bound is e. The least upper bound is e. 

• b ∨ c: Upper bounds are c, e. The least upper bound is c. 

• b ∨ d: Upper bounds are d, e. The least upper bound is d. 

• b ∨ e: Upper bound is e. The least upper bound is e. 

• c ∨ d: Upper bound is e. The least upper bound is e. 

• c ∨ e: Upper bound is e. The least upper bound is e. 

• d ∨ e: Upper bound is e. The least upper bound is e. 
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Notes Since the pair {a, b} doesn't have a unique least upper bound, P is not a 

lattice. 

Step 3: (Optional) Let's also check if every pair has a greatest lower bound 

(meet). 

For the pair {c, d}: 

• Lower bounds are a and b. Neither is greater than the other, so there 

is no unique greatest lower bound. 

This confirms that P is not a lattice. 

Problem 5: Testing for Modularity 

Problem: Consider the lattice L = {0, a, b, c, 1} with following Hasse 

diagram: 

• 1 is at the top 

• a, b, c are in the middle, all below 1 

• 0 is at the bottom, below a, b, and c 

Is this lattice modular? 

Solution: 

Step 1: Identify the elements and their relationships. The partial order is: 

• 0 ≤ a ≤ 1 

• 0 ≤ b ≤ 1 

• 0 ≤ c ≤ 1 

• a, b, and c are incomparable 

Step 2: Recall the modularity condition. A lattice is modular if for all x, y, z 

with x ≤ z: 

• x ∨ (y ∧ z) = (x ∨ y) ∧ z 

Step 3: Test the modular identity with specific elements. 

Let's check with x = 0, y = a, z = b: 

• x ≤ z: 0 ≤ b (satisfied) 
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Notes • x ∨ (y ∧ z) = 0 ∨ (a ∧ b) = 0 ∨ 0 = 0 

• (x ∨ y) ∧ z = (0 ∨ a) ∧ b = a ∧ b = 0 

These are equal. Let's try another case. 

Step 4: Check with x = a, y = b, z = 1: 

• x ≤ z: a ≤ 1 (satisfied) 

• x ∨ (y ∧ z) = a ∨ (b ∧ 1) = a ∨ b = 1 

• (x ∨ y) ∧ z = (a ∨ b) ∧ 1 = 1 ∧ 1 = 1 

These are equal as well. 

Step 5: Check one more case with x = a, y = c, z = 1: 

• x ≤ z: a ≤ 1 (satisfied) 

• x ∨ (y ∧ z) = a ∨ (c ∧ 1) = a ∨ c = 1 

• (x ∨ y) ∧ z = (a ∨ c) ∧ 1 = 1 ∧ 1 = 1 

All cases satisfy the modularity condition. (In reality, we would check all 

possible cases, but this is sufficient for demonstration.) 

Therefore, this lattice is modular. 

Unsolved Problems 

Problem 1 

Prove that a lattice L is distributive if and only if for all a, b, c ∈ L, if a ∧ c = 

b ∧ c and a ∨ c = b ∨ c, then a = b. 

Problem 2 

Let L be a finite lattice. Prove that L is distributive if & only if the number 

of join-irreducible elements equals the number of meet-irreducible elements. 

Problem 3 

For a finite lattice L, define the function f from L to the power set of its join-

irreducible elements as follows: f(x) = {∈ L | a is join-irreducible and a ≤ x}. 

Show that if L is distributive, then f is a lattice embedding. 

Problem 4 
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Notes Let B be Boolean algebra and a, b, c ∈ B. Prove that (a ∧ b') ∨ (a' ∧ c) ∨ (b ∧ 

c') = (a ∨ b ∨ c) ∧ (a ∨ b' ∨ c') ∧ (a' ∨ b ∨ c') ∧ (a' ∨ b' ∨ c). 

Problem 5 

Let L be a lattice where for all a, b, c ∈ L, a ∧ (b ∨ c) ≤ (a ∧ b) ∨ (a ∧ c). 

Prove that L is distributive. 

Important Formulas and Identities in Lattice Theory 

Basic Operations and Properties 

1. Join and Meet Definition from Order: 

o a ∨ b = least upper bound of {a, b} 

o a ∧ b = greatest lower bound of {a, b} 

2. Order Definition from Operations: 

o a ≤ b if and only if a ∧ b = a 

o a ≤ b if and only if a ∨ b = b 

3. Basic Identities (All Lattices): 

o a ∨ a = a 

o a ∧ a = a 

o a ∨ b = b ∨ a 

o a ∧ b = b (b ∨ c) a 

o (a ∨ b) ∨ c = a ∨ (b ∨ c) 

o (a ∧ b) ∧ c = a ∧ (b ∨ c) 

 2.4.4:  Sub-lattices 

1.1 Definition and Basic Properties 

A sub-lattice is a subset of a lattice that forms a lattice in its own right under 

the same operations. More formally, if (L, ∧, ∨) is a lattice and M is a non-

empty subset of L, then M is a sub-lattice of L if: 

1. For all a, b ∈ M, a ∧ b ∈ M (closed under meet) 

2. For all a, b ∈ M, a ∨ b ∈ M (closed under join) 
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Notes This means that a sub-lattice must contain the results of both operations 

when performed on its elements. 

1.2 Examples of Sub-lattices 

Example 1: Consider the lattice (P(S), ⊆) of all subsets of a set S ordered by 

inclusion. If T is subset of S, then P(T) is a sub-lattice of P(S). 

Example 2: In the lattice of divisors of 60 ordered by divisibility, the set {1, 

3, 5, 15} forms a sub-lattice. 

1.3 Properties of Sub-lattices 

• Every interval [a,b] = {x ∈ L | a ≤ x ≤ b} in a lattice L is a sub-

lattice. 

• The intersection of sub-lattices is again a sub-lattice (or empty). 

• If L is a bounded lattice with bounds 0 and 1, a sub-lattice need not 

contain 0 and 1. 

2.4.5:  Direct Products of Lattices 

Definition 

Given lattices L₁, L₂, ..., Lₙ, their direct product L₁ × L₂ × ... × Lₙ is a lattice 

whose elements are ordered n-tuples (a₁, a₂, ..., aₙ) where aᵢ ∈ Lᵢ for i = 1, 2, 

..., n. 

operations in the direct product are defined component-wise: 

• (a₁, a₂, ..., aₙ) ∧ (b₁, b₂, ..., bₙ) = (a₁∧ b₁, a₂∧ b₂, ..., aₙ∧ bₙ) 

• (a₁, a₂, ..., aₙ) ∨ (b₁, b₂, ..., bₙ) = (a₁∨ b₁, a₂∨ b₂, ..., aₙ∨ bₙ) 

The ordering relation in the direct product is also defined component-wise: 

• (a₁, a₂, ..., aₙ) ≤ (b₁, b₂, ..., bₙ) if and only if a₁ ≤ b₁, a₂ ≤ b₂, ..., aₙ ≤ bₙ 

Properties of Direct Products 

1. If each Lᵢ is bounded with bounds 0ᵢ and 1ᵢ, then the direct product is 

bounded with 0 = (0₁, 0₂, ..., 0ₙ) and 1 = (1₁, 1₂, ..., 1ₙ). 

2. The direct product preserves many lattice properties: 

o If all Lᵢ are distributive, then their direct product is 

distributive. 
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Notes    

  

 

  

 

 

  

 

  

   

   

 

 

 

 

 

 

 

 

 

 

 

  For a homomorphism φ: L → M:2.

homomorphism.

The  composition  of  lattice  homomorphisms  is  a  lattice 1.

Properties of Lattice Homomorphisms

homomorphism is the entire codomain.

Epimorphism: A surjective homomorphism, where the image of the 3.

homomorphism from L to M.

lattice  L  can  be  embedded  in  M  if  there  exists  an  injective 

Embedding:  An  injective  homomorphism,  which  means  that  a 2.

such that φ and φ⁻¹ are homomorphisms.

isomorphic  (L ≅ M)  if  there  exists  a  bijective  function  φ:  L  →  M 

Isomorphism: A bijective homomorphism. Two lattices L & M are 1.

Types of Lattice Homomorphisms

φ(a ∨ b) = φ(a) ∨φ(b)2.

φ(a ∧ b) = φ(a) ∧φ(b)1.

homomorphism if for all a, b ∈ L:

operations. Formally, if L and M are lattices, a function φ: L → M is a lattice 

A  homomorphism  between  lattices  is  a  function  that  preserves  the  lattice 

 Definition

2.4.6: Lattice Homomorphisms

ordering: (a,b) ≤ (c,d) if and only if a ≤ c and b ≤ d.

The Hasse diagram of this direct product forms a grid-like structure with the

(1,2)}

×  C₃  consists  of  ordered  pairs:  C₂  ×  C₃  =  {(0,0),  (0,1),  (0,2),  (1,0),  (1,1), 

Consider two chains: C₂ = {0, 1} and C₃ = {0, 1, 2}. Their direct product C₂ 

Example of Direct Product

  complemented.

o If  all  Lᵢ are  complemented,  then  their  direct  product  is

o If all Lᵢ are modular, then their direct product is modular.
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Notes o If L has a greatest element 1, then φ(1) is greatest element 

of φ(L). 

o If L has a least element 0, then φ(0) is the least element of 

φ(L). 

3. Homomorphic images of sublattices are sublattices. 

Kernel of a Lattice Homomorphism 

The kernel of a lattice homomorphism φ: L → M is set of all pairs (a,b) such 

that φ(a) = φ(b). kernel forms a congruence relation on L, which is an 

equivalence relation that respects the lattice operations. 

2.4.7: Special Lattices 

Complete Lattices 

Definition 

A lattice L is complete if every subset S of L (including the empty set) has 

both a supremum (least upper bound) & an infimum (greatest lower bound) 

in L. 

Formally: 

• For any S ⊆ L, there exists ⋁S ∈ L such that: 

1. s ≤ ⋁S for all s ∈ S 

2. If s ≤ x for all s ∈ S, then ⋁S ≤ x 

• For any S ⊆ L, there exists ⋀S ∈ L such that: 

1. ⋀S ≤ s for all s ∈ S 

2. If x ≤ s for all s ∈ S, then x ≤⋀S 

Properties of Complete Lattices 

1. Every complete lattice has a greatest element (⋁L) and a least 

element (⋀L). 

2. If a lattice is finite, it is automatically complete. 

3. The power set of any set, ordered by inclusion, is a complete lattice. 
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Notes 4. The set of all subspaces of a vector space, ordered by inclusion, 

forms a complete lattice. 

Completeness in Infinite Lattices 

For infinite lattices, completeness is a stronger condition than having just 

binary operations. For example, the open interval (0,1) with the usual 

ordering is a lattice but not a complete lattice because the set (0,1) itself has 

no supremum within (0,1). 

Complemented Lattices 

Definition 

Let L be a bounded lattice with bounds 0 and 1. An element b ∈ L is a 

complement of a ∈ L if: 

1. a ∧ b = 0 

2. a ∨ b = 1 

A lattice is complemented if every element has at least one complement. 

Properties of Complemented Lattices 

1. In general, an element may have multiple complements. 

2. 0 and 1 are complements of each other. 

3. If L is a complemented distributive lattice, then each element has 

exactly one complement. 

4. The power set of any set, ordered by inclusion, is a complemented 

lattice, where the complement of a subset A is its set-theoretic 

complement Aᶜ. 

Distributive Lattices 

Definition 

lattice L is distributive if for all a, b, c ∈ L: 

1. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (∧ distributes over ∨) 

2. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (∨ distributes over ∧) 

In fact, either condition implies the other, so it's sufficient to verify just one. 
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Notes Characterizations of Distributive Lattices 

1. A lattice is distributive if & only if it does not contain a sublattice 

isomorphic to M₃ (the diamond lattice) or N₅ (the pentagon lattice). 

2. A lattice is distributive if & only if for all a, b, c ∈ L: a ∧ b = a ∧ c 

and a ∨ b = a ∨ c imply b = c. 

Examples of Distributive Lattices 

1. Any chain (totally ordered set) is a distributive lattice. 

2. The power set of any set, ordered by inclusion, is a distributive 

lattice. 

3. The set of all divisors of a natural number, ordered by divisibility, 

forms a distributive lattice. 

Boolean Lattices 

A Boolean lattice is a complemented distributive lattice. They have many 

important properties: 

1. In a Boolean lattice, every element has exactly one complement. 

2. Boolean lattices satisfy additional identities such as: 

o a ∧ a' = 0 and a ∨ a' = 1 (complement laws) 

o (a')' = a (involution law) 

o a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a (absorption laws) 

o (a ∧ b)' = a' ∨ b' and (a ∨ b)' = a' ∧ b' (De Morgan's laws) 

3. The power set of a finite set is isomorphic to any finite Boolean lattice.  

4. Every element of a finite Boolean lattice can be uniquely described as a 

join of atoms, makingthe atoms a basis. 

2.4.8: Solved Problems 

Problem 1: Proving a Subset is a Sub-lattice 

Problem: Let L be the lattice of all divisors of 30 ordered by divisibility. 

Determine whether the subset M = {1, 2, 5, 10} is a sub-lattice of L. 

Solution: To determine if M is a sub-lattice, we need to check if it's closed 

under both meet and join operations. 
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Notes In the divisibility lattice: 

• meet (∧) of two elements is their greatest common divisor (GCD). 

• join (∨) of two elements is their least common multiple (LCM). 

Let's check the closure under these operations for all pairs in M = {1, 2, 5, 

10}: 

1. GCD(1, 2) = 1 ∈ M, LCM(1, 2) = 2 ∈ M 

2. GCD(1, 5) = 1 ∈ M, LCM(1, 5) = 5 ∈ M 

3. GCD(1, 10) = 1 ∈ M, LCM(1, 10) = 10 ∈ M 

4. GCD(2, 5) = 1 ∈ M, LCM(2, 5) = 10 ∈ M 

5. GCD(2, 10) = 2 ∈ M, LCM(2, 10) = 10 ∈ M 

6. GCD(5, 10) = 5 ∈ M, LCM(5, 10) = 10 ∈ M 

Since all meets and joins of elements in M are also in M, the set M is closed 

under both operations. Therefore, M is a sub-lattice of L. 

Problem 2: Direct Product Construction 

Problem: Consider the chains C₂ = {0, 1} and C₃ = {0, 1, 2} with the usual 

ordering. Construct the Hasse diagram of their direct product C₂ × C₃ and 

verify the meet and join of two specific elements. 

Solution: The direct product C₂ × C₃ has elements: C₂ × C₃ = {(0,0), (0,1), 

(0,2), (1,0), (1,1), (1,2)} 

The ordering is defined by: (a,b) ≤ (c,d) if & only if a ≤ c and b ≤ d. 

Hasse diagram looks like: 

    (1,2) 

     / 

  (1,1)    (0,2) 

   /         / 

(1,0)     (0,1) 

   \        / 
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Notes      (0,0) 

Let's verify the meet and join of (0,2) and (1,0): 

Meet: (0,2) ∧ (1,0) = (min(0,1), min(2,0)) = (0,0) Join: (0,2) ∨ (1,0) = 

(max(0,1), max(2,0)) = (1,2) 

We can check these results in the Hasse diagram: 

• The greatest element below both (0,2) and (1,0) is (0,0), which is 

their meet. 

• The smallest element above both (0,2) and (1,0) is (1,2), which is 

their join. 

This confirms our calculations of the meet and join in the direct product. 

Problem 3: Verifying a Lattice Homomorphism 

Problem: Let L = {0, a, b, 1} be a lattice with the ordering 0 < a, b < 1, and 

M = {0, c, 1} be a lattice with the ordering 0 < c < 1. Define a function φ: L 

→ M by φ(0) = 0, φ(a) = φ(b) = c, and φ(1) = 1. Verify that φ is lattice 

homomorphism. 

Solution: To verify that φ is a lattice homomorphism, we need to check if it 

preserves meets and joins: 

1. φ(x ∧ y) = φ(x) ∧φ(y) for all x, y ∈ L 

2. φ(x ∨ y) = φ(x) ∨φ(y) for all x, y ∈ L 

Let's check all possible pairs: 

For meets (∧): 

• φ(0 ∧ 0) = φ(0) = 0 = 0 ∧ 0 = φ(0) ∧φ(0) 

• φ(0 ∧ a) = φ(0) = 0 = 0 ∧ c = φ(0) ∧φ(a) 

• φ(0 ∧ b) = φ(0) = 0 = 0 ∧ c = φ(0) ∧φ(b) 

• φ(0 ∧ 1) = φ(0) = 0 = 0 ∧ 1 = φ(0) ∧φ(1) 

• φ(a ∧ a) = φ(a) = c = c ∧ c = φ(a) ∧φ(a) 

• φ(a ∧ b) = φ(0) = 0 = c ∧ c = φ(a) ∧φ(b) 

• φ(a ∧ 1) = φ(a) = c = c ∧ 1 = φ(a) ∧φ(1) 
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Notes • φ(b ∧ b) = φ(b) = c = c ∧ c = φ(b) ∧φ(b) 

• φ(b ∧ 1) = φ(b) = c = c ∧ 1 = φ(b) ∧φ(1) 

• φ(1 ∧ 1) = φ(1) = 1 = 1 ∧ 1 = φ(1) ∧φ(1) 

For joins (∨): 

• φ(0 ∨ 0) = φ(0) = 0 = 0 ∨ 0 = φ(0) ∨φ(0) 

• φ(0 ∨ a) = φ(a) = c = 0 ∨ c = φ(0) ∨φ(a) 

• φ(0 ∨ b) = φ(b) = c = 0 ∨ c = φ(0) ∨φ(b) 

• φ(0 ∨ 1) = φ(1) = 1 = 0 ∨ 1 = φ(0) ∨φ(1) 

• φ(a ∨ a) = φ(a) = c = c ∨ c = φ(a) ∨φ(a) 

• φ(a ∨ b) = φ(1) = 1 = c ∨ c = φ(a) ∨φ(b) 

• φ(a ∨ 1) = φ(1) = 1 = c ∨ 1 = φ(a) ∨φ(1) 

• φ(b ∨ b) = φ(b) = c = c ∨ c = φ(b) ∨φ(b) 

• φ(b ∨ 1) = φ(1) = 1 = c ∨ 1 = φ(b) ∨φ(1) 

• φ(1 ∨ 1) = φ(1) = 1 = 1 ∨ 1 = φ(1) ∨φ(1) 

There's a discrepancy in one case: φ(a ∨ b) = φ(1) = 1 but φ(a) ∨φ(b) = c ∨ c 

= c. 

Therefore, φ is not a lattice homomorphism because it does not preserve 

joins for all pairs of elements. 

To correct the function and make it a homomorphism, we would need to 

redefine φ so that φ(a ∨ b) = φ(a) ∨φ(b), which would require φ(1) = c. 

Problem 4: Determining if a Lattice is Complete 

Problem: Determine whether the set of all positive rational numbers Q⁺ with 

the usual ordering is a complete lattice. 

Solution: For a lattice to be complete, every subset must have both a 

supremum (least upper bound) & an infimum (greatest lower bound) within 

the lattice. 

Let's check if Q⁺ with the usual ordering is complete: 
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Notes Consider the subset S = {r ∈ Q⁺ | r²< 2}. 

All elements in S are less than √2, so √2 would be an upper bound for S. The 

supremum of S would be √2, as any rational number less than √2 would not 

be an upper bound for S. 

However, √2 is irrational, so √2 ∉ Q⁺. This means that the set S does not 

have a supremum in Q⁺. 

Therefore, Q⁺ with the usual ordering is not a complete lattice, as there 

exists a subset (namely S) that does not have a supremum in Q⁺. 

Problem 5: Complemented Lattice Verification 

Problem: Consider the lattice L of all divisors of 30 ordered by divisibility. 

Determine whether L is complemented lattice and find all complements of 6. 

Solution: The divisors of 30 are: 1, 2, 3, 5, 6, 10, 15, and 30. 

In the divisibility lattice: 

• meet (∧) of two elements is their greatest common divisor (GCD). 

• join (∨) of two elements is their least common multiple (LCM). 

• The bounds are 1 (bottom) and 30 (top). 

For L to be complemented, every element must have at least one 

complement. 

Let's check if 6 has a complement: For an element a to be a complement of 

6, we need: 

1. GCD(6, a) = 1 

2. LCM(6, a) = 30 

Since 6 = 2 × 3, any potential complement must not be divisible by 2 or 3. 

Let's check the candidates: 

• GCD(6, 5) = 1 ✓ 

• LCM(6, 5) = 30 ✓ 

So 5 is a complement of 6. 

Let's also check 10: 
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Notes • GCD(6, 10) = 2 ≠ 1 ✗ 

And 15: 

• GCD(6, 15) = 3 ≠ 1 ✗ 

Therefore, the only complement of 6 in this lattice is 5. 

To determine if L is complemented, we would need to check if every 

element has at least one complement. Let's check a few more elements: 

For 2: 

• We need GCD(2, a) = 1 and LCM(2, a) = 30 

• LCM(2, 15) = 30 and GCD(2, 15) = 1, so 15 is a complement of 2. 

For 3: 

• LCM(3, 10) = 30 and GCD(3, 10) = 1, so 10 is a complement of 3. 

For 5: 

• LCM(5, 6) = 30 and GCD(5, 6) = 1, so 6 is a complement of 5. 

Continuing this process, we would find that There is at least one 

complement for each element in L. 

, so L is indeed a complemented lattice. 

6. Unsolved Problems 

Problem 1 

Let (L, ≤) be a lattice and S ⊆ L. Prove that if S is a sublattice of L, then for 

any a, b ∈ S, the interval [a,b] = {x ∈ L | a ≤ x ≤ b} ∩ S is a sublattice of S. 

Problem 2 

Assume distributive lattices L₁ and L₂. Establish that L₁ × L₂, their direct 

product, is likewise a distributive lattice. 

Problem 3 

Let L be complemented lattice. Prove that if L is distributive, then each 

element has exactly one complement. 

Problem 4 
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Notes Let φ: L → M be a lattice homomorphism. Define the relation θ on L by: a θ 

b if and only if φ(a) = φ(b). Prove that θ is congruence relation on L, 

meaning it is an equivalence relation that respects the lattice operations. 

Problem 5 

Let L be finite lattice in which every element is join of atoms (an atom is an 

element that covers 0). Prove that if L is distributive, then it is isomorphic to 

the lattice of all subsets of its set of atoms. 

2.4.9: Relationships Between Lattice Types 

Understanding the relationships between different types of lattices can 

provide clearer picture of lattice theory. Here are some important 

connections: 

Subset Relationships 

The following inclusions hold among lattice classes: 

• Boolean Lattices ⊂ Complemented Distributive Lattices 

• Distributive Lattices ⊂ Modular Lattices ⊂ All Lattices 

• Complete Lattices are not a subset of any other special class, as 

completeness is about the existence of meets and joins for arbitrary 

subsets 

Distributivity and Complementation 

• In a distributive lattice with bounds, complements are unique when 

they exist. 

• A distributive lattice with bounds where every element has 

complement is a Boolean lattice. 

• The converse holds: every Boolean lattice is distributive 

complemented lattice. 

Complete Lattices and Fixed Point Theorems 

Complete lattices play crucial role in fixed point theorems such as the 

Knaster-Tarski theorem, which states that any order-preserving function on a 

complete lattice has a fixed point. This has important applications in 

computer science, particularly in semantics and program verification. 
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Notes 2.4.10: Applications of Lattice Theory 

Lattice theory has wide-ranging applications across mathematics and 

computer science: 

 Order Theory and Universal Algebra 

Lattices serve as fundamental structures in order theory and universal 

algebra, providing a framework for studying ordered sets with additional 

algebraic structure. 

Logic and Set Theory 

• Boolean lattices correspond to Boolean algebras, which model 

propositional logic. 

• The power set of any set, ordered by inclusion, forms a Boolean 

lattice. 

• Complete lattices are used in modeling quantifiers in predicate logic. 

Computer Science Applications 

• Lattices are used in program analysis to represent data flow and type 

information. 

• They form the theoretical foundation for abstract interpretation, a 

technique for static program analysis. 

• Domain theory, which uses complete lattices, provides semantics for 

programming languages. 

Cryptography and Security 

Lattice-based cryptography is an active research area that uses the 

computational hardness of certain lattice problems to construct secure 

cryptographic primitives. 

2.4.11: Historical Development of Lattice Theory 

Lattice theory emerged in the late 19th and early 20th centuries, with 

significant contributions from: 

Early Developments 
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Notes • Richard Dedekind introduced the concept of a lattice in the 1890s, 

originally calling them "Dualgruppen" (dual groups). 

• Ernst Schröder studied lattices as part of his work on the algebra of 

logic. 

Modern Lattice Theory 

• Garrett Birkhoff's work in the 1930s and 1940s established lattice 

theory as a distinct mathematical discipline. 

• His book "Lattice Theory" (1940) became the standard reference 

and helped popularize the field. 

Recent Developments 

• The connections between lattice theory and universal algebra, 

category theory, and theoretical computer science have become 

increasingly important in recent decades. 

• Lattice theory continues to find new applications in diverse areas 

such as quantum logic, rough set theory, and fuzzy set theory. 

Multiple-Choice Questions (MCQs) 

1. A statement in logic is: 

a) A sentence that is always true 

b) A sentence that is either true or false 

c) A question or command 

d) A mathematical equation 

2. Which of the following is a tautology? 

a) p∨¬p 

b) p∧¬p 

c) p→q 

d) p∨q 

3. A predicate in logic is: 

a) A logical variable 

b) A function that returns a true/false value 

c) A constant statement 

d) A contradiction 
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Notes 4. The universal quantifier ∀xP(x) means: 

a) There exists at least one x for which P(x) is true 

b) P(x) is true for all x in the domain 

c) P(x) is always false 

d) P(x) holds for some values but not all 

5. A lattice is a partially ordered set in which: 

a) Every two elements have unique least upper bound & greatest 

lower bound 

b) Every subset has a maximum element 

c) Every subset has a minimum element 

d) Every element has an inverse 

6. Which of the following is an example of a distributive lattice? 

a) The power set of set with union & intersection 

b) set of real numbers with addition and multiplication 

c) A set with arbitrary binary operations 

d) A graph with directed edges 

7. The operation of meet (greatest lower bound) in a lattice is 

denoted by: 

a) ∨ 

b) ∧ 

c) ⊕ 

d) ⊗ 

8. Which of the following is an example of complemented lattice? 

a) Boolean algebra 

b) A set with no upper bound 

c) A group with addition 

d) A system with only one element 

9. If every subset of a lattice has supremum and infimum, it is 

called a:                                 

a) Complemented lattice      

b) Distributive lattice 

c) Complete lattice 

d) Bounded lattice 
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Notes 10. A homomorphism between two lattices preserves: 

a) Only the meet operation 

b) Only the join operation 

c) Both meet and join operations 

d) None of the operations 

Ans Key 

1 b 3 b 5 a 7 b 

2 a 4 b 6 a 8 a 

3 c       

4 c       

Short Answer Questions 

1. Define a tautology with an example. 

2. What is a propositional logic statement? 

3. Explain the difference between universal and existential quantifiers. 

4. What is a predicate in logic? Give an example. 

5. Define a lattice and give an example. 

6. What are the two main operations in a lattice? 

7. Differentiate between a complemented and distributive lattice. 

8. What is the role of homomorphism in lattice theory? 

9. Explain the significance of propositional logic in computing. 

10. Give an example of a real-world application of lattice theory. 

Long Answer Questions 

1. Explain the concept of tautologies and contradictions with 

examples. 

2. Describe quantifiers and predicates in logic, giving real-world 

applications. 

3. Discuss propositional logic, its laws, and its significance in 

mathematics. 
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Notes 4. Explain in detail the concept of lattices as partially ordered sets with 

examples. 

5. What are the properties of lattices? Explain with proper 

mathematical definitions. 

6. Compare and contrast sub-lattices, direct products, and 

homomorphism in lattice theory. 

7. Describe the different types of special lattices with examples. 

8. How does Boolean algebra relate to complemented lattices? Explain 

with examples. 

9. Describe the applications of lattice theory in computer science and 

cryptography. 

10. Explain the structure and importance of distributive lattices in 

mathematics. 
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Notes   

 

 

 

  

 

 

  

 

 

  

  

  

 

 

 

 

  

 

 

 

 by uppercase letters such as A, B, C, etc.

values: 0 (false) or 1 (true). These variables are commonly denoted 

Variables:  In  Boolean  algebra,  variables  can  only  take  one  of  two 1.

Basic Elements of Boolean Algebra

components can exist in one of two states: on or off, true or false, 1 or 0.

mathematical framework for analyzing and designing digital systems where 

foundation  of  digital  circuit  design  and  computer  science.  It  provides  a 

are  often  represented  as  1  and  0,  respectively.Boolean  algebra  forms  the 

values, Boolean algebra deals with the truth values "true" and "false," which 

in  the  mid-1800s.  Unlike  traditional  algebra  that  deals  with  numerical 

19th-century  mathematician  who  first  defined  an  algebraic  system  of  logic 

Boolean  algebra  is  a  mathematical  system  named  after  George  Boole,  a 

3.1.1: Introduction to Boolean Algebra

  method.

• To minimize Boolean expressions using the Karnaugh Map (K-map)

  NOT gates.

• To apply Boolean algebra in switching circuits using AND, OR, and

• To simplify Boolean functions using canonical forms.

• To learn about different Boolean forms and their equivalence.

• To examine joint-irreducible elements, atoms, and minterms.

  Boolean algebra.

• To  explore  subalgebras,  direct  products,  and  homomorphism  in

• To analyze switching algebra and its application in digital logic.

  circuits.

• To  study  various  Boolean  identities  and  their  significance  in  logic

• To understand Boolean algebra as an extension of lattice theory.

Objectives

Boolean Algebras as Lattices, Various Boolean Identities

UNIT 3.1

MODULE 3
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Notes 2. Constants: There are only two constants in Boolean algebra: 0 and 

1. 

3. Basic Operations: The three fundamental operations in Boolean 

algebra are:  

o AND (conjunction): denoted by "·" or simply by writing 

variables next to each other (e.g., AB) 

o OR (disjunction): denoted by "+" 

o NOT (negation): denoted by an overbar (e.g., Ā) or by a 

prime symbol (e.g., A') 

Truth Tables 

truth table lists all possible combinations of input values and their 

corresponding output values for a Boolean function. For example: 

For two variables A and B: 

AND Operation (A·B) 

Copy 

A | B | A·B 

--|---|---- 

0 | 0 | 0 

0 | 1 | 0 

1 | 0 | 0 

1 | 1 | 1 

OR Operation (A+B) 

Copy 

A | B | A+B 

--|---|---- 

0 | 0 | 0 

0 | 1 | 1 
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Notes 1 | 0 | 1 

1 | 1 | 1 

NOT Operation (A') 

Copy 

A | A' 

--|--- 

0 | 1 

1 | 0 

Boolean Functions 

A Boolean function is an expression formed by Boolean variables, constants 

(0 and 1), and Boolean operators (AND, OR, NOT). A Boolean function 

takes Boolean inputs and produces a Boolean output. 

Example: F = A·B + C' 

For this function, we need to know the values of A, B, and C to determine 

output. If A=1, B=1, & C=0, then: F = 1·1 + 0' = 1 + 1 = 1 

The Two-Valued Nature of Boolean Algebra 

The fundamental characteristic of Boolean algebra is that each variable can 

have only one of two possible values. This binary property makes Boolean 

algebra especially useful for: 

1. Digital circuit design 

2. Computer programming 

3. Logic design 

4. Database queries 

5. Set theory operations 

3.1.2: Boolean Identities and Laws 

Boolean algebra follows a set of fundamental laws and identities that help 

simplify Boolean expressions. These laws are essential for analysis and 

design of digital circuits. 
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Notes Basic Boolean Laws 

1. Idempotent Laws:  

o A + A = A 

o A · A = A 

2. Commutative Laws:  

o A + B = B + A 

o A · B = B · A 

3. Associative Laws:  

o A + (B + C) = (A + B) + C 

o A · (B · C) = (A · B) · C 

4. Distributive Laws:  

o A · (B + C) = (A · B) + (A · C) 

o A + (B · C) = (A + B) · (A + C) 

5. Identity Laws:  

o A + 0 = A 

o A · 1 = A 

6. Complement Laws:  

o A + A' = 1 

o A · A' = 0 

7. Null Laws:  

o A + 1 = 1 

o A · 0 = 0 

8. Absorption Laws:  

o A + (A · B) = A 

o A · (A + B) = A 

9. De Morgan's Laws:  
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Notes o (A + B)' = A' · B' 

o (A · B)' = A' + B' 

Duality Principle 

In Boolean algebra, a dual of an expression can be obtained by: 

1. Changing every OR (+) operation to an AND (·) operation and vice 

versa 

2. Changing every 0 to 1 and vice versa 

3. Keeping the variables the same 

For example, the dual of A + 0 = A is A · 1 = A. 

The duality principle states that if a Boolean identity is true, then its dual is 

also true. 

Using Boolean Laws for Simplification 

These laws can be used to simplify Boolean expressions, which is crucial for 

designing efficient digital circuits. 

Example: Simplify the expression A · B + A · B'. 

Using the distributive law: A · B + A · B' = A · (B + B') Using complement 

law: B + B' = 1 Therefore: A · (B + B') = A · 1 = A 

So the simplified expression is just A. 
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Notes  

3.2.1: The Switching Algebra 

Switching algebra is a specialized form of Boolean algebra that directly 

relates to analysis & design of switching circuits. It provides a mathematical 

foundation for understanding how switches operate in digital systems. 

Basic Concepts of Switching Algebra 

1. Switch States: In switching algebra, a switch can be in one of two 

states:  

o Open (0): No current flows 

o Closed (1): Current flows 

2. Series Connection: When switches are connected in series, both 

must be closed for current to flow. This corresponds to the AND 

operation.  

o If switch A is represented by variable A and switch B by 

variable B, then the series connection is represented by A · 

B. 

3. Parallel Connection: When switches are connected in parallel, at 

least one must be closed for current to flow. This corresponds to the 

OR operation.  

o If switch A is represented by variable A and switch B by 

variable B, then the parallel connection is represented by A 

+ B. 

4. Relationship with Boolean Algebra: Switching algebra follows the 

same laws and principles as Boolean algebra, making it a perfect 

match for analyzing switching circuits. 

Applications in Circuit Design 

1. Simple Switch Circuits:  

o A single switch can be represented by a variable A. 

o When the switch is closed, A = 1; when open, A = 0. 

2. Complementary Switch:  

Boolean forms and their equivalence, Minterm Boolean forms
Homomorphism Joint-irreducible elements, Atoms and Minterms, 
The switching Algebra. Example, Subalgebras, Direct Products and 

UNIT 3.2
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Notes o The complement of a switch A is denoted by A'. 

o If A is closed, A' is open, and vice versa. 

3. Relay Circuits:  

o Relays can be analyzed using switching algebra. 

o The state of a relay coil determines whether its contacts are 

open or closed. 

4. Transistor Circuits:  

o Transistors can act as electronic switches. 

o Switching algebra can model the behavior of transistor-

based circuits. 

Huntington's Postulates for Switching Algebra 

Edward Huntington formalized switching algebra with the following 

postulates: 

1. Closure: For any variables A & B in the algebra, A + B and A · B 

are also in the algebra. 

2. Identity Elements: There exist two elements, 0 and 1, such that:  

o A + 0 = A 

o A · 1 = A 

3. Commutativity: For any variables A & B:  

o A + B = B + A 

o A · B = B · A 

4. Distributivity: For any variables A, B, & C:  

o A · (B + C) = (A · B) + (A · C) 

o A + (B · C) = (A + B) · (A + C) 

5. Complementation: For every variable, there exists a complement A' 

such that:  

o A + A' = 1 
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Notes o A · A' = 0 

These postulates form the foundation of switching algebra and ensure its 

consistency and applicability to switching circuits. 

3.2.2: Examples of Boolean Algebra Applications 

Boolean algebra has numerous applications in various fields, particularly in 

digital electronics and computer science. Here are some key applications: 

1. Digital Circuit Design 

Boolean algebra is fundamental to designing and analysing digital circuits: 

Combinational Logic Circuits 

Combinational logic circuits produce outputs based solely on the current 

input values. Examples include: 

• Multiplexers (MUX): Select one of several input signals and 

forward it to a single output line. 

• Demultiplexers (DEMUX): Take a single input and direct it to one 

of several outputs. 

• Encoders: Convert multiple input signals into a coded output. 

• Decoders: Convert a coded input into multiple outputs. 

• Adders: Perform binary addition. 

Sequential Logic Circuits 

Sequential circuits produce outputs based on both current and previous input 

values. They include: 

• Flip-flops: Basic memory elements that store one bit of information. 

• Registers: Store multiple bits of information. 

• Counters: Count the number of occurrences of an event. 

2. Computer Architecture 

Boolean algebra is essential for designing the architecture of computers: 

• Arithmetic Logic Units (ALU): Perform arithmetic and logical 

operations. 
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Notes • Control Units: Generate control signals for the operation of the 

computer. 

• Memory Systems: Store and retrieve data. 

3. Programming and Software Development 

Boolean logic is used extensively in programming: 

• Conditional Statements: If-else statements rely on Boolean 

conditions. 

• Logical Operators: AND, OR, NOT operations are used in 

programming languages. 

• Loop Conditions: While and for loops continue execution based on 

Boolean conditions. 

4. Database Systems 

Boolean algebra is used in database queries: 

• SQL Queries: Use Boolean operators to filter data. 

• Search Operations: Employ Boolean logic to refine search results. 

5. Artificial Intelligence and Machine Learning 

Boolean logic is used in: 

• Decision Trees: Models that make decisions based on Boolean 

conditions. 

• Rule-Based Systems: Systems that use if-then rules. 

• Neural Network Activation Functions: Some activation functions 

like the step function are essentially Boolean. 

6. Electronic Security Systems 

Boolean algebra is used in designing: 

• Password Verification Systems: Compare input with stored 

passwords. 

• Access Control Systems: Determine whether to grant access based 

on multiple conditions. 
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Notes • Encryption Algorithms: Many encryption techniques use Boolean 

operations. 

Solved and Unsolved Problems in Boolean Algebra 

Solved Problems 

Problem 1: Simplify the Boolean expression A·B + A·C + B·C 

Solution: Step 1: Apply distributive law to factor out common terms. A·B + 

A·C + B·C = A·B + A·C + B·C = A·(B + C) + B·C 

Step 2: Use the absorption law: X + X·Y = X Let X = A·(B + C) and Y = 

B·C/(B + C) A·(B + C) + B·C = A·(B + C) + (B + C)·(B·C)/(B + C) = A·(B 

+ C) + (B + C)·[B·C/(B + C)] = A·(B + C) + B·C 

This doesn't simplify further using absorption directly. 

Step 3: Try a different approach using a key identity. The expression A·B + 

A·C + B·C is a well-known form that simplifies to (A + B)·(A + C)·(B + C). 

But we can verify this: 

(A + B)·(A + C)·(B + C) = (A + B)·[A·(B + C) + C·(B + C)] = (A + B)·[A·B 

+ A·C + B·C + C·C] = (A + B)·[A·B + A·C + B·C + C] 

Let's try yet another approach: A·B + A·C + B·C = A·B + A·C + B·C = A·(B 

+ C) + B·C = A·B + A·C + B·C 

Let's verify using a truth table: 

A B C A·B A·C B·C A·B + A·C + 

B·C 

(A + B)·(A + C)·(B + 

C) 

0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 1 1 0 0 1 1 1 

1 0 0 0 0 0 0 0 

1 0 1 0 1 0 1 1 

1 1 0 1 0 0 1 1 
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Notes 1 1 1 1 1 1 1 1 

The truth table shows that A·B + A·C + B·C = (A + B)·(A + C)·(B + C). 

Therefore, simplified expression is (A + B)·(A + C)·(B + C). 

Actually, we can show this is equivalent to a well-known form called the 

"majority function," which outputs 1 when at least two of the three inputs 

are 1. 

The final answer is: A·B + A·C + B·C (which is already in its simplest sum-

of-products form). 

Problem 2: Verify De Morgan's Laws using a truth table 

Solution: De Morgan's Laws state that: 

1. (A + B)' = A' · B' 

2. (A · B)' = A' + B' 

Let's verify the first law using a truth table: 

A B A + B (A + B)' A' B' A' · B' 

0 0 0 1 1 1 1 

0 1 1 0 1 0 0 

1 0 1 0 0 1 0 

1 1 1 0 0 0 0 

As we can see, (A + B)' = A' · B' for all possible values of A and B. 

Now, let's verify the second law: 

A B A · B (A · B)' A' B' A' + B' 

0 0 0 1 1 1 1 

0 1 0 1 1 0 1 

1 0 0 1 0 1 1 

1 1 1 0 0 0 0 

Again, we see that (A · B)' = A' + B' for all possible values of A and B. 

Therefore, both De Morgan's Laws are verified. 
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Notes Problem 3: Design a circuit that implements Boolean function F = A·B + 

C·(A + B) 

Solution: First, let's simplify the expression: 

F = A·B + C·(A + B) = A·B + C·A + C·B = A·B + A·C + B·C 

This is our final simplified expression. Now, we can design a circuit for F = 

A·B + A·C + B·C: 

1. Create an & gate for A·B 

2. Create an AND gate for A·C 

3. Create an AND gate for B·C 

4. Connect the outputs of these three AND gates to a 3-input OR gate 

The resulting circuit will have three inputs (A, B, and C) and one output (F). 

output will be 1 if at least two of the three inputs are 1. 

Alternatively, we noticed in Problem 1 that A·B + A·C + B·C is the majority 

function for three variables, so the circuit can also be designed to output 1 

when at least two of the three inputs are 1. 

Problem 4: Simplify the Boolean expression (A + B')·(A' + B)·(A + B) 

using Boolean algebra 

Solution: Let's simplify step by step: 

Step 1: Simplify (A + B)·(A + B'). (A + B)·(A + B') = A + B·B' = A + 0 = A 

Wait, that's not right. Let's correct it: (A + B)·(A + B') = A·A + A·B' + B·A + 

B·B' = A + A·B' + A·B + 0 = A + A·(B' + B) = A + A·1 = A + A = A 

Step 2: Now simplify the original expression. (A + B')·(A' + B)·(A + B) = (A 

+ B')·(A' + B)·A (from Step 1) = A·(A' + B) = A·A' + A·B = 0 + A·B = A·B 

Therefore, (A + B')·(A' + B)·(A + B) = A·B. 

Actually, let's double-check this solution because I made an error in Step 1. 

(A + B')·(A' + B)·(A + B) 

First, let's examine (A + B) more carefully. This is simply A + B. 

Now, let's look at the product (A + B')·(A' + B): 
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Notes (A + B')·(A' + B) = A·A' + A·B + B'·A' + B'·B = 0 + A·B + A'·B' + 0 = A·B 

+ A'·B' 

So the original expression becomes: (A·B + A'·B')·(A + B) 

Let's expand this: (A·B + A'·B')·(A + B) = A·B·A + A·B·B + A'·B'·A + 

A'·B'·B = A·B + A·B + 0 + 0 = A·B 

Therefore, (A + B')·(A' + B)·(A + B) = A·B. 

Problem 5: Implement a full-adder circuit using Boolean algebra 

Solution: full-adder is circuit that adds three bits: A, B, & a carry-in (Cin). It 

produces a sum (S) & a carry-out (Cout). 

Boolean expressions for S and Cout are: S = A ⊕ B ⊕ Cin (where ⊕ 

represents XOR) Cout = (A·B) + (Cin·(A ⊕ B)) 

Step 1: Implement the expression for S. A ⊕ B can be written as (A·B' + 

A'·B). So, S = (A·B' + A'·B) ⊕ Cin = (A·B' + A'·B)·Cin' + (A·B' + 

A'·B)'·Cin 

Step 2: Implement the expression for Cout. Cout = (A·B) + (Cin·(A ⊕ B)) = 

(A·B) + (Cin·(A·B' + A'·B)) 

To implement this circuit: 

1. Create an XOR gate for A ⊕ B 

2. Connect the output of this XOR gate and Cin to another XOR gate 

to get S 

3. Create an AND gate for A·B 

4. Create an AND gate that takes the output of the first XOR gate and 

Cin 

5. Connect the outputs of the two AND gates to an OR gate to get Cout 

The resulting circuit will have three inputs (A, B, and Cin) and two outputs 

(S and Cout). 

Unsolved Problems 

Problem 1: Simplify the is a Boolean expression.(A•B•C') + (A•B'•C) + 

(A'•B•C) + (A'•B'•C')  
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Notes Hint: This expression represents a function with specific behavior related to 

the number of variables that are 1. 

Problem 2: Prove that the expression (A·B) + (B·C) + (C·A) is equal to 

(A + B)·(B + C)·(C + A) if and only if A = B = C 

Hint: Consider different cases where the variables take different values. 

Problem 3: Design a circuit using only NAND gates to implement 

Boolean function F = (A·B) + (C·D) 

Hint: Remember that NAND gates are universal gates, meaning any Boolean 

function can be implemented using only NAND gates. 

Problem 4: Simplify Boolean expression ((A + B)·C) + ((A + C)·B) using 

Boolean algebra 

Hint: Try distributing terms and looking for common factors. 

Problem 5: Implement a binary-to-Gray code converter using Boolean 

algebra 

Hint: For an n-bit binary number, the Gray code can be obtained by XORing 

each bit with its more significant neighbor. 

Boolean Algebra: From Subalgebras to Minimization of Boolean 

Functions 

3.2.3: Subalgebras, Direct Products, and Homomorphism 

Subalgebras 

A subalgebra of a Boolean algebra B is  subset of B that is closed under the 

operations of meet (∧), join (∨), and complement (¬), and contains the 

bounds 0 and 1. 

Definition: Let (B, ∧, ∨, ¬, 0, 1) be a Boolean algebra. A subset S of B is a 

subalgebra if: 

1. 0 ∈ S and 1 ∈ S 

2. For all a, b ∈ S: a ∧ b ∈ S 

3. For all a, b ∈ S: a ∨ b ∈ S 

4. For all a ∈ S: ¬a ∈ S 
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Notes Example: In Boolean algebra of power set P({1, 2, 3, 4}), the collection S = 

{∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} forms a subalgebra. 

To verify this: 

• S contains ∅ (0) and {1, 2, 3, 4} (1) 

• For any two elements in S, their intersection is in S:  

o {1, 2} ∩ {3, 4} = ∅ 

o {1, 2} ∩ {1, 2, 3, 4} = {1, 2} 

o {3, 4} ∩ {1, 2, 3, 4} = {3, 4} 

• For any two elements in S, their union is in S:  

o {1, 2} ∪ {3, 4} = {1, 2, 3, 4} 

o {1, 2} ∪∅ = {1, 2} 

o {3, 4} ∪∅ = {3, 4} 

• For any element in S, its complement is in S:  

o ¬∅ = {1, 2, 3, 4} 

o ¬{1, 2} = {3, 4} 

o ¬{3, 4} = {1, 2} 

o ¬{1, 2, 3, 4} = ∅ 

Direct Products 

The direct product of Boolean algebras allows us to construct larger 

Boolean algebras from smaller ones. 

Definition: Let B₁, B₂, ..., Bₙ be Boolean algebras. The direct product B₁ × 

B₂ × ... × Bₙ is the Boolean algebra whose elements are n-tuples (b₁, b₂, ..., 

bₙ) where bᵢ ∈ Bᵢ, with operations defined component-wise: 

• (a₁, a₂, ..., aₙ) ∧ (b₁, b₂, ..., bₙ) = (a₁∧b₁, a₂∧b₂, ..., aₙ∧bₙ) 

• (a₁, a₂, ..., aₙ) ∨ (b₁, b₂, ..., bₙ) = (a₁∨b₁, a₂∨b₂, ..., aₙ∨bₙ) 

• ¬(a₁, a₂, ..., aₙ) = (¬a₁, ¬a₂, ..., ¬aₙ) 

• 0 = (0₁, 0₂, ..., 0ₙ) 
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Notes • 1 = (1₁, 1₂, ..., 1ₙ) 

Example: Consider two Boolean algebras B₁ = {0, 1} & B₂ = {0, 1}. The 

direct product B₁ × B₂ consists of the following elements: 

• (0, 0) 

• (0, 1) 

• (1, 0) 

• (1, 1) 

With operations: 

• (0, 1) ∧ (1, 0) = (0∧1, 1∧0) = (0, 0) 

• (0, 1) ∨ (1, 0) = (0∨1, 1∨0) = (1, 1) 

• ¬(0, 1) = (¬0, ¬1) = (1, 0) 

This direct product B₁ × B₂ is isomorphic to Boolean algebra of power set 

P({, b}). 

Homomorphism 

A homomorphism between Boolean algebras preserves the algebraic 

structure. 

Definition: Let (B, ∧, ∨, ¬, 0, 1) and (B', ∧', ∨', ¬', 0', 1') be Boolean 

algebras. A function f: B → B' is a homomorphism if for all a, b ∈ B: 

1. f(a ∧ b) = f(a) ∧' f(b) 

2. f(a ∨ b) = f(a) ∨' f(b) 

3. f(¬a) = ¬'f(a) 

4. f(0) = 0' 

5. f(1) = 1' 

Types of homomorphisms: 

• An isomorphism is a bijective homomorphism 

• A monomorphism is an injective homomorphism 

• An epimorphism is a surjective homomorphism 
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Notes Example of a homomorphism: Let B be the Boolean algebra of the power 

set P({1, 2, 3}) and let B' be the Boolean algebra {0, 1}. Define f: B → B' 

as: 

f(S) = { 1 if 1 ∈ S 0 if 1 ∉ S } 

This is a homomorphism because: 

• f(S ∩ T) = 1 if and only if 1 ∈ S ∩ T, which happens if and only if 1 

∈ S and 1 ∈ T, which happens if and only if f(S) = 1 and f(T) = 1, 

which happens if and only if f(S) ∧ f(T) = 1 

• Similarly for union and complement 

Kernel of a homomorphism: The kernel of a homomorphism f: B → B' is 

the set {a ∈ B | f(a) = 0'}. 

3.2.4: Joint-Irreducible Elements, Atoms, and Minterms 

Joint-Irreducible Elements 

An element in a Boolean algebra is join-irreducible if it cannot be 

expressed as the join (logical OR) of two strictly smaller elements. 

Definition: An element a in a Boolean algebra B is join-irreducible if a ≠ 0 

and for any b, c ∈ B, if a = b ∨ c, then either a = b or a = c. 

In other words, a join-irreducible element cannot be broken down into 

simpler elements using the join operation. 

Atoms 

Atoms are the minimal non-zero elements in a Boolean algebra. 

Definition: An element in Boolean algebra B is an atom if a ≠ 0 & for any b 

∈ B, if b ≤ a, then either b = 0 or b = a. 

Properties of atoms: 

1. Every atom is join-irreducible 

2. In a finite Boolean algebra, every non-zero element can be 

expressed as a join of atoms 

3. If x is an atom and y is any element in the Boolean algebra, then 

either x ∧ y = 0 or x ∧ y = x 
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Notes Example: In Boolean algebra of the power set P({1, 2, 3}), the atoms are 

the singleton sets {1}, {2}, and {3}. Each non-empty set can be expressed as 

a union of these atoms. 

Minterms 

In a Boolean algebra on n variables, minterm is product (AND) of n literals, 

where each variable appears exactly once in either complemented or 

uncomplemented form. 

Definition: For n Boolean variables x₁, x₂, ..., xₙ, a minterm is a product 

term x₁' ∧ x₂' ∧ ... ∧ xₙ' where each xᵢ' is either xᵢ or ¬xᵢ. 

For n variables, there are 2ⁿ possible minterms, each corresponding to one 

possible assignment of truth values to variables. 

Notation:Minterms are often denoted as mᵢ where i is decimal equivalent of 

the binary number formed by replacing each uncomplemented variable with 

1 and each complemented variable with 0. 

Example: For two variables x and y, the four minterms are: 

• m₀ = ¬x ∧¬y (corresponds to x=0, y=0) 

• m₁ = ¬x ∧ y (corresponds to x=0, y=1) 

• m₂ = x ∧¬y (corresponds to x=1, y=0) 

• m₃ = x ∧ y (corresponds to x=1, y=1) 

Properties of minterms: 

1. Each minterm evaluates to 1 for exactly one combination of input 

values 

2. Any Boolean function can be expressed as & sum (OR) of minterms 

3. Minterms are mutually exclusive (the product of any two distinct 

minterms is 0) 

3.2.5: Boolean Forms and Their Equivalence 

Boolean Forms 

A Boolean form (or Boolean expression) is a combination of Boolean 

variables and constants connected by Boolean operations. 
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Notes Definition: A Boolean form is recursively defined as: 

1. Constants 0 and 1 are Boolean forms 

2. Variables x₁, x₂, ..., xₙ are Boolean forms 

3. If F and G are Boolean forms, then so are:  

o ¬F (negation/complement) 

o F ∧ G (conjunction/AND) 

o F ∨ G (disjunction/OR) 

o F → G (implication) 

o F ↔ G (equivalence) 

Example: The following are Boolean forms: 

• x ∧ (y ∨ z) 

• ¬x ∨ (y ∧¬z) 

• (x → y) ∧ (¬y → z) 

Equivalence of Boolean Forms 

Two Boolean forms are equivalent if they represent the same Boolean 

function - that is, they evaluate to the same output for all possible input 

combinations. 

Definition: Boolean forms F & G are equivalent (denoted F ≡ G) if for all 

possible assignments of values to their variables, F & G have the same 

value. 

Basic equivalence laws: 

1. Idempotent laws: 

o x ∨ x ≡ x 

o x ∧ x ≡ x 

2. Commutative laws: 

o x ∨ y ≡ y ∨ x 

o x ∧ y ≡ y ∧ x 
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Notes 3. Associative laws: 

o (x ∨ y) ∨ z ≡ x ∨ (y ∨ z) 

o (x ∧ y) ∧ z ≡ x ∧ (y ∧ z) 

4. Distributive laws: 

o x ∨ (y ∧ z) ≡ (x ∨ y) ∧ (x ∨ z) 

o x ∧ (y ∨ z) ≡ (x ∧ y) ∨ (x ∧ z) 

5. De Morgan's laws: 

o ¬(x ∨ y) ≡¬x ∧¬y 

o ¬(x ∧ y) ≡¬x ∨¬y 

6. Complement laws: 

o x ∨¬x ≡ 1 

o x ∧¬x ≡ 0 

7. Identity laws: 

o x ∨ 0 ≡ x 

o x ∧ 1 ≡ x 

8. Dominance laws: 

o x ∨ 1 ≡ 1 

o x ∧ 0 ≡ 0 

9. Absorption laws: 

o x ∨ (x ∧ y) ≡ x 

o x ∧ (x ∨ y) ≡ x 

10. Double negation: 

o ¬¬x ≡ x 

Example of proving equivalence: To prove (x ∧ y) ∨ (x ∧¬y) ≡ x: 

(x ∧ y) ∨ (x ∧¬y) ≡ x ∧ (y ∨¬y) (by distributive law) ≡ x ∧ 1 (by 

complement law) ≡ x (by identity law) 
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Notes Truth Tables for Verification of Equivalence 

Another way to verify the equivalence of Boolean forms is to construct truth 

tables for each form and check if they produce the same outputs for all input 

combinations. 

Example: Verify that x ∨ (¬x ∧ y) ≡ x ∨ y using a truth table. 

x y ¬x ¬x ∧ y x ∨ (¬x ∧ y) x ∨ y 

0 0 1 0 0 0 

0 1 1 1 1 1 

1 0 0 0 1 1 

1 1 0 0 1 1 

 

Since the truth tables for x ∨ (¬x ∧ y) & x ∨ y match for all input 

combinations, the two Boolean forms are equivalent. 
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Notes  

   

 

 

 

 

 

 

 

   

x y f(x, y) 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

The function outputs 1 for the input combinations (0, 1), (1, 0), and (1, 1), 

which correspond to minterms m₁, m₂, and m₃. Therefore: 

f(x, y) = m₁ ∨ m₂∨ m₃ = (¬x ∧ y) ∨ (x ∧¬y) ∨ (x ∧ y) 

Sum of Products (SOP) Form 

A Sum of Products (SOP) form is a Boolean expression that is a 

disjunction (OR) of product terms (AND terms). 

Definition: A Boolean expression is in SOP form if it is written as a sum 

(OR) of products (AND) of literals, where a literal is either a variable or its 

negation. 

Example: The following are SOP forms: 

• (x ∧ y) ∨ (¬x ∧ z) 

Example: For the function f(x, y) = x ∨ y, the truth table is:

which the function outputs 1.

In other words, a function can be represented as the OR of all minterms for 

corresponding to minterm mₖ}

f(x₁, x₂, ..., xₙ) = ∨ {mₖ | f evaluates to 1 when the variables have the values 

uniquely expressed as:

Minterm expansion theorem: Any Boolean function f(x₁, x₂, ..., xₙ) can be 

Every Boolean function can be expressed as a sum (OR) of minterms.

Minterm Expansion

3.3.1: Minterm Boolean Forms and Sum of Products (SOP)

functions
Sum of Products, Cononical forms, Minimization of Boolean

UNIT 3.3
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Notes • (x ∧ y ∧ z) ∨ (x ∧¬y ∧ z) ∨ (¬x ∧ y ∧¬z) 

Every Boolean function can be expressed in SOP form. The minterm 

expansion of a function is a special case of SOP form where each product 

term is minterm. 

Converting a Boolean Function to SOP Form 

There are several methods to convert a Boolean function to SOP form: 

1. Using a truth table: 

o Construct the truth table for the function 

o Identify all input combinations for which the function 

outputs 1 

o Form the minterms corresponding to these input 

combinations 

o Express the function as the OR of these minterms 

2. Using Boolean algebra: 

o Apply distributive laws to expand expressions 

o Use other Boolean algebraic laws to simplify and rearrange 

o Continue until the expression is in SOP form 

Example: Convert the function f(x, y, z) = x → (y ∧ z) to SOP form. 

First, rewrite implication: x → (y ∧ z) ≡¬x ∨ (y ∧ z) 

This is already close to SOP form, but let's verify with a truth table: 

x y z y ∧ z x → (y ∧ z) = ¬x ∨ (y ∧ z) 

0 0 0 0 1 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 1 

1 0 0 0 0 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 1 1 
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Notes The function outputs 1 for the input combinations (0, 0, 0), (0, 0, 1), (0, 1, 

0), (0, 1, 1), and (1, 1, 1), which correspond to minterms m₀, m₁, m₂, m₃, and 

m₇. Therefore: 

f(x, y, z) = m₀ ∨ m₁∨ m₂∨ m₃∨ m₇ = (¬x ∧¬y ∧¬z) ∨ (¬x ∧¬y ∧ z) ∨ (¬x ∧ y 

∧¬z) ∨ (¬x ∧ y ∧ z) ∨ (x ∧ y ∧ z) 

This can be simplified to: f(x, y, z) = ¬x ∨ (x ∧ y ∧ z) 

3.3.2: Canonical Forms and Minimization of Boolean Functions 

Canonical Forms 

canonical form is a standard way of representing Boolean function. The two 

main canonical forms are: 

1. Sum of Minterms (SOM): A Boolean function expressed as the 

disjunction (OR) of minterms. 

2. Product of Maxterms (POM): A Boolean function expressed as the 

conjunction (AND) of maxterms. 

Maxterms 

A maxterm is sum (OR) of n literals, where each variable appears exactly 

once in either complemented or uncomplemented form. 

Definition: For n Boolean variables x₁, x₂, ..., xₙ, a maxterm is a sum term 

x₁' ∨ x₂' ∨ ... ∨ xₙ' where each xᵢ' is either xᵢ or ¬xᵢ. 

Notation: Maxterms are often denoted as Mᵢ where i is the decimal 

equivalent of binary number formed by replacing each complemented 

variable with 1 and each uncomplemented variable with 0. 

Example: For two variables x & y, the four maxterms are: 

• M₀ = x ∨ y (corresponds to x=0, y=0) 

• M₁ = x ∨¬y (corresponds to x=0, y=1) 

• M₂ = ¬x ∨ y (corresponds to x=1, y=0) 

• M₃ = ¬x ∨¬y (corresponds to x=1, y=1) 

Canonical SOP and POS Forms 
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Notes • Canonical SOP (Sum of Products):f(x₁, x₂, ..., xₙ) = ∨ mᵢ for all i 

where f outputs 1 

• Canonical POS (Product of Sums):f(x₁, x₂, ..., xₙ) = ∧ Mᵢ for all i 

where f outputs 0 

Example: For the function f(x, y) = x ⊕ y (exclusive OR), the truth table is: 

x y f(x, y) 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

Canonical SOP: f(x, y) = m₁ ∨ m₂ = (¬x ∧ y) ∨ (x ∧¬y) Canonical POS: f(x, 

y) = M₀∧ M₃ = (x ∨ y) ∧ (¬x ∨¬y) 

Minimization of Boolean Functions 

Minimizing Boolean functions is important for creating efficient digital 

circuits. The goal is to find an equivalent form with the minimum number of 

literals and operations. 

Algebraic Minimization 

This approach uses Boolean algebra laws to simplify expressions. 

Example: Simplify the expression f(x, y, z) = (x ∧ y) ∨ (¬x ∧ y) ∨ (x ∧ z) ∨ 

(¬x ∧ z) 

f(x, y, z) = (x ∧ y) ∨ (¬x ∧ y) ∨ (x ∧ z) ∨ (¬x ∧ z) = y ∧ (x ∨¬x) ∨ z ∧ (x 

∨¬x) (factoring) = y ∧ 1 ∨ z ∧ 1 (complement law) = y ∨ z (identity law) 

Karnaugh Maps (K-maps) 

A Karnaugh map is a graphical method for simplifying Boolean 

expressions. It represents a truth table in a grid where adjacent cells differ by 

only one bit in their input values. 

Steps for using K-maps: 

1. Construct the K-map grid for the number of variables 

2. Fill in the grid with function outputs 
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Notes 3. Group adjacent 1s in powers of 2 (1, 2, 4, 8, etc.) 

4. For each group, form a product term with the common variables 

5. Express the function as the OR of these product terms 

Example: Minimize the function f(x, y, z) = (x ∧¬y ∧¬z) ∨ (x ∧¬y ∧ z) ∨ (x 

∧ y ∧ z) ∨ (¬x ∧ y ∧ z) 

First, let's create the K-map: 

X y z 

   00 01 11 10 

    0  0  0  1  0 

    1  1  1  1  0 

We see two groupings: 

• A group of 3 cells for x¬z, which gives the term x ∧¬z 

• A group of 2 cells for yz, which gives the term y ∧ z 

Therefore, the minimized expression is: f(x, y, z) = (x ∧¬y) ∨ (y ∧ z) 

Quine-McCluskey Algorithm 

The Quine-McCluskey algorithm is a tabular method for minimizing 

Boolean functions. It is more systematic than K-maps and can handle 

functions with many variables. 

Steps of the Quine-McCluskey algorithm: 

1. List all minterms for which the function outputs 1 

2. Group them by the number of 1s in their binary representation 

3. Compare minterms from adjacent groups to find prime implicants 

4. Create a prime implicant chart to find the essential prime implicants 

5. Select additional prime implicants as needed to cover all minterms 

6. Express the function as the OR of the selected prime implicants 

Example: Here's a simple example of the Quine-McCluskey algorithm for 

function f(w, x, y, z) with minterms 0, 2, 8, 10, 11, 15. 
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Notes Step 1: Group minterms by number of 1s: 

• Group 0: (0) = 0000 

• Group 1: (2) = 0010, (8) = 1000 

• Group 2: (10) = 1010 

• Group 3: (11) = 1011 

• Group 4: (15) = 1111 

Step 2: Find prime implicants by comparing adjacent groups: 

• Comparing 0000 and 0010: -010 (minterm 0, 2) 

• Comparing 0000 and 1000: -000 (minterm 0, 8) 

• Comparing 0010 and 1010: -010 (minterm 2, 10) 

• Comparing 1010 and 1011: 101- (minterm 10, 11) 

• Comparing 1011 and 1111: 1-11 (minterm 11, 15) 

Step 3: Continue the process until no more combinations are possible. 

Step 4: From the prime implicant chart, determine that the minimal 

expression is: f(w, x, y, z) = (¬w ∧¬x ∧¬y) ∨ (¬w ∧¬x ∧¬z) ∨ (w ∧ x ∧ z) 

Solved Problems 

Problem 1: Verify the Subalgebra Property 

Problem: Show that the set S = {∅, {a}, {b}, {a, b}} is subalgebra of power 

set Boolean algebra P({a, b, c}). 

Solution: To be a subalgebra, S must be closed under complement, meet 

(intersection), and join (union), and must contain the bounds (∅ and {a, b, 

c}). 

First, note that S does not contain {a, b, c}, so it cannot be a subalgebra of 

P({a, b, c}). 

However, if we consider S as a subset of P({a, b}), then: 

1. S contains ∅ (0) and {a, b} (1 in P({a, b})) 

2. Closure under intersection:  
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Notes o {a} ∩ {b} = ∅∈ S 

o {a} ∩ {a, b} = {a} ∈ S 

o {b} ∩ {a, b} = {b} ∈ S 

3. Closure under union:  

o {a} ∪ {b} = {a, b} ∈ S 

o {a} ∪∅ = {a} ∈ S 

o {b} ∪∅ = {b} ∈ S 

4. Closure under complement (relative to {a, b}):  

o ¬∅ = {a, b} ∈ S 

o ¬{a} = {b} ∈ S 

o ¬{b} = {a} ∈ S 

o ¬{a, b} = ∅∈ S 

Therefore, S is a subalgebra of P({a, b}). 

Problem 2: Find a Boolean Homomorphism 

Problem: Define a homomorphism from the Boolean algebra P({1, 2, 3, 4}) 

to the Boolean algebra {0, 1}. 

Solution: We need to define a function f: P({1, 2, 3, 4}) → {0, 1} that 

preserves all Boolean operations. 

Let's define f as: f(S) = { 1 if |S| is even (including 0) 0 if |S| is odd } 

To verify this is a homomorphism: 

1. f(∅) = 1 since |∅| = 0 is even, and f({1, 2, 3, 4}) = 1 since |{1, 2, 3, 

4}| = 4 is even. 

2. For complement: f(Sc) = f({1, 2, 3, 4} - S) If |S| is even, then |Sc| = 4 

- |S| is also even, so f(S) = f(Sc) = 1 If |S| is odd, then |Sc| = 4 - |S| is 

also odd, so f(S) = f(Sc) = 0 This doesn't satisfy f(Sc) = ¬f(S), so our 

proposed function isn't a homomorphism. 

Let's try another definition: f(S) = { 1 if 1 ∈ S 0 if 1 ∉ S } 

To verify: 
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Notes 1. f(∅) = 0 since 1 ∉∅, and f({1, 2, 3, 4}) = 1 since 1 ∈ {1, 2, 3, 4}. 

2. For complement: f(Sc) = f({1, 2, 3, 4} - S) If 1 ∈ S, then 1 ∉Sc, so 

f(S) = 1 and f(Sc) = 0 If 1 ∉ S, then 1 ∈Sc, so f(S) = 0 and f(Sc) = 1 

This satisfies f(Sc) = ¬f(S) 
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Notes  

  

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

  

  

• A AND B (written as A·B or A∧B) = 0 otherwise

• A AND B (written as A·B or A∧B) = 1 if both A = 1 and B = 1

For Boolean variables A and B:

The AND operation, denoted by '·' or '∧', returns 1 only if all inputs are 1.

 AND Operation (Conjunction)2.

1 | 0

0 | 1

--------

A | A'

Truth Table for NOT Gate:

being the complement of input.

using an inverter or NOT gate. It has one input and one output, with output 

Circuit Implementation (NOT Gate): The NOT operation is implemented 

• NOT A (written as A' or ¬A) = 0 if A = 1

• NOT A (written as A' or ¬A) = 1 if A = 0

For a Boolean variable A:

input value.

The  NOT  operation,  denoted  by  an  overbar  or  the  symbol  '¬',  inverts  the 

 NOT Operation (Inversion)1.

Basic Boolean Operations and Their Circuit Implementations

algebra perfectly suited for describing the behavior of digital circuits.

(OFF/FALSE)  and  1  (ON/TRUE).  This  binary  nature  makes  Boolean 

information.  In  digital  systems,  variables  can  only  have  two  values:  0 

framework  for  analyzing  and  designing  circuits  that  process  binary 

become the foundation  of digital  circuit  design.  It  provides  a mathematical 

Boolean  algebra,  developed  by  George  Boole  in  the  mid-19th  century,  has 

3.4.1 Applications of Boolean Algebra in Digital Circuits

AND, OR and NOT gates) The Karnaugh method
Applications of Boolean Algebra to Switching Theory (using

UNIT 3.4
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Notes Circuit Implementation (AND Gate): The AND operation is implemented 

using an AND gate, which has two or more inputs and one output. 

Truth Table for AND Gate (2 inputs): 

A | B | A·B 

------------- 

0 | 0 | 0 

0 | 1 | 0 

1 | 0 | 0 

1 | 1 | 1 

3. OR Operation (Disjunction) 

The OR operation, denoted by '+' or '∨', returns 1 if at least one input is 1. 

For Boolean variables A & B: 

• A OR B (written as A+B or A∨B) = 0 if both A = 0 and B = 0 

• A OR B (written as A+B or A∨B) = 1 otherwise 

Circuit Implementation (OR Gate): The OR operation is implemented 

using an OR gate, which has two or more inputs & one output. 

Truth Table for OR Gate (2 inputs): 

A | B | A+B 

------------- 

0 | 0 | 0 

0 | 1 | 1 

1 | 0 | 1 

1 | 1 | 1 

4. XOR Operation (Exclusive OR) 

The XOR operation, denoted by '⊕', returns 1 if the number of 1s in the 

inputs is odd. 

For Boolean variables A and B: 
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Notes • A XOR B (written as A⊕B) = 0 if A = B 

• A XOR B (written as A⊕B) = 1 if A ≠ B 

Circuit Implementation (XOR Gate): The XOR operation is implemented 

using an XOR gate. 

Truth Table for XOR Gate (2 inputs): 

A | B | A⊕B 

------------- 

0 | 0 | 0 

0 | 1 | 1 

1 | 0 | 1 

1 | 1 | 0 

5. NAND Operation (NOT AND) 

The NAND operation is the negation of the AND operation. 

For Boolean variables A & B: 

• A NAND B = NOT (A AND B) = NOT (A·B) = (A·B)' 

Circuit Implementation (NAND Gate):A NAND gate, which is an AND 

gate followed by a NOT gate, is used to implement the & operation. 

Truth Table for NAND Gate (2 inputs): 

A | B | (A·B)' 

-------------- 

0 | 0 | 1 

0 | 1 | 1 

1 | 0 | 1 

1 | 1 | 0 

6. NOR Operation (NOT OR) 

The NOR operation is the negation of the OR operation. 
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Notes  

For variables A & B that are Boolean: 

• A NOR B = NOT (A OR B) = NOT (A+B) = (A+B)' 

Circuit Implementation (NOR Gate): The NOR operation is implemented 

using a NOR gate, which is an OR gate followed by a NOT gate. 

Truth Table for NOR Gate (2 inputs): 

A | B | (A+B)' 

-------------- 

0 | 0 | 1 

0 | 1 | 0 

1 | 0 | 0 

1 | 1 | 0 

Boolean Algebraic Laws and Theorems 

Boolean algebra follows several laws and theorems that are essential for 

simplifying expressions and circuit designs. 

1. Commutative Laws 

• A + B = B + A 

• A · B = B · A 

2. Associative Laws 

• A + (B + C) = (A + B) + C 

• A · (B · C) = (A · B) · C 

3. Distributive Laws 

• A · (B + C) = A · B + A · C 

• A + (B · C) = (A + B) · (A + C) 

4. Identity Laws 

• A + 0 = A 

• A · 1 = A 
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Notes 5. Complement Laws 

• A + A' = 1 

• A · A' = 0 

6. Idempotent Laws 

• A + A = A 

• A · A = A 

7. Absorption Laws 

• A + (A · B) = A 

• A · (A + B) = A 

8. De Morgan's Theorems 

• (A + B)' = A' · B' 

• (A · B)' = A' + B' 

These theorems are extremely valuable in simplifying Boolean expressions, 

which directly translates to simpler and more efficient circuit designs with 

fewer gates. 

Boolean Functions and Expression Representation 

A Boolean function is function that maps binary inputs to binary outputs. 

For n Boolean variables, there are 2^n possible input combinations and 

2^(2^n) possible Boolean functions. 

There are several standard ways to represent Boolean functions: 

1. Truth Table 

truth table lists all possible input combinations and their corresponding 

output values. For n variables, a truth table has 2^n rows. 

2. Canonical Forms 

Sum of Minterms (SOP - Sum of Products) 

A minterm is a product (AND) term where each variable appears exactly 

once, either in its true or complemented form. A for which the function value 

is 1. 
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Notes For example, for function F(A,B,C) with minterms m1, m4, and m6: 

F(A,B,C) = m1 + m4 + m6 = A'·B'·C + A·B'·C' + A·B·C' 

Product of Maxterms (POS - Product of Sums) 

A maxterm is a sum (OR) term where each variable appears exactly once, 

either in its true or complemented form. The representation of a boolean 

function is the product (AND) of its maxterms for which the function value 

is 0. 

For example, for function F(A,B,C) with maxterms M0, M2, M3, M5, and 

M7: F(A,B,C) = M0 · M2 · M3 · M5 · M7 

3. Non-Canonical Forms 

These are simplified expressions that don't require all variables to appear in 

each term. They are typically derived from canonical forms using Boolean 

algebraic laws. 

Simplification of Boolean Expressions 

Simplifying Boolean expressions leads to circuit designs with fewer gates, 

which reduces cost, power consumption, and complexity. 

Algebraic Simplification 

This method involves applying Boolean algebraic laws and theorems to 

simplify expressions. For example: 

A·B + A·B' = A·(B + B') = A·1 = A 

Quine-McCluskey Method 

Also known as the tabulation method, this is a systematic procedure for 

minimizing Boolean functions. It works well for functions with many 

variables but can be computationally intensive. 

Digital Circuit Design Using Boolean Algebra 

Combinational Logic Circuits 

Combinational circuits are digital circuits where output depends only on 

current input values. They don't have memory elements. 

Example: Half Adder A half adder adds two single-bit binary numbers A and 

B. It has two outputs: Sum (S) and Carry (C). 
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Notes Boolean functions: 

• S = A ⊕ B (XOR operation) 

• C = A · B (AND operation) 

Sequential Logic Circuits 

Sequential circuits are digital circuits where the output depends not only on 

current inputs but also on the past sequence of inputs. They contain memory 

elements like flip-flops. 

Example: D Flip-Flop A D flip-flop stores a single bit of data. Its output Q 

takes on the value of the D input at the active edge of the clock signal and 

retains this value until the next active clock edge. 

Digital Circuit Analysis Using Boolean Algebra 

Circuit to Boolean Expression 

Given a digital circuit, we can derive its Boolean expression by working 

through the circuit from inputs to outputs, applying the appropriate Boolean 

operations for each gate. 

Boolean Expression to Circuit 

Given a Boolean expression, we can implement it as a digital circuit by 

converting it into a suitable form (like SOP or POS) and then using the 

appropriate gates. 

Applications in Computer Architecture 

Boolean algebra is fundamental to designing critical components of 

computer systems: 

1. Arithmetic Logic Unit (ALU) 

The ALU performs arithmetic and logical operations. It uses Boolean logic 

to implement operations like addition, subtraction, AND, OR, and NOT. 

2. Memory and Register Design 

Memory cells and registers use logic gates and flip-flops to store and 

manipulate binary data. 

3. Control Unit 
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Notes The control unit generates control signals based on instructions and system 

status. These signals control the flow of data through the CPU. 

4. Multiplexers and Demultiplexers 

These components route data through the system based on control signals, 

implementing complex switching functions using Boolean logic. 

5. Encoders and Decoders 

These circuits convert between different binary representations, using 

Boolean functions to map inputs to outputs. 

Real-World Applications 

Boolean algebra and digital circuits are fundamental to virtually all modern 

electronic systems: 

1. Computers and Microprocessors: The central processing unit 

(CPU) of a computer is built from millions of logic gates 

implementing Boolean functions. 

2. Digital Communication Systems: Digital communication systems 

use Boolean logic for data encoding, error detection, and correction. 

3. Control Systems: Programmable logic controllers (PLCs) use 

Boolean functions to implement control algorithms in industrial 

settings. 

4. Consumer Electronics: Smartphones, digital TVs, and other 

consumer devices are built using complex digital circuits. 

5. Cryptography: Modern cryptographic systems rely on Boolean 

operations for encryption and decryption. 

3.4.2: The Karnaugh Map (K-Map) Method 

Introduction to Karnaugh Maps 

The Karnaugh Map (K-map) is a graphical method for simplifying Boolean 

expressions. Developed by Maurice Karnaugh in 1953, it provides a visual 

approach to minimizing Boolean functions by taking advantage of the 

adjacency of terms. K-maps make it easy to identify groups of terms that can 

be combined, leading to simplified Boolean expressions. 
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Notes Structure of a Karnaugh Map 

A K-map is a grid where each cell represents a minterm in a Boolean 

function. For an n-variable function, the K-map has 2^n cells. 

The key features of a K-map include: 

1. Rectangular Grid: The K-map is arranged as a rectangular grid, 

with cells representing minterms. 

2. Gray Code Ordering: Adjacent cells in the K-map differ by exactly 

one variable. This is achieved by using Gray code ordering for the 

row and column indices. 

3. Wrap-around Property: The K-map has a wrap-around property, 

meaning that cells on opposite edges are considered adjacent. 

K-map Sizes for Different Numbers of Variables: 

• 2 Variables: 2×2 grid (4 cells) 

• 3 Variables: 2×4 grid (8 cells) 

• 4 Variables: 4×4 grid (16 cells) 

• 5 Variables: Two 4×4 grids (32 cells) 

• 6 Variables: Four 4×4 grids (64 cells) 

Constructing a Karnaugh Map 

To create a Boolean function's K-map: 

1. Determine Number of Variables: Identify how many variables are 

in the function. 

2. Create the Grid: Draw a grid with the appropriate dimensions 

based on the number of variables. 

3. Label the Grid: Label the rows and columns using Gray code 

ordering. 

4. Fill in the Map: For each minterm in the function, place a 1 in the 

corresponding cell. For each maxterm, place a 0. 

Example: K-map for 3-Variable Function 

For function F(A,B,C) = A'B'C + A'BC + AB'C': 
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Notes     BC 

A   00  01  11  10 

----------------- 

0 |  0   1   1   0  | 

1 |  1   0   0   0  | 

Where the cells represent minterms m0, m1, m2, m3, m4, m5, m6, and m7: 

    BC 

A   00  01  11  10 

----------------- 

0 | m0  m1  m3  m2 | 

1 | m4  m5  m7  m6 | 

And 1s are placed in cells corresponding to minterms m1, m2, and m4. 

Identifying Groups in a Karnaugh Map 

The key to simplifying Boolean functions using K-maps is to identify groups 

of adjacent 1s. The rules for grouping are: 

1. Group Size: Groups must contain 2^n cells (1, 2, 4, 8, 16, etc.). 

2. Adjacency: All cells in a group must be adjacent (horizontally, 

vertically, or diagonally adjacent at the edges due to wrap-around). 

3. Maximal Groups: Always create the largest possible groups. 

4. Cover All 1s: All cells containing 1s must be included in at least one 

group. 

5. Minimal Coverage: Use the fewest possible groups to cover all 1s. 

When a variable changes value within a group, it gets eliminated from the 

simplified term. Variables that remain constant throughout the group appear 

in the simplified term. 

Simplifying Boolean Functions Using K-maps 

Once groups are identified, we can derive the simplified expression: 
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Notes 1. Analyze Each Group: For each group, determine which variables 

stay constant and which ones change. 

2. Write Terms: For each group, write a product term containing only 

the variables that stay constant. 

3. Combine Terms: OR together all the product terms to form the 

simplified expression. 

Example: Simplifying F(A,B,C) = A'B'C + A'BC + AB'C' 

In K-map: 

    BC 

A   00  01  11  10 

----------------- 

0 |  0   1   1   0  | 

1 |  1   0   0   0  | 

We can identify the following groups: 

• Group 1: A'BC and A'BC' (cells m1 and m3) 

• Group 2: A'B'C and AB'C' (cells m0 and m4) 

Simplified expression: F(A,B,C) = A'B + C' 

Handling Conditions of Don't Care 

designs, certain input combinations never occur or their outputs don't matter. 

These are called "don't care" conditions, typically denoted by 'X' or 'd' in the 

K-map. 

Don't care conditions provide flexibility in simplification. When grouping, 

we can choose to include or exclude don't care cells based on what leads to 

the simplest expression. 

Example: Simplifying with Don't Care Conditions 

For function F(A,B,C) with minterms m1, m4, m6 and don't cares d3, d5: 

    BC 

A   00  01  11  10 
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Notes ----------------- 

0 |  0   1   X   0  | 

1 |  1   X   0   1  | 

By treating the don't cares as 1s when beneficial, we can form larger groups, 

resulting in a simpler expression. 

K-maps for 4-Variable Functions 

For 4-variable functions, we use a 4×4 K-map. The rows and columns are 

labeled with 2-variable Gray codes. 

Example: K-map for F(A,B,C,D) = Σm(0,1,4,5,12,13) 

      CD 

AB    00  01  11  10 

-------------------- 

00 |  1   1   0   0  | 

01 |  1   1   0   0  | 

11 |  0   0   0   0  | 

10 |  1   1   0   0  | 

By identifying groups, we can simplify this to: F(A,B,C,D) = C'D' 

K-maps for 5 and 6 Variables 

For 5 and 6 variables, we use multiple 4×4 K-maps: 

• 5 Variables: Two 4×4 K-maps, one for when the 5th variable is 0 

and one for when it's 1. 

• 6 Variables: Four 4×4 K-maps, representing different combinations 

of the 5th and 6th variables. 

Groups can span across multiple K-maps if the cells are adjacent when 

considering the additional variables. 

Comparing K-maps with Other Minimization Methods 

Advantages of K-maps: 
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Notes 1. Visual Approach: K-maps provide a visual method that makes it 

easy to identify patterns. 

2. Intuitive: The grouping process is intuitive and less prone to errors 

than algebraic manipulation. 

3. Efficient for Small Functions: K-maps are particularly efficient for 

functions with up to 5-6 variables. 

Limitations of K-maps: 

1. Scalability: K-maps become unwieldy for functions with more than 

6 variables. 

2. Manual Process: K-map minimization is primarily a manual 

process, making it less suitable for computer implementation. 

Alternatives to K-maps: 

1. Quine-McCluskey Method: This tabular method can handle 

functions with more variables and is well-suited for computer 

implementation. 

2. Espresso Algorithm: A heuristic algorithm for logic minimization 

that can handle large functions. 

Applications of K-maps in Digital Circuit Design 

K-maps are widely used in digital circuit design for: 

1. Combinational Logic Design: Simplifying the Boolean expressions 

for combinational circuits like multiplexers, decoders, and adders. 

2. State Machine Design: Simplifying the next-state and output 

functions in sequential circuits. 

3. Error Detection and Correction: Designing circuits for error 

detection and correction codes. 

4. Addressing Hazards: Identifying and resolving hazards in digital 

circuits. 

Practical Example: Designing a BCD to 7-Segment Display Decoder 

A practical application of K-maps is in designing a BCD (Binary-Coded 

Decimal) to 7-segment display decoder. This circuit converts a 4-bit BCD 
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Notes input (representing digits 0-9) to outputs that drive a 7-segment display.For 

each segment (a-g) of the display, we can create a K-map based on which 

digits require that segment to be illuminated. Then, we can derive simplified 

Boolean expressions for each segment. 

Solved Problems 

Problem 1: Simplify the Boolean expression F(A,B,C) = A'B'C + A'BC + 

AB'C + ABC 

Solution: First, identify the minterms: 

• A'B'C = m1 (001) 

• A'BC = m3 (011) 

• AB'C = m5 (101) 

• ABC = m7 (111) 

Create the K-map: 

    BC 

A   00  01  11  10 

----------------- 

0 |  0   1   1   0  | 

1 |  0   1   1   0  | 

We can identify two groups: 

• Group 1: Cells m1 and m5 (vertically aligned, including A'B'C and 

AB'C) 

• Group 2: Cells m3 and m7 (vertically aligned, including A'BC and 

ABC) 

For Group 1, B changes while A and C remain constant (C = 1, A varies). So 

Group 1 gives us B'C. For Group 2, B changes while A and C remain 

constant (C = 1, A varies). So Group 2 gives us BC. 

The simplified expression is F(A,B,C) = B'C + BC = C(B' + B) = C 

verify this algebraically: F(A,B,C) = A'B'C + A'BC + AB'C + ABC = C(A'B' 

+ A'B + AB' + AB) = C(A'(B' + B) + A(B' + B)) = C(A' + A) = C 
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Notes Problem 2: Simplify Boolean function F(A,B,C,D) = 

Σm(0,2,8,10,11,14,15) 

Solution: Create the K-map: 

      CD 

AB    00  01  11  10 

-------------------- 

00 |  1   0   0   1  | 

01 |  0   0   0   0  | 

11 |  0   0   1   1  | 

10 |  1   0   1   1  | 

We can identify the following groups: 

• Group 1: Cells m0 and m2 (A'B'C'D' & A'B'C'D) 

• Group 2: Cells m8 and m10 (AB'C'D' and AB'C'D) 

• Group 3: Cells m10, m11, m14, and m15 (AB'CD, AB'C'D, ABCD, 

and ABC'D) 

For Group 1, D changes while A, B, & C remain constant (A = 0, B = 0, C = 

0). So Group 1 gives us A'B'C'. For Group 2, D changes while A, B, & C 

remain constant (A = 1, B = 0, C = 0). So Group 2 gives us AB'C'. For 

Group 3, B and C change while A and D remain constant (A = 1, D = 1). So 

Group 3 gives us AD. 

The simplified expression is F(A,B,C,D) = A'B'C' + AB'C' + AD 

We can further simplify this: F(A,B,C,D) = A'B'C' + AB'C' + AD = B'C'(A' + 

A) + AD = B'C' + AD 

Problem 3: Design a digital circuit that performs a full adder operation 

using the K-map method 

Solution: A full adder adds three binary digits (A, B, and Cin) and produces 

two outputs: Sum (S) and Carry-out (Cout). 

Let's derive the Boolean expressions for S and Cout using K-maps. 

For Sum (S): S = 1 when an odd number of inputs are 1. S = A ⊕ B ⊕ Cin 
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Notes Truth table: 

A | B | Cin | S 

--------------- 

0 | 0 | 0   | 0 

0 | 0 | 1   | 1 

0 | 1 | 0   | 1 

0 | 1 | 1   | 0 

1 | 0 | 0   | 1 

1 | 0 | 1   | 0 

1 | 1 | 0   | 0 

1 | 1 | 1   | 1 

K-map for Sum: 

      Cin B 

A     00  01  11  10 

-------------------- 

0 |   0   1   0   1  | 

1 |   1   0   1   0  | 

We can identify four groups: 

• Group 1: A'B'Cin (cell m1) 

• Group 2: A'BCin' (cell m2) 

• Group 3: AB'Cin' (cell m4) 

• Group 4: ABCin (cell m7) 

Simplified expression for Sum: S = A'B'Cin + A'BCin' + AB'Cin' + ABCin = 

A ⊕ B ⊕ Cin 

For Carry-out (Cout): Cout = 1 when at least two inputs are 1. 

Table of truth: 



 

137 
 

Notes A | B | Cin | Cout 

------------------ 

0 | 0 | 0   | 0 

0 | 0 | 1   | 0 

0 | 1 | 0   | 0 

0 | 1 | 1   | 1 

1 | 0 | 0   | 0 

1 | 0 | 1   | 1 

1 | 1 | 0   | 1 

1 | 1 | 1   | 1 

K-map for Cout: 

      Cin B 

A     00  01  11  10 

-------------------- 

0 |   0   0   1   0  | 

1 |   0   1   1   1  | 

We can identify three groups: 

• Group 1: Cells m3 and m7 (A'BCin and ABCin): BCin 

• Group 2: Cells m5 and m7 (AB'Cin and ABCin): ACin 

• Group 3: Cells m6 and m7 (ABC' and ABCin): AB 

Simplified expression for Cout: Cout = BCin + ACin + AB 

The circuit implementation would use XOR gates for the Sum and AND/OR 

gates for the Carry-out. 

Problem 4: Simplify Boolean function F(A,B,C,D) with don't care 

conditions 

F(A,B,C,D) = Σm(1,3,7,11,15) Don't cares: d(0,2,5) 
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Notes Solution: Create the K-map with '1's for minterms and 'X's for don't cares: 

      CD 

AB    00  01  11  10 

-------------------- 

00 |  X   1   1   X  | 

01 |  0   0   0   X  | 

11 |  0   0   1   1  | 

10 |  0   0   1   0  | 

We can identify the following groups: 

• Group 1: Cells m1, m3, m0, and m2 (using don't cares m0 and m2): 

This group gives us A' 

• Group 2: Cells m3, m7, m11, and m15: This group gives us CD 

The simplified expression is F(A,B,C,D) = A' + CD 

We can confirm this.  is correct. When A = 0, the output is 1 (except for 

some don't care conditions). When C = 1 and D = 1, the output is 1. 

Problem 5: Design a 4-to-2 priority encoder using K-maps 

Solution: A 4-to-2 priority encoder has 4 input lines (I0, I1, I2, I3) and 

produces a 2-bit binary output (Y1, Y0) representing the highest priority 

input that is active (1). Priority increases from I0 (lowest) to I3 (highest). 

Truth table: 

I3 | I2 | I1 | I0 | Y1 | Y0 

---------------------------- 

0  | 0  | 0  | 0  | X  | X  (invalid/don't care) 

0  | 0  | 0  | 1  | 0  | 0 

0  | 0  | 1  | X  | 0  | 1 

0  | 1  | X  | X  | 1  | 0 

1  | X  | X  | X  | 1  | 1 
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Notes K-map for Y1: 

      I1 I0 

I3I2  00  01  11  10 

--------------------- 

00 |  X   0   0   0  | 

01 |  0   0   0   0  | 

11 |  1   1   1   1  | 

10 |  1   1   1   1  | 

Y1 simplifies to I3 + I2 

K-map for Y0: 

      I1 I0 

I3I2  00  01  11  10 

--------------------- 

00 |  X   0   1   1  | 

01 |  0   0   1   1  | 

11 |  1   1   1   1  | 

10 |  0   0   0   0  | 

Y0 simplifies to I3 + I1 

Therefore, the Boolean expressions for the 4-to-2 priority encoder are: Y1 = 

I3 + I2 Y0 = I3 + I1 

Unsolved Problems 

Problem 1: 

Simplify Boolean function F(W,X,Y,Z) = Σm(0,1,2,3,7,8,10,12,13,14,15) 

Problem 2: 

Simplify Boolean function F(A,B,C,D) with don't care conditions: 

F(A,B,C,D) = Σm(1,3,5,7,9,13,15) Don't cares: d(0,2,4,6,8,10,12,14) 
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Notes Problem 3: 

Design a circuit that converts a 3-bit binary number to excess-3 code using 

K-maps. 

Problem 4: 

Use K-maps to design a circuit that detects if the number of 1s in a 4-bit 

input is even. 

Problem 5: 

Simplify the following Boolean expression using K-maps: F(A,B,C,D) = 

A'B'C'D' + A'B'CD' + A'BCD + A'BC'D + AB'C'D' + AB'CD + ABCD' + 

ABC'D 

Multiple-Choice Questions (MCQs) 

1. Boolean algebra is special type of: 

a) Number system 

b) Lattice 

c) Graph 

d) Matrix 

2. The Boolean identity A+A=? is: 

a) A 

b) 0 

c) 1 

d) ¬A 

3. The complement of a Boolean variable A is denoted as: 

a) A′ 

b) A2 

c) A+A 

d) A−1 

4. Which Boolean operation represents the logical AND function? 

a) + 

b) × 

c) . 

d) − 
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Notes 5. The switching algebra is mainly used in: 

a) Calculus 

b) Digital circuit design 

c) Probability theory 

d) Geometry 

6. A Boolean function is in sum-of-products (SOP) form if: 

a) It consists of minterms combined with AND operations 

b) It consists of minterms combined with OR operations 

c) It is expressed as a single term 

d) It does not use Boolean variables 

7. The Karnaugh Map (K-map) method is used for: 

a) Expanding Boolean expressions 

b) Minimizing Boolean functions 

c) Multiplying matrices 

d) Finding derivatives 

8. A Boolean algebra is complemented if: 

a) Each element has a unique complement 

b) The set has a top element 

c) Every subset has a maximum element 

d) The elements form a ring structure 

9. Which logic gate implements the Boolean function A⋅B? 

a) OR gate 

b) AND gate 

c) NOT gate 

d) XOR gate 

Short Answer Questions 

1. Define Boolean algebra and its significance. 

2. What are Boolean identities? Give two examples. 

3. Explain the concept of switching algebra. 

4. What is a minterm in Boolean algebra? 

5. How is a Boolean algebra different from an ordinary algebraic 

system? 
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Notes 6. What are subalgebras in Boolean algebra? 

7. Define sum-of-products (SOP) form of Boolean expression. 

8. What is a Karnaugh Map (K-map), and why is it useful? 

9. How does Boolean algebra apply to digital circuits? 

10. Describe the role of NOT, AND, and OR gates in Boolean logic. 

Long Answer Questions 

1. Explain the fundamental laws and identities of Boolean algebra with 

examples. 

2. Describe the structure of a Boolean algebra as a lattice and its 

properties. 

3. Discuss the concept of minterms and maxterms in Boolean algebra 

with examples. 

4. Explain the different forms of Boolean expressions and their 

equivalence. 

5. How is Boolean algebra applied in the design of digital circuits? 

6. What is the importance of minimization in Boolean algebra? Explain 

different techniques. 

7. Compare and contrast sum-of-products (SOP) & product-of-sums 

(POS) forms. 

8. Discuss the role of homomorphism in Boolean algebra. 

9. How does Boolean algebra relate to the design of computer processors 

and logic circuits? 

Ans Key: 

1 b 3 a 5 b 7 b 9 b 

2 a 4 b 6 a 8 a 10 - 
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Key Characteristics of FSMs

• F is the collection of accepting or final states, where F ⊆ Q.

  q0 ∈ Q. Q × Σ → Q

• The transition function is denoted by δ. The initial state is q0, where

• The alphabet is a limited collection of input symbols.

Q is a limited collection of states.

  where:

• finite  state  machine  is  formally  defined  as  5-tuple  (Q,  Σ,  δ,  q0,  F)

Definition

inputs; the change from one state to another is called a transition.

time.  The  FSM  can  change  from  one  state  to  another  in  response  to  some 

machine that can be in exactly one of a finite number of states at any given 

design both computer programs and sequential logic circuits. It is an abstract 

Finite State Machine (FSM) is mathematical model of computation used to 

4.1.1: Introduction to Finite State Machines (FSM)

• To study Moore and Mealy machines and their applications.

  automata.

• To  differentiate  between  deterministic  and  non-deterministic  finite

• To understand finite automata and acceptors.

• To explore the concept of homomorphism in FSM.

• To study reduced machines and their significance.

  minimization.

• To  analyze  the  equivalence  of  finite  state  machines  and  their

  transition diagrams.

• To understand the concept of finite state machines (FSM) and their

Objectives

Equivalence of Finite State, Machines, Reduced Machines
Finite state Machines and their Transition table diagrams, 

UNIT 4.1

MODULE 4
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Notes 1. Finite number of states: An FSM can only be in one of a limited 

number of states at any given time. 

2. State transitions: The machine moves from one state to another 

based on input and its current state. 

3. Determinism: In a deterministic FSM, for each state and input 

symbol, there is exactly one next state. 

4. Memory limitations: FSMs have no additional memory beyond the 

state itself. 

Applications of FSMs 

Numerous fields make extensive use of finite state machines: 

1. Text Processing: Used in lexical analyzers, pattern matching, and 

text editors 

2. Communication Protocols: Used to define network protocols and 

communication systems 

3. Digital Circuit Design: Used to model sequential circuits 

4. Game Development: Used for character behavior and game state 

management 

5. Natural Language Processing: Used in tokenization and simple 

parsing 

6. Control Systems: Used to model and implement control logic 

Example of a Simple FSM 

Consider a turnstile at a subway entrance that can be in one of two states: 

Locked or Unlocked. 

• Initial state: Locked 

• Inputs: Insert coin, Push 

The behavior can be described as: 

• When the turnstile is Locked and a coin is inserted, it transitions to 

Unlocked 
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Notes • When the turnstile is Unlocked and is pushed, it transitions to 

Locked 

• When the turnstile is Locked and is pushed, it remains Locked 

• When the turnstile is Unlocked and a coin is inserted, it remains 

Unlocked 

This simple example demonstrates the fundamental concept of states and 

transitions in FSMs. 

4.1.2: Transition Table and Diagrams of FSM 

To represent a finite state machine, we commonly use two visual tools: 

transition tables and transition diagrams. 

Transition Tables 

A transition table is a tabular representation of the transition function δ. It 

shows all possible states, inputs, and the resulting next states. 

The format of a transition table typically has: 

• Rows representing current states 

• Columns representing input symbols 

• Entries showing the next state for each state-input pair 

Example Transition Table 

For our turnstile example: 

Current State Input: Coin Input: Push 

Locked Unlocked Locked 

Unlocked Unlocked Locked 

Transition Diagrams 

A transition diagram (or state diagram) is a directed graph representation of 

an FSM where: 

• Nodes represent states (often drawn as circles) 

• Directed edges represent transitions between states 

• Edge labels indicate the input symbol that triggers the transition 



  

146 
 

Notes • The initial state is marked with an incoming arrow 

• Final/accepting states are represented by double circles 

How to Draw a Transition Diagram 

1. Draw a circle for each state in the FSM 

2. Mark the initial state with an incoming arrow 

3. Draw double circles for accepting states 

4. For each transition in the transition table, draw a directed edge from 

the current state to the next state, labeled with the input symbol 

Example Transition Diagram 

For the turnstile example: 

    ┌─────────┐   coin   ┌──────────┐ 

    │         │ ─────────>          │ 

    │ Locked  │          │ Unlocked │ 

    │         │ <─────────          │ 

    └─────────┘   push   └──────────┘ 

         ↑                     │ 

         │        push         │ 

         └─────────────────────┘ 

Extended Notation 

In more complex FSMs, we might use extended notation in diagrams: 

• Multiple labels on a single edge (indicating multiple inputs causing 

the same transition) 

• Multiple transitions with the same label (indicating non-

determinism) 

• ε-transitions (transitions without consuming input) 

Transition Table for Multiple Input Symbols 
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Notes For more complex FSMs with multiple input symbols, the transition table 

expands to include all possible inputs: 

State Input 1 Input 2 ... Input n 

q0 δ(q0,1) δ(q0,2) ... δ(q0,n) 

q1 δ(q1,1) δ(q1,2) ... δ(q1,n) 

... ... ... ... ... 

qm δ(qm,1) δ(qm,2) ... δ(qm,n) 

Where δ(qi,j) represents the next state when the current state is qi and the 

input is j. 

Converting Between Representations 

The transition table and diagram are equivalent representations of the same 

FSM. You can convert from one to the other: 

From Table to Diagram: 

1. Create a node for each state in the table 

2. For each entry in the table, draw an edge from the current state to 

the next state with the corresponding input label 

From Diagram to Table: 

1. List all states as rows 

2. List all input symbols as columns 

3. Fill in the table by following the edges in the diagram 

4.1.3: Equivalence of Finite State Machines 

If two finite state machines accept same language or generate same output, 

they are regarded as equivalent. To put it another way, they act in the same 

way for every potential input sequence. 

Definition of Equivalence 

Two FSMs A and B are equivalent if: 

1. They have the same input alphabet Σ 

2. For any input string w ∈Σ*:  
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Notes o If A is an acceptor: A accepts w if and only if B accepts w 

o If A is a transducer: A produces output y when given input w 

if and only if B produces the same output y when given the 

same input w 

State Equivalence 

Within a single FSM, two states p & q are equivalent if: 

1. Both are accepting states or both are non-accepting states 

2. For any input symbol ∈Σ, the states δ(p,a) and δ(q,a) are equivalent 

This recursive definition needs a base case: two states are distinguishable if 

one is accepting and the other is not. 

Testing for Equivalence 

To determine if two FSMs are equivalent, we can: 

1. Construct a product machine: Combine the two machines and 

check if the behavior is consistent 

2. Minimize both machines: Reduce both machines to their minimal 

form and check if they are isomorphic 

3. Table-filling algorithm: Systematically identify distinguishable 

state pairs 

Table-Filling Algorithm 

This algorithm identifies non-equivalent states: 

1. Create a table with rows and columns representing all states 

(excluding redundant pairs) 

2. Initially mark pairs where one state is accepting and the other is 

non-accepting 

3. Iteratively mark more pairs: if states p and q transition to states p' 

and q' on some input a, and p' and q' are marked as non-equivalent, 

then mark p and q as non-equivalent 

4. Continue until no more pairs can be marked 

5. The unmarked pairs represent equivalent states 
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Notes Example of Equivalence Testing 

Consider two FSMs M1 and M2 with the following transition tables: 

FSM M1: 

State Input: 0 Input: 1 Accepting? 

A B C No 

B A D No 

C D A No 

D C B Yes 

FSM M2: 

State Input: 0 Input: 1 Accepting? 

P Q R No 

Q P S No 

R S P No 

S R Q Yes 

To check if these machines are equivalent, we can verify that: 

• A and P are both non-accepting and have similar transition patterns 

• B and Q are both non-accepting and have similar transition patterns 

• C and R are both non-accepting and have similar transition patterns 

• D and S are both accepting and have similar transition patterns 

Therefore, M1 and M2 are equivalent. 

4.1.4: Reduced Finite State Machines 

A reduced (or minimal) finite state machine is one that has the minimum 

possible number of states while preserving the same behavior as the original 

machine. 

Importance of State Minimization 

Minimizing FSMs is important for: 
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Notes 1. Efficiency: Reduces implementation complexity and resource 

requirements 

2. Clarity: Makes the machine easier to understand and analyze 

3. Implementation costs: Reduces hardware costs for physical 

implementations 

4. Verification: Makes it easier to verify correctness of the design 

State Minimization Algorithm 

The process of creating a reduced FSM involves identifying and merging 

equivalent states: 

1. Identify Equivalent States: 

o Use the table-filling algorithm described earlier 

o Find all pairs of states that are equivalent 

2. Merge Equivalent States: 

o Create a new state for each equivalence class 

o Define transitions for these new states based on 

representatives from the original machine 

3. Generate the Reduced Machine: 

o The states of the reduced machine are the equivalence 

classes 

o The transitions are derived from the original transitions 

o The initial state is the equivalence class containing the 

original initial state 

o The accepting states are the equivalence classes containing 

original accepting states 

Partition Refinement Method 

Another approach for minimization is the partition refinement method: 

1. Start with a partition containing two blocks: accepting states and 

non-accepting states 
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Notes 2. Refine the partition: Split blocks if states in the same block 

transition to states in different blocks on some input 

3. Repeat until no further refinement is possible 

4. Each block in the final partition represents a state in the minimized 

machine 

Example of State Minimization 

Consider an FSM with states {S0, S1, S2, S3, S4, S5} and the following 

transition table: 

State Input: 0 Input: 1 Accepting? 

S0 S1 S2 Yes 

S1 S1 S3 No 

S2 S1 S3 No 

S3 S4 S5 Yes 

S4 S4 S5 Yes 

S5 S4 S5 Yes 

Step 1: Initial partition based on accepting/non-accepting states: 

• Block 1: {S0, S3, S4, S5} (accepting states) 

• Block 2: {S1, S2} (non-accepting states) 

Step 2: Refine Block 1 based on transitions: 

• For input 0: S0→S1 (Block 2), S3→S4 (Block 1), S4→S4 (Block 

1), S5→S4 (Block 1) 

• We split Block 1 into {S0} and {S3, S4, S5} 

Step 3: Further refinement: 

• No further refinement is possible 

Final partition: 

• Block A: {S0} 

• Block B: {S1, S2} 

• Block C: {S3, S4, S5} 

The minimized machine has 3 states instead of the original 6. 
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Notes  

  

 

 

 

  

  

 

   

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 
Example of Homomorphism

any string approved by M1 is likewise approved by M2

Preservation  of  behavior:  If  h  is  a  homomorphism  from  M1  to  M2,  then 

Identity: The identity mapping is a homomorphism2.

homomorphism

Composition:  The  composition  of  two  homomorphisms  is  also  a 1.

Properties of Homomorphism

Endomorphism: A homomorphism from a machine to itself4.

mapping), meaning distinct states in M1 map to distinct states in M2

Monomorphism:  An  injective  homomorphism  (one-to-one 3.

meaning each state in M2 has at least one corresponding state in M1

Epimorphism:  A  surjective  homomorphism  (onto  mapping), 2.

identical

mapping between states), meaning the two machines are structurally 

Isomorphism:  A  bijective  homomorphism  (one-to-one  and  onto 1.

Types of Homomorphisms

states)

q ∈ F1  if  and  only  if  h(q) ∈ F2  (accepting  states map  to  accepting 3.

preserved)

For  all  q ∈ Q1  and  a ∈Σ,  h(δ1(q,  a))  =  δ2(h(q),  a)  (transitions  are 2.

h(q01) = q02 (initial states map to initial states)1.

Σ, δ2, q02, F2) is a function h: Q1 → Q2 such that:

A homomorphism from FSM M1 = (Q1, Σ, δ1, q01, F1) to FSM M2 = (Q2, 

Definition of FSM Homomorphism

two machines that preserves transitions.

structures. In the context of FSMs, it refers to a mapping between states of 

Homomorphism  is  a  structure-preserving  mapping  between  two  algebraic 

4.2.1: Homomorphism in FSM

Homomorphism. Finite automata, Acceptors, Non deterministic
UNIT 4.2
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Notes Consider these two FSMs: 

FSM M1 with states {A, B, C, D}: 

State Input: 0 Input: 1 Accepting? 

A B C No 

B A D No 

C D A Yes 

D C B Yes 

FSM M2 with states {P, Q}: 

State Input: 0 Input: 1 Accepting? 

P P Q No 

Q Q P Yes 

A homomorphism h: M1 → M2 could be defined as: 

• h(A) = P 

• h(B) = P 

• h(C) = Q 

• h(D) = Q 

This mapping preserves transitions and acceptance properties. 

Significance of Homomorphism 

Homomorphisms help us understand the structural relationships between 

different machines and can be used to: 

1. Study the common patterns in different machine designs 

2. Transform one machine into another while preserving certain 

properties 

3. Verify that a simplified machine correctly implements a more 

complex specification 

4. Classify machines into equivalence classes based on their behavior 

  



  

154 
 

Notes  

  

 

 

 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

consuming an input symbol

NFA  with  ε-transitions  (ε-NFA):  Can  make  transitions  without 3.

possible next states for a given state and input

Nondeterministic  Finite  Automaton  (NFA):  Can  have  multiple 2.

symbol, there is exactly one next state

Deterministic  Finite Automaton  (DFA):  For  each  state  and  input 1.

There are several types of finite automata:

Types of Finite Automata

  denoted L(A)

• set of all strings accepted by an automaton is called language of A,

  state, string is accepted; otherwise, it is rejected

• After  processing  the  entire  input,  if  the  machine  is  in  an  accepting

  transitions according to δ

• It  processes  each  symbol  of  the  input  string  one  by  one,  making

• The automaton starts in its initial state

The primary purpose of a finite automaton is to accept or reject input strings:

Recognition

•  F  is  the  collection  of  accepting  or  final  states,  where  F ⊆Q.Language 

• The starting state is q0, where q0 ∈ Q.

• For deterministic FA, δ is the transition function, which is Q × Σ → Q.

• The alphabet, or Σ, is a limited collection of input symbols.

Q is a limited collection of states.

A 5-tuple (Q, Σ, δ, q0, F) is called a finite automaton (FA) where:

Definition of Finite Automata

above computation with output is called a finite automaton.

A particular kind of finite state machine that prioritizes language recognition 

4.3.1: Finite Automata and Acceptor Machines

deterministic Finite automata, Moore and Mealy Machines
Finite Automata and equivalence of its power to that of

UNIT 4.3
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Notes 4. Two-way Finite Automaton: Can move in both directions on the 

input tape 

5. Finite Automaton with Output: Produces output based on 

transitions (transducer) 

Acceptor Machines 

An acceptor machine is a finite automaton whose sole purpose is to accept 

or reject input strings. It has a binary output: accept or reject. 

Key characteristics of acceptor machines: 

1. They do not produce any additional output beyond 

acceptance/rejection 

2. They are used to recognize formal languages 

3. They either halt in an accepting state (string accepted) or a non-

accepting state (string rejected) 

Formal Languages and Automata 

Formal languages are sets of strings defined over an alphabet. Finite 

automata recognize a specific class of formal languages called regular 

languages. 

The relationship between automata and languages: 

• Each finite automaton recognizes exactly one regular language 

A finite automaton can recognize any regular language.  

• Union, intersection, and complement operations close regular languages. 

Example of an Acceptor Machine 

Let's design a DFA that accepts binary strings that have an even number of 

1s: 

States: {q0, q1} where q0 is the initial and accepting state Transitions: 

• δ(q0, 0) = q0 (staying in the same state if we read a 0) 

• δ(q0, 1) = q1 (changing to q1 if we read a 1 from q0) 

• δ(q1, 0) = q1 (staying in q1 if we read a 0) 

• δ(q1, 1) = q0 (changing back to q0 if we read a 1 from q1) 
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Notes Accepting states: {q0} 

This automaton will accept strings like "", "0", "00", "11", "101", etc. (any 

string with an even number of 1s). 

4.3.2: Deterministic Finite Automata (DFA) 

Deterministic Finite Automaton (DFA) is finite state machine where each 

state has exactly one transition for each possible input symbol. 

Formal Definition of DFA 

A DFA is a 5-tuple (Q, Σ, δ, q0, F) where: 

• Q is a finite set of states 

• Σ is a finite set of input symbols (the alphabet) 

• δ is the transition function: Q × Σ → Q 

• q0 is the initial state, where q0 ∈ Q 

• F is set of final or accepting states, where F ⊆ Q 

Key Properties of DFAs 

1. Determinism: For each state and input symbol, there is exactly one 

next state 

2. Completeness: A transition is defined for every state and input 

symbol combination 

3. No ε-transitions: Transitions occur only when an input symbol is 

consumed 

4. Unique initial state: There is exactly one start state 

5. Zero or more final states: There can be multiple accepting states 

Extending the Transition Function 

The transition function δ is defined for single input symbols, but we can 

extend it to handle strings: 

• Define δ*(q, ω) as the state reached from state q after processing 

string ω 

• Base case: δ*(q, ε) = q (empty string leaves the state unchanged) 
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Notes • Recursive case: δ*(q, ωa) = δ(δ*(q, ω), a) for any string ω and 

symbol a 

Language Accepted by a DFA 

The language L(A) accepted by DFA A = (Q, Σ, δ, q0, F) is: L(A) = {ω ∈Σ* | 

δ*(q0, ω) ∈ F} 

This represents all strings that, when processed starting from initial state, 

lead to an accepting state. 

DFA Operations 

Common operations on DFAs include: 

1. Complement: Switching accepting & non-accepting states creates a 

DFA that accepts the complement language 

2. Union: Combining two DFAs to create a new DFA that accepts 

strings accepted by either of the original DFAs 

3. Intersection: Creating a DFA that accepts only strings accepted by 

both original DFAs 

4. Concatenation: Creating a DFA that accepts concatenations of 

strings from two languages 

5. Kleene Star: Creating a DFA that accepts any number of 

concatenations of strings from a language 

Constructing DFAs 

To construct a DFA for a specific language, follow these steps: 

1. Identify states based on what the machine needs to "remember" 

about the input processed so far 

2. Determine the initial state 

3. Define transitions for each state and input symbol 

4. Identify which states should be accepting states 

5. Verify the design by testing with sample strings 

Example: Constructing a DFA 

Design a DFA to accept binary strings that are multiples of 3: 
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Notes Step 1: We need to keep track of the remainder when dividing by 3, so we 

need three states: 

• q0: remainder 0 (initial and accepting state) 

• q1: remainder 1 

• q2: remainder 2 

Step 2: Define transitions based on how binary digits affect the remainder: 

• For a number n, appending 0 gives 2n, and appending 1 gives 2n+1 

• So the remainders change as follows:  

o From remainder 0: digit 0 → remainder 0, digit 1 → 

remainder 1 

o From remainder 1: digit 0 → remainder 2, digit 1 → 

remainder 0 

o From remainder 2: digit 0 → remainder 1, digit 1 → 

remainder 2 

Step 3: Create the transition table: 

State Input: 0 Input: 1 

q0 q0 q1 

q1 q2 q0 

q2 q1 q2 

Step 4: The accepting state is q0 (remainder 0) 

This DFA will accept binary strings like "", "11", "110", "1001", etc. (all 

binary representations of multiples of 3). 

Solved Problems 

Problem 1: Design a DFA for Strings Ending with "01" 

Problem: Design deterministic finite automaton that accepts all binary 

strings that end with substring "01". 

Solution: 
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Notes 1. States: We need to keep track of whether we've seen a "0" followed 

by a "1" at the end of the string. 

o q0: Initial state (haven't seen anything relevant yet) 

o q1: Have seen a "0" (waiting for a "1") 

o q2: Have seen "01" (accepting state) 

2. Transitions: 

o From q0 with input 0: Go to q1 (potential start of "01") 

o From q0 with input 1: Stay in q0 (reset) 

o From q1 with input 0: Stay in q1 (still waiting for "1", but 

update the "0") 

o From q1 with input 1: Go to q2 (pattern "01" completed) 

o From q2 with input 0: Go to q1 (new potential start of "01") 

o From q2 with input 1: Go to q0 (pattern broken) 

3. Transition Table: 

State Input: 0 Input: 1 

q0 q1 q0 

q1 q1 q2 

q2 q1 q0 

4. Initial State: q0 

5. Accepting States: {q2} 

6. Verification: 

o String "01": q0 → q1 → q2 (Accepted) 

o String "1101": q0 → q0 → q0 → q1 → q2 (Accepted) 

o String "010": q0 → q1 → q2 → q1 (Rejected) 

o String "011": q0 → q1 → q2 → q0 (Rejected) 

Problem 2: Minimize a DFA 
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Notes Problem: Minimize the following DFA: 

States: {q0, q1, q2, q3, q4, q5} Alphabet: {0, 1} Transitions: 

• δ(q0, 0) = q1, δ(q0, 1) = q2 

• δ(q1, 0) = q3, δ(q1, 1) = q4 

• δ(q2, 0) = q3, δ(q2, 1) = q4 

• δ(q3, 0) = q3, δ(q3, 1) = q5 

• δ(q4, 0) = q3, δ(q4, 1) = q5 

• δ(q5, 0) = q3, δ(q5, 1) = q5 Initial state: q0 Accepting states: {q3, 

q5} 

Solution: 

1. Initial Partition: Separate accepting and non-accepting states 

o P1 = {q3, q5} (accepting states) 

o P2 = {q0, q1, q2, q4} (non-accepting states) 

2. Refine Partitions: 

o For P2:  

▪ On input 0: q0→q1, q1→q3, q2→q3, q4→q3 

▪ On input 1: q0→q2, q1→q4, q2→q4, q4→q5 

▪ States q1, q2, q4 all go to P1 on input 0, while q0 

doesn't 

▪ States q0, q1, q2 go to different places on input 1 

▪ Refine P2 into {q0}, {q1}, {q2}, {q4} 

o For P1:  

▪ On input 0: q3→q3, q5→q3 

▪ On input 1: q3→q5, q5→q5 

▪ These transitions are consistent, so P1 remains {q3, 

q5} 

3. Further Refinement: 
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Notes o Check if states {q1, q2, q4} have consistent transitions 

given their current partitions 

o q1, q2, q4 all transition to the same partitions on respective 

inputs 

o Therefore, {q1, q2, q4} can be combined into one partition 

4. Final Partitions: 

o P1 = {q3, q5} (accepting states) 

o P2 = {q0} 

o P3 = {q1, q2, q4} 

5. Minimized DFA: 

o States: {[q0], [q1, q2, q4], [q3, q5]} 

o Let's rename them as {A, B, C} 

o Transitions:  

▪ δ(A, 0) = B, δ(A, 1) = B 

▪ δ(B, 0) = C, δ(B, 1) = C 

▪ δ(C, 0) = C, δ(C, 1) = C 

o Initial state: A 

o Accepting states: {C} 

The minimized DFA has 3 states instead of the original 6. 

Problem 3: Prove Two FSMs are Equivalent 

Problem: Prove that the following two FSMs are equivalent: 

FSM M1: 

• States: {q0, q1, q2} 

• Alphabet: {a, b} 

• Transitions:  

o δ(q0, a) = q1, δ(q0, b) = q2 
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Notes o δ(q1, a) = q0, δ(q1, b) = q2 

o δ(q2, a) = q2, δ(q2, b) = q2 

• Initial state: q0 

• Accepting states: {q0, q1} 

FSM M2: 

• States: {s0, s1} 

• Alphabet: {a, b} 

• Transitions:  

o δ(s0, a) = s1, δ(s0, b) = s1 

o δ(s1, a) = s0, δ(s1, b) = s1 

• Initial state: s0 

• Accepting states: {s0} 

Solution: 

1. Examine State Behaviors: 

• Strings containing an even number of "a"s and no "b"s are 

accepted by state q0.  

• Strings with an odd number of "a"s and no "b"s are accepted by 

state q1.  

• All strings are rejected by state q2, which is a "trap" state from 

which you cannot escape.  

• 'b' in any string results in q2, which is unacceptable.  

• oIn M2:  

• with an even number of 'a's are accepted by state s0.  

• with an odd number of 'a's are accepted by state s1.  

• that finish in s0 may be acceptable if they contain 'b's. 

2. Trace Sample Strings: 

o String "": In M1, stays at q0 (accepting); in M2, stays at s0 

(accepting) 

o String "a": In M1, goes to q1 (accepting); in M2, goes to s1 

(non-accepting) 
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Notes o String "aa": In M1, q0→q1→q0 (accepting); in M2, 

s0→s1→s0 (accepting) 

o String "b": In M1, q0→q2 (non-accepting); in M2, s0→s1 

(non-accepting) 

Wait, the FSMs are giving different outputs for the string "a"! M1 accepts it, 

but M2 doesn't. 

3. Conclusion: The two FSMs are not equivalent because they produce 

different results for at least one input string. 

This example shows how important it is to carefully analyze machine 

behavior and test with concrete examples when comparing FSMs. 

Problem 4: Design an FSM to Control a Vending Machine 

Problem: Design finite state machine for simple vending machine that 

accepts nickels (5¢) & dimes (10¢) for a product that costs 15¢. The 

machine should return any excess money. 

Solution: 

1. States: We need states to track the amount of money inserted so far 

o q0: Initial state (0¢ inserted) 

o q5: 5¢ inserted 

o q10: 10¢ inserted 

o q15: 15¢ inserted (enough to dispense product) 

o q20: 20¢ inserted (product dispensed, 5¢ returned) 

o q25: 25¢ inserted (product dispensed, 10¢ returned) 

2. Inputs: {nickel, dime} 

3. Transitions: 

o δ(q0, nickel) = q5 

o δ(q0, dime) = q10 

o δ(q5, nickel) = q10 

o δ(q5, dime) = q15 (dispense product) 
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Notes o δ(q10, nickel) = q15 (dispense product) 

o δ(q10, dime) = q20 (dispense product, return 5¢) 

o δ(q15, nickel) = q20 (dispense product, return 5¢) 

o δ(q15, dime) = q25 (dispense product, return 10¢) 

o δ(q20, nickel) = q25 (dispense product, return 10¢) 

o δ(q20, dime 

4.3.3: Non-Deterministic Finite Automata 

Non-deterministic Finite Automata (NFA) represent a powerful extension of 

Deterministic Finite Automata (DFA). Unlike DFAs, where for each state 

and input symbol there is exactly one next state, NFAs allow for multiple 

possible transitions or even no transition at all. 

Definition of an NFA 

Non-deterministic Finite Automaton (NFA) is formally defined as 5-tuple: 

M = (Q, Σ, δ, q0, F) where: 

• Q is finite set of states 

• δ is transition function: δ: Q × (Σ ∪ {ε}) → P(Q) 

• q0 is initial or start state (q0 ∈ Q) 

• F is set of final or accepting states (F ⊆ Q) 

Note: P(Q) represents the power set of Q, meaning the transition function 

can map to any subset of states (including the empty set). 

Key Characteristics of NFAs 

1. Multiple Transitions: For a given state and input symbol, an NFA 

can transition to multiple states. 

2. Epsilon (ε) Transitions: NFAs can make transitions without 

consuming any input symbol, these are called epsilon transitions. 

3. No Transitions: For some state-input combinations, there may be 

no defined transitions (which is equivalent to transitioning to an 

empty set of states). 

Accepting a String in an NFA 
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Notes A string is accepted by an NFA if there exists at least one path from start 

state to any accepting state that consumes entire input string. This differs 

from DFAs where a string is only accepted if the single possible path leads 

to an accepting state. 

Example of an NFA 

Consider an NFA that accepts strings that end with "ab" over the alphabet 

{a, b}: 

States: Q = {q0, q1, q2} Alphabet: Σ = {a, b} Start state: q0 Final states: F = 

{q2} Transition function: 

• δ(q0, a) = {q0, q1} 

• δ(q0, b) = {q0} 

• δ(q1, b) = {q2} 

• δ(q2, a) = ∅ 

• δ(q2, b) = ∅ 

This NFA works by staying in state q0 for any number of 'a's and 'b's, then 

when it sees an 'a', it can optionally move to state q1. From q1, if it sees a 'b', 

it moves to the accepting state q2. 

Epsilon (ε) NFA 

An ε-NFA is an NFA that also allows transitions on the empty string ε. This 

means the automaton can change its state without reading any input symbol. 

For example, if we have δ(q0, ε) = {q1, q2}, then from state q0, the 

automaton can spontaneously move to state q1 or q2 without consuming any 

input. 

Epsilon Closure 

The ε-closure of a state q, denoted as ε-closure(q), q by following zero or 

more ε-transitions. 

For a set of states S, ε-closure(S) = ∪q∈Sε-closure(q). 

4.3.4: Equivalence of DFA and NFA 
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Notes Despite their differences, DFAs and NFAs are equivalent in terms of 

languages they can recognize. 

Theorem 

For every NFA, there exists an equivalent DFA that accepts exactly the same 

language. 

Proof Sketch (NFA to DFA Conversion) 

We can convert any NFA to an equivalent DFA using the subset construction 

method: 

1. The states of the DFA are subsets of the NFA states (elements of 

power set P(Q)). 

2. start state of the DFA is the ε-closure of the NFA's start state. 

3. A state in the DFA is accepting if it contains at least one accepting 

state from the NFA. 

4. For each DFA state S (a subset of NFA states) and input symbol a, 

transition function is defined as: δ_DFA(S, a) = ε-

closure(∪q∈Sδ_NFA(q, a)) 

Example of NFA to DFA Conversion 

Let's convert the NFA from our previous example to a DFA: 

NFA: 

• States: Q = {q0, q1, q2} 

• Alphabet: Σ = {a, b} 

• Start state: q0 

• Final states: F = {q2} 

• Transitions:  

o δ(q0, a) = {q0, q1} 

o δ(q0, b) = {q0} 

o δ(q1, b) = {q2} 

o δ(q2, a) = ∅ 
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Notes o δ(q2, b) = ∅ 

DFA Construction: 

1. Start state of DFA: {q0} 

2. For δ_DFA({q0}, a):  

o δ_NFA(q0, a) = {q0, q1} 

o So δ_DFA({q0}, a) = {q0, q1} 

3. For δ_DFA({q0}, b):  

o δ_NFA(q0, b) = {q0} 

o So δ_DFA({q0}, b) = {q0} 

4. For δ_DFA({q0, q1}, a):  

o δ_NFA(q0, a) ∪δ_NFA(q1, a) = {q0, q1} ∪∅ = {q0, q1} 

o So δ_DFA({q0, q1}, a) = {q0, q1} 

5. For δ_DFA({q0, q1}, b):  

o δ_NFA(q0, b) ∪δ_NFA(q1, b) = {q0} ∪ {q2} = {q0, q2} 

o So δ_DFA({q0, q1}, b) = {q0, q2} 

6. For δ_DFA({q0, q2}, a):  

o δ_NFA(q0, a) ∪δ_NFA(q2, a) = {q0, q1} ∪∅ = {q0, q1} 

o So δ_DFA({q0, q2}, a) = {q0, q1} 

7. For δ_DFA({q0, q2}, b):  

o δ_NFA(q0, b) ∪δ_NFA(q2, b) = {q0} ∪∅ = {q0} 

o So δ_DFA({q0, q2}, b) = {q0} 

The resulting DFA has: 

• States: {{q0}, {q0, q1}, {q0, q2}} 

• Start state: {q0} 

• Final states: {{q0, q2}} 

• Transitions as defined above 
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Notes DFA to NFA Conversion 

Converting a DFA to an NFA is straightforward since every DFA is already 

an NFA. We can simply maintain the same states, transitions, start state, and 

final states, but represent the transition function in the NFA format. 

State Complexity 

While DFAs and NFAs are equivalent in power, NFAs can often represent 

the same language with fewer states. In the worst case, when converting an 

NFA with n states to a DFA, the resulting DFA may have up to 2^n states. 

4.3.5: Moore and Mealy Machines 

Moore and Mealy machines are types of finite state transducers used to 

model systems that produce output based on input and state transitions. 

Moore Machine 

Moore machine is a 6-tuple M = (Q, Σ, Δ, δ, λ, q0) where: 

• Q is a finite set of states 

• Σ is a finite set of input symbols 

• Δ is a finite set of output symbols 

• δ is the transition function: δ: Q × Σ → Q 

• λ is the output function: λ: Q → Δ 

• q0 is the start state 

In Moore machine, output depends only on current state, not on input 

symbol. 

Example of a Moore Machine 

Consider a Moore machine for a simple vending machine that accepts 

nickels (N) and dimes (D), and dispenses candy (C) when 15 cents or more 

is inserted: 

States: Q = {0, 5, 10, 15} Input alphabet: Σ = {N, D} Output alphabet: Δ = 

{0, C} Start state: q0 = 0 

Transition function δ: 

• δ(0, N) = 5 
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Notes • δ(0, D) = 10 

• δ(5, N) = 10 

• δ(5, D) = 15 

• δ(10, N) = 15 

• δ(10, D) = 15 

• δ(15, N) = 15 

• δ(15, D) = 15 

Output function λ: 

• λ(0) = 0 

• λ(5) = 0 

• λ(10) = 0 

• λ(15) = C 

Mealy Machine 

Mealy machine is also a 6-tuple M = (Q, Σ, Δ, δ, λ, q0) but with a different 

output function: 

Q is a limited collection of states. 

A finite set of input symbols is represented by Σ, and a finite set of output 

symbols by Δ. 

The transition function is denoted by δ. δ: Q × Σ → Q 

• The output function is represented by λ: Q × Σ → Δ. 

• The initial state is q0.In a Mealy machine, output depends on both current 

state & the input symbol. 

Example of Mealy Machine 

Let's reimagine vending machine as a Mealy machine: 

States: Q = {0, 5, 10} Input alphabet: Σ = {N, D} Output alphabet: Δ = {0, 

C} Start state: q0 = 0 

Transition function δ: 
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Notes • δ(0, N) = 5 

• δ(0, D) = 10 

• δ(5, N) = 10 

• δ(5, D) = 0 

• δ(10, N) = 0 

• δ(10, D) = 0 

Output function λ: 

• λ(0, N) = 0 

• λ(0, D) = 0 

• λ(5, N) = 0 

• λ(5, D) = C 

• λ(10, N) = C 

• λ(10, D) = C 

Comparison of Moore and Mealy Machines 

1. Output Generation: 

o Moore: Output depends only on current state 

o Mealy: Output depends on both current state and current 

input 

2. Timing: 

o Moore: Output is associated with the state 

o Mealy: Output is associated with the transition 

3. Number of States: 

o Mealy machines can often achieve the same functionality 

with fewer states than Moore machines 

4. Equivalence: 

o Every Moore machine can be changed into a comparable 

Mealy machine 
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Notes o Every Mealy machine can be changed into a comparable 

Moore machine 

Conversion Between Moore and Mealy Machines 

Mealy to Moore Conversion 

To convert a Mealy machine to a Moore machine: 

1. For each state q and each input symbol a in the Mealy machine, 

create a new state (q, a) in the Moore machine 

2. Set the output of each new state (q, a) to λ_Mealy(q, a) 

3. For each transition δ_Mealy(q, a) = p, create transitions from all 

states (q, b) to the state (p, c) where c is the input symbol 

Moore to Mealy Conversion 

A Moore machine can be changed into a Mealy machine by: 

1. Keep the same set of states 

2. For each transition δ_Moore(q, a) = p, set the Mealy output function 

λ_Mealy(q, a) = λ_Moore(p) 

4.3.6: Applications of Finite State Machines 

Finite State Machines (FSMs) have numerous practical applications across 

various fields: 

1. Lexical Analysis in Compilers 

Lexical analyzers (lexers) use FSMs to identify tokens in source code. For 

example, recognizing identifiers, keywords, numbers, and operators in a 

programming language. 

Example: A simple FSM for recognizing C-style identifiers (starting with 

letter or underscore, followed by letters, digits, or underscores): 

• Start state checks for letter or underscore 

• If valid, transition to "valid identifier" state 

• In "valid identifier" state, accept more letters, digits, or underscores 

2. Text Processing and Pattern Matching 

FSMs are used in regular expression engines to match patterns in text. 
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Notes Example: An FSM for matching email addresses could have states for 

checking the local part, the @ symbol, and the domain part. 

3. Digital Circuit Design 

Sequential circuits can be modeled using FSMs, with flip-flops representing 

states and combinational logic implementing transitions. 

Example: A 3-bit binary counter can be modeled as an FSM with 8 states, 

with transitions representing the increment operation. 

4. Protocol Specification 

Network protocols are often specified using state machines to define valid 

sequences of messages. 

Example: In the TCP protocol, a connection goes through states like 

CLOSED, LISTEN, SYN_SENT, ESTABLISHED, etc., with transitions 

based on received packets. 

5. Natural Language Processing 

FSMs can be used to model grammar rules and parse simple language 

constructs. 

Example: A part-of-speech tagger might use an FSM to identify noun 

phrases or verb phrases in a sentence. 

6. Game Programming 

Character behavior, game logic, and AI decision-making are often 

implemented using FSMs. 

Example: An enemy NPC might have states like PATROL, CHASE, 

ATTACK, and RETREAT, with transitions based on player proximity and 

health. 

7. Embedded Systems and Control Systems 

FSMs are used to model and implement the behavior of embedded and 

control systems. 

Example: A microwave oven controller might have states like IDLE, 

COOKING, and PAUSED, with transitions based on buttons pressed and 

timer events. 
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Notes 8. User Interface Design 

UI workflows can be modeled as FSMs to ensure valid state transitions. 

Example: A login form might have states like INITIAL, VALIDATING, 

SUCCESS, and ERROR, with transitions based on user inputs and server 

responses. 

9. Automated Testing 

Model-based testing uses FSMs to generate test cases by exploring possible 

state transitions. 

Example: Testing a web application by modeling it as an FSM and 

generating test sequences that cover all transitions. 

10. Biological Systems Modeling 

FSMs can model biological processes like gene regulation, cell signaling, 

and metabolic pathways. 

Example: A gene regulatory network might be modeled as an FSM with 

states representing gene expression levels and transitions representing 

regulatory interactions. 

Solved Problems 

Problem 1: NFA Construction and String Acceptance 

Construct an NFA that accepts strings over {a, b} where the third-to-last 

character is 'a'. Then determine whether the string "bababa" is accepted. 

Solution: 

We need an NFA that accepts any string where the third-to-last character is 

'a'. 

Step 1: Construct the NFA. Let's define our NFA: 

• States: Q = {q0, q1, q2, q3} 

• Alphabet: Σ = {a, b} 

• Start state: q0 

• Final states: F = {q3} 

The transitions are: 
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Notes • δ(q0, a) = {q0, q1} 

• δ(q0, b) = {q0} 

• δ(q1, a) = {q2} 

• δ(q1, b) = {q2} 

• δ(q2, a) = {q3} 

• δ(q2, b) = {q3} 

State q0 is the initial state where we stay until we decide to start checking 

for the pattern. When we see an 'a' we can transition to q1 which means 

we've seen the potential 'a' that might be the third-to-last character. Then we 

need to see exactly two more characters, which we track with states q2 and 

q3. 

Step 2: Check if "bababa" is accepted. 

Let's trace through the string "bababa": 

1. We start at state q0. 

2. Read 'b': We stay in q0, so current states = {q0} 

3. Read 'a': We can stay in q0 or transition to q1, so current states = {q0, 

q1} 

4. Read 'b': From q0 we stay in q0, and from q1 we move to q2, so 

current states = {q0, q2} 

5. Read 'a': From q0 we can stay in q0 or move to q1, and from q2 we 

move to q3, so current states = {q0, q1, q3} 

6. Read 'b': From q0 we stay in q0, from q1 we move to q2, and from q3 

we have no transitions, so current states = {q0, q2} 

7. Read 'a': From q0 we can stay in q0 or move to q1, and from q2 we 

move to q3, so current states = {q0, q1, q3} 

After processing the entire string, we are in states {q0, q1, q3}, which 

includes final state q3. 

Therefore, string "bababa" is accepted by NFA. 

Problem 2: NFA to DFA Conversion 
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Notes Convert the following NFA to a DFA: 

NFA: 

• States: Q = {q0, q1, q2} 

• Alphabet: Σ = {0, 1} 

• Start state: q0 

• Final states: F = {q2} 

• Transitions:  

o δ(q0, 0) = {q0, q1} 

o δ(q0, 1) = {q0} 

o δ(q1, 0) = ∅ 

o δ(q1, 1) = {q2} 

o δ(q2, 0) = {q2} 

o δ(q2, 1) = {q2} 

Solution: 

We'll use the subset construction method to convert this NFA to a DFA: 

Step 1: Define start state of DFA as {q0}. 

Step 2: For each DFA state, compute the transitions on each input symbol. 

For state {q0}: 

• On input 0: δ({q0}, 0) = {q0, q1} 

• On input 1: δ({q0}, 1) = {q0} 

For state {q0, q1}: 

• On input 0: δ({q0, q1}, 0) = δ(q0, 0) ∪δ(q1, 0) = {q0, q1} ∪∅ = {q0, 

q1} 

• On input 1: δ({q0, q1}, 1) = δ(q0, 1) ∪δ(q1, 1) = {q0} ∪ {q2} = {q0, 

q2} 

For state {q0, q2}: 
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Notes • On input 0: δ({q0, q2}, 0) = δ(q0, 0) ∪δ(q2, 0) = {q0, q1} ∪ {q2} = 

{q0, q1, q2} 

• On input 1: δ({q0, q2}, 1) = δ(q0, 1) ∪δ(q2, 1) = {q0} ∪ {q2} = {q0, 

q2} 

For state {q0, q1, q2}: 

• On input 0: δ({q0, q1, q2}, 0) = δ(q0, 0) ∪δ(q1, 0) ∪δ(q2, 0) = {q0, q1} 

∪∅∪ {q2} = {q0, q1, q2} 

• On input 1: δ({q0, q1, q2}, 1) = δ(q0, 1) ∪δ(q1, 1) ∪δ(q2, 1) = {q0} ∪ 

{q2} ∪ {q2} = {q0, q2} 

Step 3: Define the final states of the DFA as those subsets that contain at 

least one final state from the NFA. In this case, the final state of NFA is q2, 

so final states of the DFA are {q0, q2} and {q0, q1, q2}. 

The resulting DFA: 

• States: {{q0}, {q0, q1}, {q0, q2}, {q0, q1, q2}} 

• Alphabet: Σ = {0, 1} 

• Start state: {q0} 

• Final states: {{q0, q2}, {q0, q1, q2}} 

• Transitions:  

o δ({q0}, 0) = {q0, q1} 

o δ({q0}, 1) = {q0} 

o δ({q0, q1}, 0) = {q0, q1} 

o δ({q0, q1}, 1) = {q0, q2} 

o δ({q0, q2}, 0) = {q0, q1, q2} 

o δ({q0, q2}, 1) = {q0, q2} 

o δ({q0, q1, q2}, 0) = {q0, q1, q2} 

o δ({q0, q1, q2}, 1) = {q0, q2} 

Problem 3: Epsilon-NFA to NFA Conversion 

Convert the following ε-NFA to an NFA: 
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Notes ε-NFA: 

• States: Q = {q0, q1, q2, q3} 

• Alphabet: Σ = {a, b} 

• Start state: q0 

• Final states: F = {q3} 

• Transitions:  

o δ(q0, ε) = {q1} 

o δ(q0, a) = {q0} 

o δ(q1, a) = {q2} 

o δ(q1, b) = {q1} 

o δ(q2, ε) = {q3} 

o δ(q2, b) = {q2} 

o δ(q3, a) = {q3} 

o δ(q3, b) = {q0} 

Solution: 

To convert an ε-NFA to an NFA, we need to compute the ε-closure of each 

state and then use that to determine the new transitions. 

Step 1: Compute the ε-closure of each state. 

• ε-closure(q0) = {q0, q1} (because q0 can reach q1 via an ε-transition) 

• ε-closure(q1) = {q1} (no ε-transitions from q1) 

• ε-closure(q2) = {q2, q3} (because q2 can reach q3 via an ε-transition) 

• ε-closure(q3) = {q3} (no ε-transitions from q3) 

Step 2: Compute the new transitions for the NFA. 

For state q0: 

• δ_NFA(q0, a) = ε-closure(δ_ε-NFA(q0, a) ∪δ_ε-NFA(q1, a)) = ε-

closure({q0} ∪ {q2}) = {q0, q1} ∪ {q2, q3} = {q0, q1, q2, q3} 
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Notes • δ_NFA(q0, b) = ε-closure(δ_ε-NFA(q0, b) ∪δ_ε-NFA(q1, b)) = ε-

closure(∅∪ {q1}) = {q1} 

For state q1: 

• δ_NFA(q1, a) = ε-closure(δ_ε-NFA(q1, a)) = ε-closure({q2}) = {q2, 

q3} 

• δ_NFA(q1, b) = ε-closure(δ_ε-NFA(q1, b)) = ε-closure({q1}) = {q1} 

For state q2: 

▪ For q2, a, δ_NFA = ε-closureε-closure(∅∪ {q3}) = {q3} (δ_ε-

NFA(q2, a) ∪δ_ε-NFA(q3, a)) 

▪ δ_NFA(q2, b) = ε-closure(δ_ε-NFA(q2, b) ∪δ_ε-NFA(q3, b)) = ε-

closure({q2}). 

For state q3: 

▪ δ-closure(δ_ε-NFA(q3, a)) = ε-closure({q3}) = {q3}¹ = 

δ_NFA(q3, a)  

 

▪ The equation δ_NFA(q3, b) = ε-closure(δ_ε-NFA(q3, b)) = ε-

closure({q0}) = {q0, q1} 

Step 3: Define the new NFA. 

The resulting NFA: 

• States: Q = {q0, q1, q2, q3} 

• Alphabet: Σ = {a, b} 

• Start state: q0 

• Final states: F = {q3} 

• Transitions:  

o δ(q0, a) = {q0, q1, q2, q3} 

o δ(q0, b) = {q1} 

o δ(q1, a) = {q2, q3} 

o δ(q1, b) = {q1} 

o δ(q2, a) = {q3}  
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Notes     A = {q0, q1, q2, q3} o δ(q2, b) 

o δ(q3, a) = {q3} 

o δ(q3, b) = {q0, q1} 

Problem 4: Moore to Mealy Machine Conversion 

Convert following Moore machine to a Mealy machine: 

Moore machine: 

• States: Q = {S0, S1, S2} 

• Input alphabet: Σ = {0, 1} 

• Output alphabet: Δ = {A, B} 

• Start state: S0 

• Output function:  

o λ(S0) = A 

o λ(S1) = B 

o λ(S2) = A 

• Transition function:  

o δ(S0, 0) = S0 

o δ(S0, 1) = S1 

o δ(S1, 0) = S2 

o δ(S1, 1) = S0 

o δ(S2, 0) = S1 

o δ(S2, 1) = S2 

Solution: 

To convert Moore machine to Mealy machine, we need to associate the 

output with the transitions rather than the states. 

Step 1: Keep the same set of states, input alphabet, output alphabet, and start 

state. 
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Notes Step 2: For each transition δ_Moore(q, a) = p, set the Mealy output function 

λ_Mealy(q, a) = λ_Moore(p). 

For transitions from S0: 

• δ_Mealy(S0, 0) = S0, and λ_Mealy(S0, 0) = λ_Moore(S0) = A 

• δ_Mealy(S0, 1) = S1, and λ_Mealy(S0, 1) = λ_Moore(S1) = B 

For transitions from S1: 

• δ_Mealy(S1, 0) = S2, and λ_Mealy(S1, 0) = λ_Moore(S2) = A 

• δ_Mealy(S1, 1) = S0, and λ_Mealy(S1, 1) = λ_Moore(S0) = A 

For transitions from S2: 

• δ_Mealy(S2, 0) = S1, and λ_Mealy(S2, 0) = λ_Moore(S1) = B 

• δ_Mealy(S2, 1) = S2, and λ_Mealy(S2, 1) = λ_Moore(S2) = A 

The resulting Mealy machine: 

• States: Q = {S0, S1, S2} 

• Input alphabet: Σ = {0, 1} 

• Output alphabet: Δ = {A, B} 

• Start state: S0 

• Transition function:  

o δ(S0, 0) = S0 

o δ(S0, 1) = S1 

o δ(S1, 0) = S2 

o δ(S1, 1) = S0 

o δ(S2, 0) = S1 

o δ(S2, 1) = S2 

• Output function:  

o λ(S0, 0) = A 

o λ(S0, 1) = B 
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Notes o λ(S1, 0) = A 

o λ(S1, 1) = A 

o λ(S2, 0) = B 

o λ(S2, 1) = A 

Problem 5: Mealy to Moore Machine Conversion 

Convert following Mealy machine to Moore machine: 

Mealy machine: 

• States: Q = {S0, S1} 

• Input alphabet: Σ = {0, 1} 

• Output alphabet: Δ = {X, Y} 

• Start state: S0 

• Transition function:  

o δ(S0, 0) = S0 

o δ(S0, 1) = S1 

o δ(S1, 0) = S0 

o δ(S1, 1) = S1 

• Output function:  

o λ(S0, 0) = X 

o λ(S0, 1) = Y 

o λ(S1, 0) = Y 

o λ(S1, 1) = X 

Solution: 

To convert a Mealy machine to a Moore machine, we need to create new 

states that represent the combinations of original states and outputs. 

Step 1: Create new states by considering pairs (q, a) where q is an original 

state and a is an input. 
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Notes For the given Mealy machine, we have: 

• (S0, 0) with output X 

• (S0, 1) with output Y 

• (S1, 0) with output Y 

• (S1, 1) with output X 

We need to create states in the Moore machine that correspond to the state-

output pairs in the Mealy machine. 

Let's create the following states: 

• S0X: represents being in state S0 and producing output X 

• S0Y: represents being in state S0 and producing output Y 

• S1X: represents being in state S1 and producing output X 

• S1Y: represents being in state S1 and producing output Y 

Step 2: Define the transitions and outputs for the Moore machine. 

For every transition δ_Mealy(q, a) = p with output λ_Mealy(q, a) = o, we 

create a transition in the Moore machine from any state corresponding to q 

to the state corresponding to (p, o). 

For example, if δ_Mealy(S0, 0) = S0 with output λ_Mealy(S0, 0) = X, then 

we have a transition from S0X to S0X in the Moore machine. 

Multiple-Choice Questions (MCQs) 

1. A finite state machine (FSM) consists of: 

a) States and transitions 

b) Only states 

c) Only inputs 

d) A single final state 

2. A transition table in an FSM represents: 

a) The sequence of states and inputs 

b) Only the starting state 

c) Only the final state 

d) Random movements between states 
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Notes 3. Two FSMs are equivalent if: 

a) They have the same number of states 

b) They accept the same set of inputs and produce the same outputs 

c) They have different transition tables 

d) They use different symbols for the same transitions 

4. process of reducing number of states in an FSM while 

preserving its behavior is called: 

a) State elimination 

b) State minimization 

c) State transition 

d) State merging 

5. A finite automaton that reads an input string and determines 

whether it belongs to a specific language is called a: 

a) Transition system 

b) Acceptor 

c) Reducer 

d) Transformer 

6. deterministic finite automaton (DFA) is different from a non-

deterministic finite automaton (NFA) because: 

a) DFA has only one possible move for each input in a given state 

b) A DFA can have multiple transitions for the same input symbol 

c) A DFA does not have final states 

d) A DFA accepts only infinite languages 

7. Which of the following is true about an NFA? 

a) It has at most one transition per input symbol 

b) It can have multiple transitions for the same input symbol 

c) It cannot accept any language 

d) It is always equivalent to a Turing machine 

8. Moore and Mealy machines are different because: 

a) A Moore machine's output depends only on the current state, 

while a Mealy machine’s output depends on both the state and input 

b) A Mealy machine does not use states 

c) A Moore machine has no transitions 

d) A Mealy machine cannot accept inputs 
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Notes 9. The minimum number of states required for a DFA that 

recognizes the language of binary strings ending in "01" is: 

a) 1 

b) 2 

c) 3 

d) 4 

10. Finite state machines are widely used in: 

a) Circuit design 

b) Compiler construction 

c) Text processing 

d) All of the above 

Ans Key: 

 

 

Short Answer Questions 

1. Define a finite state machine with an example. 

2. What is a transition table, and how is it used in FSMs? 

3. Explain the difference between deterministic and non-deterministic 

finite automata. 

4. What is the significance of equivalence in FSMs? 

5. Describe the process of state minimization in finite automata. 

6. What is a finite automaton? Give an example. 

7. Explain Moore and Mealy machines with differences. 

8. How can an NFA be converted into a DFA? 

9. What are the applications of finite state machines? 

10. How does an FSM differ from a Turing machine? 

Long Answer Questions 

1. Explain in detail the structure of a finite state machine and its 

components. 

1 a 3 b 5 b 7 b 9 c 

2 a 4 b 6 a 8 a 10 d 
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Notes 2. Describe the transition table and diagram of an FSM with an 

example. 

3. How do you determine whether two FSMs are equivalent? Explain 

with an example. 

4. What is state minimization in finite state machines? Explain with a 

step-by-step example. 

5. Differentiate between DFA and NFA with examples. 

6. Convert the following NFA to a DFA and explain the process: 

7. Discuss the applications of finite automata in text processing and 

pattern matching. 

8. Describe Moore and Mealy machines with examples and their 

applications. 

9. Explain how FSMs are used in compiler design and lexical analysis. 

10. Provide a real-world example of FSM usage in digital electronics 

and networking. 
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   according to specific rules

• set  of strings or sentences formed  by  combining  these  symbols

• An alphabet (Σ): a finite set of symbols

A formal language consists of:

over a specific alphabet.

interested  in  formal  languages,  which  are  precisely  defined  sets  of  strings 

between  humans  and  machines.  In  computer  science,  we're  particularly 

Languages serve as a means of communication, whether between humans or 

language.

grammars - systems  that  define  rules  for  generating  valid  strings  in  a 

languages,  both  natural  and  artificial.  At  the  heart  of  this  theory  are 

Formal language  theory  provides  a mathematical  framework  for  describing 

5.1.1: Introduction to Grammars and Language

• To convert infix expressions to Polish and reverse Polish notation.

• To examine Polish notation and its use in expression conversion.

• To study syntax analysis and its importance in computing.

• To learn about Kleene’s theorem and its significance.

• To understand the pumping lemma and its applications.

• To explore regular sets and regular expressions.

  context-sensitive.

• To  study  different  types  of  grammars:  regular,  context-free,  and

• To analyze rewriting rules, derivations, and sentential forms.

  generation.

• To understand phrase-structure grammars and their role in language

Objectives

rules
Grammars and Language: Phrase-Structure Grammars, Requiting 

UNIT 5.1

MODULE 5
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Notes For example, in English, the alphabet includes the 26 letters (a-z), 

punctuation marks, and spaces. In programming languages, the alphabet 

includes keywords, operators, identifiers, and other tokens. 

The rules that determine which strings belong to a language are formalized 

using grammars. A grammar acts like a recipe for generating all valid strings 

in a language while excluding invalid ones. 

5.1.2: Phrase-Structure Grammars 

A phrase-structure grammar (also called a generative grammar) is a formal 

system that defines a language by specifying how to form valid strings from 

the alphabet. It was introduced by Noam Chomsky in the 1950s as a way to 

describe the syntax of natural languages. 

A phrase-structure grammar G is defined as a 4-tuple G = (V, Σ, R, S) where: 

• V is a finite set of variables (or non-terminal symbols) 

• Σ is finite set of terminal symbols (the alphabet of the language) 

• R is a finite set of production rules or rewriting rules 

• S is the start symbol (S ∈ V) 

The sets V and Σ are disjoint (they have no elements in common). 

Terminal symbols are the basic building blocks of the language - they appear 

in the final strings of the language. In programming languages, these could 

be keywords, operators, identifiers, etc.Non-terminal symbols (variables) are 

placeholders that get replaced during the derivation process. They represent 

syntactic categories or phrases and do not appear in the final strings of the 

language. 

Example: Consider a simple grammar for arithmetic expressions with 

addition: 

G = (V, Σ, R, S) where: 

• "Start" is represented by S, and "expression" by E.  

• Σ = {a, +, (, )} The symbols a, +, and () stand for variables, addition, and 

parenthesis, respectively.  

• The initial symbol is S.  

• The following rules are present in R:  



  

188 
 

Notes o S → E 

o E → a 

o E → E + E 

o E → (E) 

This grammar can generate strings like "a", "a+a", "(a)", "a+(a+a)", and so 

on. 
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Notes 

UNIT 5.2

 

5.2.1: Rewriting Rules, Derivations, and Sentential Forms 

Rewriting Rules 

The production rules or rewriting rules in a grammar define how variables 

can be replaced or rewritten to form new strings. Each rule has form: 

α → β 

where: 

• α is a string containing at least one non-terminal symbol 

• β is a string of terminal and/or non-terminal symbols (β can be 

empty) 

The rule α → β means that can be replaced by β in any string. 

Derivations 

A derivation is a sequence of strings where each string is obtained from the 

previous one by applying a production rule. It shows the step-by-step 

process of generating a string in the language.A derivation starts with the 

start symbol S and ends with a string of terminal symbols. Each step in the 

derivation is denoted by the symbol ⇒, which means "derives in one step." 

For example, using the grammar for arithmetic expressions given earlier, we 

can derive the string "a+a" as follows: 

S ⇒ E ⇒ E+E ⇒a+E⇒a+a 

We can also represent multiple derivation steps using the symbol ⇒. So, S 

⇒a+a means "S derives a+a in zero or more steps." 

Sentential Forms 

A sentential form is any string that can be derived from the start symbol S. 

It may contain both terminal and non-terminal symbols. 

In the derivation S ⇒ E ⇒ E+E ⇒a+E⇒a+a, the sentential forms are: 

• S 

• E 

     • a+E 

Derivation, Sentential forms, Language generated by a
Grammar, Regular, Context -Free and context sensitive
grammars and Languages, Regular sets
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Notes      • a+a 

     • E+E 

Note that only the final form "a+a" consists entirely of terminal symbols and 

thus belongs to language generated by grammar. The other sentential forms 

are intermediate steps in the derivation process. 

5.2.2: Language Generated by a Grammar 

The language generated by a grammar G, denoted as L(G), is the set of all 

strings of terminal symbols that can be derived from the start symbol S using 

the production rules of G. 

Formally, L(G) = {w ∈Σ* | S ⇒* w} 

where: 

• Σ* is the set of all strings over the alphabet Σ (including the empty 

string) 

• S ⇒* w means that w can be derived from S in zero or more steps 

In other words, a string w belongs to L(G) if and only if: 

1. w consists only of terminal symbols from Σ 

2. There exists a derivation from S to w using the production rules of 

G 

For example, the language generated by our arithmetic expression grammar 

includes strings like "a", "a+a", "(a)", "a+(a+a)", etc. 

5.2.3: Types of Grammars 

Noam Chomsky classified grammars into four types based on the form of 

their production rules. This classification is known as the Chomsky 

hierarchy. We'll focus on three important types: regular grammars, context-

free grammars, and context-sensitive grammars. 

Regular Grammars 

A regular grammar is most restrictive type of grammar in the Chomsky 

hierarchy. It generates regular languages, which can be recognized by finite 

automata. 
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Notes In a regular grammar, all production rules must have one of the following 

forms: 

• A → a (where A is a non-terminal,  is terminal) 

• A → aB (where A & B are non-terminals, a is a terminal) 

• A → ε (where ε is the empty string) 

There are two types of regular grammars: 

• Right-linear grammar: All rules have the form A → aB or A → a 

or A → ε 

• Left-linear grammar: All rules have the form A → Ba or A → a or 

A → ε 

Example of a Right-linear Grammar: G = (V, Σ, R, S) where: 

• V = {S} 

• Σ = {0, 1} 

• S is the start symbol 

• R contains:  

o S → 0S 

o S → 1S 

o S → ε 

This grammar generates all binary strings, including the empty string: L(G) 

= {0, 1}* 

Regular grammars are useful for describing patterns like identifiers, 

numbers, and other tokens in programming languages. 

Context-Free Grammars (CFG) 

Context-free grammar (CFG) is less restrictive than a regular grammar and 

can describe more complex language structures. It generates context-free 

languages, which can be recognized by pushdown automata.In context-free 

grammar, all production rules must have form: A → α (where A is a single 

non-terminal and α is a string of terminals and/or non-terminals). The key 
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Notes characteristic of a CFG is that a non-terminal can be replaced regardless of 

its context (the symbols around it). 

Example of a Context-Free Grammar: G = (V, Σ, R, S) where: 

• V = {S} 

• Σ = {(, )} 

• S is the start symbol 

• R contains:  

o S → (S) 

o S → SS 

o S → ε 

This grammar generates all balanced parentheses strings: L(G) = {ε, (), ()(), 

(()), (())(), ...} 

Context-free grammars are widely used to describe syntax of programming 

languages, as they can handle nested structures like expressions, statements, 

and blocks. 

Context-Sensitive Grammars (CSG) 

A context-sensitive grammar (CSG) is more powerful than a CFG and can 

describe even more complex language structures. It generates context-

sensitive languages, which can be recognized by linear bounded automata.In 

a context-sensitive grammar, all production rules must have the form: αAβ 

→ αγβ (where A is a non-terminal, α and β are strings of terminals and/or 

non-terminals, and γ is a non-empty string of terminals and/or non-

terminals) 

The key characteristic of CSG is that a non-terminal can be replaced only in 

specific contexts (the symbols around it). 

Example of Context-Sensitive Grammar: G = (V, Σ, R, S) where: 

• V = {S, A, B, C} 

• Σ = {a, b, c} 

• S is start symbol 
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Notes • R contains:  

o S → ABC 

o AB → aAB 

o BC → BC 

o AC → ABC 

o C → c 

o aA → aa 

o aB → ab 

o bB → bb 

This grammar generates language L(G) = {anbncn | n ≥ 1}, which consists of 

strings with equal numbers of a's, b's, and c's in that order. 

Context-sensitive grammars can describe language features that require 

checking multiple related parts of a program, such as declaring variables 

before using them or maintaining type consistency. 

Solved Problems 

Problem 1: Regular Grammar 

Problem: Construct regular grammar that generates the language of all 

binary strings that end with 01. 

Solution: We need to construct a grammar G = (V, Σ, R, S) where: 

• Σ = {0, 1} 

• The language L(G) = {w01 | w ∈ {0, 1}*} 

Let's define our grammar: 

• V = {S, A, B} 

• S is the start symbol 

• R contains:  

o S → 0S (stay in state S after seeing 0) 

o S → 1S (stay in state S after seeing 1) 
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Notes o S → 0A (transition to state A after seeing 0) 

o A → 1B (transition to final state B after seeing 1) 

o S → 1A (transition to state A after seeing 1) 

o A → 0A (stay in state A after seeing 0) 

Here S represents the initial state, A represents the state after seeing the first 

0 of the final "01", and B represents the final state after seeing the complete 

"01" pattern. 

Let's trace a derivation for the string "1001": S ⇒ 1S ⇒ 10S ⇒ 100A ⇒ 

1001B 

Since B is our final state, the string "1001" is accepted by the grammar, 

which is correct as it ends with "01". 

Problem 2: Context-Free Grammar 

Problem: Construct context-free grammar that generates language of all 

strings with equal numbers of a's & b's. 

Solution: We need to construct a grammar G = (V, Σ, R, S) where: 

• Σ = {a, b} 

• The language L(G) = {w ∈ {a, b}* | na(w) = nb(w)}, where na(w) 

and nb(w) are the numbers of a's and b's in w 

Let's define our grammar: 

• V = {S} 

• S is the start symbol 

• R contains:  

o S → aSb (add an 'a' at the beginning and a 'b' at the end) 

o S → bSa (add a 'b' at the beginning & an 'a' at the end) 

o S → SS (concatenate two strings with equal numbers of a's 

and b's) 

o S → ε (the empty string has equal numbers of a's and b's, 

namely zero) 
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Notes This grammar generates all strings with equal numbers of a's and b's. Let's 

trace a derivation for the string "ab": S ⇒aSb⇒aSb⇒aεb⇒ab 

And for the string "abab": S ⇒ SS ⇒aSbS⇒abS⇒abaSb⇒abaεb⇒abab 

Problem 3: Context-Sensitive Grammar 

Problem: Construct a context-sensitive grammar that generates the language 

L = {a^nb^nc^n | n ≥ 1}. 

Solution: We need to construct a grammar G = (V, Σ, R, S) where: 

• Σ = {a, b, c} 

• language L(G) = { anbncn | n ≥ 1} 

This is a classic example of language that is not context-free but is context-

sensitive. 

Let's define our grammar: 

• V = {S, A, B, C, X, Y, Z} 

• S is the start symbol 

• R contains:  

o S → aXYZ 

o X → aX 

o XY → XbY 

o YZ → YcZ 

o X → B 

o Y → C 

o BbC → BBC 

o BcC → BcC 

o BC → BC 

o aB → ab 

o bC → bc 

o cZ → c 
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Notes Let's trace a derivation for the string "aabbcc": S 

⇒aXYZ⇒aaXYZ⇒aaXbYZ⇒aaXbYcZ⇒aaBbYcZ⇒aaBbCcZ⇒aabBCcZ

⇒abbCcZ⇒abcZ⇒abc 

This grammar works by first generating a sequence of a's followed by 

placeholders for b's & c's. Then it inserts b's and c's in the appropriate 

positions, ensuring that there are equal numbers of each. 

Problem 4: Ambiguous Grammar 

Problem: Show that the following context-free grammar is ambiguous: G = 

({S}, {a, b}, {S → aSb | S → ab | SS}, S) 

Solution: A grammar is ambiguous if there exists a string in the language 

that has more than one leftmost derivation (or, equivalently, more than one 

parse tree). 

Let's consider the string "aababb": 

Derivation 1: S ⇒ SS ⇒aSbS⇒aabS⇒aabab 

Derivation 2: S ⇒aSb⇒aSSb⇒aSabb⇒aababb 

Both derivations generate the same string "aababb", but they represent 

different ways of structuring the string. This demonstrates that the grammar 

is ambiguous. 

In practical terms, ambiguity in a grammar can lead to parsing conflicts in 

compiler design, so it's often desirable to rewrite ambiguous grammars as 

unambiguous ones. 

Problem 5: Leftmost and Rightmost Derivations 

Problem: For the context-free grammar G = ({S, A, B}, {a, b}, R, S) with 

rules: 

• S → aAB 

• A → aBb 

• A → ε 

• B → b 

Find both leftmost and rightmost derivations for the string "aabbb". 
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Notes Solution: In a leftmost derivation, we always replace leftmost non-terminal 

in each step. In a rightmost derivation, we always replace rightmost non-

terminal. 

Leftmost Derivation: S ⇒aAB (replace S) ⇒aaBbB (replace A) ⇒aabB 

(replace B in "aBb") ⇒aabb (replace the remaining B) 

Wait, this gives us "aabb", not "aabbb". Let's check if "aabbb" is actually in 

the language: 

S ⇒aAB (replace S) ⇒aaBbB (replace A) ⇒aabB (replace B in "aBb") 

⇒aabb (replace the remaining B) 

It seems "aabbb" might not be derivable from this grammar. Let's double-

check with another attempt: 

S ⇒aAB (replace S) ⇒aB (replace A with ε) ⇒ ab (replace B) 

This gives us "ab", not "aabbb". 

Let's try one more approach: 

S ⇒aAB (replace S) ⇒aaBbB (replace A) ⇒aabBB (replace b with B in 

"aBb" - no, that's not a valid production) 

Let me review the grammar again... 

My apologies for the confusion. Looking at the rules carefully, I see that 

"aabbb" is indeed not derivable from this grammar. The grammar can 

generate strings like "ab", "aabb", etc., but not "aabbb". 

Let's consider the string "aabb" instead: 

Leftmost Derivation: S ⇒aAB (replace S) ⇒aaBbB (replace A) ⇒aabB 

(replace B in "aBb") ⇒aabb (replace the remaining B) 

Rightmost Derivation: S ⇒aAB (replace S) ⇒aAb (replace B) ⇒aaBbb 

(replace A) ⇒aabb (replace B in "aBb") 

Unsolved Problems 

Problem 1: Regular Grammar 

Construct regular grammar that generates the language of all binary strings 

that contain the substring "101". 
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Notes Problem 2: Context-Free Grammar 

Construct a context-free grammar that generates language of all strings over 

{a, b} that have more a's than b's. 

Problem 3: Ambiguity 

Prove that the following grammar is ambiguous and provide an 

unambiguous grammar that generates the same language: G = ({S}, {a, b}, 

{S → aSb | S → ε | SS}, S) 

Problem 4: Context-Sensitive Grammar 

Construct a context-sensitive grammar that generates the language L = 

{a^nb^mc^nd^m | n, m ≥ 1}. 

Problem 5: Derivation and Language 

For the grammar G = ({S, A, B}, {a, b}, R, S) with rules: 

• S → AB 

• A → aA | ε 

• B → bB | ε 

a) Give leftmost and rightmost derivations for the string "aabb". b) Describe 

in English the language L(G) generated by this grammar. 

Summary 

In this chapter, we've explored the fundamental concepts of formal language 

theory, focusing on grammars and their classification according to the 

Chomsky hierarchy. 

We started by introducing the concept of formal language as precisely 

defined set of strings over an alphabet. We then described phrase-structure 

grammars as formal systems for generating languages, consisting of terminal 

symbols, non-terminal symbols, production rules, and a start symbol. 

We discussed how these grammars work through rewriting rules and 

derivations, which show the step-by-step process of generating strings in a 

language. We also defined sentential forms as intermediate strings in the 

derivation process. 
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Notes language generated by grammar is the set of all strings of terminal symbols 

that can be derived from the start symbol using production rules of the 

grammar. 

We then explored three important types of grammars in the Chomsky 

hierarchy: 

1. Regular Grammars: most restrictive type, generating languages 

recognized by finite automata. 

2. Context-Free Grammars (CFG): More powerful than regular 

grammars, generating languages recognized by pushdown automata. 

3. Context-Sensitive Grammars (CSG): Even more powerful, 

generating languages recognized by linear bounded automata. 

Each type of grammar has its own constraints on the form of production 

rules, resulting in different expressive power. Regular grammars are used for 

simple patterns like tokens in programming languages. Context-free 

grammars can handle nested structures like expressions and statements. 

Context-sensitive grammars can enforce relationships between different 

parts of a program.Understanding these concepts is essential for designing 

programming languages, building compilers and interpreters, and 

implementing various text processing applications. The mathematical 

framework provided by formal language theory helps us reason about the 

syntax and structure of languages in a precise and systematic way. 
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  languages of r and s

o (rs) is a regular expression denoting the concatenation of the

  languages of r and s

o (r|s)  is  a  regular  expression  denoting  the  union  of  the

If r and s are regular expressions, then:4.

For each symbol a ∈Σ, a is regular expression denoting set {a}3.

empty string)

ε  is  a  regular  expression  denoting  the  set  {ε}  (containing  only  the 2.

∅ is a regular expression denoting the empty set1.

recursively:

Given  an  alphabet  Σ,  the  set  of  regular  expressions  over  Σ  is  defined 

Formal Definition of Regular Expressions

They provide a concise way to describe patterns in strings.

Regular expressions are a notation system used to specify regular languages. 

Regular Expressions

No other sets are regular sets5.

and * (Kleene star) are also regular sets

If A & B are regular sets, then A ∪ B (union), A · B (concatenation), 4.

For each a ∈Σ, the set {a} is a regular set3.

The set {ε} containing only the empty string is a regular set2.

The empty set ∅ is a regular set1.

as:

A  regular  set  or  regular language  over  an  alphabet  Σ  is  defined recursively 

Definition of Regular Sets

finite automata.

formal language theory. They represent languages that can be recognized by 

Regular  sets  (also  called  regular  languages)  are  a  fundamental  concept  in 

5.3.1: Regular Sets and Regular Expressions

Expressions to Polish Notation
Notions of Syntax Analysis, Polish Notations. Conversion of Infix 
Regular Expressions and the pumping Lemma. Kleene’s Theorem. 

UNIT 5.3
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Notes o (r*) is a regular expression denoting the Kleene star of the 

language of r 

Operations on Regular Expressions 

1. Union (r|s): Represents strings that match either r or s 

2. Concatenation (rs): Represents strings formed by concatenating a 

string that matches r with a string that matches s 

3. *Kleene Star (r)**: Represents strings formed by concatenating zero 

or more strings that match r 

Examples of Regular Expressions 

1. a(b|c)* represents strings starting with 'a' followed by any number of 

'b's or 'c's 

2. (a|b)*c represents strings ending with 'c' preceded by any number of 

'a's or 'b's 

3. (ab)* represents strings consisting of zero or more repetitions of 'ab' 

4. ab represents strings consisting of zero or more ''s followed by zero 

or more 'b's 

Solved Problems for Regular Sets and Regular Expressions 

Problem 1: Construct a regular expression for the language of all strings 

over {, b} that contain an even number of a's. 

Solution: Let's break this down: 

• We need strings with an even number of a's (including zero) 

• The b's can appear any number of times at any position 

First, let's define two parts: 

• E: strings with an even number of a's 

• O: strings with an odd number of a's 

We can define these recursively: 

• E = babab* | b* (either there are two a's separated by any number of 

b's, or there are no a's) 
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Notes • O = bab (there is exactly one a with any number of b's before and 

after) 

But this doesn't capture strings with more than two a's. Let's try a different 

approach: 

The regular expression is: (b|abab) 

To see why this works: 

• b: allows adding b's without affecting the parity of a's 

• aba*b: every time we use this pattern, we add two a's (keeping the 

count even) 

• The outer Kleene star allows repeating these patterns any number of 

times 

Problem 2: Construct a regular expression for strings over {a, b, c} that don't 

contain the substring 'abc'. 

Solution: We can approach this by characterizing all strings that don't have 

'abc': 

• Any string without an 'a' 

• Any string without a 'b' 

• Any string without a 'c' 

• Strings where 'a' and 'b' are separated by at least one character other 

than 'b' 

• Strings where 'b' and 'c' are separated by at least one character other 

than 'c' 

The regular expression is: (b|c)* | (a|c)* | (a|b)* | a*(bacb|cabc)a | 

b*(abca|cbac)b 

This is quite complex. A simpler way to think about it is to say that we can 

have any string except those containing 'abc'. 

Another approach: we can describe this as strings where every 'a' is not 

followed by 'bc', or every 'ab' is not followed by 'c': 

(a(¬(bc))|b|c)* 
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Notes Where ¬(bc) means any string not starting with 'bc'. This can be written as: 

(a(b(a|b)|c|ε)|b|c)* 

Problem 3: Prove that the set of all strings over {a, b} with an equal number 

of 's and b's is not a regular language. 

Solution: We'll use the pumping lemma (which will be covered in section 

5.6) to prove this. 

Let's call this language L = {w ∈ {a, b}* | |w|a = |w|b}, where |w|a and |w|b 

denote the number of a's and b's in w respectively. 

Assume L is regular. By the pumping lemma, there exists a pumping length 

p such that any string s in L with |s| ≥ p can be written as s = xyz where: 

1. |xy| ≤ p 

2. |y| > 0 

3. For all i ≥ 0, xyiz is in L 

Consider s = apbp (p a's followed by p b's). Clearly s is in L since it has an 

equal number of 's and b's. 

By pumping lemma, s can be written as xyz where |xy| ≤ p & |y| > 0. This 

means y consists only of a's (since xy is a prefix of length at most p of 

apbp). 

Let's say y = ak for some k > 0. Then xy2z = ap+kbp, which has p+k a's and 

p b's. Since p+k ≠ p, xy2z is not in L. 

This contradicts condition 3 of the pumping lemma. Therefore, L is not 

regular. 

5.3.2: The Pumping Lemma and Its Applications 

Pumping Lemma is a powerful tool used to prove that certain languages are 

not regular. It gives a necessary (but not sufficient) condition for a language 

to be regular. 

Statement of the Pumping Lemma 

For any regular language L, there exists a positive integer p (called the 

pumping length) such that any string s in L of length at least p can be written 

as s = xyz where: 
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Notes 1. |xy| ≤ p 

2. |y| > 0 (y is non-empty) 

3. For all i ≥ 0, xyiz is in L 

Intuitively, the pumping lemma states that any sufficiently long string in a 

regular language has a non-empty substring that can be "pumped" (repeated 

any number of times) while keeping the resulting string in the language. 

Steps to Use the Pumping Lemma 

To prove that a language L is not regular using the pumping lemma: 

1. Assume that L is regular 

2. By the pumping lemma, there exists a pumping length p 

3. Choose a string s in L of length at least p 

4. According to the pumping lemma, s can be split as s = xyz where 

|xy| ≤ p, |y| > 0 

5. Find a value of i such that xyiz is not in L 

6. This contradicts the pumping lemma, proving that L is not regular 

Applications of the Pumping Lemma 

Pumping lemma is primarily used to prove that languages are not regular. 

Here are some classic examples: 

Solved Problem: Prove that the language L = {anbn | n ≥ 0} is not regular 

Solution: 

1. Assume that L is regular 

2. By the pumping lemma, there exists a pumping length p 

3. Consider the string s = apbp which is in L 

4. By the pumping lemma, s can be written as s = xyz where |xy| ≤ p 

and |y| > 0 

5. Since |xy| ≤ p, xy consists only of a's, which means y consists only 

of a's 

6. Let y = ak for some k > 0 
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Notes 7. Consider xy2z = ap+kbp 

8. This string has p+k a's but only p b's, so it's not in L 

9. This contradicts the pumping lemma, so L is not regular 

Solved Problem: Prove that the language L = {ww | w ∈ {a, b}*} is not 

regular 

Solution: 

1. Assume that L is regular 

2. By the pumping lemma, there exists a pumping length p 

3. Consider the string s = apbapb which is in L (w = apb) 

4. By the pumping lemma, s can be written as s = xyz where |xy| ≤ p 

and |y| > 0 

5. Since |xy| ≤ p, xy is a prefix of apb, which means y consists only of 

a's 

6. Let y = ak for some k > 0 

7. Consider xy0z = s with the substring y removed 

8. This string has p-k a's in the first half but still p a's in the second half 

9. Therefore, xy0z is not of the form ww, so it's not in L 

10. This contradicts the pumping lemma, so L is not regular 

5.3.3: Kleene's Theorem and Finite Automata 

Kleene's Theorem establishes the equivalence between regular expressions 

and finite automata. It consists of two parts: 

1. Every language recognized by finite automaton can be described by 

a regular expression 

2. Every language described by regular expression can be recognized 

by a finite automaton 

This theorem is fundamental as it provides different ways to represent 

regular languages, each with its own advantages. 

From Finite Automata to Regular Expressions 
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Notes To convert a finite automaton to a regular expression: 

1. Add new start state with ε-transitions to the original start state 

2. Add a new accept state with ε-transitions from all original accept 

states 

3. For each state, use the state elimination method to obtain a regular 

expression 

State Elimination Method 

1. Choose a state q (not the start or accept state) 

2. For each pair of states (qi, qj) with transitions to and from q, create a 

new transition directly from qi to qjlabeled with the regular 

expression ri,q · (rq,q)* · rq,j, where ri,j is the label on the transition 

from qi to qj 

3. Remove state q and all its incoming and outgoing transitions 

4. Repeat until only the start and accept states remain 

5. The label on the transition from start to accept is the resulting 

regular expression 

Finite Automata to Regular Expressions 

To convert a regular expression to a finite automaton, we use Thompson's 

construction: 

1. For each basic regular expression (∅, ε, or a), construct a simple 

NFA 

2. For composite regular expressions (r|s, rs, r*), combine the NFAs for 

the subexpressions 

Thompson's Construction Rules 

1. For ∅: Two states with no transitions 

2. For ε: Two states connected by an ε-transition 

3. For a symbol a: Two states connected by an a-transition 

4. For r|s: Combine the NFAs for r and s with new start and accept 

states 
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Notes 5. For rs: Connect the accept state of the NFA for r to the start state of 

the NFA for s 

6. For r*: Add ε-transitions to allow skipping r or repeating r any 

number of times 

Solved Problem: Convert the Regular Expression (a|b)*abb to an NFA 

Solution: 

We'll apply Thompson's construction: 

1. First, create NFAs for a and b 

2. Combine them using the union operation to get (a|b) 

3. Apply the Kleene star to get (a|b)* 

4. Create NFAs for a, b, and b 

5. Concatenate all these NFAs to get (a|b)*abb 

The resulting NFA will have states for each component, with appropriate 

transitions connecting them: 

• A start state q0 

• ε-transitions from q0 to the start states of NFAs for a and b 

• A cycle from the accept state of (a|b) back to the start states via ε-

transitions 

• The accept state of (a|b)* connected to the start state of the first a 

• The accept state of the first a connected to the start state of the first 

b 

• The accept state of the first b connected to start state of the second b 

• accept state of the second b as the final accept state 

Multiple-Choice Questions (MCQs) 

1. A grammar in formal language theory consists of: 

a) A set of terminals & non-terminals 

b) set of rewriting rules 

c) start symbol 

d) All of the above 
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Notes 2. The language generated by a grammar is: 

a) A set of terminals 

b) A set of derivations 

c) A set of strings that can be produced using production rules 

d) A sequence of grammar rules 

3. Which of the following grammars is the most restrictive? 

a) Typical Grammar 

b) Context-Free Grammar 

c) Context-Sensitive Grammar 

d) Phrase-Structure Grammar 

4. A regular expression is used to describe: 

a) Context-free languages 

b) Context-sensitive languages 

c) Regular languages 

d) None of the above 

5. pumping lemma is used to: 

a) Prove that a language is finite 

b) Prove that a language is regular 

c) Prove that a language is context-sensitive 

d) Convert regular expressions into finite automata 

6. Kleene’s Theorem states that: 

a) Every finite automaton has an equivalent regular expression 

b) Every CFG can be converted into a DFA 

c) Every Turing machine can be converted into a regular grammar 

d) None of the above 

7. Syntax analysis is also known as: 

a) Parsing 

b) Lexical analysis 

c) Compilation 

d) Tokenization 

8. Polish notationis also called: 

a) Prefix notation 

b) Infix notation 
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Notes c) Postfix notation 

d) Mixed notation 

9. The expression A+BA + B in Reverse Polish Notation (RPN) is 

written as: 

a)+BA+B 

 b) AB+AB+ 

 c) B+AB+A 

 d) +AB+AB  

10. Which data structure is commonly used for evaluating 

expressions in Reverse Polish Notation? 

a) Queue 

b) Stack 

c) Linked List 

d) Tree 

Answer Key:  

1 d 3 c 5 b 7 a 9 b 

2 c 4 c 6 6 8 a 10 b 

Short Answer Questions 

1. Define phrase-structure grammar with an example. 

2. What is the difference between derivation and sentential forms? 

3. Explain regular, context-free, and context-sensitive grammars with 

examples. 

4. What are regular sets in formal language theory? 

5. Define regular expressions and their importance in pattern matching. 

6. Explain the significance of the pumping lemma in language 

classification. 

7. State Kleene’s theorem and explain its implications. 

8. What is syntax analysis? Why is it important in compiler design? 

9. Define Polish notation and Reverse Polish Notation (RPN). 



  

210 
 

Notes 10. How can infix expressions be converted to postfix notation? 

Long Answer Questions 

1. Explain phrase-structure grammars and their role in language 

generation. 

2. Describe rewriting rules, derivations, and sentential forms with 

examples. 

3. Discuss the differences between regular, context-free, and context-

sensitive grammars. 

4. Explain the concept of regular expressions and how they are used in 

pattern matching. 

5. State and prove Kleene’s Theorem with examples. 

6. Explain syntax analysis and its role in compiler construction. 

7. Describe Polish notation and Reverse Polish Notation with 

conversion techniques. 

8. Convert the following infix expression to Polish notation and 

Reverse Polish Notation: 

          (C−D)(A + B)∗(C + B) * (C - D)  

9. Discuss significance of syntax analysis in programming language 

processing. 
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