« MATS wen
maoTs GRADE

UNIVERSITY “

MATS CENTRE FOR
DISTANCE & ONLINE EDUCATION

Advanced Java Programming

Master of Computer Applications (MICA)
Semester - 2

SELF LEARNING MATERIAL

\

UNIVERSITY

n
MATS UNIVERSITY cooe A

ACCREDITED UNIVERSITY

Master of Computer Applications
MCA-201
Advanced Java Programming

Course Introduction 1
Modulel 3
Object-Oriented Programming Concepts and Implementations
Unit 1.1: OOPS Concepts and implementation 4
Unit 1.2: Package Concepts and Implementation 35
Unit 1.3: Managing Errors and Exceptions 64
Unit 1.4: Multithreading 69
Module2 76
JavaFX Technology
Unit 2.1: Introduction to JavaFX, Features, Architecture & Application 77
Unit 2.2: Java 2D Shapes, Colors, Text 93
Unit 2.3: FX Effects 108
Unit 2.4: JavaFX Transformation 112
Unit 2.5: FX Animation 117
Module3 125
Servlet Technology
Unit 3.1: J2EE Introduction and Architecture 126
Unit 3.2: Java Servlet 145
Unit 3.3: Servlet Life Cycle 159
Moduled4 225
JSP Technology
Unit 4.1: Introduction, Need and Benefit of JSP, Life Cycle of JSP 226
Unit 4.2: JSP Scripting Elements 229
Unit 4.3: Implicit Object 241
Module5 263
Spring and Spring Boot Framework
Unit 5.1: Introduction to Spring Initializing and Writing Spring application 264
Unit 5.2: Dependency Injection 270
Unit 5.3: Developing web applications 274
Glossary 296
References 300

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof.(Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof.(Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS
University, Raipur, Chhattisgarh

Prof.(Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,
Chhattisgarh

Prof.(Dr.) Jatinder kumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies
and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSECOORDINATOR

Dr. Balendra Garg, Associate Professor, School of Information Technology, MATS University, Raipur,

Chhattisgarh

COURSE PREPARATION

Dr. Balendra Garg, Associate Professor and Mr. Sanjay Behara, Assistant Professor, School of

Information Technology, MATS University, Raipur, Chhattisgarh

March,2025

ISBN: 978-93-49916-14-2
@MATSCentreforDistanceandOnlineEducation,MATSUniversity,Village-Gullu,Aarang,Raipur-
(Chhattisgarh)

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in any
form, by mimeograph or any other means, without permission in writing from MATS University,
Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed &Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr. Meghanadhudu
Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)
Disclaimer-Publisherofthisprintingmaterialisnotresponsibleforanyerrorordisputefromcontentsofthis
course material, this is completely depends on AUTHOR’S MANUSCRIPT.
Printedat:TheDigitalPress,KrishnaComplex,Raipur-492001(Chhattisgarh)

Acknowledgement

The material (pictures and passages) we have used is purely for educational
purposes. Every effort has been made to trace the copyright holders of material
reproduced in this book. Should any infringement have occurred, the publishers and
editors apologize and will be pleased to make the necessary corrections in future

editions of this book.

COURSE INTRODUCTION

Java is a powerful, object-oriented programming language widely used
for developing robust, scalable, and secure applications. This course
provides a comprehensive understanding of object-oriented
programming concepts, JavaFX for building graphical user interfaces,
and advanced web development technologies such as Servlets, JSP, and
the Spring Framework. Students will gain both theoretical knowledge
and hands-on experience in designing and developing modern Java
applications.
Module 1: Object-Oriented Programming Concepts and
Implementations
Object-oriented programming (OOP) enhances code
reusability, scalability, and maintainability. This Unit
introduces key OOP concepts such as encapsulation,
inheritance, polymorphism, and abstraction. Students will learn
how to implement OOP principles in Java, utilizing classes,
objects, and design patterns for efficient software development.
Module 2: JavaFX Technology
JavaFX is a modern Java framework for developing rich
graphical user interfaces (GUIs). This Unit explores JavaFX
components, event handling, layout management, and styling
using CSS. Students will learn how to create interactive desktop
applications with advanced UI controls and multimedia
integration.
Module 3: Servlet Technology
Servlets are essential for developing dynamic web applications
in Java. This Unit covers the fundamentals of Servlet
technology, HTTP request/response handling, session
management, and database connectivity using JDBC. Students
will learn how to create server-side applications that handle
web-based interactions efficiently.
Module 4: JSP Technology
JavaServer Pages (JSP) enable the development of dynamic
web pages by integrating Java with HTML. This Unit

introduces JSP scripting elements, directives, custom tags, and

1
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

expression language (EL). Students will gain experience in
developing interactive and data-driven web applications using
JSP and Servlets.

Module 5: Spring and Spring Boot Framework

Spring is a powerful Java framework for building enterprise
applications, while Spring Boot simplifies application
development with pre-configured setups. This Unit explores
Spring Core concepts, dependency injection, Spring MVC, and
RESTful API development using Spring Boot. Students will
learn how to build scalable and efficient Java applications using

industry-standard frameworks.

2
MATS Centre for Distance and Online Education, MATS University

MODULE 1
OBJECT-ORIENTED PROGRAMMING
CONCEPTS AND IMPLEMENTATIONS

LEARNING OUTCOMES

To understand the fundamental concepts of Object-Oriented
Programming (OOP).

To explore the implementation of OOP principles in Java.
To analyze package concepts and their implementation.

To study error handling and exception management.

To understand multithreading concepts and network
programming.

To explore Java Database Connectivity (JDBC) and its

architecture

3
MATS Centre for Distance and Online Education, MATS University

(RS

gmn'r

\\\

UNIVERSITY

ready for life.

Notes

)

|

Unit 1.1 : Object Oriented Programming Concepts and
Implementation

1.1.1 OOPS Concepts and Implementation

Object-Oriented Programming (OOP) is a paradigm that has made its
way to becoming the most powerful paradigm in the software
development arena, changing the very notions of how programmers
see the world, how they design, and execute the systems. OOP
essentially reflects the way in which we view the real world, consisting
of'a group of individual objects, each with its properties and functions,
and among them making meaningful relationships. Java, which first
came into the world in the mid-1990's, has had the reputation as being
one of the leading standard-bearers for object-oriented principles,
supporting a rich, platform-independent environment which embraces
the object-oriented paradigm. While procedural programming is based
on functions or the sequence of operations, OOP focuses on objects
and methods rather than functions, making them modular. This
paradigm transformation cemented OOP as the preeminent approach
for designing large, intricate software solutions across a wide array of
sectors, whether enterprise applications, web services, mobile devices,

or embedded systems.

.......

3 Object-Oriented . .
Class e} Programming o} Abstraction
- system(oops) .

Polymorphism

Figure 1.1.1.: OOPs Pillars
[Source: https://www.colab.research.google.com/

The beauty of OOP in Java is that it’s organized around six core
concepts, namely classes, objects, encapsulation, inheritance,
polymorphism and abstraction. However, these principles operate in
concert to form a coherent framework that allows developers to model
the entities and relations of the real world in their code. Thus, classes

are templates that outline both features (attributes) and functionalities

4
MATS Centre for Distance and Online Education, MATS University

(methods) of objects, whilst objects are actual manifestations of these
classes, encapsulating their details and bringing them to life in your
code. In encapsulation, a protective barrier is set around the object, and
the data is restricted from outside access and modification. Inheritance
defines the relationships between the base classes and the derived
classes. A derived class can also access the members of the base classes.
Polymorphism adds a layer of flexibility as an object can use different
behavior based on its context, even when derived from common
interfaces. With abstraction, developers can override complexity,
working only on properties that are relevant, while hiding behind
implementation. These principles form the bedrock on which Java's
approach to software development is built, providing developers with a
robust arsenal for crafting clean, efficient, and maintainable code. This
in-depth resource goes into each of the core OOP principles in detail,
explaining the theory behind them and how you can apply them in
practice in Java. We will explore how these principles manifest in
coding practices through step-wise explanation, examples and
applications. When developers understand these principles, they can
exploit the full power of Java object orientation and create applications
that are not only functional, but also robust, flexible and scalable. This
guide is a good fit for you if you are either brand new to programming
wanting to get started with object oriented programming using basics
of Java or you are a seasoned developer wanting to learn the
philosophical point behind the syntax of Java and how Java implements
object orientation as a the main paradigm of programming, and what
makes it one of the oldest and well built and most used programming
languages in the software development industry.

1.1.2 Classes and Objects:

Classes & Objects in Java

Class Car model - Ertiga
color - Mehroon
brand - Maruti

model

Data model - XUV500

color
Members b color - Black
rand brand - Mahindra
model - Swift
6o i color - Red
Methods s.pe?\d 0 S brand - Maruti

Figure 1.1.2: Classes and Objects
[Source: https://in.pinterest.com/

5
MATS Centre for Distance and Online Education, MATS University

\

¢m

\\\

UNIVERSITY

ready for lfe......

Notes

ars)

Y W i

|

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

Java is an object-oriented programming language and classes and
objects are the building blocks of the object-oriented programming in
Java and the framework on which the whole paradigm is based on. Java
class: A class in Java is a blueprint or template that defines the
properties (attributes) and behaviors (methods) that are common to a
particular type of entity It summarizes the core attributes that
characterize what an object is and the actions that specify what an
object can do. View a class as an abstract thing—it's the idea of
something. For example, a Car class, will have attributes like color,
make, model, and year as well as methods like accelerate(), brake(), and
turn(). Note that the class itself does not represent any specific car; it
describes the structure that all cars in the program will adhere to. On
Java, a class is specified with the Keyword, course, myClass and any
code that contains area ideas, constructors, and method definitions. This
organized way of defining a class allows developers to process strong
units that truly represent real-world objects.

Classes exist as concepts that define the nature and behavior of objects,
while objects are specific occurrences of classes, actual
implementations of those ideas.Java implements an object creation
concept named instantiation where an object is created with the new
keyword followed by calling the constructor method. This action
reserves memory space for the object, sets the fields, and returns a
reference to the newly created instance. All fields in the object state
independently of all objects in the same class So with one Car Object
we might call accelerate () to increase its speed, but another Car Object
stays at 0. This allows objects to model separate entities that can
collaborate with one another in the program. Classes are the blueprints
for objects; they define the properties and methods that the instantiated
objects will have, while objects are the actual entity that is created
based on those blueprints — the things we work with in the program.

This interplay between classes and objects is what allows Java
developers to write modular, organized code that accurately reflects
complex systems. By implementing proper OOP principles,
programmers are able to group together properties and methods,
allowing for the code designed to easily be reused and maintained. Say
for example, in a banking application, the classes could be: Account,

Customer, Transaction, Branch. Classes would represent different

6
MATS Centre for Distance and Online Education, MATS University

entities, such as bank accounts, customers, transactions, and branches,
and they would define both the properties and behaviors associated
with these entities. This allows you to think of the program as a
collection of interacting entities instead of a series of operations, more
naturally matching how we approach thinking about systems in the real
world. Moreover, the class-object model promotes teamwork across
different teams of developers by defining clear boundaries as well as
interfaces between various elements in a system. However, as long as
team members follow the contract, they can work on different classes
independently, which can provide significant speedups during
development of large-scale applications. This clever interplay of
classes and objects grants Java nimbleness and versatility by offering
a well-defined framework for creating complex software systems that

can grow and evolve over time.

// Example of a class definition in Java
public class Car {

// Attributes (fields)

private String make;

private String model;

private int year;

private String color;

private double speed;

// Constructor
public Car(String make, String model, int year, String color) {
this.make = make;
this.model = model;
this.year = year;
this.color = color;
this.speed = 0.0;

// Behaviors (methods)
public void accelerate(double amount) {
speed += amount;
System.out.println("Car accelerating. Current speed: " + speed +

n mphﬂ);

7
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

4 M
UNIVERSITY
ready for life

Notes }

public void brake(double amount) {
if (speed >= amount) {

speed -= amount;

} else {
speed = 0;
h
System.out.println("Car braking. Current speed: " + speed + "
mph");
h

public void turn(String direction) {

System.out.println("Car turning " + direction);

/I Accessor methods (getters)
public String getMake() {

return make;

public String getModel() {

return model;

public int getYear() {

return year;

public String getColor() {

return color;

public double getSpeed() {
return speed;

/I Object creation and usage example

8
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

public static void main(String[] args) { Notes
/I Creating objects (instances of the Car class)
Car myCar = new Car("Toyota", "Camry", 2023, "Red");
Car friendsCar = new Car("Honda", "Civic", 2022, "Blue");

// Using object methods

System.out.println("My car is a " + myCar.getColor() + " " +
myCar.getYear() + " " + myCar.getMake() +
" "+ myCar.getModel());

myCar.accelerate(30);
myCar.turn("right");

myCar.brake(10);

System.out.println("Friend's car is a " + friendsCar.getColor() + "

"
friendsCar.getYear() + " " + friendsCar.getMake() +
" " + friendsCar.getModel());
friendsCar.accelerate(45);
friendsCar.turn("left");
friendsCar.brake(15);
}
}
Output:

My car is a Red 2023 Toyota Camry

Car accelerating. Current speed: 30.0 mph
Car turning right

Car braking. Current speed: 20.0 mph
Friend's car is a Blue 2022 Honda Civic
Car accelerating. Current speed: 45.0 mph
Car turning left

Car braking. Current speed: 30.0 mph

9
MATS Centre for Distance and Online Education, MATS University

gmm

UNIVERSITY

ready for life.

Notes

S

Explanation of output:

1.
2.

System.out.println("My car is a ...") — prints info about myCar.
myCar.accelerate(30); — increases speed to 30.0 and prints
current speed.

myCar.turn("right"); — prints turning right.

myCar.brake(10); — reduces speed to 20.0 and prints current
speed.

System.out.println("Friend's car is a ...") — prints info about
friendsCar.

friendsCar.accelerate(45); — increases speed to 45.0 and prints
current speed.

friendsCar.turn("left"); — prints turning left.
friendsCar.brake(15); — reduces speed to 30.0 and prints

current speed.

1.1.3 Encapsulation:

-,

(&)

Encapsulation

Data Methods Data Members

Figurel.1.3 : Encapsulation
Source: https://www.simplilearn.com/

Encapsulation is one of the four core principles of Object-Oriented

Programming and signifies the concept of encapsulation where objects

hide information and provide controlled access to its internal state. In

its simplest form, of encapsulation is bundling attributes (data) and the

methods that affect those data into a single entity (class) and restricting

access to the internal constituents of that entity. This mechanism acts

as a wall between the object with a hidden value and code running

outside it, the latter running any interference with an external code

trying to meddle with an object's hidden variable. Java encapsulation is

10
MATS Centre for Distance and Online Education, MATS University

mainly achieved using access modifiers, which are keywords that
determine the visibility or accessibility of a class member (private,
protected, and public). Private modifier allows code from other classes
to access the field only if it is defined in the same class, which makes
it an essential tool for encapsulation. This protects the object's
characters from being accessed by external code directly, and keeps the
object's data valid without invalidating its state in its fucking life. Java
developers can create more portable and reusable software components
through effective encapsulation by separating an object's

implementation from its interface.

Default encapulation is very simple in Java, for achiving default
encapulation we use encapsulation like if you need we declare class
attributes as private and provides public methods (getters and setters).
This strategy has some major benefits in software development. First,
it gives the class designer the ability to enforce validation right in the
setter methods, making sure that attributes can only be assigned valid
values. For example, a setter method for an employee's salary might
check that the new salary value is positive and in a reasonable range
before making the change. Second, encapsulation allows internal
implementation details to change, without having to change any code
that uses this class. The public interface may be the same while
changing the internal representation of the attribute from some simple
primitive type (string, integer, etc.) to a complex object, thereby
allowing keeping the backward compatibility. Third, encapsulation
allows for additional logic to be attached to the reading or writing of
properties — think of logging a change, notification of observers, or
maintaining consistency between related properties. While the contract
enforced by this controlled access pattern ensures that systems are more

easily predictable and maintainable over time.

Encapsulation also serves as a guiding principle for software design,
ensuring loose coupling and separation of concerns. Encapsulation
minimizes inter-component dependencies by hiding implementation
details and presenting only necessary interfaces. This modularity
allows different classes to evolve separately so long as they adhere to
their contractually specified interfaces, which also allows for parallel

development and incremental modification of large codebases.

11
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

Encapsulation also enables defensive programming practices by
minimizing the exposure of attributes—once they can only be changed
through cleanly defined methods, the places where bugs might creep in
are limited and hence can be easily located. Encapsulation also
implements the principle of least privilege in software design, which
ensures information is accessible only on a need-to-know basis.
Limiting access rights reduces the risk of security vulnerabilities and
side effects in complicated systems. By providing such a wide variety
of advantages, encapsulation become a core principle of Java
programming, empowering developers to build software that is not
merely functional, but also secure, maintainable, and adaptable to

changing needs.

// Example of encapsulation in Java
public class BankAccount {
// Private attributes - hidden from outside access
private String accountNumber;
private String accountHolderName;
private double balance;
private String accountType;

private boolean isActive;

// Constructor
public BankAccount(String accountNumber, String
accountHolderName, double initialDeposit, String accountType) {
this.accountNumber = accountNumber;
this.accountHolderName = accountHolderName;
this.balance = initialDeposit;
this.accountType = accountType;

this.isActive = true;

// Getter methods - controlled access to private attributes
public String getAccountNumber() {

// Return masked account number for security

return "XXXX-XXXX-" +

accountNumber.substring(accountNumber.length() - 4);

}

12
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

public String getAccountHolderName() {

return accountHolderName;

public double getBalance() {

return balance;

public String getAccountType() {
return accountType;

public boolean isActive() {

return isActive;

// Setter methods - controlled modification with validation
public void setAccountHolderName(String accountHolderName) {
if (accountHolderName != null &&
laccountHolderName.trim().isEmpty()) {
this.accountHolderName = accountHolderName;
} else {
throw new Illegal ArgumentException("Account holder name
cannot be empty");

}

/I 'No setter for account number - it should not be changed after

creation

public void setAccountType(String accountType) {
if (accountType !=null && (accountType.equals("Checking") ||
accountType.equals("Savings") ||
accountType.equals("Investment"))) {
this.accountType = accountType;
} else {

13
MATS Centre for Distance and Online Education, MATS University

4 M
UNIVERSITY
ready for life

Notes

throw new Illegal ArgumentException("Invalid account type.

Must be Checking, Savings, or Investment");

b

public void setActive(boolean isActive) {

this.isActive = isActive;

// Business methods that modify the private attributes in a
controlled way
public void deposit(double amount) {
if (lisActive) {
throw new IllegalStateException("Cannot deposit to inactive

account");

}

if (amount <= 0) {
throw new Illegal ArgumentException("Deposit amount must
be positive");

}

balance += amount;
System.out.println("Deposited: $" + amount + ". New balance:
$" + balance);

}

public void withdraw(double amount) {
if (lisActive) {
throw new IllegalStateException("Cannot withdraw from

inactive account");

}

if (amount <= 0) {
throw new Illegal ArgumentException("Withdrawal amount
must be positive");

}

14
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

if (amount > balance) { Notes
throw new IllegalStateException("Insufficient funds");

balance -= amount;
System.out.println("Withdrawn: $" + amount + ". New balance:
$" + balance);

}

// Example usage
public static void main(String[] args) {
BankAccount account = new BankAccount("1234567890",
"John Doe", 1000.0, "Checking");

/I Access attributes through getters

System.out.println("Account: " + account.getAccountNumber());

System.out.println("Holder: " +
account.getAccountHolderName());

System.out.println("Balance: $" + account.getBalance());

System.out.println("Type: " + account.getAccountType());

/I Modify attributes through setters and business methods
account.setAccountHolderName("John A. Doe");
account.deposit(500);

account.withdraw(200);

// ' This would throw an exception:
/I account.balance = -1000; // Compilation error: balance is

private

// ' Using methods with validation
try {
account.withdraw(2000); // Will throw exception for
insufficient funds
} catch (IllegalStateException e) {
System.out.println("Error: " + e.getMessage());

15
MATS Centre for Distance and Online Education, MATS University

i)

[

?mm

\\\ i

UNIVERSITY
ready for life

Notes

If you compile and run your BankAccount program, you will see:

Output:

Account: XXXX-XXXX-7890

Holder: John Doe

Balance: $1000.0

Type: Checking

Deposited: $500.0. New balance: $1500.0
Withdrawn: $200.0. New balance: $1300.0

Error: Insufficient funds

Explaination:
1. First four println statements:
o getAccountNumber() masks all but the last 4 digits =
XXXX-XXXX-7890
o getAccountHolderName() = John Doe
o getBalance() = 1000.0
o getAccountType() = Checking
2. account.setAccountHolderName(''John A. Doe");
v Changes the name internally but does not print anything.
3. account.deposit(500);
v Adds $500 = balance becomes $1500 = prints:
Deposited: $500.0. New balance: $1500.0
4. account.withdraw(200);
v Subtracts $200 = balance becomes $1300 = prints:
Withdrawn: $200.0. New balance: $1300.0
5. account.withdraw(2000); inside try block
Triggers Insufficient funds exception = caught by catch block
= prints:

Error: Insufficient funds

Note:
Directly modifying balance from outside would cause a compilation

error because balance is private.

16
MATS Centre for Distance and Online Education, MATS University

imaTs)
UNIVERSITY

ready for lfe......

You can only interact through the provided methods—this is Notes

encapsulation in action.

1.1.4 Inheritance:

Single Inheritance Hierarchial Inheritance MultiLevel Inheritance

Super Class Super Class Super Class

Sub Class 1

]

’ Sub Class ’ Sub Class 1 | | Sub Class 2 ‘ Sub Class 3 T
Sub Class 2
Hybrid Inheritance Mulitiple Inhertance
Super Class ’ Super Class 1 \ [Super Class 2 ‘
e, » — b 7
SRR Ea——————
| Sub Class 1 Sub Class 2

| ’ Sub Class ’

————— e

Sub Class 3

Figurel.1.4: Types of Inheritance
[Source: https://www.acte.in/]

One of the fundamental building blocks of object-oriented
programming in Java is inheritance, which allows developers create a
relationship between classes that follows the same "is-a" relationship
found in real-world taxonomies. This is a potent process, enabling
developers to create a new class (the subclass or derived class) that
extends an existing class (the superclass or base class) to inherit its
characteristics, and functionality, while providing new or altered
functionality where required. The extends keyword in Java is used to
implement inheritance, forming a parent-child relationship between
classes, where the child class automatically inherits all the visible
members (fields and methods) from its parent class. This relationship
defines inheritance of common attributes and behaviors, which, due to
dynamic polymorphism, can be defined only once, in a parent class,
and reused in multiple child classes. An example of a Vehicle class
could provide common attributes such as speed, color, and weight,
along with methods to start, stop, and rate fuel consumption. Language
classes like Car, Motorcycle, and Truck can inherit these common
properties, but they can also introduce their own specific properties,

like the number of doors for the car or the capacity of a truck. This

17
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

simple hierarchy eliminates code duplication, but also creates a natural
organization that follows the conceptual relationships between different

types of entities.

The inheritance model of Java has some unique features that helps the
developers design their class hierarchies. Because Java only supports
single inheritance for classes — that is, it only allows a class to extend
one superclass — this helps avoid the complexities and ambiguities
associated with multiple inheritance. Java, for instance, compensates
for this limitation with interfaces, permitting a class to form a contract
with multiple interfaces, effectively creating a sort of multiple
inheritance of behavior. Second, the super keyword in Java refers to
the superclass, allowing subclasses to access inherited methods and call
superclass constructors. This ensures that the inherited fields are
initialized appropriately, and it also enables subclasses to build upon
and broaden the behaviors specified in their parent class. 3. Java's
model of inheritance provides the concept of method overriding, where
a subclass implements a specialized version of a method defined in its
superclass. The purpose of the @Override annotation is to inform the
compiler that the annotated method is being overridden from its
superclass, allowing it to check whether the method signature matches
an inherited method and providing an error in case of method
overloading. You are vertical after October twenty twenty-three.

Inheritance in Java, however, is a philosophical approach to the design
of programs that centers on the concepts of generalization and
specialization, beyond the technical side. With inheritance, developers
can formulate abstract base classes that encapsulate the core properties
of a concept, and then derive specialized subclasses that adapt and add
to this concept for common scenarios. This maps very nicely to how
we humans experience and group our knowledge, making for more
sensible and natural object-oriented designs. There are things like
polymorphic behavior, where a collection of objects of various
subclass types can be handled uniformly via their common superclass
type, enabling greater flexibility and extensibility in software systems.
The point is that if you have a class with a method that takes a Shape,
you can call that method with any Circle, Rectangle, or Triangle
subclassed object, since they all inherit—from some other

class(directly or indirectly) from Shape. This polymorphic feature

18
MATS Centre for Distance and Online Education, MATS University

allows programmers to write code that works with existing types and
future derivatives without needing to change the code, providing an
ideal case of the open-closed principle in software design. Moreover,
inheritance enables incremental development and testing, as base
classes can be implemented and validated prior to the addition of
derived classes. Inheritance continues to be a vital concept within the
Java programming language, allowing developers to create software
architectures that are both structurally sound and responsive to

changing needs by providing its various advantages.

// Example of inheritance in Java
// Base class (superclass)
public class Vehicle {
// Common attributes for all vehicles
protected String brand,
protected String model;
protected int year;
protected double speed;
protected double fuelCapacity;
protected double fuelLevel;

// Constructor
public Vehicle(String brand, String model, int year, double
fuelCapacity) {
this.brand = brand;
this.model = model;
this.year = year;
this.speed = 0;
this.fuelCapacity = fuelCapacity;
this.fuelLevel = fuelCapacity / 2; // Start with half tank

// Common behaviors for all vehicles
public void start() {
System.out.println("Vehicle starting...");

public void stop() {

19
MATS Centre for Distance and Online Education, MATS University

[

=2

\ \\\

UNIVERSITY

ready for lfe......

Notes

i

aTs)

4 M
UNIVERSITY
ready for life

Notes speed = 0;
System.out.println("Vehicle stopped.");

public void accelerate(double amount) {
if (fuelLevel > 0) {
speed += amount;
consumeFuel(amount * 0.1); / Simple fuel consumption
model
System.out.println("Vehicle accelerating. Current speed: " +
speed + " mph");
} else {
System.out.println("Cannot accelerate. Out of fuel.");

public void refuel(double amount) {
if (fuelLevel + amount <= fuelCapacity) {

fuelLevel += amount;

} else {
fuelLevel = fuelCapacity;
b
System.out.println("Refueled. Current fuel level: " + fuelLevel +
" gallons");
b

protected void consumeFuel(double amount) {
fuelLevel = Math.max(0, fuelLevel - amount);
if (fuelLevel == 0) {
System.out.println("Warning: Vehicle out of fuel!");

/I Getters

public String getBrand() { return brand; }
public String getModel() { return model; }
public int getYear() { return year; }

public double getSpeed() { return speed; }

20
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

public double getFuelLevel() { return fuelLevel; } Notes

@Override
public String toString() {
return year + " " + brand + " " + model,

// Derived class (subclass)

public class Car extends Vehicle {
// Additional attributes specific to cars
private int numberOfDoors;
private boolean hasConvertibleTop;

private boolean isTrunkOpen;

// Constructor that calls the superclass constructor
public Car(String brand, String model, int year, double
fuelCapacity, int numberOfDoors, boolean hasConvertibleTop) {
super(brand, model, year, fuelCapacity); // Call to superclass
constructor
this.numberOfDoors = numberOfDoors;
this.hasConvertibleTop = hasConvertibleTop;
this.isTrunkOpen = false;

/I Override the start method from Vehicle
@QOverride
public void start() {
System.out.println("Car engine starting... Vroom!");

super.start(); / Call the superclass version of the method

// Additional behaviors specific to cars
public void openTrunk() {
isTrunkOpen = true;

System.out.println("Car trunk opened.");

21
MATS Centre for Distance and Online Education, MATS University

(\._/_./\
By
g .
UNIVERSITY
ready for life

Notes public void closeTrunk() {
isTrunkOpen = false;
System.out.println("Car trunk closed.");

public void toggleConvertibleTop() {
if (hasConvertibleTop) {
System.out.println(hasConvertibleTop ? "Convertible top
opened." : "Convertible top closed.");

} else {
System.out.println("This car doesn't have a convertible top.");

/I Override the toString method from Vehicle
@Override
public String toString() {
return super.toString() + " (Car, " + numberOfDoors + "-door" +
(hasConvertibleTop ? ", Convertible" : "") +")";

// Getters for car-specific attributes

public int getNumberOfDoors() { return numberOfDoors; }
public boolean hasConvertibleTop() { return hasConvertibleTop; }
public boolean isTrunkOpen() { return isTrunkOpen; }

/I Another derived class showing inheritance
public class Motorcycle extends Vehicle {
// Additional attributes specific to motorcycles
private boolean hasSideCar;
private String engineType;

/I Constructor
public Motorcycle(String brand, String model, int year, double
fuelCapacity, boolean hasSideCar, String engineType) {
super(brand, model, year, fuelCapacity);
this.hasSideCar = hasSideCar;

22
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

this.engineType = engineType;

/I Override the start method
@Override
public void start() {
System.out.println("Motorcycle engine starting... Rumble!");

super.start();

// Override the accelerate method for different fuel consumption
@Override
public void accelerate(double amount) {
if (fuelLevel > 0) {
speed += amount * 1.5; // Motorcycles accelerate faster
consumeFuel(amount * 0.05); // Motorcycles use less fuel
System.out.println("Motorcycle accelerating. Current speed: "
+ speed + " mph");
} else {
System.out.println("Cannot accelerate. Out of fuel.");

// Additional methods specific to motorcycles
public void performWheelie() {
if (speed > 15) {
System.out.println("Performing a wheelie! Be careful!");
} else {
System.out.println("Speed too low for a wheelie.");

/I Override toString
@QOverride
public String toString() {
return super.toString() +" (Motorcycle, " + engineType + "
engine" +
(hasSideCar ? " with sidecar" : "") +")";

23
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

// Getters
public boolean hasSideCar() { return hasSideCar; }
public String getEngineType() { return engineType; }

// Example usage
public class InheritanceDemo {
public static void main(String[] args) {
/I Create objects of different vehicle types
Vehicle genericVehicle = new Vehicle("Generic", "Transporter",
2023, 15.0);
Car sedan = new Car("Toyota", "Camry", 2023, 14.5, 4, false);
Car convertible = new Car("Mazda", "MX-5", 2023, 11.9, 2,
true);
Motorcycle sportBike = new Motorcycle("Honda",
"CBR600RR", 2023, 4.5, false, "4-cylinder");

// Demonstrate inheritance by using common methods
System.out.println("\n--- Generic Vehicle ---");
System.out.println(genericVehicle);
genericVehicle.start();

genericVehicle.accelerate(30);

genericVehicle.stop();

System.out.println("\n--- Sedan ---");
System.out.println(sedan);
sedan.start();

sedan.accelerate(35);
sedan.openTrunk();
sedan.closeTrunk();

sedan.stop();

System.out.println("\n--- Convertible ---");
System.out.println(convertible);
convertible.start();

convertible.accelerate(40);

24
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

convertible.toggleConvertibleTop(); Notes
convertible.stop();

System.out.println("\n--- Sport Bike ---");
System.out.println(sportBike);
sportBike.start();
sportBike.accelerate(50);
sportBike.performWheelie();
sportBike.stop();

// Demonstrate polymorphism (will be covered in more detail in
the polymorphism section)

System.out.println("\n--- Polymorphic Behavior ---");

Vehicle[] vehicles = {genericVehicle, sedan, convertible,
sportBike};

for (Vehicle v : vehicles) {
System.out.println("Processing: " + v);
v.start();
v.accelerate(25);

v.stop();
System.out.println();

Output:

--- Generic Vehicle ---

2023 Generic Transporter

Vehicle starting...

Vehicle accelerating. Current speed: 30.0 mph
Vehicle stopped.

--- Sedan ---

2023 Toyota Camry (Car, 4-door)

Car engine starting... Vroom!

Vehicle starting...

Vehicle accelerating. Current speed: 35.0 mph

25
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

Car trunk opened.
Car trunk closed.

Vehicle stopped.

--- Convertible ---

2023 Mazda MX-5 (Car, 2-door, Convertible)
Car engine starting... Vroom!

Vehicle starting...

Vehicle accelerating. Current speed: 40.0 mph
Convertible top opened.

Vehicle stopped.

--- Sport Bike ---

2023 Honda CBR600RR (Motorcycle, 4-cylinder engine)
Motorcycle engine starting... Rumble!

Vehicle starting...

Motorcycle accelerating. Current speed: 75.0 mph
Performing a wheelie! Be careful!

Vehicle stopped.

--- Polymorphic Behavior ---

Processing: 2023 Generic Transporter
Vehicle starting...

Vehicle accelerating. Current speed: 25.0 mph
Vehicle stopped.

Processing: 2023 Toyota Camry (Car, 4-door)
Car engine starting... Vroom!

Vehicle starting...

Vehicle accelerating. Current speed: 60.0 mph
Vehicle stopped.

Processing: 2023 Mazda MX-5 (Car, 2-door, Convertible)
Car engine starting... Vroom!

Vehicle starting...

Vehicle accelerating. Current speed: 65.0 mph

Vehicle stopped.

26
MATS Centre for Distance and Online Education, MATS University

Processing: 2023 Honda CBR600RR (Motorcycle, 4-cylinder engine)
Motorcycle engine starting... Rumble!

Vehicle starting...

Motorcycle accelerating. Current speed: 112.5 mph

Performing a wheelie! Be careful!

Vehicle stopped.

Explaination:
o toString() overrides provide readable descriptions (year
brand model ...).
o Each start() method prints a message, with subclasses adding
their own output before calling super.start().
e accelerate() prints updated speeds and consumes fuel:
o Vehicle accelerates normally.
o Motorcycle accelerates 1.5x faster.
e Car-specific methods (openTrunk, toggleConvertibleTop) print
their actions.
o performWheelie() in Motorcycle checks speed before printing.
e The polymorphism loop (Vehicle[]) calls overridden methods

dynamically for each subclass.

The polymorphism loop (Vehicle[]) calls overridden methods

dynamically for each subclass.

1.1.5 Polymorphism: When something may illustrate the measure of

one thing, polymorphism, from the Greek words significance "many
forms," 1s viewed as a standout amongst the most influential concepts
in object-situated programming you can have diverse items at different

circumstances to a similar interface in different ways.

Elements of Polymorphism in Java

Interfaces Method Overriding

Inheritance Method Overloading

27
MATS Centre for Distance and Online Education, MATS University

\ %VERS!T; \

ready for lie......

Notes

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

Figurel.1.5
Polymorphism in Java is mainly achieved through method overriding
and method overloading, providing a flexibility towards writing a more
elegant and extensible code flow. In simpler terms, when the subclass
has the same method as its super class, we call this method as method
overriding and thus subclass method will be called while invoking the
method on a class object. This dynamic method dispatch, also referred
to as runtime polymorphism, is based on the actual type of the object
rather than the reference type. Example: If we have a superclass
reference pointing to a subclass object and call a method we would
expect from the superclass to be called Java would automatically
invoke the one overridden from the subclass. Method overloading,
however, is an example of compile-time polymorphism, because it
defines multiple methods with the same name but different argument
lists to exist in the same class. The Java compiler decides which version
of the method should be execute based on number of arguments, types
of arguments and order of arguments passed. In combination, but with
the aid of such mechanisms, Java developers can implement code that
operates on objects at increasing levels of abstraction whereby they are
manipulated through common interfaces while their specific
implementations can still vary, which provides the user reusability of

code blocks and simplifies the evolution of the system.

Polymorphism in Java, which would be the basis of this article, in
practical terms, is only deriving from the interplay of the concepts of
inheritance and interfaces. Case in point, through inheritance,
subclasses can override any methods declared in their superclasses,
allowing you to provide specialized behavior while preserving the
method signature. It allows code in the client to communicate with
objects using superclass reference variables, treating heterogeneous
cases of object types uniformly, according to common inheritance. An
example would be a drawing application that creates a Shape
superclass with Circle, Rectangle and Triangle subclasses. Client code
on a Shape reference doesn't need to know its subtype, it can just call
draw(), and each subclass knows its rendering logic, override draw().
So interfaces take this polymorphic capability to the next level by
defining contracts that different classes must implement. A class can

implement many interfaces, where methods of the interface describe

28
MATS Centre for Distance and Online Education, MATS University

different aspects of its behavior, enabling objects to be treated
polymorphically based on their abilities rather than their inheritance
lineage. For example, unrelated classes such as ElectricCar, SolarPanel,
and Smartphone might all implement a common Rechargeable interface
which would allow them to be processed in a consistent way by healing
systems. This late binding that is made possible by showing this
interface-based polymorphic behaviour enables us to develop systems
with high degree of flexibility since new types can just be added

without the need of making any changes to existing code.

This goes beyond its technical application: polymorphism is a way of
thinking about software, a philosophy of design that's focused around
abstraction and behavior-oriented design. Polymorphism, by
emphasizing that it is what objects do and not what objects are that
matters, encourages developers to design systems around behavior and
capabilities, leading to more flexible, loosely coupled architectures.
This also enables the open-closed principle, which states that software
entities should be open to extension but closed to modification, also
allowing systems to evolve in a way that new implementations can be
registered, rather than modifying existing code. When implemented
correctly, polymorphism also supports the strategy pattern and other
behavioral design patterns where an algorithm is chosen based on
context at runtime. As an example, a navigation system could
implement a different pathfinder algorithm (all implementing the same
RouteStrategy interface) depending on whether the user prefers the
fastest, the most scenic, or the most fuel-efficient route. Such a dynamic
behavior makes the applications more responsive and aware of the
context. Moreover, polymorphism leads to more intentional code as
methods can retain the same name in different implementations,
aligning themselves with the conceptual idea rather than the

implementation.

/I Example of polymorphism in Java
// Base interface defining a common behavior
public interface Shape {

double calculateArea();

double calculatePerimeter();

void draw();

29
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

4 M
UNIVERSITY
ready for life

Notes String getType();

// Concrete implementation of Shape: Circle
public class Circle implements Shape {

private double radius;

public Circle(double radius) {

this.radius = radius;

@Override
public double calculateArea() {

return Math.PI * radius * radius;

@Override
public double calculatePerimeter() {
return 2 * Math.PI * radius;

@Override
public void draw() {
System.out.println("Drawing a circle with radius " + radius);

/I Tmagine more complex drawing logic here

@Override
public String getType() {

return "Circle";

// Circle-specific method
public double getDiameter() {

return 2 * radius;

30
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

// Concrete implementation of Shape: Rectangle Notes
public class Rectangle implements Shape {

private double length;

private double width;

public Rectangle(double length, double width) {
this.length = length;
this.width = width;

@Override
public double calculateArea() {

return length * width;

@Override

public double calculatePerimeter() {
return 2 * (length + width);

@QOverride
public void draw() {
System.out.println("Drawing a rectangle with length " + length +
" and width " + width);
/I Tmagine more complex drawing logic here

@QOverride
public String getType() {
return "Rectangle";

/I Rectangle-specific method
public boolean isSquare() {
return length == width;

31
MATS Centre for Distance and Online Education, MATS University

4 M
UNIVERSITY
ready for life

Notes // Concrete implementation of Shape: Triangle
public class Triangle implements Shape {
private double sideA;
private double sideB;
private double sideC;

public Triangle(double sideA, double sideB, double sideC) {
// Validate that the sides can form a triangle
if (sideA + sideB <= sideC || sideA + sideC <= sideB || sideB +
sideC <= sideA) {
throw new Illegal ArgumentException("The sides do not form

a valid triangle");

}

this.sideA = sideA;
this.sideB = sideB;
this.sideC = sideC;

@Override
public double calculateArea() {
// Heron's formula
double s = (sideA + sideB + sideC) / 2;
return Math.sqrt(s * (s - sideA) * (s - sideB) * (s - sideC));

@Override
public double calculatePerimeter() {
return sideA + sideB + sideC;

@Override
public void draw() {
System.out.println("Drawing a triangle with sides " + sideA + ",
"+ sideB + ", and " + sideC);

/I Tmagine more complex drawing logic here

32
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

@Override Notes
public String getType() {

return "Triangle";

// Triangle-specific method
public boolean isEquilateral() {
return sideA == sideB & & sideB == sideC;

// Demo class to show polymorphism
public class PolymorphismDemo {
public static void main(String[] args) {
// Polymorphic collection
Shape[] shapes = {
new Circle(5),
new Rectangle(4, 6),
new Triangle(3, 4, 5),
new Rectangle(5, 5),
new Circle(2.5)

3

// Process shapes in a polymorphic way

for (Shape shape : shapes) {
System.out.println("\nShape Type: " + shape.getType());
shape.draw();
System.out.println("Area: " + shape.calculateArea());
System.out.println("Perimeter: " +

shape.calculatePerimeter());

}

Code demonstration:
e Shape interface defines a common contract (calculateArea,
calculatePerimeter, draw, getType).

33
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

Circle, Rectangle, Triangle each implement Shape and
override methods with their own logic.

A polymorphic array of Shape allows you to call the same
methods on different shapes without knowing their concrete
types at compile time.

Each shape responds with its own implementation (runtime

polymorphism).

1.1.6 Output from PolymorphismDemo:
Shape Type: Circle

Drawing a circle with radius 5.0

Area: 78.53981633974483

Perimeter: 31.41592653589793

Shape Type: Rectangle

Drawing a rectangle with length 4.0 and width 6.0
Area: 24.0

Perimeter: 20.0

Shape Type: Triangle
Drawing a triangle with sides 3.0, 4.0, and 5.0
Area: 6.0

Perimeter: 12.0

Shape Type: Rectangle

Drawing a rectangle with length 5.0 and width 5.0
Area: 25.0

Perimeter: 20.0

Shape Type: Circle

Drawing a circle with radius 2.5
Area: 19.634954084936208
Perimeter: 15.707963267948966

34
MATS Centre for Distance and Online Education, MATS University

Unit 1.2: Package Concepts and Implementation

1.2.1 Package Concepts and Implementation

The Java language has a great mechanism the packages for systematic
programming. In Java, a package is a namespace that organizes a set
of related classes, interfaces, and sub-packages. The package concept
is the one of the fundamental concepts of Java that helps rich developers
to organize their largescale applications by grouping related
components.

Figure:1.2.1

Key Concepts of Packages in Java

Access Control Grouping Classes
Using Packages and Interfaces

S | eff

Avoiding Naming

Conflicts Default Package

©

Hierarchical
Package Structure

Standard Naming
Conventions

Fully Qualified
Class Names

Packages have several roles in the Java ecosystem: They help prevent
naming conflicts and control access to classes and their members, as
well as allow for grouping of related code into logical units. As an
object-oriented language, Java uses packages to allow one to group
classes in a logical manner and promotes modular programming
approaches that help with code maintainability, reuse, and scalability
— all of which are essential in the development of enterprise-grade
applications. The core API itself is organized into packages, and the
Java platform itself is based on packages (e.g., java. lang, java. util, and
java. i0o — each containing classes for specific functionality. I
recommend this tutorial for those interested in learning how to use
packages when developing software in Java. As applications scale in

size and complexity this organization only becomes more important.

35
MATS Centre for Distance and Online Education, MATS University

T g

(e

\\\

UNIVERSITY

ready for life......

Notes

)

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

Moreover, packages form the basis for the access control mechanism
in Java’s security model. This Unit delves into the theoretical
constructs of Java packages, analyzes the implementation aspects, and
offers practical advice for utilizing packages efficiently in Java
development. We will take a closer look at the syntax to define
packages, access permissions for package members, compilation and
execution of the code organized in packages, and good practices to
design packages. Therefore, by applying concepts of Java packages
and using them, a developer can have a more maintainable, secured,
and professional structure of code so that with the increasing
complexity of the application, one can scale accordingly.

1.2.2 The Purpose of Packages: Java follow on packages which
address certain issues faced in software development. Allowing
packages, one of the main advantages to packages are that they provide
a method for grouping sets of classes and interfaces together, which
apply some structure to the code that is hierarchical and reflects the
logical structure of an application. Plus, this organizational aspect
becomes more and more invaluable as projects increase in scope and
complexity. If we did not have packages, all classes would be in one
single namespace — which makes working in a codebase really
difficult, as well as increasing the chances of naming conflicts. For an
enterprise application with hundreds or thousands of classes,
organizing them into logical packages makes the codebase navigable
and comprehendible. Namespace management is another key purpose
of packages. Packages: Java uses packages to create a unique
namespace for each Java class name to avoid name collisions. Double
UsageDevelopers working in parallel on different components of an
application can both introduce a class called Configuration. If these are
in different packages (e.g. com. company. ui. Configuration and com.
company. database. As their fully qualified names differ, they can
coexist without conflict (e.g., if you have a class called
App\Configuration, then you can have a class called
Some\Other\Configuration). They also allow access control via Java's
access modifiers. The default access level in Java, also known as
"package-private", limits access to classes and members of the same
package. This allows developers to encapsulate implementation details,
only exposing what is necessary to the outside world while keeping

internal workings. This encapsulation is a core tenet of object-oriented

36
MATS Centre for Distance and Online Education, MATS University

design that packaging helps enforce. Furthermore, the packages
facilitate Java application deployment and distribution via JAR (Java
Archive) files. A JAR file can have several packages and the packages’
structure is retained in the jar archive. That greatly simplifies the
sharing of Java libraries and applications as standalone packages. So
packages are also a part of java security model. The Loosely Couple
Package: The Java security manager enforces security policies based
on package boundaries, determining what classes from different
packages are permitted to perform which operations. Packages recast
this level of organization to give more than single applications. Now
the conventional reversed domain names (like com. company. (for
each organization) and (for each project) enables global unique naming
of packages from different organizations and different projects, which
eases importing any code from any place.

1.2.3 Historical Context and Evolution: In this article, we will cover
the core concepts of Java packages and their evolution — from static
imports to the new modular system that was introduced with Java 9.
When Sun Microsystems shipped Java tools in 1995, packages were
already one of the language’s built-in features, illustrating the
language designers’ understanding that structuring code would be key
to building scalable applications. To begin with, a simple notion of
packages was used for basic namespace management and access
control. Before Java 2, the standard library was smaller, limited to the
key package’s java. lang, java. util, and java. i0o. The Java standard
library went through some dramatic expansion as Java matured up
through versions 1.1, 1.2 (Java 2) and beyond, and packages quickly
became critical for organizing the increasingly broad API. Enterprise
Applications and the java: namespace with the advent of the Java 2
Platform, Enterprise Edition (J2EE, later Jakarta EE), the associative
relationship between packages and namespaces became even stronger.
The complexity of Java applications increased drastically around this
time, as J2EE applications could now be large and could require
multiple teams to work on different components. Packages gave you
the necessary structure to manage such complexity. Java packages
took a big leap forward with the addition of the Java Package Manager
(JPM) and subsequently in Java 9 with the addition Project Jigsaw (Java
Module System). This had ameliorated shortcoming of the original

package system in areas of dependency management and at a higher

37
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
ready for life

Notes

level of encapsulation than packages. While packages offered
namespace management and rudimentary access control, they did not
support declarative dependencies or robust encapsulation boundaries,
a capability introduced in Java 9. In particular, while Java 9 modules
build on the existing notion of packages to enable explicit declaration
of dependencies and better encapsulation with in a module, they also
build on the idea of a module being a discrete unit with its own metadata
that control its usage patterns. However, packages are still essential to
the organization of Java code. The module system is an addition rather
than a replacement to packages, as modules contain packages which in
turn contain classes. By learning about the history of packages,
developers can better appreciate their place in the history of Java's
evolution and their best practices for their use in writing modern Java
applications. For all this evolution, the essential syntax and semantics
of packages have remained curiously stable throughout this series,
meaning code written for early versions of the language will be
compatible with contemporary Java environments. Backward
compatibility: As new features and capabilities have been added to the
language and platform; backward compatibility has been ensured as a
faithful promise of Java’s design philosophy.

1.2.4 Package Declaration and Naming Conventions

The syntax used for declaring packages in Java is simple, as it sets up
the namespace for the classes and interfaces that the package contains.
These classes and interfaces in a Java source file belong to the specified
package and must always be the first non-comment statement in the
Java source file. Essentially, usage of a package declaration would
look something like this: package packageName; here packageName
should follow the naming conventions of Java. If a class does have an
explicit package declaration, it belongs to the default package, an
unnamed package that has neither of the organizational and access
control benefits that named packages provide. For instance, birth a
class to belong to a package called "utilities", the first line of the source
file may read as follows: package utilities; The package name
generally used in Java is hierarchical in nature and compulsory
providing some forms of global uniqueness within the code area as it is
related to the organization structure. Names for packages are based on
reversed domain names, followed by disambiguating identifiers that

further constrain the scope. For example, giving a utility class by a

38
MATS Centre for Distance and Online Education, MATS University

company with the domain "example. A package which contains a class
from a com. example. utilities; It can be extended, in the logical level,
to represent project name, modules and specific functionality: package
com. example. projectname. module. feature The package declaration
establishes a direct correspondence between the package name and the
directory structure that the Java source files are organized. For the
package declarationpackage com. example. the corresponding source
file has to be placed in the directory needs to match package structure:
/com/example/utilities/ It is worth noting that package names must also
match the actual directory structure of the source files, and this is
enforced at the Java compiler level and is critical to having meaningful
package semantics.

1.2.5 Package Naming Conventions and Standards: The Java™
naming conventions for packages have grown from the needs of
development of large software. The reverse domain name convention
is the most widely followed convention that prefix package names.

Figure:1.2.2

Cnmpany Client Module
pecification ”3"“* Name

package cJ:sm ibm. hdfc loan homeloaw

Keyword Projpcl Blntnmnnt
Name Terminator

While declaring the package name, every character should be lowercase

Fig: Complete Package Structure of Project
By following this pattern, as recommended by Oracle in the Java
Language Specification, we contribute to global package name
uniqueness across organizations/project. The default format starts with
the reverse domain name of the organization creating the code,
followed by a more specific identifier: package com. organization.
project. module. For instance, a data access component in an
accounting application developed by Example Corporation may utilize
the package name: package com. example. accounting. data; This
convention has various benefits. The first significant advantage is that
it virtually removes package name collision risk across code developed

by separate organizations. Second, it dismisses an artificial

39
MATS Centre for Distance and Online Education, MATS University

(\./f/)

)

(e

¢

UNIVERSITY
ready for lie......

Notes

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

hierarchical tree structure that doesn’t carry organizational and project
boundaries. Third, it builds on the current state of how domain names
are managed all over the world, where an entire domain is already
unique. However, organizations often have their own internal
conventions to outline more detail on how packages should be named,
and their own general framework of package naming might land into
several specific packages. Common patterns are:

1) The organizations department or division is specified after the
domain: package com. example. engineering. project;

2) Including year or version in package version for major releases:
package com. example. project. v2023;

(3) Separating API and implementation packages: package com.
example. project. api; and package com.

example. project. internal; Package names should always be written in
lowercase letters, following a convention that separates them from class
names (which use camelCase with an initial uppercase letter). This
convention allows developers to quickly identify which is a package
and which is a class in the code. Singular nouns are usually used for
packages containing utility classes or classes with similar functionality:
package com. example. utility; or package com. example. widget; For
packages denoting a subsystem or feature, plural nouns or descriptive
terms are often used: package com. example. services; or package com.
example. dataaccess The Java Development Kit (JDK) itself has
standard packages, which follow certain naming conventions. The Java
Core API packages start with the prefix java. (Such as java. lang, java.
util, java. i0), and extension APIs start with “javax. (Such as javax.
swing, javax. crypto). Finally, as you may already know, with the
module system introduced in Java 9 and later, some of these packages
have been moved to the jdk. prefix. It turns out that the vast majority of
third-party libraries and frameworks follow the convention of using
their website for projects or organization that is reversed domain name.
1.2.6 Directory Structure and Package Mapping: Java's convention
requires package names to correspond to the structure of its directories
strictly. This mapping is an integral part of Java's package
implementation, and it has an impact on how the source files are
structured, built, and executed. For a class defined within particular
package, the Java compiler expects the.Adaptive unique solitary. java

file to be situated within a directory structure that reflects the package

40
MATS Centre for Distance and Online Education, MATS University

hierarchy. Imagine a class defined in the package com. example.
utilities: package com. example. utilities: public class StringUtils {... }
The Java source file StringUtils. java should be in a folder structure
corresponding to : /com/example/utilities/StringUtils. This physical
organization has some implications for Java development. To start
with, it imposes a convention over the way source files are structured
to mirror the logical structure of the application. Second, it allows the
Java compiler and the runtime to find classes quickly. Thus, the
package name provides the mechanism for the Java compiler/JVM to
locate the class file that has been saved in the file system whenever it
needs to find a class. The pairing of package names and directory
structure is not just relevant for source files, it is also applicable to
compiled class files. In the process of compiling a Java source file, the
. class files are stored in a directory structure corresponding to the
package name (relative to the output directory specified during
compilation) To give an example, the StringUtils getting compiled. So,
such a path in /StringUtils. class under the /com/example/utilities/ path
in the output dir. The JVM uses this mapping during classloading to
search for classes at runtime, which is fundamental in Java's classpath
mechanism. The classpath is the list of all the directories and JAR files
where the JVM looks up classes. Within these, the JVM looks up
specific classes using the package structure. Proper organization of
projects in Java, and reasons for common compilation time and runtim
time errors related to missing classes, requires an understanding of this
mapping. Development tools and build systems such as Maven and
Gradle complement all this directory management by automating it to
a great extent, and are built upon conventions that associate source
directories with package structures. For example, the standard Maven
directory layout puts Java source files in src/main/java, with package
directories below. Along with that, having the source files physically
organized by package structure also aids version control and
collaboration. PRaying, a practice commonly used for working on
multiple packages in one app. Integrated development environments
(IDEs) such as Eclipse, IntelliJ IDEA and NetBeans usually take care
of package-to-directory mapping for you. These tools generate the right
directory structure on package creation and track the correct

organization as files are renamed or moved.

41
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

1.2.7 The Default Package and Its Limitations: Java allows you to
define a class without a package declared, and that puts your class in
the default package. However, while this method may seem to offer a
convenient way to implement code for smaller or simpler programs, it
is riddled with severe limitations and generally discouraged for
professional-level Java development. In the absence of a package
declaration, the class belongs to the default package: public class
SimpleClass {... } Only classes in the default package or the same
directory can access classes in the default package. They can not be
imported by classes of named packages, making it pretty hard to reuse
them. According to the Java Language Specification, it is strongly
discouraged to use the default package in production code. As soon as
projects move away from the simple examples, the limitations of the
default package become evident. To begin with, classes in the default
package cannot be imported by classes in named packages. If you try
to import a class from the default package, you will get a compiler error
that the package does not exist. Classes in the default package are thus
effectively invisible to most of the codebase in a typical Java
application. Second, some Java features and frameworks, such as
reflection and the JEE framework, rely heavily on packages and will
not work as expected with the default package. Package scanning is
relied upon for auto-configuration and dependency injection in many
of today's Java frameworks such as Spring, Hibernate and Jakarta EE
components. Many of these scanning methods do not cover classes in
the default package. Third, working in the default package introduces
potential name collisions as a project scales. As there is no namespace
separation through packages, classes need to have unique names
globally with respect to the default package, which becomes more
cumbersome to manage as more and more classes are added. Fourth,
the default package makes access control convoluted. The absence of
named packages means that the code cannot make use of package-
private access, which is an important encapsulation mechanism in
Java. The fifth, Java Module System, which comes in Java 9, does not
work at the same time with the default package. Modules have to
specifically declare what packages they export and require, which you
cannot do with the default package. The default package is mostly for
very simple programs (like the ones beginners writing Java or some

quick test programs). In these situations, the downsides might be less

42
MATS Centre for Distance and Online Education, MATS University

than the ease of being able to drop package declarations. A single class
in a small program or a small utility such as a “Hello World” program
can usually get away with using the default package. But once a
program gets larger than these simple examples, appropriate grouping
into packages becomes necessary. Most Java IDE's and build tools will
encourage you to use named packages from the very beginning, often
requiring a package structure based on the name of the project when a
new project is created. Following this advice helps you some good
practices from the start, and saves you from refactoring code from the

default package into proper package location.

1.2.8 How to Create Package in Eclipse IDE?

In Eclipse IDE, there are the following steps to create a package in java.
They are as follows:

1. Right-click on the ‘src’ folder as shown in the below screenshot.

Figure:1.2.3
e L .
New ¥ | [Project..
533 ABSTH Golnto @ Annotation
[=T
= B;SIC Open Type Hierarchy FA | & Class
51

; Show In Alt+Shift+W » [& Enum
=] I
= CHRO = Copy Criec | & Interface
,:J EIEITEt EZ Copy Qualified Name W | Eackane <::|
L= Colla G5
il ~maod [Paste Ctrlwy | B 20UMEE Folder

2. Go to New option and then click on package.

3. A window dialog box will appear where you have to enter the
package name according to the naming convention and click on Finish
button. Once the package is created, a package folder will be created in
your file system where you can create classes and interfaces.

1.2.9 Predefined Packages in Java (Built-in Packages)

Predefined packages in Java are those which are developed by the Sun
Microsystem. They are also called built-in packages. These packages
consist of a large number of predefined classes, interfaces, and methods
that are used by the programmer to perform any task in his programs.

Java APIs contains the following predefined packages, as shown in the
below figure:

43
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

(RS

|

ready for life......

Notes Figure:1.2.4

:

5 Predefined packages

o Object
14 Predefined
Thread ackages
Java 1.8 pee
—
E packages

T000 Classes

T

11O Stream

NEVENT
O/P Stream

Java.net

Socket

T lakh
methods

l
l

Java Core Packages:

1. Java.lang: The ‘lang’ stands for language. The Java language
package consists of Java classes and interfaces that form the core of the
Java language and the JVM. It is a fundamental package that is useful
for writing and executing all Java programs. Examples are classes,
objects, string, thread, predefined data types, etc. It is imported
automatically into the Java programs.

2. Java.io: The ‘10’ stands for input and output. It provides a set of I/O
streams that are used to read and write data to files. A stream represents
a flow of data from one place to another place.

3. Java util: The ‘util’ stands for utility. It contains a collection of
useful utility classes and related interfaces that implement data
structures like LinkedList, Dictionary, HashTable, stack, vector,
calender, data utility, etc.

4. Java.net: The ‘net’ stands for network. It contains networking
classes and interfaces for networking operations. The programming
related to the client-server can be done by using this package.

Window Toolkit and Applet:

1. Java.awt: The ‘awt’ stands for abstract window toolkit. The
Abstract window toolkit package contains GUI (Graphical User
Interface) elements, such as buttons, lists, menus, and text areas.
Programmers can develop programs with colorful screens, paintings,
and images, etc using this package.

2. Java.awt.image: It contains classes and interfaces for creating
images and colors.

3. Java.applet: It is used for creating applets. Applets are programs
that are executed from the server into the client machine on a network.
4. Java.text: This package contains two important classes, such as
DateFormat and NumberFormat. The class DateFormat is used to
format dates and times. The NumberFormat is used to format numeric
values.

44
MATS Centre for Distance and Online Education, MATS University

5. Java.sql: SQL stands for the structured query language. This
package is used in a Java program to connect databases like Oracle or
Sybase and retrieve the data from them.

1.2.10 Java Package Development from Java 8 Onwards
1. Java predefined supports a group of packages that contains a group
of classes and interfaces. These classes and interfaces consist of a group
of methods.
For example, Java language contains a package called java.lang which
contains string class, StringBuffer class, StringBuilder class, all
wrapper classes, runnable interface, etc. String class contains a number
of methods such as length(), toUpperCase(), toLowerCase() etc.
2. Java contains 14 main predefined packages. These 14 predefined
packages contain nearly 150 sub-packages that consist of a minimum
of 7 thousand classes. These 7 thousand classes contain approx 7 lakhs
methods.
3. Up to Java 1.7 version contains 13 predefined packages. From Java
1.8 version onwards, one new package is introduced called java.time.
4. Java 9 introduced several new packages, such as:

e java.lang.module

e java.util.spi, jdk.jshell

e java.util.concurrent.Flow

e java.lang.invoke.VarHandle

e jdk.incubator.httpclient.
5. Java 10 introduced relatively few changes compared to Java 9 and
did not include any major new packages.
6. Java 11 introduced java.net.http that provides a new HTTP client that
supports HTTP/2 and WebSocket.
7. Java 12 and 13 versions did not include any packages.
8. Java 14 had introduced a new package named jdk.jfr.consumer.
9. Java 15 and onwards version did not introduce any new packages.

1.2.11 How to See List of Predefined Packages in Java?

Follow the following steps to see the list of predefined packages in
Java.

1. Go to programs files and open them.

2. Now go to Java folder and open it. You will see two folders such as
JDK and JRE.

3. Go to JDK folder, extract the src folder. After extracting it, go to Java
folder. Here, you will see 14 predefined packages folders such as
applet, awt, beans, 10, lang, math, net, nio, rmi, security, sql, text, time,
and util.

4. Now you open lang package and scroll down. You can see classes
like String, StringBuffer, StringBuilder, Thread, etc.

45
MATS Centre for Distance and Online Education, MATS University

[

=2

\ \\\

UNIVERSITY

ready for lfe......

Notes

i

aTs)

1.2.12 Java Packages Example Program
Let us take a simple example program where we will create a user-
defined package in a systematic manner.
Example 1:
Save as Example.java

Step 1: Declare package name by reversing domain name, project
name 'java', and module name is core java.
package com.scientecheasy.java.corejava,

Step 2: Declare class name.

publicclassExample

f
R

publicstaticvoidmain(String[] args)
f
1
System.out.println("How to create a Java package");

1.2.13 How to Compile Package in Java?
If you are not using any Eclipse IDE, you follow the syntax given
below:

javac -d directory javafilename // syntax to compile the application

In the above syntax,

1. javac means Java compiler.

2. -d means directory. It creates the folder structure.

3. .(dot) means the current directory. It places the folder structure in the

current working directory. For example:
javac -d.Example.java // Here, Example.java is the file name.

So in this way, you must compile application if the application contains
a package statement. After the compilation, you can see the folder
structure in your system like this:

com
|---> scientecheasy

______ > corejava
...... > Example.class

2.14 How to Run Java Package Program?

You have to use the fully qualified name to execute Java code. The fully
qualified name means class name with a complete package structure.
Use the below syntax to run Java code.

Syntax:
java completePackageName.className

Now run the above Java code. To Run:
java com.scientecheasy.java.corejava.Example

Output:
How to create a Java package

46
MATS Centre for Distance and Online Education, MATS University

https://www.scientecheasy.com/2021/03/java-compiler.html/

s}

| UNIVERSITY

1.2.15 How to Import Package in Java Notes

There are three approaches to import one package into another
package in Java.

1. import package.*;

2. import package.classname;

3. Using fully qualified name.
Let’s understand each approach one by one with the help of an example.

Using package.*
An import is a keyword that is used to make the classes and interfaces
of other packages accessible to the current package. If we use
package.*, all the classes and interfaces of this package can be accessed
(imported) from outside the packages. Let’s understand it by a simple
example program.
Example 2:

Create a package.
package com.scientecheasy.calculate;

Create a class with a public access modifier.

If you use a default access modifier, it cannot be accessible due to
default, which is accessible within the same package.
publicclassSum
{

Declare instance variables.
inta=20;
intb=30;

Declare method.

publicvoideal()

i
§

ints=a+b;
System.out.println("Sum: " +s);
1
!
!
, -
Create another package.
package com.maths.calculator;

Importing the entire package into the current package.
import com.scientecheasy.calculate.*;

classSumTest

S

i
publicstaticvoidmain(String[] args)

f

1

Create an object of class and call the method using reference variable

s.
Sums=newSum();

47
MATS Centre for Distance and Online Education, MATS University

i)

i

[

{mer

\\\

UNIVERSITY
ready for Iife

Notes

)

i

1.2.16 Using packageName.className
If you import packageName.className, you can only access the
declared class of this package. Let’s understand it through an example
program.
Suppose scientecheasy has information about the Dhanbad city and
TCS needs this information. We will declare two modules: Dhanbad
and TCS. TCS is using Dhanbad class, but both have different package
names. Whenever you are using a class of another package, you must
import the package first of all.
Example 3:

Declare complete package statement.
package com.scientecheasy.state.cityinfo;

publicclassDhanbad
f
1
publicvoidstateInfo()
f
1
System.out.println(""Dhanbad is one of the major cities of Jharkhand");

1
S

publicvoidcityInfo()

I
L

System.out.println("Dhanbad is the coal capital of India.");

1
S

1
s

Declare complete package statement for TCS.
package com.tcs.state.requiredinfo;

Import the package with class name.
import com.scientecheasy.state.cityinfo.dhanbad;
classTes
i
L
publicstaticvoidmain(String[] args)

i
L

Dhanbadd=newDhanbad();
d.stateinfo();
d.cityinfo();

Output:
Dhanbad is the first major city of Jharkhand.
Dhanbad city is called coal capital city of India.

2.1.17 Using the fully qualified name

If you use the fully qualified name, there is no need to use an import
statement, but in this case, only the declared class of this package can
be accessible. It is generally used when two packages have the same
class name.

48
MATS Centre for Distance and Online Education, MATS University

Let’s take a scenario to understand the above concept. Consider the
below figure.

Figure:2.1.5

class A { class A {

void m1(){ public void m2() {
System.out.printin{” Hi "); System.out.printin{" Hello);
} }

} }

7 5
folder | tech |
folder\ A

/ \ Ajava

/ \

Bgave C.jzi\ra D.j"ava

B.java

My requirement to call m1 of class A of sub-package scien and m2 of class A of
sub-package tech form class B of sub-package scien.

In the com package, there are two sub-packages “scien” and “tech”.
The sub-package “scien” contains two class files A.java and B.java.
Whereas the sub-package tech contains three class files: C.java, D.java,
and A.java.

Question. How will you call m1 of class A of sub-package scien and
m2 of class A of sub-package tech from class B of sub-package scien?
Let’s take an example program in which we will use the first approach
to call the following requirement.

Example 4:

package com.scien;

import com.tech.A;

classB

i

L

voidm3()

i
§

System.out.println("Hello Java");
1
!
publicstaticvoidmain(String[] args)
f

1
Aa=newA();

a.ml();

Aal=newA();
al.m2;

Bb=newB();
b.m3();
!
!

49
MATS Centre for Distance and Online Education, MATS University

UNIVERSITY
ready for life.

Notes

https://www.scientecheasy.com/2020/06/packages-in-java.html/

i)

i

[

{mer

\\\

UNIVERSITY
ready for Iife

)

i

Will the above code compile?

1. No: because the statement A a = new A(); does not say anything
about class A from which sub-packages (scien or tech) it is referring.
2. No: because the statement A al = new A(); is also not saying
anything about class A of which sub-packages (scien or tech) it is
referring.

3. No: because a.m1() and al.m2() will get confused to call the method
of which package’s class. Here, the compiler will be also confused.

In this case, the import is not working. So, we remove the import
statement and use the fully qualified name.
package com.scien;

classB

I
L

voidm3()

I
L

System.out.println("Hello Java");
1
S
publicstaticvoidmain(String[] args)
f

1
Aa=newAJ(); // keep as it is because it is from the same package "scien".
a.ml();

com.tech.Aal=newcom.tech.A(); // [t will direct go to tech package
and call the method m2.
al.m2;

Bb=newB();
b.m3();

Output:

Hi

Hello

Hello Java
Suppose you are not using public with m2() method in the above
program, then it will give error ” The method m2() from the type A is
not visible” because it is a default and default access modifier cannot
be accessed from outside the package.

Key Points to Remember:

1. While importing another package, package declaration must be the
first statement and followed by package import.

2. A class can have only one package statement, but it can be more than
one import package statement.

3. import can be written multiple times after the package statement and
before the class statement.

4. You must declare the package with root folder name (no sub folder
name) and the last file name must be class name with a semicolon.

50
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for life.

5. When you import, it does mean that memory is allocated. It just gives Notes
the path to reach the file.

6. import com.scientecheasy.state.cityinfo.dhanbad; is always better

than import com.scientecheasy.state.cityinfo.*;.

1.2.18 Importing Packages and Classes

This can be simplified using the import statement—which is followed
by the package and the class, allowing developers to use the class
without needing to provide the full path every time. The import
statement tells the compiler which classes or whole packages to
provide with their simple names. In Java, there are basically two
types of import statements: single-type imports and on-demand
(wildcard) imports. Single-Type Imports: A single-type import
imports exactly one class or interface: import java. util. ArrayList;
This import allows the code to use the ArrayList class simply, rather
than by fully qualified name: ArrayList list = new ArrayList (); instead
of java. util. The java. util. import ArrayList (); An on-demand (or
wildcard-style) import makes all public types in a package accessible
by their simple names: import java. util. *; using this, the code can use
any public class from the java. util package as a simple name. Import
Statements These must occur after the package declaration (optional)
and before any class or interface declaration. Using multiple import
statements, we can import classes from different packages:

e Import Statements: In Java, there are multiple import
statements that allow you to tailor the access according to your
code organization and requirements. Grasping these
differences lets developers create cleaner, more manageable
code while steering clear of frequent mistakes. The simplest
form is the single type import, which imports exactly one class,
interface, enum, or annotation: import java. util. ArrayList; This
style is accurate and clearly indicates which kinds are being
used in a source file. It is usually recommended when a person
needs only some types of one specific package. Wildcard
imports (also known as on-demand imports) use an asterisk
syntax to import all public types in a package: import java. util.
; This style is useful when there are many types from the same
package in a source file. Yet, it may cause naming conflicts
where multiple packages have classes with the same name.

Static Imports The static import statement, which made its entry

51
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

in Java 5, enables importing static members (fields and
methods) of a class: import static java. lang. Math. PI; import
static java. lang. Math. sqrt; One can use static members directly
with static imports, without qualifying them with the name of
the class: double circumference = 2 * PI * radius; double
hypotenuse = sqrt(aa + b*b); On-demand static imports are also
supported, making all the static members of a class available:
import static java. lang. Math. * The first import statement
declares that all public static members of the Math class can be
used without qualification. Java 5 also added support for
importing enum constants, which are static members of an
enum type: import static com. example. Status. This allows for
the use of enum constants directly without the enum type prefix
-- if (status == ACTIVE) {... } instead of if (status == Status.
ACTIVE) { ... } It's been possible since Java 7 to use single
static imports to import a specific nested static class:import
static javax. swing. SwingConstants. CENTER; This lets us
refer to the nested class by its simple name: int alignment =
CENTER; instead of int alignment = SwingConstants.
CENTER; Java includes support for importing annotations,
which are a special kind of interface you can implement in your
classes: import java. lang. annotation. Retention; Static import
of annotation members is also supported: ‘import static java.
lang. annotation. RetentionPolicy. RUNTIME; Based on my
literary background, I can say that since every import can have
a custom path, the only factor to drive your choice would be
code readability, possibility of name conflicts and project
conventions. Single-type imports give the best clarity but cause
a lot of import statements in files that are using many different
types. The first option imports on-demand as well, which
minimizes the number of import lines, but does not reveal what
kinds of imports are actually used in the code. (One convention
followed by many is that there should be a single-type import
per import statement for clarity, except when importing lots of
types from the same package (e.g., when using many classes
from java. util or javax. swing).

Import Resolution and Name Conflicts: Java's import

mechanism has specific rules for how Java will resolve class

52
MATS Centre for Distance and Online Education, MATS University

)

[

UNIVERSITY

ready for lfe......

names, and understanding these rules is critical to avoid and Notes
troubleshoot name conflicts. Given a class name found in
source, the Java compiler tries to resolve it to a fully qualified
class name through a sequence of steps. Initially, the compiler
looks up whether the class name indicates a class in the current
package. Such a class is used and has no further resolution. If
no match is found in the current package, the compiler checks
for single-type import statements that match the class name. If
a single matching import is found, that class will be used. Now,
if there is ambiguity, for example if two different single-type
imports match the same simple name (one from each of two
different packages), then a compilation error will result. If no
matching single-type import is found, the compiler then looks
at the on-demand imports for a potential match. If only one on-
demand import contains a matching class, then that class is
used. However, if multiple on-demand imports have classes
with a matching name, a compilation error is generated because
it is ambiguous. Last but not least if no class is found by any
import the compiler will look in the java. lang package will be
implicitly imported. Class not found issue and if it is still not
found then we have a compile time error. In which cases is
there a possibility of name conflict? One common case is when
two packages include classes of the same name, and both

packages are imported using on-demand imports: ‘java

import java.util.*;

import java.awt.*;

// Both packages contain a List class

List list; // Ambiguous - which List class to use?

""" When such conflicts occur, the compiler generates an error
indicating the ambiguity. To resolve this type of conflict, developers
can use a single-type import to explicitly specify which class to use:
“java

import java.util.*;

import java.awt.*;

import java.util.List; // Explicitly choose java.util.List

List list; // Now refers to java.util.List

53
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

" Alternatively, the fully qualified name can be used directly in the
code without an import: **'java

java.util.List list; // Explicitly use java.util.List without an import

" Another type of conflict occurs when a class in the current package
has the same name as a class being imported. In such cases, the local
class takes precedence over the imported class, following Java's name
resolution rules. This can lead to subtle bugs if a developer is unaware
of the local class and expects an import to bring in an external class
with the same name. Static import conflicts can also occur when static
members with the same name are imported from different classes:
java

import static java.lang.Math.max;

import static java.util.Collections.max; // Conflict with Math.max

*** To resolve such conflicts, either avoid the static import and use the
class name qualifier, or use the fully qualified name for the static
method: " “java

int larger = Math.max(a, b);

List<Integer> maxValue = Collections.max(numbers);

e Managing Imports Effectively: However, well manage
import statement is a task of keeping java fine and bharat.
Modern IDEs include tools to handle many import management
processes automatically, yet a basic understanding of the
principles involved is still useful information for Java
developers to know. A vital choice you make in import
management is whether to use single-type or on-demand
(wildcard) imports. However, most Java Style guides,
including Google Java Style Guide and Oracle Code
Conventions for the Java Programming Language suggest using
single-type imports to provide clarity and explicitness. Single-
type imports makes it immediately clear what exact classes
from external packages are being used in a source file. This
whole transparency helps a lot when debugging things or if
multiple team members are working on the same codebase.
However, on-demand imports may be suitable for some cases.
Ifa source file uses a lot of classes from the same package (e.g.
many classes from java. util or javax. If you have to use the
whole swing, importing each class individually can get tedious

and you can make the import section long. In this scenario, even

54
MATS Centre for Distance and Online Education, MATS University

though there is still some duplication in what gets defined
(though in most cases, you would significantly reduce clutter
because on-demand import is local only) it should generally be
clear what part of the library you are working with (to this end,
the initial library should group its functionality separately or
logically). All modern Java IDEs have the capability to handle
imports automatically. Such features usually consist of:
Importing classes on-demand

Sorting and Removing unused imports

Convert between single-type and on-demand imports based on
configurable thresholds

Import conflicts resolution by suggesting specific single-type
imports in the case of ambiguity.

Most IDEs also have a way of configuring import management
policies so that they are consistent with the conventions used
by a team. Touching on this specifically, all of IDEs nowadays
like Eclipse or IntelliJ IDEA or NetBeans let you set up these
thresholds (like “use wildcard imports when importing more
than N classes from the same package”) Teams must define
import management conventions and set up their IDEs
accordingly so that all the project code has the same style.
Besides IDE automation, here are several best practices that can
help maintain clean and effective imports: 1) Clean up unused
imports — they add noise and can lead to confusion about what
external classes are actually used; 2) Group imports logically
(which usually means separating standard Java packages, third-
party libraries, and internal project packages); 3) Avoid static
imports that are not strictly needed — these handle potential
conflicts with members of the same name and keep clarity of
the code; 4) Avoid importing classes of the same name (e.g:
List or Map) from different packages, as it may lead to conflicts.
For large projects, build tools such as Maven and Gradle can
have rules set (using plugins such as Checkstyle or PMD) to
ensure import conventions are followed. Such tools (and rules)
can check as part of the build process whether imports are
organized correctly, regardless of which developer is working
on which IDE. For example, if you are working with legacy

code that may not be using the best practices for top-level

55
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

imports but you are not willing to change large parts of the
codebase just to clarify import style, consider refactoring import
statements in the process of modifying files for other reasons.
This gradual approach reduces the likelihood of bugs while still
allowing code quality to improve over time.
1.2.19 Access Control and Package Visibility
Packages are used by Java's access control mechanism to specify the
visibility and accessibility of classes, interfaces, and their members.
Since you may also design the javax package and you are controlled the
access modifiers in there, it’s important to understand how these access
modifiers are interacting with package boundaries. Java has four
access modifiers: public, protected, default (also known as package-
private) and private. You declare a class, interface, or member with
one of these levels to specify which part of the code can access it. The
most permissive for public access, which is a public class or member is

accessible from any other class in the Java program, without reference

to package boundaries.

Figure:1.2.6

Visibility Public Protected Default Private

' oin llu; SAMC Class ‘]'n,'\ 'lr, 5 \::s

From any class in the same Yes Yes Yes No
| packane
| Prom a subclass in the same Yes Yes Yes No

packase

From a subclass ourside the Yes Yes, thyosgh No No

same package mAentance

i om any non ~~||'\. l 55 Class \c\ ‘\ ' Nn \.
! q 1lf‘-1.i.' the P kar C

Protected access means accessible from subclasses (any package) and
any classes in the same package. When no access modifier is given,
the access provided is called default access; classes within the same
package can access it. The most restrictive, private access, restricts
access to just the declaring class itself. This facility revolves around
packages, which establishes a default access boundary. Default access
classes are only visible to other classes in the same package, which
formed a natural unit of encapsulation. Classes with default access (no
modifier) can only be accessed by classes in the same package. This
package-level visibility allows developers to keep implementation

details private while allowing them to be available to classes that are

56
MATS Centre for Distance and Online Education, MATS University

closely related and need to work together. The containment offered by

packages aids in the information hiding principle, which permits

developers to change the implementation details inside a package

without impacting code in other packages relying upon the public

interfaces alone.

Package-Private Access: The default access level in Java —
sometimes called "package-private" — is a primitive
encapsulation boundary defined in terms of package
membership. However, if you declare a class, interface, or
member without an explicit access modifier, it is accessible only
to other classes in the same package. This provides a natural
module boundary that adheres to the principle of information
hiding while still allowing cooperation between related classes.
Package access (sometimes called package-private access) is
indicated by the absence of an access modifier: class
PackagePrivateClass { package int packagePrivateField; void
packagePrivateMethod() {... } } Here both class and members
are package-private - accessible to other classes in the same
package but invisible to classes in different packages. So what
does this use case package-private access in the context of Java
application design serve? The former offers a degree of
encapsulation between public and private access. So for the first
point, package-private members give you an intermediate
visibility scope between public and private classes that you can
align with natural component boundaries, as opposed to class
boundaries, with the visibility model. It enables related classes
within a package to cooperate while keeping the internal details
hidden from the rest of the application. Second, package-
private access facilitates engineering the implementation of the
Java platform itself. Espect to not be visible for any application
code a direct cascade Anyone else explaining is a potential
poison Gateway (as opposed to the intent of the feature is a 3rd
party library) — used only in descendant descendants, without
publicMethods An alternative package-private as you could
potentially inadvertently X between essentially which goes over
and either as you would consider. For instance, classes in the
java. The util package might use package-private methods to

communicate with one another while keeping a clean public

57
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

4 M
UNIVERSITY
ready for life

Notes API for applications. Third, package-private access makes unit
testing easier: test classes in the same package can access
package-private members of the classes under test. This allows
for extensive testing without the need for developers to expose
the details of implementation just for the sake of testing. The
most common pattern is to locate test classes in the same
package as the classes they are testing, usually in a parallel
directory structure below the test source root. Let's say you have
the following code and two classes in the same package that
need to collaborate closely:

"“‘java // File: com/example/banking/Account.java package
com.example.banking;

class Account { int accountNumber; double balance;

void updateBalance(double amount) {

balance += amount;

h
h

// File: com/example/banking/Transaction.java package
com.example.banking;

public class Transaction { public void process(Account account,
double amount) { // Can access package-private members of Account

account.updateBalance(amount); } }

e Protected Access Across Packages: The protected access
modifier in Java introduces a relationship between inheritance
and package membership that requires careful consideration in
application design. A protected member (field, method, or
nested class) is accessible within its own package, similar to
default (package-private) access. Additionally, protected
members are accessible from subclasses of the declaring class,
regardless of the package in which those subclasses are defined.
This extension of visibility across package boundaries for
inheritance relationships makes protected access more complex
than other access levels. The basic syntax for declaring
protected members is:

java
protected int protectedField;
protected void protectedMethod() { ... }

58
MATS Centre for Distance and Online Education, MATS University

protected class ProtectedNestedClass { ... }

** To understand protected access across packages, consider the
following example with classes in different packages: **'java

// File: com/example/base/Parent.java

package com.example.base;

public class Parent {
protected int data = 42;

protected void display() {
System.out.println("Data: " + data);

// File: com/example/derived/Child.java

package com.example.derived;
import com.example.base.Parent;

public class Child extends Parent {
public void accessParentMembers() {
// Can access protected members of the parent class

System.out.println("Parent data: " + data);
display();

public void accessOtherParentInstance(Parent other) {
// Cannot access protected members of other Parent instances
/I System.out.println(other.data); // Compilation error

// other.display(); // Compilation error

}

Here, despite the Child class being in a different package, it can access
its protected data field and display method of the Parent class. Protected
access has an important subtlety: a subclass can access protected
members through inheritance (via this or super references), but it
cannot access protected members of other instances of the parent class.

However, this restriction i also evident in the

59
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

accessOtherParentInstance method, because if you try to access
protected members of another Parent instance, you will get
compilation errors. This is because protected access only supports
inheritance relationship, and it does not allow access to the whole
parent class instance for any instance of the other package class.
External classes are prevented from accessing protected data members
or functions, but subclasses can — making this access level useful in
framework and library design, where a base class may need to facilitate
subclasses while preventing them from exposing their functionality to
unrelated classes. For instance, many of the abstract classes in the Java
Collections Framework use protected methods to enable subclass
customization while encapsulating implementation details. To properly
architect a class hierarchy across different packages, developers should
think which members ask for the protected access. Excessive use of
protected access may lead to a weakening of encapsulation and
exposure of implementation details to subclasses, resulting in tight
coupling between the base class and its subclasses. Conversely, making
members private can hinder legitimate customization through
subclasses. A good rule of thumb is to use protected access for methods
that should be overridden by subclasses (template methods from the
Template Method pattern) calls or for members that subclasses need to
call as part of their implementation. Unlike methods, it is more
uncommon to mark fields as protected, as subclasses can access them
directly and thus can avoid significant validation or synchronization
action taken from the parent class. Instead, protected accessor and
mutator methods are often a better balance of flexibility and

encapsulation.

e Public Classes and Package Organization: This is critical for
organizing packages and building applications, as public classes
have a visibility across packages and affect the way classes can
be referenced within them. This means a public class can be
referenced from any other class in the Java program, even a
class in another package. However, we cannot have classes
without having public classes that are the primary interface of
igniter packages and, with that, is the baseline use of and API
design for any Java applications. In Java, a source file may

contain one and only one public class or interface and if there

60
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

is one, the name of that public class must match the name of the Notes
file (excluding. java extension). Importantly, since there is a 1:1
mapping between public classes and source files, this reinforces
the fact that the primary units of functionality made available
for use by a package are its public classes. Classes with default
package-private access (i.e. non-public) in the same source file,
on the other hand, are implementation details that support the
public class that should not be visible outside the package. This
inherently encourages encapsulating code around clean public
interfaces with implementation details being hidden in the
package. Good organization of packages relies on the fact that
a public package has as few public classes as possible, but at the
same time, these public classes must give a complete and
coherent interface to the functionality is provided by the
package. The public classes define the package's contract with
the calling application, while the package-private classes hold
implementation information, and no information that the
calling class doesn't need to know is exposed. }} Consider an
application that implements a data access layer for some
package: “java
// File: com/example/data/UserRepository.java

package com.example.data;

public interface UserRepository {
User findByld(long 1d);
void save(User user);

void delete(User user);
// File: com/example/data/UserRepositorylmpl.java
package com.example.data;

class UserRepositorylmpl implements UserRepository {

private DatabaseConnection connection;

UserRepositorylmpl() {
connection = DatabaseConnectionFactory.createConnection();

61
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

@Override
public User findByld(long id) {
// Implementation details

@Override
public void save(User user) {

// Implementation details

@Override
public void delete(User user) {
// Implementation details

// File: com/example/data/DatabaseConnection.java

package com.example.data;

class DatabaseConnection {

/I ITmplementation details

// File: com/example/data/DatabaseConnectionFactory.java

package com.example.data;

class DatabaseConnectionFactory {
static DatabaseConnection createConnection() {

/I Implementation details

// File: com/example/data/User.java

package com.example.data;
public class User {
private long id;

62
MATS Centre for Distance and Online Education, MATS University

private String username;

// Public constructors, getters, and setters

}

In this example, only the UserRepository interface and User class are
public, forming the API that other packages can use.
implementation classes (UserRepositorylmpl, DatabaseConnection,

and DatabaseConnectionFactory) are package-private, hidden from

external

63
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

gmm

UNIVERSITY

ready for life.

Notes

S

Unit 1.3: Managing Errors and Exceptions

1.3.1 Managing Errors and Exceptions: Exception Handling
Mechanisms in Java

Checked Exceptions

Throwable O
Error Exception
T 4
[|
IOException RuntimeException
0\ iy
ArithmaticException
NullPointerException
f
OutOfMemoryError EQFException IndexQutOfBoundException
StackOverFlowError . .
LinkageError FileNotFoundException ClassCastException
InKag MalFormedURLException ArraylndexOutOfBoundsException
UnknownHostException IlleagalArgumentException
IntruptedException NoSuchElementException

Figure 1.3.1: Exception Hierarchy
[Source: https://th.bing.com/]

In software development, especially for one of the most solid and
popular programming languages such as Java, the ability to handle
errors and special conditions gracefully is crucial to building robust and
resilient applications.

In the context of Java, an exception is an event that interrupts the
normal flow of execution of the program. Generally, it represents an
unusual or abnormal scenario that falls outside of the intended
operating sequence. These exceptions can happen from lots of reasons
like in case of invalid user input, unavailability of any resource (file not
found), network connectivity loss or it can also be from programming
errors like divide by zero situation. Java incorporates a rich and
organized approach to handle such disruptions, aptly named exception
handling, which allows developers to predict, catch, and address these
exceptions in a both systematic and controlled way. Java exception
handling is built upon the basic concept of what is the risk in a program
and what is not following the normal flow of logic and making it easier
to manage error inside a large code. This separation into different
blocks of code is implemented with keywords and constructs
specifically designed for this purpose, which are try, catch, finally, and
throw, that in conjunction help handle exceptions. The try block is the
core of this mechanism, wrapping the code segment that may raise an

exception. On the other hand, catch block is an exception handler,

64
MATS Centre for Distance and Online Education, MATS University

describing the type of exception that you can handle and having the
statements to be executed when such an exception is raised. Used with
try and catch, the finally block makes sure a block of code runs
whether an exception is thrown or caught, making it an excellent place
to put resource cleanup operations. The throw keyword allows Java
developers to create an exception, either a standard Java exception or a
custom exception that fits the application's needs. Java provides these
constructs which allow developers to bestow applications with the
ability to recover from errors or terminate gracefully while informing
the user of what's happened, making for a more stable software and
user experience. You move from technical correctness to a much more
precise field, error handling is essential in software development, and
no one knows where they are going to be deployed.

A tree structure forms the basis for exception handling in Java based
on a hierarchy of classes, with the Throwable class being the root of
that hierarchy. This is further divided into two major categories known
as checked exceptions and unchecked exceptions. Upon hearing the
term exception, checked exceptions typically come to mind first in
Java, as they fall directly under Exception and represent exceptional
behaviors that a sufficiently prepared application should be able to
handle. Such exceptions are usually linked with external issues or
resource constraints, including input/output or network
communications. Compiler enforces handling of checked exceptions;
developer needs to either handle it in try-catch block or declare it in
method using throws clause which essentially passes the responsibility
to handle it to the calling method. More importantly, it encourages you
to handle any potential errors up front, preventing them from
proliferating unchecked through the application. On the other hand,
unchecked exceptions extend from the class of RuntimeException, and
correspond to programming errors or logical bugs that are usually
meant to be handled by the programmer. Unlike checked exceptions,
these exceptions (like NullPointerException or
ArrayIndexOutOfBoundsException) often show a flaw in code logic,
hence they don't get compile time checks. In general, you don't have to
implement these, but it is good practice to add try-catchHere to avoid
terminating the program and apply graceful error recovery when an
exception occurs. Checked exceptions in Java are about two words:

design philosophy. Checked exceptions lead the developers in a way

65
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

where they think upfront about their errors and make provisions to
handle it where as unchecked exception give you more flexibility to
work on programming errors which might be difficult to predict or
prevent. In addition to these pre-defined exception classes, Java also
provides the ability to create custom exceptions by extending the
Exception or RuntimeException classes. This allows application-
specific exceptions to be crafted, representing the fine-grained error
conditions that may arise, resulting in a more helpful approach to
managing the state of an application. While built-in exceptions provide
some context, custom exceptions can include more specific details
about the error, including error codes and detailed messages, which can
be crucial for understanding and resolving issues. One compelling
feature that contributes to Java's strong error handling capabilities is
the ability to define and throw custom exception classes.

The try-catch-finally construct is the workhorse for Java's exception
handling mechanism: a structured approach to intercepting and
managing exceptions. The try block specifies the part of the code that
might throw an exception. This is the basic syntax for exception
handling in C++ —Try Block: The code which is doubtful to have a race
condition is enclosed in a try block. If an exception is encountered,
execution of the try block gets interrupted, the catch block is searched
if there 1s any catch block to handle caught exception and control is
transferred to it. The catch block Follows the try block and is where you
define the type of exception the block is capable of catching, followed
by the code to run when such an exception arises. We can define
multiple catch blocks with a single try block to handle different types
of exceptions. It allows developers to devise custom error-handling
approaches per type of exception, offering a more customized and
resilient way to deal with potential errors. Finally (optional) block: The
finally block will be executed whether an exception is thrown or
caught. Usually, it is using for finalization operations, such as file
streams closing, network connection releasing, other resources that
have to be free allocated. As you have now guaranteed that that code
is going to be executed, finally is an extremely important construct to
allow you to ensure that resources are managed well and help prevent
resource leaks and things like that. Java also offers a similar statement
called try-with-resources that also implicitly! closes resources that

implement the AutoCloseable interface. This statement is especially

66
MATS Centre for Distance and Online Education, MATS University

helpful when working with resources that need to be closed explicitly,
like file streams or database connections, to avoid resource leaks. The
try-with-resources statement guarantees that each resource is closed
when it is no longer needed, similar to how all variable classes now are
automatically collected by the garbage collector. It decreases the boiler
code necessary for resource handling and is improving the readability
and maintenance of the Java applications. Try-catch-finally, try-with-
resources.

Java provides features for both propagating and rethrowing
exceptions, so that you can implement more custom error-handling
logic. Exceptions are thrown by a method, which can either choose to
handle the exception locally or pass it to the calling method. When an
exception is propagated, it means the exception is declared in the
method's throws clause and is left to the caller to handle the exception
accordingly. This is especially handy when some method returns an
error it can't handle and needs to inform a calling method about the
problem. The caller can then decide whether to handle the exception,
or let it rise further up the call stack. Rethrowing, one means you catch
an exception in a catch block and throw it again, either as original
exception or different exception. Usually, wrapping it like this is done
where a method must perform some kind of cleanup, or want to log the
exception, before letting it go any further. Because, you can use it to re-
wrap an exception in a more specific exception type, as to give more
information about the cause of the error. And there are cases, a method
that saves something in the database may catch any kind of
SQLException and as a result throw that as DatabaseAccessException
too, so that the calling method knows that it may be a "custom" error.
With this strategy, developers can implement a layered approach to
exception handling for individual layers to handle exceptions in its
level of responsibility and propagate them upwards if required.
Similarly, in Java, you also have the assert keyword that allows
developers to write assertions in their code for conditions that should
always be true and in addition to that, comes with the hierarchy of
exceptions to propagate. Assertions are usually used in development
and testing to catch logical programming errors and to make sure that
the code is behaving the way it should. If an assert fails then an
AssertionError is raised, indicating a programming error. Assertions

can be turned on or off when running the code, enabling developers to

67
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

toggle their behavior based on the environment. The feature helps
debug Java applications and verify that they are functioning as
expected.

Overall, the exception handling feature in Java is a powerful and
flexible mechanism that enables developers to build robust and fault-
tolerant applications. Java because of the constructs like try-catch-
finally, try-with-resources and the support for the creation of user-
defined exceptions allows the programmer to predict errors, monitor
them and handle the error in a systematic way. By organizing throw
exceptions into check and ignore, the hierarchical classification allows
developers to separate the more severe aspects of software
development from the less serious. Being able to propagate and
rethrow exceptions can make it possible to build layered error-handling
models; this prevents any one Single Responsibility Principle (SRP)
handler from having to manage all exceptions. The assert keyword is a
powerful feature for debugging and correctness of Java applications.
What You Need to Know is Java exception handling is a powerful
mechanism that allows the exception to be caught and handled properly
by the application, preventing it from causing complete failure of the
application. Doing so, then, leads to faster exception handling, which
can save valuable milliseconds both in computing and in user
experience. Error management is not just a technical "thing" — since
we are professional developers, we learn to develop software that meets

the new standards, expected of a modern software system.

68
MATS Centre for Distance and Online Education, MATS University

Unit 1.4: Multithreading

1.4..1 Multithreading

Multithreading is a multiprocessor and concurrent programming
paradigm that enables multiple threads to run concurrently within a
process. Essentially it lets a single program do several things at once,
making programs run faster and more responsively, even when they
have to do things like I/O or heavy computation work. A thread, the
basic unit of CPU utilization, contains a thread ID, a program counter,
a set of registers and a stack. Threads created within a process share the
code segment, data segment, and operating system resources with all
other threads within the same process, hence providing an efficient way
of'using resources. There are mainly 5 states of thread in Java life cycle
namely - New, Runnable, Running, Blocked / Waiting and Terminated.
Stage 1: NEW When a thread instance and a thread reference is created
using the Thread class or the Runnable interface, it is said to be in a
new state. When you call start() method, the thread enters into
Runnable state, which means it is ready to run and chosen by the thread
scheduler to start running. When the thread scheduler assigns CPU time
to the thread, the thread is moved to the Running state. Threads can
enter the Blocked/Waiting state for several reasons, including waiting
for I/O operations to complete, needing to acquire a lock, or calling
sleep() or wait(). Lastly, a thread goes into the Terminated state after it
has finished executing or when it runs into an unhandled exception.
Java give us many ways to control and manage threads. The code that
is executed by the thread is contained in the run() method. The start()
method is where the thread actually starts by calling the run() method
in the new thread. sleep() : The sleep() method suspends the execution
of the thread for the specified amount of time. The join() method is
used to wait for a thread to finish executing. yield() — is used to
indicate to the thread scheduler that the current thread can relinquish.
For shared resource management and avoiding race conditions,
synchronization mechanisms are essential (including synchronized
blocks and methods). Methods: wait(), notify() and notifyAll() The
basic methods to inter-thread communication between synchronized
blocks. Deadlock Problem In Multithreaded Environment: It is a
dangerous condition in which two or more threads have blocked

indefinitely waiting, each other and needs to be solved. Deadlocks can

69
MATS Centre for Distance and Online Education, MATS University

[

\

e

\\\

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

be avoided by correctly managing and synchronizing resources.
Thread pools (managed by Executor framework) are an efficient way
to manage a set of threads and help avoid the overhead of creating and
destroying threads. A Callable is very much like a Runnable, but it can
return a value, and it can throw checked exceptions. The Future
interface is for the result of an asynchronous computation, which
allows the result to be retrieved once it is available. To create
applications that remain responsive and efficient, especially in the
world's of networked or server-side processes necessitating concurrent
handling. Assembling knowledge of thread management,
synchronization, and inter-thread communication is essential for
creating resilient and scalable multithreaded applications.

1.4..2 Network Programming

In simple words, network programming in Java allows you to
communicate with other network applications and transfer data
between two or more network applications. Yes, Java network
programming by ship on the TCP/IP protocol suite. The java. Java
provides a rich set of classes for network programming in the java.
InetAddress is the class that represents an IP address, which is a
numeric label assigned to each device connected to a computer network
that uses the Internet Protocol for communication. InetAddress class:
getLocalHost() and getByName() are some of the methods of the
InetAddress class to get the IP address of a host. A Socket class is for
the client-side socket, an endpoint for communication between two
machines. It defines the [P address and port number of the server which
is used to create socket. First, answer why socket class, where Socket
class represents a socket for communication between a client and
server. The ServerSocket creates a new Socket Object for
communication with a client when a client connects to a server. The
URL class is used to identify a Uniform Resource Locator, which is a
reference to a resource on the web that specifies its location on a
computer network as well as a mechanism for retrieving it.
Understanding the concept of URLConnection class. It has methods
that can read and write data to the URL. Connection-oriented UDP
communication is done with the help of DatagramSocket and
DatagramPacket classes. It is a very basic transport layer protocol
which provides unreliable, unordered delivery of datagrams.

DatagramSocket- Sends and receives datagram packets

70
MATS Centre for Distance and Online Education, MATS University

DatagramPacket- A datagram representing a packet of data Network
programming requires things such as setting up sockets, sending and
receiving data, handling network exceptions, etc. To read and write
data on a network connection, input and output streams are used. The
InputStream and OutputStream classes have methods for reading and
writing byte streams and the BufferedReader and PrintWriter classes
have methods for reading and writing character streams. Network
programming is an important aspect of building distributed
applications, web servers, and client-server systems. A device that
operates at the lowest level in the OSI model is responsible for packet
transmission over these connections. So, these were some of the Pros
of using Java.

1.4.3 Java Database Connectivity (JDBC)

JDBC (Java Database Connectivity) is a Java API that allows Java
programs to connect to and interact with relational databases. JDBC
stands for Java Database Connectivity, which is an API for Java
programmers to connect with the database. JDBC is divided into a 2
layered architecture which contains the JDBC API and JDBC drivers.
The JDBC API consists of interfaces and classes that communicate
with databases, and JDBC drivers are vendor specific implementations
that convert JDBC calls to vendor database commands. The JDBC
driver is a piece of software that enables the connection between the
Java application and the database. The Types Of JDBC Drivers: Type
1 (JDBC-ODBC Bridge), Type 2 (Native-API Driver), Type 3
(Network Protocol Driver), Type 4 (Thin Driver). Type 1 drivers rely
on ODBC to connect to databases; this can be slow and relies on the
platform. Type 2 drivers rely on native database libraries, which can
be faster but also include platform dependency. Type 3 drivers are a lot
easier to work with than type 2 to create because they act as a
middleware server with the database, which means they gain portability
and scalability. Pure Java Driver (Type 4) — It communicates directly
with the database and offers the best performance and platform
independence. In order to open a database connection, you load JDBC
driver, generate a connection object, and execute SQL statements. The
DriverManager class loads JDBC drivers and returns connection
objects. The Connection interface represents a connection to a
database and has methods to create statements, execute queries, and

manage transactions. Statement — The Statement interface is used to

71
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

execute a static SQL statement and it is suitable for executing a simple
SQL statement with no parameters Required, which is a secure way to
prevent SQL injection statement, only suitable for executing with no
parameters Required of the SQL statement. The ResultSet interface is
an interface that represents a table of data generated by executing a
statement against a database. Especially exceptions related to the
database are represented by the SQLException class. The JDBC
provides methods for executing SQL statements like SELECT,
INSERT, UPDATE, DELETE, etc. To ensure that a series of database
operations are executed as a single, atomic unit of work, you can use
transactions to group them together. Support for transaction
management features, such as commit, rollback, and savepoints.
JDBC: JDBC is very important for developing data-driven
applications, as it offers a standard and effective way to connect with
relational databases. How JDBC works: JDBC architecture, drivers,
and database connectivity in Java.

Multithreading is a fundamental concept in the world of concurrent
programming that allows multiple threads to run inside a single
process, improving the responsiveness and efficiency of an application.
Data from this layer is culturally related to multithreaded Java
applications. Thread life cycle, including states such as New, Runnable,
Running, Blocked/Waiting, and Terminated through which a thread
passes during its lifetime, primarily controls the execution flow of a
thread, whereas operations including those in methods such as start(),
sleep(), join(), and yield() enable fine-grained control of thread
behavior. Synchronization is achieved using synchronized blocks or
methods to maintain data integrity and avoid race conditions, and inter-
thread communication is performed through wait(), notify(), and
notifyAll(). A potential pitfall of a multithreading design, deadlock,
requires prudent resource management and synchronization techniques
to overcome it. The Executor framework is a powerful tool for
managing thread pools, optimizing performance by avoiding the
overhead associated with thread creation and destruction. To enhance
Multithreading capabilities, Java provides several interfaces including
the Callable interface and Future interface, which allow threads to
return values and manage asynchronous computations. In essence,

multithreading is crucial for creating responsive, scalable applications,

72
MATS Centre for Distance and Online Education, MATS University

especially in networked or server architectures, where simultaneous
execution takes center stage.

Network programming forms the backbone of modern applications,
enabling the exchange and interaction between Java applications and
networks. The TCP/IP protocol suite provides a strong foundation for
network communication, and Java builds upon that through its features
for network programming. The java. The net In the Java programming
language, the net package provides a rich set of classes and interfaces,
such as InetAddress, Socket, ServerSocket, URL, URLConnection,
DatagramSocket, and DatagramPacket, which enable a network-based
application. InetAddress is used to resolve IP addresses in string form,
Socket and ServerSocket for establishing client-server communication,
URL and URLConnection for fetching a web resource over HTTP, and
DatagramSocket and DatagramPacket for making connectionless
communication using UDP. Network programming behaviors such as
creating sockets, sending and receiving data and handling exceptions
during the network operations you will be doing on input and output
streams.

Summary

This module introduces core Object-Oriented Programming (OOP)
concepts using Java. It begins with the four main OOP principles—
encapsulation, inheritance, polymorphism, and abstraction—and
explains how these concepts help create modular, reusable, and
maintainable code. The implementation of classes, objects,
constructors, method overloading and overriding, and use of keywords
like this and super are discussed in detail. The next unit explores
packages, which are used to group related classes and interfaces. It
explains how to create user-defined packages and use Java's built-in
packages to organize code better and manage access levels with access
modifiers.Error handling is a crucial part of programming, and this
module covers Java’s exception-handling mechanism, including the
use of try, catch, finally, and throw. It also introduces checked and
unchecked exceptions and shows how to write robust applications with
custom exception classes.

Finally, the module concludes with multithreading concepts, teaching
how to execute multiple tasks simultaneously. Students learn about
thread creation using the Thread class and Runnable interface, thread
lifecycle, synchronization, inter-thread communication, and real-world
examples of multithreading applications.

Multiple-Choice Questions (MCQs)

73
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

4 M
UNIVERSITY
ready for life

Notes 1. Which of the following is not a feature of Object-Oriented
Programming?
a) Encapsulation
b) Inheritance
c) Compilation
d) Polymorphism
Answer: ¢) Compilation
2. What keyword is used to define a package in Java?
a) package
b) import
c¢) include
d) namespace
Answer: a) package
3. Which of the following is not a valid exception handling
keyword in Java?
a) try
b) catch
c) final
d) throw
Answer: ¢) final
4. What is the default priority of a thread in Java?
a) 1
b) 5
c) 7
d) 10
Answer: b) 5
5. Which of the following JDBC drivers is platform-
independent?
a) Type-1
b) Type-2
c) Type-3
d) Type-4
Answer: d) Type-4

74
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

Short Answer Questions

1.
2.
3.

5.

What is encapsulation in Java?

How do you define and use a package in Java?

Explain the difference between checked and unchecked
exceptions.

What are the main states in a thread’s lifecycle?

What is the role of the Driver Manager class in JDBC?

Long Answer Questions

1.

Explain the four main Object-Oriented Programming (OOP)
concepts with examples.

Describe the process of handling exceptions in Java using try,
catch, finally, and throw.

What is multithreading in Java? Explain the life cycle of a
thread with a diagram.

Explain the concept of socket programming in Java with an
example.

Describe the steps involved in connecting a Java application to
a database using JDBC.

75
MATS Centre for Distance and Online Education, MATS University

Module 2
JAVA FX TECHNOLOGY

LEARNING OUTCOMES

To understand the fundamentals and architecture of Java FX.
To explore Java 2D and 3D graphics in Java FX.

To analyze Java FX animation, effects, and transformations.
To study Java FX layout management and UI controls.

To implement Java FX event handling and image processing.

76

Unit 2.1: Introduction to Java FX, Features,
Architecture and Applications

2.1.1 Introduction to Java FX

JavaFX represents a significant improvement in building graphical user
interfaces (GUIs) in Java compared to Swing and the Abstract Window
Toolkit (AWT). First introduced by Sun Microsystems (subsequently
bought by Oracle), JavaFX was first celebrated as a 2008-era
component, giving developers who wanted to develop desktops with
rich graphics, embedded media and new programming models a higher-
level, more modern way to do it than from what early Java offered with
its early emphasis on building complex GUI interfaces all on its
lonesome. Initially, it was an Oracle product, but when it was open-
sourced into OpenJDK 2011, the theoretical changes were made to the
code were for every to contribute to the code, allowing for small
iterative changes and community development. Initially it was hailed
as an answer to Adobe Flash and Microsoft Silverlight, this cross-
platform rich-client alternative was capable of the same rich interactive
application creation possibilities, now with the Java ecosystem
advantages. When programming languages such as Visual Basic and
Visual C++ were introduced, there was a demand for graphical user
interfaces that were more engaging, allowing interaction and features
that would be visually appealing, that would also run under a large
number of operating systems. However, JavaFX, when it landed, came
with something of a standalone scripting language (JavaFX Script)
which aimed to simplify Ul development, thanks to a declarative
syntax. But with JavaFX 2.0 (released in 2011), Oracle returned to a
pure-Java-API approach, ditching the separate scripting language in
favor of regular Java code feathered with builder patterns and fluent
APIs. Thus JavaFX became a tangible platform for the existing pool of
Java developers based on the extensive familiarity with Java and some
of the ability to do modern UI development. The long and short of it is
simply this: JavaFX was never really about the technology — it was a
case study for Oracle that Java was still relevant, even in the midst of
an explosion of web and mobile technologies. : JavaFX was the first
stone in that rich client mountain: it established the right architecture
for taking Java out of the server and into both the desktop stacks. The

major functionality and improvements were rolled out with every new

77
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
ready for life

Notes

release over a series of reworks. The core Java API was developed in
JavaFX 2.0; JavaFX 8 (along with Java 8) integrated more with the Java
Development Kit (JDK), and the more recent releases enhanced
performance, added new Ul controls, extended platform support.So this
makes 2018: a new major shift for JavaFX: with Java 11, it was
decoupled from the JDK. While this added some extra steps when you
wanted to include it in your projects, this modularization allowed
JavaFX to release its libraries independently of the overall Java
platform release cadence. But what do you know, all this was possible
by JavaFX for Java which was released on December 3, 2008, and
eventually led to what we have today, a complete mature framework
for building rich cross platform applications with powerful graphics,
multimedia support and advanced Ul components. And its evolution is
a window into some of the most significant trends in software
development overall, including the shift toward more declarative
programming models, the rising need for rich user experiences, and the
new need for cross-platform compatibility as an ever more
heterogeneous computing landscape emerges. Having a clearer
understanding of what led us to here, we now have the context better
to look at its present capabilities and its role in the wider Java
ecosystem before looking at its feature set, architecture and use in

modern application development.

2.1.2 JavaFX Application Structure
JavaFX application is divided hierarchically into three main
components known as Stage, Scene and nodes. We need to
import javafx.application.Application class in every JavaFX
application. This provides the following life cycle methods for JavaFX
application.

o public void init()

o public abstract void start(Stage primaryStage)

o public void stop()
in order to create a basic JavaFX application, we need to:

1. Import javafx.application.Application into our code.

2. Inherit Application into our class.

3. Override start() method of Application class.

Stage

78
MATS Centre for Distance and Online Education, MATS University

Stage in a JavaFX application is similar to the Frame in a Swing
Application. It acts like a container for all the JavaFX objects. Primary
Stage is created internally by the platform. Other stages can further be
created by the application. The object of primary stage is passed
to start method. We need to call show method on the primary stage
object in order to show our primary stage. Initially, the primary Stage
looks like following.
Figure 2.1.1

However, we can add various objects to this primary stage. The objects
can only be added in a hierarchical way i.e. first, scene graph will be
added to this primaryStage and then that scene graph may contain the
nodes. A node may be any object of the user's interface like text area,
buttons, shapes, media, etc.

Scene

Scene actually holds all the physical contents (nodes) of a JavaFX
application. Javafx.scene.Scene class provides all the methods to deal
with a scene object. Creating scene is necessary in order to visualize
the contents on the stage.

At one instance, the scene object can only be added to one stage. In
order to implement Scene in our JavaFX application, we must
import javafx.scene package in our code. The Scene can be created by
creating the Scene class object and passing the layout object into the
Scene class constructor. We will discuss Scene class and its method
later in detail.

Scene Graph

Scene Graph exists at the lowest level of the hierarchy. It can be seen
as the collection of various nodes. A node is the element which is
visualized on the stage. It can be any button, text box, layout, image,

radio button, check box, etc.

79
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

(RS

&mn'r

\\\

UNIVERSITY

ready for life......

Notes

]

The nodes are implemented in a tree kind of structure. There is always
one root in the scene graph. This will act as a parent node for all the
other nodes present in the scene graph. However, this node may be any
of the layouts available in the JavaFX system.

The leaf nodes exist at the lowest level in the tree hierarchy. Each of
the node present in the scene graphs represents classes
of javafx.scene package therefore we need to import the package into
our application in order to create a full featured javafx application.

Figure 2.1.2

Stage
Scene
Scene Graph

Historical Context:

Java's history of developing graphical user interfaces has undergone an
evolution driven by paradigms shifts in technology and development as
well as developer and user expectations. This started with the Abstract
Window Toolkit (AWT), the original GUI toolkit that Java shipped
with the first version of Java in 1995. AWT offered a basic set of Ul
components that mapped directly to native platform components, in
what is known as a “heavyweight” approach. Although this method
allowed applications to preserve the appearance and behavior of the
underlying operating system, it limited the level of customization and
appearance consistency across different platforms. Moreover, the
component set of AWT was quite limited with basic components only
buttons, text fields and basic containers etc. These factors led to the
creation of Swing, which was released in 1997 as part of the Java
Foundation Classes (JFC). Previously, Swing was a major
improvement because it adopted a "lightweight" architecture, which
meant that in most cases each of Swing's components were drawn using
Java's own rendering engine instead of native components. That was

80
MATS Centre for Distance and Online Education, MATS University

way more flexible, had much richer component set, and much more
consistent behavior cross platform. From this, Swing adopted the
pluggable look-and-feel system to enable applications to look the same
regardless of the underlying operating system or adopt the native look
and feel when needed. Swing remained the de facto GUI toolkit for over
a decade with commercial and enterprise applications building on
thousands of Swing-based applications and establishing the baseline
for user interface design in the Java ecosystem. But as web and mobile
applications grew and as users experienced more advanced user
interfaces, expectations were updated for desktop applications as well.
For modern users, rich animations, seamless multimedia integration,
hardware-accelerated graphics—and more visually engaging
experiences—were all things that pressed Swing beyond its initial
design parameters. These evolving expectations, together with
improvements in graphics hardware and new rendering technologies,
set the stage for the arrival of JavaFX. JavaFX was first developing as
"Project F3" (Form Follow Function) within Sun Microsystems, were
first announced as a public product in 2007 and first released in 2008.
First iteration (JavaFX 1. x), which had a dedicated scripting language
(JavaFX Script), that allowed you to describe user interfaces in a
declarative manner. It was a radical departure from Swing's imperative
programming model. Another focus was the integration of rich media
and the added support for animation, which positioned JavaFX as
competition for Adobe Flash and Microsoft Silverlight in the arena of
Rich Internet Applications (RIA). Oracle bought Sun Microsystems in
2010, and for a while there it didn't look good for JavaFX. But then
Oracle established its real commitment to the platform when it
announced a massively ambitious roadmap. JavaFX 2.0, introduced in
2011, was a pivotal change, dropped the separate scripting language
and used a standard Java API. This move brought JavaFX into closer
alignment with mainstream Java development practices, but without
sacrificing the advanced graphics and animation features available in
the platform. This evolution continued with JavaFX 8 in 2014, which
aligned versioning with the Java SE platform and provided complete
integration for JavaFX; included as part of the JDK. [More changes that
includes UI controls, 3D, touch] This release added a number of new

UI controls, better 3D graphics support, and improved touch

81
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

capabilities: an acknowledgment of the rising significance of touch-
enabled devices.

For example, in 2018, the biggest milestone was that JavaFX got
decoupled from the JDK with Java 11 and became an independent
module under the OpenJFX project. Doing so gave JavaFX the
freedom to grow on its own timetable, separate from the release
schedule of the core Java platform. As each GUI framework evolved,
they improved upon their predecessors' limitations and adapted to the
changing technological landscape and user expectations. AWT offered
some primitive platform native components, Swing better flexibility
and more components, and JavaFX hardware acceleration, modern
skinning via CSS, richer animation, and full multimedia support. It also
signals an evolution in mindset, moving from imperative programming
and dense code in AWT and Swing, to the emphasized declarative
design encouraged by JavaFX, especially with FXML for UI
definition.

2.1.3 Positioning in the Modern UI Landscape

JavaFX maintains a unique position in the wealth of user interface
technologies available to developers today; indeed it reflects its
technical prowess with a strategic value proposition. JavaFX and its
place among the alternatives for building GUIs (including web
development, native platform toolkits and the other cross-platform
options) which gives you insight into this position. This is one of the
many strong points of JavaFX, the ability to be able to create true native
applications with the same behaviour across operating systems. While
most web applications rely on a browser runtime, JavaFX applications
can include all the required runtime components and be distributed as
standalone executables. This is still useful in cases where tight
integration with the OS, offline capabilities, or access to local system
resources is needed. JavaFX also boasts a cross-platform architecture
that enables it to run not only on Windows, but also on macOS and
Linux, and even to some extent, mobile platforms, which can be a big
plus when building applications that need to run in heterogeneous
computing environments. For organizations that have a variety of
technology ecosystems, or for those that are creating software for
distribution to people who may be using any number of operating
systems, they can rely on one code base rather than maintain distinct

implementations for each platform. This cross-platform capability puts

82
MATS Centre for Distance and Online Education, MATS University

JavaFX in competition with frameworks such as Qt, Electron, and
Flutter — each of which has its own take on the dilemma of cross-
platform development. JavaFX can be seen as a natural enterprise
extension to companies that have invested heavily in Java technology.
Java is pervasive in the enterprise, with many organizations having
established Java development skills, build pipelines, security practices,
and deployment workflows. JavaFX taps into this already well-
established ecosystem, providing these organizations with the ability
to develop complex, sophisticated desktop applications without a new
programming language, or a completely different programming
approach. This interoperability with the wider Java ecosystem,
including compatibility with tools, frameworks, build tools, and IDEs,
offers a unified programming experience that sets JavaFX apart from
other solutions that may require the adoption of entirely new
technology stacks. Today the User Interface of web applications are
heavily inspired by web technologies and frameworks like React,
Angular, Vue. js includes much of modern user interface development.
JavaFXacknowledges this fact by providing the capability to embed
web content intoapplications with the WebView component, which is
similar to embedding a web browserinside an application. This hybrid
approach allows the developers to leverage the best features of web
technologies for content rendering while merging it with the platform
integration and performance advantages provided by a native
application framework. Additionally, JavaFX adopts concepts from
modern web development, as seen in the use of CSS for styling and
FXML for separating presentation and logic. These features also
make it easier for developers who are familiar with these types of
technologies to work with the stack, and align with the broader industry
trend toward defining Uls in a declarative fashion and separation of
concerns. JavaFX shines above other technologies when it comes to
data-driven enterprise applications. You are still an Editor for
importing concepts, concepts into which the framework can be used to
bind the connection of really, making the interface responsive, in which
case you can update the data when some data is actually changed.
When these two powerful technologies are combined together, it
creates the perfect platform for business applications requiring data
visualization, analysis, and manipulation due to Java's rock-solid data

processing capabilities and a wealth of connectivity options to

83
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

databases and services. The introduction and success of Electron, which
bundles web applications with a Chromium runtime to create desktop
applications, has reshaped the desktop application landscape. Electron
has revolutionized the world of desktop apps but comes with few
drawbacks such as performance and resource hogging but JavaFX is
one good alternative. JavaFX applications tend to be smaller in terms
of size and resource usage, compared to Electron applications that
require an entire web browser engine to be included. This efficiency is
crucial for applications that run on systems with limited resources or
efficiency-critical applications. JavaFX stands out with its excellent
multimedia and graphics support as well. Positioning it well, for
applications which needs rich visual experiences, is its scene graph
architecture, hardware-accelerated rendering pipeline and built-in
support for animation, 3D graphics, and a variety of media formats.
The rich media support and scene-graph architecture allow JavaFX to
be used for data visualization, demonstrations, educational software as
well as creative software such as keyframing tools where primitives
must render dynamically. As web applications have grown more
complex, the lines between web and desktop applications have become
less distinct. JavaFX recognizes this convergence with CSS styling,
the FXML markup language for Ul definition, and WebView for web
content integration. It still has the power of a compiled language and a
native runtime, providing performance and security characteristics that
manage to be hard to come by through an entirely web-based solution.
2.1.4 Core Philosophy and Design Principles

JavaFX was designed based on a set of core philosophy and design
principles which continue to influence its design and usage. These
principles are drawn from the lessons of past Java Ul frameworks as
well as future directions in application development in a more
heterogeneous and dynamic computing ecosystem. One of the
principles that the design philosophy around JavaFX is built on is the
need for expressive and declarative user interface construction. In
contrast with the more imperative programming model of AWT and
Swing, where interfaces were created almost exclusively by procedural

code, this is a major advancement. JavaFX In a way, also embraces a

84
MATS Centre for Distance and Online Education, MATS University

T g

g'!!mmég

ready for lie......

more declarative paradigm, especially with FXML for defining user Notes
interfaces in an XML-based markup language.

Figure 2.1.3
While draft.is or TiddlyWiki is structured as an application — an

JavaFX Design Principles

Future-Readiness Declarative Ul
Adapts to high- Emphasizes XML-
resolution based Ul
displays and construction over

touch interfaces procedural coding

XML I

Multimedia Hardware
Integration Acceleration
Offers built-in Utilizes graphics
support for audio, E hardware for
video, and images enhanced
performance

Cross-Platform
Consistency
Streamlines Balances visual
development with consistency with
tools and native integration
abstractions

Developer
Productivity

Supports diverse

application types

and deployment
scenarios

interface containing all its own logic — React.js separates Ul structure
from application logic. As we will touch on the declarative approach
further above the visual and aesthetic, the declaration based approach
even flows over the structuring to the aesthetic, so JavaFX uses CSS to
allow usto visually adjust UI elements. This choice enhances the broad
knowledge base surrounding CSS, both for web developers and web
designers, while simultaneously providing a robust and standard way
to build visually striking apps without needing to change internal code.
The ability to apply multiple stylesheets and to work with dynamic
styles also help towards building interfaces that are visually coherent
and adaptive. Another one of the core concepts is hardware
acceleration out of the box — JavaFX has been designed from the very
beginning to maximize the potential of existing graphics hardware by
way of its Prism rendering pipeline. Using this method, artists can

construct rich animations and render dense scenes, with pixel-perfect

85
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

accuracy regardless of size (including very large displays). By
providing a graphics pipeline that abstracts the interaction with
hardware, JavaFX enables developers to write visually and functionally
rich applications without the need of detailed knowledge with any
specific graphics system while utilizing the hardware when it is
available. JavaFX is also designed for cross-platform consistency
while still respecting platform conventions. Unlike previous
approaches that tended to leave developers choosing one or the other
between cross-platform visual consistency and native integration,
JavaFX attempts to balance these tradeoffs. The platform differs
between what is showable patterns and functional behaviors when
appropriate, but provides a uniform model and idea of contributions to
underlying systems. This may sound like a no-brainer, but it applies to
accessibility too: JavaFX is built to work with any type of assistive
technology across multiple platforms, so applications can be used by
people of all abilities. JavaFX represents the idea of scale in terms of
the various kinds of application and deployment cases. Its architecture
handles everything from simple forms-based business applications, to
data visualization tools, to complex maps with rich graphics. It can be
used for standalone desktop applications, for web deployment through
Java Web Start (in previous versions), or for embedded systems
applications. This is implemented through modules, meaning that you
can only add the necessary components for the given needs of the
application. Pretty much any Java SE application can contain JavaFX
components, and JavaFX itself is available as an importable Java
library. This allows developers to take advantage of their existing
investment in Java technology as they learn and adopt the modern Ul
features of JavaFX. The framework offers initial support to integrate
Swing components when needed, allowing upgrading of older
applications to be done in a gradual fashion. Another major aspect of
Flutter is its WebView component, which allows for integration of
browser content, acknowledging the significance of web technologies
in current applications. Developer productivity has, in fact, hugely
impacted JavaFX's design. Then I also mention properties binding (or
whatever name it's got inside your own Ul library, with property IDs
that can be only bound in a declarative way from the data model while
automatically redoing the view upon data changes so that it is not

needed to do the same manually in code), which cut the amount of

86
MATS Centre for Distance and Online Education, MATS University

boilerplate code and up is not prone to consistency errors, as well as
getting rid of a lot of boilerplate code. In the same way, the animation
framework does not expect you to do complex mathematical
calculations, instead, it offers high-level abstractions for creating rich
transitions and effects. The event handling system, which follows
consistent patterns across various component types, also increases
developer efficiency as the learning curve is lowered. In addition,
JavaFX follows the design/developer collaboration approach by
supporting tools like Scene Builder, which is a visual design
environment that produces FXML that can be used directly in
applications. This strategy acknowledges the reality of modern
application development, where implementation and design specialists
increasingly collaborate. This separation of concerns in FXML and
CSS makes it easy for the designer to work on all of the visual aspects
without needing to focus on how this will all fit in the application logic.
The next core design principle is multimedia integration, and this was
a crucial consideration in the development of JavaFX, which offers
first-class support for audio, video, and images without the need for
additional third-party libraries. JavaFX also has built-in support for
images, audio, and video, which reduces the need for external libraries
or plugins for common media operations to develop rich client
applications. It even extends to 3D content, because JavaFX natively
supports 3D objects and scenes as part of its out-of-the-box arsenal.
JavaFX finally reflects the idea of future-readiness with a number
regarding display technologies and help for touch interfaces and new
interaction patterns. The platform was created with an eye towards
trends for high resolution displays, touch capable devices, and animated
user experiences. This future-proofing helps guarantee that JavaFX-
built applications do not go out of date as computing environments

persist in metamorphosing.

2.1.5 Core Features and Capabilities of JavaFX

87
MATS Centre for Distance and Online Education, MATS University

[

\

e

\\\

UNIVERSITY

ready for life.

Notes

aTs)

i

(RS

gmn'r

\\\

UNIVERSITY

ready for ...

Notes

)

|

JavaFX Framework Capabilities

Animation @
Capabilities q Core Features
Event Handling @ Q Advanced

Graphics
FXML "@ Media Support
CSS Styling é Ul Controls

Layout System

Figure 2.1.4
These capabilities are just a glimpse into the powerful tools JavaFX
offers for developing high-performance, cross-platform applications
with stunning graphics and Ul The core of it is a scene graph
architecture, where graphical elements are arranged in a hierarchical
way that allows for quick rendering and interaction response. It is the
foundation on which JavaFX builds its approach of arranging UI
components, layouts, and custom visual objects as a hierarchy of nodes
in a scene graph. It includes a comprehensive library of pre-built Ul
controls including buttons, text fields, tables, trees, charts, and more.
These controls match modern Ul patterns and expectations like
animation, visual effects, and styling (including CSS). The styling
system approach that JavaFX introduced is a huge improvement
compared with other UI frameworks in Java, enabling developers to
decouple the visual aspect from the application logic and to deliver
visually unique applications without touching their internal code. Prism
is the platform's rendering engine that uses hardware acceleration to
maintain graphics performance, especially for animations and effects.
This hardware-accelerated pipeline allows JavaFX apps to provide
visually stunning experiences even for complex scene rendering and
high resolution content. Along with these visual features, JavaFX has
full multimedia support with built-in classes for images, audio, and
video. Such integrated support means no additional libraries and APIs

88
MATS Centre for Distance and Online Education, MATS University

are needed for working with common media formats, enabling the rapid
development of complex content-rich applications. JavaFX, on the
other hand, offers built-in visual support for 3D scenes, enabling
developers to construct and manipulate three-dimensional objects as
needed, as well as leveraging the same APIs for traditional 2D
interfaces. JavaFX’s binding framework, which allows UI elements to
be declaratively bound to underlying data models, is another
differentiator. When data changes, the Ul automatically updates and
you get to write a little less boilerplate to synchronize presentation
code with data to avoid inconsistencies between the two. This two-way
binding goes from property to property across the framework and
allows creating more adaptive, data-driven applications. JavaFX also
provides a declarative approach to Ul definition via FXML, an XML-
based markup language. The accompanying Scene Builder tool offers
a similar, visual design experience for building out JavaFX interfaces,
outputting FXML declarations that can be used out of the box in
applications. JavaFX also has integrated WebView, which embeds a
web browser engine, into the content. This allows applications to
render HTML, run JavaScript, and communicate with web applications,
essentially merging desktop and web technologies. JavaFX Integration
and PerformanceJavaFX Core FeaturesThe combination of all of these
core features makes JavaFX a powerful tool for building modern
applications that have the performance and integration characteristics
of traditional native applications complemented with the more
advanced visual richness and application interaction models that users

are becoming accustomed to.

Java Public APIs for javaFX Features

Quantum Toolkit

‘ Glass Windowing |
Toolkit

V
—
[) h

S

JDK Libraries & tools

Java Virtual Machine

Figure 2.1.5: JavaFX Architecture
Source: https://static.packt-cdn.com/

89
MATS Centre for Distance and Online Education, MATS University

Notes

(RS

&mn'r

\\\

UNIVERSITY

ready for life......

Notes

)

|

2.1.6 Scene Graph and Ul Components

JavaFX GUI Development

Hierarchical structure for
visual elements

Building blocks for user
interfaces

The ultimate goal of JavaFX
development

Interactive GUI

Figure 2.1.6

At the center of JavaFX's rendering architecture is a scene graph, which
is a hierarchical structure that represents all of the visual elements in a
single application. This approach to constructing user interfaces is a
monumental shift from the Java UI frameworks that preceded it and
supports many advanced features of JavaFX. A scene graph is
organized as a tree where each node in the tree is either a visual element,
a group of visual elements, or some operation (a transformation or an
effect) applied to its children. Such a hierarchical organization lends
itself well to the compositional nature of user interface as-built
(composite components are built of more simple components). In
JavaFX, the scene graph starts with a Stage that serves as the top-level
container, usually a window in desktop applications.Scenes graph
structureA Stage has exactly one Scene, which holds the root node of
the scene graph. From this root, you have a tree of nodes extending (or
a graph if you want to be technical) for all visual elements in the
interface. Node classDiagram The Node class is the root of all objects
in the scene graph and contains common properties and behaviours for
positioning, transformation, effects, event handling, and user
interaction. JavaFX divides its nodes into some categories: shapes
(Rectangle, Circle, Path), controls (interactive components like Button,
TextField and TableView), containers (layout components like HBox,
VBox, and BorderPane), media nodes (ImageView, MediaView) and
web content (WebView). Note that Group nodes are also used to

combine multiple nodes into a single node which can be executed as an

90
MATS Centre for Distance and Online Education, MATS University

)

ready for life......

atomic unit. These various node types act as building blocks for Notes
crafting interfaces that can range from basic forms to elaborate
visualizations. The scene graph architecture provides many strong

benefits to UI development. First, it

Stage
Scene
Scene Graph

Figure 2.1.7
is a natural model for building complex interfaces using simple

components.

Users can compose new types of components from merely existing
nodes, transformations and effects, and custom behaviors. Second, the
hierarchy aids efficient rendering with culling (trees that are far away
from view aren't rendered) and dirty region (only redrawing the
sections that have changed.) The JavaFX runtime will automatically
take care of these optimizations, so developers can focus on writing
their complex interfaces without having to have knowledge of the
rendering optimizations. Third, the scene graph provides a single
model for transformations and transition, which simplifies animation
and visual effects. Any node in the graph can have properties such as
position, rotation, scale, and opacity animated to produce complex
visual behaviors with minimal code. The Scene graph is the core
hierarchical structure upon which JavaFX Ul components are built,
providing a rich toolkit for building applications. Components can be
simple elements or complex, data-driven controls. JavaFX provides
primitive shapes (like Rectangle, Circle, Line, Path, etc.) in its most
simple form for building custom graphics. Text nodes can display
formatted text with a variety of fonts, styles, and effects. The
framework offers a wide range of layout components (HBox, VBox,
BorderPane, GridPane, FlowPane, etc.) that position its children based

on different spatial configurations and are responsive to size changes.

91
MATS Centre for Distance and Online Education, MATS University

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

JavaFX provides a rich set of controls that implement common Ul
patterns for user interaction. These include basic controls like Button,
Label, TextField, PasswordField and CheckBox. Selection controls
include ChoiceBox, ComboBox, ListView, TreeView, and
TableView. That said, JavaFX has Slider, ProgressBar and ScrollBar
for numerical input. Date selection is managed by DatePicker and
complex text entry is provided by TextArea and HTMLEditor. Higher-
level components include the list of chart types (PieChart, LineChart,
BarChart, etc.) for data visualization, TreeTableView for hierarchical
data representation, and Pagination to split data into pages. Basic
interaction patterns such as alerts, confirmation requests, and custom
modal interfaces are provided by the dialog components. They follow
common patterns for styling, interaction, and customization. The
component exposes its properties, which can be bound to application
data, configured programmatically, or set with FXML. Components
emit events when users interact with them as part of a unified event
model that greatly simplifies the implementation of interactive
behaviors. JavaFX controls are designed to be functional and leave it
up to the programmer to decide how it should look. Each control
provides a complete implementation of its intended functionality out-
of-the-box, with developers able to extensively customize appearance
and behavior. This customization can take place at several levels: CSS
styling, properties set in code, changing the control's cell factory (for
list-based controls), or by building completely new controls with
subclassing or composition. This versatility enables developers to
design functional yet visually improved interfaces. JavaFX's
implementation of Ul components is designed to be accessible,
allowing its applications to be compatible with screen reader software
and other assistive technologies. Find out how JavaFX implements
appropriate roles and provides accessibility information, contributing
to the ability for applications built with JavaFX to be usable by people
of varying abilities. Context: scene graph and component model =
declarative UI construction Unlike earlier frameworks, where
developers imperatively controlled low-level graphics contexts,
JavaFX developers specify the desired contents and structure of the
interface. The framework abstracts away the specifics of rendering,
layout, and event propagation, resulting in cleaner, more maintainable,

and less error-prone code.

92
MATS Centre for Distance and Online Education, MATS University

Unit 2.2: Java 2D Shapes, Colors and Text

2.2.1 Java 2D Shapes, Colors, and Text

Java offers a strong 2D graphics API within the java. awt and javax.
swing packages that help the developer customize/add shapes, colors,
and text in their graphical applications. These and other functionality
to draw basic shapes like lines, rectangles, ovals, polygons can be
achieved using classes called Graphics and Graphics2D. The
Graphics2D class is an extension of Graphics class, which contains
more sophisticated control over geometry, coordinate transformations,
color management, and text layout. For instance, by overriding the
paintComponent method and using Graphics2D on a Swing
component, you can draw a rectangle and an ellipse with varying
colors and stroke widths.

import javax.swing.*;

import java.awt.*;

public class ShapeDrawing extends JPanel {
@Override
protected void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2d = (Graphics2D) g;

/I Set color and draw a rectangle
g2d.setColor(Color.BLUE);
g2d.fillRect(50, 50, 100, 70);

/I Set stroke and draw an oval
g2d.setColor(Color.RED);
g2d.setStroke(new BasicStroke(3));
g2d.drawOval(200, 50, 100, 70);

public static void main(String[] args) {
JFrame frame = new JFrame("Java 2D Shapes");
frame.add(new ShapeDrawing());
frame.setSize(400, 200);
frame.setDefaultCloseOperation(JFrame.EXIT ON_ CLOSE);

93
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

i)

[

?mm

\\\ i

UNIVERSITY
ready for life

Notes

frame.setVisible(true);

b
2.2.2 Customizing Shapes with Colors and Strokes

You can customize the shapes with colours, gradients, and stroke styles
and paint it as per your need. The Color class contains some predefined
colors and it can also create custom colors based on RGB. Additional
styles, such as smooth color transitions and different line weights can
be done with the classes GradientPaint and BasicStroke. In the
following example, we apply a gradient fill to a rectangle, and use a

dashed stroke for a line.

g2d.setPaint(new GradientPaint(50, 50, Color.BLUE, 150, 120,
Color.CYAN, true));
g2d.fillRect(50, 50, 100, 70);

float[] dashPattern = {10, 5, 2, 5};

g2d.setStroke(new BasicStroke(3, BasicStroke. CAP_ ROUND,
BasicStroke.JOIN BEVEL, 1, dashPattern, 0));
g2d.setColor(Color.BLACK);

g2d.drawLine(50, 150, 200, 150);

This snippet demonstrates how Java 2D enables smoother, more
visually appealing drawings beyond basic shapes.

2.2.3 Combining Shapes, Colors, and Text for Interactive
Graphics

This implies that integrating these elements also means that the
developers can reap visual applications of anything from drawing apps
through games and visualizations. As an example, we can dive to a
real-world use case of a dashboard visualization, which has bars inside
bars filled with gradients, custom strokes outline and anti aliased text
labels. It is powered for them to create visually enhanced and

interactive Ul components.

2.2.4 JavaFX 2D Shapes
JavaFX provides a rich set of Shape classes in the package
javafx.scene.shape.

These shapes are nodes that can be added directly to a Scene or inside

94
MATS Centre for Distance and Online Education, MATS University

layout containers.
You can style them with properties like fill, stroke, strokeWidth, etc.

Common 2D shapes in JavaFX include:

Shape Lo
Description
Class
Li A straight line between two points (startX,startY) and
ine
(endX,endY).
A rectangle with specified width, height, and optional arc
Rectangle
for rounded corners.
Circl A circle defined by center coordinates (centerX,centerY)
ircle
and a radius.
. An ellipse defined by center coordinates and two radii
Ellipse

(radiusX, radiusY).
Polygon A shape with multiple sides defined by points.
Polyline Similar to Polygon but not closed.

A A section of an oval or circle defined by a start angle and
rc
length.

JavaFX provides the flexibility to create our own 2D shapes on the
screen .There are various classes which can be used to implement 2D
shapes in our application. All these classes resides in
javafx.scene.shape package.

This package contains the classes which represents different types of
2D shapes. There are several methods in the classes which deals with

the coordinates regarding 2D shape creation.

What are 2D shapes?

In general, a two dimensional shape can be defined as the geometrical
figure that can be drawn on the coordinate system consist of X and Y
planes. However, this is different from 3D shapes in the sense that each
point of the 2D shape always consists of two coordinates (X,Y).
Using JavaFX, we can create 2D shapes such as Line, Rectangle,
Circle, Ellipse, Polygon, Cubic Curve, quad curve, Arc, etc. The class

javafx.scene.shape.Shape is the base class for all the shape classes.

95
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

(\._/_./\
By
g .
UNIVERSITY
ready for life

Notes How to create 2D shapes?
As we have mentioned earlier that every shape is represented by a
specific class of the package javafx.scene.shape. For creating a two

dimensional shape, the following instructions need to be followed.

1. Instantiate the respective class : for example, Rectangle rect = new

Rectangle()

2. Set the required properties for the class using instance setter methods:

for example,

rect.setX(10);
rect.setY (20);
rect.setWidth(100);
rect.setHeight(100);
3. Add class object to the Group layout: for example,

Group root = new Group();
root.getChildren().add(rect);
The following table consists of the JavaFX shape classes along with

their descriptions.

Shape Summary
Li Connects two points (X,Y) on a 2D plane. Use
ine
javafx.scene.shape.Line.
Four-sided figure with equal opposite sides and right
Rectangle)
angles. Use javafx.scene.shape.Rectangle.
Elli A curve with two focal points; distance sum to focal
ipse
P points is constant. Use javafx.scene.shape.Ellipse.
N A segment of a circle or ellipse. Use
re
javafx.scene.shape.Arc.
. A special ellipse with coinciding focal points. Use
Circle

javafx.scene.shape.Circle.

A closed shape formed by joining multiple line segments.
Polygon)
Use javafx.scene.shape.Polygon.

Cubic A 3rd-degree curve in the XY plane. Use

Curve javafx.scene.shape.CubicCurve.

96
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

Shape Summary

Quad A 2nd-degree curve in the XY plane. Use

Curve javafx.scene.shape.QuadCurve.

Note: JavaFX provides dedicated classes in javafx.scene.shape for
creating and displaying a wide range of 2D geometric shapes, each with

properties you can customize and render on a scene.

JavaFX Shape Properties
All the JavaFX 2D shape classes acquires the common properties
defined by JavaFX.scene.shape.Shape class. In the following table,

we have described the common shape properties.

Property What it Does Setter Method
Fills the
interior of the])

fill setFill(Paint)

shape with a

paint or color.

If true,
smooths the

smooth setSmooth(boolean)
edges of the

shape.

Defines dash
pattern offset

strokeDashOffset for creating setStrokeDashOffset(double)
dashed

outlines.

Sets the style
of the line’s
strokeLineCap end caps (e.g., setStrokeLineCap(StrokeLineCap)
butt, round,
square).
Sets the style
of the joint))))
strokeLineJoin setStrokeLineJoin(StrokeLineJoin)
where two

lines meet.

97
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

Property

strokeMiterLimit

stroke

strokeType

strokeWidth

These properties let you style shapes in JavaFX by customizing their

fill color, outline color and width, smoothing, dash patterns, and how

What it Does Setter Method

Limits the
distance
between inner . o
setStrokeMiterLimit(double)
an outer
corner points

of a joint.

Sets the color

or paint used

for the outline setStroke(Paint)
(border) of the

shape.

Determines
where the
stroke

is
... setStrokeType(StrokeType)
drawn (inside,

outside, or
centered).
Sets the

thickness of setStrokeWidth(double)

the outline.

line ends and joins are rendered.

setFill Example - 0O X

98

MATS Centre for Distance and Online Education, MATS University

UNIVERSITY

ready for lie......

Figure 2.6.1 Notes

setStroke Example - o b4

setStrokeWidth Example - o x

CENTERED Stroke Example - o x

OUTSIDE Stroke Example - 0O X

99
MATS Centre for Distance and Online Education, MATS University

i)

[

J?mn'r

W

UNIVERSITY
veady for lfe

)

i

setSmooth(true) Example - O X

StrokeLineJoin.BEVEL - O X StrokeLineJoin.Miter — 0O X

StrokeLineJoin.Round - o b4

2.6.5 JavaFX Line

In general, Line can be defined as the geometrical structure which joins
two points (X1,Y1) and (X2,Y2) in a X-Y coordinate plane. JavaFX
allows the developers to create the line on the GUI of a JavaFX
application. JavaFX library provides the class Line which is the part
of javafx.scene.shape package.

100
MATS Centre for Distance and Online Education, MATS University

How to create a Line?

Follow the following instructions to create a Line.
o Instantiate the class javafx.scene.shape.Line.
o set the required properties of the class object.
o Add class object to the group

Properties

Line class contains various properties described below.

Property Description Setter Methods
endX The X coordinate of setEndX(Double)
the end point of the
line
endY The y coordinate of setEndY(Double)
the end point of the
line
startX The x coordinate of setStartX(Double)
the starting point of
the line
startY The y coordinate of setStartY(Double)

the starting point of

the line

Example 1:

package application;

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.Group;

import javafx.scene.shape.Line;

import javafx.stage.Stage;

public class LineDrawingExamples extends Application {

@Override
public void start(Stage primaryStage) throws Exception {

101
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

4 M
UNIVERSITY
ready for life

Notes // TODO Auto-generated method stub
Line line = new Line(); //instantiating Line class
line.setStartX(0); //setting starting X point of Line
line.setStartY (0); //setting starting Y point of Line
line.setEndX(100); //setting ending X point of Line
line.setEndY (200); //setting ending Y point of Line
Group root = new Group(); //Creating a Group
root.getChildren().add(line); //adding the class object //to the

group

Scene scene = new Scene(root,300,300);
primaryStage.setScene(scene);

primaryStage.setTitle("Line Example");

primaryStage.show();
b
public static void main(String[] args) {
launch(args);
b
b
Output:
Line Example - O X

102
MATS Centre for Distance and Online Education, MATS University

)

ready for life......

Example 2 : Creating Multiple Lines Notes

package application;
import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.shape.Line;
import javafx.stage.Stage;
public class LineDrawingExamples extends Application {
public static void main(String[] args) {
launch(args);
}
@Override
public void start(Stage primaryStage) throws Exception {
// TODO Auto-generated method stub
primaryStage.setTitle("Line Drawing Examples");
Line linel = new Line(10,50,150,50);
//Line(startX,startY,endX,endY)
Line line2 = new Line(10,100,150,100);
Line line3 = new Line(10,50,10,100);
Line line4 = new Line(150,50,150,100);
Group root = new Group();
root.getChildren().addAll(linel,line2,line3,line4);
Scene scene = new Scene (r00t,300,200,Color.GREEN);
primaryStage.setScene(scene);
primaryStage.show();

Output:

Line Drawing Examples — o X

103
MATS Centre for Distance and Online Education, MATS University

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

2.6.6 JavaFX Cirlce

A circle is a special type of ellipse with both of the focal points at the

same position. Its horizontal radius is equal to its vertical radius.

JavaFX allows us to create Circle on the GUI of any application by

just instantiating javafx.scene.shape.Circle class. Just set the class

properties by using the instance setter methods and add the class

object to the Group.

Properties

The class properties along with the setter methods and their

description are given below in the table.

Property Description

centerX X coordinate of
the centre of
circle

centerY Y coordinate of
the centre of
circle

radious Radius of the
circle

Example:

package application;

import javafx.application.Application;
import javafx.scene.Group;

import javafx.scene.Scene;

import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;

import javafx.stage.Stage;

Setter Methods

setCenterX(Double
value)

setCenterY(Double
value)

setRadius(Double
value)

public class Shape Example extends Application{

@Override

public void start(Stage primaryStage) throws Exception {

104

MATS Centre for Distance and Online Education, MATS University

\\\ %

UNIVERSITY
ready for Iife......

// TODO Auto-generated method stub Notes
primaryStage.setTitle("Circle Example");
Group group = new Group();
Circle circle = new Circle();
circle.setCenterX(200);
circle.setCenterY(200);
circle.setRadius(100);
circle.setFill(Color.RED);
group.getChildren().addAll(circle);
Scene scene = new Scene(group,400,500,Color.GRAY);
primaryStage.setScene(scene);
primaryStage.show();
}
public static void main(String[] args) {
launch(args);

Circle Example - O x

105
MATS Centre for Distance and Online Education, MATS University

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

2.6.7 JavaFX Graphical Effects and Transformations

As one of the most powerful GUI toolkits to build the rich client
application, JavaFX gives us a very handy set of graphical effects and
transformations that make it possible to give more visual effects and
interactivity to the user interface. These features are important for the
development of modern and interactive applications that catch the
user's eye. While the graphical effects allow you to apply visual
changes to nodes (like blur, drop shadows, and coloring) the
transformations allow you to modify the geometrical properties of
nodes like scale, rotation and translation. These tools are very
important to understand and need to use thoroughly in order to develop
rich user interface-based applications for JavaFX developer. JavaFX
effects are essentially visual transformations that change how a node
is rendered while keeping the node's underlying geometry and layout
intact. For example, you may use a Gaussian blur to smooth the edges
of'an image or add a drop shadow to give some depth. Transformations
edit the position, size, or orientation of the node within the scene graph,
in contrast. You could scale the button to make it grow or shrink, rotate
the label to write it in an angle, or translate the image to drag it across
the screen. These transformations are non-destructive, meaning the
node's original properties remain unchanged. JavaFX comes with many
built-in effects and transformations, all with their own parameters and
options. This capability enables developers to deliver an expansive
range of visual tweaks, from subtle touches to bold transformations. For
instance: A developer could create a night mode effect using a color
adjust effect to invert the color scheme of their interview application,
or add areflection effect to their app's button to make it shiny. All these
effects and transformations could be animated and give you a very nice
dynamic visual experience. The Hierarchical structure of the elements
that minimal JavaFX Scene Graph reflected onto JavaFX animation
philosophyEffects and Transformations The effects are applied to the
specific nodes, the transformations change the node and all children
elements. Because of this hierarchical nature multiple effects and
transformation could be done to different nodes in the scene graph
resulting in complex visual effects. In addition, JavaFX is hardware

accelerated for effects and transformations, meaning that they will be

106
MATS Centre for Distance and Online Education, MATS University

rendered efficiently and smoothly even for complex scenes. Hardware
acceleration is especially crucial in scenarios involving animations and
interactive applications, where performance takes center stage. For
example, if a developer wants to design an eye-catching button that
increases in size as the user hovers over it. They would use a scale
transform on the button and an animation toward scale factor using a
timeline. In the same vein, a developer may create a drop shadow effect
to highlight a selected item in a list view as visual acknowledgment of
user interaction. Effects and transformations are naturally integrated in
JavaFX, making it easier to produce visually stunning applications with

minimal coding effort.

107
MATS Centre for Distance and Online Education, MATS University

[

\

=2

\\\

UNIVERSITY

ready for lfe......

Notes

i

aTs)

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

Unit 2.3: Java FX Effects

2.3.1 Java FX Effects

JavaFX supports numerous graphics effects out of the box: notably
blur, drop shadow, color adjustment, and reflection. These effects can
then be triggered on any node in the scene graph to provide an
application increased visual fidelity. Now, let us show some of these
effects with working code in Java. The first mentioned new effect is
the GaussianBlur effect newly add which is blurring the contents of a
node. This is used for illusion of 2D or physical emphasis. Here's a

simple example:

Javaimport javafx.application. Application;
import javafx.scene.Scene;

import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;

import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

import javafx.scene.effect. GaussianBlur;

public class GaussianBlurExample extends Application {
@Override
public void start(Stage primaryStage) {
Rectangle rect = new Rectangle(200, 100, Color.BLUE);
GaussianBlur blur = new GaussianBlur();
blur.setRadius(10); // Adjust the blur radius
rect.setEffect(blur);

StackPane root = new StackPane(rect);

Scene scene = new Scene(root, 400, 200);
primaryStage.setScene(scene);
primaryStage.setTitle("Gaussian Blur Example");
primaryStage.show();

public static void main(String[] args) {

launch(args);

108
MATS Centre for Distance and Online Education, MATS University

)

[

UNIVERSITY

ready for lfe......

} Notes
¥

In the example, we create a Rectangle and then apply a GaussianBlur
effect to it. The setRadius() method defines the amount of blur.
[Next] The DropShadow effect creates a shadow behind a node to
help emulate depth. Here’s an example:

Java

import javafx.application. Application;

import javafx.scene.Scene;

import javafx.scene.layout.StackPane;

import javafx.scene.paint.Color;

import javafx.scene.shape.Circle;

import javafx.stage.Stage;

import javafx.scene.effect. DropShadow;

public class DropShadowExample extends Application {

@Override

public void start(Stage primaryStage) {
Circle circle = new Circle(50, Color.RED);
DropShadow shadow = new DropShadow();
shadow.setRadius(20);
shadow.setColor(Color.BLACK);
circle.setEffect(shadow);

StackPane root = new StackPane(circle);

Scene scene = new Scene(root, 200, 200);
primaryStage.setScene(scene);
primaryStage.setTitle("Drop Shadow Example");
primaryStage.show();

public static void main(String[] args) {

launch(args);

b
There, a Circle is defined and the DropShadow effect is used.

Methods setRadius() and setColor() governs the shadow appearance.
Using ColorAdjust effect This allows you to modify node's hue and

109
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

saturation, brightness and contrast. This allows for potential color
variations or special effects.

Java

import javafx.application. Application;

import javafx.scene.Scene;

import javafx.scene.layout.StackPane;

import javafx.scene.paint.Color;

import javafx.scene.shape.Rectangle;

import javafx.stage.Stage;

import javafx.scene.effect.ColorAdjust;

public class ColorAdjustExample extends Application {

@Override

public void start(Stage primaryStage) {
Rectangle rect = new Rectangle(200, 100, Color. GREEN);
ColorAdjust adjust = new ColorAdjust();
adjust.setHue(0.2);
adjust.setSaturation(0.5);
rect.setEffect(adjust);

StackPane root = new StackPane(rect);

Scene scene = new Scene(root, 400, 200);
primaryStage.setScene(scene);
primaryStage.setTitle("Color Adjust Example");
primaryStage.show();

public static void main(String[] args) {

launch(args);

}

In this example, the ColorAdjust effect is used to define a color on a
Rectangle. The color value is controlled through the setHue() and
setSaturation() methods. Next, we have the Reflection effect that
ensures what you see in the node above it, is also seen right below it,
providing it a mirror kind of effect.

import javafx.application.Application;

import javafx.scene.Scene;

110
MATS Centre for Distance and Online Education, MATS University

import javafx.scene.layout.StackPane;
import javafx.scene.control.Label;
import javafx.stage.Stage;

import javafx.scene.effect.Reflection;

public class ReflectionExample extends Application {
@Override
public void start(Stage primaryStage) {
Label label = new Label("Reflection");

Reflection reflection = new Reflection();

reflection.setFraction(0.7); // Adjust the reflection fraction

label.setEffect(reflection);

StackPane root = new StackPane(label);
Scene scene = new Scene(root, 200, 100);
primaryStage.setScene(scene);
primaryStage.setTitle("Reflection Example");
primaryStage.show();

public static void main(String[] args) {

launch(args);

}

In this example, a Reflection is applied to a Label. The length of the
reflection is controlled with the setFraction() method. All of these
samples show you how to use graphical effects in JavaFX. Developers

can use a combination of these effects by adjusting their properties to

produce a variety of visual enhancements.

111

MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

4 M
UNIVERSITY
ready for life

Notes Unit 2.4: Java FX Transformations

2.4.1 JavaFX Transformations:

This is due to JavaFX transformations, which enables developers to
change the spatial features of the nodes, including scaling, rotation
and translation. This is a crucial process for building interactive and
responsive user interfaces. The Scale transformation is used to resize
a node. Here's an example:

import javafx.application. Application;

import javafx.scene.layout.Pane;

import javafx.scene.paint.Color;

import javafx.scene.shape.Rectangle;

import javafx.scene.transform.Rotate;

import javafx.scene.transform.Scale;

import javafx.scene.transform.Translate;

public class TransformDemo extends Application {
@Override
public void start(Stage stage) {
Rectangle rect = new Rectangle(100, 60,
Color. CORNFLOWERBLUE);
/I Apply transformations
rect.getTransforms().addAll(
new Translate(100, 100),
new Rotate(45, 50, 30),
new Scale(1.5, 1.5)
);
Pane root = new Pane(rect);
Scene scene = new Scene(root, 400, 300);
stage.setTitle("JavaFX Transformations");
stage.setScene(scene);
stage.show();
b
public static void main(String[] args) {

launch(args);

112
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

2.4.2 JavaFX Rotation

Rotation can be defined as the process of rotating an object by a
certain angle 0 (theta). In JavaFX, the

class javafx.scene.transform.Rotate represents the Rotation
transform.

The image illustrates the rotation transform. the rectangle shown in
the image is rotated along the Y-axis by the angle 6. The coordinates
of the rectangle gets changed due to the rotation while the edges

remains of the same length.

Y a
y b
X
Rotation
Figure 2.8.1
Properties

The properties of the class along with the setter methods are described

in the following table.

Property Description Setter Methods
angle It is a double type setAngle(double
property. It value)

represents the
angle of rotation

in degrees.

113
MATS Centre for Distance and Online Education, MATS University

i)

y \\\)/
¢m
UNIVE]?SITY
Notes ,
axis
pivotX
pivotY
pivotZ
Constructors

It is a object type
property. It
represents the

axis of rotation.

It is a double type
property. It
represents the X
coordinate of
rotation pivot

point.

It is a double type
property. It
represents the Y
coordinate of
rotation pivot

point.

It is a double type
property. It
represents the Z
coordinate of
rotation pivot

point.

The class contains six constructors.

setAxis(Point3D

value)

setPivotX(double

value)

setPivotY(double

value)

setPivotZ(double

value)

1. public Rotate() : creates the rotate transform with the default

parameters.

2. public Rotate(double angle) : creates the rotate transform

with the specified angle measured in degrees. Pivot points are

set to (0,0).

3. public Rotate(double angle, Point3D axis) : creates the 3D

rotate transform with the specified transform. Pivot points are

set to (0,0,0).

114

MATS Centre for Distance and Online Education, MATS University

aTs)

[

UNIVERSITY
ready for life.

4. public Rotate(double angle, double pivotX, double pivotY) Notes
: creates the Rotate transform with the specified angle and
pivot coordinate (x,y).
5. public Rotate(double angle, double pivotX, double pivotY,
double pivotZ) : creates the Rotate transform with the
specified angle and 3D pivot coordinate (X,y,z).
6. public Rotate(double angle, double pivotX, double pivotY,
double pivotZ,Point3D Axis) : creates a 3D Rotate transform

with the specified angle and pivot coordinate (x,y,z).

Example:

The following example illustrates the implementation of
Rotation transform. Here, we have created two rectangles.
One is filled with the lime-green color while the other is
filled with the dark-grey color. The dark-grey rectangle is
rotated with the angle 30 degree along the pivot point
coordinates (100,300).

Package application;

import javafx.application.Application;

import javafx.scene.Group;

import javafx.scene.Scene;

import javafx.scene.paint.Color;

import javafx.scene.shape.Rectangle;

import javafx.scene.transform.Rotate;

import javafx.stage.Stage;

public class RotateExample extends Application {

@Override

public void start(Stage primaryStage) throws Exception {
// TODO Auto-generated method stub
// creating the rectangles
Rectangle rect] = new Rectangle(100,100,200,200);
Rectangle rect2 = new Rectangle(100,100,200,200);

// setting the color and stroke for the Rectangles
rectl.setFill(Color. LIMEGREEN);
rect2.setFill(Color. DARKGREY);
rectl.setStroke(Color.BLACK);

115
MATS Centre for Distance and Online Education, MATS University

Notes

rect2.setStroke(Color. BLACK);

// instantiating the Rotate class.
Rotate rotate = new Rotate();

//setting properties for the rotate object.
Rotate.setAngle(30);
rotate.setPivotX(100);

rotate.setPivotY (300);

//rotating the 2™ rectangle.
Rect2.getTransforms().add(rotate);

Group root = new Group();
root.getChildren().addAll(rect1,rect2);
Scene scene = new Scene(root,500,420);
primaryStage.setScene(scene);
primaryStage.setTitle(“Rotation Example”);
primaryStage.show();

b

public static void main(String[] args) {
launch(args);

}
}

Rotation Example = o x

116
MATS Centre for Distance and Online Education, MATS University

Unit 2.5: Java FX Animation

2.5.1 Java FX Animation

JavaFX is a robust and flexible toolkit for creating rich client
applications that go beyond static Uls to include dynamic animations,
immersive 3D graphics, complex layout management, and a full set of
Ul controls. JavaFX is highly visual and you can use timelines,
transitions, and keyframes to do animation. A Timeline, the heart of
JavaFX animation, a time-based driver that fires events at specific
periods in time. Transitions, such as FadeTransition,
TranslateTransition, and RotateTransition, offer pre-defined animation
effects that can be applied to nodes to create animations with less
complexity. Keyframes we use instead represent the state of node at a
certain point in time, allowing for complex animations to be created by
interpolating between the two states. Ul transition animations are
smaller snippets of animations and can be utilized to indicate when the
user hovers/clicks on UI controls, for example, using a FadeTransition
to gradually change the opacity of a button, reducing its visual presence
as the button is being changed on hover. For instance, a
TranslateTransition can move a shape across the screen, giving it the
illusion of motion, and a RotateTransition can rotate an object,
energizing a Ul Keyframes Demonstration — Bouncing Ball
Animation A composite animation can be created by adding keyframes
that change the ball's position and velocity with time, resulting in a
more realistic bounce. When used well, animation—especially
interactivity—is useful in JavaFX, but it can also help create a good
user experience by giving feedback, highlighting, and improving
interface expressiveness, which makes it more engaging and easy to
use. With these animation techniques, developers can add vitality to
their applications, infuse energy into their static interfaces and engage
their user through dynamic experiences. With the ability to orchestrate
visual components in time, it enables developers to craft rich user
experiences, hence why JavaFX is such a powerful framework for
creating progressive, stunning applications.

2.5.2 Java FX 3D Shapes:

With a solid 3D graphics support, JavaFX is capable of rendering rich
and interactive 3D worlds, beyond just 2D interfaces. To deal with

JavaFX 3D shapes one can use classes such as Box, Sphere, Cylinder,

117
MATS Centre for Distance and Online Education, MATS University

[

\

e

\\\

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

and MeshView which are representing basic 3D primitives. For
example, a Box is used to make a cube or rectangular prism, and a
Sphere is an object shaped like a sphere. A Cylinder — as the name
signifies — is a cylindrical shape. More advanced 3D models can be
made through MeshView, where more advanced details can be created
such as vertices, faces, and texture coordinates can be defined. Through
Translate, Rotate and Scale properties, the primitives are
manipulatable in 3D space, meaning we can position the geometry,
rotate its position and also scale. JavaFX also has lighting and material
properties to make 3D scenes more realistic. As you shine light sources
(PointLight, AmbientLight, ...) on a scene, the 3D objects display
shadows and highlights, which gives your objects a sense of depth.
Materials (e.g. PhongMaterial) specify the surface characteristics of the
3D object and govern its color, reflectivity, and texture. These
properties can be used to create 3D scenes that never fail to look great,
now on par with things you would expect to see built with full 3D
graphics libraries. A PhongMaterial, for instance, can be added to a
Sphere to make the shape appear metallic or glossy, or multiple
PointLights can be added to the scene to get realistic-looking lighting
effects. JavaFX also supports accurate 3D models generated in external
modeling programs like Blender or Maya, using the OBJ and FBX file
formats for importing. By supporting these new formats, this allows
developers to use high-fidelity 3D assets in their own applications, and
breaks open new avenues for 3D experiences. This gives developers
complete control to manipulate 3D shapes, lights, and materials to
produce visually appealing applications ranging from interactive 3D
visualizations to rich gaming experiences, showcasing the platform's
versatility and capability to manage advanced graphics.

2.5.3 Java FX Layout:

Having good layout management is an essential part of building
functional and visually appealing user interfaces. The main layout
panes provided by JavaFX are BorderPane, HBox, VBox, GridPane and
StackPane, each intended to layout Ul components in a particular
fashion. Another example is BorderPane, which divides the layout into
top, bottom, left, right, and center sections, allowing you to create a
structured layout with different sections. HBox and VBox — Helpful
when needing to arrange components on a single line, horizontally or

vertically GridPane: A componen that arranges Ul in a grid, giving

118
MATS Centre for Distance and Online Education, MATS University

accurate control over each Ul components position and alignment For
example, StackPane, which stacks Nodes on top of each other. These
layout panes can contain other panes to create intricate and adaptable
layouts. As an example, we can structure the application's overall layout
with a BorderPane, the top region with an HBox for a toolbar, the left
region with a VBox for a navigation menu, and the center region with
a GridPane for a data entry form. VBox, StackPane, etc., depending on
the expected behavior, and they can also use layout properties on their
own (e.g., alignment, padding, and spacing) to adjust the components'
appearance and behavior. The alignment properties determine the
placement of Ul components in relation to their parent container, and
padding and spacing properties add visual distance between Ul
components and the parent container or between neighboring
elements. What is more, JavaFX support CSS styling which allows
developers to style the layout panes and Ul components according to
their own custom style guide, providing better project visual
consistency and aesthetics. Static ImportsIn many cases, including the
libraries you need is sufficient to get you started, but if you want more
control over your final distribution, there are some additional steps you
can take to reduce the amount of unused code from your bundles.
Developers can learn these layout techniques to make a very intuitive,
responsive, and good-looking application to have a good user
experience. JavaFX layout management is flexible and powerful,
treason to build modern several applications.

2.5.4 Java FX UI Controls

JavaFX visuals are a set of controls that includes buttons, text fields,
labels, checkboxes, radiobuttons, and combo boxes. On the other hand,
buttons are intended for actions, for example in submitting a form and
navigating to a new screen. Text fields are used for receiving user inputs
and for displaying text that can be entered and altered by users. Labels
therefore are static text that helps inform the user about what is
required. Checkboxes, radio buttons and combo boxes are used to select
options. New UI control is automatically assigned with set of
properties/methods that could be used to customize its appearance and
behavior. These attributes provide characteristics for certain types of
controls— for instance, a button's text, font, and color can be changed,
and a text field can have its prompt text or input validation configured.

JavaFX is a rich user interface toolkit for Java apps. For example, you

119
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

can bind an event handler to a button that allows the button to perform
one or more action(s) when it is clicked. Implemented in the form of
UI controls, they can be styled with CSS and designed. Custom styles
enable you to create buttons with a flat or gradient appearance, or adjust
how text fields appear with rounded corners or a custom border. In
addition, JavaFX offers several Ul controls tailored for tabular and
hierarchical data, including TableView and TreeView respectively.
TableView display data in a table format, in columns and rows
TreeView display data, in a tree structure, in parent and child nodes The
data consumer application mentioned above needs these specialized Ul
controls to render the data places mentioned above and to manipulate
these complex data to accomplish the goal. JavaFX also offers a wide
variety of Ul controls that developers can use to create highly
interactive and visually appealing applications. These UI controls and
event handling mechanisms contribute to a rich user experience, the art
of making applications that are functional yet engaging is a domain for
you to discover. This is why JavaFX UI controls will always be a great
toolkit to use for developing modern interactive applications.

2.5.5 JavaFX Images:

JavaFX has various components that can be used in tandem such as
images and event handling which allows us to create dynamic and
interactive Uls. Combining these two flavours of software provides
developers with the power to construct applications that not only
present aesthetically pleasing content, but also respond dynamically
with intelligence in accordance to user input. Let's take an example,
say an application that showcases a gallery of pictures. (Users can
browse the gallery by hitting navigation buttons or swiping on the
screen.) We also define TextView3 and TextView4 objects for our UI;
these will be used to display the information about the image and when
buttons are pressed (Gallery contains images) each image can be
represented by ImageView object, and our Next and Previous buttons
will be represented by Button objects. The navigation buttons and the
ImageView objects can have event handlers that respond to user clicks
and touch gestures. If the user clicks on a navigation button, the event
handler may change the contents of the ImageView to the next or last
picture from the gallery. When the user swipes on the screen, the event
handler can detect the swipe gesture and update the ImageView

accordingly. JavaFX provides drag-and-drop, so users can drag images

120
MATS Centre for Distance and Online Education, MATS University

around the application. You can do this by wusing the
setOnMousePressed(), setOnMouseDragged(), setOnMouseReleased()
methods of the ImageView class. When the user click the mouse
button on the ImageView, the setOnMousePressed() event handler is
executed and it would be possible to record the initial position of the
mouse pointer. The position of the ImageView (the one to be dragged)
can be updated based on mouse movement in the
setOnMouseDragged() event handler when the user drags the mouse.
The setOnMouseReleased() event handler can be used to finalize the
drag-and-drop operation when the user releases the mouse button.
2.5.6 JavaFX Event Handling:

JavaFX Application Lifecycle and Event Handling JavaFX Application
Lifecycle And Event Handling JavaFX allows developers to develop
interactive In this article above things will be more clear, as JavaFX
provides a mechanism for working with images. Image loading and
manipulation is important for dynamic and interactive applications.
JavaFX offers comprehensive support for managing multiple image
formats such as PNG, JPEG, and GIF, using the javafx. scene. image.
Image class. This container provided by Rwlmage gives the flexibility
to load images from a multitude of sources, including local files,
URLSs, or input streams. The caption for the progress of loading an
image is to create an Image object and point to an image source. For
example, an image can be loaded from a local file by using the image
constructor and passing the file path as an argument. Likewise, for an
image, the URL string is also passed to the constructor for loading an
image from a URL. After the creation of Image object, it can be
rendered inside the JavaFX stage using the javafx. scene. image.
ImageView class. The ImageView serves as a node to draw the image
in the scene graph. Developers can use the setimage() method to assign
the Image object to the ImageView. In addition to just displaying
them, JavaFX provides many ways to deal with images. The
ImageView class has methods like setFitWidth() and setFitHeight() to
scale the image to fit the provided dimensions. By default, images are
scaled proportionally, so setPreserveRatio() can be used to preserve the
aspect ratio of an image to avoid distortion. Using the getTransforms()
method of the ImageView class, developers can also apply in-depth
transformation on image like rotation, translation, scaling, etc. This

will return an observable list of Transform objects which can be

121
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

modified as necessary to produce the desired visual effects. To rotate
an image, for example, add a Rotate transform to the list, indicating the
rotation angle. For JavaFX you can perform image filtering which
enables a developer to apply an image with different effects like Blur,
color shading, drop shadow, etc. These effects can be applied using the
setEffect() method of the ImageView class. For example, to create a
blur effect, a GaussianBlur effect can be instantiated and assigned to
the ImageView. JavaFX also has low-level image manipulation classes
in its pixelreader and pixelwriter methods.

Summary

This Module introduces JavaFX Technology, a modern framework used
for creating rich graphical user interfaces (GUIs) in Java applications.
The module begins with an overview of JavaFX, highlighting its
features such as ease of integration with Java, support for multimedia,
2D and 3D graphics, FXML for UI design, and CSS for styling. The
JavaFX architecture is based on a scene graph, where elements are
arranged hierarchically. Core components like Stage, Scene, and Node
form the foundation of JavaFX applications, and learners also explore
real-world applications of the framework.

The module continues with JavaFX’s 2D graphics capabilities, focusing
on shapes such as rectangles, circles, lines, and polygons. Students
learn how to fill shapes with colors, apply strokes, and use the Text
class to render styled text on the screen. This unit also covers the role
of color manipulation and the application of gradients and transparency
for better visual appeal.

Next, the module delves into FX Effects, which allow developers to
enhance user experience using visual elements like shadows, glow,
blur, bloom, and reflection. These effects can be dynamically added to
nodes to create more engaging and responsive Uls. In the
transformation unit, learners explore how to apply geometric changes
to Ul components. This includes scaling, rotation, translation, and
shearing—enabling dynamic repositioning and resizing of interface
elements. The module concludes with FX Animation, where students
learn to animate Ul elements using Timeline, KeyFrame, and transition
classes such as FadeTransition and RotateTransition. This enables the
creation of smooth and interactive user interfaces.

Overall, this module equips learners with practical knowledge of
building, styling, transforming, and animating modern GUI
applications using JavaFX.

Multiple-Choice Questions (MCQs)
1. Which of the following is not a feature of JavaFX?
a) Rich UI Components

122
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

b) Hardware Acceleration Notes
c) Platform-Dependent Execution
d) CSS Styling
Answer: ¢) Platform-Dependent Execution
2. In JavaFX, which class is used to represent 2D shapes like
circles and rectangles?
a) javafx.scene.text
b) javafx.scene.shape
c) javafx.scene.control
d) javafx.scene.image
Answer: b) javafx.scene.shape
3. Which JavaFX transformation allows resizing of a graphical
object?
a) Rotation
b) Scaling
c¢) Translation
d) Reflection
Answer: b) Scaling
4. What is the main purpose of JavaFX Animation?
a) Handling user inputs
b) Managing database connectivity
c) Creating motion effects in Ul
d) Writing multithreaded programs
Answer: ¢) Creating motion effects in Ul
5. Which JavaFX class is used to load and display an image?
a) ImagelLoader
b) ImageView
c) ImageDisplay
d) ImageHandler
Answer: b) ImageView
Short Answer Questions
a) What are the main features of JavaFX?
b) How can you draw a rectangle with a custom color in JavaFX?
c) Explain the difference between JavaFX rotation and translation
transformations.
d) What are some common JavaFX UI controls?
e) How do you handle mouse events in JavaFX?

Long Answer Questions

123
MATS Centre for Distance and Online Education, MATS University

[

gmn'r

i)

\\\ i

UNIVERSITY
ready for life

Notes

Describe the architecture of JavaFX and its key components.
Explain how to create and apply graphical effects in JavaFX
with an example.

What are the different transformations available in JavaFX?
Explain each with an example.

Discuss JavaFX animation techniques and how they can be used
to enhance a user interface.

Explain the process of handling user events in JavaFX and

provide a sample program demonstrating event handling.

124
MATS Centre for Distance and Online Education, MATS University

Module 3
SERVLET TECHNOLOGY

LEARNING OUTCOMES

To understand the architecture of J2EE and Servlets.
To explore the servlet structure and its life cycle.

To study form data handling and request-response
mechanisms.

To analyze client request handling and server response
generation.

To understand session tracking and cookie management.

125

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

Unit 3.1: J2EE Introduction and Architecture

3.1.1 J2EE Introduction and Architecture

You are currently reading about Jakarta EE (Formerly J2EE or Java
EE) Latest Version: Jakarta EE 10, learn how to use as old J2EE Java
Enterprise Edition. In the late 1990s, J2EE was introduced as a
complement to the Java Standard Edition (JSE) to create a
standardized framework for enterprise application development, and it
was a product of Sun Microsystems. We believed so strongly in a
complete integrated development environment that could solve many-
faceted enterprise computing problems without compromising the
primary promise of Java "write once run anywhere", that we offered
tutorial programs, synergies with upstream partners, and pushed
through customer accounts manager having knowledge beyond
database and applications servers products. This architectural shift was
a significant departure from the monolithic application designs that
preceded it in enterprise systems and into a more modular, component-
oriented methodology to meet the needs of an increasingly distributed
and componentized environment of business computing. It was not just
a technical specification—IJ2EE democratized enterprise development
by providing common patterns, practices and abstractions, helping
folks focus on business logic rather than the underlying infrastructure
concerns. J2EE defined standard APIs to connect to databases,
messaging, transaction management, web services, and more,
establishing a platform upon which third-party vendors, open-source
projects, and enterprise engineers could build to create a shared
community around a common technology stack. JavaEE 5,6, 7, 8, a.k.a
Jakarta EE 9+ (various specifications under the Jakarta EE umbrella
— it brings together many specifications and broken-down
Enterprise/Server components from Java EE). Even with the emergence
of alternative frameworks and architectural approaches, the legacy of
J2EE endures, underpinning countless mission-critical applications
across diverse industries and shaping the principles of modern
enterprise development. In this Unit, we will delve into the architecture,
components, and development methodologies of J2EE, unveiling how
this groundbreaking platform laid the foundation for enterprise
application development practices that still echo in modern software
engineering.

126
MATS Centre for Distance and Online Education, MATS University

Request

Web
Contalner

I

Response

Database

Figure 3.1.1: Servlet Architecture
[Source: https://th.bing.com/]

Java Enterprise Edition (J2EE) is a specification that leads enterprise
application development to be done based on a specification that
provides the main interfaces and the behavior upon which the
associations of the applications should be based which multiple vendors
can develop compliant implementations. Standardization has played a
key role in the emergence of a healthy marketplace of application
servers such as IBM WebSphere, Oracle WebLogic, Red Hat JBoss,
Apache TomEE, and GlassFish, giving organizations the flexibility of
making deployment choices while ensuring application portability.
When J2EE was first developed, it was born out of these gaps in the
enterprise development world: how to develop distributed systems,
common concern over distributed transactions, designing scalable
communication protocols and security models. Your fleece-covered
IVR is about more than just reducing clicks; it's about reducing
payments to outside vendors (those handy-teddies!). The adoption path
of J2EE mirrored the classic technology diffusion curve, with the
original adopters being primarily financial services,
telecommunications and large scale e-commerce applications, and
subsequently expanding into healthcare, government, manufacturing,
and essentially any sector with a significant presence of IT
infrastructure. As it has evolved, J2EE has retained fundamental
architectural concepts while responding to new models: component-
based architecture morphed into service-oriented architecture, which
has moved towards microservices; synchronous communication
models were paired with asynchronous; XML-based configuration was

supplanted by configuration by annotation-based methods and

127
MATS Centre for Distance and Online Education, MATS University

T g

(e

\\\

UNIVERSITY

ready for life......

Notes

)

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

convention over configuration; and monolith deployments have
crumbled into both containerized builds and services. Such flexibility
has kept J2EE firmly in the conversation, despite massive shifts in
development practices. For students as well as practitioners, learning
J2EE gives practical expertise in working on enterprise systems and
also helps understand architectural patterns that are not technology-
bound, which makes the subject an essential cornerstone of any
education in enterprise software engineering.

3.1.2 Fundamental Architecture of J2EE

After reading through Unit 1 of Jeff Lynch's book J2EE made easy, I
was left with the impression that the J2EE architecture is simply a
multi-tiered distributed application architecture that separates concerns
in a way that allows each tier to effectively handle modularity,
scalability, and maintainability issues. J2EE is based on a modified
version of the client-server software architecture and is chiefly
characterized by a four-tier architecture consisting of the client tier,
web tier, business tier and enterprise information system (EIS) tier.
These tiers allow for functional stratification, both logically and
physically, so each tier can evolve independently of the other whilst
retaining contracted interfaces for cross-tier conversations. The client
tier refers to all user interface technologies this is where end-users will
interact with the application from web browsers rendering
HTML/CSS/JavaScript to native mobile apps, desktop apps using Java
Swing or JavaFX, and headless clients like [oT devices or other systems
that consume APIs. The web tier is predominantly designed with
Servlet and JavaServer Pages (JSP) technologies, this tier accepts
HTTP requests, manages user sessions, applies presentation logic, and
passes the required data to the business tier and vice versa. The layer
separates client implementations from business logic (in this case, a
microservice) quite well, which is increasingly common in the
contemporary era, allowing for great freedom with how applications
are accessed and presented to users. As you know, the business tier,
which contains the application's core functionality, business rules, and
workflows, is arguably the heart of the J2EE architecture, with such
functionality typically being implemented using Enterprise JavaBeans
(EJB). The elements of this tier run in a container environment that
manages thing like transaction control, security, concurrency, and

lifecycle, so that developers can just think about business logic, not

128
MATS Centre for Distance and Online Education, MATS University

what is under the infrastructure. The third and final tier, the EIS tier,
includes the data persistence layer and integrations with other systems
(external systems, external databases, legacy applications, enterprise
information systems), and it is accessed through JDBC, JPA, JTA, and
JCA technologies. This architectural separation lies at the heart of
scalability because each tier can be scaled independently according to
the performance needs of that tier and fault tolerance because a
problem in one tier is less likely to cascade throughout the entire
application. Furthermore, this multi-layer design also enables teams to
specialize, making it easier for developers to work on particular
segments of the application based on their strengths, whether it be user
interface, business logic, or data handling.

In particular, the container model was one of the more unique
architecture innovations introduced by J2EE, defining a clear
separation between infrastructure services and application logic that
almost all enterprise development frameworks have followed since. In
this paradigm, application components run within specialized runtime
environments (also known as containers) that offer standardized
services — transaction management, security, resource pooling,
lifecycle management, etc — via well-defined contracts instead of
through explicit coding. This abbeys the inversion of control pattern,
which significantly reduces the amount of boilerplate, adds consistency
across apps and enables developers to concentrate mostly on business-
specific functionality instead of plumbing. J2EE specifies various
container types for particular component models and execution
contexts. It is common for web applications to utilize beans, known as
Enterprise JavaBeans (EJBs), which are instances of components
managed by an EJB container, the runtime environment that manages
the lifecycle of an EJB component and its components and creates for
an EJB a complex service environment in which xact propagation,
instance pooling, and concurrent access to beans x are among the
complex services in its remote method invocation. It (web container, or
servlet container) serves as the execution environment for Servlets, JSP
pages, and other web-tier components, handling request routing,
threading models, session management, and HTTP protocol details.
You are supporting and simplifying access to naming, security and
remote EJB functionality, rather than J2EE managed component

containers, you are offering application client containers against

129
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

standalone Java-based applications that include J2EE services. Last but
not least, we have the applet container which is no longer popular with
so many J2EE applications but still loads Java Applets that run inside
web browsers. This container-based architecture has the following
advantages: it gives you uniform programming models for different app
types; it allows the declaration of complex services in terms of
deployment descriptors and annotations; it allows components to be
reused via standard interfaces and lifecycles; it allows you to easily
impose security on the edges; it allows pooling of resources and
instance management for optimization; and it allows deployment
flexibility through constant package formats. J2EE framework
emphasizes a model of development around the container where you
encapsulate functionality in granular well defined, loosely coupled
components with well understood responsibilities and interfaces.
Because it steers developers to architectures that are highly cohesive
in components and loosely coupled among components in a natural
way, these principles can be applied to effective enterprise application
design irrespective of technology.

J2EE is itself defined as a building block that comprises other
components, services, and APIs to build the platform. Among the
finest and most versatile component technologies are Servlets, which
extend the functionality of web servers and dynamically builds web
content in response to HTTP requests; JavaServer Pages (JSP), which
is a template-based component technology for generating dynamic web
content, and can separate HTML markup from Java code; Enterprise
JavaBeans (EJB), which implements business logic (three varieties
exist, including session beans designed to orchestrate business
processes, (largely superseded by Java Persistence API) entity beans
that represent your data and Message-Driven Beans that implement
asynchronous processing; and JavaServer Faces (JSF), which
implements a component-based MVC (model-view-controller)
framework for web interfaces. These components are supplemented by
the container services of J2EE, which provide cross-cutting
capabilities to all components running in the application server
environment. They consist of JNDI (Java Naming and Directory
Interface) for finding resources and components, JTA (Java
Transaction API)responsible for transaction management across

multiple resources, JAAS (Java Authentication and Authorization

130
MATS Centre for Distance and Online Education, MATS University

Service) for security, JMS (Java Message Service) for reliable
asynchronous messages, and JCA (Java Connector Architecture) for
interactions with external enterprise information systems. The platform
also includes many specialized APIs that focus on specific enterprise
areas: JDBC (Java Database Connectivity) for interacting with
databases; JPA (Java Persistence API) to perform object-relational
mapping; JAX-WS and JAX-RS for SOAP and RESTful web services;
JavaMail for email; and many other areas that have been added in newer
platform versions. Dependency injection is the mechanism by which
this rich ecosystem converges around common patterns and practices
(starting with JNDI lookup, later formalized around CDI — Contexts
and Dependency Injection), and the proliferation of design patterns
such as MVC (Model-View-Controller), DAO (Data Access Object),
Service Locator, Business Delegate, and Composite Entity. This
ecosystem of technologies, services, and patterns culminated in a
platform that offers to meet the varied needs of enterprise applications
while ensuring uniform maintainable implementation patterns.

3.1.3 Evolution and Deployment of J2EE Applications

The platform has matured over time, with each release building upon
previous functionality to solve for new enterprise obstacles. On
December 12, 1999, the first version of J2EE delivered in the form of
the J2EE 1.2 specification, specifying the architecture: Servlet 2.2, JSP
1.1, EJB 1.1 and JDBC 2.0 technologies for standardized enterprise
development. J2EE 1.3 brought connector architecture, revamped JMS
and EJB 2.0 local interfaces to this foundation (2001). J2EE 1.4 (2003)
brought a crucial direction towards ease of web services integration,
adding JAX-RPC, SOAP with Attachments API for Java (SAAJ), and
Java API for XML Registries (JAXR), aligning with the overall
industry shift towards service-oriented architectures. The rebranding to
Java EE 5, 2006, marked a turning point release in which annotations,
dependency injection, and the Java Persistence API combined to
significantly reduce the complexity of development, overcoming
criticisms of the platform featuring overly verbose frameworks. Java
EE 6 (2009): added web profile for lightweight implementations, a
more powerful Contexts and Dependency Injection (CDI)
implementation, and built-in support JAX-RS 1.1 for improved
RESTful web services. Java EE 7 (2013) added standardized batch

processing and concurrency utilities in partnership with updated web

131
MATS Centre for Distance and Online Education, MATS University

[

=2

\ \\\

UNIVERSITY

ready for life.

Notes

i

aTs)

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

technologies including WebSocket and JSON processing. With the
release of Java EE 8 (2017), the platform became even more modern
— with support for HTTP/2, improved security features, and added
support for JSON binding. The move to the Eclipse Foundation resulted
in Jakarta EE 9 (2020) which was iterations with primarily the javax
namespace adjusted. * to jakarta. *, and Jakarta EE 10 (2022) started
to add significant new capabilities under the new governance model.
Over the course of this evolution, the platform has exhibited incredible
backward compatibility while incrementally moving away from its
originally very XML-centric, container-centric model to an
increasingly lightweight, annotation-based, developer-centric model—
analogous to the broader industry transition from monolithic
applications to microservices and cloud-native architectures. But these
shifts represent J2EE's ability to evolve with changing paradigms in
development while maintaining its core strength: namely,
standardization and portability.

A J2EE application goes through a well defined process from its
designing, implementation, testing, deployment and maintenance.
Architects, for example, break the system requirements down into the
appropriate tiers and components, define boundary interfaces, data
models, and cross-cutting concerns such as security and transaction
management (often using UML diagrams, architectural patterns, and
J2EE environment reference architectures) during the design time
phase. There is also a slice of data focused on the implementation work
that typically involves many specialized teams working at the same
time: user interface developers who are creating the JSP pages,
Servlets, or JSF components; programmers focused on business logic
writing EJBs or CDI beans; data access experts creating JPA entities
and repositories; and integration engineers writing the connectors for
external systems. During development, this parallel effort is made
possible by J2EE's standardized APIs and component models, which
specify clear contracts between different parts of the application.
Packaging Modules The build aggregates these varied artifacts into
deployable units according to J2EE's packaging rules: JAR (Java
Archive) files for utility classes and libraries, WAR (Web Application
Archive) files for web modules with Servlets and related resources,
EJB-JAR files for Enterprise JavaBeans, and EAR (Enterprise Archive)

files that bundle multiple modules into an integrated application.

132
MATS Centre for Distance and Online Education, MATS University

Arising from the building is deployment, which is the act of installing
these packaged artifacts in a J2EE application server that then checks
the configuration, satisfies dependencies, sets the right container
services and makes the application available to the end-user. DevOps
practices are prevalent throughout modern J2EE development,
encompassing CI/CD pipelines for the automated execution of build,
test and deployment phases; containerization technologies such as
Docker, for streamlined environment consistency; orchestration tools
such as Kubernetes, for coordinating and scaling deployments; and
Infrastructure-as-Code approaches that further replicate deploys
through environments. The architecture of J2EE applications is
distributed throughout multiple tiers; as a consequence, testing these
applications results in a unique set of challenges. J2EE provides
significant benefits with this highly standardized approach across its
lifecycle as J2EE components become portable (the same application
can run on various everywhere implementations), a standard
deployment model is applicable across applications regardless of the
implementation of the actual application, and common enterprise
concerns are addressed using well-defined patterns.

3.1.4 Key Technologies and Components in J2EE

Servlet technology is the foundation of J2EE's web tier, serving as a
Java-centric method for processing HTTP requests and creating
dynamic responses in web applications. Servlets are managed in a
container that coordinates their lifecycle through specific methods:
init() for initialization, service() (usually overridden via doGet(),
doPost(), etc.) for request handling, and destroy() for teardown
activities. For example, the container takes care of managing the object
lifecycle, which means developers don't have to worry about low-level
background processing like socket handling, thread management, and
protocol details, etc. — they only have to worry about processing the
request in an application-specific way. Servlets process incoming
requests via HttpServletRequest objects, containing parameters,
headers, session info, and request details, and responses via
HttpServletResponse objects, enabling control over content types,
headers, status codes, and response content. Servlets provide a
performance state—an interface to manage server-side session
maintenance over literate requests through HttpSession interface, one

of the building blocks of web applications. Servlets can be mapped to

133
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

specific URL patterns by means of deployment descriptors (web. (xml)
or annotations (@WebServlet), allowing for flexible routing
configurations. In addition to basic request handling, the Servlet API
provides features for request dispatching (forwarding or including
content from other resources), filtering (intercepting requests for pre or
post-processing), event listeners (receiving notifications about various
contextual events such as application startup or session creation), and
asynchronous processing (handling long-running operations without
blocking threads in the container). Servlet EvolutionThe Servlet
specification has evolved hand-in-hand with trends in web
development: Servlet 2.5 fitted in annotations to avoid excessive
configuration; Servlet 3.0 brought asynchronous processing and
programmatic registration; Servlet 3.1 strengthened security and
facilitated file uploads; and Servlet 4.0 added HTTP/2 support and
server push. At the same time, Servlets remained the underlying
technology behind almost all the frameworks in the Java space (JSF,
Spring MVC, Struts and other dozens). Servlets serve as reusable
components for constructing Java web apps, and while many
developers now engage primarily with higher-level abstractions of
Servlets, it is critical to understand the underlying fundamentals of
Servlets in order to troubleshoot, optimize performance, and deploy
your own custom components across the J2EE ecosystem.

The JavaServer Pages (JSP) technology takes the web tier features of
J2EE and adds document-centric facilities for generating dynamic
content that work naturally in conjunction with the Servlet model. JSP
pages consist of standard static (usually HTML markup) and some
dynamic tags and embedded Java code, this framework produces a
template-based development environment using separate concerns for
presentation and business logic. When a JSP page is requested for the
first time, the container translates the page into a Servlet class and
compiles that class before executing it, as you would with any Servlet—
which means JSP is a syntactic sugar over the Servlet. This process
translates standard HTML into raw text output, JSP directives () into
package declarations and imports, scriptlets () into method body code,
expressions () into output statements, declarations () to class-level
variables and methods, and different tag types to Java constructs. There
are several approaches JSP uses to create dynamic content: scriptlets

for embedding raw Java code inside a page, expressions for embedding

134
MATS Centre for Distance and Online Education, MATS University

an evaluated value, the Expression Language (EL) for simplified access
to object properties and standard and custom tag libraries for more
complex markup-oriented functionalities. The JSP Standard Tag
Library (JSTL) includes tags for common tasks such as iteration,
condition, XML processing, database access, and i18n, so that
embedded Java code can be used much less. Custom tag libraries take
this concept further by enabling developers to create re-usable,
declarative components that encapsulate domain-specific logic. Over a
period of 15 years, JSP technology evolution has proved to be about
progressive separation of concerns (JSP 2.0 + Expression Language for
easy object access; JSP 2.1 + expression language enhancements with
JSF integration; JSP 2.x line of development to further enhance those
while keeping backward compatibility as its guiding principle). Though
JSP development has largely been replaced with component-based
frameworks such as JavaServer Faces and template engines like
Thymeleaf, JSP features still remain in use amongst enterprise
applications, especially for their view components via MVC
architectures. JSP's sustained relevance can be attributed to its
simplified learning curve, natural fit to HTML design flows, its
efficient execution model, and seamless compatibility with Servlet-
based applications.

EJB technology is the J2EE's main component model for writing
business logic. EJBs run inside specialized containers that provide
infrastructure functionalities such as transaction management,
security, concurrency control, and instance life cycle management,
enabling developers to primarily focus on business functionality
instead of low-level system issues. There have been three distinct bean
types defined by the EJB specification, each serving different use
cases: Session Beans that encapsulate business processes and client-
facing services and are further classified into Stateless Session Beans,
which maintain no client-specific state between method invocations,
Stateful Session Beans which maintain client-specific state for the
duration of a session, and Singleton Session Beans, which maintain a
single instance per application and are useful when a shared state or
coordinated operations are needed; Message-Driven Beans (MDBs),
which offer message-oriented asynchronous processing by consuming
messages from a JMS destination or message provider; and Entity

Beans, which historically helped to provide object-relational mapping

135
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

for database persistence but are now largely rendered obsolete by the
introduction of the Java Persistence API (JPA) since EJB 3.0. The
development of EJB technology is a microcosm of the overall evolution
of J2EE into more developer-friendly programming models:[2] EJB 1.0
and 2.0 had long interfaces, deployment descriptors, and lots of
boilerplate code and were justly criticized for being complex and
verbose; EJB 3.0 was a radical simplification thanks to annotations,
dependency injection, and the Plain Old Java Object (POJO)
programming model; this option drastically reduced development
effort; newer versions built on that with cleaner approaches and
innovations like asynchronous method invocation, timer services, and
better capability for transactions. EJBs inherently implement many of
the foundational enterprise patterns: Component-Based Development
uses a modular structure, Inversion of Control uses container-managed
services, Dependency Injection uses resource acquisition, Facade
Pattern for simplifying client access to complex subsystems, Business
Delegate abstracts away remote implementation details. Although
alternative frameworks such as Spring have captured much of the
marketshare by providing equivalent functionality with reduced
perceived overhead, EJBs are still a mainstay of many large enterprise
applications, especially in cases where distributed transactions and
complex security policies are involved or when integrating with older
legacy J2EE systems. An insight into the component-based design
concepts that are employed in a specific technology is useful—whether
it be EJB or any future framework.

The Java Persistence API (JPA) is a specification that configures
anObject Relational Mapping in the j2ee platform to provide a unified
and object-oriented interface to the relational data that can be managed
as objects. Java Persistence API (JPA) was introduced in EJB 3.0 to
supersede the previous entity bean paradigm, which was criticized for
its complexity and performance issues, and used a lightweight, Plain
Old Java Object (POJO) setup leveraging proven Object Relational
Mapping (ORM) frameworks like Hibernate. Essentially, JPA
reconciles the object-oriented world and the relational world using
entities—plain old Java classes, annotated with @ZEntity, that
correspond to persistent data structures. All these features are
complemented with extra annotations to customize their mapping

behavior: @Table for the database table or tables this entity is mapped

136
MATS Centre for Distance and Online Education, MATS University

to, @Id to identify primary key fields, @Column to configure the
mapping of each single field, and relationship annotations
(@OneToOne, @OneToMany, @ManyToOne, @ManyToMany) for
the associations between entities. However, this doesn't cover the entire
lifecycle of persistence. JPA empowers it with a richer set of features
exposed via EntityManager instances that provide methods to persist,
find, merge, and delete entities, while internally, it maintains a
persistence context that can track changes to an entity and propagate
them to the underlying database. The specification defines a strict
entity lifecycle: new/transient, managed, detached, removed — and
transitions between them according to EntityManager operations and
transaction boundaries. To retrieve data, JPA has several query
methods: the Java Persistence Query Language (JPQL), a platform-
independent, object-oriented query language that has the same building
blocks as SQL but operates on entities rather than tables; the Criteria
API, which is a type-safe, programmatic alternative to the string-based
queries; and native SQL queries for accessing features that are only
available in specific databases. It handles more sophisticated
persistence issues such as inheritance mapping (with support for single
table, joined table, and table-per-class strategies), composite keys,
embedded objects, lazy loading of relationships, optimistic locking for
concurrent access, and second-level caching for performance reasons.
There are several JPA implementations available, including but not
limited to Hibernate (the most popular), EclipseLink (JPA reference
implementation), OpenJPA and others; however, they all wrap the
standardized API and usually extend it with additional aspects/features.
The JPA advancements over time and their new capabilities could be
summarized as follows: JPA 2.0 brought the Criteria API, collection
mappings, and validation integrations; JPA 2.1 got stored procedures,
fetching strategies and entity graphs, and attribute converters; JPA 2.2
introduced support for some of the Java 8 features such as Stream API
results, Date/Time types and repeatable annotations. However, since
data persistence requirements are inherently a fundamental part of all
enterprise applications, JPA continues to be a cornerstone technology
in the world of J2EE because it provides a very good blend of
standardization and flexibility of database integration for diverse

scenarios.

137
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

The Java Message Service (JMS) resource adapter provides J2EE
applications with standardized asynchronous messaging capabilities so
that loosely-coupled communication is possible among distributed
components across application boundaries. These messaging
approaches provide additional benefits compared to synchronous
communication approaches, including: temporal decoupling, where a
sending application does not need to be online at the same time as the
receiving application; load-leveling, where messages can be buffered
for processing during variable workload periods; reliability, where the
delivery of a message can be ensured and scaled across multiple
consumers at ease using message-oriented middleware. JIMS defines
two main types of messaging models — and point-to-point (PTP) via
queues where a message is sent to only one consumer instance,
commonly used to perform a load balancing approach, and publish-
subscribe (pub/sub) via topics where a message is sent to all active
subscribers, well suited to event propagation or notifications
distribution scenarios. The JMS API provides a uniform programming
model across these patterns with a few principal interfaces:
ConnectionFactory and Connection for creating communication
channels with the message provider, Session for creating messages and
producers/consumers, MessageProducer for publishing messages to
destinations, MessageConsumer for receiving messages from
destinations, and various Message types (TextMessage, BytesMessage,
MapMessage, StreamMessage, ObjectMessage) representing different
payload formats. Messages are structured as not just payloads, but also
headers (for standard routing and identification metadata) and
properties (for application-specific attributes that aid in filtering and
processing). JMS provides for synchronous consumption (the receiver
instructs the provider to deliver a message), as well as for
asynchronous consumption (messages trigger registered
MessageListener callbacks), giving the application flexibility in what
delivery model it chooses. Thus, J2EE's transaction model integration
allows messages to be part of distributed transactions, assuring that the
messaging operations are consistent with other resources as databases.
Message-Driven Beans (MDBs) are a specific component model
catering to message consumption, enabling developers to define the
information processing without considering concurrency management,

transaction management, and resource pooling, which are handled by

138
MATS Centre for Distance and Online Education, MATS University

the EJB container. Since its inception, JMS has been on an evolution
path of simplification and integration with other J2EE technologies:
JMS 1.1 unified the separate point-to-point and publish-subscribe
APIs; IMS 2.0 added a simplified API, delivery delay capabilities, and
shared subscriptions for pub/sub load balancing across multiple
consumers. While JMS standards have stood the test of time, as with
many other legacy technologies, it is increasingly integrated with (or
replaced by) more modern messaging technologies, particularly in
microservices or event-driven architectures context.

3.1.5 Security, Transactions, and Integration in J2EE

Security is a key cross-cutting concern of the J2EE architecture and is
handled through a broad architecture that cuts across all tiers and
components of enterprise applications. The Model consists of different
layers of security including authentication (verifying the identity of the
user), authorization (access control to the resources), confidentiality
(protection of data against disclosure), integrity (data not altered during
a transmission), and non-repudiation (a party cannot deny the
authenticity of their signature). In bare terms, J2EE security
implementations are normally conceived of as a combination of
declarative where the constraints are delineated via annotations or
deploy descriptors with no touching of app code and programmatic
where the security checks are embedded directly into the business logic
for intricate access control. Authentication involves extracting
credentials (for example through form-based login, HTTP Basic/Digest
authentication, client certificates, single sign-on ticket, or integrations
to external systems such as LDAP, Kerberos, or SAML), validating the
credentials based on user repositories, and issuing a security context to
the authenticated session. User identities are grouped into roles—
logical groupings indicating application-specific functions or
responsibilities—that access controls are defined against at a more role-
based level to encourage maintainability and scalability rather than
granular definitions against individual user identities. Authorization
constraints can be imposed at various levels: web resources, using URL
patterns and HTTP methods; EJB methods based on callers’ roles;
application data that is filtered according to users’ contexts; and even
JMS destinations or web services that are offered only to authorized
consumers. Container-managed services integrate with the J2EE

security model using the Java Authentication and Authorization

139
MATS Centre for Distance and Online Education, MATS University

[

\

e

\\\

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

Service (JAAS) to provide pluggable authentication modules, subject-
based authorization, and delegation capabilities. For securing web
services, specifications such as WS-Security provide the means for
securing message-level protection, while for preventing the abuse of
APIs, standards based on OAuth 2.0 and OpenlID Connect are
increasingly used in modern authentication scenarios. Transport-level
security is usually built on TLS/SSL for secure communication, as the
data should be encrypted when sent over the network; protecting data
on the wire between tiers and to/from outside systems. Beyond these
technical controls, robust J2EE security implementations must also
mitigate concerns pertaining to secure configuration (removing default
credentials and unnecessary services), input validation (to prevent
injection attacks and cross-site scripting), session management (to
guard against session fixation and session hijacking), auditing (to
record security-relevant events for monitoring and compliance
purposes), and secure exception handling (to avoid information leaks
in error messages). J2EE security has evolved alongside new threats
and new deployment patterns: Java EE 6 brought programmatic login
and interceptor-based security; Java EE 7 added expression-based
access control support; Java EE 8 introduced a new Security API (JSR
375) that made it easier to configure identity stores and HTTP-
authentication mechanisms; and Jakarta EE has continued to build upon
these abilities to support cloud-native and microservices environments.
Transaction management is one of the several most significant
infrastructural services provided by J2EE that offers the ability to help
ensure data consistency and integrity across many operations and
resources. ACID — Atomicity (all or nothing); Consistency (A
transaction should maintain the data in a valid state before and after the
execution); Isolation (As an impact of the operation will not alter the
rest of the transactions); and Durability (the committed changes persist
during failure cases). J2EE provides two basic transaction management
styles: container-managed transactions (CMT), where the application
server automatically manages transaction demarcation based on
declarative configurations, and bean-managed transactions (BMT),
where application code explicitly controls transaction boundaries. In
the case of container-managed transactions, the developer indicates
transaction attributes that describe how components participate in

transactions: Required creates a new transaction or join an existing

140
MATS Centre for Distance and Online Education, MATS University

transaction if one exists; RequiresNew always creates a new
transaction; Mandatory requires an existing transaction; NotSupported
suspends any current transaction; Supports joins an existing transaction
but does not require one; and Never prohibits being run within a
transaction context. You can set these attributes through annotations
(@TransactionAttribute) or deployment descriptors, giving you fine-
grained control (without peppering your rigid business code with
transaction details). One especially powerful feature of J2EE is its
support for distributed transactions (also known as global or XA
transactions) across multiple heterogeneous resources including
databases, message queues, and legacy systems. As in other
transactional systems, the ability to coordinate commits across
resources is provided by the transaction manager and the two-phase
commit (2PC) protocol, as users join the transaction using the Java
Transaction API (JTA) to ensure atomicity across participating
resources. Resource integration is done using J2EE resource adapters,
which implement the XA interface, providing the ability for
transaction manager to enlist such resources in distributed transactions.
Transaction management generally interacts with other container
services. Although the J2EE transaction model is a great fit for
consistency in traditional applications, it struggles with distributed
cloud architectures where we can see several issues, like the
performance impact due to distributed transactions, and the fact that
ACID guarantees are not useful with long-running workflows. As a
result, modern J2EE applications typically layer optional eventual
consistency patterns, compensating transactions, or saga patterns on
top of ACID transactions for certain distributed cases, even though the
transaction infrastructure platform is very much basic for those core
business operations in which we can't compromise on data integrity.

Tight integrations with Enterprise Information Systems (EIS), such as
ERP systems, mainframe applications, database systems, and other
legacy infrastructure is done through J2EE's standardized approach,
provided here by the Java Connector Architecture (JCA). Before JCA,
the integration did not usually use any standards, and relied heavily on
custom-built, point-to-point connectors that led to maintenance and
duplication nightmares in a multi-project environment. JCA solves
these problems by defining a common architecture of resource

adapters, which are specialized components that serve as a bridge

141
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

between J2EE applications and resource managers (such as database
connection pools, EISes, or messaging systems); these components
make use of the services provided by the container (transaction
management, security, connection pooling). This architecture consists
of three main contracts: the Connection Management contract, which
defines the central pooling, lifecycle management, and allocation
optimization models when connections to database servers are made;
the Transaction Management contract, which allows resource adapters
to participate in container-managed transactions by coordinating both
local and XA transactions; and the Security contract, which provides
secure access to external systems by mapping credentials, delegating
principal, and propagating the security context. JCA resource adapters
would generally have a standard Common Client Interface (CCI) for
application code want to talk to the EIS, and adapter-specific interfaces
that are specific to the external systems. This enables application
servers to cater to different integration scenarios and ensure similar
management approaches across various types of EIS connections. In
addition to basic connectivity, JCA also supports different patterns of
interaction: synchronous request-reply for operations that require an
immediate response, local transactions for simple consistency
requirements, distributed transactions for operations that span multiple
resources and record-based interfaces for structured data exchange. The
spec has matured to meet the increasing integration challenges: JCA
1.5 had work management for incoming communication, creating
message endpoints that consume events from thirdparty sources; JCA
1.6 included support for annotations, pluggable work contexts, and
better lifecycle management features; and JCA 1.7 enhanced security
and connection validation capabilities. Although JCA is a thorough
integration solution, other paths are open in the J2EE world: Web
Services (JAX-WS, JAX-RS) is a common for service-oriented
integration, JMS is for message-oriented middleware, JDBC is a low-
level access to databases, and Java API for XML Processing (JAXP) is
for XML-oriented data interchanging. With API-based integration,
lightweight REST services, and cloud-native connectivity becoming
the order of the day, JCA is not given the same prominence in new
application development as it might have been in the past.
Nevertheless, JCA is still critical for integration with legacy systems in

enterprises where there are no alternatives available. Learning the

142
MATS Centre for Distance and Online Education, MATS University

concepts behind JCA is needful to know about enterprise integration
patterns and different challenges to address this integration, no matter
what particular technology used to accomplish this goal.

J2EE Web Services technologies allow distributed applications to
communicate over the platform and organizational boundaries in an
interoperable and cross heterogeneous environment. The platform is
based on two styles of web service generation: SOAP with
XSD/WSDL documents and REST with standard HTTP verbs and
semantics. Center of SOAP based development, the Java API for XML
Web Services (JAX-WS) serves a powerful API which uses annotations
and auto-generated artifacts to make service implementation much
easier. It is possible for developers to expose services simply by
annotating a class with @WebService and methods with
@WebMethod; the container will generate the required WSDL, XML
Schema definitions, and marshalling code. JAX-WS also well adapts
to both approaches to handling WSDL files: top-down (starting from
existing WSDL documents) and bottom-up (where WSDL will be
generated from the Java classes). Example 1: Java Architecture for
XML Binding (JAXB) JAXB handles complex data types and maps
them to and from Java classes automatically. JAXB does the
marshalling and unmarshalling of Java object to XML and back to Java
automatically. Widespread in enterprise scenarios, JAX-WS is
extended with WS-Security for message-level security, WS-
ReliableMessaging for guaranteed delivery, WS-Addressing for
asynchronous communication and WS-Policy for declarative
configuration. For REST-based services, there is the Java API for
RESTful Web Services (JAX-RS) which is a lightweight specification
that focuses on dealing with resources and HTTP key concepts in an
annotation-based programming model. Resource classes are annotated
with @Path to specify URI patterns and methods are further annotated
with @GET, @POST, @PUT, or @DELETE to specify which HTTP
operation they143565iws seventeen220 query for. Content negotiation
occurs via the @Produces and @Consumes annotations, where you
indicate the acceptable media types, while parameters get bound as per
annotations such as @PathParam, @QueryParam and @FormParam.
JAX-RS uses serialization and deserialization for Java objects and
many other representations such as JSON, XML, text, and so on based

on content negotiation. In addition to these key specifications, the J2EE

143
MATS Centre for Distance and Online Education, MATS University

[

e

\ \\\

UNIVERSITY

ready for life.

Notes

i

aTs)

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

web services ecosystem provides supporting technologies such as
JSON Processing (JSON-P) and JSON Binding (JSON-B) for working
with structured data, WebSocket API for bidirectional communication,
and Concurrency Ultilities for asynchronous processing. The trajectory
of J2EE web service evolutions mirrors broader industry directions: in
its early days, J2EE support was focused on SOAP and WS-*
specifications for enterprise integration, with Java EE 6 adding robust
RESTful support in JAX-RS 1.1, and Java EE 7 improving both
paradigms with client APIs and more format options, but Java EE 8
and Jakarta EE have increasingly favored lightweight, cloud-friendly
approaches prioritizing REST, JSON and reactive programming

models. And because APIs will become the very

144
MATS Centre for Distance and Online Education, MATS University

Unit 3.2: Java Servlet

3.2.1 Java Servlet: Basic Servlet Structure

server
1)request

2)response is generated
at runtime

Client

3)response is sent
to the client

Figure 3.2.1: Servlet

Java Servlets are one of the key technologies of Java web development
technology, they are the basis of server-side programming in Java,
which with the emergence of many clients does not lose its popularity.
Servlets are basically Java classes made with the purpose of following
the given specification of Java ServletAPI to handle request and
generate response normally inside a/your web application framework.
Servlet technology dates from the late 1990s as one of Java's first
enterprise offerings, responding to the shortcomings of CGI (Common
Gateway Interface) programming by providing higher performance,
platform independence, and to easily take advantage of the Java
ecosystem. Servlets run inside servlet containers (or web containers)
that provide the runtime environment and lifecycle management. With
the container-based architecture, infrastructure management and
application logic are separated, giving developers the freedom to focus
on business functionality rather than lower-level protocols and
communication mechanisms. Where CGI-based programs create a new
process for each request, servlets run inside the JVM, which provides
sophisticated support for multi-threading. This underlying architectural
difference allows servlets to offer much better performance and
resource usage than older web programming models. Even though
more abstracted frameworks such as JavaServer Pages (JSP),
JavaServer Faces (JSF), and various other MVC implementations

followed in its wake, servlets are the real based technology behind Java

145
MATS Centre for Distance and Online Education, MATS University

\

4m

W

UNIVERSITY

ready for lfe......

Notes

ars)

Y W i

|

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

web applications. For any Java developer who is working on web
application, understanding servlets is a prerequisite, since all high level
frameworks are finally backed by the servlet technology, behind the
scenes, Servlet technology is the core of all request-response
mechanism. The servlet spec has come a long way since it was
introduced, and in each version, new features have been added but are
still backward compatible. Newer servlet implementations offered
support for annotations, async processing, non-blocking I/O and other
improvements which have helped keep this technology useful in

modern web development contexts.

3.2.2 Basic Structure and Core Components of Java Servlets

A servlet is a simple Java class that has to extend appropriate servlet
class (javax.servlet.Servlet) and then implement specific methods that
handle the request from the client. All servlets must implement the
javax. servlet. Servlet interface - This interface defines all the necessary
methods needed for the servlet lifecycle management and the request
processing. However, rather than implementing the Servlet interface
directly, most developers extend the GenericServlet or HttpServlet
abstract classes, which provide partial implementations of the
interface. In particular, the HttpServlet class is important because it is
used to handle HTTP-specific request-response interactions using
methods like doGet(), doPost(), doPut(), doDelete(), etc.,
corresponding to the HTTP methods. The following steps summarize
the typical structure of a servlet implementation: package declarations,
imports, non-required annotations, class declaration extending
HttpServlet, non-required constructors, must-have lifecycle methods
(init, destroy), and must-have request handler methods. Servlet
structure: A servlet contains a variety of structural components such as
deployment descriptors (specifically specification web. xml (or using
annotations in modern implementations), servlet mappings to associate
URL patterns with servlet instances, initialization parameters that
configure how servlets behave, and context parameters that are
applicable across the entire web application. Request handling
methods are at the heart of servlet functionality and accept
HttpServletRequest and HttpServletResponse objects as their

parameters — these objects are the primary conduits for interaction with

146
MATS Centre for Distance and Online Education, MATS University

clients. The request object contains all the information the client sent to
the server, such as parameters, headers, cookies, and session data, and
the response object has methods to set data to be sent to the client, set
response headers, set cookies, and control the status of the response.
Servlets are inherently multithreaded, meaning that it is important to
consider how to handle multithreading in the design of a servlet; the
servlet container instantiates a single instance of a servlet and then
handles multiple requests to the servlet by invoking them on multiple
threads, which means that thread safety is paramount. Servlet error
handling uses Java's exception mechanism, but it has special rules for
catching and reporting checked and runtime exceptions. The servlet
architecture also includes request filtering capabilities through the
Filter API, allowing pre-processing and post-processing operations to
be applied across servlets, and the use of listeners to handle various
events occurring in the application or user session. Grasping these
structural characteristics establishes the groundwork required for
successful servlet programming, allowing developers to design solid,
maintainable web applications that effectively utilize the features of the
Java Servlet API.

CGI (Common Gateway Interface)
CGI technology enables the web server to call an external program and
pass HTTP request information to the external program to process the

request. For each request, it starts a new process.

Server

0 CGI CGlI
Request > Shell ¢ Program
Request
> o CGl
Request > shell X

httpd
Processor Load O CaGl

Disadvantages of CGI
There are many problems in CGI technology:

1. Ifthe number of clients increases, it takes more time for sending

the response.

147
MATS Centre for Distance and Online Education, MATS University

\

¢m

\\\

UNIVERSITY

ready for lfe......

Notes

ars)

Y W i

|

gmm

UNIVERSITY

ready for life.

Notes

S

2. For eachrequest, it starts a process, and the web server is limited
to start processes.

3. TItuses platform dependent language e.g. C, C++, perl.

Advantages of Servlet

There are many advantages of Servlet over CGI. The web container
creates threads for handling the multiple requests to the Servlet.
Threads have many benefits over the Processes such as they share a
common memory area, lightweight, cost of communication between

the threads are low. The advantages of Servlet are as follows:

Web Server
Q/Web Container
S »— Thread)
Request
: > @ Thiead)
e > Thiead)
Processor Load \

1. Better performance: because it creates a thread for each
request, not process.

2. Portability: because it uses Java language.

3. Robust: JVM manages Servlets, so we don't need to worry
about the memory leak, garbage collection, etc.

4. Secure: because it uses java language.

Web Terminology
Servlet Terminology Description
Website: static vs dynamic It is a collection of related web
pages that may contain text,
images, audio and video.
HTTP It is the data communication

protocol used to establish

148
MATS Centre for Distance and Online Education, MATS University

https://www.tpointtech.com/c-programming-language-tutorial
https://www.tpointtech.com/cpp-tutorial
https://www.tpointtech.com/perl-tutorial
https://www.tpointtech.com/jvm-java-virtual-machine
https://www.tpointtech.com/Garbage-Collection
https://www.tpointtech.com/website-static-vs-dynamic
https://www.tpointtech.com/http

I

[

UNIVERSITY
ready for life.

o ' Notes
communication between client
and server.
HTTP Requests It is the request send by the

computer to a web server that
contains all sorts of potentially

interesting information.

Get vs Post It gives the difference between
GET and POST request.
Container It is used in java for dynamically

generating the web pages on the

server side.

Server: Web vs Application It is used to manage the network
resources and for running the
program or software that

provides services.

Content Type It is HTTP header that provides
the description about what are

you sending to the browser.

Steps to create a servlet example
There are given 6 steps to create a servlet example. These
steps are required for all the servers.
The servlet example can be created by three ways:
1. By implementing Servlet interface,
2. By inheriting GenericServlet class, (or)
3. By inheriting HttpServlet class

The mostly used approach is by extending HttpServlet
because it provides http request specific method such as
doGet(), doPost(), doHead() etc.

Here, we are going to use apache tomcat server in this
example.

149
MATS Centre for Distance and Online Education, MATS University

https://www.tpointtech.com/http-requests
https://www.tpointtech.com/get-vs-post
https://www.tpointtech.com/container
https://www.tpointtech.com/server-web-vs-application
https://www.tpointtech.com/content-type

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

The steps are as follows:
1. Create a directory structure
Create a Servlet
Compile the Servlet
Create a deployment descriptor
Start the server and deploy the project
Access the servlet

A

1)Create a directory structures

The directory structure defines that where to put the different
types of files so that web container may get the information
and respond to the client.

The Sun Microsystem defines a unique standard to be
followed by all the server vendors. Let's see the directory
structure that must be followed to create the servlet.

web-app

m

{Context-Root)

WEB-INF

ciasses

l class files

web.xml

lib

HTML

Static Resources (eg. Images,css etc.)

As you can see that the servlet class file must be in the classes
folder. The web.xml file must be under the WEB-INF folder.

2)Create a Servlet

There are three ways to create the servlet.
1. By implementing the Servlet interface
2. By inheriting the GenericServlet class
3. By inheriting the HttpServlet class

150
MATS Centre for Distance and Online Education, MATS University

The HttpServlet class is widely used to create the servlet
because it provides methods to handle http requests such as
doGet(), doPost, doHead() etc.

In this example we are going to create a servlet that extends
the HttpServlet class. In this example, we are inheriting the
HttpServlet class and providing the implementation of the
doGet() method. Notice that get request is the default request.

DemoServlet.java

1.

Nk

N

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

public class DemoServlet extends HttpServlet{
public void doGet(HttpServletRequest req,HttpServle
tResponse res)

throws ServletException,IOException

{

. res.setContentType("text/html");//setting the content t

ype

. PrintWriter pw=res.getWriter();//get the stream to wri

te the data

10.

11.//writing html in the stream
12.pw.println("<htmI><body>");
13.pw.println("Welcome to servlet");
14.pw.println("</body></htmI>");
15.

16.pw.close();//closing the stream

17.1}

3)Compile the servlet
For compiling the Servlet, jar file is required to be loaded.
Different Servers provide different jar files:

Jar file Server
1) servlet-api.jar Apache Tomcat
2) weblogic.jar Weblogic

151

MATS Centre for Distance and Online Education, MATS University

(\._/_._/\
B
{? .
UNIVERSITY
veady for lfe

3) javaee.jar Glassfish

4) javaee.jar JBoss

Two ways to load the jar file

1. set classpath

2. paste the jar file in JRE/lib/ext folder
Put the java file in any folder. After compiling the java file,
paste the class file of servlet in WEB-INF/classes directory.

4)Create the deployment descriptor (web.xml file)

The deployment descriptor is an xml file, from which Web
Container gets the information about the servet to be invoked.
The web container uses the Parser to get the information from
the web.xml file. There are many xml parsers such as SAX,
DOM and Pull.

There are many elements in the web.xml file. Here is given
some necessary elements to run the simple servlet program.

web.xml file
1. <web-app>

<servlet>
<servlet-name>sonoojaiswal</servlet-name>
<servlet-class>DemoServlet</servlet-class>
</servlet>

el I A i

<servlet-mapping>
9. <servlet-name>sonoojaiswal</servlet-name>
10.<url-pattern>/welcome</url-pattern>
11.</servlet-mapping>
12.
13.</web-app>
Description of the elements of web.xml file
There are too many elements in the web.xml file. Here is the
illustration of some elements that is used in the above
web.xml file. The elements are as follows:

152
MATS Centre for Distance and Online Education, MATS University

<web-app> represents the whole application.
<servlet> is sub element of <web-app> and represents the servlet.

<servlet-name> is sub element of <servlet> represents the name of the
servlet.
<servlet-class> is sub element of <servlet> represents the class of the
servlet.
<servlet-mapping> is sub element of <web-app>. It is used to map the

servlet.

<url-pattern> is sub element of <servlet-mapping>. This pattern is

used at client side to invoke the servlet.

S)Start the Server and deploy the project
To start Apache Tomcat server, double click on the startup.bat file

under apache-tomcat/bin directory.

One Time Configuration for Apache Tomcat Server
You need to perform 2 tasks:
1. set JAVA HOME or JRE HOME in environment variable (It
is required to start server).
2. Change the port number of tomcat (optional). It is required if

another server is running on same port (8080).

1) How to set JAVA_HOME in environment variable?

To start Apache Tomcat server JAVA HOME and JRE_ HOME must
be set in Environment variables.

Go to My Computer properties -> Click on advanced tab then
environment variables -> Click on the new tab of user variable -> Write
JAVA HOME in variable name and paste the path of jdk folder in
variable value -> ok -> ok -> ok.

Go to My Computer properties:

153
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

)

UNIVERSITY

Notes

% Manage

4
i TodouesvN ’

> -

Map network drive...

fi
Disconnect metwork drve.. -

Create shocut
Delete.

Bo
)

v

o 0

¢

View basic information about your computer
Wendows edtion
Windows 7 Utimate

Copynghe ©

Corpeeation. Al rights reserved.

) Windows Experience Index
WtelR) Pentiumi{R) Dus! CPU 2140 © L60GH: 160 Ghx
Instaied memory (RAMK 200 GB
System type
Penand Touc

Processce:

32-5% Operatiog System

Mo Pen or Touch Input is available fex this Display

YT s
(Y OO LU
O

Computes name, domain, and workgroug settings

Computer name:

O T

SSSIT-PC

Ful comnputer name SSSIT-PC
Computer descrption:

Wedkgroup: WORKGROUP

- T

E
T cm S5SWMS R e s ONINE

(]
g
3

0
|
"

=l = O =
[_Jn'u'-r--

cd ¥
LR % » Ceetroi Panel b Al Contol Panet Rems b Syitem

[

f

~g

Pedemarce

Microsoft Corporatson. A8 nights reserved.
Vo afects, rocessr schd g sy asgn, and vitoalermcry

G

User Profies

Desiop setings related o your bogen

ws Expesience Index
S0 and Recovery Intel(R) Pentiom(R) Dual CPU E2140 © 160GH: 160 GhHe
System starto, system ke, and debugong rfomon ory (RAM): 200 G&

"\’<'..""')
(O LSS

3254 Operating System

Mo Pen or Tewch Input s available for this Display
and workgreup settings

SSSIT-PC

me LB Eesve:0
'R RR - 50626 g
c B 5WS B = ©) P ET N S i e

. . :
(XYL

(LY
-
'

Y 4)1
® 2]

154
MATS Centre for Distance and Online Education, MATS University

T g

UNIVERSITY
ready for lie......

Notes

Click on the new tab of user variable or system variable:

1€ 5 Cootret Panel » All Catrel Pane Bems » Syitem <] 43 | Zesich Contrat Poine

o -
m— r computer

User variables for 555 1T

Varistie vae Al rights reseeved.
Petomance e
C:Program Fles Dava ick1.7.0_01bn
Vial ellects. procesecy SNUSERPROFLEN WorDeta L ocalTemp.
SUSTPROFLEW WopDeta LocalTemp.

path

™
-

e e) (o)

Desciop setirgs rated)
Systom varables
e 3 R
Comtoec Y

St and Racovery

Bo
)

Euperence Index

B NOHOST C... %0 (R) Dual CPU E2180 @ 160GH: 160 iz
System stanp, system if MMEER OF P... 2
0s Windows NT g System
— ~——) Touch Input is avaiable for this Display
ettings
o Cancel o 7
pter
'WORKGROUP
W 1
3
\ \\
Sttt
) »%_“- H
- 1= iRy

Write JAVA_HOME in variable name and paste the path of jdk
folder in variable value:

i
[
o 6

'Y Y

JAVA_MOVE

C:Program FlesUsvalik1.7.0 01

Pentium(R) Ousl CPU 2140 © 160GHz 160 GHe

(Y L

bperste System
loe Tewuch input s svailable foe this Dsplay

pp settings

it
TE

Y GG

l 6 ¢
o6
e
¢ é
€ o
¢
:‘
e
.y

®e

Bt
T B
c mSWG B = O

®

There must not be semicolon (;) at the end of the path.

After setting the JAVA_ _HOME double click on the startup.bat file in
apache tomcat/bin.

Note: There are two types of tomcat available:

1. Apache tomcat that needs to extract only (no need to install)

2. Apache tomcat that needs to install

It is the example of apache tomcat that needs to extract only.

155
MATS Centre for Distance and Online Education, MATS University

UNIVERSITY

ready for ...

Notes

» Fun(F) » apache-tomcat-102 » bin

& Computer

& Local Disk (C) "
")
. Fun

tomeat-ph

B tomest outvetsr

Now server is started successfully.

2) How to change port number of apache tomcat

Changing the port number is required if there is another server running
on the same system with same port number.Suppose you have installed
oracle, you need to change the port number of apache tomcat because
both have the default port number 8080.

Open server.xml file in notepad. It is located inside the apache-
tomcat/conf directory . Change the Connector port = 8080 and replace
8080 by any four digit number instead of 8080. Let us replace it by
9999 and save this file.

156
MATS Centre for Distance and Online Education, MATS University

5) How to deploy the servlet project
Copy the project and paste it in the webapps folder under
apache tomcat.

But there are several ways to deploy the project. They are as follows:

e By copying the context(project) folder into the webapps

directory

e By copying the war folder into the webapps directory

o By selecting the folder path from the server

o By selecting the war file from the server
Here, we are using the first approach.
You can also create war file, and paste it inside the webapps directory.
To do so, you need to use jar tool to create the war file. Go inside the
project directory (before the WEB-INF), then write:

projectfolder> jar cvf myproject.war *

Creating war file has an advantage that moving the project
from one location to another takes less time.

6) How to access the servlet
Open broser and write-

http://hostname:portno/contextroot/urlpatternofservlet.

157
MATS Centre for Distance and Online Education, MATS University

)

ready for life......

Notes

For example:

1.

http://localhost:9999/demo/welcome

[&] tocalhost:9999/demo/wel . x

o

C' A | D) http://localhost:9999/demo/welcome :% @ @ * &

Welcome to servlet

158
MATS Centre for Distance and Online Education, MATS University

Unit 3.3: Servlet Life Cycle

3.3.1 Servlet Life Cycle

0 [e | e

in Seevice

7

service|)
Serviet Container

Figure 3.3.1: Servlet Life Cycle
[Source: https://th.bing.com/]

This servlet life cycle governs how servlets are created, initialised,
subserviced request and finally destroyed within the container
environment. Servlet life cycle is a step-by-step process of such states
followed by transitions which is handled by only the servlet container
which calls certain methods at specific time on the servlet. From when
web container either loads the servlet class (when web app starts) or
when first request comes (dependent on load-on-startup). Once your
class has been loaded, a container shall instantiate one and only one
instance of a servlet to your no-argument constructor, making it a
singleton with respect to your application. After that comes the
initialization phase, during which the container calls the servlet's
init(ServletConfig config) method and passes it a ServletConfig object
that allows access to initialization parameters and the ServletContext.
This initialization action is critical for execution of resource expensive
tasks such as examples are database connection establishment,
configuration file reading, or other setup processes. The init() method
completes before the servlet can attempt to handle client requests. After
initialization, the servlet goes into the service phase: it lives on and
responds to client requests until the container removes it. In this state,
each request from a client causes the container to call the servlet's
service() method (or, for HTTP servlets, the appropriate HTTP method
handler such as doGet() or doPost()) on possibly multiple threads.
Since servlets are singletons, instance variables of the servlet might be

159
MATS Centre for Distance and Online Education, MATS University

\

4m

W

UNIVERSITY

ready for lfe......

Notes

ars)

S

|

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

accessed by multiple request-processing threads concurrently, thus
making thread-safety an important consideration for servlet
implementations. When the Times of retting a servlet out of servile —
when the application shuts down, or redeploys the server — whether
the servlet is a phase of destruction by its destroy() method. This makes
it possible to free resources, close connections, and perform other
cleanup operations. The servlet lifecycle ends after destruction, when
the instance switches to being eligible for garbage collection. This
lifecycle is managed by the servlet container, the part of the web server
that handles the servlet's functionality, which serves the dual role as
manager of the servlet's execution environment by encapsulating
communication protocols, implementing thread management,
enforcing security policies, and providing pooling of servlet resources,
freeing the servlet developers to concentrate on business logic rather
than the intricacies of infrastructure. The container makes sure the
contract defined by the Servlet API is followed by instantiation of
request and response objects, handling session tracking, enforcing
security constraints, and enabling access to shared resources by way of
the ServletContext. This container-servlet synergy illustrates the classic
"inversion of control" paradigm (the container calls servlet methods,
not the other wayaround); which leads to a simplified, generic, and
standardized component model that's perfectly tailored for enterprise-
level applications.

3.3.2 Request Processing and HTTP Handling in Servlets

This is the basic functionality of servlet, taking client requests and
generating response for those requests. A web application reacts to an
HTTP request it receives from a client by dispatching that request to
the servlet container, which then forwards that to the servlet for
processing, determining the proper servlet that can fulfil the request by
using URL mapping configurations defined in a deployment descriptor
or by annotation-based configurations. Once the container has
determined which HttpServlet will service the request, it creates the
HttpServletRequest and HttpServletResponse objects which
encapsulate the data of the client's request and the means to formulate
a response to the request, respectively. The service method of the
servlet is where the request is passed to the appropriate HTTP method
handler (such as GET, POST, PUT, or DELETE) for the HTTP method

160
MATS Centre for Distance and Online Education, MATS University

being made. The HttpServletRequest interface provides you with full
access to all parts of the incoming request

3.3.3 Session Management and State Persistence

(sending cryptographic hashes of credentials) and Client Certificate
Authentication (using X.509 certificates) as well as programmatic
authentication through the HttpServletRequest. Servlet 3.0 The login()
method that we can use. After the user has been authenticated, identity
information is made available to servlets using methods such as
getUserPrincipal(), getRemoteUser(), and isUserInRole(), which can
support fine-grained, role-based access control within application
code. Transport Layer Security (TLS/SSL) can provide confidentiality
and integrity protection for servlet communications; configurability is
done through a element in security constraints. In addition to
declarative security, servlets support programmatic security via the
previous HttpServletRequest methods and the newer SecurityContext
API. For example, cross-site scripting (XSS) protection mechanisms
include output encoding utilities and the HttpOnly and Secure cookie
attributes, while cross-site request forgery (CSRF) defenses may rely
on synchronizer tokens that servlets can generate and validate. Servlet
A servlet is a purely Java class that extends the capabilities of a server,
like a web server. Java servlets solve this problem through a series of
complementary session management and state persistence
mechanisms. The core mechanism for session tracking is the
HttpSession interface, which acts as a server-side container that stores
and allows retrieval of information specific to a user across multiple
requests. The first time that a client accesses the application, the servlet
container sends the client a unique session identifier, using either
cookies or URL rewriting, and binds an HttpSession object (using the
identifier) to the client. On subsequent requests, the container retrieves
the session identifier from the client, finds a corresponding
HttpSession, and makes it accessible to servlets via the getSession()
method of HttpServletRequest. A session object acts as a key-value
store, allowing servlets to insert attribute objects with
setAttribute(String name, Object value) method at the same time
repopulating the requests from the same client using the method
getAttribute(String name), thus preserving state across requests from
the same client. The container automatically manages the session

lifecycle, creating sessions on-demand, maintaining session activity

161
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY

and invalidating them after a specified timeout period or by the
application when the session invalidate() method is called. The servlet
specification describes some session tracking mechanisms, including
(the default and most common way) cookies, URL rewriting (attaching
the session-id at the end of the URL when cookies are disabled), secure
sockets layer (SSL) session information, and (outdated) hidden form
fields. In addition to session management, servlets come with a few
other state management mechanisms: application state can be
maintained within the ServletContext for the entire web application to
use, request-level attributes are useful for sharing information to
components handling the same request, and cookies can be placed on
the client with configurable expiration times for persistence. For more
permanent state storage, servlets usually communicate with databases
via JDBC, JPA, or other persistence technologies. Replication and
across-container session persistence refers to maintaining session data
between container restarts making it an important consideration in
enterprise environments, for which most commercial servlet containers
provide configurable policy for backups and/or session recovery to
ensure high availability. Common security issues in session
management are session fixation attacks (which should be prevented by
always regenerating session IDs after successful authentication),
session hijacking (prevented by setting cookie attributes for same-site,
secure and HTTP only and implementing secure HTTPS
communications), cross-site request forgery (CSRF) (solved with
synchronizer tokens). Session management strategies are also
influenced by performance considerations, where too much session
data can lead to bloated memory and eventually impact garbage
collection, and session replication in clustered environments can lead
to added network overhead. Prevaring on these different state
persistence strategies help servlet programmer use best suited options
according to specific applicaiton scenario criction optimal usage state
action, proformance, Scalability and securtiy.

3.3.4 Servlet Security and Authentication Mechanisms

The knowledge is based on.java servlet SecurityServlet Security is an
important concern for application in servlet such as the security is the
general mechanism for securing web resources as well as
authentication, authorization and confidentiality of application data. As

the servlet container, this is the main enforcement point of those

162
MATS Centre for Distance and Online Education, MATS University

security controls that, together with application defined constraints,
build a strong security architecture. The basic security model in servlet
applications is based on the concepts of realms, users, roles, and
constraints. Authentication (authentication mechanisms) defines who
you are, while authorization (authorization mechanisms) defines what
you can access and action and is based on the given roles of the
authenticated user. The deployment descriptor (web. xml), security
constraints are defined using the element , which binds collections of
web resources (represented in identified URL patterns) with two
constraints: those of authorization (user roles), and those of transport
guarantee (HTTP or HTTPS). NASDAQ: SQ, which provides
payments, post-trade risk management, and compliance solutions as
well as rich-data research. Modern servlet containers also include
additional security features such as HTTP Strict transport security
(HSTS), Content security policy (CSP), and an access via OAuth and
OpenID Connect for federated authentication scenarios. Security filters
are yet another very powerful means to define cross-cutting security
concerns (such as input validation, output sanitization and access
logging) in one location and have them invoked during the lifecycle of
each of your servlets. Aware of these various security measures,
developers are empowered with the knowledge necessary to execute
defense-in-depth concepts tailored to their application's threat profile
but at the same time protecting servlets applications so sensitive
resources and information are never exploited by attackers, while still
giving access to the legitimate user. Since security threats on the web
keep changing, it is very important to update the web security best
practices and use the servlet specification's security features and other
protections as per the need to develop and maintain secure web
applications.

3.3.5 Advanced Features and Modern Servlet Capabilities

Since then, the Java Servlet specification has undergone many
generations of enhancement and refinement, delivering features that
significantly boost developer productivity, achieve better application
performance, and provide for more flexible architectures throughout.
Servlets have come a long way since their early design, and current
implementations are significantly more advanced than just the simple
request-response model that served as the backbone of the early web

applications. The new annotation-based configuration that comes with

163
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

Servlet 3.0 radically changes servlet development, eliminating much or
all of the necessary XML deployment descriptor dependency. Instead
of the traditional xml-based configuration, APIs like @WebServlet,
@WebFilter and @WebListener allow for declarative configuration,
directly in Java code, which enables simple deployment and better
code readability. This approach enables you to configure for URL
mapping, initialization parameters, description metadata and other
configuration features that were limited to web related. xml. Servlet 3.0
introduced asynchronous request processing capabilities; these
additional capabilities were subsequently enhanced in the next versions
to help tackle scalability issues from long-running operations by
releasing a thread during processing. This allows servlets to start async
operations that could take a long time to complete without holding up
container threads, and can help applications become more responsive
to incoming requests and use system resources more efficiently under
load. The API supports container-managed asynchronous processing
and application-managed threading, with mechanisms for timeout
handling and completion notification. Servlet 3.1: As the first major
specification after Servlet 3.0, Servlet 3.1 introduced Non-blocking I/O
support, which allowing Servlet vendors to implement a scale-out
model for improved scalability by allowing asynchronous reading and
writing of request and response data. This ability to react to events as
they occur, rather than waiting for all the elements to be present at once
can be important when uploading or downloading files over the wire,
as well as processing streamed data or integrating with reactive
programming models. To support such db functions, both the
ReadListener and WriteListener interfaces enable it to send
notifications to its applications where data can be read, or it can write
the output buffer which is empty and its post data isn't blocked. Servlet
40 enables HTTP/2 supported servlets through which servlets can take
advantage of performance characteristics offered by the new protocol
version, such as multiplexing, header compression and server push
features. PushBuilder provides an API that allows for server push,
where the Servlet can send resources to the client out of band, before
the client has even requested them. This includes stochastic servlets,
filters, and listeners for web applications, enabling application
initialization code to programmatically attach them instead of a static

declaration in the web.xml file. This breaks apart a glass wall and builds

164
MATS Centre for Distance and Online Education, MATS University

flexible structures between web applications and frameworks.
Subsequent servlet versions introduced embedded container
capabilities, allowing applications to programmatically configure and
launch servlet containers themselves, supporting microservice
architectures and simpler deployment models. Fragment web. This is
similar to the built-in ability of Spring to provide extension points that
the libraries can also contribute to when configuring the web
applications, and the web.xml support allows libraries to contribute as
well. The other important concept is the ServletContainerlnitializer
mechanism through which library authors can add hooks to the
framework initialization by configuring information on integration
points in their last descriptor. Security lattice across versions is having
great features like, programmatic authentication, role mapping, and
integration with Java EE/Jakarta EE security frameworks. Same with
multipart request handler allows you to process file uploads, if API is
common then all multipart requests will be parsed in the same way and
protocol upgrade support allows you transition from HTTP to
WebSocket or similar protocols. As for security, we use JSR-375 (Java
EE Security API) integration, which gives us the latest security
practices from identity stores to authentication mechanims to security
context concerns. Together, they facilitate modern web development
yet retain compatibility with existing code bases. By recognizing and
harnessing these capabilities, developers can create advanced, high-
performing web applications that align with contemporary demands for
responsiveness, scalability, and developer productivity, thereby
ensuring that servlet technology retains its relevance in the modern
software development landscape, despite the rise of alternative
frameworks and architectural approaches.

3.3.6 Integration with Java EE/Jakarta EE and Ecosystem
Considerations

Java Servlets are a part of the larger Java EE (now Jakarta EE)
ecosystem, providing a building block technology that interacts with
many other specifications and frameworks to build complete enterprise
applications. So, in-development systems, where servlets work, quite
integrates well into those convolution landscapes. At the specification
level, servlets work closely with many Java EE technologies, including
JavaServer Pages (JSP), which is a view technology that compiles into

servlets behind the curtains; Expression Language (EL), which

165
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

provides a clean syntax for accessing data within JSP pages and other
templating technologies; the JSP Standard Tag Library (JSTL) to
extend JSP functionality with reusable tag components; and lastly,
JavaServer Faces (JSF), which builds a component-based UI
framework on top of the servlet foundation. The servlet container also
implements a number of Java EE specifications other than servlets such
as JNDI (Java Naming and Directory Interface) for resource lookups,
JDBC (Java Database Connectivity) for database access, JTA (Java
Transaction API) for transaction management, JMS (Java Message
Service) for messaging, and various security technologies like JAAS
(Java Authentication and Authorization Service). Such a container
environment helps servlets access them through standard APIs, readily
available data sources include DataSources, JMS destinations, and
EJBs (Enterprise JavaBeans) via JNDI lookups or injection
mechanisms. In modern servlet environments (Java Servlets, Java EE,
Jakarta EE, etc.), dependency injection happens with CDI (Contexts
and Dependency Injection), which is the type-safe, extensible way to
access a resource/component. Then, through annotations like @Inject
(along with producer methods and qualifiers), servlets can get their
dependencies as injected without any code to look them up manually.
Bean Validation with Servlets Bean Validation enables declarative
validation of request parameters and form submissions. Servlets can
leverage a number of frameworks and libraries beyond servlet
technology itself: persistence technologies such as JPA (Java
Persistence API), Hibernate, or MyBatis; web frameworks such as
Spring MVC, Struts or Play Framework (most are designed on top of
servlet technology); template engines such as Thymeleaf, FreeMarker,
or Velocity; and utility libraries for JSON processing, XML, logging,
and other cross-cutting concerns. The microservices architectural trend
impacted how servlets are deployed, as frameworks such as Spring
Boot, WildFly Swarm/Thorntail, and Payara Micro allow for the
serving of self-contained applications with embedded servlet
containers. These cloud deployment factors influence servlet
applications via Docker containerization, Kubernetes orchestration
and integration of cloud services. In servlet-based environments,
performance-enhancing techniques include connection pooling, in-
memory and distributed caching strategies, distributing loads among

several containers and resource management. To test servlet

166
MATS Centre for Distance and Online Education, MATS University

applications, you have specialized frameworks like JUnit, Mockito,
Spring Test, Arquillian, and tools that simulate HTTP requests. There
are also namespace changes because of the transition from Java EE to
Jakarta EE (from javax. * to jakarta. *) and governance changes but
the core integration archetypes remain unchanged. Technologies such
as Jakarta EE Faces Flow and Security, MicroProfile for microservices
development and Graal VM native image compilation will continue to
evolve the ecosystem around reactive programming models, better
application microservice development and consumption in startup
time and resources. By being aware of these integration points and
ecosystem considerations, developers can make informed architectural
decisions, choose the right technologies for the different needs of their
application, and build servlet-based applications that take full
advantage of the rich features and services offered by the Java
enterprise platform as a whole.

3.3.7 Servlet Life Cycle: Stages in Servlet Execution

The servlet life cycle is one of the basic concepts of Java web
development, indicating the specific order of actions that take place
between the instantiation and finalization of the servlet. Servlets differ
from regular Java applications in that there is no well-defined main
method that serves as their entry point; they run inside the managed
environment of a servlet container (for example, Apache Tomcat, Jetty
or JBoss) which takes responsibility for handling the lifecycle of servlet
instances by instantiating, initializing, invoking, and finally destroying
servlet instances according to a specified protocol. This lifecycle is
vitally important for Java developers who are creating enterprise web
applications, as it gives a roadmap of how to manage HTTP requests
properly while allowing for appropriate resource management,
resulting in the application working smoothly during its time running.
Now, servlets go through the following phases: loading and
instantiation, initialization, service processing (request handling,
response generation), and destruction. So, these stages serves for a
specific purpose and they provides developers with hooks to implement
specific behavior through methods that are defined in the javax.
servlet. Servlet interface. In this Unit, we will take a closer look at these
stages and the evolution of servlets in terms of their purpose, details
on how they work and the proper techniques to handling the execution

process in enjoyable Java Web applications. Understanding servlet life

167
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

cycle empowers developers to build not only powerful but highly
efficient and scalable web applications that manage resources
effectively, handle concurrent requests, and implement complex
business logic while adhering to the separation of concerns principle
that is a cornerstone of modern software architecture.

I. Loading and Instantiation Phase

The loading and instantiation phase is the first phase in the servlet life
cycle, during which the servlet container is first notified of a servlet and
loads the servlet into an execution environment. A servlet class is
loaded usually at one of the 3 moments in time: at container startup,
during first request of the servlet, or at an explicit time, defined in the
deployment descriptor (web. xml) or through annotations. When the
servlet container is initialized, it looks at the web application's
configuration files, most notably the deployment descriptor (web. xml)
or servlet annotations in the case of modern applications—would
indicate servlets to be loaded on startup, by marking these servlets with
a element in web. xml or by using the loadOnStartup attribute of the
@WebServlet annotation in code. These elements take integers
representing the relative order in which servlets are to be initialized,
with smaller numbers receiving higher priority; negative values (or the
absence of the element) signify that the servlet is to be loaded only on
its first request. Now when the container finds the servlet class, it loads
the servlet class into memory using the Java ClassLoader also making
sure that the classes and the libraries required by the class are available
in the classpath. And only after loading successfully this container calls
its no-argument constructor of the servlet, which is an instance we will
use for dealing with all the requests for the application, keeping in mind
that is actually a singleton in relation to the servlet context.
Understanding this instantiation mechanism is crucial for developers
to implement servlets correctly according to certain rules. First, servlet
classes must implement a public no-argument constructor, since the
container uses reflection to create instances without passing
parameters. This constructor should remain lightweight and should not
contain complex initialization logic: proper initialization will need to
be deferred until the initialization phase discussed in the upcoming
section. Second, a single servlet instance is used to process multiple
requests, and they might come at the same time, so instance variables

should be used with caution because this can be a thread safety issue

168
MATS Centre for Distance and Online Education, MATS University

— otherwise it is better to use immutable objects or thread-local storage
to maintain state between method invocations. It must implement the
javax. servlet. Servlet interface, usually by sub-classing the javax.
servlet. GenericServlet class for protocol-independent servlets or the
javax. servlet. http. HttpServlet A class for HTTP-specific servlets,
which is a base class that provides default implementations of the
interface methods. The servlet context is selected too at the time of
instantiation, allowing the servlet to be served with access to the
application-wide ServletContext that gives it access to key elements of
configuration, keys for parameters, and connectors for applications that
allow for inter-app communication across the application. This context
allows servlets to share information among themselves, read
configuration parameters, and interact with other components of the
web application. This loading and instantiation step culminates in the
servlet instance being created (but not yet ready to be called), ready for
an initialization step. This phase is mainly based on activities managed
by the container, with little developer intervention, but knowing how it
works under the hood is important so that you can implement the design
of your servlets in such a way that they work well in the container
environment, especially when you implement custom classloading or
need to work with complex dependency scenarios.

I1. Initialization Phase

The Initialization Phase signifies the servlet moves away from just
being an instance of a class to an entity that can actually serve requests.
So you know this important moment occurs right after instantiation,
when the servlet container invokes the servlet's init(ServletConfig
config) method, a contract method defined in the javax. servlet. All
servlets must implement this interface, which is a Servlet interface.
The key objective of this step is to provide an opportunity for the
servlet to initialize one-time setup stuff (like loading configuration
values, getting database connections, creating resource pools, etc.) that
will be used during the full lifecycle of the servlet. A ServletConfig
object is passed to the init() method by the container — this object
allows the servlet to access configuration parameters specified in the
deployment descriptor(web. xml) or through annotations. This object
acts as a middle ground between the deployment configuration and the
servlet code itself enabling the developer to extract configuration

details away from the code, thus changing behavior without changing

169
MATS Centre for Distance and Online Education, MATS University

[

\

e

\\\

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

code. In addition, the servlet can get a reference to the ServletContext
object that represents the web application and can be used to get access
to application-wide resources and functionality via the ServletConfig.
It is contra the event if the init() method is invoked at least once in the
life cycle ofaservlet, so controlling the initialization that never repeats
if once the servlet instance will initialize. Because the initialization
phase offers a precious opportunity to create resource-intensive setup
tasks that can be then amortized to all the following request processing,
since many requests may be ultimately processed by this one servlet
instance.

If initialization fails the init() method throws a ServletException,
allowing servlets to signal serious errors that preclude their
functioning. By doing so, it ensures that the servlet doesn't get into
action in a half-baked or bad state, which can lead to erratic application
behavior or even expose a servlet to security threats. Initialization tasks
can include opening database connections, creating connection pools,
initializing caching mechanisms, loading configuration files,
establishing a network connection to a remote service, precomputing
results, and constructing data structures that are used to support the
servlet's primary function. Because the init() method is only called
once, developers need to make sure that all necessary resources are
acquired and configured correctly at this stage, with suitable error
handling in place so that initialization errors can be handled gracefully.
The GenericServlet abstract class implements a default version of the
init(ServletConfig) method, which stores the config object and then
calls a no-argument init() method that subclasses can override to
implement their initialization logic without needing to manage the
ServletConfig reference that will be stored for them. The configuration
management separation pattern helps in the development of servlets by
allowing the configuration management logic to be separate from the
specific business logic implementation. Different approaches can be
taken in the initialization phase to gear up for an application, e.g., lazy
initialization of expensive resources or eager initialization of critical
components, based on the performance needs and resource limits of the
application. The initialization phase ends when the servlet goes into
the service phase awaiting requests from the client.

III. Service Phase - Request Processing

170
MATS Centre for Distance and Online Education, MATS University

Servlet Life Cycle The service methodServlet Life Cycle--The Service
Phase. This step starts when the servlet container receives an
appropriate HTTP request and invokes the servlet's
service(ServletRequest req, ServletResponse res) method, which
details the request and a channel to build the response. For HTTP
servlets (the most usual species in modern web applications), the
container actually invokes the service(HttpServletRequest req,
HttpServletResponse res) method of the HttpServlet class, which
receives HTTP-specific request and response objects populated with
protocol-relevant information. The default implementation of this
method given by HttpServlet checks the HTTP method (GET, POST,
PUT, DELETE... etc.) and calls the relevant method of the servlet:
doGet(), doPost(), doPut(), doDelete()... etc. The pattern of delegation
simplifies the servlet development because developers only need to
implement the methods representing the HTTP methods the application
supports and not handle the dispatching themselves. All of those
method specific handlers receive identical request and response objects
that allows them to inspect any request params, any request headers,
and request content and to produce appropriate responses, including
status codes, response headers, and response body content. The service
phase, unlike initialization and destruction, occurs during the lifetime
of the servlet and will be executed whenever a request is made to the
servlet, either once or multiple times, on different threads, to handle
multiple requests.

Handling requests in a multi-threaded manner is both a performance
gain and a huge development hurdle. Handling concurrent requests
efficiently without creating a new request thread per client per request
is typically accomplished by the servlet container (e.g., Tomcat) by
means of a request context (thread pool) that it manages under the
covers. This model enables a single instance of a servlet to handle
multiple clients simultaneously, thereby significantly improving
scalability compared to creating a separate instance per client. But this
shared-instance model makes it important to focus on thread safety,
because instance variable is shared across all service method
invocations. To avoid the inevitable pitfalls of managing state in this
environment, there are a few strategies: we can use synchronization to
guard shared resources, we can use thread-local storage to store request

specific data, the local variables that are scoped to the thread's stack,

171
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

we can use immutable objects that we can pass around safely, or we can
use session mechanisms to hold client specific state. It also includes
important processing steps that developers have to implement, e.g.
parsing request parameters and headers, mariage or authenticate the
user if applicable, apply the application-specific business logic and
formulate a fitting response, which covers the status code as well as
headers and content. Service phase: Handling errors is pivotal,
exceptions should be caught and converted into HTTP compatible
error representations. Also, the servlet API allows request dispatching
between servlets, which is useful for maintainability, permission
checking, and modularity. During the service phase, performance
considerations of minimizing processing time, good memory usage,
resource management and caching of frequently used data or
computations to decrease response time come into account. We can say
that the service phase exists for as long as the servlet is running,
handling requests until the servlet container calls the destroy phase.
IV. Service Phase - Response Generation

After processing the request during the service phase, servlets need to
create and send appropriate responses back to clients, thus completing
the request-response loop at the core of HTTP interaction. For the
response generation, we use (and are given) the HttpServletResponse
object provided by the container, which includes methods to set status
codes, headers, content type, get output streams or writers to send the
response body, etc. Status codes convey the result of processing
requests—for example, 200 (OK) if a request was processed
successfully, 404 (Not Found) if it tried to access resources that don’t
exist, or 500 (Internal Server Error) if the server failed to handle the
request—and should always be configured before writing any response
content. HTTP headers are used to send additional information about
the data being transmitted along with the response, and they control
how caching should work, attributes of the transport layer, security
rules, and many other things between the client and server; for example,
common headers include Content-Type, Content-Length, Cache-
Control, and Set-Cookie. Using the setContentType() method, the
response content type, or the format of the data (text/html,
application/json, image/jpeg, etc), and the character encoding for
textual content is included on the response to help the client correctly

parse and render the response data. Servlets can generate the response

172
MATS Centre for Distance and Online Education, MATS University

body with either a PrintWriter (obtained by calling getWriter()) (for
character data), or another type of output stream (obtained by calling
getOutputStream()) (for binary data), but not both within the same
response (as this constitutes a violation of the servlet specification and
results in an IllegalStateException being thrown).

The response generation technique largely depends on type and nature
of the application. Servlets directly create markup using print
statements or use template engines like Thymeleaf or FreeMarker to
separate presentation logic from business logic for HTML based
applications, which will delegate rendering JSP (JavaServer Pages)
using request dispatch. In data-centric applications, servlets typically
return JSON or XML payloads, leveraging libraries such as Jackson,
Gson or JAXB to marshal/unmarshal Java beans to/from these
serialized representations. Binary data lowers content—Ilike PDF,
images, or downloadable files—requires some business and particular
consideration, including content kind, content disposition headers, and
safe streaming strategies to handle massive files effectively. Complex
response patterns are now common in web applications, such as partial
updates for AJAX-based interfaces, streaming for large data sets or
real-time updates, compression to reduce the bandwidth footprint, and
content negotiation to return different representations depending on
what the clients can or want. Caching directives are another important
part of response generation, allowing servlets to hint to clients and
intermediaries about whether contents are fresh and reusable, reducing
load and improving performance. Likewise, the ability to manage
cookies via the Cookie class and the addCookie() method allows
servers to track sessions and maintain stateful interactions through the
inherently stateless HTTP protocol. Error handling during response
generation needs to be treated differently, since exceptions raised after
part of the response was delivered can cause corrupted or partial content
to be delivered; typically proper error handling involves both buffer
management and error pages mapped in the deployment descriptor.
Once the response has been generated, the servlet container takes care
of the underlying work of sending the response back over the network
connection and getting ready for the next request. While generating the
response, servlet must be aware of performance implications, such as

memory consumed when generating large response, buffered output to

173
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

tradeoff between memory usage and responsive, and freeing resource
associated with response to avoid leak when operating in high volume.
V. Destruction Phase

Although the destruction phase marks the last stage in the servlet life
cycle, it takes place when a servlet needs to be taken out of service by
the servlet container. This phase is invoked under a variety of
situations, such as when the web application is being undeployed or
redeployed or if the servlet container is shutting down gracefully, or
when the container needs to recover resources. The service phase will
be invoked thousands or millions of times in the lifetime of the servlet
(and will also be executed on a separate thread for each request), but
the destruction phase will be executed (like the initialization phase) a
guaranteed — exactly once — for each servlet instance that is created.
This container indicates the start of this phase by invoking the destroy()
method on the servlet, which is a contract method written in javax.
servlet. This interface allows servlets to be given the chance to do some
cleanup work when the servlet is being taken out of service. The
destroy() method is primarily responsible for releasing resources —
closing database connections, terminating network connections,
shutting down thread pools, releasing file handles, and freeing any
other system resources that the initialized acquired during the
initialization phase or in the servlet's operational life. The cleanup also
prevents resource leaks that might exist beyond the servlet lifetime,
eventually leading to performance degradation or server instability.
Moreover, the destruction phase allows you to persist state information
that must outlive the current application instance (for example, saving
accumulated statistics, unsaved data, or configuration changes to
permanent storage).

During the destruction phase, the servlet container guarantees a
graceful shutdown. It guarantees that before calling destroy() all the
threads currently running in the service method must complete their
processing or are given a reasonable time to do so. That is, the destroy()
method will not fire until ALL service method invocations have exited
or a container-specific timeout has occurred. After calling destroy(),
VI. Concurrency and Thread Safety

Managing concurrency is one of the biggest challenges in servlet
development because a servlet by design pattern, is a single instance

that is invoked by multiple clients (in parallel). Instead of the common

174
MATS Centre for Distance and Online Education, MATS University

approach in programming model where each client request receives its
own application instance, the servlet container follows the singleton
approach with multi-threaded execution, leading to a shared
application space with the necessity of mitigating the risks associated
with shared state in a multi-threaded environment. Hint: When a servlet
container (like an application server or web server) handles multiple
concurrent requests directed at the same servlet, it may forward these
requests in parallel by calling the servlet's service() method in separate
threads. The potentially huge performance advantages derived from
this concurrency model comes at the expense of a shared state with
respect to instance variables (fields) of the servlet as it is instantiated
per application rather than per request. Therefore, at the servlet instance
level, every instance variable is at risk of race conditions, data
corruption, and other concurrency problems unless appropriately
safeguarded. Concurrency can be handled in servlets in four ways:
making your servlet thread-safe by synchronizing yourself with your
critical section code or maintaining an immutable state, using local
variables instead of instance variables — since local variables are
thread-local automatically as they are created on the stack of the thread,
using the thread-local storage pattern or ThreadLocal class to persist
thread-specific state, or using an interface known as
SingleThreadModel (which has been deprecated for now in at least the
last couple of servlet specifications) which allows the web container to
enforce that only one thread accesses a servlet instance at any time, so
that the container needs to keep a pool of servlet instances.

For servlets that need to retain state between requests, certain
concurrent programming strategies are helpful. Synchronization is the
most simple solution to the problem, using Java's synchronized
keyword or explicit locks provided in java. util. concurrent. ensure that
only a single thread can execute a specific part of code or a shared
resource at a time and can be found in the locks package.
Synchronization, on the other hand, comes with performance overhead
in the forms of thread contention and possible deadlocks and so is only
appropriate for short-lived, sparse operations. Many concurrency
scenarios can be elegantly addressed using immutable objects [Java
Concurrency] which can safely be shared across threads, without
synchronization, after they've been built; this is the case for things like

configuration data or pre-computed results that will not change during

175
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
ready for life

Notes

servlet execution. Java.Core. Concurrent.Collections classes util.
implementations in the java.util.concurrent package «——
ConcurrentHashMap, CopyOnWriteArrayList, and BlockingQueue
implementations, for example—provide thread-safe alternatives to the
standard collections with better performance characteristics than
explicitly synchronized collections. The HttpSession API is designed
to handle user-specific state by maintaining a container-managed
thread-safe association between data and a particular client session
instead of relying on a servlet to do so, which further delegates the
thread-safety concern to the container. Other than these basic
techniques, servlets supporting significant concurrent traffic will often
use more advanced patterns like the read-write lock pattern for
resources that are expensive to acquire but that are heavily read and
seldom written, double-check locking for lazily initialized expensive
resources, or compare-and-swap operations provided by atomic classes
such as Atomiclnteger and AtomicReference lock-free updates to
trivial values. Testing servlets for thread safety is particularly difficult,
needing specialized tools such as stress testing frameworks, static
analysis tools to catch possible concurrency issues or explicit
concurrency testing frameworks that can generate managed race
conditions. Servlet concurrency can be achieved by following certain
principles and practices in your application development lifecycle.
VII. Advanced Life Cycle Considerations

In addition to the basic lifecycles stages, there are various advanced
aspects that heavily influence servlet functioning and efficiency in real-
world applications. Servlet initialization parameters is a method of
configuring servlets without changing code so the deployment can set
it to whatever it wants. These parameters can be defined through the
element in web. xml or the initParams field of the @WebServlet
annotation and accessed during initialization phase via the
ServletConfig. getlnitParameter() method. This configuration construct
fosters the separation of code from configuration, allowing the same
piece of servlet code to run differently on different environments. Load-
on-startup settings dictate exactly when servlet initialization happens,
optimizing startup time and request latency. Servlets with positive
integers in their element or loadOnStartup annotation attribute are
constructed at container startup in increasing numerical order so that

critical servlets are in place when the application first receives traffic,

176
MATS Centre for Distance and Online Education, MATS University

while servlets that lack this directive or have negative values construct
lazy on first request. This helps a lot for servlets which have expensive
initialization processes, and the servlets provides low-level or any
services which are required by other components. Error handling is
another high-level concept that straddles the servlet life cycle,
including both programmatic exception handling in servlet methods
and declaratively defined error page mappings in the deployment
descriptor, which direct specific types of exception or HTTP error
codes to dedicated error-handling servlets or JSP pages, thereby
allowing for consistent error presentation across the application while
allowing for generic information to be hidden that a developer can use

to troubleshoot.

Servlet context listeners allow for the management of an application's
life cycle, passing the life cycle management from individual servlets
to the application level, by implementing the ServletContextListener
interface and being notified of an applications startup and shutdown
through the contextlnitialized() and contextDestroyed() methods
respectively. These listeners usually make application-wide
initializations and clean-ups like creating database connection pools,
logging configuration, Caches preloading, JDBC drivers registration,
In a similar way, session listeners — that is, classes that implement the
HttpSessionListener, HttpSessionAttributeListener, and
HttpSessionBindingListener interfaces — allow code to be executed
when a session is created, destroyed, and when its attributes change:
useful for keeping track of users, managing resources, and for security
monitoring purposes. The asynchronous processing, which was
introduced in the Servlet 3.0 specification, changes the conventional
request-response life cycle by letting servlets perform long-running
operations while freeing the container's request-processing thread. By
calling request. Either doAllInOneThread() of startAsync() method in
some servlet, where the servlet get the AsyncContext object, which
disassociates the request and response object from the current thread,
allowing original thread for returning to the container’s thread pool
while processing is continued on another thread, and may be end much
later. This pattern is useful for long-running operations, server-push
technologies, and non-blocking I/O system integration. The servlet

specification additionally defines resource management through

177
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

annotations including @Resource, @Resources, and
@PostConstruct/@PreDestroy, which enables resource injection and
life cycle method designation that incorporates with the container's
higher resource management amenities.

Production deployments add a number of other life cycle
considerations. For example, many containers will be able to reload
servlets, so that if a servlet class changes, the servlet can be detected
and getting going through the life cycle of destruction and initialization
without a restart of the application, which can be useful during
development but can sometimes be turned off in production for
performance reasons. One of the special challenges with clustering
environments, where different physical or virtual machines may run
multiple servlet containers: session replication, distributed caching,
synchronized initialization have to be considered because servlets aren't
singletons, and their life cycle management should be handled
specifically. While supplying a servlet involves specifying which
bytecode will be executed, there are security concerns that intersect the
servlet life cycle that you need to include in your design, including role-
based access controls that restrict which users can access which
servlets, programmatic security checks that you perform in servlet
methods, and secure initialization that protects sensitive configuration
data. Lifecycle performance tuning through connection pooling at
initialization, request dispatching during the service phase, response
caching between requests, and resource management at destruction.
Most servlet life cycle monitoring and debugging relies on recording
important transitions into a log file, container-specific utilities (such as
the one that tracks servlet life cycle and state), or JMX (Java
Management Extensions), exposing servlet metrics and state data to
outboard monitoring systems. Having advanced the understanding of
the servlets life cycle, developers can ideally design servlets for
correctness, efficiency, scalability, enterprise integration, and optimal
operation in hard times.

With Java EE, a specified life cycle for the servlet engines gives a
structured life cycle framework — characterized in tall levels below.
By thoroughly understanding and appropriately utilizing the
functionalities of each phase, developers are able to craft resilient,
performant, and maintainable web applications that make effective use

of the servlet container's services and adhere to correct resource

178
MATS Centre for Distance and Online Education, MATS University

management and concurrency control protocols. However, a deep
understanding of servlet life cycle is always essential to Java web
application development regardless of being simple web applications
or complex enterprise solutions.

3.3.8 Reading Form Data from Servlet

Enter user input One of the most basic tasks that are performed in
web applications. [To know more JAVA SERVLETS] — How To
Handle HTML Forms In Servlets? Knowing how to retrieve, validate
and then use this data effectively is one of the key parts of building
interactive web applications.

3.3.8.1 Understanding HTTP Form Submission

So, when someone fills a form on a webpage, the data is sent to a
server with an HTTP request. The form data can be sent in one of two
ways, depending on how the form is configured:

GET Method: The form data is added to the URL as a query
string parameter. This is usable with non-sensitive data and when
you may want to bookmark the outcome.

POST Method: As the form data is sent as part of the HTTP
request body, it is not visible in the URL. Sensitive information,
large amounts of data, or a request that might mutate server state
should be passed via the body by this method The HTML markup
for these form types looks like this:

<!-- GET method form -->

<form action="processForm" method="get">

<input type="text" name="username">

"

<input type="submit" value="Submit">

</form>

<!-- POST method form -->

<form action="processForm" method="post">

<input type="password" name="password">

<input type="submit" value="Submit">

</form>

3.3.8.2 Extracting Form Data in Servlets

There are some methods in Java servlets for extracting the form data.
The main methods are defined in the HttpServletRequest interface,
and are slightly different depending on whether the data was
submitted using GET or POST.

179
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY
ready for life.

aTs)

i

(\._/_./\
By
g .
UNIVERSITY
ready for life

Notes Basic Parameter Retrieval
getParameter(String name) is the most common and used method
which receives the parameter name and returns the value associated

with the parameter name as a String

@WebServlet("/processForm")

public class FormProcessorServlet extends HttpServlet {
protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

// Retrieve a single parameter value

String username = request.getParameter("username");

// Process the username
if (username != null && !username.isEmpty()) {
// Valid username provided
response.getWriter().println("Hello, " + username + "!");
} else {
// No username or empty username

response.getWriter().println("Hello, guest!");

protected void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, [OException {
/I For POST requests, we can use the same getParameter method

doGet(request, response);

}
Handling Multiple Values

We use getParameterValues(String name) to get multiple values
(when we have checkbox or multi-select list in our form, with the
same name) as a String array.:

@WebServlet("/processInterests")

public class InterestProcessorServlet extends HttpServlet {

180
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

protected void doPost(HttpServletRequest request, Notes
HttpServletResponse response)

throws ServletException, IOException {

// Retrieve multiple values for the same parameter

String[] interests = request.getParameter Values("interest");

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<htmI><body>");
out.println("<h2>Your Selected Interests:</h2>");

if (interests != null && interests.length > 0) {
out.println("");
for (String interest : interests) {
out.println("" + interest + "");
}
out.println("");
} else {
out.println("<p>No interests selected.</p>");

out.println("</body></htmI>");

}

Retrieving All Parameters

To retrieve all the parameters that were passed in with a form, use

getParameterNames() to obtain an enumeration of the parameter

names, then iterate through them to get the values of each parameter:

@WebServlet("/displayAllParams")

public class ParameterDisplayServlet extends HttpServlet {
protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, [OException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

181
MATS Centre for Distance and Online Education, MATS University

4 M
UNIVERSITY
ready for life

Notes

out.println("<html><body>");

out.println("<h2>All Form Parameters:</h2>");
out.println("<table border='1">");
out.println("<tr><th>Parameter Name</th><th>Parameter

Value(s)</th></tr>");

Enumeration<String> paramNames =

request.getParameterNames();

while (paramNames.hasMoreElements()) {
String paramName = paramNames.nextElement();

out.println("<tr><td>" + paramName + "</td><td>");

String[] paramValues =
request.getParameterValues(paramName);
if (paramValues.length == 1) {
String paramValue = paramValues[0];
if (paramValue.length() == 0) {
out.println("<i>No Value</i>");
} else {
out.println(paramValue);
b
} else {
out.println("");
for (String paramValue : paramValues) {
out.println("" + paramValue + "");
b
out.println("");
b
out.println("</td></tr>");,
b
out.println("</table>");

out.println("</body></htmI>");

protected void doPost(HttpServletRequest request,

HttpServletResponse response)

182
MATS Centre for Distance and Online Education, MATS University

throws ServletException, IOException {
doGet(request, response);

}
Using the Parameter Map

For more structured parameter handling, getParameterMap() returns a
Map containing parameter names as keys and parameter values as
String arrays:
@WebServlet("/processMapForm")
public class ParameterMapServlet extends HttpServlet {

protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

Map<String, String[]> parameterMap =
request.getParameterMap();

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<htmI><body>");

out.println("<h2>Form Data Summary:</h2>");

// Process all parameters using the map
for (Map.Entry<String, String[]> entry :
parameterMap.entrySet()) {
String paramName = entry.getKey();
String[] paramValues = entry.getValue();

Out.println("<p><str0ng>" + paramName + "I n);

if (paramValues.length == 1) {
out.println(paramValues[0]);
} else {
out.println("
");
for (String value : paramValues) {
out.println("- " + value + "
");

183
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

i)

[

gmn'r

W

UNIVERSITY
ready for life

Notes

out.println("</p>");

out.println("</body></htmI>");

b

3.3.9 Character Encoding Considerations

To retrieve all the parameters that were passed in with a form, use

getParameterNames() to obtain an enumeration of the parameter

names, then iterate through them to get the values of each parameter:

@WebServlet("/internationalForm")

public class InternationalFormServlet extends HttpServlet {
protected void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

/I Set character encoding before retrieving parameters
request.setCharacterEncoding("UTF-8");

/I Now retrieve parameters with proper encoding
String name = request.getParameter("name");

String address = request.getParameter("address");

/I Set response encoding
response.setContentType("text/html; charset=UTF-8");

PrintWriter out = response.getWriter();

out.println("<htmI><body>");
out.println("<h2>International Form Data:</h2>");
out.println("<p>Name: " + name + "</p>");
out.println("<p>Address: " + address + "</p>");
out.println("</body></htmI>");

b
3.3.10 Processing Different Form Data Types

184
MATS Centre for Distance and Online Education, MATS University

Form data is always transmitted as strings, but your application may

need to convert these strings to appropriate data types for processing.

Type Conversion
If you want to handle the parameters in a more structured way, you
can use getParameterMap(): It returns a Map that has parameter

names as keys and parameter values as String arrays

@WebServlet("/calculateTotal")

public class ShoppingCartServlet extends HttpServlet {
protected void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

try {
// Convert string to integer

int quantity =

Integer.parselnt(request.getParameter("quantity"));

/I Convert string to double
double price =

Double.parseDouble(request.getParameter("price"));

// Convert string to boolean
boolean 1sGift =

Boolean.parseBoolean(request.getParameter("gift"));

// Perform calculations
double total = quantity * price;
if (isGift) {
total += 5.00; // Gift wrapping fee

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html><body>");
out.println("<h2>Order Summary</h2>");
out.println("<p>Quantity: " + quantity + "</p>");

185
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

4 M
UNIVERSITY
ready for life

Notes out.println("<p>Price per unit: $" + String.format("%.2f",
price) + "</p>");
out.println("<p>Gift wrapping: " + (isGift ? "Yes" : "No") +
"<Ip>");
out.println("<p>Total: §" + String.format("%.2{", total) +
"<Ip>");
out.println("</body></htmI>");

} catch (NumberFormatException e) {

// Handle parsing errors

response.sendError(HttpServletResponse.SC_ BAD REQUEST,

"Invalid number format in form data");

}

b
Handling Date Inputs

Converting string date inputs to java.util.Date objects:

@WebServlet("/processDate")

public class DateProcessorServlet extends HttpServlet {
protected void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, [OException {
String dateString = request.getParameter("eventDate");

response.setContentType("text/html");

PrintWriter out = response.getWriter();

try {
SimpleDateFormat dateFormat = new

SimpleDateFormat("yyyy-MM-dd");

Date eventDate = dateFormat.parse(dateString);

// Calculate days until event
long daysDiff = (eventDate.getTime() - new Date().getTime())
/(1000 * 60 * 60 * 24),

186
MATS Centre for Distance and Online Education, MATS University

out.println("<htmI><body>");

out.println("<h2>Event Information</h2>");

out.println("<p>Event Date: " + dateFormat.format(eventDate)
+</p>";

out.println("<p>Days until event: " + daysDiff + "</p>");

out.println("</body></htmI>");

} catch (ParseException e) {
out.println("<htmI><body>");
out.println("<h2>Error</h2>");
out.println("<p>Invalid date format. Please use yyyy-MM-dd
format.</p>");
out.println("</body></htmI>");

3.3.11 Handling File Uploads
For flowing files, the getParameter() methods of the standard are not
enough. Instead, you must refer to the Part API added in Servlet 3.0
or third-party library such as Apache Commons FileUpload.
Using Servlet 3.0 Part API
@WebServlet("/fileUpload")
@MultipartConfig(

fileSizeThreshold = 1024 * 1024, // 1 MB

maxFileSize = 1024 * 1024 * 10, // 10 MB

maxRequestSize = 1024 * 1024 * 50) // 50 MB
public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, [OException {

/I Get the file part from the request
Part filePart = request.getPart("file");

/I Extract file information
String fileName = getSubmittedFileName(filePart);

187
MATS Centre for Distance and Online Education, MATS University

)

[

UNIVERSITY

ready for lfe......

Notes

4 M
UNIVERSITY
ready for life

Notes long fileSize = filePart.getSize();
String contentType = filePart.getContentType();

// Define the location to save the file
String uploadPath =
getServletContext().getRealPath("/uploads");
File uploadDir = new File(uploadPath);
if (luploadDir.exists()) {
uploadDir.mkdir();

// Save the file
filePart.write(uploadPath + File.separator + fileName);

// Process other form fields

String description = request.getParameter("description");

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<htmI><body>");

out.println("<h2>File Upload Summary</h2>");

out.println("<p>File Name: " + fileName + "</p>");

out.println("<p>File Size: " + fileSize + " bytes</p>");

out.println("<p>Content Type: " + contentType + "</p>");

out.println("<p>Description: " + description + "</p>");

out.println("<p>File saved successfully to: " + uploadPath +
"<Ip>");

out.println("</body></htmI>");

/I Helper method to extract the file name from the Part header
private String getSubmittedFileName(Part part) {
String contentDisp = part.getHeader("content-disposition");
String[] items = contentDisp.split(";");
for (String item : items) {
if (item.trim().startsWith("filename")) {

188
MATS Centre for Distance and Online Education, MATS University

return item.substring(item.indexOf("=") + 2, item.length() -

1);

nn,

return "

¥
3.3.12 Form Data Validation

Always put security first when dealing with form data. Here are
some crucial security practices:
@WebServlet("/registerUser")
public class UserRegistrationServlet extends HttpServlet {
protected void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

String username = request.getParameter("username");
String email = request.getParameter("email"),

String password = request.getParameter("password");
String confirmPassword =

request.getParameter("confirmPassword");
List<String> errors = new ArrayList<>();
// ' Validate username

if (username == null || username.trim().length() < 3) {

errors.add("Username must be at least 3 characters long");

// Validate email

if (email == null || lemail.matches("\[\w-\.J+@([\W-]+\)+ \w-

1{2,458") {

errors.add("Please enter a valid email address");

// Validate password
if (password == null || password.length() <8) {

errors.add(""Password must be at least 8 characters long");

189
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

[

gmn'r

i)

W

UNIVERSITY
ready for life

Notes

// Confirm passwords match
if (!password.equals(confirmPassword)) {
errors.add("Passwords do not match");

response.setContentType("text/html");

PrintWriter out = response.getWriter();
out.println("<htmI><body>");

if (errors.isEmpty()) {
// All validations passed, process the registration
out.println("<h2>Registration Successful</h2>");
out.println("<p>Username: " + username + "</p>");
out.println("<p>Email: " + email + "</p>");
// In a real application, you would save the user to a database
here
} else {
// ' Validation errors found
out.println("<h2>Registration Failed</h2>");
out.println("<p>Please correct the following errors:</p>");
out.println("");
for (String error : errors) {
out.println("" + error + "</11>");
h
out.println("");
out.println("<p>Go back
and try again</p>");

}

out.println("</body></htmI>");

3.3.13 Security Considerations

190
MATS Centre for Distance and Online Education, MATS University

)

[

UNIVERSITY

ready for lfe......

Always put security first when dealing with form data. Here are Notes
some crucial security practices:
Input Sanitization
Note: Always sanitize user input to avoid security problems such as
XSS attacks:
@WebServlet("/commentProcess")
public class CommentProcessorServlet extends HttpServlet {

protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

String name = request.getParameter("name");

String comment = request.getParameter("comment");

// Sanitize input to prevent XSS attacks
name = sanitizeInput(name);

comment = sanitizelnput(comment);

// Process the sanitized data
response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<htmI><body>");
out.println("<h2>Comment Received</h2>");
out.println("<p>From: " + name + "</p>");
out.println("<p>Comment: " + comment + "</p>");
out.println("</body></htmI>");

private String sanitizelnput(String input) {
if (input == null) {

nn,

return ;

// Replace potentially dangerous characters with their HTML
entities
String sanitized = input
replace("&", "&")

191
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

W

UNIVERSITY
ready for life

Notes

replace("<", "<")
replace(">", ">")
replace("\"", """)
replace("", "'")
replace("/", "/");

return sanitized;

b

CSREF Protection

Implement Cross-Site Request Forgery (CSRF) protection by using

tokens:

@WebServlet("/secureForm")
public class SecureFormServlet extends HttpServlet {

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

/I Generate a CSRF token
String csrfToken = generateCSRFToken();

// Store the token in the session

HttpSession session = request.getSession();

session.setAttribute("csrfToken", csrfToken);

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html><body>");
out.println("<h2>Secure Form</h2>");

out.println("<form action="processSecureForm'

method='post™>");

out.println("Name: <input type="text' name='name">
");

out.println("Email: <input type='email' name='email™>
");

// Include the CSRF token as a hidden field

out.println("<input type="hidden' name='csrfToken' value="" +

csrfToken + "">");

out.println("<input type='submit' value='Submit™>");

192
MATS Centre for Distance and Online Education, MATS University

out.println("</form>");
out.println("</body></htmI>");

private String generateCSRFToken() {
/I Generate a random token (in a real application, use a
cryptographically secure method)
return UUID.randomUUID().toString();

@WebServlet("/processSecureForm")

public class SecureFormProcessorServlet extends HttpServlet {

protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

// Retrieve the submitted token

String submittedToken = request.getParameter("csrfToken");

// Retrieve the stored token from the session

HttpSession session = request.getSession();

String storedToken = (String) session.getAttribute("csrfToken");

response.setContentType("text/html");

PrintWriter out = response.getWriter();

// ' Validate the CSRF token
if (storedToken !=null &&
storedToken.equals(submittedToken)) {
// ' Token is valid, process the form
String name = request.getParameter("name");

String email = request.getParameter("email");

out.println("<htmIl><body>");

out.println("<h2>Form Processed Successfully</h2>");

out.println("<p>Name: " + name + "</p>");

out.println("<p>Email: " + email + "</p>");

193
MATS Centre for Distance and Online Education, MATS University

)

[

UNIVERSITY

ready for lfe......

Notes

out.println("</body></htmI>");

// Invalidate the token after use (one-time use)
session.removeAttribute("csrfToken");
} else {

// Invalid or missing token, potential CSRF attack

response.setStatus(HttpServletResponse.SC_FORBIDDEN);

out.println("<htmI><body>");

out.println("<h2>Error: Invalid Request</h2>");

out.println("<p>The form submission could not be processed
due to security concerns.</p>");

out.println("</body></htmI>");

}

3.5 Handling Client Request and Generating Server Response

Java servlets operate on the fundamental principle of handling client
requests and providing responses. This section walks through all
aspects of this request-response cycle, from understanding what an
HTTP protocol is to generating dynamic content based on user input..
3.3.13.1 Understanding the HTTP Request-Response Cycle

In order to understand the specifics of how to handle requests in
servlets, we need to learn the HTTP request-response cycle::

Client Request: The client (typically a web browser) sends an HTTP
request to the server.

Server Processing: The server processes the request, which may
involve:

Routing the request to the appropriate servlet

Extracting request parameters

Processing business logic

Accessing databases or external services

Server Response: The server generates an HTTP response and sends
it back to the client.

Client Rendering: The client processes the response (e.g., rendering
HTML, executing JavaScript).

In Java servlets, this cycle is represented by:

The HttpServletRequest object, which encapsulates the client request

194
MATS Centre for Distance and Online Education, MATS University

The HttpServletResponse object, which provides methods to generate
the response
3.3.13.2 Analyzing the Request
In order to handle an incoming request we need to understand it.
Servlets offer several ways to get information from the request.
Request Headers
HTTP headers are metadata about the request. Using the getHeader()
method you can fetch headers equal to:
@WebServlet("/requestInfo")
public class RequestInfoServlet extends HttpServlet {

protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

out.println("<htmI><body>");
out.println("<h2>Request Information</h2>");

/I Get basic request information

out.println(""<h3>Basic Info</h3>");

out.println("<p>Request Method: " + request.getMethod() +
"<fp>");

out.println("<p>Request URI: " + request.getRequestURI() +
"<fp>");

out.println("<p>Protocol: " + request.getProtocol() + "</p>");

/I Get request headers

out.println("<h3>Request Headers</h3>");
out.println("<table border="1">");
out.println("<tr><th>Header Name</th><th>Header

Value</th></tr>");

Enumeration<String> headerNames =
request.getHeaderNames();
while (headerNames.hasMoreElements()) {

String headerName = headerNames.nextElement();

195
MATS Centre for Distance and Online Education, MATS University

[

e

\ \\\

UNIVERSITY

ready for lfe......

Notes

i

aTs)

(na

UNIVERSITY
ready for life

Notes

String headerValue = request.getHeader(headerName);
out.println("<tr><td>" + headerName + "</td><td>" +
headerValue + "</td></tr>");

b

out.println("</table>");

out.println("</body></htmI>");

b

Cookie Information
Cookies sent by the client can be retrieved using the getCookies()
method:
@WebServlet("/cookielnfo")
public class CookielnfoServlet extends HttpServlet {

protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html><body>");
out.println(""<h2>Cookie Information</h2>");

Cookie[] cookies = request.getCookies();

if (cookies !=null && cookies.length > 0) {
out.println("<table border="1">");
out.println("<tr><th>Cookie Name</th><th>Cookie

Value</th></tr>");

for (Cookie cookie : cookies) {
out.println("<tr>");
out.println("<td>" + cookie.getName() + "</td>");
out.println("<td>" + cookie.getValue() + "</td>");

out.println("</tr>");

196
MATS Centre for Distance and Online Education, MATS University

out.println("</table>");

} else {
out.println("<p>No cookies found in this request.</p>");

out.println("</body></htmI>");

}

Session Information

HTTP sessions allow you to track user state across multiple requests:

@WebServlet("/sessionlnfo")
public class SessionInfoServlet extends HttpServlet {

protected void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

/I Get or create a session
HttpSession session = request.getSession();

// ' Update session access counter
Integer accessCount = (Integer)
session.getAttribute("accessCount");
if (accessCount == null) {
accessCount = 1;
} else {
accessCount++;

}

session.setAttribute("accessCount", accessCount);

out.println("<html><body>");
out.println("<h2>Session Information</h2>");

out.println("<p>Session ID: " + session.getld() + "</p>");

out.println("<p>Session Creation Time: " + new

Date(session.getCreationTime()) + "</p>");

197
MATS Centre for Distance and Online Education, MATS University

)

UNIVERSITY

ready for lfe......

[

Notes

gmn'r

[

UNIVERSITY
ready for life

Notes

out.println("<p>Last Accessed Time: " + new
Date(session.getLastAccessedTime()) + "</p>");

out.println("<p>Is New Session: " + session.isNew() + "</p>");

out.println("<p>Session Access Count: " + accessCount +
"</p>");

out.println("</body></htmI>");

b

Request Attributes
Servlets can set and retrieve attributes within each request scope,
which is useful for storing information relevant to those components.:
@WebServlet("/setAttributes")
public class AttributeSetterServlet extends HttpServlet {

protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

/I Set some request attributes
request.setAttribute("username", "john_doe");
nn

request.setAttribute("userRole", "admin");

request.setAttribute("lastLogin", new Date());

// Forward the request to another servlet to display the attributes
RequestDispatcher dispatcher =
request.getRequestDispatcher("/displayAttributes");

dispatcher.forward(request, response);

@WebServlet("/displayAttributes")
public class AttributeDisplayServlet extends HttpServlet {
protected void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

198
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

out.println("<htmI><body>");
out.println("<h2>Request Attributes</h2>");

/I Retrieve and display attributes

String username = (String) request.getAttribute("username");
String userRole = (String) request.getAttribute("userRole");
Date lastLogin = (Date) request.getAttribute("lastLogin");

out.println("<p>Username: " + username + "</p>");
out.println("<p>User Role: " + userRole + "</p>");

out.println("<p>Last Login: " + lastLogin + "</p>");

out.println("</body></htmI>");

}
1.3.13.3 Generating the Response

Now, servlets must provide a proper reply after handling the request.
You can create different types of responses using
HttpServletResponse object.
Setting Response Headers
Response headers provide metadata about the response:
@WebServlet("/setHeaders")
public class HeaderSetterServlet extends HttpServlet {

protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

/I Set response headers

response.setContentType("text/html");

response.setHeader("Cache-Control", "no-cache, no-store, must-
revalidate");

response.setHeader("Pragma", "no-cache");

response.setHeader("Expires", "0");

response.setHeader("Custom-Header", "Custom Value");

PrintWriter out = response.getWriter();

199
MATS Centre for Distance and Online Education, MATS University

(\._/_./\
By
g .
UNIVERSITY
ready for life

Notes out.println("<htmI><body>");
out.println("<h2>Custom Headers Set</h2>");
out.println("<p>This response includes custom HTTP headers
that control caching and demonstrate header setting.</p>");
out.println("</body></htmI>");

b

Setting Cookies

Cookies allow you to store small pieces of data on the client:

@WebServlet("/setCookie")

public class CookieSetterServlet extends HttpServlet {
protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

// Create a new cookie

"nons

Cookie userCookie = new Cookie("username", "john_doe");

/I Configure the cookie

userCookie.setMaxAge(24 * 60 * 60); // Expires in 24 hours

userCookie.setPath("/"); // Available across the entire
application

userCookie.setHttpOnly(true); // Not accessible via
JavaScript

userCookie.setSecure(true); // Only sent over HTTPS

/I ' Add the cookie to the response

response.addCookie(userCookie);

/I Create a session tracking cookie

Cookie trackingCookie = new Cookie("sessionTracker",
UUID.randomUUID().toString());

trackingCookie.setMaxAge(30 * 60); // Expires in 30 minutes

response.addCookie(trackingCookie);

response.setContentType("text/html");

PrintWriter out = response.getWriter();

200
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

out.println("<htmI><body>"); Notes
out.println("<h2>Cookies Set</h2>");
out.println("<p>The following cookies have been set:</p>");
out.println("");
out.println("username: john_doe (expires in 24 hours)</1i>");
out.println("sessionTracker: " + trackingCookie.getValue() +
" (expires in 30 minutes)</1i>");
out.println("");
out.println("</body></htmI>");

¥
HTTP Status Codes

Setting the appropriate HTTP status code is important for proper
client-server communication:
@WebServlet("/statusCodes")
public class StatusCodeDemoServlet extends HttpServlet {
protected void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

String codeParam = request.getParameter("code");

if (codeParam !=null) {

try {
int statusCode = Integer.parselnt(codeParam);

switch (statusCode) {
case 200:
response.setStatus(HttpServletResponse.SC_OK);
sendResponse(response, "200 OK", "The request has
succeeded.");
break;
case 201:

response.setStatus(HttpServletResponse.SC_CREATED);
sendResponse(response, "201 Created", "The request
has been fulfilled and a new.

201
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

3.3.13.4 Handling Cookies

Cookies are one of the core technologies that allow managing state on
web apps. One of the challenges developers who use HTTP protocol
face is that it is stateless. Cookies became the elegant solution to this
problem, peas in a pod of data that could be stored on the client’s side
and sent with every request. Specifically in Java web development,
within the Servlets and JSP framework, cookies miss an elegant way to
persist user settings, track user's activities, and maintain the state of a
user's session. In a way, a cookie is just a small text file, which is stored
in the client browser. When a user visits a site, the server can send one
or more cookies to that user's browser, which the browser keeps
locally. When using the same server on additional requests, the
browser automatically adds these cookies to the request headers. This
mechanism enables the server to identify returning users and pull up
previously stored information without relying on users needing to
introduce themselves on each and every page request. The Java Servlet
API provides a rich set of classes and methods that can be used to
create, modify, and retrieve cookies. The main class for cookie
operations is javax. servlet. http. Cookie: This is just a handy way to
encapsulate the name/value pairs that make up a cookie. This API
allows the Java developer to work with cookies in their web
applications, providing a rich, personalized experience for the user.
Cookies offer a key feature in modern web development, allowing
websites to remember user preferences, store their shopping cart data,
implement authentication mechanisms, and facilitate personalized
content delivery. But in recent years with GDPR, the CCPA and
growing focus on user privacy, the standard use of cookies by
developers means they have to be careful about how they implement
cookie-based solutions. We will cover the technical details related to
cookies in Java web applications but also some important concerns
around privacy, security, and best practices.

This article will cover deeper cookie management — the attributes used
to specify cookie behaviour, how cookies are sent and received,
removing cookies and the benefits and drawbacks of using cookies. We
will also delve into how cookies fit into larger session management
paradigms, discussing the use of cookies, session tracking mechanisms,
and their achievements to provide all-encompassing state preservation
in Java web applications.

202
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

3.3.14 Handling Cookies in Java Web Applications: The Notes
javaxz.servlet.http package in Java's Servlet API enables powerful
cookie support. servlet. http. Cookie class. In this section you study
core functionality for creating, sending and receiving, and
manipulating cookies in Java web applications.

3.3.15 Creating and Sending Cookies: In Java, a cookie can be
created easily. The Cookie class's constructor takes the cookie name
and cookieValue as string parameters. You create a cookie, and then
send it to the client browser through the response. addCookie()
method. Here is the process translated into an example::

// Create a new cookie

Cookie userCookie = new Cookie("username", "john doe");

/I Set cookie properties (optional)
userCookie.setMaxAge(60 * 60 * 24 * 30); // Expires in 30 days (in

seconds)

userCookie.setPath("/"); // Available across the entire
application

userCookie.setSecure(true); // Only sent over HTTPS
userCookie.setHttpOnly(true); // Not accessible via JavaScript

/I Send the cookie to the client

response.addCookie(userCookie);

Here, we have created a cookie with a name "username" and value
"john_doe". Then, we set multiple properties and set it to send it to
client browser. These attributes determine the cookie's behavior, such

as its duration, accessibility, and security properties

203
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

3.3.16 Receiving and Reading Cookies

All cookies for the domain are included in request headers when a
client does a request to the server. You retrieve these cookies in a
servlet, by using the request. getCookies() method which return array
of Cookie objects. The code below shows how to obtain and read the
cookies:

// Get all cookies from the request

Cookie[] cookies = request.getCookies();

// Check if cookies exist
if (cookies !=null) {
// Tterate through all cookies
for (Cookie cookie : cookies) {
// Retrieve the cookie name and value
String name = cookie.getName();

String value = cookie.getValue();

// Process the cookie based on its name

if ("username".equals(name)) {
// Found the username cookie
System.out.println("Welcome back, " + value);
break;

}

The above code iterates through all cookies received in the request,
searching for a specific cookie by name. Once found, the cookie's
value can be retrieved and used to customize the response or make
application decisions.

3.3.17 Modifying Cookies

The above code loops through all the cookies that were sent with the
request and looks for one with a specific name. When located, the
cookie value can be accessed, and the data can be used to tailor the
response or to decide on actions to take within the application:

// Get all cookies from the request

Cookie[] cookies = request.getCookies();

if (cookies !=null) {

204
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

for (Cookie cookie : cookies) { Notes
if ("username".equals(cookie.getName())) {
// Create a new cookie with the same name but updated value
Cookie updatedCookie = new Cookie("username",
"jane_doe");
updatedCookie.setMaxAge(cookie.getMaxAge());
updatedCookie.setPath(cookie.getPath());

// Send the updated cookie to the client
response.addCookie(updatedCookie);
break;

}

In this example, we search for the "username" cookie and create a
new cookie with the same name but an updated value. We also
preserve the original cookie's attributes to ensure consistent behavior.
3.3.18 Deleting Cookies

In order to remove a cookie, set its age to zero or a negative value and
send it back to the client. This is an instruction in your web browser
to delete the cookie. Here is some code that shows how this can be
done:

/I Create a cookie with the same name

Cookie cookieToDelete = new Cookie("username", "");

/I 'Set the maximum age to 0 (delete immediately)
cookieToDelete.setMaxAge(0);

// Ensure it's on the same path as the original cookie
cookieToDelete.setPath("/");

/I Send the cookie to the client
response.addCookie(cookieToDelete);

You must set the path for the cookie being deleted to be the same as
the original cookie. If the paths differ, the browser may not treat it as
the same cookie, so the deletion will silently fail

Cookie Persistence

Cookies can be classified into two types based on their persistence:

205
MATS Centre for Distance and Online Education, MATS University

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

3.3.19 Session Cookies: These cookies expire when the browser
session ends. They are stored in memory and are not written to disk.
To create a session cookie, don't set the maxAge property or set it to -
1.
Cookie sessionCookie = new Cookie("sessionld",
generateSessionld());
// No maxAge means it's a session cookie
response.addCookie(sessionCookie);
3.3.20 Persistent Cookies: These cookies have a specific expiration
time and are stored on disk. They persist even after the browser is
closed and are sent with requests until they expire.
Cookie persistentCookie = new Cookie("preferredLanguage", "en");
persistentCookie.setMaxAge(60 * 60 * 24 * 365); // 1 year in seconds
response.addCookie(persistentCookie);
Choosing between session and persistent cookies depends on the
application's requirements and the nature of the data being stored.
3.3.21 Benefits of Using Cookies
Cookies offer numerous advantages for web applications, particularly
in the context of Java-based systems. This section explores the key
benefits of incorporating cookies into your application architecture.
3.3.22 User Experience Enhancement: One of the primary benefits of
cookies 1s their ability to enhance user experience by remembering user
preferences and settings. Consider a web application that allows users
to customize the interface, such as choosing a theme or language. By
storing these preferences in cookies, the application can provide a
consistent experience across multiple visits without requiring users to
reconfigure their settings each time.
// Example: Storing user theme preference
String selectedTheme = request.getParameter("theme");
if (selectedTheme != null && !selectedTheme.isEmpty()) {
Cookie themeCookie = new Cookie("userTheme", selectedTheme);
themeCookie.setMaxAge(60 * 60 * 24 * 365); // 1 year
themeCookie.setPath("/");
response.addCookie(themeCookie);
b
This kind of personalization significantly improves user satisfaction
and engagement by creating a tailored experience that acknowledges

and respects individual preferences.

206
MATS Centre for Distance and Online Education, MATS University

3.3.23 State Management in Stateless Protocols: HTTP is stateless
by design, that is, every request to the server is considered
independent and does not know about prior requests. Cookies allow
you to maintain state across multiple requests. For example, cookie
functions in insurance apps for shopping carts are track selected
items:
// Example: Adding item to cart (simplified)
String itemld = request.getParameter("itemlId");
if (itemld != null) {
/I Get existing cart cookie
String cartltems ="";
Cookie[] cookies = request.getCookies();
if (cookies !=null) {
for (Cookie cookie : cookies) {
if ("cartltems".equals(cookie.getName())) {
cartltems = cookie.getValue();
break;

// Add new item to cart
if (!cartltems.isEmpty()) {

cartltems +="," + itemld;
} else {
cartltems = itemld;

// ' Update cart cookie
Cookie cartCookie = new Cookie("cartltems", cartltems);
cartCookie.setMaxAge(60 * 60 * 24 * 7); // 1 week
cartCookie.setPath("/");
response.addCookie(cartCookie);
b
Whenever you visit a store and start browsing, you can add things to
your cart, and it goes around without you losing what you’ve selected

for a smooth shopping experience.

207
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

3.3.24 Performance Optimization: When used correctly, cookies can
greatly enhance the performance of the application by avoiding
database queries or server-side storage. You are also enabled for the
terrible site fetches if stored in cookies for non-sensitive, frequently
accessed data, which can reduce server load and improve response
times. For instance, placing display preferences or non-sensitive user
data into cookies can save you from needing to pull this data from the
database on each request:
// First-time user setup
if (request.getCookies() == null ||
IcontainsCookie(request.getCookies(), "displaySettings")) {
// Default settings
Cookie settingsCookie = new Cookie("displaySettings",
"compact:true,showImages:true,fontSize:medium");
settingsCookie.setMaxAge(60 * 60 * 24 * 30); // 30 days
settingsCookie.setPath("/");

response.addCookie(settingsCookie);

// Helper method to check if a cookie exists
private boolean containsCookie(Cookie[] cookies, String name) {
for (Cookie cookie : cookies) {
if (name.equals(cookie.getName())) {

return true;

}

return false;
h
Client-side storage also helps offload data to the front-end which
ultimately relieves the database service and results in quicker
response times and improved scalability.
3.3.25 Authentication and Remember Me Functionality
Cookies are essential for implementing "Remember Me" functionality,
which allows users to remain authenticated across browser sessions
without re-entering credentials. This feature significantly enhances user
convenience while maintaining security.

/I Example: Implementing "Remember Me" functionality

208
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

boolean rememberMe = Notes

"true".equals(request.getParameter("rememberMe"));

if (rememberMe) {
// Generate secure token (simplistic example)

String rememberToken = generateSecureToken(username);

// Store token in database (associated with user)

storeRememberTokenInDatabase(username, rememberToken);

/I Create persistent cookie with token
Cookie rememberCookie = new Cookie("rememberToken",
rememberToken);
rememberCookie.setMaxAge(60 * 60 * 24 * 30); // 30 days
rememberCookie.setHttpOnly(true); // Prevent JavaScript access
rememberCookie.setSecure(true); // HTTPS only
rememberCookie.setPath("/");
response.addCookie(rememberCookie);
}
In this example, a secure token is generated, stored in the database, and
also sent to the client as a cookie. On subsequent visits, the application
can validate this token to automatically authenticate the user without
requiring a new login.
3.3.26 Analytics and User Behavior Tracking
Cookies are useful for tracking user behavior and collecting analytics
data. This enables applications to track navigation patterns, feature
usage, and user preferences by assigning unique identifiers to visitors.
/I Example: Setting analytics tracking cookie
String visitorld = UUID.randomUUID().toString();
Cookie analyticsCookie = new Cookie("visitorld", visitorld);
analyticsCookie.setMaxAge(60 * 60 * 24 * 365 * 2); // 2 years
analyticsCookie.setPath("/");

response.addCookie(analyticsCookie);

/I Log page visit
logPageVisit(visitorld, request.getRequestURI());

209
MATS Centre for Distance and Online Education, MATS University

i)

[

?mn'r

W

UNIVERSITY
veady for lfe

)

i

This helps product development, marketing strategies and interface
refinements, which in turn contribute to improved user experiences
and business results.

3.3.27 Cookie Attributes and Security Considerations

In addition to the simple name-value pair, cookies also support a
range of attributes which can influence their behavior, scope, and
security characteristics. "It is important to comprehend these attributes
if you want to deploy safe and efficient cookie-based solutions..
Domain and Path Attributes: Domain and Path attributes help us
identify the URLs to which a cookie needs to be sent..

Domain — The dot character (.) specifies the domain for which
the cookie is valid. A cookie is, by default, sent only to the domain
that set it. But you can set a cookie accessible to subdomains by
providing a domain prepended with a dot.

Cookie domainCookie = new Cookie("sitePreferences",
"darkMode:true");

domainCookie. setDomain(". example. com"); // Only available on
example. com

response. addCookie(domainCookie);.

Path Attribute: Specifies the portion of the URL path that must
exist in the requested resource before sending the Cookie header.
Cookies are by default set for the path of the URL where the
setting occurs. Domain and Path Example: Setting the path to “/”
will make the cookie accessible across the entire domain.

Cookie pathCookie = new Cookie("shopCart", "item1:3,item2:1");
pathCookie.setPath("/shop"); // Only available to URLSs starting with
/shop

response.addCookie(pathCookie);

In this example, the cookie will be sent only to pages under the /shop
path, such as /shop/cart and /shop/products.

Secure and HttpOnly Flags

These flags enhance cookie security by restricting when and how
cookies are transmitted and accessed.

Secure Flag: When set, the cookie is only sent over HTTPS
connections, protecting it from interception over unsecured channels.
Cookie secureCookie = new Cookie("authToken", generateToken());
secureCookie.setSecure(true); // Only sent over HTTPS

response.addCookie(secureCookie);

210
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

This is particularly important for cookies containing sensitive Notes
information like authentication tokens.

3.3.28 HttpOnly Flag: Prevents client-side JavaScript from accessing
the cookie, mitigating the risk of cross-site scripting (XSS) attacks.
Cookie httpOnlyCookie = new Cookie("sessionld", sessionld);
httpOnlyCookie.setHttpOnly(true); // Not accessible via JavaScript
response.addCookie(httpOnlyCookie);

By using the HttpOnly flag, even if an attacker manages to inject
malicious JavaScript into your page, they won't be able to access the
cookie directly.

3.3.29 SameSite Attribute (Servlet API 4.0+): The SameSite
attribute, introduced in newer servlet specifications, controls whether
cookies are sent with cross-site requests, providing protection against
cross-site request forgery (CSRF) attacks.

Cookie sameSiteCookie = new Cookie("csrfToken",
generateCSRFToken());

sameSiteCookie.setAttribute("SameSite", "Strict"); // Only sent in
same-site context

response.addCookie(sameSiteCookie);

The SameSite attribute can have three values:

Strict: The cookie is only sent in a first-party context.

Lax: The cookie is sent with top-level navigations and with GET
requests from other sites.

None: The cookie is sent in all contexts, including cross-site requests.
Note that when using SameSite=None, the cookie must also have the
Secure flag set.

7.4.4 Expiration and MaxAge

The expiration time of a cookie can be controlled using the
setMaxAge() method, which specifies the cookie's lifespan in
seconds.

// Session cookie (expires when the browser is closed)

Cookie sessionCookie = new Cookie("tempData", "value");
sessionCookie.setMaxAge(-1); // Default behavior for session cookies

response.addCookie(sessionCookie);

/I Persistent cookie (expires after a specific time)
Cookie persistentCookie = new Cookie("userPrefs", "theme:dark");
persistentCookie.setMaxAge(60 * 60 * 24 * 30); // 30 days in seconds

211
MATS Centre for Distance and Online Education, MATS University

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

response.addCookie(persistentCookie);

// Delete a cookie
Cookie deleteCookie = new Cookie("oldCookie", "");
deleteCookie.setMaxAge(0); / Expires immediately
response.addCookie(deleteCookie);
The MaxAge value determines whether a cookie is stored temporarily
in memory or persistently on disk, and for how long it remains valid.
3.3.30 Cookie Size Limitations: Browsers impose limits on cookie
size and the number of cookies allowed per domain. These limitations
vary by browser but generally include:

e Maximum size per cookie: Usually around 4KB

e Maximum number of cookies per domain: Typically 50-60

e Maximum total size of all cookies for a domain: Around 4KB

to 10KB

Given these constraints, it's important to use cookies efficiently:
// BAD PRACTICE: Storing large data in cookies
Cookie largeCookie = new Cookie("userData", largeJsonObject); //

May exceed limits

// BETTER PRACTICE: Store minimal data in cookies

Cookie idCookie = new Cookie("userld", "12345");
response.addCookie(idCookie);

// Retrieve additional data from server-side storage as needed

For large amounts of data, consider alternatives like HTMLS Web
Storage (localStorage/sessionStorage) or IndexedDB, with cookies
used primarily for authentication and session management.

3.3.31 Cookie Security Best Practices :Implementing secure cookie
practices is essential for protecting user data and preventing common
attacks:

3.3.32 Use the Secure flag for sensitive cookies:
authCookie.setSecure(true);

3.3.33 Apply the HttpOnly flag to prevent XSS attacks:
authCookie.setHttpOnly(true);

3.3.34 Implement proper cookie expiration:

// Set reasonable expiration times based on the cookie's purpose
authCookie.setMaxAge(60 * 30); // 30 minutes for authentication

212
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for life.

3.3.35 Validate cookie data: Notes
String cookieValue = cookie.getValue();
if (isValidFormat(cookieValue)) {

// Process the cookie
} else {

// Handle invalid data (potential tampering)
}
3.3.36 Encrypt sensitive cookie values:
// Example of encrypting cookie value
String encryptedValue = encryptData(raw Value, encryptionKey);
Cookie encryptedCookie = new Cookie("sensitiveData",
encryptedValue);
3.3.37 Implement CSRF protection alongside cookies:
/I Generate and store CSRF token
String csrfToken = generateRandomToken();
Cookie csrfCookie = new Cookie("csrfToken", csrfToken);
csrfCookie.setHttpOnly(false); // Allow JavaScript access for form
submission

response.addCookie(csrfCookie);

/I Store token in session for server-side verification
session.setAttribute("csrfToken", csrfToken);
By following these best practices, developers can leverage the
benefits of cookies while minimizing security risks.
3.3.38 Session Tracking in Java Web Applications
In contrast, cookies are a mechanism for storing small bits of
information on the client side, but come with limitations in terms of
size, count, and security. Whereas cookie is limited to a single
request, session tracking is used to maintain status between multiple
requests.
3.3.39 Need for Session Tracking: The statelessness of HTTP poses
great difficulties for interactive web application development. You
have no context beyond the input you received with every request.
This limitation presents a problem in situations like:
e Multi-step processes: These are operations such as checkout
workflows, multi-page forms, or wizard interfaces that
involve multiple steps and require maintaining state across

multiple requests.

213
MATS Centre for Distance and Online Education, MATS University

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

e User authentication: Remembering who is logged-in without
asking for credentials on every request.

e Application state: Value can be used to to keep and manage
complex state for an application, such as shopping carts, game
states, or workspace configurations.

e Customization: Providing tailored content based on user
preference or browsing history.

3.3.40 Session Tracking
The Servlet specification in Java has support for multiple session
tracking mechanisms:

e Cookie-Based Sessions : The server creates it and sends it to
the client as a cookie. This cookie is included in subsequent
requests, permitting the server to identify the session.

e URL Rewriting: For those browsers that do not support or
have disabled cookies, at the end of the URLSs the session 1D
may be appended as a parameter.

e SSL Sessions: The SSL session ID can be used to keep the
session state for HTTPS connections without cookies or URL
parameters.

Hidden Form Fields One way is to use session IDs as hidden fields in
HTML forms and post them along with form data. Out of which,
session through cookies is the most common and reliable way to
implement it, whereas URL rewriting could be fall back when no
cookies available Of these mechanisms, cookie-based sessions are the
most common and reliable approach, with URL rewriting often used
as a fallback when cookies are unavailable.

3.3.41 The HttpSession API: Java's Servlet API offers complete
interaction with session management using the HttpSession interface.
This means developers can use this API for session tracking without
worrying about the underlying mechanism.

3.3.42 Creating or Retrieving a Session:

// Get the current session, or create one if it doesn't exist

HttpSession session = request.getSession();

/I Get the current session only if it exists, without creating a new one
HttpSession existingSession = request.getSession(false);
The request.getSession() method returns the current session object

associated with the request. If no session exists, it creates a new one

214
MATS Centre for Distance and Online Education, MATS University

automatically. This behavior can be controlled using the boolean
parameter: request.getSession(boolean create).

3.3.43 Storing and Retrieving Data in Sessions:

// Store data in the session

session.setAttribute("username", "john_doe");
session.setAttribute("loginTime", new Date());

session.setAttribute("shoppingCart", cartObject);

/I Retrieve data from the session

String username = (String) session.getAttribute("username");
Date loginTime = (Date) session.getAttribute("loginTime");
ShoppingCart cart = (ShoppingCart)
session.getAttribute("shoppingCart");

// Remove data from the session

session.removeAttribute("temporaryData");

The session acts as a map-like structure, storing attributes as key-

value pairs. These attributes can be of any Java type, including

complex objects, as long as they implement the Serializable interface.

3.3.44 Managing Session Lifecycle:
/I Get session creation time

long creationTime = session.getCreationTime();

// Get last accessed time

long lastAccessTime = session.getLastAccessedTime();

// Set session timeout (in seconds)

session.setMaxInactivelnterval(1800); // 30 minutes

// Invalidate (terminate) the session

session.invalidate();

The session timeout specifies how long the session remains active
without client interaction. After the specified period of inactivity, the
server automatically invalidates the session. Sessions can also be

explicitly invalidated using the invalidate() method, typically during

logout operations.
3.3.45 Accessing Session Metadata:
/I Get the session ID

215
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

String sessionld = session.getld();

// Check if this is a new session

boolean isNew = session.isNew();

// Get the maximum inactive interval

int maxInactivelnterval = session.getMaxInactivelnterval();

These methods provide access to session metadata, which can be
useful for debugging, logging, and session management operations.
3.3.46 Session Tracking Implementation Examples

Let's explore some practical examples of session tracking in Java web
applications:

Example 1: User Authentication and Authorization
@WebServlet("/login")

public class LoginServlet extends HttpServlet {

@Override
protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

String username = request.getParameter("'username");

String password = request.getParameter("password");

// ' Validate credentials (simplified example)
if (isValidUser(username, password)) {
// Get the session (create if it doesn't exist)

HttpSession session = request.getSession();

/I Store user information in the session
User user = getUserDetails(username);
session.setAttribute("user", user);
session.setAttribute("authenticated", true);

session.setAttribute("loginTime", new Date());

// Set session timeout (30 minutes)

session.setMaxInactivelnterval(30 * 60);

216
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

// Redirect to dashboard
response.sendRedirect("dashboard");
} else {

// Authentication failed - redirect back to login page

request.setAttribute("errorMessage", "Invalid username or
password");

request.getRequestDispatcher("/login.jsp").forward(request,
response);

}

// Validation methods (implementation details omitted)

private boolean isValidUser(String username, String password) { /*
¥y

private User getUserDetails(String username) { /* ... */ }
}
This example demonstrates how sessions can be used to track
authenticated users. After successful authentication, user information
is stored in the session, allowing subsequent requests to verify the
user's identity without re-authenticating.
Example 2: Shopping Cart Implementation
@WebServlet("/cart/*")
public class ShoppingCartServlet extends HttpServlet {

@QOverride
protected void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

/I Get the current session (don't create a new one)

HttpSession session = request.getSession(false);

if (session == null) {
// No session exists - redirect to homepage
response.sendRedirect(""/home");

return;

217
MATS Centre for Distance and Online Education, MATS University

4 M
UNIVERSITY
ready for life

Notes // Retrieve cart from session

ShoppingCart cart = (ShoppingCart) session.getAttribute("cart");

if (cart == null) {
// Initialize cart if it doesn't exist
cart = new ShoppingCart();
session.setAttribute("cart", cart);

// Display cart contents

request.setAttribute("cartltems", cart.getltems());

request.setAttribute("totalPrice", cart.getTotalPrice());

request.getRequestDispatcher("/cart.jsp").forward(request,
response);

}

@Override
protected void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

// Get current session or create one

HttpSession session = request.getSession();

// Get cart from session or create a new one
ShoppingCart cart = (ShoppingCart) session.getAttribute("cart");
if (cart ==null) {

cart = new ShoppingCart();

session.setAttribute("cart", cart);

// Process cart operation

String action = request.getParameter("action");

if ("add".equals(action)) {
// Add item to cart
String productld = request.getParameter("productld");
int quantity =

Integer.parselnt(request.getParameter("quantity"));

218
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

cart.addItem(productld, quantity); Notes
} else if ("remove".equals(action)) {

// Remove item from cart

String productld = request.getParameter("productld");

cart.removeltem(productld);
} else if ("clear".equals(action)) {

// Clear cart

cart.clear();

// Redirect back to cart display

response.sendRedirect("/cart");

}

In this example, we highlight a cart functionality implemented to
keep track of the items in your session. This cart object is saved in the
session object giving the user the ability to add, delete, and view items
while making multiple requests..
7.5.5 Session Management Best Practices
Session management needs to be done with the utmost attention to
detail with regards to security, performance, and user experience:
3.3.47 Security Considerations:
Session ID Protection:
/I Configure the session cookie to be secure and HttpOnly
@WebServlet("/secureApp")
public class SecureAppServlet extends HttpServlet {
@QOverride
public void init(ServletConfig config) throws ServletException {
super.init(config);
// Configure session cookies
ServletContext context = config.getServletContext();
context.getSessionCookieConfig().setHttpOnly(true);

context.getSessionCookieConfig().setSecure(true);

// Servlet methods...

}

Session Fixation Prevention:

219
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

// After successful authentication, regenerate the session ID
@WebServlet("/login")
public class SecureLoginServlet extends HttpServlet {
@Override
protected void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

// Authenticate user...

/I After successful authentication
if (authenticated) {
/I Get current session data
HttpSession oldSession = request.getSession();
Map<String, Object> attributes = new HashMap<>();
Enumeration<String> names =
oldSession.getAttributeNames();
while (names.hasMoreElements()) {
String name = names.nextElement();

attributes.put(name, oldSession.getAttribute(name));

// Invalidate current session

oldSession.invalidate();

// Create new session
HttpSession newSession = request.getSession(true);

// Copy attributes to new session
for (Map.Entry<String, Object> entry : attributes.entrySet()) {
newSession.setAttribute(entry.getKey(), entry.getValue());

/I Set authentication flag
newSession.setAttribute("authenticated", true);

220
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

3.3.48 Proper Session Termination: Notes
@WebServlet("/logout")
public class LogoutServlet extends HttpServlet {
@Override
protected void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

/I Get current session
HttpSession session = request.getSession(false);

if (session !=null) {
// Invalidate the session

session.invalidate();

// Clear authentication cookie if used

Cookie authCookie = new Cookie("authToken", "");
authCookie.setMaxAge(0);
authCookie.setPath("/");
response.addCookie(authCookie);

/I Redirect to login page
response.sendRedirect("/login");

}

3.3.49 Performance Optimization:

Minimize Session Data: Store only necessary data in the session to
reduce memory consumption and serialization/deserialization
overhead.

Session Timeout Management: Balance security and user experience
when setting session timeouts:

// Short timeout for sensitive operations
session.setMaxInactivelnterval(900); // 15 minutes

/I ' Longer timeout for regular browsing
session.setMaxInactivelnterval(3600); // 1 hour

221
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

Session Clustering and Persistence: For high-availability
applications, configure session replication or persistence:
<!-- Example Tomcat context.xml configuration -->
<Context>

<Manager

'

className="org.apache.catalina.session.PersistentManager'
saveOnRestart="true">
<Store className="org.apache.catalina.session.FileStore"
directory="/tmp/sessions"/>
</Manager>
</Context>
Summary
This module focuses on Servlet Technology, a crucial component of
Java 2 Enterprise Edition (J2EE), used for developing dynamic and
scalable web applications. It begins with an introduction to the J2EE
architecture, helping learners understand the multi-tiered structure of
enterprise applications. Key components such as client-tier, web-tier,
business-tier, and enterprise information systems (EIS) are explained
to provide a clear picture of how web applications are structured and
deployed.
A significant part of the module is dedicated to exploring the Servlet
API, including the creation and structure of servlets. Learners study
how servlets are initialized, executed, and destroyed through their life
cycle methods: init (), service(), and destroy (). This foundation
enables them to build and manage servlets within web containers such
as Apache Tomcat.
The module also covers form data handling, where users interact with
a web form and send data to the server. Students learn how to retrieve
this data using methods like getpParameter() and process it
effectively. The request-response mechanism is analyzed in depth,
showing how client inputs are captured and meaningful responses are
sent back using HttpServletRequest and HttpServletResponse.
Furthermore, the module introduces session tracking techniques,
essential for maintaining user state across multiple requests in stateless
HTTP. It includes concepts like cookies, hidden form fields, URL
rewriting, and HttpSession management, enabling developers to build
user-friendly and personalized web applications.
By the end of this module, learners gain a strong understanding of
servlet programming, including handling client-server communication,
managing sessions, and building dynamic web components within the
J2EE platform.

222
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

3.3.50 Multiple-Choice Questions (MCQs) Notes

1.

5.

What does J2EE stand for?
a) Java 2 Enterprise Edition
b) Java 2 Embedded Edition
c) Java Enterprise and Embedded Edition
d) Java Enterprise Evolution
Answer: a) Java 2 Enterprise Edition
Which of the following is not a component of a Java Servlet?
a) doGet()
b) doPost()
c) doPush()
d) init()
Answer: ¢) doPush()

. In which phase of the servlet life cycle is the destroy() method

called?
a) Initialization phase
b) Service phase
c) Termination phase
d) Compilation phase
Answer: ¢) Termination phase
How can a servlet read form data sent by an HTML form?
a) request.getParameter("name")
b) request.readFormData("name")
c) request.getlnput("name")
d) request.receive("name")
Answer: a) request.getParameter("name")
What is the purpose of session tracking in servlets?
a) To maintain client state across multiple requests
b) To validate user input
c) To handle file uploads
d) To close database connections

Answer: a) To maintain client state across multiple requests

Short Answer Questions

1.
2.

What are the main components of J2EE architecture?
Explain the purpose of the doGet() and doPost() methods in
servlets.

What are the different phases of the servlet life cycle?

4. How do you store and retrieve cookies in a servlet?

223
MATS Centre for Distance and Online Education, MATS University

¢m
UNIVERSITY

ready for life

Notes 5.

What is the difference between session tracking using cookies

and using HttpSession?

Long Answer Questions

1.
2.
3.

Explain the architecture of J2EE and its key components.
Describe the life cycle of a Java servlet with an example.
How can a servlet handle user input from an HTML form?
Provide an example program.

Explain the process of handling client requests and generating
server responses in Java servlets.

What are the different session tracking techniques in servlets?

Compare them with examples.

224
MATS Centre for Distance and Online Education, MATS University

Module 4
JSP Technology

LEARNING OUTCOMES
e To understand the concept, need, and benefits of JSP.
e To explore the life cycle of JSP.
e To study scripting elements and implicit objects.

e To analyze directive elements and action elements in JSP.

225

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

Unit 4.1: Introduction, Need and Benefit of JSP, Life
Cycle of JSP

4.1.1 Introduction to JSP

JSP(JavaServer Pages) server-side technology to create dynamic web
pages and web applications. Java Server Pages (JSP) is a web
application technology that is used to create dynamic web content. JSP
separates presentation logic (HTML, CSS) from business logic (Java
code), making web applications easier to maintain and scalable. JSP
allows the development of web pages that are created dynamically,
responding to user actions, form submission results, and return values
from databases, instead of static web pages that are always the same
when accessed. This is done by embedding Java code in special
delimiters () in an HTML page. During the run time, JSPs are
converted into Servlets, which makes it highly performant and reliable.
Due to this feature, JSP is widely used in enterprise-level web
applications, online portals, and content management systems that need
to process data in real-time.

Need and Benefits of JSP: The need for JSP to come into existence
came because static web technologies at that time like HTML and
JavaScript couldn't generate content dynamically on the server side.
The alternative is to use Servlets, but it can be tiresome and less
maintainable when writing HTML inside Java classes using Servlets.
This problem is overcome by JSP in that it allows developers to code
using Java code within an HTML file. Platform independent is one of
the main advantages of JSP as it can be executed on any OS that
supports Java. Then, JSP also provides automatic session management,
which makes it easier to manage user sessions as compared to handling
it manually. Plus, it works in harmony with JavaBeans, JDBC, and
other Java technologies to facilitate database connections and data
management. One of the other major benefits is tag libraries (JSTL),
enabling the code to be reused and improves code modularity and
maintainability. These benefits make JSP a popular choice for
developing enterprise applications, e-commerce simply by using, and
interactive web platforms.

4.1.2 Life Cycle of JSP

A JSP page has three main stages during its life cycle: compilation,

execution, and request handling. The JSP engine first checks if the

226
MATS Centre for Distance and Online Education, MATS University

requested JSP page has already been compiled when a client sends a
request for a JSP page. If not, it compiles the JSP file to a Servlet class.
The translation step converts JSP constructs, such as scriptlets (),
expressions (), and directives (), into corresponding Java code. Once
translated, the Servlet class is compiled to bytecode and loaded into
memory of the web server. At this point, the JSP is ready to deal with
client requests. Execution starts when an HTTP request comes to the
compiled Servlet. The service() method of the created Servlet gets
called, which in turn calls the doGet() or doPost() method based on the
request. The response is then generated and is usually an HTML
document returned to the client's browser. If the JSP file is modified,

translation and compilation processes are restarted to account for

changes.

! Initialization jspinit() :
:L ------------------------------------ - -E

{roquostlifecycle |

! Request i

v : |

Main logic _jspService() i

E v |

: Response ;
i Shutdown JspDestroy() i

Figure 4.1.1: JSP Life Cycle
[Source: https://www.researchgate.net/]

Compilation, Execution, and Request Handling: After it is compiled
into a Servlet, execution of a JSP page is no different than that for a
conventional Servlet. Initialization — the jspInit() method is called just
once when the JSP page is visited for the first time. This is useful for
configuring database connections or initializing global application-
wide variables. Next step is request processing (the jspService()
method is invoked on each HTTP request) This approach collects the

request parameters, accesses the business logic layer, and construct

227
MATS Centre for Distance and Online Education, MATS University

\

4m

\\\

UNIVERSITY

ready for lfe......

Notes

ars)

S

|

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

HTML content on the fly to serve a response. Destruction: Is the last
step in the life cycle where before the JSP instance is removed from
memory jspDestroy() method is called. This is handy for closing
database connections, freeing resources, or doing cleanup tasks. JSP
uses all the performance enhancements provided by Servlets (e.g.
Caching, Session management) so it is a better technology in terms of
building a scalable web app. The life cycle of a JSP is, therefore,
essential to understanding how JSP-based applications can be
optimized and how data is handled during request processing in actual

production environments.

228
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Unit 4.2: JSP Scripting Elements Notes
4.2.1 JSP Scripting Elements:

JSP Declaration

e A declaration tag is a piece of Java code for declaring variables,

methods and classes. If we declare a variable or method inside
declaration tag it means that the declaration is made inside the
servlet class but outside the service method.

e We can declare a static member, an instance variable (can
declare a number or string) and methods inside the declaration
tag.

Syntax of declaration tag:
<%! Dec var %>
Here Dec var is the method or a variable inside the declaration tag.
Example:
In this example, we are going to use the declaration tags
<%@ page language="java" contentType="text/html; charset=ISO-
8859-1"
pageEncoding="1SO-8859-1"%>
<IDOCTYPE html PUBLIC "-/W3C/DTD HTML 4.01
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<htmI>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">
<title>Guru Declaration Tag</title>
</head>
<body>
<%! int count =10; %>
<% out.println("The Number is " +count); %>
</body>
</htmI>
Explanation the code:
Code Line 10: Here we are using declaration tag for initializing a
variable count to 10.

When you execute the above code you get the following output:

229
MATS Centre for Distance and Online Education, MATS University

https://www.guru99.com/java-tutorial.html

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

‘" Guru Declaration Tag ®
€ C' A | [} localhost:8080/test/syn_declaration.jsp

_The Number 15 10

Output:

The variable which is declared in the declaration tag is printed as
output.

JSP Scriptlet

o Scriptlet tag allows to write Java code into JSP file.

e JSP container moves statements in _jspservice() method while
generating servlet from jsp.

e For each request of the client, service method of the JSP gets
invoked hence the code inside the Scriptlet executes for every
request.

e A Scriptlet contains java code that is executed every time JSP
is invoked.

Syntax of Scriptlet tag:

<% java code %>

Here <%%> tags are scriplets tag and within it, we can place java code.
Example:

In this example, we are taking Scriptlet tags which enclose java code.

'

java" contentType="text/html; charset=ISO-

<%@ page language="'
8859-1"
pageEncoding="1SO-8859-1"%>
<IDOCTYPE html PUBLIC "-/W3C/DTD HTML 4.01
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<htmI>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">
<title>Guru Scriplet</title>
</head>
<body>
<% int num1=10;
int num2=40;
int num3 = numl-+num?2;

230
MATS Centre for Distance and Online Education, MATS University

https://www.guru99.com/images/jsp/022716_0859_JSPElements2.png

\ %VERS!T; \

ready for lie......

out.println("Scriplet Number is " +num3); Notes
%>
</body>
</html>
Explanation of the code:
Code Line 10-14: In the Scriptlet tags where we are taking two
variables num1 and num?2 . Third variable num3 is taken which adds up
as numl1 and num?2.The output is num3.

When you execute the code, you get the following output:

<« C' & [} localhost:8080/test/syn_scriplet.jsp

Scriplet Number 15 50

Output:
The output for the Scriptlet Number is 50 which is addition of numl
and num?2.
JSP Expression

o Expression tag evaluates the expression placed in it.

o It accesses the data stored in stored application.

o Itallows create expressions like arithmetic and logical.

o It produces scriptless JSP page.
Syntax:
<%= expression %>
Here the expression is the arithmetic or logical expression.
Example:
In this example, we are using expression tag
<%@ page language="java" contentType="text/html; charset=ISO-
8859-1"

pageEncoding="1SO-8859-1"%>

<IDOCTYPE html PUBLIC "-/W3C/DTD HTML 4.01
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<htmI>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">

231
MATS Centre for Distance and Online Education, MATS University

https://www.guru99.com/images/jsp/022716_0859_JSPElements4.png

(RS

gmm

\\\

UNIVERSITY

ready for life.

Notes

]

<title>Guru Expression</title>

</head>

<body>

<% out.println("The expression number is "); %>

<% int num1=10; int num2=10; int num3 = 20; %>

<%= num1*num2-+num3 %>

</body>

</html>

Explanation of the code:

Code Line 12: Here we are using expression tags where we are using
an expression by multiplying two numbers i.e. numl and num 2 and
then adding the third number i.e. num3.

When you execute the above code, you get the following output:

b | [localhost:8080/test/syn_expression.jsp
€« X)

The expression number 15 120

Output:
The expression number is 120 where we are multiplying two numbers
numl and num?2 and adding that number with the third number.
JSP Comments
Comments are the one when JSP container wants to ignore certain texts
and statements.
When we want to hide certain content, then we can add that to the
comments section.
Syntax:
<% -- JSP Comments %>
T his tags are used to comment in JSP and ignored by the JSP container.
<l—comment —>
This is HTML comment which is ignored by browser
Example:
In this example, we are using JSP comments
<%@ page language="java" contentType="text/html; charset=ISO-
8859-1"
pageEncoding="ISO-8859-1"%>

232
MATS Centre for Distance and Online Education, MATS University

https://www.guru99.com/images/jsp/022716_0859_JSPElements6.png

<IDOCTYPE html PUBLIC "-/W3C/DTD HTML 4.01
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<htmlI>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">

<title>Guru Comments</title>

</head>

<body>

<%-- Guru Comments section --%>

<% out.println("This is comments example"); %>

</body>

</html>

Explanation of the code:

Code Line 10: Here we are adding JSP comments to the code to
explain what code has. It is been ignored by the JSP container

When you execute the above code you get the following output:

Voonemes O

<« C' M | [} localhost:8080/test/syn_comments.jsp

This 1s comments example

Output:
We get the output that is printed in println method. Comments are
ignored by container
4.2.2 Creating a simple JSP Page
e A JSP page has an HTML body incorporated with Java code
into it
e We are creating a simple JSP page which includes declarations,
scriplets, expressions, comments tags in it.
Example:

v

<%@ page language="]
8859-1"
pageEncoding="1SO-8859-1"%>

<IDOCTYPE html PUBLIC "-/W3C/DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

ava" contentType="text/html; charset=ISO-

233
MATS Centre for Distance and Online Education, MATS University

)

ready for lie......

Notes

https://www.guru99.com/images/jsp/022716_0859_JSPElements8.png

(RS

gmm

\\\

UNIVERSITY

ready for life.

Notes

)

)

<htmlI>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">

<title>Guru JSP Example</title>

</head>

<body>

<%-- This is a JSP example with scriplets, comments , expressions --
%>

<% out.println("This is guru JSP Example"); %>

<% out.println("The number is "); %>

<%! int num12 = 12; int num32 = 12; %>

<%= num12*num32 %>

Today's date: <%= (new java.util.Date()).toLocaleString()%>
</body>

</html>

Explanation of the code:

Code Line 1: Here we are using directives like language, contentType
and pageEncoding. Language is Java and content type is text/html with
standard charset ISO 8859. Page encoding is standard charset.

Code Line 11: Here we are using JSP comments to add comments to
the JSP

Code Line 14: Here we are declaring variables num12 and num32
initializing with 12.

Code Line 15: Here we are using an expression where we are
multiplying two numbers num12 and num32.

Code Line 16: Here we are fetching today’s date using date object.

When you execute the above code, you get the following output

< Guru JSP Example
€« C A [localhost:8080/test/syn_JSP.jsp

This 15 guru JSP Example The number 15 144 Todav's date: Jan 6. 2016 12:55:20 PM

Output:
We are printing overhere,

e This is guru JSP example.

234
MATS Centre for Distance and Online Education, MATS University

https://www.guru99.com/images/jsp/022716_0859_JSPElements10.png

e The number is num12*num32 (12*12).
e Today’s date is the current date
4.2.3 How to run simple JSP Page
e JSP can be run on web servers or application servers.
o Here we will be using a webserver, and we can deploy it on the
server enclosing it in a war application.
e We can create JSP in an application (war).
This is an application which has following directory structure, and the

application has to be build.

. 'zm Deployment Descriptor: test

. T8 Java Resources: src
- B JavaScript Support
- = build

. = WebContent

This application has to be built, and the following message will appear

after the build is successful:

Buildfile: E:\Java\eclipse-jee-ganymede-SR2-win32\eclipse\plugins\org.eclipse.jst.server.generic.jboss 1.5.206.v20090115\buildfiles\]

lding jar: E:\Java\New folder\.metadata\.plugins\org.eclipse.wst.server.
1 file to E:\Java\jboss-5.0.0.GA\jboss-5.0.0.Gh\server\default\deploy
BUILD SUCCESSEUL

Total time: 10 seconds

After the application is built then, the application has to be run on the
server.

To run JSP on the webserver, right click on the project of the IDE
(eclipse used in this case) and there are many options. Select the option
of run on the server. It is shown in the screenshot below;

From the diagram, following points are explained:

1. There are two options either to choose a server or manually add
the server to this application. In this case, we have already
added JBoss server to the application hence, we select the
existing server.

2. Once we select the server the server option is shown in point 2
which server we want to select. There can be multiple servers
configured on this application. We can select one server from
all those options

3. Once that option is selected click on finish button and

application will run on that server.

235
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

https://www.guru99.com/images/jsp/022716_0859_JSPElements11.png
https://www.guru99.com/images/jsp/022716_0859_JSPElements12.png

UNIVERSITY

ready for life......

Notes

Run On Server

Select which server to use

Encoding=

E html FU

tp—equiv=
ore Tag Jj

.0 at localhost

How do you want to select the server?

| (®) Choose an existing server |

() Manually define a new server

Select the server that you want to use:

type filter text

= localhost
ﬁ JBoss w50 at localhost

E‘p Started

Publishes and runs J2EE 5 modules on a local server. Provides basic server functionality.

[] Always use this server when running this project

®
]

Cancel

In the below screenshots, you can notice that our JSP program gets
executed, and the test application is deployed in JBoss server marked

in the red box.

Server : State Status
E JBoss w5.0 at localhost E‘p Started Synchronized
Synchronized
236

MATS Centre for Distance and Online Education, MATS University

https://www.guru99.com/images/jsp/022716_0859_JSPElements13.png
https://www.guru99.com/images/jsp/022716_0859_JSPElements14.png

Directory Structure of JSP Notes
In directory structure, there is a root folder which has folder WEB-INF,

which has all configuration files and library files.

JSP files are outside WEB-INF folder

root (Web

content)

WEB-INF[classesand
lik)

| META-INF|meta files)

5P
HTML

15

Directory structure of JSP
Example:
In this example there is test application which has folder structure has

following:

a4 T2 test
> ‘Zm Deployment Descriptor: test
b 78 Java Resources: src
» me JavaScript Support
b (= build
4 = WebContent
> (& META-INF
> §= WEB-INF
action_cookie_main.jsp
action_cookie.jsp
=] action_date.jsp
4= action_file_upload.jsp

237
MATS Centre for Distance and Online Education, MATS University

https://www.guru99.com/images/jsp/022716_0859_JSPElements15.png
https://www.guru99.com/images/jsp/022716_0859_JSPElements16.png

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

So JavaServer Pages (JSP) technology allows developers to create
dynamic web content by embedding Java code within HTML pages.
JSP scripting elements are the mechanisms through which this
integration occurs, enabling the execution of Java logic within the web
page. These elements fall into three primary categories: scriptlet tags,
expression tags, and declaration tags. Scriptlet tags, denoted by <% ...
%>, are used to embed Java code that will be executed when the JSP
page is requested. This code can include any valid Java statement, such
as variable declarations, control flow statements (if-else, loops), and
method calls. Scriptlets are particularly useful for performing server-
side processing, such as retrieving data from a database, manipulating
data, and generating dynamic content. For instance, a scriptlet could be
used to iterate through a list of products and display them in an HTML
table. Expression tags, represented by <%= ... %>, are used to insert the
result of a Java expression directly into the output stream. The
expression within the tag is evaluated, and the result is converted to a
string and inserted into the HTML. This is useful for displaying
dynamic data, such as the current date and time, user input, or the result
of a calculation. For example, <%= new java.util.Date() %> would
display the current date and time. Declaration tags, denoted by <%! ...
%>, are used to declare variables and methods that are accessible
throughout the JSP page. Declarations are typically placed at the
beginning of the JSP page and are used to define reusable code
components. For example, a declaration could be used to define a
method that calculates the sum of two numbers, which can then be
called from scriptlets or expression tags within the page. The order in
which these scripting elements are processed is crucial. Scriptlets are
executed first, followed by declarations, and then expressions.
Scriptlets can modify the state of the page, such as by setting request or
session attributes, which can then be accessed by subsequent scriptlets
or expressions. Declarations define the structure of the JSP page, such
as by defining variables and methods that can be used throughout the
page. Expressions are evaluated and their results are inserted into the
output stream, generating the dynamic content that is displayed to the
user. The use of scripting elements allows developers to create dynamic
web pages that respond to user input and server-side events. However,
excessive use of scriptlets can lead to code that is difficult to maintain

and debug. Best practices suggest minimizing the use of scriptlets and

238
MATS Centre for Distance and Online Education, MATS University

encapsulating business logic in Java classes, which can then be
accessed from the JSP page using JavaBeans or custom tags. This
approach promotes code reusability, maintainability, and separation of
concerns.Answer: JavaServer Pages (JSP) is a technology that helps
software developers create dynamically-generated web pages based on
HTML, XML, or other document types. This integration occurs by
way of JSP scripting elements, which allow Java logic to be executed
inside the web page. These components are divided into three types :
scriptlet tags, expression tags and declaration tags. The flags denoted
by are scriptlets which are hashed embedded Java Code that will be
executed when the JSP page will be requested. Your code here can be
any legal Java statement — variable declarations, control flow
statements (if-else, loops), or a call to a method. One of the special
purposes where scriptlets can be very helpful is server-side processing
in which it can be used to pull to data from the database, process data,
and generate dynamic content. Example: Show products in an HTML
table using Scriptlet But example: You can show the list of products in
an HTML table using a Scriptlet. Expression tags () insert the result of
a Java expression into the output stream. It evaluates the expression
found inside the tag, converts the result to a string, and inserts it in the
HTML. This is also useful for showing dynamic data like current
date/time, user input, or result of a calculation. For example, — would
render the current date and time. These declaration tags start with is
used to import any Java classes/page variables declared here are
available throughout the JSP page. Declarations are used to define
reusable code components and are normally found at the top of the JSP
page. For purpose, a declaration will help you tell Jsp that it's a method
that calculates the addition of 2 numbers and that method can also be
called in Jsp via script lets or expression tags. The sequence for the
processing of these scripting components is very important. The order
of scriptlets, declarations, and expressions are executed one after the
other. Scriptlets can change the state of the page, such as by setting
request or session attributes, which can be read by subsequent scriptlets
or expressions. Declarations specifies the structure of a JSP page by
declaring a variables and methods, these can be used in the whole JSP
page. This is done by evaluating the expressions and inserting their
results into the output stream, which is the dynamic content shown to

the user as well. This is how to use scripting elements to develop

239
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY

ready for life

Notes

dynamic web pages which respond and update showing user
information and activities on the server. This doesn't always translate
well when working with snippets of code, for example, in file
processing or scrapers, where code is quickly written and deployed,
sometimes in languages that require multiple steps to execute, such as
Python. Recommended practice is to have a less use of scriptlet, keep
the business logic in java classes and access these classes from the JSP
page using JavaBeans or custom tags. It helps in reusing the code,

maintainability and separation.

240
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Unit 4.3: Implicit Objects Notes

4.3.1 Implicit Objects:
What is JSP Implicit object?

JSP implicit objects are created during the translation phase of
JSP to the servlet.

These objects can be directly used in scriplets that goes in the
service method.

They are created by the container automatically, and they can

be accessed using objects.

How many Implicit Objects are available in JSP?

There are 9 types of implicit objects available in the container:

1.

1) Out

e e A o

Out

Request
Response
Config
Application
Session
PageContext
Page

Exception

Out is one of the implicit objects to write the data to the buffer
and send output to the client in response

Out object allows us to access the servlet’s output stream

Out is object of javax.servlet.jsp.jspWriter class

While working with servlet, we need printwriter object

Example:

<%@ page language="java" contentType="text/html; charset=ISO-
8859-1"

pageEncoding="1SO-8859-1"%>
<IDOCTYPE html PUBLIC "-/W3C/DTD HTML 4.01
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">

241
MATS Centre for Distance and Online Education, MATS University

https://www.guru99.com/difference-between-servlets-vs-jsp.html

(RS

gmm

\\\

UNIVERSITY

ready for life.

Notes

)

|

<title>Implicit Guru JSP1</title>
</head>

<body>

<% int num1=10;int num2=20;
out.println("num1 is " +num1);
out.println("num?2 is "+num?2);
%>

</body>

</html>

Explanation of the code:

Code Line 11-12— out is used to print into output stream

When we execute the above code, we get the following output:

Vomans <\ O

e c ﬁ ._ IOCﬂthSt: 3080/test ."."f_:'_' icit

numl 15 10 num?2 15 20

Output:
e In the output, we get the values of num1 and num?2
2) Request
e The request object 1s an instance of

java.servlet.http.HttpServletRequest and it is one of the
argument of service method
o It will be created by container for every request.
o It will be used to request the information like parameter, header
information , server name, etc.
o [t uses getParameter() to access the request parameter.
Example:
Implicit_jsp2.jsp(form from which request is sent to guru.jsp)
<%@ page language="java" contentType="text/html; charset=ISO-
8859-1"
pageEncoding="1SO-8859-1"%>
<IDOCTYPE html PUBLIC "-/W3C/DTD HTML 4.01
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<htmI>

242
MATS Centre for Distance and Online Education, MATS University

https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ8.png

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">

<title>Implicit Guru form JSP2</title>
</head>

<body>

<form action="guru.jsp">

<input type="text" name="username">
<input type="submit" value="submit">
</form>

</body>

</html>

Guru.jsp (where the action is taken)

k3@ page language=
pageEncoding="13

<!DOCTYPE html FUBLIC

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=I50-8853-1">

<title>form action</title>

</head>

<body>

<% String username = reguest.getParameter("ussrname");

out.println("Kelcome " +username);

>

</body>

</html>

9-1"%>
-/ /W3C//DTD HTML 4.01 Transiticnal//EN™ "http://www.w3.org/IR/htmld/loose.dtd™>

Explanation of code:

Code Line 10-13 : In implicit_jsp2.jsp(form) request is sent, hence the
variable username is processed and sent to guru.jsp which is action of
JSP.

Guru.jsp

Code Linel0-11: It is action jsp where the request is processed, and
username is taken from form jsp.

When you execute the above code, you get the following output
Output:

Vot curstomsee < N

€ > C A [} localhost:8080/test/implicit_jsp2.jsp
test | submit
243

MATS Centre for Distance and Online Education, MATS University

UNIVERSITY

Notes

https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ10.png
https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ11.png

(RS

gmm

\\\

UNIVERSITY

ready for life.

Notes

)

|

When you write test and click on the submit button, then you get the

following output “Welcome Test.”

L C' # [} localhost:8080/test/guru.jsp?username=test

Welcome test

3) Response
e “Response” is an instance of class which implements
HttpServletResponse interface
e Container generates this object and passes to _jspservice()
method as parameter
e “Response object” will be created by the container for each
request.
o It represents the response that can be given to the client
o The response implicit object is used to content type, add cookie
and redirect to response page
Example:
<%@ page language="java" contentType="text/html; charset=ISO-
8859-1"
pageEncoding="1SO-8859-1"%>
<IDOCTYPE html PUBLIC "-/W3C/DTD HTML 4.01
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<htmlI>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">
<title>Implicit Guru JSP4</title>
</head>
<body>
<%response.setContentType("text/html"); %>
</body>
</html>
Explanation of the code:

Code Line 11: In the response object we can set the content type

244
MATS Centre for Distance and Online Education, MATS University

https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ12.png

imoTst

ready for lfe......

Here we are setting only the content type in the response object. Hence, Notes
there is no output for this.
4) Config
e “Config” is of the type java.servlet.servletConfig
o Itis created by the container for each jsp page
o Itis used to get the initialization parameter in web.xml
Example:

Web.xml (specifies the name and mapping of the servlet)

3.org/2001/¥ML5chema-instance™

Implicit_jsp5.jsp (getting the value of servlet name)
<%@ page language="java" contentType="text/html; charset=ISO-
8859-1"
pageEncoding="1SO-8859-1"%>
<IDOCTYPE html PUBLIC "-/W3C/DTD HTML 4.0l
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<htmlI>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">
<title>Implicit Guru JSP5</title>
</head>
<body>
<% String servletName = config.getServletName();
out.println("Servlet Name is " +servletName);%>
</body>
</html>
Explanation of the code:
In web.xml
Code Line 14-17: In web.xml we have mapping of servlets to the

classes.

245
MATS Centre for Distance and Online Education, MATS University

https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ14.png

(RS

gmm

\\\

UNIVERSITY

ready for life.

Notes

)

)

Implicit_jsp5.jsp

Code Line 10-11: To get the name of the servlet in JSP, we can use
config.getServletName, which will help us to get the name of the
servlet.

When you execute the above code you get the following output:

Pomaanss <O

L C' A [} localhost:8080/test/implicit_jsp5.jsp

Servlet Wame 15 GuruServlet

Output:

e Servlet name is “GuruServlet” as the name is present in

web.xml
5) Application

e Application object (code line 10) is an instance of
javax.servlet.ServletContext and it is used to get the context
information and attributes in JSP.

e Application object is created by container one per application,
when the application gets deployed.

e Servletcontext object contains a set of methods which are used
to interact with the servlet container.We can find information
about the servlet container

Example:
<%@ page language="java" contentType="text/html; charset=ISO-
8859-1"
pageEncoding="1SO-8859-1"%>
<IDOCTYPE html PUBLIC "-/W3C/DTD HTML 4.01
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<htmlI>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">
<title>Guru Implicit JSP6</title>
</head>
<body>
<% application.getContextPath(); %>

246
MATS Centre for Distance and Online Education, MATS University

https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ16.png

)

[

UNIVERSITY

ready for lfe......

</body> Notes
</html>
Explanation of the code:
o In the above code, application attribute helps to get the context
path of the JSP page.
6) Session
o The session is holding “httpsession” object(code line 10).
o Session object is used to get, set and remove attributes to session
scope and also used to get session information
Example:

Implicit_jsp7(attribute is set)

<%@ page language="java" contentType="text/html; charset=ISO-
8859-1"
pageEncoding="1SO-8859-1"%>
<IDOCTYPE html PUBLIC "-/W3C/DTD HTML 4.01
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<htmlI>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">
<title>Implicit JSP</title>
</head>
<body>
<% session.setAttribute("user","GuruJSP"); %>
Click here to get user name
</body>
</htmI>

Implicit_jsp8.jsp (getAttribute)

'

<%@ page language="j

8859-1"
pageEncoding="1SO-8859-1"%>

<IDOCTYPE html PUBLIC "-/W3C/DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<htmI>

<head>

ava" contentType="text/html; charset=ISO-

247
MATS Centre for Distance and Online Education, MATS University

(RS

(mar

W

UNIVERSITY

ready for life......

Notes

)

<meta http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">

<title>implicit Guru JSP8</title>

</head>

<body>

<% String name = (String)session.getAttribute("user");
out.printin("User Name is " +name);

%>

</body>

</html>

Explanation of the code:

Implicit_jsp7.jsp

Code Line 11: we are setting the attribute user in the session variable,
and that value can be fetched from the session in whichever jsp is called
from that (_jsp8.jsp).

Code Line 12: We are calling another jsp on href in which we will get
the value for attribute user which is set.

Implicit_jsp8.jsp

Code Line 11: We are getting the value of user attribute from session
object and displaying that value

When you execute the above code, you get the following output:

€ > C A [1localhost:8080/test/implicit_jsp7.jsp

Click here to get user name

When you click on the link for the username. You will get the following

output.

X & | [localhost:8080/test/implicit_jsp8.jsp

Uzer Wame 15 GuruJSP

248
MATS Centre for Distance and Online Education, MATS University

https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ20.png
https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ21.png

I

[

UNIVERSITY

ready for lfe......

Output: Notes
e When we click on link given in implicit_jsp7.jsp then we are
redirected to second jsp page, i.e (_jsp8.jsp) page and we get the
value from session object of the user attribute (_jsp7.jsp).
7) PageContext
o This object is of the type of pagecontext.
o Itisused to get, set and remove the attributes from a particular
scope

Scopes are of 4 types:

o Page
e Request
e Session

e Application
Example:
<%@ page language="java" contentType="text/html; charset=ISO-
8859-1"
pageEncoding="1SO-8859-1"%>
<IDOCTYPE html PUBLIC "-/W3C/DTD HTML 4.01
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<htmlI>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">
<title>Implicit Guru JSP9</title>
</head>
<body>
<%
pageContext.setAttribute("student","gurustudent",pageContext. PAGE
_SCOPE);
String name = (String)pageContext.getAttribute("student");
out.println("student name is " +name);
%>
</body>
</htmI>

249
MATS Centre for Distance and Online Education, MATS University

(RS

gmm

\\\

UNIVERSITY

ready for life.

Notes

)

)

Explanation of the code:
Code Line 11: we are setting the attribute using pageContext object,

and it has three parameters:

o Key
e Value
e Scope

In the above code, the key is student and value is “gurustudent” while
the scope is the page scope. Here the scope is “page” and it can get
using page scope only.

Code Line 12: We are getting the value of the attribute using
pageContext

When you execute the above code, you get the following output:

L X A | [] localhost:8080/test/implicit_jsp9.jsp

student name 15 gurnstudent

Output:
e The output will print “student name is gurustudent”.
8) Page
e Page implicit variable holds the currently executed servlet
object for the corresponding jsp.
e Acts as this object for current jsp page.
Example:
In this example, we are using page object to get the page name using
toString method

<%@ page language="]

8859-1"
pageEncoding="1SO-8859-1"%>

<IDOCTYPE html PUBLIC "-/W3C/DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<htmI>

<head>

ava" contentType="text/html; charset=ISO-

<meta http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">

250
MATS Centre for Distance and Online Education, MATS University

)

ready for life......

<title>Implicit Guru JSP10</title> Notes
</head>

<body>

<% String pageName = page.toString();

out.println("Page Name is " +pageName);%>

</body>

</html>

Explanation of the code:

Code Line 10-11: In this example, we are trying to use the method
toString() of the page object and trying to get the string name of theJSP
Page.

When you execute the code you get the following output:

Vomocansre xR

L C' A | [} localhost:8080/test/implicit_jsp10.jsp

Page Name 1s org.apache jsp.mmplicit_005fjspl0_jsp@73e29f

Output:
e Output is string name of above jsp page
9) Exception
o Exception is the implicit object of the throwable class.

o [t is used for exception handling in JSP.

e The exception object can be only used in error pages. Example:

v

<%@ page language="]

8859-1"
pageEncoding="ISO-8859-1" isErrorPage="true" %>

<IDOCTYPE html PUBLIC "-/W3C/DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<htmI>

<head>

ava" contentType="text/html; charset=ISO-

<meta http-equiv="Content-Type" content="text/html; charset=ISO-
8859-1">

<title>Implicit Guru JSP 11</title>

</head>

<body>

251
MATS Centre for Distance and Online Education, MATS University

https://www.guru99.com/jsp-exception-handling.html
https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ25.png

UNIVERSITY

ready for life......

Notes <%int[] num1={1,2,3,4};
out.println(num1[5]);%>
<%= exception %>
</body>
</html>
Explanation of the code:
Code Line 10-12 — It has an array of numbers, i.e., numl with four
elements. In the output, we are trying to print the fifth element of the
array from numl, which is not declared in the array list. So it is used to
get exception object of the jsp.
Output:

< o wenzraca - e < N

€« C ff | [3 localhost:8080/test/implicit_jsp11.jsp

HTTP Status 500 -

BT Exception report

essagel
The server encountered zn interal error () that prevented it from fulfilling this request.
jexception|

org.spache.jasper.lasperException: An exception occurred processing ISP page /implicit_jspll.jsp at line 11

8: </head»

9: <body>

10: <¥int[] numl={1,2,3,4};
11: out.println(numl[5]);%:>
12: <%= exception %>

13: </body>

14: </html>

Stacktrace:
org.apache.jasper.servlet.lspServletirapper.handlelspException{JspServletlrapper.java:498)
org.apache.jasper.servlet.JspServletlrapper.service(IspServletirapper.java:411)
org.apache. jasper.servlet.Ispservlet.servicelspFile(JIspservlet.java:322)
org.apache. jasper.servlet.lIspservlet.service(Ispservliet. java: 249)
javax.servlet.http.HttpServlet.service(HttpServlet. java:883)
org.jboss.web.tomcat.filters.ReplyHeaderFilter.doFilter(ReplyHeaderFilter.java: 96)

or-gTa-pacF;j-sF.-irrl-pTi-ci-t:BESFjvs-pﬁij5 p._jspService(implicit_eesfispll jsp.java:66)
org.apache. jasper.runtime.HttplspBase.service (HttplspBase.java:7@)
javax.servlet.http.HttpServlet.service{HttpServlet. java:883)
org.apache.jasper.servlet.IspServletirapper.service(IspServletirapper.java: 369)
org.apache.jasper.servlet.JspServlet.servicelspFile(JspServlet.java:322)
org.apache. jasper.servlet.lspservlet.service(Jspservlet. java: 249)
javax.servlet.http.HttpServlet.service(HttpServliet.java:803)

org.jboss.web. tomcat.filters.ReplyHeaderFilter.doFilter(ReplyHeaderFilter.java: 96)

We are getting ArrayIndexOfBoundsException in the array where we

are getting a num1 array of the fifth element.

So JSP provides a set of predefined objects, known as implicit objects,
which are automatically available to developers within the JSP page.
These objects provide access to server-side resources and contextual
information, simplifying the development of dynamic web
applications. The implicit objects include request, response, config,

application, session, pageContext, page, and exception. The request

252
MATS Centre for Distance and Online Education, MATS University

https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ27.png

object, an instance of javax.servlet.http.HttpServletRequest, provides
access to information about the client's request, such as request
parameters, headers, and cookies. Developers can use the request object
to retrieve form data, access session attributes, and handle file uploads.
The response object, an instance of
javax.servlet.http.HttpServletResponse, allows developers to send data
back to the client, such as HTML content, images, and other resources.
Developers can use the response object to set response headers,
cookies, and redirect the client to another page. The config object, an
instance of javax.servlet.ServletConfig, provides access to servlet
configuration information, such as initialization parameters and servlet
context. Developers can use the config object to retrieve configuration
settings for the JSP page. The application object, an instance of
javax.servlet.ServletContext, provides access to application-wide
resources and attributes. Developers can use the application object to
share data between different JSP pages and servlets within the same
web application. The session object, an instance of
javax.servlet.http.HttpSession, provides access to session-specific data
and attributes. Developers can use the session object to store user-
specific information, such as login credentials and shopping cart
contents. The pageContext object, an instance of
javax.servlet.jsp.PageContext, provides access to the JSP page's
context, including access to other implicit objects and page-scoped
attributes. Developers can use the pageContext object to forward
requests to other pages, include other resources, and manage page-
scoped attributes. The page object, an instance of java.lang.Object,
represents the JSP page itself. In most cases, it is equivalent to the this
keyword. The exception object, an instance of java.lang. Throwable, is
available only in error pages and provides access to the exception that
caused the error. Developers can use the exception object to display
error messages and log error details. The implicit objects are
automatically created and initialized by the JSP container when the JSP
page is requested. They are accessible within scriptlets, expression tags,
and declaration tags. The request and session objects are particularly
useful for managing user sessions and handling form data. The
application object is useful for sharing data between different parts of
the web application. The pageContext object provides a convenient

way to access other implicit objects and manage page-scoped attributes.

253
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

The exception object simplifies error handling in JSP pages.
Understanding and effectively using these implicit objects is essential
for developing robust and efficient JSP applications.

4.3.2 Directive Elements:

Directive Elements JSP directive elements used to control the overall
behavior of the JSP page and also to provide the configuration
information to the JSP page to the container. These elements do not
produce any output that has to be sent to the client, instead they control
the general structure and behavior of the JSP page. Directive elements
are found at the top of the JSP page and start with . Directive elements
can be of three types: page, include, and taglib. Indeed, the page
directive defines page-specific properties like content type, import
statements, and error page configuration. The page directive contain
attributes like contentType, import, errorPage, isErrorPage, session,
buffer, autoFlush, info, isThreadSafe, language, extends. The
contentType is a string representation of the MIME type of the
response, €.g., text/html or application/json. The import attribute allows
for the importing of Java classes and packages so that they are
available for use in the JSP page. The URL of the error page to be
displayed in case of Exception is defined using the errorPage attribute.
isErrorPage attribute determines whether the page is an error page
Example of using session in in JSP page The session attribute:
Determines whether the JSP page participates in a session.
ParseBuffer(buffer,20); This instruction parses a response buffer of 20
bytes. autoFlush attribute specifies the buffer autoFlush or not The info
attribute provides a description of the JSP page. The isThreadSafe
attribute indicates if the JSP page is thread safe. The language
parameter specifies the scripting language in the JSP page. The
extends attribute in id extends the superclass of the generated servlet.
The line with the include directive looks like this: Other than that, the
included file can be a static HTML file, another JSP, servlet or any
other resource that is available to the JSP container. There are two
forms of the include directive: a static one and a dynamic one. Static
include: () — Includes the file at translation time, that is, the included
file is processed only once, during JSP page compilation. Dynamic
include or generates the file at request time which means the included
file will be processed each time the JSP page is requested. This article
explains the usage of JSP Taglibs along with an example JSP page. The

254
MATS Centre for Distance and Online Education, MATS University

taglib directive has two attributes: prefix and uri. The uri attribute
indicates the URI of the tag library descriptor (TLD) file that defines
the custom tags. The prefix attribute defines the prefix to be used by the
custom tags in the JSP page. At the same time, directive elements can
guide the JSP pages in behavior and structure. They allows us to
process page-level settings (like external resources) and add a custom
tag. So keyword such are Directive element must be used appropriately
in JSP application to more effectively.

4.3.3 Advanced JSP Scripting and Implicit Object Utilization
While its basic usage—combining JSP scripting elements and implicit
objects—serves most purposes, advanced techniques can help optimise
the functionality and efficiency of JSP applications significantly. For
example, scriptlets can be utilized to execute complicated business
logic like data validation, which involves checking data integrity and
accuracy against specific criteria, form processing can process user
input from HTML forms to operate on, and database interactions can
fetch data from a database. Using scriptlets for presentation logic
should be minimized, as it may cause code that is hard to maintain and
debug.

Directive Elements:

In this Article JSP (JavaServer Pages) directive elements define
essential construction information for the JSP container regarding the
information, dependencies and handling requirements of a webpage.
These are not included in the output instead they are configuration
directives that guide how the JSP page will be translated and executed.
1 There are three primary directive elements: the page directive, the
include directive, and the taglib directive. You can give page specific
information using this directive like content type of the page, how to
handle the error for the page and about session management. It appears
at the start of a JSP page and can consist of several attributes. The
contentType property carries the MIME type and character encoding of
the response, so that the client browser interprets the response.
Example: — This sets the content type as HTML with UTF-8
encoding. In this example, the errorPage attribute defines the URL of
an error page to be displayed in case of an exception as part of that
page processing. This gives a chance to handle errors gracefully &
prevents users from having the raw stack traces. The isErrorPage

property informs whether in the current context an error page is present,

255
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

making possible the implementation of conditional error handling
logic. Session AttributeExecutes on endlInitialize | endLoadSyntaxPage
Attributes When set to true, the session attribute allows or prevents
SQL session management for the page. If set to true, the session implicit
object will be available as well, enabling developers to access the
session data. Developers can import Java classes and packages, which
become available for use in the JSP page by using the import attribute.
For multiple import attributes multiple classes or packages can be
imported. The language attribute also specifies the scripting language
of the JSP page which is usually Java. Other properties, like buffer,
autoFlush, and info, offer more fine-grained control over the process
of paging. The include directive allows you to include a file in the JSP
page at translation time. It enables code reuse and modular
development. The file to include could be a JSP page, HTML file, or
any text file. The file attribute defines the path to the file to be
included. For example, // contains master header jsp file. Since the
included file is processed just like part of the current page, any changes
to the included file would cause the JSP page to be recompiled. 2 The
taglib directive is used to declare a tag library so that its custom tags
can be used in this JSP page. They offer a way to encapsulate
commonly-used functionality and make JSP development simpler. 3
The uri attribute declares the URI of the tag library and the prefix
attribute declares a prefix to identify in the library the tags. For
example, declares the JSTL core tag library with prefix c. After
declaring a tag library, its custom tags can be used in the JSP page using
the specified prefix within the JSP page. 4 It is three-line
configuration. Because they perform the directives, which control the
behaviour of JSP, they allow page authors to have more control over
their JSP

4.3.4 Action Elements:

JSP action elements are runtime instructions that dynamically generate
content or control the flow of execution within a JSP page. Unlike
directive elements, which are processed at translation time, action
elements are executed at runtime, allowing for dynamic behavior. The
two primary action elements are jsp:forward and jsp:include, each
serving distinct purposes in JSP development. The jsp:forward action
element is used to transfer control from the current JSP page to another

resource, such as another JSP page, servlet, or HTML file. It effectively

256
MATS Centre for Distance and Online Education, MATS University

redirects the request to the specified resource, and the current page
ceases processing. The page attribute specifies the relative or absolute
URL of the resource to which control should be transferred. For
instance, <jsp:forward page="welcome.jsp" /> forwards the request to
the welcome.jsp page. The jsp:forward action can also include
parameters using the jsp:param sub-element, allowing developers to
pass data to the target resource. For instance, <jsp:forward
page="profile.jsp"><jsp:param name="userld" value="123"
/></jsp:forward> forwards the request to the profile.jsp page with the
userld parameter set to 123. The jsp:forward action is often used for
implementing navigation logic, error handling, and conditional page
flow. It is crucial to note that once the jsp:forward action is executed,
any output buffered by the current page is discarded, and the response
is generated by the target resource. The jsp:include action element is
used to include the output of another resource into the current JSP page
at runtime. This allows for dynamic content inclusion and modular
development. The page attribute specifies the relative or absolute URL
of the resource to be included. For instance, <jsp:include
page="footer.jsp" /> includes the output of the footer.jsp page. The
included resource is executed, and its output is inserted into the
response stream of the current page. The jsp:include action can also
include parameters using the jsp:param sub-element, allowing
developers to pass data to the included resource. For instance,

—_n

<jsp:include page="news.jsp"><jsp:param name="category"
value="sports" /></jsp:include> includes the output of the news.jsp
page with the category parameter set to sports. The jsp:include action
is often used for including common page elements, such as headers,
footers, and navigation bars, dynamically. It allows for creating
reusable components and maintaining consistency across multiple
pages. Unlike the include directive, which includes files at translation
time, the jsp:include action includes resources at runtime, allowing for
dynamic content generation. Action elements provide a powerful
mechanism for controlling the flow of execution and generating
dynamic content within JSP pages, enabling developers to create
interactive and dynamic web applications.JSP action elements are
instructions that are executed during runtime and are used to
dynamically generate content or control the flow of execution in a JSP

page. Whereas directive elements are processed during the translation

257
MATS Centre for Distance and Online Education, MATS University

[

\

e

\\\

UNIVERSITY

ready for lfe......

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

phase, action elements are executed in the runtime phase, providing
dynamic run-time behavior. The only two dominant action elements are
jsp:forward and jsp:include and they serve different purposes.
jsp:forward action element Transfers control from one JSP page to
another JSP page, servlet, or HTML file. This is useful as it makes use
of the request and is placed on the JSP page itself. It does its job of re-
routing the request to the targeted resource and the current page stops
its processing. The page attribute indicates the relative or absolute URL
of the resource to which control will be transferred. Such as forwards
the request to welcome. jsp page. jsp:forward action may also pass
parameters to the target resource with the jsp:param sub-element, thus,
developers can also pass some data to the target resource. Example,
forwards the request to the profile. The Web/cgi-bin/launchpage.jsp
page with the userld parameter set to 123. Also, jsp:forward action is
commonly used for navigation logic, error handling and conditional
page flow. Please note that, upon executing the jsp:forward action,
anything that is output buffered by the current page will be: discarded
and the response will be generated by the target resource. JSP
JSP:include The jsp:include action element is used to include the
output of another resource (servlet, JSP file, etc) in the current JSP page
at runtime. Dynamic content inclusion and modular development. The
page property points to the relative or absolute URL of the page to
include For example, outputs the footer. jsp page. The included
resource is invoked and the result is inserted directly into the response
stream such that it becomes part of the output of the current page. The
developer of the included resource must access the included resource
through the request object just as with the request, but the developer of
the included resource can also pass parameters if they exist within it as
sub-elements to the parent include. For example, includes the output of
the news jsp page — the category parameter set to sports. jsp:include
action is frequently utilized to dynamically include shared components
like headers, footers, or navigation bars. It enables the development of
reusable components and the seamless preservation of uniformity
across different pages. The jsp:include action differs from the include
directive in that the include directive includes files at translation time,
whereas the jsp:include action includes resources at runtime, enabling

dynamic content generation. By acting as a combination of XML and

258
MATS Centre for Distance and Online Education, MATS University

Java, action elements are a great way to control your flow of execution
and generate dynamic content within JSP pages.

4.3.5 Page Directive: Configuring Page-Specific Attributes

The page directive in JSP development is one of the primary methods
through which a developer can define several things on a page that
affect the way the JSP container manages this page. Syntax : It is
usually found at the top of a JSP page and it has one or more attributes
each of which has its own purpose. Here the contentType attribute is
used to state the mime type of JSP page response and the character
encoding. This attribute makes sure that the client browser understand
the content. For example: defines that the content type is HTML,
encoded in UTF-8, so the page will render the HTML content encoded
in UTF-8 Some other widely wused values are text/plain,
application/json, and application/xml, according to the content being
produced. On imports tag JSP developers can make use of Java classes
and packages in JSP page. It makes development JSP so simpler
because you will not have to use fully qualified class names. Import
multiple classes or packages using import for multiple import attributes
e.g. imports all classes in the java. util package. If an exception occurs
and the errorPage attribute of the page is specified, the page URL
specified in errorPage will be invoked. That means we can implement
graceful error handling and avoid raw stack traces from being
displayed to users. For example, If there is any Exception then a jsp
page should be shown. Check whether the current page is an error page
with the isErrorPage attribute This post is related to the exception
implicit object that is available when the isException=true. For
example, specifies that the page in question is an error page. The
session attribute is used to enable or disable session management for
the page. When this is true, the session implicit object is made
available and developers can store and read session data. Example: The
creates session management for the page. This uses a buffer attribute
where you can set the buffer size for the output stream before writing
it to the client autoFlush Specifies whether the buffer will be
automatically flushed if the buffer is full. The info attribute is a string
storing a description of the page, which can be obtained through calling
the HttpServlet class getServletInfo() method. The language attribute
defines the scripting language that's used in a JSP page, it is Java in

usual. The other attributes that can be specified (extends, pageEncoding

259
MATS Centre for Distance and Online Education, MATS University

[

\

e

\\\

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

and isThreadSafe) give more control over how the page is processed. It
is important to note that the page directive is critically important in
setting up page-specific information so that the JSP container can
process the page as per the information given.

4.3.6 Include Directive:

One is the include directive, which is a powerful tool in JSP
development, allowing developers to insert the content of another file
into the current JSP page at translation time. This allows for modular
development and code reuse, as common elements that appear on
multiple pages can be factored out into separate files and then included
in multiple JSP pages. This last parameter is the file to be included.
The path can be a relative/absolute path depending upon where the
included file is.

Summary

This module introduces learners to JavaServer Pages (JSP), a powerful
server-side technology used to create dynamic web content. It begins
by explaining the concept, need, and advantages of JSP over traditional
servlet-based programming. JSP allows embedding Java code directly
into HTML, making web development more efficient and content
easier to manage.Learners explore the JSP life cycle, which includes
stages like translation, compilation, initialization, execution, and
destruction.

Understanding this life cycle helps in managing how JSP pages are
processed and served by the web server.The module also covers various
scripting elements—such as declarations, expressions, and scriptlets—
which are used to insert Java code into JSP pages. Additionally, it
introduces implicit objects like request, response, session, application,
and out, which simplify coding by giving direct access to common
functionalities. Further, the module dives into directive elements (e.g.,
page, include, taglib) and action elements (e.g., <jsp:include>,
<jsp:forward>, <jsp:useBean>) that control page behavior and enhance
dynamic content management.By the end of this module, learners gain
a comprehensive understanding of JSP development, enabling them to
build robust, dynamic, and maintainable web applications.

Multiple-Choice Questions (MCQs)
1. What is the primary purpose of JSP?
a) To create standalone Java applications
b) To generate dynamic web content

c) To replace JavaScript in web pages

260
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

d) To manage databases Notes
Answer: b) To generate dynamic web content
. Which of the following is not a JSP scripting element?
a) Scriptlet (<% %>)
b) Expression (<%= %>)
c) Declaration (<%! %>)
d) Method (<%method%>)
Answer: d) Method (<%method%>)
. Which implicit object in JSP is used to access session-related
data?
a) request
b) session
c) application
d) config
Answer: b) session
. What does the <%@ page %> directive do in JSP?
a) Includes another JSP file
b) Defines global settings for a JSP page
c) Forwards a request to another page
d) Declares a Java variable

Answer: b) Defines global settings for a JSP page

. Which action element is used to forward a request to another
resource in JSP?
a) <jsp:forward>
b) <jsp:include>
c) <jsp:action>
d) <jsp:redirect>
Answer: a) <jsp:forward>
Short Answer Questions

. What are the advantages of using JSP over servlets?

2. Explain the different phases in the life cycle of a JSP page.

3. What is the difference between a scriptlet and an expression in

JSP?

4. Name and explain three JSP implicit objects.

5. What 1is the difference between <jsp:forward> and

<jsp:include>?

Long Answer Questions

261
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

. Describe the life cycle of a JSP page with a detailed explanation

of each phase.

. Explain JSP scripting elements with examples of each.

. What are JSP implicit objects? Describe any five with their

usage.

. Explain the different types of JSP directive elements and their

purposes.

. How do JSP action elements work? Compare <jsp:forward>and

<jsp:include> with examples.

262
MATS Centre for Distance and Online Education, MATS University

Module 5
Spring and Spring Boot Framework

LEARNING OUTCOMES

To understand the core concepts of Spring and Spring Boot.
To explore dependency injection and IOC container.

To analyze web application development using Spring.

To study Spring Boot architecture and key components.

To implement database connectivity using Spring JDBC.
To explore Aspect-Oriented Programming (AOP) in Spring
Boot.

263

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

Unit 5.1: Introduction to Spring Initializing and Writing
Spring application

5.1.1 Introduction to Spring:

With Spring, a full-fledged and well-accepted framework that has
absolutely changed the way Java applications are developed by
providing an infrastructure to develop enterprise applications. Spring is
a container framework that is designed to develop very loosely coupled
easily testable and maintainable applications based on DI(AOP)
principles under the hood. Spring is designed in a modular way,
meaning developers can pick and choose only the aspects that they will
need, making it a light development environment. The framework is
capable of serving different types of applications like web
applications, microservices, and batch processing systems. Spring was
conceived out of a desire to overcome the challenges and confines of
Java EE, providing a more agile and pragmatic approach to application
development. Over the years, the framework has evolved to support
new technologies and methodologies, making it a popular choice
among developers. Spring is a collection of many different modules
that focus on different aspects of application development. The heart
of this framework is its core container, responsible for managing the
full lifecycle of application components (beans). The Spring's DI
mechanism helps developers configure the dependencies for beans and
process these beans by injecting the dependencies for them in runtime.
By doing so, we encourage loose coupling, such that interdependencies
between code are reduced and code is more reusable. Aspect-Oriented
Programming, or AOP, is another key pillar of Spring, offering a way
to modularize cross-cutting concerns like logging, security, and
transaction management. Aspects can also handle cross-cutting
concerns, allowing developers to encapsulate these concerns into facets
that can be applied uniformly to the application without polluting the
business logic itself. The Spring framework enables seamless
interaction with different data access technologies like JDBC,
Hibernate, JPA, etc., to facilitate data persistence. Spring Boot is a sub-
project of Spring that has taken the core components of Spring and
provided sensible defaults for creating stand-alone, production-ready

Spring applications (also known as Auto-Configuration). Spring offers

264
MATS Centre for Distance and Online Education, MATS University

a wealth of documentation, an active community, and an abundance of

resources that make it suitable for both novice and expert developers.

R

(Spring Framework Runtime
Data Access/Integration Web

58|
) || L] (o]

L R

(—) (Crerocs][.mmm]
NN SN E
(~ 3

Figure 5.1: Spring Framework
[Source: https://www.careerride.com/]

5.1.2 Initializing a Spring Application:

When a Spring application starts, it initializes the Spring container that
serves as the central interface in the Spring framework to manage the
components of your application. A Spring application consists of
different types of objects called "beans". 4 Techniques to Initialize a
Spring Container Historically, bean configuration, including properties
to inject and bean dependencies, was done primarily in XML. An
XML file is created and is usually called applicationContext. xml but
defining the beans using elements. The container would parse this
XML file and create the beans. XML and its configuration can be
lengthy and cumbersome, particularly for large and complex
applications. The solution Spring provided, was an annotation-based
configuration which allowed the developers to define beans (and their
dependencies) inside the code written in Java. With annotations like
@Component, @Service, @Repository and @Controller, classes are
marked as beans, while @Autowired and @Qualifier determine which
dependency is to be injected. Spring also provides Java-based

configuration, which is a more programmatic way of defining beans

265
MATS Centre for Distance and Online Education, MATS University

)

(e

W

UNIVERSITY
ready for lie......

Notes

)

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

and their dependencies. Developers may write configuration classes
(with annotation @Configuration) and specify beans (with @Bean
methods). It gives them more control and flexibility for configuring
how they handle data. Spring Boot comes with autoconfiguration which
makes the bootstrapping process even simpler. Spring Boot
automatically instantiates the Spring container and configures it with
the dependencies that exist in the classpath. One of its key features is
auto-configuration, meaning if Spring MVC is found on the classpath,
a dispatcher servlet and other beans will be automatically populated.
This means that in most cases there is no manual configuration
required. The decision on which method to use depends on the
characteristics required by the application. In general annotation based
and java based configuration is preferred in modern spring
applications due to better readability and flexibility. XML-based
configuration is still possible but primarily exists for legacy
applications or when very specific configuration is required. In
whichever way we choose to go about it, the initialization is upon us
and we create an ApplicationContext, which is your Spring container.
In ApplicationContext, you have many methods to access the beans,
retrieve the configuration properties, and also to publish the events.
Now, the ApplicationContext is helpful when it comes to obtaining the
beans and calling the methods from those beans. SpringApplication is
typically used in Spring Boot applications. run() method part to create
the ApplicationContext. This means that the container will be
configured automatically and the application will be started. Bean
validation also takes place in Spring for this reason, where Spring
ensures that all beans have either been created properly or possess the
correct configuration and parameterization for the application to run
properly. Knowing the different initialization modes and their impact
helps developers in properly configuring their Spring applications and
making the advantages of the framework.

5.1.3 Writing Spring Applications:

Creating Spring applications is based on the use of the framework's
main attributesDependency Injection (DI) and a component-based
style. DI encourages loose coupling because the beans do not create
their dependencies, but rather, define them. It frees the components
from each other using dependency injection (DI) at runtime and

increases code reusability by maintaining loosely coupled components.

266
MATS Centre for Distance and Online Education, MATS University

Spring Applications are, generally speaking, layered with
presentation, service, data access layers, etc. All three layers contain
components, which are classes annotated with @Component,
@Service, @Repository, or @Controller. These annotations indicate
that these classes are beans, which enables the Spring container to
manage their lifecycle. The Service Implementation classes are also
annotated with the @Service annotation and the different classes that
are used to interact with the database (DAO classes) are annotated with
the @Repository annotation. It is about @Controller annotation used
in spring framework to decorate classes which handle HTTP request.
@Autowired: Used to specify dependencies between beans. When one
bean needs another, the @Autowired annotation can be used to inject
the needed bean instance. There are many types of dependency
injection Constructor Injection, Setter Injection, Field Injection
supported by Spring. However, in most cases, constructor injection is
preferable so that all dependencies are set when the bean is created.
Setter injection and field injection can be applied for situations where
constructor injection is impractical. It also provides support for
dependency injection through Java-based configuration. Developers
configure beans and their dependencies using @Bean methods in
@Configuration classes. It allows for more flexibility in the
configuration process. By using AOP and aspect-oriented
programming, developers can modularize cross-cutting concerns, such
as logging, security, and transaction management, into aspects that can
be applied across multiple classes and components. Upon encapsulating
these concerns into aspects, developers would be able to apply them
consistently across the application without muddling the core business
logic. We define aspects using @Aspect classes and pointscuts using
annotations such as @Before, @After, @Around, @Pcumptcut, etc.
Because Spring also supports multiple data access technologies,
interacting with a database becomes more straightforward. The
database can be accessed using JDBC, Hibernate, or JPA by the
developers. It can be tricky to access data easily as the project grows in
size and the codebase gets bigger, but Spring definitely reduces that
complication by providing repositories that create database queries
based on the name of the method you wroteSpring Data is a sub-project
under the Spring umbrella that makes it easier to access data by

providing functionality to create repositories, which automatically

267
MATS Centre for Distance and Online Education, MATS University

[

\

e

\\\

UNIVERSITY

ready for lfe......

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

builds database queries based on the name of the method you wrote.
Spring MVC is a model-view-controller framework for building web
applications. The Spring MVC framework makes use of the Dispatcher
Servlet, which is responsible for processing incoming HTTP requests
and sending it to the appropriate controllers. Controller - Classes
annotated with the @Controller handle specific HTTP requests. JUnit
and Mockito are usually used to test spring applications. Thanks to
Spring's dependency injection support, you can mock and stub
dependencies easily, hence also write unit tests easily. Spring Boot
makes it easy to create stand-alone, production-grade Spring-based
Applications that you can "just run". Spring Boot lets you package
your applications as executable JAR files, for quick deployment and
running. Spring framework helps to develop a flexible and easy
oriented application.

5.1.4 Spring Boot:

Enter Spring Boot which has become a real-deal-industry-changer for
all Spring Development, liberating developers with quicker and more
efficient development of stand-alone, production-ready Spring
Applications. It handles a lot of the boilerplate configuration needed in
a traditional Spring application, so developers can concentrate on
writing business logic. It does this with its auto-configuration features,
which provide Spring container configuration whenever your classpath
has dependencies. So if Spring MVC is on the class path, Spring Boot
configures a dispatcher servlet and other necessary components. That
means much less setup is required manually. Spring Boot comes with
sensible defaults for many aspects of application development,
including embedded servers, logging, and security. If necessary,
developers can override these defaults, but usually, they are enough for
most applications. Since spring-boot applications need to include all
jars for uses (zipped into a jar) and load an embedded server. This is
what simplifies their deployment and execution since they can be run
from the command line with the java -jar command. The Spring Boot
CLIis a command-line tool that you can use to create and run Spring
Boot applications with ease. The CLI has also your back for
dependencies management and test running. The Spring Boot Actuator
Module: The Spring Boot actuator module provides endpoints to
monitor and manage your Spring Boot application. This endpoints

gives information of application bsolutely. By using DI in our Web

268
MATS Centre for Distance and Online Education, MATS University

Application we can ensure that our components or services are unload
and reuseable, let us dive into Dependency Injection, Web Application
Development, and return 8800—word answer in Eight paragraphs on
what DI we can achieve through Web Application Development in the
context or any learnings out there, DI in combination with Web

Application Development.

269
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

(RS

&mn'r

\\\

UNIVERSITY

ready for life......

Notes

)

|

Unit 5.2: Dependency Injection

5.2.1 Dependency Injection

Dependency Injection (DI) helps achieve loose coupling and
modularity within the systems. Basically, DI helps provide the
dependencies of a class from an outside source instead of the class

creating/managing them itself.

At the heart of the Spring Framework lies the Spring container, which
is responsible for creating, configuring, wiring, and managing the
complete lifecycle of objects within an application. These objects,
known as Spring Beans, are managed through a process called
Dependency Injection (DI).

The container determines which objects to instantiate and how to
configure and assemble them based on the configuration metadata
provided. This metadata can come in various forms, such as XML
configuration files, Java annotations, or Java-based configuration
classes. The diagram below (not shown here) illustrates a high-level
overview of how the Spring Framework operates: the Inversion of
Control (IoC) container uses POJO (Plain Old Java Object) classes

and the configuration metadata to build a fully functioning application.

JavaPOJO classes

Metadata
>

Final Result

Readyto use

application

Types of Spring IoC Containers

270
MATS Centre for Distance and Online Education, MATS University

Spring offers two primary types of loC containers:

Sr.No. Container Description
This is the most basic type of container,
definedby the
org.springframework.beans.factory.BeanFa
ctory interface. It supports fundamental

dependency injection features. Interfaces

Spring
such as BeanFactoryAware,
1 BeanFactory L)
. InitializingBean, and DisposableBean are
Container)]
also part of this container. Though
BeanFactory is retained for backward
compatibility with many third-party tools, it
is less commonly used in modern Spring
applications.
This is a more advanced container that
extends BeanFactory and includes additional
Spring enterprise features, such as resolving text
) Application messages from properties files and
Context publishing application events to listeners. It
Container is defined by the

org.springframework.context. ApplicationC

ontext interface.

The ApplicationContext container is a superset of BeanFactory,
offering all its features and more. For most applications,
ApplicationContext is preferred, as it provides richer functionality.
However, BeanFactory may still be suitable for lightweight
environments, such as mobile or embedded applications, where

memory and speed are critical concerns.

This inversion of control (IoC) means the class does not take
responsibility for managing its dependencies, instead, the
responsibility is delegated to an external agent, normally an IoC
container. DI is a design principle that follows the Dependency
Inversion Principle, which puts the high-level modules not relying on
the low-level modules to maintain the code, but both rely on
abstractions. Decoupled components allow easy replacement of a
dependency and hence would result in more flexibility, testability,

maintainability. In classical application development classes usually

271
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

instantiate their dependencies directly and this leads to tight coupling.
If there are any changes in the dependency, dependent class must also
be modified leading to a chain of modifications in the significant part
of code. DI solves this problem by introducing an intermediary (the loC
container) that manages the instantiation and provisioning of
dependencies. The IoC container instantiates objects and injects them
into dependent classes, according to configuration or conventions. This
is because classes can now focus on their core logic, and not on how to
create and manage their dependencies. In between simple factory-style
IoC containers and advanced framework-style IoC containers. They
have features like dependency resolution, lifecycle management, and
configuration management. Using [oC containers, developers are able
to build more modular, testable, and maintainable applications. The
container abstracts away the details of object instantiation and
dependency injection, allowing developers to focus on business logic.
5.2.2 Understanding Constructor Injection and Its Benefits
Constructor Injection: It is a type of dependency injection in which
dependencies are injected into a class via its constructor. With this
design, a class is guaranteed to receive all of the dependencies it
requires when it is constructed; as a result, the class is fully initialized
and prepared for any subsequent interaction. In Constructor Injection,
your dependencies can declared as final fields, thereby ensuring
immutability. Because this structure is immutable, it is easier to work
with across threads and you are less likely to accidentally cause side
effects. In addition, constructor injection provides clarity to a class in
terms of its dependencies only by looking at its constructor parameters.
In addition, you are using Dependency Injection, which is an explicit
declaration of dependencies for classes, and thus it offers better
readability, maintainability and testability.

5.2.3 Delving Deeper into IoC Containers and Dependency
Resolution

Well, IoC containers are the all-time base work of Dependency
Injection this allows you to separate the creation of a service from
using it. Container runtimes, for example, are responsible for running
containers, providing features like dependency resolution, lifecycle
management, and configuration management. Dependency resolution
is discovering and supplying the correct dependencies to a class based

on its constructor parameters or setter methods. IoC containers use

272
MATS Centre for Distance and Online Education, MATS University

metadata (like annotations or XML configurations) to identify the
dependencies and their implementations. Based on such type matching
or named binding, they automatically resolve dependencies and allows
you to easily construct complex object graphs. Another important
feature of IoC containers is lifecycle management. They handle object
life-cycle management (creating, initializing, and destroying them).
The containers can invoke initialization methods after the object is
created and destruction methods before disposing of the object,
providing the developers an opportunity to do the necessary work in
setting up and cleaning up the resources associated with the object. In
configuration management, the developers specify dependencies and
implementations using configuration files or annotations. IoC
containers will read these configurations and use them to wire them
up. The separation of configuration from code allows for easy
management and modifications of an application's dependencies
without compiling the code. Another feature offered by loC containers
is scope management where developers can specify the lifecycle and
visibility of the objects. They can define singleton objects, which are
objects that have a single instance within the application, or prototype
objects, which create a new instance for each request. Also, the
containers provide support for aspect-oriented programming (AOP)
which allows developers to write cross-cutting concerns such as
logging or transaction management and apply it to multiple objects.
That make it easy for the application to be separated into modules

implementing common functionality.

273
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
ready for life

Notes

Unit 5.3: Developing web applications

5.3.1 Developing Web Applications

Web application development refers to the process of designing,
building, deploying, and maintaining web applications. These apps
usually deal with showing and processing information, validating user
input, and maintaining the state of the application. To present
information in a web app, developers use HTML, CSS, and JavaScript
among other techniques. Hypertext Markup Language (HTML) is used
to create the structure and content of a web page, and cascading style
sheets (CSS) are used to style and format that content. FIGURE 22:
JavaScript adds interactivity and dynamic behavior to web pages. Most
of the time web applications receive data from databases or external
APIs and show it to the user. This data may be shown in many forms,
including tables, lists, or charts. Server-side programming languages
like Java, Python, or PHP, are used by developers to process the data,
and generate HTML before sending it to the browser. JavaScript
running on the client-side can also be used to dynamically update the
web page content, in real time, without the need of a full page reload.
One such technique, commonly abbreviated to AJAX (Asynchronous
JavaScript and XML), enables the development of more dynamic and
interactive user interfaces. Handling user input, including form
submissions and search queries, is another core functionality for Web
applications. The server-side code processes this data after the forms
collect data from the users. Various techniques for user input
validation exist, and developers make sure the input is formatted
correctly. Client-side validation using JavaScript or server-side
validation using the chosen programming language can perform this
check. Similarly, web applications need to perform maintain the
application's state, such as user sessions and application settings.
Cookies, session variables and databases are some of the different
methods to store this state. There are many ways the developers ensure
that the state is consistent across multiple requests. Web Application
Development Conclusion The web application development process
includes client-side and server-side technologies that combine to create
dynamic and interactive applications that react to user input and

manipulate data.

274
MATS Centre for Distance and Online Education, MATS University

From the perspective of Web applications, we often take care of Form
input validation and processing information in it.

5.3.2 Processing Information and Validating Form Input in Web
Applications

Thus works in a web application processing information such as
fetching data from multiple sources, transforming it and showing it to
users. This can be in the form of databases, external APIs, or user
input. Data is processed and HTML content is generated using server-
side programming languages before being submitted to the browser.
Developers employ numerous methods to query databases, modify
data structures, and create dynamic content. They may utilize SQL
(Structured Query Language) to access relational databases, or employ
object-relational mapping (ORM) frameworks to convert database
tables into objects. After getting the data, developers can apply
different methods to transform it into the required format. That could
mean filtering, sorting, or aggregating the data. Word processors
include features related to formatting, editing, and printing, while they
can also utilize templating engines to build up HTML content by filling
dynamic data into pre-constructed templates. Form Validation is one
of the key parts of web application development. Then the application
makes utilization of this data by collecting the output as per the
conditions stated in the validation object. Basic level validation can be
done on client-side JavaScript, like checking if required fields are
filled out or checking validity of email address. It's also important to
mention that server-side validation is required to stop malicious input
and maintain data integrity. Renowned developers tempt respective
patterns to verify that the input was as expected,adding checks on data
types,longitudinal arrangements, etc. They can also validate complex
input formats using a regular expression. For instance, if the input is
invalid, developers can show error messages to the user and stop the
form from being submitted.

5.3.3 Working with Data in Spring

Developers have control over data persistence with the Spring data
access layer, that offers powerful tools to interact with databases. Java
Database Connectivity (JDBC) is the old way of directly interacting
with the relational database, where developers write SQL queries and
manually maintain the database connections. Spring does an excellent

job of doing this by encapsulating abstraction layers and helper classes

275
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

that minimize boilerplate code. JDBC by itself is about making a
connection, creating statements, executing queries, and processing the
result set. In complex applications, this can be tedious and error-prone.
One solution to the above difficulties is Spring's JdbcTemplate class,
which abstracts JDBC operations, manages resources and offers a
cleaner API. JdbcTemplate allows developers to run SQL queries in a
few words by utilizing its query(), update(), and execute() methods. An
example would be to fetch the data, you would call the query() method
by passing SQL query and RowMapper implementation to map the
result set to Java objects. This interface contains one method,
mapRow(), which is responsible for converting a row of the result set
into an object. For executing queries with named parameters, Spring
provides the NamedParameterJdbcTemplate, which makes the code
more readable and maintainable. JdbcTemplate only gets us halfway
there, though, as Spring also provides DataSource implementations for
establishing connections to our databases. This means that the
DataSource interface is actually a type of factory for connections;
developers can configure connection pools and so on. For example,
Spring has DriverManagerDataSource, that creates new connection
each time request is made, and BasicDataSource from Apache
Commons DBCP provides connection pooling. Another important
feature of Spring data access 1is transaction management.
TransactionTemplate provides a way of committing a transaction, so
makes transaction transactional very easy and reduces the boilerplate
to write, you will just have to focus on all your normal transaction
overall logic. Transactional management with declarative transactions
(e.g. using @Transactional annotations) further abstracts transaction
management by automatically opening and closing transactions. Spring
Data JDBC, one of the newer members of the Spring Data clan, offers
a minimalist and object-oriented approach to data access. You focus on
mappng domain objects to relational database table mappings, which
will reduce the need to write manual SQL queries. Spring Data JDBC
follows an aggregate oriented approach, which means that domain
objects are regarded as aggregates, which are further defined as
collections of related objects. This strategy is cohesive with domain-
driven design, crafting a more organic correspondence between the
domain models and the database schemas. JdbcAggregateTemplate sits
behind Spring Data JDBC for all database operations. This template

276
MATS Centre for Distance and Online Education, MATS University

comes with a set of functions on how to save, delete and query for
aggregates. Spring Data JDBC uses annotation mapping like @Table,
@Id and @Column for mapping domain objects to database tables.
Each of those are explained below @Table annotation specifies the
table name, @Id specifies the primary key, and @Column specifies the
column name. These annotations help Spring Data JDBC to map
objects to the database table, it will generate SQL queries automatically
so user need not to write the query themselves. Spring Data JDBC does
also support relationships between aggregates. You can map one-to-
one, one-to-many, and many-to-many relationships using annotations
such as @MappedCollection and @Reference. @MappedCollection
===> (@Reference: Mapped collection of related objects, and mapped
a single related object. Spring Data JDBC caters you with an
aggregate-root mapping model, thus making for a simpler data access
by eliminating the need for writing SQL queries on your own and
handling a lot of mapping. Full-fledged Data Access Solution: It is
deeply integrated with Spring's transaction management and other
features, providing a full data access solution.

5.3.4 Introduction to Spring Boot:

Spring Boot is a new milestone on the way to evolution of the Spring
ecosystem — it alleviates the pain of extra configuration and
complexities of the traditional Spring development cycle. A Heavy
framework for enterprise applications tightly packed with
configurations which is end of the case nightmare for developers
especially for the newbies. Spring Boot minimizes all of these into
sensible defaults, tracking configuration and an embedded server,
making it simple and possible for developers to bootstrap and deploy
applications. Difference between Spring Framework and Spring Boot —
The Spring is a Framework where another is reduce or eliminate, the
requirement to make three-letter dependency in specific modules. This
is in stark contrast to Spring itself, which is a huge framework and
requires you to configure everything you want even the beans,
datasources, web components etc. Usually this is set up using XML or
Java annotations. On the other hand, Spring Boot follows the
Convention over Configuration approach by providing sensible
defaults for most of the configuration. To do this, it automatically sets
up components based on the dependencies in the classpath, with the

least amount of configuration. Example: You can see that when it finds

277
MATS Centre for Distance and Online Education, MATS University

[

\

e

\\\

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

a database driver in the classpath, Spring Boot will automatically
configure a DataSource and JdbcTemplate. It includes an Embedded
Server (Tomcat, Jetty, and Undertow), so there is not necessity for
external deployment server. y This simplifies the deployment steps, as
developers can bundle applications into runnable JAR files that can be
executed without a separate server. One of the most important feature
of spring boot is auto-configuration, which makes developer's life
easy. It auto detects beans by looking for dependencies in the
classpath. What this means is if a web dependency exists, Spring Boot
will automatically configure a DispatcherServlet and other web related
classes. Because of that less the configuration required, which helps the
developer to concentrate more on the business logic. Spring Boot
provides several starters — a set of convenient dependency descriptors
to simplify the dependency management. Starter dependencies is self-
explanatory; it is basically a wrap for related dependencies grouped
together as a single dependency to avoid declaring them one by one.
Adding a starter dependency like spring-boot-starter-web pulls in the
required dependencies to create web applications with Spring MVC,
Tomcat and Jackson. Spring Boot Actuator provides a set of
production-ready features, such as health checks, application metrics,
and auditing. Features helpful for tracking and operating the
applications in production environments. It provides excellent testing
support and has a suite of testing solutions, such as @SpringBootTest
and MockMvc, making integration tests easier to implement. These
tools ease integration and unit testing so developers can mock extensive
tests to their applications. Basically, Spring Boot is a tiny little baby of
Spring with all its goodness and no in-depth complexity. It also
removes the configuration burden, improves deployment, and
introduces production-ready features, making it the ideal framework for
building modern enterprise applications.

5.3.5 Spring Boot Architecture:

The architecture of Spring Boot is a significant set of core components
to simplify and accelerate the applications development process by
providing an overview of the framework. Spring Boot is built on a core
component called its auto-configuration mechanism that, based on
dependencies available in the classpath, it auto configures the beans.
This leads to less manual configuration, allowing developers to

concentrate on business logic.

278
MATS Centre for Distance and Online Education, MATS University

The Spring Web MVC framework provides Model-View-Controller
(MVC) architecture and ready components that can be used to develop
flexible and loosely coupled web applications. The MVC pattern results
in separating the different aspects of the application (input logic,
business logic, and Ul logic), while providing a loose coupling between
these elements.

e The Model encapsulates the application data and in general
they will consist of POJO.

e The View is responsible for rendering the model data and in
general it generates HTML output that the client's browser can
interpret.

e The Controller is responsible for processing user requests and
building an appropriate model and passes it to the view for
rendering.

The DispatcherServlet

The Spring Web model-view-controller (MVC) framework is designed
around a DispatcherServlet that handles all the HTTP requests and
responses. The request processing workflow of the Spring Web
MVC DispatcherServlet is illustrated in the following diagram —

HTTP Request T HTTP Response
\ 2

DispatcherServiet

©) ® @

o Controller View Resolver View

Mapping

Following is the sequence of events corresponding to an incoming
HTTP request to DispatcherServiet —
e After receiving an HTTP request, DispatcherServiet consults

the HandlerMapping to call the appropriate Controller.

279
MATS Centre for Distance and Online Education, MATS University

)

ready for lie......

Notes

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

e The Controller takes the request and calls the appropriate
service methods based on used GET or POST method. The
service method will set model data based on defined business
logic and returns view name to the DispatcherServiet.

e The DispatcherServiet will take help from ViewResolver to
pickup the defined view for the request.

e Once view is finalized, The DispatcherServiet passes the model
data to the view which is finally rendered on the browser.

All the above-mentioned components, i.e. HandlerMapping,
Controller, and ViewResolver are parts
of WebApplicationContext which is an extension of the
plaindpplicationContext with some extra features necessary for web
applications.

Required Configuration

You need to map requests that you want the DispatcherServlet to
handle, by using a URL mapping in the web.xml file. The following is
an example to show declaration and mapping

for HelloWeb DispatcherServiet example —

<web-app id = "WebApp_ID" version = "2.4"
xmlns = "http://java.sun.com/xml/ns/j2ee"
xmlns:xsi = "http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation = "http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app 2 4.xsd">

<display-name>Spring MVC Application</display-name>

<servlet>

<servlet-name>HelloWeb</servlet-name>

<servlet-class>
org.springframework.web.servlet.DispatcherServlet

</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>HelloWeb</servlet-name>
<url-pattern>* jsp</url-pattern>

280
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

</servlet-mapping> Notes
</web-app>

The web.xml file will be kept in the WebContent/WEB-INF directory
of your web application. Upon initialization
of HelloWeb DispatcherServlet, the framework will try to load the
application context from a file named [servlet-name]-
servlet.xml located in the application's WebContent/ WEB-INF

directory. In this case, our file will be HelloWebservlet.xml.

Next, <servlet-mapping> tag indicates what URLs will be handled by
which DispatcherServlet. Here all the HTTP requests ending
with .jsp will be handled by the HelloWeb DispatcherServlet.

If you do not want to go with default filename as [serviet-name]-
servlet.xml and default location as WebContent/WEB-INF, you can
customize this file name and location by adding the servlet

listener ContextLoaderListener in your web.xml file as follows —

<web-app...>

<context-param>
<param-name>contextConfigl.ocation</param-name>
<param-value>/WEB-INF/HelloWeb-servlet.xml</param-value>

</context-param>

<listener>

<listener-class>
org.springframework.web.context.ContextLoaderListener

</listener-class>

</listener>

</web-app>

281
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

Now, let us check the required configuration for HelloWeb-
servlet.xml file, placed in your web application's WebContent/WEB-
INF directory —

<beans xmlns = "http://www.springframework.org/schema/beans"
xmlns:context = "http://www.springframework.org/schema/context"
xmlns:xsi = "http://www.w3.0org/2001/XMLSchema-instance"
xsi:schemalLocation =
"http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-
3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-
3.0.xsd">

<context:component-scan base-package = "com.tutorialspoint" />

<bean class =
"org.springframework.web.servlet.view.InternalResource ViewResolv
er'">

<property name = "prefix" value ="/WEB-INF/jsp/" />

<property name = "suffix" value =".jsp" />

</bean>

</beans>

Following are the important points about HelloWeb-servlet.xml file —
o The [serviet-name]-serviet.xml file will be used to create the
beans defined, overriding the definitions of any beans defined

with the same name in the global scope.

o The <context:component-scan...> tag will be use to activate
Spring MVC annotation scanning capability which allows to
make wuse of annotations like (@Controller and
@RequestMapping etc.

e The InternalResourceViewResolver will have rules defined to
resolve the view names. As per the above defined rule, a logical
view named hello is delegated to a view implementation
located at /WEB-INF/jsp/hello.jsp .

282
MATS Centre for Distance and Online Education, MATS University

The following section will show you how to create your actual
components, i.e., Controller, Model, and View.

Defining a Controller

The DispatcherServlet delegates the request to the controllers to
execute the functionality specific to it. The @Controller annotation
indicates that a particular class serves the role of a controller.
The @RequestMapping annotation is used to map a URL to either an

entire class or a particular handler method.

@Controller
@RequestMapping("/hello")
public class HelloController {
@RequestMapping(method = RequestMethod.GET)
public String printHello(ModelMap model) {
model.addAttribute("message", "Hello Spring MVC
Framework!");

return "hello";

j
j

The value attribute indicates the URL to which the handler method is
mapped and the method attribute defines the service method to handle
HTTP GET request. The following important points are to be noted
about the controller defined above —

e You will define required business logic inside a service method.
You can call another method inside this method as per
requirement.

o Based on the business logic defined, you will create a model
within this method. You can use setter different model attributes
and these attributes will be accessed by the view to present the
final result. This example creates a model with its attribute
"message".

e A defined service method can return a String, which contains
the name of the view to be used to render the model. This
example returns "hello" as logical view name.

5.3.6 Creating JSP Views
Spring MV C supports many types of views for different presentation
technologies. These include - JSPs, HTML, PDF, Excel worksheets,

283
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

XML, Velocity templates, XSLT, JSON, Atom and RSS feeds,
JasperReports, etc. But most commonly we use JSP templates written
with JSTL.

Let us write a simple hello view in /WEB-INF/hello/hello.jsp —

<htmlI>
<head>
<title>Hello Spring MV C</title>
</head>

<body>
<h2>${message}</h2>
</body>

</html>

Here ${message} is the attribute which we have set up inside the
Controller. You can have multiple attributes to be displayed inside your

view.

Spring Web MVC Framework Examples
Based on the above concepts, let us check few important examples

which will help you in building your Spring Web Applications —
Sr.No. Example & Description
Spring MVC Hello World Example

1 This example will explain how to write a simple Spring
Web Hello World application.

Spring MVC Form Handling Example

This example will explain how to write a Spring Web

2
application using HTML forms to submit the data to the
controller and display a processed result.
Spring Page Redirection Example

3 Learn how to use page redirection functionality in Spring

MVC Framework.

284
MATS Centre for Distance and Online Education, MATS University

Spring Static Pages Example
4 Learn how to access static pages along with dynamic

pages in Spring MVC Framework.

Spring Exception Handling Example
5 Learn how to handle exceptions in Spring MVC

Framework.

Spring Boot auto-configuration = works through conditional
configuration classes, which are annotated with @Configuration and
either @ConditionalOnClass or @ConditionalOnBean. No translation
availableSorry, your browser doesn't support embedded videos. A
conditional annotation, for example a configuration class annotated
with @ConditionalOnClass(DataSource. Those will be effective only
in case DataSource class is on the classpath. Another important parts
of spring boot architecture is spring boot’s starters. Starters are
dependency descriptors that aggregating similar dependencies into a
single dependency. They help manage dependencies: Since you don’t
have to specify all dependencies one by one. The spring-boot-starter-
web starter, for example, aggregates all dependencies needed for web
app development, including Spring MVC, Tomcat, and Jackson.
Bootstrap also supplies some sensible defaults for configuration,
making development even easier. One of the significant features of
Spring Boot is its embedded server. It does not require it to run on an
external server, which means Joseph needs to deploy physical server
or any server which just runs JET, builds standalone executable JAR
file which can be launched without an external server. Spring Boot does
have an Embedded Container of its own, supporting Tomcat, Jetty, and
Undertow. Spring Boot provides a way to configure which embedded
server to use with the spring. called in a properties file or via command
line. Spring Boot actuator module contains production-ready features
like health checks, metrics and auditing. It can help the production
applications to monitor and manage. The actuator module exposes
various endpoints that offer insight into the application's operation,
such as health, metrics, and more. You canuse HTTP or JMX to access
these endpoints. Spring Boot's command-line interface (CLI) makes it

easy to use Spring features as you build succinct and concise scripts

285
MATS Centre for Distance and Online Education, MATS University

[

\

e

\\\

UNIVERSITY

ready for lfe......

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

and even for rapid prototyping. To create and run Spring Boot
applications, the CLI provides a list of commands. It is also equipped
with a suite of Groovy scripts that can be used to automate common
development tasks. Testing Tools: @SpringBootTest and MockMvc
make integration and unit testing easier. @SpringBootTest to create an
application context for testing, and MockMvc to test web controllers.
For testing, Spring Boot offers testing starters, too — spring-boot-
starter-test being the starter that contains all testing dependencies.
Recognizing the pros and cons of these usages — Spring Boot
Externalized Configuration This makes configuration management
very simple as you can change configuration values without
recompiling the application. Spring Boot provides profile-specific
configuration, which enables its user to configure the application by
different environments such as Development, Testing, and Production.
Spring Boot Event Publishing: Spring Boot provides a powerful
mechanism to publish and listen to application events. This is suitable
for async processing and decoupling components.

5.3.7 Project Components in Spring Boot

The architecture of Spring Boot is created in such a way that it
simplifies the effort involved in the development phase; and the project
components in Spring Boot are a fundamental aspect of this design.
Among those, annotations, dependency management, and application
properties are fundamental. Annotations are a type of metadata that
provides a declarative way to add information to source code.
Annotations are widely used in Spring Boot for the configuration of
beans, mappings, and transactions. To give you an example, it uses
@Component, @Service and @Repository annotations to annotate the
classes so that these classes are discovered automatically and registered
as Spring beans. @Autowired must be followed by, is Autowired,
which reduces the code to be written for instantiation. In Spring
Framework, @RequestMapping and its variants (@GetMapping,
@PostMapping, etc.) allow developers to map HTTP requests to
controller methods, making it easier to create web applications. Data
consistency is taken care of by annotations like (@ Transactional which
manages the transaction management functionality. Annotations in
Spring Boot greatly minimize boilerplate code and xml configuration.
You can also create custom annotations to consolidate common

patterns and configurations, allowing for code reusability.

286
MATS Centre for Distance and Online Education, MATS University

Spring boot manages its dependency primarily through Maven or
Gradle and relies on transitive dependencies to work. Spring Boot
starters are pre-configured dependency sets for different functionalities.
As an example, spring-boot-starter-web contains the dependencies
needed to create a web app with Spring MVC, Tomcat, and Jackson.
spring-boot-starter-data-jpa contains dependencies for working with a
JPA and databases (Hibernate, JDBC drivers, etc.). spring-boot-starter-
security — Dependency for authentication and authorization. These
starter dependencies make the project setup easier, which means fewer
dependency conflicts and compatibility issues. Spring Boot provides a
parent pom, spring-boot-starter-parent, which defines the versions of
common dependencies, making it even easier to manage dependencies.
This parent POM also defaults some configurations to build plugins
like the one from the Spring Boot Maven plugin that helps simplify
creating executable JARs. Spring Boot dependency management is
also highly extensible. It allows overrides for some dependency
versions and the addition of as needed depending on the use case. This
level of flexibility enables developers to adapt the project to their
particular needs.

Application properties managed at application-level properties or
application. Also remember that application settings like env, yml files
let you centralize the place for managing application settings. Using
these properties, you can set up the details to connect with a DB, server
port numbers, logging level, and many other application-specific
configurations. These properties are loaded automatically by Spring
Boot and they get fed into the application. You can access Properties
using the @Value annotation or through Environment objects. For
instance, @Value("${server. This piece "/schedule/secrets/" + port
injects the value of the server. port property into a field. It also allows
you to have sub keys (flattened hierarchies) to allow you to make your
properties easier to read, like when they are defined in the same
context. You can learn more in the system, Spring Boot supports
Externalized configuration, properties can be loaded from several
sources including command-line arguments, environmental variable,
external configuration file. This resistance allows developers to prevent
modifying source code when adapting the application actions on new

environments. Profiles are used to define the configuration of any

287
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

environment (development, tests, production). For example,
application-dev. properties for production-specific settings. properties
allow to configure settings specific to production. Spring boot
automatically loads the right profile quiet properties depending on the
playing profile. The application properties are also important to
configure Spring boot's auto-configuration. Most of Spring Boot's auto-
configurations are configurable by properties, which means developers
can tweak the behavior of these configurations. For instance, the
spring. datasource. The url property is used for setting up the database
connection URL, whereas the spring. jpa. hibernate. Schema
Generation ddl-auto Property ddl-auto property is used to configure
the behavior of Hibernate's Schema generation. These properties give
you an extremely powerful and flexible way to customize your Spring
Boot applications.

5.3.8 Developing Spring Boot Applications

That's because Spring Boot applications are meant to be developed as
simply as possible by using starter dependencies and automatic
configurations. As noted, before, Starter dependencies give a pre-
configured set of dependencies for particular functionalities. It saves
developers from spending much more time just setting up a project
rather than writing business logic code. For instance, to build a web
application, developers only have to add spring-boot-starter-web
dependency in a project. Spring Boot Starter Web - This starter
dependency comes with all necessary dependencies required to create
a web application like Spring MVC, Tomcat, Jackson. Similarly, if a
data access layer needs to be created, developers can simply add the
spring-boot-starter-data-jpa dependency, which includes the necessary
dependencies for interaction with JPA and databases. They are modular
and compositional starter dependencies you use the parts you need and
leave out the rest. One such critical feature of Spring Boot is the auto
configurations, which ease the development process even more. So
basically, Spring Boot does have default configuration classes which
it configures (beans, components) by checking the available
dependencies in the classpath and properties file provided like
application. It removes the need for XML or Java-based configuration,
decreasing boilerplate code and increasing maintainability. For
instance, if we have the spring-boot-starter-web dependency, Spring

Boot automatically configures a dispatcher servlet, view resolvers, etc.

288
MATS Centre for Distance and Online Education, MATS University

Likewise, If spring-boot-starter-data-jpa dependency is found, Spring
Boot will configure a data source, an entity manager factory and a
transaction manager. Each of these auto-configurations is an
intelligent, adaptive component that automatically recognizes and
configures the necessary components according to the project
dependencies and properties. It is also very powerful mechanism to
customize the auto-configurations as well. By declaring their own
beans or properties, developers can customize the default
configurations. If, for instance, developers want to configure a data
source, they can define a DataSource bean in their application context.
In the same thought, if developers want to know how to customize the
web configuration, they can define a WebMvcConfigurer bean. With
such customization possibilities, you can fully customize the app as per

your needs.

The Spring Boot command line interface (CLI) also helps to ease
getting started with Spring Boot. The build tool and CLI enable
creating, running, and packaging Spring Boot applications in a very
convenient way. It also offers a command package to handle
dependency management, code generation, and various other
development steps. You can use spring init to generate a new Spring
Boot Project and spring run to execute one. We have ancripcion and
automation tools and loads of distribution information close to Maych
to save time and allow productivity. Also, Spring boot gives us
developer tools such as spring boot DevTools to improve the developer
experience. With features like Hot Module Replacement (HMR) and
remote debugging, DevTools drastically empowers productivity for
developers. With automatic application restarts, developers do not
have to manually restart the application in order to see changes to the
code in real-time. Live reload refreshes the browser automatically upon
modifying static resources like HTML, CSS, and JavaScript.
Debugging applications running on remote servers is called remote
debugging. These servers are embedded into developers' applications
allowing packages to be deployed as executable JARs in any
environment without needing an external server. This makes the
deployment process easier and provides consistency across
environments. Another reason is that Spring Boot offers remarkable

deployment options, including Docker containers and cloud platforms,

289
MATS Centre for Distance and Online Education, MATS University

[

\

e

\\\

UNIVERSITY

ready for lfe......

Notes

aTs)

i

i)

[

?mm

\\\ i

UNIVERSITY
veady for lfe

Notes

enabling developers to select the deployment method that is most
appropriate for them.

5.3.9 Aspect-Oriented Programming (AOP) in Spring Boot
Aspect-Oriented Programming (AOP) is a programming paradigm that
provides a way to modularize cross-cutting concerns, such as logging,

security, and transaction management.

One of the core components of the Spring Framework is its support for
Aspect-Oriented Programming (AOP). AOP is a programming
paradigm that allows you to separate concerns within your application,
especially those that cut across multiple layers—known as cross-
cutting concerns. These concerns, such as logging, security,
transaction management, auditing, and caching, often impact
multiple parts of the application but do not belong to the core business
logic.

In Object-Oriented Programming (OOP), the primary unit of
modularity is the class, whereas in AOP, it is the aspect. While
Dependency Injection (DI) is used to decouple objects from one
another, AOP is used to decouple cross-cutting concerns from the
business logic they influence. In essence, AOP is somewhat analogous
to triggers in other languages like Java, .NET, or Perl, where you can
hook into specific events in code execution.

Spring's AOP module enables this capability by providing interceptors
that can execute custom code at defined points in a method's

execution—either before, after, or around the method call.

AOP Core Terminologies
Term Description

A module that encapsulates behaviors affecting

multiple classes. For example, a logging aspect can

Aspect — .
capture logs across the application. Multiple aspects
can exist within a single application.
. . A specific point in the program flow where an aspect
Join Point)) .
can be applied—typically a method call or execution.
The actual code to be executed at a join point. It defines
Advice what action should occur and when (e.g., before or after

a method).

290
MATS Centre for Distance and Online Education, MATS University

Term Description

A collection of join points where an advice should be
Pointcut applied. Pointcuts are often defined using expressions

or method patterns.

. A mechanism to add new methods or fields to existing

Introduction)

classes dynamically.
Target The object being advised. In Spring, this is always a
Object proxy object (also called the advised object).

The process of linking aspects with target objects to
Weaving create advised objects. This can occur at compile-time,

load-time, or runtime.

Types of Advice in Spring AOP

Spring supports the following five types of advice mechanisms:

Advice Type Description

before
after

after-

returning

after-

throwing

around

Executes the advice before the method runs.

Executes the advice after the method finishes,

regardless of outcome.

Executes the advice only if the method completes
successfully.

Executes the advice only if the method throws an

exception.

Executes advice both before and after the method

invocation, providing the most control.

291
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Notes

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

Implementing Custom Aspects in Spring

Spring offers two main approaches to define and apply aspects in your

applications:
Approach Description

Aspects are defined as regular Java classes, and
XML Schema- o)
based AOP behavior is configured through XML. This

ase
. method was commonly used in earlier Spring

Configuration .

versions.

This modern approach allows developers to define

aspects using annotations. Regular Java classes
@AspectJ

. are annotated with @Aspect, and pointcuts and
Annotation Style . . .
advice methods use annotations like (@Before,

@After, @Around, etc.

Spring AOP is a fully featured AOP used in Spring for both defining
and applying aspects with Spring boot. It uses annotations or XML
configurations to define aspects and applies those aspects to join
points, which are defined as points in an application execution such as
method calls and exception handling. Using AOP with Spring Bootis
even easy, because Spring Boot creates auto-configurations and starter
dependencies for it. AOP is a cross-cutting concern, and it is available
by simply adding the spring-boot-starter-aop dependency. However,
this starter dependency is already packing all the required dependencies
to use Spring AOP.

New types of advice in Spring AOP, we have five types of advice in
Spring AOP, these are actions that are taken
before/after/around/returning/throwing a join point. Before advice runs
before a join point, e.g. a method call. It can be utilized to carry out
pre-processing functions like logging input parameters or checking
user permissions. After advice that’s executed after a join point,
regardless of if the join point completes successfully or throws an
exception. This can be handy for post-processing like logging
execution time or releasing resources. Advice is done around a join
point and developer can control the execution of the join point. It can
be used for complex operations, such as transaction management or

292
MATS Centre for Distance and Online Education, MATS University

caching. Returning advice is executed following the successful
completion of a join point, providing a means to examine the join
point's return value. It can then be used for example to log the return
value or transform the return value.

Summary

This module offers a detailed introduction to the Spring Framework and
Spring Boot, which are widely used for developing strong, scalable
Java-based enterprise applications. It starts with the basic principles of
Spring, its architecture, and the benefits it provides in creating modular
and organized applications. A significant part of the module focuses on
dependency injection (DI) and the inversion of control (IoC) container.
These concepts help manage object creation and their dependencies
more efficiently, making the application easier to maintain and test.The
module also covers the development of web applications using Spring,
guiding learners through the creation of RESTful services, handling of
HTTP requests, and view management through Spring MVC.

Spring Boot is introduced as an extension of Spring that simplifies
application setup with features like auto-configuration, starter
dependencies, and an embedded server. Key components such as
@SpringBootApplication, ApplicationContext, and actuator endpoints
are also discussed to help learners understand how Spring Boot
operates behind the scenes. Additionally, the module explains how to
work with databases using Spring JDBC, showing how to perform basic
database operations and manage transactions effectively. Finally,
learners explore aspect-oriented programming (AOP) in Spring Boot,
which allows separation of tasks like logging, security, and transaction
control from the main business logic.

By completing this module, students will be able to design and build
well-structured, efficient, and scalable Java applications using Spring
and Spring Boot.

Multiple-Choice Questions (MCQs)
1. What is the primary purpose of the Spring framework?
a) To develop mobile applications
b) To simplify Java application development
c) To replace SQL databases
d) To manage operating system processes
Answer: b) To simplify Java application development
2. Which of the following is not a type of dependency injection
in Spring?
a) Constructor Injection

b) Setter Injection

293
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

4 M
UNIVERSITY
ready for life

Notes

c) Interface Injection
d) Field Injection

Answer: c) Interface Injection

. What does the IOC Container in Spring do?

a) Manages the lifecycle of objects and their
dependencies
b) Executes SQL queries
¢) Handles user authentication
d) Provides a user interface
Answer: a) Manages the lifecycle of objects and their

dependencies

. Which annotation in Spring Boot is used to mark a class as a

Spring Boot application?
a) (@SpringApplication
b) @SpringBootApp
c) @SpringBootApplication
d) @BootApp
Answer: ¢) @SpringBootApplication

. In Aspect-Oriented Programming (AOP), which advice runs

before the execution of a method?
a) (@After
b) @Before
¢) @Around
d) @AfterReturning
Answer: b) @Before

294
MATS Centre for Distance and Online Education, MATS University

)

[

UNIVERSITY

ready for lfe......

Short Answer Questions Notes

a)
b)

©)
d)

e)

What are the key advantages of using the Spring framework?
Explain the difference between dependency injection and
Inversion of Control (IoC).

What are the main components of Spring Boot architecture?
How does Spring Boot simplify dependency management?
What are the different types of AOP advice in Spring Boot?

Long Answer Questions

a)

b)

c)

d)

Describe the steps involved in creating a simple Spring
application.

Explain the different types of dependency injection with
examples.

How do you develop a web application using Spring Boot?
Explain with an example.

Compare traditional Spring applications with Spring Boot
applications.

Explain Aspect-Oriented Programming (AOP) in Spring Boot
and describe how it improves modularity.

295
MATS Centre for Distance and Online Education, MATS University

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

Glossary

Abstraction: A concept in OOP that hides internal implementation
details and shows only functionality to the user.

Access Modifiers: Keywords used to set the access level for classes,
Hwﬂﬂxk,andvaﬁabks(&gqpublic,private,protected)

Animation: In JavaFX, animation involves changing property values
over time to create motion or visual effects.

Annotation: Metadata in Java used to provide information to the
compiler and frameworks like Spring (e.g., @Component, @Autowired).

Application Context: The central interface in Spring for providing
configuration and managing beans.

Bean: An object managed by the Spring IoC container.

Binding: A feature in JavaFX that links properties so that a change in
one automatically updates the other.

Catch Block: Used in exception handling to catch and handle
exceptions.

Class: A user-defined blueprint or prototype from which objects are
created.

Component: A Spring stereotype annotation used to indicate that a
class is a Spring-managed bean.

Constructor: A special method used to initialize objects.

CSS in JavaFX: Cascading Style Sheets used to style JavaFX Ul
elements.

Dependency Injection (DI): A design pattern in Spring where objects
are passed their dependencies rather than creating them.

Directive Tag: JSP element that provides global information (e.g.,
page,include,taglib)

Encapsulation: Wrapping code and data into a single unit, usually a
class.

Exception: An event that disrupts normal program flow, handled using
try-catch blocks.

Expression Language (EL): A JSP feature to simplify the access of
Java objects and attributes without using Java code.

296
MATS Centre for Distance and Online Education, MATS University

FXML: An XML-based language used to define the JavaFX UI
structure.

finally Block: Executed after the try and catch blocks regardless of
exception occurrence.

FX Effects: Visual effects in JavaFX like shadow, bloom, and
reflection.

FX Shapes: 2D shapes such as rectangles, circles, and lines used in
JavaFX applications.

HashMap: A collection class in Java that stores data in key-value pairs.

Implicit Objects: Predefined JSP objects like request, response,
session, application, etc.

init() Method: Servlet lifecycle method called once during
initialization.

Inversion of Control (IoC): A principle where control over object
creation is transferred from the program to a container or framework
like Spring.

JavaFX: A GUI toolkit for developing rich internet applications using
Java.

Java Package: A namespace for organizing Java classes and
interfaces.

JSP (JavaServer Pages): A server-side technology that allows
embedding Java code in HTML pages for dynamic content.

JSP Life Cycle: The process involving translation, compilation,
initialization, execution, and destruction of a JSP page.

J2EE (Java 2 Enterprise Edition): A platform for developing multi-
tier enterprise-level applications.

KeyFrame: In JavaFX, represents a specific point in time in a Timeline
animation.

Method Overloading: Defining multiple methods in the same class
with the same name but different parameters.

Method Overriding: Providing a new implementation of a method in
a subclass that is already defined in its superclass.

Model-View-Controller (MVC): A design pattern that separates
business logic, Ul, and input handling.

297
MATS Centre for Distance and Online Education, MATS University

[

\

e

\\\

UNIVERSITY

ready for life.

Notes

aTs)

i

i)

[

gmn'r

\\\ i

UNIVERSITY
ready for life

Notes

Multithreading: A process of executing multiple threads
simultaneously to perform multiple tasks.

Node: The base class for all JavaFX scene graph objects.

Object: An instance of a class that contains state and behavior.
Package: A grouping of related classes and interfaces.

Pane: A layout container in JavaFX used to organize Ul elements.

Polymorphism: An OOP concept that allows a method or object to
behave in different ways.

Request Object: In Servlets and JSP, it represents the client’s request
and provides data like parameters and headers.

Response Object: Sends data back to the client from the server.

Runnable Interface: Used to define a task that can be executed by a
thread.

Scene: In JavaFX, a container for all content in a window (stage).

Scene Graph: A hierarchical tree structure in JavaFX where each
element is a node.

Servlet: A Java class used to handle HTTP requests and responses in
web applications.

Servlet Container: Software that manages servlets, like Apache
Tomcat.

Servlet Life Cycle: Consists of init (), service(), and destroy ()
methods.

Spring Boot: An extension of the Spring framework that simplifies
development with auto-configuration and embedded servers.

Spring Framework: A comprehensive framework for building Java
applications with features like DI, AOP, and transaction management.

Stage: The top-level JavaFX container representing a window.
Static Keyword: Used for defining class-level variables and methods.

super Keyword: Used to call the constructor or methods of a parent
class.

Scripting Elements (JSP): Include scriptlets (<% >), expressions
(<%= %>), and declarations (<%! %>).

298
MATS Centre for Distance and Online Education, MATS University

Synchronization: A mechanism in Java to control access of multiple
threads to shared resources.

Text Class: Used in JavaFX to display a string of text.
Thread: A lightweight subprocess for concurrent execution.

Thread Lifecycle: Includes New, Runnable, Running, Blocked, and
Terminated states.

this Keyword: Refers to the current object in a method or constructor.

Thymeleaf: A Java template engine commonly used with Spring Boot
for rendering HTML pages.

Timeline: In JavaFX, used to create animations over time.

Transformations (JavaFX): Operations like scaling, translating, and
rotating nodes.

try Block: Used to enclose code that may throw exceptions.

wait(), notify(), notifyAll(): Methods for inter-thread communication
in Java.

@SpringBootApplication: A convenience annotation for Spring Boot
applications.

WebApplicationInitializer: Interface for configuring Spring
applications in a servlet container.

@Autowired: Spring annotation used to inject bean dependencies
automatically.

@Controller: Annotation that marks a class as a web controller in
Spring MVC.

Java Initializer: Used to bootstrap Spring Boot projects with selected
dependencies.

299
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i

(\._/_./\
By
g .
UNIVERSITY
ready for life

Notes References

Java Programming References

Chapter 1: Object-Oriented Programming Concepts and

Implementations

1. Horstmann, C. S. (2021). Core Java, Volume I: Fundamentals
(12th ed.). Pearson.

2. Bloch, J. (2018). Effective Java (3rd ed.). Addison-Wesley
Professional.

3. Freeman, E., & Robson, E. (2020). Head First Design Patterns
(2nd ed.). O'Reilly Media.

4. Schildt, H. (2021). Java: The Complete Reference (12th ed.).
McGraw-Hill Education.

5. Deitel, P., & Deitel, H. (2020). Java How to Program (11th

ed.). Pearson.

Chapter 2: Java FX Technology

1.

Sharan, K. (2017). Learn JavaFX: Building User Experience
and Interfaces with Java (2nd ed.). Apress.

Vos, J., Gao, W., Chin, S., & Weaver, J. L. (2017). Pro JavaFX
9: A Definitive Guide to Building Desktop, Mobile, and
Embedded Java Clients. Apress.

McKenzie, C. (2014). JavaFX 8: Introduction by Example
(2nd ed.). Apress.

Lyon, D. A. (2015). The Definitive Guide to Modern Java
Clients with JavaFX: Cross-Platform Mobile and Cloud
Development. Apress.

Hommel, S. (2014). Mastering JavaFX 8 Controls. Oracle
Press.

Chapter 3: Servlet Technology

1.

Hall, M., & Brown, L. (2014). Core Servlets and JavaServer
Pages (2nd ed.). Prentice Hall.

Basham, B., Sierra, K., & Bates, B. (2008). Head First Servlets
and JSP (2nd ed.). O'Reilly Media.

Williams, L. (2018). An Introduction to Servlet Technology.
Springer.

300
MATS Centre for Distance and Online Education, MATS University

I

[

UNIVERSITY

ready for lfe......

Crawford, W., & Hunter, J. (2001). Java Servlet Programming Notes
(2nd ed.). O'Reilly Media.

Murach, J., & Urban, M. (2014). Murach's Java Servlets and
JSP (3rd ed.). Mike Murach & Associates.

Chapter 4: JSP Technology

1.

Zambon, G., & Sekler, M. (2007). Beginning JSP, JSF, and
Tomcat Web Development. Apress.

Bergsten, H. (2003). JavaServer Pages (3rd ed.). O'Reilly
Media.

Goodwill, J., & Hightower, R. (2009). Professional Jakarta
Struts. Wrox Press.

Mukhar, K., Zelenak, C., Weaver, J. L., & Crume, J. (2006).
Beginning Java EE 5: From Novice to Professional. Apress.

Budi Kurniawan. (2012). JSP and Servlets: A Comprehensive
Study. Brainy Software Inc.

Chapter 5: Spring and Spring Boot Framework

1.

Walls, C. (2022). Spring in Action (6th ed.). Manning
Publications.

Sharma, K. (2020). Building REST APIs with Spring 5.0.
Packt Publishing.

Gutierrez, F. (2019). Pro Spring Boot 2: An Authoritative
Guide to Building Microservices, Web and Enterprise
Applications, and Best Practices. Apress.

Cosmina, I., Harrop, R., Schaefer, C., & Ho, C. (2017). Pro
Spring 5: An In-Depth Guide to the Spring Framework and Its
Tools. Apress.

. Prasad Reddy, K. S. (2017). Beginning Spring Boot 2:

Applications and Microservices with the Spring Framework.
Apress.

301
MATS Centre for Distance and Online Education, MATS University

MATS UNIVERSITY

MATS CENTRE FOR DISTANCE AND ONLINE EDUCATION

UNIVERSITY CAMPUS: Aarang Kharora Highway, Aarang, Raipur, CG, 493 441
RAIPUR CAMPUS: MATS Tower, Pandri, Raipur, CG, 492 002

T:07714078994, 95, 96, 98 Toll Free ODL MODE : 81520 79999, 81520 29999

Website: www.matsodl.com

el) —z-‘fv".: .~ e
e A T AR

oy
W' LI ——

