


 
 

 

 

MSCMODL101 
ALGEBRA 

 

Contents Page Number 

Module-1  

Unit-1.1:   

Group theory: Direct products- Group action on a 

set 

  

Unit-1.2:   

Isotropy subgroups- Orbits- Application of G-Sets 

to Counting 

  

Unit-1.3:   

 theoremsCounting - p-Groups- The Sylow 

theorems.  

  

Module-2   

Unit-2.1:   

Applications of the Sylow theory: Applications to 

p-groups and the class equation 

  

Unit-2.2:   

 Further applications. Ring theory: Rings of 

polynomials 

  

Unit-2.3:   

Polynomials in an indeterminate - The evaluation 

homomorphism - Factorization of polynomials 

over a field.  

  

Module-3   

Unit-3.1:   

Field theory: Extension fields-algebraic and 

transcendental elements 

  

 

 

  

  

  

  

  

1- 14

15- 19

20 - 41

42 - 68

69- 82

83 - 109

110 - 115



 
 

Unit-3.2:   

Irreducible polynomial over F    

Unit-3.3:   

Simple extensions- Algebraic extensions: Finite 

extensions- Structure of a finite fields. 

  

Module-4   

Unit-4.1:  

fieldsofAutomorphisms - Conjugation 

isomorphisms-  

  

Unit-4.2:  

Automorphisms and fixed fields-    

Unit-4.3:  

The Frobenius automorphism- Splitting fields.     

Module-5   

Unit-5.1:   

Separable extensions- Galois theory   

Unit- 5 . 2:   

 Normal extensions- The main theorem   

Unit- 5 . 3:  

Symmetrictheory:GaloisofIllustrations

functions 

 

  

  

  

  

  

  

  

  

  

116 - 124

125 - 151

152 - 158

159 - 167

168 - 188

189 - 194

195- 216

  212 - 223



  

COURSE DEVELOPMENTEXPERT COMMITTEE  

Prof (Dr) K P Yadav     Vice Chancellor, MATS University  

Prof (Dr) A J Khan      Professor Mathematics, MATS University 

Prof (Dr) D K Das                      Professor Mathematics, CCET, Bhilai 

 

   

 

COURSE COORDINATOR 

 

                       

 

COURSE /BLOCK PREPARATION 

 
Dr Vinita Dewangan      Associate Professor, MATS University 
 
 
 
 
 

March 2025 

@MATS Centre for Distance and Online Education, MATS University, Village- Gullu,Aarang, Raipur-

(Chhattisgarh) 

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in any form, 

by mimeograph or any other means, without permission in writing from MATS University, Village- Gullu, 

Aarang, Raipur-(Chhattisgarh) 

Printed &Published on behalf of MATS University, Village-Gullu, Aarang, RaipurbyMr. 

MeghanadhuduKatabathuni, Facilities & Operations, MATS University,Raipur(C.G.) 

 

Disclaimer-Publisher of this printing material is not responsible for any error or dispute from contents of 
this course material, this is completely depends on AUTHOR’S MANUSCRIPT. 
Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh) 

 

 

 
 

 

 

 

                                                 ISBN: 978-81-987774-0-9

Prof (Dr.) A. J. Khan Professor, MATS University



 

 
 

Notes  

 

Acknowledgement 
 

The material (pictures and passages) we have used is purely for 

educational purposes. Every effort has been made to trace the 

copyright holders of material reproduced in this book. Should any 

infringement have occurred, the publishers and editors apologize and 

will be pleased to make the necessary corrections in future editions 

of this book. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 
 

Notes  

COURSE INTRODUCTION 

 

Algebra forms the foundation of many areas in mathematics and its 

applications in science and engineering. This course explores essential 

algebraic structures, linear transformations, vector spaces, eigenvalue 

problems, and their applications to differential equations and coding 

theory. The course aims to build strong conceptual and problem-

solving skills through a structured modular approach. 

 

Module 1:  Group Theory 

This module introduces key concepts in group theory, including direct 

products and group actions on a set. Topics covered include isotropy 

subgroups, orbits, and applications of G-sets to counting. The module 

also explores counting theorems, p-groups, and the fundamental 

Sylow theorems. 

Module 2: Applications of Sylow Theory and Ring Theory 

Building on the Sylow theorems, this module examines their 

applications to p-groups and the class equation. Further applications 

will be explored in relation to ring theory, covering rings of 

polynomials, polynomials in an indeterminate, the evaluation 

homomorphism, and the factorization of polynomials over a field. 

Module 3: Field Theory 

This module covers extension fields, distinguishing between algebraic 

and transcendental elements. Topics include irreducible polynomials 

over a field, simple extensions, algebraic extensions, finite extensions, 

and the structure of finite fields. 

Module 4: Automorphisms and Splitting Fields 

Students will explore automorphisms of fields, conjugation 

isomorphisms, and the connection between automorphisms and fixed 

fields. This module introduces the Frobenius automorphism and 

splitting fields, providing insight into the structure of field extensions. 

Module 5: Galois Theory 

This module introduces separable extensions, normal extensions, and 

the main theorem of Galois theory. Illustrations of Galois theory 

include applications to symmetric functions and their significance in 

modern algebra. 
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 G such that a • b = b • a = e, where e is the identity element.

Inverse element: For each a in G, there exists an element b in 4.

every element a in G, e • a = a • e = a.

Identity element: There exists an element e in G such that for 3.

Associativity: For all a, b, c in G, (a • b) • c = a • (b • c).2.

Closure: For all a, b in G, the result of a • b is also in G.1.

that satisfies the following axioms:

A  group  (G,  •)  consists  of  a  set  G  together  with  a  binary  operation  • 

Definition of a Group

called the group axioms.

any  two  elements  to  form  a  third  element,  satisfying  four  conditions 

consists of a set of elements together with an operation that combines 

A  group  is one  of  the  fundamental  structures  in  abstract  algebra.  It 

1.1.1: Introduction to Group Theory

• Analyze p-groups and the Sylow theorems.

  combinatorial group theory.

• Study  counting  theorems  and  their  significance  in

• Learn about isotropy subgroups and orbits.

• Explore group actions on a set and their applications.

• Understand the concept of direct products in group theory.

Objectives

GROUP THEORY

UNIT 1.1

MODULE 1
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Notes If the operation is also commutative, meaning a • b = b • a for all a, b 

in G, then the group is called an abelian group or a commutative 

group. 

Examples of Groups 

a. The integers Z under additionform a group: 

o Closure: The sum of two integers is an integer. 

o Associativity: (a + b) + c = a + (b + c) for all integers 

a, b, and c. 

o Identity: The integer 0 serves as the identity element. 

o Inverse: For any integer a, its inverse is -a. 

o This is an abelian group. 

b. The non-zero real numbers R under multiplication form a 

group: 

o Closure: The product of two non-zero real numbers is a 

non-zero real number. 

o Associativity: (a × b) × c = a × (b × c) for all non-zero 

real numbers a, b, and c. 

o Identity: The number 1 serves as the identity element. 

o Inverse: For any non-zero real number a, its inverse is 

1/a. 

o This is an abelian group. 

c. The set of nxn invertible matrices with real entries under 

matrix multiplication forms a group denoted by GL(n, R) 

(General Linear Group): 

o Closure: The product of two invertible matrices is 

invertible. 
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 1.1.5: Cosets and Normal Subgroups

order of G. That is, |H| divides |G|.

If H is a subgroup of a finite group G, then the order of H divides the 

Lagrange's Theorem

called a generator of G, and we write G = ⟨a⟩.

element in G can be written as a^n for some integer n. In this case, a is 

A group  G is cyclic if there  exists an element a in G such that  every 

1.1.4: Cyclic Groups

• Contain the inverse of each of its elements.

• Be closed under the group operation.

• Contain the identity element of G.

under the operation of G. For H to be a subgroup, it must:

A subgroup H of  a  group  G  is  a  subset  of  G  that  is  itself  a  group 

1.1.3: Subgroups

no such n exists, a has infinite order.

positive integer n such that a^n = e, where e is the identity element. If 

The order of an element a in a group G, denoted by |a|, is the smallest 

G. If G has infinitely many elements, we say G has infinite order.

The order of a group G, denoted by |G|, is the number of elements in 

1.1.2 : Order of a Group and Order of an Element

o This is generally a non-abelian group for n ≥ 2.

o Inverse: Every invertible matrix has an inverse matrix.

  element.

o Identity:  The  identity  matrix  serves  as  the  identity

o Associativity: matrix multiplication is associative.
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 Definition of Direct Product

groups. It allows us to build complex groups from simpler ones.

The  direct  product  is  a  way  to  construct  a  new  group  from  existing 

1.1.8: Direct Products of Groups

G/Ker(φ) is isomorphic to Im(φ).3.

The image of φ, Im(φ) = {φ(a) | a ∈ G}, is a subgroup of H.2.

subgroup of G.

The  kernel  of  φ,  Ker(φ)  =  {a ∈ G  |  φ(a)  =  e_H},  is  a  normal 1.

If φ: G → H is a group homomorphism, then:

The First Isomorphism Theorem

they have the same abstract structure.

isomorphic if  there  exists  an  isomorphism  between  them,  meaning 

An isomorphism is  a  bijective  homomorphism.  Two  groups  are 

G, where • is the operation in G and * is the operation in H.

that preserves the group operation: f(a • b) = f(a) * f(b) for all a, b in 

A group homomorphism is a function f: G → H between two groups 

1.1.7: Homomorphisms and Isomorphisms

is called the quotient group of G by N.

in G forms a group under the operation (aN)(bN) = (ab)N. This group 

If N is a normal subgroup of G, then the set G/N of all left cosets of N 

1.1.6: Quotient Groups

corresponding right cosets.

equivalent  to  saying  that  all  left  cosets  of  N  are  equal  to  their 

A  subgroup  N  of  G  is normal if,  for  every  a  in  G,  aN  =  Na. This  is 

Similarly, Ha = {ha | h ∈ H} is the right coset.

{ah  |  h ∈ H}  is  called  the left  coset of  H  in  G  with  respect  to  a. 

For  a  subgroup  H  of  a  group  G  and  an  element  a  in  G,  the  set  aH  = 
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  For any subgroup K of G, K × H is a subgroup of G × H.1.

and H. However, there are two important types of subgroups:

A subgroup of G × H need not be a direct product of subgroups of G 

1.1.9: Subgroups of Direct Products

addition.

with  itself  is  the  Cartesian  plane  R²  under  component-wise 

R × R: The direct product of the real numbers under addition 2.

For example, (1,2) + (1,1) = (1+1 mod 2, 2+1 mod 3) = (0,0).

elements: {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)}

modulo  3.  Their  direct  product  Z₂  ×  Z₃  consists  of  the 

modulo  2  and  the  cyclic group  Z₃  =  {0,  1,  2}  under  addition 

Z₂ × Z₃: Consider the cyclic group Z₂ = {0, 1} under addition 1.

Examples of Direct Products

abelian.

Abelian:  G  ×  H  is  abelian  if  and  only  if  both  G  and  H  are 4.

Order: If G and H are finite groups, then |G × H| = |G| × |H|.3.

H.

where g⁻¹ is the inverse of g in G and h⁻¹ is the inverse of h in 

Inverse: The inverse of an element (g, h) in G × H is (g⁻¹, h⁻¹), 2.

respectively.

 and   are  the  identity  elements  of  G  and  H, 

 1.

Properties of Direct Products

(g₁, h₁) ⊙ (g₂, h₂) = (g₁ • g₂, h₁ * h₂)

operation defined componentwise:

set  of  all  ordered  pairs  (g,  h)  where  g ∈ G  and  h ∈ H,  with  the 

Given two groups (G, •) and (H, *), their direct product G × H is the 

Identity: The identity element of G × H is (eG, eH), where

eG eH
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Notes   

 

× H, there are naturalFor a direct product G projection 

homomorphisms: 

  

  

 

  

  

 

 

 

  

  

    

 

 

 

 

    

 

 

1.1.10: Projections and Embeddings

For any subgroup L of H, G × L is a subgroup of G × H.2.

The Fundamental Theorem of Finitely Generated Abelian Groups

operation is component-wise addition.

called  the direct  sum and  denoted  by  G₁ ⊕ G₂ ⊕ ... ⊕ Gₙ.  The 

For abelian groups written additively, the direct product is sometimes 

1.1.13: Direct Sum

consists of n-tuples (g₁, g₂, ..., gₙ) with component-wise operations.

For  groups  G₁,  G₂,  ...,  Gₙ,  their  direct  product  G₁  ×  G₂  ×  ...  ×  Gₙ 

The  direct  product  can  be  extended  to  any  finite  number  of  groups. 

1.1.12: Direct Product of Multiple Groups

the external direct product N₁ × N₂.

When G is an internal direct product of N₁ and N₂, G is isomorphic to 

G = N₁N₂ = {n₁n₂ | n₁ ∈ N₁, n₂ ∈ N₂}.3.

N₁ ∩ N₂ = {e}.2.

N₁ and N₂ are normal subgroups of G.1.

if:

A group G is an internal direct product of its subgroups N₁ and N₂ 

1.1.11: Internal Direct Products

• 

• 

There are also natural embedding homomorphisms:

• π₂: G × H → H defined by π₂(g, h) = h

• π₁: G × H → G defined by π₁(g, h) = g

ι₂: H → G × H defined by ι₂(h) = (eG, h)

ι₁: G → G × H defined by ι₁(g) = (g, eH)
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  For a group action of G on X and an element x ∈ X:

1.1.15: Orbits and Stabilizers

gon by rotation and reflection.

The dihedral  group  Dₙ acts  on  the  vertices  of  a  regular  n- 4.

g·H = gHg⁻¹ for all g ∈ G and all subgroups H of G.

A  group  G  acts  on  the  set  of  its  subgroups by  conjugation:3.

g, x ∈ G.

A group G acts on itself by conjugation: g·x = gxg⁻¹ for all 2.

permutation: σ·i = σ(i) for σ ∈ Sₙ and i∈ {1, 2, ..., n}.

The  symmetric  group  Sₙ  acts  on  the  set  {1,  2,  ...,  n} by 1.

    

   

   

         

              

             

        

          

Examples of Group Actions

Compatibility: (g·h)·x = g·(h·x) for all g, h ∈ G and all x ∈ X.2.

of G.

Identity: e·x = x for all x ∈ X, where e is the identity element 1.

(often written as g·x instead of φ(g,x)) that satisfies:

A group action of a group G on a set X is a function φ: G × X → X 

Definition of a Group Action

properties.

providing a powerful framework for analyzing symmetry and other 

Group actions allow us to understand how a group can act on a set, 

1.1.14: Group Actions and Orbits

Zpa is the cyclic group of order pa with p prime.

where r is a non-negative integer, Z is the group of integers, and 

G ≅Zr⊕ Zp₁
{a₁} ⊕ Zp₂

{a₂} ⊕ ... ⊕ Zpₙ
{aₙ}

product of cyclic groups:

Every finitely generated abelian group is isomorphic to a direct 
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 configurations.

Counting  orbits gives  the  number  of  essentially  different 1.

  

   

               

X  fixed  by  all  elements  of  G,  and  the  sum  is  taken  over 

     

   

       

 

   

  

           

  

                

where XG = {x ∈ X | g·x = x for all g ∈ G} is the set of elements of

= |XG| + Σ |Orb(x)|

For a finite group G acting on a finite set X, the class equation is: |X| 

x.

A fixed point of an element g ∈ G is an element x ∈ X such that g·x = 

1.1.16: Fixed Points and the Class Equation

stabilizer of x equals the size of the group.

In other words, the size of the orbit of x multiplied by the size of the 

then: |Orb(x)| × |Stab(x)| = |G|

For a group G acting on a set X and an element x ∈ X, if G is finite, 

Orbit-Stabilizer Theorem

consisting of all elements that fix x: Stab(x) = {g ∈ G | g·x = x}

The stabilizer of x, denoted by Stab(x), is the subgroup of G

which x can be moved by elements of G: Orb(x) = {g·x | g ∈ G}

The orbit of x, denoted by Orb(x), is the set of all elements in X to 

Group actions provide powerful tools for counting in combinatorics:

1.1.17: Group Actions and Counting

sum is taken over all g ∈ G.

where Xg = {x ∈ X | g·x = x} is the set of fixed points of g, and the 

× Σ |Xg|

equals the average number of fixed points: Number of orbits = (1/|G|)

For a finite group G acting on a finite set X, the number of orbits 

Burnside's Lemma

representatives x of the distinct orbits with |Orb(x)| > 1.
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 [0, c]] = [[ac, ad+bc], [0, ac]]

Closure:  For  any  two  matrices  in  G:  [[a,  b],  [0,  a]]  ×  [[c,  d], 1.

Let's call this set G. We need to check all four group axioms:

Solution:

multiplication.

[[a,  b],  [0,  a]]  where  a  ≠  0  forms  a  group  under  matrix 

Problem 1: Determine whether the set of 2×2 matrices of the form 

Solved Problems

effective symmetries of X under the action.

The  image  of  φ  is  a  subgroup  of  Sym(X)  that  represents  the 2.

The kernel of φ is the set of elements that fix every point in X.1.

of G on X (where Sym(X) is the symmetric group on X), then:

If φ: G → Sym(X) is the homomorphism corresponding to an  action 

Homomorphic Actions

g ∈ G such that g·x = y.

an equivalence class under the relation x ~ y if and only if there exists 

Under a group action, the set X is partitioned into orbits. Each orbit is 

The Orbit Decomposition

element).

the  stabilizer  of  every  point  is  trivial  (i.e.,  contains  only  the  identity 

A  group  action  is  regular  (or  simply  transitive)  if  it  is  transitive  and 

g ∈ G such that g·x = y. In other words, there is exactly one orbit.

A group action of G on X is transitive if for any x, y ∈ X, there exists 

1.1.18: Transitive and Regular Actions

count configurations by their "types."

Pólya's  enumeration  theorem extends  Burnside's  lemma  to 2.
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Notes Since ac ≠ 0 when a ≠ 0 and c ≠ 0, the result is in G. So G is closed 

under matrix multiplication. 

2. Associativity: Matrix multiplication is always associative, so 

this axiom is satisfied. 

3. Identity: The identity matrix [[1, 0], [0, 1]] is in G (take a = 1 

and b = 0), and it serves as the identity element. 

4. Inverse: For a matrix [[a, b], [0, a]] in G, we need its inverse 

to be in G as well. The inverse is [[1/a, -b/a²], [0, 1/a]], which 

has the required form with non-zero values on the diagonal. 

Since all four axioms are satisfied, G is indeed a group under matrix 

multiplication. 

Problem 2: Find all subgroups of Z₄ × Z₂, where Z₄ is the cyclic 

group of order 4 and Z₂ is the cyclic group of order 2. 

Solution: 

First, let's enumerate the elements of Z₄ × Z₂: 

• Z₄ = {0, 1, 2, 3} with addition modulo 4 

• Z₂ = {0, 1} with addition modulo 2 

• Z₄ × Z₂ = {(0,0), (0,1), (1,0), (1,1), (2,0), (2,1), (3,0), (3,1)} 

The order of Z₄ × Z₂ is 8. By Lagrange's theorem, the possible orders 

of subgroups are 1, 2, 4, and 8. 

1. The trivial subgroup {(0,0)} is the only subgroup of order 1. 

2. Subgroups of order 2: 

o ⟨(2,0)⟩ = {(0,0), (2,0)} 

o ⟨(0,1)⟩ = {(0,0), (0,1)} 

o ⟨(2,1)⟩ = {(0,0), (2,1)} 

3. Subgroups of order 4: 



 

 
 

Notes o ⟨(1,0)⟩ = {(0,0), (1,0), (2,0), (3,0)} ≅ Z₄ 

o ⟨(0,1), (2,0)⟩ = {(0,0), (0,1), (2,0), (2,1)} ≅ Z₂ × Z₂ 

o ⟨(1,1)⟩ = {(0,0), (1,1), (2,0), (3,1)} 

o ⟨(3,1)⟩ = {(0,0), (1,0), (2,1), (3,0)} 

4. The entire group Z₄ × Z₂ is the only subgroup of order 8. 

In total, Z₄ × Z₂ has 9 subgroups. 

Problem 3: Let G be a group acting on a set X. Prove that if x and 

y are in the same orbit, then Stab(x) and Stab(y) are conjugate 

subgroups. 

Solution: 

If x and y are in the same orbit, then there exists some g ∈ G such that 

g·x = y. 

We want to show that Stab(y) = g·Stab(x)·g⁻¹, where g·Stab(x)·g⁻¹ = 

{ghg⁻¹ | h ∈ Stab(x)}. 

Let h ∈ Stab(x). Then h·x = x. 

Consider ghg⁻¹ ∈g·Stab(x)·g⁻¹. We need to show that ghg⁻¹ ∈ Stab(y), 

i.e., (ghg⁻¹)·y = y. 

(ghg⁻¹)·y = (ghg⁻¹)·(g·x) = g·(h·(g⁻¹·(g·x))) = g·(h·x) = g·x = y 

Therefore, ghg⁻¹ ∈ Stab(y), so g·Stab(x)·g⁻¹ ⊆ Stab(y). 

Conversely, let k ∈ Stab(y). Then k·y = y. 

Consider g⁻¹kg ∈ G. We have: (g⁻¹kg)·x = g⁻¹·(k·(g·x)) = g⁻¹·(k·y) = 

g⁻¹·y = g⁻¹·(g·x) = x 

Thus, g⁻¹kg ∈ Stab(x), which implies k ∈g·Stab(x)·g⁻¹. 

Therefore, Stab(y) ⊆g·Stab(x)·g⁻¹. 

Combining both inclusions, we get Stab(y) = g·Stab(x)·g⁻¹, meaning 

Stab(x) and Stab(y) are conjugate subgroups. 
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 Solution:

Problem 5: Let G be a group of order 15. Prove that G is cyclic.

Thus, there are 6 distinct necklaces possible.

= (1/4) × 24 = 6

Using Burnside's lemma: Number of orbits = (1/4) × (16 + 2 + 4 + 2)

colored necklaces are fixed. So |Xr³| = 2.

For a 270° rotation (r³), like the 90° rotation, only the 2 solid- 4.

So |Xr²| = 2² = 4.

have  the  same  color,  and  beads  2  and  4  have  the  same  color. 

For  a  180°  rotation  (r²),  a  coloring  is  fixed  if  beads  1  and  3 3.

beads have the same color. So |Xr| = 2 (all red or all blue).

For  a  90° rotation  (call  it  r),  a  coloring  is  fixed  only  if  all 2.

For the identity e, all 16 colorings are fixed: |Xe| = 16.1.

180°, and 270°.

The  group  C₄  has  4  elements:  the  identity  e,  and  rotations  by  90°, 

where Xg is the set of colorings fixed by element g of the group.

Number of orbits = (1/|G|) × Σ |Xg|

By  Burnside's  lemma,  the  number  of  orbits  (distinct  necklaces)  is:

(for each bead, we can choose either red or blue).

colorings of 4 beads by rotation. There are 2⁴ = 16 possible colorings 

The  cyclic  group  C₄  (of  order  4)  acts  on  the  set  of  all  possible 

Burnside's lemma.

This is a problem of counting orbits under a group action. We can use 

Solution:

made with 4 beads, each of which can be either red or blue.

Problem 4: Calculate the number of distinct necklaces that can be 
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  • (ab)3 = a3b3 = eb3 = b3

Now, consider the element ab in G. We have:

cyclic (all groups of prime order are cyclic). Say H = ⟨a⟩ and K = ⟨b⟩.

Since  H  is  a  group  of  order  3  and  K  is  a  group  of  order  5,  both  are 

product).

Since |H| × |K| = 3 × 5 = 15 = |G|, we have G = H × K (internal direct 

{e} because gcd(3,5) = 1.

Since both H and K are unique, they are normal in G. Also, H ∩ K = 

subgroup (call it K).

So G has exactly one Sylow 3-subgroup (call it H) and one Sylow 5- 

= 1.

1. For p = 5, n₅ ≡ 1 (mod 5) and n₅ divides 3. The only possibility is n₅ 

For p = 3, n₃ ≡ 1 (mod 3) and n₃ divides 5. The only possibility is n₃ = 

highest power of p dividing |G|.

• np divides  the  order  of  G  divided  by  pk,  where  pk is  the 

• np ≡ 1 (mod p)

The number of Sylow p-subgroups, np, satisfies:

subgroup of order 3) and a Sylow 5-subgroup (a subgroup of order 5).

The  Sylow  theorems  tell  us  that  G  has  a  Sylow  3-subgroup  (a 

element generates a cyclic subgroup of order 5.

For  elements  of  order  5,  they  must  satisfy  a⁵  =  e.  Each  such 2.

element generates a cyclic subgroup of order 3.

For  elements  of  order  3,  they  must  satisfy  a³  =  e.  Each  such 1.

Let's consider the number of elements of each possible order:

The only element of order 1 is the identity element e.

order of G. So the possible orders for elements are 1, 3, 5, and 15.

By  Lagrange's  theorem,  the  order  of  any  element  in  G  divides  the 
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symmetries of a square) that commute with a 90-degree rotation.

Problem  5:  Find  all  elements  of  the  dihedral  group  D₄  (the  group  of 

then G is a 2-group (i.e., |G| = 2n for some n).

subgroup  H  of  G,  there  exists  an  element  g ∈ G  such  that  g2 ∉ H, 

Problem  4:  For  a  finite  group  G,  prove  that  if  for  every  proper 

8.

Problem 3: Determine the number of non-isomorphic groups of order 

G such that H ∩ K = {e}. Prove that for all h ∈ H and k ∈ K, hk = kh.

Problem 2: Let G be a group and let H and K be normal subgroups of 

Problem 1: Prove that every subgroup of a cyclic group is cyclic.

Unsolved Problems

Thus, G = ⟨ab⟩ is cyclic of order 15.

and 3 and 5 are coprime, the order of ab is lcm(3,5) = 15.

We need to find the order of ab. Since a has order 3 and b has order 5, 

• (ab)15 = a15b15 = (a3)5(b5)3 = e5e3 = e

• (ab)5 = a5b5 = a5e = a5
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UNIT 1.2
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Properties of Isotropy Subgroups

is straightforward to verify that Gx is indeed a subgroup of G.

In other words, Gx consists of all elements of G that fix the point x. It 

Gx = {g ∈ G | g·x = x}

isotropy subgroup (or stabilizer) of x, denoted Gx, is defined as:

Let G be a group acting on a set X. For any element x in X, the 

Definition of Isotropy Subgroup

elements interact with specific points in a set.

concept in group action theory that helps us understand how group 

The isotropy subgroup (also called the stabilizer) is a fundamental 

1.2.1: Isotropy Subgroups

Subgroup Property: For any x in X, Gx is a subgroup of G.

h ∈gGx g(-1).

This is equivalent to g(-1)·h·g·x = x, which means g(-1)hg ∈Gx. Thus, 

Proof: An element h belongs to G(g·x) if and only if h·(g·x) = g·x. 

G(g·x) = gGx g(-1)

subgroup of g·x is conjugate to the isotropy subgroup of x:

Conjugacy Relation: For any g ∈ G and x ∈ X, the isotropy 2.

·x, so g(-1) ∈Gx.

both sides: g(-1)·(g·x) = g(-1)·x, which gives x =  g(-1)

o Inverse: If g ∈Gx, then g·x = x. Applying g(-1) to  

(gh)·x = g·(h·x) = g·x = x, which means gh∈Gx.

o Closure: If g, h ∈Gx, then g·x = x and h·x = x. So  

  so e ∈G_x.

o Identity: The identity element e ∈ G satisfies e·x = x,

Proof:
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  So G1 ≅ S3, with order |G1| = 6.

S3 as they freely permute {2, 3, 4}.

This  consists  of  all  permutations  that  fix  1,  which  is  isomorphic  to 

The isotropy subgroup of element 1 is: G1 = {σ ∈ S4 | σ(1) = 1}

permutation action.

Consider  S4  acting  on  the  set  X  =  {1,  2,  3,  4}  by  the  standard 

Example 2: Symmetric Group Action

Therefore, G1 = {e, sr²}, which is isomorphic to Z2.

• sr² (reflection across diagonal 1-3): fixes vertices 1 and 3

• e (identity): leaves all vertices in place

The elements that fix vertex 1 are:

  from 2 to 4)

  sr²  (across  diagonal  from  vertex  1  to  3),  sr³  (across  diagonal

• Reflections: s (across horizontal axis), sr (across vertical axis),

• Rotations: r (90° clockwise), r² (180°), r³ (270°)

• Identity (e): leaves all vertices in place

D4 consists of:

Let's find the isotropy subgroup for vertex 1:

Label the vertices 1, 2, 3, and 4 in clockwise order.

Consider  the  dihedral  group  D4  acting  on  the  vertices  of  a  square. 

Example 1: Dihedral Group Action

subgroup Gx.

This  is  the  set  of  all  points  x  such  that  g  belongs  to  the  isotropy 

Xg = {x ∈ X | g·x = x}

element g ∈ G is:

Fixed  Points:  The  set  of  all  points  fixed  by  a  specific  group 3.
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Relationship with Orbits

the number of distinct necklaces is:

set X of all possible colorings (kn in total). By Burnside's Lemma, 

This problem can be modeled as the cyclic group Cn acting on the 

to obtain the other.

colors. Two necklaces are considered equivalent if one can be rotated 

Consider necklaces made of n beads, each colored with one of k 

Example: Necklaces with Colored Beads

where Xg = {x ∈ X | g·x = x} is the set of elements fixed by g.

|X/G| = (1/|G|) × Σ{g∈G} |Xg|

The number of orbits, denoted |X/G|, is given by:

Burnside's Lemma: Let G be a finite group acting on a finite set X. 

powerful tool for counting orbits under a group action.

Burnside's Lemma (also known as the Cauchy-Frobenius Lemma) is a 

Counting Problems and Burnside's Lemma

problems. Here are several important applications:

Group actions provide a unifying framework for various mathematical 

1.2.2: Applications of Group Actions

when we know the isotropy subgroups.

This theorem provides a powerful method for counting orbit sizes 

x, and |Gx| is the order of the isotropy subgroup of x.

where |G| is the order of the group, |Orb(x)| is the size of the orbit of 

|G| = |Orb(x)| × |Gx|

element x ∈ X:

Orbit-Stabilizer Theorem: For a group G acting on a set X and an 

orbits is:

One of the most important results connecting isotropy subgroups with 
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 power of p dividing |G|.

|G|,  then  G  has  a  subgroup  of  order   pk,  where  pk   is   the  highest 

First Sylow Theorem: If G is a finite group and p is a prime dividing 

properties of subgroups whose orders are powers of prime numbers.

are fundamental results in group theory concerning the existence and 

Group actions play a crucial role in proving Sylow's theorems, which 

Sylow Theorems

e is the centralizer of G.

conjugacy classes of G. The isotropy subgroup of the identity element 

g·x  =  gxg(-1).  The  orbits  under  this  action  are  precisely  the 

If N is a normal subgroup of G, then G acts on itself by conjugation:

and quotient groups.

Group actions provide a geometric interpretation of normal subgroups 

Normal Subgroups and Quotient Groups

These group actions explain why there are exactly five Platonic solids.

elements)

• Dodecahedron/Icosahedron:  A5  (alternating  group  on  5  

• Cube/Octahedron: S4 (symmetric group on 4 elements)

• Tetrahedron: A4 (alternating group on 4 elements)

The rotational symmetry groups of the Platonic solids are:

Example: Platonic Solids

simplifying their analysis.

Group  actions  help  identify  symmetries  in  mathematical  structures, 

Simplification of Symmetric Structures

of  n.

where φ is Euler's quotient function and the sum is over all divisors d 

Number of distinct necklaces = (1/n) × Σ{d|n} φ(d) × k(n/d)
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symmetric arrangements of atoms in crystals.

The  230  space  groups  in  three  dimensions  describe  all  possible 

The classification of crystal structures relies heavily on group actions. 

Crystallography

ρ: G → GL(V), where GL(V) is the general linear group of V.

A representation of a group G on a vector space V is a homomorphism 

vector spaces.

studies  how  groups  can  be  represented  as  linear  transformations  of 

Group  actions  on  vector  spaces  lead  to representation  theory,  which 

Representation Theory

under the action of G correspond to the irreducible factors of f(x).

For  a  polynomial  f(x)  with  Galois  group  G,  the  orbits  of  the  roots 

solvability of polynomial equations.

This  action  reveals  deep  connections  between  field  extensions  and 

In  Galois  theory,  the  Galois  group  of  a  polynomial  acts  on  its  roots. 

Galois Theory

pk by left multiplication.

The  proof  uses  the  action  of  G  on  the  set  of  all  subsets  of  G  of  size 
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UNIT 1.3

Orbit-Stabilizer Theorem

terms based on cycle structures)

ZG(x1 + x2 + ... + xk) = (1/24) × (x1 + x2 + ... + xk)6 + ... (additional 

distinct colorings is:

Using Pólya's theorem, the generating function for the number of 

group of the cube, S4, acts on the 6 faces.

Consider coloring the faces of a cube with k colors. The symmetry 

Example: Colored Cubes

w{cycle(g)} is a monomial determined by this cycle structure.

where cycle(g) represents the cycle structure of the permutation g, and 

ZG(w) = (1/|G|) × Σ{g∈G} w{cycle(g)}

gives a generating function for the weights of the orbits:

assigns weights to elements of X. The Pólya enumeration theorem 

Let G be a group acting on a set X, and let w be a weight function that 

according to some property.

where we not only want to count orbits but also need to classify them 

Pólya's enumeration theorem extends Burnside's Lemma to situations 

Pólya Enumeration Theorem

|X/G| = (1/|G|) × Σ{g∈G} |Xg|

number of orbits:

As mentioned earlier, Burnside's Lemma gives us a way to count the 

Orbit-Counting Formula (Burnside's Lemma)

enumeration problems involving symmetry. Here are the key results:

Counting theorems in group theory provide powerful tools for

1.3.1: Counting Theorems
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  • Total number of colorings: 24 = 16

have the cyclic group C4 acting on the set of all possible colorings.

Solution: This  problem  can  be  solved  using  Burnside's  Lemma.  We 

each colored either red or blue.

Problem  1:  Find  the  number  of  distinct  necklaces  with  4  beads, 

Solved Problems

where w([x]) is the weight of the orbit [x].

Σ{[x]∈X/G} w([x]) = (1/|G|) × Σ{g∈G} Σ{x∈X
g
} w(x)

account a weight function:

This  is  a  generalized  version  of  Burnside's  Lemma  that  takes  into 

The Cauchy-Frobenius-Burnside Formula

conjugation.

This  can  be  derived  by  considering  the  action  of  G  on  itself  by 

representatives gi of non-singleton conjugacy classes Cl(gi).

where  Z(G)  is  the  center  of  G,  and  the  sum  is  taken  over 

|G| = |Z(G)| + Σ |Cl(gi)|

a group into conjugacy classes:

The class equation is a fundamental result that divides the elements of 

Class Equation

isotropy subgroups are known.

This theorem is particularly useful for calculating orbit sizes when the 

|Orb(x)| = |G| / |Gx|

This immediately gives:

|G| = |Orb(x)| × |Gx|

subgroup:

an  orbit  to  the  order  of  the  group  and  the  order  of  an  isotropy 

As  introduced  earlier,  the  Orbit-Stabilizer  theorem  relates  the  size  of 
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rotation.

considered  the  same  if  one  can  be  obtained  from  the  other  by  a 

of  a  regular  hexagon  using  3  colors,  where  two  colorings  are 

Problem 3: Find the number of different ways to color the vertices 

group  on  3  elements.

notation.This  subgroup  is  isomorphic  to  S3,  the  symmetric  

3)}, where e is the identity and the other elements are written in cycle 

arrange {2, 3, 4}.Explicitly, G1 = {e, (2 3), (2 4), (3 4), (2 3 4), (2 4 

such  permutations  is  3!  =  6,  corresponding  to  all possible ways to 

while  permuting  the elements 2, 3, and 4 in any way.The  number  of  

S4 such that σ(1) = 1.These  are  precisely  the  permutations  that  fix  1  

Solution: The isotropy subgroup G1 consists of all permutations σ ∈ 

2, 3, 4}.

subgroup of the element 1 under the natural action of S4 on {1, 

Problem  2:  In  the  symmetric  group  S4,  find  the  isotropy 

blue.

Therefore,  there  are  6  distinct  necklaces  with  4  beads  colored  red  or 

6

By Burnside's Lemma: |X/G| = (1/4) × (16 + 2 + 4 + 2) = (1/4) × 24 = 

o For a 270° rotation (g3), same as 90°: |Xg3| = 2

have the same color: |Xg2| = 22 = 4

o For a 180° rotation (g2), a coloring is fixed if opposite beads  

the same color: |Xg1| = 2

o For a 90° rotation (g1), a coloring is fixed if all beads have  

o For the identity e, all 16 colorings are fixed: |Xe| = 16

• We need to find |Xg| for each g ∈ C4:
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elements:

elements of D8. These are e and r², so |Z(D8)| = 2.For the remaining 

The  center  Z(D8)  consists  of  elements  that  commute  with  all 

elements a, b are conjugate if there exists g ∈ D8 such that g⁻¹ag = b.

axes.To find the conjugacy classes, we use the  fact that two 

by  90°,  180°,  and  270°,  and  reflections  s,  sr,  sr²,  sr³  across  various 

Solution: D8 consists of 8 elements: the identity e, rotations r, r², r³ 

(the symmetry group of a regular square).

Problem  4:  Find  the  class  equation  for  the  dihedral  group  D8 

regular hexagon using 3 colors, up to rotation.

Therefore,  there  are  130  different  ways  to  color  the  vertices  of  a 

(1/6) × 780 = 130

By Burnside's Lemma: |X/G| = (1/6) × (729 + 3 + 9 + 27 + 9 + 3) = 

o For a 300° rotation (g5), same as 60°: |Xg
5| = 3

o For a 240° rotation (g4), same as 120°: |Xg
4| = 9

positions i and i+3 have the same color: |Xg
3| = 3^3 = 27

o For  a  180°  rotation  (g3),  a  coloring  is  fixed  if  vertices  at 

positions i, i+2, i+4 have the same color: |Xg
2| = 32 = 9

o For  a  120°  rotation  (g2),  a  coloring  is fixed  if  vertices  at 

the same color: |Xg
1| = 3

o For a 60° rotation (g1), a coloring is fixed if all vertices have 

o For the identity (e), all 729 colorings are fixed: |Xe| = 729

• We need to find |Xg| for each g ∈ C6:

• Total number of colorings: |X| = 36 = 729

acting on the set X of all possible colorings.

Solution: This  is  a  group  action  problem  with  the  cyclic  group  C_6 
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 This means the orbit of our specific configuration has 8 elements.

By the Orbit-Stabilizer theorem: |Orb(x)| = |D4| / |Gx| = 8 / 1 = 8

Therefore, Gx = {e}, and |Gx| = 1.

• None of the other rotations or reflections fix this configuration

  doesn't fix our configuration

• The 180° rotation r² maps (1,1) to (3,3) and (2,2) to (2,2), so it

• The identity e keeps all positions fixed

keep these positions fixed:

To  find  the  isotropy  subgroup  Gx,  we  need  elements  of  D4  that 

positions (1,1) and (2,2).

Let's  consider  a  specific  configuration  x  where  the  rooks  are  at 

• Number of ways = C(9,2) = 36

• We need to choose 2 positions from 9 possible positions

First, let's count the total number of possible placements:

placements of 2 identical rooks on a 3×3 board.

Solution: The  dihedral  group  D4  acts  on  the  set  X  of  all  possible 

obtained from the other by a rotation or reflection of the board.

where  configurations  are  considered  the  same  if  one  can  be 

of  different  ways  to  place  2  identical  rooks  on  a  3×3  chessboard, 

Problem  5:  Use  the  Orbit-Stabilizer  theorem  to  find  the  number 

(sr)| 8 = 2 + 2 + 2 + 2

Therefore, the class  equation is: |D8|  =  |Z(D8)|  +  |Cl(r)| + |Cl(s)|  + |Cl

  2

• The reflections sr and sr³ form another conjugacy class of size

• The reflections s and sr² form one conjugacy class of size 2

• r and r³ form one conjugacy class of size 2
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 and determine which of them are conjugate to each other.

by  the  standard  permutation  action.  Find  all  the  isotropy  subgroups 

Let G be the alternating group A_4 acting on the set X = {1, 2, 3, 4}

Problem 1

Unsolved Problems

3×3 chessboard, up to rotation and reflection.

Therefore,  there  are  6  different  ways  to  place  2  identical  rooks  on  a 

3) = (1/8) × 48 = 6

By Burnside's Lemma: |X/D4| = (1/8) × (36 + 0 + 0 + 0 + 3 + 3 + 3 + 

other diagonal are fixed: |Xsr³| = 3

• For diagonal reflection sr³, configurations symmetric about the  

main diagonal are fixed: |Xsr| = 3

• For diagonal reflection sr, configurations symmetric about the  

vertical axis are fixed: |Xsr²| = 3

• For vertical reflection sr², configurations symmetric about the  

horizontal axis are fixed: |Xs| = 3

• For horizontal reflection s, configurations symmetric about the  

• For 270° rotation r³, same as 90°: |Xr³| = 0

need 2 rooks)

symmetrically across the center are fixed: |Xr²| = 0 (since we  

• For  180°  rotation  r²,  configurations  where  rooks  are  placed  

0

• For 90° rotation r, none of the configurations are fixed: |Xr| =  

• For the identity e, all 36 configurations are fixed: |Xe| = 36

Using Burnside's Lemma:

configurations, we need to compute all orbits.

However,  this  is  just  one  orbit.  To  find  the  total  number  of  distinct 
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   Fixed Points Set: Xg = {x ∈ X | g·x = x}7.

(g)}

Pólya Enumeration Theorem: ZG(w) = (1/|G|) × Σ{g∈G}w{cycle6.

Class Equation: |G| = |Z(G)| + Σ |Cl(gi)|5.

Conjugacy of Isotropy Subgroups: G(g·x) = gGx g(-1)4.

Burnside's Lemma: |X/G| = (1/|G|) × Σ{g∈G} |Xg|3.

Orbit-Stabilizer Theorem: |G| = |Orb(x)| × |G_x|2.

Isotropy Subgroup (Stabilizer): Gx = {g ∈ G | g·x = x}1.

Formulas and Key Results

you about the structure of the group.

conjugation.  Find  the  class  equation  of  G  and  explain  what  this  tells 

For  the  group  G  =  Z2  ×  Z2  ×  Z2,  consider  its  action  on  itself  by 

Problem 5

number of orbits.

composition (i.e., for g ∈ D6 and  a function f,  g·f = f∘g⁻¹), find the 

vertices  of  a  regular  hexagon  to  {0,  1}.  If  this  action  is  by 

Let  the  dihedral  group  D6  act  on  the  set  of  all  functions  from  the 

Problem 4

other by a rotation of the cube.

colorings  are  considered  the  same  if  one  can  be  obtained  from  the 

color the faces of a cube using 3 colors (red, blue, green), where two 

Using  Burnside's  Lemma,  determine  the  number  of  distinct  ways  to 

Problem 3

and isotropy subgroup of the subset {1, 2}.

element subsets of {1, 2, 3, 4, 5} by the natural action. Find the orbit 

Consider  the  action  of  the  symmetric  group  S5  on  the  set  of  all  2- 

Problem 2
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 |G| = |Z(G)| + ∑|Cl(g)|

define the class equation:

Proof: Let G act on itself by conjugation. For each element g in G, we 

Z(G) of G is non-trivial.

Theorem  1:  If  G  is  a  non-trivial  finite  p-group,  then  the  center 

Center of p-Groups

group is also a power of p.

The  order  of  any  subgroup  and  any  quotient  group  of  a  p- 3.

Every non-trivial p-group has a non-trivial center.2.

Finite p-groups have order pn for some positive integer n.1.

Important characteristics of p-groups include:

(where e is the identity element).

element g in G, there exists a non-negative integer n such that gpn= e 

of a prime number p. In other words, if G is a p-group, then for every 

A p-group is a group in which every element has order that is a power 

Definition and Basic Properties of p-Groups

p-Groups and their Properties

and deeper understanding of the material.

while  the  unsolved  problems  offer  opportunities  for  further  practice 

demonstrate how these concepts can be  applied to specific scenarios, 

foundations  and  practical  applications.  The  solved  problems 

group  actions,  and  counting  theorems  provides  both  theoretical 

This  comprehensive  overview  of  isotropy  subgroups,  applications  of 

Orbit Size Formula: |Orb(x)| = |G| / |Gx|10.

(1/|G|) × Σ{g∈G} Σ{x∈X
g

} w(x)

Cauchy-Frobenius-Burnside Formula: Σ{[x]∈X/G} w([x])= 9.

(1/n) × Σ{d|n} φ(d) × k(n/d)

Number  of  Distinct  Necklaces  with  n  Beads  and  k  Colors: 8.
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 of all maximal subgroups of G.

The Frattini subgroup Φ(G) of a group G is defined as the intersection 

Frattini Subgroup

order p. Therefore, [G : M] = p.

Such  a  group  must  be  cyclic  of  prime  order,  which  means  G/M  has 

a p-group with no proper non-trivial subgroups (by maximality of M). 

Proof: Let M be a maximal subgroup of G. The quotient group G/M is 

subgroup of G has index p in G.

Theorem  3:  Let  G  be  a  finite  p-group.  Then  every  maximal 

Maximal Subgroups of p-Groups

in G, H is a normal subgroup of G with order p.

p and is contained in Z(G). Since any subgroup of the center is normal 

element g of order p. The subgroup H = <g> generated by g has order 

group  G  is  non-trivial.  Since  Z(G)  is  a  p-group  itself,  it  contains  an 

Proof:  We  already  showed  that  the  center  Z(G)  of  a  non-trivial  p- 

subgroup of order p.

Theorem  2:  Every  non-trivial  finite  p-group  has  a  normal 

Normal Subgroups in p-Groups

This implies that |Z(G)| ≥ p, which means Z(G) is non-trivial.

center |Z(G)| must also be divisible by p to satisfy the class equation. 

Since  |G|  =  pn  for  some  n  >  0,  and  the  sum  is  divisible  by  p,  the 

each term in the sum is divisible by p.

subgroup  of  G,  its  index  [G  :  CG(g)]  is  divisible  by  p.  This  means 

Where CG(g) is the centralizer of g in G. Since CG(g) is a proper 

|Cl(g)| = [G : CG(g)]

For  any  non-central  element  g,  the  size  of  its  conjugacy  class  is:

representatives of distinct non-central conjugacy classes.

Where  Cl(g)  is  the  conjugacy  class  of  g,  and  the  sum  is  taken  over 
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G  are  conjugate  to  each  other.  That  is,  if  P  and  Q  are  Sylow  p-

Second  Sylow  Theorem: All  Sylow  p-subgroups  of  a  finite  group 

subgroup.

stabilizer of an element in such an orbit gives us the desired Sylow p- 

show  that  at  least  one  such  orbit  has  a  size  not  divisible  by  p.  The 

orbits and using properties of binomial coefficients modulo p, we can 

This action induces orbits whose sizes divide |G|. By analyzing these 

act  on  the  set  of  all  subsets  of  G  of  size  p^n  by  left  multiplication. 

Proof Sketch: The proof uses group actions on sets of fixed size. Let G 

contains at least one subgroup of order pn.

p^n  ·  m,  where  p  is  a  prime  and  p  does  not  divide  m.  Then  G 

First Sylow  Theorem:  Let  G  be  a  finite  group  with  order  |G|  = 

Sylow Theorems

theorems provide crucial insights into the structure of finite groups.

existence  and  properties  of  certain  subgroups  in  finite  groups.  These 

Ludwig  Sylow  in  1872,  are  fundamental  results  concerning  the 

The  Sylow  theorems,  formulated  by  Norwegian  mathematician  Peter 

Sylow Theorems and Their Applications

p-group, i.e., a direct product of cyclic groups of order p.

maximal subgroup. This implies that G/Φ(G) is an elementary abelian 

subgroup,  hence  in  Φ(G).  Also,  [g,h]  (the  commutator)  is  in  every 

two  elements  g,  h  in  G,  we  have  g^p  and  h^p  in  every  maximal 

G/M  (where  M  is  maximal)  is  cyclic  of  order  p.  Therefore,  for  any 

Since  every  maximal  subgroup  of  G  has  index  p,  each  factor  group 

subgroup of G, which coincides with Φ(G).

shown  that  the  set  of  all  non-generators  forms  a  characteristic 

<X,  g>  for  some  subset  X  of  G,  we  also  have  G  =  <X>.  It  can  be 

Proof: An  element  g  in  G  is  called  a  non-generator  if  whenever  G  = 

generators of G. Moreover, G/Φ(G) is an elementary abelian p-group.

Theorem  4:  If  G  is  a  finite  p-group,  then  Φ(G)  is  the  set  of non- 
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 Application 1: Determining possible group structures.

Here are some significant ones:

The  Sylow  theorems  have  numerous  applications  in  group  theory. 

Applications of Sylow Theorems

(P) is a subgroup of G.

The  second  part  follows  from  the  fact  that  np  =  [G  :  NG(P)]  and NG

gives us np ≡ 1 (mod p).

this  action  is  P  itself,  so  the  other  orbit  sizes  are  divisible  by  p. This 

theorem gives us that the orbit sizes divide |P|. The only fixed point of 

the  set  of  all  Sylow  p-subgroups  by  conjugation.  The  orbit-stabilizer 

Proof Sketch: Let P be a Sylow p-subgroup of G. The group P acts on 

NG(P) is its normalizer in G.

np  =  [G  :  N_G(P)],  where  P  is  any  Sylow  p-subgroup  and 3.

np divides |G|2.

np ≡ 1 (mod p)1.

If np denotes the number of Sylow p-subgroups of G, then:

Third Sylow Theorem: Let G be a finite group and p be a prime. 

some h in G.

Sylow  p-subgroups,  they  must   be  equal,  giving  us  Q  =  hPh(-1)  for 

argument, we can show that  g(-1)Qg is contained in P. Since both are 

we  have  qgP  =  gP,  which  implies  g(-1)qg  is in P.  By  extending  this 

there must be a fixed point, say gP. This means that for some q in Q, 

action is congruent to |G/P| modulo p. Since |G/P| is not divisible by p, 

G/P  by  left  multiplication.  The  number  of  fixed  points  under  this 

Sylow  p-subgroup.  Consider  the  action  of  Q  on  the  set  of  left  cosets 

Proof Sketch: Let P be a Sylow p-subgroup of G and let Q be another 

g(-1)Pg.

subgroups of G, then there exists an element g in G such that Q = 
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 There are two possibilities for G:

abelian, i.e., gh = hg for all g, h in G.

Solution:  Let  G  be  a  group  of  order  p2. We  need  to  prove  that  G  is 

Problem 1: Prove that a group of order p2 (p prime) is abelian.

Solved Problems

dihedral group D6.

non-isomorphic  groups  of  order  6:  the  cyclic  group  C6  and  the 

orders.  For  example,  they  help  determine  that  there  are  exactly  two 

The Sylow theorems are instrumental in classifying groups of specific 

Application 3: Classification of groups of specific orders.

must be normal in G.

(by the second Sylow theorem), this unique Sylow 5-subgroup  

Sylow  5-subgroup  and  all  Sylow 5-subgroups  are  conjugate  

has  exactly  one  Sylow  5-subgroup.  Since  there  is  only  one  

modulo 5 and divides 15 is 1. Therefore, n5 = 1, meaning G  

• n5 divides 15 The only positive integer that is congruent to 1  

• n5 ≡ 1 (mod 5)

third Sylow theorem, the number of Sylow 5-subgroups n5 satisfies:

theorem,  G  has  at  least  one  Sylow  5-subgroup  P  of  order  5.  By  the 

Solution:  Let  G  be  a  group  of  order  15  =  3  ·  5.  By  the  first  Sylow 

order 5.

Example: Show that any group of order 15 has a normal subgroup of 

orders must have proper normal subgroups.

using  the  Sylow  theorems,  we  can  often  prove  that  groups  of  certain 

A group is simple if it has no proper non-trivial normal subgroups. By 

Application 2: Proving groups of certain orders are not simple.

whether non-isomorphic groups of a given order can exist.

By analyzing the number of Sylow subgroups, we can often determine 
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 So n2 = 1 or n2 = 3.

• n2 divides 3

• n2 divides 24 = 23 · 3

• n2 ≡ 1 (mod 2)

third Sylow theorem, the number of Sylow 2-subgroups n2 satisfies:

Sylow  2-subgroups:  These  are  subgroups  of  order  23  =  8.  By  the 

Solution: The order of S4 is 4! = 24 = 23 · 3.

on 4 elements).

Problem 2: Find all Sylow subgroups in S4 (the symmetric group 

Therefore, in all cases, G must be abelian.

in group theory).

But if G/Z(G) is cyclic, then G must be abelian (this is a known result 

If |Z(G)| = p, then G/Z(G) has order p, which means G/Z(G) is cyclic. 

abelian) or |Z(G)| = p.

is non-trivial. Since G has order p2, either Z(G) = G (meaning G is 

Consider the center Z(G) of G. We know that in p-groups, the center 

Now we need to show that gh = hg.

Every element in G can be uniquely written as gihj where 0 ≤ i, j < p. 

subgroup of order p, and <g> ∩ <h> = {e} (the identity).

(including <g>). Let h be an element not in <g>. Then <h> is another 

By  Lagrange's  theorem,  G  has  p  +  1  distinct  subgroups  of  order  p 

<g> has p elements.

Let  g  be  a  non-identity  element  of  G.  Then  |g|  =  p,  so  the  subgroup 

If G is not cyclic, then its elements (except the identity) have order p. 

If G is cyclic, then G is automatically abelian.

G is not cyclic2.

G is cyclic of order p21.
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 Solution: Let G be a group of order 20 = 22 · 5.

subgroup of order 5.

Problem  3:  Prove  that  any  group  of  order  20  has  a  normal 

Therefore, S4 has exactly 4 Sylow 3-subgroups.

• <(2,3,4)>

• <(1,3,4)>

• <(1,2,4)>

• <(1,2,3)>

that there are exactly 4 Sylow 3-subgroups:

generated  by  the  3-cycle  (1,2,3).  Through  conjugation,  we  can  find 

The  Sylow  3-subgroups  are  cyclic  of  order  3.  One  such  subgroup  is 

So n3 = 1, 4, or 7. But since n3 ≡ 1 (mod 3), we have n3 = 1, 4.

• n3 divides 8

• n3 divides 24 = 23 · 3

• n3 ≡ 1 (mod 3)

third Sylow theorem, the number of Sylow 3-subgroups n3 satisfies:

Sylow  3-subgroups:  These  are  subgroups  of  order  31  =  3.  By  the 

Therefore, S4 has exactly 3 Sylow 2-subgroups.

• The subgroup generated by (1,4), (2,3), and (1,2)(3,4)

• The subgroup generated by (1,3), (2,4), and (1,2)(3,4)

example:

Other  Sylow  2-subgroups  can  be  obtained  through  conjugation.  For 

subgroup isomorphic to D8 (the dihedral group of order 8).

the  permutations  (1,2),  (3,4),  and  (1,3)(2,4).  This  forms  a  Sylow  2- 

Let's  identify  these  subgroups.  Consider  the  subgroup  generated  by 
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normal  subgroup  K  of  order p(k-1).

|G|/|<z>| = p(k+1)/p = pk.By  the  inductive  hypothesis,  H  has  a  

(G), the subgroup <z> is normal in G.Let H = G/<z>. Then |H| = 

p-groups). Let z be a non-identity element in Z(G). Since z is in Z

center  Z(G)  of  G  is  non-trivial  (a  fundamental  property of 

Inductive step: Let G be a group of order p(k+1).We  know  that  the  

pk has a normal subgroup of order p(k-1).

Inductive hypothesis: Assume that for some k ≥ 1, any group of order 

trivial subgroup {e} with order p0 = 1, which is obviously normal.

Base case: n = 1 If n = 1, then |G| = p. The only proper subgroup is the 

Solution: We'll use induction on n.

≥ 1. Prove that G has a normal subgroup of order p^(n-1).

Problem 4: Let G be a group of order p^n where p is prime and n 

subgroup must be normal in G.

are  conjugate  (by  the  second  Sylow  theorem),  this  unique  Sylow  5- 

Since there is only one Sylow 5-subgroup and all Sylow 5-subgroups 

Therefore, n5 = 1, meaning G has exactly one Sylow 5-subgroup.

4 is 1.

The only positive integer that is congruent to 1 modulo 5 and divides 

• n5 divides 4

• n5 divides 20 = 22 · 5

• n5 ≡ 1 (mod 5)

satisfies:

By  the  third  Sylow theorem,  the  number  of  Sylow  5-subgroups  n5 

order 5.

By the first Sylow theorem, G has at least one Sylow 5-subgroup P of 
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  • n2 divides 3

• n2 divides 12 = 22 · 3

• n2 ≡ 1 (mod 2)

third Sylow theorem, the number of Sylow 2-subgroups n_2 satisfies:

Case  2:  n3 =  4  Now  let's  consider  the  Sylow  2-subgroups.  By  the 

normal in G. Thus, G has a normal subgroup of order 3.

Case 1: n3 = 1 If there is only one Sylow 3-subgroup, then it must be 

4 is 1 or 4.

The only positive integer that is congruent to 1 modulo 3 and divides 

• n3 divides 4

• n3 divides 12 = 22 · 3

• n3 ≡ 1 (mod 3)

satisfies:

By  the  third  Sylow  theorem,  the  number  of  Sylow  3-subgroups  n3 

order 3, and at least one Sylow 2-subgroup Q of order 4.

By the first Sylow theorem, G has at least one Sylow 3-subgroup P of 

Solution: Let G be a group of order 12 = 22 · 3.

subgroup of order 3 or 4.

Problem  5:  Prove  that  every  group  of  order  12  has  a  normal 

1.

By the principle of mathematical induction, the result holds for all n ≥ 

Thus, G has a normal subgroup N of order pk = p((k+1)-1).

The order of N is |N| = |K| · |<z>| = p(k-1) · p = pk.

normal in G.

a  subgroup  of  G,  and  by  the  properties  of  quotient  groups,  N  is 

Let π: G → H be the natural projection. Consider N = π(-1)(K). This is 
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 Nilpotency of p-Groups

equals the rank of the elementary abelian group G/Φ(G).

minimal generating set of G has the same number of elements, which 

Burnside's Basis Theorem states that if G is a finite p-group, then any 

Burnside's Basis Theorem

Special Topics in p-Groups

normal Sylow 5-subgroup or G has a normal Sylow 3-subgroup.

Problem  5:  Let  G  be  a  group  of  order  60.  Prove  that  either  G  has  a 

Problem 4: Let G be a group of order 30. Prove that G is not simple.

Sylow 7-subgroups and Sylow 17-subgroups in G.

Problem 3: Let G be a group of order 2023. Determine the number of 

has at least p + 1 subgroups of order p(n-1).

Problem 2: Let G be a p-group of order pn with n ≥ 2. Prove that G 

subgroup has index p in G.

Problem 1: Prove that in a finite p-group G (p prime), every maximal 

Unsolved Problems

Therefore, even in this case, G has a normal subgroup of order 4.

four-group, which is normal in A4.

remaining  3  non-identity  elements  form  a  subgroup  called  the  Klein 

subgroups  (minus  the  identity)  gives  us  8  elements  of  order  3.  The 

In  A4,  there  are  four  Sylow  3-subgroups,  and  the  union  of  these 

(the alternating group on 4 elements).

results. We  can  show  that  in this  case,  G  must  be  isomorphic  to A4

Subcase  2.2:  n2 =  3  Here  we  need  to  use  additional  group  theory 

normal in G. Thus, G has a normal subgroup of order 4.

Subcase 2.1: n2 = 1 If there is only one Sylow 2-subgroup, then it is 

3 is 1 or 3.

The only positive integer that is congruent to 1 modulo 2 and divides 



 

 
 

Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Group Actions and Fixed-Point Theorems

particularly useful in classifying groups of certain orders.

semidirect  products  or  extensions  of  smaller  groups.  This  is 

The  Sylow  theorems  help  in  determining  the  structure  of  groups  as 

Semidirect Products and Group Extensions

finite simple groups.

simple,  which  was  crucial  in  the  monumental  effort  to  classify  all 

simple  groups.  They  provide  criteria  for  when  a  group  cannot  be 

The  Sylow  theorems  are  fundamental  tools  in  the  classification  of 

Classification of Simple Groups

Advanced Applications of Sylow Theorems

compute group-theoretic information.

algorithms  exploit  the  special  properties  of  p-groups  to  efficiently 

p-groups play an important role in computational group theory. Many 

p-Groups in Computational Group Theory

combinatorial techniques and can be quite complex.

each  possible  order.  These  formulas  involve  sophisticated 

For p-groups, there are formulas that give the number of subgroups of 

Counting Subgroups in p-Groups

representation of G on V has a non-zero fixed point.

over  a  field  of  characteristic  not  equal  to  p,  then  any  linear 

example, if G is a p-group and V is a finite-dimensional vector space 

p-groups  have  special  properties  in  representation  theory.  For 

p-Groups and Representation Theory

Such that [G, Gi] ≤ G(i+1) for all i.

G = G0 > G1 > ... >Gn = {e}

of subgroups:

Every  p-group  is  nilpotent. This  means  there  exists  a  finite  sequence 
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Notes The proofs of the Sylow theorems use group actions in an essential 

way. This connection between group actions and subgroup structure 

has led to various fixed-point theorems in group theory. 

Fusion Theory 

Fusion in group theory deals with how conjugacy in a larger group 

affects the structure of a subgroup. The Sylow theorems are the 

starting point for much of fusion theory, which has applications in 

modular representation theory. 

Historical Context and Development 

The development of p-group theory and the Sylow theorems 

represents a significant milestone in the history of abstract algebra. 

These concepts were initially formulated in the late 19th century and 

have continued to evolve and find new applications. The study of p-

groups was further developed in the 20th century, with contributions 

from many mathematicians, including Burnside, Hall, Thompson, and 

others. The theory has connections to various other areas of 

mathematics, including number theory, topology, and representation 

theory. The Sylow theorems, in particular, stand as fundamental 

results that every student of group theory must master. They 

exemplify the power of abstract reasoning in uncovering deep 

structural properties of mathematical objects. 

Multiple Choice Questions (MCQs) 

1. The order of a direct product of two finite groups is: 

a) Sum of the orders of individual groups 

b) Product of the orders of individual groups 

c) Maximum of the orders of the two groups 

d) Minimum of the orders of the two groups 

2. A group action on a set satisfies which of the following 

properties? 

a) Associativity and identity properties 

b) Distributivity and commutativity 



 

 
 

Notes c) Symmetry and transitivity 

d) None of the above 

3. The orbit of an element under a group action is: 

a) A subset of the group 

b) The set of elements obtained by applying group elements to 

it 

c) Always equal to the entire set 

d) None of the above 

4. Sylow’s theorems provide information about: 

a) Normal subgroups 

b) Prime-power order subgroups 

c) Commutative properties of groups 

d) None of the above 

5. The number of Sylow p-subgroups in a group is: 

a) Any integer greater than 1 

b) A power of p 

c) Congruent to 1 modulo p 

d) Always 1 

6. Which of the following statements about p-groups is true? 

a) Every element has order p 

b) They always have a normal subgroup 

c) They are abelian groups 

d) They have a unique Sylow subgroup 

7. The isotropy subgroup of an element is: 

a) The set of all elements in the group that fix the element 

b) The orbit of the element 

c) The direct product of two subgroups 

d) A normal subgroup of the group 

8. The number of orbits in a group action is found using: 

a) Lagrange’s Theorem 

b) Sylow’s Theorem 
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Notes c) Orbit-Stabilizer Theorem 

d) Cayley’s Theorem 

9. In a finite group, the order of an element must: 

a) Divide the order of the group 

b) Be a prime number 

c) Be equal to the order of the group 

d) None of the above 

10. The center of a p-group is: 

a) Trivial 

b) Always nontrivial 

c) Equal to the group itself 

d) None of the above 

Short Answer Questions 

1. Define the direct product of two groups with an example. 

2. Explain group actions with a real-life example. 

3. What is an orbit in the context of group actions? 

4. State and prove the Orbit-Stabilizer Theorem. 

5. What is a p-group? Give an example. 

6. State and prove Sylow’s First Theorem. 

7. What is an isotropy subgroup? 

8. Explain the significance of counting theorems in combinatorial 

mathematics. 

9. How do p-groups relate to Sylow’s Theorems? 

10. Why are Sylow subgroups important in the classification of 

finite groups? 

Long Answer Questions 



 

 
 

Notes 1. Explain the concept of direct product in groups with detailed 

examples and proofs. 

2. Derive the Orbit-Stabilizer Theorem and give its applications. 

3. Discuss in detail the applications of counting theorems in 

group theory. 

4. Prove and explain all three Sylow theorems with examples. 

5. Describe the significance of p-groups in the study of finite 

groups. 

6. How do isotropy subgroups help in understanding group 

structures? 

7. Explain how Sylow’s theorems can be used to determine the 

number of subgroups of a given order. 

8. Discuss the importance of group actions in modern algebra 

and their real-life applications. 

9. Derive the class equation and explain its applications in group 

theory. 

10. How does the Sylow theory contribute to the classification of 

finite simple groups? 

 

  



10. b

9. a

8. c

7. a

6. b

5. c

4. b

3. b

2. a

1. b

Answer Key MCQ :
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 The Sylow theorems state:

order of G.

it's a subgroup whose order is the highest power of p that divides the 

maximal p-subgroup of G, where p is a prime number. In other words, 

A  p-Sylow  subgroup  (or  Sylow  p-subgroup)  of  a  finite  group  G  is  a 

Fundamental Concepts of Sylow Theory

examining these special subgroups.

allow  us  to  draw  significant  conclusions  about  finite  groups  by 

developed  by  Norwegian  mathematician  Ludwig  Sylow  in  1872, 

their  subgroups  of  prime  power  order.  The  fundamental  theorems, 

providing  critical  information  about  the  structure  of  groups  through 

Sylow theory is one of the most powerful tools in finite group theory, 

2.1.1: Applications of Sylow Theory

• Understand factorization of polynomials over a field.

  significance.

• Learn  about  the  evaluation  homomorphism  and  its

• Explore the concept of polynomials in an indeterminate.

• Study rings of polynomials and their properties.

  group classification.

• Understand  further applications  of  Sylow’s  theorems  in  finite

• Apply Sylow theorems to p-groups and the class equation.

Objectives

THEORY

APPLICATIONS OF THE SYLOW THEORY AND RING

UNIT 2.1

MODULE 2
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 So n3 = 1 or 4.

• For  Sylow  3-subgroups,  n3  divides  4  and  n3  ≡  1  (mod  3).  

If |G| = 12 = 22 × 3, then:

Example: Groups of Order 12

(cyclic group of order 15).

Since  both  Sylow  subgroups  are  normal,  G  is  isomorphic  to  Z15 

• Similarly, n5 = 1.

• The only possibility is n3 = 1.

satisfy n3 ≡ 1 (mod 3).

• The  number  of  Sylow  3-subgroups  n3  must  divide  5  and  

If |G| = 15 = 3 × 5, then:

Example: Groups of Order 15

order. Let's consider some examples:

Sylow  theory  is  particularly  effective  in  classifying  groups  of  small 

 Classification of Groups of Small Order1.

Applications of Sylow Theory

other.

Conjugacy: All Sylow p-subgroups of G are conjugate to each 3.

o np ≡ 1 (mod p)

p dividing |G|)

o np divides |G|/ps (where p^s is the highest power of  

G, then:

Number:  If  np  denotes  the  number  of  Sylow  p-subgroups  of 2.

order pn.

prime  and  n  ≥  1),  then  G  contains  at  least  one  subgroup  of 

Existence: If G is a finite group and pn divides |G| (where p is 1.
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• Similar  analysis  for  Sylow  2-subgroups  and  Sylow  3-
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• 

• 

 

 

 

          

• For  Sylow  2-subgroups,  n2  divides  3  and  n2  ≡  1  (mod  2).  

To show that A5 (the alternating group on 5 elements) is simple:

Example: Simplicity of A5

are simple.

Sylow theory provides powerful tools for proving that certain groups 

Proving Simplicity of Groups2.

(the quaternion group).

classification of all groups of order 12: Z12, Z6 × Z2, A4, D6,and Q

This gives us different possibilities to analyze, leading to the 

So n2 = 1 or 3.

the Sylow 5-subgroups

If N is a normal subgroup, it must contain either all or none of 

= 6

By Sylow's theorems, n5 divides 12 and n5 ≡ 1 (mod 5), so  n5 

|A5| = 60 = 22 × 3 × 5        

If |G| = 56 = 23 × 7, then:

Example: Non-Simplicity of Groups of Order 56

simple.

Sylow theory can also be used to prove that certain groups cannot be 

 Proving Non-Simplicity3.

A5 itself

subgroups shows that any non-trivial normal subgroup must be 

Each Sylow 7-subgroup has 6 elements of order 7

The only possibility is n7 = 8

n7 divides 8 and n7 ≡ 1 (mod 7)
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 The Frobenius Groups

Advanced Applications

normal subgroups, and builds from there to establish solvability.

The proof uses Sylow theory to establish that such groups must have 

distinct primes) is solvable.

theorem, which states that any group of order paqb (where p and q are 

One of the most important applications of Sylow theory is Burnside's 

 Burnside's paqb Theorem5.

• These remaining elements form a normal subgroup

• This leaves p^n × q - [pm(q-1) + 1] elements

pm(q-1) + 1

• The number of elements in all Sylow q-subgroups combined is  

• If nq> 1, then nq = pm for some 1 ≤ m ≤ n

• If nq = 1, then the unique Sylow q-subgroup is normal

1 (mod q)

• The number of Sylow q-subgroups nq divides pn and nq ≡

For a group G with |G| = pn × q where p, q are distinct primes:

Subgroups

Example:  Groups  of  Order  pn  q  (p,  q  prime,  n  ≥  1)  Have  Normal 

4. Proving Group Properties

  G is not simple

• These 7 elements must form a normal subgroup of G, proving

• This leaves 56 - 48 - 1 = 7 elements (excluding the identity)

• Total number of elements of order 7 is 8 × 6 = 48
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 The Class Equation

Any finite p-group is nilpotent.4.

|G|/p.

The  order  of  any  maximal  subgroup  of  a  finite  p-group  G  is 3.

properly contained in its normalizer.

If  H  is  a  proper  subgroup  of  a  finite  p-group  G,  then  H  is 2.

Every non-trivial p-group has a non-trivial center.1.

 

           

 

         

 

         

 

 

          

 

            

Key properties of p-groups include:

integer n.

finite group G is a p-group if and only if |G| = pn for some positive 

non-negative integer k, where p is a prime number. Equivalently, a 

A p-group is a group in which every element has order pk for some 

Definition and Basic Properties of p-Groups

2.1.2: p-Groups and the Class Equation

the structure of finite groups.

becomes powerful when combined with Sylow theory for analyzing 

to map a group G to an abelian quotient of a specific subgroup. This 

The transfer homomorphism extends Sylow theory, providing a way 

Transfer Theory

168 satisfying certain conditions must be isomorphic to PSL(2,7).

groups based on specific properties. For example, any group of order 

Sylow theory is crucial in group recognition theorems, which identify 

Recognition Theorems

through their Sylow subgroups.

Sylow theory helps in analyzing the structure of Frobenius groups 

non-identity element fixes exactly one point.

such that no non-identity element fixes more than one point and some 

A Frobenius group is a transitive permutation group on a finite set 
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 center is non-trivial.

hold  is  if  |Z(G)|  is  also  divisible  by  p. This  means  |Z(G)|  ≥  p,  so  the 

Since |G| = pn is itself divisible by p, the only way this equation can 

So we have: |G| = |Z(G)| + (a sum of multiples of p)

each |G:CG(xi)| is divisible by p.

For a p-group, any index greater than 1 must be divisible by p. Thus, 

proper subgroup of G, so [G:CG(xi)] > 1.

which equals [G:CG(xi)]. Since xi is not in the center, CG(xi) is  a 

Each  term  |G:CG(xi)|  is  the  size  of  the  conjugacy  class  of  xi, 

|G| = |Z(G)| + ∑|G:CG(xi)|

Proof: Let G be a p-group with |G| = pn> 1. From the class equation:

proving that every non-trivial p-group has a non-trivial center.

One  of  the  most  important  applications  of  the  class  equation  is 

 Non-Trivial Center in p-Groups1.

Applications of the Class Equation to p-Groups

the sum of the sizes of all non-central conjugacy classes.

In other words, the order of the group equals the size of its center plus 

• CG(xi) is the centralizer of xi in G

conjugacy classes

• The  sum  runs  over  representatives  xi of  non-central 

• Z(G) is the center of G

where:

|G| = |Z(G)| + ∑|G:CG(xi)|

For a finite group G, the class equation is expressed as:

groups.

fundamental tool in group theory, particularly useful for analyzing p- 

The  class  equation  (also  called  the  conjugacy  class  equation)  is  a 
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 5. Analyzing Normal Subgroups

modulo p.

This  congruence  relation  comes  from  analyzing  the  class  equation 

k ≡ |G| (mod p)

If G is a p-group of order pn, and G has k conjugacy classes, then:

and relate this count to structural properties.

The  class  equation  allows  us  to  count  conjugacy  classes  in  p-groups 

4. Counting Conjugacy Classes

proving it is nilpotent.

where Zi(G) is the ith center. This establishes a central series for G, 

G ⊃ Z(G) ⊃ Z2(G) ⊃ ... ⊃Zk(G) = G

process, we get a sequence:

smaller  order),  so  it  also  has  a  non-trivial  center.  Continuing  this 

can  form  the  quotient  group  G/Z(G).  This  is  again  a  p-group  (of 

Since  every  non-trivial  p-group  G  has  a  non-trivial  center  Z(G),  we 

are nilpotent.

The  class  equation  is  instrumental  in  proving  that  all  finite  p-groups 

 Nilpotency of p-Groups3.

isomorphism classes of groups of order p2: Z{p2} and Zp × Zp.

identity. This structure information helps prove that there are only two 

each  containing  p  elements  except  for  the  conjugacy  class  of  the 

From the class equation, if |Z(G)| = p, then G has p conjugacy classes, 

• Or |Z(G)| = p, which means G has a non-trivial center

• Either |Z(G)| = p2, which means G is abelian

For any group G of order p2:

The class equation helps us classify groups of order p2.

 Structure of Groups of Order p22.
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 Step 1: Find the number of Sylow 5-subgroups.

Let G be a group of order 20 = 22 × 5.

Solution:

Problem 1: Classify all groups of order 20

Solved Problems

its Sylow subgroups.

that reveal information about the structure of a group based on 

which  extends  Sylow  theory  by  providing  homomorphisms 

Transfer  Theory:  The  class  equation  informs  transfer  theory, 3.

arguments in analyzing Sylow subgroups.

(established  via  the  class  equation)  allows  for  inductive 

Center-Focused  Analysis:  The  non-trivial  center  of  p-groups 2.

crucial in proving the third Sylow theorem.

NG(H). This property, established using the class equation, is 

p-group  G,  then  H  is  properly  contained  in  its  normalizer 

Normalizers Grow in p-Groups: If H is a proper subgroup of a 1.

Key connections include:

understanding of Sylow subgroups in general groups.

groups  (established  using  the  class  equation)  inform  our 

subgroups  are  themselves  p-groups.  The  structural  properties  of  p- 

Sylow  theory  and  p-groups  are  deeply  connected,  as  Sylow  p- 

Connection Between Sylow Theory and p-Groups

equation.

non-trivially,  a  powerful  structural  insight  derived  from  the  class 

This means every normal subgroup of a p-group intersects the center 

trivial).

If  N  is  a  normal  subgroup  of  G,  then  N∩Z(G)  ≠  {e}  (unless  N  is 

For a p-group G, the class equation helps identify normal subgroups. 
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  • This gives us the dihedral group of order 20: D10.

must have Q ≅ Z4.

• Since  Aut(Z5) ≅ Z4,  and  Q  acts  non-trivially  on  Z5,  we  

• G must have the structure of a semidirect product Z5 ⋊ Q.

• Since n2 = 5, Q is not normal in G.

• Let Q be a Sylow 2-subgroup of order 4.

Case 2: n2 = 5

× Z2 × Z5.

Z4  ×  Z5 ≅ Z20.  b)  If  Q ≅ Z2  ×  Z2,  then  G ≅ (Z2  ×Z2) × Z5 ≅ Z2 

• Q  can  be  either  Z4  or  Z2  ×  Z2.  a)  If  Q ≅ Z_4,  then  G ≅  

  orders and are both normal).

• G  is  the  direct  product  of  P  and  Q  (since  they  have  coprime

• Q is normal in G.

• Let Q be the unique Sylow 2-subgroup of order 4.

Case 1: n2 = 1

• The only possibility is n2 = 1 or n2 = 5.

divides 5 and n2 ≡ 1 (mod 2).

• By Sylow's theorems, the number of Sylow 2-subgroups (n2)  

Step 2: Find the number of Sylow 2-subgroups.

• P is isomorphic to Z5 (cyclic group of order 5).

  normal in G.

• Let P be the unique Sylow 5-subgroup. Since it's unique, P is

• The only possibility is n5 = 1.

divides 4 and n5 ≡ 1 (mod 5).

• By Sylow's theorems, the number of Sylow 5-subgroups (n5)  
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 46, or 51.

• The possible values for n5 are 1, 6, 11, 16, 21, 26, 31, 36, 41,  

(mod 5).

• By  Sylow's  theorem,  n5  divides  51  (=  3  ×  17)  and  n5  ≡  1  

Step 2: Find the number of Sylow 5-subgroups (n5).

• Therefore, n3 = 1.

as well.

255, and we would need room for elements of orders 5 and 17  

• But n3  can't  be  5,  17,  or  85  because  the  total  order  of  G  is  

• If n3 = 85, this gives 170 elements of order 3.

• If n3 = 17, this gives 34 elements of order 3.

non-identity elements. This gives 10 elements of order 3.

• If n3 = 5, then there are 5 subgroups of order 3, each with 2  

• The possible values for n3 are 1, 5, 17, or 85.

(mod 3).

• By  Sylow's  theorem,  n3  divides  85  (=  5  ×  17)  and  n3  ≡  1  

Step 1: Find the number of Sylow 3-subgroups (n_3).

Let G be a group of order 255 = 3 × 5 × 17.

Solution:

cyclic

Problem 2: Prove that a group of order 255 = 3 × 5 × 17 must be 

D10 (dihedral group of order 20)3.

Z2 × Z2 × Z52.

Z20 (cyclic group of order 20)1.

Therefore, there are three isomorphism classes of groups of order 20:
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 x_i of non-central conjugacy classes.

where Z(G) is the center of G, and the sum runs over representatives 

|Z(G)| + ∑|G:CG(xi)|

Step  1:  Apply  the  class  equation.  The  class  equation  states:  |G|  = 

Let G be a p-group of order p2.

Solution:

order p2 is abelian

Problem 3: Use the class equation to prove that every p-group of 

255.

Therefore, G must be isomorphic to Z255, the cyclic group of order 

Remainder Theorem).

• G = P3 × P5 × P17 ≅ Z3 × Z5 × Z17 ≅ Z255 (by the Chinese 

order are cyclic).

• P3 ≅ Z3,  P5 ≅ Z5,  and  P17 ≅ Z17 (since  groups  of prime 

• Since each is unique, all three are normal in G.

orders 3, 5, and 17 respectively.

• Let  P3,  P5,  and  P17 be  the  unique  Sylow  subgroups  of 

Step 4: Determine the structure of G.

• The only value that satisfies both conditions is n17 = 1.

(mod 17).

• By Sylow's theorem, n17 divides 15 (= 3 × 5) and n17 ≡ 1

Step 3: Find the number of Sylow 17-subgroups (n17).

• The intersection of these constraints gives n5 = 1.

26, 31, 36, 41, 46, or 51.

• But n5 ≡ 1 (mod 5) means n5 can only be 1, 6, 11, 16, 21,
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and:  hg  =  (akz2)(ajz1)  =  akajz2z1 =  ak+jz2z1 =aj+kz1z2 = gh

Then: gh = (ajz1)(akz2) = ajakz1z2 = aj+kz1z2

write: g = ajz1 and h = akz2 for some z1, z2 ∈ Z(G).

Step 5: Show that G is abelian. For any two elements g, h ∈ G, we can

whichmeans g = ajz for some z ∈ Z(G).

in Z(G).For any g ∈ G, there exists some j such that gZ(G) = ajZ(G), 

(G),  aZ(G),  a2Z(G),  ...,a(p-1)Z(G)} where a is some element of G not 

cyclic, so G/Z(G) ≅Zp.Let's  denote  the  elements  of  G/Z(G)  as  {Z

= p, then G/Z(G) has order p2/p = p.Any group of prime order is 

Step 4: Calculate the size of Z(G) from another perspective. If |Z(G)| 

Solving for k: p2 = p + kp p2 - p = kp p(p-1) = kp k = p-1

non-central conjugacy classes.

The class equation becomes: p2 = p + kp where k is the number of 

Therefore, all |G:CG(xi)| = p.

This  is  impossible  in  a  group,  as  xi always commutes with itself. 

CG(xi)  =  {e},  which  means  only  theidentity  commutes  with  xi. 

divisor  of  |G|  =  p2,  so  it  equalseither p or p2.If  |G:CG(xi)|  =  p2,  then 

becomes: p2 = p + ∑|G:CG(xi)|Each  index  |G:CG(xi)|  must  be  a 

Step  3:  Consider  the  case  |Z(G)|  =  p.  In  this  case,  the  class  equation

= p2, then Z(G) = G, which means G is abelian, and we'redone.

equation). |Z(G)| divides |G| = p2, so |Z(G)| = p or |Z(G)| = p2.If |Z(G)| 

know |Z(G)| > 1 (by a property of p-groups established using the class 

Step 2: Analyze  possible  values  for  |Z(G)|.  Since  G  is  a  p-group,  we 
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 four 1-dimensional representations).

Since  G  is  non-abelian,  its  center  has  order  4  (corresponding  to  the 

1, 1, n), then: 12 + 12 + 12 + 12 + n2 = |G| 4 + n2 = |G|

Step 4: Examine pattern 1: (1, 1, 1, 1, n). If the dimensions are (1, 1, 

(1, 1, m, n, p) where m, n, p > 13.

(1, 1, 1, m, n) where m, n > 12.

(1, 1, 1, 1, n) where n > 11.

dimensions:

need  5  irreducible  representations.  Let's  list  possible  patterns  of 

Step 3: List possible dimension patterns. With 5 conjugacy classes, we 

correspondence with the 1-dimensional representations.

For  a  non-abelian  group,  the  center  Z(G)  is  in  one-to-one 

with dimension greater than 1.

If G is non-abelian, it must have at least one irreducible representation 

The trivial representation always exists with d1 = 1.

we need to find the possible dimensions di.

Step 2: Analyze the constraints. If G has exactly 5 conjugacy classes, 

where d_i are the dimensions of the irreducible representations.

∑(di 
2) = |G|

From  representation  theory,  if  G  has  k  conjugacy  classes,  then:

number of irreducible complex representations.

For  any  finite  group  G,  the  number  of  conjugacy  classes  equals  the 

Step 1: Establish a relationship between conjugacy classes and center. 

Solution:

with exactly 5 conjugacy classes

Problem  4:  Determine  all  possible  orders  of  a  non-abelian  group 

Therefore, G is abelian.
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+ p2 = |G|

For pattern 3: (1, 1, m, n, p): 12 + 12 + m2 + n2 + p2 = |G| 2 + m2 + n2 

= |G|

For pattern 2: (1, 1, 1, m, n): 12 + 12 + 12 + m2 + n2 = |G| 3 + m2 + n2 

leads to other possible orders.

Step 5: Examine patterns 2 and 3. Similar analysis of patterns 2 and 3 

• k = 10 gives |G| = 40 (certain non-abelian groups of order 40)

  conjugacy classes)

• k  =  5  gives  |G|  =  20  (no  non-abelian  group  of  order  20  has  5

D4)

• k  =  2  gives  |G|  =  8  (the  quaternion  group  or  dihedral  group  

The smallest examples are:

of 4, or simply a perfect square.

So for pattern 1, |G| = 4k where k - 1 is a perfect square times a power 

• If r = 0, then n2 = 4m2, which means n = 2m.

which is not an integer.

• If  r  =  1,  then  n2  =  4m2  ×  2,  which  means  n  =  2m  ×  √2,  

even.

• If r ≥ 2, then n2 = 4m2 × 2r, which means n = 2m × 2(r/2)  is 

Let k - 1 = m2 × 2r where 2r is the highest power of 2 dividing k - 1.

2.

For n to be an integer, k - 1 must be a perfect square times a power of 

Substituting: 4 + n2 = 4k n2 = 4k - 4 n2 = 4(k - 1)

group, so |G| = 4k for some integer k.

For  any  finite  group,  the  order  of  the  center  divides  the  order  of  the 
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Case 2: If Z(G) = Zp × Zp, it contains p2-1 elements of order p.

elements of order p.

Case  1:  If  Z(G)  is  cyclic  of  order  pm,  it  contains  exactly  p-1 

we need to determine the possible structures for Z(G).

exactly p2 elements of order p in G, and some of these are in Z(G), 

Step  5:  Find  the  possible  structure  for  Z(G).  Given  that  we  have 

elements of order p in Z(G) is (pk - 1).

p-groups.If Z(G) contains k cyclic factors, then the number of 

abelian p-group, so it can be written as a direct product of cyclic 

is non-trivial. Let |Z(G)| = pm where m ≥ 1.The center Z(G) is an 

Step 4: Consider the elements of order p in Z(G). In a p-group, Z(G)

over  representatives  of non-central conjugacy classes.

|Z(G)| + ∑|G:CG(xi)|where  Z(G)  is  the  center  and  the  sum  runs  

Step  3: Apply  the  class  equation.  The  class  equation  gives  us:  |G|  = 

form a set that's not necessarily a subgroup.

order a power of p. The elements of order p, together with the identity, 

Step 2: Use the structure of p-groups. In a p-group, every element has 

p2 elements of order p. Let's denote the order of G as pn.

Step 1: Set up what we know. Let G be a finite p-group with exactly 

Solution:

order p must have order p3

Problem 5: Prove that a finite p-group with exactly p2 elementsof 

conjugacy classes include 8, 16, 21, 24, 27, 32, 40, and others.

Therefore,  the  possible  orders  of  a  non-abelian  group  with  exactly  5 

8, 16, 21, 24, 27, 32, and 40.

Analysis of these patterns yields additional possible orders, including 
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 Problem 2

Prove that if G is a group of order 56 = 23 × 7, then G is not simple.

Problem 1

Unsolved Problems

must have order p3.

Therefore,  a  finite  p-group  with  exactly  p2-1  elements  of  order  p 

of elements of order p is (p-1) + p(p-1) = p2-1.

conjugacy class of elements of order p of size p(p-1), the total number 

For  a  group  of  order  p3  with  Z(G)  =  Zp  and  one  non-central 

elements of order p, then our analysis shows |G| = p3.

The  problem  likely  misstated  the  constraint.  If  G  has  exactly  p2-1 

calculation.

But we assumed G has p2 elements of order p, which contradicts our 

1) + (p-1) = (p+1)(p-1) = p2-1

The total number of elements of order p is then: (p-1) + p(p-1) = p(p- 

of order p, with size p(p-1).

There  is  exactly  one  non-central  conjugacy  class  of  elements 2.

Z(G) = Zp (containing p-1 elements of order p), and1.

p2 elements of order p is if:

Step  7:  Determine  the  structure  of  G.  The  only  way  to  have  exactly 

|G:CG(x)|. This size must be a power of p since G is a p-group.

For  a  non-central  element  x  of  order  p,  its  conjugacy  class  has  size 

central conjugacy classes.

them,  then  the  remaining  elements  of  order  p  must  occur  in  non- 

exactly  p2  elements  of  order  p  in  G,  and  Z(G)  contains  some  of 

Step  6:  Analyze  the  non-central  elements  of  order  p.  If  there  are 

contain more elements of order p.

Case  3:  If  Z(G)  has  more  cyclic  factors  or  higher  powers,  it  would 
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subgroups, denoted np, must satisfy:

q, Sylow's third theorem tells us that the number of Sylow p- 

subgroup P of order p and a Sylow q-subgroup Q of order q. Since p > 

By Sylow's first theorem, a group G of order pq has a Sylow p- 

with p > q.

Let's consider groups of order pq, where p and q are distinct primes 

Groups of Order pq

Let's explore some important examples.

determining the possible structures of groups with a specific order. 

One of the most common applications of Sylow's theorems is 

The Structure of Groups of Specific Orders

solving complex group-theoretical problems.

can now explore various applications that demonstrate their utility in 

prime power order. Having established the fundamental theorems, we 

analyze the structure of finite groups by examining their subgroups of 

Sylow's theorems are powerful tools in group theory that allow us to 

2.1.3: Further Applications of Sylow's Theorems

elementary abelian group of order p2 (i.e., Zp × Zp).

elements of order p, then G has a subgroup isomorphic to the 

Let G be a p-group of order p4. Prove that if G has more than p+1 

Problem 5

subgroup.

Prove that any group of order 105 = 3 × 5 × 7 has a normal Sylow 

Problem 4

|Z(G)| = p, then G has a normal subgroup of order p2.

Use the class equation to prove that if G is a p-group of order pn, and 

Problem 3

subgroup of order 27 or a normal subgroup of order 13.

Let G be a group of order 351 = 33 × 13. Prove that G has a normal 



 

 
 

Notes • np divides q (the other factor in the group order) 

• np ≡ 1 (mod p) 

The only value of np that can satisfy both conditions is np = 1, since 

any other divisor of q would be greater than 1 but less than q, and 

cannot be congruent to 1 modulo p when p > q. 

This means G has a unique Sylow p-subgroup P, which implies P is 

normal in G. Similarly, let's determine nq: 

• nq divides p 

• nq ≡ 1 (mod q) 

Here, we have two possibilities: 

1. nq = 1, which means Q is normal in G 

2. nq = p, which means there are p distinct Sylow q-subgroups 

If nq = 1, then both P and Q are normal in G. Since P ∩ Q = {e} (as 

their orders are coprime) and |P|·|Q| = |G|, we have G = P × Q, which 

is isomorphic to the cyclic group Zpq. 

If nq = p, then Q is not normal in G. In this case, G is isomorphic to a 

semidirect product P ⋊ Q, specifically Zp⋊Zq, which is non-abelian. 

For nq = p to be possible, we need p ≡ 1 (mod q), meaning p = kq + 1 

for some integer k. 

Therefore: 

• If p ≡ 1 (mod q), there are exactly two groups of order pq up to 

isomorphism: Zpq and Zp⋊Zq 

• If p ≢ 1 (mod q), there is exactly one group of order pq up to 

isomorphism: Zpq 

Groups of Order p²q 

Now let's analyze groups of order p²q, where p and q are distinct 

primes. 
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Notes By Sylow's theorems: 

• There exists a Sylow p-subgroup P of order p² 

• There exists a Sylow q-subgroup Q of order q 

• The number of Sylow p-subgroups np divides q and np ≡ 1 

(mod p) 

• The number of Sylow q-subgroups nq divides p² and nq ≡ 1 

(mod q) 

For np, the possibilities are np = 1 or np = q, but np ≡ 1 (mod p) 

means np = 1 is the only possibility when q < p. If q > p, we need to 

check if q ≡ 1 (mod p). 

For nq, the possibilities are nq = 1, nq = p, or nq = p². We need nq ≡ 1 

(mod q), so: 

• If p ≢ 1 (mod q) and p² ≢ 1 (mod q), then nq = 1 

• Otherwise, we need to determine if nq = p or nq = p² is 

possible 

When np = 1 and nq = 1, both P and Q are normal, leading to a direct 

product structure. 

The classification becomes more complex depending on the structure 

of the Sylow p-subgroup P, which can be either cyclic (Zp²) or 

elementary abelian (Zp × Zp). Each case leads to different 

possibilities for the group structure. 

Simplicity and Sylow Subgroups 

Another important application of Sylow's theorems is determining 

whether a group is simple or not. Recall that a group is simple if it has 

no proper normal subgroups except the trivial subgroup. 

A Group of Order 60 

Let's determine if a group of order 60 = 2² × 3 × 5 can be simple. 
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 the structure of Aut(G).

isomorphisms from G to itself. Sylow's theorems provide insights into 

The  automorphism  group  Aut(G)  of  a  group  G  consists  of  all 

Automorphism Groups and Sylow Subgroups

and b are positive.

primes  and  a,  b  are  non-negative  integers,  are  never  simple  if  both  a 

prime  order).This  means  groups  of  order  pᵃqᵇ,  where  p  and  q  are 

most  two  distinct  primes  is  solvable,  hence  not  simple  (unless  it's  of 

theorem,  which  states  that  any  group  whose  order  is  divisible  by  at 

A  powerful  result  derived  from  Sylow's  theorems  is  Burnside's  pᵃqᵇ 

Burnside's pᵃqᵇ Theorem

this can be proven using more advanced techniques in group theory.

for being simple. In fact, A5 is the only simple group of order 60, and 

Since  none  of  these  Sylow  subgroups  are  normal, A5  is  a  candidate 

• n5 = 6 (the Sylow 5-subgroups have order 5)

• n3 = 10 (the Sylow 3-subgroups have order 3)

• n2 = 5 (the Sylow 2-subgroups have order 4)

Let's consider A5, the alternating group on 5 symbols. In A5:

1.

For a group of order 60 to be simple, we need n2 > 1, n3 > 1, and n5 > 

normal, and the group is not simple.

If  any  of  these  are  1,  then  the  corresponding  Sylow  subgroup  is 

• n5 divides 12 and n5 ≡ 1 (mod 5), so n5 ∈ {1, 6}

• n3 divides 20 and n3 ≡ 1 (mod 3), so n3 ∈ {1, 4, 10}

• n2 divides 15 and n2 ≡ 1 (mod 2), so n2 ∈ {1, 3, 5, 15}

The numbers of Sylow subgroups are:
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 Step 2: Determine the number of Sylow subgroups.

  order 3 and a Sylow 5-subgroup Q of order 5.

• By Sylow's first theorem, there exists a Sylow 3-subgroup P of

Step 1: Identify the Sylow subgroups.

Solution: We have 15 = 3 × 5, where 3 and 5 are distinct primes.

Problem 1: Determine all groups of order 15 up to isomorphism.

Solved Problems on Sylow's Theorems

groups.

understanding  the  distribution  of  Sylow  subgroups  in  Frobenius 

Sylow  p-subgroup  of  H,  then  NG(P) ⊆ H.  This  result  helps  in 

For instance, if G is a Frobenius group with complement H, and P is a 

Sylow's theorems help in analyzing the structure of Frobenius groups. 

where Hg = g(-1)Hg.

Frobenius  complement)  such  that  H  ∩  H^g  =  {e}  for  all  g ∈ G - H, 

A Frobenius group is a group G with a proper subgroup H (called the 

Frobenius Groups and Sylow's Theorems

automorphism group.

Sylow  p-subgroup,  connecting  the  normalizer  structure  with  the 

normalizer of a Sylow p-subgroup gives rise to automorphisms of the 

For  Sylow  p-subgroups  in  general,  conjugation  by  elements  of  the 

  subgroup

  that fix the elements of the center of P modulo the commutator

• There  is  a  subgroup  of  Aut(P)  consisting  of  automorphisms

  abelian

• The  order  of  Aut(P)  is  divisible  by  p  if  P  is  not  elementary

automorphism group Aut(P) has interesting properties:

For  a  p-group  P  (a  group  whose  order  is  a  power  of  a  prime  p),  the 
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  • The possible values are n2 = 1 or n2 = 5

satisfy n2 ≡ 1 (mod 2)

• The  number  of  Sylow 2-subgroups  n2  must  divide  5  and  

Step 1: Determine the possible numbers of Sylow subgroups.

subgroups of order 2² = 4 and Sylow 5-subgroups of order 5.

Solution: We have 20 = 2² × 5, so a group G of order 20 has Sylow 2- 

subgroup of order 5 or a normal subgroup of order 4.

Problem  2:  Prove  that  any  group  of  order  20  has  a  normal 

namely the cyclic group Z15.

Thus,  there  is  exactly  one  group  of  order  15  up  to  isomorphism, 

• Therefore, G = P × Q ≅ Z3 × Z5 ≅ Z15

• |P|·|Q| = 3·5 = 15 = |G|

• P ∩ Q = {e} because gcd(3, 5) = 1

  normal in G

• Both the Sylow 3-subgroup P and the Sylow 5-subgroup Q are

Step 3: Determine the group structure.

• So the Sylow 5-subgroup is also normal in G

5), we have n5 = 1

• The possible values for  n5 are 1 and 3, but since 3 ≢ 1 (mod  

satisfy n5 ≡ 1 (mod 5)

• The  number  of  Sylow  5-subgroups  n5  must  divide  3  and  

• So n3 = 1, which means the Sylow 3-subgroup is normal in G

≡ 1 (mod 3)

• The possible values for n3 are 1 and 5, but only 1 satisfies n3  

satisfy n3 ≡ 1 (mod 3)

• The  number  of Sylow  3-subgroups  n3  must  divide  5  and  
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  • The possible values are n5 = 1 or 6

satisfy n5 ≡ 1 (mod 5)

• The  number  of  Sylow  5-subgroups  n5  must  divide  6  and  

• The possible values are n3 = 1 or 10

satisfy n3 ≡ 1 (mod 3)

• The  number  of  Sylow  3-subgroups  n3  must  divide  10  and  

• The possible values are n2 = 1, 3, 5, or 15

satisfy n2 ≡ 1 (mod 2)

• The  number  of  Sylow  2-subgroups  n2  must  divide  15  and  

Step 1: Determine the possible numbers of Sylow subgroups.

subgroups of order 5.

2-subgroups of order 2, Sylow 3-subgroups of order 3, and Sylow 5- 

Solution: We have 30 = 2 × 3 × 5, so a group G of order 30 has Sylow 

Problem 3: Prove that no group of order 30 is simple.

and it may also have a normal subgroup of order 4.

Therefore,  any  group  of  order  20  has  a  normal  subgroup  of  order  5, 

subgroup of order 5 (or both).

In  either  case,  G  has  a  normal  subgroup  of  order  4  or  a  normal 

normal and has order 5

• If n5  = 1  (which must be true), then the Sylow  5-subgroup is  

• If n2 = 1, then the Sylow 2-subgroup is normal and has order 4

Step 2: Analyze the cases.

is congruent to 1 modulo 5 except 1

• The only possible value is n5 = 1 since no number dividing 4  

satisfy n5 ≡ 1 (mod 5)

• The  number  of  Sylow  5-subgroups  n5  must  divide  4  and  
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  • The possible values are n3 = 1 or n3 = 4

satisfy n3 ≡ 1 (mod 3)

• The  number  of  Sylow  3-subgroups  n3  must  divide  4  and  

• The possible values are n2 = 1 or n2 = 3

satisfy n2 ≡ 1 (mod 2)

• The  number  of  Sylow 2-subgroups  n2  must  divide  3  and  

Step 1: Determine the possible numbers of Sylow subgroups.

subgroups of order 4 and Sylow 3-subgroups of order 3.

Solution: We have 12 = 2² × 3, so a group G of order 12 has Sylow 2- 

Problem 4: Classify all groups of order 12 up to isomorphism.

means G is not simple.

Therefore, at least one of the Sylow subgroups must be normal, which 

of G (30).

This gives at least 24 + 20 + 1 = 45 elements, which exceeds the order 

1 more element.

are 10 × 2 = 20 elements of order 3. The identity element accounts for 

If n5 = 6, there are 6 ×  4 = 24 elements of order 5. If n3 = 10, there 

1, and n5 > 1.

simple. Then none of the Sylow subgroups are normal, so n2 > 1, n3 > 

Step 3: Use counting arguments to find a contradiction. Suppose G is 

  elements of order 5

• Each  Sylow  5-subgroup  has  1  element  of  order  1  and  4

  elements of order 3

• Each  Sylow  3-subgroup  has  1  element  of  order  1  and  2

  element of order 2

• Each  Sylow  2-subgroup  has  1  element  of  order  1  and  1

Step 2: Count elements in the Sylow subgroups.



  

66 
 

Notes  

 

  

  

   

  

   

 

   

   

 

  

 

   

 

 

  

  

  A4 (alternating group on 4 symbols)3.

Z2 × Z6 (direct product)2.

Z12 (cyclic group)1.

Therefore, the groups of order 12 up to isomorphism are:

18 elements, which exceeds 12.

Sylow 3-subgroups contain 8 distinct elements, plus the identity gives 

argument:  3  Sylow  2-subgroups  contain  9  distinct  elements,  and  4 

Case  4:  n2  =  3  and  n3  =  4  This  is  not  possible  by  a  counting 

semi-direct product Z3 ⋊ Z4 or Z3 ⋊ (Z2 × Z2)

• If the action is non-trivial, we get a different group, which is a  

• If the action of Q on P is trivial, we get P × Q

structure.

there  are  3  Sylow  2-subgroups.  This  gives  us  a  semi-direct  product 

Case  3:  n2  =  3  and  n3  =  1  The  Sylow  3-subgroup  Q  is  normal,  and 

• If P ≅ Z2 × Z2, we get D12 (the dihedral group of order 12)

• If P ≅ Z4, we get A4 (the alternating group on 4 symbols)

there are 4 Sylow 3-subgroups.

Case  2:  n2 =  1  and  n3 =  4  The  Sylow  2-subgroup  P  is  normal,  and 

× Z2) × Z3 ≅ Z2 × Z2 × Z3 ≅ Z2 × Z6

• P can be either Z4 or Z2 × Z2 So we get Z4 × Z3 ≅ Z12 or (Z2

• G = P × Q ≅ P × Z3

• |P|·|Q| = 4·3 = 12 = |G|

• P ∩ Q = {e} since gcd(4, 3) = 1

the Sylow 2-subgroup and Q be the Sylow 3-subgroup.

Case 1: n2 = 1 and n3 = 1 Both Sylow subgroups are normal. Let P be 

Step 2: Analyze the possible structures based on these values.
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 isomorphism.

Determine  all  groups  of  order  42  =  2  ×  3  ×  7  up  to 1.

Unsolved Problems on Sylow's Theorems

and it must be normal in G.

Therefore, n7 = 1, which means there is a unique Sylow 7-subgroup, 

impossible since each Sylow 2-subgroup has 8 elements.

only  56 - 49  =  7  elements  for  the  Sylow  2-subgroups,  which  is 

So we have 1 + 8 × 6 = 1 + 48 = 49 distinct elements. But this leaves 

  dividing |G|)

  a  property  of  Sylow  p-subgroups  when  p  is  the  largest  prime

• Different Sylow 7-subgroups intersect only at the identity (by

• Each of the 8 Sylow 7-subgroups has 6 elements of order 7

• The identity element is in all Sylow 7-subgroups

Let's count the elements in these Sylow 7-subgroups:

of order 7, plus the identity.

distinct  Sylow  7-subgroups.  Each Sylow  7-subgroup  has  6  elements 

Step  2:  Show  that  n7  =  8  is  impossible.  If  n7  =  8,  then  there  are  8 

• The possible values are n7 = 1 or n7 = 8

satisfy n7 ≡ 1 (mod 7)

• The  number  of  Sylow  7-subgroups  n7  must  divide  8  and 

Step 1: Determine the number of Sylow 7-subgroups.

subgroups of order 2³ = 8 and Sylow 7-subgroups of order 7.

Solution: We have 56 = 2³ × 7, so a group G of order 56 has Sylow 2- 

Sylow 7-subgroup.

Problem 5: Show that  a group of order 56 =  2³ × 7 has a normal 

Z3 ⋊ Z4 (semi-direct product)5.

D12 (dihedral group of order 12)4.
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Notes 2. Prove that any group of order 36 = 2² × 3² has a normal 

subgroup. 

3. Show that a group of order 255 = 3 × 5 × 17 is not simple. 

4. Classify all groups of order 21 = 3 × 7 up to isomorphism. 

5. Prove that any group of order 100 = 2² × 5² has a normal 

Sylow subgroup. 
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 R) is called a commutative ring.

ring in which multiplication is commutative (a · b = b · a for all a, b ∈ 

Note that multiplication in a ring is not required to be commutative. A 

+ (b · c)c) 

o Right distributivity: For all a, b, c ∈ R, (a + b) · c = (a ·

 + (a · c)b)

o Left distributivity: For all a, b, c ∈ R, a · (b + c) = (a ·

Multiplication distributes over addition:3.

o For all a, b, c ∈ R, (a · b) · c = a · (b · c)

Multiplication is associative:2.

o Commutativity: For all a, b ∈ R, a + b = b + a

  + (-a) = (-a) + a = 0

o Inverse: For each a ∈ R, there exists -a ∈ R such that a

  = 0 + a = a for all a ∈ R

o Identity: There exists an element 0 ∈ R such that a + 0

  c)

o Associativity: For all a, b, c ∈ R, (a + b) + c = a + (b +

o Closure: For all a, b ∈ R, a + b ∈ R

(R, +) is an abelian group:1.

addition (+) and multiplication (·), satisfying the following axioms:

ring is a set R together with two binary operations, usually denoted as 

of  integers  with  respect  to  addition  and  multiplication.  Formally,  a 

A ring is an algebraic structure that generalizes the familiar properties 

Definition and Basic Properties of Rings

2.2.1: Introduction to Ring Theory

UNIT 2.2
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  Be closed under addition2.

Be non-empty1.

same operations as R. For S to be a subring, it must:

A  subring  of  a  ring  R  is  a  subset  S  of  R  that  forms  a  ring  under  the 

Subrings and Ideals

units in Z6 are 1 and 5, as 1 · 1 = 1 and 5 · 5 = 25 ≡ 1 (mod 6).

Example: In Z6, the element 2 is a zero divisor because 2 · 3 = 0. The 

  identity where there are no zero divisors.

• An integral domain is a commutative ring with a multiplicative

  exists a non-zero element b ∈ R such that a · b = 0 or b · a = 0.

• A  zero  divisor  is  a  non-zero  element  a ∈ R  for  which  there

inverse of a and is denoted a(-1).

identity  if  it  exists. The  element  b  is  called  the  multiplicative  

∈ R  such  that  a  ·  b  =  b  ·  a  =  1,  where  1  is  the  multiplicative  

• A unit is an element a ∈ R for which there exists an element b  

In a ring R, we define:

Units, Zero Divisors, and Integral Domains

The set Zn of integers modulo n forms a commutative ring.5.

commutative ring under pointwise addition and multiplication.

The  set  of  continuous  functions  from  R  to  R  forms  a 4.

denoted R[x], forms a ring.

The  set  of  polynomials  with  coefficients  from  a  ring  R, 3.

a non-commutative ring when n > 1.

The set of n × n matrices over a field F, denoted Mn(F), forms 2.

a commutative ring.

The integers Z with ordinary addition and multiplication form 1.

Examples of Rings



 

 
 

Notes 3. Be closed under negation 

4. Be closed under multiplication 

An ideal of a ring R is a subring I with the additional property that for 

all r ∈ R and all a ∈ I, both r · a and a · r are in I. In other words, I 

"absorbs" multiplication by any element of R. 

For a commutative ring R, a subset I is an ideal if and only if: 

1. I is non-empty 

2. I is closed under addition 

3. For all a ∈ I and r ∈ R, r · a ∈ I 

Types of Ideals 

1. Trivial Ideals: The set {0} (containing only the additive 

identity) and the entire ring R are always ideals of R, called 

the trivial ideals. 

2. Principal Ideal: An ideal generated by a single element a ∈ R, 

denoted (a) or Ra, is called a principal ideal. In a commutative 

ring, (a) = {r · a | r ∈ R}. 

3. Prime Ideal: In a commutative ring, an ideal P is prime if 

whenever a · b ∈ P for a, b ∈ R, then either a ∈ P or b ∈ P. 

4. Maximal Ideal: An ideal M is maximal if M ≠ R and there is 

no ideal I such that M ⊂ I ⊂ R. 

Ring Homomorphisms and Isomorphisms 

A ring homomorphism is a function φ: R → S between rings R and S 

that preserves the ring operations: 

1. φ(a + b) = φ(a) + φ(b) for all a, b ∈ R 

2. φ(a · b) = φ(a) · φ(b) for all a, b ∈ R 
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  If R is an integral domain, then R[x] is an integral domain.2.

If R is a commutative ring, then R[x] is a commutative ring.1.

Properties of Polynomial Rings

follows the standard rule of multiplying polynomials.

Addition  in  R[x]  is  performed  term  by  term,  and  multiplication 

where a0, a1, ..., an are elements of R.

+ a1x + a2x² + ... + anxn

coefficients from R. A typical element of R[x] has the form: f(x) = a0 

Given a ring R, the polynomial ring R[x] consists of polynomials with 

Polynomial Rings

where Im(φ) is the image of φ.

≅Im(φ)

If  φ:  R  →  S  is  a  ring  homomorphism  with  kernel  K,  then:  R/K 

The First Isomorphism Theorem for Rings

R is commutative, then R/I is commutative.

The quotient ring R/I inherits many properties from R. For example, if 

I) · (s + I) = (r · s) + I

The operations on R/I are defined as: (r + I) + (s + I) = (r + s) + I (r + 

whose elements are the cosets of I: R/I = {r + I | r ∈ R}

Given a ring R and an ideal I of R, we can form the quotient ring R/I, 

Quotient Rings

The kernel of a ring homomorphism is always an ideal of R.

0S}

in  R  that  map  to  the  additive  identity  in  S:  Ker(φ)  =  {r ∈ R  |  φ(r)  = 

The kernel of a ring homomorphism φ: R → S is the set of elements 

isomorphic, denoted R ≅ S.

If φ is bijective, it is a ring isomorphism, and R and S are said to be 
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 F.

polynomial with coefficients in F. Otherwise, α is transcendental over 

An  element  α ∈ E  is  algebraic  over  F  if  it  is  a  root  of  a  non-zero 

Algebraic Elements and Extensions

as a vector space over F.

The degree of the extension E/F, denoted [E:F], is the dimension of E 

E. We denote this as E/F.

A field extension is a pair of fields E and F such that F is a subfield of 

Field Extensions

The finite field Zp when p is a prime number4.

The complex numbers C3.

The real numbers R2.

The rational numbers Q1.

Examples of fields include:

where the non-zero elements form a group under multiplication.

multiplicative  inverse.  In  other  words,  a  field  is  a  commutative  ring 

A field is a commutative ring in which every non-zero element has a 

2.2.2: Fields

(x + i)(x - i).

reducible over C (the complex numbers), where  it can be factored  as 

For  example,  x²  +  1  is  irreducible  over  R  (the  real  numbers)  but 

expressed as a product of two polynomials of lower degree in R[x].

A  polynomial  f(x) ∈ R[x]  is  irreducible  over  R  if  it  cannot  be

Irreducibility

degrees of the factors when R is an integral domain.

The degree of a product of polynomials equals the sum of the 3.
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Notes An extension E/F is algebraic if every element of E is algebraic over 

F. 

Euclidean Domains, Principal Ideal Domains, and Unique 

Factorization Domains 

A Euclidean domain is an integral domain R with a function d: R - 

{0} → N (natural numbers) such that for any a, b ∈ R with b ≠ 0, 

there exist q, r ∈ R such that a = qb + r with either r = 0 or d(r) < d(b). 

A principal ideal domain (PID) is an integral domain in which every 

ideal is principal. 

A unique factorization domain (UFD) is an integral domain in which 

every non-zero non-unit element can be written as a product of 

irreducible elements, and this factorization is unique up to units and 

the order of factors. 

The relationship between these domains is: Euclidean Domain ⇒ 

Principal Ideal Domain ⇒ Unique Factorization Domain 

Examples: 

• Z (integers) is a Euclidean domain, hence also a PID and a 

UFD. 

• F[x] (polynomials over a field F) is a Euclidean domain. 

• Z[x] (polynomials with integer coefficients) is a UFD but not a 

PID. 

Solved Problems on Ring Theory 

Problem 1: Determine whether Z[√-5] = {a + b√-5 | a, b ∈ Z} is a 

unique factorization domain. 

Solution: To determine whether Z[√-5] is a UFD, we need to check if 

factorizations into irreducibles are unique. 

Step 1: Consider the element 6 ∈Z[√-5]. We can factor 6 as 2 × 3. 



 

 
 

Notes Step 2: Consider the element 1 + √-5 and its conjugate 1 - √-5 in Z[√-

5]. Their product is (1 + √-5)(1 - √-5) = 1 - (√-5)² = 1 - (-5) = 6. 

Step 3: Check if 2, 3, 1 + √-5, and 1 - √-5 are irreducible in Z[√-5]. 

Define the norm N(a + b√-5) = a² + 5b², which satisfies N(αβ) = 

N(α)N(β). 

• N(2) = 4 

• N(3) = 9 

• N(1 + √-5) = 1 + 5 = 6 

• N(1 - √-5) = 1 + 5 = 6 

If any of these elements were reducible, they could be expressed as a 

product of two elements with smaller norms. But none of the norms 4, 

9, or 6 can be expressed as a product of norms of elements in Z[√-5] 

other than 1 times themselves. Therefore, all four elements are 

irreducible. 

Step 4: Since 6 = 2 × 3 = (1 + √-5)(1 - √-5), we have two distinct 

factorizations of 6 into irreducibles. 

Therefore, Z[√-5] is not a unique factorization domain. 

Problem 2: Show that in a commutative ring, maximal ideals are 

prime. 

Solution: Let R be a commutative ring and M a maximal ideal of R. 

Step 1: Recall the definitions: 

• An ideal M is maximal if M ≠ R and there is no ideal I such 

that M ⊂ I ⊂ R. 

• An ideal P is prime if for all a, b ∈ R, ab ∈ P implies a ∈ P or b 

∈ P. 

Step 2: To show M is prime, assume ab ∈ M for some a, b ∈ R. 



  

76 
 

Notes   

   

   

 

   

  

 

 

 

 

 

 

 

 

 

 

 

 

 f(x) + g(x) = (a₀+b₀) + (a₁+b₁)x + ... + higher terms

= b₀ + b₁x + ... + bₘxᵐ:

Addition: For polynomials f(x) = a₀ + a₁x + ... + aₙxⁿ and g(x)2.

of polynomial addition and multiplication.

Ring Structure: R[x] forms a ring with the standard operations 1.

Basic Properties of Polynomial Rings

coefficient, and n is the degree of the polynomial, denoted by deg(f).

negative  integer.  The  element  aₙ  (if  non-zero)  is  called  the  leading 

where  a₀,  a₁,  a₂,  ...,  aₙ  are  elements  of  the  ring  R,  and  n  is  a  non- 

f(x) = a₀ + a₁x + a₂x² + ... + aₙxⁿ

take the form:

with  coefficients  from  R  in  the  indeterminate  x.  These  polynomials 

For  a  ring  R,  the  polynomial  ring  R[x]  consists  of  all  polynomials 

multiplication.

coefficients,  and  operations  of  addition,  subtraction,  and 

        

           

          

     

    

   

    

 

    

     

another ring. Polynomials are expressions consisting of variables,

the concept of a ring to include polynomials with coefficients from 

A polynomial ring is a fundamental algebraic structure that extends 

Introduction to Polynomial Rings

2.2.3: Rings of Polynomials

+ r2b = 1.

Similarly, (M, b) = R, so there exist m2 ∈ M and r2 ∈ R such that m2 

a) = R. Thus, there exist m1 ∈ M and r1 ∈ R such that m1 + r1a = 1.

ra | m ∈ M, r ∈ R}Since M is maximal and a ∉ M, we must have (M, 

Step 4: Consider the ideal (M, a) generated by M and a: (M, a) = {m + 

by contradiction. Suppose a ∉ M and b ∉ M.

Step 3: We need to show that either a ∈ M or b ∈ M. Let's use a proof 
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  the only units are 1 and -1.

• For  example,  in  Z[x]  (polynomials  with  integer  coefficients),

  constant polynomials that are units in R.

• If  R  is  an  integral  domain,  the  only  units  in  R[x]  are  the

A unit in a ring is an element that has a multiplicative inverse. In R[x]:

Units in Polynomial Rings

  leading coefficients of the factors.

• The  leading  coefficient  of  the  product  is  the  product  of  the

  product f(x)·g(x) is also non-zero.

• If  f(x)  and  g(x)  are  non-zero  polynomials  in  R[x],  then  their

also an integral domain. This means:

If R is an integral domain (a ring with no zero divisors), then R[x] is 

Integral Domains and Polynomial Rings

conventionally defined as -∞.

the  zero  polynomial  and  is  denoted  by  0.  Its  degree  is 

Zero  Polynomial: The  polynomial  0  +  0x  +  0x²  +  ...  is  called 5.

  deg(g))

o For  polynomials  f  and  g, deg(f+g)  ≤  max(deg(f),

  deg(g)

o For non-zero polynomials f and g, deg(f·g) = deg(f)  +

Degree Properties:4.

 for each k = 0, 1, 2, ..., n+m.

f(x) × g(x) = c₀ + c₁x + c₂x² + ... + cₙ₊ₘxⁿ⁺ᵐ

Multiplication: For the same polynomials:3.

Essentially, we add the coefficients of like terms.

                             i=0

where cₖ =  ∑aᵢbk-i

                    k
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Notes • In Q[x] (polynomials with rational coefficients), any non-zero 

rational number forms a unit. 

Irreducible Polynomials 

A non-constant polynomial f(x) in R[x] is irreducible over R if it 

cannot be factored as a product of two non-constant polynomials in 

R[x]. 

Examples: 

• x² + 1 is irreducible over R (the real numbers) 

• x² + 1 is reducible over C (the complex numbers) as (x+i)(x-i) 

• x² - 2 is irreducible over Q (the rational numbers) 

Polynomial Division 

If R is a field, then there's a division algorithm for polynomials in 

R[x]: 

For polynomials f(x) and g(x) ≠ 0 in R[x], there exist unique 

polynomials q(x) (quotient) and r(x) (remainder) such that: 

f(x) = g(x)·q(x) + r(x) 

where either r(x) = 0 or deg(r) <deg(g). 

This leads to the important result that R[x] is a Euclidean domain 

when R is a field, meaning we can find greatest common divisors 

using the Euclidean algorithm. 

Evaluating Polynomials 

For a polynomial f(x) = a₀ + a₁x + a₂x² + ... + aₙxⁿ in R[x] and an 

element r in R, the evaluation of f at r, denoted f(r), is: 

f(r) = a₀ + a₁r + a₂r² + ... + aₙrⁿ 

This is an element of R and is computed by substituting r for x in the 

polynomial. 

Polynomial Rings in Multiple Variables 
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 Solution:

Determine whether p(x) = x³ - 3x + 1 is irreducible over Q.

Example 2: Determining Irreducibility

(12+10)x² + (-20-2)x + 4 = 2x⁵ - x⁴ - 3x³ + 22x² - 22x + 4

Now  combine  like  terms:  f(x)  ·  g(x)  =  2x⁵  +  (-4+3)x⁴  +  (8-6-5)x³  + 

Finally, multiply 1 by each term in g(x): 1(x² - 2x + 4) = x² - 2x + 4

- 20x

Next, multiply -5x by each term in g(x): -5x(x² - 2x + 4) = -5x³ + 10x² 

12x²

Next, multiply 3x² by each term in g(x): 3x²(x² - 2x + 4) = 3x⁴ - 6x³ + 

8x³

First, multiply 2x³ by each term in g(x): 2x³(x² - 2x + 4) = 2x⁵ - 4x⁴ + 

f(x) · g(x) = (2x³ + 3x² - 5x + 1) · (x² - 2x + 4)

For multiplication, we multiply each term of f(x) by each term of g(x):

+ (x² - 2x + 4) = 2x³ + (3+1)x² + (-5-2)x + (1+4) = 2x³ + 4x² - 7x + 5

For addition, we combine like terms: f(x) + g(x) = (2x³ + 3x² - 5x + 1)

Solution:

Calculate f(x) + g(x) and f(x) · g(x).

Let f(x) = 2x³ + 3x² - 5x + 1 and g(x) = x² - 2x + 4 in Z[x].

Example 1: Addition and Multiplication in Z[x]

Solved Examples

where aᵢⱼ are elements of R.

i=0  i=0

f(x,y) = ∑ ∑ aᵢⱼxⁱyʲ

n    m

A polynomial in R[x,y] takes the form:

with coefficients from R.

R[x,y]  represents  the  ring  of  polynomials  in  two  variables  x  and  y 

The  concept  extends  naturally  to multiple  variables.  For  example, 
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Notes To check if p(x) is irreducible over Q, we can use the Rational Root 

Theorem. 

If p(x) has a rational root a/b in lowest terms, then a divides the 

constant term (1) and b divides the leading coefficient (1). 

The possible rational roots are therefore: ±1. 

Let's check: p(1) = 1³ - 3·1 + 1 = 1 - 3 + 1 = -1 ≠ 0 p(-1) = (-1)³ - 3·(-

1) + 1 = -1 + 3 + 1 = 3 ≠ 0 

So p(x) has no rational roots. Since p(x) is a cubic polynomial with no 

linear factors, it must be irreducible over Q (as any factorization 

would necessarily include a linear factor). 

Therefore, x³ - 3x + 1 is irreducible over Q. 

Example 3: Division Algorithm in Q[x] 

Use the polynomial division algorithm to find the quotient and 

remainder when f(x) = 2x⁴ - 3x³ + x - 5 is divided by g(x) = x² - 2. 

Solution: 

We need to find polynomials q(x) and r(x) such that f(x) = g(x)·q(x) + 

r(x) where deg(r) <deg(g) = 2. 

Step 1: Divide the leading term of f(x) by the leading term of g(x): 2x⁴ 

÷ x² = 2x² 

Step 2: Multiply g(x) by this term: 2x² · (x² - 2) = 2x⁴ - 4x² 

Step 3: Subtract from f(x) and continue: f(x) - (2x⁴ - 4x²) = -3x³ + 4x² 

+ x - 5 

Step 4: Divide the leading term of this result by the leading term of 

g(x): -3x³ ÷ x² = -3x 

Step 5: Multiply g(x) by this term: -3x · (x² - 2) = -3x³ + 6x 

Step 6: Subtract and continue: -3x³ + 4x² + x - 5 - (-3x³ + 6x) = 4x² + 

x - 6x - 5 = 4x² - 5x - 5 



 

 
 

Notes The degree of this remainder is less than deg(g), so we're done. 

Therefore, q(x) = 2x² - 3x and r(x) = 4x² - 5x - 5. 

Verification: f(x) = g(x)·q(x) + r(x) = (x² - 2)(2x² - 3x) + (4x² - 5x - 5) 

= 2x⁴ - 4x² - 3x³ + 6x + 4x² - 5x - 5 = 2x⁴ - 3x³ + 0x² + x - 5 

Example 4: Finding GCD using the Euclidean Algorithm 

Find the greatest common divisor of f(x) = x³ - 1 and g(x) = x² - 1 in 

Q[x]. 

Solution: 

We apply the Euclidean algorithm: 

Step 1: Divide f(x) by g(x): x³ - 1 = (x² - 1) · x + (x - 1) 

So the remainder r₁(x) = x - 1. 

Step 2: Divide g(x) by r₁(x): x² - 1 = (x - 1) · (x + 1) + 0 

Since the remainder is 0, the GCD is the last non-zero remainder, 

which is r₁(x) = x - 1. 

Therefore, gcd(x³ - 1, x² - 1) = x - 1. 

This makes sense because: x³ - 1 = (x - 1)(x² + x + 1) x² - 1 = (x - 1)(x 

+ 1) 

Example 5: Evaluating a Polynomial at a Point 

Let f(x) = 3x⁴ - 2x² + 5x - 7 be a polynomial in Z[x]. Evaluate f(2). 

Solution: 

f(2) = 3(2⁴) - 2(2²) + 5(2) - 7 = 3(16) - 2(4) + 5(2) - 7 = 48 - 8 + 10 - 7 

= 43 

Therefore, f(2) = 43. 

Unsolved Problems 

Problem 1 
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Notes Let f(x) = x³ - 4x² + 3x + 1 and g(x) = x² - x - 2 be polynomials in 

Q[x]. Find the quotient and remainder when f(x) is divided by g(x). 

Problem 2 

Determine whether the polynomial p(x) = x⁴ - 10x² + 1 is irreducible 

over Q. 

Problem 3 

Find the greatest common divisor of h(x) = x⁴ - 16 and k(x) = x² - 4 in 

Z[x]. 

Problem 4 

Let R[x,y] be the ring of polynomials in two variables with real 

coefficients. If f(x,y) = x²y + 3xy² - y³ + 2, evaluate f(1,2). 

Problem 5 

Prove that if R is an integral domain, then the polynomial f(x) = ax + 

b is irreducible in R[x] if and only if it is not divisible by any non-unit 

element of R. 
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  • A polynomial in R[x] is a formal algebraic expression

expressions and polynomial functions:

It's  important  to  distinguish  between  polynomials  as  formal

   

• Multiplication:  Convolution  product  of  sequences,  where  the

• Addition: Component-wise addition of sequences

operations in this ring are defined as follows:

The  set  of  all  such sequences  forms  the  polynomial  ring  R[x].  The 

a₀ + a₁x + a₂x² + ... + aₙxⁿ

represents the polynomial:

where  only  finitely  many  terms  are  non-zero.  This  sequence 

(a₀, a₁, a₂, ..., aₙ, 0, 0, ...)

as an infinite sequence of elements from R:

A polynomial in an indeterminate x over a ring R is formally defined 

Formal Definition and Structure

zero polynomial equation with coefficients in R.

in  R[x]  is  transcendental  over  R,  meaning  it  doesn't  satisfy  any  non- 

the  indeterminate  x  with  coefficients  from  the  ring  R. The  element  x 

When  we  write  R[x],  we  are  considering  the  ring  of  polynomials  in 

polynomial rings.

The  concept  of  an  indeterminate  is  fundamental  to  the  theory  of 

fixed value, unlike a variable which can be assigned different values. 

An  indeterminate  in  algebra  is  a symbol  that  does  not  stand  for  any 

Introduction to Indeterminates

2.3.1: Polynomials in an Indeterminate

UNIT 2.3

Comparison with Function Rings

                                                                                                                                      i=0

kth component of the product is given by ∑ᵏ aᵢbₖ₋ᵢ
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Notes • A polynomial function maps elements of R to R by evaluation 

When R is an infinite integral domain, the ring R[x] is isomorphic to a 

subring of the ring of functions from R to R. However, when R is a 

finite field, different polynomials may induce the same function. 

For example, in Z₂[x] (polynomials over the field with two elements), 

the polynomials x² and x induce the same function since 0² = 0 and 1² 

= 1. 

Monomials and Terms 

A monomial in the indeterminate x is an expression of the form ax^n 

where a is a coefficient from R and n is a non-negative integer. The 

degree of this monomial is n. 

A term of a polynomial refers to each monomial that appears in the 

polynomial with a non-zero coefficient. 

Evaluating Polynomials at Points 

For a polynomial f(x) = a₀ + a₁x + ... + aₙxⁿ in R[x] and an element r in 

R, the evaluation homomorphism φᵣ: R[x] → R is defined by: 

φᵣ(f) = f(r) = a₀ + a₁r + ... + aₙrⁿ 

This is a ring homomorphism, meaning it preserves the operations of 

addition and multiplication. 

The Universal Property 

The polynomial ring R[x] satisfies an important universal property: 

For any ring S and any ring homomorphism φ: R → S and any 

element s in S, there exists a unique ring homomorphism ψ: R[x] → S 

such that ψ(r) = φ(r) for all r in R and ψ(x) = s. 

This property characterizes R[x] up to isomorphism and highlights its 

fundamental role in algebra. 

Polynomial Identities and the Substitution Principle 



 

 
 

Notes A polynomial identity is an equation between two polynomials that 

holds for all possible values of the indeterminates. 

The substitution principle states that if an identity holds for all 

polynomials, then it holds when the indeterminates are replaced by 

any elements from the ring. 

Roots and Factors 

An element r in R is called a root of a polynomial f(x) in R[x] if f(r) = 

0. 

If r is a root of f(x), then (x - r) is a factor of f(x), meaning there exists 

a polynomial q(x) such that f(x) = (x - r)·q(x). 

A polynomial of degree n over a field can have at most n roots unless 

it is the zero polynomial. 

Polynomials over Fields 

When R is a field, R[x] has several additional properties: 

1. R[x] is a principal ideal domain, meaning every ideal is 

generated by a single element. 

2. The division algorithm holds: for polynomials f(x) and g(x) ≠ 

0, there exist unique q(x) and r(x) such that f(x) = g(x)·q(x) + 

r(x) where r(x) = 0 or deg(r) <deg(g). 

3. Every non-constant polynomial can be factored uniquely (up 

to units) as a product of irreducible polynomials. 

The Remainder Theorem 

The Remainder Theorem states that when a polynomial f(x) is divided 

by (x - a), the remainder is equal to f(a). 

Mathematically: f(x) = (x - a)q(x) + f(a) 

This theorem provides a quick way to evaluate polynomials and is the 

basis for polynomial interpolation. 
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Notes  

 

  

  

 

 

 

   

  

 

  

  

 

 

 

 

 

 

 
geometry and invariant theory.

Homogeneous  polynomials  have  important applications  in  projective 

homogeneous of degree 2 because each term has total degree 2.

For  example,  in  R[x,y],  the  polynomial  3x²  +  5xy  +  2y²  is 

have the same total degree.

A homogeneous polynomial (or form) is a polynomial whose terms all 

Homogeneous Polynomials

All these viewpoints are isomorphic.

  R

• Directly as R[x,y], polynomials in x and y with coefficients in

• As (R[y])[x], polynomials in x with coefficients in R[y]

• As (R[x])[y], polynomials in y with coefficients in R[x]

There are different ways to view R[x,y]:

where aᵢⱼ are elements of R.

f(x,y) = ∑ᵢ₌₀ ∑ⱼ₌₀ aᵢⱼxⁱyʲ
                            n               m

A polynomial in R[x,y] can be written as:

indeterminates x and y with coefficients in R.

indeterminates. For example, R[x,y] is the ring of polynomials in two 

The  construction  of  polynomial  rings  can  be  extended  to  multiple 

Multiple Indeterminates

dividing f(x) by (x - a) is zero.

This  follows  because  f(a)  =  0  if  and  only  if  the  remainder  when 

An element a is a root of f(x) if and only if (x - a) is a factor of f(x).

Theorem:

The  Factor  Theorem  is  a  direct  consequence  of  the  Remainder 

The Factor Theorem



 

 
 

Notes Multivariate Polynomial Division 

Division of multivariate polynomials is more complex than in the 

single-variable case. There's no unique quotient and remainder 

without specifying a monomial ordering. 

Common monomial orderings include: 

• Lexicographic ordering 

• Graded lexicographic ordering 

• Graded reverse lexicographic ordering 

The theory of Gröbner bases extends the Euclidean algorithm to 

multivariate polynomials. 

Solved Examples 

Example 1: The Evaluation Homomorphism 

Prove that the evaluation map φᵣ: R[x] → R defined by φᵣ(f) = f(r) is a 

ring homomorphism. 

Solution: 

We need to show that φᵣ preserves addition and multiplication. 

For addition, let f(x) = a₀ + a₁x + ... + aₙxⁿ and g(x) = b₀ + b₁x + ... + 

bₘxᵐ be polynomials in R[x]. 

φᵣ(f + g) = (f + g)(r) = (a₀ + b₀) + (a₁ + b₁)r + ... + higher terms 

evaluated at r = (a₀ + a₁r + ... + aₙrⁿ) + (b₀ + b₁r + ... + bₘrᵐ) = f(r) + 

g(r) = φᵣ(f) + φᵣ(g) 

For multiplication: 

φᵣ(f · g) = (f · g)(r) = (a₀ + a₁r + ... + aₙrⁿ)(b₀ + b₁r + ... + bₘrᵐ) = f(r) · 

g(r) = φᵣ(f) · φᵣ(g) 

Therefore, φᵣ is a ring homomorphism. 

Example 2: Application of the Remainder Theorem 
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Notes Use the Remainder Theorem to evaluate f(x) = 2x³ - 5x² + 3x - 7 at x 

= 3. 

Solution: 

According to the Remainder Theorem, when f(x) is divided by (x - 3), 

the remainder equals f(3). 

Let's divide f(x) by (x - 3) using synthetic division: 

    3 |  2   -5    3   -7 

      |      6    3   18 

      --------------- 

         2    1    6   11 

Working through the synthetic division: 

• Bring down 2 

• Multiply 2 by 3 to get 6, add to -5 to get 1 

• Multiply 1 by 3 to get 3, add to 3 to get 6 

• Multiply 6 by 3 to get 18, add to -7 to get 11 

The remainder is 11, so f(3) = 11. 

We can verify this by direct computation: f(3) = 2(3³) - 5(3²) + 3(3) - 7 

= 2(27) - 5(9) + 3(3) - 7 = 54 - 45 + 9 - 7 = 11 

Example 3: Proving a Polynomial Identity 

Prove that (x + y)² = x² + 2xy + y² for all elements x and y in a 

commutative ring R. 

Solution: 

We can expand the left-hand side using the distributive property: (x + 

y)² = (x + y)(x + y) = x(x + y) + y(x + y) = x² + xy + yx + y² 

Since R is commutative, xy = yx, so: (x + y)² = x² + xy + xy + y² = x² 

+ 2xy + y² 



 

 
 

Notes This is a polynomial identity in R[x,y] and holds for all x, y in R. 

Example 4: Polynomial Division in Multiple Indeterminates 

Divide f(x,y) = x²y + xy² + y³ by g(x,y) = x + y in Q[x,y] using the 

lexicographic ordering with x > y. 

Solution: 

We need to find polynomials q(x,y) and r(x,y) such that f(x,y) = g(x,y) 

· q(x,y) + r(x,y). 

Step 1: Divide the leading term of f(x,y), which is x²y, by the leading 

term of g(x,y), which is x: x²y ÷ x = xy 

Step 2: Multiply g(x,y) by xy: xy(x + y) = x²y + xy² 

Step 3: Subtract from f(x,y): f(x,y) - (x²y + xy²) = x²y + xy² + y³ - (x²y 

+ xy²) = y³ 

Step 4: Divide y³ by the leading term of g(x,y): y³ ÷ x cannot be 

divided further since y³ doesn't contain x 

Therefore, q(x,y) = xy and r(x,y) = y³. 

Verification: f(x,y) = g(x,y) · q(x,y) + r(x,y) = (x + y) · xy + y³ = x²y + 

xy² + y³ 

Example 5: Using the Factor Theorem 

Use the Factor Theorem to completely factor the polynomial f(x) = x³ 

- 4x² - 7x + 10 over the rational numbers, given that x = 2 is a root. 

Solution: 

Since x = 2 is a root, we know that (x - 2) is a factor of f(x). 

We can use synthetic division to find the quotient when f(x) is divided 

by (x - 2): 

    2 |  1   -4   -7   10 

      |      2   -4  -22 

      --------------- 
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Notes           

    

  

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2.3.2: Evaluation Homomorphism

never a field.

Prove that if R is an integral domain, then the polynomial ring R[x] is 

Problem 5

all terms of f(x,y) that are homogeneous of degree 5.

Let f(x,y)  = x³y² + 2x²y³ - 3xy⁴ + y⁵ be a polynomial in R[x,y]. Find 

Problem 4

1).

Remainder Theorem to find the remainder when f(x) is divided by (x - 

Let  f(x)  =  x⁵  +  3x³ - 2x²  +  5  be  a  polynomial  in  Q[x].  Use  the 

Problem 3

polynomial ring R[x] is Z(R)[x], where Z(R) is the center of R.

Let  R  be  a  commutative  ring  with  unity.  Prove  that  the  center  of  the 

Problem 2

coefficients.

written  as  a  product  of  two  quadratic  polynomials  with  integer 

Let f(x) = x⁴ - 5x² + 4 be a polynomial in Z[x]. Show that f(x) can be 

Problem 1

Unsolved Problems

2)(x² - 2x - 11)

Therefore,  the  complete  factorization  of  f(x)  over  Q  is:  f(x)  =  (x - 

Since these roots are irrational, the quadratic is irreducible over Q.

(2 ± √(4 + 44))/2 = (2 ± √48)/2 = (2 ± 4√3)/2 = 1 ± 2√3

Now we need to factor x² - 2x - 11. Using the quadratic formula: x = 

So f(x) = (x - 2)(x² - 2x - 11)

1 -2 -11 -12



 

 
 

Notes The evaluation homomorphism is a fundamental concept in abstract 

algebra, particularly in the theory of polynomials. It provides a way to 

evaluate polynomials at specific values while preserving their 

algebraic structure. 

Definition and Basic Properties 

Let F be a field and F[x] be the ring of polynomials with coefficients 

in F. For any element a ∈ F, the evaluation homomorphism at a is the 

map: 

φₐ: F[x] → F 

defined by: 

φₐ(p(x)) = p(a) 

In other words, the evaluation homomorphism takes a polynomial 

p(x) and evaluates it at the point x = a. 

Properties of the Evaluation Homomorphism 

1. Homomorphism Property: 

o For any polynomials p(x) and q(x) in F[x]:  

▪ φₐ(p(x) + q(x)) = φₐ(p(x)) + φₐ(q(x)) 

▪ φₐ(p(x) · q(x)) = φₐ(p(x)) · φₐ(q(x)) 

2. Kernel Determination: 

o The kernel of φₐ consists of all polynomials p(x) such 

that p(a) = 0 

o This means ker(φₐ) = {p(x) ∈ F[x] | p(a) = 0} 

o The kernel is precisely the ideal generated by (x - a) 

o ker(φₐ) = (x - a) 

3. Surjectivity: 
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Notes o The evaluation homomorphism is surjective (onto), 

meaning every element in F is the image of some 

polynomial in F[x] 

o For any b ∈ F, the constant polynomial p(x) = b 

satisfies φₐ(p(x)) = b 

4. First Isomorphism Theorem Application: 

o By the First Isomorphism Theorem for rings, F[x]/(x - 

a) ≅ F 

o This means the quotient ring of F[x] by the ideal 

generated by (x - a) is isomorphic to F 

Polynomial Division and the Remainder Theorem 

One important application of the evaluation homomorphism is the 

Remainder Theorem. 

Remainder Theorem 

For any polynomial p(x) ∈ F[x] and any a ∈ F, when p(x) is divided 

by (x - a), the remainder is equal to p(a). 

Proof: By the Division Algorithm, we can write: p(x) = q(x)(x - a) + r 

where r is a constant (polynomial of degree 0). 

Evaluating both sides at x = a: p(a) = q(a)(a - a) + r = 0 + r = r 

Therefore, r = p(a), which means the remainder when p(x) is divided 

by (x - a) is p(a). 

Factor Theorem 

The Factor Theorem is a direct consequence of the Remainder 

Theorem: 

Theorem: (x - a) is a factor of p(x) if and only if p(a) = 0. 

Proof: 



 

 
 

Notes • If (x - a) is a factor of p(x), then p(x) = q(x)(x - a) for some 

q(x) 

• Evaluating at x = a: p(a) = q(a)(a - a) = 0 

• Conversely, if p(a) = 0, then by the Remainder Theorem, the 

remainder when p(x) is divided by (x - a) is 0 

• Thus, p(x) = q(x)(x - a) for some q(x), meaning (x - a) is a 

factor of p(x) 

Multiple Evaluation Points and Chinese Remainder Theorem 

The concept of evaluation homomorphism extends to multiple points 

through the Chinese Remainder Theorem for polynomials. 

If a₁, a₂, ..., aₙ are distinct elements in F, then the combined evaluation 

homomorphism: 

φ: F[x] → F × F × ... × F (n times) φ(p(x)) = (p(a₁), p(a₂), ..., p(aₙ)) 

has the kernel: ker(φ) = ((x - a₁)(x - a₂)...(x - aₙ)) 

By the Chinese Remainder Theorem: F[x]/((x - a₁)(x - a₂)...(x - aₙ)) ≅ 

F[x]/(x - a₁) × F[x]/(x - a₂) × ... × F[x]/(x - aₙ) ≅ Fⁿ 

This isomorphism allows us to solve systems of polynomial 

congruences. 

Lagrange Interpolation 

Lagrange interpolation uses the evaluation homomorphism concept to 

construct a polynomial that passes through a given set of points. 

Given distinct points a₁, a₂, ..., aₙ ∈ F and corresponding values b₁, b₂, 

..., bₙ ∈ F, the Lagrange interpolation polynomial is: 

p(x) = Σ bⱼ Lⱼ(x) 

where Lⱼ(x) are the Lagrange basis polynomials: 

Lⱼ(x) = Π (x - aₖ)/(aⱼ - aₖ) k≠j 

This polynomial satisfies p(aⱼ) = bⱼ for all j = 1, 2, ..., n. 
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Notes Solved Problems 

Problem 1 

Problem: Find the kernel of the evaluation homomorphism φ₂: ℚ[x] 

→ ℚ where φ₂(p(x)) = p(2). 

Solution: The kernel of an evaluation homomorphism φₐ consists of 

all polynomials p(x) such that p(a) = 0. In this case, a = 2, so: ker(φ₂) 

= {p(x) ∈ ℚ[x] | p(2) = 0} 

By the theory of evaluation homomorphisms, we know that: ker(φ₂) = 

(x - 2) 

This means the kernel is the set of all polynomials that are divisible by 

(x - 2), which can be written as: {q(x)(x - 2) | q(x) ∈ ℚ[x]} 

Therefore, ker(φ₂) = (x - 2). 

Problem 2 

Problem: Use the Remainder Theorem to find the remainder when 

p(x) = x³ - 2x² + 4x - 7 is divided by (x - 3). 

Solution: According to the Remainder Theorem, when a polynomial 

p(x) is divided by (x - a), the remainder is equal to p(a). 

In this case, we need to find p(3): p(3) = 3³ - 2(3)² + 4(3) - 7 = 27 - 

2(9) + 12 - 7 = 27 - 18 + 12 - 7 = 14 

Therefore, the remainder when p(x) = x³ - 2x² + 4x - 7 is divided by (x 

- 3) is 14. 

Problem 3 

Problem: Determine whether (x - 2) is a factor of p(x) = x⁴ - 5x³ + 2x² 

+ 8x - 16. 

Solution: According to the Factor Theorem, (x - a) is a factor of p(x) if 

and only if p(a) = 0. 

So to determine if (x - 2) is a factor of p(x), we need to check if p(2) = 

0. 



 

 
 

Notes p(2) = 2⁴ - 5(2)³ + 2(2)² + 8(2) - 16 = 16 - 5(8) + 2(4) + 16 - 16 = 16 - 

40 + 8 + 16 - 16 = -16 

Since p(2) = -16 ≠ 0, (x - 2) is not a factor of p(x). 

Problem 4 

Problem: Use the Chinese Remainder Theorem to find a polynomial 

p(x) ∈ ℚ[x] of degree less than 3 such that: 

• p(1) = 2 

• p(2) = -1 

• p(3) = 4 

Solution: We'll use Lagrange interpolation to construct the 

polynomial. For each point, we define: 

L₁(x) = ((x-2)(x-3))/((1-2)(1-3)) = ((x-2)(x-3))/(-1)(-2) = (x-2)(x-3)/2 

L₂(x) = ((x-1)(x-3))/((2-1)(2-3)) = ((x-1)(x-3))/(1)(-1) = -(x-1)(x-3) 

L₃(x) = ((x-1)(x-2))/((3-1)(3-2)) = ((x-1)(x-2))/(2)(1) = (x-1)(x-2)/2 

Now, our polynomial is: p(x) = 2L₁(x) + (-1)L₂(x) + 4L₃(x) = 2((x-

2)(x-3)/2) + (-1)(-(x-1)(x-3)) + 4((x-1)(x-2)/2) = (x-2)(x-3) + (x-1)(x-

3) + 2(x-1)(x-2) 

Let's expand: (x-2)(x-3) = x² - 5x + 6 (x-1)(x-3) = x² - 4x + 3 2(x-1)(x-

2) = 2(x² - 3x + 2) = 2x² - 6x + 4 

p(x) = (x² - 5x + 6) + (x² - 4x + 3) + (2x² - 6x + 4) = 4x² - 15x + 13 

To verify: p(1) = 4(1)² - 15(1) + 13 = 4 - 15 + 13 = 2 ✓ p(2) = 4(2)² - 

15(2) + 13 = 16 - 30 + 13 = -1 ✓ p(3) = 4(3)² - 15(3) + 13 = 36 - 45 + 

13 = 4 ✓ 

Therefore, p(x) = 4x² - 15x + 13 is our solution. 

Problem 5 
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Notes Problem: Determine the quotient and remainder when p(x) = x⁴ + 2x³ 

- 3x² + x - 5 is divided by (x - 2). 

Solution: We can use the evaluation homomorphism and the Division 

Algorithm to solve this. 

By the Remainder Theorem, the remainder when p(x) is divided by (x 

- 2) is p(2). 

p(2) = 2⁴ + 2(2)³ - 3(2)² + 2 - 5 = 16 + 2(8) - 3(4) + 2 - 5 = 16 + 16 - 

12 + 2 - 5 = 17 

So the remainder is 17. 

To find the quotient q(x), we use the Division Algorithm: p(x) = 

q(x)(x - 2) + 17 

We can use synthetic division or polynomial long division: 

Using synthetic division with divisor (x - 2): 2 | 1 2 -3 1 -5 | 2 8 10 22 

---------------------- 1 4 5 11 17 

The quotient is the coefficients above the line, excluding the 

remainder: q(x) = x³ + 4x² + 5x + 11 

To verify: (x³ + 4x² + 5x + 11)(x - 2) + 17 = x⁴ - 2x³ + 4x³ - 8x² + 5x² - 

10x + 11x - 22 + 17 = x⁴ + 2x³ - 3x² + x - 5 ✓ 

Therefore, when p(x) = x⁴ + 2x³ - 3x² + x - 5 is divided by (x - 2): 

• Quotient: q(x) = x³ + 4x² + 5x + 11 

• Remainder: 17 

Unsolved Problems 

Problem 1 

Find the kernel of the evaluation homomorphism φ₋₁: ℝ[x] → ℝ 

where φ₋₁(p(x)) = p(-1). 

Problem 2 
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 elements" of the polynomial ring F[x].

Prime  Elements:  Irreducible  polynomials  are  the  "prime 1.

Properties of Irreducible Polynomials

each of degree at least 1.

F  if  it  cannot  be  expressed  as  a  product  of  two  polynomials  in  F[x], 

A polynomial p(x) ∈ F[x] of degree at least 1 is called irreducible over 

Irreducible Polynomials

factoring polynomials over fields.

cryptography.  This  section  explores  the  theory  and  techniques  of 

applications  ranging  from  solving  polynomial  equations  to 

Polynomial  factorization  is  a  central  topic  in  algebra,  with 

2.3.3 Factorization of Polynomials over a Field

such that φ(p(x)) = (4, 1).

φ(p(x))  =  (p(2),  p(3)).  Find  a  polynomial  p(x)  of  degree  less  than  2 

Let φ: ℤ₅[x] → ℤ₅ × ℤ₅ be the evaluation homomorphism defined by 

Problem 5

• p(3) = 4

• p(2) = 0

• p(1) = -2

• p(0) = 1

Find a polynomial p(x) ∈ ℚ[x] of degree less than 4 such that:

Problem 4

is a factor of p(x) = x³ - kx² + 4x - 12.

Use the Factor Theorem to determine all values of k for which (x - 3)

Problem 3

3x³ + 4x - 7 is divided by (x + 2).

Use the Remainder Theorem to find the remainder when p(x) = 2x⁵ - 
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  • p divides all coefficients except aₙ

exists a prime number p such that:

Theorem:  Let  p(x)  =  aₙxⁿ  +  aₙ₋₁xⁿ⁻¹  +  ...  +  a₁x  +  a₀ ∈ ℤ[x].  If  there 

 Eisenstein's Criterion2.

This helps identify potential rational roots for testing.

• q divides aₙ

• p divides a₀

coefficients, if p/q is a rational root (with gcd(p,q) = 1), then:

For  a  polynomial  p(x)  =  aₙxⁿ  +  aₙ₋₁xⁿ⁻¹  +  ...  +  a₁x  +  a₀  with  integer 

1. Rational Root Theorem

Techniques for Factorization

is unique up to the order of the factors.

polynomial over F, and each eᵢ is a positive integer. This factorization 

where a ∈ F is  a non-zero constant, each pᵢ(x) is  a monic irreducible 

p(x) = a · p₁(x)e₁ · p₂(x)e₂ · ... · pₙ(x)eₙ

uniquely as:

Theorem: Every non-constant polynomial p(x) ∈ F[x] can be factored 

The Fundamental Theorem of Algebra for polynomials states:

Unique Factorization Theorem

polynomials.

factored  uniquely  (up  to  units)  as  a  product  of  irreducible 

Unique  Factorization:  Every  polynomial  in  F[x]  can  be 4.

is a field extension of F.

Field Extensions: If p(x) is irreducible over F, then F[x]/(p(x))3.

irreducible.

Degree  1  Polynomials:  Every  polynomial  of  degree  1  is 2.



 

 
 

Notes • p² does not divide a₀ 

• p does not divide aₙ 

Then p(x) is irreducible over ℚ. 

3. Gauss's Lemma 

Lemma: A primitive polynomial in ℤ[x] is irreducible over ℚ if and 

only if it is irreducible over ℤ. 

This allows testing irreducibility over ℚ by examining factorizations 

over ℤ. 

4. Reducibility Testing over Finite Fields 

For polynomials over finite fields, we can test all possible 

factorizations up to a certain degree, as there are only finitely many 

polynomials of a given degree. 

Special Cases: Factorization over Specific Fields 

Factorization over ℝ (Real Numbers) 

Over ℝ, irreducible polynomials are either of degree 1 or 2: 

• Linear factors: (x - a) where a ∈ ℝ 

• Quadratic factors: (x² + bx + c) where b² - 4c < 0 

Factorization over ℂ (Complex Numbers) 

Over ℂ, every non-constant polynomial factors completely into linear 

factors by the Fundamental Theorem of Algebra: 

p(x) = a(x - z₁)(x - z₂)...(x - zₙ) 

where a ∈ ℂ is a constant and z₁, z₂, ..., zₙ ∈ ℂ are the roots of p(x). 

Factorization over ℚ (Rational Numbers) 

Over ℚ, irreducible polynomials can have any degree. Some common 

techniques for factoring over ℚ include: 

• The Rational Root Theorem 
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 difficulty of factoring certain polynomials over finite fields.

Cryptography:  Many  cryptographic  systems  rely  on  the 4.

crucial role in coding theory.

Error-Correcting  Codes:  Polynomial  factorization  plays  a 3.

construct field extensions.

Field  Extensions:  Irreducible  polynomials  are  used  to 2.

us to find its roots.

Solving Polynomial Equations: Factoring a polynomial allows 1.

Applications of Polynomial Factorization

• xn - 1 = ∏ Φₚ(x), where d ranges over all divisors of n

• Φₙ(x) has degree φ(n), where φ is Euler's totient function

• Φₙ(x) is irreducible over ℚ

Properties:

roots are the primitive nth roots of unity.

The  cyclotomic  polynomial  Φₙ(x)  is  the  monic  polynomial  whose 

Cyclotomic Polynomials

Fq can be calculated using Möbius inversion formula

• The number of monic irreducible polynomials of degree n over  

x(qn) - x

• Every  irreducible  polynomial  of  degree  n  over  Fq  divides  

For a finite field Fq with q elements:

Factorization over Finite Fields

  positive and negative roots)

• Descartes' Rule of Signs (for information about the number of

• Gauss's Lemma

• Eisenstein's Criterion



 

 
 

Notes 5. Computer Algebra Systems: Efficient factorization algorithms 

are essential components of computer algebra systems. 

Solved Problems 

Problem 1 

Problem: Determine whether the polynomial p(x) = x³ - 3x + 1 is 

irreducible over ℚ. 

Solution: To determine if p(x) = x³ - 3x + 1 is irreducible over ℚ, we 

can apply the Rational Root Theorem. 

The possible rational roots of p(x) are the divisors of the constant term 

(1) divided by the divisors of the leading coefficient (1). Possible 

rational roots: ±1 

Let's check these candidates: p(1) = 1³ - 3(1) + 1 = 1 - 3 + 1 = -1 ≠ 0 

p(-1) = (-1)³ - 3(-1) + 1 = -1 + 3 + 1 = 3 ≠ 0 

Since p(x) has no rational roots, it has no linear factors in ℚ[x]. 

The only other possibility for reducibility would be a factorization 

into a linear and a quadratic factor, but since there are no linear 

factors, this is impossible. 

Therefore, p(x) = x³ - 3x + 1 is irreducible over ℚ. 

Problem 2 

Problem: Factor the polynomial p(x) = x⁴ - 5x² + 4 over ℝ. 

Solution: Let's try to recognize this as a quadratic in x². Let's set u = x² 

and rewrite: p(x) = x⁴ - 5x² + 4 = u² - 5u + 4 

Now we can factor this quadratic: u² - 5u + 4 = (u - 4)(u - 1) = (x² - 

4)(x² - 1) 

We can factor these further: x² - 4 = (x - 2)(x + 2) x² - 1 = (x - 1)(x + 

1) 

Therefore: p(x) = x⁴ - 5x² + 4 = (x - 2)(x + 2)(x - 1)(x + 1) 
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Notes To verify: (x - 2)(x + 2)(x - 1)(x + 1) = (x² - 4)(x² - 1) = x⁴ - x² - 4x² + 

4 = x⁴ - 5x² + 4 ✓ 

So the factorization of p(x) = x⁴ - 5x² + 4 over ℝ is (x - 2)(x + 2)(x - 

1)(x + 1). 

Problem 3 

Problem: Use Eisenstein's Criterion to prove that p(x) = 2x³ + 6x² + 

3x + 9 is irreducible over ℚ. 

Solution: To apply Eisenstein's Criterion, we need to find a prime p 

such that: 

1. p divides all coefficients except the leading coefficient 

2. p² does not divide the constant term 

3. p does not divide the leading coefficient 

Let's examine the coefficients of p(x) = 2x³ + 6x² + 3x + 9: 

• Leading coefficient: 2 

• x² coefficient: 6 

• x coefficient: 3 

• Constant term: 9 

Let's try p = 3: 

• 3 divides 6, 3, and 9 

• 3 does not divide 2 (the leading coefficient) 

• 3² = 9 divides 9 (the constant term) 

Since 3² divides the constant term, Eisenstein's Criterion does not 

apply with p = 3. 

Let's transform the polynomial to make Eisenstein's Criterion 

applicable. Let's substitute x = y + 1: 
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    Therefore: p(x) = x⁶ - 1 = (x - 1)(x + 1)(x² + x + 1)(x² - x + 1)

• Φ₆(x) = x² - x + 1

• Φ₃(x) = x² + x + 1

• Φ₂(x) = x + 1

• Φ₁(x) = x - 1

Now we need to compute these cyclotomic polynomials:

For n = 6: x⁶ - 1 = Φ₁(x) · Φ₂(x) · Φ₃(x) · Φ₆(x)

= ∏ Φₚ(x), where d ranges over all divisors of n.

Solution: We can use cyclotomic polynomials to factor xn - 1. xn - 1 

Problem: Factor the polynomial p(x) = x⁶ - 1 over ℚ.

Problem 4

2x³ + 6x² + 3x + 9 is irreducible over ℚ.

substitution x = y + 1, we conclude that the original polynomial p(x) = 

transformed  polynomial.  Since  irreducibility  is  preserved  under  the 

All  conditions  of  Eisenstein's  Criterion  are  satisfied  for  the 

• 3² = 9 does not divide 20 (the constant term)

• 3 does not divide 2 (the leading coefficient)

  coefficient)

• 3  divides  12,  21,  and  20  (all  coefficients  except  the  leading

Now let's check if Eisenstein's Criterion applies with the prime p = 3:

21y + 20

+ 9 = 2y³ + 6y² + 6y + 2 + 6y² + 12y + 6 + 3y + 3 + 9 = 2y³ + 12y² + 

Expanding: p(y + 1) = 2(y³ + 3y² + 3y + 1) + 6(y² + 2y + 1) + 3(y + 1)

p(y + 1) = 2(y + 1)³ + 6(y + 1)² + 3(y + 1) + 9
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Notes To verify, we can multiply out: (x - 1)(x + 1) = x² - 1 (x² - 1)(x² + x + 

1) = x⁴ + x³ + x² - x² - x - 1 = x⁴ + x³ - x - 1 (x⁴ + x³ - x - 1)(x² - x + 1) 

= x⁶ - x⁵ + x⁴ + x⁵ - x⁴ + x³ - x³ + x² - x - x² + x + 1 = x⁶ - 1 ✓ 

Therefore, the factorization of p(x) = x⁶ - 1 over ℚ is: (x - 1)(x + 1)(x² 

+ x + 1)(x² - x + 1) 

Problem 5 

Problem: Factor the polynomial p(x) = x⁴ + 4 over ℚ, ℝ, and ℂ. 

Solution: Factorization over ℚ: Let's check if p(x) = x⁴ + 4 is 

irreducible over ℚ. 

By the Rational Root Theorem, any rational root would need to be a 

divisor of 4, so the candidates are: ±1, ±2, ±4. 

Testing these values: p(1) = 1⁴ + 4 = 1 + 4 = 5 ≠ 0 p(-1) = (-1)⁴ + 4 = 1 

+ 4 = 5 ≠ 0 p(2) = 2⁴ + 4 = 16 + 4 = 20 ≠ 0 p(-2) = (-2)⁴ + 4 = 16 + 4 = 

20 ≠ 0 p(4) = 4⁴ + 4 = 256 + 4 = 260 ≠ 0 p(-4) = (-4)⁴ + 4 = 256 + 4 = 

260 ≠ 0 

So p(x) has no rational roots. 

Let's check if it can be factored as a product of two quadratics: If x⁴ + 

4 = (x² + ax + b)(x² + cx + d), then: 

• bd = 4 

• ad + bc = 0 

• b + d + ac = 0 

• a + c = 0 

From the last equation, c = -a. Substituting into the third equation: b + 

d - a² = 0 

Since b·d = 4, there are limited options for b and d as integers or 

rational numbers: (b,d) = (1,4), (2,2), (4,1), (-1,-4), (-2,-2), (-4,-1) 
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  Factor the polynomial p(x) = x⁴ - 16 over ℝ and ℂ.

Problem 2

irreducible over ℚ.

Determine  whether  the  polynomial  p(x)  =  x⁴  +  x³  +  x²  +  x  +  1  is 

Problem 1

Unsolved Problems

• Over ℂ: x⁴ + 4 = (x + (1+i))(x + (-1+i))(x + (-1-i))(x + (1-i))

• Over ℝ: x⁴ + 4 = (x² + 2√2i)(x² - 2√2i)

• Over ℚ: x⁴ + 4 is irreducible

Therefore:

Simplifying: x⁴ + 4 = (x + (1+i))(x + (-1+i))(x + (-1-i))(x + (1-i))

(-1-i))(x + (1-i))

√2·e(5πi/4))(x + √2·e(7πi/4)) = (x + √2·(-1-i)/√2)(x + √2·(1-i)/√2)= (x + 

(1+i)/√2)(x + √2·(-1+i)/√2) = (x + (1+i))(x + (-1+i)) x² - 2√2i = (x + 

the quadratics: x² + 2√2i = (x + √2·e(πi/4))(x + √2·e(3πi/4)) = (x + √2·

Factorization over ℂ: To factor further over ℂ, we can factor each of 

So over ℝ: x⁴ + 4 = (x² + 2√2i)(x² - 2√2i)

+ 2√2i)(x² - 2√2i)

4·1² = x⁴ + 4·2²/2² = (x⁴ + 4·2²)/2² · 2² = ((x²)² + (2·√2)²)/2² · 2² = (x² 

Factorization over ℝ: Over ℝ, we can express x⁴ + 4 as: x⁴ + 4 = x⁴ + 

can conclude that x⁴ + 4 is irreducible over ℚ.

So this factorization doesn't work. After trying other combinations, we 

≠ x⁴ + 4

4x² + 4 + 2x³ - 4x² + 4x - 2x³ + 4x² - 4x = x⁴ - 4x² + 4 + 0 + 0 = x⁴ + 4 

If a = 2, then c = -2, and we can check: (x² + 2x + 2)(x² - 2x + 2) = x⁴ - 

4, so a = ±2

Let's try (b,d) = (2,2): b + d - a² = 2 + 2 - a² = 4 - a² = 0 This gives a² = 
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Notes Problem 3 

Use Eisenstein's Criterion to prove that the polynomial p(x) = x³ + 

15x² + 5x + 10 is irreduc 

Multiple Choice Questions (MCQs) 

1. Which of the following is true about p-groups? 

a) They always contain a normal subgroup. 

b) They have order divisible by p but not necessarily a power 

of p. 

c) They are always abelian. 

d) None of the above. 

2. The class equation of a finite group helps in: 

a) Finding normal subgroups 

b) Counting the number of conjugacy classes 

c) Determining the number of elements in a group 

d) None of the above 

3. The Sylow theorems are particularly useful in studying: 

a) Infinite groups 

b) Finite simple groups 

c) Abelian groups 

d) None of the above 

4. The set of all polynomials with real coefficients forms: 

a) A group under addition 

b) A ring under addition and multiplication 

c) A field under addition and multiplication 

d) None of the above 

5. The evaluation homomorphism maps a polynomial to: 

a) Its derivative 

b) Its integral 

c) A specific value by substituting an element from the field 

d) None of the above 



 

 
 

Notes 6. Which of the following is true about polynomial rings? 

a) Every polynomial has a unique factorization over any ring. 

b) The degree of the product of two polynomials is the sum of 

their degrees. 

c) Polynomial rings are always commutative. 

d) None of the above. 

7. A polynomial f(x) over a field F is irreducible if: 

a) It has a root in F. 

b) It cannot be factored into nontrivial polynomials in F[x]. 

c) It has complex coefficients. 

d) It is of degree 1. 

8. The fundamental theorem of algebra states that every 

polynomial of degree n over the complex numbers has: 

a) At most n roots 

b) At least one real root 

c) Exactly n roots (counting multiplicities) 

d) None of the above 

9. The ring of polynomials over a field is: 

a) Always a division ring 

b) A commutative ring with unity 

c) A non-commutative ring 

d) None of the above 

10. A field F is said to be algebraically closed if: 

a) Every polynomial over F has a root in F. 

b) It contains all real numbers. 

c) It has finite elements. 

d) It has an identity element. 

Short Answer Questions 

1. State and explain the class equation of a finite group. 
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Notes 2. How do Sylow’s theorems help in studying the structure of 

finite groups? 

3. Define a p-group and give an example. 

4. What is the significance of polynomial rings in algebra? 

5. Define the evaluation homomorphism and provide an 

example. 

6. What is an irreducible polynomial? Provide an example over 

the field of real numbers. 

7. How do you factorize polynomials over a field? Give an 

example. 

8. Explain why every field has a polynomial ring. 

9. What is the role of Sylow’s theorems in classifying finite 

simple groups? 

10. Give an example of a ring that is not a field and explain why. 

Long Answer Questions 

1. Discuss in detail the class equation and its significance in 

group theory. 

2. How do Sylow’s theorems provide insight into the structure of 

finite groups? Give detailed examples. 

3. Explain the concept of polynomial rings and their applications 

in algebra. 

4. Define irreducible polynomials and describe their importance 

in field theory. 

5. Prove that the set of all polynomials over a field forms a 

commutative ring. 



 

 
 

Notes 6. Explain the factorization of polynomials over a field and 

provide examples. 

7. How does the fundamental theorem of algebra relate to 

polynomial factorization? 

8. Discuss applications of polynomial rings in modern algebra 

and number theory. 

9. Describe how the evaluation homomorphism works and 

illustrate with examples. 

10. What are the differences between a field and a ring? Give 

examples to illustrate their properties. 

  



a10. 

 b9.

 c8.

 b7.

 b6.

 c5.

 b4.

 b3.

 b2.

 a1.

Answer Key MCQ :
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 0 = a for all a in F.

Additive identity: There exists an element 0 in F such that a +4.

Commutativity of addition: For all a, b in F, a + b = b + a.3.

(b + c).

Associativity of addition: For all a, b, c in F, (a + b) + c = a + 2.

Closure under addition: For all a, b in F, a + b is in F.1.

multiplication (·), that satisfy the following axioms:

A field is a set F together with two binary operations, addition (+) and 

cryptography.

particularly  in  areas  like  number  theory,  algebraic  geometry,  and 

fundamental algebraic structures that appear throughout mathematics, 

addition,  subtraction,  multiplication,  and  division.  Fields  are 

and  structures  of  fields,  which  are  sets  equipped  with  operations  of 

Field theory is a branch of abstract algebra that studies the properties 

3.1.1: Introduction to Field Theory

• Study the construction and properties of finite fields.

• Analyze finite extensions and their structure.

• Explore simple extensions and algebraic extensions.

• Learn about irreducible polynomials over a field.

• Differentiate between algebraic and transcendental elements.

• Understand the concept of extension fields.

Objectives

FIELD THEORY

UNIT 3.1

MODULE 3
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 3.1.2 Extension Fields and Their Importance

the next section.

This  leads  to  the  concept  of  field  extensions,  which  we'll  explore  in 

particularly  how  larger  fields  can  be  constructed  from  smaller  ones. 

Field  theory  investigates  the  relationships  between  different  fields, 

structures like rings.

by  non-zero  elements,  which  is  not  possible  in  other  algebraic 

operations of arithmetic. For example, in a field, we can always divide 

Fields provide a setting in which equations can be solved by the basic 

• Finite fields such as Z_p (integers modulo p, where p is prime)

• The complex numbers C

• The real numbers R

• The rational numbers Q

            

Multiplicative identity: There exists an element 1 in F, with 1 9.

a.

Commutativity of multiplication: For all a, b in F, a · b = b · 8.

= a · (b · c).

Associativity of multiplication: For all a, b, c in F, (a · b) · c 7.

Closure under multiplication: For all a, b in F, a · b is in F.6.

F such that a + (-a) = 0.

Additive inverse: For each a in F, there exists an element -a in 5.

The most familiar examples of fields include:

11. Distributivity: For all a, b, c in F, a · (b + c) = (a · b) + (a · c).

element a(-1) in F such that a · a(-1) = 1.

10. Multiplicative inverse: For each a ≠ 0 in F, there exists an  

≠ 0, such that a · 1 = a for all a in F.
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 equations.

to  address  questions  about  the  solvability  of  polynomial 

Galois  theory,  which  connects  field  theory  with  group  theory 

Field  Theory Applications:  Extension  fields  are  essential  in 3.

coefficients in F has a root.

which  is  an  extension  field  in  which  every  polynomial  with 

Algebraic  Closure:  Every  field  F  has  an  algebraic  closure, 2.

field Q(√2), we can find solutions.

example,  x2  =  2  has  no  solution  in  Q,  but  in  the  extension 

equations  that  have  no  solutions  in  the  original  field.  For 

Solving  Equations:  Extension  fields  allow  us  to  solve 1.

Extension fields are fundamental in algebra for several reasons:

Importance of Extension Fields

• For a prime p, the field Fpn is an extension of Fp

  real numbers R

• The field of complex numbers C is an extension of the field of

  rational numbers Q

• The  field  of  real  numbers  R  is  an  extension  of  the  field  of

For example:

elements of F

The operations of F coincide with those of E when restricted to 2.

F is a subset of E1.

a subfield. This means that:

Formally, an extension field E of a field F is a field E containing F as 

extension field of F, and we write F ⊆ E or E/F.

it.  If  F  is  a  field  and  E  is  a  field  containing  F,  then  E  is  called  an 

An extension field is a larger field that contains a smaller field within 
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 coefficients in F such that p(α) = 0.

α is algebraic over F if there exists a non-zero polynomial p(x) with 

Let E be an extension field of F, and let α be an element of E. We say 

Algebraic Elements

between algebraic and transcendental elements.

When  studying  field  extensions,  an  important  distinction  is  made 

3.1.3 Algebraic vs. Transcendental Elements

into simpler ones, making them easier to analyze.

This important property allows us to break down complex extensions 

If F ⊆ K ⊆ E are fields, then [E:F] = [E:K][K:F].

The Tower Law

• [Q(√2):Q] = 2 (with basis {1, √2})

  with basis {1, i})

• [C:R]  =  2  (because  C  is  a  2-dimensional  vector  space  over  R

• [R:Q] is infinite

For example:

infinite extension.

If [E:F] is finite, E is called a finite extension of F. Otherwise, it's an 

extension, denoted by [E:F].

F.  The  dimension  of  this  vector  space  is  called  the degree  of  the 

If E is an extension of F, then E can be viewed as a vector space over 

Degree of an Extension

theory, cryptography, and computer science.

Finite Fields: Extensions of finite fields are crucial in coding 5.

numbers are fundamental in studying algebraic number theory.

Algebraic  Number  Theory:  Extension  fields  of  the  rational 4.
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  π (pi) is transcendental over Q (proved by Lindemann in 1882)1.

Examples of Transcendental Elements:

equation with coefficients in F.

F.  This  means  that  α  does  not  satisfy  any  non-zero  polynomial 

An element α in E is transcendental over F if it is not algebraic over 

Transcendental Elements

over F.

The degree of the minimal polynomial of α is called the degree of α 

mα(x)

• Any polynomial p(x) in F[x] such that p(α) = 0 is divisible by  

• It is monic (the leading coefficient is 1)

• It is irreducible over F

The minimal polynomial has the following properties:

polynomial is called the minimal polynomial of α over F.

irreducible  polynomial  mα(x)  in  F[x]  such  that  mα(α)  =  0.  This 

For  any  algebraic  element  α  over  F,  there  exists  a  unique  monic 

Minimal Polynomial

base field.

Every element of  a finite field extension is algebraic over the 3.

x2 + 1 = 0.

i  (the  imaginary  unit)  is  algebraic  over  R  because  it  satisfies 2.

2 = 0.

√2 is algebraic over Q because it satisfies the polynomial x2 -1.

Examples of Algebraic Elements:

polynomial with coefficients in the base field.

In  other  words,  an  element  is  algebraic  if  it  is  a  root  of  some 
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areas of mathematics.

transcendental,  which  has  significant  implications  in  various 

Many  important  mathematical  constants  like  π  and  e  are 4.

a fundamental problem in number theory.

The classification of numbers as algebraic or transcendental is 3.

in areas like transcendental number theory.

Transcendental extensions are less structured but are important 2.

using tools like minimal polynomials and Galois theory.

Algebraic  extensions  are  well-structured  and  can  be  studied 1.

crucial in field theory because:

The  distinction  between  algebraic  and  transcendental  elements  is 

Importance of the Distinction

the field of rational functions F(x).

For a transcendental element τ over F, the  field  F(τ) is isomorphic to 

where n is the degree of the minimal polynomial of α over F.

ai∈ F}

containing both F and α) is: F(α) = {a0 + a1α + a2α2 + ... + a(n- 1)α(n-1) | 

For  an  algebraic  element  α  over  F,  the  field  F(α)  (the  smallest  field 

algebraic over F. Otherwise, it is transcendental.

An  extension  E/F  is  called algebraic if  every  element  of  E  is 

Algebraic and Transcendental Extensions

In general, "most" real numbers are transcendental over Q3.

Hermite in 1873)

e  (Euler's  number)  is  transcendental  over  Q  (proved  by 2.
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 1.

irreducible:

Several techniques can be used to determine whether a polynomial is 

Methods for Determining Irreducibility

the ring F[x] of polynomials.

Irreducible  polynomials  play  the  role  of  "prime  elements"  in 4.

then [F(α):F] = n.

If p(x) is irreducible over F of degree n, and α is a root of p(x), 3.

extension E, then p(x) is the minimal polynomial of α over F.

If  p(x)  is  irreducible  over  F  and  α  is  a  root  of  p(x)  in  some 2.

Linear polynomials (degree 1) are always irreducible.1.

Key properties of irreducible polynomials:

F[x].

cannot be expressed as a product of two non-constant polynomials in 

A  non-constant  polynomial  p(x)  in  F[x]  is irreducible over  F  if  p(x)

Definition and Properties

that field.

field  if  it  cannot  be  factored  into  polynomials  of  lower  degree  over 

in  constructing  field  extensions.  A  polynomial  is  irreducible  over  a 

Irreducible polynomials play a crucial role in field theory, particularly 

3.2.1: Irreducible Polynomials over a Field

UNIT 3.2

Eisenstein's Criterion: Let p(x) = anxn + a(n-1) x(n-1) +

there exists a prime number p such that:

... + a1 x + a0 be a polynomial with integer coefficients. If 

p divides a0, a1, ..., a(n-1)

p does not divide an

p2 does not divide a0
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  • R[x]/(x2 + 1) is isomorphic to C

• Q[x]/(x2 - 2) is isomorphic to Q(√2)

For example:

This  construction  gives  us  a  concrete  way  to  build  extension  fields. 

quotient ring F[x]/(p(x)) is a field extension of F of degree n.

If p(x) is an irreducible polynomial of degree n over a field F, then the 

in constructing field extensions:

One  of  the  most  important  applications  of  irreducible  polynomials  is 

Constructing Field Extensions Using Irreducible Polynomials

Cyclotomic polynomials Φn(x) are irreducible over Q5.

xp - x - 1 is irreducible over Q for any prime p4.

x2 + 1 is reducible over C as (x + i)(x - i)3.

x2 + 1 is irreducible over R (no real root)2.

x2 - 2 is irreducible over Q (no rational root)1.

Examples of Irreducible Polynomials:

q divides the leading coefficient of f(x).

coprime integers), then p divides the constant term of f(x) and 

polynomial  f(x)  with  integer  coefficients  (where  p  and  q  are 

Rational  Root  Theorem:  If  p(x)/q(x)  is  a  rational  root  of  a 4.

content (the greatest common divisor of its coefficients) is 1.

irreducible over Q if and only if it is irreducible over Z and its 

Gauss's  Lemma:  A  polynomial  with  integer  coefficients  is 3.

Q.

irreducible polynomial in Zp[x], then f(x) is irreducible over 

with  integer  coefficients  modulo  a  prime  p  yields  an 

Reduction  modulo  p:  If  the  reduction  of  a  polynomial  f(x)2.

Then p(x) is irreducible over Q.
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 Q(√2).

For additive inverse: The negative of a + b√2 is -a - b√2, which is in 

the form p + q√2 with p, q ∈ Q.

ac + ad√2 + bc√2 + 2bd = (ac + 2bd) + (ad + bc)√2, which is again of 

For multiplication: (a + b√2)(c + d√2) = ac + ad√2 + bc√2 + bd(√2)2 = 

again of the form p + q√2 with p, q ∈ Q.

For  addition:  (a  +  b√2)  +  (c  +  d√2)  =  (a  +  c)  +  (b  +  d)√2,  which  is 

First, let's verify that this set is closed under the field operations:

rational numbers.

Q(√2)  consists  of  all  elements  of  the  form  a  +  b√2,  where  a,  b  are 

axioms.

To verify that  Q(√2) is  a field, we need to  ensure it satisfies all field 

Solution:

Problem 1: Verify that Q(√2) is a field and determine its elements.

Solved Problems

studies the connection between field extensions and group theory.

The  concept  of  splitting  fields  is  central  to  Galois  theory,  which 

• C is the splitting field of x2 + 1 over R

• Q(√2) is the splitting field of x2 - 2 over Q

For example:

splitting field of p(x) over F.

extension field E. If E contains all the roots of p(x), we say that E is a 

An  irreducible  polynomial  p(x)  over  F  may  become  reducible  in  an 

Field Splitting

field with p^n elements

• Fp[x]/(p(x))  where  p(x)  is  irreducible  of  degree  n  gives  us  a  
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 polynomial. Let's try to construct it.

Looking  at  these  powers,  we  can  see  that  α  satisfies  a  4th-degree 

+ 20√6

Now let's compute α4: α4 = α2 · α2 = (5 + 2√6)2 = 25 + 20√6 + 24 = 49 

= 11√2 + 9√3

2√6√2 + 2√6√3 = 5√2 + 5√3 + 2√12 + 2√18 = 5√2 + 5√3 + 4√3 + 6√2 

Let's compute α3: α3 = α · α^2 = (√2 + √3)(5 + 2√6) = 5√2 + 5√3 + 

α = √2 + √3 α2 = (√2 + √3)2 = 2 + 3 + 2√2√3 = 5 + 2√6

powers of α.

Let  α  =  √2  +  √3.  We'll  try  to  find  a  polynomial  by  considering  the 

p(√2 + √3) = 0, and p(x) is irreducible over Q.

We need to find a polynomial p(x) with rational coefficients such that 

Solution:

Problem 2: Find the minimal polynomial of √2 + √3 over Q.

has degree 2 over Q since [Q(√2):Q] = 2.

{1, √2} over Q. This field is a simple algebraic extension of Q, and it 

and b are rational numbers. This creates an infinite field with a basis 

The elements of Q(√2) are all numbers of the form a + b√2, where a 

Therefore, Q(√2) is indeed a field.

properties of real numbers.

distributivity,  and  existence  of  identities)  are  inherited  from  the 

The  remaining  field  axioms  (associativity,  commutativity, 

exists in Q(√2).

This is of the form p + q√2 with p, q ∈ Q, so the multiplicative inverse 

b√2)/(a2 - 2b2) = a/(a2 - 2b2) - b√2/(a2 - 2b2)

Note that a2 - 2b2 ≠ 0 when a + b√2 ≠ 0. This fraction gives us: (a - 

b√2)/(a2 - 2b2)

For multiplicative inverse (where a + b√2 ≠ 0): (a + b√2)(-1) = (a -
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 ±1.

leading coefficient (1). Therefore, the only possible rational roots are 

lowest  terms,  then  p  divides  the  constant  term  (1)  and  q  divides  the 

First, by the Rational Root Theorem, if p(x) has a rational root p/q in 

several approaches:

To  determine  if  p(x)  =  x3 - 3x  +  1  is  irreducible  over  Q,  we'll  use 

Solution:

irreducible over Q.

Problem  3:  Determine  whether  the  polynomial  x3 - 3x  +  1  is 

The minimal polynomial of √2 + √3 over Q is x4 - 10x2 + 1.

factored as a product of two quadratics with rational coefficients.

rational  roots  (using  the  rational  root  theorem)  and  it  cannot  be 

We  can  verify  this  is  irreducible  over  Q  by  checking  that  it  has  no 

Therefore, the minimal polynomial is: p(x) = x4 - 10x2 + 1

0, so d = -49 + 50 = 1

0 From the first equation with a = 0, b = -10, c = 0: 49 + 5(-10) + d = 

11a + c = 9a + c, so 2a = 0, which means a = 0, and consequently c = 

From the last equation: b = -10 From the second and third equations:

11a + c = 0 √3: 9a + c = 0 √6: 20 + 2b = 0

independent term (1, √2, √3, √6) must be zero: 1: 49 + 5b + d = 0 √2:

For  this  equation  to  be  true,  the  coefficients  of  each  linearly 

c√3 + d = 0

Collecting the terms: 49 + 20√6 + 11a√2 + 9a√3 + 5b + 2b√6 + c√2 + 

b(5 + 2√6) + c(√2 + √3) + d = 0

Substituting  what  we've  calculated:  (49  +  20√6)  +  a(11√2  +  9√3)  + 

d = 0

We need to find a, b, c, and d such that: p(α) = α4 + aα3 + bα2 + cα + 

Let p(x) = x4 + ax3 + bx2 + cx + d be the minimal polynomial.
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over Q.

We know that [Q(√2):Q] = 2 since √2 has minimal polynomial x2 - 2 

law: [Q(√2, √3):Q] = [Q(√2, √3):Q(√2)][Q(√2):Q]

To find the degree of the extension Q(√2, √3)/Q, we can use the tower 

Solution:

4.

Problem  4:  Show  that  the  field  extension  Q(√2,  √3)/Q  has  degree 

3x + 1 is also irreducible over Q.

polynomial through a change of variables, the original polynomial x3 - 

criterion.  Since  this  polynomial  is  obtained  from  our  original 

Therefore,  y3 - 3y2  +  3  is   irreducible   over   Q   by   the   Eisenstein 

• 3^2 = 9 does not divide the constant term (3)

• 3 does not divide the leading coefficient (1)

• 3 divides the constant term (3)

Applying the Eisenstein criterion with prime p = 3:

1)3 - 3(y - 1) + 1 = y3 - 3y2 + 3y - 1 - 3y + 3 + 1 = y3 - 3y2 +0y + 3

transformation. Let's try  substituting y = x + 1 to get: p(y - 1) = (y - 

Alternatively,  we  can  use  the  Eisenstein  criterion  with  a  suitable 

roots, p(x) must be irreducible over Q.

rational  coefficients.  Since  we've  established  there  are  no  rational 

have to be a product of a linear factor and a quadratic factor, both with 

Since p(x) is a cubic polynomial, if it were reducible over Q, it would 

irreducible quadratic and a linear term with irrational coefficients.

irreducibility because p(x) could potentially factor as a product of an 

So p(x) has no rational roots. However, this doesn't immediately prove 

= 3 ≠ 0

Let's check: p(1) = 1 - 3 + 1 = -1 ≠ 0 p(-1) = -1 - 3(-1) + 1 = -1 + 3 + 1 
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 terms) in E[x].

F[x] that has at least one root in E completely splits (factors into linear 

A field extension E/F is normal if every irreducible polynomial p(x) in 

Solution:

Problem 5: Determine if Q(√2)/Q is a normal extension.

with basis {1, √2, √3, √6}.

This  means  that  Q(√2,  √3)  is  a  4-dimensional  vector  space  over  Q, 

Therefore, the degree of the extension Q(√2, √3)/Q is 4.

√3):Q(√2)][Q(√2):Q] = 2 × 2 = 4

Now,  applying  the  tower  law:  [Q(√2,  √3):Q]  =  [Q(√2, 

[Q(√2, √3):Q(√2)] = 2.

Since the minimal polynomial of √3 over Q(√2) has degree 2, we have 

shown that √3 ∉Q(√2). Therefore, x2 - 3 is irreducible over Q(√2).

where α, β ∈ Q(√2). But the roots of x2 - 3 are ±√3, and we've just 

If x2 - 3 were reducible over Q(√2), it would factor as (x - α)(x - β)

irreducible over Q(√2).

coefficients  in  Q(√2)  that  has  √3  as  a  root.  Let's  verify  this  is 

The obvious candidate is x2 - 3, and indeed this is a polynomial with 

at least quadratic.

Therefore, √3 is not in Q(√2), so its minimal polynomial over Q(√2) is 

2b2 = 3, which also has no rational solution.

If  b  =  0,  then  a2 =  3,  which  has  no  rational  solution.  If  a  =  0,  then 

Since the left side is rational and √2 is irrational, we must have ab = 0. 

If √3 = a + b√2, then by squaring both sides: 3 = a2 + 2ab√2 + 2b2

∈Q(√2), which means √3 = a + b√2 for some a, b ∈ Q.

satisfies  a  linear  polynomial  over  Q(√2).  That  would  happen  if  √3 

Consider the minimal polynomial of √3 over Q(√2). Let's check if √3 

Now we need to find [Q(√2, √3):Q(√2)].
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 Q(α) = Q(i), where i is the imaginary unit.

Problem 4: Determine all elements α in the complex field C such that 

F(α), where α is a root of p(x) in some extension field of F.

in  F[x].  Show  that  the  field  extension  F[x]/(p(x))  is  isomorphic  to 

Problem 3: Let F be a field and let p(x) be an irreducible polynomial 

but reducible over R.

Problem  2:  Prove  that  the  polynomial  x4  +  1  is  irreducible  over  Q 

determine its degree.

Problem  1:  Find  a  basis  for  the  field  extension  Q(√2,  √3,  √5)/Q  and 

Unsolved Problems

x^2 - 2 over Q, and splitting field extensions are always normal.

Another way to verify this is to note that Q(√2) is the splitting field of 

Therefore, Q(√2)/Q is indeed a normal extension.

b√2))(x - (a - b√2)), which splits completely in Q(√2).

If the minimal polynomial is quadratic, it will be of the form (x - (a + 

element is already in Q) or quadratic (if b ≠ 0).

Its  minimal  polynomial  over  Q  will  be  either  linear  (if  b  =  0,  so  the 

In fact, any element of Q(√2) is of the form a + b√2 where a, b ∈ Q. 

completely in Q(√2).

every  irreducible  polynomial  over  Q  that  has  a  root  in  Q(√2)  splits 

Since  both  roots  of  the  minimal  polynomial  x2 - 2  are  in  Q(√2), 

  and b = -1, which are both in Q

• -√2 is also in Q(√2) since it's of the form a + b√2 where a = 0

• √2 is in Q(√2) by definition

Let's check if both roots are in Q(√2):

polynomial has roots √2 and -√2.

The  minimal  polynomial  of  √2  over  Q  is  f(x)  =  x2 - 2.  This

In our case, we need to determine if Q(√2)/Q is a normal extension.
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primitive cube root of unity.

field. Determine the degree of the extension Q(α, ω)/Q, where ω is a 

Problem 5: Let f(x) = x3 - 2 and let α be a root of f in some extension 
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  F(α) ≅ F(x)

If α is transcendental over F, then:

Property 2: Structure of F(α) when α is transcendental over F

where n is the degree of the minimal polynomial p(x).

F(α) = {a₀ + a₁α + a₂α² + ... + aₙ₋₁αⁿ⁻¹ | aᵢ ∈ F}

Furthermore, elements of F(α) can be expressed as:

F[x] modulo the ideal generated by p(x).

This means that F(α) is isomorphic to the quotient ring of polynomials 

F(α) ≅ F[x]/(p(x))

If α is algebraic over F with minimal polynomial p(x), then:

Property 1: Structure of F(α) when α is algebraic over F

Properties of Simple Extensions

Transcendental case: When α is transcendental over F2.

Algebraic case: When α is algebraic over F1.

There are two main cases to consider:

α.

denoted  F(α),  is  the  smallest  field  containing  both  F  and  the  element 

Let  F  be  a  field  and  α  be  an  element  not  in  F.  A  simple  extension, 

Definition of a Simple Extension

understanding how to build more complex field structures.

element to a field to create a larger field. This concept is essential for 

extensions  in  abstract algebra.  It  occurs  when  we  adjoin  a  single 

A  simple  extension  is  one  of  the  most  fundamental  types  of  field 

3.3.1: Simple Extensions and Their Properties

UNIT 3.3
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Notes which means F(α) is isomorphic to the field of rational functions in 

one variable over F. 

Elements of F(α) can be expressed as: 

F(α) = {f(α)/g(α) | f(x), g(x) ∈ F[x], g(α) ≠ 0} 

Property 3: Degree of a Simple Extension 

For an algebraic element α over F, the degree of the extension [F(α):F] 

equals the degree of the minimal polynomial of α over F. 

Property 4: Tower Law for Simple Extensions 

If K = F(α) and L = K(β), then L = F(α,β). Furthermore, [L:F] = 

[L:K]·[K:F]. 

Property 5: Primitive Element Theorem (Preview) 

If F is a field of characteristic 0 and K/F is a finite extension, then K = 

F(α) for some α ∈ K. In other words, K is a simple extension of F. 

Examples of Simple Extensions 

Example 1: Q(√2) 

The extension Q(√2) is a simple extension of Q obtained by adjoining 

√2. 

Since √2 is a root of the polynomial p(x) = x² - 2, which is irreducible 

over Q, the minimal polynomial of √2 over Q is x² - 2. 

Therefore: 

• [Q(√2):Q] = 2 

• Every element of Q(√2) can be written as a + b√2, where a, 

b ∈ Q 

Example 2: Q(i) 

The extension Q(i) is a simple extension of Q obtained by adjoining i 

= √(-1). 
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 3.3.2: Algebraic Extensions: Definitions and Examples

properties

Number  theory:  Studying  algebraic  numbers  and  their 4.

roots of unity

Cyclotomic  extensions:  Creating fields  that  contain  primitive 3.

polynomial equations are solvable by radicals

Solving  polynomial  equations:  Understanding  when 2.

constructed using ruler and compass

Constructibility problems: Determining which numbers can be 1.

have numerous applications:

Simple extensions are fundamental building blocks in field theory and 

Applications of Simple Extensions

• [Q(π):Q] is infinite

  with coefficients in Q and g(π) ≠ 0

• Elements  have  the  form  f(π)/g(π)  where  f,  g  are  polynomials

  Q

• Q(π) consists of all rational functions in π with coefficients in

Therefore:

Lindemann in 1882), the extension Q(π) is a transcendental extension.

Since  π  is  transcendental  over  Q  (a  famous  result  proved  by 

Example 3: Q(π)

• Every element of Q(i) can be written as a + bi, where a, b ∈ Q

• [Q(i):Q] = 2

Therefore:

over Q, the minimal polynomial of i over Q is x² + 1.

Since i is a root of the polynomial p(x) = x² + 1, which is irreducible 
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Notes Definition of an Algebraic Extension 

Let F ⊆ K be a field extension. We say that K is an algebraic 

extension of F if every element of K is algebraic over F. 

Recall that an element α ∈ K is algebraic over F if there exists a non-

zero polynomial p(x) ∈ F[x] such that p(α) = 0. 

Properties of Algebraic Extensions 

Property 1: Transitivity of Algebraic Extensions 

If F ⊆ K ⊆ L are fields such that K is algebraic over F and L is 

algebraic over K, then L is algebraic over F. 

Property 2: Algebraic Elements Form a Field 

If F ⊆ K is a field extension, then the set of all elements in K that are 

algebraic over F forms a field. 

Property 3: Finite Extensions are Algebraic 

If F ⊆ K is a field extension with [K:F] finite, then K is an algebraic 

extension of F. 

Property 4: Degree of an Algebraic Extension 

If K is an algebraic extension of F, then [K:F] equals the cardinality of 

a basis of K as a vector space over F (possibly infinite). 

Property 5: Products of Algebraic Extensions 

If K₁ and K₂ are algebraic extensions of F contained in some larger 

field, then the compositum K₁K₂ is also an algebraic extension of F. 

Examples of Algebraic Extensions 

Example 1: Q(√2, √3) 

The field Q(√2, √3) is obtained by adjoining both √2 and √3 to Q. 

Since both √2 and √3 are algebraic over Q, this is an algebraic 

extension. 
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This is an algebraic extension of Q with infinite degree.

numbers that are algebraic over Q.

The  field  of  all  algebraic  numbers,  A,  is  the  set  of  all  complex 

Example 4: Field of Algebraic Numbers

• Q̄ is countably infinite

• [Q̄ :Q] is infinite

  over Q̄

• Every polynomial in Q[x] splits completely into linear factors

• Q̄ is algebraic over Q

This extension has the following properties:

forms an algebraic extension of Q.

The set of all complex numbers that are algebraic over Q, denoted Q̄ , 

Example 3: The Algebraic Closure of Q

where a, b, c ∈ Q

• Every  element  can  be  written  as  a  +  b·2(1/3)  +  c·2(2/3)  

• A basis for Q(2(1/3)) over Q is {1, 2(1/3), 2(2/3)}

• [Q(2(1/3)):Q] = 3

Since 2(1/3) is a root of x³ - 2, which is irreducible over Q, we have:

The field Q(2(1/3)) is obtained by adjoining the real cube root of 2 to Q.

Example 2: Q(2(1/3))

  where a, b, c, d ∈ Q

• Every  element  can  be  written  as  a  +  b√2  +  c√3  +  d√2·√3

• A basis for Q(√2, √3) over Q is {1, √2, √3, √2·√3}

• [Q(√2, √3):Q] = 4
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   If F has characteristic 0, then F̄ has characteristic 03.

The algebraic closure is unique up to isomorphism2.

Every field has an algebraic closure (requires Zorn's Lemma)1.

Properties of Algebraic Closures

polynomial in F̄ [x] has a root in F̄ ).

of  F  that  is  algebraically  closed  (meaning  every  non-constant 

An algebraic closure of a field F, denoted F̄ , is an algebraic extension 

Definition

Algebraic Closure

• Examples: Q(π), Q(e), R(x) (rational functions)

• Always have infinite degree

  polynomial equation with coefficients in the base field

• Contain  at  least  one  element  that  doesn't  satisfy  any

Transcendental Extensions:

• Examples: Q(√2), Q(i), Q(2(1/3))

• Can have finite or infinite degree

  coefficients in the base field

• Every  element  satisfies  a  polynomial  equation  with

Algebraic Extensions:

comparison:

An  extension  that  is  not  algebraic  is  called  transcendental.  Here's  a 

Algebraic vs. Transcendental Extensions

algebraic extension of GF(p) of degree n.

For  a  prime  p  and  a  positive  integer  n,  the  finite  field  GF(pn)  is  an 

Example 5: Finite Fields



 

 
 

Notes 4. If F has characteristic p > 0, then F̄ has characteristic p 

Example: Algebraic Closure of the Real Numbers 

The algebraic closure of R is C, the field of complex numbers. 

Solved Problems 

Problem 1: Find the minimal polynomial of √2 + √3 over Q. 

Solution: Let α = √2 + √3. We need to find the minimal polynomial of 

α over Q. 

Step 1: Calculate the powers of α. α = √2 + √3 α² = (√2 + √3)² = 2 + 3 

+ 2√2·√3 = 5 + 2√6 

Step 2: Calculate α² - 5 = 2√6, so (α² - 5)² = 24 (α² - 5)² = 24 α⁴ - 10α² 

+ 25 = 24 α⁴ - 10α² + 1 = 0 

Step 3: Check that this polynomial is irreducible over Q. If p(x) = x⁴ - 

10x² + 1 were reducible, it would factor as a product of two quadratic 

polynomials. We can verify that no such factorization exists using the 

rational root theorem and checking possible quadratic factors. 

Therefore, the minimal polynomial of √2 + √3 over Q is x⁴ - 10x² + 1. 

Problem 2: Determine the degree of the extension Q(√2, √3, √5) 

over Q. 

Solution: Step 1: Consider the tower of extensions: Q ⊆Q(√2) ⊆ 

Q(√2, √3) ⊆ Q(√2, √3, √5) 

Step 2: Calculate the degrees of each extension. [Q(√2):Q] = 2 since 

the minimal polynomial of √2 over Q is x² - 2. [Q(√2, √3):Q(√2)] = 2 

since the minimal polynomial of √3 over Q(√2) is x² - 3. [Q(√2, √3, 

√5):Q(√2, √3)] = 2 since the minimal polynomial of √5 over Q(√2, 

√3) is x² - 5. 

Step 3: Apply the tower law. [Q(√2, √3, √5):Q] = [Q(√2, √3, 

√5):Q(√2, √3)] × [Q(√2, √3):Q(√2)] × [Q(√2):Q] [Q(√2, √3, √5):Q] = 

2 × 2 × 2 = 8 
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Notes Therefore, the degree of Q(√2, √3, √5) over Q is 8. 

Problem 3: Determine if the extension Q(√2, 3√5) over Q is a 

simple extension. 

Solution: Step 1: Consider α = √2 + 3√5. Let's check if Q(√2, 3√5) = 

Q(α). 

Step 2: Show that √2 and 3√5 can be expressed in terms of α and 

elements of Q. α = √2 + 3√5 α² = (√2)² + 6√2·√5 + 9(√5)² = 2 + 6√10 

+ 45 = 47 + 6√10 

If we let β = α² - 47, then β = 6√10. β² = 36 · 10 = 360, so √10 = β/6. 

Now, (√2)(√10) = √20 = 2√5, so √5 = (√2)(√10)/2. Therefore, √5 = 

(√2)(β/6)/2 = (√2)(β)/12. 

Since we know β in terms of α, we can express √5 in terms of α and 

elements of Q. Then, 3√5 = 3(√2)(β)/12 = (√2)(β)/4. 

Also, √2 = α - 3√5 = α - (√2)(β)/4. 4√2 = 4α - (√2)(β). 4√2 + (√2)(β) = 

4α. √2(4 + β) = 4α. √2 = 4α/(4 + β). 

Step 3: Since both √2 and 3√5 can be expressed in terms of α and 

elements of Q, we have Q(√2, 3√5) = Q(α). 

Therefore, Q(√2, 3√5) is a simple extension, specifically Q(√2 + 3√5). 

Problem 4: Find a basis for Q(√2, i) over Q and determine its 

degree. 

Solution: Step 1: Consider the tower of extensions: Q ⊆ Q(i) ⊆Q(i, 

√2) 

Step 2: Calculate the degrees of each extension. [Q(i):Q] = 2 since the 

minimal polynomial of i over Q is x² + 1. [Q(i, √2):Q(i)] = 2 since the 

minimal polynomial of √2 over Q(i) is x² - 2. 

Step 3: Apply the tower law. [Q(i, √2):Q] = [Q(i, √2):Q(i)] × [Q(i):Q] 

= 2 × 2 = 4 



 

 
 

Notes Step 4: Find a basis for Q(i, √2) over Q. Since [Q(i, √2):Q] = 4, we 

need four linearly independent elements. A basis for Q(i) over Q is {1, 

i}. A basis for Q(i, √2) over Q(i) is {1, √2}. 

The complete basis for Q(i, √2) over Q is: {1, i, √2, i√2} 

Any element of Q(i, √2) can be written uniquely as a + bi + c√2 + 

di√2, where a, b, c, d ∈ Q. 

Problem 5: Prove that if α is algebraic over F with minimal 

polynomial p(x), then F(α) ≅ F[x]/(p(x)). 

Solution: Step 1: Define a ring homomorphism φ: F[x] → F(α) by 

φ(f(x)) = f(α). 

Step 2: Verify that φ is indeed a ring homomorphism. 

• φ(f(x) + g(x)) = (f + g)(α) = f(α) + g(α) = φ(f(x)) + φ(g(x)) 

• φ(f(x) · g(x)) = (f · g)(α) = f(α) · g(α) = φ(f(x)) · φ(g(x)) 

• φ(1) = 1 

Step 3: Determine the kernel of φ. The kernel of φ is the set of all 

polynomials f(x) ∈ F[x] such that f(α) = 0. Since p(x) is the minimal 

polynomial of α over F, any polynomial f(x) such that f(α) = 0 must be 

divisible by p(x). Therefore, ker(φ) = (p(x)), the ideal generated by 

p(x). 

Step 4: By the First Isomorphism Theorem, we have: F[x]/ker(φ) 

≅Im(φ) F[x]/(p(x)) ≅Im(φ) 

Step 5: Show that Im(φ) = F(α). Clearly, Im(φ) ⊆ F(α) since φ maps 

into F(α). F(α) is the smallest field containing F and α, and Im(φ) 

contains F (as constants) and α (as φ(x)). Since Im(φ) is a ring and 

contains inverses for all non-zero elements (due to the fact that p(x) is 

irreducible), Im(φ) is a field. Therefore, F(α) ⊆Im(φ), and we have 

Im(φ) = F(α). 

Step 6: Conclude that F(α) ≅ F[x]/(p(x)). 



  

134 
 

Notes  

 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

 

 

  

  

 

  Algebraic Extensions:2.

  rational functions

o If  α  is  transcendental,  then  F(α) ≅ F(x),  the  field  of

  F(α) ≅ F[x]/(p(x))

o If  α  is  algebraic  with  minimal  polynomial  p(x),  then

  α

o F(α) is the smallest field containing F and the element

Simple Extensions:1.

Summary of Key Concepts

that [F(α, α²):F(α)] = 1 and [F(α, 1/α):F(α)] = 1.

If F ⊆ K is a field extension and α ∈ K is transcendental over F, prove 

Problem 5:

Find the minimal polynomial of α = cos(2π/7) over Q.

Problem 4:

0) are all algebraic over F.

elements over F that are not in F, then α + β, α - β, αβ, and α/β (if β ≠ 

Prove  that  if  F  is  a  field  of  characteristic  0  and  α,  β  are  algebraic 

Problem 3:

determine a basis for K over F.

Let  F  =  Q(√2)  and  K  =  F(√3,  √5).  Find  the  degree  [K:F]  and 

Problem 2:

extension. If it is, find an element α such that Q(2(1/4), i) = Q(α).

Determine  whether  the  extension  Q(2(1/4),  i)  over  Q  is  a  simple 

Problem 1:

Unsolved Problems
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field  extensions  and  their  applications  in  various  areas  of

These concepts form the foundation for understanding more complex 

  studying field extensions

o Finding  minimal  polynomials  is  a  key  technique  in

o The minimal polynomial is always irreducible

  least degree with coefficients in F that has α as a root

o The  minimal  polynomial  is  the  monic  polynomial  of

Minimal Polynomials:5.

  elements of field extensions

o A  basis  allows  us  to  represent  and  compute  with

of {1, α, α², ..., α(n-1)}

elements of F(α) can be written as linear combinations  

o For  algebraic  α  with  minimal  polynomial  of  degree  n,  

Basis Representation:4.

  as a vector space

o The  degree  of  a  finite  extension  equals  the  dimension

o The tower law: [L:F] = [L:K] × [K:F]

  minimal polynomial

o For  algebraic  α,  [F(α):F]  equals  the  degree  of  the

Degree of Extensions:3.

  field

o The  set  of  all  algebraic  elements  over  a  field  forms  a

o Algebraic extensions are transitive

o Finite extensions are always algebraic

  algebraic over F

o An extension K/F is algebraic if every element of K is
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 Algebraic Extensions

the minimal polynomial of α over K.

When α is algebraic over K, the degree [K(α):K] equals the degree of 

An extension L/K is called simple if L = K(α) for some element α ∈ L. 

Simple Extensions

of complicated extensions.

This multiplicative property is extremely useful in computing degrees 

[M:K] = [M:L][L:K]

If K ⊆ L ⊆ M are fields, then:

Tower Law

ℚ, so [ℚ(√2):ℚ] = 2.

as a + b√2 where a,b∈ ℚ. The set {1, √2} forms a basis for ℚ(√2) over 

For example, if we consider ℚ(√2) over ℚ, any element can be written 

over K, then the dimension [L:K] is called the degree of the extension.

For  a  field  extension  L/K,  if  L  is  a finite-dimensional  vector  space 

Degree of an Extension

Basic Properties of Finite Extensions

In this section, we'll explore their structure and key properties.

numerous  applications  in  algebra,  number  theory,  and  cryptography. 

Finite  extensions  are  fundamental  objects  in  field  theory  and  have 

dimension is called the degree of the extension, written as [L:K].

extension  if  L  has  finite  dimension  as  a  vector  space  over  K.  This 

A  field extension L over a  field K (denoted  as L/K) is  called  a  finite 

Introduction to Finite Extensions

3.3.3 Finite Extensions and Their Structure

number theory.

mathematics,  including  Galois  theory,  algebraic  geometry,  and



 

 
 

Notes An element α is algebraic over K if it satisfies a non-zero polynomial 

with coefficients in K. An extension L/K is algebraic if every element 

of L is algebraic over K. 

All finite extensions are algebraic, but not all algebraic extensions are 

finite. 

Properties of Algebraic Extensions 

1. If α is algebraic over K, then K(α)/K is a finite extension. 

2. If L/K is a finite extension, then L/K is algebraic. 

3. The composition of algebraic extensions is algebraic. 

Primitive Element Theorem 

A fundamental result about finite extensions is the Primitive Element 

Theorem: 

If L/K is a finite separable extension, then L = K(α) for some α ∈ L. 

This means that any finite separable extension is simple. 

Separable and Inseparable Extensions 

Separability 

An irreducible polynomial p(x) over a field K is separable if it has no 

repeated roots in its splitting field. An algebraic element α over K is 

separable if its minimal polynomial over K is separable. 

An extension L/K is separable if every element of L is separable over 

K. 

Separable Degree 

For an extension L/K, the separable degree [L:K]s is the maximum 

degree of a separable subextension of L/K. 

Inseparable Degree 

The inseparable degree [L:K]i is defined as [L:K]i = [L:K]/[L:K]s. 
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Notes Normal Extensions 

An algebraic extension L/K is normal if every irreducible polynomial 

in K[x] that has one root in L has all its roots in L. 

Equivalently, L/K is normal if L is the splitting field of a family of 

polynomials over K. 

Galois Extensions 

A field extension L/K is Galois if it is both normal and separable. For 

a Galois extension L/K: 

1. The Galois group Gal(L/K) consists of all field automorphisms 

of L that fix K. 

2. |Gal(L/K)| = [L:K] 

3. There is a one-to-one correspondence between intermediate 

fields and subgroups of the Galois group. 

Examples of Finite Extensions 

Example 1: ℚ(√2)/ℚ 

• Degree: [ℚ(√2):ℚ] = 2 

• Basis: {1, √2} 

• Minimal polynomial of √2 over ℚ: x² - 2 

• This is a simple, separable, and normal extension. 

• Galois group: ℤ₂ 

Example 2: ℚ(∛2)/ℚ 

• Degree: [ℚ(∛2):ℚ] = 3 

• Basis: {1, ∛2, (∛2)²} 

• Minimal polynomial of ∛2 over ℚ: x³ - 2 

• This is a simple extension but not normal. 
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 To construct GF(pⁿ):

Method 1: Using Irreducible Polynomials

construct field extensions of degree n over Fp.

For  constructing  finite  fields  of  order  pⁿ  where  n  >  1,  we  need  to 

Construction of Extension Fields

modulo 3.

For  example,  F₃  =  {0,  1,  2}  with  addition  and  multiplication  defined 

Fp. These can be constructed as ℤ/pℤ, the integers modulo p.

The  simplest  finite  fields  are  those  of  prime  order,  denoted  GF(p)  or 

Construction of Prime Fields

isomorphism, denoted as GF(pⁿ) or Fpⁿ.

For  each  prime  power  pⁿ,  there  exists  exactly  one  finite  field  up  to 

a prime power pⁿ, where p is a prime and n is a positive integer.

elements. The order of a finite field (the number of elements) must be 

A  finite  field  (or  Galois  field)  is  a  field  with  a  finite  number  of 

Introduction to Finite Fields

3.3.4 Construction of Finite Fields

  Klein four-group.

• This  is  a  Galois  extension  with Galois  group  isomorphic  to

• Basis: {1, √2, √3, √6}

• Therefore, [ℚ(√2, √3):ℚ] = 2 × 2 = 4

• [ℚ(√2, √3):ℚ(√2)] = 2 (since √3 is not in ℚ(√2))

• [ℚ(√2):ℚ] = 2

  √3):ℚ(√2)][ℚ(√2):ℚ]

• Using  the  tower  law:  [ℚ(√2,  √3):ℚ]  =  [ℚ(√2,

Example 3: ℚ(√2, √3)/ℚ
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Notes 1. Find an irreducible polynomial f(x) of degree n over Fp. 

2. Form the quotient ring Fp[x]/(f(x)). 

3. This quotient ring is a field with pⁿ elements. 

Method 2: As Splitting Fields 

GF(pⁿ) can also be constructed as the splitting field of the polynomial 

xpⁿ - x over Fp. 

Properties of the Construction 

1. Every element of GF(pⁿ) is a root of the polynomial xpⁿ - x. 

2. GF(pⁿ) is the splitting field of xpⁿ - x over Fp. 

3. The multiplicative group GF(pⁿ)* is cyclic of order pⁿ - 1. 

Examples of Finite Field Constructions 

Example 1: Construction of GF(4) 

To construct GF(4) = F₂²: 

1. Find an irreducible polynomial of degree 2 over F₂: f(x) = x² + 

x + 1 

2. F₂² = F₂[x]/(x² + x + 1) 

3. Elements: {0, 1, α, α+1} where α represents the coset x + (x² + 

x + 1) 

4. Addition and multiplication tables can be derived using the 

condition α² + α + 1 = 0 

Example 2: Construction of GF(8) 

To construct GF(8) = F₂³: 

1. Find an irreducible polynomial of degree 3 over F₂: f(x) = x³ + 

x + 1 

2. F₂³ = F₂[x]/(x³ + x + 1) 
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 Structural Properties of Finite Fields

3.3.5 Properties and Applications of Finite Fields

linear feedback shift registers.

Primitive  polynomials  are  particularly  useful  in  applications  like 

the multiplicative group of GF(pⁿ).

A polynomial f(x) of degree n over Fp is primitive if its roots generate 

Primitive Polynomials

is not divisible by any irreducible polynomial of lower degree.

Alternatively, we can check if the polynomial has no roots in Fp and 

It does not divide xpᵏ - x for any k < n2.

It divides xpⁿ - x1.

A polynomial of degree n over Fp is irreducible if and only if:

Finding Irreducible Polynomials

Computational Techniques

Operations defined via the condition α² = -1 = 2 (in F₃)4.

represents the coset x + (x² + 1)

Elements:  {0,  1,  2,  α,  2α,  α+1,  α+2,  2α+1,  2α+2}  where  α 3.

F₃² = F₃[x]/(x² + 1)2.

1

Find an irreducible polynomial of degree 2 over F₃: f(x) = x² + 1.

To construct GF(9) = F₃²:

Example 3: Construction of GF(9)

Operations defined via the condition α³ + α + 1 = 04.

represents the coset x + (x³ + x + 1)

Elements:  {0,  1,  α,  α²,  α+1,  α²+1,  α²+α,  α²+α+1}  where  α 3.
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Notes Order and Characteristic 

• A finite field GF(pⁿ) has pⁿ elements, where p is a prime (the 

characteristic of the field) and n is a positive integer. 

• The additive group of GF(pⁿ) is isomorphic to (ℤp)ⁿ. 

• The multiplicative group GF(pⁿ)* is cyclic of order pⁿ - 1. 

Primitive Elements 

A primitive element (or generator) of GF(pⁿ) is an element whose 

powers generate all non-zero elements of the field. 

Every finite field has at least one primitive element. In fact, the 

number of primitive elements in GF(pⁿ) is φ(pⁿ - 1), where φ is Euler's 

totient function. 

Subfield Structure 

If GF(pᵐ) is a subfield of GF(pⁿ), then m divides n. Conversely, if m 

divides n, then GF(pᵐ) is isomorphic to a subfield of GF(pⁿ). 

The subfields of GF(pⁿ) form a lattice isomorphic to the lattice of 

divisors of n. 

Field Automorphisms 

Frobenius Automorphism 

For any finite field GF(pⁿ), the map σ: x ↦ xᵖ is an automorphism 

called the Frobenius automorphism. 

The group of automorphisms of GF(pⁿ) over Fp is cyclic of order n, 

generated by the Frobenius automorphism. 

Fixed Fields 

For any divisor m of n, the fixed field of σᵐ is GF(pᵐ). 

Polynomial Factorization over Finite Fields 

Factorization Patterns 
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 satellite communications.

These  codes  are  used  in  digital communications,  data  storage,  and 

• Algebraic geometric codes

• BCH codes

• Reed-Solomon codes

such as:

Finite fields are essential in the construction of error-correcting codes 

Coding Theory

Applications of Finite Fields

The norm function is multiplicative and maps GF(pⁿ) to GF(pᵐ).

N(α) = α · αᵖᵐ · αᵖ²ᵐ · ... · αᵖ⁽ⁿ/ᵐ⁻¹⁾ᵐ

Similarly, the norm of α is defined as:

Norm Function

The trace function is a linear transformation from GF(pⁿ) to GF(pᵐ).

Tr(α) = α + αᵖᵐ + αᵖ²ᵐ + ... + αᵖ⁽ⁿ/ᵐ⁻¹⁾ᵐ

defined as:

For  an  element α in  GF(pⁿ)  over  the  subfield  GF(pᵐ),  the  trace  is 

Trace Function

Trace and Norm

where the sum is over all divisors i of d, and μ is the Möbius function.

N(p,d) = (1/d)∑ᵢ μ(i)p(d/i)

given by:

The number of monic irreducible polynomials of degree d over Fp is 

Counting Irreducible Polynomials

polynomials over Fp whose degrees divide n.

The polynomial xpⁿ - x factors as the product of all monic irreducible 
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Notes Cryptography 

Finite fields play a crucial role in modern cryptography: 

• In AES (Advanced Encryption Standard), operations are 

performed in GF(2⁸) 

• Elliptic curve cryptography operates over finite fields 

• Many public-key cryptosystems rely on the discrete logarithm 

problem in finite fields 

Computer Algebra 

Finite fields are used in: 

• Polynomial factorization algorithms 

• Solving systems of polynomial equations 

• Computational number theory 

Combinatorial Designs 

Finite fields are used to construct various combinatorial designs: 

• Finite projective planes 

• Block designs 

• Difference sets 

Algebraic Geometry 

Finite fields provide concrete examples for studying: 

• Algebraic curves 

• Zeta functions 

• Discrete Fourier transform 

Solved Problems 

Problem 1: Determine the degree of the extension ℚ(√2, √3, √5)/ℚ. 



 

 
 

Notes Solution: We can use the tower law to compute this degree: [ℚ(√2, √3, 

√5):ℚ] = [ℚ(√2, √3, √5):ℚ(√2, √3)][ℚ(√2, √3):ℚ(√2)][ℚ(√2):ℚ] 

Step 1: [ℚ(√2):ℚ] = 2 since the minimal polynomial of √2 over ℚ is x² 

- 2. 

Step 2: [ℚ(√2, √3):ℚ(√2)] = 2 since √3 is not in ℚ(√2) and its minimal 

polynomial over ℚ(√2) is x² - 3. 

Step 3: We need to determine if √5 belongs to ℚ(√2, √3). If √5 ∈ℚ(√2, 

√3), then √5 = a + b√2 + c√3 + d√2√3 for some a, b, c, d ∈ ℚ. 

Squaring both sides: 5 = (a + b√2 + c√3 + d√2√3)² = a² + 2b² + 3c² + 

6d² + 2ab√2 + 2ac√3 + 2ad√2√3 + 2bc√2√3 + 2bd√6 + 2cd√6 

For this to equal 5, we need: a² + 2b² + 3c² + 6d² = 5 ab = ac = ad = bc 

= bd = cd = 0 

These equations have no rational solutions except the trivial a = b = c 

= d = 0, which doesn't give √5. Therefore, √5 ∉ℚ(√2, √3), so [ℚ(√2, 

√3, √5):ℚ(√2, √3)] = 2. 

Thus, [ℚ(√2, √3, √5):ℚ] = 2 × 2 × 2 = 8. 

Problem 2: Construct the finite field GF(4) and provide its 

addition and multiplication tables. 

Solution: To construct GF(4), we need an irreducible polynomial of 

degree 2 over F₂. The polynomial x² + x + 1 is irreducible over F₂. 

Therefore, GF(4) = F₂[x]/(x² + x + 1). 

Let α represent the coset x + (x² + x + 1). Then GF(4) = {0, 1, α, 

α+1}. 

From the relation x² + x + 1 = 0, we get α² + α + 1 = 0, which implies 

α² = α + 1. 

Addition Table (using modulo 2 addition): 

+  | 0   1   α   α+1 

------------------- 
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Notes 0  | 0   1   α   α+1 

1  | 1   0   α+1 α 

α  | α   α+1 0   1 

α+1| α+1 α   1   0 

Multiplication Table: 

×  | 0   1   α   α+1 

------------------- 

0  | 0   0   0   0 

1  | 0   1   α   α+1 

α  | 0   α   α+1 1 

α+1| 0   α+1 1   α 

To verify these tables, let's compute some entries: 

• α × α = α² = α + 1 (from our relation) 

• α × (α+1) = α² + α = (α+1) + α = 1 

• (α+1) × (α+1) = α² + α + α + 1 = α² + 1 = (α+1) + 1 = α 

Problem 3: Prove that xᵖ - x + a is irreducible over Fₚ for any a ≠ 

0. 

Solution: We need to show that f(x) = xᵖ - x + a has no roots in Fₚ and 

is not divisible by any irreducible polynomial of degree less than p. 

Step 1: Check if f(x) has roots in Fₚ. For any b ∈ Fₚ, we have bᵖ = b 

(by Fermat's Little Theorem). So f(b) = bᵖ - b + a = b - b + a = a. Since 

a ≠ 0, f(b) ≠ 0 for all b ∈ Fₚ. Thus, f(x) has no roots in Fₚ. 

Step 2: Show that f(x) is not divisible by any irreducible polynomial 

of degree d where 1 < d < p. 

Let's use the characteristic of the derivative. The derivative of f(x) is 

f'(x) = pxᵖ⁻¹ - 1 = -1 (since p = 0 in Fₚ). 



 

 
 

Notes Since f'(x) = -1 ≠ 0, f(x) and f'(x) are coprime. This means f(x) has no 

repeated factors. 

Now, if f(x) were divisible by an irreducible polynomial g(x) of 

degree d where 1 < d < p, then f(x) would have a root α in some 

extension field of Fₚ with [Fₚ(α):Fₚ] = d. 

However, we can show that for any root α of f(x), the elements α, α+1, 

α+2, ..., α+(p-1) form a set of p distinct roots of f(x). 

Since f(α) = 0, we have αᵖ = α - a. Now, for any i∈ Fₚ, compute f(α+i): 

f(α+i) = (α+i)ᵖ - (α+i) + a = αᵖ + iᵖ - α - i + a (since (x+y)ᵖ = xᵖ + yᵖ in 

Fₚ) = αᵖ + i - α - i + a (since iᵖ = i in Fₚ) = αᵖ - α + a = 0 

So f(x) has at least p roots. But f(x) has degree p, so it can have at 

most p roots. Therefore, f(x) must have exactly p roots and must be 

irreducible over Fₚ. 

Problem 4: Find all subfields of GF(64). 

Solution: GF(64) = GF(2⁶) 

The subfields of GF(2⁶) are GF(2ᵏ) where k divides 6. The divisors of 

6 are 1, 2, 3, and 6. 

Therefore, the subfields of GF(64) are: 

• GF(2¹) = GF(2) (the prime field) 

• GF(2²) = GF(4) 

• GF(2³) = GF(8) 

• GF(2⁶) = GF(64) (the field itself) 

To verify this, we can check the subfield criterion: GF(pᵐ) is a 

subfield of GF(pⁿ) if and only if m divides n. 

Problem 5: Determine the number of irreducible polynomials of 

degree 4 over F₃. 
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 minimal polynomial of α² + α over F₂.

Problem  1:  Let  α  be  a  root  of  x⁴  +  x  +  1  over  F₂.  Determine  the 

Unsolved Problems

6)/4 = 18

So we have: 3·1 + 3·2 + N(3,4)·4 = 81 This gives: N(3,4) = (81 - 3 - 

• N(3,4) are irreducible of degree 4

• N(3,2) = 3 are irreducible of degree 2

• 3 are irreducible of degree 1

Of these, we know:

• Degree 4: 81 polynomials

• Degree 2: 9 polynomials

• Degree 1: 3 polynomials (x, x-1, x-2)

The total number of monic polynomials of degree dividing 4 is:

polynomials over F₃ whose degrees divide 4.

over  F₃⁴  and  factors  as  the  product  of  all  monic  irreducible 

To  verify  this  another  way,  the  polynomial  x³⁴ - x  splits  completely 

Therefore, there are 18 irreducible polynomials of degree 4 over F₃.

(1/4)[81 - 9] = (1/4)[72] = 18

N(3,4) = (1/4)[μ(1)·3⁴ + μ(2)·3² + μ(4)·3¹] = (1/4)[1·81 - 1·9 + 0·3] = 

μ(4) = 0

For p  = 3  and d  = 4, the divisors of 4 are 1, 2, 4. μ(1) = 1 μ(2)  = -1 

where the sum is over all divisors i of d, and μ is the Möbius function.

N(p,d) = (1/d)∑ᵢ μ(i)p(d/i)

polynomials:

Solution:  We  can  use  the  formula  for  counting  monic  irreducible 



 

 
 

Notes Problem 2: Prove that in a finite field of characteristic p, the map f(x) 

= xᵖ is an automorphism. 

Problem 3: Determine the number of primitive elements in GF(2⁸). 

Problem 4: Find all elements α in GF(16) such that α⁵ = 1. 

Problem 5: Let p be a prime and let F be a field with p² elements. If α 

is an element of F that is not in the prime subfield, show that F = 

Fp(α). 

Multiple Choice Questions (MCQs) 

1. An extension field of a field F is: 

a) A subset of F 

b) A field containing F as a subfield 

c) A group containing F 

d) None of the above 

2. An element is algebraic over a field F if: 

a) It satisfies a polynomial equation with coefficients in F 

b) It is not a root of any polynomial in F[x] 

c) It is transcendental over F 

d) None of the above 

3. A simple extension of a field F is: 

a) An extension generated by one element 

b) A transcendental extension 

c) An infinite extension 

d) None of the above 

4. Finite fields are also known as: 

a) Prime fields 

b) Algebraic extensions 

c) Galois fields 

d) None of the above 

5. Every finite field has: 

a) A prime number of elements 
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Notes b) A power of a prime number of elements 

c) An infinite number of elements 

d) None of the above 

6. The characteristic of a finite field of order pn is: 

a) 0 

b) p 

c) n 

d) None of the above 

7. The minimal polynomial of an algebraic element is: 

a) The lowest-degree polynomial it satisfies 

b) A polynomial with no roots in any field 

c) The product of all polynomials it satisfies 

d) None of the above 

8. The multiplicative group of a finite field is: 

a) Cyclic 

b) Abelian but not cyclic 

c) Non-abelian 

d) None of the above 

Short Answer Questions 

1. What is an extension field? Provide an example. 

2. Differentiate between algebraic and transcendental elements. 

3. Define an irreducible polynomial and give an example. 

4. What is a simple extension of a field? 

5. Explain the significance of algebraic extensions in field theory. 

6. How do we construct finite fields? 

7. What is the characteristic of a finite field? 

8. Give an example of a finite field and explain its structure. 



 

 
 

Notes 9. Define the degree of a field extension and provide an example. 

10. Why is the multiplicative group of a finite field always cyclic? 

Long Answer Questions 

1. Explain in detail the concept of extension fields and their 

importance in algebra. 

2. Differentiate between algebraic and transcendental numbers 

with examples. 

3. Define irreducible polynomials and explain their role in 

constructing field extensions. 

4. Discuss simple extensions and their applications in field 

theory. 

5. How do we classify algebraic extensions? Give examples. 

6. Explain the structure and properties of finite fields. 

7. What is the significance of the minimal polynomial in field 

theory? Provide detailed examples. 

8. Prove that the multiplicative group of a finite field is cyclic. 

9. Discuss the applications of finite fields in cryptography and 

coding theory. 

10. How do field extensions help in understanding the solutions of 

polynomial equations? 

  



 a8.

 a7.

 b6.

 b5.

 c4.

 a3.

 a2.

 b1.

Answer Key MCQ :
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 addition and multiplication — while maintaining the distinct identities

Field  automorphisms  preserve  all  the  essential  field  operations — 

field itself.

automorphism groups directly relates to the structural properties of the 

know as Galois theory. This connection revealed that the structure of 

the  solvability  of  polynomial  equations,  establishing  what  we  now 

groundbreaking insights connected the automorphisms of a field with 

19th  century,  primarily  through  the  work  of  Évariste  Galois.  His 

single field. The study of field automorphisms originated in the early 

makes them particularly useful for studying the internal structure of a 

automorphisms  specifically  deal  with  self-mappings.  This  restriction 

homomorphisms  that  can  map  between  different  fields, 

structure-preserving  mapping  of  a  field  to  itself.  Unlike  general  field 

and number theory. At the most basic level, a field automorphism is a 

branches of mathematics, including Galois theory, algebraic geometry, 

fields.  These  mathematical  objects  serve  as  critical  tools  in  various 

that  help  us  understand  the  internal  symmetries  and  structures  of 

Field  automorphisms  are  fundamental  structures  in  modern algebra 

4.1.1: Introduction to Field Automorphisms

• Analyze the structure and importance of splitting fields.

• Study the Frobenius automorphism and its applications.

  fields.

• Explore  the  relationship  between  automorphisms  and  fixed

• Learn about conjugation isomorphisms and their significance.

• Understand the concept of field automorphisms.

Objectives

AUTOMORPHISMS OF FIELDS

UNIT 4.1

MODULE 4
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   Preserves addition: For all a, b ∈ F, σ(a + b) = σ(a) + σ(b)2.

Bijective: σ is both injective (one-to-one) and surjective (onto)1.

conditions:

σ:  F  →  F  is  a  field  automorphism  if  it  satisfies  the  following 

preserves the field operations. Formally, if F is a field, then a function 

A field automorphism is a bijective mapping from a field to itself that 

Definition of Field Automorphisms

4.1.2: Definition and Examples of Field Automorphisms

and extensions.

fields,  which  provides  a  powerful  tool  for  analyzing  field  structures 

like  conjugation  isomorphisms,  and  investigate  the  concept  of  fixed 

formal  definitions,  examine  concrete  examples,  study  specific  types 

not. As we delve deeper into field automorphisms, we'll explore their 

which  polynomial  equations  are  solvable  by  radicals  and  which  are 

of  the  extension.  This  connection  proves  invaluable  in  determining 

automorphisms that fix the original field help us analyze the structure 

extensions.  When  we  extend  a  field  by  adjoining  elements,  the 

automorphisms  also  play  crucial  roles  in  understanding  field 

polynomial  equations  that  have  roots  in  that  extension.  Field 

group  of  a  field  extension  directly  relates  to  the  structure  of 

the field's properties. For instance, in Galois theory, the automorphism 

automorphism group. This group structure provides deep insights into 

of  a  field  forms  a  group  under  composition,  known  as  the 

complex number to its conjugate. The collection of all automorphisms 

automorphisms  exist,  such  as  complex  conjugation,  which  maps  a 

for  more  complex  fields  like  the  complex  numbers,  additional 

number to itself, is the only field automorphism of the reals. However, 

field  of  real  numbers.  The  identity  mapping,  which  maps  each  real 

correspondence  between  elements.  Consider  a  simple  example:  the 

automorphisms must be bijective, meaning they establish a one-to-one 

structure  remains  intact  under  the  mapping.  Additionally, 

of  the  field.  This  preservation  property  ensures  that  the  algebraic 
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Notes 3. Preserves multiplication: For all a, b ∈ F, σ(a × b) = σ(a) × 

σ(b) 

From these properties, several important consequences follow: 

• σ(0) = 0 (preservation of additive identity) 

• σ(1) = 1 (preservation of multiplicative identity) 

• σ(-a) = -σ(a) (preservation of additive inverse) 

• σ(a⁻¹) = σ(a)⁻¹ for a ≠ 0 (preservation of multiplicative inverse) 

The set of all automorphisms of a field F forms a group under 

function composition, denoted by Aut(F). This group structure is 

central to understanding the algebraic properties of the field itself. 

Examples of Field Automorphisms 

Example 1: The Identity Automorphism 

The simplest field automorphism is the identity automorphism, id: F 

→ F, defined by id(a) = a for all a ∈ F. This automorphism exists for 

every field and serves as the identity element in the automorphism 

group. 

Example 2: Automorphisms of Q 

The field of rational numbers Q has only one automorphism: the 

identity automorphism. This can be proven by noting that any 

automorphism must fix the integers (since it preserves addition and 

the multiplicative identity), and by extension, it must fix all rational 

numbers. 

Proof sketch: Let σ be an automorphism of Q. Then: 

• σ(1) = 1 (preservation of multiplicative identity) 

• σ(n) = σ(1 + 1 + ... + 1) = σ(1) + σ(1) + ... + σ(1) = n for any 

integer n 

• For any rational number p/q, σ(p/q) = σ(p)/σ(q) = p/q 
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 numbers.

The  second  automorphism  maps  √2  to -√2  while  fixing  all  rational 

The mapping σ defined by σ(a + b√2) = a - b√22.

The identity: id(a + b√2) = a + b√21.

Q. This field has two automorphisms:

The field Q(√2) consists of numbers of the form a + b√2 where a, b ∈ 

Example 6: Automorphisms of Q(√2)

automorphism is also the identity in this specific case.

Note  that  in  F₄,  x²  =  x  for  all  elements,  so  the  Frobenius

The Frobenius automorphism: Frob(x) = x² for all x ∈ F₄2.

The identity: id(x) = x for all x ∈ F₄1.

α, α+1} where α² + α + 1 = 0. The automorphisms are:

exactly  n  automorphisms.  For  instance,  consider  the  field  F₄  =  {0,  1, 

For  a  finite  field  with  pn  elements  (where  p  is  prime),  there  are 

Example 5: Automorphisms of Finite Fields

it to -i.

shown using properties of ordered fields) and must either fix i or map 

using the fact that any automorphism must fix the reals (which can be 

The  fact  that  these  are  the  only  automorphisms  of  C  can  be  proven 

Complex conjugation: conj(a + bi) = a - bi2.

The identity automorphism: id(a + bi) = a + bi1.

The complex field C has exactly two automorphisms:

Example 4: Automorphisms of C

ordered fields and continuity.

automorphism.  This  result  is  less  obvious  and  requires  properties  of 

Similar  to  Q,  the  field  of  real  numbers  R  also  has  only  the  identity 

Example 3: Automorphisms of R
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 extension of F, then Gal(E/F) is a finite group.

Finiteness  in  Algebraic  Extensions:  If  E  is  a  finite  algebraic 3.

forms a group under composition.

Group  Structure:  The  set  of  all  conjugation  isomorphisms 2.

fixed by all conjugation isomorphisms in Gal(E/F).

Fixed Field Preservation: Every element of the base field F is 1.

Properties of Conjugation Isomorphisms

isomorphism.

complex  conjugation,  which  is  the  prototypical  example  of  such  an 

Conjugation  isomorphisms  derive  their  name  from  their  similarity  to 

Gal(E/F) = {σ ∈Aut(E) | σ(a) = a for all a ∈ F}

Galois group of E over F, denoted by Gal(E/F):

Formally, the set of all such automorphisms forms a group called the 

element of F. In other words, σ(a) = a for all a ∈ F.

isomorphism  over  F  is  an  automorphism  σ  of  E  that  fixes  every 

Let  F  be  a  field  and  let  E  be  an  extension  field  of  F. A  conjugation 

Definition of Conjugation Isomorphisms

study of splitting fields.

structures.  They  are  particularly  important  in  Galois  theory  and  the 

that play a crucial role in understanding field extensions and algebraic 

Conjugation isomorphisms are a special class of field automorphisms 

4.1.3: Conjugation Isomorphisms

denoted Aut(F), is a central object of study in Galois theory.

into  the  field's  algebraic  properties.  This  automorphism  group, 

         

 

 

                

automorphisms forms a group structure that provides deep insights

of characteristic p, this map is also an automorphism.The collection of 

defined by φ(x) = xp is always a field homomorphism. In finite fields 

For a field F of characteristic p > 0, the Frobenius map φ: F → F 

Example 7: Frobenius Automorphism in Characteristic p Fields



 

 
 

Notes 4. Order Bound: If E is a finite extension of F with [E:F] = n (the 

degree of the extension), then |Gal(E/F)| ≤ n, with equality 

holding when the extension is Galois. 

5. Action on Roots: Conjugation isomorphisms permute the roots 

of irreducible polynomials. If α is a root of an irreducible 

polynomial f(x) over F, then σ(α) is also a root of f(x) for any 

σ ∈ Gal(E/F). 

Examples of Conjugation Isomorphisms 

Example 1: Complex Conjugation 

The classic example is complex conjugation on C viewed as an 

extension of R. The conjugation map σ: C → C defined by σ(a + bi) = 

a - bi is an automorphism of C that fixes every real number. Thus, 

Gal(C/R) = {id, σ}, a group of order 2. 

Example 2: Conjugation in Q(√2) 

Consider the field extension Q(√2)/Q. The conjugation map σ: Q(√2) 

→ Q(√2) defined by σ(a + b√2) = a - b√2 for a, b ∈ Q is an 

automorphism that fixes every rational number. Here, Gal(Q(√2)/Q) = 

{id, σ}, also a group of order 2. 

Example 3: Cyclotomic Extensions 

For the cyclotomic extension Q(ζₙ)/Q, where ζₙ is a primitive nth root 

of unity, the conjugation isomorphisms are given by σₖ(ζₙ) = ζₙᵏ for all 

k coprime to n. The Galois group Gal(Q(ζₙ)/Q) is isomorphic to the 

multiplicative group (Z/nZ)ˣ of integers modulo n that are coprime to 

n. 

Example 4: Splitting Fields of Polynomials 

Let E be the splitting field of a separable polynomial f(x) over F. The 

conjugation isomorphisms in Gal(E/F) permute the roots of f(x). For 

instance, if f(x) = x³ - 2 over Q, and E is its splitting field, then 
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Notes Gal(E/Q) is isomorphic to S₃, the symmetric group on 3 letters, 

representing the permutations of the three cube roots of 2. 

Applications of Conjugation Isomorphisms 

1. Galois Theory: Conjugation isomorphisms are the foundation 

of Galois theory, which establishes a correspondence between 

subgroups of the Galois group and intermediate fields of the 

extension. 

2. Solvability of Equations: The structure of the Galois group 

(composed of conjugation isomorphisms) determines whether 

a polynomial equation is solvable by radicals. 

3. Field Invariants: Conjugation isomorphisms help identify 

elements that are invariant under certain field operations, 

leading to the concept of fixed fields. 

4. Construction of Minimal Polynomials: For an element α in an 

extension field, the minimal polynomial of α over the base 

field can be constructed using the conjugation isomorphisms 

that act on α. 

5. Normal Extensions: An extension E/F is normal if and only if 

it is the splitting field of a family of polynomials over F, which 

connects to the behavior of conjugation isomorphisms on the 

roots of these polynomials. 

Conjugation isomorphisms provide a powerful tool for analyzing field 

extensions and understanding the algebraic structure of fields. They 

form the bridge between group theory and field theory, allowing us to 

apply group-theoretic methods to solve problems in field theory and 

vice versa. 
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 Importance and Applications of Fixed Fields

the characteristic).

E^G  is  the  prime  subfield  of  E  (either  Q  or  Fₚ  depending  on 

Fixed Field of Full Automorphism Group: If G = Aut(E), then 5.

trivial group containing only the identity automorphism.

            4.

         

             

             

Galois  Correspondence:  If  E/F  is  a  Galois  extension  with 2.

Subfield  Structure:  For  any  group  G  of  automorphisms  of  E, 1.

           

    

              

 

           

         

 

UNIT 4.2

Fixed Field of Trivial Group: E^{id} = E, where {id} is the

Properties of Fixed Fields

under the action of the automorphism group G.

The fixed field represents the elements of E that remain invariant 

Formally: EG = {a ∈ E | σ(a) = a for all σ ∈ G}

elements that are fixed (left unchanged) by every automorphism in G.

of G, denoted EG or Fix(G), is the subfield of E consisting of all 

Given a field E and a group G of automorphisms of E, the fixed field 

Definition of Fixed Fields

key role in the fundamental theorem of Galois theory.

powerful framework for analyzing the structure of fields and plays a 

between field automorphisms and field extensions. It provides a 

The concept of fixed fields is central to understanding the relationship 

4.2.1: Fixed Fields and Their Importance

the fixed field EG is indeed a subfield of E.

fixed fields.

other words, smaller groups of automorphisms lead to larger 

Monotonicity: If H is a subgroup of G, then EG ⊆ EH. In 3.

fundamental relationships in Galois theory.

Galois group G = Gal(E/F), then F = EG. This is one of the 
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 Example 2: Cyclotomic Extensions

group Gal(C/R) = {id, conj} is indeed R.

This  confirms  the  well-known  fact  that  the  fixed  field  of  the  Galois 

CG = {a + bi ∈ C | a + bi = a - bi} = {a ∈ C | b = 0} = R

conjugation:

consists  of  all  complex  numbers  that  remain  unchanged  under 

conj}  where  conj  is  the  complex  conjugation.  The  fixed  field  CG 

Consider  the  field  of  complex  numbers  C  and  the  group  G  =  {id, 

Example 1: Fixed Field of Complex Conjugation

Examples of Fixed Fields

F is the fixed field of some group of automorphisms of E.

Normal Extensions: An extension E/F is normal if and only if 5.

particularly useful in computational algebra.

approach  to  generating  subfields  with  specific  properties, 

Constructive Field Theory: Fixed fields provide a constructive 4.

a field.

revealing how  automorphism groups partition the elements of 

understand the internal structure of fields and their extensions, 

Structural  Understanding:  The  fixed  field  concept  helps 3.

Galois group G, then [E:F] = |G|.

degree  of  field  extensions.  If  E/F  is  a  Galois  extension  with 

Field  Extension  Analysis:  Fixed  fields  help  determine  the 2.

each intermediate field K, Gal(E/K) is a subgroup of Gal(E/F).

subgroup H of Gal(E/F), EH is an intermediate field, and for 

intermediate  fields  between  F  and  E.  Specifically,  for  each 

between  the  subgroups  of  the  Galois  group  Gal(E/F)  and  the 

Galois  theory  establishes  a  one-to-one  correspondence 

Galois  Theory  Correspondence:  The  fundamental  theorem  of 1.
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 intermediate fields.

This  illustrates  the  Galois  correspondence  between  subgroups  and 

(√6).

Similarly,  for  K  =  {id,  σ₂},  EK  =  Q(√2).  For  L  =  {id,  σ₃},  EL  = Q

If  we  consider  the  subgroup  H  =  {id,  σ₁},  then  EH  =  Q(√3). 

The fixed field EG is Q.

• σ₃: maps √2 → -√2 and √3 → -√3

• σ₂: fixes √2 and maps √3 → -√3

• σ₁: maps √2 → -√2 and fixes √3

• id: identity automorphism

which has four elements:

Consider the field E = Q(√2, √3) and its Galois group G = Gal(E/Q), 

Example 4: Fixed Field in Q(√2, √3)

Frobenius automorphism.

This  confirms  that  the  prime  subfield  Fₚ  is  the  fixed  field  of  the 

Fₚₙ⟨φ⟩ = {x ∈ Fₚₙ | xp = x} = Fₚ

is:

= xp for all x ∈ Fₚₙ. The fixed field of the group ⟨φ⟩ generated by φ 

In a finite field Fₚₙ, the Frobenius automorphism φ is defined by φ(x)

Example 3: Fixed Field of Frobenius Automorphism

(√±p) where the sign depends on p mod 4.

prime,  and  H  is  the  subgroup  of  squares  in  (Z/pZ)ˣ,  then  EH  = Q

intermediate  field  between  Q  and  Q(ζₙ).  For  instance,  if  n  =  p  is  a 

For  a  subgroup  H  of  Gal(E/Q),  the  fixed  field  E^H  represents  an 

isomorphic to (Z/nZ)ˣ, the group of units modulo n.

primitive  nth  root  of  unity  ζₙ  to  Q.  The  Galois  group  Gal(E/Q)  is 

Let  E  =  Q(ζₙ)  be  the  cyclotomic  field  obtained  by  adjoining  a 
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  q ∈ Q. The only question is how σ acts on √2.

automorphism σ must fix the rational field Q. That is, σ(q) = q for all 

Step  2:  Determine  how  automorphisms  act  on  Q(√2).  Any 

numbers of the form a + b√2 where a, b ∈ Q.

Step  1:  Understand  the  structure  of  Q(√2).  Q(√2)  consists  of  all 

Solution:

fixed field for each non-trivial automorphism.

Problem:  Find  all  field  automorphisms  of  Q(√2)  and  determine  the 

Problem 1: Determining all Field Automorphisms of Q(√2)

Solved Problems on Field Automorphisms

extensions and solving polynomial equations.

these  two  domains.  It  provides  a  powerful  tool  for  analyzing  field 

and  group  theory,  with  fixed  fields  serving  as  the  bridge  between 

This  theorem  encapsulates  the  deep  connection  between  field  theory 

o If H is normal in G, then Gal(K/F) ≅ G/H

  normal extension

o H  is  a  normal  subgroup  of  G  if  and  only  if  K/F  is  a

o [K:F] = [G:H] (the index of the subgroup)

o [E:K] = |H| (the order of the subgroup)

If H ↦ K under this correspondence, then:2.

↦ EH and K ↦ Gal(E/K).

H of G and the intermediate fields K (F ⊆ K ⊆ E), given by H 

There  is  a  one-to-one  correspondence  between  the  subgroups 1.

Let E/F be a Galois extension with Galois group G = Gal(E/F). Then:

Theorem of Galois Theory, which can be stated as follows:

The  importance  of  fixed  fields  culminates  in  the  Fundamental 

The Fundamental Theorem of Galois Theory
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automorphism σ of Q(ζ₅) must fix Q and send ζ₅ to another primitive

Step  2:  Determine  the  automorphisms  of  Q(ζ₅)  over  Q.  Any 

cyclotomic polynomial Φ₅(x) = x⁴ + x³ + x² + x + 1.

primitive  5th  root  of  unity.  Then  Q(ζ₅)  is  the  splitting  field  of  the 

Step  1: Understand  the  structure  of  Q(ζ₅).  Let  ζ₅  =  e(2πi/5),  a 

Solution:

subgroups and their corresponding fixed fields.

Q(ζ₅),  where  ζ₅  is  a  primitive  5th  root  of  unity,  and  identify  the 

Problem:  Determine  the  automorphism  group  of  the  cyclotomic  field 

Problem 2: Automorphism Group of a Cyclotomic Field

the fixed field of the non-trivial automorphism σ₂ is Q.

Conclusion: The automorphism group of Q(√2) is {σ₁, σ₂} ≅ Z₂, and 

= a + b√2, which implies b = 0. Therefore, the fixed field of σ₂ is Q.

elements a + b√2 such that σ₂(a + b√2) = a + b√2. This means a - b√2 

Step  4:  Determine  the  fixed  field  of  σ₂.  The  fixed  field  consists  of 

b√2)(c - d√2) = ac + 2bd - (ad + bc)√2

2bd) = ac + 2bd - (ad + bc)√2 And also: σ₂(a + b√2)σ₂(c + d√2) = (a - 

For  multiplication:  σ₂((a  +  b√2)(c  +  d√2))  =  σ₂(ac  +  ad√2  +  bc√2  + 

d√2) = (a + c) - (b + d)√2

c) - (b + d)√2 And also: σ₂(a + b√2) + σ₂(c + d√2) = (a - b√2) + (c - 

For addition: σ₂((a + b√2) + (c + d√2)) = σ₂((a + c) + (b + d)√2) = (a + 

σ₂ preserves addition and multiplication:

Step  3: Verify  these  are  valid automorphisms. We  need  to  check  that 

• σ₂(a + b√2) = a - b√2 (sends √2 to -√2)

• σ₁(a + b√2) = a + b√2 (the identity automorphism)

This gives us two possibilities:

Therefore, σ(√2) = ±√2

Since  σ  preserves  multiplication:  σ(√2)²  =  σ(√2  ·  √2)  =  σ(2)  =  2 
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Notes 5th root of unity. The primitive 5th roots of unity are ζ₅, ζ₅², ζ₅³, and 

ζ₅⁴. 

This gives us four automorphisms: 

• σ₁(ζ₅) = ζ₅ (identity) 

• σ₂(ζ₅) = ζ₅² 

• σ₃(ζ₅) = ζ₅³ 

• σ₄(ζ₅) = ζ₅⁴ 

Step 3: Determine the group structure. We can compute the 

composition of these automorphisms: 

• σ₂ ∘ σ₂(ζ₅) = σ₂(ζ₅²) = (ζ₅²)² = ζ₅⁴ = σ₄(ζ₅) 

• σ₂ ∘ σ₃(ζ₅) = σ₂(ζ₅³) = (ζ₅³)² = ζ₅⁶ = ζ₅ = σ₁(ζ₅) 

• σ₂ ∘ σ₄(ζ₅) = σ₂(ζ₅⁴) = (ζ₅⁴)² = ζ₅⁸ = ζ₅³ = σ₃(ζ₅) 

Similar calculations for the other compositions show that the 

automorphism group is isomorphic to (Z/5Z)ˣ≅ Z₄, the cyclic group of 

order 4, with σ₂ as a generator. 

Step 4: Identify subgroups and fixed fields. The subgroups of Z₄ are: 

• {σ₁} (the trivial subgroup) 

• {σ₁, σ₃} (the subgroup of order 2) 

• {σ₁, σ₂, σ₃, σ₄} (the full group) 

For the trivial subgroup {σ₁}, the fixed field is Q(ζ₅). 

For {σ₁, σ₃}, we need to find elements fixed by both σ₁ and σ₃. An 

element α = a₀ + a₁ζ₅ + a₂ζ₅² + a₃ζ₅³ + a₄ζ₅⁴ is fixed by σ₃ if: σ₃(α) = a₀ 

+ a₁ζ₅³ + a₂ζ₅⁶ + a₃ζ₅⁹ + a₄ζ₅¹² = a₀ + a₁ζ₅³ + a₂ζ₅ + a₃ζ₅⁴ + a₄ζ₅² = α 

This gives us conditions: a₁ = a₃, a₂ = a₄ So the fixed field is Q(ζ₅ + ζ₅⁴, 

ζ₅² + ζ₅³) = Q(√5) 

For the full group, the fixed field is Q. 
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Fp
n contains  pn  elements,  and  φ  raises  elements  to  the  power  p,

Step  4:  Determine  the  order  of  φ  in  the  automorphism  group.  Since 

Therefore, the fixed field of φ is exactly Fp.

field, and we've identified p distinct roots (the elements of Fp). 

fixed field, note that the polynomial xp - x has at most p roots in any 

by  all  elements  of  the  prime  subfield  Fp. To  show  this  is  the  entire 

elements x such that φ(x) = x, i.e., xp = x. This equation is satisfied 

Step  3:  Determine  the  fixed  field  of  φ.  The  fixed  field  consists  of 

also besurjective.

injective.For surjectivity, since Fp
n is finite and φ is injective, it must 

then a = b (by taking the pth root). Therefore, x = y, proving φ is 

injectivity,  suppose  φ(x)  =  φ(y),  then  xp =  yp.  In  a  field,  if  ap =bp, 

Step  2:  Show  that  φ  is  bijective  (both  injective  and  surjective).  For 

For multiplication: φ(xy) = (xy)p = xpyp = φ(x)φ(y)

So φ(x + y) = xp + yp = φ(x) + φ(y)

y)p =  xp +  yp (all  other  terms  contain  a  factor  of  p  and  thusvanish) 

+ y)p In a field of characteristic p, the binomial expansion gives: (x+ 

Step 1: Verify that φ is a homomorphism. For addition: φ(x + y) = (x 

Solution:

Fpn is an automorphism, and determine its fixed field.

Problem:  Show  that  the  Frobenius  map  φ(x)  =  xp on  a  finite  field 

Problem 3: Frobenius Automorphism in Finite Fields

• For {σ₁, σ₂, σ₃, σ₄}: Q

• For {σ₁, σ₃}: Q(√5)

• For {σ₁}: Q(ζ₅)

isomorphic to (Z/5Z)ˣ. The fixed fields are:

Conclusion:  The  automorphism  group  of  Q(ζ₅)  is  cyclic  of  order  4, 
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 Therefore, the only automorphism of R is the identity.

= q. This means |σ(x) - x| < ε for any ε > 0, which implies σ(x) = x.

p < ε. Since σ fixes p and q and preserves order, p = σ(p) < σ(x) < σ(q)

∈ R and any ε > 0, there exist rationals p, q such that p < x < q and q - 

Step 4: Use density of Q in R to conclude σ is the identity. For any x 

limit a, the sequence (σ(aₙ)) converges to σ(a).

property,  we  can  show  that  for  any  convergent  sequence  (aₙ)  with 

Step  3:  Show  that  σ  is  continuous.  Using  the  order-preserving 

σ(b) = σ(a - b) > 0. Therefore, σ(a) > σ(b), meaning σ preserves order.

preserves  addition  and  positivity  (as  a  field  automorphism),  σ(a) - 

Step 2: Show that σ preserves order. If a > b, then a - b > 0. Since σ 

  ∈ Q.

• For fractions, σ(p/q) = σ(p)/σ(q) = p/q Thus, σ(q) = q for all q

• For negative integers, σ(-n) = -σ(n) = -n

  ... + σ(1) = n

• For any integer n > 0, σ(n) = σ(1 + 1 + ... + 1) = σ(1) + σ(1) +

• σ(1) = 1 (preservation of multiplicative identity)

numbers Q.

Step  1:  Show  that  any  automorphism  σ  of  R  must  fix  the  rational 

Part 1: Automorphisms of R

Solution:

automorphisms.

automorphism,  and  the  field  of  complex  numbers  C  has  exactly  two 

Problem: Prove that the field of real numbers R has only the identity 

Problem 4: Field Automorphisms of C and R

in the automorphism group is n.

smallest k with pk ≡ 1 (mod pn-1). This gives k = n, so the order of  φ 

the  smallest  positive  integer  k  such  that  φk  is  the  identity  is  the 



 

 
 

Notes Part 2: Automorphisms of C 

Step 1: Show that any automorphism σ of C must fix R. From Part 1, 

any automorphism of R is the identity. Since C is an extension of R, 

the restriction of σ to R must be the identity automorphism on R. 

Step 2: Determine how σ acts on i. Since i² = -1, we have σ(i)² = σ(i²) 

= σ(-1) = -1. This means σ(i) = ±i. 

Step 3: Show that this gives exactly two automorphisms. 

• If σ(i) = i, then σ(a + bi) = a + bi for all a, b ∈ R (the identity 

automorphism) 

• If σ(i) = -i, then σ(a + bi) = a - bi for all a, b ∈ R (complex 

conjugation) 

Both of these are clearly automorphisms of C. And since any 

automorphism must send i to either i or -i, these are the only two 

possibilities. 
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Fixed Field: The fixed field of the Frobenius automorphism is 4.

surjective.

Since  F  is  finite  and  Φ  is  injective,  it  follows  that  Φ  is  also 

Surjectivity: The Frobenius automorphism is surjective (onto). 3.

              

Injectivity:  The  Frobenius  automorphism  is  injective  (one-to- 2.

o 

o 

  

          

 

 

        

 

 

UNIT 4.3

Homomorphism Property: For any elements a, b ∈ F:1.

Key Properties:

the field to its p-th power.

In other words, the Frobenius automorphism maps every element of 

Φ: F → F Φ(x) = xp

The Frobenius automorphism, typically denoted by Φ, is defined as:

Let F be a finite field of characteristic p (where p is a prime number). 

Definition and Basic Properties

understanding their structure.

automorphism applies to finite fields and provides a powerful tool for 

and cryptography. Named after Ferdinand Georg Frobenius, this 

and has significant applications in number theory, algebraic geometry, 

The Frobenius automorphism is a fundamental concept in field theory 

4.3.1: Frobenius Automorphism

Φ(a + b) = Φ(a) + Φ(b) = ap + bp

Φ(a·b) = Φ(a)·Φ(b) = ap·bp

characteristic p, this implies a = b.

one). Proof: If Φ(a) = Φ(b), then ap = bp. In a field of 

Frobenius Automorphism in Extension Fields

xp = x, which occurs precisely when x ∈Fp.

the prime subfield Fp. An element x is fixed by Φ if and only if 
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 x2 acts as follows:

polynomial x2  +  x +  1  over F2.  The Frobenius automorphism Φ(x)= 

Consider  the  field  F4 =  {0,  1,  α,  α+1},  where  α  is  a  root  of the 

Example 1: Frobenius in F4

Examples of the Frobenius Automorphism

fields.

morphism  provides  a  tool  for  studying  varieties  over  finite 

Algebraic  Geometry:  In  algebraic  geometry,  the  Frobenius 3.

the basis for several cryptographic protocols.

points  of  the  Frobenius  automorphism  in  certain  fields  forms 

Cryptography:  The  computational  difficulty  of  finding  fixed 2.

polynomial equations over finite fields.

automorphism  helps  count  the  number  of  solutions  to 

Counting  Solutions  to  Equations:  The  Frobenius 1.

Applications of the Frobenius Automorphism

fields.

determine  the  minimal  polynomials  of  elements  in  extension 

Minimal  Polynomials:  The  Frobenius  automorphism  helps 3.

automorphism.

Gal(Fq/Fp) is cyclic of order n, generated by the Frobenius 

Galois  Group:  For  an  extension  Fq/Fp,  the  Galois  group2.

that for any x ∈Fq, we have xpn = x.

automorphism,  Φn,  is  the  identity  map  on  Fq.  This  means

Iterated Application: The n-fold composition of the Frobenius 1.

Extension Field Properties:

understanding the structure of extension fields.

a positive integer. The Frobenius automorphism plays a crucial rolein 

Let Fq be a finite field with q = pn elements, where p is prime and nis 
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 the roots of f(x).

In other words, E is the smallest field extension of F that contains all 

E = F(r₁, r₂, ..., rₙ), where r₁, r₂, ..., rₙ are all the roots of f(x)2.

f(x) factors completely into linear factors in E[x]1.

 

           

 

• 

• 

• 

     

             

• 

• 

• 

• Φ(0) = 02 = 0

Φ(1) = 12 = 1

Φ(α) = α2 = α+1 (because α2 + α + 1 = 0, so α2 = α+1)

Φ(α+1) = (α+1)2 = α2 + 1 = α+1+1 = α (in characteristic 2)

Frobenius automorphism Φ(x) = x3 acts as:

For the field F27 = F3[x]/(x3 - 2), let β be a root of x3 - 2. The 

Example 2: Frobenius in F27

Frobenius automorphism divides the extension degree.

Note that Φ2 is the identity map, confirming that the order of the 

Φ(β) = β3 = 2 (by definition)

Φ(β2) = (β2)3 = β6 = (β3)2 = 22 = 4 = 1 (mod 3)

Φ(2β) = (2β)3 = 23·β3 = 8·2 = 16 = 1 (mod 3)

extension E of F is called a splitting field of f(x) over F if:

Let F be a field and f(x) be a non-constant polynomial in F[x]. A field 

Formal Definition:

completely into linear factors.

the minimal extension of a field needed to factor a polynomial 

A splitting field is a fundamental concept in field theory that provides 

Definition of Splitting Fields

4.3.2: Splitting Fields: Definitions and Examples

Here, Φ3 is the identity map, aligning with the extension degree of 3.



 

 
 

Notes Alternative Definition: 

A splitting field for a set of polynomials {f₁(x), f₂(x), ..., fₘ(x)} over a 

field F is the smallest field extension E of F such that each polynomial 

fᵢ(x) splits completely into linear factors in E[x]. 

Existence and Uniqueness of Splitting Fields 

Existence: 

For any field F and non-constant polynomial f(x) in F[x], there exists 

a splitting field of f(x) over F. 

Proof Sketch: We can construct a splitting field by iteratively 

adjoining roots of the polynomial. Starting with F, we adjoin one root 

at a time until all roots are included. The resulting field is the splitting 

field. 

Uniqueness: 

Splitting fields are unique up to isomorphism. That is, if E₁ and E₂ are 

two splitting fields of f(x) over F, then there exists an isomorphism φ: 

E₁ → E₂ such that φ(a) = a for all a ∈ F. 

Properties of Splitting Fields 

1. Degree Bound: If f(x) is a polynomial of degree n, then the 

degree of the splitting field extension [E:F] divides n! 

2. Normality: A splitting field extension is always a normal 

extension. 

3. Separability: If f(x) is separable (has no repeated roots in its 

splitting field), then the splitting field extension is a Galois 

extension. 

4. Minimality: The splitting field is the smallest field extension 

that contains all the roots of the polynomial. 

Examples of Splitting Fields 

Example 1: Splitting Field of x² - 2 over Q 
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Notes Consider the polynomial f(x) = x² - 2 over the rational numbers Q. 

The roots of f(x) are r₁ = √2 and r₂ = -√2. 

The splitting field of f(x) over Q is E = Q(√2), which is the field 

obtained by adjoining √2 to Q. Note that both roots are in this field 

since -√2 is also in Q(√2). 

[E:Q] = 2, as the minimal polynomial of √2 over Q is x² - 2, which has 

degree 2. 

Example 2: Splitting Field of x³ - 2 over Q 

Consider the polynomial f(x) = x³ - 2 over Q. 

The roots of f(x) are: 

• r₁ = ∛2 (the real cube root of 2) 

• r₂ = ω·∛2, where ω is a primitive cube root of unity (e^(2πi/3)) 

• r₃ = ω²·∛2, where ω² is the complex conjugate of ω 

The splitting field of f(x) over Q is E = Q(∛2, ω). This field contains 

all three roots of f(x). 

[E:Q] = 6, as [Q(∛2):Q] = 3 and [Q(∛2, ω):Q(∛2)] = 2. 

Example 3: Splitting Field of x⁴ - 1 over Q 

Consider the polynomial f(x) = x⁴ - 1 over Q. 

The roots of f(x) are: 

• r₁ = 1 

• r₂ = -1 

• r₃ = i 

• r₄ = -i 

The splitting field of f(x) over Q is E = Q(i), which is the field of 

complex numbers with rational real and imaginary parts. 
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 α be a root of f(x), so α² = -1 ≡ 2 (mod 3).

So f(x) has no roots in F₃. We need to construct an extension field. Let 

• f(2) = 2² + 1 = 5 ≡ 2 (mod 3) ≠ 0

• f(1) = 1² + 1 = 2 ≠ 0

• f(0) = 0² + 1 = 1 ≠ 0

Let's check if there are any roots in F₃:

We need to find the roots of f(x) = x² + 1 in some extension of F₃.

modulo 3).

Consider the polynomial f(x) = x² + 1 over the finite field F₃ (integers 

Example 5: Splitting Field of x² + 1 over F₃

cyclotomic polynomial, which has degree p-1.

[E:Q]  =  p-1,  as  the  minimal  polynomial  of  ζ  over  Q  is  the  p-th 

cyclotomic field.

The  splitting  field  of  f(x)  over  Q  is  E  =  Q(ζ),  which  is  the  p-th 

• rp = ζ(p-1)

• ...

• r₃ = ζ²

• r₂ = ζ, where ζ is a primitive p-th root of unity (e(2πi/p))

• r₁ = 1

The roots of f(x) are:

For a prime number p, consider the polynomial f(x) = xp - 1 over Q.

Example 4: Splitting Field of xp - 1 over Q (p prime)

degree 2.

[E:Q] = 2, as the minimal polynomial of i over Q is x² + 1, which has 
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 3. Normality Property

α₁ to α₂. This can be extended to the full splitting fields by induction.

there exists an isomorphism from F(α₁) to F(α₂) that fixes F and maps 

and  α₁,  α₂  are  roots  of  f(x)  in  extensions  E₁  and E₂  respectively,  then 

Proof Sketch: The proof uses the fact that if f(x) is irreducible over F 

isomorphism φ: E₁ → E₂ such that φ(a) = a for all a ∈ F.

splitting  fields  of  a  polynomial  f(x)  over  F,  then  there  exists  an 

Splitting  fields  are  unique  up  to  isomorphism.  If  E₁  and  E₂  are  two 

2. Uniqueness Property

contains all these roots, we have E ⊆ K.

F(r₁,  r₂,  ...,  rₙ),  where  r₁,  r₂,  ...,  rₙ  are  all  the  roots  of  f(x).  Since  K 

extension  of  F  that  contains  all  the  roots  of  f(x).  By  definition,  E  = 

Proof: Let E be a splitting field of f(x) over F, and let K be any field 

field extension of F that contains all the roots of f(x).

A  splitting  field  E  of  a  polynomial  f(x)  over  a  field  F  is  the  smallest 

1. Minimality Property

Fundamental Properties of Splitting Fields

these properties in detail.

central to field theory and Galois theory. In this section, we'll explore 

Splitting  fields  possess  several  important  properties  that  make  them 

4.3.3: Properties of Splitting Fields

4·2 = 8 ≡ 2 (mod 3)).

The  roots  of  f(x)  in  this  extension  are  α  and  2α  (since  (2α)²  =  4α²  = 

field with 9 elements.

Actually, since x² + 1 is  irreducible over  F₃, we have  F₃(α) ≅ F₉, the 

2α, 2α+1, 2α+2}.

The splitting field of f(x) over F₃ is E = F₃(α) = {0, 1, 2, α, α+1, α+2, 
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 over K.

(F ⊆ K ⊆ E),  then  E  is  also  the  splitting  field  of  some  polynomial 

If E is the splitting field of f(x) over F, and K is an intermediate field 

2. Intermediate Extensions

divides n!.

letters  (permuting  the  roots  of  f(x)).  Since  |Sn|  =  n!,  we  have  [E:F]

which has order [E:F], is a subgroup of the symmetric group Sn on n 

Proof Sketch: This follows from the fact that the Galois group of E/F, 

of the splitting field E over F divides n!.

If f(x) is a polynomial of degree n over a field F, then the degree [E:F]

1. Degree Bound

Degree Properties of Splitting Fields

splitting field, it is also normal. Therefore, E/F is a Galois extension.

in  its  splitting  field  E.  This  means  E/F  is  separable.  Since  E  is  a 

Proof: If f(x) is separable, then by definition, it has no repeated roots 

separable.

Definition:  A  field  extension  E/F  is  Galois  if  it  is  both  normal  and 

field), then the splitting field E of f(x) over F is a Galois extension.

If f(x) is a separable polynomial (has no repeated roots in its splitting 

4. Galois Extension Property

then all roots of g(x) are in E.

E.  For  any  irreducible  factor  g(x)  of  f(x),  if  one  root  of  g(x)  is  in  E, 

of a polynomial f(x) over F, then by definition, all roots of f(x) are in 

minimal polynomials of all its elements. (⇐) If E is the splitting field 

Proof:  (⇒)  If  E/F  is  normal,  then  E  is  the  splitting  field  of  the  set  of 

polynomial in F[x] that has one root in E has all its roots in E.

Definition:  A  field  extension  E/F  is  normal  if  every  irreducible 

some polynomial (or set of polynomials) over F.

A field extension E/F is normal if and only if E is the splitting field of 
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Notes Proof: Let {α₁, α₂, ..., αₘ} be the elements of E that are not in K. Then 

E = K(α₁, α₂, ..., αₘ). Let g(x) be the product of the minimal 

polynomials of each αᵢ over K. Then E is the splitting field of g(x) 

over K. 

Splitting Fields and Field Automorphisms 

1. Automorphism Group 

If E is the splitting field of a polynomial f(x) over F, then the group of 

automorphisms of E that fix F (denoted Aut(E/F)) permutes the roots 

of f(x). 

Proof: Let σ ∈Aut(E/F) and let α be a root of f(x) in E. Then: f(σ(α)) = 

σ(f(α)) = σ(0) = 0 So σ(α) is also a root of f(x). 

2. Fixed Field 

If E is the splitting field of a polynomial f(x) over F and G = Aut(E/F), 

then the fixed field of G in E is exactly F. 

Definition: The fixed field of G is the set of all elements e ∈ E such 

that σ(e) = e for all σ ∈ G. 

Proof: This is a consequence of the Fundamental Theorem of Galois 

Theory, which states that for a Galois extension, there is a one-to-one 

correspondence between subgroups of the Galois group and 

intermediate fields. 

Constructing Splitting Fields 

1. Iterative Construction 

A splitting field can be constructed by iteratively adjoining roots of 

the polynomial. 

Procedure: 

1. Start with the base field F and the polynomial f(x). 

2. Find an irreducible factor g(x) of f(x) over F. 

3. Adjoin a root α of g(x) to create the field extension F(α). 
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 theory and their implications.

explores  the  various  applications  of  field  automorphisms  in  Galois 

the  bridge  between  field  extensions  and  group  theory.  This  section 

Field  automorphisms  play  a  central  role  in  Galois  theory,  providing 

4.3.3: Applications of Field Automorphisms in Galois Theory

of all polynomials in F[x].

The algebraic closure of a field F can be viewed as the splitting field 

4. Algebraic Closure

x^(p^n) - x over its prime subfield.

Every  finite  field  is  the  splitting  field  of  a  polynomial  of  the  form 

3. Finite Fields

polynomial equations.

theory with group theory and provides a framework for understanding 

Splitting  fields  are  central  to  Galois  theory,  which  connects  field 

2. Galois Theory

polynomial equation can be solved completely.

Splitting  fields  provide  the  smallest  field  extension  in  which  a 

1. Solving Polynomial Equations

Applications of Splitting Fields

Fᵢ₋₁.

where each [Fᵢ:Fᵢ₋₁] is the degree of the minimal polynomial of αᵢ over 

E, then: [E:F] = [F₁:F₀] · [F₂:F₁] · ... · [Fₙ:Fₙ₋₁]

Formula: If E is constructed as F₀ = F, F₁ = F₀(α₁), F₂ = F₁(α₂), ..., Fₙ = 

degrees of the intermediate extensions.

The degree of the splitting field extension can be calculated from the 

2. Extension Degree Calculation

completely.

Factor  f(x)  over  F(α)  and  repeat  the  process  until  f(x)  splits 4.
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 the Galois group.

normal if and only if the corresponding subgroup is normal in 

Identifying  Normal  Extensions:  An  intermediate  extension  is 3.

corresponding intermediate field.

Galois  group  gives  the  degree  of  the  extension  E  over  the 

Computing Extension Degrees: The order of a subgroup of the 2.

fields of a Galois extension.

of  the  Galois  group,  we  can  identify  all  possible intermediate 

Determining All Intermediate Fields: By finding all subgroups 1.

Applications:

subgroup of G. In this case, Gal(K/F) ≅ G/Gal(E/K).

K/F is a normal extension if and only if Gal(E/K) is a normal 3.

o [K:F] = [G:Gal(E/K)] = |G|/|Gal(E/K)|

o [E:K] = |Gal(E/K)|

For any intermediate field K:2.

  subgroup is H = Gal(E/K).

o For  an  intermediate  field  K,  the  corresponding

EH (the fixed field of H).

o For a subgroup H ⊆ G, the corresponding field is K =  

intermediate fields K (F ⊆ K ⊆ E) and the subgroups H of G.

There  is  a  one-to-one  correspondence  between  the 1.

Let E/F be a Galois extension with Galois group G = Gal(E/F). Then:

Statement of the Theorem:

intermediate fields of a Galois extension.

correspondence  between  subgroups  of  the  Galois  group  and 

The  Fundamental  Theorem  of  Galois  Theory  establishes  a 

The Fundamental Theorem of Galois Theory



 

 
 

Notes Automorphisms and the Structure of Galois Groups 

Cyclotomic Extensions 

For the cyclotomic extension Q(ζₙ)/Q, where ζₙ is a primitive n-th root 

of unity, the Galois group is isomorphic to (Z/nZ)×, the multiplicative 

group of integers modulo n that are coprime to n. 

Each automorphism σₖ in Gal(Q(ζₙ)/Q) is determined by: σₖ(ζₙ) = ζₙᵏ, 

where gcd(k, n) = 1 

This allows us to understand the structure of cyclotomic extensions 

and solve problems related to cyclotomic polynomials. 

Quadratic Extensions 

For a quadratic extension Q(√d)/Q, where d is a square-free integer, 

the Galois group is isomorphic to Z/2Z (cyclic group of order 2). 

The non-trivial automorphism σ in Gal(Q(√d)/Q) is given by: σ(a + 

b√d) = a - b√d, for all a, b ∈ Q 

This helps in understanding the structure of quadratic number fields 

and solving quadratic equations. 

Solvability by Radicals 

One of the most celebrated applications of Galois theory is 

determining when a polynomial equation is solvable by radicals. 

Theorem (Abel-Ruffini): 

A polynomial equation is solvable by radicals if and only if its Galois 

group is solvable. 

Application: 

Field automorphisms allow us to determine the Galois group of a 

polynomial, which in turn tells us whether the polynomial is solvable 

by radicals. 

For example: 
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 Applications:

field EG has degree [E:EG] = |G|.

If  G  is  a  finite  group  of  automorphisms  of  a  field  E,  then  the  fixed 

Theorem:

group actions.

Field  automorphisms  help  identify  elements  that  remain  fixed  under 

Fixed Fields and the Invariant Theory

each pᵢ is a distinct Fermat prime (primes of the form 2²ⁿ + 1).

constructible  if  and  only  if  n  =  2ᵏp₁p₂...pₘ,  where  k  ≥  0  and 

Constructing  Regular  Polygons:  A  regular  n-gon  is 4.

irreducible cubic equations.

Trisecting  an Angle:  Generally  impossible  because  it  leads  to 3.

minimal polynomial of degree 3.

Doubling the Cube: Impossible because the cube root of 2 has 2.

Squaring the Circle: Impossible because π is transcendental.1.

Applications:

if it lies in a field extension of Q with degree a power of 2.

A number is constructible with compass and straightedge if and only 

Theorem:

problems.

Field  automorphisms  help  solve  classical  Greek  constructibility 

Constructibility Problems in Geometry

  solvable.

  radicals  because  S₅  and  higher  symmetric  groups  are  not

• The  general  polynomial  of  degree  ≥  5  is  not  solvable  by

  because S₄ (the symmetric group on 4 letters) is solvable.

• Polynomials  of  degree  ≤  4  are  always  solvable  by  radicals
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 Kummer Theory:

abelian extensions.

Field  automorphisms  are  central  to  Kummer  theory,  which  studies 

Kummer Theory and Cyclotomic Extensions

fields.

design  and  analysis  of  error-correcting  codes  based  on  finite 

Error-Correcting  Codes:  Field  automorphisms  are  used  in  the 3.

count the number of solutions to equations over finite fields.

Counting  Solutions  to  Equations:  Field  automorphisms  help 2.

there exists a finite field with q elements.

order  are  isomorphic,  and  for  every  prime  power  q  =  pn, 

Classification  of  Finite  Fields:  All  finite  fields  of  the  same 1.

Applications:

automorphism Φ(x) = xp.

Gal(Fq/Fp)  is  cyclic  of  order  n,  generated  by  the  Frobenius 

For  a  finite  field  Fq  with  q  =  pn  elements,  the  Galois  group 

Theorem:

finite fields.

The  Frobenius  automorphism  plays  a  special  role  in  the  theory  of 

Finite Fields and the Frobenius Automorphism

representation theory and algebraic geometry.

elements  under  group  actions,  which  has  applications  in 

Invariant Theory: Field automorphisms help identify invariant 2.

elementary symmetric polynomials.

Q(x₁,  x₂,  ...,  xₙ)  is  precisely  Q(e₁,  e₂,  ...,  eₙ),  where  eᵢ are  the 

Symmetric  Polynomials:  The  fixed  field  of  Sn  acting  on 1.
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Notes Let K be a field containing a primitive n-th root of unity, and let L/K 

be a Galois extension with Gal(L/K) ≅ (Z/nZ)ᵏ. Then L = K(α₁, α₂, ..., 

αₖ), where αᵢⁿ ∈ K. 

Applications: 

1. Class Field Theory: Kummer theory is a key component of 

class field theory, which describes abelian extensions of 

number fields. 

2. Reciprocity Laws: Field automorphisms help establish 

reciprocity laws in number theory, which describe when a 

number is an n-th power modulo another number. 

Solving Quintic Equations 

While the general quintic is not solvable by radicals, certain quintics 

are. Field automorphisms help identify such cases. 

Theorem: 

A quintic polynomial is solvable by radicals if and only if its Galois 

group is a solvable subgroup of S₅. 

Example: 

The polynomial x⁵ - x - 1 has Galois group S₅, so it is not solvable by 

radicals. The polynomial x⁵ - 5x + 12 has Galois group that is a 

solvable subgroup of S₅, so it is solvable by radicals. 

Solved Problems 

Problem 1: Finding the Frobenius Automorphism in a Finite Field 

Problem: Consider the finite field F₄ = F₂[x]/(x² + x + 1). Let α be a 

root of x² + x + 1 in F₄, so F₄ = {0, 1, α, α+1}. Find the action of the 

Frobenius automorphism Φ(x) = x² on each element of F₄ and verify 

that Φ² is the identity map. 

Solution: 
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  • r₃ = ω²·∛2, where ω² = e(4πi/3) is the complex conjugate of ω

unity

• r₂  =  ω·∛2,  where  ω  =  e(2πi/3)  is  a  primitive  cube  root  of  

• r₁ = ∛2 (the real cube root of 2)

Step 1: Find the roots of f(x) = x³ - 2. The roots are:

Solution:

its degree over Q.

Problem: Find the splitting field of f(x) = x³ - 2 over Q and determine 

Problem 2: Finding the Splitting Field of a Polynomial

the Frobenius automorphism has order 2.

identity automorphism. This aligns with the theory, as [F₄:F₂] = 2, so 

Indeed,  Φ²  maps  each  element  to  itself,  confirming  that  Φ²  is  the 

• Φ²(α + 1) = Φ(Φ(α + 1)) = Φ(α) = α + 1

• Φ²(α) = Φ(Φ(α)) = Φ(α + 1) = α

• Φ²(1) = Φ(Φ(1)) = Φ(1) = 1

• Φ²(0) = Φ(Φ(0)) = Φ(0) = 0

Now, let's verify that Φ² is the identity map:

+ b²: 4. Φ(α + 1) = (α + 1)² = α² + 1² = (α + 1) + 1 = α

To find Φ(α + 1), we use the fact that in characteristic 2, (a + b)² = a² 

means α² = α + 1: 3. Φ(α) = α² = α + 1

To  find  Φ(α),  we  use  the  fact  that  α  satisfies  α²  +  α  +  1  =  0,  which 

Φ(1) = 1² = 12.

Φ(0) = 0² = 01.

x². Let's compute its action on each element of F₄:

The  Frobenius  automorphism  in  a  field  of  characteristic  2  maps  x  to 
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Notes Step 2: Determine the splitting field. The splitting field E must 

contain all three roots, so E = Q(∛2, ω). 

Step 3: Calculate the degree of the extension. First, let's determine 

[Q(∛2):Q]. The minimal polynomial of ∛2 over Q is x³ - 2, which has 

degree 3. Therefore, [Q(∛2):Q] = 3. 

Next, let's determine [Q(∛2, ω):Q(∛2)]. The minimal polynomial of ω 

over Q is x² + x + 1, which remains irreducible over Q(∛2) (this can 

be proven, but we'll take it as given). Therefore, [Q(∛2, ω):Q(∛2)] = 

2. 

By the multiplicativity of extension degrees: [E:Q] = [Q(∛2, ω):Q] = 

[Q(∛2, ω):Q(∛2)] × [Q(∛2):Q] = 2 × 3 = 6 

Therefore, the splitting field of x³ - 2 over Q is Q(∛2, ω), and it has 

degree 6 over Q. 

Problem 3: Determining Galois Groups Using Automorphisms 

Problem: Determine the Galois group of the splitting field of f(x) = x⁴ 

- 2 over Q. 

Solution: 

Step 1: Find the roots of f(x) = x⁴ - 2. The roots are: 

• r₁ = ∜2 (the real fourth root of 2) 

• r₂ = -∜2 

• r₃ = i·∜2 

• r₄ = -i·∜2 

Step 2: Identify the splitting field. The splitting field E must contain 

all four roots, so E = Q(∜2, i). 

Step 3: Calculate the degree of the extension. The minimal 

polynomial of ∜2 over Q is x⁴ - 2, which has degree 4, so [Q(∜2):Q] = 

4. 



 

 
 

Notes The minimal polynomial of i over Q(∜2) is x² + 1, which remains 

irreducible over Q(∜2) (this can be proven, but we'll take it as given). 

Therefore, [Q(∜2, i):Q(∜2)] = 2. 

By the multiplicativity of extension degrees: [E:Q] = [Q(∜2, i):Q] = 

[Q(∜2, i):Q(∜2)] × [Q(∜2):Q] = 2 × 4 = 8 

Step 4: Determine the Galois group. Since [E:Q] = 8, the Galois group 

G = Gal(E/Q) has order 8. 

To identify which group of order 8 it is, we need to understand how 

the automorphisms act on the generators of E. 

Any automorphism σ ∈ G must map ∜2 to another root of x⁴ - 2, 

namely ∜2, -∜2, i·∜2, or -i·∜2. Similarly, σ must map i to either i or -

i. 

Let's define the following automorphisms: 

• σ: ∜2 ↦i·∜2, i ↦i 

• τ: ∜2 ↦∜2, i↦ -i 

We can verify that: 

• σ⁴ = id (the identity automorphism) 

• τ² = id 

• τστ = σ⁻¹ 

This means that G = ⟨σ, τ | σ⁴ = τ² = 1, τστ = σ⁻¹ 

Multiple Choice Questions (MCQs) 

1. A field automorphism is: 

a) A function that maps a field onto another field 

b) An isomorphism from a field to itself 

c) A mapping that preserves addition but not multiplication 

d) None of the above 
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Notes 2. A conjugation isomorphism occurs when: 

a) Two fields have the same number of elements 

b) One field is the fixed field of an automorphism 

c) Elements of one field are mapped to their conjugates in an 

extension 

d) None of the above 

3. The set of elements in a field that remain unchanged by all 

automorphisms forms: 

a) A subgroup 

b) A fixed field 

c) An ideal 

d) None of the above 

4. The Frobenius automorphism is defined for: 

a) All fields 

b) Only finite fields 

c) Only real fields 

d) None of the above 

5. A splitting field of a polynomial is: 

a) The smallest field where the polynomial factors completely 

b) Any extension field containing the roots of the polynomial 

c) A finite field with a prime number of elements 

d) None of the above 

6. Which of the following statements about splitting fields is 

true? 

a) Splitting fields are always unique up to isomorphism. 

b) Splitting fields exist only for irreducible polynomials. 

c) Every polynomial has a unique splitting field over any base 

field. 

d) None of the above. 

7. A field automorphism must preserve: 

a) Only addition 



 

 
 

Notes b) Only multiplication 

c) Both addition and multiplication 

d) Neither addition nor multiplication 

8. The study of field automorphisms is crucial for: 

a) Ring theory 

b) Group theory 

c) Galois theory 

d) None of the above 

Short Answer Questions 

1. Define a field automorphism and give an example. 

2. What is a conjugation isomorphism? Provide an example. 

3. Explain the concept of a fixed field and its significance. 

4. State and explain the Frobenius automorphism. 

5. How does the Frobenius automorphism act in finite fields? 

6. Define a splitting field and explain its importance in field 

theory. 

7. Why are splitting fields unique up to isomorphism? 

8. How do automorphisms relate to Galois groups? 

9. What is the significance of automorphisms in the classification 

of field extensions? 

10. Give an example of a field extension where the automorphism 

group is nontrivial. 

Long Answer Questions 

1. Explain the concept of field automorphisms and their 

importance in algebra. 

2. Discuss conjugation isomorphisms with detailed examples. 
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Notes 3. Define and explain the role of fixed fields in automorphism 

groups. 

4. Prove that the Frobenius automorphism is a valid field 

automorphism in finite fields. 

5. Explain the construction of splitting fields and their 

significance in field theory. 

6. Discuss the relationship between field automorphisms and 

Galois theory. 

7. How do splitting fields help in solving polynomial equations? 

Provide examples. 

8. Discuss the role of automorphisms in the classification of field 

extensions. 

9. What is the importance of field automorphisms in modern 

algebra and cryptography? 

  



 c8.

 c7.

 a6.

 a5.

 b4.

 b3.

 c2.

 b1.

Answer Key MCQ :



 

 
 

Notes MODULE 5  

UNIT 5.1  

SEPARABLE EXTENSIONS AND GALOIS THEORY 

Objectives 

• Understand the concept of separable extensions and their 

properties. 

• Learn about normal extensions and their significance. 

• Explore the main theorem of Galois theory and its implications. 

• Study the relationship between field extensions and Galois 

groups. 

• Analyze symmetric functions and their role in Galois theory. 

5.1.1: Introduction to Separable Extensions 

Separable extensions are a fundamental concept in field theory, 

representing an important class of field extensions with special 

properties. These extensions are characterized by certain behaviors of 

their minimal polynomials and have significant implications for the 

structure of field extensions. 

Basic Concepts and Definitions 

A field extension E/F is the situation where F is a subfield of E. We 

denote this as E/F, which is read as "E over F." The field E is called 

the extension field, and F is the base field.When considering field 

extensions, we often look at elements of E and examine how they 

relate to the base field F. An element α ∈ E is called algebraic over F 

if there exists a non-zero polynomial p(x) ∈ F[x] such that p(α) = 0. 

The monic polynomial of minimal degree that has α as a root is called 

the minimal polynomial of α over F, denoted by minF(α). 

Separable Elements 
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 separable.

separable  extensions,  then  their  compositum  E1E2/F  is  also 

Compositum  of  Separable  Extensions:  If  E1/F  and  E2/F  are 3.

if both E/K and K/F are separable.

intermediate field (F ⊆ K ⊆ E), then E/F is separable if and only 

Tower  Property:  If  E/F  is  a  field  extension  and  K  is  an 2.

also a separable extension.

Transitivity: If E/K and K/F are separable extensions, then E/F is 1.

Properties of Separable Extensions

separable over F.

If  E  =  F(α)  for  some  α ∈ E,  then  E/F  is  separable  if  and  only  if  α  is 

  subextension is separable.

• An  arbitrary  extension  E/F  is  separable  if  every  finite

  separable over F.

• A  finite  extension  E/F  is  separable  if  every  element  of  E  is

separable over F. More precisely:

A  field  extension  E/F  is  called  separable  if  every  element  of  E is 

Separable Extensions

zero, specifically those of the form f(x^p).

of characteristic p > 0, there exist polynomials whose derivatives are 

satisfied, so every algebraic element is separable. However, for fields 

For fields of characteristic 0 (like ℚ, ℝ, or ℂ), this condition is always 

α is separable over F if and only if minF(α)' ≠ 0

polynomial is not the zero polynomial. This can be expressed as:

separable  over  F  if  and  only  if  the  derivative  of  its  minimal 

where  it  splits  completely.Equivalently,  an  algebraic  element  α  is 

polynomial  minF(α)  has  no  repeated  roots  in  any  extension  field 

An  algebraic  element  α ∈ E  is  called  separable  over  F  if  its  minimal 
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 Definition of Separable Polynomials

extensions behave, especially in Galois theory.

extensions.  Their  properties  are  integral  to  understanding  how  field 

Separable  polynomials  form  the  backbone  of  separable  field 

5.1.3: Definition and Properties of Separable Polynomials

this polynomial is non-separable.

roots. Since its derivative is zero, any extension generated by a root of 

irreducible over F, and thus it is the minimal polynomial of any of its 

derivative f'(x) = px^(p-1) = 0 in characteristic p. This polynomial is 

where  p  is  a  prime  number.  The  polynomial  f(x)  =  x^p - t  has 

Let F = Fp(t) be the field of rational functions over the finite field Fp, 

Example 2: Non-Separable Extension

of √2 over ℚ is x² - 2, which has distinct roots ±√2 in ℂ.

The  extension  ℚ(√2)/ℚ  is  separable  because  the  minimal  polynomial 

Example 1: Separable Extension

Examples of Separable and Non-Separable Extensions

intermediate fields is well-behaved.

structure  and  that  the  correspondence  between  subgroups  and 

separability  condition  ensures  that  the  Galois  group  has  the  expected 

Galois  if  and  only  if  it  is  finite,  separable,  and  normal.  The 

separable (along with being normal and finite).A field extension E/F is 

Galois group. For this correspondence to work, the extension must be 

between intermediate fields of a Galois extension and subgroups of its 

fundamental  theorem  of  Galois  theory  establishes  a  correspondence 

Separable  extensions  play  a  crucial  role  in  Galois  theory.  The 

5.1.2: Importance in Galois Theory

are perfect, as are all finite fields.

algebraic extension of F is separable. All fields of characteristic 0 

Relation  to  Perfect  Fields:  A  field  F  is  called  perfect  if  every 4.
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 polynomial is separable.

Characteristic Zero: In fields of characteristic 0, every irreducible 4.

polynomial in K[x].

extension,  then  f(x)  remains  separable  when  viewed  as  a 

Field  Extension:  If  f(x) ∈ F[x]  is  separable  and  K/F  is  any  field 3.

if and only if f'(x) ≠ 0.

Irreducible Case: If f(x) is irreducible over F, then f(x) is separable 2.

are relatively prime.

then their product f(x)g(x) is separable if and only if f(x) and g(x)

Product  Rule:  If  f(x)  and  g(x)  are  separable  polynomials  in  F[x], 1.

Properties of Separable Polynomials

separable.

compute f'(x) and then find gcd(f(x), f'(x)). If the gcd is 1, then f(x) is 

The  derivative  test  provides  a  practical  way  to  check  separability:

of the form g(xp) for any polynomial g(x) ∈ F[x].

If char(F) = p > 0, then f(x) is separable if and only if f(x) is not 2.

have repeated roots.

If  char(F)  =  0,  then  f(x)  is  separable  if  and  only  if  f(x)  does  not 1.

If F is a field and f(x) ∈ F[x] is a polynomial, then:

Characterization in Terms of Derivative

distinct.

factors  into  linear  terms  in  some  extension  field,  all  its  roots  are 

For  an  irreducible  polynomial,  being  separable  means  that  when  it 

derivative f'(x) are relatively prime, i.e., gcd(f(x), f'(x)) = 1.

polynomial  f(x)  is  separable  if  and  only  if  f(x)  and  its  formal 

in  any  extension  field  where  it  splits  completely.  Equivalently,  a 

A polynomial f(x) ∈ F[x] is called separable if it has no repeated roots 
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 Discriminant of a Polynomial

separable.

g(xp),  making  its  derivative  zero.  Such  polynomials  are  not 

Characteristic  p  >  0:  A  polynomial  f(x)  could  have  the  form 2.

making all algebraic extensions separable.

Characteristic  0:  All  irreducible  polynomials  are  separable, 1.

characteristic of the field:

The  behavior  of  separable  polynomials  is  strongly  influenced  by  the 

5.1.4: Relation to Field Characteristics

separable extension of a field.

The  separable  closure  is  important  because  it  represents  the  largest 

3. If α is algebraic over F and separable, then α ∈ Fs.

2. Every element in Fs is separable over F.

1. Fs is algebraic over F.

properties:

to  F  all  elements  that  are  separable  over  F.  It  has  the  following 

The separable closure Fs of a field F is the field obtained by adjoining 

Separable Closure

by [E:F]i.

[E:F]/[E:F]s is called the inseparable degree of the extension, denoted 

the extension.If E/F is not separable, then [E:F]s < [E:F], and the ratio 

of F. For a separable extension, [E:F]s = [E:F], the ordinary degree of 

the maximum number of F-embeddings of E into an algebraic closure 

For  a  finite  extension  E/F,  the  separable  degree  [E:F]s  is  defined  as 

The Separable Degree

if it has no repeated roots.

Finite Fields: In finite fields, a polynomial is separable if and only 5.
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px(p-1) = 0 in characteristic p.

In Fp(t)[x], the polynomial f(x) = xp - t is not separable because f'(x)= 

Example 3: Characteristic p > 0

confirming it's not separable.

+  1  =  0  in  F₂).  Its  derivative  f'(x)  =  2x  =  0  in  characteristic  2, 

In F₂[x], the polynomial f(x) = x² + 1 = (x + 1)² has a repeated root (1 

Example 2: Non-Separable Polynomial

f'(x) = 3x² is never zero for x ≠ 0, and gcd(x³ - 2, 3x²) = 1.

In ℚ[x], the polynomial f(x) = x³ - 2 is separable because its derivative 

Example 1: Separable Polynomial

Examples of Separable and Non-Separable Polynomials

A polynomial is separable if and only if its discriminant is non-zero.

where the product is taken over all i< j.

Disc(f) = ∏(αi - αj)²

is defined as:

separability. For a monic polynomial f(x) = ∏(x - αi), the discriminant 

The  discriminant  of  a  polynomial  provides  another  way  to  test  for 



 

 
 

Notes UNIT 5.2  

5.2.1: Normal Extensions and Their Significance 

Normal extensions, also called normal field extensions, are a critical 

concept in field theory and are especially important in Galois theory. 

They represent field extensions where all polynomials that have one 

root in the extension have all their roots in the extension. 

Definition of Normal Extensions 

A field extension E/F is called normal if every irreducible polynomial 

in F[x] that has at least one root in E completely splits in E (i.e., 

factors into linear terms in E[x]). 

Equivalently, an extension E/F is normal if and only if E is the 

splitting field of some set of polynomials over F. 

Alternative Characterizations 

There are several equivalent ways to characterize normal extensions: 

1. E/F is normal if and only if E is the splitting field of a family of 

polynomials in F[x]. 

2. E/F is normal if and only if the set of F-embeddings of E into an 

algebraic closure F̄ that fix F pointwise is exactly the set of F-

automorphisms of E. 

3. For a finite extension E/F, E/F is normal if and only if E is fixed 

by every F-automorphism of its normal closure. 

4. E/F is normal if and only if every F-embedding of E into an 

algebraic closure F̄ that fixes F maps E onto itself. 

Properties of Normal Extensions 

1. Transitivity: If E/K and K/F are normal extensions, it does not 

necessarily follow that E/F is normal. However, if E/F is normal 

and K is an intermediate field, then E/K is normal. 
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Notes 2. Compositum of Normal Extensions: If E₁/F and E₂/F are normal 

extensions, then their compositum E₁E₂/F is also normal. 

3. Relation to Splitting Fields: A finite extension E/F is normal if and 

only if it is the splitting field of some polynomial in F[x]. 

4. Automorphism Group: If E/F is a normal extension, then the 

group of all F-automorphisms of E, denoted by Aut(E/F), has 

order dividing [E:F]. If E/F is also separable, then |Aut(E/F)| = 

[E:F]. 

5.2.2: Normal Closure 

For any field extension E/F, there exists a field extension N/E such 

that N/F is normal and N is minimal with this property. This field N is 

called the normal closure of E over F.The normal closure can be 

constructed as the splitting field of the set of all minimal polynomials 

of elements in E over F. 

5.2.3:Galois Extensions 

A field extension E/F is called a Galois extension if it is both normal 

and separable. For Galois extensions, the Galois group Gal(E/F) = 

Aut(E/F) has special properties: 

1. |Gal(E/F)| = [E:F], the degree of the extension. 

2. There is a one-to-one correspondence between the intermediate 

fields of E/F and the subgroups of Gal(E/F). 

3. If K is an intermediate field (F ⊆ K ⊆ E), then K corresponds to 

the subgroup Gal(E/K) of Gal(E/F), and [E:K] = |Gal(E/K)|. 

5.2.4:Significance in Galois Theory 

Normal extensions, especially when they are also separable (i.e., 

Galois extensions), are the cornerstone of Galois theory. The 

fundamental theorem of Galois theory establishes a correspondence 

between: 
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 the minimal polynomial of √2 over ℚ is separable.

Solution:  To  determine  if  ℚ(√2)/ℚ  is  separable,  we  need  to  check  if 

Problem 1: Determine if the extension ℚ(√2)/ℚ is separable.

Solved Problems

cube root of unity. This field contains all roots of x³ - 2.

The  normal  closure  of  ℚ(∛2)/ℚ  is  ℚ(∛2,  ω),  where  ω  is  a  primitive 

Example 3: Normal Closure

normal.

primitive cube root of unity). Since ω∛2 ∉ℚ(∛2), the extension is not 

over  ℚ  is  x³ - 2,  which  has  roots ∛2,  ω∛2,  and  ω²∛2  (where  ω  is  a 

The extension ℚ(∛2)/ℚ is not normal. The minimal polynomial of ∛2 

Example 2: Non-Normal Extension

the polynomial (x² - 2)(x² - 3) over ℚ.

The extension ℚ(√2, √3)/ℚ is normal because it is the splitting field of 

Example 1: Normal Extension

Examples of Normal and Non-Normal Extensions

K/F is normal if and only if H is a normal subgroup of Gal(E/F).3.

[K:F] = |Gal(E/F)|/|Gal(E/K)|.2.

H}.

K is the fixed field of H: K = EH = {a ∈ E | σ(a) = a for all σ ∈ 1.

corresponding subgroup, then:

Moreover,  if  K  is  an  intermediate  field  and  H  =  Gal(E/K)  is  the 

fields, then Gal(E/K₁) ⊇ Gal(E/K₂).

This  correspondence  is  order-reversing:  if  K₁ ⊆ K₂  are  intermediate 

Subgroups of the Galois group Gal(E/F).2.

Intermediate fields of a Galois extension E/F.1.
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Notes The minimal polynomial of √2 over ℚ is f(x) = x² - 2. 

The derivative of f(x) is f'(x) = 2x. 

Since f'(x) ≠ 0 for x ≠ 0, and √2 ≠ 0, we have f'(√2) ≠ 0. This means 

that f(x) and f'(x) have no common roots, so gcd(f(x), f'(x)) = 1. 

Therefore, f(x) = x² - 2 is separable, which means that the extension 

ℚ(√2)/ℚ is separable. 

Additionally, since ℚ has characteristic 0, all irreducible polynomials 

over ℚ are separable, providing another way to conclude that ℚ(√2)/ℚ 

is separable. 

Problem 2: Show that the polynomial f(x) = x⁴ + x² + 1 over F₂ is 

separable. 

Solution: To determine if f(x) = x⁴ + x² + 1 is separable over F₂, we 

need to check if f(x) and its derivative f'(x) are relatively prime. 

Computing the derivative: f'(x) = 4x³ + 2x = 0 (in F₂) 

Since the derivative is zero, we need a different approach. 

In fields of characteristic p > 0, an irreducible polynomial is 

inseparable if and only if it is of the form g(x^p) for some polynomial 

g. 

Let's check if f(x) can be written as g(x²) for some polynomial g 

(since 2 is the characteristic of F₂): If f(x) = g(x²), then g(y) = y² + y + 

1 where y = x². 

Now we need to determine if f(x) is irreducible over F₂. One way to 

check is to verify that f(x) has no roots in F₂ and cannot be factored 

into two quadratics in F₂[x]. 

The elements of F₂ are {0, 1}. f(0) = 0⁴ + 0² + 1 = 1 ≠ 0 f(1) = 1⁴ + 1² 

+ 1 = 1 + 1 + 1 = 1 (in F₂) ≠ 0 

So f(x) has no roots in F₂. 



 

 
 

Notes Now we need to check if f(x) can be factored as a product of two 

quadratics. Any such factorization would be of the form: f(x) = (x² + 

ax + b)(x² + cx + d) 

Expanding: f(x) = x⁴ + cx³ + dx² + ax³ + acx² + adx + bx² + bcx + bd = 

x⁴ + (a+c)x³ + (ac+b+d)x² + (ad+bc)x + bd 

For this to equal x⁴ + x² + 1, we need: a+c = 0, which means a = c in 

F₂ ac+b+d = 1 ad+bc = 0 bd = 1 

From a = c, we get ad+bc = ad+ba = a(d+b) = 0, so d = b. From bd = 

1, we get b = d = 1. But then ac+b+d = a·a+1+1 = a² + 0 = a² = 1, 

which means a = 1. 

However, if a = c = 1 and b = d = 1, then a+c = 1+1 = 0 in F₂, which 

satisfies our first equation. Let's verify: (x² + x + 1)(x² + x + 1) = x⁴ + 

x³ + x² + x³ + x² + x + x² + x + 1 = x⁴ + 0 + 3x² + 2x + 1 = x⁴ + x² + 0 

+ 1 (in F₂) = x⁴ + x² + 1 

So f(x) = (x² + x + 1)², which means it's not irreducible and has 

repeated factors, making it inseparable over F₂. 

Problem 3: Prove that if F is a field of characteristic 0, then every 

finite extension of F is separable. 

Solution: Let F be a field of characteristic 0, and let E be a finite 

extension of F. We need to show that E/F is separable. 

A field extension E/F is separable if and only if every element of E is 

separable over F. An element α ∈ E is separable over F if and only if 

its minimal polynomial minF(α) has no repeated roots in its splitting 

field. 

For any polynomial f(x) ∈ F[x], the presence of repeated roots is 

equivalent to f(x) and its derivative f'(x) having a common factor, or 

equivalently, gcd(f(x), f'(x)) ≠ 1. 

In a field of characteristic 0, the derivative of a non-constant 

polynomial is non-zero. Specifically, for an irreducible polynomial 

p(x) ∈ F[x], its derivative p'(x) is non-zero. 
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Notes Suppose p(x) has a repeated root α in some extension field. Then p(x) 

and p'(x) would have a common root α, which means that p(x) and 

p'(x) would have a common factor. But since p(x) is irreducible and 

p'(x) has lower degree than p(x), the only way they could have a 

common factor is if p'(x) is divisible by p(x), which is impossible due 

to degree considerations. 

Therefore, in a field of characteristic 0, every irreducible polynomial 

is separable. Since E/F is a finite extension, E is generated by finitely 

many algebraic elements over F, each having an irreducible minimal 

polynomial over F. Since all these minimal polynomials are separable, 

every element of E is separable over F. 

Hence, E/F is a separable extension. 

Problem 4: Determine if the extension F₂(t)(α)/F₂(t) is normal, where 

α is a root of the polynomial p(x) = x² - t. 

Solution: To determine if the extension F₂(t)(α)/F₂(t) is normal, we 

need to check if p(x) = x² - t splits completely in F₂(t)(α). 

The roots of p(x) = x² - t are ±√t. Let's denote α = √t, so the roots are α 

and -α. 

In F₂, we have 1 + 1 = 0, which means -1 = 1. Therefore, -α = α in 

characteristic 2. 

So in F₂(t)(α), the polynomial p(x) = x² - t = (x - α)(x - (-α)) = (x - 

α)(x - α) = (x - α)². 

This means that p(x) has only one distinct root, α, with multiplicity 2. 

Since p(x) doesn't split into distinct linear factors in F₂(t)(α), the 

extension F₂(t)(α)/F₂(t) is not normal. 

Alternatively, we can approach this from the definition: an extension 

E/F is normal if and only if it is the splitting field of some set of 

polynomials over F. In this case, F₂(t)(α) is not the splitting field of x² 

- t over F₂(t) (or any other set of polynomials), because it doesn't 

contain all the roots of x² - t in an algebraic closure. 



 

 
 

Notes In characteristic 2, the splitting field of x² - t would be F₂(t)(√t) = 

F₂(t)(α), which is the same as our extension. However, the issue is that 

x² - t = (x - α)² in characteristic 2, so it doesn't split into distinct linear 

factors. 

Therefore, F₂(t)(α)/F₂(t) is not a normal extension. 

Problem 5: Prove that if E/F is a Galois extension, then |Gal(E/F)| 

= [E:F]. 

Solution: Let E/F be a Galois extension, which means E/F is both 

normal and separable. 

First, let's recall that for any field extension E/F, the order of the 

automorphism group Aut(E/F) is at most [E:F]. This is because if α₁, 

α₂, ..., αₙ is a basis for E over F, then any F-automorphism of E is 

uniquely determined by where it sends α₁, α₂, ..., αₙ. 

For a Galois extension, we want to show that |Gal(E/F)| = [E:F], 

where Gal(E/F) = Aut(E/F) is the Galois group of E over F. 

Since E/F is a finite, normal, and separable extension, it is the splitting 

field of a separable polynomial f(x) ∈ F[x]. Let's say f(x) has degree n 

and has distinct roots α₁, α₂, ..., αₙ in E. 

Any F-automorphism σ of E must permute the roots of f(x), because if 

f(αᵢ) = 0, then f(σ(αᵢ)) = σ(f(αᵢ)) = σ(0) = 0. Therefore, σ(αᵢ) is also a 

root of f(x). 

Since E is generated over F by the roots of f(x), an F-automorphism of 

E is completely determined by how it permutes these roots. There are 

at most n! ways to permute n elements, but not all permutations of the 

roots give rise to automorphisms of E. 

For a separable extension, the number of F-embeddings of E into an 

algebraic closure of F is exactly [E:F]. Since E/F is normal, any such 

embedding maps E to itself, so it's an automorphism in Gal(E/F). 

Therefore, |Gal(E/F)| = [E:F]. 
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Notes Alternatively, we can use the Primitive Element Theorem, which 

states that since E/F is a finite separable extension, E = F(α) for some 

α ∈ E. Let p(x) be the minimal polynomial of α over F. Since E/F is 

normal, p(x) splits completely in E. 

Let the distinct roots of p(x) in E be α = α₁, α₂, ..., αₙ, where n = [E:F] 

is the degree of p(x). For each root αᵢ, there is a unique F-

isomorphism σᵢ : F(α) → F(αᵢ) that fixes F and maps α to αᵢ. Since E/F 

is normal, F(αᵢ) ⊆ E, and since [F(αᵢ):F] = [F(α):F] = [E:F], we must 

have F(αᵢ) = E. 

Thus, each σᵢ is an F-automorphism of E, and these are all the F-

automorphisms of E. There are exactly n = [E:F] of them, one for each 

root of p(x). 

Therefore, |Gal(E/F)| = [E:F]. 

Unsolved Problems 

Problem 1: 

Determine whether the extension ℚ(∛2)/ℚ is separable. Justify your 

answer. 

Problem 2: 

Consider the polynomial f(x) = x⁴ + x² + x + 1 ∈ F₂[x]. Determine 

whether f(x) is separable over F₂. 

Problem 3: 

Let F be a field of characteristic p > 0, and let E = F(α) where α^p ∈ F 

but α ∉ F. Prove that E/F is not a separable extension. 

Problem 4: 

Let E/F be a finite extension with [E:F] = n. Prove that E/F is a Galois 

extension if and only if |Aut(E/F)| = n. 

Problem 5: 
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 elements and inverses).

(associativity,  commutativity,  distributivity,  existence  of  identity 

multiplication,  that  satisfy  the  usual  arithmetic  properties 

Definition  (Field): A  field  is  a  set  with  two  operations,  addition  and 

start with some fundamental definitions:

At the heart of Galois theory lies the concept of field extensions. Let's 

Field Extensions

specific equations are solvable by radicals and which are not.

work further by developing a systematic approach to determine which 

solving  polynomial  equations  of  degree  5  or  higher.  Galois  took  this 

Henrik Abel proved that there is no general formula using radicals for 

In the early 19th century, mathematicians like Paolo Ruffini and Niels 

the general quintic equation (degree 5) resisted similar approaches.

subtraction,  multiplication,  division,  and  root  extraction).  However, 

and  quartic  equations  using  radicals  (expressions  involving  addition, 

mathematicians had discovered formulas for solving quadratic, cubic, 

formulas  for  solving  polynomial  equations.  By  the  16th  century, 

The  journey  toward  Galois  theory  began  with  the  quest  to  find 

Historical Context

solvable by radicals.

groundbreaking work on determining which polynomial equations are 

young  age  of  20  in  1832,  this  theory  emerged  from  his 

Évariste  Galois,  a  brilliant  French  mathematician  who  died  at  the 

theory,  and  the  solvability  of  polynomial  equations.  Named  after 

mathematics, providing a deep connection between field theory, group 

Galois theory  stands  as  one  of  the  most  elegant  achievements  in 

5.2.5: Introduction to Galois Theory

Galois correspondence.

and  list  all  intermediate  fields  between  F  and  K,  establishing  the 

Let K =  ℚ(√2, √3)  and  F =  ℚ. Determine the  Galois group Gal(K/F)
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 automorphisms that fix F pointwise:

Given  a  field  extension  K/F,  we're  particularly  interested  in 

forms a group under composition, denoted Aut(K).

is an isomorphism from K to itself. The set of all automorphisms of K 

Definition  (Field Automorphism): A  field  automorphism  of  a  field  K 

Field Automorphisms and Fixed Fields

called the minimal polynomial of α over F.

irreducible polynomial in F[x] having α as a root. This polynomial is 

For  any  algebraic  element  α  over  F,  there  exists  a  unique  monic 

every element of K is algebraic over F.

Definition (Algebraic Extension): A field extension K/F is algebraic if 

such that p(α) = 0.

is algebraic over  F if there exists a non-zero polynomial p(x) in F[x]

Definition (Algebraic Element): An element α in a field extension K/F 

5.2.6: Algebraic Elements and Extensions

obtained by adjoining √2 to ℚ.

Example: The splitting field of p(x) = x² - 2 over ℚ is ℚ(√2), which is 

into linear factors.

F is the smallest field extension of F in which p(x) factors completely 

Definition (Splitting Field): A splitting field of a polynomial p(x) over 

fields.

completely  into  linear  factors.  This  leads  to  the  concept  of  splitting 

interested  in  finding  a  field  extension  K  of  F  where  p(x)  splits 

Consider a polynomial p(x) with coefficients in a field F. We're often 

a finite extension.

dimension of K as a vector space over F. If [K:F] is finite, we call K/F 

The notation [K:F] represents the degree of the extension, which is the 

K is an extension field of F, denoted K/F.

Definition (Field Extension): If F and K are fields and F ⊆ K, we say 
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 finite Galois extension with Galois group G = Gal(K/F). Then:

Theorem  (Fundamental  Theorem  of  Galois  Theory):  Let  K/F  be  a 

The Fundamental Theorem of Galois Theory

K/F, denoted Gal(K/F), is the group of all F-automorphisms of K.

Definition  (Galois  Group):  The  Galois  group  of  a  Galois  extension 

Galois extension is simply a normal algebraic extension.

For  fields  of  characteristic  0  (like  ℚ),  separability  is  automatic,  so  a 

has distinct roots

Separable: Every irreducible polynomial in F[x] with a root in K 3.

K splits completely in K

Normal: Every irreducible polynomial in F[x] that has one root in 2.

Algebraic1.

Definition (Galois Extension): A field extension K/F is Galois if it is:

Galois Extensions

theorem, we need to define Galois extensions.

intermediate  fields  of  a  field  extension.  Before  stating  the  main 

correspondence  between  subgroups  of  the  Galois  group  and 

The  central  achievement  of  Galois  theory  is  establishing  a 

5.2.7: The Main Theorem of Galois Theory

which we'll explore in the next section.

These  concepts  form  the  foundation  for  the  Galois  correspondence, 

G}.

every automorphism in G, denoted K^G = {a ∈ K | σ(a) = a for all σ ∈ 

K, the fixed field of G is the set of all elements in K that are fixed by 

Definition (Fixed Field): Given a group G of automorphisms of a field 

automorphisms of K forms a group, denoted Aut(K/F).

automorphism σ of K such that σ(a) = a for all a in F. The set of all F- 

Definition  (F-automorphism):  An  F-automorphism  of  K  is  a  field 
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 by radicals if and only if its Galois group is a solvable group.

Theorem (Solvability by Radicals): A polynomial equation is solvable 

group Gᵢ/Gᵢ₊₁ is abelian.

subnormal series G = G₀ ⊃ G₁ ⊃ ... ⊃ Gₙ = {e} such that each quotient 

Definition  (Solvable  Group):  A  group  G  is  solvable  if  it  has  a 

equations are solvable by radicals.

A  key  application  of  Galois  theory  is  determining  which  polynomial 

Normal Subgroups and Solvability

between intermediate fields and subgroups of the Galois group.

This  theorem  establishes  a  beautiful  "upside-down"  correspondence 

G/Gal(K/E).

Gal(K/E) is a normal subgroup of G. In this case, Gal(E/F) ≅ 

An  intermediate  field  E  is  Galois  over  F  if  and  only  if 4.

o [E:F] = [G:Gal(K/E)]

o [K:E] = |Gal(K/E)|

For each intermediate field E:3.

o If H₁ ⊆ H₂, then KH₂ ⊆ KH₁

o If E₁ ⊆ E₂, then Gal(K/E₂) ⊆ Gal(K/E₁)

Under this correspondence:2.

is E = KH (the fixed field of H)

o For  each  subgroup  H  of  G,  the  corresponding  intermediate  field  

  Gal(K/E)

o For each intermediate field E, the corresponding subgroup is H =

fields E (F ⊆ E ⊆ K) and the subgroups H of G given by:

There  is  a  one-to-one  correspondence  between  the  intermediate 1.
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This isomorphism is given by σₖ(ζₙ) = ζₙᵏ where gcd(k,n) = 1.

the multiplicative group of integers modulo n that are coprime to n.

Theorem:  The  Galois  group  Gal(ℚ(ζₙ)/ℚ)  is  isomorphic  to  (ℤ/nℤ)*, 

where ζₙ is a primitive nth root of unity (e.g., e(2πi/n)).

Definition  (Cyclotomic  Field):  The  nth  cyclotomic  field  is  ℚ(ζₙ), 

theory.

Cyclotomic  fields  are  among  the  most  important  examples  in  Galois 

Galois Groups of Cyclotomic Extensions

factorization pattern reveals information about the Galois group.

Resolvent  Polynomials:  Construct  polynomials  whose 3.

formula becomes more complex.

+  bx  +  c,  the  discriminant  is  b² - 4ac.  For  higher  degrees,  the 

provides information about the Galois group. For a quadratic ax² 

Discriminant  Analysis:  The  discriminant  of  a  polynomial 2.

field extensions and track how the roots combine.

Factorization  Method:  Factor  the  polynomial  over  successive 1.

are some approaches to determine the Galois group:

the symmetric group Sₙ (the group of permutations of n objects). Here 

For a polynomial p(x) of degree n, the Galois group is a subgroup of 

Computing Galois Groups

and apply this knowledge.

its roots and solvability. Let's explore how to compute Galois groups 

The  Galois  group  of  a  polynomial  encodes  crucial  information  about 

5.2.8: Galois Groups and Their Applications

group theory to the classical problem of solving equations.

polynomial equation can be solved using radicals, connecting abstract 

This  provides  a  powerful  criterion  for  determining  whether  a 
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the cube, trisecting an angle, and squaring the circle.

This  provides  a  conclusive  answer  to  ancient  problems  like  doubling 

⊂ Fₖ with α ∈ Fₖ and [Fᵢ:Fᵢ₋₁] = 2 for each i.

if and only if there exists a tower of field extensions ℚ = F₀ ⊂ F₁ ⊂ ... 

Theorem: A number α is constructible with straightedge and compass 

constructibility with straightedge and compass.

Galois  theory  also  connects  to  classical  geometric  problems  like 

Field Extensions and Constructibility

solvable, making it solvable by radicals.

Example:  The  polynomial  x⁵ - 5x  +  12  has  a  Galois  group  that  is 

unsolvable by radicals.

Example:  The  polynomial  x⁵ - x - 1  has  Galois  group  S₅,  making  it 

are unsolvable.

symmetric group S₅ is not solvable. However, not all quintic equations 

The  general  quintic  equation  is  not  solvable  by  radicals  because  the 

Insolvable Quintic Equations

which polynomial equations can be solved by radicals.

This theorem provides the definitive answer to the ancient question of 

if and only if the Galois group of p(x) is solvable.

characteristic 0. Then the roots of p(x) can be expressed using radicals 

Theorem:  Let  p(x)  be  an  irreducible  polynomial  over  a  field  F  of 

where for each i, Fᵢ = Fᵢ₋₁(αᵢ) with αᵢⁿⁱ ∈ Fᵢ₋₁ for some integer nᵢ > 0.

extension if there exists a tower of fields F = F₀ ⊂ F₁ ⊂ ... ⊂ Fₖ = K 

Definition  (Radical  Extension):  A  field  extension  K/F  is  a  radical 

radicals.

A  key  application  of  Galois  theory  is  understanding  extensions  by 

5.2.9: Extension by Radicals



 

 
 

Notes 5.2.10: Examples and Applications of Galois Theory 

Let's explore concrete examples and applications of Galois theory to 

illustrate its power and elegance. 

Example 1: The Galois Group of x³ - 2 

Consider the polynomial p(x) = x³ - 2 over ℚ. 

The roots of this polynomial are α₁ = ∛2, α₂ = ω∛2, and α₃ = ω²∛2, 

where ω is a primitive cube root of unity. 

The splitting field of p(x) is K = ℚ(∛2, ω). The elements of Gal(K/ℚ) 

are determined by how they permute the roots of p(x). 

There are 6 possible automorphisms: 

• σ₁: Identity mapping 

• σ₂: Maps ∛2 → ω∛2, ω → ω 

• σ₃: Maps ∛2 → ω²∛2, ω → ω 

• σ₄: Maps ∛2 → ∛2, ω → ω² 

• σ₅: Maps ∛2 → ω∛2, ω → ω² 

• σ₆: Maps ∛2 → ω²∛2, ω → ω² 

The Galois group is isomorphic to S₃, the symmetric group on 3 

elements, which has order 6. 

Since S₃ is solvable, the equation x³ - 2 = 0 is solvable by radicals 

(which we already know since the solution is ∛2). 

Example 2: Cyclotomic Extensions 

The cyclotomic polynomial Φₙ(x) is the monic polynomial whose 

roots are the primitive nth roots of unity. For instance: 

• Φ₁(x) = x - 1 

• Φ₂(x) = x + 1 
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Notes • Φ₃(x) = x² + x + 1 

• Φ₄(x) = x² + 1 

For a prime p, Φₚ(x) = x^(p-1) + x^(p-2) + ... + x + 1. 

Let's consider Φ₅(x) = x⁴ + x³ + x² + x + 1. The Galois group of this 

polynomial over ℚ is isomorphic to (ℤ/5ℤ)*, which is a cyclic group 

of order 4, generated by the residue class of 2 or 3 modulo 5. 

The intermediate fields between ℚ and ℚ(ζ₅) correspond to the 

subgroups of (ℤ/5ℤ). Since (ℤ/5ℤ) has a unique subgroup of order 2, 

there is exactly one intermediate field, which is ℚ(√5). 

Example 3: The Insolvability of the General Quintic 

To prove that the general quintic equation is not solvable by radicals, 

we need to show that the symmetric group S₅ is not solvable.A group 

is solvable if and only if its derived series terminates in the trivial 

subgroup. The derived subgroup of S₅ is A₅, the alternating group on 5 

elements. The derived subgroup of A₅ is A₅ itself, which means A₅ is a 

perfect group. Therefore, S₅ is not solvable.This implies that there 

exist quintic equations that cannot be solved by radicals. One such 

example is x⁵ - x - 1 = 0, whose Galois group over ℚ is S₅. 

Application: Impossibility of Certain Geometric Constructions 

Galois theory provides elegant proofs for the impossibility of certain 

classical geometric constructions: 

1. Doubling the Cube: This requires constructing ∛2. Since the 

minimal polynomial of ∛2 over ℚ is x³ - 2, which has degree 3, 

and 3 is not a power of 2, ∛2 is not constructible. 

2. Trisecting an Arbitrary Angle: Trisecting a 60° angle leads to the 

equation 4x³ - 3x = cos(20°), which can be transformed into an 

irreducible cubic. Since the degree is 3, which is not a power of 

2, this construction is impossible. 



 

 
 

Notes  

 

 

 

 

  

potentially unsolvable by radicals.

complex  roots,  its  Galois  group  must  be  either  S₅  or  A₅,  making  it 

For instance, if a quintic polynomial has exactly one real root and four 

determine which specific quintic equations are solvable.

theory  not  only  proved  the  impossibility  but  also  provided  criteria  to 

that  ended  centuries  of  attempts  to  find  a  radical  formula.  Galois 

The insolvability of the general quintic equation was a profound result 

5.2.11: Application: Insolvability of the Quintic

are algebraic, this construction is impossible.

transcendental  (not  algebraic).  Since  all  constructible  numbers 

Squaring  the  Circle:  This  requires  constructing  π,  which  is 3.
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Notes UNIT 5.3  

5.3.1: Symmetric Functions in Galois Theory 

Symmetric functions of the roots of a polynomial play a crucial role in 

Galois theory, providing a bridge between the coefficients of the 

polynomial and its roots. 

Elementary Symmetric Polynomials 

Let x₁, x₂, ..., xₙ be variables. The elementary symmetric polynomials 

are defined as: 

e₁(x₁, ..., xₙ) = x₁ + x₂ + ... + xₙ e₂(x₁, ..., xₙ) = x₁x₂ + x₁x₃ + ... + xₙ₋₁xₙ 

e₃(x₁, ..., xₙ) = x₁x₂x₃ + x₁x₂x₄ + ... + xₙ₋₂xₙ₋₁xₙ ... eₙ(x₁, ..., xₙ) = 

x₁x₂...xₙ 

For a monic polynomial p(x) = xⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ with roots 

α₁, α₂, ..., αₙ, the coefficients are related to the elementary symmetric 

polynomials by: 

a₀ = (-1)ⁿeₙ(α₁, ..., αₙ) a₁ = (-1)ⁿ⁻¹eₙ₋₁(α₁, ..., αₙ) ... aₙ₋₁ = -e₁(α₁, ..., αₙ) 

The Fundamental Theorem of Symmetric Polynomials 

Theorem (Fundamental Theorem of Symmetric Polynomials): Any 

symmetric polynomial in x₁, x₂, ..., xₙ can be expressed uniquely as a 

polynomial in the elementary symmetric polynomials e₁, e₂, ..., eₙ. 

This theorem is crucial in Galois theory because it tells us that if f(x₁, 

..., xₙ) is a symmetric polynomial with coefficients in a field F, and if 

α₁, ..., αₙ are the roots of a polynomial in F[x], then f(α₁, ..., αₙ) is an 

element of F. 

Symmetric Functions and Resolvents 

Resolvent polynomials are constructed using symmetric functions to 

gather information about the Galois group of a polynomial. 

For instance, if p(x) is a polynomial with roots α₁, ..., αₙ, we can form 

the resolvent polynomial: 



 

 
 

Notes r(x) = ∏(x - f(σ(α₁), ..., σ(αₙ))) 

Where the product is taken over all σ in a particular coset of a 

subgroup of Sₙ, and f is a carefully chosen function. 

The factorization pattern of r(x) can reveal information about the 

Galois group of p(x). 

Lagrange Resolvents 

A particular type of resolvent used in solving equations is the 

Lagrange resolvent. 

For a polynomial of degree n, the Lagrange resolvent is defined as: 

θ = α₁ + ζα₂ + ζ²α₃ + ... + ζⁿ⁻¹αₙ 

Where ζ is a primitive nth root of unity. 

For the cubic equation x³ + px + q = 0 with roots α₁, α₂, α₃, the 

Lagrange resolvents are: 

θ₁ = α₁ + ωα₂ + ω²α₃ θ₂ = α₁ + ω²α₂ + ωα₃ 

Where ω is a primitive cube root of unity. 

These resolvents satisfy a quadratic equation, which is the key to the 

classical solution of the cubic. 

5.3.2: Application of Galois Theory in Solving Polynomial Equations 

Galois theory provides a framework for understanding which 

polynomial equations are solvable by radicals and how to solve them 

when possible. 

Solving Quadratic Equations 

The quadratic formula x = (-b ± √(b² - 4ac))/2a for solving ax² + bx + 

c = 0 involves taking a square root. The Galois group of a general 

quadratic polynomial over ℚ is S₂, which is abelian and therefore 

solvable. 

Solving Cubic Equations 
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Notes For the general cubic equation x³ + px + q = 0 (after removing the x² 

term), the classical solution method involves: 

1. Setting x = u + v 

2. Imposing the condition that 3uv + p = 0 

3. Solving the resulting system, which leads to u³ and v³ being the 

roots of the quadratic equation z² + qz - (p/3)³ = 0 

4. Finding u and v by taking cube roots 

5. Computing x = u + v 

The Galois group of a general cubic over ℚ is S₃, which is solvable 

but not abelian. The solution requires nested radicals. 

Solving Quartic Equations 

The general quartic equation x⁴ + px³ + qx² + rx + s = 0 can be solved 

by: 

1. Removing the x³ term by substitution 

2. Factoring the resulting expression as a product of two quadratics 

3. This factorization leads to a cubic equation (the "resolvent 

cubic") 

4. Solving the resolvent cubic yields the coefficients of the 

quadratic factors 

5. Solving the two quadratics 

The Galois group of a general quartic is S₄, which is solvable. 

The Unsolvable Quintic 

The general quintic equation x⁵ + px⁴ + qx³ + rx² + sx + t = 0 cannot 

be solved by radicals because its Galois group is S₅, which is not 

solvable. 



 

 
 

Notes However, some special quintic equations have Galois groups that are 

solvable subgroups of S₅, making them solvable by radicals. 

Solving Equations Using Galois Theory 

Here's a general approach to solving polynomial equations using 

Galois theory: 

1. Determine the Galois group of the polynomial. 

2. If the Galois group is not solvable, the equation cannot be solved 

by radicals. 

3. If the Galois group is solvable, analyze its structure to construct a 

sequence of radical extensions. 

4. Use this sequence to express the roots in terms of radicals. 

This approach generalizes the classical solution methods for 

quadratics, cubics, and quartics, placing them within a unified 

theoretical framework. 

Solved Problems 

Problem 1: Find the Galois group of x⁴ - 2 over ℚ. 

Solution: 

The polynomial p(x) = x⁴ - 2 is irreducible over ℚ by Eisenstein's 

criterion with prime p = 2. 

The roots of p(x) are α₁ = ⁴√2, α₂ = i⁴√2, α₃ = -⁴√2, and α₄ = -i⁴√2. 

The splitting field is K = ℚ(⁴√2, i). Let's determine the automorphisms 

of K that fix ℚ. 

Any automorphism σ in Gal(K/ℚ) is determined by its action on ⁴√2 

and i: 

• σ(⁴√2) must be a root of x⁴ - 2, so σ(⁴√2) ∈ {⁴√2, i⁴√2, -⁴√2, -

i⁴√2} 

• σ(i) must be a root of x² + 1, so σ(i) ∈ {i, -i} 
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Notes This gives us 8 possible automorphisms: 

1. σ₁: σ₁(⁴√2) = ⁴√2, σ₁(i) = i (identity) 

2. σ₂: σ₂(⁴√2) = i⁴√2, σ₂(i) = i 

3. σ₃: σ₃(⁴√2) = -⁴√2, σ₃(i) = i 

4. σ₄: σ₄(⁴√2) = -i⁴√2, σ₄(i) = i 

5. σ₅: σ₅(⁴√2) = ⁴√2, σ₅(i) = -i 

6. σ₆: σ₆(⁴√2) = i⁴√2, σ₆(i) = -i 

7. σ₇: σ₇(⁴√2) = -⁴√2, σ₇(i) = -i 

8. σ₈: σ₈(⁴√2) = -i⁴√2, σ₈(i) = -i 

We can verify that these are all valid automorphisms and that they 

form a group under composition. 

If we examine the structure, we can show that: 

• σ₂⁴ = σ₁ (identity) 

• σ₅² = σ₁ 

• σ₂σ₅ = σ₆, σ₅σ₂ = σ₆σ₃ 

• This means σ₂σ₅ ≠ σ₅σ₂ 

Analyzing the group structure reveals that Gal(K/ℚ) is isomorphic to 

D₄, the dihedral group of order 8, which is the group of symmetries of 

a square. 

Since D₄ is solvable, the equation x⁴ - 2 = 0 is solvable by radicals 

(which we already know since the solution is ⁴√2). 

Problem 2: Determine which of the following field extensions are 

Galois over ℚ: 

(a) ℚ(√2) (b) ℚ(∛2) (c) ℚ(i, √2) 

Solution: 



 

 
 

Notes (a) ℚ(√2) The minimal polynomial of √2 over ℚ is p(x) = x² - 2. This 

polynomial has roots √2 and -√2, both of which are in ℚ(√2). 

Therefore, p(x) splits completely in ℚ(√2). Since we're working in 

characteristic 0, separability is automatic. Thus, ℚ(√2)/ℚ is a Galois 

extension. 

The Galois group Gal(ℚ(√2)/ℚ) consists of two automorphisms: 

• The identity automorphism σ₁(√2) = √2 

• The non-identity automorphism σ₂(√2) = -√2 This group is 

isomorphic to ℤ/2ℤ. 

(b) ℚ(∛2) The minimal polynomial of ∛2 over ℚ is p(x) = x³ - 2. This 

polynomial has roots ∛2, ω∛2, and ω²∛2, where ω is a primitive cube 

root of unity. Only one of these roots, ∛2, is in ℚ(∛2). Since p(x) 

doesn't split completely in ℚ(∛2), this extension is not normal. 

Therefore, ℚ(∛2)/ℚ is not a Galois extension. 

(c) ℚ(i, √2) Let's consider the minimal polynomials of i and √2 over 

ℚ: 

• For i, the minimal polynomial is x² + 1, with roots i and -i. 

• For √2, the minimal polynomial is x² - 2, with roots √2 and -√2. 

Both of these polynomials split completely in ℚ(i, √2). Any 

irreducible polynomial over ℚ that has a root in ℚ(i, √2) must be a 

factor of one of these minimal polynomials or a combination of them. 

Since we're working in characteristic 0, separability is automatic. 

Therefore, ℚ(i, √2)/ℚ is a Galois extension. 

The Galois group Gal(ℚ(i, √2)/ℚ) has four automorphisms: 

• σ₁: σ₁(i) = i, σ₁(√2) = √2 (identity) 

• σ₂: σ₂(i) = -i, σ₂(√2) = √2 

• σ₃: σ₃(i) = i, σ₃(√2) = -√2 

• σ₄: σ₄(i) = -i, σ₄(√2) = -√2 
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Notes This group is isomorphic to ℤ/2ℤ × ℤ/2ℤ. 

Problem 3: Use Galois theory to prove that cos(2π/7) is not 

constructible with straightedge and compass. 

Solution: 

A number is constructible with straightedge and compass if and only 

if it can be obtained from the rational numbers by a sequence of field 

extensions of degree 2. 

Let's consider ζ = e^(2πi/7), a primitive 7th root of unity. We know 

that: cos(2π/7) = (ζ + ζ⁻¹)/2 

So cos(2π/7) is constructible if and only if ζ + ζ⁻¹ is constructible. 

The minimal polynomial of ζ over ℚ is the 7th cyclotomic 

polynomial: Φ₇(x) = x⁶ + x⁵ + x⁴ + x³ + x² + x + 1 

The Galois group of Φ₇(x) over ℚ is isomorphic to (ℤ/7ℤ)*, the 

multiplicative group of integers modulo 7 that are coprime to 7. This 

group has order 6 and is cyclic, generated by the residue class of 3 

modulo 7. 

The element ζ + ζ⁻¹ is fixed by the complex conjugation 

automorphism, which corresponds to the element of order 2 in 

(ℤ/7ℤ)*. This is the automorphism that maps ζ to ζ⁻¹. 

The fixed field of this automorphism is ℚ(ζ + ζ⁻¹). The degree of this 

extension over ℚ is: [ℚ(ζ):ℚ] / [ℚ(ζ):ℚ(ζ + ζ⁻¹)] = 6/2 = 3 

So [ℚ(ζ + ζ⁻¹):ℚ] = 3. 

Since 3 is not a power of 2, the number cos(2π/7) is not constructible 

with straightedge and compass. 

Multiple Choice Questions (MCQs) 

1. A field extension E/F is separable if: 

a) Every element of E is a root of a separable polynomial over 

F. 

b) Every polynomial in F[x] has a multiple root. 
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 None of the above.d)

  he number of distinct roots of the minimal polynomial.c)T

 The degree of the field extension.b)

  he number of elements in the field extension.a)T

The order of a Galois group is equal to:

 None of the above.d)

  ll isomorphisms between EEE and F.c)A

 All automorphisms of EEE that fix F.b)

  ll automorphisms of F.a)A

The Galois group of a field extension E/F consists of:

 None of the above.d)

Rings and groups.c) 

 Subgroups of the Galois group and intermediate fields.b)

Normal extensions and separable extensions.a) 

correspondence between:

The main theorem of Galois theory establishes a 

 None of the above.d)

  he extension is transcendental.c)T

 The extension field is algebraically closed.b)

in the base field has all its roots in the extension.

c) Some element of the larger field, splits completely within the field itself
b) Irreducible Polynomial

Every element of the larger field, splits completely within the field itself.a) 

A field extension is normal if:

 None of the above.d)

It is irreducible over its base field.c) 

 It has distinct roots in its splitting field.b)

It has a repeated root.a) 

A polynomial is separable if:

 None of the above.d)

EEE contains an algebraically closed subfield.c) 

7.

6.

5.

4.

3.

2.
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Notes 8. The splitting field of a polynomial is: 

a) The largest field containing at least one root of the 

polynomial. 

b) The smallest field where the polynomial factors completely 

into linear factors. 

c) Always infinite. 

d) None of the above. 

9. A polynomial equation is solvable by radicals if: 

a) Its Galois group is abelian. 

b) It has at least one real root. 

c) It is reducible over its base field. 

d) None of the above. 

10. The symmetric group Sn appears in Galois theory as: 

a) The Galois group of the general polynomial of degree n. 

b) A subgroup of the additive group of the field. 

c) The automorphism group of the field of rational functions. 

d) None of the above. 

11. Which of the following is true about Galois extensions? 

a) Every finite field extension is a Galois extension. 

b) Every normal and separable extension is Galois. 

c) Every field extension is separable. 

d) None of the above. 

Short Answer Questions 

1. Define a separable polynomial and give an example. 

2. What is a normal extension? Provide an example. 

3. State the main theorem of Galois theory. 

4. What is a Galois group, and how is it related to field 

extensions? 

5. Define a splitting field and explain its significance. 



 

 
 

Notes 6. How do symmetric functions relate to Galois theory? 

7. Explain why a polynomial is solvable by radicals if its Galois 

group is abelian. 

8. What is the significance of normal and separable extensions in 

Galois theory? 

9. Define a cyclic extension and give an example. 

10. Explain the relationship between subgroups of the Galois 

group and intermediate fields. 

Long Answer Questions 

1. Discuss in detail the concept of separable extensions with 

examples. 

2. Explain normal extensions and their role in field theory. 

3. Prove and explain the main theorem of Galois theory. 

4. How does Galois theory help in solving polynomial equations? 

Give examples. 

5. Explain the significance of the Galois group in the 

classification of field extensions. 

6. How do splitting fields contribute to Galois theory? Provide a 

detailed explanation. 

7. Discuss the connection between symmetric functions and 

Galois theory. 

8. Describe the structure of the Galois group of a polynomial and 

its significance. 

9. Prove that a polynomial is solvable by radicals if and only if 

its Galois group is solvable. 
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Notes 10. Explain how Galois theory is applied in modern algebra and 

number theory. 
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a10. 
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 b8.

 b7.

 b6.

 b5.

 b4.

 a3.

 b2.

 a1.
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