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Notes

COURSE INTRODUCTION

Algebra forms the foundation of many areas in mathematics and its
applications in science and engineering. This course explores essential
algebraic structures, linear transformations, vector spaces, eigenvalue
problems, and their applications to differential equations and coding
theory. The course aims to build strong conceptual and problem-
solving skills through a structured modular approach.

Module 1: Group Theory

This module introduces key concepts in group theory, including direct
products and group actions on a set. Topics covered include isotropy
subgroups, orbits, and applications of G-sets to counting. The module
also explores counting theorems, p-groups, and the fundamental
Sylow theorems.

Module 2: Applications of Sylow Theory and Ring Theory
Building on the Sylow theorems, this module examines their
applications to p-groups and the class equation. Further applications
will be explored in relation to ring theory, covering rings of
polynomials, polynomials in an indeterminate, the evaluation
homomorphism, and the factorization of polynomials over a field.
Module 3: Field Theory

This module covers extension fields, distinguishing between algebraic
and transcendental elements. Topics include irreducible polynomials
over a field, simple extensions, algebraic extensions, finite extensions,
and the structure of finite fields.

Module 4: Automorphisms and Splitting Fields

Students will explore automorphisms of fields, conjugation
isomorphisms, and the connection between automorphisms and fixed
fields. This module introduces the Frobenius automorphism and
splitting fields, providing insight into the structure of field extensions.
Module 5: Galois Theory

This module introduces separable extensions, normal extensions, and
the main theorem of Galois theory. Illustrations of Galois theory
include applications to symmetric functions and their significance in
modern algebra.



MODULE 1

UNIT 1.1

GROUP THEORY

Objectives

Understand the concept of direct products in group theory.
Explore group actions on a set and their applications.
Learn about isotropy subgroups and orbits.

Study counting theorems and their significance in

combinatorial group theory.

Analyze p-groups and the Sylow theorems.

1.1.1: Introduction to Group Theory

A group is one of the fundamental structures in abstract algebra. It

consists of a set of elements together with an operation that combines

any two elements to form a third element, satisfying four conditions

called the group axioms.

Definition of a Group

A group (G, ) consists of a set G together with a binary operation °

that satisfies the following axioms:

1. Closure: For all a, b in G, the result of a ¢ b is also in G.

Associativity: Foralla,b,cin G, (a*b)*c=a<*(b-c).

Identity element: There exists an element e in G such that for

every elementain G,eca=a*e=a.

Inverse element: For each a in G, there exists an element b in

G such that a * b =b ¢ a =e, where e is the identity element.

Notes
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If the operation is also commutative, meaninga*b=b ea forall a, b

in G, then the group is called an abelian group or a commutative

group.

Examples of Groups

a. The integers Z under additionform a group:

@)

Closure: The sum of two integers is an integer.

Associativity: (a + b) + c =a + (b + c) for all integers
a, b, and c.

Identity: The integer O serves as the identity element.
Inverse: For any integer a, its inverse is -a.

This is an abelian group.

b. The non-zero real numbers R under multiplication form a

group:

Closure: The product of two non-zero real numbers is a

non-zero real number.

Associativity: (a x b) x ¢ =a x (b x c) for all non-zero

real numbers a, b, and c.
Identity: The number 1 serves as the identity element.

Inverse: For any non-zero real number a, its inverse is
1/a.

This is an abelian group.

c. The set of nxn invertible matrices with real entries under

matrix multiplication forms a group denoted by GL(nh, R)

(General Linear Group):

o

Closure: The product of two invertible matrices is

invertible.



o Associativity: matrix multiplication is associative. Notes

o ldentity: The identity matrix serves as the identity

element.
o Inverse: Every invertible matrix has an inverse matrix.

This is generally a non-abelian group for n > 2.

o

1.1.2 : Order of a Group and Order of an Element

The order of a group G, denoted by |G|, is the number of elements in
G. If G has infinitely many elements, we say G has infinite order.

The order of an elementa in a group G, denoted by [a|, is the smallest
positive integer n such that a*n = e, where e is the identity element. If

no such n exists, a has infinite order.
1.1.3: Subgroups

A subgroup H of a group G is a subset of G that is itself a group

under the operation of G. For H to be a subgroup, it must:

« Contain the identity element of G.
e Be closed under the group operation.
« Contain the inverse of each of its elements.

1.1.4: Cyclic Groups

A group G is cyclic if there exists an element a in G such that every
element in G can be written as a*n for some integer n. In this case, a is

called a generator of G, and we write G = (a).
Lagrange's Theorem

If H is a subgroup of a finite group G, then the order of H divides the
order of G. That is, |H| divides |G|.

1.1.5: Cosets and Normal Subgroups
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For a subgroup H of a group G and an element a in G, the set aH =
{ah | h € H} is called the left coset of H in G with respect to a.
Similarly, Ha = {ha | h € H} is the right coset.

A subgroup N of G is normal if, for every a in G, aN = Na. This is
equivalent to saying that all left cosets of N are equal to their

corresponding right cosets.
1.1.6: Quotient Groups

If N is a normal subgroup of G, then the set G/N of all left cosets of N
in G forms a group under the operation (aN)(bN) = (ab)N. This group
is called the quotient group of G by N.

1.1.7: Homomorphisms and Isomorphisms

A group homomorphism is a function f: G — H between two groups
that preserves the group operation: f(a « b) = f(a) * f(b) for all a, b in

G, where * is the operation in G and * is the operation in H.

An isomorphism is a bijective homomorphism. Two groups are
isomorphic if there exists an isomorphism between them, meaning

they have the same abstract structure.
The First Isomorphism Theorem
If : G — H i1s a group homomorphism, then:

1. The kernel of ¢, Ker(¢p) = {a € G | ¢(a) = e _H}, is a normal
subgroup of G.

2. The image of ¢, Im(p) = {@(a) | a € G}, is a subgroup of H.
3. G/Ker(o) is isomorphic to Im(@).

1.1.8: Direct Products of Groups

The direct product is a way to construct a new group from existing

groups. It allows us to build complex groups from simpler ones.

Definition of Direct Product



Given two groups (G, *) and (H, *), their direct product G x H is the
set of all ordered pairs (g, h) where g € G and h € H, with the

operation defined componentwise:
(g1, 1) O (g2, h2) = (g1 * g2, i * o)
Properties of Direct Products

1. ldentity: The identity element of G x H is (e, en), where
ec and ey are the identity elements of G and H,

respectively.

2. Inverse: The inverse of an element (g, h) in G X His (g, h™),
where g is the inverse of g in G and h™" is the inverse of h in

H.
3. Order: If G and H are finite groups, then |G x H| = |G| x [H|.

4. Abelian: G x H is abelian if and only if both G and H are

abelian.

Examples of Direct Products

1. Z, x Zs: Consider the cyclic group Z. = {0, 1} under addition
modulo 2 and the cyclic group Zs = {0, 1, 2} under addition
modulo 3. Their direct product Z. x Zs consists of the

elements: {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)}
For example, (1,2) + (1,1) = (1+1 mod 2, 2+1 mod 3) = (0,0).

2. R x R: The direct product of the real numbers under addition
with itself is the Cartesian plane R? under component-wise

addition.

1.1.9: Subgroups of Direct Products

A subgroup of G x H need not be a direct product of subgroups of G

and H. However, there are two important types of subgroups:

1. Forany subgroup K of G, K x H is a subgroup of G x H.

Notes
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2. For any subgroup L of H, G x L is a subgroup of G x H.

1.1.10: Projections and Embeddings

For a direct product G x H, there are natural projection

homomorphisms:
e m:GXH— Gdefinedbym(g, h)=g¢g
e m: G X H — H defined by (g, h) =h
There are also natural embedding homomorphisms:
e u: G — G x H defined by u(g) = (g, en)
e 1 H— G X H defined by ©(h) = (e, h)
1.1.11: Internal Direct Products

A group G is an internal direct product of its subgroups N: and N>
if:

1. Ni and N: are normal subgroups of G.
2. NiNNz2= {e}
3. G=NiNz2= {ninz | ;1 € Ny, n2 € Na}.

When G is an internal direct product of N: and N2, G is isomorphic to

the external direct product N1 % Na.
1.1.12: Direct Product of Multiple Groups

The direct product can be extended to any finite number of groups.
For groups Gi, Gz, ..., Gy, their direct product Gi X G2 x ... X G,

consists of n-tuples (g1, g2, ..., g.) with component-wise operations.
1.1.13: Direct Sum

For abelian groups written additively, the direct product is sometimes
called the direct sum and denoted by Gi1 @ G2 @ ... @ G, The

operation is component-wise addition.
The Fundamental Theorem of Finitely Generated Abelian Groups

6



Every finitely generated abelian group is isomorphic to a direct

product of cyclic groups:
G=Z'® Zp™ @ Zp,™ D ... @ Zp,!™

where r is a non-negative integer, Z is the group of integers, and

Zy: is the cyclic group of order p2 with p prime.
1.1.14: Group Actions and Orbits

Group actions allow us to understand how a group can act on a set,
providing a powerful framework for analyzing symmetry and other

properties.
Definition of a Group Action

A group action of a group G on a set X is a function ¢: G x X — X

(often written as g-x instead of ¢(g,x)) that satisfies:

1. Identity: e-x = x for all x € X, where e is the identity element
of G.

2. Compatibility: (g-h)-x = g-(h-x) forall g, h € Gand all x € X.
Examples of Group Actions

1. The symmetric group S, acts on the set {1, 2, ..., n} by

permutation: ¢-i = (i) for o € S, and i€ {1, 2, ..., n}.

2. Agroup G acts on itself by conjugation: g-x = gxg! for all
0, x€G.

3. Agroup G acts on the set of its subgroups by conjugation:

g-H = gHg! for all g € G and all subgroups H of G.

4. The dihedral group D, acts on the vertices of a regular n-

gon by rotation and reflection.

1.1.15: Orbits and Stabilizers

For a group action of G on X and an element x € X:

Notes
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The orbit of x, denoted by Orb(x), is the set of all elements in X to
which x can be moved by elements of G: Orb(x) = {g-x | g € G}

The stabilizer of x, denoted by Stab(x), is the subgroup of G
consisting of all elements that fix x: Stab(x) = {g € G| g-x = x}

Orbit-Stabilizer Theorem

For a group G acting on a set X and an element x € X, if G is finite,
then: |Orb(x)| x |Stab(x)| = |G|

In other words, the size of the orbit of x multiplied by the size of the

stabilizer of x equals the size of the group.
1.1.16: Fixed Points and the Class Equation

A fixed point of an element g € G is an element x € X such that g-x =

X.

For a finite group G acting on a finite set X, the class equation is: |X|
= |[X9] + X |Orb(x)]

where XC = {x € X | g-x = x for all g € G} is the set of elements of
X fixed by all elements of G, and the sum is taken over

representatives x of the distinct orbits with |Orb(x)| > 1.
Burnside's Lemma

For a finite group G acting on a finite set X, the number of orbits
equals the average number of fixed points: Number of orbits = (1/|G|)
x T |Xe|

where X9 = {x € X | g-x = x} is the set of fixed points of g, and the

sum is taken over all g € G.
1.1.17: Group Actions and Counting
Group actions provide powerful tools for counting in combinatorics:

1. Counting orbits gives the number of essentially different

configurations.



2. Polya's enumeration theorem extends Burnside's lemma to

count configurations by their "types."

1.1.18: Transitive and Regular Actions

A group action of G on X is transitive if for any x, y € X, there exists

g € G such that g-x =y. In other words, there is exactly one orbit.

A group action is regular (or simply transitive) if it is transitive and
the stabilizer of every point is trivial (i.e., contains only the identity

element).
The Orbit Decomposition

Under a group action, the set X is partitioned into orbits. Each orbit is
an equivalence class under the relation x ~ y if and only if there exists

g € Gsuchthatg-x =vy.
Homomorphic Actions

If o: G — Sym(X) is the homomorphism corresponding to an action

of G on X (where Sym(X) is the symmetric group on X), then:

1. The kernel of ¢ is the set of elements that fix every point in X.

2. The image of ¢ is a subgroup of Sym(X) that represents the

effective symmetries of X under the action.

Solved Problems

Problem 1: Determine whether the set of 2x2 matrices of the form
[la, b], [0, a]] where a # 0 forms a group under matrix

multiplication.
Solution:
Let's call this set G. We need to check all four group axioms:

1. Closure: For any two matrices in G: [[a, b], [0, a]] x [[c, d],
[0, c]] = [[ac, ad+bc], [0, ac]]

Notes



Notes Since ac # 0 when a # 0 and ¢ # 0, the result is in G. So G is closed

under matrix multiplication.

2. Associativity: Matrix multiplication is always associative, so

this axiom is satisfied.

3. ldentity: The identity matrix [[1, O], [0, 1]] isin G (takea =1

and b = 0), and it serves as the identity element.

4. Inverse: For a matrix [[a, b], [0, a]] in G, we need its inverse
to be in G as well. The inverse is [[1/a, -b/a?], [0, 1/a]], which

has the required form with non-zero values on the diagonal.

Since all four axioms are satisfied, G is indeed a group under matrix

multiplication.

Problem 2: Find all subgroups of Zs x Z., where Zs is the cyclic

group of order 4 and Z: is the cyclic group of order 2.
Solution:
First, let's enumerate the elements of Z4 X Z»:

o Z4=1{0,1, 2,3} with addition modulo 4

e Z>={0, 1} with addition modulo 2

o ZaxZ>=1{(0,0),(0,1),(1,0), (1,1), (2,0), (2,1), (3,0), (3,1)}

The order of Z4 x Z> is 8. By Lagrange's theorem, the possible orders
of subgroups are 1, 2, 4, and 8.

1. The trivial subgroup {(0,0)} is the only subgroup of order 1.
2. Subgroups of order 2:

o ((2,0))={(0,0), (2,0}

o ((0,1)={(0,0), (0,1)}

o ((21))={(0,0), (2,1)}
3. Subgroups of order 4:

10



o ((1,0)={(0,0), (1,0), (2,0), 3.0)} = Z« Notes
o ((0,1), 2,0)) = {(0,0), (0,1), (2,0), (2,1)} = Z: x Z,
o ((1,1))={(0,0), (1.1), (2,0), B.1)}
o ((3.1)={(0,0), (1,0). (2.1), 3.0)}
4. The entire group Zs X Z» is the only subgroup of order 8.

In total, Z4 X Z> has 9 subgroups.

Problem 3: Let G be a group acting on a set X. Prove that if x and
y are in the same orbit, then Stab(x) and Stab(y) are conjugate

subgroups.
Solution:

If x and y are in the same orbit, then there exists some g € G such that
g-x=y.

We want to show that Stab(y) = g-Stab(x)-g"!, where g-Stab(x)-g' =
{ghg™' | h € Stab(x)}.

Let h € Stab(x). Then h-x = x.

Consider ghg™' €g-Stab(x)-g'. We need to show that ghg™' € Stab(y),
ie., (ghg’)y=y.

(ghg™)y =(ghg™)(gx)=g(h(g(gx)) =ghx)=gx=y
Therefore, ghg™ € Stab(y), so g-Stab(x)-g! € Stab(y).

Conversely, let k € Stab(y). Then k-y = .

Consider g'kg € G. We have: (g'kg)x = g ' (k'(g'x)) =g"(ky)=
ghy=gh(gx)=x

Thus, g 'kg € Stab(x), which implies k €g-Stab(x)-g .

Therefore, Stab(y) Sg-Stab(x)-g.

Combining both inclusions, we get Stab(y) = g-Stab(x)'g™', meaning
Stab(x) and Stab(y) are conjugate subgroups.
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Problem 4: Calculate the number of distinct necklaces that can be

made with 4 beads, each of which can be either red or blue.
Solution:

This is a problem of counting orbits under a group action. We can use

Burnside's lemma.

The cyclic group Cs (of order 4) acts on the set of all possible
colorings of 4 beads by rotation. There are 2* = 16 possible colorings

(for each bead, we can choose either red or blue).

By Burnside's lemma, the number of orbits (distinct necklaces) is:
Number of orbits = (1/|G|) x X |Xg|

where X9 is the set of colorings fixed by element g of the group.

The group Ca has 4 elements: the identity e, and rotations by 90°,
180°, and 270°.

1. For the identity e, all 16 colorings are fixed: |X¢| = 16.

2. For a 90° rotation (call it r), a coloring is fixed only if all
beads have the same color. So |X"| = 2 (all red or all blue).

3. For a 180° rotation (r?), a coloring is fixed if beads 1 and 3
have the same color, and beads 2 and 4 have the same color.
So [X"|=22=4.

4. For a 270° rotation (r3), like the 90° rotation, only the 2 solid-

colored necklaces are fixed. So |X"| = 2.

Using Burnside's lemma: Number of orbits = (1/4) x (16 + 2 + 4 + 2)
=(1/4)x24=6

Thus, there are 6 distinct necklaces possible.
Problem 5: Let G be a group of order 15. Prove that G is cyclic.

Solution:

12



By Lagrange's theorem, the order of any element in G divides the

order of G. So the possible orders for elements are 1, 3, 5, and 15.
The only element of order 1 is the identity element e.
Let's consider the number of elements of each possible order:

1. For elements of order 3, they must satisfy a® = e. Each such

element generates a cyclic subgroup of order 3.

2. For elements of order 5, they must satisfy a* = e. Each such

element generates a cyclic subgroup of order 5.

The Sylow theorems tell us that G has a Sylow 3-subgroup (a
subgroup of order 3) and a Sylow 5-subgroup (a subgroup of order 5).

The number of Sylow p-subgroups, np, satisfies:
e np=1(modp)

e np divides the order of G divided by p¥, where pk is the
highest power of p dividing |G]|.

Forp =3, n: =1 (mod 3) and ns divides 5. The only possibility is ns =
1. For p=15,ns=1 (mod 5) and ns divides 3. The only possibility is ns
=1

So G has exactly one Sylow 3-subgroup (call it H) and one Sylow 5-
subgroup (call it K).

Since both H and K are unique, they are normal in G. Also, H N K =
{e} because gcd(3,5) = 1.

Since |H| % |[K| =3 x5 =15 = |G|, we have G = H x K (internal direct
product).

Since H is a group of order 3 and K is a group of order 5, both are

cyclic (all groups of prime order are cyclic). Say H = (a) and K = (b).
Now, consider the element ab in G. We have:

e (ab)®=a%h®=¢eb3=h3

Notes



Notes

° (ab)5 e a5b5 - a5€ - a5
o (ab)15=alsh's = (a%)5(h5)3 = eSe3 = ¢

We need to find the order of ab. Since a has order 3 and b has order 5,

and 3 and 5 are coprime, the order of ab is lcm(3,5) = 15.

Thus, G = (ab) is cyclic of order 15.

Unsolved Problems

Problem 1: Prove that every subgroup of a cyclic group is cyclic.

Problem 2: Let G be a group and let H and K be normal subgroups of
G such that H N K = {e}. Prove that for all h € H and k € K, hk = kh.

Problem 3: Determine the number of non-isomorphic groups of order
8.

Problem 4: For a finite group G, prove that if for every proper
subgroup H of G, there exists an element g € G such that g> ¢ H,

then G is a 2-group (i.e., |G| = 2" for some n).

Problem 5: Find all elements of the dihedral group Da (the group of
symmetries of a square) that commute with a 90-degree rotation.

14



UNIT 1.2 Notes
1.2.1: Isotropy Subgroups

The isotropy subgroup (also called the stabilizer) is a fundamental
concept in group action theory that helps us understand how group

elements interact with specific points in a set.
Definition of Isotropy Subgroup

Let G be a group acting on a set X. For any element x in X, the

isotropy subgroup (or stabilizer) of x, denoted Gy, is defined as:
Gx={geG|gx=x}

In other words, Gx consists of all elements of G that fix the point x.It

is straightforward to verify that Gy is indeed a subgroup of G.
Properties of Isotropy Subgroups

1. Subgroup Property: For any X in X, Gy is a subgroup of G.
Proof:

o ldentity: The identity element e € G satisfies e-x = X,

soe €G_X.

o Closure: If g, h €Gy, then g-x = x and h-x = x. So
(gh)-x = g-(h-x) = g-x = x, which means gheGx.

o Inverse: If g €Gy, then g-x = x. Applying gtV to
both sides: gtb-(g-x) = g(-x, which gives x = gD
-X, 50 g(D eGx.

2. Conjugacy Relation: For any g € G and x € X, the isotropy

subgroup of g-x is conjugate to the isotropy subgroup of x:
Ggx = gGx gtV

Proof: An element h belongs to G.x) if and only if h-(g-x) = g-x.
This is equivalent to g(D-h-g-x = x, which means gtPhg €Gx.Thus,
h egGx gt.



Notes

3. Fixed Points: The set of all points fixed by a specific group

elementg € G is:
X9={xeX|g-x=x}

This is the set of all points x such that g belongs to the isotropy
subgroup Gx.

Example 1: Dihedral Group Action

Consider the dihedral group D4 acting on the vertices of a square.
Label the vertices 1, 2, 3, and 4 in clockwise order.

Let's find the isotropy subgroup for vertex 1:
D4 consists of:
o ldentity (e): leaves all vertices in place
« Rotations: r (90° clockwise), r2 (180°), r3 (270°)

o Reflections: s (across horizontal axis), sr (across vertical axis),
srz (across diagonal from vertex 1 to 3), sr® (across diagonal
from 2 to 4)

The elements that fix vertex 1 are:

o e (identity): leaves all vertices in place

o sr2(reflection across diagonal 1-3): fixes vertices 1 and 3
Therefore, G1 = {e, sr2}, which is isomorphic to Z>.
Example 2: Symmetric Group Action

Consider Ss acting on the set X = {1, 2, 3, 4} by the standard

permutation action.
The isotropy subgroup of element 1 is: G1 = {c € S4| (1) =1}

This consists of all permutations that fix 1, which is isomorphic to
Sz as they freely permute {2, 3, 4}.

So G1 = Ss, with order |Gy| = 6.
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Relationship with Orbits Notes

One of the most important results connecting isotropy subgroups with

orbits is:

Orbit-Stabilizer Theorem: For a group G acting on a set X and an

element x € X:
|G| = [Orb(x)| x |G|

where |G| is the order of the group, |Orb(x)| is the size of the orbit of

X, and |Gy is the order of the isotropy subgroup of x.

This theorem provides a powerful method for counting orbit sizes

when we know the isotropy subgroups.
1.2.2: Applications of Group Actions

Group actions provide a unifying framework for various mathematical

problems. Here are several important applications:
Counting Problems and Burnside's Lemma

Burnside's Lemma (also known as the Cauchy-Frobenius Lemma) is a

powerful tool for counting orbits under a group action.

Burnside's Lemma: Let G be a finite group acting on a finite set X.

The number of orbits, denoted |X/G]|, is given by:

IX/G| = (1/|G]) * Zygecy [X9|

where X9 = {x € X | g-x = x} is the set of elements fixed by g.
Example: Necklaces with Colored Beads

Consider necklaces made of n beads, each colored with one of k
colors. Two necklaces are considered equivalent if one can be rotated

to obtain the other.

This problem can be modeled as the cyclic group C, acting on the
set X of all possible colorings (k" in total). By Burnside's Lemma,

the number of distinct necklaces is:



Notes

Number of distinct necklaces = (1/n) X Zgn; @(d) x k)

where ¢ is Euler's quotient function and the sum is over all divisors d

of n.
Simplification of Symmetric Structures

Group actions help identify symmetries in mathematical structures,

simplifying their analysis.
Example: Platonic Solids
The rotational symmetry groups of the Platonic solids are:

« Tetrahedron: A4 (alternating group on 4 elements)
e Cube/Octahedron: S4 (symmetric group on 4 elements)

e Dodecahedron/lcosahedron: As (alternating group on 5

elements)

These group actions explain why there are exactly five Platonic solids.
Normal Subgroups and Quotient Groups

Group actions provide a geometric interpretation of normal subgroups

and quotient groups.

If N is a normal subgroup of G, then G acts on itself by conjugation:
g-x = gxgtb. The orbits under this action are precisely the
conjugacy classes of G. The isotropy subgroup of the identity element
e is the centralizer of G.

Sylow Theorems

Group actions play a crucial role in proving Sylow's theorems, which
are fundamental results in group theory concerning the existence and

properties of subgroups whose orders are powers of prime numbers.

First Sylow Theorem: If G is a finite group and p is a prime dividing
|G|, then G has a subgroup of order pX, where pk is the highest
power of p dividing |G|.

18



The proof uses the action of G on the set of all subsets of G of size

pk by left multiplication.
Galois Theory

In Galois theory, the Galois group of a polynomial acts on its roots.
This action reveals deep connections between field extensions and

solvability of polynomial equations.

For a polynomial f(x) with Galois group G, the orbits of the roots
under the action of G correspond to the irreducible factors of f(x).

Representation Theory

Group actions on vector spaces lead to representation theory, which
studies how groups can be represented as linear transformations of

vector spaces.

A representation of a group G on a vector space V is a homomorphism
p: G — GL(V), where GL(V) is the general linear group of V.

Crystallography

The classification of crystal structures relies heavily on group actions.
The 230 space groups in three dimensions describe all possible

symmetric arrangements of atoms in crystals.

Notes
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UNIT 1.3
1.3.1: Counting Theorems

Counting theorems in group theory provide powerful tools for

enumeration problems involving symmetry. Here are the key results:
Orbit-Counting Formula (Burnside's Lemma)

As mentioned earlier, Burnside's Lemma gives us a way to count the

number of orbits:
IX/G| = (1/|G) * Zigecy X9
P6lya Enumeration Theorem

Pdlya's enumeration theorem extends Burnside's Lemma to situations
where we not only want to count orbits but also need to classify them

according to some property.

Let G be a group acting on a set X, and let w be a weight function that
assigns weights to elements of X. The Pdlya enumeration theorem

gives a generating function for the weights of the orbits:
Zaw) = (1/|G]) % Zigec} wicycele(@)}

where cycle(g) represents the cycle structure of the permutation g, and

wieycle@)?} js a monomial determined by this cycle structure.
Example: Colored Cubes

Consider coloring the faces of a cube with k colors. The symmetry

group of the cube, S4, acts on the 6 faces.

Using Polya's theorem, the generating function for the number of

distinct colorings is:

Zo(X1 + X2 + ... + Xk) = (1/24) x (X1 + X2 + ... + X¢)® + ...(additional

terms based on cycle structures)

Orbit-Stabilizer Theorem
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As introduced earlier, the Orbit-Stabilizer theorem relates the size of
an orbit to the order of the group and the order of an isotropy

subgroup:

G| = [Orb(x)| x |G«
This immediately gives:
[Orb(x)| = |G| / |G«

This theorem is particularly useful for calculating orbit sizes when the

isotropy subgroups are known.
Class Equation

The class equation is a fundamental result that divides the elements of

a group into conjugacy classes:
Gl =1Z(G)| + X |Cl(g)|

where Z(G) is the center of G, and the sum is taken over

representatives gi of non-singleton conjugacy classes CI(gi).

This can be derived by considering the action of G on itself by

conjugation.
The Cauchy-Frobenius-Burnside Formula

This is a generalized version of Burnside's Lemma that takes into

account a weight function:

Yiexicy W(X]) = (1/|G]) x Zigea) Zixex¥ W(X)
where w([X]) is the weight of the orbit [x].
Solved Problems

Problem 1: Find the number of distinct necklaces with 4 beads,

each colored either red or blue.

Solution: This problem can be solved using Burnside's Lemma. We

have the cyclic group C4 acting on the set of all possible colorings.

« Total number of colorings: 24 = 16

Notes



Notes o We need to find |X9| for each g € Ca:
o For the identity e, all 16 colorings are fixed: |X® = 16

o For a 90° rotation (gu), a coloring is fixed if all beads have
the same color: [X9| = 2

o Fora 180° rotation (g2), a coloring is fixed if opposite beads

have the same color: [X9% = 22 =4
o Fora270° rotation (gs), same as 90°: |X93| = 2

By Burnside's Lemma: |[X/G| = (1/4) x (16 + 2+ 4 + 2) = (1/4) x 24 =
6

Therefore, there are 6 distinct necklaces with 4 beads colored red or

blue.

Problem 2: In the symmetric group Ss find the isotropy
subgroup of the element 1 under the natural action of Ss on {1,
2,3, 4}

Solution: The isotropy subgroup Gi consists of all permutations ¢ €
S4 such that o(1) = 1.These are precisely the permutations that fix 1
while permuting theelements 2, 3, and 4 in any way.The number of
such permutations is 3! = 6, corresponding to allpossible ways to
arrange {2, 3, 4}.Explicitly, G1={e, (23),(24),(34),(234),(24
3)}, where e is theidentity and the other elements are written in cycle
notation.This subgroup is isomorphic to Sz, the symmetric

group on 3elements.

Problem 3: Find the number of different ways to color the vertices
of a regular hexagon using 3 colors, where two colorings are

considered the same if one can be obtained from the other by a

rotation.
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Solution: This is a group action problem with the cyclic group C_6

acting on the set X of all possible colorings.

 Total number of colorings: |X| = 3% =729
e We need to find |X9| for each g € Ce:
o For the identity (e), all 729 colorings are fixed: |X¢ = 729

o Fora60° rotation (g1), a coloring is fixed if all vertices have

the same color: |X9| =3

o For a 120° rotation (g2), a coloring is fixed if vertices at
positions i, i+2, i+4 have the same color: |X9%| =32=9

o For a 180° rotation (gs), a coloring is fixed if vertices at

positions i and i+3 have the same color: |X9%| = 33 = 27
o Fora240° rotation (g4), same as 120°: |X%| =9
o For a300° rotation (gs), same as 60°: |X9%| = 3

By Burnside's Lemma: [X/G| = (1/6) x (729 + 3+ 9+ 27 +9 + 3) =
(1/6) x 780 = 130

Therefore, there are 130 different ways to color the vertices of a

regular hexagon using 3 colors, up to rotation.

Problem 4: Find the class equation for the dihedral group Ds
(the symmetry group of a regular square).

Solution: Ds consists of 8 elements: the identity e, rotations r, r?, r®
by 90°, 180°, and 270°, and reflections s, sr, sr2, sr® across various
axes.To find the conjugacy classes, we use the fact that two
elements a, bare conjugate if there exists g € Ds such that g 'ag =b.
The center Z(Ds) consists of elements that commute with all
elements of Dg. These are e and r?, so |Z(Ds)| = 2.For the remaining

elements:

Notes
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« rand r3 form one conjugacy class of size 2
e The reflections s and srz form one conjugacy class of size 2

e The reflections sr and sr3 form another conjugacy class of size
2

Therefore, the class equation is: |Ds| = |Z(Ds)| + [CI(r)| + |CI(s)| +|CI
(snN|8=2+2+2+2

Problem 5: Use the Orbit-Stabilizer theorem to find the number
of different ways to place 2 identical rooks on a 3x3 chessboard,
where configurations are considered the same if one can be

obtained from the other by a rotation or reflection of the board.

Solution: The dihedral group D4 acts on the set X of all possible

placements of 2 identical rooks on a 3x3 board.

First, let's count the total number of possible placements:
e We need to choose 2 positions from 9 possible positions
e Number of ways = C(9,2) = 36

Let's consider a specific configuration x where the rooks are at
positions (1,1) and (2,2).

To find the isotropy subgroup Gk, we need elements of D4 that

keep these positions fixed:

o The identity e keeps all positions fixed

e The 180° rotation r2 maps (1,1) to (3,3) and (2,2) to (2,2), so it

doesn't fix our configuration
e None of the other rotations or reflections fix this configuration
Therefore, Gx = {e}, and |G«| = 1.
By the Orbit-Stabilizer theorem: |Orb(x)| = |D4| / |Gx| =8/1 =8

This means the orbit of our specific configuration has 8 elements.
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However, this is just one orbit. To find the total number of distinct

configurations, we need to compute all orbits.
Using Burnside's Lemma:

« For the identity e, all 36 configurations are fixed: |X¢ = 36

o For 90° rotation r, none of the configurations are fixed: |X'| =
0

o For 180° rotation r?, configurations where rooks are placed
symmetrically across the center are fixed: |X"| = 0 (since we

need 2 rooks)
o For 270° rotation r3, same as 90°: |[X”| =0

o For horizontal reflection s, configurations symmetric about the

horizontal axis are fixed: |X$| = 3

o For vertical reflection sr2, configurations symmetric about the

vertical axis are fixed: |X"| = 3

o For diagonal reflection sr, configurations symmetric about the

main diagonal are fixed: | X =3

o For diagonal reflection sr3, configurations symmetric about the

other diagonal are fixed: [X"°| =3

By Burnside's Lemma: |X/D4| = (1/8) x (36 +0+0+0+3+3+3 +
3)=(1/8)x48=6

Therefore, there are 6 different ways to place 2 identical rooks on a

3x3 chessboard, up to rotation and reflection.
Unsolved Problems
Problem 1

Let G be the alternating group A_4 acting on the set X = {1, 2, 3, 4}
by the standard permutation action. Find all the isotropy subgroups

and determine which of them are conjugate to each other.
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Problem 2

Consider the action of the symmetric group Ss on the set of all 2-
element subsets of {1, 2, 3, 4, 5} by the natural action. Find the orbit
and isotropy subgroup of the subset {1, 2}.

Problem 3

Using Burnside's Lemma, determine the number of distinct ways to
color the faces of a cube using 3 colors (red, blue, green), where two
colorings are considered the same if one can be obtained from the

other by a rotation of the cube.
Problem 4

Let the dihedral group Ds act on the set of all functions from the
vertices of a regular hexagon to {0, 1}. If this action is by
composition (i.e., for g € De and a function f, g-f = fog™"), find the

number of orbits.
Problem 5

For the group G = Z» x Z» X Z», consider its action on itself by
conjugation. Find the class equation of G and explain what this tells

you about the structure of the group.
Formulas and Key Results
1. Isotropy Subgroup (Stabilizer): Gx={g € G| g-x = x}
2. Orbit-Stabilizer Theorem: |G| = |Orb(X)| x |G_x|
3. Burnside's Lemma: |X/G| = (1/|G]) x Z¢gecy |X9|
4. Conjugacy of Isotropy Subgroups: G(g.x) = gGx gt
5. Class Equation: |G| = |Z(G)| + Z |Cl(gi)|

6. Pdlya Enumeration Theorem: Zgw) = (1/|G]) % Zgecywicycle
@3

7. Fixed Points Set: X9={x € X|g-x=x}
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8. Number of Distinct Necklaces with n Beads and k Colors:
(1/n) x Z{dn} @(d) x kW

9. Cauchy-Frobenius-Burnside Formula: Zexicy W([X])=
(V/IG]) % Zigeay Zixexy W(X)

10. Orbit Size Formula: |Orb(x)| = |G| / |Gx|

This comprehensive overview of isotropy subgroups, applications of
group actions, and counting theorems provides both theoretical
foundations and practical applications. The solved problems
demonstrate how these concepts can be applied to specific scenarios,
while the unsolved problems offer opportunities for further practice

and deeper understanding of the material.
p-Groups and their Properties
Definition and Basic Properties of p-Groups

A p-group is a group in which every element has order that is a power
of a prime number p. In other words, if G is a p-group, then for every
element g in G, there exists a non-negative integer n such that gP"=e
(where e is the identity element).

Important characteristics of p-groups include:

1. Finite p-groups have order p" for some positive integer n.
2. Every non-trivial p-group has a non-trivial center.

3. The order of any subgroup and any quotient group of a p-

group is also a power of p.

Center of p-Groups

Theorem 1: If G is a non-trivial finite p-group, then the center
Z(G) of G is non-trivial.

Proof: Let G act on itself by conjugation. For each element g in G, we
define the class equation:

Gl =1Z(G)] + XICI()|

Notes
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Where CI(g) is the conjugacy class of g, and the sum is taken over

representatives of distinct non-central conjugacy classes.

For any non-central element g, the size of its conjugacy class is:
ICI(9)] = [G : Ce@]

Where Cg(g) is the centralizer of g in G. Since Cg(g) IS a proper
subgroup of G, its index [G : Cg(g)] is divisible by p. This means

each term in the sum is divisible by p.

Since |G| = p" for some n > 0, and the sum is divisible by p, the
center |Z(G)| must also be divisible by p to satisfy the class equation.

This implies that |Z(G)| > p, which means Z(G) is non-trivial.
Normal Subgroups in p-Groups

Theorem 2: Every non-trivial finite p-group has a normal

subgroup of order p.

Proof: We already showed that the center Z(G) of a non-trivial p-
group G is non-trivial. Since Z(G) is a p-group itself, it contains an
element g of order p. The subgroup H = <g> generated by g has order
p and is contained in Z(G). Since any subgroup of the center is normal

in G, H is a normal subgroup of G with order p.
Maximal Subgroups of p-Groups

Theorem 3: Let G be a finite p-group. Then every maximal

subgroup of G has index p in G.

Proof: Let M be a maximal subgroup of G. The quotient group G/M is
a p-group with no proper non-trivial subgroups (by maximality of M).
Such a group must be cyclic of prime order, which means G/M has
order p. Therefore, [G : M] = p.

Frattini Subgroup

The Frattini subgroup ®(G) of a group G is defined as the intersection

of all maximal subgroups of G.
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Theorem 4: If G is a finite p-group, then ®(G) is the set of non-

generators of G. Moreover, G/®(G) is an elementary abelian p-group.

Proof: An element g in G is called a non-generator if whenever G =
<X, g> for some subset X of G, we also have G = <X>. It can be
shown that the set of all non-generators forms a characteristic
subgroup of G, which coincides with ®(G).

Since every maximal subgroup of G has index p, each factor group
G/M (where M is maximal) is cyclic of order p. Therefore, for any
two elements g, h in G, we have g"p and h”p in every maximal
subgroup, hence in ®(G). Also, [g,h] (the commutator) is in every
maximal subgroup. This implies that G/®(G) is an elementary abelian

p-group, i.e., a direct product of cyclic groups of order p.
Sylow Theorems and Their Applications

The Sylow theorems, formulated by Norwegian mathematician Peter
Ludwig Sylow in 1872, are fundamental results concerning the
existence and properties of certain subgroups in finite groups. These

theorems provide crucial insights into the structure of finite groups.
Sylow Theorems

First Sylow Theorem: Let G be a finite group with order |G| =
p~n - m, where p is a prime and p does not divide m. Then G

contains at least one subgroup of order p".

Proof Sketch: The proof uses group actions on sets of fixed size. Let G
act on the set of all subsets of G of size p”n by left multiplication.
This action induces orbits whose sizes divide |G|. By analyzing these
orbits and using properties of binomial coefficients modulo p, we can
show that at least one such orbit has a size not divisible by p. The
stabilizer of an element in such an orbit gives us the desired Sylow p-

subgroup.

Second Sylow Theorem: All Sylow p-subgroups of a finite group

G are conjugate to each other. That is, if P and Q are Sylow p-

Notes
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subgroups of G, then there exists an element g in G such that Q =
g('l)Pg.

Proof Sketch: Let P be a Sylow p-subgroup of G and let Q be another
Sylow p-subgroup. Consider the action of Q on the set of left cosets
G/P by left multiplication. The number of fixed points under this
action is congruent to |G/P| modulo p. Since |G/P| is not divisible by p,
there must be a fixed point, say gP. This means that for some g in Q,
we have qgP = gP, which implies g(-Yqg is in P. By extending this
argument, we can show that gtYQg is contained in P. Since both are
Sylow p-subgroups, they must be equal, giving us Q = hPh(D for

some h in G.

Third Sylow Theorem: Let G be a finite group and p be a prime.
If np denotes the number of Sylow p-subgroups of G, then:

1. np=1 (modp)
2. npdivides |G|

3. np =[G : N_G(P)], where P is any Sylow p-subgroup and

Ng(p) is its normalizer in G.

Proof Sketch: Let P be a Sylow p-subgroup of G. The group P acts on
the set of all Sylow p-subgroups by conjugation. The orbit-stabilizer
theorem gives us that the orbit sizes divide |P|. The only fixed point of
this action is P itself, so the other orbit sizes are divisible by p. This

gives us np = 1 (mod p).

The second part follows from the fact that n, = [G : Ngr)] andNG

¢ iIs a subgroup of G.
Applications of Sylow Theorems

The Sylow theorems have numerous applications in group theory.

Here are some significant ones:

Application 1: Determining possible group structures.
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By analyzing the number of Sylow subgroups, we can often determine Notes

whether non-isomorphic groups of a given order can exist.
Application 2: Proving groups of certain orders are not simple.

A group is simple if it has no proper non-trivial normal subgroups. By
using the Sylow theorems, we can often prove that groups of certain

orders must have proper normal subgroups.

Example: Show that any group of order 15 has a normal subgroup of

order 5.

Solution: Let G be a group of order 15 = 3 - 5. By the first Sylow
theorem, G has at least one Sylow 5-subgroup P of order 5. By the

third Sylow theorem, the number of Sylow 5-subgroups ns satisfies:
e ns5=1(mod>5)

e nsdivides 15 The only positive integer that is congruent to 1
modulo 5 and divides 15 is 1. Therefore, ns = 1, meaning G
has exactly one Sylow 5-subgroup. Since there is only one
Sylow 5-subgroup and all Sylow 5-subgroups are conjugate
(by the second Sylow theorem), this unique Sylow 5-subgroup

must be normal in G.

Application 3: Classification of groups of specific orders.

The Sylow theorems are instrumental in classifying groups of specific
orders. For example, they help determine that there are exactly two
non-isomorphic groups of order 6: the cyclic group Ces and the
dihedral group De.

Solved Problems
Problem 1: Prove that a group of order p? (p prime) is abelian.

Solution: Let G be a group of order p2. We need to prove that G is
abelian, i.e.,gh =hg forall g, hin G.

There are two possibilities for G:
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1. Gis cyclic of order p?
2. Gisnotcyclic

If G is cyclic, then G is automatically abelian.

If G is not cyclic, then its elements (except the identity) have order p.
Let g be a non-identity element of G. Then |g| = p, so the subgroup

<g> has p elements.

By Lagrange's theorem, G has p + 1 distinct subgroups of order p
(including <g>). Let h be an element not in <g>. Then <h> is another
subgroup of order p, and <g> N <h> = {e} (the identity).

Every element in G can be uniquely written as g'hi where 0 <1, j <p.

Now we need to show that gh = hg.

Consider the center Z(G) of G. We know that in p-groups, the center
is non-trivial. Since G has order p?, either Z(G) = G (meaning G is
abelian) or |Z(G)| = p.

If |Z(G)| = p, then G/Z(G) has order p, which means G/Z(G) is cyclic.
But if G/Z(G) is cyclic, then G must be abelian (this is a known result
in group theory).

Therefore, in all cases, G must be abelian.

Problem 2: Find all Sylow subgroups in S* (the symmetric group

on 4 elements).
Solution: The order of S*is4! =24 =23 . 3.

Sylow 2-subgroups: These are subgroups of order 23 = 8. By the
third Sylow theorem, the number of Sylow 2-subgroups n; satisfies:

e n2=1(mod 2)
e npdivides24=23.3
e n2divides 3

Sonz=1orn;=3.
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Let's identify these subgroups. Consider the subgroup generated by Notes
the permutations (1,2), (3,4), and (1,3)(2,4). This forms a Sylow 2-
subgroup isomorphic to Dg (the dihedral group of order 8).

Other Sylow 2-subgroups can be obtained through conjugation. For

example:
e The subgroup generated by (1,3), (2,4), and (1,2)(3,4)
e The subgroup generated by (1,4), (2,3), and (1,2)(3,4)
Therefore, S4 has exactly 3 Sylow 2-subgroups.

Sylow 3-subgroups: These are subgroups of order 3! = 3. By the
third Sylow theorem, the number of Sylow 3-subgroups ns satisfies:

e m3=1(mod3)
o nzdivides24=23-3
e nzdivides 8
Son?®=1, 4, or 7. But since n> =1 (mod 3), we have n> =1, 4.

The Sylow 3-subgroups are cyclic of order 3. One such subgroup is
generated by the 3-cycle (1,2,3). Through conjugation, we can find

that there are exactly 4 Sylow 3-subgroups:

<(1,2,3)>

<(1,2,4)>

<(1,3,4)>

<(2,3,4)>
Therefore, S4 has exactly 4 Sylow 3-subgroups.

Problem 3: Prove that any group of order 20 has a normal

subgroup of order 5.

Solution: Let G be a group of order 20 =22 - 5.
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By the first Sylow theorem, G has at least one Sylow 5-subgroup P of

order 5.

By the third Sylow theorem, the number of Sylow 5-subgroups ns

satisfies:
e ns5=1(mod>5)
o nsdivides20=22-5
e nsdivides 4

The only positive integer that is congruent to 1 modulo 5 and divides
4is 1.

Therefore, ns = 1, meaning G has exactly one Sylow 5-subgroup.

Since there is only one Sylow 5-subgroup and all Sylow 5-subgroups
are conjugate (by the second Sylow theorem), this unique Sylow 5-

subgroup must be normal in G.

Problem 4: Let G be a group of order p”*n where p is prime and n

> 1. Prove that G has a normal subgroup of order p”~(n-1).
Solution: We'll use induction on n.

Base case: n =1 If n =1, then |G| = p. The only proper subgroup is the
trivial subgroup {e} with order p® = 1, which is obviously normal.

Inductive hypothesis: Assume that for some k > 1, any group of order
pk has a normal subgroup of order p-D,

Inductive step: Let G be a group of order pk*).We know that the
center Z(G) of G is non-trivial (a fundamental property of
p-groups). Let z be a non-identity element in Z(G). Sincez isin Z
(G), the subgroup <z> is normal in G.Let H = G/<z>. Then |H| =
|G|/|<z>| = p*+D/p = pk.By the inductive hypothesis, H has a

normal subgroup K of orderpkD,
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Let m: G — H be the natural projection. Consider N = n(-D(K). This is Notes
a subgroup of G, and by the properties of quotient groups, N is

normal in G.
The order of N is N| = K| - |[<z>| = p&k-D . p = pk.
Thus, G has a normal subgroup N of order pk = p((k+1)-1),

By the principle of mathematical induction, the result holds for all n >

1.

Problem 5: Prove that every group of order 12 has a normal

subgroup of order 3 or 4.
Solution: Let G be a group of order 12 = 22 - 3.

By the first Sylow theorem, G has at least one Sylow 3-subgroup P of
order 3, and at least one Sylow 2-subgroup Q of order 4.

By the third Sylow theorem, the number of Sylow 3-subgroups n?
satisfies:

e n*=1(mod 3)
e n3divides12=22.3
e n3divides 4

The only positive integer that is congruent to 1 modulo 3 and divides
4is1or4.

Case 1: n3 =1 If there is only one Sylow 3-subgroup, then it must be

normal in G. Thus, G has a normal subgroup of order 3.

Case 2: n3 = 4 Now let's consider the Sylow 2-subgroups. By the
third Sylow theorem, the number of Sylow 2-subgroups n_2 satisfies:

e n2=1(mod 2)
e nydivides12=22.3

e nydivides 3
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The only positive integer that is congruent to 1 modulo 2 and divides
3islor3.

Subcase 2.1: n2 = 1 If there is only one Sylow 2-subgroup, then it is

normal in G. Thus, G has a normal subgroup of order 4.

Subcase 2.2: n2 = 3 Here we need to use additional group theory
results. We can show that in this case, G must be isomorphic to A4

(the alternating group on 4 elements).

In A4, there are four Sylow 3-subgroups, and the union of these
subgroups (minus the identity) gives us 8 elements of order 3. The
remaining 3 non-identity elements form a subgroup called the Klein

four-group, which is normal in As.
Therefore, even in this case, G has a normal subgroup of order 4.
Unsolved Problems

Problem 1: Prove that in a finite p-group G (p prime), every maximal

subgroup has index p in G.

Problem 2: Let G be a p-group of order p" with n > 2. Prove that G

has at least p + 1 subgroups of order p(-D).

Problem 3: Let G be a group of order 2023. Determine the number of
Sylow 7-subgroups and Sylow 17-subgroups in G.

Problem 4: Let G be a group of order 30. Prove that G is not simple.

Problem 5: Let G be a group of order 60. Prove that either G has a
normal Sylow 5-subgroup or G has a normal Sylow 3-subgroup.

Special Topics in p-Groups
Burnside's Basis Theorem

Burnside's Basis Theorem states that if G is a finite p-group, then any
minimal generating set of G has the same number of elements, which

equals the rank of the elementary abelian group G/®(G).

Nilpotency of p-Groups
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Every p-group is nilpotent. This means there exists a finite sequence Notes

of subgroups:
G=Go>G1>..>Gh={e}

Such that [G, Gi] < Gi+1) for all 1.
p-Groups and Representation Theory

p-groups have special properties in representation theory. For
example, if G is a p-group and V is a finite-dimensional vector space
over a field of characteristic not equal to p, then any linear

representation of G on V has a non-zero fixed point.
Counting Subgroups in p-Groups

For p-groups, there are formulas that give the number of subgroups of
each possible order. These formulas involve sophisticated

combinatorial techniques and can be quite complex.
p-Groups in Computational Group Theory

p-groups play an important role in computational group theory. Many
algorithms exploit the special properties of p-groups to efficiently
compute group-theoretic information.

Advanced Applications of Sylow Theorems
Classification of Simple Groups

The Sylow theorems are fundamental tools in the classification of
simple groups. They provide criteria for when a group cannot be
simple, which was crucial in the monumental effort to classify all

finite simple groups.
Semidirect Products and Group Extensions

The Sylow theorems help in determining the structure of groups as
semidirect products or extensions of smaller groups. This is
particularly useful in classifying groups of certain orders.

Group Actions and Fixed-Point Theorems
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The proofs of the Sylow theorems use group actions in an essential
way. This connection between group actions and subgroup structure

has led to various fixed-point theorems in group theory.
Fusion Theory

Fusion in group theory deals with how conjugacy in a larger group
affects the structure of a subgroup. The Sylow theorems are the
starting point for much of fusion theory, which has applications in

modular representation theory.
Historical Context and Development

The development of p-group theory and the Sylow theorems
represents a significant milestone in the history of abstract algebra.
These concepts were initially formulated in the late 19th century and
have continued to evolve and find new applications. The study of p-
groups was further developed in the 20th century, with contributions
from many mathematicians, including Burnside, Hall, Thompson, and
others. The theory has connections to various other areas of
mathematics, including number theory, topology, and representation
theory. The Sylow theorems, in particular, stand as fundamental
results that every student of group theory must master. They
exemplify the power of abstract reasoning in uncovering deep

structural properties of mathematical objects.
Multiple Choice Questions (MCQs)

1. The order of a direct product of two finite groups is:
a) Sum of the orders of individual groups
b) Product of the orders of individual groups
¢) Maximum of the orders of the two groups

d) Minimum of the orders of the two groups

2. Agroup action on a set satisfies which of the following
properties?
a) Associativity and identity properties

b) Distributivity and commutativity
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c) Symmetry and transitivity Notes

d) None of the above

. The orbit of an element under a group action is:

a) A subset of the group

b) The set of elements obtained by applying group elements to
it

c) Always equal to the entire set

d) None of the above

. Sylow’s theorems provide information about:

a) Normal subgroups
b) Prime-power order subgroups
c) Commutative properties of groups

d) None of the above

. The number of Sylow p-subgroups in a group is:
a) Any integer greater than 1

b) A power of p

c) Congruent to 1 modulo p

d) Always 1

. Which of the following statements about p-groups is true?
a) Every element has order p

b) They always have a normal subgroup

c) They are abelian groups

d) They have a unique Sylow subgroup

. The isotropy subgroup of an element is:

a) The set of all elements in the group that fix the element
b) The orbit of the element

c) The direct product of two subgroups

d) A normal subgroup of the group

. The number of orbits in a group action is found using:
a) Lagrange’s Theorem

b) Sylow’s Theorem
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10.

c) Orbit-Stabilizer Theorem
d) Cayley’s Theorem

In a finite group, the order of an element must:
a) Divide the order of the group

b) Be a prime number

c) Be equal to the order of the group

d) None of the above

The center of a p-group is:
a) Trivial

b) Always nontrivial

c) Equal to the group itself

d) None of the above

Short Answer Questions

1.

2.

10.

Define the direct product of two groups with an example.
Explain group actions with a real-life example.

What is an orbit in the context of group actions?

State and prove the Orbit-Stabilizer Theorem.

What is a p-group? Give an example.

State and prove Sylow’s First Theorem.

What is an isotropy subgroup?

Explain the significance of counting theorems in combinatorial

mathematics.
How do p-groups relate to Sylow’s Theorems?

Why are Sylow subgroups important in the classification of

finite groups?

Long Answer Questions
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10.

Explain the concept of direct product in groups with detailed

examples and proofs.
Derive the Orbit-Stabilizer Theorem and give its applications.

Discuss in detail the applications of counting theorems in

group theory.
Prove and explain all three Sylow theorems with examples.

Describe the significance of p-groups in the study of finite

groups.

How do isotropy subgroups help in understanding group

structures?

Explain how Sylow’s theorems can be used to determine the

number of subgroups of a given order.

Discuss the importance of group actions in modern algebra

and their real-life applications.

Derive the class equation and explain its applications in group

theory.

How does the Sylow theory contribute to the classification of

finite simple groups?

Notes
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1.b

2.a
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MODULE 2
UNIT 2.1

APPLICATIONS OF THE SYLOW THEORY AND RING
THEORY

Objectives

e Apply Sylow theorems to p-groups and the class equation.

e Understand further applications of Sylow’s theorems in finite

group classification.
o Study rings of polynomials and their properties.
« Explore the concept of polynomials in an indeterminate.

e Learn about the evaluation homomorphism and its

significance.

Understand factorization of polynomials over a field.

2.1.1: Applications of Sylow Theory

Sylow theory is one of the most powerful tools in finite group theory,
providing critical information about the structure of groups through
their subgroups of prime power order. The fundamental theorems,
developed by Norwegian mathematician Ludwig Sylow in 1872,
allow us to draw significant conclusions about finite groups by

examining these special subgroups.
Fundamental Concepts of Sylow Theory

A p-Sylow subgroup (or Sylow p-subgroup) of a finite group G is a
maximal p-subgroup of G, where p is a prime number. In other words,
it's a subgroup whose order is the highest power of p that divides the
order of G.

The Sylow theorems state:
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1. Existence: If G is a finite group and p" divides |G| (where p is Notes
prime and n > 1), then G contains at least one subgroup of

order p".

2. Number: If np denotes the number of Sylow p-subgroups of
G, then:

o Npdivides |G|/ps (where p”s is the highest power of
p dividing |G|)

o np=1(modp)

3. Conjugacy: All Sylow p-subgroups of G are conjugate to each
other.

Applications of Sylow Theory
1. Classification of Groups of Small Order

Sylow theory is particularly effective in classifying groups of small

order. Let's consider some examples:
Example: Groups of Order 15
If |G| =15 =3 x 5, then:

e The number of Sylow 3-subgroups ns must divide 5 and

satisfy n3 = 1 (mod 3).
e The only possibility is n3 = 1.
e Similarly, ns = 1.

Since both Sylow subgroups are normal, G is isomorphic to Zis

(cyclic group of order 15).
Example: Groups of Order 12
If |G| = 12 = 22 x 3, then:

e For Sylow 3-subgroups, n3 divides 4 and n3 = 1 (mod 3).
Sonz=1or4.



Notes

e For Sylow 2-subgroups, nz divides 3 and n2 = 1 (mod 2).

Sonz=1or3.

This gives us different possibilities to analyze, leading to the
classification of all groups of order 12: Z12, Zs x Z2, As, Ds,and Q

(the quaternion group).
2. Proving Simplicity of Groups

Sylow theory provides powerful tools for proving that certain groups

are simple.

Example: Simplicity of As

To show that As (the alternating group on 5 elements) is simple:
e |As|=60=2?2x3x5

e By Sylow's theorems, ns divides 12 and ns = 1 (mod 5), so ns

=6

e If N is a normal subgroup, it must contain either all or none of

the Sylow 5-subgroups

e Similar analysis for Sylow 2-subgroups and Sylow 3-
subgroups shows that any non-trivial normal subgroup must be
As itself

3. Proving Non-Simplicity

Sylow theory can also be used to prove that certain groups cannot be

simple.
Example: Non-Simplicity of Groups of Order 56
If |G| =56 =23 x 7, then:

e n7divides 8 and n7 =1 (mod 7)

e The only possibility isn7 =8

o Each Sylow 7-subgroup has 6 elements of order 7
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o Total number of elements of order 7 is 8 x 6 =48
e This leaves 56 - 48 - 1 = 7 elements (excluding the identity)

e These 7 elements must form a normal subgroup of G, proving

G is not simple

4. Proving Group Properties

Example: Groups of Order p" q (p, q prime, n > 1) Have Normal
Subgroups

For a group G with |G| = p" x g where p, q are distinct primes:

e The number of Sylow g-subgroups nq divides p” and nq =
1 (mod q)

e If ng =1, then the unique Sylow g-subgroup is normal
e Ifng> 1, thenng=p™forsome ] <m<n

e The number of elements in all Sylow g-subgroups combined is
pm(o-1) +1

e This leaves pn x g - [p™(g-1) + 1] elements
e These remaining elements form a normal subgroup

5. Burnside's p2gP Theorem

One of the most important applications of Sylow theory is Burnside's
theorem, which states that any group of order p2g® (where p and gare

distinct primes) is solvable.

The proof uses Sylow theory to establish that such groups must have

normal subgroups, and builds from there to establish solvability.
Advanced Applications

The Frobenius Groups

Notes



Notes

A Frobenius group is a transitive permutation group on a finite set
such that no non-identity element fixes more than one point and some

non-identity element fixes exactly one point.

Sylow theory helps in analyzing the structure of Frobenius groups

through their Sylow subgroups.
Recognition Theorems

Sylow theory is crucial in group recognition theorems, which identify
groups based on specific properties. For example, any group of order

168 satisfying certain conditions must be isomorphic to PSL(2,7).
Transfer Theory

The transfer homomorphism extends Sylow theory, providing a way
to map a group G to an abelian quotient of a specific subgroup. This
becomes powerful when combined with Sylow theory for analyzing

the structure of finite groups.
2.1.2: p-Groups and the Class Equation
Definition and Basic Properties of p-Groups

A p-group is a group in which every element has order pk for some
non-negative integer k, where p is a prime number. Equivalently, a
finite group G is a p-group if and only if |G| = p" for some positive

integer n.
Key properties of p-groups include:

1. Every non-trivial p-group has a non-trivial center.

2. If H is a proper subgroup of a finite p-group G, then H is

properly contained in its normalizer.

3. The order of any maximal subgroup of a finite p-group G is
IGl/p.

4. Any finite p-group is nilpotent.
The Class Equation
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The class equation (also called the conjugacy class equation) is a
fundamental tool in group theory, particularly useful for analyzing p-

groups.

For a finite group G, the class equation is expressed as:
Gl =1Z(G)| + 2IG:Ca(xi)|

where:

e Z(G) isthe center of G

e The sum runs over representatives Xj of non-central

conjugacy classes
e Ca(xi) is the centralizer of xj in G

In other words, the order of the group equals the size of its center plus

the sum of the sizes of all non-central conjugacy classes.
Applications of the Class Equation to p-Groups
1. Non-Trivial Center in p-Groups

One of the most important applications of the class equation is

proving that every non-trivial p-group has a non-trivial center.
Proof: Let G be a p-group with |G| = p"> 1. From the class equation:
G| =1Z(G)] + 2|G:Ca(xi)|

Each term |G:Cg(xi)| is the size of the conjugacy class of xi,
which equals [G:Cg(Xi)]. Since Xi is not in the center, Cs(xi) is a

proper subgroup of G, so [G:Cg(xi)] > 1.

For a p-group, any index greater than 1 must be divisible by p. Thus,
each |G:Cg(xi)| is divisible by p.

So we have: |G| = |Z(G)| + (a sum of multiples of p)

Since |G| = p" is itself divisible by p, the only way this equation can

hold is if |Z(G)| is also divisible by p. This means |Z(G)| > p, so the

center is non-trivial.

Notes
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2. Structure of Groups of Order p?
The class equation helps us classify groups of order p>.
For any group G of order p2:

o Either |Z(G)| = p?, which means G is abelian
e Or|Z(G)| = p, which means G has a non-trivial center

From the class equation, if |Z(G)| = p, then G has p conjugacy classes,
each containing p elements except for the conjugacy class of the
identity. This structure information helps prove that there are only two

isomorphism classes of groups of order p2: Zgp2y and Zp X Z,.
3. Nilpotency of p-Groups

The class equation is instrumental in proving that all finite p-groups
are nilpotent.

Since every non-trivial p-group G has a non-trivial center Z(G), we
can form the quotient group G/Z(G). This is again a p-group (of
smaller order), so it also has a non-trivial center. Continuing this

process, we get a sequence:
G2 Z(G) > 2Z(G) > ..2Z(G) =G

where Zi(G) is the it" center. This establishes a central series for G,

proving it is nilpotent.
4. Counting Conjugacy Classes

The class equation allows us to count conjugacy classes in p-groups

and relate this count to structural properties.
If G is a p-group of order p", and G has k conjugacy classes, then:
k =G| (mod p)

This congruence relation comes from analyzing the class equation

modulo p.

5. Analyzing Normal Subgroups
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For a p-group G, the class equation helps identify normal subgroups.
If N is a normal subgroup of G, then NNZ(G) # {e} (unless N is

trivial).

This means every normal subgroup of a p-group intersects the center
non-trivially, a powerful structural insight derived from the class

equation.
Connection Between Sylow Theory and p-Groups

Sylow theory and p-groups are deeply connected, as Sylow p-
subgroups are themselves p-groups. The structural properties of p-
groups (established using the class equation) inform our

understanding of Sylow subgroups in general groups.
Key connections include:

1. Normalizers Grow in p-Groups: If H is a proper subgroup of a
p-group G, then H is properly contained in its normalizer
Ng(H). This property, established using the class equation, is

crucial in proving the third Sylow theorem.

2. Center-Focused Analysis: The non-trivial center of p-groups
(established via the class equation) allows for inductive

arguments in analyzing Sylow subgroups.

3. Transfer Theory: The class equation informs transfer theory,
which extends Sylow theory by providing homomorphisms
that reveal information about the structure of a group based on

its Sylow subgroups.
Solved Problems
Problem 1: Classify all groups of order 20
Solution:
Let G be a group of order 20 = 22 x 5,

Step 1: Find the number of Sylow 5-subgroups.
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Notes e By Sylow's theorems, the number of Sylow 5-subgroups (ns)
divides 4 and ns = 1 (mod 5).

e The only possibility is ns = 1.

e Let P be the unique Sylow 5-subgroup. Since it's unique, P is

normal in G.
« Pisisomorphic to Zs (cyclic group of order 5).
Step 2: Find the number of Sylow 2-subgroups.

o By Sylow's theorems, the number of Sylow 2-subgroups (n2)
divides 5 and n2 = 1 (mod 2).

e The only possibility isn, =1 orn, =5.
Casel:n2=1

e Let Q be the unique Sylow 2-subgroup of order 4.

e Qisnormal in G.

e G is the direct product of P and Q (since they have coprime

orders and are both normal).

e Qcan be either Zsor Z, x Z>. a) If Q = Z_4, then G =
ZaX Zs = Z3. b) If Q = Zr x Zy, then G = (2o xZo) X Zs = 2>
X Z X Zs.

Case2:n2=5

Let Q be a Sylow 2-subgroup of order 4.

Since n2 =5, Q is not normal in G.

G must have the structure of a semidirect product Zs > Q.

Since Aut(Zs) = Z4, and Q acts non-trivially on Zs, we

must have Q = Za.

e This gives us the dihedral group of order 20: D1o.
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Therefore, there are three isomorphism classes of groups of order 20: Notes
1. Zo (cyclic group of order 20)
2. ZyXxZy*xZs
3. Dao (dihedral group of order 20)

Problem 2: Prove that a group of order 255 = 3 x 5 x 17 must be

cyclic

Solution:

Let G be a group of order 255 =3 x5 x 17.

Step 1: Find the number of Sylow 3-subgroups (n_3).

e By Sylow's theorem, n3 divides 85 (=5 x 17) and n3 = 1
(mod 3).

e The possible values for nz are 1, 5, 17, or 85.

e If n3 =5, then there are 5 subgroups of order 3, each with 2

non-identity elements. This gives 10 elements of order 3.
o Ifnz =17, this gives 34 elements of order 3.
e If n3 =85, this gives 170 elements of order 3.

e Butnscan't be 5, 17, or 85 because the total order of G is
255, and we would need room for elements of orders 5 and 17

as well.
e Therefore, n3 = 1.

Step 2: Find the number of Sylow 5-subgroups (ns).

e By Sylow's theorem, ns divides 51 (=3 x 17) and ns = 1
(mod 5).

e The possible values for ns are 1, 6, 11, 16, 21, 26, 31, 36, 41,
46, or 51.



Notes e Butns =1 (mod 5) means ns can only be 1, 6, 11, 16, 21,
26, 31, 36, 41, 46, or 51.

e The intersection of these constraints gives ns = 1.

Step 3: Find the number of Sylow 17-subgroups (ni7).

e By Sylow's theorem, ni7 divides 15 (=3 x 5) and n17 = 1
(mod 17).

e The only value that satisfies both conditions is ni7 = 1.

Step 4: Determine the structure of G.

e Let P3, Ps, and P17 be the unique Sylow subgroups of
orders 3, 5, and 17 respectively.

e Since each is unique, all three are normal in G.

e P3 = Z3 Ps = Zs, and P17 = Z17 (since groups of  prime
order are cyclic).

o G=P3xPsxP17=2Z3xZsxZy7 = Zyss (by the  Chinese

Remainder Theorem).

Therefore, G must be isomorphic to Zss, the cyclic group of order
255.

Problem 3: Use the class equation to prove that every p-group of

order p? is abelian
Solution:
Let G be a p-group of order p2.

Step 1: Apply the class equation. The class equation states: |G| =
1Z(G)] + 2|G:Ca(xi)]

where Z(G) is the center of G, and the sum runs over representatives

x_i of non-central conjugacy classes.
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Step 2: Analyze possible values for |Z(G)|. Since G is a p-group, we
know |Z(G)| > 1 (by a property of p-groups established using the class
equation). |Z(G)| divides |G| = p?, so |Z(G)| = p or |Z(G)| = p2.If |Z(G)|
=p?, then Z(G) = G, which means G is abelian, and we'redone.

Step 3: Consider the case |Z(G)| = p. In this case, the class equation
becomes: p? =p + Y |G:Cq(xi)|Each index |G:Cg(xi)| must be a
divisor of |G| = p?, so it equalseither p or p2.If |G:Cg(Xi)| = p?, then
Ca(xi) = {e}, which means only theidentity commutes with x;.
This is impossible in a group, as xi always commutes with itself.
Therefore, all |G:Cg(xi)| = p.

The class equation becomes: p? = p + kp where k is the number of
non-central conjugacy classes.

Solving for k: p?=p + kp p? - p =kp p(p-1) = kp k = p-1

Step 4: Calculate the size of Z(G) from another perspective. If |Z(G)|
=p, then G/Z(G) has order p?/p = p.Any group of prime order is
cyclic, so G/Z(G) =Zp.Let's denote the elements of G/Z(G) as {Z
(G), aZ(G), a2Z(G), ...,aPDZ(G)} where a is some element of G not
in Z(G).For any g € G, there exists some j such that gZ(G) = aiZ(G),

whichmeans g = aiz for some z € Z(G).

Step 5: Show that G is abelian. For any two elements g, h € G, we can

write: g = aiz; and h = akz, for some z1, z2 € Z(G).
Then: gh = (alz1)(akz2) = alakz1z2 = al*kz12»

and: hg = (akzp)(alz1) = akalzozi = aktizozy =al*kzi1z,=gh
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Therefore, G is abelian.

Problem 4: Determine all possible orders of a non-abelian group

with exactly 5 conjugacy classes
Solution:

Step 1: Establish a relationship between conjugacy classes and center.
For any finite group G, the number of conjugacy classes equals the

number of irreducible complex representations.

From representation theory, if G has k conjugacy classes, then:

2(di?) =G
where d_i are the dimensions of the irreducible representations.

Step 2: Analyze the constraints. If G has exactly 5 conjugacy classes,
we need to find the possible dimensions di.

The trivial representation always exists with d; = 1.

If G is non-abelian, it must have at least one irreducible representation

with dimension greater than 1.

For a non-abelian group, the center Z(G) is in one-to-one

correspondence with the 1-dimensional representations.

Step 3: List possible dimension patterns. With 5 conjugacy classes, we
need 5 irreducible representations. Let's list possible patterns of

dimensions:
1. (1,1,1,1,n)wheren>1
2. (1,1,1, m,n)wherem,n>1
3. (1,1, m,n,p)wherem,n,p>1

Step 4: Examine pattern 1: (1, 1, 1, 1, n). If the dimensions are (1, 1,
1,1,n),then: 12+ 12+ 12+ 12+ n? = |G| 4 + n? = |G|

Since G is non-abelian, its center has order 4 (corresponding to the

four 1-dimensional representations).
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For any finite group, the order of the center divides the order of the

group, so |G| = 4k for some integer k.
Substituting: 4 +n2 =4k n2=4k -4n2=4(k - 1)

For n to be an integer, k - 1 must be a perfect square times a power of
2.

Let k - 1 = m2 x 2" where 2" is the highest power of 2 dividing k -1.

e Ifr>2, then n? =4m? x 2", which means n =2m x 20/2 s

even.

o Ifr=1, then n2 = 4m? x 2, which means n = 2m x V2,

which is not an integer.
e Ifr=0, then n2=4m2, which means n = 2m.

So for pattern 1, |G| = 4k where k - 1 is a perfect square times a power

of 4, or simply a perfect square.
The smallest examples are:

e k =2 gives |G| = 8 (the quaternion group or dihedral group
Ds)

e« k=5 gives |G| = 20 (no non-abelian group of order 20 has 5

conjugacy classes)
e k=10 gives |G| = 40 (certain non-abelian groups of order 40)

Step 5: Examine patterns 2 and 3. Similar analysis of patterns 2 and 3
leads to other possible orders.

For pattern 2: (1,1, 1, m, n): 12 + 12 + 12 + m? + n2 = |G| 3 +m? + n?
=[Gl

For pattern 3: (1, 1, m, n, p): 12+ 12+ m? + n2 + p? = |G| 2 +m? + n?

+p2=|G|
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Analysis of these patterns yields additional possible orders, including
8, 16, 21, 24, 27, 32, and 40.

Therefore, the possible orders of a non-abelian group with exactly 5

conjugacy classes include 8, 16, 21, 24, 27, 32, 40, and others.

Problem 5: Prove that a finite p-group with exactly p? elementsof

order p must have order p?
Solution:

Step 1: Set up what we know. Let G be a finite p-group with exactly
p? elements of order p. Let's denote the order of G as p".

Step 2: Use the structure of p-groups. In a p-group, every element has
order a power of p. The elements of order p, together with the identity,

form a set that's not necessarily a subgroup.
Step 3: Apply the class equation. The class equation gives us: |G| =

|Z(G)| + Y |G:Cas(xi)|where Z(G) is the center and the sum runs

over representatives ofnon-central conjugacy classes.

Step 4: Consider the elements of order p in Z(G). In a p-group, Z(G)
is non-trivial. Let |Z(G)| = p™ where m > 1.The center Z(G) is an
abelian p-group, so it can be written as a directproduct of cyclic
p-groups.If Z(G) contains k cyclic factors, then the number of
elements of orderp in Z(G) is (pk - 1).

Step 5: Find the possible structure for Z(G). Given that we have

exactly p2 elements of order p in G, and some of these are in Z(G),
we need to determine the possible structures for Z(G).

Case 1: If Z(G) is cyclic of order p™, it contains exactly p-1
elements of order p.

Case 2: If Z(G) = Zp x Zp, it contains p?-1 elements of order p.
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Case 3: If Z(G) has more cyclic factors or higher powers, it would Notes

contain more elements of order p.

Step 6: Analyze the non-central elements of order p. If there are
exactly p? elements of order p in G, and Z(G) contains some of
them, then the remaining elements of order p must occur in non-

central conjugacy classes.

For a non-central element x of order p, its conjugacy class has size

|G:Ca(X)|. This size must be a power of p since G is a p-group.

Step 7: Determine the structure of G. The only way to have exactly

p2 elements of order p is if:

1. Z(G) = Zp (containing p-1 elements of order p), and

2. There is exactly one non-central conjugacy class of elements
of order p, with size p(p-1).

The total number of elements of order p is then: (p-1) + p(p-1) = p(p-
1) + (p-1) = (p+1)(p-1) = p2-1

But we assumed G has p? elements of order p, which contradicts our

calculation.

The problem likely misstated the constraint. If G has exactly p2-1
elements of order p, then our analysis shows |G| = p®.

For a group of order p® with Z(G) = Z, and one non-central
conjugacy class of elements of order p of size p(p-1), the total number

of elements of order p is (p-1) + p(p-1) = p?-1.

Therefore, a finite p-group with exactly p2-1 elements of order p

must have order p2.

Unsolved Problems

Problem 1

Prove that if G is a group of order 56 = 22 x 7, then G is not simple.

Problem 2
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Let G be a group of order 351 = 33 x 13. Prove that G has a normal

subgroup of order 27 or a normal subgroup of order 13.
Problem 3

Use the class equation to prove that if G is a p-group of order p", and
|Z(G)| = p, then G has a normal subgroup of order p2.

Problem 4

Prove that any group of order 105 = 3 x 5 x 7 has a normal Sylow

subgroup.
Problem 5

Let G be a p-group of order p% Prove that if G has more than p+1
elements of order p, then G has a subgroup isomorphic to the

elementary abelian group of order p? (i.e., Zp x Zp).
2.1.3: Further Applications of Sylow's Theorems

Sylow's theorems are powerful tools in group theory that allow us to
analyze the structure of finite groups by examining their subgroups of
prime power order. Having established the fundamental theorems, we
can now explore various applications that demonstrate their utility in

solving complex group-theoretical problems.
The Structure of Groups of Specific Orders

One of the most common applications of Sylow's theorems is
determining the possible structures of groups with a specific order.

Let's explore some important examples.
Groups of Order pq

Let's consider groups of order pg, where p and g are distinct primes

with p > q.

By Sylow's first theorem, a group G of order pq has a Sylow p-
subgroup P of order p and a Sylow g-subgroup Q of order g. Since p >
g, Sylow's third theorem tells us that the number of Sylow p-
subgroups, denoted np, must satisfy:
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« npdivides q (the other factor in the group order)
e np=1(modp)

The only value of np that can satisfy both conditions is np = 1, since
any other divisor of g would be greater than 1 but less than ¢, and

cannot be congruent to 1 modulo p when p > q.

This means G has a unique Sylow p-subgroup P, which implies P is

normal in G. Similarly, let's determine nq:
e nqdivides p
e nq=1(modq)
Here, we have two possibilities:
1. ng=1, which means Q is normal in G
2. nq = p, which means there are p distinct Sylow g-subgroups

If nq = 1, then both P and Q are normal in G. Since P N Q = {e} (as
their orders are coprime) and |P|-|Q| = |G|, we have G = P x Q, which

is isomorphic to the cyclic group Zpq.

If nq = p, then Q is not normal in G. In this case, G is isomorphic to a

semidirect product P x Q, specifically ZpxZq, which is non-abelian.

For nq = p to be possible, we need p = 1 (mod q), meaning p =kq + 1

for some integer k.
Therefore:

e Ifp=1 (mod q), there are exactly two groups of order pq up to
isomorphism: Zpq and Zp>Zq

e Ifp# 1 (mod q), there is exactly one group of order pq up to
isomorphism: Zpq

Groups of Order p2q

Now let's analyze groups of order p2g, where p and g are distinct

primes.
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By Sylow's theorems:

e There exists a Sylow p-subgroup P of order p?
e There exists a Sylow g-subgroup Q of order q

e The number of Sylow p-subgroups np divides q and np = 1
(mod p)

e The number of Sylow g-subgroups nq divides p? and nq = 1
(mod q)

For np, the possibilities are np = 1 or np = q, but np = 1 (mod p)
means np = 1 is the only possibility when g < p. If g > p, we need to

check if ¢ =1 (mod p).

For nq, the possibilities are nq = 1, nq = p, or nq = p*>. We need nq = 1
(mod q), so:

e Ifp#1(modaq)andp?#1(modq), thenng=1

e Otherwise, we need to determine if ng = p or nq = p2 is

possible

When np = 1 and nq = 1, both P and Q are normal, leading to a direct
product structure.

The classification becomes more complex depending on the structure
of the Sylow p-subgroup P, which can be either cyclic (Zp? or
elementary abelian (Zp x Zp). Each case leads to different

possibilities for the group structure.
Simplicity and Sylow Subgroups

Another important application of Sylow's theorems is determining
whether a group is simple or not. Recall that a group is simple if it has

no proper normal subgroups except the trivial subgroup.
A Group of Order 60

Let's determine if a group of order 60 = 22 x 3 x 5 can be simple.

60



The numbers of Sylow subgroups are:

e mnadivides 15 and n2 =1 (mod 2), sonz € {1, 3, 5, 15}
e n3divides 20 and n3 = 1 (mod 3), so n3 € {1, 4, 10}
e nsdivides 12 and ns =1 (mod 5), sons € {1, 6}

If any of these are 1, then the corresponding Sylow subgroup is
normal, and the group is not simple.

For a group of order 60 to be simple, we need n.>1, n3 > 1, and ns >
1.

Let's consider A5, the alternating group on 5 symbols. In A5:

e n2 =5 (the Sylow 2-subgroups have order 4)
e n3 =10 (the Sylow 3-subgroups have order 3)
e ns =6 (the Sylow 5-subgroups have order 5)

Since none of these Sylow subgroups are normal, A5 is a candidate
for being simple. In fact, A5 is the only simple group of order 60, and

this can be proven using more advanced technigues in group theory.
Burnside's p2q® Theorem

A powerful result derived from Sylow's theorems is Burnside's pagP
theorem, which states that any group whose order is divisible by at
most two distinct primes is solvable, hence not simple (unless it's of
prime order).This means groups of order pg°, where p and q are
primes and a, b are non-negative integers, are never simple if both a

and b are positive.
Automorphism Groups and Sylow Subgroups

The automorphism group Aut(G) of a group G consists of all
isomorphisms from G to itself. Sylow's theorems provide insights into
the structure of Aut(G).
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Notes For a p-group P (a group whose order is a power of a prime p), the

automorphism group Aut(P) has interesting properties:

e The order of Aut(P) is divisible by p if P is not elementary

abelian

e There is a subgroup of Aut(P) consisting of automorphisms
that fix the elements of the center of P modulo the commutator

subgroup

For Sylow p-subgroups in general, conjugation by elements of the
normalizer of a Sylow p-subgroup gives rise to automorphisms of the
Sylow p-subgroup, connecting the normalizer structure with the

automorphism group.
Frobenius Groups and Sylow's Theorems

A Frobenius group is a group G with a proper subgroup H (called the
Frobenius complement) such that H N H*g = {e} forall g € G - H,
where H9 = g(DHg.

Sylow's theorems help in analyzing the structure of Frobenius groups.
For instance, if G is a Frobenius group with complement H, and P is a
Sylow p-subgroup of H, then Ng(P) € H. This result helps in

understanding the distribution of Sylow subgroups in Frobenius

groups.
Solved Problems on Sylow's Theorems

Problem 1: Determine all groups of order 15 up to isomorphism.
Solution: We have 15 = 3 x 5, where 3 and 5 are distinct primes.
Step 1: Identify the Sylow subgroups.

e By Sylow's first theorem, there exists a Sylow 3-subgroup P of
order 3 and a Sylow 5-subgroup Q of order 5.

Step 2: Determine the number of Sylow subgroups.
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e The number of Sylow 3-subgroups ns must divide 5 and Notes
satisfy n3 = 1 (mod 3)

e The possible values for n3 are 1 and 5, but only 1 satisfies n3
=1 (mod 3)

e Sonz =1, which means the Sylow 3-subgroup is normal in G

e The number of Sylow 5-subgroups n5 must divide 3 and

satisfy ns = 1 (mod 5)

e The possible values for ns are 1 and 3, but since 3 # 1 (mod
5), we have ns = 1

e So the Sylow 5-subgroup is also normal in G

Step 3: Determine the group structure.

e Both the Sylow 3-subgroup P and the Sylow 5-subgroup Q are

normal in G

PN Q= {e} because gcd(3,5)=1

IPIIQI=3-5=15 =G|

Therefore, G=Px Q = Z3 x Zs = Z35

Thus, there is exactly one group of order 15 up to isomorphism,
namely the cyclic group Z15.

Problem 2: Prove that any group of order 20 has a normal

subgroup of order 5 or a normal subgroup of order 4.

Solution: We have 20 = 22 x 5, so a group G of order 20 has Sylow 2-

subgroups of order 22 = 4 and Sylow 5-subgroups of order 5.
Step 1: Determine the possible numbers of Sylow subgroups.

e The number of Sylow 2-subgroups n, must divide 5 and

satisfy n2 = 1 (mod 2)

e The possible valuesareno=210rn2=5
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e The number of Sylow 5-subgroups ns must divide 4 and

satisfy ns = 1 (mod 5)

e The only possible value is ns = 1 since no number dividing 4

is congruent to 1 modulo 5 except 1

Step 2: Analyze the cases.

e Ifnz =1, then the Sylow 2-subgroup is normal and has order 4

e If ns =1 (which must be true), then the Sylow 5-subgroup is

normal and has order 5

In either case, G has a normal subgroup of order 4 or a normal

subgroup of order 5 (or both).

Therefore, any group of order 20 has a normal subgroup of order 5,

and it may also have a normal subgroup of order 4.
Problem 3: Prove that no group of order 30 is simple.

Solution: We have 30 =2 x 3 x 5, so0 a group G of order 30 has Sylow
2-subgroups of order 2, Sylow 3-subgroups of order 3, and Sylow 5-
subgroups of order 5.

Step 1: Determine the possible numbers of Sylow subgroups.

e The number of Sylow 2-subgroups n. must divide 15 and

satisfy no =1 (mod 2)
e The possible valuesare no =1, 3,5, or 15

e The number of Sylow 3-subgroups nz must divide 10 and

satisfy n3 = 1 (mod 3)
e The possible values are n3 = 1 or 10

e The number of Sylow 5-subgroups ns must divide 6 and

satisfy ns = 1 (mod 5)

e The possible values are ns =1 or 6
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Step 2: Count elements in the Sylow subgroups.

e Each Sylow 2-subgroup has 1 element of order 1 and 1

element of order 2

e Each Sylow 3-subgroup has 1 element of order 1 and 2

elements of order 3

e Each Sylow 5-subgroup has 1 element of order 1 and 4

elements of order 5

Step 3: Use counting arguments to find a contradiction. Suppose G is
simple. Then none of the Sylow subgroups are normal, so n2 > 1, n3 >

1,and ns > 1.

If ns = 6, there are 6 x 4 = 24 elements of order 5. If n3 = 10, there
are 10 x 2 = 20 elements of order 3. The identity element accounts for

1 more element.

This gives at least 24 + 20 + 1 = 45 elements, which exceeds the order
of G (30).

Therefore, at least one of the Sylow subgroups must be normal, which

means G is not simple.
Problem 4: Classify all groups of order 12 up to isomorphism.

Solution: We have 12 = 22 x 3, so a group G of order 12 has Sylow 2-

subgroups of order 4 and Sylow 3-subgroups of order 3.
Step 1: Determine the possible numbers of Sylow subgroups.

e The number of Sylow 2-subgroups n» must divide 3 and

satisfy n2 = 1 (mod 2)
e The possible valuesaren=10rn;=3

e The number of Sylow 3-subgroups ns must divide 4 and

satisfy n3 = 1 (mod 3)

e The possible valuesarenz=1ornz3=4
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Notes Step 2: Analyze the possible structures based on these values.

Case 1: n2 = 1 and n3 = 1 Both Sylow subgroups are normal. Let P be

the Sylow 2-subgroup and Q be the Sylow 3-subgroup.
e PN Q={e} since ged(4,3)=1
e |PIQ|=4-3=12=|G]
« G=PxQ=PxZ3

e P can be either Zs or Z> x Z> So we get Z4 x Z3 = Z1p or (22
X Z) X Z3 =2y x Zyx Z3 =2y % Zs

Case 2: n = 1 and n3 = 4 The Sylow 2-subgroup P is normal, and

there are 4 Sylow 3-subgroups.

o |If P = Z4, we get A4 (the alternating group on 4 symbols)
o IfP=2Z,x%xZ we get D12 (the dihedral group of order 12)

Case 3: n2 = 3 and n3 = 1 The Sylow 3-subgroup Q is normal, and
there are 3 Sylow 2-subgroups. This gives us a semi-direct product

structure.

e If the action of Q on P is trivial, we get P x Q

« If the action is non-trivial, we get a different group, which is a

semi-direct product Zs x Z40r Zz X (Z2 x Z»)

Case 4: n, = 3 and n3 = 4 This is not possible by a counting
argument: 3 Sylow 2-subgroups contain 9 distinct elements, and 4
Sylow 3-subgroups contain 8 distinct elements, plus the identity gives

18 elements, which exceeds 12.

Therefore, the groups of order 12 up to isomorphism are:
1. Zi (cyclic group)
2. Zp % Zg (direct product)

3. Ay (alternating group on 4 symbols)
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4. Da2 (dihedral group of order 12)
5. Z3 > Z4 (semi-direct product)

Problem 5: Show that a group of order 56 = 23 x 7 has a normal

Sylow 7-subgroup.

Solution: We have 56 = 2% x 7, so a group G of order 56 has Sylow 2-
subgroups of order 22 = 8 and Sylow 7-subgroups of order 7.

Step 1: Determine the number of Sylow 7-subgroups.

e The number of Sylow 7-subgroups n7 must divide 8 and

satisfy n7 = 1 (mod 7)
e The possible valuesarenz=1o0rn;=8

Step 2: Show that n7 = 8 is impossible. If n7 = 8, then there are 8
distinct Sylow 7-subgroups. Each Sylow 7-subgroup has 6 elements

of order 7, plus the identity.
Let's count the elements in these Sylow 7-subgroups:

e The identity element is in all Sylow 7-subgroups
o Each of the 8 Sylow 7-subgroups has 6 elements of order 7

o Different Sylow 7-subgroups intersect only at the identity (by
a property of Sylow p-subgroups when p is the largest prime
dividing |G|)

Sowe have 1 +8 x 6 = 1 + 48 = 49 distinct elements. But this leaves
only 56 - 49 = 7 elements for the Sylow 2-subgroups, which is

impossible since each Sylow 2-subgroup has 8 elements.

Therefore, n7 = 1, which means there is a unique Sylow 7-subgroup,

and it must be normal in G.
Unsolved Problems on Sylow's Theorems

1. Determine all groups of order 42 = 2 x 3 x 7 up to

isomorphism.
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Notes 2. Prove that any group of order 36 = 22 x 32 has a normal

subgroup.
3. Show that a group of order 255 =3 x 5 x 17 is not simple.
4. Classify all groups of order 21 =3 x 7 up to isomorphism.

5. Prove that any group of order 100 = 22 x 52 has a normal

Sylow subgroup.
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UNIT 2.2 Notes
2.2.1: Introduction to Ring Theory
Definition and Basic Properties of Rings

Arring is an algebraic structure that generalizes the familiar properties
of integers with respect to addition and multiplication. Formally, a
ring is a set R together with two binary operations, usually denoted as

addition (+) and multiplication (+), satisfying the following axioms:
1. (R, +)isan abelian group:
o Closure: Foralla,beR,a+b€eR

o Associativity: Foralla,b,ce R, (a+b)+c=a+(b+

c)

o ldentity: There exists an element 0 € R such thata + 0

=0+a=aforallaeR

o Inverse: For each a € R, there exists -a € R such that a

+(-a)= () +a=0
o Commutativity: Foralla,beR,a+b=b+a
2. Multiplication is associative:
o Foralla,b,ceR,(@a-b)-c=a-(b-c)
3. Multiplication distributes over addition:

o Left distributivity: For alla,b,ceR,a- (b+c)=(a-
b)+(a-c)

o Right distributivity: Foralla,b,ceR,(a+b)-c=(a-
c)+(b-c)

Note that multiplication in a ring is not required to be commutative. A
ring in which multiplication is commutative (a - b=Db -aforalla, b €

R) is called a commutative ring.
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Examples of Rings

1. The integers Z with ordinary addition and multiplication form

a commutative ring.

2. The set of n x n matrices over a field F, denoted Mn(F), forms

a non-commutative ring when n > 1.

3. The set of polynomials with coefficients from a ring R,

denoted R[x], forms a ring.

4. The set of continuous functions from R to R forms a

commutative ring under pointwise addition and multiplication.
5. The set Zn of integers modulo n forms a commutative ring.

Units, Zero Divisors, and Integral Domains
Inaring R, we define:

e Aunitis an element a € R for which there exists an element b
€ Rsuchthata-b=b-a=1, where 1 is the multiplicative
identity if it exists. The element b is called the multiplicative

inverse of a and is denoted a(b.

e A zero divisor is a non-zero element a € R for which there

exists a non-zero elementb € Rsuchthata-b=0o0rb-a=0.

e Anintegral domain is a commutative ring with a multiplicative

identity where there are no zero divisors.

Example: In Z, the element 2 is a zero divisor because 2 - 3 =0. The
units in Zgare 1 and 5,as 1 - 1 =1and 5 - 5=25=1 (mod 6).

Subrings and Ideals

A subring of a ring R is a subset S of R that forms a ring under the

same operations as R. For S to be a subring, it must:
1. Be non-empty

2. Be closed under addition
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3. Be closed under negation
4. Be closed under multiplication

An ideal of a ring R is a subring | with the additional property that for
alre Randalla€el, bothr-aanda - rarein I In other words, I

"absorbs™ multiplication by any element of R.

For a commutative ring R, a subset I is an ideal if and only if:
1. lis non-empty
2. lis closed under addition
3. ForallaelandreR,r-a€l

Types of Ideals

1. Trivial Ideals: The set {0} (containing only the additive
identity) and the entire ring R are always ideals of R, called
the trivial ideals.

2. Principal Ideal: An ideal generated by a single element a € R,
denoted (a) or Ra, is called a principal ideal. In a commutative
ring, (@) ={r-a|reR}.

3. Prime Ideal: In a commutative ring, an ideal P is prime if

whenevera-b e Pfora, b € R, theneitheraePorb eP.

4. Maximal Ideal: An ideal M is maximal if M # R and there is

no ideal I suchthatM c | c R.

Ring Homomorphisms and Isomorphisms

A ring homomorphism is a function ¢: R — S between rings R and S

that preserves the ring operations:
1. ¢(a+b)=¢(a)+o)foralla,b€eR

2. o(a-b)=o0(a) o) foralla,beR

Notes
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If ¢ is bijective, it is a ring isomorphism, and R and S are said to be

isomorphic, denoted R = S.

The kernel of a ring homomorphism @: R — S is the set of elements
in R that map to the additive identity in S: Ker(p) = {r € R | o(1) =
0S}

The kernel of a ring homomorphism is always an ideal of R.
Quotient Rings

Given aring R and an ideal | of R, we can form the quotient ring R/I,

whose elements are the cosets of I: R/l ={r + 1 |r € R}

The operations on R/l are defined as: (r+ 1)+ (s+ D) =(r+s)+1(r+
D-(s+1D)=(-s)+1

The quotient ring R/I inherits many properties from R. For example, if

R is commutative, then R/l is commutative.
The First Isomorphism Theorem for Rings

If : R — S is a ring homomorphism with kernel K, then: R/K
=Im(¢)
where Im(¢) is the image of .

Polynomial Rings

Given a ring R, the polynomial ring R[x] consists of polynomials with
coefficients from R. A typical element of R[x] has the form: f(x) = ao

+ aiX + axx? + ... + apxX"
where ao, ai, ..., an are elements of R.

Addition in R[x] is performed term by term, and multiplication

follows the standard rule of multiplying polynomials.
Properties of Polynomial Rings

1. If R is a commutative ring, then R[x] is a commutative ring.

2. If Ris an integral domain, then R[x] is an integral domain.
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3. The degree of a product of polynomials equals the sum of the

degrees of the factors when R is an integral domain.

Irreducibility

A polynomial f(x) € R[x] is irreducible over R if it cannot be

expressed as a product of two polynomials of lower degree in R[x].

For example, x2 + 1 is irreducible over R (the real numbers) but

reducible over C (the complex numbers), where it can be factored as
(x+D)(x-10).
2.2.2: Fields

A field is a commutative ring in which every non-zero element has a
multiplicative inverse. In other words, a field is a commutative ring

where the non-zero elements form a group under multiplication.
Examples of fields include:

1. The rational numbers Q

2. The real numbers R

3. The complex numbers C

4. The finite field Zp when p is a prime number

Field Extensions

A field extension is a pair of fields E and F such that F is a subfield of
E. We denote this as E/F.

The degree of the extension E/F, denoted [E:F], is the dimension of E

as a vector space over F.
Algebraic Elements and Extensions

An element o € E is algebraic over F if it is a root of a non-zero
polynomial with coefficients in F. Otherwise, a is transcendental over

F.
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An extension E/F is algebraic if every element of E is algebraic over
F.

Euclidean Domains, Principal Ideal Domains, and Unique

Factorization Domains

A Euclidean domain is an integral domain R with a function d: R -
{0} — N (natural numbers) such that for any a, b € R with b # 0,
there exist g, r € R such that a = gb + r with either r = 0 or d(r) < d(b).

A principal ideal domain (PID) is an integral domain in which every

ideal is principal.

A unique factorization domain (UFD) is an integral domain in which
every non-zero non-unit element can be written as a product of
irreducible elements, and this factorization is unique up to units and

the order of factors.

The relationship between these domains is: Euclidean Domain =

Principal Ideal Domain = Unique Factorization Domain
Examples:

e Z (integers) is a Euclidean domain, hence also a PID and a
UFD.

e F[X] (polynomials over a field F) is a Euclidean domain.

e Z[X] (polynomials with integer coefficients) is a UFD but not a
PID.

Solved Problems on Ring Theory

Problem 1: Determine whether Z[\V-5] = {a + b\-5 | a, b € Z} is a

unique factorization domain.

Solution: To determine whether Z[\-5] is a UFD, we need to check if

factorizations into irreducibles are unique.

Step 1: Consider the element 6 €Z[V-5]. We can factor 6 as 2 x 3.
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Step 2: Consider the element 1 + V-5 and its conjugate 1 - -5 in Z[V-
5]. Their product is (1 + V-5)(1 - V-5) =1 - (\-5)2=1-(-5) = 6

Step 3: Check if 2, 3, 1 + V-5, and 1 - V-5 are irreducible in Z[\-5].

Define the norm N(a + bV-5) = a? + 5b?, which satisfies N(ap) =
N(c)N(B).

. N@2)=4
« N@B)=9
e N(1+V\-5)=1+5=6
e N(1-V-5)=1+5=6

If any of these elements were reducible, they could be expressed as a
product of two elements with smaller norms. But none of the norms 4,
9, or 6 can be expressed as a product of norms of elements in Z[V-5]
other than 1 times themselves. Therefore, all four elements are

irreducible.

Step 4: Since 6 = 2 x 3 = (1 + V-5)(1 - V-5), we have two distinct

factorizations of 6 into irreducibles.
Therefore, Z[V-5] is not a unique factorization domain.

Problem 2: Show that in a commutative ring, maximal ideals are

prime.
Solution: Let R be a commutative ring and M a maximal ideal of R.
Step 1: Recall the definitions:

e An ideal M is maximal if M # R and there is no ideal I such
that M c | c R.

e Anideal Pisprimeifforalla, b €R,ab € PimpliessaePorb
eP.

Step 2: To show M is prime, assume ab € M for some a, b € R.
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Step 3: We need to show that either a € M or b € M. Let's use a proof
by contradiction. Suppose a € M and b ¢ M.

Step 4: Consider the ideal (M, a) generated by M and a: (M, a) = {m +
ra|me M, r € R}Since M is maximal and a € M, we must have (M,
a) = R. Thus, thereexist m1 € M and r1 € R such that m1 + rla =1.
Similarly, (M, b) =R, so there exist m, € M and r2 € R such that m;

+rb=1
2.2.3: Rings of Polynomials
Introduction to Polynomial Rings

A polynomial ring is a fundamental algebraic structure that extends
the concept of a ring to include polynomials with coefficients from

another ring. Polynomials are expressions consisting of variables,

coefficients, and operations of addition, subtraction, and

multiplication.

For a ring R, the polynomial ring R[x] consists of all polynomials
with coefficients from R in the indeterminate X. These polynomials

take the form:
f(x) = a0 + aix + a2x® + ... + a,x»

where ao, ai, az, ..., a, are elements of the ring R, and n is a non-
negative integer. The element a, (if non-zero) is called the leading

coefficient, and n is the degree of the polynomial, denoted by deg(f).
Basic Properties of Polynomial Rings

1. Ring Structure: R[x] forms a ring with the standard operations
of polynomial addition and multiplication.

2. Addition: For polynomials f(x) = ao + aix + ... + a,x" and g(x)

=bo + bix + ... + bypx™:

f(x) + g(x) = (aotbo) + (a1+bi1)x + ... + higher terms
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Essentially, we add the coefficients of like terms.
3. Multiplication: For the same polynomials:
f(x) X g(x) =co+ c1x + c2x* + ... + CpamX™™

k —
where ¢, = Yabx.i foreachk =0, 1,2, ..., n+m.

i=0

4. Degree Properties:

o For non-zero polynomials f and g, deg(f-g) = deg(f) +
deg(9)

o For polynomials f and g, deg(ftg) < max(deg(f),
deg(9))

5. Zero Polynomial: The polynomial 0 + Ox + Ox? + ... is called
the zero polynomial and is denoted by 0. Its degree is

conventionally defined as -o.

Integral Domains and Polynomial Rings

If R is an integral domain (a ring with no zero divisors), then R[x] is

also an integral domain. This means:

e If f(x) and g(x) are non-zero polynomials in R[x], then their

product f(x)-g(x) is also non-zero.

e The leading coefficient of the product is the product of the

leading coefficients of the factors.

Units in Polynomial Rings
Aunit in aring is an element that has a multiplicative inverse. In R[x]:

e If R is an integral domain, the only units in R[x] are the

constant polynomials that are units in R.

e For example, in Z[x] (polynomials with integer coefficients),

the only units are 1 and -1.
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e In Q[X] (polynomials with rational coefficients), any non-zero

rational number forms a unit.

Irreducible Polynomials

A non-constant polynomial f(x) in R[x] is irreducible over R if it
cannot be factored as a product of two non-constant polynomials in
R[X].

Examples:

e X2+ lisirreducible over R (the real numbers)
e X2+ lisreducible over C (the complex numbers) as (x+i)(x-i)
e X2-2isirreducible over Q (the rational numbers)

Polynomial Division

If R is a field, then there's a division algorithm for polynomials in
R[X]:

For polynomials f(x) and g(x) # O in R[x], there exist unique
polynomials q(x) (quotient) and r(x) (remainder) such that:

f(x) = 9(x)-a(x) + r(x)
where either r(x) = 0 or deg(r) <deg(Q).

This leads to the important result that R[x] is a Euclidean domain
when R is a field, meaning we can find greatest common divisors

using the Euclidean algorithm.
Evaluating Polynomials

For a polynomial f(x) = a0 + aix + axx?® + ... + a,x® in R[x] and an

element r in R, the evaluation of f at r, denoted f(r), is:
f(r) =ao+ air + axr* + ... + a ™

This is an element of R and is computed by substituting r for x in the

polynomial.

Polynomial Rings in Multiple Variables
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The concept extends naturally to multiple variables. For example, Notes
R[X,y] represents the ring of polynomials in two variables x and y

with coefficients from R.

A polynomial in R[X,y] takes the form:

n m

fx.y) =2 2 axy!

where a;; are elements of R.

Solved Examples

Example 1: Addition and Multiplication in Z[x]

Let f(X) = 2x3 + 3x2-5x + 1 and g(X) = x2 - 2x + 4 in Z[X].
Calculate f(x) + g(x) and f(x) - g(x).

Solution:

For addition, we combine like terms: f(x) + g(x) = (2x® + 3x? - 5x + 1)
+(X2-2X+4) =23+ (3+1)x2 + (-5-2)x + (1+4) = 2x3 + 4x2 - TX + 5

For multiplication, we multiply each term of f(x) by each term of g(x):
f(x) - g(x) = (23 + 3x2-5x + 1) - (X2 - 2x + 4)

First, multiply 2x3 by each term in g(x): 2x3(x? - 2x + 4) = 2x° - 4x* +

8x3

Next, multiply 3x2 by each term in g(x): 3x3(x2 - 2x + 4) = 3x* - 6x3 +
12x?

Next, multiply -5x by each term in g(x): -5x(x? - 2x + 4) = -5x3 + 10x?
- 20x

Finally, multiply 1 by each term in g(x): 1(x?-2x + 4) =x2-2x + 4

Now combine like terms: f(x) - g(x) = 2x° + (-4+3)x* + (8-6-5)x3 +
(12+10)x2 + (-20-2)x + 4 = 2x° - x* - 3x3 + 22x2 - 22x + 4

Example 2: Determining Irreducibility
Determine whether p(x) = x2 - 3x + 1 is irreducible over Q.

Solution:
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To check if p(x) is irreducible over Q, we can use the Rational Root

Theorem.

If p(x) has a rational root a/b in lowest terms, then a divides the

constant term (1) and b divides the leading coefficient (1).
The possible rational roots are therefore: £1.

Let'scheck: p(1)=13-31+1=1-3+1=-1#0p(-1) =(-1)%- 3:(-
1)+1=-143+1=3#0

So p(x) has no rational roots. Since p(x) is a cubic polynomial with no
linear factors, it must be irreducible over Q (as any factorization

would necessarily include a linear factor).
Therefore, x3 - 3x + 1 is irreducible over Q.
Example 3: Division Algorithm in Q[x]

Use the polynomial division algorithm to find the quotient and

remainder when f(x) = 2x* - 3x% + x - 5 is divided by g(x) = x? - 2.
Solution:

We need to find polynomials q(x) and r(x) such that f(x) = g(x)-q(x) +
r(x) where deg(r) <deg(g) = 2.

Step 1: Divide the leading term of f(x) by the leading term of g(x): 2x*

+ X2 =2%x?
Step 2: Multiply g(x) by this term: 2x2 - (X2 - 2) = 2x* - 4x?

Step 3: Subtract from f(x) and continue: f(x) - (2x* - 4x?) = -3x3 + 4x2

+x-5

Step 4: Divide the leading term of this result by the leading term of

g(x): -3x3 + x2 = -3x
Step 5: Multiply g(x) by this term: -3x - (X2 - 2) = -3x3 + 6x

Step 6: Subtract and continue: -3x3 + 4x2 + X - 5 - (-3x3 + 6x) = 4x2 +
X-6X-5=4x2-5x-5
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The degree of this remainder is less than deg(g), so we're done.
Therefore, q(x) = 2x2 - 3x and r(x) = 4x? - 5x - 5.

Verification: f(x) = g(x)-q(x) + r(x) = (x2 - 2)(2x2 - 3x) + (4x2 - 5x - 5)

=2x*-4X%2- 33+ 6X +4Xx%2-5x-5=2x*-3x¥+0x?+ X -5
Example 4: Finding GCD using the Euclidean Algorithm

Find the greatest common divisor of f(x) = x3-1and g(x) =x%- 1 in

QIx].

Solution:

We apply the Euclidean algorithm:

Step 1: Divide f(x) by g(x): x3-1=(x2-1) - x + (x- 1)
So the remainder ri(x) = x - 1.

Step 2: Divide g(x) by n(x): x2-1=(x-1)- (x+1)+0

Since the remainder is 0, the GCD is the last non-zero remainder,

which is ri(x) =x - 1.
Therefore, ged(x® -1, x2-1) =x - 1.

This makes sense because: x3-1=(x-1)(x®+x+1)x2-1=(x-1)(x
+1)

Example 5: Evaluating a Polynomial at a Point
Let f(x) = 3x* - 2x2 + 5x - 7 be a polynomial in Z[x]. Evaluate f(2).
Solution:

f(2) =3(2%) - 2(22) +5(2) - 7=3(16) - 2(4) +5(2) -7=48-8+10-7
=43

Therefore, f(2) = 43.
Unsolved Problems

Problem 1

Notes
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Let f(x) = x3 - 4x2 + 3x + 1 and g(x) = X2 - X - 2 be polynomials in

Q[x]. Find the quotient and remainder when f(x) is divided by g(x).
Problem 2

Determine whether the polynomial p(x) = x* - 10x2 + 1 is irreducible

over Q.
Problem 3

Find the greatest common divisor of h(x) = x* - 16 and k(x) = x2 - 4 in
Z[X].

Problem 4

Let R[x,y] be the ring of polynomials in two variables with real

coefficients. If f(x,y) = x2y + 3xy? - y® + 2, evaluate f(1,2).
Problem 5

Prove that if R is an integral domain, then the polynomial f(x) = ax +
b is irreducible in R[x] if and only if it is not divisible by any non-unit

element of R.
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UNIT 2.3
2.3.1: Polynomials in an Indeterminate
Introduction to Indeterminates

An indeterminate in algebra is a symbol that does not stand for any
fixed value, unlike a variable which can be assigned different values.
The concept of an indeterminate is fundamental to the theory of

polynomial rings.

When we write R[x], we are considering the ring of polynomials in
the indeterminate x with coefficients from the ring R. The element x
in R[x] is transcendental over R, meaning it doesn't satisfy any non-

zero polynomial equation with coefficients in R.
Formal Definition and Structure

A polynomial in an indeterminate x over a ring R is formally defined

as an infinite sequence of elements from R:
(ao, a1, az, ..., an, 0, 0, ...)

where only finitely many terms are non-zero. This sequence

represents the polynomial:
Aot aiX + axx?+ ... + ax®

The set of all such sequences forms the polynomial ring R[x]. The

operations in this ring are defined as follows:

« Addition: Component-wise addition of sequences

« Multiplication: Convolution product of sequences, where the

kth component of the product is given by Y ¥ ajbi-
i=0

Comparison with Function Rings
It's important to distinguish between polynomials as formal

expressions and polynomial functions:

e Apolynomial in R[x] is a formal algebraic expression

Notes
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e Apolynomial function maps elements of R to R by evaluation

When R is an infinite integral domain, the ring R[x] is isomorphic to a
subring of the ring of functions from R to R. However, when R is a

finite field, different polynomials may induce the same function.

For example, in Z2[x] (polynomials over the field with two elements),
the polynomials x2 and x induce the same function since 02 = 0 and 12
=1

Monomials and Terms

A monomial in the indeterminate x is an expression of the form ax"n
where a is a coefficient from R and n is a non-negative integer. The

degree of this monomial is n.

A term of a polynomial refers to each monomial that appears in the

polynomial with a non-zero coefficient.
Evaluating Polynomials at Points

For a polynomial f(x) = ao + aix + ... + a,x" in R[x] and an element r in

R, the evaluation homomorphism ¢,: R[x] — R is defined by:
o(H)=f(r)=aotair + ... + au™

This is a ring homomorphism, meaning it preserves the operations of
addition and multiplication.

The Universal Property

The polynomial ring R[X] satisfies an important universal property:
For any ring S and any ring homomorphism ¢: R — S and any
element s in S, there exists a unique ring homomorphism y: R[x] — S

such that y(r) = ¢(r) for all r in R and y(x) =s.

This property characterizes R[x] up to isomorphism and highlights its

fundamental role in algebra.

Polynomial Identities and the Substitution Principle
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A polynomial identity is an equation between two polynomials that

holds for all possible values of the indeterminates.

The substitution principle states that if an identity holds for all
polynomials, then it holds when the indeterminates are replaced by

any elements from the ring.
Roots and Factors

An element r in R is called a root of a polynomial f(x) in R[x] if f(r) =
0.

If r is a root of f(x), then (x - r) is a factor of f(x), meaning there exists
a polynomial g(x) such that f(x) = (x - r)-q(x).

A polynomial of degree n over a field can have at most n roots unless

it is the zero polynomial.
Polynomials over Fields
When R is a field, R[x] has several additional properties:

1. R[x] is a principal ideal domain, meaning every ideal is

generated by a single element.

2. The division algorithm holds: for polynomials f(x) and g(x) #
0, there exist unique q(x) and r(x) such that f(x) = g(x)-q(x) +
r(x) where r(x) = 0 or deg(r) <deg(Q).

3. Every non-constant polynomial can be factored uniquely (up

to units) as a product of irreducible polynomials.

The Remainder Theorem

The Remainder Theorem states that when a polynomial f(x) is divided
by (x - a), the remainder is equal to f(a).

Mathematically: f(x) = (x - a)q(x) + f(a)

This theorem provides a quick way to evaluate polynomials and is the

basis for polynomial interpolation.

Notes
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The Factor Theorem

The Factor Theorem is a direct consequence of the Remainder

Theorem:
An element a is a root of f(x) if and only if (x - a) is a factor of f(x).

This follows because f(a) = 0 if and only if the remainder when

dividing f(x) by (x - a) is zero.
Multiple Indeterminates

The construction of polynomial rings can be extended to multiple
indeterminates. For example, R[x,y] is the ring of polynomials in two

indeterminates x and y with coefficients in R.

A polynomial in R[x,y] can be written as:
f(x,y) = Xiro 2j-0 @'y’

where a;; are elements of R.

There are different ways to view R[X,y]:
e As (R[X][yl], polynomials in y with coefficients in R[X]
e As (R[yDI[x], polynomials in x with coefficients in R[y]

e Directly as R[x,y], polynomials in x and y with coefficients in
R

All these viewpoints are isomorphic.
Homogeneous Polynomials

A homogeneous polynomial (or form) is a polynomial whose terms all
have the same total degree.

For example, in R[x,y], the polynomial 3x2 + 5xy + 2y2 is

homogeneous of degree 2 because each term has total degree 2.

Homogeneous polynomials have important applications in projective

geometry and invariant theory.
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Multivariate Polynomial Division Notes

Division of multivariate polynomials is more complex than in the
single-variable case. There's no unique quotient and remainder

without specifying a monomial ordering.
Common monomial orderings include:

e Lexicographic ordering
o Graded lexicographic ordering
o Graded reverse lexicographic ordering

The theory of Grobner bases extends the Euclidean algorithm to

multivariate polynomials.
Solved Examples
Example 1: The Evaluation Homomorphism

Prove that the evaluation map ¢.: R[x] — R defined by ¢.(f) = f(r) is a

ring homomorphism.
Solution:
We need to show that o, preserves addition and multiplication.

For addition, let f(x) = a0 + aix + ... + a,x" and g(x) = bo + bix + ... +

bmx™ be polynomials in R[x].

o(f + g =+ g)(r) = (@ + bo) + (a1 + bi)r + ... + higher terms
evaluated at r = (a0 + air + ... + anr™) + (bo + bir + ... + br™) = f(r) +

9(r) = o:(f) + ¢:(9)
For multiplication:

o(f- g)=(f- g)(r)=(ao+ air + ... + ayr")(bo + bur + ... + byur™) = f(r) -
9(n) = @«(f) - ¢:(9)

Therefore, ¢, is a ring homomorphism.

Example 2: Application of the Remainder Theorem



Notes Use the Remainder Theorem to evaluate f(x) = 2x3 - 5x2 + 3x - 7 at X
=3.

Solution:

According to the Remainder Theorem, when f(x) is divided by (x - 3),
the remainder equals f(3).

Let's divide f(x) by (x - 3) using synthetic division:
312 -5 3 -7
| 6 3 18
2 1 6 11

Working through the synthetic division:

Bring down 2

Multiply 2 by 3 to get 6, add to -5 to get 1

Multiply 1 by 3 to get 3, add to 3 to get 6

Multiply 6 by 3 to get 18, add to -7 to get 11

The remainder is 11, so f(3) = 11,

We can verify this by direct computation: f(3) = 2(3%) - 5(32) + 3(3) - 7
=2(27)-5(9)+3(3)-7=54-45+9-7=11

Example 3: Proving a Polynomial Identity

Prove that (x + y)? = x2 + 2xy + y? for all elements x and y in a

commutative ring R.
Solution:

We can expand the left-hand side using the distributive property: (x +
Y =(x+y)x+y)=x(x+y) +y(x+y)=x2+xy+yx+y?

Since R is commutative, Xy = yX, S0: (X +y)? = X2 + Xy + Xy + y2 = x?

+2Xy +y?
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This is a polynomial identity in R[x,y] and holds for all x, y in R.
Example 4: Polynomial Division in Multiple Indeterminates

Divide f(x,y) = x2y + xy2 + y3 by g(x,y) = X + y in Q[X,y] using the
lexicographic ordering with x >'y.

Solution:

We need to find polynomials q(x,y) and r(x,y) such that f(x,y) = g(x,y)
- q(xy) + r(xy).

Step 1: Divide the leading term of f(x,y), which is x?y, by the leading
term of g(x,y), which is x: X2y + x = Xy

Step 2: Multiply g(x,y) by Xy: xy(Xx +y) = X2y + xy2

Step 3: Subtract from f(x,y): f(x,y) - (X2y + Xy?) = X2y + xy2 + y3 - (x2y
+Xxy?) = y?

Step 4: Divide y® by the leading term of g(x,y): y® + x cannot be

divided further since y® doesn't contain x
Therefore, q(x,y) = xy and r(x,y) = y2.

Verification: f(x,y) = g(x,y) - d(x,y) + r(x,y) = (X +y) - Xy + y3 =x?y +
Xy2 +y?

Example 5: Using the Factor Theorem

Use the Factor Theorem to completely factor the polynomial f(x) = x3

- 4x2 - 7x + 10 over the rational numbers, given that x = 2 is a root.
Solution:
Since x = 2 is a root, we know that (x - 2) is a factor of f(x).

We can use synthetic division to find the quotient when f(x) is divided
by (x - 2):
2|1 -4 -7 10

| 2 -4 -22
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1 -2 -11 -12
So f(x) = (x - 2)(x? - 2x - 11)

Now we need to factor x2 - 2x - 11. Using the quadratic formula: x =
(2£\(4+44))2 = (2 £\48)2 = (2 £ 4\3)2 = 1 + 2\3

Since these roots are irrational, the quadratic is irreducible over Q.

Therefore, the complete factorization of f(x) over Q is: f(x) = (x -
2)(x2 - 2x - 11)

Unsolved Problems
Problem 1

Let f(x) = x* - 5x2 + 4 be a polynomial in Z[x]. Show that f(x) can be
written as a product of two quadratic polynomials with integer

coefficients.
Problem 2

Let R be a commutative ring with unity. Prove that the center of the

polynomial ring R[x] is Z(R)[x], where Z(R) is the center of R.
Problem 3

Let f(x) = x* + 3x® - 2x2 + 5 be a polynomial in Q[x]. Use the
Remainder Theorem to find the remainder when f(x) is divided by (x -
1).

Problem 4

Let f(X,y) = x3y? + 2x?y® - 3xy* + y°® be a polynomial in R[x,y]. Find
all terms of f(x,y) that are homogeneous of degree 5.

Problem 5

Prove that if R is an integral domain, then the polynomial ring R[x] is

never a field.

2.3.2: Evaluation Homomorphism
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The evaluation homomorphism is a fundamental concept in abstract
algebra, particularly in the theory of polynomials. It provides a way to
evaluate polynomials at specific values while preserving their

algebraic structure.
Definition and Basic Properties

Let F be a field and F[x] be the ring of polynomials with coefficients
in F. For any element a € F, the evaluation homomorphism at a is the

map:
¢@a: F[x] = F
defined by:

Pa(p(x)) = p(a)

In other words, the evaluation homomorphism takes a polynomial
p(x) and evaluates it at the point x = a.

Properties of the Evaluation Homomorphism

1. Homomorphism Property:
o For any polynomials p(x) and q(x) in F[x]:
" 0(p(x) + q(x)) = 9a(p(X)) T Pa(q(x))
" 0(p(x) - q(x)) = Pa(P(X)) - Pa(q(x))
2. Kernel Determination:

o The kernel of @, consists of all polynomials p(x) such

that p(a) =0
o This means ker(¢.) = {p(x) € F[x] | p(a) = 0}
o The kernel is precisely the ideal generated by (x - a)
o ker(p.) =(x-a)

3. Surjectivity:

Notes
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o The evaluation homomorphism is surjective (onto),
meaning every element in F is the image of some

polynomial in F[x]

o For any b € F, the constant polynomial p(x) = b

satisfies @a(p(x)) =b
4. First Isomorphism Theorem Application:

o By the First Isomorphism Theorem for rings, F[X]/(x -
a)=F

o This means the quotient ring of F[x] by the ideal

generated by (x - a) is isomorphic to F

Polynomial Division and the Remainder Theorem

One important application of the evaluation homomorphism is the

Remainder Theorem.
Remainder Theorem

For any polynomial p(x) € F[x] and any a € F, when p(x) is divided

by (x - a), the remainder is equal to p(a).

Proof: By the Division Algorithm, we can write: p(x) = q(X)(x - a) +r
where r is a constant (polynomial of degree 0).

Evaluating both sidesatx =a: p(a) =qg(a)(a-a)+r=0+r=r

Therefore, r = p(a), which means the remainder when p(x) is divided
by (x - a) is p(a).

Factor Theorem

The Factor Theorem is a direct consequence of the Remainder

Theorem:
Theorem: (x - a) is a factor of p(x) if and only if p(a) = 0.

Proof:
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e If (x - a) is a factor of p(x), then p(x) = q(x)(x - a) for some

q(x)
o Evaluatingatx=a:p(a)=q(a)(a-a)=0

o Conversely, if p(a) = 0, then by the Remainder Theorem, the

remainder when p(x) is divided by (x - a) is 0

e Thus, p(x) = q(x)(x - a) for some g(x), meaning (x - a) is a

factor of p(x)

Multiple Evaluation Points and Chinese Remainder Theorem

The concept of evaluation homomorphism extends to multiple points

through the Chinese Remainder Theorem for polynomials.

If ai, a2, ..., a, are distinct elements in F, then the combined evaluation

homomorphism:
¢: F[x] = F x F x ... x F (n times) ¢(p(x)) = (p(a1), p(a2), ..., p(an))
has the kernel: ker(¢) = ((x - a1)(x - a2)...(X - an))

By the Chinese Remainder Theorem: F[X]/((X - ai)(x - a2)...(X - an)) =
FIXJ/(X - a1) x F[X]/(x - a2) % ... X F[x]/(x - a,) = F»

This isomorphism allows us to solve systems of polynomial

congruences.
Lagrange Interpolation

Lagrange interpolation uses the evaluation homomorphism concept to
construct a polynomial that passes through a given set of points.

Given distinct points ai, az, ..., a, € F and corresponding values bi, bz,

..., by € F, the Lagrange interpolation polynomial is:
p(x) =X b; Li(x)

where Lj(x) are the Lagrange basis polynomials:
Li(x) =TI (x - ax)/(a; - ax) k7]

This polynomial satisfies p(aj) = bjforallj=1, 2, ..., n.
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Solved Problems
Problem 1

Problem: Find the kernel of the evaluation homomorphism @2: Q[x]

— Q where ¢z(p(x)) = p(2).

Solution: The kernel of an evaluation homomorphism @. consists of

all polynomials p(x) such that p(a) = 0. In this case, a = 2, so: ker(¢2)
={p(x) € Q[x] | p(2) = 0}

By the theory of evaluation homomorphisms, we know that: ker(¢pz) =
(x-2)

This means the kernel is the set of all polynomials that are divisible by
(x - 2), which can be written as: {q(X)(x - 2) | q(x) € Q[x]}

Therefore, ker(g2) = (x - 2).
Problem 2

Problem: Use the Remainder Theorem to find the remainder when
p(X) = x3 - 2x2 + 4x - 7 is divided by (x - 3).

Solution: According to the Remainder Theorem, when a polynomial

p(x) is divided by (x - a), the remainder is equal to p(a).

In this case, we need to find p(3): p(3) = 3% - 2(3)2 + 4(3) - 7 = 27 -
209)+12-7=27-18+12-7=14

Therefore, the remainder when p(x) = x3 - 2x2 + 4x - 7 is divided by (x
-3)is 14.

Problem 3

Problem: Determine whether (x - 2) is a factor of p(x) = x* - 5x3 + 2x?
+ 8x - 16.

Solution: According to the Factor Theorem, (X - a) is a factor of p(x) if

and only if p(a) = 0.

So to determine if (x - 2) is a factor of p(x), we need to check if p(2) =
0.
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p(2)=2%-5(2)%+2(2)>+8(2) - 16 = 16 - 5(8) + 2(4) + 16 - 16 = 16 - Notes
40+8+16-16=-16

Since p(2) =-16 #0, (x - 2) is not a factor of p(x).
Problem 4

Problem: Use the Chinese Remainder Theorem to find a polynomial

p(x) € Q[x] of degree less than 3 such that:
e p(1)=2
e p(2)=-1
e p(3)=4

Solution: We'll use Lagrange interpolation to construct the

polynomial. For each point, we define:

Li(x) = ((x-2)(x-3))/((1-2)(1-3)) = ((x-2)(x-3))/(-1)(-2) = (x-2)(x-3)/2
La(x) = ((x-1)(x-3))/((2-1)(2-3)) = ((x-1)(x-3))/(1)(-1) = -(x-1)(x-3)
Ls(x) = ((x-1)(x-2))/((3-1)(3-2)) = ((x-1)(x-2))/(2)(1) = (x-1)(x-2)/2

Now, our polynomial is: p(x) = 2Li(x) + (-1)L2(x) + 4Ls(x) = 2((x-
2)(x-3)/2) + (-1)(-(x-1)(x-3)) + 4((x-1)(x-2)/2) = (x-2)(x-3) + (x-1)(x-
3) + 2(x-1)(x-2)

Let's expand: (X-2)(x-3) = x2 - 5X + 6 (X-1)(x-3) = x2 - 4x + 3 2(x-1)(x-~
2)=2(X2-3x+2)=2x2-6x+4

P(X) = (X2 - 5X + 6) + (X2 - 4X + 3) + (2x2 - 6X + 4) = 4x2 - 15x + 13
To verify: p(1) = 4(1)2- 15(1) + 13 =4 - 15+ 13 =2 v p(2) = 4(2)? -

15(2) +13=16-30 + 13 =-1 v p(3) = 4(3)2 - 15(3) + 13 =36 - 45 +
13=4V

Therefore, p(x) = 4x2 - 15x + 13 is our solution.

Problem 5
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Problem: Determine the quotient and remainder when p(x) = x* + 2x3

- 3x2+ x - 5 is divided by (x - 2).

Solution: We can use the evaluation homomorphism and the Division

Algorithm to solve this.

By the Remainder Theorem, the remainder when p(x) is divided by (x
-2)is p(2).

p(2)=2*+2(2)*-3(22+2-5=16+2(8) - 3(4) +2-5=16 + 16 -
12+2-5=17

So the remainder is 17.

To find the quotient g(x), we use the Division Algorithm: p(x) =
qXx)(x - 2) + 17

We can use synthetic division or polynomial long division:

Using synthetic division with divisor (x -2):2|12-31-5|28 1022
---------------------- 1451117

The quotient is the coefficients above the line, excluding the

remainder: q(x) = x3 + 4x2 + 5x + 11

To verify: (X8 +4x2 +5x + 11)(X - 2) + 17 = x* - 2x3 + 4x3 - 8x2 + 5x2 -

10X+ 11x-22+ 17 =x*+2x>-3x2+ X -5V

Therefore, when p(x) = x* + 2x3 - 3x2 + X - 5 is divided by (x - 2):
e Quotient: g(x) =x3+4x2 +5x + 11
e Remainder: 17

Unsolved Problems

Problem 1

Find the kernel of the evaluation homomorphism ¢-i: R[x] — R

where @-1(p(x)) = p(-1).

Problem 2
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Use the Remainder Theorem to find the remainder when p(x) = 2x° -

3x3 + 4x - 7 is divided by (X + 2).
Problem 3

Use the Factor Theorem to determine all values of k for which (x - 3)

is a factor of p(x) = x3 - kx? + 4x - 12.
Problem 4

Find a polynomial p(x) € Q[x] of degree less than 4 such that:

. p0)=1
. pl)=-2
e p(2)=0
. p(3)=4

Problem 5

Let ¢: Zs[x] — Zs x Zs be the evaluation homomorphism defined by
o(p(x)) = (p(2), p(3)). Find a polynomial p(x) of degree less than 2
such that o(p(x)) = (4, 1).

2.3.3 Factorization of Polynomials over a Field

Polynomial factorization is a central topic in algebra, with
applications ranging from solving polynomial equations to
cryptography. This section explores the theory and techniques of
factoring polynomials over fields.

Irreducible Polynomials

A polynomial p(x) € F[x] of degree at least 1 is called irreducible over
F if it cannot be expressed as a product of two polynomials in F[Xx],

each of degree at least 1.
Properties of Irreducible Polynomials

1. Prime Elements: Irreducible polynomials are the "prime

elements” of the polynomial ring F[x].
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2. Degree 1 Polynomials: Every polynomial of degree 1 is

irreducible.

3. Field Extensions: If p(x) is irreducible over F, then F[x]/(p(x))
is a field extension of F.

4. Unique Factorization: Every polynomial in F[x] can be
factored uniquely (up to units) as a product of irreducible

polynomials.
Unique Factorization Theorem
The Fundamental Theorem of Algebra for polynomials states:

Theorem: Every non-constant polynomial p(x) € F[x] can be factored

uniquely as:

px)=a - pi(x)*  p2(X)” ... - pa(X)*™

where a € F is a non-zero constant, each pi(x) is a monic irreducible
polynomial over F, and each e; is a positive integer. This factorization

is unique up to the order of the factors.
Techniques for Factorization
1. Rational Root Theorem

For a polynomial p(x) = ax” + a,-1x*' + ... + aix + ao with integer

coefficients, if p/q is a rational root (with gcd(p,q) = 1), then:
e pdivides ao
e qdivides a,

This helps identify potential rational roots for testing.

2. Eisenstein's Criterion

Theorem: Let p(x) = anx® + ap-1x™ ' + ... + aix + a0 € Z[x]. If there

exists a prime number p such that:

e pdivides all coefficients except a,
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e p?does not divide ao
e p does not divide a,

Then p(x) is irreducible over Q.
3. Gauss's Lemma

Lemma: A primitive polynomial in Z[x] is irreducible over Q if and

only if it is irreducible over Z.

This allows testing irreducibility over Q by examining factorizations

over Z.
4. Reducibility Testing over Finite Fields

For polynomials over finite fields, we can test all possible
factorizations up to a certain degree, as there are only finitely many
polynomials of a given degree.

Special Cases: Factorization over Specific Fields
Factorization over R (Real Numbers)
Over R, irreducible polynomials are either of degree 1 or 2:

e Linear factors: (x - a) wherea € R
o Quadratic factors: (x2 + bx + c) where b? - 4c < 0

Factorization over C (Complex Numbers)

Over C, every non-constant polynomial factors completely into linear

factors by the Fundamental Theorem of Algebra:

p(x) =a(X - z1)(X - 22)...(X - Zn)

where a € C is a constant and zi, 72, ..., z, € C are the roots of p(x).
Factorization over Q (Rational Numbers)

Over Q, irreducible polynomials can have any degree. Some common

techniques for factoring over Q include:

e The Rational Root Theorem
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o Eisenstein's Criterion
e Gauss's Lemma

o Descartes' Rule of Signs (for information about the number of

positive and negative roots)
Factorization over Finite Fields
For a finite field Fq with g elements:

e Every irreducible polynomial of degree n over Fqy divides

x{@n) - x

e The number of monic irreducible polynomials of degree n over

Fq can be calculated using Mdbius inversion formula

Cyclotomic Polynomials

The cyclotomic polynomial ®,(x) is the monic polynomial whose

roots are the primitive nth roots of unity.
Properties:
o @y (x) is irreducible over Q
o ®,(x) has degree @(n), where ¢ is Euler's totient function
e X"-1=]] ®y(x), where d ranges over all divisors of n
Applications of Polynomial Factorization

1. Solving Polynomial Equations: Factoring a polynomial allows

us to find its roots.

2. Field Extensions: Irreducible polynomials are used to

construct field extensions.

3. Error-Correcting Codes: Polynomial factorization plays a

crucial role in coding theory.

4. Cryptography: Many cryptographic systems rely on the

difficulty of factoring certain polynomials over finite fields.
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5. Computer Algebra Systems: Efficient factorization algorithms

are essential components of computer algebra systems.

Solved Problems
Problem 1

Problem: Determine whether the polynomial p(x) = x® - 3x + 1 is

irreducible over Q.

Solution: To determine if p(x) = x3 - 3x + 1 is irreducible over Q, we

can apply the Rational Root Theorem.

The possible rational roots of p(x) are the divisors of the constant term
(1) divided by the divisors of the leading coefficient (1). Possible

rational roots: +1

Let's check these candidates: p(1) =13-3(1) +1=1-3+1=-1#0
p(-1)=(-1)3-3(-1)+1=-1+3+1=3#0

Since p(x) has no rational roots, it has no linear factors in Q[x].

The only other possibility for reducibility would be a factorization
into a linear and a quadratic factor, but since there are no linear

factors, this is impossible.

Therefore, p(x) = x3 - 3x + 1 is irreducible over Q.
Problem 2

Problem: Factor the polynomial p(x) = x* - 5x* + 4 over R.

Solution: Let's try to recognize this as a quadratic in x2. Let's set u = x2

and rewrite: p(x) =x*-5x?+4=u?-5u+4

Now we can factor this quadratic: u2 -5u+4 =(u-4)(u-1) = (x?-
4)(x2-1)

We can factor these further: x2-4=(x-2)(x +2)x?-1=(x-1)(x +
1)

Therefore: p(x) =x*-5x2+4 = (X - 2)(x + 2)(x - 1)(x + 1)
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To verify: (X - 2)(x + 2)(X - 1)(x + 1) = (X2 - 4)(x2- 1) =x* - x2 - 4x2 +
4=x*-5x2+4 Vv

So the factorization of p(x) = x* - 5x2 + 4 over R is (x - 2)(X + 2)(X -
D(x +1).

Problem 3

Problem: Use Eisenstein's Criterion to prove that p(x) = 2x3 + 6x2 +

3x + 9 is irreducible over Q.

Solution: To apply Eisenstein's Criterion, we need to find a prime p
such that:

1. pdivides all coefficients except the leading coefficient
2. p?does not divide the constant term
3. p does not divide the leading coefficient

Let's examine the coefficients of p(x) = 2x3 + 6x2 + 3x + 9:

Leading coefficient: 2

x2 coefficient: 6

x coefficient: 3

Constant term: 9

Let'stry p=3:
e 3divides6, 3,and 9
e 3 does not divide 2 (the leading coefficient)
e 32=0divides 9 (the constant term)

Since 32 divides the constant term, Eisenstein's Criterion does not

apply with p = 3.

Let's transform the polynomial to make Eisenstein's Criterion

applicable. Let's substitute x =y + 1:
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ply+1)=2(y+1*+6(y+1)2+3(y+1)+9

Expanding: p(y + 1) = 2(y3 + 3y?+ 3y + 1) + 6(y> + 2y + 1) + 3(y + 1)
+9=2y3+6y2+6y+2+6y2+ 12y +6+3y+3+9=2y3+12y2 +
21y + 20

Now let's check if Eisenstein's Criterion applies with the prime p = 3:

o 3 divides 12, 21, and 20 (all coefficients except the leading
coefficient)

e 3does not divide 2 (the leading coefficient)
e 32=9does not divide 20 (the constant term)

All conditions of Eisenstein's Criterion are satisfied for the
transformed polynomial. Since irreducibility is preserved under the
substitution x =y + 1, we conclude that the original polynomial p(x) =

2x3 + 6x% + 3x + 9 is irreducible over Q.
Problem 4
Problem: Factor the polynomial p(x) = x¢ - 1 over Q.

Solution: We can use cyclotomic polynomials to factor x" - 1. x" -1

=[] ®p(x), where d ranges over all divisors of n.
Forn==6:x%-1=®1(x) - O2(x) - D3(x) - Ps(X)
Now we need to compute these cyclotomic polynomials:
e di(x)=x-1
o Ox(x)=x+1
e Oy(x)=x*+x+1
o D(x)=x*-x+1

Therefore: p(x) =x°-1=(x-1)(x + 1)(x2 + x + 1)(x? - x + 1)
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To verify, we can multiply out: (x - 1)(x +1) =x2-1 (x2- 1)(x2+ x +
D=x*+x>+x2-X2-X-1=x*+x3-X-1(x*+x}-x-1)(X2-x+1)

=x0-xX°+x*+xX-x*+ -+ X2-x-x2+x+1=x-1V

Therefore, the factorization of p(x) = x° - 1 over Q is: (x - 1)(X + 1)(x?

+X+1D)(X2-x+1)
Problem 5
Problem: Factor the polynomial p(x) = x*+ 4 over Q, R, and C.

Solution: Factorization over Q: Let's check if p(x) = x* + 4 is

irreducible over Q.

By the Rational Root Theorem, any rational root would need to be a
divisor of 4, so the candidates are: +1, +2, +4.

Testing these values: p(1)=1*+4=1+4=5#0p(-1)=(-1)*+4=1
+4=5#0p(2)=2*+4=16+4=20#0p(-2) = (-2)*+4=16+4 =
20£0p(4)=4*+4=256+4=260#0p(-4) = (-4)*+4=256 +4 =
260 #0

So p(x) has no rational roots.

Let's check if it can be factored as a product of two quadratics: If x* +

4 = (X2 + ax + b)(x? + cx + d), then:
e bd=4
e ad+bc=0
e b+d+ac=0
e atc=0

From the last equation, ¢ = -a. Substituting into the third equation: b +
d-a2=0

Since b-d = 4, there are limited options for b and d as integers or
rational numbers: (b,d) = (1,4), (2,2), (4,1), (-1,-4), (-2,-2), (-4,-1)
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Let'stry (b,d)=(2,2):b+d-a2=2+2-a2=4-a2=0This gives a2 =

4,s0a=122

If a=2, then c =-2, and we can check: (X2 + 2x + 2)(x2 - 2x + 2) = x* -
A2+ 4 +2X3 - AX2+AX - 23+ 4X2 - 4x =x*-4x* +4+0+0=x*+4

£x*+4

So this factorization doesn't work. After trying other combinations, we

can conclude that x* + 4 is irreducible over Q.

Factorization over R: Over R, we can express x* + 4 as: x* + 4 =x* +
412 = x4+ 4:22/22 = (x* + 4-22)/22 - 22 = ((x2)* + (2-V2)?)/22 - 22 = (x2
+22i)(x2 - 272i)

So over R: x*+ 4 = (x2 + 2\2i)(x2 - 2\2i)
Factorization over C: To factor further over C, we can factor each of
the quadratics: x2 + 2\2i = (x + V2-e@A)(x + V2-eCriM) = (x +12-
(1H)A2)(x + V2:(-1+1)A2) = (x + (1+))(x + (-1+i)) X2 - 242i = (x+
V2-eBmiM)(x + \2-eTH4) = (x + V2-(-1-1)/V2)(x + V2-(1-i)N2)= (x +
(-1-D))(x + (1-D)
Simplifying: x* + 4 = (x + (1+1))(x + (-1+i))(x + (-1-1))(x + (1-1))
Therefore:

e Over Q: x*+ 4 is irreducible

o Over R:x*+4 = (x2+ 2\2i)(x2 - 2\2i)

e OverC:x*+4=x+{1H)x+ (-1+i))(X + (-1-1))(x + (1-1))
Unsolved Problems

Problem 1

Determine whether the polynomial p(x) = x* + x* + x> + x + 1 is

irreducible over Q.
Problem 2

Factor the polynomial p(x) =x*- 16 over R and C.
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Use Eisenstein's Criterion to prove that the polynomial p(x) = x3 +

15x2 + 5x + 10 is irreduc
Multiple Choice Questions (MCQs)

1. Which of the following is true about p-groups?
a) They always contain a normal subgroup.
b) They have order divisible by p but not necessarily a power
of p.
c) They are always abelian.

d) None of the above.

2. The class equation of a finite group helps in:
a) Finding normal subgroups
b) Counting the number of conjugacy classes
c) Determining the number of elements in a group

d) None of the above

3. The Sylow theorems are particularly useful in studying:
a) Infinite groups
b) Finite simple groups
c) Abelian groups

d) None of the above

4. The set of all polynomials with real coefficients forms:
a) A group under addition
b) A ring under addition and multiplication
c) Afield under addition and multiplication

d) None of the above

5. The evaluation homomorphism maps a polynomial to:
a) Its derivative
b) Its integral
c) A specific value by substituting an element from the field

d) None of the above
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6. Which of the following is true about polynomial rings? Notes
a) Every polynomial has a unique factorization over any ring.
b) The degree of the product of two polynomials is the sum of
their degrees.
c) Polynomial rings are always commutative.

d) None of the above.

7. Apolynomial f(x) over a field F is irreducible if:
a) It hasarootinF.
b) It cannot be factored into nontrivial polynomials in F[x].
c) It has complex coefficients.
d) It is of degree 1.

8. The fundamental theorem of algebra states that every
polynomial of degree n over the complex numbers has:
a) At most n roots
b) At least one real root
c) Exactly n roots (counting multiplicities)

d) None of the above

9. The ring of polynomials over a field is:
a) Always a division ring
b) A commutative ring with unity
¢) A non-commutative ring

d) None of the above

10. Afield Fis said to be algebraically closed if:
a) Every polynomial over F has a root in F.
b) It contains all real numbers.
c) It has finite elements.

d) It has an identity element.

Short Answer Questions

1. State and explain the class equation of a finite group.
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. How do Sylow’s theorems help in studying the structure of

finite groups?

Define a p-group and give an example.

. What is the significance of polynomial rings in algebra?

Define the evaluation homomorphism and provide an

example.

. What is an irreducible polynomial? Provide an example over

the field of real numbers.

How do you factorize polynomials over a field? Give an

example.

Explain why every field has a polynomial ring.

. What is the role of Sylow’s theorems in classifying finite

simple groups?

10. Give an example of a ring that is not a field and explain why.

Long Answer Questions

1. Discuss in detail the class equation and its significance in

group theory.

. How do Sylow’s theorems provide insight into the structure of

finite groups? Give detailed examples.

Explain the concept of polynomial rings and their applications
in algebra.

Define irreducible polynomials and describe their importance
in field theory.

Prove that the set of all polynomials over a field forms a

commutative ring.
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6. Explain the factorization of polynomials over a field and Notes

provide examples.

7. How does the fundamental theorem of algebra relate to

polynomial factorization?

8. Discuss applications of polynomial rings in modern algebra
and number theory.

9. Describe how the evaluation homomorphism works and

illustrate with examples.

10. What are the differences between a field and a ring? Give

examples to illustrate their properties.



Answer Key MCQ :
l.a

2.b



Notes MODULE 3
UNIT 3.1
FIELD THEORY
Objectives
o Understand the concept of extension fields.
« Differentiate between algebraic and transcendental elements.
e Learn about irreducible polynomials over a field.
o Explore simple extensions and algebraic extensions.
o Analyze finite extensions and their structure.
o Study the construction and properties of finite fields.

3.1.1: Introduction to Field Theory

Field theory is a branch of abstract algebra that studies the properties
and structures of fields, which are sets equipped with operations of
addition, subtraction, multiplication, and division. Fields are
fundamental algebraic structures that appear throughout mathematics,

particularly in areas like number theory, algebraic geometry, and
cryptography.

A field is a set F together with two binary operations, addition (+) and

multiplication (-), that satisfy the following axioms:

1. Closure under addition: Foralla,binF, a+bisinF.

2. Associativity of addition: For all a, b,cinF, (a+b)+c=a+
(b +c).

3. Commutativity of addition: Foralla,binF,a+b=b+a.

4. Additive identity: There exists an element O in F such that a +

O=aforallainF
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5. Additive inverse: For each a in F, there exists an element -a in
F such that a + (-a) = 0.

6. Closure under multiplication: Foralla,binF,a-bisinF.

7. Associativity of multiplication: For all a, b, cinF, (a-b) - c
=a-(b-c).

8. Commutativity of multiplication: Foralla,binF,a-b=b-

a.

9. Multiplicative identity: There exists an element 1 in F, with 1
#0,suchthata-1=aforallainF.

10. Multiplicative inverse: For each a # 0 in F, there exists an

element atV) in F such thata - att) = 1.

11. Distributivity: Foralla,b,cinFa-(b+c)=(a-b)+(a-c).
The most familiar examples of fields include:

e The rational numbers Q

e The real numbers R

e The complex numbers C

o Finite fields such as Z_p (integers modulo p, where p is prime)

Fields provide a setting in which equations can be solved by the basic
operations of arithmetic. For example, in a field, we can always divide
by non-zero elements, which is not possible in other algebraic

structures like rings.

Field theory investigates the relationships between different fields,
particularly how larger fields can be constructed from smaller ones.
This leads to the concept of field extensions, which we'll explore in

the next section.

3.1.2 Extension Fields and Their Importance
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An extension field is a larger field that contains a smaller field within
it. If F is a field and E is a field containing F, then E is called an

extension field of F, and we write F < E or E/F.

Formally, an extension field E of a field F is a field E containing F as

a subfield. This means that:

1. Fisasubsetof E

2. The operations of F coincide with those of E when restricted to
elements of F

For example:

e The field of real numbers R is an extension of the field of

rational numbers Q

e The field of complex numbers C is an extension of the field of

real numbers R
e For aprime p, the field Fpn is an extension of Fp

Importance of Extension Fields
Extension fields are fundamental in algebra for several reasons:

1. Solving Equations: Extension fields allow us to solve
equations that have no solutions in the original field. For
example, x? = 2 has no solution in Q, but in the extension
field Q(2), we can find solutions.

2. Algebraic Closure: Every field F has an algebraic closure,
which is an extension field in which every polynomial with

coefficients in F has a root.

3. Field Theory Applications: Extension fields are essential in
Galois theory, which connects field theory with group theory
to address questions about the solvability of polynomial

equations.
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4. Algebraic Number Theory: Extension fields of the rational

numbers are fundamental in studying algebraic number theory.

5. Finite Fields: Extensions of finite fields are crucial in coding

theory, cryptography, and computer science.

Degree of an Extension

If E is an extension of F, then E can be viewed as a vector space over
F. The dimension of this vector space is called the degree of the

extension, denoted by [E:F].

If [E:F] is finite, E is called a finite extension of F. Otherwise, it's an

infinite extension.
For example:
e [R:Q] is infinite

e [C:R] = 2 (because C is a 2-dimensional vector space over R
with basis {1, i})

e [Q(V2):Q] =2 (with basis {1, V2})
The Tower Law
If F € K C E are fields, then [E:F] = [E:K][K:F].

This important property allows us to break down complex extensions

into simpler ones, making them easier to analyze.
3.1.3 Algebraic vs. Transcendental Elements

When studying field extensions, an important distinction is made

between algebraic and transcendental elements.
Algebraic Elements

Let E be an extension field of F, and let a be an element of E. We say
a is algebraic over F if there exists a non-zero polynomial p(x) with

coefficients in F such that p(a) = 0.
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polynomial with coefficients in the base field.
Examples of Algebraic Elements:

1. 2 is algebraic over Q because it satisfies the polynomial x2 -

2=0.

2. 1 (the imaginary unit) is algebraic over R because it satisfies

x2+1=0.

3. Every element of a finite field extension is algebraic over the
base field.

Minimal Polynomial

For any algebraic element o over F, there exists a unique monic
irreducible polynomial mg(x) in F[x] such that mg(a) = 0. This

polynomial is called the minimal polynomial of o over F.
The minimal polynomial has the following properties:

e ltisirreducible over F
e It is monic (the leading coefficient is 1)

e Any polynomial p(x) in F[x] such that p(a) = 0 is divisible by

ma(X)

The degree of the minimal polynomial of a is called the degree of a

over F.
Transcendental Elements

An element o in E is transcendental over F if it is not algebraic over
F. This means that o does not satisfy any non-zero polynomial

equation with coefficients in F.
Examples of Transcendental Elements:

1. = (pi) is transcendental over Q (proved by Lindemann in 1882)
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2. e (Euler's number) is transcendental over Q (proved by
Hermite in 1873)

3. Ingeneral, "most™ real numbers are transcendental over Q

Algebraic and Transcendental Extensions

An extension E/F is called algebraic if every element of E is

algebraic over F. Otherwise, it is transcendental.

For an algebraic element a over F, the field F(a) (the smallest field
containing both F and a) is: F(a)) = {ao + aja + a2a? + ... + am-1Ha™D |

ai€ F}
where n is the degree of the minimal polynomial of a over F.

For a transcendental element t over F, the field F(t) is isomorphic to

the field of rational functions F(x).
Importance of the Distinction

The distinction between algebraic and transcendental elements is

crucial in field theory because:

1. Algebraic extensions are well-structured and can be studied

using tools like minimal polynomials and Galois theory.

2. Transcendental extensions are less structured but are important

in areas like transcendental number theory.

3. The classification of numbers as algebraic or transcendental is

a fundamental problem in number theory.

4. Many important mathematical constants like m and e are
transcendental, which has significant implications in various

areas of mathematics.
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3.2.1: Irreducible Polynomials over a Field

Irreducible polynomials play a crucial role in field theory, particularly
in constructing field extensions. A polynomial is irreducible over a
field if it cannot be factored into polynomials of lower degree over
that field.

Definition and Properties

A non-constant polynomial p(x) in F[x] is irreducible over F if p(x)
cannot be expressed as a product of two non-constant polynomials in
F[x].

Key properties of irreducible polynomials:

1. Linear polynomials (degree 1) are always irreducible.

2. If p(x) is irreducible over F and a is a root of p(x) in some

extension E, then p(x) is the minimal polynomial of o over F.

3. Ifp(x) is irreducible over F of degree n, and a is a root of p(x),

then [F(a):F] =n.

4. Irreducible polynomials play the role of "prime elements" in

the ring F[x] of polynomials.
Methods for Determining Irreducibility

Several techniques can be used to determine whether a polynomial is

irreducible:

1. Eisenstein's Criterion: Let p(X) = anX" + agp-1y XD +
... + a1 X + ao be a polynomial with integer coefficients. If

there exists a prime number p such that:
o pdivides ao, ay, ..., an-1)
o p does not divide an

o p?does not divide ag
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Then p(x) is irreducible over Q.

2.

Reduction modulo p: If the reduction of a polynomial f(x)
with integer coefficients modulo a prime p yields an

irreducible polynomial in Zp[x], then f(x) is irreducible over

Q.

Gauss's Lemma: A polynomial with integer coefficients is
irreducible over Q if and only if it is irreducible over Z and its

content (the greatest common divisor of its coefficients) is 1.

Rational Root Theorem: If p(x)/q(x) is a rational root of a
polynomial f(x) with integer coefficients (where p and q are
coprime integers), then p divides the constant term of f(x) and

q divides the leading coefficient of f(x).

Examples of Irreducible Polynomials:

1.

x? - 2 is irreducible over Q (no rational root)

. X2+ Llis irreducible over R (no real root)

x2 + 1 is reducible over C as (x + i)(x - i)
XP - x - 1 is irreducible over Q for any prime p

Cyclotomic polynomials ®,(x) are irreducible over Q

Constructing Field Extensions Using Irreducible Polynomials

One of the most important applications of irreducible polynomials is

in constructing field extensions:

If p(x) is an irreducible polynomial of degree n over a field F, then the

quotient ring F[X]/(p(x)) is a field extension of F of degree n.

This construction gives us a concrete way to build extension fields.

For example:

QIX]J/(x? - 2) is isomorphic to Q(2)

R[x]/(x? + 1) is isomorphic to C
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e Fp[X])/(p(X)) where p(x) is irreducible of degree n gives us a

field with p”n elements
Field Splitting

An irreducible polynomial p(x) over F may become reducible in an
extension field E. If E contains all the roots of p(x), we say that E is a

splitting field of p(x) over F.
For example:

e Q(\2) is the splitting field of x2 - 2 over Q
o Cisthe splitting field of x> + 1 over R

The concept of splitting fields is central to Galois theory, which

studies the connection between field extensions and group theory.
Solved Problems

Problem 1: Verify that Q(\2) is a field and determine its elements.
Solution:

To verify that Q(\2) is a field, we need to ensure it satisfies all field

axioms.

Q(V2) consists of all elements of the form a + b\2, where a, b are

rational numbers.
First, let's verify that this set is closed under the field operations:

For addition: (a + bV2) + (¢ + d\2) = (a + ¢) + (b + d)V2, which is
again of the form p + q\2 with p, q € Q.

For multiplication: (a + b\2)(c + dV2) = ac + adV2 + be\2 + bd(N2)*=
ac + adV2 + bc\2 + 2bd = (ac + 2bd) + (ad + be)V2, which is againof
the form p + V2 with p, q € Q.

For additive inverse: The negative of a + bV2 is -a - b\2, which is in

Q(\2).
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For multiplicative inverse (where a + bV2 # 0): (a + bV2)D = (a -
bV2)/(a? - 2b2)

Note that a2 - 2b2 # 0 when a + by2 # 0. This fraction gives us: (a -
bV2)/(a? - 2b2) = a/(a? - 2b2) - bV2/(a? - 2b?)

This is of the form p + qV2 with p, q € Q, so the multiplicative inverse

exists in Q(V2).

The remaining field axioms (associativity, —commutativity,
distributivity, and existence of identities) are inherited from the

properties of real numbers.
Therefore, Q(¥2) is indeed a field.

The elements of Q(V2) are all numbers of the form a + b\2, where a
and b are rational numbers. This creates an infinite field with a basis
{1, 2} over Q. This field is a simple algebraic extension of Q, and it
has degree 2 over Q since [Q(N2):Q] = 2.

Problem 2: Find the minimal polynomial of V2 + 3 over Q.
Solution:

We need to find a polynomial p(x) with rational coefficients such that
p(N2 +~3) =0, and p(x) is irreducible over Q.

Let a = V2 + V3. We'll try to find a polynomial by considering the

powers of a.
a=V2+V2=(2+V3)2=2+3+22\V3=5+2V6

Let's compute o3: o3 = o - 0"2 = (N2 + V3)(5 + 2V6) = 5V2 + 5V3 +
2V6V2 + 2V6V3 = 5V2 + 5V3 + 212 + 2918 = 5V2 + 53 + 443 + 612
= 11V2 + 93

Now let's compute o4 o4 = a2 - 02 = (5 + 2V6)? = 25 + 20V6 +24 = 49
+20V6

Looking at these powers, we can see that o satisfies a 4th-degree

polynomial. Let's try to construct it.
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Let p(x) = x* + ax3 + bx? + c¢x + d be the minimal polynomial.

We need to find a, b, ¢, and d such that: p(a) = a* + ao® + boa? +ca +

d=0

Substituting what we've calculated: (49 + 20V6) + a(11V2 + 9v3) +
b(5 +2V6) + c(N2 +V3) +d =0

Collecting the terms: 49 + 20V6 + 11aV2 + 9aV3 + 5b + 2bV6 + c\2 +
cV3+d=0

For this equation to be true, the coefficients of each linearly
independent term (1, V2, V3, V6) must be zero: 1: 49 + 5b +d = 0 V2:
lla+tc=0v3:9a+c=0V6:20+2b=0

From the last equation: b = -10 From the second and third equations:
1la + ¢ =9a+ ¢, so 2a = 0, which means a = 0, and consequently ¢ =
0 From the first equation witha =0, b =-10,c=0: 49 + 5(-10) + d =
0,s0d=-49+50=1

Therefore, the minimal polynomial is: p(x) = x* - 10x? + 1

We can verify this is irreducible over Q by checking that it has no
rational roots (using the rational root theorem) and it cannot be
factored as a product of two quadratics with rational coefficients.

The minimal polynomial of V2 + V3 over Q is x4 - 10x2 + 1.

Problem 3: Determine whether the polynomial x3 - 3x + 1 is

irreducible over Q.
Solution:

To determine if p(x) = x® - 3x + 1 is irreducible over Q, we'll use

several approaches:

First, by the Rational Root Theorem, if p(x) has a rational root p/q in
lowest terms, then p divides the constant term (1) and q divides the
leading coefficient (1). Therefore, the only possible rational roots are
+1.
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Letscheck: p(1)=1-3+1=-1#0p(-1)=-1-3(-1)+1=-1+3+1
=3#0

So p(x) has no rational roots. However, this doesn't immediately prove
irreducibility because p(x) could potentially factor as a product of an

irreducible quadratic and a linear term with irrational coefficients.

Since p(x) is a cubic polynomial, if it were reducible over Q, it would
have to be a product of a linear factor and a quadratic factor, both with
rational coefficients. Since we've established there are no rational
roots, p(x) must be irreducible over Q.

Alternatively, we can use the Eisenstein criterion with a suitable
transformation. Let's try substituting y = x + 1 to get: p(y - 1) = (y -
123-3(y-1)+1=y3-3y?+3y-1-3y+3+1=y3-3y2+0y +3

Applying the Eisenstein criterion with prime p = 3:
o 3 divides the constant term (3)
o 3 does not divide the leading coefficient (1)
e 372 =9 does not divide the constant term (3)

Therefore, y3 - 3y?2 + 3 is irreducible over Q by the Eisenstein
criterion. Since this polynomial is obtained from our original
polynomial through a change of variables, the original polynomial x3-

3x + 1 is also irreducible over Q.

Problem 4: Show that the field extension Q(\/Z, \/3)/Q has degree
4,

Solution:

To find the degree of the extension Q(\/2, V3)/Q, we can use the tower
law: [Q(V2, V3):Q] = [Q(V2, V3):Q(\2)][Q(¥2):Q]

We know that [Q(\/Z):Q] = 2 since V2 has minimal polynomial x? - 2

over Q.
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Now we need to find [Q(V2, V3):Q(\2)].

Consider the minimal polynomial of V3 over Q(\2). Let's check if V3
satisfies a linear polynomial over Q(\2). That would happen if V3
€Q(\2), which means \3 = a + b\2 for some a, b € Q.

If V3 = a + b2, then by squaring both sides: 3 = a2 + 2abV2 + 2b?

Since the left side is rational and V2 is irrational, we must have ab = 0.
If b = 0, then a2 = 3, which has no rational solution. If a = 0, then

2b2 = 3, which also has no rational solution.

Therefore, V3 is not in Q(¥2), so its minimal polynomial over Q(2) is

at least quadratic.

The obvious candidate is x? - 3, and indeed this is a polynomial with
coefficients in Q(\/2) that has V3 as a root. Let's verify this is
irreducible over Q(\2).

If X2 - 3 were reducible over Q(\2), it would factor as (x - a)(x - B)
where o, B € Q(\2). But the roots of x2 - 3 are +V3, and we've just
shown that \3 €Q(\2). Therefore, x2 - 3 is irreducible over Q(V2).

Since the minimal polynomial of V3 over Q(¥2) has degree 2, we have

[Q(V2, V3):Q(V2)] = 2.

Now, applying the tower law: [Q(V2, V3):Q] = [Q(\2,
V3):Q(\V2)][Q(V2):Q] =2 x2=4

Therefore, the degree of the extension Q(\2, V3)/Q is 4.

This means that Q(V2, V3) is a 4-dimensional vector space over Q,
with basis {1, V2, V3, V6}.

Problem 5: Determine if Q(¥2)/Q is a normal extension.
Solution:

A field extension E/F is normal if every irreducible polynomial p(x) in
F[x] that has at least one root in E completely splits (factors into linear

terms) in E[x].
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In our case, we need to determine if Q(\/2)/Q is a normal extension. Notes

The minimal polynomial of V2 over Q is f(x) = x> - 2. This
polynomial has roots \2 and -V2.

Let's check if both roots are in Q(\2):
e 2 is in Q(V2) by definition

e -2 is also in Q(\2) since it's of the form a + bV2 where a =0
and b = -1, which are both in Q

Since both roots of the minimal polynomial x2 - 2 are in Q(\2),
every irreducible polynomial over Q that has a root in Q(¥2) splits
completely in Q(V2).

In fact, any element of Q(V2) is of the form a + bV2 where a, b € Q.
Its minimal polynomial over Q will be either linear (if b = 0, so the

element is already in Q) or quadratic (if b # 0).

If the minimal polynomial is quadratic, it will be of the form (x - (a +
bV2))(x - (a - bV2)), which splits completely in Q(V2).

Therefore, Q(V2)/Q is indeed a normal extension.

Another way to verify this is to note that Q(\2) is the splitting field of
x"2 - 2 over Q, and splitting field extensions are always normal.

Unsolved Problems

Problem 1: Find a basis for the field extension Q(¥2, V3, V5)/Q and

determine its degree.

Problem 2: Prove that the polynomial x* + 1 is irreducible over Q
but reducible over R.

Problem 3: Let F be a field and let p(x) be an irreducible polynomial
in F[x]. Show that the field extension F[x]/(p(x)) is isomorphic to

F(a)), where a is a root of p(x) in some extension field of F.

Problem 4: Determine all elements o in the complex field C such that

Q(a) = Q(1), where 1 is the imaginary unit.



Notes Problem 5: Let f(x) = x3 - 2 and let a be a root of f in some extension
field. Determine the degree of the extension Q(a, ®)/Q, where ® is a

primitive cube root of unity.
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UNIT 3.3 Notes
3.3.1: Simple Extensions and Their Properties

A simple extension is one of the most fundamental types of field
extensions in abstract algebra. It occurs when we adjoin a single
element to a field to create a larger field. This concept is essential for

understanding how to build more complex field structures.
Definition of a Simple Extension

Let F be a field and a be an element not in F. A simple extension,
denoted F(a), is the smallest field containing both F and the element

o
There are two main cases to consider:

1. Algebraic case: When a is algebraic over F

2. Transcendental case: When a is transcendental over F
Properties of Simple Extensions
Property 1: Structure of F(a) when a is algebraic over F
If a 1s algebraic over F with minimal polynomial p(x), then:
F(a) = F[x]/(p(x))

This means that F(a) is isomorphic to the quotient ring of polynomials

F[x] modulo the ideal generated by p(x).

Furthermore, elements of F(a) can be expressed as:

F(o) = {ao + a0 + 2202 + ... + a,10™! | a; € F}

where n is the degree of the minimal polynomial p(x).

Property 2: Structure of F(a) when a is transcendental over F
If o 1s transcendental over F, then:

F(a) = F(X)
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which means F(a) is isomorphic to the field of rational functions in

one variable over F.

Elements of F(a) can be expressed as:

F(o) = {f(a)/g(0) | f(x), g(x) € F[x], g(a) # 0}
Property 3: Degree of a Simple Extension

For an algebraic element a over F, the degree of the extension [F(a):F]

equals the degree of the minimal polynomial of a over F.
Property 4: Tower Law for Simple Extensions

If K = F(a) and L = K(B), then L = F(a,p). Furthermore, [L:F] =
[L:K]-[K:F].

Property 5: Primitive Element Theorem (Preview)

If Fis a field of characteristic 0 and K/F is a finite extension, then K =

F(a) for some o € K. In other words, K is a simple extension of F.
Examples of Simple Extensions
Example 1: Q(\/Z)

The extension Q(V2) is a simple extension of Q obtained by adjoining

\2.

Since 2 is a root of the polynomial p(x) = x2 - 2, which is irreducible

over Q, the minimal polynomial of V2 over Q is x2 - 2.
Therefore:
. [Q(2):Ql=2

e Every element of Q(\/Z) can be written as a + b\/2, where a,
beQ

Example 2: Q(i)

The extension Q(i) is a simple extension of Q obtained by adjoining i

=(-1).
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Since i is a root of the polynomial p(x) = x2 + 1, which is irreducible

over Q, the minimal polynomial of i over Q is x2 + 1.
Therefore:

« [Q():Q]=2

o Every element of Q(i) can be written as a + bi, where a, b € Q
Example 3: Q(w)

Since m is transcendental over Q (a famous result proved by

Lindemann in 1882), the extension Q(m) is a transcendental extension.
Therefore:

e Q(m) consists of all rational functions in © with coefficients in

Q

e Elements have the form f(n)/g(m) where f, g are polynomials

with coefficients in Q and g(m) # 0
e [Q(m):Q] is infinite
Applications of Simple Extensions

Simple extensions are fundamental building blocks in field theory and

have numerous applications:

1. Constructibility problems: Determining which numbers can be

constructed using ruler and compass

2. Solving polynomial equations:  Understanding  when

polynomial equations are solvable by radicals

3. Cyclotomic extensions: Creating fields that contain primitive

roots of unity

4. Number theory: Studying algebraic numbers and their

properties

3.3.2: Algebraic Extensions: Definitions and Examples
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Definition of an Algebraic Extension

Let F € K be a field extension. We say that K is an algebraic

extension of F if every element of K is algebraic over F.

Recall that an element a € K is algebraic over F if there exists a non-

zero polynomial p(x) € F[x] such that p(a) = 0.
Properties of Algebraic Extensions
Property 1: Transitivity of Algebraic Extensions

If F € K < L are fields such that K is algebraic over F and L is

algebraic over K, then L is algebraic over F.
Property 2: Algebraic Elements Form a Field

If F € K is a field extension, then the set of all elements in K that are

algebraic over F forms a field.
Property 3: Finite Extensions are Algebraic

If F € K is a field extension with [K:F] finite, then K is an algebraic

extension of F.
Property 4: Degree of an Algebraic Extension

If K is an algebraic extension of F, then [K:F] equals the cardinality of

a basis of K as a vector space over F (possibly infinite).
Property 5: Products of Algebraic Extensions

If Ki and K- are algebraic extensions of F contained in some larger

field, then the compositum KiK: is also an algebraic extension of F.
Examples of Algebraic Extensions

Example 1: Q(V2, \3)

The field Q(V2, ¥3) is obtained by adjoining both V2 and V3 to Q.

Since both V2 and V3 are algebraic over Q, this is an algebraic

extension.
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« [Q(V2,V3):Q] =4 Notes
e Abasis for Q(V2, V3) over Q is {1, V2, V3, ¥2-V3}

« Every element can be written as a + bV2 + ¢V3 + dvV2-\3
where a, b, c,d € Q

Example 2: Q(2(1/3))
The field Q(2(13)) is obtained by adjoining the real cube root of 2 toQ.
Since 2(13) js a root of x3 - 2, which is irreducible over Q, we have:

. [Q@uI):Q]=3

« Abasis for Q(213) over Q is {1, 213, 223}

o Every element can be written as a + b-20%) + ¢.2(23)

wherea, b,c € Q

Example 3: The Algebraic Closure of Q

The set of all complex numbers that are algebraic over Q, denoted Q,

forms an algebraic extension of Q.
This extension has the following properties:
e Qisalgebraic over Q

« Every polynomial in Q[x] splits completely into linear factors

over Q
o [Q:Q]is infinite
o Qs countably infinite
Example 4: Field of Algebraic Numbers

The field of all algebraic numbers, A, is the set of all complex

numbers that are algebraic over Q.

This is an algebraic extension of Q with infinite degree.
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Example 5: Finite Fields

For a prime p and a positive integer n, the finite field GF(p") is an

algebraic extension of GF(p) of degree n.
Algebraic vs. Transcendental Extensions

An extension that is not algebraic is called transcendental. Here's a

comparison:
Algebraic Extensions:

e Every element satisfies a polynomial equation with
coefficients in the base field

e Can have finite or infinite degree

« Examples: Q(2), Q(i), Q(217)
Transcendental Extensions:

e Contain at least one element that doesn't satisfy any

polynomial equation with coefficients in the base field
o Always have infinite degree
o Examples: Q(m), Q(e), R(x) (rational functions)
Algebraic Closure
Definition

An algebraic closure of a field F, denoted F, is an algebraic extension
of F that is algebraically closed (meaning every non-constant

polynomial in F[x] has a root in F).
Properties of Algebraic Closures

1. Every field has an algebraic closure (requires Zorn's Lemma)
2. The algebraic closure is unique up to isomorphism

3. If F has characteristic 0, then F has characteristic 0
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4. If F has characteristic p > 0, then F has characteristic p

Example: Algebraic Closure of the Real Numbers

The algebraic closure of R is C, the field of complex numbers.
Solved Problems

Problem 1: Find the minimal polynomial of V2 + 3 over Q.

Solution: Let o= V2 + 3. We need to find the minimal polynomial of

aover Q.

Step 1: Calculate the powers of a. o =V2 + V3 02 = (2 +V3)2=2+3
+2V2-V3 =5+ 26

Step 2: Calculate a? - 5 =26, s0 (02 - 5) =24 (02 - 5)> = 24 o* - 1002
+25=240*-1002+1=0

Step 3: Check that this polynomial is irreducible over Q. If p(x) = x* -
10x2 + 1 were reducible, it would factor as a product of two quadratic
polynomials. We can verify that no such factorization exists using the

rational root theorem and checking possible quadratic factors.
Therefore, the minimal polynomial of V2 + \3 over Q is x* - 10x2 + 1.

Problem 2: Determine the degree of the extension Q(\/Z, \/3, \/5)

over Q.

Solution: Step 1: Consider the tower of extensions: Q €Q(\2) <

Q(V2,V3) € Q(V2, V3, V5)

Step 2: Calculate the degrees of each extension. [Q(V2):Q] = 2 since
the minimal polynomial of V2 over Q is x? - 2. [Q(N2, V3):Q(\2)] =2
since the minimal polynomial of V3 over Q(\2) is x? - 3. [Q(V2, V3,
V5):Q(V2, V3)] = 2 since the minimal polynomial of V5 over Q(V2,
V3)is x2 - 5.

Step 3: Apply the tower law. [Q(V2, V3, V5):Q] = [Q(V2, V3,

V5):Q(V2, V3)] x [Q(V2, ¥3):Q(\2)] x [Q(\2):Q] [Q(\2, V3, \5):Q] =
2x2x%x2=8
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Therefore, the degree of Q(\N2, V3, V5) over Q is 8.

Problem 3: Determine if the extension Q(\/Z, 3\/5) over Q is a

simple extension.

Solution: Step 1: Consider a = V2 + 3v5. Let's check if Q(\2, 3V5) =
Q(a).

Step 2: Show that V2 and 3V5 can be expressed in terms of o and
elements of Q. o= V2 + 3V5 02 = (\2)2 + 672-V5 + 9(V5)2 = 2 + 6710
+45=47+6V10

If we let p = a2 - 47, then p = 6710. B2 =36 - 10 = 360, so V10 = /6.

Now, (V2)(V10) = V20 = 25, so V5 = (¥2)(V10)/2. Therefore, V5 =
(\2)(B/6)/2 = (\N2)(B)/12.

Since we know B in terms of o, we can express V5 in terms of o and

elements of Q. Then, 3V5 = 3(N2)(B)/12 = (N2)(B)/4.

Also, V2 = a - 3V5 = a - (V2)(B)/4. 4\2 = 4a - (N2)(B). 4\2 + (V2)(B) =
4o. N2(4 + B) = 4a. \2 = 4a/(4 + B).

Step 3: Since both V2 and 3V5 can be expressed in terms of a and
elements of Q, we have Q(V2, 3v5) = Q(«).

Therefore, Q(V2, 3V5) is a simple extension, specifically Q(V2 + 3v5).

Problem 4: Find a basis for Q(V2, i) over Q and determine its

degree.

Solution: Step 1: Consider the tower of extensions: Q € Q(i) <Q(i,

V2)

Step 2: Calculate the degrees of each extension. [Q(i):Q] = 2 since the
minimal polynomial of i over Q is x2 + 1. [Q(i, ¥2):Q(i)] = 2 since the
minimal polynomial of V2 over Q(i) is x? - 2.

Step 3: Apply the tower law. [Q(i, ¥2):Q] = [Q(@, ¥2):Q()] * [Q(i):Q]
=2x2=4

132



Step 4: Find a basis for Q(i, V2) over Q. Since [Q(i, V2):Q] = 4, we
need four linearly independent elements. A basis for Q(i) over Q is {1,
i}. A basis for Q(i, V2) over Q(i) is {1, V2}.

The complete basis for Q(i, V2) over Q is: {1, i, V2, iN2}

Any element of Q(i, V2) can be written uniquely as a + bi + cV2 +
diN2, where a, b, ¢, d € Q.

Problem 5: Prove that if o is algebraic over F with minimal
polynomial p(x), then F(a) = F[x]/(p(x)).

Solution: Step 1: Define a ring homomorphism ¢: F[x] — F(a) by
¢(f(x)) = f(a).

Step 2: Verify that @ is indeed a ring homomorphism.
o o(f(x) + g(x)) = (f+ g)(a) = f(a) + g(a) = @(f(x)) + p(g(x))
o o(f(x) - g(x)) = (f- g)(o) = fla) - g(a) = p(f(x)) - p(g(x))
e o()=1

Step 3: Determine the kernel of ¢. The kernel of ¢ is the set of all
polynomials f(x) € F[x] such that f(a) = 0. Since p(x) is the minimal
polynomial of a over F, any polynomial f(x) such that f(a) = 0 must be

divisible by p(x). Therefore, ker(p) = (p(x)), the ideal generated by
P(X).

Step 4: By the First Isomorphism Theorem, we have: F[x]/ker(¢)
=Im(p) F[x}/(p(x)) =Im(e)

Step 5: Show that Im(p) = F(a). Clearly, Im(¢p) € F(a) since ¢ maps
into F(a). F(a) is the smallest field containing F and o, and Im(¢o)
contains F (as constants) and a (as ¢(x)). Since Im(¢) is a ring and
contains inverses for all non-zero elements (due to the fact that p(x) is

irreducible), Im(p) is a field. Therefore, F(a) SIm(¢p), and we have
Im(¢) = F(a).

Step 6: Conclude that F(a) = F[X]/(p(X)).
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Unsolved Problems
Problem 1:

Determine whether the extension Q(2(4, i) over Q is a simple

extension. If it is, find an element a such that Q(2("¥, i) = Q(w).
Problem 2:

Let F = Q(\2) and K = F(¥3, V5). Find the degree [K:F] and

determine a basis for K over F.
Problem 3:

Prove that if F is a field of characteristic 0 and o,  are algebraic
elements over F that are not in F, then a + 3, a - B, af}, and o/p (if B #

0) are all algebraic over F.

Problem 4:

Find the minimal polynomial of o = cos(2n/7) over Q.
Problem 5:

If F € K is a field extension and o € K is transcendental over F, prove
that [F(a, 0?):F(a)] =1 and [F(a, 1/a):F(a)] = 1.

Summary of Key Concepts

1. Simple Extensions:

o F(a) is the smallest field containing F and the element

o

o If a is algebraic with minimal polynomial p(x), then

F(a) = F[x]/(p(x))

o If a is transcendental, then F(a) = F(x), the field of

rational functions

2. Algebraic Extensions:
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o An extension K/F is algebraic if every element of K is

algebraic over F
o Finite extensions are always algebraic
o Algebraic extensions are transitive

o The set of all algebraic elements over a field forms a
field

3. Degree of Extensions:

o For algebraic o, [F(a):F] equals the degree of the

minimal polynomial
o The tower law: [L:F] = [L:K] x [K:F]

o The degree of a finite extension equals the dimension

as a vector space
4. Basis Representation:

o For algebraic a with minimal polynomial of degree n,

elements of F(a) can be written as linear combinations

of {1, a, &2, ..., oD}

o A basis allows us to represent and compute with

elements of field extensions
5. Minimal Polynomials:

o The minimal polynomial is the monic polynomial of

least degree with coefficients in F that has a as a root
o The minimal polynomial is always irreducible

o Finding minimal polynomials is a key technique in

studying field extensions

These concepts form the foundation for understanding more complex

field extensions and their applications in various areas of
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mathematics, including Galois theory, algebraic geometry, and

number theory.
3.3.3 Finite Extensions and Their Structure
Introduction to Finite Extensions

A field extension L over a field K (denoted as L/K) is called a finite
extension if L has finite dimension as a vector space over K. This

dimension is called the degree of the extension, written as [L:K].

Finite extensions are fundamental objects in field theory and have
numerous applications in algebra, number theory, and cryptography.

In this section, we'll explore their structure and key properties.
Basic Properties of Finite Extensions
Degree of an Extension

For a field extension L/K, if L is a finite-dimensional vector space

over K, then the dimension [L:K] is called the degree of the extension.

For example, if we consider Q(2) over Q, any element can be written

as a + b\2 where a,b€ Q. The set {1, V2} forms a basis for Q(\2) over
Q50 [Q(V2):0] = 2.

Tower Law
If K< L < M are fields, then:
[M:K] = [M:L][L:K]

This multiplicative property is extremely useful in computing degrees

of complicated extensions.
Simple Extensions

An extension L/K 1s called simple if L = K(a) for some element a € L.
When a is algebraic over K, the degree [K(a):K] equals the degree of

the minimal polynomial of o over K.

Algebraic Extensions
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An element o is algebraic over K if it satisfies a non-zero polynomial Notes
with coefficients in K. An extension L/K is algebraic if every element

of L is algebraic over K.

All finite extensions are algebraic, but not all algebraic extensions are

finite.
Properties of Algebraic Extensions

1. If ais algebraic over K, then K(a)/K is a finite extension.
2. If L/K is a finite extension, then L/K is algebraic.
3. The composition of algebraic extensions is algebraic.

Primitive Element Theorem

A fundamental result about finite extensions is the Primitive Element

Theorem:

If L/K is a finite separable extension, then L = K(a) for some o € L.
This means that any finite separable extension is simple.

Separable and Inseparable Extensions

Separability

An irreducible polynomial p(x) over a field K is separable if it has no
repeated roots in its splitting field. An algebraic element a over K is

separable if its minimal polynomial over K is separable.

An extension L/K is separable if every element of L is separable over
K.

Separable Degree

For an extension L/K, the separable degree [L:K]s is the maximum

degree of a separable subextension of L/K.
Inseparable Degree

The inseparable degree [L:K]i is defined as [L:K]i = [L:K]/[L:K]s.
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Normal Extensions

An algebraic extension L/K is normal if every irreducible polynomial

in K[x] that has one root in L has all its roots in L.

Equivalently, L/K is normal if L is the splitting field of a family of

polynomials over K.

Galois Extensions

A field extension L/K is Galois if it is both normal and separable. For

a Galois extension L/K:

1.

The Galois group Gal(L/K) consists of all field automorphisms
of L that fix K.

IGal(L/K)| = [L:K]

There is a one-to-one correspondence between intermediate

fields and subgroups of the Galois group.

Examples of Finite Extensions

Example 1: Q(V2)/Q

Degree: [Q(V2):Q] =2

Basis: {1, V2}

Minimal polynomial of V2 over Q: x? - 2

This is a simple, separable, and normal extension.

Galois group: Z>

Example 2: Q(¥2)/Q

Degree: [Q(¥2):Q] =3

Basis: {1, V2, (¥2)2}

Minimal polynomial of ¥/2 over Q: x? - 2
This is a simple extension but not normal.
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Example 3: Q(V2, V3)/Q

e Using the tower law: [Q(\2, V3):Q] = [Q(2,
\3):0(\2)][Q(¥2):Q]

« [Q(2):Q]=2

o [Q(V2,V3):Q0(\2)] =2 (since V3 is not in Q(V2))
e Therefore, [Q(V2, V3):Q]=2%x2=4

 Basis: {1, V2,3, V6!

e This is a Galois extension with Galois group isomorphic to
Klein four-group.

3.3.4 Construction of Finite Fields
Introduction to Finite Fields

A finite field (or Galois field) is a field with a finite number of
elements. The order of a finite field (the number of elements) must be

a prime power p°, where p is a prime and n is a positive integer.

For each prime power p®, there exists exactly one finite field up to

isomorphism, denoted as GF(p®) or Fp~.
Construction of Prime Fields

The simplest finite fields are those of prime order, denoted GF(p) or

Fp. These can be constructed as Z/pZ, the integers modulo p.

For example, Fs = {0, 1, 2} with addition and multiplication defined

modulo 3.
Construction of Extension Fields

For constructing finite fields of order p» where n > 1, we need to

construct field extensions of degree n over Fp.
Method 1: Using Irreducible Polynomials

To construct GF(p»):
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Notes 1. Find an irreducible polynomial f(x) of degree n over Fp.
2. Form the quotient ring Fp[X]/(f(x)).
3. This quotient ring is a field with p» elements.

Method 2: As Splitting Fields

GF(p") can also be constructed as the splitting field of the polynomial

xp" - X over Fp.
Properties of the Construction
1. Every element of GF(p®) is a root of the polynomial xp~ - X.
2. GF(pn) is the splitting field of xp» - X over Fp.
3. The multiplicative group GF(p»)* is cyclic of order p» - 1.
Examples of Finite Field Constructions
Example 1: Construction of GF(4)
To construct GF(4) = F2%:

1. Find an irreducible polynomial of degree 2 over F2: f(x) = x> +

x+1
2. F2=Fx]/(x*+x+1)

3. Elements: {0, 1, a, o+1} where a represents the coset x + (x> +

X +1)

4. Addition and multiplication tables can be derived using the

conditiona>+a+1=0
Example 2: Construction of GF(8)

To construct GF(8) = F2?:

1. Find an irreducible polynomial of degree 3 over Fa: f(x) = x> +

X+1

2. F2P2=Fx)/(x*+x+1)
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3. Elements: {0, 1, a, o?, o+1, o*+1, o*+a, o*+a+l} where a

represents the coset X + (x3 + x + 1)
4. Operations defined via the condition o> +a+ 1 =10

Example 3: Construction of GF(9)
To construct GF(9) = Fs%

1. Find an irreducible polynomial of degree 2 over Fs: f(x) = x> +

1
2. F2=F:x)/(x*+1)

3. Elements: {0, 1, 2, a, 20, atl, o+2, 20+1, 20+2} where o

represents the coset x + (x? + 1)
4. Operations defined via the condition o> = -1 =2 (in F3)

Computational Techniques
Finding Irreducible Polynomials
A polynomial of degree n over Fp is irreducible if and only if:

1. It divides xp" - X
2. It does not divide xpk - x for any k <n

Alternatively, we can check if the polynomial has no roots in Fp and

is not divisible by any irreducible polynomial of lower degree.
Primitive Polynomials

A polynomial f(x) of degree n over Fp is primitive if its roots generate

the multiplicative group of GF(p»).

Primitive polynomials are particularly useful in applications like

linear feedback shift registers.
3.3.5 Properties and Applications of Finite Fields

Structural Properties of Finite Fields
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Order and Characteristic

e A finite field GF(p") has p" elements, where p is a prime (the

characteristic of the field) and n is a positive integer.
e The additive group of GF(p) is isomorphic to (Zp)".
e The multiplicative group GF(p")* is cyclic of order p» - 1.
Primitive Elements

A primitive element (or generator) of GF(p”) is an element whose

powers generate all non-zero elements of the field.

Every finite field has at least one primitive element. In fact, the
number of primitive elements in GF(p®) is ¢(p - 1), where ¢ is Euler's

totient function.
Subfield Structure

If GF(p™) is a subfield of GF(p®), then m divides n. Conversely, if m
divides n, then GF(p™) is isomorphic to a subfield of GF(p»).

The subfields of GF(p®) form a lattice isomorphic to the lattice of

divisors of n.
Field Automorphisms
Frobenius Automorphism

For any finite field GF(p~), the map o: X = Xr IS an automorphism

called the Frobenius automorphism.

The group of automorphisms of GF(p») over Fp is cyclic of order n,

generated by the Frobenius automorphism.

Fixed Fields

For any divisor m of n, the fixed field of o™ is GF(p™).
Polynomial Factorization over Finite Fields

Factorization Patterns
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The polynomial xp» - x factors as the product of all monic irreducible

polynomials over Fp whose degrees divide n.
Counting Irreducible Polynomials

The number of monic irreducible polynomials of degree d over Fp is

given by:

N(p,d) = (1/d)>; w(i)p@

where the sum is over all divisors 1 of d, and p is the Mdbius function.
Trace and Norm

Trace Function

For an element a in GF(p") over the subfield GF(p™), the trace is

defined as:

Tr(o) = o+ ap™ + ap2m + ., + gp@/m-Hm

The trace function is a linear transformation from GF(p~) to GF(p™).
Norm Function

Similarly, the norm of a is defined as:

N(a) =o - apm - @p2m . . . gp/m-bhm

The norm function is multiplicative and maps GF(p») to GF(p™).
Applications of Finite Fields

Coding Theory

Finite fields are essential in the construction of error-correcting codes

such as:

o Reed-Solomon codes
e BCH codes
e Algebraic geometric codes

These codes are used in digital communications, data storage, and

satellite communications.
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Notes Cryptography
Finite fields play a crucial role in modern cryptography:

e In AES (Advanced Encryption Standard), operations are
performed in GF(2?)

« Elliptic curve cryptography operates over finite fields

e Many public-key cryptosystems rely on the discrete logarithm

problem in finite fields

Computer Algebra
Finite fields are used in:

o Polynomial factorization algorithms
e Solving systems of polynomial equations
o Computational number theory
Combinatorial Designs
Finite fields are used to construct various combinatorial designs:
« Finite projective planes
o Block designs
« Difference sets
Algebraic Geometry
Finite fields provide concrete examples for studying:
e Algebraic curves
e Zeta functions
o Discrete Fourier transform

Solved Problems

Problem 1: Determine the degree of the extension Q(\/Z, \/3, \/5)/@.
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Solution: We can use the tower law to compute this degree: [Q(V2, V3,
V5):Q] = [Q(V2, V3, V5):Q(V2, V3)I[Q(V2, V3):Q(V2)][Q(N2):Q]

Step 1: [Q(¥2):Q] = 2 since the minimal polynomial of V2 over Q is x
- 2.

Step 2: [Q(V2, V3):Q(N2)] = 2 since V3 is not in Q(12) and its minimal
polynomial over Q(\2) is x2 - 3.

Step 3: We need to determine if V5 belongs to Q(V2, V3). If V5 €Q(V2,
\/3), then V5 = a + by2 + ¢V3 + dV2V3 for some a, b, ¢, d € Q.
Squaring both sides: 5 = (a + b\2 + cV3 + dV2V3)? = a? + 2b% + 3¢ +
6d> + 2abV2 + 2ac\3 + 2adV2V3 + 2be V23 + 2bdV6 + 2¢dV6

For this to equal 5, we need: a2 + 2b2 + 3c2+ 6d2=5ab =ac =ad = bc
=bd=cd=0

These equations have no rational solutions except the triviala=b =c¢
= d = 0, which doesn't give V5. Therefore, V5 ¢Q(\2, V3), so [Q(12,
V3, V5):Q(N2, V3)] = 2.

Thus, [Q(V2, V3, V5):Q] =2 x 2 x 2 =8.

Problem 2: Construct the finite field GF(4) and provide its

addition and multiplication tables.

Solution: To construct GF(4), we need an irreducible polynomial of

degree 2 over F2. The polynomial x*> + x + 1 is irreducible over Fo.
Therefore, GF(4) = Fz[x]/(x>* + x + 1).

Let a represent the coset x + (x2 + x + 1). Then GF(4) = {0, 1, a,

o+l}.

From the relation x> + x + 1 =0, we get o> + a + 1 = 0, which implies

o*=a+ 1.
Addition Table (using modulo 2 addition):

+10 1 a a+l
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010 1 a otl

11 0 atla

ola otl0 1

atljatla 1 0

Multiplication Table:

x |10 1 o atl

0|0 00O

110 1 a atl

a0 o otll

atl|0 o+l 1 «

To verify these tables, let's compute some entries:
e axo=0ao?>=a+ 1 (from our relation)
e axX(atl)=0+a=(oat])+a=1
e (atl)yx(ot+tl)=o0*+at+ta+1l=0*+1=(at])+1=a

Problem 3: Prove that xr - x + a is irreducible over F, for any a #
0.

Solution: We need to show that f(x) = x - x + a has no roots in F, and

is not divisible by any irreducible polynomial of degree less than p.

Step 1: Check if f(x) has roots in F,. For any b € F,, we have b>» = b
(by Fermat's Little Theorem). So f(b) =br-b+a=Db-b+a=a. Since
a# 0, f(b) #0 for all b € F,,. Thus, f(x) has no roots in F,,.

Step 2: Show that f(x) is not divisible by any irreducible polynomial

of degree d where 1 <d <p.

Let's use the characteristic of the derivative. The derivative of f(x) is

f'(xX) =pxrt-1=-1(since p=0in F)).
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Since f'(x) = -1 # 0, f(x) and f(x) are coprime. This means f(x) has no

repeated factors.

Now, if f(x) were divisible by an irreducible polynomial g(x) of
degree d where 1 < d < p, then f(x) would have a root a in some

extension field of F, with [Fy(a):F;] = d.

However, we can show that for any root a of f(x), the elements a, a+1,

at2, ..., o+(p-1) form a set of p distinct roots of f(x).

Since f(a) = 0, we have or = a - a. Now, for any i€ F,, compute f(o+i):
florti) = (a+i)p - (ati) +a=oar +iP - o - 1 + a (since (Xx+y)? = xP + yr in

Fp)=ar+i-a-i+a(sinceir=iinF,)=ar-a+a=0

So f(x) has at least p roots. But f(x) has degree p, so it can have at
most p roots. Therefore, f(x) must have exactly p roots and must be

irreducible over F,.
Problem 4: Find all subfields of GF(64).
Solution: GF(64) = GF(2°)

The subfields of GF(2°) are GF(2¥) where k divides 6. The divisors of
6arel, 2, 3, and6.

Therefore, the subfields of GF(64) are:

GF(2Y) = GF(2) (the prime field)

GF(2?) = GF(4)

GF(2%) = GF(8)

GF(2°¢) = GF(64) (the field itself)

To verify this, we can check the subfield criterion: GF(p™) is a
subfield of GF(p») if and only if m divides n.

Problem 5: Determine the number of irreducible polynomials of

degree 4 over Fs.
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Solution: We can use the formula for counting monic irreducible

polynomials:
N(p,d) = (1/d)%; u(i)p@
where the sum is over all divisors i of d, and p is the Mobius function.

For p = 3 and d = 4, the divisors of 4 are 1, 2, 4. (1) =1 p(2) = -1
n4)=0

N@G3,4) = (1/4)[1(1)-3* + u(2)-32 + pu(4)-3'] = (1/4)[1-81 - 1.9 + 03] =
(1/4)[81 - 9] = (1/4)[72] = 18

Therefore, there are 18 irreducible polynomials of degree 4 over Fs.

To verify this another way, the polynomial x3* - X splits completely
over Fs* and factors as the product of all monic irreducible

polynomials over Fs whose degrees divide 4.
The total number of monic polynomials of degree dividing 4 is:
o Degree 1: 3 polynomials (x, x-1, X-2)
o Degree 2: 9 polynomials
o Degree 4: 81 polynomials
Of these, we know:
e 3areirreducible of degree 1
e N(3,2) = 3 are irreducible of degree 2
e N(3,4) are irreducible of degree 4

So we have: 3-1 + 3-2 + N(3,4)-4 = 81 This gives: N(3,4) = (81 - 3 -
6)/4 =18

Unsolved Problems

Problem 1: Let o be a root of x* + x + 1 over F.. Determine the

minimal polynomial of o* + a over Fo.
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Problem 2: Prove that in a finite field of characteristic p, the map f(x)

= Xr is an automorphism.

Problem 3: Determine the number of primitive elements in GF(2?%).

Problem 4: Find all elements o in GF(16) such that o® = 1.

Problem 5: Let p be a prime and let F be a field with p? elements. If a

is an element of F that is not in the prime subfield, show that F =

Fp(a).

Multiple Choice Questions (MCQs)

1.

An extension field of a field F is:
a) A subset of F

b) A field containing F as a subfield
c) A group containing F

d) None of the above

. An element is algebraic over a field F if:

a) It satisfies a polynomial equation with coefficients in F
b) It is not a root of any polynomial in F[X]
c) It is transcendental over F

d) None of the above

A simple extension of a field F is:

a) An extension generated by one element
b) A transcendental extension

¢) An infinite extension

d) None of the above

Finite fields are also known as:
a) Prime fields

b) Algebraic extensions

c¢) Galois fields

d) None of the above

Every finite field has:

a) A prime number of elements
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6.

b) A power of a prime number of elements
¢) An infinite number of elements

d) None of the above

The characteristic of a finite field of order pn is:
a)0
b) p
c)n

d) None of the above

The minimal polynomial of an algebraic element is:
a) The lowest-degree polynomial it satisfies

b) A polynomial with no roots in any field

¢) The product of all polynomials it satisfies

d) None of the above

The multiplicative group of a finite field is:
a) Cyclic

b) Abelian but not cyclic

c¢) Non-abelian

d) None of the above

Short Answer Questions

1.

What is an extension field? Provide an example.

Differentiate between algebraic and transcendental elements.
Define an irreducible polynomial and give an example.

What is a simple extension of a field?

Explain the significance of algebraic extensions in field theory.
How do we construct finite fields?

What is the characteristic of a finite field?

Give an example of a finite field and explain its structure.
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9.

10.

Define the degree of a field extension and provide an example.

Why is the multiplicative group of a finite field always cyclic?

Long Answer Questions

1.

10.

Explain in detail the concept of extension fields and their

importance in algebra.

Differentiate between algebraic and transcendental numbers

with examples.

Define irreducible polynomials and explain their role in

constructing field extensions.

Discuss simple extensions and their applications in field

theory.
How do we classify algebraic extensions? Give examples.
Explain the structure and properties of finite fields.

What is the significance of the minimal polynomial in field

theory? Provide detailed examples.
Prove that the multiplicative group of a finite field is cyclic.

Discuss the applications of finite fields in cryptography and
coding theory.

How do field extensions help in understanding the solutions of

polynomial equations?
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MODULE 4
UNIT 4.1
AUTOMORPHISMS OF FIELDS
Objectives
e Understand the concept of field automorphisms.

o Learn about conjugation isomorphisms and their significance.

e Explore the relationship between automorphisms and fixed
fields.

o Study the Frobenius automorphism and its applications.

Analyze the structure and importance of splitting fields.

4.1.1: Introduction to Field Automorphisms

Field automorphisms are fundamental structures in modern algebra
that help us understand the internal symmetries and structures of
fields. These mathematical objects serve as critical tools in various
branches of mathematics, including Galois theory, algebraic geometry,
and number theory. At the most basic level, a field automorphism is a
structure-preserving mapping of a field to itself. Unlike general field
homomorphisms that can map between different fields,
automorphisms specifically deal with self-mappings. This restriction
makes them particularly useful for studying the internal structure of a
single field. The study of field automorphisms originated in the early
19th century, primarily through the work of Evariste Galois. His
groundbreaking insights connected the automorphisms of a field with
the solvability of polynomial equations, establishing what we now
know as Galois theory. This connection revealed that the structure of
automorphism groups directly relates to the structural properties of the
field itself.

Field automorphisms preserve all the essential field operations —

addition and multiplication — while maintaining the distinct identities
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of the field. This preservation property ensures that the algebraic
structure remains intact under the mapping. Additionally,
automorphisms must be bijective, meaning they establish a one-to-one
correspondence between elements. Consider a simple example: the
field of real numbers. The identity mapping, which maps each real
number to itself, is the only field automorphism of the reals. However,
for more complex fields like the complex numbers, additional
automorphisms exist, such as complex conjugation, which maps a
complex number to its conjugate. The collection of all automorphisms
of a field forms a group under composition, known as the
automorphism group. This group structure provides deep insights into
the field's properties. For instance, in Galois theory, the automorphism
group of a field extension directly relates to the structure of
polynomial equations that have roots in that extension. Field
automorphisms also play crucial roles in understanding field
extensions. When we extend a field by adjoining elements, the
automorphisms that fix the original field help us analyze the structure
of the extension. This connection proves invaluable in determining
which polynomial equations are solvable by radicals and which are
not. As we delve deeper into field automorphisms, we'll explore their
formal definitions, examine concrete examples, study specific types
like conjugation isomorphisms, and investigate the concept of fixed
fields, which provides a powerful tool for analyzing field structures

and extensions.
4.1.2: Definition and Examples of Field Automorphisms
Definition of Field Automorphisms

A field automorphism is a bijective mapping from a field to itself that
preserves the field operations. Formally, if F is a field, then a function
o: F — F is a field automorphism if it satisfies the following

conditions:

1. Bijective: o is both injective (one-to-one) and surjective (onto)

2. Preserves addition: For all a, b € F, 6(a + b) = o(a) + o(b)
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3. Preserves multiplication: For all a, b € F, o(a x b) = o(a) x
o(b)

From these properties, several important consequences follow:

0(0) = 0 (preservation of additive identity)

o(1) =1 (preservation of multiplicative identity)

o(-a) = -o(a) (preservation of additive inverse)

o(a™') =o(a) for a # 0 (preservation of multiplicative inverse)

The set of all automorphisms of a field F forms a group under
function composition, denoted by Aut(F). This group structure is
central to understanding the algebraic properties of the field itself.

Examples of Field Automorphisms
Example 1: The Identity Automorphism

The simplest field automorphism is the identity automorphism, id: F
— F, defined by id(a) = a for all a € F. This automorphism exists for

every field and serves as the identity element in the automorphism
group.

Example 2: Automorphisms of Q

The field of rational numbers Q has only one automorphism: the
identity automorphism. This can be proven by noting that any
automorphism must fix the integers (since it preserves addition and
the multiplicative identity), and by extension, it must fix all rational

numbers.
Proof sketch: Let 6 be an automorphism of Q. Then:

e o(1)=1 (preservation of multiplicative identity)

e on)=o(l+1+..+1)=0c(l)+c(l)+..+0o(l)=n for any

integer n
o For any rational number p/q, o(p/q) = o(p)/o(q) = p/q
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Example 3: Automorphisms of R

Similar to Q, the field of real numbers R also has only the identity
automorphism. This result is less obvious and requires properties of

ordered fields and continuity.

Example 4: Automorphisms of C

The complex field C has exactly two automorphisms:
1. The identity automorphism: id(a + bi) = a + bi
2. Complex conjugation: conj(a + bi) =a - bi

The fact that these are the only automorphisms of C can be proven
using the fact that any automorphism must fix the reals (which can be
shown using properties of ordered fields) and must either fix i or map

it to -i.
Example 5: Automorphisms of Finite Fields

For a finite field with p" elements (where p is prime), there are
exactly n automorphisms. For instance, consider the field F. = {0, 1,

o, a+1} where o> + o + 1 = 0. The automorphisms are:

1. The identity: id(x) = x for all x € Fa4
2. The Frobenius automorphism: Frob(x) = x2 for all x € Fa4

Note that in Fs, x> = x for all elements, so the Frobenius

automorphism is also the identity in this specific case.
Example 6: Automorphisms of Q(\2)

The field Q(\2) consists of numbers of the form a + bV2 where a, b €

Q. This field has two automorphisms:
1. The identity: id(a + bV2) =a + b\2
2. The mapping o defined by o(a + bV2) =a - b\2

The second automorphism maps \2 to -V2 while fixing all rational

numbers.
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Example 7: Frobenius Automorphism in Characteristic p Fields

For a field F of characteristic p > 0, the Frobenius map ¢: F — F
defined by ¢(x) = xP is always a field homomorphism. In finite fields
of characteristic p, this map is also an automorphism.The collection of
automorphisms forms a group structure that provides deep insights
into the field's algebraic properties. This automorphism group,

denoted Aut(F), is a central object of study in Galois theory.
4.1.3: Conjugation Isomorphisms

Conjugation isomorphisms are a special class of field automorphisms
that play a crucial role in understanding field extensions and algebraic
structures. They are particularly important in Galois theory and the
study of splitting fields.

Definition of Conjugation Isomorphisms

Let F be a field and let E be an extension field of F. A conjugation
isomorphism over F is an automorphism ¢ of E that fixes every

element of F. In other words, o(a) =a foralla € F.

Formally, the set of all such automorphisms forms a group called the

Galois group of E over F, denoted by Gal(E/F):
Gal(E/F) = {c €Aut(E) | o(a) = a for all a € F}

Conjugation isomorphisms derive their name from their similarity to
complex conjugation, which is the prototypical example of such an

isomorphism.
Properties of Conjugation Isomorphisms

1. Fixed Field Preservation: Every element of the base field F is
fixed by all conjugation isomorphisms in Gal(E/F).

2. Group Structure: The set of all conjugation isomorphisms

forms a group under composition.

3. Finiteness in Algebraic Extensions: If E is a finite algebraic

extension of F, then Gal(E/F) is a finite group.
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4. Order Bound: If E is a finite extension of F with [E:F] = n (the
degree of the extension), then |Gal(E/F)| < n, with equality

holding when the extension is Galois.

5. Action on Roots: Conjugation isomorphisms permute the roots
of irreducible polynomials. If a is a root of an irreducible
polynomial f(x) over F, then o(a) is also a root of f(x) for any

o € Gal(E/F).

Examples of Conjugation Isomorphisms
Example 1: Complex Conjugation

The classic example is complex conjugation on C viewed as an
extension of R. The conjugation map ¢: C — C defined by o(a + bi) =
a - bi is an automorphism of C that fixes every real number. Thus,
Gal(C/R) = {id, o}, a group of order 2.

Example 2: Conjugation in Q(\2)

Consider the field extension Q(N2)/Q. The conjugation map o: Q(\2)
— Q(V2) defined by o(a + b\V2) = a - b\2 for a, b € Q is an
automorphism that fixes every rational number. Here, Gal(Q(\/2)/Q) =

{id, o}, also a group of order 2.
Example 3: Cyclotomic Extensions

For the cyclotomic extension Q(,)/Q, where . is a primitive nth root
of unity, the conjugation isomorphisms are given by ox(,) = G.* for all
k coprime to n. The Galois group Gal(Q({,)/Q) is isomorphic to the
multiplicative group (Z/nZ)* of integers modulo n that are coprime to

n.
Example 4: Splitting Fields of Polynomials

Let E be the splitting field of a separable polynomial f(x) over F. The
conjugation isomorphisms in Gal(E/F) permute the roots of f(x). For

instance, if f(x) = x® - 2 over Q, and E is its splitting field, then
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Gal(E/Q) is isomorphic to Ss, the symmetric group on 3 letters,

representing the permutations of the three cube roots of 2.

Applications of Conjugation Isomorphisms

1.

Galois Theory: Conjugation isomorphisms are the foundation
of Galois theory, which establishes a correspondence between
subgroups of the Galois group and intermediate fields of the

extension.

Solvability of Equations: The structure of the Galois group
(composed of conjugation isomorphisms) determines whether
a polynomial equation is solvable by radicals.

Field Invariants: Conjugation isomorphisms help identify
elements that are invariant under certain field operations,

leading to the concept of fixed fields.

Construction of Minimal Polynomials: For an element a in an
extension field, the minimal polynomial of a over the base
field can be constructed using the conjugation isomorphisms

that act on a.

Normal Extensions: An extension E/F is normal if and only if
it is the splitting field of a family of polynomials over F, which
connects to the behavior of conjugation isomorphisms on the

roots of these polynomials.

Conjugation isomorphisms provide a powerful tool for analyzing field

extensions and understanding the algebraic structure of fields. They

form the bridge between group theory and field theory, allowing us to

apply group-theoretic methods to solve problems in field theory and

vice versa.

158



UNIT 4.2
4.2.1: Fixed Fields and Their Importance

The concept of fixed fields is central to understanding the relationship
between field automorphisms and field extensions. It provides a
powerful framework for analyzing the structure of fields and plays a

key role in the fundamental theorem of Galois theory.
Definition of Fixed Fields

Given a field E and a group G of automorphisms of E, the fixed field
of G, denoted E® or Fix(G), is the subfield of E consisting of all

elements that are fixed (left unchanged) by every automorphism in G.
Formally: E6 ={a € E | o(a) = a for all c € G}

The fixed field represents the elements of E that remain invariant
under the action of the automorphism group G.

Properties of Fixed Fields

1. Subfield Structure: For any group G of automorphisms of E,
the fixed field EC is indeed a subfield of E.

2. Galois Correspondence: If E/F is a Galois extension with
Galois group G = Gal(E/F), then F = EC. This is one of the
fundamental relationships in Galois theory.

3. Monotonicity: If H is a subgroup of G, then EG < E". In
other words, smaller groups of automorphisms lead to larger
fixed fields.

4. Fixed Field of Trivial Group: EMidt = E, where {id} is the
trivial group containing only the identity automorphism.

5. Fixed Field of Full Automorphism Group: If G = Aut(E), then
E~G 1is the prime subfield of E (either Q or F, depending on

the characteristic).

Importance and Applications of Fixed Fields
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. Galois Theory Correspondence: The fundamental theorem of

Galois theory establishes a one-to-one correspondence
between the subgroups of the Galois group Gal(E/F) and the
intermediate fields between F and E. Specifically, for each
subgroup H of Gal(E/F), E" is an intermediate field, and for

each intermediate field K, Gal(E/K) is a subgroup of Gal(E/F).

. Field Extension Analysis: Fixed fields help determine the

degree of field extensions. If E/F is a Galois extension with
Galois group G, then [E:F] = |G]|.

. Structural Understanding: The fixed field concept helps

understand the internal structure of fields and their extensions,
revealing how automorphism groups partition the elements of
a field.

. Constructive Field Theory: Fixed fields provide a constructive

approach to generating subfields with specific properties,
particularly useful in computational algebra.

. Normal Extensions: An extension E/F is normal if and only if

F is the fixed field of some group of automorphisms of E.

Examples of Fixed Fields
Example 1: Fixed Field of Complex Conjugation

Consider the field of complex numbers C and the group G = {id,
conj} where conj is the complex conjugation. The fixed field C©
consists of all complex numbers that remain unchanged under

conjugation:
Cé={a+hieC|a+bi=za-bi}={aeC|b=0}=R

This confirms the well-known fact that the fixed field of the Galois
group Gal(C/R) = {id, conj} is indeed R.

Example 2: Cyclotomic Extensions
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Let E = Q(&) be the cyclotomic field obtained by adjoining a Notes
primitive nth root of unity &, to Q. The Galois group Gal(E/Q) is

isomorphic to (Z/nZ)x, the group of units modulo n.

For a subgroup H of Gal(E/Q), the fixed field E”H represents an
intermediate field between Q and Q((,). For instance, if n = p is a
prime, and H is the subgroup of squares in (Z/pZ)*, then EH =Q
(\+p) where the sign depends on p mod 4.

Example 3: Fixed Field of Frobenius Automorphism

In a finite field Fy,, the Frobenius automorphism ¢ is defined by ¢(x)
= xP for all X € F,,. The fixed field of the group (@) generated by ¢

is:
Fpl® ={X € F\u | x=x} =F,

This confirms that the prime subfield F, is the fixed field of the

Frobenius automorphism.
Example 4: Fixed Field in Q(\/Z, \/3)

Consider the field E = Q(\2, V3) and its Galois group G = Gal(E/Q),

which has four elements:
e id: identity automorphism
« o1 maps V2 — -\2 and fixes V3
« o2 fixes V2 and maps V3 — V3
e o3 maps V2 — -\2 and V3 — -\3

The fixed field EC is Q.

If we consider the subgroup H = {id, o1}, then EH = Q(v3).
Similarly, for K = {id, o2}, EX = Q(\2). For L = {id, o3}, EL =Q
(\6).

This illustrates the Galois correspondence between subgroups and

intermediate fields.
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The Fundamental Theorem of Galois Theory

The importance of fixed fields culminates in the Fundamental

Theorem of Galois Theory, which can be stated as follows:
Let E/F be a Galois extension with Galois group G = Gal(E/F). Then:

1. There is a one-to-one correspondence between the subgroups
H of G and the intermediate fields K (F € K € E), given by H
~ EH and K » Gal(E/K).

2. If H » K under this correspondence, then:
o [E:K] = |H| (the order of the subgroup)
o [K:F] =[G:H] (the index of the subgroup)

o H is a normal subgroup of G if and only if K/F is a

normal extension
o IfHisnormalin G, then Gal(K/F) = G/H

This theorem encapsulates the deep connection between field theory
and group theory, with fixed fields serving as the bridge between
these two domains. It provides a powerful tool for analyzing field

extensions and solving polynomial equations.
Solved Problems on Field Automorphisms
Problem 1: Determining all Field Automorphisms of Q(\2)

Problem: Find all field automorphisms of Q(¥2) and determine the

fixed field for each non-trivial automorphism.
Solution:

Step 1: Understand the structure of Q(V2). Q(¥2) consists of all

numbers of the form a + b\2 where a, b € Q.

Step 2: Determine how automorphisms act on Q(\2). Any
automorphism ¢ must fix the rational field Q. That is, o(q) = q for all

q € Q. The only question is how & acts on V2.
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Since o preserves multiplication: 6(\2)? = 6(¥2 - \2) = 6(2) = 2
Therefore, 6(12) = +\2

This gives us two possibilities:
 oi(a+bV2)=a+bV2 (the identity automorphism)
e os(a+bV2)=a-b\2 (sends \2 to -V2)

Step 3: Verify these are valid automorphisms. We need to check that

o2 preserves addition and multiplication:

For addition: o2((a + b\2) + (¢ + dV2)) = o2((a + ¢) + (b + d)\V2) = (a +
c) - (b + d)V2 And also: o2(a + bV2) + o2(c + dV2) = (a - bV2) + (¢ -
dV2)=(a+c)-(b+dn2

For multiplication: o2((a + bV2)(c + dV2)) = o2(ac + ad\2 + beV2 +
2bd) = ac + 2bd - (ad + bc)V2 And also: 62(a + b\2)oz(c + dV2) = (a -
bV2)(c - d\2) = ac + 2bd - (ad + bec)V2

Step 4: Determine the fixed field of c.. The fixed field consists of
elements a + b\2 such that o2(a + bV2) = a + bV2. This means a - b\2
=a+ b\/2, which implies b = 0. Therefore, the fixed field of 62 is Q.

Conclusion: The automorphism group of Q(\2) is {c1, 62} = Z,, and

the fixed field of the non-trivial automorphism o2 is Q.
Problem 2: Automorphism Group of a Cyclotomic Field

Problem: Determine the automorphism group of the cyclotomic field
Q(&s), where (s is a primitive 5th root of unity, and identify the

subgroups and their corresponding fixed fields.
Solution:

Step 1. Understand the structure of Q((s). Let (s = e@®), a
primitive 5th root of unity. Then Q({s) is the splitting field of the

cyclotomic polynomial ®@s(x) =x*+ x>+ x>+ x + 1.

Step 2: Determine the automorphisms of Q(ls) over Q. Any

automorphism ¢ of Q({s) must fix Q and send (s to another primitive
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5th root of unity. The primitive 5th roots of unity are s, (5%, C5°, and
Gs*.
This gives us four automorphisms:

e 01(Gs) = s (identity)

o 0G) =G

e 0(8) =&

e 64(s) =G

Step 3: Determine the group structure. We can compute the

composition of these automorphisms:
o 02002(Gs) = 02(Cs?) = (G%)* = Cs* = 04(&s)
o 62003(5) = 02(GsY) = (G5 =G = G5 = 01(5y)
o 62004(0s) = 02(Gs*) = (G5 = C* = C° = 63(5y)

Similar calculations for the other compositions show that the
automorphism group is isomorphic to (Z/5Z)*= Za, the cyclic group of

order 4, with o2 as a generator.
Step 4: Identify subgroups and fixed fields. The subgroups of Z4 are:

e {01} (the trivial subgroup)
e {01, 03} (the subgroup of order 2)
e {01, 02, 03, G4} (the full group)

For the trivial subgroup {c:}, the fixed field is Q({s).

For {o1, 63}, we need to find elements fixed by both 61 and o3. An
element o = a0 + a1ls + a20s* + asls® + asls* 1s fixed by o3 if: 63(a) = a0

+ ails® + a205¢ + asls® + aals'? = a0 + a1ls® + axls + asls* + auls> = a

This gives us conditions: a1 = as, a2 = a4 So the fixed field i1s Q({s + {s*,
2+ &) = Q(Y5)
For the full group, the fixed field is Q.
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Conclusion: The automorphism group of Q((s) is cyclic of order 4,

isomorphic to (Z/5Z)*. The fixed fields are:
+ For {01}: Q(&)
e For {o1, 53}: Q(V5)
e For {01, 02,03,04}: Q
Problem 3: Frobenius Automorphism in Finite Fields

Problem: Show that the Frobenius map ¢(x) = xP on a finite field
Fpn is an automorphism, and determine its fixed field.

Solution:

Step 1: Verify that ¢ is a homomorphism. For addition: ¢(x +y) = (x
+ y)P In a field of characteristic p, the binomial expansion gives: (x+

y)P = xP + yP (all other terms contain a factor of p and thusvanish)

So p(x +y) =xP+y? = ¢(x) + ¢(y)
For multiplication: @(xy) = (xy)P = xPy? = @(X)p(y)

Step 2: Show that ¢ is bijective (both injective and surjective). For
injectivity, suppose ¢(x) = ¢(y), then xP = yP. In a field, if aP =bP,
then a = b (by taking the pth root). Therefore, x =y, proving ¢ is
injective.For surjectivity, since F," is finite and ¢ is injective, it must

also besurjective.

Step 3: Determine the fixed field of ¢. The fixed field consists of
elements x such that ¢(x) = x, i.e., xP = x. This equation is satisfied
by all elements of the prime subfield Fp. To show this is the entire
fixed field, note that the polynomial xP - x has at most p roots in any
field, and we've identified p distinct roots (the elements of Fp).

Therefore, the fixed field of ¢ is exactly F.

Step 4: Determine the order of ¢ in the automorphism group. Since

F," contains p" elements, and ¢ raises elements to the power p,
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the smallest positive integer k such that ¢* is the identity is the
smallest k with p* =1 (mod p™?!). This gives k = n, so the order of ¢

in the automorphism group is n.
Problem 4: Field Automorphisms of C and R

Problem: Prove that the field of real numbers R has only the identity
automorphism, and the field of complex numbers C has exactly two

automorphisms.
Solution:
Part 1: Automorphisms of R

Step 1: Show that any automorphism o of R must fix the rational

numbers Q.

o(1) =1 (preservation of multiplicative identity)

e Foranyintegern>0,0(n)=c(1+1+..+1)=0c(1)+o(l) +

..to(l)=n
e For negative integers, 6(-n) = -6(n) = -n

e For fractions, o(p/q) = o(p)/c(q) = p/q Thus, 6(q) = q for all q
€Q.

Step 2: Show that ¢ preserves order. If a > b, then a - b > 0. Since ©
preserves addition and positivity (as a field automorphism), o(a) -

o(b) =o(a - b) > 0. Therefore, c(a) > o(b), meaning ¢ preserves order.

Step 3: Show that ¢ is continuous. Using the order-preserving
property, we can show that for any convergent sequence (a,) with

limit a, the sequence (c(an)) converges to c(a).

Step 4: Use density of Q in R to conclude o is the identity. For any x
€ R and any ¢ > 0, there exist rationals p, q such that p<x<gqand q -
p <e. Since o fixes p and q and preserves order, p = 6(p) < 6(x) < o(q)

= . This means |o(x) - x| < ¢ for any & > 0, which implies o(x) = x.

Therefore, the only automorphism of R is the identity.
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Part 2: Automorphisms of C

Step 1: Show that any automorphism ¢ of C must fix R. From Part 1,
any automorphism of R is the identity. Since C is an extension of R,

the restriction of ¢ to R must be the identity automorphism on R.

Step 2: Determine how ¢ acts on i. Since i* = -1, we have 6(i)* = o(i?)
= o(-1) = -1. This means o(i) = +i.
Step 3: Show that this gives exactly two automorphisms.

e Ifo(i) =1, then o(a + bi) = a + bi for all a, b € R (the identity

automorphism)

e If 6(i) = -i, then o(a + bi) = a - bi for all 3, b € R (complex

conjugation)

Both of these are clearly automorphisms of C. And since any
automorphism must send i to either i or -i, these are the only two

possibilities.
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UNIT 4.3
4.3.1: Frobenius Automorphism

The Frobenius automorphism is a fundamental concept in field theory
and has significant applications in number theory, algebraic geometry,
and cryptography. Named after Ferdinand Georg Frobenius, this
automorphism applies to finite fields and provides a powerful tool for

understanding their structure.
Definition and Basic Properties

Let F be a finite field of characteristic p (where p is a prime number).

The Frobenius automorphism, typically denoted by @, is defined as:
®:F - F O(x)=xP

In other words, the Frobenius automorphism maps every element of
the field to its p-th power.

Key Properties:
1. Homomorphism Property: For any elements a, b € F:
o ®@(a+b)=d(a)+ O(b)=ar + b
o ®(a'b) = O(a) D(b) = a-bp

2. Injectivity: The Frobenius automorphism is injective (one-to-
one). Proof: If ®(a) = ®(b), then aP = bP. In a field of

characteristic p, this impliesa = b.

3. Surjectivity: The Frobenius automorphism is surjective (onto).
Since F is finite and @ is injective, it follows that @ is also

surjective.

4. Fixed Field: The fixed field of the Frobenius automorphism is
the prime subfield F,. An element x is fixed by @ if and onlyif

xP = X, which occurs precisely when x €F,.

Frobenius Automorphism in Extension Fields
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Let Fq be a finite field with g = p" elements, where p is prime and nis

a positive integer. The Frobenius automorphism plays a crucial rolein

understanding the structure of extension fields.

Extension Field Properties:

1.

Iterated Application: The n-fold composition of the Frobenius
automorphism, ®", is the identity map on Fq. This means

that for any x €Fg, we have xP" = x.

Galois Group: For an extension Fq/Fp, the Galois group
Gal(Fq/Fp) is cyclic of order n, generated by the Frobenius

automorphism.

Minimal Polynomials: The Frobenius automorphism helps
determine the minimal polynomials of elements in extension
fields.

Applications of the Frobenius Automorphism

1. Counting Solutions to Equations: The Frobenius

automorphism helps count the number of solutions to

polynomial equations over finite fields.

Cryptography: The computational difficulty of finding fixed
points of the Frobenius automorphism in certain fields forms

the basis for several cryptographic protocols.

Algebraic Geometry: In algebraic geometry, the Frobenius
morphism provides a tool for studying varieties over finite
fields.

Examples of the Frobenius Automorphism

Example 1: Frobenius in F4

Consider the field F4 = {0, 1, a, at+1}, where a is a root of the

polynomial x> + x + 1 over F2. The Frobenius automorphism ®(x)=

X2 acts as follows:
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D(0)=02=0

o(1)=12=1

®(o) = a? = o+1 (because o> + o+ 1 =0, so a? = o+1)

®(a+1) = (at+1)>=a? + 1 = a+1+1 = a (in characteristic 2)

Note that @? is the identity map, confirming that the order of the

Frobenius automorphism divides the extension degree.
Example 2: Frobenius in Fz7

For the field F27 = F3[x]/(x® - 2), let B be a root of x3 - 2. The

Frobenius automorphism ®(x) = x3 acts as:
e  ®(P)=p?=2 (by definition)
o OP) =P =p°=(p)=2"=4=1(mod3)
e O2B)=(2P);=2*p*=82=16=1 (mod 3)
Here, @3 is the identity map, aligning with the extension degree of 3.
4.3.2: Splitting Fields: Definitions and Examples
Definition of Splitting Fields

A splitting field is a fundamental concept in field theory that provides
the minimal extension of a field needed to factor a polynomial

completely into linear factors.
Formal Definition:

Let F be a field and f(x) be a non-constant polynomial in F[x]. A field

extension E of F is called a splitting field of f(x) over F if:

1. f(x) factors completely into linear factors in E[X]
2. E=F(r, 1, ..., 1y), where 11, 12, ..., 1, are all the roots of f(x)

In other words, E is the smallest field extension of F that contains all
the roots of f(x).
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Alternative Definition:

A splitting field for a set of polynomials {fi(x), f2(x), ..., fm(X)} over a
field F is the smallest field extension E of F such that each polynomial

fi(x) splits completely into linear factors in E[x].
Existence and Uniqueness of Splitting Fields
Existence:

For any field F and non-constant polynomial f(x) in F[x], there exists

a splitting field of f(x) over F.

Proof Sketch: We can construct a splitting field by iteratively
adjoining roots of the polynomial. Starting with F, we adjoin one root
at a time until all roots are included. The resulting field is the splitting
field.

Uniqueness:

Splitting fields are unique up to isomorphism. That is, if E: and E- are
two splitting fields of f(x) over F, then there exists an isomorphism ©:

E: — E: such that ¢(a) =a foralla € F.
Properties of Splitting Fields

1. Degree Bound: If f(x) is a polynomial of degree n, then the

degree of the splitting field extension [E:F] divides n!

2. Normality: A splitting field extension is always a normal

extension.

3. Separability: If f(x) is separable (has no repeated roots in its
splitting field), then the splitting field extension is a Galois

extension.

4. Minimality: The splitting field is the smallest field extension

that contains all the roots of the polynomial.

Examples of Splitting Fields

Example 1: Splitting Field of x2 - 2 over Q
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Consider the polynomial f(x) = x2 - 2 over the rational numbers Q.
The roots of f(x) are ri = V2 and r2 = -\2.

The splitting field of f(x) over Q is E = Q(V2), which is the field
obtained by adjoining V2 to Q. Note that both roots are in this field
since -V2 is also in Q(\2).

[E:Q] = 2, as the minimal polynomial of V2 over Q is x? - 2, which has
degree 2.

Example 2: Splitting Field of x3 - 2 over Q
Consider the polynomial f(x) = x3 - 2 over Q.
The roots of f(x) are:

e 11 =12 (the real cube root of 2)
e =02, where o is a primitive cube root of unity (¢’(2xi/3))
e 13=0*V2, where ®? is the complex conjugate of ®

The splitting field of f(x) over Q is E = Q(¥/2, w). This field contains

all three roots of f(x).

[E:Q] =6, as [Q(¥2):Q] = 3 and [Q(¥2, ©):Q(¥2)] = 2.
Example 3: Splitting Field of x* - 1 over Q

Consider the polynomial f(x) = x* - 1 over Q.

The roots of f(x) are:

e 11=1
o 1n=-1
e 13=1
o 1‘4:-i

The splitting field of f(x) over Q is E = Q(i), which is the field of

complex numbers with rational real and imaginary parts.
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[E:Q] = 2, as the minimal polynomial of i over Q is x2 + 1, which has

degree 2.
Example 4: Splitting Field of xP - 1 over Q (p prime)
For a prime number p, consider the polynomial f(x) = xP - 1 over Q.
The roots of f(x) are:
e =1
e 12={, where ( is a primitive p-th root of unity (e(>%/p))

(] 1'3:C2

e Ip= C(p‘l)

The splitting field of f(x) over Q is E = Q({), which is the p-th

cyclotomic field.

[E:Q] = p-1, as the minimal polynomial of { over Q is the p-th

cyclotomic polynomial, which has degree p-1.
Example S: Splitting Field of x>+ 1 over Fs

Consider the polynomial f(x) = x2 + 1 over the finite field Fs (integers

modulo 3).
We need to find the roots of f(x) = x> + 1 in some extension of Fs.
Let's check if there are any roots in Fs:

e f(0)=02+1=1+#0

e f(1)=12+1=2+#0

e f(2)=22+1=5=2(mod3)#0

So f(x) has no roots in Fs. We need to construct an extension field. Let

a be a root of f(x), so 0> =-1 =2 (mod 3).
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The splitting field of f(x) over Fs is E = F3(a) = {0, 1, 2, a, a+1, a+2,
20, 20+1, 20+2}.

Actually, since x*> + 1 is irreducible over Fs, we have Fs(a) = Fo, the

field with 9 elements.

The roots of f(x) in this extension are o and 2a (since (2a)* = 40? =

4-2 =8 =2 (mod 3)).
4.3.3: Properties of Splitting Fields

Splitting fields possess several important properties that make them
central to field theory and Galois theory. In this section, we'll explore

these properties in detail.
Fundamental Properties of Splitting Fields
1. Minimality Property

A splitting field E of a polynomial f(x) over a field F is the smallest

field extension of F that contains all the roots of f(x).

Proof: Let E be a splitting field of f(x) over F, and let K be any field
extension of F that contains all the roots of f(x). By definition, E =
F(r1, 12, ..., 1), where 11, 12, ..., 1, are all the roots of f(x). Since K

contains all these roots, we have E € K.
2. Uniqueness Property

Splitting fields are unique up to isomorphism. If E: and E. are two
splitting fields of a polynomial f(x) over F, then there exists an

isomorphism @: E: — E:z such that ¢(a) =a foralla € F.

Proof Sketch: The proof uses the fact that if f(x) is irreducible over F
and ou, o2 are roots of f(x) in extensions E: and E: respectively, then
there exists an isomorphism from F(ou) to F(o2) that fixes F and maps

i to az. This can be extended to the full splitting fields by induction.

3. Normality Property
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A field extension E/F is normal if and only if E is the splitting field of

some polynomial (or set of polynomials) over F.

Definition: A field extension E/F is normal if every irreducible

polynomial in F[x] that has one root in E has all its roots in E.

Proof: (=) If E/F is normal, then E is the splitting field of the set of
minimal polynomials of all its elements. (<) If E is the splitting field
of a polynomial f(x) over F, then by definition, all roots of f(x) are in
E. For any irreducible factor g(x) of f(x), if one root of g(x) is in E,

then all roots of g(x) are in E.
4. Galois Extension Property

If f(x) is a separable polynomial (has no repeated roots in its splitting

field), then the splitting field E of f(x) over F is a Galois extension.

Definition: A field extension E/F is Galois if it is both normal and

separable.

Proof: If f(x) is separable, then by definition, it has no repeated roots
in its splitting field E. This means E/F is separable. Since E is a

splitting field, it is also normal. Therefore, E/F is a Galois extension.
Degree Properties of Splitting Fields
1. Degree Bound

If f(x) is a polynomial of degree n over a field F, then the degree [E:F]
of the splitting field E over F divides n!.

Proof Sketch: This follows from the fact that the Galois group of E/F,
which has order [E:F], is a subgroup of the symmetric group Sn on n
letters (permuting the roots of f(x)). Since |Sn| = n!, we have [E:F]

divides n!.
2. Intermediate Extensions

If E is the splitting field of f(x) over F, and K is an intermediate field
(F € K € E), then E is also the splitting field of some polynomial

over K.

Notes



Notes

Proof: Let {au, 0, ..., am} be the elements of E that are not in K. Then
E = K(ai, 02, ..., am). Let g(x) be the product of the minimal
polynomials of each o; over K. Then E is the splitting field of g(x)
over K.

Splitting Fields and Field Automorphisms
1. Automorphism Group

If E is the splitting field of a polynomial f(x) over F, then the group of
automorphisms of E that fix F (denoted Aut(E/F)) permutes the roots
of f(x).

Proof: Let c €Aut(E/F) and let a be a root of f(x) in E. Then: f(o(a)) =
o(f(a)) = 0(0) = 0 So o(a) is also a root of f(x).

2. Fixed Field

If E is the splitting field of a polynomial f(x) over F and G = Aut(E/F),
then the fixed field of G in E is exactly F.

Definition: The fixed field of G is the set of all elements e € E such

that o(e) =e for all 6 € G.

Proof: This is a consequence of the Fundamental Theorem of Galois
Theory, which states that for a Galois extension, there is a one-to-one
correspondence between subgroups of the Galois group and

intermediate fields.
Constructing Splitting Fields
1. Iterative Construction

A splitting field can be constructed by iteratively adjoining roots of

the polynomial.

Procedure:
1. Start with the base field F and the polynomial f(x).
2. Find an irreducible factor g(x) of f(x) over F.

3. Adjoin a root a of g(x) to create the field extension F(a).
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4. Factor f(x) over F(a) and repeat the process until f(x) splits

completely.

2. Extension Degree Calculation

The degree of the splitting field extension can be calculated from the

degrees of the intermediate extensions.

Formula: If E is constructed as Fo = F, Fi = Fo(au), F2 = Fi(02), ..., Fa =
E, then: [E:F] = [Fi:Fo] - [F2:F1] - ... - [Fa:Fni]

where each [Fi:Fi-1] is the degree of the minimal polynomial of o; over
Fi—l.

Applications of Splitting Fields
1. Solving Polynomial Equations

Splitting fields provide the smallest field extension in which a
polynomial equation can be solved completely.

2. Galois Theory

Splitting fields are central to Galois theory, which connects field
theory with group theory and provides a framework for understanding

polynomial equations.
3. Finite Fields

Every finite field is the splitting field of a polynomial of the form

X™(p”™n) - x over its prime subfield.
4. Algebraic Closure

The algebraic closure of a field F can be viewed as the splitting field

of all polynomials in F[x].
4.3.3: Applications of Field Automorphisms in Galois Theory

Field automorphisms play a central role in Galois theory, providing
the bridge between field extensions and group theory. This section
explores the various applications of field automorphisms in Galois

theory and their implications.
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Notes The Fundamental Theorem of Galois Theory

The Fundamental Theorem of Galois Theory establishes a
correspondence between subgroups of the Galois group and

intermediate fields of a Galois extension.
Statement of the Theorem:
Let E/F be a Galois extension with Galois group G = Gal(E/F). Then:

1. There is a one-to-one correspondence between the
intermediate fields K (F € K < E) and the subgroups H of G.

o For asubgroup H € G, the corresponding field is K =
EH (the fixed field of H).

o For an intermediate field K, the corresponding
subgroup is H = Gal(E/K).

2. For any intermediate field K:
o [E:K]=|Gal(E/K)|
o [K:F] =[G:Gal(E/K)] = |G|/|Gal(E/K)|

3. KI/F is a normal extension if and only if Gal(E/K) is a normal
subgroup of G. In this case, Gal(K/F) = G/Gal(E/K).

Applications:

1. Determining All Intermediate Fields: By finding all subgroups
of the Galois group, we can identify all possible intermediate

fields of a Galois extension.

2. Computing Extension Degrees: The order of a subgroup of the
Galois group gives the degree of the extension E over the
corresponding intermediate field.

3. ldentifying Normal Extensions: An intermediate extension is
normal if and only if the corresponding subgroup is normal in

the Galois group.
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Automorphisms and the Structure of Galois Groups
Cyclotomic Extensions

For the cyclotomic extension Q((,)/Q, where (, is a primitive n-th root
of unity, the Galois group is isomorphic to (Z/nZ)x, the multiplicative
group of integers modulo n that are coprime to n.

Each automorphism oy in Gal(Q((,)/Q) is determined by: ow(() = o,
where ged(k, n) =1

This allows us to understand the structure of cyclotomic extensions

and solve problems related to cyclotomic polynomials.
Quadratic Extensions

For a quadratic extension Q(Vd)/Q, where d is a square-free integer,

the Galois group is isomorphic to Z/2Z (cyclic group of order 2).

The non-trivial automorphism o in Gal(Q(Vd)/Q) is given by: o(a +
bVd)=a-bVd, foralla,b € Q

This helps in understanding the structure of quadratic number fields

and solving quadratic equations.
Solvability by Radicals

One of the most celebrated applications of Galois theory is

determining when a polynomial equation is solvable by radicals.
Theorem (Abel-Ruffini):

A polynomial equation is solvable by radicals if and only if its Galois

group is solvable.
Application:

Field automorphisms allow us to determine the Galois group of a
polynomial, which in turn tells us whether the polynomial is solvable

by radicals.

For example:
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e Polynomials of degree < 4 are always solvable by radicals

because S4 (the symmetric group on 4 letters) is solvable.

e The general polynomial of degree > 5 is not solvable by
radicals because Ss and higher symmetric groups are not

solvable.

Constructibility Problems in Geometry

Field automorphisms help solve classical Greek constructibility

problems.
Theorem:

A number is constructible with compass and straightedge if and only

if it lies in a field extension of Q with degree a power of 2.
Applications:

1. Squaring the Circle: Impossible because 7 is transcendental.

2. Doubling the Cube: Impossible because the cube root of 2 has

minimal polynomial of degree 3.

3. Trisecting an Angle: Generally impossible because it leads to

irreducible cubic equations.

4. Constructing Regular Polygons: A regular n-gon is
constructible if and only if n = 2%pip....pm, where k > 0 and

each p; is a distinct Fermat prime (primes of the form 22" + 1).

Fixed Fields and the Invariant Theory

Field automorphisms help identify elements that remain fixed under

group actions.
Theorem:

If G is a finite group of automorphisms of a field E, then the fixed
field E© has degree [E:E€] = |G]|.

Applications:
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1. Symmetric Polynomials: The fixed field of S, acting on
Q(x1, X2, ..., Xa) 18 precisely Q(ei, €2, ..., €n), Where e; are the

elementary symmetric polynomials.

2. Invariant Theory: Field automorphisms help identify invariant
elements under group actions, which has applications in

representation theory and algebraic geometry.

Finite Fields and the Frobenius Automorphism

The Frobenius automorphism plays a special role in the theory of
finite fields.

Theorem:

For a finite field Fq with q = p" elements, the Galois group
Gal(Fq/Fp) is cyclic of order n, generated by the Frobenius

automorphism ®(x) = xP.
Applications:

1. Classification of Finite Fields: All finite fields of the same
order are isomorphic, and for every prime power q = p",

there exists a finite field with g elements.

2. Counting Solutions to Equations: Field automorphisms help

count the number of solutions to equations over finite fields.

3. Error-Correcting Codes: Field automorphisms are used in the
design and analysis of error-correcting codes based on finite
fields.

Kummer Theory and Cyclotomic Extensions

Field automorphisms are central to Kummer theory, which studies

abelian extensions.

Kummer Theory:
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Let K be a field containing a primitive n-th root of unity, and let L/K
be a Galois extension with Gal(L/K) = (Z/nZ)*. Then L = K(ou, o2, ...,

ox), where o € K.
Applications:

1. Class Field Theory: Kummer theory is a key component of
class field theory, which describes abelian extensions of

number fields.

2. Reciprocity Laws: Field automorphisms help establish
reciprocity laws in number theory, which describe when a

number is an n-th power modulo another number.

Solving Quintic Equations

While the general quintic is not solvable by radicals, certain quintics
are. Field automorphisms help identify such cases.

Theorem:

A quintic polynomial is solvable by radicals if and only if its Galois

group is a solvable subgroup of Ss.
Example:

The polynomial x° - X - 1 has Galois group Ss, so it is not solvable by
radicals. The polynomial x* - 5x + 12 has Galois group that is a

solvable subgroup of Ss, so it is solvable by radicals.
Solved Problems
Problem 1: Finding the Frobenius Automorphism in a Finite Field

Problem: Consider the finite field Fa = F2[x]/(x* + x + 1). Let a be a
root of x2 + x + 1 in Fa4, so Fa = {0, 1, a, a+1}. Find the action of the
Frobenius automorphism ®(x) = x* on each element of F4 and verify

that @7 is the identity map.

Solution:
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The Frobenius automorphism in a field of characteristic 2 maps x to

x2. Let's compute its action on each element of Fa:
1. ®0)=0*=0
2. d(1)=12=1

To find ®(a), we use the fact that a satisfies o> + o + 1 = 0, which

meanso’=o+ 1:3. (o) =0*>=a+ 1

To find ®(a + 1), we use the fact that in characteristic 2, (a + b)* = a?

+b% 4. Da+ 1) =(a+1)P=c+12=(a+ 1) +1=aq
Now, let's verify that @2 is the identity map:

. D%0) = D(D(0)) = D(0) =0

. (1) =D(D(1)=D(1) =1

. D)= O(D(a) =D+ 1)=a

o Da+1)=DD+1)=D)=a+ 1

Indeed, ®* maps each element to itself, confirming that ®> is the
identity automorphism. This aligns with the theory, as [Fa:Fz] = 2, so

the Frobenius automorphism has order 2.
Problem 2: Finding the Splitting Field of a Polynomial

Problem: Find the splitting field of f(x) = x3 - 2 over Q and determine

its degree over Q.
Solution:
Step 1: Find the roots of f(x) = x3 - 2. The roots are:

e 11 =12 (the real cube root of 2)

3 : . e
e = V2, where ® = e is a primitive cube root of

unity

o 3= *V2, where ©? = e“/3) is the complex conjugate of ®
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Step 2: Determine the splitting field. The splitting field E must

contain all three roots, so E = Q(¥/2, o).

Step 3: Calculate the degree of the extension. First, let's determine
[Q(¥/2):Q]. The minimal polynomial of ¥/2 over Q is x3 - 2, which has
degree 3. Therefore, [Q(¥2):Q] = 3.

Next, let's determine [Q(¥2, ©):Q(¥2)]. The minimal polynomial of ®
over Q is x2 + x + 1, which remains irreducible over Q(3/2) (this can
be proven, but we'll take it as given). Therefore, [Q(¥2, ):Q(¥2)] =
2.

By the multiplicativity of extension degrees: [E:Q] = [Q(¥2, ®):Q] =
[Q(E2, ©):Q¥/2)] x [Q(¥2):Q] =2%x3=6

Therefore, the splitting field of x3 - 2 over Q is Q(¥2, ®), and it has

degree 6 over Q.
Problem 3: Determining Galois Groups Using Automorphisms

Problem: Determine the Galois group of the splitting field of f(x) = x*

-2 over Q.
Solution:
Step 1: Find the roots of f(x) = x* - 2. The roots are:

e 11 =12 (the real fourth root of 2)

e 2= -%/2
e TI3= 1%/2
o Ta = -I%/Z

Step 2: Identify the splitting field. The splitting field E must contain
all four roots, so E = Q(¥/2, i).

Step 3: Calculate the degree of the extension. The minimal
polynomial of ¥2 over Q is x* - 2, which has degree 4, so [Q(¥/2):Q] =
4.
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The minimal polynomial of i over Q(¥/2) is x2 + 1, which remains
irreducible over Q(¥/2) (this can be proven, but we'll take it as given).

Therefore, [Q(¥2, i):Q(¥/2)] = 2.

By the multiplicativity of extension degrees: [E:Q] = [Q(¥2, i):Q] =
[QR/2,1):Q¥2)] x [Q(¥2):Q] =2 x 4 =8

Step 4: Determine the Galois group. Since [E:Q] = 8, the Galois group
G = Gal(E/Q) has order 8.

To identify which group of order 8 it is, we need to understand how

the automorphisms act on the generators of E.

Any automorphism ¢ € G must map V2 to another root of x* - 2,
namely V2, 2,132, or -i-V2. Similarly, ¢ must map i to either i or -
i.
Let's define the following automorphisms:

o V200 V2, i bl

o TV2HV2 ik i
We can verify that:

e o*=1d (the identity automorphism)

e T=id

e T0T=0"

Thismeansthat G = (o, t|c*=1=1,t0T1=0""
Multiple Choice Questions (MCQs)

1. Afield automorphism is:
a) A function that maps a field onto another field
b) An isomorphism from a field to itself
¢) A mapping that preserves addition but not multiplication

d) None of the above
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. Aconjugation isomorphism occurs when:

a) Two fields have the same number of elements

b) One field is the fixed field of an automorphism

c) Elements of one field are mapped to their conjugates in an
extension

d) None of the above

. The set of elements in a field that remain unchanged by all

automorphisms forms:
a) A subgroup

b) A fixed field

c) An ideal

d) None of the above

. The Frobenius automorphism is defined for:

a) All fields
b) Only finite fields
c) Only real fields

d) None of the above

. Asplitting field of a polynomial is:

a) The smallest field where the polynomial factors completely
b) Any extension field containing the roots of the polynomial
c) A finite field with a prime number of elements

d) None of the above

. Which of the following statements about splitting fields is

true?

a) Splitting fields are always unique up to isomorphism.

b) Splitting fields exist only for irreducible polynomials.

c¢) Every polynomial has a unique splitting field over any base
field.

d) None of the above.

. Afield automorphism must preserve:

a) Only addition
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b) Only multiplication Notes
c) Both addition and multiplication

d) Neither addition nor multiplication

8. The study of field automorphisms is crucial for:
a) Ring theory
b) Group theory
c) Galois theory
d) None of the above

Short Answer Questions

1. Define a field automorphism and give an example.

2. What is a conjugation isomorphism? Provide an example.
3. Explain the concept of a fixed field and its significance.

4. State and explain the Frobenius automorphism.

5. How does the Frobenius automorphism act in finite fields?

6. Define a splitting field and explain its importance in field
theory.

7. Why are splitting fields unique up to isomorphism?
8. How do automorphisms relate to Galois groups?

9. What is the significance of automorphisms in the classification

of field extensions?

10. Give an example of a field extension where the automorphism

group is nontrivial.

Long Answer Questions

1. Explain the concept of field automorphisms and their

importance in algebra.

2. Discuss conjugation isomorphisms with detailed examples.
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Define and explain the role of fixed fields in automorphism

groups.

Prove that the Frobenius automorphism is a valid field

automorphism in finite fields.

Explain the construction of splitting fields and their
significance in field theory.

Discuss the relationship between field automorphisms and
Galois theory.

How do splitting fields help in solving polynomial equations?

Provide examples.

Discuss the role of automorphisms in the classification of field

extensions.

. What is the importance of field automorphisms in modern

algebra and cryptography?
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MODULE 5

UNIT 5.1
SEPARABLE EXTENSIONS AND GALOIS THEORY
Objectives

e Understand the concept of separable extensions and their

properties.
« Learn about normal extensions and their significance.
o Explore the main theorem of Galois theory and its implications.

e Study the relationship between field extensions and Galois

groups.
e Analyze symmetric functions and their role in Galois theory.

5.1.1: Introduction to Separable Extensions

Separable extensions are a fundamental concept in field theory,
representing an important class of field extensions with special
properties. These extensions are characterized by certain behaviors of
their minimal polynomials and have significant implications for the

structure of field extensions.
Basic Concepts and Definitions

A field extension E/F is the situation where F is a subfield of E. We
denote this as E/F, which is read as "E over F." The field E is called
the extension field, and F is the base field.When considering field
extensions, we often look at elements of E and examine how they
relate to the base field F. An element o € E is called algebraic over F
if there exists a non-zero polynomial p(x) € F[x] such that p(a) = 0.
The monic polynomial of minimal degree that has a as a root is called

the minimal polynomial of a over F, denoted by minF(a).

Separable Elements
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An algebraic element a € E is called separable over F if its minimal
polynomial minF(a) has no repeated roots in any extension field
where it splits completely.Equivalently, an algebraic element a is
separable over F if and only if the derivative of its minimal

polynomial is not the zero polynomial. This can be expressed as:
a is separable over F if and only if minF(a)' # 0

For fields of characteristic 0 (like Q, R, or C), this condition is always
satisfied, so every algebraic element is separable. However, for fields
of characteristic p > 0, there exist polynomials whose derivatives are
zero, specifically those of the form f(x”p).

Separable Extensions

A field extension E/F is called separable if every element of E is

separable over F. More precisely:

e A finite extension E/F is separable if every element of E is
separable over F.

e« An arbitrary extension E/F is separable if every finite

subextension is separable.

If E = F(a)) for some a € E, then E/F is separable if and only if a is
separable over F.

Properties of Separable Extensions

1. Transitivity: If E/K and K/F are separable extensions, then E/F is

also a separable extension.

2. Tower Property: If E/F is a field extension and K is an
intermediate field (F € K € E), then E/F is separable if and only
if both E/K and K/F are separable.

3. Compositum of Separable Extensions: If Ei/F and Ex/F are
separable extensions, then their compositum EiE2/F is also
separable.
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4. Relation to Perfect Fields: A field F is called perfect if every
algebraic extension of F is separable. All fields of characteristic 0

are perfect, as are all finite fields.

5.1.2: Importance in Galois Theory

Separable extensions play a crucial role in Galois theory. The
fundamental theorem of Galois theory establishes a correspondence
between intermediate fields of a Galois extension and subgroups of its
Galois group. For this correspondence to work, the extension must be
separable (along with being normal and finite).A field extension E/F is
Galois if and only if it is finite, separable, and normal. The
separability condition ensures that the Galois group has the expected
structure and that the correspondence between subgroups and

intermediate fields is well-behaved.
Examples of Separable and Non-Separable Extensions
Example 1: Separable Extension

The extension Q(¥2)/Q is separable because the minimal polynomial

of \2 over Q is x? - 2, which has distinct roots +\2 in C.
Example 2: Non-Separable Extension

Let F = Fp(t) be the field of rational functions over the finite field Fp,
where p is a prime number. The polynomial f(x) = x™p - t has
derivative f'(x) = px*(p-1) = 0 in characteristic p. This polynomial is
irreducible over F, and thus it is the minimal polynomial of any of its
roots. Since its derivative is zero, any extension generated by a root of

this polynomial is non-separable.
5.1.3: Definition and Properties of Separable Polynomials

Separable polynomials form the backbone of separable field
extensions. Their properties are integral to understanding how field

extensions behave, especially in Galois theory.

Definition of Separable Polynomials
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A polynomial f(x) € F[x] is called separable if it has no repeated roots
in any extension field where it splits completely. Equivalently, a
polynomial f(x) is separable if and only if f(x) and its formal

derivative f'(x) are relatively prime, i.e., gcd(f(x), f'(x)) = 1.

For an irreducible polynomial, being separable means that when it
factors into linear terms in some extension field, all its roots are

distinct.
Characterization in Terms of Derivative
If Fis a field and f(x) € F[x] is a polynomial, then:

1. If char(F) = 0, then f(x) is separable if and only if f(x) does not

have repeated roots.

2. If char(F) = p > 0, then f(x) is separable if and only if f(x) is not
of the form g(xP) for any polynomial g(x) € F[x].

The derivative test provides a practical way to check separability:
compute f'(x) and then find gcd(f(x), f'(x)). If the gcd is 1, then f(x) is

separable.
Properties of Separable Polynomials

1. Product Rule: If f(x) and g(x) are separable polynomials in F[x],
then their product f(x)g(x) is separable if and only if f(x) and g(x)

are relatively prime.

2. lrreducible Case: If f(x) is irreducible over F, then f(x) is separable
if and only if f'(x) # 0.

3. Field Extension: If f(x) € F[x] is separable and K/F is any field
extension, then f(x) remains separable when viewed as a

polynomial in K[x].

4. Characteristic Zero: In fields of characteristic 0, every irreducible

polynomial is separable.
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5. Finite Fields: In finite fields, a polynomial is separable if and only

if it has no repeated roots.

The Separable Degree

For a finite extension E/F, the separable degree [E:F]s is defined as
the maximum number of F-embeddings of E into an algebraic closure
of F. For a separable extension, [E:F]s = [E:F], the ordinary degree of
the extension.If E/F is not separable, then [E:F]s < [E:F], and the ratio
[E:F)/[E:F]s is called the inseparable degree of the extension, denoted
by [E:F]i.

Separable Closure

The separable closure Fs of a field F is the field obtained by adjoining
to F all elements that are separable over F. It has the following

properties:

1. Fsis algebraic over F.

2. Every element in Fs is separable over F.

3. If ais algebraic over F and separable, then a € Fs.

The separable closure is important because it represents the largest

separable extension of a field.
5.1.4: Relation to Field Characteristics

The behavior of separable polynomials is strongly influenced by the

characteristic of the field:

1. Characteristic 0: All irreducible polynomials are separable,

making all algebraic extensions separable.

2. Characteristic p > 0: A polynomial f(x) could have the form
g(xP), making its derivative zero. Such polynomials are not

separable.

Discriminant of a Polynomial
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The discriminant of a polynomial provides another way to test for
separability. For a monic polynomial f(x) = [[(x - ai), the discriminant

is defined as:

Disc(f) =[](ai - aj)?

where the product is taken over all i< j.

A polynomial is separable if and only if its discriminant is non-zero.
Examples of Separable and Non-Separable Polynomials
Example 1: Separable Polynomial

In Q[x], the polynomial f(x) = x* - 2 is separable because its derivative

f(x) = 3x2 is never zero for x # 0, and ged(x® - 2, 3x?) = 1.
Example 2: Non-Separable Polynomial

In F2[x], the polynomial f(x) = x> + 1 = (x + 1)? has a repeated root (1
+ 1 = 0 in F2). Its derivative f(x) = 2x = 0 in characteristic 2,

confirming it's not separable.
Example 3: Characteristic p > 0

In Fp(t)[x], the polynomial f(x) = xP - t is not separable because f'(x)=

px®-1) = 0 in characteristic p.
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UNIT 5.2
5.2.1: Normal Extensions and Their Significance

Normal extensions, also called normal field extensions, are a critical
concept in field theory and are especially important in Galois theory.
They represent field extensions where all polynomials that have one

root in the extension have all their roots in the extension.
Definition of Normal Extensions

A field extension E/F is called normal if every irreducible polynomial
in F[x] that has at least one root in E completely splits in E (i.e.,
factors into linear terms in E[X]).

Equivalently, an extension E/F is normal if and only if E is the

splitting field of some set of polynomials over F.
Alternative Characterizations
There are several equivalent ways to characterize normal extensions:

1. E/F is normal if and only if E is the splitting field of a family of
polynomials in F[x].

2. E/F is normal if and only if the set of F-embeddings of E into an
algebraic closure F that fix F pointwise is exactly the set of F-
automorphisms of E.

3. For a finite extension E/F, E/F is normal if and only if E is fixed

by every F-automorphism of its normal closure.

4. E/F is normal if and only if every F-embedding of E into an

algebraic closure F that fixes F maps E onto itself.

Properties of Normal Extensions

1. Transitivity: If E/K and K/F are normal extensions, it does not
necessarily follow that E/F is normal. However, if E/F is normal

and K is an intermediate field, then E/K is normal.
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2. Compositum of Normal Extensions: If Ei/F and E2/F are normal

extensions, then their compositum E:E>/F is also normal.

3. Relation to Splitting Fields: A finite extension E/F is normal if and

only if it is the splitting field of some polynomial in F[x].

4. Automorphism Group: If E/F is a normal extension, then the
group of all F-automorphisms of E, denoted by Aut(E/F), has
order dividing [E:F]. If E/F is also separable, then |Aut(E/F)| =
[E:F].

5.2.2: Normal Closure

For any field extension E/F, there exists a field extension N/E such
that N/F is normal and N is minimal with this property. This field N is
called the normal closure of E over F.The normal closure can be
constructed as the splitting field of the set of all minimal polynomials

of elements in E over F.
5.2.3:Galois Extensions

A field extension E/F is called a Galois extension if it is both normal
and separable. For Galois extensions, the Galois group Gal(E/F) =

Aut(E/F) has special properties:

1. |Gal(E/F)| = [E:F], the degree of the extension.

2. There is a one-to-one correspondence between the intermediate
fields of E/F and the subgroups of Gal(E/F).

3. If Kis an intermediate field (F € K < E), then K corresponds to
the subgroup Gal(E/K) of Gal(E/F), and [E:K] = |Gal(E/K)|.

5.2.4:Significance in Galois Theory

Normal extensions, especially when they are also separable (i.e.,
Galois extensions), are the cornerstone of Galois theory. The
fundamental theorem of Galois theory establishes a correspondence

between:
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1. Intermediate fields of a Galois extension E/F.
2. Subgroups of the Galois group Gal(E/F).

This correspondence is order-reversing: if Ki € Ks are intermediate
fields, then Gal(E/K:) 2 Gal(E/K>).

Moreover, if K is an intermediate field and H = Gal(E/K) is the

corresponding subgroup, then:

1. Kiisthe fixed field of H: K=Ef ={a € E |c(a)=a forall 6 €
H}.

2. [K:F] =|Gal(E/F)|/|Gal(E/K)|.
3. K/Fisnormal if and only if H is a normal subgroup of Gal(E/F).

Examples of Normal and Non-Normal Extensions
Example 1: Normal Extension

The extension Q(V2, V3)/Q is normal because it is the splitting field of
the polynomial (x2 - 2)(x2 - 3) over Q.

Example 2: Non-Normal Extension

The extension Q(¥2)/Q is not normal. The minimal polynomial of ¥/2
over Q is x* - 2, which has roots V2, ©V2, and »?32 (where o is a
primitive cube root of unity). Since ®¥2 ¢Q(¥/2), the extension is not

normal.
Example 3: Normal Closure

The normal closure of Q(¥2)/Q is Q(¥2, ®), where © is a primitive

cube root of unity. This field contains all roots of x3 - 2.
Solved Problems
Problem 1: Determine if the extension Q(\/Z)/Q is separable.

Solution: To determine if Q(¥2)/Q is separable, we need to check if

the minimal polynomial of V2 over Q is separable.
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The minimal polynomial of V2 over Q is f(x) = x2 - 2.
The derivative of f(x) is f'(x) = 2x.

Since f'(x) # 0 for x # 0, and \2 # 0, we have f(\/2) # 0. This means
that f(x) and f'(x) have no common roots, so gcd(f(x), f'(x)) = 1.

Therefore, f(x) = x2 - 2 is separable, which means that the extension
Q(V2)/Q is separable.

Additionally, since Q has characteristic 0, all irreducible polynomials
over Q are separable, providing another way to conclude that Q(2)/Q

IS separable.

Problem 2: Show that the polynomial f(x) = x* + x> + 1 over F: is

separable.

Solution: To determine if f(x) = x* + x2 + 1 is separable over F2, we

need to check if f(x) and its derivative f'(x) are relatively prime.
Computing the derivative: f'(x) = 4x> +2x =0 (in F2)
Since the derivative is zero, we need a different approach.

In fields of characteristic p > 0, an irreducible polynomial is

inseparable if and only if it is of the form g(x”p) for some polynomial
g.

Let's check if f(x) can be written as g(x?) for some polynomial g
(since 2 is the characteristic of F2): If f(x) = g(x?), then g(y) =y*+y +

1 wherey = x2.

Now we need to determine if f(x) is irreducible over F.. One way to
check is to verify that f(x) has no roots in F2 and cannot be factored

into two quadratics in F2[x].

The elements of F2 are {0, 1}. f(0)=0*+0*+1=1#0f1)=14+ 12
+1=1+1+1=1(@{nF2)#0

So f(x) has no roots in Fo.
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Now we need to check if f(x) can be factored as a product of two
quadratics. Any such factorization would be of the form: f(x) = (x2 +

ax + b)(x2 + cx + d)

Expanding: f(x) = x* + ¢x® + dx® + ax® + acx* + adx + bx?> + bex + bd =

x* + (atc)x® + (actb+d)x? + (ad+bc)x + bd

For this to equal x* + x> + 1, we need: atc = 0, which means a = ¢ in

F.actb+d=1ad+tbc=0bd=1

From a = ¢, we get ad+bc = ad+ba = a(d+b) =0, so d = b. From bd =
1, we get b = d = 1. But then ac+tb+d = a-a+1+l = a2+ 0 =a2 =1,

which means a = 1.

However, ifa=c=1and b=d =1, then atc = 1+1 = 0 in F2, which
satisfies our first equation. Let's verify: (x> +x + )(x*+x+ 1) =x*+
X*+x2+x+x2+x+x2+x+1=x*+0+3x*+2x+1=x*+x>+0

+1(nF)=x*+x*+1

So f(x) = (x2 + x + 1)2, which means it's not irreducible and has

repeated factors, making it inseparable over Fo.

Problem 3: Prove that if F is a field of characteristic 0, then every

finite extension of F is separable.

Solution: Let F be a field of characteristic 0, and let E be a finite

extension of F. We need to show that E/F is separable.

A field extension E/F is separable if and only if every element of E is
separable over F. An element o € E is separable over F if and only if

its minimal polynomial minF(a) has no repeated roots in its splitting
field.

For any polynomial f(x) € F[x], the presence of repeated roots is
equivalent to f(x) and its derivative f'(x) having a common factor, or
equivalently, ged(f(x), f'(x)) # 1.

In a field of characteristic 0, the derivative of a non-constant
polynomial is non-zero. Specifically, for an irreducible polynomial

p(x) € F[x], its derivative p'(x) is non-zero.
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Suppose p(x) has a repeated root a in some extension field. Then p(x)
and p'(x) would have a common root a, which means that p(x) and
p'(x) would have a common factor. But since p(x) is irreducible and
p'(x) has lower degree than p(x), the only way they could have a
common factor is if p'(x) is divisible by p(x), which is impossible due

to degree considerations.

Therefore, in a field of characteristic 0, every irreducible polynomial
is separable. Since E/F is a finite extension, E is generated by finitely
many algebraic elements over F, each having an irreducible minimal
polynomial over F. Since all these minimal polynomials are separable,

every element of E is separable over F.
Hence, E/F is a separable extension.

Problem 4: Determine if the extension Fa(t)(a)/F2(t) is normal, where

a is a root of the polynomial p(x) = x* - t.

Solution: To determine if the extension F2(t)(a)/Fz(t) is normal, we

need to check if p(x) = X2 - t splits completely in Fz(t)(a).

The roots of p(x) = X2 - t are +\t. Let's denote o = \t, so the roots are o

and -a.

In F2, we have 1 + 1 = 0, which means -1 = 1. Therefore, -o = a in

characteristic 2.

So in Fa(t)(a), the polynomial p(x) = x2 - t = (X - a)(x - (-a)) = (x -

a)(x - a)=(x-0)

This means that p(x) has only one distinct root, a, with multiplicity 2.
Since p(x) doesn't split into distinct linear factors in Fa(t)(a), the

extension Fz(t)(a)/F2(t) is not normal.

Alternatively, we can approach this from the definition: an extension
E/F is normal if and only if it is the splitting field of some set of
polynomials over F. In this case, Fa(t)(a) is not the splitting field of x?
- t over Fx(t) (or any other set of polynomials), because it doesn't

contain all the roots of x2 - t in an algebraic closure.
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In characteristic 2, the splitting field of x2 - t would be Fa(t)(\t) =
F2(t)(a), which is the same as our extension. However, the issue is that
X? - t = (X - a)? in characteristic 2, so it doesn't split into distinct linear

factors.
Therefore, F2(t)(a)/F2(t) is not a normal extension.

Problem 5: Prove that if E/F is a Galois extension, then |Gal(E/F)|
=[E:F].

Solution: Let E/F be a Galois extension, which means E/F is both

normal and separable.

First, let's recall that for any field extension E/F, the order of the
automorphism group Aut(E/F) is at most [E:F]. This is because if a,
o2, ..., 0, is a basis for E over F, then any F-automorphism of E is

uniquely determined by where it sends ou, o, ..., On.

For a Galois extension, we want to show that |Gal(E/F)| = [E:F],
where Gal(E/F) = Aut(E/F) is the Galois group of E over F.

Since E/F is a finite, normal, and separable extension, it is the splitting
field of a separable polynomial f(x) € F[x]. Let's say f(x) has degree n

and has distinct roots a1, 0z, ..., 0, in E.

Any F-automorphism o of E must permute the roots of f(x), because if
f(oi) = 0, then f(o(wi)) = o(f(ai)) = o(0) = 0. Therefore, o(a;) is also a
root of f(x).

Since E is generated over F by the roots of f(x), an F-automorphism of
E is completely determined by how it permutes these roots. There are
at most n! ways to permute n elements, but not all permutations of the

roots give rise to automorphisms of E.

For a separable extension, the number of F-embeddings of E into an
algebraic closure of F is exactly [E:F]. Since E/F is normal, any such

embedding maps E to itself, so it's an automorphism in Gal(E/F).

Therefore, |Gal(E/F)| = [E:F].
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Alternatively, we can use the Primitive Element Theorem, which
states that since E/F is a finite separable extension, E = F(a) for some
a € E. Let p(x) be the minimal polynomial of a over F. Since E/F is

normal, p(x) splits completely in E.

Let the distinct roots of p(x) in E be a = o, 0, ..., o, where n = [E:F]
is the degree of p(x). For each root w, there is a unique F-
isomorphism o; : F(o)) — F(os) that fixes F and maps a to ai. Since E/F
is normal, F(oi) € E, and since [F(ai):F] = [F(a):F] = [E:F], we must
have F(a) = E.

Thus, each o; is an F-automorphism of E, and these are all the F-
automorphisms of E. There are exactly n = [E:F] of them, one for each
root of p(x).

Therefore, |Gal(E/F)| = [E:F].
Unsolved Problems
Problem 1:

Determine whether the extension Q(¥2)/Q is separable. Justify your

answer.
Problem 2:

Consider the polynomial f(x) = x* + x> + x + 1 € Fz[x]. Determine

whether f(x) is separable over Fo.
Problem 3:

Let F be a field of characteristic p > 0, and let E = F(a) where ap € F

but a € F. Prove that E/F is not a separable extension.
Problem 4:

Let E/F be a finite extension with [E:F] = n. Prove that E/F is a Galois
extension if and only if |Aut(E/F)| = n.

Problem 5:
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Let K = Q(\2, V3) and F = Q. Determine the Galois group Gal(K/F)
and list all intermediate fields between F and K, establishing the

Galois correspondence.
5.2.5: Introduction to Galois Theory

Galois theory stands as one of the most elegant achievements in
mathematics, providing a deep connection between field theory, group
theory, and the solvability of polynomial equations. Named after
Evariste Galois, a brilliant French mathematician who died at the
young age of 20 in 1832, this theory emerged from his
groundbreaking work on determining which polynomial equations are

solvable by radicals.
Historical Context

The journey toward Galois theory began with the quest to find
formulas for solving polynomial equations. By the 16th century,
mathematicians had discovered formulas for solving quadratic, cubic,
and quartic equations using radicals (expressions involving addition,
subtraction, multiplication, division, and root extraction). However,

the general quintic equation (degree 5) resisted similar approaches.

In the early 19th century, mathematicians like Paolo Ruffini and Niels
Henrik Abel proved that there is no general formula using radicals for
solving polynomial equations of degree 5 or higher. Galois took this
work further by developing a systematic approach to determine which

specific equations are solvable by radicals and which are not.
Field Extensions

At the heart of Galois theory lies the concept of field extensions. Let's

start with some fundamental definitions:

Definition (Field): A field is a set with two operations, addition and
multiplication, that satisfy the wusual arithmetic properties
(associativity, commutativity, distributivity, existence of identity

elements and inverses).
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Definition (Field Extension): If F and K are fields and F € K, we say
K is an extension field of F, denoted K/F.

The notation [K:F] represents the degree of the extension, which is the
dimension of K as a vector space over F. If [K:F] is finite, we call K/F
a finite extension.

Consider a polynomial p(x) with coefficients in a field F. We're often
interested in finding a field extension K of F where p(x) splits
completely into linear factors. This leads to the concept of splitting

fields.
Definition (Splitting Field): A splitting field of a polynomial p(x) over

F is the smallest field extension of F in which p(x) factors completely

into linear factors.

Example: The splitting field of p(x) = X2 - 2 over Q is Q(V2), which is
obtained by adjoining V2 to Q.

5.2.6: Algebraic Elements and Extensions

Definition (Algebraic Element): An element a in a field extension K/F
is algebraic over F if there exists a non-zero polynomial p(x) in F[x]
such that p(a) = 0.

Definition (Algebraic Extension): A field extension K/F is algebraic if
every element of K is algebraic over F.

For any algebraic element a over F, there exists a unique monic
irreducible polynomial in F[x] having a as a root. This polynomial is

called the minimal polynomial of a over F.
Field Automorphisms and Fixed Fields

Definition (Field Automorphism): A field automorphism of a field K
is an isomorphism from K to itself. The set of all automorphisms of K
forms a group under composition, denoted Aut(K).

Given a field extension K/F, we're particularly interested in

automorphisms that fix F pointwise:
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Definition (F-automorphism): An F-automorphism of K is a field
automorphism ¢ of K such that (a) = a for all a in F. The set of all F-
automorphisms of K forms a group, denoted Aut(K/F).

Definition (Fixed Field): Given a group G of automorphisms of a field
K, the fixed field of G is the set of all elements in K that are fixed by
every automorphism in G, denoted K"G ={a€ K |c(a)=aforallc €
G}.

These concepts form the foundation for the Galois correspondence,

which we'll explore in the next section.
5.2.7: The Main Theorem of Galois Theory

The central achievement of Galois theory is establishing a
correspondence between subgroups of the Galois group and
intermediate fields of a field extension. Before stating the main

theorem, we need to define Galois extensions.
Galois Extensions
Definition (Galois Extension): A field extension K/F is Galois if it is:

1. Algebraic

2. Normal: Every irreducible polynomial in F[x] that has one root in

K splits completely in K

3. Separable: Every irreducible polynomial in F[x] with a root in K

has distinct roots

For fields of characteristic 0 (like Q), separability is automatic, so a

Galois extension is simply a normal algebraic extension.

Definition (Galois Group): The Galois group of a Galois extension

K/F, denoted Gal(K/F), is the group of all F-automorphisms of K.
The Fundamental Theorem of Galois Theory

Theorem (Fundamental Theorem of Galois Theory): Let K/F be a
finite Galois extension with Galois group G = Gal(K/F). Then:
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1. There is a one-to-one correspondence between the intermediate
fields E (F € E < K) and the subgroups H of G given by:

o For each intermediate field E, the corresponding subgroup is H =
Gal(K/E)

o For each subgroup H of G, the corresponding intermediate field
is E = KM (the fixed field of H)

2. Under this correspondence:

o IfE: € E,, then Gal(K/E2) € Gal(K/E:)
o IfHi € Hz, then KH: € KH:

3. For each intermediate field E:

o [K:E] =|Gal(K/E)|

o [E:F]=[G:Gal(K/E)]

4. An intermediate field E is Galois over F if and only if
Gal(K/E) is a normal subgroup of G. In this case, Gal(E/F) =
G/Gal(K/E).

This theorem establishes a beautiful "upside-down" correspondence

between intermediate fields and subgroups of the Galois group.
Normal Subgroups and Solvability

A key application of Galois theory is determining which polynomial

equations are solvable by radicals.

Definition (Solvable Group): A group G is solvable if it has a
subnormal series G = Go D G1 D ... D G, = {e} such that each quotient

group Gi/Gi+ is abelian.

Theorem (Solvability by Radicals): A polynomial equation is solvable

by radicals if and only if its Galois group is a solvable group.
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This provides a powerful criterion for determining whether a
polynomial equation can be solved using radicals, connecting abstract

group theory to the classical problem of solving equations.
5.2.8: Galois Groups and Their Applications

The Galois group of a polynomial encodes crucial information about
its roots and solvability. Let's explore how to compute Galois groups

and apply this knowledge.
Computing Galois Groups

For a polynomial p(x) of degree n, the Galois group is a subgroup of
the symmetric group S, (the group of permutations of n objects). Here

are some approaches to determine the Galois group:

1. Factorization Method: Factor the polynomial over successive
field extensions and track how the roots combine.

2. Discriminant Analysis: The discriminant of a polynomial
provides information about the Galois group. For a quadratic ax?
+ bx + c, the discriminant is b2 - 4ac. For higher degrees, the

formula becomes more complex.

3. Resolvent  Polynomials:  Construct  polynomials  whose

factorization pattern reveals information about the Galois group.

Galois Groups of Cyclotomic Extensions

Cyclotomic fields are among the most important examples in Galois

theory.

Definition (Cyclotomic Field): The nth cyclotomic field is Q(Gy),

where {, is a primitive nth root of unity (e.g., e?®/m),

Theorem: The Galois group Gal(Q((,)/Q) is isomorphic to (Z/nZ)*,
the multiplicative group of integers modulo n that are coprime to n.

This isomorphism is given by oi((,) = .k where ged(k,n) = 1.
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5.2.9: Extension by Radicals

A key application of Galois theory is understanding extensions by

radicals.

Definition (Radical Extension): A field extension K/F is a radical
extension if there exists a tower of fields F=Foc Fi c ... c Frx =K

where for each i, F; = Fi-1(0i) with o € Fi-: for some integer n; > 0.

Theorem: Let p(x) be an irreducible polynomial over a field F of
characteristic 0. Then the roots of p(x) can be expressed using radicals

if and only if the Galois group of p(x) is solvable.

This theorem provides the definitive answer to the ancient question of

which polynomial equations can be solved by radicals.
Insolvable Quintic Equations

The general quintic equation is not solvable by radicals because the
symmetric group Ss is not solvable. However, not all quintic equations

are unsolvable.

Example: The polynomial x* - X - 1 has Galois group Ss, making it

unsolvable by radicals.

Example: The polynomial x* - 5x + 12 has a Galois group that is

solvable, making it solvable by radicals.
Field Extensions and Constructibility

Galois theory also connects to classical geometric problems like

constructibility with straightedge and compass.

Theorem: A number a is constructible with straightedge and compass
if and only if there exists a tower of field extensions Q = Fo C F1 C ...

c Fx with a € Fy and [Fi:Fi-1] = 2 for each i.

This provides a conclusive answer to ancient problems like doubling

the cube, trisecting an angle, and squaring the circle.
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5.2.10: Examples and Applications of Galois Theory

Let's explore concrete examples and applications of Galois theory to

illustrate its power and elegance.
Example 1: The Galois Group of x3 - 2
Consider the polynomial p(x) = x3 - 2 over Q.

The roots of this polynomial are au = V2, oz = ©V2, and o = ©*V2,

where o is a primitive cube root of unity.

The splitting field of p(x) is K = Q(\3/2, ®). The elements of Gal(K/Q)

are determined by how they permute the roots of p(x).
There are 6 possible automorphisms:

e o1: Identity mapping

e 2. Maps NRooV2,0-0

e 03 Maps P2 -2, 0> 0

e 04 Maps 22, 0— e

e os: Maps 2 - oV2, 0 > 0?

e 06 Maps 2 — 0 V2, 0 - 0?

The Galois group is isomorphic to Ss, the symmetric group on 3

elements, which has order 6.

Since Ss is solvable, the equation x* - 2 = 0 is solvable by radicals

(which we already know since the solution is ¥/2).
Example 2: Cyclotomic Extensions

The cyclotomic polynomial ®,(x) is the monic polynomial whose

roots are the primitive nth roots of unity. For instance:
e Oi(x)=x-1

o Oy(x)=x+1
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e Oi(x)=x*+x+1
o Dux)=x>+1
For a prime p, ®,(x) = x\(p-1) + X (p-2) + ... + X + 1.

Let's consider ®@s(x) = x* + x> + x2 + x + 1. The Galois group of this
polynomial over Q is isomorphic to (Z/5Z)*, which is a cyclic group

of order 4, generated by the residue class of 2 or 3 modulo 5.

The intermediate fields between Q and Q({s) correspond to the
subgroups of (Z/57). Since (Z/57) has a unique subgroup of order 2,
there is exactly one intermediate field, which is Q(5).

Example 3: The Insolvability of the General Quintic

To prove that the general quintic equation is not solvable by radicals,
we need to show that the symmetric group Ss is not solvable.A group
is solvable if and only if its derived series terminates in the trivial
subgroup. The derived subgroup of Ss is As, the alternating group on 5
elements. The derived subgroup of As is As itself, which means As is a
perfect group. Therefore, Ss is not solvable.This implies that there
exist quintic equations that cannot be solved by radicals. One such

example is x° - X - 1 =0, whose Galois group over Q is Ss.
Application: Impossibility of Certain Geometric Constructions

Galois theory provides elegant proofs for the impossibility of certain

classical geometric constructions:

1. Doubling the Cube: This requires constructing ¥/2. Since the
minimal polynomial of ¥/2 over Q is x* - 2, which has degree 3,

and 3 is not a power of 2, ¥/2 is not constructible.

2. Trisecting an Arbitrary Angle: Trisecting a 60° angle leads to the
equation 4x3 - 3x = co0s(20°), which can be transformed into an
irreducible cubic. Since the degree is 3, which is not a power of

2, this construction is impossible.
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3. Squaring the Circle: This requires constructing m, which is
transcendental (not algebraic). Since all constructible numbers

are algebraic, this construction is impossible.

5.2.11: Application: Insolvability of the Quintic

The insolvability of the general quintic equation was a profound result
that ended centuries of attempts to find a radical formula. Galois
theory not only proved the impossibility but also provided criteria to
determine which specific quintic equations are solvable.

For instance, if a quintic polynomial has exactly one real root and four
complex roots, its Galois group must be either Ss or As, making it

potentially unsolvable by radicals.

Notes



Notes

UNIT 5.3
5.3.1: Symmetric Functions in Galois Theory

Symmetric functions of the roots of a polynomial play a crucial role in
Galois theory, providing a bridge between the coefficients of the
polynomial and its roots.

Elementary Symmetric Polynomials

Let x1, X2, ..., Xa be variables. The elementary symmetric polynomials

are defined as:

e1(X1, ..., Xn) = X1 + X2 + ... + Xy €2(X1, ..., Xn) = XiX2 + X1X3 + ... + Xp-1Xan
e3(X1, ..., Xn) = XiXoXs T XiXoXse T ... T Xp2Xp-1Xp ... (X1, ..., Xn) =
X1X2...Xp

For a monic polynomial p(x) = x* + a,-1x*' + ... + aix + ao with roots
o1, Oz, ..., O, the coefficients are related to the elementary symmetric

polynomials by:
ao = (-1)ren(0u, ..., 0n) a1 = (-1)* 'en1(au, ..., On) ... an-1 = -€1(a, ..., On)
The Fundamental Theorem of Symmetric Polynomials

Theorem (Fundamental Theorem of Symmetric Polynomials): Any
symmetric polynomial in X1, X2, ..., X, can be expressed uniquely as a

polynomial in the elementary symmetric polynomials ei, e, ..., €.

This theorem is crucial in Galois theory because it tells us that if f(xi,
..., Xn) 18 @ symmetric polynomial with coefficients in a field F, and if
a1, ..., Oy are the roots of a polynomial in F[x], then f(ou, ..., a,) is an

element of F.
Symmetric Functions and Resolvents

Resolvent polynomials are constructed using symmetric functions to

gather information about the Galois group of a polynomial.

For instance, if p(x) is a polynomial with roots au, ..., a,, we can form

the resolvent polynomial:
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r(x) =[](x - f(o(an), ..., o(0w)))

Where the product is taken over all ¢ in a particular coset of a

subgroup of S,, and f'is a carefully chosen function.

The factorization pattern of r(x) can reveal information about the
Galois group of p(x).

Lagrange Resolvents

A particular type of resolvent used in solving equations is the

Lagrange resolvent.

For a polynomial of degree n, the Lagrange resolvent is defined as:
0=ou+ lo2+ Qo+ ... + {7 o,

Where ( is a primitive nth root of unity.

For the cubic equation x* + px + q = 0 with roots ou, o2, os, the

Lagrange resolvents are:
01 = au + 0oz + w?as 02 = o + W02 + ®os
Where o is a primitive cube root of unity.

These resolvents satisfy a quadratic equation, which is the key to the
classical solution of the cubic.

5.3.2: Application of Galois Theory in Solving Polynomial Equations

Galois theory provides a framework for understanding which
polynomial equations are solvable by radicals and how to solve them

when possible.
Solving Quadratic Equations

The quadratic formula x = (-b + \(b? - 4ac))/2a for solving ax? + bx +
¢ = 0 involves taking a square root. The Galois group of a general
quadratic polynomial over Q is S, which is abelian and therefore

solvable.

Solving Cubic Equations
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term), the classical solution method involves:
1. Settingx=u+v
2. Imposing the condition that 3uv + p =0

3. Solving the resulting system, which leads to u® and v® being the

roots of the quadratic equation z2+ gz - (p/3)3=0
4. Finding u and v by taking cube roots
5. ComputingXx=u+vVv

The Galois group of a general cubic over Q is Ss, which is solvable

but not abelian. The solution requires nested radicals.
Solving Quartic Equations

The general quartic equation x* + px® + gqx*> + rx + s = 0 can be solved
by:
1. Removing the x3 term by substitution

2. Factoring the resulting expression as a product of two quadratics

3. This factorization leads to a cubic equation (the "resolvent

cubic™)

4. Solving the resolvent cubic yields the coefficients of the

quadratic factors
5. Solving the two quadratics

The Galois group of a general quartic is S4, which is solvable.
The Unsolvable Quintic

The general quintic equation x* + px* + gx® + rx*> + sx + t = 0 cannot
be solved by radicals because its Galois group is Ss, which is not

solvable.
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However, some special quintic equations have Galois groups that are

solvable subgroups of Ss, making them solvable by radicals.
Solving Equations Using Galois Theory

Here's a general approach to solving polynomial equations using
Galois theory:

1. Determine the Galois group of the polynomial.

2. If the Galois group is not solvable, the equation cannot be solved

by radicals.

3. If the Galois group is solvable, analyze its structure to construct a

sequence of radical extensions.
4. Use this sequence to express the roots in terms of radicals.

This approach generalizes the classical solution methods for
quadratics, cubics, and quartics, placing them within a unified

theoretical framework.

Solved Problems

Problem 1: Find the Galois group of x* - 2 over Q.
Solution:

The polynomial p(x) = x* - 2 is irreducible over Q by Eisenstein's

criterion with prime p = 2.
The roots of p(x) are ou = 4\/2, oz = i4\/2, o3 = -4\/2, and o = -i*V2.

The splitting field is K = Q(*V2, 1). Let's determine the automorphisms
of K that fix Q.

Any automorphism o in Gal(K/Q) is determined by its action on “\2
and i:

o o(*V2) must be a root of x* - 2, so o(*\2) € {12, V2, 12, -
2}

e o(i) must be a root of x>+ 1, so o(i) € {i, -1}
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This gives us 8 possible automorphisms:
1. o1 61(*V2) =2, o1(i) = i (identity)
2. 62 62("\N2) =i"2, o2(i) = i
3. 03 03("2)=-"2, o3(i) =1
4. o4 04(N2) = -2, cu(i) =1
5. o5 os(*\V2) =2, os(i) = -i
6. o6 Gs(*\2) =i*V2, o6(i) = -i
7. o7 0/(*\N2) =-N2, o4(i) = -i
8. os: 0s(*\2) = -i*\2, os(i) = -i

We can verify that these are all valid automorphisms and that they

form a group under composition.
If we examine the structure, we can show that:
e 02" =01 (identity)
(] 05> = 01
® 0205 = 06, 0502 = 0603
e This means 6205 # G562

Analyzing the group structure reveals that Gal(K/Q) is isomorphic to
Da, the dihedral group of order 8, which is the group of symmetries of

a square.

Since Ds is solvable, the equation x* - 2 = 0 is solvable by radicals

(which we already know since the solution is 4V2).

Problem 2: Determine which of the following field extensions are

Galois over Q:

() Q(V2) (b) Q(¥2) (c) QG, V2)

Solution:

216



(a) Q(¥2) The minimal polynomial of V2 over Q is p(x) = x* - 2. This
polynomial has roots V2 and -V2, both of which are in Q(V2).
Therefore, p(x) splits completely in Q(\2). Since we're working in
characteristic 0, separability is automatic. Thus, Q(\N2)/Q is a Galois

extension.
The Galois group Gal(Q(¥2)/Q) consists of two automorphisms:

e The identity automorphism c:(\N2) =2

e The non-identity automorphism 62(N2) = -\2 This group is
isomorphic to Z/27.

(b) Q(¥/2) The minimal polynomial of ¥/2 over Q is p(x) = x* - 2. This
polynomial has roots ¥2, ®¥2, and »?¥2, where o is a primitive cube
root of unity. Only one of these roots, ¥/2, is in Q(¥/2). Since p(X)
doesn't split completely in Q(¥/2), this extension is not normal.
Therefore, Q(¥2)/Q is not a Galois extension.

(c) QG, \/2) Let's consider the minimal polynomials of i and \2 over
Q:
e For i, the minimal polynomial is x2 + 1, with roots i and -i.

« For V2, the minimal polynomial is x2 - 2, with roots V2 and -V2.

Both of these polynomials split completely in Q(i, V2). Any
irreducible polynomial over Q that has a root in Q(j, \2) must be a
factor of one of these minimal polynomials or a combination of them.
Since we're working in characteristic 0, separability is automatic.
Therefore, Q(i, V2)/Q is a Galois extension.

The Galois group Gal(Q(i, ¥2)/Q) has four automorphisms:

o1 o1(i) =1, 6:1(V2) = V2 (identity)

o2: 62(1) = -1, 62(V2) =2

o3 63(i) =1, 03(V2) = -2

o4 0a(i) = -1, 6a(\2) = 2

Notes



Notes

This group is isomorphic to Z/27 x Z/27.

Problem 3: Use Galois theory to prove that cos(2zw/7) is not

constructible with straightedge and compass.
Solution:

A number is constructible with straightedge and compass if and only
if it can be obtained from the rational numbers by a sequence of field

extensions of degree 2.

Let's consider { = e(2mi/7), a primitive 7th root of unity. We know
that: cos(2n/7) = ({+ (1)/2

So cos(2n/7) is constructible if and only if { + (' is constructible.

The minimal polynomial of { over Q is the 7th cyclotomic

polynomial: ®7(x) =x°*+x*+x*+ x>+ x*+x + 1

The Galois group of ®+(x) over Q is isomorphic to (Z/7Z)*, the
multiplicative group of integers modulo 7 that are coprime to 7. This
group has order 6 and is cyclic, generated by the residue class of 3

modulo 7.

The element { + (' is fixed by the complex conjugation
automorphism, which corresponds to the element of order 2 in

(Z/7Z)*. This is the automorphism that maps {to .

The fixed field of this automorphism is Q({ + ). The degree of this
extension over Q is: [Q({):Q]/ [Q):Q(C+ L] =6/2=3

So [QC+CH):Q] =3.

Since 3 is not a power of 2, the number cos(2n/7) is not constructible

with straightedge and compass.
Multiple Choice Questions (MCQs)

1. Afield extension E/F is separable if:
a) Every element of E is a root of a separable polynomial over
F.
b) Every polynomial in F[x] has a multiple root.
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c¢) EEE contains an algebraically closed subfield.

d) None of the above.

. Apolynomial is separable if:

a) It has a repeated root.

b) It has distinct roots in its splitting field.
c) Itis irreducible over its base field.

d) None of the above.

. Afield extension is normal if:

a) Every element of the larger field, splits completely within the field itself.

b) Irreducible Polynomial

c) Some element of the larger field, splits completely within the field itself

in the base field has all its roots in the extension.
b) The extension field is algebraically closed.
)T he extension is transcendental.

d) None of the above.

. The main theorem of Galois theory establishes a
correspondence between:

a) Normal extensions and separable extensions.

b) Subgroups of the Galois group and intermediate fields.
¢) Rings and groups.

d) None of the above.

. The Galois group of a field extension E/F consists of:
a)A Il automorphisms of F.

b) All automorphisms of EEE that fix F.

c)A Il isomorphisms between EEE and F.

d) None of the above.

. The order of a Galois group is equal to:
a)T he number of elements in the field extension.

b) The degree of the field extension.

)T he number of distinct roots of the minimal polynomial.

d) None of the above.

Notes



Notes

8.

10.

11.

The splitting field of a polynomial is:

a) The largest field containing at least one root of the
polynomial.

b) The smallest field where the polynomial factors completely
into linear factors.

c) Always infinite.

d) None of the above.

A polynomial equation is solvable by radicals if:
a) Its Galois group is abelian.

b) It has at least one real root.

c) Itis reducible over its base field.

d) None of the above.

The symmetric group Sn appears in Galois theory as:

a) The Galois group of the general polynomial of degree n.
b) A subgroup of the additive group of the field.

c) The automorphism group of the field of rational functions.

d) None of the above.

Which of the following is true about Galois extensions?
a) Every finite field extension is a Galois extension.

b) Every normal and separable extension is Galois.

c) Every field extension is separable.

d) None of the above.

Short Answer Questions

1.

Define a separable polynomial and give an example.
What is a normal extension? Provide an example.
State the main theorem of Galois theory.

What is a Galois group, and how is it related to field

extensions?

Define a splitting field and explain its significance.
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6. How do symmetric functions relate to Galois theory? Notes

7. Explain why a polynomial is solvable by radicals if its Galois

group is abelian.

8. What is the significance of normal and separable extensions in

Galois theory?
9. Define a cyclic extension and give an example.

10. Explain the relationship between subgroups of the Galois

group and intermediate fields.

Long Answer Questions

1. Discuss in detail the concept of separable extensions with

examples.
2. Explain normal extensions and their role in field theory.
3. Prove and explain the main theorem of Galois theory.

4. How does Galois theory help in solving polynomial equations?

Give examples.

5. Explain the significance of the Galois group in the

classification of field extensions.

6. How do splitting fields contribute to Galois theory? Provide a

detailed explanation.

7. Discuss the connection between symmetric functions and

Galois theory.

8. Describe the structure of the Galois group of a polynomial and

its significance.

9. Prove that a polynomial is solvable by radicals if and only if

its Galois group is solvable.



Notes 10. Explain how Galois theory is applied in modern algebra and

number theory.
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Answer Key MCQ :
l.a

2.b

10.a

11. a
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