

Master of Computer Applications

MCA-201

Advanced Java Programming

Course Introduction 1
Module1
Object-Oriented Programming Concepts and Implementations

3

Unit 1.1: OOPS Concepts and implementation 4
Unit 1.2: Package Concepts and Implementation 35
Unit 1.3: Managing Errors and Exceptions 64
Unit 1.4: Multithreading 69

Module2
JavaFX Technology

76

Unit 2.1: Introduction to JavaFX, Features, Architecture & Application 77
Unit 2.2: Java 2D Shapes, Colors, Text 93
Unit 2.3: FX Effects 108
Unit 2.4: JavaFX Transformation 112
Unit 2.5: FX Animation 117

Module3
Servlet Technology

125

Unit 3.1: J2EE Introduction and Architecture 126
Unit 3.2: Java Servlet 145
Unit 3.3: Servlet Life Cycle 159

Module4
JSP Technology

225

Unit 4.1: Introduction, Need and Benefit of JSP, Life Cycle of JSP 226
Unit 4.2: JSP Scripting Elements 229
Unit 4.3: Implicit Object 241

Module5
Spring and Spring Boot Framework

263

Unit 5.1: Introduction to Spring Initializing and Writing Spring application 264
Unit 5.2: Dependency Injection 270
Unit 5.3: Developing web applications 274

Glossary 296

References 300

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof.(Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof.(Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

Prof.(Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,

Chhattisgarh

Prof.(Dr.) Jatinder kumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies

and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSECOORDINATOR

Dr. Balendra Garg, Associate Professor, School of Information Technology, MATS University, Raipur,

Chhattisgarh

COURSE PREPARATION

Dr. Balendra Garg, Associate Professor and Mr. Sanjay Behara, Assistant Professor, School of

Information Technology, MATS University, Raipur, Chhattisgarh

March,2025

ISBN: 978-93-49916-14-2

@MATSCentreforDistanceandOnlineEducation,MATSUniversity,Village-Gullu,Aarang,Raipur-

(Chhattisgarh)

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in any

form, by mimeograph or any other means, without permission in writing from MATS University,

Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed &Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr. Meghanadhudu

Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Disclaimer-Publisherofthisprintingmaterialisnotresponsibleforanyerrorordisputefromcontentsofthis

course material, this is completely depends on AUTHOR’S MANUSCRIPT.

Printedat:TheDigitalPress,KrishnaComplex,Raipur-492001(Chhattisgarh)

Acknowledgement

The material (pictures and passages) we have used is purely for educational

purposes. Every effort has been made to trace the copyright holders of material

reproduced in this book. Should any infringement have occurred, the publishers and

editors apologize and will be pleased to make the necessary corrections in future

editions of this book.

1
MATS Centre for Distance and Online Education, MATS University

Notes

COURSE INTRODUCTION

Java is a powerful, object-oriented programming language widely used

for developing robust, scalable, and secure applications. This course

provides a comprehensive understanding of object-oriented

programming concepts, JavaFX for building graphical user interfaces,

and advanced web development technologies such as Servlets, JSP, and

the Spring Framework. Students will gain both theoretical knowledge

and hands-on experience in designing and developing modern Java

applications.

Module 1: Object-Oriented Programming Concepts and

Implementations

Object-oriented programming (OOP) enhances code

reusability, scalability, and maintainability. This Unit

introduces key OOP concepts such as encapsulation,

inheritance, polymorphism, and abstraction. Students will learn

how to implement OOP principles in Java, utilizing classes,

objects, and design patterns for efficient software development.

Module 2: JavaFX Technology

JavaFX is a modern Java framework for developing rich

graphical user interfaces (GUIs). This Unit explores JavaFX

components, event handling, layout management, and styling

using CSS. Students will learn how to create interactive desktop

applications with advanced UI controls and multimedia

integration.

Module 3: Servlet Technology

Servlets are essential for developing dynamic web applications

in Java. This Unit covers the fundamentals of Servlet

technology, HTTP request/response handling, session

management, and database connectivity using JDBC. Students

will learn how to create server-side applications that handle

web-based interactions efficiently.

Module 4: JSP Technology

JavaServer Pages (JSP) enable the development of dynamic

web pages by integrating Java with HTML. This Unit

introduces JSP scripting elements, directives, custom tags, and

2
MATS Centre for Distance and Online Education, MATS University

Notes expression language (EL). Students will gain experience in

developing interactive and data-driven web applications using

JSP and Servlets.

Module 5: Spring and Spring Boot Framework

Spring is a powerful Java framework for building enterprise

applications, while Spring Boot simplifies application

development with pre-configured setups. This Unit explores

Spring Core concepts, dependency injection, Spring MVC, and

RESTful API development using Spring Boot. Students will

learn how to build scalable and efficient Java applications using

industry-standard frameworks.

3
MATS Centre for Distance and Online Education, MATS University

Notes
MODULE 1

OBJECT-ORIENTED PROGRAMMING

CONCEPTS AND IMPLEMENTATIONS

LEARNING OUTCOMES

• To understand the fundamental concepts of Object-Oriented

Programming (OOP).

• To explore the implementation of OOP principles in Java.

• To analyze package concepts and their implementation.

• To study error handling and exception management.

• To understand multithreading concepts and network

programming.

• To explore Java Database Connectivity (JDBC) and its

architecture

4
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1.1 : Object Oriented Programming Concepts and

Implementation

1.1.1 OOPS Concepts and Implementation

Object-Oriented Programming (OOP) is a paradigm that has made its

way to becoming the most powerful paradigm in the software

development arena, changing the very notions of how programmers

see the world, how they design, and execute the systems. OOP

essentially reflects the way in which we view the real world, consisting

of a group of individual objects, each with its properties and functions,

and among them making meaningful relationships. Java, which first

came into the world in the mid-1990's, has had the reputation as being

one of the leading standard-bearers for object-oriented principles,

supporting a rich, platform-independent environment which embraces

the object-oriented paradigm. While procedural programming is based

on functions or the sequence of operations, OOP focuses on objects

and methods rather than functions, making them modular. This

paradigm transformation cemented OOP as the preeminent approach

for designing large, intricate software solutions across a wide array of

sectors, whether enterprise applications, web services, mobile devices,

or embedded systems.

The beauty of OOP in Java is that it’s organized around six core

concepts, namely classes, objects, encapsulation, inheritance,

polymorphism and abstraction. However, these principles operate in

concert to form a coherent framework that allows developers to model

the entities and relations of the real world in their code. Thus, classes

are templates that outline both features (attributes) and functionalities

Figure 1.1.1.: OOPs Pillars
[Source: https://www.colab.research.google.com/

5
MATS Centre for Distance and Online Education, MATS University

Notes (methods) of objects, whilst objects are actual manifestations of these

classes, encapsulating their details and bringing them to life in your

code. In encapsulation, a protective barrier is set around the object, and

the data is restricted from outside access and modification. Inheritance

defines the relationships between the base classes and the derived

classes. A derived class can also access the members of the base classes.

Polymorphism adds a layer of flexibility as an object can use different

behavior based on its context, even when derived from common

interfaces. With abstraction, developers can override complexity,

working only on properties that are relevant, while hiding behind

implementation. These principles form the bedrock on which Java's

approach to software development is built, providing developers with a

robust arsenal for crafting clean, efficient, and maintainable code. This

in-depth resource goes into each of the core OOP principles in detail,

explaining the theory behind them and how you can apply them in

practice in Java. We will explore how these principles manifest in

coding practices through step-wise explanation, examples and

applications. When developers understand these principles, they can

exploit the full power of Java object orientation and create applications

that are not only functional, but also robust, flexible and scalable. This

guide is a good fit for you if you are either brand new to programming

wanting to get started with object oriented programming using basics

of Java or you are a seasoned developer wanting to learn the

philosophical point behind the syntax of Java and how Java implements

object orientation as a the main paradigm of programming, and what

makes it one of the oldest and well built and most used programming

languages in the software development industry.

1.1.2 Classes and Objects:

Figure 1.1.2: Classes and Objects
[Source: https://in.pinterest.com/

6
MATS Centre for Distance and Online Education, MATS University

Notes

Java is an object-oriented programming language and classes and

objects are the building blocks of the object-oriented programming in

Java and the framework on which the whole paradigm is based on. Java

class: A class in Java is a blueprint or template that defines the

properties (attributes) and behaviors (methods) that are common to a

particular type of entity It summarizes the core attributes that

characterize what an object is and the actions that specify what an

object can do. View a class as an abstract thing—it's the idea of

something. For example, a Car class, will have attributes like color,

make, model, and year as well as methods like accelerate(), brake(), and

turn(). Note that the class itself does not represent any specific car; it

describes the structure that all cars in the program will adhere to. On

Java, a class is specified with the Keyword, course, myClass and any

code that contains area ideas, constructors, and method definitions. This

organized way of defining a class allows developers to process strong

units that truly represent real-world objects.

Classes exist as concepts that define the nature and behavior of objects,

while objects are specific occurrences of classes, actual

implementations of those ideas.Java implements an object creation

concept named instantiation where an object is created with the new

keyword followed by calling the constructor method. This action

reserves memory space for the object, sets the fields, and returns a

reference to the newly created instance. All fields in the object state

independently of all objects in the same class So with one Car Object

we might call accelerate () to increase its speed, but another Car Object

stays at 0. This allows objects to model separate entities that can

collaborate with one another in the program. Classes are the blueprints

for objects; they define the properties and methods that the instantiated

objects will have, while objects are the actual entity that is created

based on those blueprints — the things we work with in the program.

This interplay between classes and objects is what allows Java

developers to write modular, organized code that accurately reflects

complex systems. By implementing proper OOP principles,

programmers are able to group together properties and methods,

allowing for the code designed to easily be reused and maintained. Say

for example, in a banking application, the classes could be: Account,

Customer, Transaction, Branch. Classes would represent different

7
MATS Centre for Distance and Online Education, MATS University

Notes entities, such as bank accounts, customers, transactions, and branches,

and they would define both the properties and behaviors associated

with these entities. This allows you to think of the program as a

collection of interacting entities instead of a series of operations, more

naturally matching how we approach thinking about systems in the real

world. Moreover, the class-object model promotes teamwork across

different teams of developers by defining clear boundaries as well as

interfaces between various elements in a system. However, as long as

team members follow the contract, they can work on different classes

independently, which can provide significant speedups during

development of large-scale applications. This clever interplay of

classes and objects grants Java nimbleness and versatility by offering

a well-defined framework for creating complex software systems that

can grow and evolve over time.

// Example of a class definition in Java

public class Car {

 // Attributes (fields)

 private String make;

 private String model;

 private int year;

 private String color;

 private double speed;

 // Constructor

 public Car(String make, String model, int year, String color) {

 this.make = make;

 this.model = model;

 this.year = year;

 this.color = color;

 this.speed = 0.0;

 }

 // Behaviors (methods)

 public void accelerate(double amount) {

 speed += amount;

 System.out.println("Car accelerating. Current speed: " + speed +

" mph");

8
MATS Centre for Distance and Online Education, MATS University

Notes }

 public void brake(double amount) {

 if (speed >= amount) {

 speed -= amount;

 } else {

 speed = 0;

 }

 System.out.println("Car braking. Current speed: " + speed + "

mph");

 }

 public void turn(String direction) {

 System.out.println("Car turning " + direction);

 }

 // Accessor methods (getters)

 public String getMake() {

 return make;

 }

 public String getModel() {

 return model;

 }

 public int getYear() {

 return year;

 }

 public String getColor() {

 return color;

 }

 public double getSpeed() {

 return speed;

 }

 // Object creation and usage example

9
MATS Centre for Distance and Online Education, MATS University

Notes public static void main(String[] args) {

 // Creating objects (instances of the Car class)

 Car myCar = new Car("Toyota", "Camry", 2023, "Red");

 Car friendsCar = new Car("Honda", "Civic", 2022, "Blue");

 // Using object methods

 System.out.println("My car is a " + myCar.getColor() + " " +

 myCar.getYear() + " " + myCar.getMake() +

 " " + myCar.getModel());

 myCar.accelerate(30);

 myCar.turn("right");

 myCar.brake(10);

 System.out.println("Friend's car is a " + friendsCar.getColor() + "

" +

 friendsCar.getYear() + " " + friendsCar.getMake() +

 " " + friendsCar.getModel());

 friendsCar.accelerate(45);

 friendsCar.turn("left");

 friendsCar.brake(15);

 }

}

Output:

My car is a Red 2023 Toyota Camry

Car accelerating. Current speed: 30.0 mph

Car turning right

Car braking. Current speed: 20.0 mph

Friend's car is a Blue 2022 Honda Civic

Car accelerating. Current speed: 45.0 mph

Car turning left

Car braking. Current speed: 30.0 mph

10
MATS Centre for Distance and Online Education, MATS University

Notes Explanation of output:

1. System.out.println("My car is a ...") → prints info about myCar.

2. myCar.accelerate(30); → increases speed to 30.0 and prints

current speed.

3. myCar.turn("right"); → prints turning right.

4. myCar.brake(10); → reduces speed to 20.0 and prints current

speed.

5. System.out.println("Friend's car is a ...") → prints info about

friendsCar.

6. friendsCar.accelerate(45); → increases speed to 45.0 and prints

current speed.

7. friendsCar.turn("left"); → prints turning left.

8. friendsCar.brake(15); → reduces speed to 30.0 and prints

current speed.

1.1.3 Encapsulation:

Encapsulation is one of the four core principles of Object-Oriented

Programming and signifies the concept of encapsulation where objects

hide information and provide controlled access to its internal state. In

its simplest form, of encapsulation is bundling attributes (data) and the

methods that affect those data into a single entity (class) and restricting

access to the internal constituents of that entity. This mechanism acts

as a wall between the object with a hidden value and code running

outside it, the latter running any interference with an external code

trying to meddle with an object's hidden variable. Java encapsulation is

Figure1.1.3 : Encapsulation
Source: https://www.simplilearn.com/

11
MATS Centre for Distance and Online Education, MATS University

Notes mainly achieved using access modifiers, which are keywords that

determine the visibility or accessibility of a class member (private,

protected, and public). Private modifier allows code from other classes

to access the field only if it is defined in the same class, which makes

it an essential tool for encapsulation. This protects the object's

characters from being accessed by external code directly, and keeps the

object's data valid without invalidating its state in its fucking life. Java

developers can create more portable and reusable software components

through effective encapsulation by separating an object's

implementation from its interface.

Default encapulation is very simple in Java, for achiving default

encapulation we use encapsulation like if you need we declare class

attributes as private and provides public methods (getters and setters).

This strategy has some major benefits in software development. First,

it gives the class designer the ability to enforce validation right in the

setter methods, making sure that attributes can only be assigned valid

values. For example, a setter method for an employee's salary might

check that the new salary value is positive and in a reasonable range

before making the change. Second, encapsulation allows internal

implementation details to change, without having to change any code

that uses this class. The public interface may be the same while

changing the internal representation of the attribute from some simple

primitive type (string, integer, etc.) to a complex object, thereby

allowing keeping the backward compatibility. Third, encapsulation

allows for additional logic to be attached to the reading or writing of

properties — think of logging a change, notification of observers, or

maintaining consistency between related properties. While the contract

enforced by this controlled access pattern ensures that systems are more

easily predictable and maintainable over time.

Encapsulation also serves as a guiding principle for software design,

ensuring loose coupling and separation of concerns. Encapsulation

minimizes inter-component dependencies by hiding implementation

details and presenting only necessary interfaces. This modularity

allows different classes to evolve separately so long as they adhere to

their contractually specified interfaces, which also allows for parallel

development and incremental modification of large codebases.

12
MATS Centre for Distance and Online Education, MATS University

Notes Encapsulation also enables defensive programming practices by

minimizing the exposure of attributes—once they can only be changed

through cleanly defined methods, the places where bugs might creep in

are limited and hence can be easily located. Encapsulation also

implements the principle of least privilege in software design, which

ensures information is accessible only on a need-to-know basis.

Limiting access rights reduces the risk of security vulnerabilities and

side effects in complicated systems. By providing such a wide variety

of advantages, encapsulation become a core principle of Java

programming, empowering developers to build software that is not

merely functional, but also secure, maintainable, and adaptable to

changing needs.

// Example of encapsulation in Java

public class BankAccount {

 // Private attributes - hidden from outside access

 private String accountNumber;

 private String accountHolderName;

 private double balance;

 private String accountType;

 private boolean isActive;

 // Constructor

 public BankAccount(String accountNumber, String

accountHolderName, double initialDeposit, String accountType) {

 this.accountNumber = accountNumber;

 this.accountHolderName = accountHolderName;

 this.balance = initialDeposit;

 this.accountType = accountType;

 this.isActive = true;

 }

 // Getter methods - controlled access to private attributes

 public String getAccountNumber() {

 // Return masked account number for security

 return "XXXX-XXXX-" +

accountNumber.substring(accountNumber.length() - 4);

 }

13
MATS Centre for Distance and Online Education, MATS University

Notes

 public String getAccountHolderName() {

 return accountHolderName;

 }

 public double getBalance() {

 return balance;

 }

 public String getAccountType() {

 return accountType;

 }

 public boolean isActive() {

 return isActive;

 }

 // Setter methods - controlled modification with validation

 public void setAccountHolderName(String accountHolderName) {

 if (accountHolderName != null &&

!accountHolderName.trim().isEmpty()) {

 this.accountHolderName = accountHolderName;

 } else {

 throw new IllegalArgumentException("Account holder name

cannot be empty");

 }

 }

 // No setter for account number - it should not be changed after

creation

 public void setAccountType(String accountType) {

 if (accountType != null && (accountType.equals("Checking") ||

 accountType.equals("Savings") ||

 accountType.equals("Investment"))) {

 this.accountType = accountType;

 } else {

14
MATS Centre for Distance and Online Education, MATS University

Notes throw new IllegalArgumentException("Invalid account type.

Must be Checking, Savings, or Investment");

 }

 }

 public void setActive(boolean isActive) {

 this.isActive = isActive;

 }

 // Business methods that modify the private attributes in a

controlled way

 public void deposit(double amount) {

 if (!isActive) {

 throw new IllegalStateException("Cannot deposit to inactive

account");

 }

 if (amount <= 0) {

 throw new IllegalArgumentException("Deposit amount must

be positive");

 }

 balance += amount;

 System.out.println("Deposited: $" + amount + ". New balance:

$" + balance);

 }

 public void withdraw(double amount) {

 if (!isActive) {

 throw new IllegalStateException("Cannot withdraw from

inactive account");

 }

 if (amount <= 0) {

 throw new IllegalArgumentException("Withdrawal amount

must be positive");

 }

15
MATS Centre for Distance and Online Education, MATS University

Notes if (amount > balance) {

 throw new IllegalStateException("Insufficient funds");

 }

 balance -= amount;

 System.out.println("Withdrawn: $" + amount + ". New balance:

$" + balance);

 }

 // Example usage

 public static void main(String[] args) {

 BankAccount account = new BankAccount("1234567890",

"John Doe", 1000.0, "Checking");

 // Access attributes through getters

 System.out.println("Account: " + account.getAccountNumber());

 System.out.println("Holder: " +

account.getAccountHolderName());

 System.out.println("Balance: $" + account.getBalance());

 System.out.println("Type: " + account.getAccountType());

 // Modify attributes through setters and business methods

 account.setAccountHolderName("John A. Doe");

 account.deposit(500);

 account.withdraw(200);

 // This would throw an exception:

 // account.balance = -1000; // Compilation error: balance is

private

 // Using methods with validation

 try {

 account.withdraw(2000); // Will throw exception for

insufficient funds

 } catch (IllegalStateException e) {

 System.out.println("Error: " + e.getMessage());

 }

 }

16
MATS Centre for Distance and Online Education, MATS University

Notes }

If you compile and run your BankAccount program, you will see:

Output:

Account: XXXX-XXXX-7890

Holder: John Doe

Balance: $1000.0

Type: Checking

Deposited: $500.0. New balance: $1500.0

Withdrawn: $200.0. New balance: $1300.0

Error: Insufficient funds

Explaination:

1. First four println statements:

o getAccountNumber() masks all but the last 4 digits ⇒

XXXX-XXXX-7890

o getAccountHolderName() ⇒ John Doe

o getBalance() ⇒ 1000.0

o getAccountType() ⇒ Checking

2. account.setAccountHolderName("John A. Doe");

✔ Changes the name internally but does not print anything.

3. account.deposit(500);

✔ Adds $500 ⇒ balance becomes $1500 ⇒ prints:

Deposited: $500.0. New balance: $1500.0

4. account.withdraw(200);

✔ Subtracts $200 ⇒ balance becomes $1300 ⇒ prints:

Withdrawn: $200.0. New balance: $1300.0

5. account.withdraw(2000); inside try block

 Triggers Insufficient funds exception ⇒ caught by catch block

⇒ prints:

Error: Insufficient funds

Note:

Directly modifying balance from outside would cause a compilation

error because balance is private.

17
MATS Centre for Distance and Online Education, MATS University

Notes You can only interact through the provided methods—this is

encapsulation in action.

1.1.4 Inheritance:

One of the fundamental building blocks of object-oriented

programming in Java is inheritance, which allows developers create a

relationship between classes that follows the same "is-a" relationship

found in real-world taxonomies. This is a potent process, enabling

developers to create a new class (the subclass or derived class) that

extends an existing class (the superclass or base class) to inherit its

characteristics, and functionality, while providing new or altered

functionality where required. The extends keyword in Java is used to

implement inheritance, forming a parent-child relationship between

classes, where the child class automatically inherits all the visible

members (fields and methods) from its parent class. This relationship

defines inheritance of common attributes and behaviors, which, due to

dynamic polymorphism, can be defined only once, in a parent class,

and reused in multiple child classes. An example of a Vehicle class

could provide common attributes such as speed, color, and weight,

along with methods to start, stop, and rate fuel consumption. Language

classes like Car, Motorcycle, and Truck can inherit these common

properties, but they can also introduce their own specific properties,

like the number of doors for the car or the capacity of a truck. This

Figure1.1.4: Types of Inheritance
[Source: https://www.acte.in/]

18
MATS Centre for Distance and Online Education, MATS University

Notes simple hierarchy eliminates code duplication, but also creates a natural

organization that follows the conceptual relationships between different

types of entities.

The inheritance model of Java has some unique features that helps the

developers design their class hierarchies. Because Java only supports

single inheritance for classes — that is, it only allows a class to extend

one superclass — this helps avoid the complexities and ambiguities

associated with multiple inheritance. Java, for instance, compensates

for this limitation with interfaces, permitting a class to form a contract

with multiple interfaces, effectively creating a sort of multiple

inheritance of behavior. Second, the super keyword in Java refers to

the superclass, allowing subclasses to access inherited methods and call

superclass constructors. This ensures that the inherited fields are

initialized appropriately, and it also enables subclasses to build upon

and broaden the behaviors specified in their parent class. 3. Java's

model of inheritance provides the concept of method overriding, where

a subclass implements a specialized version of a method defined in its

superclass. The purpose of the @Override annotation is to inform the

compiler that the annotated method is being overridden from its

superclass, allowing it to check whether the method signature matches

an inherited method and providing an error in case of method

overloading. You are vertical after October twenty twenty-three.

Inheritance in Java, however, is a philosophical approach to the design

of programs that centers on the concepts of generalization and

specialization, beyond the technical side. With inheritance, developers

can formulate abstract base classes that encapsulate the core properties

of a concept, and then derive specialized subclasses that adapt and add

to this concept for common scenarios. This maps very nicely to how

we humans experience and group our knowledge, making for more

sensible and natural object-oriented designs. There are things like

polymorphic behavior, where a collection of objects of various

subclass types can be handled uniformly via their common superclass

type, enabling greater flexibility and extensibility in software systems.

The point is that if you have a class with a method that takes a Shape,

you can call that method with any Circle, Rectangle, or Triangle

subclassed object, since they all inherit—from some other

class(directly or indirectly) from Shape. This polymorphic feature

19
MATS Centre for Distance and Online Education, MATS University

Notes allows programmers to write code that works with existing types and

future derivatives without needing to change the code, providing an

ideal case of the open-closed principle in software design. Moreover,

inheritance enables incremental development and testing, as base

classes can be implemented and validated prior to the addition of

derived classes. Inheritance continues to be a vital concept within the

Java programming language, allowing developers to create software

architectures that are both structurally sound and responsive to

changing needs by providing its various advantages.

// Example of inheritance in Java

// Base class (superclass)

public class Vehicle {

 // Common attributes for all vehicles

 protected String brand;

 protected String model;

 protected int year;

 protected double speed;

 protected double fuelCapacity;

 protected double fuelLevel;

 // Constructor

 public Vehicle(String brand, String model, int year, double

fuelCapacity) {

 this.brand = brand;

 this.model = model;

 this.year = year;

 this.speed = 0;

 this.fuelCapacity = fuelCapacity;

 this.fuelLevel = fuelCapacity / 2; // Start with half tank

 }

 // Common behaviors for all vehicles

 public void start() {

 System.out.println("Vehicle starting...");

 }

 public void stop() {

20
MATS Centre for Distance and Online Education, MATS University

Notes speed = 0;

 System.out.println("Vehicle stopped.");

 }

 public void accelerate(double amount) {

 if (fuelLevel > 0) {

 speed += amount;

 consumeFuel(amount * 0.1); // Simple fuel consumption

model

 System.out.println("Vehicle accelerating. Current speed: " +

speed + " mph");

 } else {

 System.out.println("Cannot accelerate. Out of fuel.");

 }

 }

 public void refuel(double amount) {

 if (fuelLevel + amount <= fuelCapacity) {

 fuelLevel += amount;

 } else {

 fuelLevel = fuelCapacity;

 }

 System.out.println("Refueled. Current fuel level: " + fuelLevel +

" gallons");

 }

 protected void consumeFuel(double amount) {

 fuelLevel = Math.max(0, fuelLevel - amount);

 if (fuelLevel == 0) {

 System.out.println("Warning: Vehicle out of fuel!");

 }

 }

 // Getters

 public String getBrand() { return brand; }

 public String getModel() { return model; }

 public int getYear() { return year; }

 public double getSpeed() { return speed; }

21
MATS Centre for Distance and Online Education, MATS University

Notes public double getFuelLevel() { return fuelLevel; }

 @Override

 public String toString() {

 return year + " " + brand + " " + model;

 }

}

// Derived class (subclass)

public class Car extends Vehicle {

 // Additional attributes specific to cars

 private int numberOfDoors;

 private boolean hasConvertibleTop;

 private boolean isTrunkOpen;

 // Constructor that calls the superclass constructor

 public Car(String brand, String model, int year, double

fuelCapacity, int numberOfDoors, boolean hasConvertibleTop) {

 super(brand, model, year, fuelCapacity); // Call to superclass

constructor

 this.numberOfDoors = numberOfDoors;

 this.hasConvertibleTop = hasConvertibleTop;

 this.isTrunkOpen = false;

 }

 // Override the start method from Vehicle

 @Override

 public void start() {

 System.out.println("Car engine starting... Vroom!");

 super.start(); // Call the superclass version of the method

 }

 // Additional behaviors specific to cars

 public void openTrunk() {

 isTrunkOpen = true;

 System.out.println("Car trunk opened.");

 }

22
MATS Centre for Distance and Online Education, MATS University

Notes public void closeTrunk() {

 isTrunkOpen = false;

 System.out.println("Car trunk closed.");

 }

 public void toggleConvertibleTop() {

 if (hasConvertibleTop) {

 System.out.println(hasConvertibleTop ? "Convertible top

opened." : "Convertible top closed.");

 } else {

 System.out.println("This car doesn't have a convertible top.");

 }

 }

 // Override the toString method from Vehicle

 @Override

 public String toString() {

 return super.toString() + " (Car, " + numberOfDoors + "-door" +

 (hasConvertibleTop ? ", Convertible" : "") + ")";

 }

 // Getters for car-specific attributes

 public int getNumberOfDoors() { return numberOfDoors; }

 public boolean hasConvertibleTop() { return hasConvertibleTop; }

 public boolean isTrunkOpen() { return isTrunkOpen; }

}

// Another derived class showing inheritance

public class Motorcycle extends Vehicle {

 // Additional attributes specific to motorcycles

 private boolean hasSideCar;

 private String engineType;

 // Constructor

 public Motorcycle(String brand, String model, int year, double

fuelCapacity, boolean hasSideCar, String engineType) {

 super(brand, model, year, fuelCapacity);

 this.hasSideCar = hasSideCar;

23
MATS Centre for Distance and Online Education, MATS University

Notes this.engineType = engineType;

 }

 // Override the start method

 @Override

 public void start() {

 System.out.println("Motorcycle engine starting... Rumble!");

 super.start();

 }

 // Override the accelerate method for different fuel consumption

 @Override

 public void accelerate(double amount) {

 if (fuelLevel > 0) {

 speed += amount * 1.5; // Motorcycles accelerate faster

 consumeFuel(amount * 0.05); // Motorcycles use less fuel

 System.out.println("Motorcycle accelerating. Current speed: "

+ speed + " mph");

 } else {

 System.out.println("Cannot accelerate. Out of fuel.");

 }

 }

 // Additional methods specific to motorcycles

 public void performWheelie() {

 if (speed > 15) {

 System.out.println("Performing a wheelie! Be careful!");

 } else {

 System.out.println("Speed too low for a wheelie.");

 }

 }

 // Override toString

 @Override

 public String toString() {

 return super.toString() + " (Motorcycle, " + engineType + "

engine" +

 (hasSideCar ? " with sidecar" : "") + ")";

24
MATS Centre for Distance and Online Education, MATS University

Notes }

 // Getters

 public boolean hasSideCar() { return hasSideCar; }

 public String getEngineType() { return engineType; }

}

// Example usage

public class InheritanceDemo {

 public static void main(String[] args) {

 // Create objects of different vehicle types

 Vehicle genericVehicle = new Vehicle("Generic", "Transporter",

2023, 15.0);

 Car sedan = new Car("Toyota", "Camry", 2023, 14.5, 4, false);

 Car convertible = new Car("Mazda", "MX-5", 2023, 11.9, 2,

true);

 Motorcycle sportBike = new Motorcycle("Honda",

"CBR600RR", 2023, 4.5, false, "4-cylinder");

 // Demonstrate inheritance by using common methods

 System.out.println("\n--- Generic Vehicle ---");

 System.out.println(genericVehicle);

 genericVehicle.start();

 genericVehicle.accelerate(30);

 genericVehicle.stop();

 System.out.println("\n--- Sedan ---");

 System.out.println(sedan);

 sedan.start();

 sedan.accelerate(35);

 sedan.openTrunk();

 sedan.closeTrunk();

 sedan.stop();

 System.out.println("\n--- Convertible ---");

 System.out.println(convertible);

 convertible.start();

 convertible.accelerate(40);

25
MATS Centre for Distance and Online Education, MATS University

Notes convertible.toggleConvertibleTop();

 convertible.stop();

 System.out.println("\n--- Sport Bike ---");

 System.out.println(sportBike);

 sportBike.start();

 sportBike.accelerate(50);

 sportBike.performWheelie();

 sportBike.stop();

 // Demonstrate polymorphism (will be covered in more detail in

the polymorphism section)

 System.out.println("\n--- Polymorphic Behavior ---");

 Vehicle[] vehicles = {genericVehicle, sedan, convertible,

sportBike};

 for (Vehicle v : vehicles) {

 System.out.println("Processing: " + v);

 v.start();

 v.accelerate(25);

 v.stop();

 System.out.println();

 }

 }

}

Output:

--- Generic Vehicle ---

2023 Generic Transporter

Vehicle starting...

Vehicle accelerating. Current speed: 30.0 mph

Vehicle stopped.

--- Sedan ---

2023 Toyota Camry (Car, 4-door)

Car engine starting... Vroom!

Vehicle starting...

Vehicle accelerating. Current speed: 35.0 mph

26
MATS Centre for Distance and Online Education, MATS University

Notes Car trunk opened.

Car trunk closed.

Vehicle stopped.

--- Convertible ---

2023 Mazda MX-5 (Car, 2-door, Convertible)

Car engine starting... Vroom!

Vehicle starting...

Vehicle accelerating. Current speed: 40.0 mph

Convertible top opened.

Vehicle stopped.

--- Sport Bike ---

2023 Honda CBR600RR (Motorcycle, 4-cylinder engine)

Motorcycle engine starting... Rumble!

Vehicle starting...

Motorcycle accelerating. Current speed: 75.0 mph

Performing a wheelie! Be careful!

Vehicle stopped.

--- Polymorphic Behavior ---

Processing: 2023 Generic Transporter

Vehicle starting...

Vehicle accelerating. Current speed: 25.0 mph

Vehicle stopped.

Processing: 2023 Toyota Camry (Car, 4-door)

Car engine starting... Vroom!

Vehicle starting...

Vehicle accelerating. Current speed: 60.0 mph

Vehicle stopped.

Processing: 2023 Mazda MX-5 (Car, 2-door, Convertible)

Car engine starting... Vroom!

Vehicle starting...

Vehicle accelerating. Current speed: 65.0 mph

Vehicle stopped.

27
MATS Centre for Distance and Online Education, MATS University

Notes Processing: 2023 Honda CBR600RR (Motorcycle, 4-cylinder engine)

Motorcycle engine starting... Rumble!

Vehicle starting...

Motorcycle accelerating. Current speed: 112.5 mph

Performing a wheelie! Be careful!

Vehicle stopped.

Explaination:

• toString() overrides provide readable descriptions (year

brand model …).

• Each start() method prints a message, with subclasses adding

their own output before calling super.start().

• accelerate() prints updated speeds and consumes fuel:

o Vehicle accelerates normally.

o Motorcycle accelerates 1.5× faster.

• Car-specific methods (openTrunk, toggleConvertibleTop) print

their actions.

• performWheelie() in Motorcycle checks speed before printing.

• The polymorphism loop (Vehicle[]) calls overridden methods

dynamically for each subclass.

The polymorphism loop (Vehicle[]) calls overridden methods

dynamically for each subclass.

1.1.5 Polymorphism: When something may illustrate the measure of

one thing, polymorphism, from the Greek words significance "many

forms," is viewed as a standout amongst the most influential concepts

in object-situated programming you can have diverse items at different

circumstances to a similar interface in different ways.

28
MATS Centre for Distance and Online Education, MATS University

Notes Figure1.1.5

Polymorphism in Java is mainly achieved through method overriding

and method overloading, providing a flexibility towards writing a more

elegant and extensible code flow. In simpler terms, when the subclass

has the same method as its super class, we call this method as method

overriding and thus subclass method will be called while invoking the

method on a class object. This dynamic method dispatch, also referred

to as runtime polymorphism, is based on the actual type of the object

rather than the reference type. Example: If we have a superclass

reference pointing to a subclass object and call a method we would

expect from the superclass to be called Java would automatically

invoke the one overridden from the subclass. Method overloading,

however, is an example of compile-time polymorphism, because it

defines multiple methods with the same name but different argument

lists to exist in the same class. The Java compiler decides which version

of the method should be execute based on number of arguments, types

of arguments and order of arguments passed. In combination, but with

the aid of such mechanisms, Java developers can implement code that

operates on objects at increasing levels of abstraction whereby they are

manipulated through common interfaces while their specific

implementations can still vary, which provides the user reusability of

code blocks and simplifies the evolution of the system.

Polymorphism in Java, which would be the basis of this article, in

practical terms, is only deriving from the interplay of the concepts of

inheritance and interfaces. Case in point, through inheritance,

subclasses can override any methods declared in their superclasses,

allowing you to provide specialized behavior while preserving the

method signature. It allows code in the client to communicate with

objects using superclass reference variables, treating heterogeneous

cases of object types uniformly, according to common inheritance. An

example would be a drawing application that creates a Shape

superclass with Circle, Rectangle and Triangle subclasses. Client code

on a Shape reference doesn't need to know its subtype, it can just call

draw(), and each subclass knows its rendering logic, override draw().

So interfaces take this polymorphic capability to the next level by

defining contracts that different classes must implement. A class can

implement many interfaces, where methods of the interface describe

29
MATS Centre for Distance and Online Education, MATS University

Notes different aspects of its behavior, enabling objects to be treated

polymorphically based on their abilities rather than their inheritance

lineage. For example, unrelated classes such as ElectricCar, SolarPanel,

and Smartphone might all implement a common Rechargeable interface

which would allow them to be processed in a consistent way by healing

systems. This late binding that is made possible by showing this

interface-based polymorphic behaviour enables us to develop systems

with high degree of flexibility since new types can just be added

without the need of making any changes to existing code.

This goes beyond its technical application: polymorphism is a way of

thinking about software, a philosophy of design that's focused around

abstraction and behavior-oriented design. Polymorphism, by

emphasizing that it is what objects do and not what objects are that

matters, encourages developers to design systems around behavior and

capabilities, leading to more flexible, loosely coupled architectures.

This also enables the open-closed principle, which states that software

entities should be open to extension but closed to modification, also

allowing systems to evolve in a way that new implementations can be

registered, rather than modifying existing code. When implemented

correctly, polymorphism also supports the strategy pattern and other

behavioral design patterns where an algorithm is chosen based on

context at runtime. As an example, a navigation system could

implement a different pathfinder algorithm (all implementing the same

RouteStrategy interface) depending on whether the user prefers the

fastest, the most scenic, or the most fuel-efficient route. Such a dynamic

behavior makes the applications more responsive and aware of the

context. Moreover, polymorphism leads to more intentional code as

methods can retain the same name in different implementations,

aligning themselves with the conceptual idea rather than the

implementation.

// Example of polymorphism in Java

// Base interface defining a common behavior

public interface Shape {

 double calculateArea();

 double calculatePerimeter();

 void draw();

30
MATS Centre for Distance and Online Education, MATS University

Notes String getType();

}

// Concrete implementation of Shape: Circle

public class Circle implements Shape {

 private double radius;

 public Circle(double radius) {

 this.radius = radius;

 }

 @Override

 public double calculateArea() {

 return Math.PI * radius * radius;

 }

 @Override

 public double calculatePerimeter() {

 return 2 * Math.PI * radius;

 }

 @Override

 public void draw() {

 System.out.println("Drawing a circle with radius " + radius);

 // Imagine more complex drawing logic here

 }

 @Override

 public String getType() {

 return "Circle";

 }

 // Circle-specific method

 public double getDiameter() {

 return 2 * radius;

 }

}

31
MATS Centre for Distance and Online Education, MATS University

Notes // Concrete implementation of Shape: Rectangle

public class Rectangle implements Shape {

 private double length;

 private double width;

 public Rectangle(double length, double width) {

 this.length = length;

 this.width = width;

 }

 @Override

 public double calculateArea() {

 return length * width;

 }

 @Override

 public double calculatePerimeter() {

 return 2 * (length + width);

 }

 @Override

 public void draw() {

 System.out.println("Drawing a rectangle with length " + length +

" and width " + width);

 // Imagine more complex drawing logic here

 }

 @Override

 public String getType() {

 return "Rectangle";

 }

 // Rectangle-specific method

 public boolean isSquare() {

 return length == width;

 }

}

32
MATS Centre for Distance and Online Education, MATS University

Notes // Concrete implementation of Shape: Triangle

public class Triangle implements Shape {

 private double sideA;

 private double sideB;

 private double sideC;

 public Triangle(double sideA, double sideB, double sideC) {

 // Validate that the sides can form a triangle

 if (sideA + sideB <= sideC || sideA + sideC <= sideB || sideB +

sideC <= sideA) {

 throw new IllegalArgumentException("The sides do not form

a valid triangle");

 }

 this.sideA = sideA;

 this.sideB = sideB;

 this.sideC = sideC;

 }

 @Override

 public double calculateArea() {

 // Heron's formula

 double s = (sideA + sideB + sideC) / 2;

 return Math.sqrt(s * (s - sideA) * (s - sideB) * (s - sideC));

 }

 @Override

 public double calculatePerimeter() {

 return sideA + sideB + sideC;

 }

 @Override

 public void draw() {

 System.out.println("Drawing a triangle with sides " + sideA + ",

" + sideB + ", and " + sideC);

 // Imagine more complex drawing logic here

 }

33
MATS Centre for Distance and Online Education, MATS University

Notes @Override

 public String getType() {

 return "Triangle";

 }

 // Triangle-specific method

 public boolean isEquilateral() {

 return sideA == sideB && sideB == sideC;

 }

}

// Demo class to show polymorphism

public class PolymorphismDemo {

 public static void main(String[] args) {

 // Polymorphic collection

 Shape[] shapes = {

 new Circle(5),

 new Rectangle(4, 6),

 new Triangle(3, 4, 5),

 new Rectangle(5, 5),

 new Circle(2.5)

 };

 // Process shapes in a polymorphic way

 for (Shape shape : shapes) {

 System.out.println("\nShape Type: " + shape.getType());

 shape.draw();

 System.out.println("Area: " + shape.calculateArea());

 System.out.println("Perimeter: " +

shape.calculatePerimeter());

 }

 }

}

Code demonstration:

• Shape interface defines a common contract (calculateArea,

calculatePerimeter, draw, getType).

34
MATS Centre for Distance and Online Education, MATS University

Notes • Circle, Rectangle, Triangle each implement Shape and

override methods with their own logic.

• A polymorphic array of Shape allows you to call the same

methods on different shapes without knowing their concrete

types at compile time.

• Each shape responds with its own implementation (runtime

polymorphism).

1.1.6 Output from PolymorphismDemo:

Shape Type: Circle

Drawing a circle with radius 5.0

Area: 78.53981633974483

Perimeter: 31.41592653589793

Shape Type: Rectangle

Drawing a rectangle with length 4.0 and width 6.0

Area: 24.0

Perimeter: 20.0

Shape Type: Triangle

Drawing a triangle with sides 3.0, 4.0, and 5.0

Area: 6.0

Perimeter: 12.0

Shape Type: Rectangle

Drawing a rectangle with length 5.0 and width 5.0

Area: 25.0

Perimeter: 20.0

Shape Type: Circle

Drawing a circle with radius 2.5

Area: 19.634954084936208

Perimeter: 15.707963267948966

35
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1.2: Package Concepts and Implementation

1.2.1 Package Concepts and Implementation

The Java language has a great mechanism the packages for systematic

programming. In Java, a package is a namespace that organizes a set

of related classes, interfaces, and sub-packages. The package concept

is the one of the fundamental concepts of Java that helps rich developers

to organize their largescale applications by grouping related

components.

Figure:1.2.1

Packages have several roles in the Java ecosystem: They help prevent

naming conflicts and control access to classes and their members, as

well as allow for grouping of related code into logical units. As an

object-oriented language, Java uses packages to allow one to group

classes in a logical manner and promotes modular programming

approaches that help with code maintainability, reuse, and scalability

— all of which are essential in the development of enterprise-grade

applications. The core API itself is organized into packages, and the

Java platform itself is based on packages (e.g., java. lang, java. util, and

java. io — each containing classes for specific functionality. I

recommend this tutorial for those interested in learning how to use

packages when developing software in Java. As applications scale in

size and complexity this organization only becomes more important.

36
MATS Centre for Distance and Online Education, MATS University

Notes Moreover, packages form the basis for the access control mechanism

in Java’s security model. This Unit delves into the theoretical

constructs of Java packages, analyzes the implementation aspects, and

offers practical advice for utilizing packages efficiently in Java

development. We will take a closer look at the syntax to define

packages, access permissions for package members, compilation and

execution of the code organized in packages, and good practices to

design packages. Therefore, by applying concepts of Java packages

and using them, a developer can have a more maintainable, secured,

and professional structure of code so that with the increasing

complexity of the application, one can scale accordingly.

1.2.2 The Purpose of Packages: Java follow on packages which

address certain issues faced in software development. Allowing

packages, one of the main advantages to packages are that they provide

a method for grouping sets of classes and interfaces together, which

apply some structure to the code that is hierarchical and reflects the

logical structure of an application. Plus, this organizational aspect

becomes more and more invaluable as projects increase in scope and

complexity. If we did not have packages, all classes would be in one

single namespace — which makes working in a codebase really

difficult, as well as increasing the chances of naming conflicts. For an

enterprise application with hundreds or thousands of classes,

organizing them into logical packages makes the codebase navigable

and comprehendible. Namespace management is another key purpose

of packages. Packages: Java uses packages to create a unique

namespace for each Java class name to avoid name collisions. Double

UsageDevelopers working in parallel on different components of an

application can both introduce a class called Configuration. If these are

in different packages (e.g. com. company. ui. Configuration and com.

company. database. As their fully qualified names differ, they can

coexist without conflict (e.g., if you have a class called

App\Configuration, then you can have a class called

Some\Other\Configuration). They also allow access control via Java's

access modifiers. The default access level in Java, also known as

"package-private", limits access to classes and members of the same

package. This allows developers to encapsulate implementation details,

only exposing what is necessary to the outside world while keeping

internal workings. This encapsulation is a core tenet of object-oriented

37
MATS Centre for Distance and Online Education, MATS University

Notes design that packaging helps enforce. Furthermore, the packages

facilitate Java application deployment and distribution via JAR (Java

Archive) files. A JAR file can have several packages and the packages’

structure is retained in the jar archive. That greatly simplifies the

sharing of Java libraries and applications as standalone packages. So

packages are also a part of java security model. The Loosely Couple

Package: The Java security manager enforces security policies based

on package boundaries, determining what classes from different

packages are permitted to perform which operations. Packages recast

this level of organization to give more than single applications. Now

the conventional reversed domain names (like com. company. (for

each organization) and (for each project) enables global unique naming

of packages from different organizations and different projects, which

eases importing any code from any place.

1.2.3 Historical Context and Evolution: In this article, we will cover

the core concepts of Java packages and their evolution — from static

imports to the new modular system that was introduced with Java 9.

When Sun Microsystems shipped Java tools in 1995, packages were

already one of the language’s built-in features, illustrating the

language designers’ understanding that structuring code would be key

to building scalable applications. To begin with, a simple notion of

packages was used for basic namespace management and access

control. Before Java 2, the standard library was smaller, limited to the

key package’s java. lang, java. util, and java. io. The Java standard

library went through some dramatic expansion as Java matured up

through versions 1.1, 1.2 (Java 2) and beyond, and packages quickly

became critical for organizing the increasingly broad API. Enterprise

Applications and the java: namespace with the advent of the Java 2

Platform, Enterprise Edition (J2EE, later Jakarta EE), the associative

relationship between packages and namespaces became even stronger.

The complexity of Java applications increased drastically around this

time, as J2EE applications could now be large and could require

multiple teams to work on different components. Packages gave you

the necessary structure to manage such complexity. Java packages

took a big leap forward with the addition of the Java Package Manager

(JPM) and subsequently in Java 9 with the addition Project Jigsaw (Java

Module System). This had ameliorated shortcoming of the original

package system in areas of dependency management and at a higher

38
MATS Centre for Distance and Online Education, MATS University

Notes level of encapsulation than packages. While packages offered

namespace management and rudimentary access control, they did not

support declarative dependencies or robust encapsulation boundaries,

a capability introduced in Java 9. In particular, while Java 9 modules

build on the existing notion of packages to enable explicit declaration

of dependencies and better encapsulation with in a module, they also

build on the idea of a module being a discrete unit with its own metadata

that control its usage patterns. However, packages are still essential to

the organization of Java code. The module system is an addition rather

than a replacement to packages, as modules contain packages which in

turn contain classes. By learning about the history of packages,

developers can better appreciate their place in the history of Java's

evolution and their best practices for their use in writing modern Java

applications. For all this evolution, the essential syntax and semantics

of packages have remained curiously stable throughout this series,

meaning code written for early versions of the language will be

compatible with contemporary Java environments. Backward

compatibility: As new features and capabilities have been added to the

language and platform; backward compatibility has been ensured as a

faithful promise of Java’s design philosophy.

1.2.4 Package Declaration and Naming Conventions

The syntax used for declaring packages in Java is simple, as it sets up

the namespace for the classes and interfaces that the package contains.

These classes and interfaces in a Java source file belong to the specified

package and must always be the first non-comment statement in the

Java source file. Essentially, usage of a package declaration would

look something like this: package packageName; here packageName

should follow the naming conventions of Java. If a class does have an

explicit package declaration, it belongs to the default package, an

unnamed package that has neither of the organizational and access

control benefits that named packages provide. For instance, birth a

class to belong to a package called "utilities", the first line of the source

file may read as follows: package utilities; The package name

generally used in Java is hierarchical in nature and compulsory

providing some forms of global uniqueness within the code area as it is

related to the organization structure. Names for packages are based on

reversed domain names, followed by disambiguating identifiers that

further constrain the scope. For example, giving a utility class by a

39
MATS Centre for Distance and Online Education, MATS University

Notes company with the domain "example. A package which contains a class

from a com. example. utilities; It can be extended, in the logical level,

to represent project name, modules and specific functionality: package

com. example. projectname. module. feature The package declaration

establishes a direct correspondence between the package name and the

directory structure that the Java source files are organized. For the

package declarationpackage com. example. the corresponding source

file has to be placed in the directory needs to match package structure:

/com/example/utilities/ It is worth noting that package names must also

match the actual directory structure of the source files, and this is

enforced at the Java compiler level and is critical to having meaningful

package semantics.

1.2.5 Package Naming Conventions and Standards: The Java™

naming conventions for packages have grown from the needs of

development of large software. The reverse domain name convention

is the most widely followed convention that prefix package names.

Figure:1.2.2

By following this pattern, as recommended by Oracle in the Java

Language Specification, we contribute to global package name

uniqueness across organizations/project. The default format starts with

the reverse domain name of the organization creating the code,

followed by a more specific identifier: package com. organization.

project. module. For instance, a data access component in an

accounting application developed by Example Corporation may utilize

the package name: package com. example. accounting. data; This

convention has various benefits. The first significant advantage is that

it virtually removes package name collision risk across code developed

by separate organizations. Second, it dismisses an artificial

40
MATS Centre for Distance and Online Education, MATS University

Notes hierarchical tree structure that doesn’t carry organizational and project

boundaries. Third, it builds on the current state of how domain names

are managed all over the world, where an entire domain is already

unique. However, organizations often have their own internal

conventions to outline more detail on how packages should be named,

and their own general framework of package naming might land into

several specific packages. Common patterns are:

1) The organizations department or division is specified after the

domain: package com. example. engineering. project;

2) Including year or version in package version for major releases:

package com. example. project. v2023;

(3) Separating API and implementation packages: package com.

example. project. api; and package com.

example. project. internal; Package names should always be written in

lowercase letters, following a convention that separates them from class

names (which use camelCase with an initial uppercase letter). This

convention allows developers to quickly identify which is a package

and which is a class in the code. Singular nouns are usually used for

packages containing utility classes or classes with similar functionality:

package com. example. utility; or package com. example. widget; For

packages denoting a subsystem or feature, plural nouns or descriptive

terms are often used: package com. example. services; or package com.

example. dataaccess The Java Development Kit (JDK) itself has

standard packages, which follow certain naming conventions. The Java

Core API packages start with the prefix java. (Such as java. lang, java.

util, java. io), and extension APIs start with “javax. (Such as javax.

swing, javax. crypto). Finally, as you may already know, with the

module system introduced in Java 9 and later, some of these packages

have been moved to the jdk. prefix. It turns out that the vast majority of

third-party libraries and frameworks follow the convention of using

their website for projects or organization that is reversed domain name.

1.2.6 Directory Structure and Package Mapping: Java's convention

requires package names to correspond to the structure of its directories

strictly. This mapping is an integral part of Java's package

implementation, and it has an impact on how the source files are

structured, built, and executed. For a class defined within particular

package, the Java compiler expects the.Adaptive unique solitary. java

file to be situated within a directory structure that reflects the package

41
MATS Centre for Distance and Online Education, MATS University

Notes hierarchy. Imagine a class defined in the package com. example.

utilities: package com. example. utilities: public class StringUtils {... }

The Java source file StringUtils. java should be in a folder structure

corresponding to : /com/example/utilities/StringUtils. This physical

organization has some implications for Java development. To start

with, it imposes a convention over the way source files are structured

to mirror the logical structure of the application. Second, it allows the

Java compiler and the runtime to find classes quickly. Thus, the

package name provides the mechanism for the Java compiler/JVM to

locate the class file that has been saved in the file system whenever it

needs to find a class. The pairing of package names and directory

structure is not just relevant for source files, it is also applicable to

compiled class files. In the process of compiling a Java source file, the

. class files are stored in a directory structure corresponding to the

package name (relative to the output directory specified during

compilation) To give an example, the StringUtils getting compiled. So,

such a path in /StringUtils. class under the /com/example/utilities/ path

in the output dir. The JVM uses this mapping during classloading to

search for classes at runtime, which is fundamental in Java's classpath

mechanism. The classpath is the list of all the directories and JAR files

where the JVM looks up classes. Within these, the JVM looks up

specific classes using the package structure. Proper organization of

projects in Java, and reasons for common compilation time and runtim

time errors related to missing classes, requires an understanding of this

mapping. Development tools and build systems such as Maven and

Gradle complement all this directory management by automating it to

a great extent, and are built upon conventions that associate source

directories with package structures. For example, the standard Maven

directory layout puts Java source files in src/main/java, with package

directories below. Along with that, having the source files physically

organized by package structure also aids version control and

collaboration. PRaying, a practice commonly used for working on

multiple packages in one app. Integrated development environments

(IDEs) such as Eclipse, IntelliJ IDEA and NetBeans usually take care

of package-to-directory mapping for you. These tools generate the right

directory structure on package creation and track the correct

organization as files are renamed or moved.

42
MATS Centre for Distance and Online Education, MATS University

Notes 1.2.7 The Default Package and Its Limitations: Java allows you to

define a class without a package declared, and that puts your class in

the default package. However, while this method may seem to offer a

convenient way to implement code for smaller or simpler programs, it

is riddled with severe limitations and generally discouraged for

professional-level Java development. In the absence of a package

declaration, the class belongs to the default package: public class

SimpleClass {... } Only classes in the default package or the same

directory can access classes in the default package. They can not be

imported by classes of named packages, making it pretty hard to reuse

them. According to the Java Language Specification, it is strongly

discouraged to use the default package in production code. As soon as

projects move away from the simple examples, the limitations of the

default package become evident. To begin with, classes in the default

package cannot be imported by classes in named packages. If you try

to import a class from the default package, you will get a compiler error

that the package does not exist. Classes in the default package are thus

effectively invisible to most of the codebase in a typical Java

application. Second, some Java features and frameworks, such as

reflection and the JEE framework, rely heavily on packages and will

not work as expected with the default package. Package scanning is

relied upon for auto-configuration and dependency injection in many

of today's Java frameworks such as Spring, Hibernate and Jakarta EE

components. Many of these scanning methods do not cover classes in

the default package. Third, working in the default package introduces

potential name collisions as a project scales. As there is no namespace

separation through packages, classes need to have unique names

globally with respect to the default package, which becomes more

cumbersome to manage as more and more classes are added. Fourth,

the default package makes access control convoluted. The absence of

named packages means that the code cannot make use of package-

private access, which is an important encapsulation mechanism in

Java. The fifth, Java Module System, which comes in Java 9, does not

work at the same time with the default package. Modules have to

specifically declare what packages they export and require, which you

cannot do with the default package. The default package is mostly for

very simple programs (like the ones beginners writing Java or some

quick test programs). In these situations, the downsides might be less

43
MATS Centre for Distance and Online Education, MATS University

Notes than the ease of being able to drop package declarations. A single class

in a small program or a small utility such as a “Hello World” program

can usually get away with using the default package. But once a

program gets larger than these simple examples, appropriate grouping

into packages becomes necessary. Most Java IDE's and build tools will

encourage you to use named packages from the very beginning, often

requiring a package structure based on the name of the project when a

new project is created. Following this advice helps you some good

practices from the start, and saves you from refactoring code from the

default package into proper package location.

1.2.8 How to Create Package in Eclipse IDE?

In Eclipse IDE, there are the following steps to create a package in java.

They are as follows:

1. Right-click on the ‘src’ folder as shown in the below screenshot.

Figure:1.2.3

2. Go to New option and then click on package.

3. A window dialog box will appear where you have to enter the

package name according to the naming convention and click on Finish

button. Once the package is created, a package folder will be created in

your file system where you can create classes and interfaces.

1.2.9 Predefined Packages in Java (Built-in Packages)

Predefined packages in Java are those which are developed by the Sun

Microsystem. They are also called built-in packages. These packages

consist of a large number of predefined classes, interfaces, and methods

that are used by the programmer to perform any task in his programs.

Java APIs contains the following predefined packages, as shown in the

below figure:

44
MATS Centre for Distance and Online Education, MATS University

Notes Figure:1.2.4

Java Core Packages:

1. Java.lang: The ‘lang’ stands for language. The Java language

package consists of Java classes and interfaces that form the core of the

Java language and the JVM. It is a fundamental package that is useful

for writing and executing all Java programs. Examples are classes,

objects, string, thread, predefined data types, etc. It is imported

automatically into the Java programs.

2. Java.io: The ‘io’ stands for input and output. It provides a set of I/O

streams that are used to read and write data to files. A stream represents

a flow of data from one place to another place.

3. Java util: The ‘util’ stands for utility. It contains a collection of

useful utility classes and related interfaces that implement data

structures like LinkedList, Dictionary, HashTable, stack, vector,

calender, data utility, etc.

4. Java.net: The ‘net’ stands for network. It contains networking

classes and interfaces for networking operations. The programming

related to the client-server can be done by using this package.

Window Toolkit and Applet:

1. Java.awt: The ‘awt’ stands for abstract window toolkit. The

Abstract window toolkit package contains GUI (Graphical User

Interface) elements, such as buttons, lists, menus, and text areas.

Programmers can develop programs with colorful screens, paintings,

and images, etc using this package.

2. Java.awt.image: It contains classes and interfaces for creating

images and colors.

3. Java.applet: It is used for creating applets. Applets are programs

that are executed from the server into the client machine on a network.

4. Java.text: This package contains two important classes, such as

DateFormat and NumberFormat. The class DateFormat is used to

format dates and times. The NumberFormat is used to format numeric

values.

45
MATS Centre for Distance and Online Education, MATS University

Notes 5. Java.sql: SQL stands for the structured query language. This

package is used in a Java program to connect databases like Oracle or

Sybase and retrieve the data from them.

1.2.10 Java Package Development from Java 8 Onwards

1. Java predefined supports a group of packages that contains a group

of classes and interfaces. These classes and interfaces consist of a group

of methods.

For example, Java language contains a package called java.lang which

contains string class, StringBuffer class, StringBuilder class, all

wrapper classes, runnable interface, etc. String class contains a number

of methods such as length(), toUpperCase(), toLowerCase() etc.

2. Java contains 14 main predefined packages. These 14 predefined

packages contain nearly 150 sub-packages that consist of a minimum

of 7 thousand classes. These 7 thousand classes contain approx 7 lakhs

methods.

3. Up to Java 1.7 version contains 13 predefined packages. From Java

1.8 version onwards, one new package is introduced called java.time.

4. Java 9 introduced several new packages, such as:

• java.lang.module

• java.util.spi, jdk.jshell

• java.util.concurrent.Flow

• java.lang.invoke.VarHandle

• jdk.incubator.httpclient.

5. Java 10 introduced relatively few changes compared to Java 9 and

did not include any major new packages.

6. Java 11 introduced java.net.http that provides a new HTTP client that

supports HTTP/2 and WebSocket.

7. Java 12 and 13 versions did not include any packages.

8. Java 14 had introduced a new package named jdk.jfr.consumer.

9. Java 15 and onwards version did not introduce any new packages.

1.2.11 How to See List of Predefined Packages in Java?

Follow the following steps to see the list of predefined packages in

Java.

1. Go to programs files and open them.

2. Now go to Java folder and open it. You will see two folders such as

JDK and JRE.

3. Go to JDK folder, extract the src folder. After extracting it, go to Java

folder. Here, you will see 14 predefined packages folders such as

applet, awt, beans, io, lang, math, net, nio, rmi, security, sql, text, time,

and util.

4. Now you open lang package and scroll down. You can see classes

like String, StringBuffer, StringBuilder, Thread, etc.

46
MATS Centre for Distance and Online Education, MATS University

Notes 1.2.12 Java Packages Example Program

Let us take a simple example program where we will create a user-

defined package in a systematic manner.

Example 1:
// Save as Example.java

// Step 1: Declare package name by reversing domain name, project

name 'java', and module name is core java.

package com.scientecheasy.java.corejava;

// Step 2: Declare class name.

publicclassExample

 {

publicstaticvoidmain(String[] args)

 {

 System.out.println("How to create a Java package");

 }

 }

1.2.13 How to Compile Package in Java?

If you are not using any Eclipse IDE, you follow the syntax given

below:
javac -d directory javafilename // syntax to compile the application

In the above syntax,

1. javac means Java compiler.

2. -d means directory. It creates the folder structure.

3. .(dot) means the current directory. It places the folder structure in the

current working directory. For example:
javac -d.Example.java // Here, Example.java is the file name.

So in this way, you must compile application if the application contains

a package statement. After the compilation, you can see the folder

structure in your system like this:

com

 |---> scientecheasy

 |------> java

 |------> corejava

 |------> Example.class

2.14 How to Run Java Package Program?

You have to use the fully qualified name to execute Java code. The fully

qualified name means class name with a complete package structure.

Use the below syntax to run Java code.

Syntax:
java completePackageName.className

Now run the above Java code. To Run:
java com.scientecheasy.java.corejava.Example

Output:

 How to create a Java package

https://www.scientecheasy.com/2021/03/java-compiler.html/

47
MATS Centre for Distance and Online Education, MATS University

Notes 1.2.15 How to Import Package in Java

There are three approaches to import one package into another
package in Java.

1. import package.*;

2. import package.classname;

3. Using fully qualified name.

Let’s understand each approach one by one with the help of an example.

Using package.*

An import is a keyword that is used to make the classes and interfaces

of other packages accessible to the current package. If we use

package.*, all the classes and interfaces of this package can be accessed

(imported) from outside the packages. Let’s understand it by a simple

example program.

Example 2:
// Create a package.

package com.scientecheasy.calculate;

// Create a class with a public access modifier.

// If you use a default access modifier, it cannot be accessible due to

default, which is accessible within the same package.

publicclassSum

{

// Declare instance variables.

inta=20;

intb=30;

// Declare method.

publicvoidcal()

 {

ints= a + b;

 System.out.println("Sum: " +s);

 }

}

// Create another package.

package com.maths.calculator;

// Importing the entire package into the current package.

import com.scientecheasy.calculate.*;

classSumTest

{

publicstaticvoidmain(String[] args)

 {

// Create an object of class and call the method using reference variable

s.

Sums=newSum();

 s.cal();

 }

}

Output:

48
MATS Centre for Distance and Online Education, MATS University

Notes Sum: 50

1.2.16 Using packageName.className

If you import packageName.className, you can only access the

declared class of this package. Let’s understand it through an example

program.

Suppose scientecheasy has information about the Dhanbad city and

TCS needs this information. We will declare two modules: Dhanbad

and TCS. TCS is using Dhanbad class, but both have different package

names. Whenever you are using a class of another package, you must

import the package first of all.

Example 3:
// Declare complete package statement.

package com.scientecheasy.state.cityinfo;

publicclassDhanbad

{

publicvoidstateInfo()

 {

 System.out.println("Dhanbad is one of the major cities of Jharkhand");

 }

publicvoidcityInfo()

 {

 System.out.println("Dhanbad is the coal capital of India.");

 }

}

// Declare complete package statement for TCS.

package com.tcs.state.requiredinfo;

// Import the package with class name.

import com.scientecheasy.state.cityinfo.dhanbad;

classTcs

 {

publicstaticvoidmain(String[] args)

 {

Dhanbadd=newDhanbad();

 d.stateinfo();

 d.cityinfo();

 }

}

Output:

 Dhanbad is the first major city of Jharkhand.

 Dhanbad city is called coal capital city of India.

2.1.17 Using the fully qualified name

If you use the fully qualified name, there is no need to use an import

statement, but in this case, only the declared class of this package can

be accessible. It is generally used when two packages have the same

class name.

49
MATS Centre for Distance and Online Education, MATS University

Notes Let’s take a scenario to understand the above concept. Consider the

below figure.

Figure:2.1.5

In the com package, there are two sub-packages “scien” and “tech”.

The sub-package “scien” contains two class files A.java and B.java.

Whereas the sub-package tech contains three class files: C.java, D.java,

and A.java.

Question. How will you call m1 of class A of sub-package scien and

m2 of class A of sub-package tech from class B of sub-package scien?

Let’s take an example program in which we will use the first approach

to call the following requirement.

Example 4:
package com.scien;

import com.tech.A;

classB

{

voidm3()

 {

 System.out.println("Hello Java");

 }

publicstaticvoidmain(String[] args)

 {

Aa=newA();

 a.m1();

Aa1=newA();

 a1.m2;

Bb=newB();

 b.m3();

 }

}

https://www.scientecheasy.com/2020/06/packages-in-java.html/

50
MATS Centre for Distance and Online Education, MATS University

Notes
Will the above code compile?

1. No: because the statement A a = new A(); does not say anything

about class A from which sub-packages (scien or tech) it is referring.

2. No: because the statement A a1 = new A(); is also not saying

anything about class A of which sub-packages (scien or tech) it is

referring.

3. No: because a.m1() and a1.m2() will get confused to call the method

of which package’s class. Here, the compiler will be also confused.

In this case, the import is not working. So, we remove the import

statement and use the fully qualified name.
package com.scien;

classB

{

voidm3()

 {

 System.out.println("Hello Java");

 }

publicstaticvoidmain(String[] args)

{

Aa=newA(); // keep as it is because it is from the same package "scien".

 a.m1();

 com.tech.Aa1=newcom.tech.A(); // It will direct go to tech package

and call the method m2.

 a1.m2;

Bb=newB();

 b.m3();

 }

}

Output:

 Hi

 Hello

 Hello Java

Suppose you are not using public with m2() method in the above

program, then it will give error ” The method m2() from the type A is

not visible” because it is a default and default access modifier cannot

be accessed from outside the package.

Key Points to Remember:

1. While importing another package, package declaration must be the

first statement and followed by package import.

2. A class can have only one package statement, but it can be more than

one import package statement.

3. import can be written multiple times after the package statement and

before the class statement.

4. You must declare the package with root folder name (no sub folder

name) and the last file name must be class name with a semicolon.

51
MATS Centre for Distance and Online Education, MATS University

Notes 5. When you import, it does mean that memory is allocated. It just gives

the path to reach the file.

6. import com.scientecheasy.state.cityinfo.dhanbad; is always better

than import com.scientecheasy.state.cityinfo.*;.

1.2.18 Importing Packages and Classes

This can be simplified using the import statement—which is followed

by the package and the class, allowing developers to use the class

without needing to provide the full path every time. The import

statement tells the compiler which classes or whole packages to

provide with their simple names. In Java, there are basically two

types of import statements: single-type imports and on-demand

(wildcard) imports. Single-Type Imports: A single-type import

imports exactly one class or interface: import java. util. ArrayList;

This import allows the code to use the ArrayList class simply, rather

than by fully qualified name: ArrayList list = new ArrayList (); instead

of java. util. The java. util. import ArrayList (); An on-demand (or

wildcard-style) import makes all public types in a package accessible

by their simple names: import java. util. *; using this, the code can use

any public class from the java. util package as a simple name. Import

Statements These must occur after the package declaration (optional)

and before any class or interface declaration. Using multiple import

statements, we can import classes from different packages:

• Import Statements: In Java, there are multiple import

statements that allow you to tailor the access according to your

code organization and requirements. Grasping these

differences lets developers create cleaner, more manageable

code while steering clear of frequent mistakes. The simplest

form is the single type import, which imports exactly one class,

interface, enum, or annotation: import java. util. ArrayList; This

style is accurate and clearly indicates which kinds are being

used in a source file. It is usually recommended when a person

needs only some types of one specific package. Wildcard

imports (also known as on-demand imports) use an asterisk

syntax to import all public types in a package: import java. util.

; This style is useful when there are many types from the same

package in a source file. Yet, it may cause naming conflicts

where multiple packages have classes with the same name.

Static Imports The static import statement, which made its entry

52
MATS Centre for Distance and Online Education, MATS University

Notes in Java 5, enables importing static members (fields and

methods) of a class: import static java. lang. Math. PI; import

static java. lang. Math. sqrt; One can use static members directly

with static imports, without qualifying them with the name of

the class: double circumference = 2 * PI * radius; double

hypotenuse = sqrt(aa + b*b); On-demand static imports are also

supported, making all the static members of a class available:

import static java. lang. Math. * The first import statement

declares that all public static members of the Math class can be

used without qualification. Java 5 also added support for

importing enum constants, which are static members of an

enum type: import static com. example. Status. This allows for

the use of enum constants directly without the enum type prefix

-- if (status == ACTIVE) {... } instead of if (status == Status.

ACTIVE) { ... } It's been possible since Java 7 to use single

static imports to import a specific nested static class:import

static javax. swing. SwingConstants. CENTER; This lets us

refer to the nested class by its simple name: int alignment =

CENTER; instead of int alignment = SwingConstants.

CENTER; Java includes support for importing annotations,

which are a special kind of interface you can implement in your

classes: import java. lang. annotation. Retention; Static import

of annotation members is also supported: `import static java.

lang. annotation. RetentionPolicy. RUNTIME; Based on my

literary background, I can say that since every import can have

a custom path, the only factor to drive your choice would be

code readability, possibility of name conflicts and project

conventions. Single-type imports give the best clarity but cause

a lot of import statements in files that are using many different

types. The first option imports on-demand as well, which

minimizes the number of import lines, but does not reveal what

kinds of imports are actually used in the code. (One convention

followed by many is that there should be a single-type import

per import statement for clarity, except when importing lots of

types from the same package (e.g., when using many classes

from java. util or javax. swing).

• Import Resolution and Name Conflicts: Java's import

mechanism has specific rules for how Java will resolve class

53
MATS Centre for Distance and Online Education, MATS University

Notes names, and understanding these rules is critical to avoid and

troubleshoot name conflicts. Given a class name found in

source, the Java compiler tries to resolve it to a fully qualified

class name through a sequence of steps. Initially, the compiler

looks up whether the class name indicates a class in the current

package. Such a class is used and has no further resolution. If

no match is found in the current package, the compiler checks

for single-type import statements that match the class name. If

a single matching import is found, that class will be used. Now,

if there is ambiguity, for example if two different single-type

imports match the same simple name (one from each of two

different packages), then a compilation error will result. If no

matching single-type import is found, the compiler then looks

at the on-demand imports for a potential match. If only one on-

demand import contains a matching class, then that class is

used. However, if multiple on-demand imports have classes

with a matching name, a compilation error is generated because

it is ambiguous. Last but not least if no class is found by any

import the compiler will look in the java. lang package will be

implicitly imported. Class not found issue and if it is still not

found then we have a compile time error. In which cases is

there a possibility of name conflict? One common case is when

two packages include classes of the same name, and both

packages are imported using on-demand imports: `java

import java.util.*;

import java.awt.*;

// Both packages contain a List class

List list; // Ambiguous - which List class to use?

``` When such conflicts occur, the compiler generates an error 

indicating the ambiguity. To resolve this type of conflict, developers 

can use a single-type import to explicitly specify which class to use: 

```java 

import java.util.*;

import java.awt.*;

import java.util.List; // Explicitly choose java.util.List

List list; // Now refers to java.util.List

54
MATS Centre for Distance and Online Education, MATS University

Notes ``` Alternatively, the fully qualified name can be used directly in the

code without an import: ```java

java.util.List list; // Explicitly use java.util.List without an import

``` Another type of conflict occurs when a class in the current package 

has the same name as a class being imported. In such cases, the local 

class takes precedence over the imported class, following Java's name 

resolution rules. This can lead to subtle bugs if a developer is unaware 

of the local class and expects an import to bring in an external class 

with the same name. Static import conflicts can also occur when static 

members with the same name are imported from different classes: 

```java 

import static java.lang.Math.max;

import static java.util.Collections.max; // Conflict with Math.max

``` To resolve such conflicts, either avoid the static import and use the 

class name qualifier, or use the fully qualified name for the static 

method: ```java 

int larger = Math.max(a, b); 

List<Integer> maxValue = Collections.max(numbers); 

• Managing Imports Effectively: However, well manage 

import statement is a task of keeping java fine and bharat. 

Modern IDEs include tools to handle many import management 

processes automatically, yet a basic understanding of the 

principles involved is still useful information for Java 

developers to know. A vital choice you make in import 

management is whether to use single-type or on-demand 

(wildcard) imports. However, most Java Style guides, 

including Google Java Style Guide and Oracle Code 

Conventions for the Java Programming Language suggest using 

single-type imports to provide clarity and explicitness. Single-

type imports makes it immediately clear what exact classes 

from external packages are being used in a source file. This 

whole transparency helps a lot when debugging things or if 

multiple team members are working on the same codebase. 

However, on-demand imports may be suitable for some cases. 

If a source file uses a lot of classes from the same package (e.g. 

many classes from java. util or javax. If you have to use the 

whole swing, importing each class individually can get tedious 

and you can make the import section long. In this scenario, even 



 

55 
MATS Centre for Distance and Online Education, MATS University 

Notes though there is still some duplication in what gets defined 

(though in most cases, you would significantly reduce clutter 

because on-demand import is local only) it should generally be 

clear what part of the library you are working with (to this end, 

the initial library should group its functionality separately or 

logically). All modern Java IDEs have the capability to handle 

imports automatically. Such features usually consist of:  

1. Importing classes on-demand  

2. Sorting and Removing unused imports  

3. Convert between single-type and on-demand imports based on 

configurable thresholds  

4. Import conflicts resolution by suggesting specific single-type 

imports in the case of ambiguity.  

Most IDEs also have a way of configuring import management 

policies so that they are consistent with the conventions used 

by a team. Touching on this specifically, all of IDEs nowadays 

like Eclipse or IntelliJ IDEA or NetBeans let you set up these 

thresholds (like “use wildcard imports when importing more 

than N classes from the same package”) Teams must define 

import management conventions and set up their IDEs 

accordingly so that all the project code has the same style. 

Besides IDE automation, here are several best practices that can 

help maintain clean and effective imports: 1) Clean up unused 

imports — they add noise and can lead to confusion about what 

external classes are actually used; 2) Group imports logically 

(which usually means separating standard Java packages, third-

party libraries, and internal project packages); 3) Avoid static 

imports that are not strictly needed — these handle potential 

conflicts with members of the same name and keep clarity of 

the code; 4) Avoid importing classes of the same name (e.g: 

List or Map) from different packages, as it may lead to conflicts. 

For large projects, build tools such as Maven and Gradle can 

have rules set (using plugins such as Checkstyle or PMD) to 

ensure import conventions are followed. Such tools (and rules) 

can check as part of the build process whether imports are 

organized correctly, regardless of which developer is working 

on which IDE. For example, if you are working with legacy 

code that may not be using the best practices for top-level 



  

56 
MATS Centre for Distance and Online Education, MATS University 

 

Notes imports but you are not willing to change large parts of the 

codebase just to clarify import style, consider refactoring import 

statements in the process of modifying files for other reasons. 

This gradual approach reduces the likelihood of bugs while still 

allowing code quality to improve over time. 

1.2.19 Access Control and Package Visibility 

Packages are used by Java's access control mechanism to specify the 

visibility and accessibility of classes, interfaces, and their members. 

Since you may also design the javax package and you are controlled the 

access modifiers in there, it’s important to understand how these access 

modifiers are interacting with package boundaries. Java has four 

access modifiers: public, protected, default (also known as package-

private) and private. You declare a class, interface, or member with 

one of these levels to specify which part of the code can access it. The 

most permissive for public access, which is a public class or member is 

accessible from any other class in the Java program, without reference 

to package boundaries.  

Figure:1.2.6 

 

Protected access means accessible from subclasses (any package) and 

any classes in the same package. When no access modifier is given, 

the access provided is called default access; classes within the same 

package can access it. The most restrictive, private access, restricts 

access to just the declaring class itself. This facility revolves around 

packages, which establishes a default access boundary. Default access 

classes are only visible to other classes in the same package, which 

formed a natural unit of encapsulation. Classes with default access (no 

modifier) can only be accessed by classes in the same package. This 

package-level visibility allows developers to keep implementation 

details private while allowing them to be available to classes that are 



 

57 
MATS Centre for Distance and Online Education, MATS University 

Notes closely related and need to work together. The containment offered by 

packages aids in the information hiding principle, which permits 

developers to change the implementation details inside a package 

without impacting code in other packages relying upon the public 

interfaces alone. 

• Package-Private Access: The default access level in Java — 

sometimes called "package-private" — is a primitive 

encapsulation boundary defined in terms of package 

membership. However, if you declare a class, interface, or 

member without an explicit access modifier, it is accessible only 

to other classes in the same package. This provides a natural 

module boundary that adheres to the principle of information 

hiding while still allowing cooperation between related classes. 

Package access (sometimes called package-private access) is 

indicated by the absence of an access modifier: class 

PackagePrivateClass { package int packagePrivateField; void 

packagePrivateMethod() {... } } Here both class and members 

are package-private - accessible to other classes in the same 

package but invisible to classes in different packages. So what 

does this use case package-private access in the context of Java 

application design serve? The former offers a degree of 

encapsulation between public and private access. So for the first 

point, package-private members give you an intermediate 

visibility scope between public and private classes that you can 

align with natural component boundaries, as opposed to class 

boundaries, with the visibility model. It enables related classes 

within a package to cooperate while keeping the internal details 

hidden from the rest of the application. Second, package-

private access facilitates engineering the implementation of the 

Java platform itself. Espect to not be visible for any application 

code a direct cascade Anyone else explaining is a potential 

poison Gateway (as opposed to the intent of the feature is a 3rd 

party library) — used only in descendant descendants, without 

publicMethods An alternative package-private as you could 

potentially inadvertently X between essentially which goes over 

and either as you would consider. For instance, classes in the 

java. The util package might use package-private methods to 

communicate with one another while keeping a clean public 



  

58 
MATS Centre for Distance and Online Education, MATS University 

 

Notes API for applications. Third, package-private access makes unit 

testing easier: test classes in the same package can access 

package-private members of the classes under test. This allows 

for extensive testing without the need for developers to expose 

the details of implementation just for the sake of testing. The 

most common pattern is to locate test classes in the same 

package as the classes they are testing, usually in a parallel 

directory structure below the test source root. Let's say you have 

the following code and two classes in the same package that 

need to collaborate closely:  

```java // File: com/example/banking/Account.java package 

com.example.banking;

class Account { int accountNumber; double balance;

void updateBalance(double amount) {

 balance += amount;

}

}

// File: com/example/banking/Transaction.java package

com.example.banking;

public class Transaction { public void process(Account account,

double amount) { // Can access package-private members of Account

account.updateBalance(amount); } }

• Protected Access Across Packages: The protected access

modifier in Java introduces a relationship between inheritance

and package membership that requires careful consideration in

application design. A protected member (field, method, or

nested class) is accessible within its own package, similar to

default (package-private) access. Additionally, protected

members are accessible from subclasses of the declaring class,

regardless of the package in which those subclasses are defined.

This extension of visibility across package boundaries for

inheritance relationships makes protected access more complex

than other access levels. The basic syntax for declaring

protected members is:

 ```java 

protected int protectedField; 

protected void protectedMethod() { ... } 



 

59 
MATS Centre for Distance and Online Education, MATS University 

Notes protected class ProtectedNestedClass { ... } 

``` To understand protected access across packages, consider the 

following example with classes in different packages: ```java

// File: com/example/base/Parent.java

package com.example.base;

public class Parent {

 protected int data = 42;

 protected void display() {

 System.out.println("Data: " + data);

 }

}

// File: com/example/derived/Child.java

package com.example.derived;

import com.example.base.Parent;

public class Child extends Parent {

 public void accessParentMembers() {

 // Can access protected members of the parent class

 System.out.println("Parent data: " + data);

 display();

 }

 public void accessOtherParentInstance(Parent other) {

 // Cannot access protected members of other Parent instances

 // System.out.println(other.data); // Compilation error

 // other.display(); // Compilation error

 }

}

Here, despite the Child class being in a different package, it can access

its protected data field and display method of the Parent class. Protected

access has an important subtlety: a subclass can access protected

members through inheritance (via this or super references), but it

cannot access protected members of other instances of the parent class.

However, this restriction is also evident in the

60
MATS Centre for Distance and Online Education, MATS University

Notes accessOtherParentInstance method, because if you try to access

protected members of another Parent instance, you will get

compilation errors. This is because protected access only supports

inheritance relationship, and it does not allow access to the whole

parent class instance for any instance of the other package class.

External classes are prevented from accessing protected data members

or functions, but subclasses can — making this access level useful in

framework and library design, where a base class may need to facilitate

subclasses while preventing them from exposing their functionality to

unrelated classes. For instance, many of the abstract classes in the Java

Collections Framework use protected methods to enable subclass

customization while encapsulating implementation details. To properly

architect a class hierarchy across different packages, developers should

think which members ask for the protected access. Excessive use of

protected access may lead to a weakening of encapsulation and

exposure of implementation details to subclasses, resulting in tight

coupling between the base class and its subclasses. Conversely, making

members private can hinder legitimate customization through

subclasses. A good rule of thumb is to use protected access for methods

that should be overridden by subclasses (template methods from the

Template Method pattern) calls or for members that subclasses need to

call as part of their implementation. Unlike methods, it is more

uncommon to mark fields as protected, as subclasses can access them

directly and thus can avoid significant validation or synchronization

action taken from the parent class. Instead, protected accessor and

mutator methods are often a better balance of flexibility and

encapsulation.

• Public Classes and Package Organization: This is critical for

organizing packages and building applications, as public classes

have a visibility across packages and affect the way classes can

be referenced within them. This means a public class can be

referenced from any other class in the Java program, even a

class in another package. However, we cannot have classes

without having public classes that are the primary interface of

igniter packages and, with that, is the baseline use of and API

design for any Java applications. In Java, a source file may

contain one and only one public class or interface and if there

61
MATS Centre for Distance and Online Education, MATS University

Notes is one, the name of that public class must match the name of the

file (excluding. java extension). Importantly, since there is a 1:1

mapping between public classes and source files, this reinforces

the fact that the primary units of functionality made available

for use by a package are its public classes. Classes with default

package-private access (i.e. non-public) in the same source file,

on the other hand, are implementation details that support the

public class that should not be visible outside the package. This

inherently encourages encapsulating code around clean public

interfaces with implementation details being hidden in the

package. Good organization of packages relies on the fact that

a public package has as few public classes as possible, but at the

same time, these public classes must give a complete and

coherent interface to the functionality is provided by the

package. The public classes define the package's contract with

the calling application, while the package-private classes hold

implementation information, and no information that the

calling class doesn't need to know is exposed. }} Consider an

application that implements a data access layer for some

package: `java

// File: com/example/data/UserRepository.java

package com.example.data;

public interface UserRepository {

 User findById(long id);

 void save(User user);

 void delete(User user);

}

// File: com/example/data/UserRepositoryImpl.java

package com.example.data;

class UserRepositoryImpl implements UserRepository {

 private DatabaseConnection connection;

 UserRepositoryImpl() {

 connection = DatabaseConnectionFactory.createConnection();

 }

62
MATS Centre for Distance and Online Education, MATS University

Notes

 @Override

 public User findById(long id) {

 // Implementation details

 }

 @Override

 public void save(User user) {

 // Implementation details

 }

 @Override

 public void delete(User user) {

 // Implementation details

 }

}

// File: com/example/data/DatabaseConnection.java

package com.example.data;

class DatabaseConnection {

 // Implementation details

}

// File: com/example/data/DatabaseConnectionFactory.java

package com.example.data;

class DatabaseConnectionFactory {

 static DatabaseConnection createConnection() {

 // Implementation details

 }

}

// File: com/example/data/User.java

package com.example.data;

public class User {

 private long id;

63
MATS Centre for Distance and Online Education, MATS University

Notes private String username;

 // Public constructors, getters, and setters

}

In this example, only the UserRepository interface and User class are

public, forming the API that other packages can use. The

implementation classes (UserRepositoryImpl, DatabaseConnection,

and DatabaseConnectionFactory) are package-private, hidden from

external

64
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1.3: Managing Errors and Exceptions

1.3.1 Managing Errors and Exceptions: Exception Handling

Mechanisms in Java

In software development, especially for one of the most solid and

popular programming languages such as Java, the ability to handle

errors and special conditions gracefully is crucial to building robust and

resilient applications.

In the context of Java, an exception is an event that interrupts the

normal flow of execution of the program. Generally, it represents an

unusual or abnormal scenario that falls outside of the intended

operating sequence. These exceptions can happen from lots of reasons

like in case of invalid user input, unavailability of any resource (file not

found), network connectivity loss or it can also be from programming

errors like divide by zero situation. Java incorporates a rich and

organized approach to handle such disruptions, aptly named exception

handling, which allows developers to predict, catch, and address these

exceptions in a both systematic and controlled way. Java exception

handling is built upon the basic concept of what is the risk in a program

and what is not following the normal flow of logic and making it easier

to manage error inside a large code. This separation into different

blocks of code is implemented with keywords and constructs

specifically designed for this purpose, which are try, catch, finally, and

throw, that in conjunction help handle exceptions. The try block is the

core of this mechanism, wrapping the code segment that may raise an

exception. On the other hand, catch block is an exception handler,

Figure 1.3.1: Exception Hierarchy
[Source: https://th.bing.com/]

65
MATS Centre for Distance and Online Education, MATS University

Notes describing the type of exception that you can handle and having the

statements to be executed when such an exception is raised. Used with

try and catch, the finally block makes sure a block of code runs

whether an exception is thrown or caught, making it an excellent place

to put resource cleanup operations. The throw keyword allows Java

developers to create an exception, either a standard Java exception or a

custom exception that fits the application's needs. Java provides these

constructs which allow developers to bestow applications with the

ability to recover from errors or terminate gracefully while informing

the user of what's happened, making for a more stable software and

user experience. You move from technical correctness to a much more

precise field, error handling is essential in software development, and

no one knows where they are going to be deployed.

A tree structure forms the basis for exception handling in Java based

on a hierarchy of classes, with the Throwable class being the root of

that hierarchy. This is further divided into two major categories known

as checked exceptions and unchecked exceptions. Upon hearing the

term exception, checked exceptions typically come to mind first in

Java, as they fall directly under Exception and represent exceptional

behaviors that a sufficiently prepared application should be able to

handle. Such exceptions are usually linked with external issues or

resource constraints, including input/output or network

communications. Compiler enforces handling of checked exceptions;

developer needs to either handle it in try-catch block or declare it in

method using throws clause which essentially passes the responsibility

to handle it to the calling method. More importantly, it encourages you

to handle any potential errors up front, preventing them from

proliferating unchecked through the application. On the other hand,

unchecked exceptions extend from the class of RuntimeException, and

correspond to programming errors or logical bugs that are usually

meant to be handled by the programmer. Unlike checked exceptions,

these exceptions (like NullPointerException or

ArrayIndexOutOfBoundsException) often show a flaw in code logic,

hence they don't get compile time checks. In general, you don't have to

implement these, but it is good practice to add try-catchHere to avoid

terminating the program and apply graceful error recovery when an

exception occurs. Checked exceptions in Java are about two words:

design philosophy. Checked exceptions lead the developers in a way

66
MATS Centre for Distance and Online Education, MATS University

Notes where they think upfront about their errors and make provisions to

handle it where as unchecked exception give you more flexibility to

work on programming errors which might be difficult to predict or

prevent. In addition to these pre-defined exception classes, Java also

provides the ability to create custom exceptions by extending the

Exception or RuntimeException classes. This allows application-

specific exceptions to be crafted, representing the fine-grained error

conditions that may arise, resulting in a more helpful approach to

managing the state of an application. While built-in exceptions provide

some context, custom exceptions can include more specific details

about the error, including error codes and detailed messages, which can

be crucial for understanding and resolving issues. One compelling

feature that contributes to Java's strong error handling capabilities is

the ability to define and throw custom exception classes.

The try-catch-finally construct is the workhorse for Java's exception

handling mechanism: a structured approach to intercepting and

managing exceptions. The try block specifies the part of the code that

might throw an exception. This is the basic syntax for exception

handling in C++ −Try Block: The code which is doubtful to have a race

condition is enclosed in a try block. If an exception is encountered,

execution of the try block gets interrupted, the catch block is searched

if there is any catch block to handle caught exception and control is

transferred to it. The catch block Follows the try block and is where you

define the type of exception the block is capable of catching, followed

by the code to run when such an exception arises. We can define

multiple catch blocks with a single try block to handle different types

of exceptions. It allows developers to devise custom error-handling

approaches per type of exception, offering a more customized and

resilient way to deal with potential errors. Finally (optional) block: The

finally block will be executed whether an exception is thrown or

caught. Usually, it is using for finalization operations, such as file

streams closing, network connection releasing, other resources that

have to be free allocated. As you have now guaranteed that that code

is going to be executed, finally is an extremely important construct to

allow you to ensure that resources are managed well and help prevent

resource leaks and things like that. Java also offers a similar statement

called try-with-resources that also implicitly! closes resources that

implement the AutoCloseable interface. This statement is especially

67
MATS Centre for Distance and Online Education, MATS University

Notes helpful when working with resources that need to be closed explicitly,

like file streams or database connections, to avoid resource leaks. The

try-with-resources statement guarantees that each resource is closed

when it is no longer needed, similar to how all variable classes now are

automatically collected by the garbage collector. It decreases the boiler

code necessary for resource handling and is improving the readability

and maintenance of the Java applications. Try-catch-finally, try-with-

resources.

Java provides features for both propagating and rethrowing

exceptions, so that you can implement more custom error-handling

logic. Exceptions are thrown by a method, which can either choose to

handle the exception locally or pass it to the calling method. When an

exception is propagated, it means the exception is declared in the

method's throws clause and is left to the caller to handle the exception

accordingly. This is especially handy when some method returns an

error it can't handle and needs to inform a calling method about the

problem. The caller can then decide whether to handle the exception,

or let it rise further up the call stack. Rethrowing, one means you catch

an exception in a catch block and throw it again, either as original

exception or different exception. Usually, wrapping it like this is done

where a method must perform some kind of cleanup, or want to log the

exception, before letting it go any further. Because, you can use it to re-

wrap an exception in a more specific exception type, as to give more

information about the cause of the error. And there are cases, a method

that saves something in the database may catch any kind of

SQLException and as a result throw that as DatabaseAccessException

too, so that the calling method knows that it may be a "custom" error.

With this strategy, developers can implement a layered approach to

exception handling for individual layers to handle exceptions in its

level of responsibility and propagate them upwards if required.

Similarly, in Java, you also have the assert keyword that allows

developers to write assertions in their code for conditions that should

always be true and in addition to that, comes with the hierarchy of

exceptions to propagate. Assertions are usually used in development

and testing to catch logical programming errors and to make sure that

the code is behaving the way it should. If an assert fails then an

AssertionError is raised, indicating a programming error. Assertions

can be turned on or off when running the code, enabling developers to

68
MATS Centre for Distance and Online Education, MATS University

Notes toggle their behavior based on the environment. The feature helps

debug Java applications and verify that they are functioning as

expected.

Overall, the exception handling feature in Java is a powerful and

flexible mechanism that enables developers to build robust and fault-

tolerant applications. Java because of the constructs like try-catch-

finally, try-with-resources and the support for the creation of user-

defined exceptions allows the programmer to predict errors, monitor

them and handle the error in a systematic way. By organizing throw

exceptions into check and ignore, the hierarchical classification allows

developers to separate the more severe aspects of software

development from the less serious. Being able to propagate and

rethrow exceptions can make it possible to build layered error-handling

models; this prevents any one Single Responsibility Principle (SRP)

handler from having to manage all exceptions. The assert keyword is a

powerful feature for debugging and correctness of Java applications.

What You Need to Know is Java exception handling is a powerful

mechanism that allows the exception to be caught and handled properly

by the application, preventing it from causing complete failure of the

application. Doing so, then, leads to faster exception handling, which

can save valuable milliseconds both in computing and in user

experience. Error management is not just a technical "thing" — since

we are professional developers, we learn to develop software that meets

the new standards, expected of a modern software system.

69
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1.4: Multithreading

1.4..1 Multithreading

Multithreading is a multiprocessor and concurrent programming

paradigm that enables multiple threads to run concurrently within a

process. Essentially it lets a single program do several things at once,

making programs run faster and more responsively, even when they

have to do things like I/O or heavy computation work. A thread, the

basic unit of CPU utilization, contains a thread ID, a program counter,

a set of registers and a stack. Threads created within a process share the

code segment, data segment, and operating system resources with all

other threads within the same process, hence providing an efficient way

of using resources. There are mainly 5 states of thread in Java life cycle

namely - New, Runnable, Running, Blocked / Waiting and Terminated.

Stage 1: NEW When a thread instance and a thread reference is created

using the Thread class or the Runnable interface, it is said to be in a

new state. When you call start() method, the thread enters into

Runnable state, which means it is ready to run and chosen by the thread

scheduler to start running. When the thread scheduler assigns CPU time

to the thread, the thread is moved to the Running state. Threads can

enter the Blocked/Waiting state for several reasons, including waiting

for I/O operations to complete, needing to acquire a lock, or calling

sleep() or wait(). Lastly, a thread goes into the Terminated state after it

has finished executing or when it runs into an unhandled exception.

Java give us many ways to control and manage threads. The code that

is executed by the thread is contained in the run() method. The start()

method is where the thread actually starts by calling the run() method

in the new thread. sleep() : The sleep() method suspends the execution

of the thread for the specified amount of time. The join() method is

used to wait for a thread to finish executing. yield() — is used to

indicate to the thread scheduler that the current thread can relinquish.

For shared resource management and avoiding race conditions,

synchronization mechanisms are essential (including synchronized

blocks and methods). Methods: wait(), notify() and notifyAll() The

basic methods to inter-thread communication between synchronized

blocks. Deadlock Problem In Multithreaded Environment: It is a

dangerous condition in which two or more threads have blocked

indefinitely waiting, each other and needs to be solved. Deadlocks can

70
MATS Centre for Distance and Online Education, MATS University

Notes be avoided by correctly managing and synchronizing resources.

Thread pools (managed by Executor framework) are an efficient way

to manage a set of threads and help avoid the overhead of creating and

destroying threads. A Callable is very much like a Runnable, but it can

return a value, and it can throw checked exceptions. The Future

interface is for the result of an asynchronous computation, which

allows the result to be retrieved once it is available. To create

applications that remain responsive and efficient, especially in the

world's of networked or server-side processes necessitating concurrent

handling. Assembling knowledge of thread management,

synchronization, and inter-thread communication is essential for

creating resilient and scalable multithreaded applications.

1.4..2 Network Programming

In simple words, network programming in Java allows you to

communicate with other network applications and transfer data

between two or more network applications. Yes, Java network

programming by ship on the TCP/IP protocol suite. The java. Java

provides a rich set of classes for network programming in the java.

InetAddress is the class that represents an IP address, which is a

numeric label assigned to each device connected to a computer network

that uses the Internet Protocol for communication. InetAddress class:

getLocalHost() and getByName() are some of the methods of the

InetAddress class to get the IP address of a host. A Socket class is for

the client-side socket, an endpoint for communication between two

machines. It defines the IP address and port number of the server which

is used to create socket. First, answer why socket class, where Socket

class represents a socket for communication between a client and

server. The ServerSocket creates a new Socket Object for

communication with a client when a client connects to a server. The

URL class is used to identify a Uniform Resource Locator, which is a

reference to a resource on the web that specifies its location on a

computer network as well as a mechanism for retrieving it.

Understanding the concept of URLConnection class. It has methods

that can read and write data to the URL. Connection-oriented UDP

communication is done with the help of DatagramSocket and

DatagramPacket classes. It is a very basic transport layer protocol

which provides unreliable, unordered delivery of datagrams.

DatagramSocket- Sends and receives datagram packets

71
MATS Centre for Distance and Online Education, MATS University

Notes DatagramPacket- A datagram representing a packet of data Network

programming requires things such as setting up sockets, sending and

receiving data, handling network exceptions, etc. To read and write

data on a network connection, input and output streams are used. The

InputStream and OutputStream classes have methods for reading and

writing byte streams and the BufferedReader and PrintWriter classes

have methods for reading and writing character streams. Network

programming is an important aspect of building distributed

applications, web servers, and client-server systems. A device that

operates at the lowest level in the OSI model is responsible for packet

transmission over these connections. So, these were some of the Pros

of using Java.

1.4.3 Java Database Connectivity (JDBC)

JDBC (Java Database Connectivity) is a Java API that allows Java

programs to connect to and interact with relational databases. JDBC

stands for Java Database Connectivity, which is an API for Java

programmers to connect with the database. JDBC is divided into a 2

layered architecture which contains the JDBC API and JDBC drivers.

The JDBC API consists of interfaces and classes that communicate

with databases, and JDBC drivers are vendor specific implementations

that convert JDBC calls to vendor database commands. The JDBC

driver is a piece of software that enables the connection between the

Java application and the database. The Types Of JDBC Drivers: Type

1 (JDBC-ODBC Bridge), Type 2 (Native-API Driver), Type 3

(Network Protocol Driver), Type 4 (Thin Driver). Type 1 drivers rely

on ODBC to connect to databases; this can be slow and relies on the

platform. Type 2 drivers rely on native database libraries, which can

be faster but also include platform dependency. Type 3 drivers are a lot

easier to work with than type 2 to create because they act as a

middleware server with the database, which means they gain portability

and scalability. Pure Java Driver (Type 4) — It communicates directly

with the database and offers the best performance and platform

independence. In order to open a database connection, you load JDBC

driver, generate a connection object, and execute SQL statements. The

DriverManager class loads JDBC drivers and returns connection

objects. The Connection interface represents a connection to a

database and has methods to create statements, execute queries, and

manage transactions. Statement — The Statement interface is used to

72
MATS Centre for Distance and Online Education, MATS University

Notes execute a static SQL statement and it is suitable for executing a simple

SQL statement with no parameters Required, which is a secure way to

prevent SQL injection statement, only suitable for executing with no

parameters Required of the SQL statement. The ResultSet interface is

an interface that represents a table of data generated by executing a

statement against a database. Especially exceptions related to the

database are represented by the SQLException class. The JDBC

provides methods for executing SQL statements like SELECT,

INSERT, UPDATE, DELETE, etc. To ensure that a series of database

operations are executed as a single, atomic unit of work, you can use

transactions to group them together. Support for transaction

management features, such as commit, rollback, and savepoints.

JDBC: JDBC is very important for developing data-driven

applications, as it offers a standard and effective way to connect with

relational databases. How JDBC works: JDBC architecture, drivers,

and database connectivity in Java.

Multithreading is a fundamental concept in the world of concurrent

programming that allows multiple threads to run inside a single

process, improving the responsiveness and efficiency of an application.

Data from this layer is culturally related to multithreaded Java

applications. Thread life cycle, including states such as New, Runnable,

Running, Blocked/Waiting, and Terminated through which a thread

passes during its lifetime, primarily controls the execution flow of a

thread, whereas operations including those in methods such as start(),

sleep(), join(), and yield() enable fine-grained control of thread

behavior. Synchronization is achieved using synchronized blocks or

methods to maintain data integrity and avoid race conditions, and inter-

thread communication is performed through wait(), notify(), and

notifyAll(). A potential pitfall of a multithreading design, deadlock,

requires prudent resource management and synchronization techniques

to overcome it. The Executor framework is a powerful tool for

managing thread pools, optimizing performance by avoiding the

overhead associated with thread creation and destruction. To enhance

Multithreading capabilities, Java provides several interfaces including

the Callable interface and Future interface, which allow threads to

return values and manage asynchronous computations. In essence,

multithreading is crucial for creating responsive, scalable applications,

73
MATS Centre for Distance and Online Education, MATS University

Notes especially in networked or server architectures, where simultaneous

execution takes center stage.

Network programming forms the backbone of modern applications,

enabling the exchange and interaction between Java applications and

networks. The TCP/IP protocol suite provides a strong foundation for

network communication, and Java builds upon that through its features

for network programming. The java. The net In the Java programming

language, the net package provides a rich set of classes and interfaces,

such as InetAddress, Socket, ServerSocket, URL, URLConnection,

DatagramSocket, and DatagramPacket, which enable a network-based

application. InetAddress is used to resolve IP addresses in string form,

Socket and ServerSocket for establishing client-server communication,

URL and URLConnection for fetching a web resource over HTTP, and

DatagramSocket and DatagramPacket for making connectionless

communication using UDP. Network programming behaviors such as

creating sockets, sending and receiving data and handling exceptions

during the network operations you will be doing on input and output

streams.

Summary

This module introduces core Object-Oriented Programming (OOP)

concepts using Java. It begins with the four main OOP principles—

encapsulation, inheritance, polymorphism, and abstraction—and

explains how these concepts help create modular, reusable, and

maintainable code. The implementation of classes, objects,

constructors, method overloading and overriding, and use of keywords

like this and super are discussed in detail.The next unit explores

packages, which are used to group related classes and interfaces. It

explains how to create user-defined packages and use Java's built-in

packages to organize code better and manage access levels with access

modifiers.Error handling is a crucial part of programming, and this

module covers Java’s exception-handling mechanism, including the

use of try, catch, finally, and throw. It also introduces checked and

unchecked exceptions and shows how to write robust applications with

custom exception classes.

Finally, the module concludes with multithreading concepts, teaching

how to execute multiple tasks simultaneously. Students learn about

thread creation using the Thread class and Runnable interface, thread

lifecycle, synchronization, inter-thread communication, and real-world

examples of multithreading applications.

Multiple-Choice Questions (MCQs)

74
MATS Centre for Distance and Online Education, MATS University

Notes 1. Which of the following is not a feature of Object-Oriented

Programming?

a) Encapsulation

b) Inheritance

c) Compilation

d) Polymorphism

Answer: c) Compilation

2. What keyword is used to define a package in Java?

a) package

b) import

c) include

d) namespace

Answer: a) package

3. Which of the following is not a valid exception handling

keyword in Java?

a) try

b) catch

c) final

d) throw

Answer: c) final

4. What is the default priority of a thread in Java?

a) 1

b) 5

c) 7

d) 10

Answer: b) 5

5. Which of the following JDBC drivers is platform-

independent?

a) Type-1

b) Type-2

c) Type-3

d) Type-4

Answer: d) Type-4

75
MATS Centre for Distance and Online Education, MATS University

Notes

Short Answer Questions

1. What is encapsulation in Java?

2. How do you define and use a package in Java?

3. Explain the difference between checked and unchecked

exceptions.

4. What are the main states in a thread’s lifecycle?

5. What is the role of the Driver Manager class in JDBC?

Long Answer Questions

1. Explain the four main Object-Oriented Programming (OOP)

concepts with examples.

2. Describe the process of handling exceptions in Java using try,

catch, finally, and throw.

3. What is multithreading in Java? Explain the life cycle of a

thread with a diagram.

4. Explain the concept of socket programming in Java with an

example.

5. Describe the steps involved in connecting a Java application to

a database using JDBC.

76

Module 2

JAVA FX TECHNOLOGY

LEARNING OUTCOMES

• To understand the fundamentals and architecture of Java FX.

• To explore Java 2D and 3D graphics in Java FX.

• To analyze Java FX animation, effects, and transformations.

• To study Java FX layout management and UI controls.

• To implement Java FX event handling and image processing.

77
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2.1: Introduction to Java FX, Features,

Architecture and Applications

2.1.1 Introduction to Java FX

JavaFX represents a significant improvement in building graphical user

interfaces (GUIs) in Java compared to Swing and the Abstract Window

Toolkit (AWT). First introduced by Sun Microsystems (subsequently

bought by Oracle), JavaFX was first celebrated as a 2008-era

component, giving developers who wanted to develop desktops with

rich graphics, embedded media and new programming models a higher-

level, more modern way to do it than from what early Java offered with

its early emphasis on building complex GUI interfaces all on its

lonesome. Initially, it was an Oracle product, but when it was open-

sourced into OpenJDK 2011, the theoretical changes were made to the

code were for every to contribute to the code, allowing for small

iterative changes and community development. Initially it was hailed

as an answer to Adobe Flash and Microsoft Silverlight, this cross-

platform rich-client alternative was capable of the same rich interactive

application creation possibilities, now with the Java ecosystem

advantages. When programming languages such as Visual Basic and

Visual C++ were introduced, there was a demand for graphical user

interfaces that were more engaging, allowing interaction and features

that would be visually appealing, that would also run under a large

number of operating systems. However, JavaFX, when it landed, came

with something of a standalone scripting language (JavaFX Script)

which aimed to simplify UI development, thanks to a declarative

syntax. But with JavaFX 2.0 (released in 2011), Oracle returned to a

pure-Java-API approach, ditching the separate scripting language in

favor of regular Java code feathered with builder patterns and fluent

APIs. Thus JavaFX became a tangible platform for the existing pool of

Java developers based on the extensive familiarity with Java and some

of the ability to do modern UI development. The long and short of it is

simply this: JavaFX was never really about the technology — it was a

case study for Oracle that Java was still relevant, even in the midst of

an explosion of web and mobile technologies. : JavaFX was the first

stone in that rich client mountain: it established the right architecture

for taking Java out of the server and into both the desktop stacks. The

major functionality and improvements were rolled out with every new

78
MATS Centre for Distance and Online Education, MATS University

Notes release over a series of reworks. The core Java API was developed in

JavaFX 2.0; JavaFX 8 (along with Java 8) integrated more with the Java

Development Kit (JDK), and the more recent releases enhanced

performance, added new UI controls, extended platform support.So this

makes 2018: a new major shift for JavaFX: with Java 11, it was

decoupled from the JDK. While this added some extra steps when you

wanted to include it in your projects, this modularization allowed

JavaFX to release its libraries independently of the overall Java

platform release cadence. But what do you know, all this was possible

by JavaFX for Java which was released on December 3, 2008, and

eventually led to what we have today, a complete mature framework

for building rich cross platform applications with powerful graphics,

multimedia support and advanced UI components. And its evolution is

a window into some of the most significant trends in software

development overall, including the shift toward more declarative

programming models, the rising need for rich user experiences, and the

new need for cross-platform compatibility as an ever more

heterogeneous computing landscape emerges. Having a clearer

understanding of what led us to here, we now have the context better

to look at its present capabilities and its role in the wider Java

ecosystem before looking at its feature set, architecture and use in

modern application development.

2.1.2 JavaFX Application Structure

JavaFX application is divided hierarchically into three main

components known as Stage, Scene and nodes. We need to

import javafx.application.Application class in every JavaFX

application. This provides the following life cycle methods for JavaFX

application.

o public void init()

o public abstract void start(Stage primaryStage)

o public void stop()

in order to create a basic JavaFX application, we need to:

1. Import javafx.application.Application into our code.

2. Inherit Application into our class.

3. Override start() method of Application class.

Stage

79
MATS Centre for Distance and Online Education, MATS University

Notes Stage in a JavaFX application is similar to the Frame in a Swing

Application. It acts like a container for all the JavaFX objects. Primary

Stage is created internally by the platform. Other stages can further be

created by the application. The object of primary stage is passed

to start method. We need to call show method on the primary stage

object in order to show our primary stage. Initially, the primary Stage

looks like following.

Figure 2.1.1

However, we can add various objects to this primary stage. The objects

can only be added in a hierarchical way i.e. first, scene graph will be

added to this primaryStage and then that scene graph may contain the

nodes. A node may be any object of the user's interface like text area,

buttons, shapes, media, etc.

Scene

Scene actually holds all the physical contents (nodes) of a JavaFX

application. Javafx.scene.Scene class provides all the methods to deal

with a scene object. Creating scene is necessary in order to visualize

the contents on the stage.

At one instance, the scene object can only be added to one stage. In

order to implement Scene in our JavaFX application, we must

import javafx.scene package in our code. The Scene can be created by

creating the Scene class object and passing the layout object into the

Scene class constructor. We will discuss Scene class and its method

later in detail.

Scene Graph

Scene Graph exists at the lowest level of the hierarchy. It can be seen

as the collection of various nodes. A node is the element which is

visualized on the stage. It can be any button, text box, layout, image,

radio button, check box, etc.

80
MATS Centre for Distance and Online Education, MATS University

Notes The nodes are implemented in a tree kind of structure. There is always

one root in the scene graph. This will act as a parent node for all the

other nodes present in the scene graph. However, this node may be any

of the layouts available in the JavaFX system.

The leaf nodes exist at the lowest level in the tree hierarchy. Each of

the node present in the scene graphs represents classes

of javafx.scene package therefore we need to import the package into

our application in order to create a full featured javafx application.

Figure 2.1.2

Historical Context:

Java's history of developing graphical user interfaces has undergone an

evolution driven by paradigms shifts in technology and development as

well as developer and user expectations. This started with the Abstract

Window Toolkit (AWT), the original GUI toolkit that Java shipped

with the first version of Java in 1995. AWT offered a basic set of UI

components that mapped directly to native platform components, in

what is known as a “heavyweight” approach. Although this method

allowed applications to preserve the appearance and behavior of the

underlying operating system, it limited the level of customization and

appearance consistency across different platforms. Moreover, the

component set of AWT was quite limited with basic components only

buttons, text fields and basic containers etc. These factors led to the

creation of Swing, which was released in 1997 as part of the Java

Foundation Classes (JFC). Previously, Swing was a major

improvement because it adopted a "lightweight" architecture, which

meant that in most cases each of Swing's components were drawn using

Java's own rendering engine instead of native components. That was

81
MATS Centre for Distance and Online Education, MATS University

Notes way more flexible, had much richer component set, and much more

consistent behavior cross platform. From this, Swing adopted the

pluggable look-and-feel system to enable applications to look the same

regardless of the underlying operating system or adopt the native look

and feel when needed. Swing remained the de facto GUI toolkit for over

a decade with commercial and enterprise applications building on

thousands of Swing-based applications and establishing the baseline

for user interface design in the Java ecosystem. But as web and mobile

applications grew and as users experienced more advanced user

interfaces, expectations were updated for desktop applications as well.

For modern users, rich animations, seamless multimedia integration,

hardware-accelerated graphics—and more visually engaging

experiences—were all things that pressed Swing beyond its initial

design parameters. These evolving expectations, together with

improvements in graphics hardware and new rendering technologies,

set the stage for the arrival of JavaFX. JavaFX was first developing as

"Project F3" (Form Follow Function) within Sun Microsystems, were

first announced as a public product in 2007 and first released in 2008.

First iteration (JavaFX 1. x), which had a dedicated scripting language

(JavaFX Script), that allowed you to describe user interfaces in a

declarative manner. It was a radical departure from Swing's imperative

programming model. Another focus was the integration of rich media

and the added support for animation, which positioned JavaFX as

competition for Adobe Flash and Microsoft Silverlight in the arena of

Rich Internet Applications (RIA). Oracle bought Sun Microsystems in

2010, and for a while there it didn't look good for JavaFX. But then

Oracle established its real commitment to the platform when it

announced a massively ambitious roadmap. JavaFX 2.0, introduced in

2011, was a pivotal change, dropped the separate scripting language

and used a standard Java API. This move brought JavaFX into closer

alignment with mainstream Java development practices, but without

sacrificing the advanced graphics and animation features available in

the platform. This evolution continued with JavaFX 8 in 2014, which

aligned versioning with the Java SE platform and provided complete

integration for JavaFX; included as part of the JDK. [More changes that

includes UI controls, 3D, touch] This release added a number of new

UI controls, better 3D graphics support, and improved touch

82
MATS Centre for Distance and Online Education, MATS University

Notes capabilities: an acknowledgment of the rising significance of touch-

enabled devices.

For example, in 2018, the biggest milestone was that JavaFX got

decoupled from the JDK with Java 11 and became an independent

module under the OpenJFX project. Doing so gave JavaFX the

freedom to grow on its own timetable, separate from the release

schedule of the core Java platform. As each GUI framework evolved,

they improved upon their predecessors' limitations and adapted to the

changing technological landscape and user expectations. AWT offered

some primitive platform native components, Swing better flexibility

and more components, and JavaFX hardware acceleration, modern

skinning via CSS, richer animation, and full multimedia support. It also

signals an evolution in mindset, moving from imperative programming

and dense code in AWT and Swing, to the emphasized declarative

design encouraged by JavaFX, especially with FXML for UI

definition.

2.1.3 Positioning in the Modern UI Landscape

JavaFX maintains a unique position in the wealth of user interface

technologies available to developers today; indeed it reflects its

technical prowess with a strategic value proposition. JavaFX and its

place among the alternatives for building GUIs (including web

development, native platform toolkits and the other cross-platform

options) which gives you insight into this position. This is one of the

many strong points of JavaFX, the ability to be able to create true native

applications with the same behaviour across operating systems. While

most web applications rely on a browser runtime, JavaFX applications

can include all the required runtime components and be distributed as

standalone executables. This is still useful in cases where tight

integration with the OS, offline capabilities, or access to local system

resources is needed. JavaFX also boasts a cross-platform architecture

that enables it to run not only on Windows, but also on macOS and

Linux, and even to some extent, mobile platforms, which can be a big

plus when building applications that need to run in heterogeneous

computing environments. For organizations that have a variety of

technology ecosystems, or for those that are creating software for

distribution to people who may be using any number of operating

systems, they can rely on one code base rather than maintain distinct

implementations for each platform. This cross-platform capability puts

83
MATS Centre for Distance and Online Education, MATS University

Notes JavaFX in competition with frameworks such as Qt, Electron, and

Flutter — each of which has its own take on the dilemma of cross-

platform development. JavaFX can be seen as a natural enterprise

extension to companies that have invested heavily in Java technology.

Java is pervasive in the enterprise, with many organizations having

established Java development skills, build pipelines, security practices,

and deployment workflows. JavaFX taps into this already well-

established ecosystem, providing these organizations with the ability

to develop complex, sophisticated desktop applications without a new

programming language, or a completely different programming

approach. This interoperability with the wider Java ecosystem,

including compatibility with tools, frameworks, build tools, and IDEs,

offers a unified programming experience that sets JavaFX apart from

other solutions that may require the adoption of entirely new

technology stacks. Today the User Interface of web applications are

heavily inspired by web technologies and frameworks like React,

Angular, Vue. js includes much of modern user interface development.

JavaFXacknowledges this fact by providing the capability to embed

web content intoapplications with the WebView component, which is

similar to embedding a web browserinside an application. This hybrid

approach allows the developers to leverage the best features of web

technologies for content rendering while merging it with the platform

integration and performance advantages provided by a native

application framework. Additionally, JavaFX adopts concepts from

modern web development, as seen in the use of CSS for styling and

FXML for separating presentation and logic. These features also

make it easier for developers who are familiar with these types of

technologies to work with the stack, and align with the broader industry

trend toward defining UIs in a declarative fashion and separation of

concerns. JavaFX shines above other technologies when it comes to

data-driven enterprise applications. You are still an Editor for

importing concepts, concepts into which the framework can be used to

bind the connection of really, making the interface responsive, in which

case you can update the data when some data is actually changed.

When these two powerful technologies are combined together, it

creates the perfect platform for business applications requiring data

visualization, analysis, and manipulation due to Java's rock-solid data

processing capabilities and a wealth of connectivity options to

84
MATS Centre for Distance and Online Education, MATS University

Notes databases and services. The introduction and success of Electron, which

bundles web applications with a Chromium runtime to create desktop

applications, has reshaped the desktop application landscape. Electron

has revolutionized the world of desktop apps but comes with few

drawbacks such as performance and resource hogging but JavaFX is

one good alternative. JavaFX applications tend to be smaller in terms

of size and resource usage, compared to Electron applications that

require an entire web browser engine to be included. This efficiency is

crucial for applications that run on systems with limited resources or

efficiency-critical applications. JavaFX stands out with its excellent

multimedia and graphics support as well. Positioning it well, for

applications which needs rich visual experiences, is its scene graph

architecture, hardware-accelerated rendering pipeline and built-in

support for animation, 3D graphics, and a variety of media formats.

The rich media support and scene-graph architecture allow JavaFX to

be used for data visualization, demonstrations, educational software as

well as creative software such as keyframing tools where primitives

must render dynamically. As web applications have grown more

complex, the lines between web and desktop applications have become

less distinct. JavaFX recognizes this convergence with CSS styling,

the FXML markup language for UI definition, and WebView for web

content integration. It still has the power of a compiled language and a

native runtime, providing performance and security characteristics that

manage to be hard to come by through an entirely web-based solution.

2.1.4 Core Philosophy and Design Principles

JavaFX was designed based on a set of core philosophy and design

principles which continue to influence its design and usage. These

principles are drawn from the lessons of past Java UI frameworks as

well as future directions in application development in a more

heterogeneous and dynamic computing ecosystem. One of the

principles that the design philosophy around JavaFX is built on is the

need for expressive and declarative user interface construction. In

contrast with the more imperative programming model of AWT and

Swing, where interfaces were created almost exclusively by procedural

code, this is a major advancement. JavaFX In a way, also embraces a

85
MATS Centre for Distance and Online Education, MATS University

Notes more declarative paradigm, especially with FXML for defining user

interfaces in an XML-based markup language.

Figure 2.1.3

While draft.is or TiddlyWiki is structured as an application — an

interface containing all its own logic — React.js separates UI structure

from application logic. As we will touch on the declarative approach

further above the visual and aesthetic, the declaration based approach

even flows over the structuring to the aesthetic, so JavaFX uses CSS to

allow usto visually adjust UI elements. This choice enhances the broad

knowledge base surrounding CSS, both for web developers and web

designers, while simultaneously providing a robust and standard way

to build visually striking apps without needing to change internal code.

The ability to apply multiple stylesheets and to work with dynamic

styles also help towards building interfaces that are visually coherent

and adaptive. Another one of the core concepts is hardware

acceleration out of the box — JavaFX has been designed from the very

beginning to maximize the potential of existing graphics hardware by

way of its Prism rendering pipeline. Using this method, artists can

construct rich animations and render dense scenes, with pixel-perfect

86
MATS Centre for Distance and Online Education, MATS University

Notes accuracy regardless of size (including very large displays). By

providing a graphics pipeline that abstracts the interaction with

hardware, JavaFX enables developers to write visually and functionally

rich applications without the need of detailed knowledge with any

specific graphics system while utilizing the hardware when it is

available. JavaFX is also designed for cross-platform consistency

while still respecting platform conventions. Unlike previous

approaches that tended to leave developers choosing one or the other

between cross-platform visual consistency and native integration,

JavaFX attempts to balance these tradeoffs. The platform differs

between what is showable patterns and functional behaviors when

appropriate, but provides a uniform model and idea of contributions to

underlying systems. This may sound like a no-brainer, but it applies to

accessibility too: JavaFX is built to work with any type of assistive

technology across multiple platforms, so applications can be used by

people of all abilities. JavaFX represents the idea of scale in terms of

the various kinds of application and deployment cases. Its architecture

handles everything from simple forms-based business applications, to

data visualization tools, to complex maps with rich graphics. It can be

used for standalone desktop applications, for web deployment through

Java Web Start (in previous versions), or for embedded systems

applications. This is implemented through modules, meaning that you

can only add the necessary components for the given needs of the

application. Pretty much any Java SE application can contain JavaFX

components, and JavaFX itself is available as an importable Java

library. This allows developers to take advantage of their existing

investment in Java technology as they learn and adopt the modern UI

features of JavaFX. The framework offers initial support to integrate

Swing components when needed, allowing upgrading of older

applications to be done in a gradual fashion. Another major aspect of

Flutter is its WebView component, which allows for integration of

browser content, acknowledging the significance of web technologies

in current applications. Developer productivity has, in fact, hugely

impacted JavaFX's design. Then I also mention properties binding (or

whatever name it's got inside your own UI library, with property IDs

that can be only bound in a declarative way from the data model while

automatically redoing the view upon data changes so that it is not

needed to do the same manually in code), which cut the amount of

87
MATS Centre for Distance and Online Education, MATS University

Notes boilerplate code and up is not prone to consistency errors, as well as

getting rid of a lot of boilerplate code. In the same way, the animation

framework does not expect you to do complex mathematical

calculations, instead, it offers high-level abstractions for creating rich

transitions and effects. The event handling system, which follows

consistent patterns across various component types, also increases

developer efficiency as the learning curve is lowered. In addition,

JavaFX follows the design/developer collaboration approach by

supporting tools like Scene Builder, which is a visual design

environment that produces FXML that can be used directly in

applications. This strategy acknowledges the reality of modern

application development, where implementation and design specialists

increasingly collaborate. This separation of concerns in FXML and

CSS makes it easy for the designer to work on all of the visual aspects

without needing to focus on how this will all fit in the application logic.

The next core design principle is multimedia integration, and this was

a crucial consideration in the development of JavaFX, which offers

first-class support for audio, video, and images without the need for

additional third-party libraries. JavaFX also has built-in support for

images, audio, and video, which reduces the need for external libraries

or plugins for common media operations to develop rich client

applications. It even extends to 3D content, because JavaFX natively

supports 3D objects and scenes as part of its out-of-the-box arsenal.

JavaFX finally reflects the idea of future-readiness with a number

regarding display technologies and help for touch interfaces and new

interaction patterns. The platform was created with an eye towards

trends for high resolution displays, touch capable devices, and animated

user experiences. This future-proofing helps guarantee that JavaFX-

built applications do not go out of date as computing environments

persist in metamorphosing.

2.1.5 Core Features and Capabilities of JavaFX

88
MATS Centre for Distance and Online Education, MATS University

Notes

Figure 2.1.4

These capabilities are just a glimpse into the powerful tools JavaFX

offers for developing high-performance, cross-platform applications

with stunning graphics and UI. The core of it is a scene graph

architecture, where graphical elements are arranged in a hierarchical

way that allows for quick rendering and interaction response. It is the

foundation on which JavaFX builds its approach of arranging UI

components, layouts, and custom visual objects as a hierarchy of nodes

in a scene graph. It includes a comprehensive library of pre-built UI

controls including buttons, text fields, tables, trees, charts, and more.

These controls match modern UI patterns and expectations like

animation, visual effects, and styling (including CSS). The styling

system approach that JavaFX introduced is a huge improvement

compared with other UI frameworks in Java, enabling developers to

decouple the visual aspect from the application logic and to deliver

visually unique applications without touching their internal code. Prism

is the platform's rendering engine that uses hardware acceleration to

maintain graphics performance, especially for animations and effects.

This hardware-accelerated pipeline allows JavaFX apps to provide

visually stunning experiences even for complex scene rendering and

high resolution content. Along with these visual features, JavaFX has

full multimedia support with built-in classes for images, audio, and

video. Such integrated support means no additional libraries and APIs

89
MATS Centre for Distance and Online Education, MATS University

Notes are needed for working with common media formats, enabling the rapid

development of complex content-rich applications. JavaFX, on the

other hand, offers built-in visual support for 3D scenes, enabling

developers to construct and manipulate three-dimensional objects as

needed, as well as leveraging the same APIs for traditional 2D

interfaces. JavaFX’s binding framework, which allows UI elements to

be declaratively bound to underlying data models, is another

differentiator. When data changes, the UI automatically updates and

you get to write a little less boilerplate to synchronize presentation

code with data to avoid inconsistencies between the two. This two-way

binding goes from property to property across the framework and

allows creating more adaptive, data-driven applications. JavaFX also

provides a declarative approach to UI definition via FXML, an XML-

based markup language. The accompanying Scene Builder tool offers

a similar, visual design experience for building out JavaFX interfaces,

outputting FXML declarations that can be used out of the box in

applications. JavaFX also has integrated WebView, which embeds a

web browser engine, into the content. This allows applications to

render HTML, run JavaScript, and communicate with web applications,

essentially merging desktop and web technologies. JavaFX Integration

and PerformanceJavaFX Core FeaturesThe combination of all of these

core features makes JavaFX a powerful tool for building modern

applications that have the performance and integration characteristics

of traditional native applications complemented with the more

advanced visual richness and application interaction models that users

are becoming accustomed to.

Figure 2.1.5: JavaFX Architecture
Source: https://static.packt-cdn.com/

90
MATS Centre for Distance and Online Education, MATS University

Notes 2.1.6 Scene Graph and UI Components

Figure 2.1.6

At the center of JavaFX's rendering architecture is a scene graph, which

is a hierarchical structure that represents all of the visual elements in a

single application. This approach to constructing user interfaces is a

monumental shift from the Java UI frameworks that preceded it and

supports many advanced features of JavaFX. A scene graph is

organized as a tree where each node in the tree is either a visual element,

a group of visual elements, or some operation (a transformation or an

effect) applied to its children. Such a hierarchical organization lends

itself well to the compositional nature of user interface as-built

(composite components are built of more simple components). In

JavaFX, the scene graph starts with a Stage that serves as the top-level

container, usually a window in desktop applications.Scenes graph

structureA Stage has exactly one Scene, which holds the root node of

the scene graph. From this root, you have a tree of nodes extending (or

a graph if you want to be technical) for all visual elements in the

interface. Node classDiagram The Node class is the root of all objects

in the scene graph and contains common properties and behaviours for

positioning, transformation, effects, event handling, and user

interaction. JavaFX divides its nodes into some categories: shapes

(Rectangle, Circle, Path), controls (interactive components like Button,

TextField and TableView), containers (layout components like HBox,

VBox, and BorderPane), media nodes (ImageView, MediaView) and

web content (WebView). Note that Group nodes are also used to

combine multiple nodes into a single node which can be executed as an

91
MATS Centre for Distance and Online Education, MATS University

Notes atomic unit. These various node types act as building blocks for

crafting interfaces that can range from basic forms to elaborate

visualizations. The scene graph architecture provides many strong

benefits to UI development. First, it

Figure 2.1.7

is a natural model for building complex interfaces using simple

components.

Users can compose new types of components from merely existing

nodes, transformations and effects, and custom behaviors. Second, the

hierarchy aids efficient rendering with culling (trees that are far away

from view aren't rendered) and dirty region (only redrawing the

sections that have changed.) The JavaFX runtime will automatically

take care of these optimizations, so developers can focus on writing

their complex interfaces without having to have knowledge of the

rendering optimizations. Third, the scene graph provides a single

model for transformations and transition, which simplifies animation

and visual effects. Any node in the graph can have properties such as

position, rotation, scale, and opacity animated to produce complex

visual behaviors with minimal code. The Scene graph is the core

hierarchical structure upon which JavaFX UI components are built,

providing a rich toolkit for building applications. Components can be

simple elements or complex, data-driven controls. JavaFX provides

primitive shapes (like Rectangle, Circle, Line, Path, etc.) in its most

simple form for building custom graphics. Text nodes can display

formatted text with a variety of fonts, styles, and effects. The

framework offers a wide range of layout components (HBox, VBox,

BorderPane, GridPane, FlowPane, etc.) that position its children based

on different spatial configurations and are responsive to size changes.

92
MATS Centre for Distance and Online Education, MATS University

Notes JavaFX provides a rich set of controls that implement common UI

patterns for user interaction. These include basic controls like Button,

Label, TextField, PasswordField and CheckBox. Selection controls

include ChoiceBox, ComboBox, ListView, TreeView, and

TableView. That said, JavaFX has Slider, ProgressBar and ScrollBar

for numerical input. Date selection is managed by DatePicker and

complex text entry is provided by TextArea and HTMLEditor. Higher-

level components include the list of chart types (PieChart, LineChart,

BarChart, etc.) for data visualization, TreeTableView for hierarchical

data representation, and Pagination to split data into pages. Basic

interaction patterns such as alerts, confirmation requests, and custom

modal interfaces are provided by the dialog components. They follow

common patterns for styling, interaction, and customization. The

component exposes its properties, which can be bound to application

data, configured programmatically, or set with FXML. Components

emit events when users interact with them as part of a unified event

model that greatly simplifies the implementation of interactive

behaviors. JavaFX controls are designed to be functional and leave it

up to the programmer to decide how it should look. Each control

provides a complete implementation of its intended functionality out-

of-the-box, with developers able to extensively customize appearance

and behavior. This customization can take place at several levels: CSS

styling, properties set in code, changing the control's cell factory (for

list-based controls), or by building completely new controls with

subclassing or composition. This versatility enables developers to

design functional yet visually improved interfaces. JavaFX's

implementation of UI components is designed to be accessible,

allowing its applications to be compatible with screen reader software

and other assistive technologies. Find out how JavaFX implements

appropriate roles and provides accessibility information, contributing

to the ability for applications built with JavaFX to be usable by people

of varying abilities. Context: scene graph and component model ⇒

declarative UI construction Unlike earlier frameworks, where

developers imperatively controlled low-level graphics contexts,

JavaFX developers specify the desired contents and structure of the

interface. The framework abstracts away the specifics of rendering,

layout, and event propagation, resulting in cleaner, more maintainable,

and less error-prone code.

93
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2.2: Java 2D Shapes, Colors and Text

2.2.1 Java 2D Shapes, Colors, and Text

Java offers a strong 2D graphics API within the java. awt and javax.

swing packages that help the developer customize/add shapes, colors,

and text in their graphical applications. These and other functionality

to draw basic shapes like lines, rectangles, ovals, polygons can be

achieved using classes called Graphics and Graphics2D. The

Graphics2D class is an extension of Graphics class, which contains

more sophisticated control over geometry, coordinate transformations,

color management, and text layout. For instance, by overriding the

paintComponent method and using Graphics2D on a Swing

component, you can draw a rectangle and an ellipse with varying

colors and stroke widths.

 import javax.swing.*;

import java.awt.*;

public class ShapeDrawing extends JPanel {

 @Override

 protected void paintComponent(Graphics g) {

 super.paintComponent(g);

 Graphics2D g2d = (Graphics2D) g;

 // Set color and draw a rectangle

 g2d.setColor(Color.BLUE);

 g2d.fillRect(50, 50, 100, 70);

 // Set stroke and draw an oval

 g2d.setColor(Color.RED);

 g2d.setStroke(new BasicStroke(3));

 g2d.drawOval(200, 50, 100, 70);

 }

 public static void main(String[] args) {

 JFrame frame = new JFrame("Java 2D Shapes");

 frame.add(new ShapeDrawing());

 frame.setSize(400, 200);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

94
MATS Centre for Distance and Online Education, MATS University

Notes frame.setVisible(true);

 }

}

2.2.2 Customizing Shapes with Colors and Strokes

You can customize the shapes with colours, gradients, and stroke styles

and paint it as per your need. The Color class contains some predefined

colors and it can also create custom colors based on RGB. Additional

styles, such as smooth color transitions and different line weights can

be done with the classes GradientPaint and BasicStroke. In the

following example, we apply a gradient fill to a rectangle, and use a

dashed stroke for a line.

g2d.setPaint(new GradientPaint(50, 50, Color.BLUE, 150, 120,

Color.CYAN, true));

g2d.fillRect(50, 50, 100, 70);

float[] dashPattern = {10, 5, 2, 5};

g2d.setStroke(new BasicStroke(3, BasicStroke.CAP_ROUND,

BasicStroke.JOIN_BEVEL, 1, dashPattern, 0));

g2d.setColor(Color.BLACK);

g2d.drawLine(50, 150, 200, 150);

This snippet demonstrates how Java 2D enables smoother, more

visually appealing drawings beyond basic shapes.

2.2.3 Combining Shapes, Colors, and Text for Interactive

Graphics

This implies that integrating these elements also means that the

developers can reap visual applications of anything from drawing apps

through games and visualizations. As an example, we can dive to a

real-world use case of a dashboard visualization, which has bars inside

bars filled with gradients, custom strokes outline and anti aliased text

labels. It is powered for them to create visually enhanced and

interactive UI components.

2.2.4 JavaFX 2D Shapes

JavaFX provides a rich set of Shape classes in the package

javafx.scene.shape.

These shapes are nodes that can be added directly to a Scene or inside

95
MATS Centre for Distance and Online Education, MATS University

Notes layout containers.

You can style them with properties like fill, stroke, strokeWidth, etc.

Common 2D shapes in JavaFX include:

Shape

Class
Description

Line
A straight line between two points (startX,startY) and

(endX,endY).

Rectangle
A rectangle with specified width, height, and optional arc

for rounded corners.

Circle
A circle defined by center coordinates (centerX,centerY)

and a radius.

Ellipse
An ellipse defined by center coordinates and two radii

(radiusX, radiusY).

Polygon A shape with multiple sides defined by points.

Polyline Similar to Polygon but not closed.

Arc
A section of an oval or circle defined by a start angle and

length.

JavaFX provides the flexibility to create our own 2D shapes on the

screen .There are various classes which can be used to implement 2D

shapes in our application. All these classes resides in

javafx.scene.shape package.

This package contains the classes which represents different types of

2D shapes. There are several methods in the classes which deals with

the coordinates regarding 2D shape creation.

What are 2D shapes?

In general, a two dimensional shape can be defined as the geometrical

figure that can be drawn on the coordinate system consist of X and Y

planes. However, this is different from 3D shapes in the sense that each

point of the 2D shape always consists of two coordinates (X,Y).

Using JavaFX, we can create 2D shapes such as Line, Rectangle,

Circle, Ellipse, Polygon, Cubic Curve, quad curve, Arc, etc. The class

javafx.scene.shape.Shape is the base class for all the shape classes.

96
MATS Centre for Distance and Online Education, MATS University

Notes How to create 2D shapes?

As we have mentioned earlier that every shape is represented by a

specific class of the package javafx.scene.shape. For creating a two

dimensional shape, the following instructions need to be followed.

1. Instantiate the respective class : for example, Rectangle rect = new

Rectangle()

2. Set the required properties for the class using instance setter methods:

for example,

rect.setX(10);

 rect.setY(20);

 rect.setWidth(100);

 rect.setHeight(100);

3. Add class object to the Group layout: for example,

Group root = new Group();

 root.getChildren().add(rect);

The following table consists of the JavaFX shape classes along with

their descriptions.

Shape Summary

Line
Connects two points (X,Y) on a 2D plane. Use

javafx.scene.shape.Line.

Rectangle
Four-sided figure with equal opposite sides and right

angles. Use javafx.scene.shape.Rectangle.

Ellipse
A curve with two focal points; distance sum to focal

points is constant. Use javafx.scene.shape.Ellipse.

Arc
A segment of a circle or ellipse. Use

javafx.scene.shape.Arc.

Circle
A special ellipse with coinciding focal points. Use

javafx.scene.shape.Circle.

Polygon
A closed shape formed by joining multiple line segments.

Use javafx.scene.shape.Polygon.

Cubic

Curve

A 3rd-degree curve in the XY plane. Use

javafx.scene.shape.CubicCurve.

97
MATS Centre for Distance and Online Education, MATS University

Notes Shape Summary

Quad

Curve

A 2nd-degree curve in the XY plane. Use

javafx.scene.shape.QuadCurve.

Note: JavaFX provides dedicated classes in javafx.scene.shape for

creating and displaying a wide range of 2D geometric shapes, each with

properties you can customize and render on a scene.

JavaFX Shape Properties

All the JavaFX 2D shape classes acquires the common properties

defined by JavaFX.scene.shape.Shape class. In the following table,

we have described the common shape properties.

Property What it Does Setter Method

fill

Fills the

interior of the

shape with a

paint or color.

setFill(Paint)

smooth

If true,

smooths the

edges of the

shape.

setSmooth(boolean)

strokeDashOffset

Defines dash

pattern offset

for creating

dashed

outlines.

setStrokeDashOffset(double)

strokeLineCap

Sets the style

of the line’s

end caps (e.g.,

butt, round,

square).

setStrokeLineCap(StrokeLineCap)

strokeLineJoin

Sets the style

of the joint

where two

lines meet.

setStrokeLineJoin(StrokeLineJoin)

98
MATS Centre for Distance and Online Education, MATS University

Notes Property What it Does Setter Method

strokeMiterLimit

Limits the

distance

between inner

and outer

corner points

of a joint.

setStrokeMiterLimit(double)

stroke

Sets the color

or paint used

for the outline

(border) of the

shape.

setStroke(Paint)

strokeType

Determines

where the

stroke is

drawn (inside,

outside, or

centered).

setStrokeType(StrokeType)

strokeWidth

Sets the

thickness of

the outline.

setStrokeWidth(double)

These properties let you style shapes in JavaFX by customizing their

fill color, outline color and width, smoothing, dash patterns, and how

line ends and joins are rendered.

99
MATS Centre for Distance and Online Education, MATS University

Notes Figure 2.6.1

100
MATS Centre for Distance and Online Education, MATS University

Notes

2.6.5 JavaFX Line

In general, Line can be defined as the geometrical structure which joins

two points (X1,Y1) and (X2,Y2) in a X-Y coordinate plane. JavaFX

allows the developers to create the line on the GUI of a JavaFX

application. JavaFX library provides the class Line which is the part

of javafx.scene.shape package.

101
MATS Centre for Distance and Online Education, MATS University

Notes How to create a Line?

Follow the following instructions to create a Line.

o Instantiate the class javafx.scene.shape.Line.

o set the required properties of the class object.

o Add class object to the group

Properties

Line class contains various properties described below.

Property Description Setter Methods

endX The X coordinate of

the end point of the

line

setEndX(Double)

endY The y coordinate of

the end point of the

line

setEndY(Double)

startX The x coordinate of

the starting point of

the line

setStartX(Double)

startY The y coordinate of

the starting point of

the line

setStartY(Double)

Example 1:

package application;

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.Group;

import javafx.scene.shape.Line;

import javafx.stage.Stage;

public class LineDrawingExamples extends Application{

 @Override

 public void start(Stage primaryStage) throws Exception {

102
MATS Centre for Distance and Online Education, MATS University

Notes // TODO Auto-generated method stub

 Line line = new Line(); //instantiating Line class

 line.setStartX(0); //setting starting X point of Line

 line.setStartY(0); //setting starting Y point of Line

 line.setEndX(100); //setting ending X point of Line

 line.setEndY(200); //setting ending Y point of Line

 Group root = new Group(); //Creating a Group

 root.getChildren().add(line); //adding the class object //to the

group

 Scene scene = new Scene(root,300,300);

 primaryStage.setScene(scene);

 primaryStage.setTitle("Line Example");

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

Output:

103
MATS Centre for Distance and Online Education, MATS University

Notes Example 2 : Creating Multiple Lines

package application;

import javafx.application.Application;

import javafx.scene.Group;

import javafx.scene.Scene;

import javafx.scene.paint.Color;

import javafx.scene.shape.Line;

import javafx.stage.Stage;

public class LineDrawingExamples extends Application{

 public static void main(String[] args) {

 launch(args);

 }

 @Override

 public void start(Stage primaryStage) throws Exception {

 // TODO Auto-generated method stub

 primaryStage.setTitle("Line Drawing Examples");

 Line line1 = new Line(10,50,150,50);

//Line(startX,startY,endX,endY)

 Line line2 = new Line(10,100,150,100);

 Line line3 = new Line(10,50,10,100);

 Line line4 = new Line(150,50,150,100);

 Group root = new Group();

 root.getChildren().addAll(line1,line2,line3,line4);

 Scene scene = new Scene (root,300,200,Color.GREEN);

 primaryStage.setScene(scene);

 primaryStage.show();

 }

}

Output:

104
MATS Centre for Distance and Online Education, MATS University

Notes 2.6.6 JavaFX Cirlce

A circle is a special type of ellipse with both of the focal points at the

same position. Its horizontal radius is equal to its vertical radius.

JavaFX allows us to create Circle on the GUI of any application by

just instantiating javafx.scene.shape.Circle class. Just set the class

properties by using the instance setter methods and add the class

object to the Group.

Properties

The class properties along with the setter methods and their

description are given below in the table.

Property Description Setter Methods

centerX X coordinate of

the centre of

circle

setCenterX(Double

value)

centerY Y coordinate of

the centre of

circle

setCenterY(Double

value)

radious Radius of the

circle

setRadius(Double

value)

Example:

package application;

import javafx.application.Application;

import javafx.scene.Group;

import javafx.scene.Scene;

import javafx.scene.paint.Color;

import javafx.scene.shape.Circle;

import javafx.stage.Stage;

public class Shape_Example extends Application{

 @Override

 public void start(Stage primaryStage) throws Exception {

105
MATS Centre for Distance and Online Education, MATS University

Notes // TODO Auto-generated method stub

 primaryStage.setTitle("Circle Example");

 Group group = new Group();

 Circle circle = new Circle();

 circle.setCenterX(200);

 circle.setCenterY(200);

 circle.setRadius(100);

 circle.setFill(Color.RED);

 group.getChildren().addAll(circle);

 Scene scene = new Scene(group,400,500,Color.GRAY);

 primaryStage.setScene(scene);

 primaryStage.show();

}

public static void main(String[] args) {

 launch(args);

}

}

106
MATS Centre for Distance and Online Education, MATS University

Notes

2.6.7 JavaFX Graphical Effects and Transformations

As one of the most powerful GUI toolkits to build the rich client

application, JavaFX gives us a very handy set of graphical effects and

transformations that make it possible to give more visual effects and

interactivity to the user interface. These features are important for the

development of modern and interactive applications that catch the

user's eye. While the graphical effects allow you to apply visual

changes to nodes (like blur, drop shadows, and coloring) the

transformations allow you to modify the geometrical properties of

nodes like scale, rotation and translation. These tools are very

important to understand and need to use thoroughly in order to develop

rich user interface-based applications for JavaFX developer. JavaFX

effects are essentially visual transformations that change how a node

is rendered while keeping the node's underlying geometry and layout

intact. For example, you may use a Gaussian blur to smooth the edges

of an image or add a drop shadow to give some depth. Transformations

edit the position, size, or orientation of the node within the scene graph,

in contrast. You could scale the button to make it grow or shrink, rotate

the label to write it in an angle, or translate the image to drag it across

the screen. These transformations are non-destructive, meaning the

node's original properties remain unchanged. JavaFX comes with many

built-in effects and transformations, all with their own parameters and

options. This capability enables developers to deliver an expansive

range of visual tweaks, from subtle touches to bold transformations. For

instance: A developer could create a night mode effect using a color

adjust effect to invert the color scheme of their interview application,

or add a reflection effect to their app's button to make it shiny. All these

effects and transformations could be animated and give you a very nice

dynamic visual experience. The Hierarchical structure of the elements

that minimal JavaFX Scene Graph reflected onto JavaFX animation

philosophyEffects and Transformations The effects are applied to the

specific nodes, the transformations change the node and all children

elements. Because of this hierarchical nature multiple effects and

transformation could be done to different nodes in the scene graph

resulting in complex visual effects. In addition, JavaFX is hardware

accelerated for effects and transformations, meaning that they will be

107
MATS Centre for Distance and Online Education, MATS University

Notes rendered efficiently and smoothly even for complex scenes. Hardware

acceleration is especially crucial in scenarios involving animations and

interactive applications, where performance takes center stage. For

example, if a developer wants to design an eye-catching button that

increases in size as the user hovers over it. They would use a scale

transform on the button and an animation toward scale factor using a

timeline. In the same vein, a developer may create a drop shadow effect

to highlight a selected item in a list view as visual acknowledgment of

user interaction. Effects and transformations are naturally integrated in

JavaFX, making it easier to produce visually stunning applications with

minimal coding effort.

108
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2.3: Java FX Effects

2.3.1 Java FX Effects

JavaFX supports numerous graphics effects out of the box: notably

blur, drop shadow, color adjustment, and reflection. These effects can

then be triggered on any node in the scene graph to provide an

application increased visual fidelity. Now, let us show some of these

effects with working code in Java. The first mentioned new effect is

the GaussianBlur effect newly add which is blurring the contents of a

node. This is used for illusion of 2D or physical emphasis. Here's a

simple example:

Javaimport javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.layout.StackPane;

import javafx.scene.paint.Color;

import javafx.scene.shape.Rectangle;

import javafx.stage.Stage;

import javafx.scene.effect.GaussianBlur;

public class GaussianBlurExample extends Application {

 @Override

 public void start(Stage primaryStage) {

 Rectangle rect = new Rectangle(200, 100, Color.BLUE);

 GaussianBlur blur = new GaussianBlur();

 blur.setRadius(10); // Adjust the blur radius

 rect.setEffect(blur);

 StackPane root = new StackPane(rect);

 Scene scene = new Scene(root, 400, 200);

 primaryStage.setScene(scene);

 primaryStage.setTitle("Gaussian Blur Example");

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

109
MATS Centre for Distance and Online Education, MATS University

Notes }

}

In the example, we create a Rectangle and then apply a GaussianBlur

effect to it. The setRadius() method defines the amount of blur.

[Next] The DropShadow effect creates a shadow behind a node to

help emulate depth. Here’s an example:

Java

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.layout.StackPane;

import javafx.scene.paint.Color;

import javafx.scene.shape.Circle;

import javafx.stage.Stage;

import javafx.scene.effect.DropShadow;

public class DropShadowExample extends Application {

 @Override

 public void start(Stage primaryStage) {

 Circle circle = new Circle(50, Color.RED);

 DropShadow shadow = new DropShadow();

 shadow.setRadius(20);

 shadow.setColor(Color.BLACK);

 circle.setEffect(shadow);

 StackPane root = new StackPane(circle);

 Scene scene = new Scene(root, 200, 200);

 primaryStage.setScene(scene);

 primaryStage.setTitle("Drop Shadow Example");

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

There, a Circle is defined and the DropShadow effect is used.

Methods setRadius() and setColor() governs the shadow appearance.

Using ColorAdjust effect This allows you to modify node's hue and

110
MATS Centre for Distance and Online Education, MATS University

Notes saturation, brightness and contrast. This allows for potential color

variations or special effects.

Java

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.scene.layout.StackPane;

import javafx.scene.paint.Color;

import javafx.scene.shape.Rectangle;

import javafx.stage.Stage;

import javafx.scene.effect.ColorAdjust;

public class ColorAdjustExample extends Application {

 @Override

 public void start(Stage primaryStage) {

 Rectangle rect = new Rectangle(200, 100, Color.GREEN);

 ColorAdjust adjust = new ColorAdjust();

 adjust.setHue(0.2);

 adjust.setSaturation(0.5);

 rect.setEffect(adjust);

 StackPane root = new StackPane(rect);

 Scene scene = new Scene(root, 400, 200);

 primaryStage.setScene(scene);

 primaryStage.setTitle("Color Adjust Example");

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

In this example, the ColorAdjust effect is used to define a color on a

Rectangle. The color value is controlled through the setHue() and

setSaturation() methods. Next, we have the Reflection effect that

ensures what you see in the node above it, is also seen right below it,

providing it a mirror kind of effect.

import javafx.application.Application;

import javafx.scene.Scene;

111
MATS Centre for Distance and Online Education, MATS University

Notes import javafx.scene.layout.StackPane;

import javafx.scene.control.Label;

import javafx.stage.Stage;

import javafx.scene.effect.Reflection;

public class ReflectionExample extends Application {

 @Override

 public void start(Stage primaryStage) {

 Label label = new Label("Reflection");

 Reflection reflection = new Reflection();

 reflection.setFraction(0.7); // Adjust the reflection fraction

 label.setEffect(reflection);

 StackPane root = new StackPane(label);

 Scene scene = new Scene(root, 200, 100);

 primaryStage.setScene(scene);

 primaryStage.setTitle("Reflection Example");

 primaryStage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

In this example, a Reflection is applied to a Label. The length of the

reflection is controlled with the setFraction() method. All of these

samples show you how to use graphical effects in JavaFX. Developers

can use a combination of these effects by adjusting their properties to

produce a variety of visual enhancements.

112
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2.4: Java FX Transformations

2.4.1 JavaFX Transformations:

This is due to JavaFX transformations, which enables developers to

change the spatial features of the nodes, including scaling, rotation

and translation. This is a crucial process for building interactive and

responsive user interfaces. The Scale transformation is used to resize

a node. Here's an example:

import javafx.application.Application;

import javafx.scene.layout.Pane;

import javafx.scene.paint.Color;

import javafx.scene.shape.Rectangle;

import javafx.scene.transform.Rotate;

import javafx.scene.transform.Scale;

import javafx.scene.transform.Translate;

public class TransformDemo extends Application {

 @Override

 public void start(Stage stage) {

 Rectangle rect = new Rectangle(100, 60,

Color.CORNFLOWERBLUE);

 // Apply transformations

 rect.getTransforms().addAll(

 new Translate(100, 100),

 new Rotate(45, 50, 30),

 new Scale(1.5, 1.5)

);

 Pane root = new Pane(rect);

 Scene scene = new Scene(root, 400, 300);

 stage.setTitle("JavaFX Transformations");

 stage.setScene(scene);

 stage.show();

 }

 public static void main(String[] args) {

 launch(args);

 }

}

113
MATS Centre for Distance and Online Education, MATS University

Notes

2.4.2 JavaFX Rotation

Rotation can be defined as the process of rotating an object by a

certain angle θ (theta). In JavaFX, the

class javafx.scene.transform.Rotate represents the Rotation

transform.

The image illustrates the rotation transform. the rectangle shown in

the image is rotated along the Y-axis by the angle θ. The coordinates

of the rectangle gets changed due to the rotation while the edges

remains of the same length.

Figure 2.8.1

Properties

The properties of the class along with the setter methods are described

in the following table.

Property Description Setter Methods

angle It is a double type

property. It

represents the

angle of rotation

in degrees.

setAngle(double

value)

114
MATS Centre for Distance and Online Education, MATS University

Notes
axis It is a object type

property. It

represents the

axis of rotation.

setAxis(Point3D

value)

pivotX It is a double type

property. It

represents the X

coordinate of

rotation pivot

point.

setPivotX(double

value)

pivotY It is a double type

property. It

represents the Y

coordinate of

rotation pivot

point.

setPivotY(double

value)

pivotZ It is a double type

property. It

represents the Z

coordinate of

rotation pivot

point.

setPivotZ(double

value)

Constructors

The class contains six constructors.

1. public Rotate() : creates the rotate transform with the default

parameters.

2. public Rotate(double angle) : creates the rotate transform

with the specified angle measured in degrees. Pivot points are

set to (0,0).

3. public Rotate(double angle, Point3D axis) : creates the 3D

rotate transform with the specified transform. Pivot points are

set to (0,0,0).

115
MATS Centre for Distance and Online Education, MATS University

Notes 4. public Rotate(double angle, double pivotX, double pivotY)

: creates the Rotate transform with the specified angle and

pivot coordinate (x,y).

5. public Rotate(double angle, double pivotX, double pivotY,

double pivotZ) : creates the Rotate transform with the

specified angle and 3D pivot coordinate (x,y,z).

6. public Rotate(double angle, double pivotX, double pivotY,

double pivotZ,Point3D Axis) : creates a 3D Rotate transform

with the specified angle and pivot coordinate (x,y,z).

Example:

The following example illustrates the implementation of

Rotation transform. Here, we have created two rectangles.

One is filled with the lime-green color while the other is

filled with the dark-grey color. The dark-grey rectangle is

rotated with the angle 30 degree along the pivot point

coordinates (100,300).

Package application;

import javafx.application.Application;

import javafx.scene.Group;

import javafx.scene.Scene;

import javafx.scene.paint.Color;

import javafx.scene.shape.Rectangle;

import javafx.scene.transform.Rotate;

import javafx.stage.Stage;

public class RotateExample extends Application{

@Override

public void start(Stage primaryStage) throws Exception {

 // TODO Auto-generated method stub

 // creating the rectangles

 Rectangle rect1 = new Rectangle(100,100,200,200);

 Rectangle rect2 = new Rectangle(100,100,200,200);

 // setting the color and stroke for the Rectangles

 rect1.setFill(Color.LIMEGREEN);

 rect2.setFill(Color.DARKGREY);

 rect1.setStroke(Color.BLACK);

116
MATS Centre for Distance and Online Education, MATS University

Notes rect2.setStroke(Color.BLACK);

 // instantiating the Rotate class.

 Rotate rotate = new Rotate();

 //setting properties for the rotate object.

 Rotate.setAngle(30);

 rotate.setPivotX(100);

 rotate.setPivotY(300);

 //rotating the 2nd rectangle.

 Rect2.getTransforms().add(rotate);

 Group root = new Group();

 root.getChildren().addAll(rect1,rect2);

 Scene scene = new Scene(root,500,420);

 primaryStage.setScene(scene);

 primaryStage.setTitle(“Rotation Example”);

 primaryStage.show();

}

public static void main(String[] args) {

 launch(args);

}

}

117
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2.5: Java FX Animation

2.5.1 Java FX Animation

JavaFX is a robust and flexible toolkit for creating rich client

applications that go beyond static UIs to include dynamic animations,

immersive 3D graphics, complex layout management, and a full set of

UI controls. JavaFX is highly visual and you can use timelines,

transitions, and keyframes to do animation. A Timeline, the heart of

JavaFX animation, a time-based driver that fires events at specific

periods in time. Transitions, such as FadeTransition,

TranslateTransition, and RotateTransition, offer pre-defined animation

effects that can be applied to nodes to create animations with less

complexity. Keyframes we use instead represent the state of node at a

certain point in time, allowing for complex animations to be created by

interpolating between the two states. UI transition animations are

smaller snippets of animations and can be utilized to indicate when the

user hovers/clicks on UI controls, for example, using a FadeTransition

to gradually change the opacity of a button, reducing its visual presence

as the button is being changed on hover. For instance, a

TranslateTransition can move a shape across the screen, giving it the

illusion of motion, and a RotateTransition can rotate an object,

energizing a UI. Keyframes Demonstration — Bouncing Ball

Animation A composite animation can be created by adding keyframes

that change the ball's position and velocity with time, resulting in a

more realistic bounce. When used well, animation—especially

interactivity—is useful in JavaFX, but it can also help create a good

user experience by giving feedback, highlighting, and improving

interface expressiveness, which makes it more engaging and easy to

use. With these animation techniques, developers can add vitality to

their applications, infuse energy into their static interfaces and engage

their user through dynamic experiences. With the ability to orchestrate

visual components in time, it enables developers to craft rich user

experiences, hence why JavaFX is such a powerful framework for

creating progressive, stunning applications.

2.5.2 Java FX 3D Shapes:

With a solid 3D graphics support, JavaFX is capable of rendering rich

and interactive 3D worlds, beyond just 2D interfaces. To deal with

JavaFX 3D shapes one can use classes such as Box, Sphere, Cylinder,

118
MATS Centre for Distance and Online Education, MATS University

Notes and MeshView which are representing basic 3D primitives. For

example, a Box is used to make a cube or rectangular prism, and a

Sphere is an object shaped like a sphere. A Cylinder — as the name

signifies — is a cylindrical shape. More advanced 3D models can be

made through MeshView, where more advanced details can be created

such as vertices, faces, and texture coordinates can be defined. Through

Translate, Rotate and Scale properties, the primitives are

manipulatable in 3D space, meaning we can position the geometry,

rotate its position and also scale. JavaFX also has lighting and material

properties to make 3D scenes more realistic. As you shine light sources

(PointLight, AmbientLight, …) on a scene, the 3D objects display

shadows and highlights, which gives your objects a sense of depth.

Materials (e.g. PhongMaterial) specify the surface characteristics of the

3D object and govern its color, reflectivity, and texture. These

properties can be used to create 3D scenes that never fail to look great,

now on par with things you would expect to see built with full 3D

graphics libraries. A PhongMaterial, for instance, can be added to a

Sphere to make the shape appear metallic or glossy, or multiple

PointLights can be added to the scene to get realistic-looking lighting

effects. JavaFX also supports accurate 3D models generated in external

modeling programs like Blender or Maya, using the OBJ and FBX file

formats for importing. By supporting these new formats, this allows

developers to use high-fidelity 3D assets in their own applications, and

breaks open new avenues for 3D experiences. This gives developers

complete control to manipulate 3D shapes, lights, and materials to

produce visually appealing applications ranging from interactive 3D

visualizations to rich gaming experiences, showcasing the platform's

versatility and capability to manage advanced graphics.

2.5.3 Java FX Layout:

Having good layout management is an essential part of building

functional and visually appealing user interfaces. The main layout

panes provided by JavaFX are BorderPane, HBox, VBox, GridPane and

StackPane, each intended to layout UI components in a particular

fashion. Another example is BorderPane, which divides the layout into

top, bottom, left, right, and center sections, allowing you to create a

structured layout with different sections. HBox and VBox – Helpful

when needing to arrange components on a single line, horizontally or

vertically GridPane: A componen that arranges UI in a grid, giving

119
MATS Centre for Distance and Online Education, MATS University

Notes accurate control over each UI components position and alignment For

example, StackPane, which stacks Nodes on top of each other. These

layout panes can contain other panes to create intricate and adaptable

layouts. As an example, we can structure the application's overall layout

with a BorderPane, the top region with an HBox for a toolbar, the left

region with a VBox for a navigation menu, and the center region with

a GridPane for a data entry form. VBox, StackPane, etc., depending on

the expected behavior, and they can also use layout properties on their

own (e.g., alignment, padding, and spacing) to adjust the components'

appearance and behavior. The alignment properties determine the

placement of UI components in relation to their parent container, and

padding and spacing properties add visual distance between UI

components and the parent container or between neighboring

elements. What is more, JavaFX support CSS styling which allows

developers to style the layout panes and UI components according to

their own custom style guide, providing better project visual

consistency and aesthetics. Static ImportsIn many cases, including the

libraries you need is sufficient to get you started, but if you want more

control over your final distribution, there are some additional steps you

can take to reduce the amount of unused code from your bundles.

Developers can learn these layout techniques to make a very intuitive,

responsive, and good-looking application to have a good user

experience. JavaFX layout management is flexible and powerful,

treason to build modern several applications.

2.5.4 Java FX UI Controls

JavaFX visuals are a set of controls that includes buttons, text fields,

labels, checkboxes, radiobuttons, and combo boxes. On the other hand,

buttons are intended for actions, for example in submitting a form and

navigating to a new screen. Text fields are used for receiving user inputs

and for displaying text that can be entered and altered by users. Labels

therefore are static text that helps inform the user about what is

required. Checkboxes, radio buttons and combo boxes are used to select

options. New UI control is automatically assigned with set of

properties/methods that could be used to customize its appearance and

behavior. These attributes provide characteristics for certain types of

controls— for instance, a button's text, font, and color can be changed,

and a text field can have its prompt text or input validation configured.

JavaFX is a rich user interface toolkit for Java apps. For example, you

120
MATS Centre for Distance and Online Education, MATS University

Notes can bind an event handler to a button that allows the button to perform

one or more action(s) when it is clicked. Implemented in the form of

UI controls, they can be styled with CSS and designed. Custom styles

enable you to create buttons with a flat or gradient appearance, or adjust

how text fields appear with rounded corners or a custom border. In

addition, JavaFX offers several UI controls tailored for tabular and

hierarchical data, including TableView and TreeView respectively.

TableView display data in a table format, in columns and rows

TreeView display data, in a tree structure, in parent and child nodes The

data consumer application mentioned above needs these specialized UI

controls to render the data places mentioned above and to manipulate

these complex data to accomplish the goal. JavaFX also offers a wide

variety of UI controls that developers can use to create highly

interactive and visually appealing applications. These UI controls and

event handling mechanisms contribute to a rich user experience, the art

of making applications that are functional yet engaging is a domain for

you to discover. This is why JavaFX UI controls will always be a great

toolkit to use for developing modern interactive applications.

2.5.5 JavaFX Images:

JavaFX has various components that can be used in tandem such as

images and event handling which allows us to create dynamic and

interactive UIs. Combining these two flavours of software provides

developers with the power to construct applications that not only

present aesthetically pleasing content, but also respond dynamically

with intelligence in accordance to user input. Let's take an example,

say an application that showcases a gallery of pictures. (Users can

browse the gallery by hitting navigation buttons or swiping on the

screen.) We also define TextView3 and TextView4 objects for our UI;

these will be used to display the information about the image and when

buttons are pressed (Gallery contains images) each image can be

represented by ImageView object, and our Next and Previous buttons

will be represented by Button objects. The navigation buttons and the

ImageView objects can have event handlers that respond to user clicks

and touch gestures. If the user clicks on a navigation button, the event

handler may change the contents of the ImageView to the next or last

picture from the gallery. When the user swipes on the screen, the event

handler can detect the swipe gesture and update the ImageView

accordingly. JavaFX provides drag-and-drop, so users can drag images

121
MATS Centre for Distance and Online Education, MATS University

Notes around the application. You can do this by using the

setOnMousePressed(), setOnMouseDragged(), setOnMouseReleased()

methods of the ImageView class. When the user click the mouse

button on the ImageView, the setOnMousePressed() event handler is

executed and it would be possible to record the initial position of the

mouse pointer. The position of the ImageView (the one to be dragged)

can be updated based on mouse movement in the

setOnMouseDragged() event handler when the user drags the mouse.

The setOnMouseReleased() event handler can be used to finalize the

drag-and-drop operation when the user releases the mouse button.

2.5.6 JavaFX Event Handling:

JavaFX Application Lifecycle and Event Handling JavaFX Application

Lifecycle And Event Handling JavaFX allows developers to develop

interactive In this article above things will be more clear, as JavaFX

provides a mechanism for working with images. Image loading and

manipulation is important for dynamic and interactive applications.

JavaFX offers comprehensive support for managing multiple image

formats such as PNG, JPEG, and GIF, using the javafx. scene. image.

Image class. This container provided by RwImage gives the flexibility

to load images from a multitude of sources, including local files,

URLs, or input streams. The caption for the progress of loading an

image is to create an Image object and point to an image source. For

example, an image can be loaded from a local file by using the image

constructor and passing the file path as an argument. Likewise, for an

image, the URL string is also passed to the constructor for loading an

image from a URL. After the creation of Image object, it can be

rendered inside the JavaFX stage using the javafx. scene. image.

ImageView class. The ImageView serves as a node to draw the image

in the scene graph. Developers can use the setImage() method to assign

the Image object to the ImageView. In addition to just displaying

them, JavaFX provides many ways to deal with images. The

ImageView class has methods like setFitWidth() and setFitHeight() to

scale the image to fit the provided dimensions. By default, images are

scaled proportionally, so setPreserveRatio() can be used to preserve the

aspect ratio of an image to avoid distortion. Using the getTransforms()

method of the ImageView class, developers can also apply in-depth

transformation on image like rotation, translation, scaling, etc. This

will return an observable list of Transform objects which can be

122
MATS Centre for Distance and Online Education, MATS University

Notes modified as necessary to produce the desired visual effects. To rotate

an image, for example, add a Rotate transform to the list, indicating the

rotation angle. For JavaFX you can perform image filtering which

enables a developer to apply an image with different effects like Blur,

color shading, drop shadow, etc. These effects can be applied using the

setEffect() method of the ImageView class. For example, to create a

blur effect, a GaussianBlur effect can be instantiated and assigned to

the ImageView. JavaFX also has low-level image manipulation classes

in its pixelreader and pixelwriter methods.

Summary
This Module introduces JavaFX Technology, a modern framework used

for creating rich graphical user interfaces (GUIs) in Java applications.

The module begins with an overview of JavaFX, highlighting its

features such as ease of integration with Java, support for multimedia,

2D and 3D graphics, FXML for UI design, and CSS for styling. The

JavaFX architecture is based on a scene graph, where elements are

arranged hierarchically. Core components like Stage, Scene, and Node

form the foundation of JavaFX applications, and learners also explore

real-world applications of the framework.

The module continues with JavaFX’s 2D graphics capabilities, focusing

on shapes such as rectangles, circles, lines, and polygons. Students

learn how to fill shapes with colors, apply strokes, and use the Text

class to render styled text on the screen. This unit also covers the role

of color manipulation and the application of gradients and transparency

for better visual appeal.

Next, the module delves into FX Effects, which allow developers to

enhance user experience using visual elements like shadows, glow,

blur, bloom, and reflection. These effects can be dynamically added to

nodes to create more engaging and responsive UIs. In the

transformation unit, learners explore how to apply geometric changes

to UI components. This includes scaling, rotation, translation, and

shearing—enabling dynamic repositioning and resizing of interface

elements. The module concludes with FX Animation, where students

learn to animate UI elements using Timeline, KeyFrame, and transition

classes such as FadeTransition and RotateTransition. This enables the

creation of smooth and interactive user interfaces.

Overall, this module equips learners with practical knowledge of

building, styling, transforming, and animating modern GUI

applications using JavaFX.

Multiple-Choice Questions (MCQs)

1. Which of the following is not a feature of JavaFX?

a) Rich UI Components

123
MATS Centre for Distance and Online Education, MATS University

Notes b) Hardware Acceleration

c) Platform-Dependent Execution

d) CSS Styling

Answer: c) Platform-Dependent Execution

2. In JavaFX, which class is used to represent 2D shapes like

circles and rectangles?

a) javafx.scene.text

b) javafx.scene.shape

c) javafx.scene.control

d) javafx.scene.image

Answer: b) javafx.scene.shape

3. Which JavaFX transformation allows resizing of a graphical

object?

a) Rotation

b) Scaling

c) Translation

d) Reflection

Answer: b) Scaling

4. What is the main purpose of JavaFX Animation?

a) Handling user inputs

b) Managing database connectivity

c) Creating motion effects in UI

d) Writing multithreaded programs

Answer: c) Creating motion effects in UI

5. Which JavaFX class is used to load and display an image?

a) ImageLoader

b) ImageView

c) ImageDisplay

d) ImageHandler

Answer: b) ImageView

Short Answer Questions

a) What are the main features of JavaFX?

b) How can you draw a rectangle with a custom color in JavaFX?

c) Explain the difference between JavaFX rotation and translation

transformations.

d) What are some common JavaFX UI controls?

e) How do you handle mouse events in JavaFX?

Long Answer Questions

124
MATS Centre for Distance and Online Education, MATS University

Notes a) Describe the architecture of JavaFX and its key components.

b) Explain how to create and apply graphical effects in JavaFX

with an example.

c) What are the different transformations available in JavaFX?

Explain each with an example.

d) Discuss JavaFX animation techniques and how they can be used

to enhance a user interface.

e) Explain the process of handling user events in JavaFX and

provide a sample program demonstrating event handling.

125

Module 3

SERVLET TECHNOLOGY

LEARNING OUTCOMES

• To understand the architecture of J2EE and Servlets.

• To explore the servlet structure and its life cycle.

• To study form data handling and request-response

mechanisms.

• To analyze client request handling and server response

generation.

• To understand session tracking and cookie management.

126
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3.1: J2EE Introduction and Architecture

3.1.1 J2EE Introduction and Architecture

You are currently reading about Jakarta EE (Formerly J2EE or Java

EE) Latest Version: Jakarta EE 10, learn how to use as old J2EE Java

Enterprise Edition. In the late 1990s, J2EE was introduced as a

complement to the Java Standard Edition (JSE) to create a

standardized framework for enterprise application development, and it

was a product of Sun Microsystems. We believed so strongly in a

complete integrated development environment that could solve many-

faceted enterprise computing problems without compromising the

primary promise of Java "write once run anywhere", that we offered

tutorial programs, synergies with upstream partners, and pushed

through customer accounts manager having knowledge beyond

database and applications servers products. This architectural shift was

a significant departure from the monolithic application designs that

preceded it in enterprise systems and into a more modular, component-

oriented methodology to meet the needs of an increasingly distributed

and componentized environment of business computing. It was not just

a technical specification—J2EE democratized enterprise development

by providing common patterns, practices and abstractions, helping

folks focus on business logic rather than the underlying infrastructure

concerns. J2EE defined standard APIs to connect to databases,

messaging, transaction management, web services, and more,

establishing a platform upon which third-party vendors, open-source

projects, and enterprise engineers could build to create a shared

community around a common technology stack. Java EE 5, 6, 7, 8, a.k.a

Jakarta EE 9+ (various specifications under the Jakarta EE umbrella

— it brings together many specifications and broken-down

Enterprise/Server components from Java EE). Even with the emergence

of alternative frameworks and architectural approaches, the legacy of

J2EE endures, underpinning countless mission-critical applications

across diverse industries and shaping the principles of modern

enterprise development. In this Unit, we will delve into the architecture,

components, and development methodologies of J2EE, unveiling how

this groundbreaking platform laid the foundation for enterprise

application development practices that still echo in modern software

engineering.

127
MATS Centre for Distance and Online Education, MATS University

Notes

Java Enterprise Edition (J2EE) is a specification that leads enterprise

application development to be done based on a specification that

provides the main interfaces and the behavior upon which the

associations of the applications should be based which multiple vendors

can develop compliant implementations. Standardization has played a

key role in the emergence of a healthy marketplace of application

servers such as IBM WebSphere, Oracle WebLogic, Red Hat JBoss,

Apache TomEE, and GlassFish, giving organizations the flexibility of

making deployment choices while ensuring application portability.

When J2EE was first developed, it was born out of these gaps in the

enterprise development world: how to develop distributed systems,

common concern over distributed transactions, designing scalable

communication protocols and security models. Your fleece-covered

IVR is about more than just reducing clicks; it's about reducing

payments to outside vendors (those handy-teddies!). The adoption path

of J2EE mirrored the classic technology diffusion curve, with the

original adopters being primarily financial services,

telecommunications and large scale e-commerce applications, and

subsequently expanding into healthcare, government, manufacturing,

and essentially any sector with a significant presence of IT

infrastructure. As it has evolved, J2EE has retained fundamental

architectural concepts while responding to new models: component-

based architecture morphed into service-oriented architecture, which

has moved towards microservices; synchronous communication

models were paired with asynchronous; XML-based configuration was

supplanted by configuration by annotation-based methods and

Figure 3.1.1: Servlet Architecture
[Source: https://th.bing.com/]

128
MATS Centre for Distance and Online Education, MATS University

Notes convention over configuration; and monolith deployments have

crumbled into both containerized builds and services. Such flexibility

has kept J2EE firmly in the conversation, despite massive shifts in

development practices. For students as well as practitioners, learning

J2EE gives practical expertise in working on enterprise systems and

also helps understand architectural patterns that are not technology-

bound, which makes the subject an essential cornerstone of any

education in enterprise software engineering.

3.1.2 Fundamental Architecture of J2EE

After reading through Unit 1 of Jeff Lynch's book J2EE made easy, I

was left with the impression that the J2EE architecture is simply a

multi-tiered distributed application architecture that separates concerns

in a way that allows each tier to effectively handle modularity,

scalability, and maintainability issues. J2EE is based on a modified

version of the client-server software architecture and is chiefly

characterized by a four-tier architecture consisting of the client tier,

web tier, business tier and enterprise information system (EIS) tier.

These tiers allow for functional stratification, both logically and

physically, so each tier can evolve independently of the other whilst

retaining contracted interfaces for cross-tier conversations. The client

tier refers to all user interface technologies this is where end-users will

interact with the application from web browsers rendering

HTML/CSS/JavaScript to native mobile apps, desktop apps using Java

Swing or JavaFX, and headless clients like IoT devices or other systems

that consume APIs. The web tier is predominantly designed with

Servlet and JavaServer Pages (JSP) technologies, this tier accepts

HTTP requests, manages user sessions, applies presentation logic, and

passes the required data to the business tier and vice versa. The layer

separates client implementations from business logic (in this case, a

microservice) quite well, which is increasingly common in the

contemporary era, allowing for great freedom with how applications

are accessed and presented to users. As you know, the business tier,

which contains the application's core functionality, business rules, and

workflows, is arguably the heart of the J2EE architecture, with such

functionality typically being implemented using Enterprise JavaBeans

(EJB). The elements of this tier run in a container environment that

manages thing like transaction control, security, concurrency, and

lifecycle, so that developers can just think about business logic, not

129
MATS Centre for Distance and Online Education, MATS University

Notes what is under the infrastructure. The third and final tier, the EIS tier,

includes the data persistence layer and integrations with other systems

(external systems, external databases, legacy applications, enterprise

information systems), and it is accessed through JDBC, JPA, JTA, and

JCA technologies. This architectural separation lies at the heart of

scalability because each tier can be scaled independently according to

the performance needs of that tier and fault tolerance because a

problem in one tier is less likely to cascade throughout the entire

application. Furthermore, this multi-layer design also enables teams to

specialize, making it easier for developers to work on particular

segments of the application based on their strengths, whether it be user

interface, business logic, or data handling.

In particular, the container model was one of the more unique

architecture innovations introduced by J2EE, defining a clear

separation between infrastructure services and application logic that

almost all enterprise development frameworks have followed since. In

this paradigm, application components run within specialized runtime

environments (also known as containers) that offer standardized

services — transaction management, security, resource pooling,

lifecycle management, etc — via well-defined contracts instead of

through explicit coding. This abbeys the inversion of control pattern,

which significantly reduces the amount of boilerplate, adds consistency

across apps and enables developers to concentrate mostly on business-

specific functionality instead of plumbing. J2EE specifies various

container types for particular component models and execution

contexts. It is common for web applications to utilize beans, known as

Enterprise JavaBeans (EJBs), which are instances of components

managed by an EJB container, the runtime environment that manages

the lifecycle of an EJB component and its components and creates for

an EJB a complex service environment in which xact propagation,

instance pooling, and concurrent access to beans x are among the

complex services in its remote method invocation. It (web container, or

servlet container) serves as the execution environment for Servlets, JSP

pages, and other web-tier components, handling request routing,

threading models, session management, and HTTP protocol details.

You are supporting and simplifying access to naming, security and

remote EJB functionality, rather than J2EE managed component

containers, you are offering application client containers against

130
MATS Centre for Distance and Online Education, MATS University

Notes standalone Java-based applications that include J2EE services. Last but

not least, we have the applet container which is no longer popular with

so many J2EE applications but still loads Java Applets that run inside

web browsers. This container-based architecture has the following

advantages: it gives you uniform programming models for different app

types; it allows the declaration of complex services in terms of

deployment descriptors and annotations; it allows components to be

reused via standard interfaces and lifecycles; it allows you to easily

impose security on the edges; it allows pooling of resources and

instance management for optimization; and it allows deployment

flexibility through constant package formats. J2EE framework

emphasizes a model of development around the container where you

encapsulate functionality in granular well defined, loosely coupled

components with well understood responsibilities and interfaces.

Because it steers developers to architectures that are highly cohesive

in components and loosely coupled among components in a natural

way, these principles can be applied to effective enterprise application

design irrespective of technology.

J2EE is itself defined as a building block that comprises other

components, services, and APIs to build the platform. Among the

finest and most versatile component technologies are Servlets, which

extend the functionality of web servers and dynamically builds web

content in response to HTTP requests; JavaServer Pages (JSP), which

is a template-based component technology for generating dynamic web

content, and can separate HTML markup from Java code; Enterprise

JavaBeans (EJB), which implements business logic (three varieties

exist, including session beans designed to orchestrate business

processes, (largely superseded by Java Persistence API) entity beans

that represent your data and Message-Driven Beans that implement

asynchronous processing; and JavaServer Faces (JSF), which

implements a component-based MVC (model-view-controller)

framework for web interfaces. These components are supplemented by

the container services of J2EE, which provide cross-cutting

capabilities to all components running in the application server

environment. They consist of JNDI (Java Naming and Directory

Interface) for finding resources and components, JTA (Java

Transaction API)responsible for transaction management across

multiple resources, JAAS (Java Authentication and Authorization

131
MATS Centre for Distance and Online Education, MATS University

Notes Service) for security, JMS (Java Message Service) for reliable

asynchronous messages, and JCA (Java Connector Architecture) for

interactions with external enterprise information systems. The platform

also includes many specialized APIs that focus on specific enterprise

areas: JDBC (Java Database Connectivity) for interacting with

databases; JPA (Java Persistence API) to perform object-relational

mapping; JAX-WS and JAX-RS for SOAP and RESTful web services;

JavaMail for email; and many other areas that have been added in newer

platform versions. Dependency injection is the mechanism by which

this rich ecosystem converges around common patterns and practices

(starting with JNDI lookup, later formalized around CDI — Contexts

and Dependency Injection), and the proliferation of design patterns

such as MVC (Model-View-Controller), DAO (Data Access Object),

Service Locator, Business Delegate, and Composite Entity. This

ecosystem of technologies, services, and patterns culminated in a

platform that offers to meet the varied needs of enterprise applications

while ensuring uniform maintainable implementation patterns.

3.1.3 Evolution and Deployment of J2EE Applications

The platform has matured over time, with each release building upon

previous functionality to solve for new enterprise obstacles. On

December 12, 1999, the first version of J2EE delivered in the form of

the J2EE 1.2 specification, specifying the architecture: Servlet 2.2, JSP

1.1, EJB 1.1 and JDBC 2.0 technologies for standardized enterprise

development. J2EE 1.3 brought connector architecture, revamped JMS

and EJB 2.0 local interfaces to this foundation (2001). J2EE 1.4 (2003)

brought a crucial direction towards ease of web services integration,

adding JAX-RPC, SOAP with Attachments API for Java (SAAJ), and

Java API for XML Registries (JAXR), aligning with the overall

industry shift towards service-oriented architectures. The rebranding to

Java EE 5, 2006, marked a turning point release in which annotations,

dependency injection, and the Java Persistence API combined to

significantly reduce the complexity of development, overcoming

criticisms of the platform featuring overly verbose frameworks. Java

EE 6 (2009): added web profile for lightweight implementations, a

more powerful Contexts and Dependency Injection (CDI)

implementation, and built-in support JAX-RS 1.1 for improved

RESTful web services. Java EE 7 (2013) added standardized batch

processing and concurrency utilities in partnership with updated web

132
MATS Centre for Distance and Online Education, MATS University

Notes technologies including WebSocket and JSON processing. With the

release of Java EE 8 (2017), the platform became even more modern

— with support for HTTP/2, improved security features, and added

support for JSON binding. The move to the Eclipse Foundation resulted

in Jakarta EE 9 (2020) which was iterations with primarily the javax

namespace adjusted. * to jakarta. *, and Jakarta EE 10 (2022) started

to add significant new capabilities under the new governance model.

Over the course of this evolution, the platform has exhibited incredible

backward compatibility while incrementally moving away from its

originally very XML-centric, container-centric model to an

increasingly lightweight, annotation-based, developer-centric model—

analogous to the broader industry transition from monolithic

applications to microservices and cloud-native architectures. But these

shifts represent J2EE's ability to evolve with changing paradigms in

development while maintaining its core strength: namely,

standardization and portability.

A J2EE application goes through a well defined process from its

designing, implementation, testing, deployment and maintenance.

Architects, for example, break the system requirements down into the

appropriate tiers and components, define boundary interfaces, data

models, and cross-cutting concerns such as security and transaction

management (often using UML diagrams, architectural patterns, and

J2EE environment reference architectures) during the design time

phase. There is also a slice of data focused on the implementation work

that typically involves many specialized teams working at the same

time: user interface developers who are creating the JSP pages,

Servlets, or JSF components; programmers focused on business logic

writing EJBs or CDI beans; data access experts creating JPA entities

and repositories; and integration engineers writing the connectors for

external systems. During development, this parallel effort is made

possible by J2EE's standardized APIs and component models, which

specify clear contracts between different parts of the application.

Packaging Modules The build aggregates these varied artifacts into

deployable units according to J2EE's packaging rules: JAR (Java

Archive) files for utility classes and libraries, WAR (Web Application

Archive) files for web modules with Servlets and related resources,

EJB-JAR files for Enterprise JavaBeans, and EAR (Enterprise Archive)

files that bundle multiple modules into an integrated application.

133
MATS Centre for Distance and Online Education, MATS University

Notes Arising from the building is deployment, which is the act of installing

these packaged artifacts in a J2EE application server that then checks

the configuration, satisfies dependencies, sets the right container

services and makes the application available to the end-user. DevOps

practices are prevalent throughout modern J2EE development,

encompassing CI/CD pipelines for the automated execution of build,

test and deployment phases; containerization technologies such as

Docker, for streamlined environment consistency; orchestration tools

such as Kubernetes, for coordinating and scaling deployments; and

Infrastructure-as-Code approaches that further replicate deploys

through environments. The architecture of J2EE applications is

distributed throughout multiple tiers; as a consequence, testing these

applications results in a unique set of challenges. J2EE provides

significant benefits with this highly standardized approach across its

lifecycle as J2EE components become portable (the same application

can run on various everywhere implementations), a standard

deployment model is applicable across applications regardless of the

implementation of the actual application, and common enterprise

concerns are addressed using well-defined patterns.

3.1.4 Key Technologies and Components in J2EE

Servlet technology is the foundation of J2EE's web tier, serving as a

Java-centric method for processing HTTP requests and creating

dynamic responses in web applications. Servlets are managed in a

container that coordinates their lifecycle through specific methods:

init() for initialization, service() (usually overridden via doGet(),

doPost(), etc.) for request handling, and destroy() for teardown

activities. For example, the container takes care of managing the object

lifecycle, which means developers don't have to worry about low-level

background processing like socket handling, thread management, and

protocol details, etc. — they only have to worry about processing the

request in an application-specific way. Servlets process incoming

requests via HttpServletRequest objects, containing parameters,

headers, session info, and request details, and responses via

HttpServletResponse objects, enabling control over content types,

headers, status codes, and response content. Servlets provide a

performance state—an interface to manage server-side session

maintenance over literate requests through HttpSession interface, one

of the building blocks of web applications. Servlets can be mapped to

134
MATS Centre for Distance and Online Education, MATS University

Notes specific URL patterns by means of deployment descriptors (web. (xml)

or annotations (@WebServlet), allowing for flexible routing

configurations. In addition to basic request handling, the Servlet API

provides features for request dispatching (forwarding or including

content from other resources), filtering (intercepting requests for pre or

post-processing), event listeners (receiving notifications about various

contextual events such as application startup or session creation), and

asynchronous processing (handling long-running operations without

blocking threads in the container). Servlet EvolutionThe Servlet

specification has evolved hand-in-hand with trends in web

development: Servlet 2.5 fitted in annotations to avoid excessive

configuration; Servlet 3.0 brought asynchronous processing and

programmatic registration; Servlet 3.1 strengthened security and

facilitated file uploads; and Servlet 4.0 added HTTP/2 support and

server push. At the same time, Servlets remained the underlying

technology behind almost all the frameworks in the Java space (JSF,

Spring MVC, Struts and other dozens). Servlets serve as reusable

components for constructing Java web apps, and while many

developers now engage primarily with higher-level abstractions of

Servlets, it is critical to understand the underlying fundamentals of

Servlets in order to troubleshoot, optimize performance, and deploy

your own custom components across the J2EE ecosystem.

The JavaServer Pages (JSP) technology takes the web tier features of

J2EE and adds document-centric facilities for generating dynamic

content that work naturally in conjunction with the Servlet model. JSP

pages consist of standard static (usually HTML markup) and some

dynamic tags and embedded Java code, this framework produces a

template-based development environment using separate concerns for

presentation and business logic. When a JSP page is requested for the

first time, the container translates the page into a Servlet class and

compiles that class before executing it, as you would with any Servlet—

which means JSP is a syntactic sugar over the Servlet. This process

translates standard HTML into raw text output, JSP directives () into

package declarations and imports, scriptlets () into method body code,

expressions () into output statements, declarations () to class-level

variables and methods, and different tag types to Java constructs. There

are several approaches JSP uses to create dynamic content: scriptlets

for embedding raw Java code inside a page, expressions for embedding

135
MATS Centre for Distance and Online Education, MATS University

Notes an evaluated value, the Expression Language (EL) for simplified access

to object properties and standard and custom tag libraries for more

complex markup-oriented functionalities. The JSP Standard Tag

Library (JSTL) includes tags for common tasks such as iteration,

condition, XML processing, database access, and i18n, so that

embedded Java code can be used much less. Custom tag libraries take

this concept further by enabling developers to create re-usable,

declarative components that encapsulate domain-specific logic. Over a

period of 15 years, JSP technology evolution has proved to be about

progressive separation of concerns (JSP 2.0 + Expression Language for

easy object access; JSP 2.1 + expression language enhancements with

JSF integration; JSP 2.x line of development to further enhance those

while keeping backward compatibility as its guiding principle). Though

JSP development has largely been replaced with component-based

frameworks such as JavaServer Faces and template engines like

Thymeleaf, JSP features still remain in use amongst enterprise

applications, especially for their view components via MVC

architectures. JSP's sustained relevance can be attributed to its

simplified learning curve, natural fit to HTML design flows, its

efficient execution model, and seamless compatibility with Servlet-

based applications.

EJB technology is the J2EE's main component model for writing

business logic. EJBs run inside specialized containers that provide

infrastructure functionalities such as transaction management,

security, concurrency control, and instance life cycle management,

enabling developers to primarily focus on business functionality

instead of low-level system issues. There have been three distinct bean

types defined by the EJB specification, each serving different use

cases: Session Beans that encapsulate business processes and client-

facing services and are further classified into Stateless Session Beans,

which maintain no client-specific state between method invocations,

Stateful Session Beans which maintain client-specific state for the

duration of a session, and Singleton Session Beans, which maintain a

single instance per application and are useful when a shared state or

coordinated operations are needed; Message-Driven Beans (MDBs),

which offer message-oriented asynchronous processing by consuming

messages from a JMS destination or message provider; and Entity

Beans, which historically helped to provide object-relational mapping

136
MATS Centre for Distance and Online Education, MATS University

Notes for database persistence but are now largely rendered obsolete by the

introduction of the Java Persistence API (JPA) since EJB 3.0. The

development of EJB technology is a microcosm of the overall evolution

of J2EE into more developer-friendly programming models:[2] EJB 1.0

and 2.0 had long interfaces, deployment descriptors, and lots of

boilerplate code and were justly criticized for being complex and

verbose; EJB 3.0 was a radical simplification thanks to annotations,

dependency injection, and the Plain Old Java Object (POJO)

programming model; this option drastically reduced development

effort; newer versions built on that with cleaner approaches and

innovations like asynchronous method invocation, timer services, and

better capability for transactions. EJBs inherently implement many of

the foundational enterprise patterns: Component-Based Development

uses a modular structure, Inversion of Control uses container-managed

services, Dependency Injection uses resource acquisition, Facade

Pattern for simplifying client access to complex subsystems, Business

Delegate abstracts away remote implementation details. Although

alternative frameworks such as Spring have captured much of the

marketshare by providing equivalent functionality with reduced

perceived overhead, EJBs are still a mainstay of many large enterprise

applications, especially in cases where distributed transactions and

complex security policies are involved or when integrating with older

legacy J2EE systems. An insight into the component-based design

concepts that are employed in a specific technology is useful—whether

it be EJB or any future framework.

The Java Persistence API (JPA) is a specification that configures

anObject Relational Mapping in the j2ee platform to provide a unified

and object-oriented interface to the relational data that can be managed

as objects. Java Persistence API (JPA) was introduced in EJB 3.0 to

supersede the previous entity bean paradigm, which was criticized for

its complexity and performance issues, and used a lightweight, Plain

Old Java Object (POJO) setup leveraging proven Object Relational

Mapping (ORM) frameworks like Hibernate. Essentially, JPA

reconciles the object-oriented world and the relational world using

entities—plain old Java classes, annotated with @Entity, that

correspond to persistent data structures. All these features are

complemented with extra annotations to customize their mapping

behavior: @Table for the database table or tables this entity is mapped

137
MATS Centre for Distance and Online Education, MATS University

Notes to, @Id to identify primary key fields, @Column to configure the

mapping of each single field, and relationship annotations

(@OneToOne, @OneToMany, @ManyToOne, @ManyToMany) for

the associations between entities. However, this doesn't cover the entire

lifecycle of persistence. JPA empowers it with a richer set of features

exposed via EntityManager instances that provide methods to persist,

find, merge, and delete entities, while internally, it maintains a

persistence context that can track changes to an entity and propagate

them to the underlying database. The specification defines a strict

entity lifecycle: new/transient, managed, detached, removed – and

transitions between them according to EntityManager operations and

transaction boundaries. To retrieve data, JPA has several query

methods: the Java Persistence Query Language (JPQL), a platform-

independent, object-oriented query language that has the same building

blocks as SQL but operates on entities rather than tables; the Criteria

API, which is a type-safe, programmatic alternative to the string-based

queries; and native SQL queries for accessing features that are only

available in specific databases. It handles more sophisticated

persistence issues such as inheritance mapping (with support for single

table, joined table, and table-per-class strategies), composite keys,

embedded objects, lazy loading of relationships, optimistic locking for

concurrent access, and second-level caching for performance reasons.

There are several JPA implementations available, including but not

limited to Hibernate (the most popular), EclipseLink (JPA reference

implementation), OpenJPA and others; however, they all wrap the

standardized API and usually extend it with additional aspects/features.

The JPA advancements over time and their new capabilities could be

summarized as follows: JPA 2.0 brought the Criteria API, collection

mappings, and validation integrations; JPA 2.1 got stored procedures,

fetching strategies and entity graphs, and attribute converters; JPA 2.2

introduced support for some of the Java 8 features such as Stream API

results, Date/Time types and repeatable annotations. However, since

data persistence requirements are inherently a fundamental part of all

enterprise applications, JPA continues to be a cornerstone technology

in the world of J2EE because it provides a very good blend of

standardization and flexibility of database integration for diverse

scenarios.

138
MATS Centre for Distance and Online Education, MATS University

Notes The Java Message Service (JMS) resource adapter provides J2EE

applications with standardized asynchronous messaging capabilities so

that loosely-coupled communication is possible among distributed

components across application boundaries. These messaging

approaches provide additional benefits compared to synchronous

communication approaches, including: temporal decoupling, where a

sending application does not need to be online at the same time as the

receiving application; load-leveling, where messages can be buffered

for processing during variable workload periods; reliability, where the

delivery of a message can be ensured and scaled across multiple

consumers at ease using message-oriented middleware. JMS defines

two main types of messaging models — and point-to-point (PTP) via

queues where a message is sent to only one consumer instance,

commonly used to perform a load balancing approach, and publish-

subscribe (pub/sub) via topics where a message is sent to all active

subscribers, well suited to event propagation or notifications

distribution scenarios. The JMS API provides a uniform programming

model across these patterns with a few principal interfaces:

ConnectionFactory and Connection for creating communication

channels with the message provider, Session for creating messages and

producers/consumers, MessageProducer for publishing messages to

destinations, MessageConsumer for receiving messages from

destinations, and various Message types (TextMessage, BytesMessage,

MapMessage, StreamMessage, ObjectMessage) representing different

payload formats. Messages are structured as not just payloads, but also

headers (for standard routing and identification metadata) and

properties (for application-specific attributes that aid in filtering and

processing). JMS provides for synchronous consumption (the receiver

instructs the provider to deliver a message), as well as for

asynchronous consumption (messages trigger registered

MessageListener callbacks), giving the application flexibility in what

delivery model it chooses. Thus, J2EE's transaction model integration

allows messages to be part of distributed transactions, assuring that the

messaging operations are consistent with other resources as databases.

Message-Driven Beans (MDBs) are a specific component model

catering to message consumption, enabling developers to define the

information processing without considering concurrency management,

transaction management, and resource pooling, which are handled by

139
MATS Centre for Distance and Online Education, MATS University

Notes the EJB container. Since its inception, JMS has been on an evolution

path of simplification and integration with other J2EE technologies:

JMS 1.1 unified the separate point-to-point and publish-subscribe

APIs; JMS 2.0 added a simplified API, delivery delay capabilities, and

shared subscriptions for pub/sub load balancing across multiple

consumers. While JMS standards have stood the test of time, as with

many other legacy technologies, it is increasingly integrated with (or

replaced by) more modern messaging technologies, particularly in

microservices or event-driven architectures context.

3.1.5 Security, Transactions, and Integration in J2EE

Security is a key cross-cutting concern of the J2EE architecture and is

handled through a broad architecture that cuts across all tiers and

components of enterprise applications. The Model consists of different

layers of security including authentication (verifying the identity of the

user), authorization (access control to the resources), confidentiality

(protection of data against disclosure), integrity (data not altered during

a transmission), and non-repudiation (a party cannot deny the

authenticity of their signature). In bare terms, J2EE security

implementations are normally conceived of as a combination of

declarative where the constraints are delineated via annotations or

deploy descriptors with no touching of app code and programmatic

where the security checks are embedded directly into the business logic

for intricate access control. Authentication involves extracting

credentials (for example through form-based login, HTTP Basic/Digest

authentication, client certificates, single sign-on ticket, or integrations

to external systems such as LDAP, Kerberos, or SAML), validating the

credentials based on user repositories, and issuing a security context to

the authenticated session. User identities are grouped into roles—

logical groupings indicating application-specific functions or

responsibilities—that access controls are defined against at a more role-

based level to encourage maintainability and scalability rather than

granular definitions against individual user identities. Authorization

constraints can be imposed at various levels: web resources, using URL

patterns and HTTP methods; EJB methods based on callers’ roles;

application data that is filtered according to users’ contexts; and even

JMS destinations or web services that are offered only to authorized

consumers. Container-managed services integrate with the J2EE

security model using the Java Authentication and Authorization

140
MATS Centre for Distance and Online Education, MATS University

Notes Service (JAAS) to provide pluggable authentication modules, subject-

based authorization, and delegation capabilities. For securing web

services, specifications such as WS-Security provide the means for

securing message-level protection, while for preventing the abuse of

APIs, standards based on OAuth 2.0 and OpenID Connect are

increasingly used in modern authentication scenarios. Transport-level

security is usually built on TLS/SSL for secure communication, as the

data should be encrypted when sent over the network; protecting data

on the wire between tiers and to/from outside systems. Beyond these

technical controls, robust J2EE security implementations must also

mitigate concerns pertaining to secure configuration (removing default

credentials and unnecessary services), input validation (to prevent

injection attacks and cross-site scripting), session management (to

guard against session fixation and session hijacking), auditing (to

record security-relevant events for monitoring and compliance

purposes), and secure exception handling (to avoid information leaks

in error messages). J2EE security has evolved alongside new threats

and new deployment patterns: Java EE 6 brought programmatic login

and interceptor-based security; Java EE 7 added expression-based

access control support; Java EE 8 introduced a new Security API (JSR

375) that made it easier to configure identity stores and HTTP-

authentication mechanisms; and Jakarta EE has continued to build upon

these abilities to support cloud-native and microservices environments.

Transaction management is one of the several most significant

infrastructural services provided by J2EE that offers the ability to help

ensure data consistency and integrity across many operations and

resources. ACID — Atomicity (all or nothing); Consistency (A

transaction should maintain the data in a valid state before and after the

execution); Isolation (As an impact of the operation will not alter the

rest of the transactions); and Durability (the committed changes persist

during failure cases). J2EE provides two basic transaction management

styles: container-managed transactions (CMT), where the application

server automatically manages transaction demarcation based on

declarative configurations, and bean-managed transactions (BMT),

where application code explicitly controls transaction boundaries. In

the case of container-managed transactions, the developer indicates

transaction attributes that describe how components participate in

transactions: Required creates a new transaction or join an existing

141
MATS Centre for Distance and Online Education, MATS University

Notes transaction if one exists; RequiresNew always creates a new

transaction; Mandatory requires an existing transaction; NotSupported

suspends any current transaction; Supports joins an existing transaction

but does not require one; and Never prohibits being run within a

transaction context. You can set these attributes through annotations

(@TransactionAttribute) or deployment descriptors, giving you fine-

grained control (without peppering your rigid business code with

transaction details). One especially powerful feature of J2EE is its

support for distributed transactions (also known as global or XA

transactions) across multiple heterogeneous resources including

databases, message queues, and legacy systems. As in other

transactional systems, the ability to coordinate commits across

resources is provided by the transaction manager and the two-phase

commit (2PC) protocol, as users join the transaction using the Java

Transaction API (JTA) to ensure atomicity across participating

resources. Resource integration is done using J2EE resource adapters,

which implement the XA interface, providing the ability for

transaction manager to enlist such resources in distributed transactions.

Transaction management generally interacts with other container

services. Although the J2EE transaction model is a great fit for

consistency in traditional applications, it struggles with distributed

cloud architectures where we can see several issues, like the

performance impact due to distributed transactions, and the fact that

ACID guarantees are not useful with long-running workflows. As a

result, modern J2EE applications typically layer optional eventual

consistency patterns, compensating transactions, or saga patterns on

top of ACID transactions for certain distributed cases, even though the

transaction infrastructure platform is very much basic for those core

business operations in which we can't compromise on data integrity.

Tight integrations with Enterprise Information Systems (EIS), such as

ERP systems, mainframe applications, database systems, and other

legacy infrastructure is done through J2EE's standardized approach,

provided here by the Java Connector Architecture (JCA). Before JCA,

the integration did not usually use any standards, and relied heavily on

custom-built, point-to-point connectors that led to maintenance and

duplication nightmares in a multi-project environment. JCA solves

these problems by defining a common architecture of resource

adapters, which are specialized components that serve as a bridge

142
MATS Centre for Distance and Online Education, MATS University

Notes between J2EE applications and resource managers (such as database

connection pools, EISes, or messaging systems); these components

make use of the services provided by the container (transaction

management, security, connection pooling). This architecture consists

of three main contracts: the Connection Management contract, which

defines the central pooling, lifecycle management, and allocation

optimization models when connections to database servers are made;

the Transaction Management contract, which allows resource adapters

to participate in container-managed transactions by coordinating both

local and XA transactions; and the Security contract, which provides

secure access to external systems by mapping credentials, delegating

principal, and propagating the security context. JCA resource adapters

would generally have a standard Common Client Interface (CCI) for

application code want to talk to the EIS, and adapter-specific interfaces

that are specific to the external systems. This enables application

servers to cater to different integration scenarios and ensure similar

management approaches across various types of EIS connections. In

addition to basic connectivity, JCA also supports different patterns of

interaction: synchronous request-reply for operations that require an

immediate response, local transactions for simple consistency

requirements, distributed transactions for operations that span multiple

resources and record-based interfaces for structured data exchange. The

spec has matured to meet the increasing integration challenges: JCA

1.5 had work management for incoming communication, creating

message endpoints that consume events from thirdparty sources; JCA

1.6 included support for annotations, pluggable work contexts, and

better lifecycle management features; and JCA 1.7 enhanced security

and connection validation capabilities. Although JCA is a thorough

integration solution, other paths are open in the J2EE world: Web

Services (JAX-WS, JAX-RS) is a common for service-oriented

integration, JMS is for message-oriented middleware, JDBC is a low-

level access to databases, and Java API for XML Processing (JAXP) is

for XML-oriented data interchanging. With API-based integration,

lightweight REST services, and cloud-native connectivity becoming

the order of the day, JCA is not given the same prominence in new

application development as it might have been in the past.

Nevertheless, JCA is still critical for integration with legacy systems in

enterprises where there are no alternatives available. Learning the

143
MATS Centre for Distance and Online Education, MATS University

Notes concepts behind JCA is needful to know about enterprise integration

patterns and different challenges to address this integration, no matter

what particular technology used to accomplish this goal.

J2EE Web Services technologies allow distributed applications to

communicate over the platform and organizational boundaries in an

interoperable and cross heterogeneous environment. The platform is

based on two styles of web service generation: SOAP with

XSD/WSDL documents and REST with standard HTTP verbs and

semantics. Center of SOAP based development, the Java API for XML

Web Services (JAX-WS) serves a powerful API which uses annotations

and auto-generated artifacts to make service implementation much

easier. It is possible for developers to expose services simply by

annotating a class with @WebService and methods with

@WebMethod; the container will generate the required WSDL, XML

Schema definitions, and marshalling code. JAX-WS also well adapts

to both approaches to handling WSDL files: top-down (starting from

existing WSDL documents) and bottom-up (where WSDL will be

generated from the Java classes). Example 1: Java Architecture for

XML Binding (JAXB) JAXB handles complex data types and maps

them to and from Java classes automatically. JAXB does the

marshalling and unmarshalling of Java object to XML and back to Java

automatically. Widespread in enterprise scenarios, JAX-WS is

extended with WS-Security for message-level security, WS-

ReliableMessaging for guaranteed delivery, WS-Addressing for

asynchronous communication and WS-Policy for declarative

configuration. For REST-based services, there is the Java API for

RESTful Web Services (JAX-RS) which is a lightweight specification

that focuses on dealing with resources and HTTP key concepts in an

annotation-based programming model. Resource classes are annotated

with @Path to specify URI patterns and methods are further annotated

with @GET, @POST, @PUT, or @DELETE to specify which HTTP

operation they143565iws seventeen220 query for. Content negotiation

occurs via the @Produces and @Consumes annotations, where you

indicate the acceptable media types, while parameters get bound as per

annotations such as @PathParam, @QueryParam and @FormParam.

JAX-RS uses serialization and deserialization for Java objects and

many other representations such as JSON, XML, text, and so on based

on content negotiation. In addition to these key specifications, the J2EE

144
MATS Centre for Distance and Online Education, MATS University

Notes web services ecosystem provides supporting technologies such as

JSON Processing (JSON-P) and JSON Binding (JSON-B) for working

with structured data, WebSocket API for bidirectional communication,

and Concurrency Utilities for asynchronous processing. The trajectory

of J2EE web service evolutions mirrors broader industry directions: in

its early days, J2EE support was focused on SOAP and WS-*

specifications for enterprise integration, with Java EE 6 adding robust

RESTful support in JAX-RS 1.1, and Java EE 7 improving both

paradigms with client APIs and more format options, but Java EE 8

and Jakarta EE have increasingly favored lightweight, cloud-friendly

approaches prioritizing REST, JSON and reactive programming

models. And because APIs will become the very

145
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3.2: Java Servlet

3.2.1 Java Servlet: Basic Servlet Structure

Figure 3.2.1: Servlet

Java Servlets are one of the key technologies of Java web development

technology, they are the basis of server-side programming in Java,

which with the emergence of many clients does not lose its popularity.

Servlets are basically Java classes made with the purpose of following

the given specification of Java ServletAPI to handle request and

generate response normally inside a/your web application framework.

Servlet technology dates from the late 1990s as one of Java's first

enterprise offerings, responding to the shortcomings of CGI (Common

Gateway Interface) programming by providing higher performance,

platform independence, and to easily take advantage of the Java

ecosystem. Servlets run inside servlet containers (or web containers)

that provide the runtime environment and lifecycle management. With

the container-based architecture, infrastructure management and

application logic are separated, giving developers the freedom to focus

on business functionality rather than lower-level protocols and

communication mechanisms. Where CGI-based programs create a new

process for each request, servlets run inside the JVM, which provides

sophisticated support for multi-threading. This underlying architectural

difference allows servlets to offer much better performance and

resource usage than older web programming models. Even though

more abstracted frameworks such as JavaServer Pages (JSP),

JavaServer Faces (JSF), and various other MVC implementations

followed in its wake, servlets are the real based technology behind Java

146
MATS Centre for Distance and Online Education, MATS University

Notes web applications. For any Java developer who is working on web

application, understanding servlets is a prerequisite, since all high level

frameworks are finally backed by the servlet technology, behind the

scenes, Servlet technology is the core of all request-response

mechanism. The servlet spec has come a long way since it was

introduced, and in each version, new features have been added but are

still backward compatible. Newer servlet implementations offered

support for annotations, async processing, non-blocking I/O and other

improvements which have helped keep this technology useful in

modern web development contexts.

3.2.2 Basic Structure and Core Components of Java Servlets

A servlet is a simple Java class that has to extend appropriate servlet

class (javax.servlet.Servlet) and then implement specific methods that

handle the request from the client. All servlets must implement the

javax. servlet. Servlet interface - This interface defines all the necessary

methods needed for the servlet lifecycle management and the request

processing. However, rather than implementing the Servlet interface

directly, most developers extend the GenericServlet or HttpServlet

abstract classes, which provide partial implementations of the

interface. In particular, the HttpServlet class is important because it is

used to handle HTTP-specific request-response interactions using

methods like doGet(), doPost(), doPut(), doDelete(), etc.,

corresponding to the HTTP methods. The following steps summarize

the typical structure of a servlet implementation: package declarations,

imports, non-required annotations, class declaration extending

HttpServlet, non-required constructors, must-have lifecycle methods

(init, destroy), and must-have request handler methods. Servlet

structure: A servlet contains a variety of structural components such as

deployment descriptors (specifically specification web. xml (or using

annotations in modern implementations), servlet mappings to associate

URL patterns with servlet instances, initialization parameters that

configure how servlets behave, and context parameters that are

applicable across the entire web application. Request handling

methods are at the heart of servlet functionality and accept

HttpServletRequest and HttpServletResponse objects as their

parameters – these objects are the primary conduits for interaction with

147
MATS Centre for Distance and Online Education, MATS University

Notes clients. The request object contains all the information the client sent to

the server, such as parameters, headers, cookies, and session data, and

the response object has methods to set data to be sent to the client, set

response headers, set cookies, and control the status of the response.

Servlets are inherently multithreaded, meaning that it is important to

consider how to handle multithreading in the design of a servlet; the

servlet container instantiates a single instance of a servlet and then

handles multiple requests to the servlet by invoking them on multiple

threads, which means that thread safety is paramount. Servlet error

handling uses Java's exception mechanism, but it has special rules for

catching and reporting checked and runtime exceptions. The servlet

architecture also includes request filtering capabilities through the

Filter API, allowing pre-processing and post-processing operations to

be applied across servlets, and the use of listeners to handle various

events occurring in the application or user session. Grasping these

structural characteristics establishes the groundwork required for

successful servlet programming, allowing developers to design solid,

maintainable web applications that effectively utilize the features of the

Java Servlet API.

CGI (Common Gateway Interface)

CGI technology enables the web server to call an external program and

pass HTTP request information to the external program to process the

request. For each request, it starts a new process.

Disadvantages of CGI

There are many problems in CGI technology:

1. If the number of clients increases, it takes more time for sending

the response.

148
MATS Centre for Distance and Online Education, MATS University

Notes 2. For each request, it starts a process, and the web server is limited

to start processes.

3. It uses platform dependent language e.g. C, C++, perl.

Advantages of Servlet

There are many advantages of Servlet over CGI. The web container

creates threads for handling the multiple requests to the Servlet.

Threads have many benefits over the Processes such as they share a

common memory area, lightweight, cost of communication between

the threads are low. The advantages of Servlet are as follows:

1. Better performance: because it creates a thread for each

request, not process.

2. Portability: because it uses Java language.

3. Robust: JVM manages Servlets, so we don't need to worry

about the memory leak, garbage collection, etc.

4. Secure: because it uses java language.

Web Terminology

Servlet Terminology Description

Website: static vs dynamic It is a collection of related web

pages that may contain text,

images, audio and video.

HTTP It is the data communication

protocol used to establish

https://www.tpointtech.com/c-programming-language-tutorial
https://www.tpointtech.com/cpp-tutorial
https://www.tpointtech.com/perl-tutorial
https://www.tpointtech.com/jvm-java-virtual-machine
https://www.tpointtech.com/Garbage-Collection
https://www.tpointtech.com/website-static-vs-dynamic
https://www.tpointtech.com/http

149
MATS Centre for Distance and Online Education, MATS University

Notes
communication between client

and server.

HTTP Requests It is the request send by the

computer to a web server that

contains all sorts of potentially

interesting information.

Get vs Post It gives the difference between

GET and POST request.

Container It is used in java for dynamically

generating the web pages on the

server side.

Server: Web vs Application It is used to manage the network

resources and for running the

program or software that

provides services.

Content Type It is HTTP header that provides

the description about what are

you sending to the browser.

Steps to create a servlet example

There are given 6 steps to create a servlet example. These

steps are required for all the servers.

The servlet example can be created by three ways:

1. By implementing Servlet interface,

2. By inheriting GenericServlet class, (or)

3. By inheriting HttpServlet class

The mostly used approach is by extending HttpServlet

because it provides http request specific method such as

doGet(), doPost(), doHead() etc.

Here, we are going to use apache tomcat server in this

example.

https://www.tpointtech.com/http-requests
https://www.tpointtech.com/get-vs-post
https://www.tpointtech.com/container
https://www.tpointtech.com/server-web-vs-application
https://www.tpointtech.com/content-type

150
MATS Centre for Distance and Online Education, MATS University

Notes The steps are as follows:

1. Create a directory structure

2. Create a Servlet

3. Compile the Servlet

4. Create a deployment descriptor

5. Start the server and deploy the project

6. Access the servlet

1)Create a directory structures

The directory structure defines that where to put the different

types of files so that web container may get the information

and respond to the client.

The Sun Microsystem defines a unique standard to be

followed by all the server vendors. Let's see the directory

structure that must be followed to create the servlet.

As you can see that the servlet class file must be in the classes

folder. The web.xml file must be under the WEB-INF folder.

2)Create a Servlet

There are three ways to create the servlet.

1. By implementing the Servlet interface

2. By inheriting the GenericServlet class

3. By inheriting the HttpServlet class

151
MATS Centre for Distance and Online Education, MATS University

Notes The HttpServlet class is widely used to create the servlet

because it provides methods to handle http requests such as

doGet(), doPost, doHead() etc.

In this example we are going to create a servlet that extends

the HttpServlet class. In this example, we are inheriting the

HttpServlet class and providing the implementation of the

doGet() method. Notice that get request is the default request.

DemoServlet.java

1. import javax.servlet.http.*;

2. import javax.servlet.*;

3. import java.io.*;

4. public class DemoServlet extends HttpServlet{

5. public void doGet(HttpServletRequest req,HttpServle

tResponse res)

6. throws ServletException,IOException

7. {

8. res.setContentType("text/html");//setting the content t

ype

9. PrintWriter pw=res.getWriter();//get the stream to wri

te the data

10.

11. //writing html in the stream

12. pw.println("<html><body>");

13. pw.println("Welcome to servlet");

14. pw.println("</body></html>");

15.

16. pw.close();//closing the stream

17. }}

3)Compile the servlet

For compiling the Servlet, jar file is required to be loaded.

Different Servers provide different jar files:

Jar file Server

1) servlet-api.jar Apache Tomcat

2) weblogic.jar Weblogic

152
MATS Centre for Distance and Online Education, MATS University

Notes
3) javaee.jar Glassfish

4) javaee.jar JBoss

Two ways to load the jar file

1. set classpath

2. paste the jar file in JRE/lib/ext folder

Put the java file in any folder. After compiling the java file,

paste the class file of servlet in WEB-INF/classes directory.

4)Create the deployment descriptor (web.xml file)

The deployment descriptor is an xml file, from which Web

Container gets the information about the servet to be invoked.

The web container uses the Parser to get the information from

the web.xml file. There are many xml parsers such as SAX,

DOM and Pull.

There are many elements in the web.xml file. Here is given

some necessary elements to run the simple servlet program.

web.xml file

1. <web-app>

2.

3. <servlet>

4. <servlet-name>sonoojaiswal</servlet-name>

5. <servlet-class>DemoServlet</servlet-class>

6. </servlet>

7.

8. <servlet-mapping>

9. <servlet-name>sonoojaiswal</servlet-name>

10. <url-pattern>/welcome</url-pattern>

11. </servlet-mapping>

12.

13. </web-app>

Description of the elements of web.xml file

There are too many elements in the web.xml file. Here is the

illustration of some elements that is used in the above

web.xml file. The elements are as follows:

153
MATS Centre for Distance and Online Education, MATS University

Notes

<web-app> represents the whole application.

<servlet> is sub element of <web-app> and represents the servlet.

<servlet-name> is sub element of <servlet> represents the name of the

servlet.

<servlet-class> is sub element of <servlet> represents the class of the

servlet.

<servlet-mapping> is sub element of <web-app>. It is used to map the

servlet.

<url-pattern> is sub element of <servlet-mapping>. This pattern is

used at client side to invoke the servlet.

5)Start the Server and deploy the project

To start Apache Tomcat server, double click on the startup.bat file

under apache-tomcat/bin directory.

One Time Configuration for Apache Tomcat Server

You need to perform 2 tasks:

1. set JAVA_HOME or JRE_HOME in environment variable (It

is required to start server).

2. Change the port number of tomcat (optional). It is required if

another server is running on same port (8080).

1) How to set JAVA_HOME in environment variable?

To start Apache Tomcat server JAVA_HOME and JRE_HOME must

be set in Environment variables.

Go to My Computer properties -> Click on advanced tab then

environment variables -> Click on the new tab of user variable -> Write

JAVA_HOME in variable name and paste the path of jdk folder in

variable value -> ok -> ok -> ok.

Go to My Computer properties:

154
MATS Centre for Distance and Online Education, MATS University

Notes

Click on advanced system settings tab then environment variables:

155
MATS Centre for Distance and Online Education, MATS University

Notes

Click on the new tab of user variable or system variable:

Write JAVA_HOME in variable name and paste the path of jdk

folder in variable value:

There must not be semicolon (;) at the end of the path.

After setting the JAVA_HOME double click on the startup.bat file in

apache tomcat/bin.

Note: There are two types of tomcat available:

1. Apache tomcat that needs to extract only (no need to install)

2. Apache tomcat that needs to install

It is the example of apache tomcat that needs to extract only.

156
MATS Centre for Distance and Online Education, MATS University

Notes

Now server is started successfully.

2) How to change port number of apache tomcat

Changing the port number is required if there is another server running

on the same system with same port number.Suppose you have installed

oracle, you need to change the port number of apache tomcat because

both have the default port number 8080.

Open server.xml file in notepad. It is located inside the apache-

tomcat/conf directory . Change the Connector port = 8080 and replace

8080 by any four digit number instead of 8080. Let us replace it by

9999 and save this file.

157
MATS Centre for Distance and Online Education, MATS University

Notes 5) How to deploy the servlet project

Copy the project and paste it in the webapps folder under

apache tomcat.

But there are several ways to deploy the project. They are as follows:

• By copying the context(project) folder into the webapps

directory

• By copying the war folder into the webapps directory

• By selecting the folder path from the server

• By selecting the war file from the server

Here, we are using the first approach.

You can also create war file, and paste it inside the webapps directory.

To do so, you need to use jar tool to create the war file. Go inside the

project directory (before the WEB-INF), then write:

projectfolder> jar cvf myproject.war *

Creating war file has an advantage that moving the project

from one location to another takes less time.

6) How to access the servlet

Open broser and write-

http://hostname:portno/contextroot/urlpatternofservlet.

158
MATS Centre for Distance and Online Education, MATS University

Notes For example:

1. http://localhost:9999/demo/welcome

159
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3.3: Servlet Life Cycle

3.3.1 Servlet Life Cycle

This servlet life cycle governs how servlets are created, initialised,

subserviced request and finally destroyed within the container

environment. Servlet life cycle is a step-by-step process of such states

followed by transitions which is handled by only the servlet container

which calls certain methods at specific time on the servlet. From when

web container either loads the servlet class (when web app starts) or

when first request comes (dependent on load-on-startup). Once your

class has been loaded, a container shall instantiate one and only one

instance of a servlet to your no-argument constructor, making it a

singleton with respect to your application. After that comes the

initialization phase, during which the container calls the servlet's

init(ServletConfig config) method and passes it a ServletConfig object

that allows access to initialization parameters and the ServletContext.

This initialization action is critical for execution of resource expensive

tasks such as examples are database connection establishment,

configuration file reading, or other setup processes. The init() method

completes before the servlet can attempt to handle client requests. After

initialization, the servlet goes into the service phase: it lives on and

responds to client requests until the container removes it. In this state,

each request from a client causes the container to call the servlet's

service() method (or, for HTTP servlets, the appropriate HTTP method

handler such as doGet() or doPost()) on possibly multiple threads.

Since servlets are singletons, instance variables of the servlet might be

Figure 3.3.1: Servlet Life Cycle
[Source: https://th.bing.com/]

160
MATS Centre for Distance and Online Education, MATS University

Notes accessed by multiple request-processing threads concurrently, thus

making thread-safety an important consideration for servlet

implementations. When the Times of retting a servlet out of servile —

when the application shuts down, or redeploys the server — whether

the servlet is a phase of destruction by its destroy() method. This makes

it possible to free resources, close connections, and perform other

cleanup operations. The servlet lifecycle ends after destruction, when

the instance switches to being eligible for garbage collection. This

lifecycle is managed by the servlet container, the part of the web server

that handles the servlet's functionality, which serves the dual role as

manager of the servlet's execution environment by encapsulating

communication protocols, implementing thread management,

enforcing security policies, and providing pooling of servlet resources,

freeing the servlet developers to concentrate on business logic rather

than the intricacies of infrastructure. The container makes sure the

contract defined by the Servlet API is followed by instantiation of

request and response objects, handling session tracking, enforcing

security constraints, and enabling access to shared resources by way of

the ServletContext. This container-servlet synergy illustrates the classic

"inversion of control" paradigm (the container calls servlet methods,

not the other wayaround); which leads to a simplified, generic, and

standardized component model that's perfectly tailored for enterprise-

level applications.

3.3.2 Request Processing and HTTP Handling in Servlets

This is the basic functionality of servlet, taking client requests and

generating response for those requests. A web application reacts to an

HTTP request it receives from a client by dispatching that request to

the servlet container, which then forwards that to the servlet for

processing, determining the proper servlet that can fulfil the request by

using URL mapping configurations defined in a deployment descriptor

or by annotation-based configurations. Once the container has

determined which HttpServlet will service the request, it creates the

HttpServletRequest and HttpServletResponse objects which

encapsulate the data of the client's request and the means to formulate

a response to the request, respectively. The service method of the

servlet is where the request is passed to the appropriate HTTP method

handler (such as GET, POST, PUT, or DELETE) for the HTTP method

161
MATS Centre for Distance and Online Education, MATS University

Notes being made. The HttpServletRequest interface provides you with full

access to all parts of the incoming request

3.3.3 Session Management and State Persistence

(sending cryptographic hashes of credentials) and Client Certificate

Authentication (using X.509 certificates) as well as programmatic

authentication through the HttpServletRequest. Servlet 3.0 The login()

method that we can use. After the user has been authenticated, identity

information is made available to servlets using methods such as

getUserPrincipal(), getRemoteUser(), and isUserInRole(), which can

support fine-grained, role-based access control within application

code. Transport Layer Security (TLS/SSL) can provide confidentiality

and integrity protection for servlet communications; configurability is

done through a element in security constraints. In addition to

declarative security, servlets support programmatic security via the

previous HttpServletRequest methods and the newer SecurityContext

API. For example, cross-site scripting (XSS) protection mechanisms

include output encoding utilities and the HttpOnly and Secure cookie

attributes, while cross-site request forgery (CSRF) defenses may rely

on synchronizer tokens that servlets can generate and validate. Servlet

A servlet is a purely Java class that extends the capabilities of a server,

like a web server. Java servlets solve this problem through a series of

complementary session management and state persistence

mechanisms. The core mechanism for session tracking is the

HttpSession interface, which acts as a server-side container that stores

and allows retrieval of information specific to a user across multiple

requests. The first time that a client accesses the application, the servlet

container sends the client a unique session identifier, using either

cookies or URL rewriting, and binds an HttpSession object (using the

identifier) to the client. On subsequent requests, the container retrieves

the session identifier from the client, finds a corresponding

HttpSession, and makes it accessible to servlets via the getSession()

method of HttpServletRequest. A session object acts as a key-value

store, allowing servlets to insert attribute objects with

setAttribute(String name, Object value) method at the same time

repopulating the requests from the same client using the method

getAttribute(String name), thus preserving state across requests from

the same client. The container automatically manages the session

lifecycle, creating sessions on-demand, maintaining session activity

162
MATS Centre for Distance and Online Education, MATS University

Notes and invalidating them after a specified timeout period or by the

application when the session invalidate() method is called. The servlet

specification describes some session tracking mechanisms, including

(the default and most common way) cookies, URL rewriting (attaching

the session-id at the end of the URL when cookies are disabled), secure

sockets layer (SSL) session information, and (outdated) hidden form

fields. In addition to session management, servlets come with a few

other state management mechanisms: application state can be

maintained within the ServletContext for the entire web application to

use, request-level attributes are useful for sharing information to

components handling the same request, and cookies can be placed on

the client with configurable expiration times for persistence. For more

permanent state storage, servlets usually communicate with databases

via JDBC, JPA, or other persistence technologies. Replication and

across-container session persistence refers to maintaining session data

between container restarts making it an important consideration in

enterprise environments, for which most commercial servlet containers

provide configurable policy for backups and/or session recovery to

ensure high availability. Common security issues in session

management are session fixation attacks (which should be prevented by

always regenerating session IDs after successful authentication),

session hijacking (prevented by setting cookie attributes for same-site,

secure and HTTP only and implementing secure HTTPS

communications), cross-site request forgery (CSRF) (solved with

synchronizer tokens). Session management strategies are also

influenced by performance considerations, where too much session

data can lead to bloated memory and eventually impact garbage

collection, and session replication in clustered environments can lead

to added network overhead. Prevaring on these different state

persistence strategies help servlet programmer use best suited options

according to specific applicaiton scenario criction optimal usage state

action, proformance, Scalability and securtiy.

3.3.4 Servlet Security and Authentication Mechanisms

The knowledge is based on.java servlet SecurityServlet Security is an

important concern for application in servlet such as the security is the

general mechanism for securing web resources as well as

authentication, authorization and confidentiality of application data. As

the servlet container, this is the main enforcement point of those

163
MATS Centre for Distance and Online Education, MATS University

Notes security controls that, together with application defined constraints,

build a strong security architecture. The basic security model in servlet

applications is based on the concepts of realms, users, roles, and

constraints. Authentication (authentication mechanisms) defines who

you are, while authorization (authorization mechanisms) defines what

you can access and action and is based on the given roles of the

authenticated user. The deployment descriptor (web. xml), security

constraints are defined using the element , which binds collections of

web resources (represented in identified URL patterns) with two

constraints: those of authorization (user roles), and those of transport

guarantee (HTTP or HTTPS). NASDAQ: SQ, which provides

payments, post-trade risk management, and compliance solutions as

well as rich-data research. Modern servlet containers also include

additional security features such as HTTP Strict transport security

(HSTS), Content security policy (CSP), and an access via OAuth and

OpenID Connect for federated authentication scenarios. Security filters

are yet another very powerful means to define cross-cutting security

concerns (such as input validation, output sanitization and access

logging) in one location and have them invoked during the lifecycle of

each of your servlets. Aware of these various security measures,

developers are empowered with the knowledge necessary to execute

defense-in-depth concepts tailored to their application's threat profile

but at the same time protecting servlets applications so sensitive

resources and information are never exploited by attackers, while still

giving access to the legitimate user. Since security threats on the web

keep changing, it is very important to update the web security best

practices and use the servlet specification's security features and other

protections as per the need to develop and maintain secure web

applications.

3.3.5 Advanced Features and Modern Servlet Capabilities

Since then, the Java Servlet specification has undergone many

generations of enhancement and refinement, delivering features that

significantly boost developer productivity, achieve better application

performance, and provide for more flexible architectures throughout.

Servlets have come a long way since their early design, and current

implementations are significantly more advanced than just the simple

request-response model that served as the backbone of the early web

applications. The new annotation-based configuration that comes with

164
MATS Centre for Distance and Online Education, MATS University

Notes Servlet 3.0 radically changes servlet development, eliminating much or

all of the necessary XML deployment descriptor dependency. Instead

of the traditional xml-based configuration, APIs like @WebServlet,

@WebFilter and @WebListener allow for declarative configuration,

directly in Java code, which enables simple deployment and better

code readability. This approach enables you to configure for URL

mapping, initialization parameters, description metadata and other

configuration features that were limited to web related. xml. Servlet 3.0

introduced asynchronous request processing capabilities; these

additional capabilities were subsequently enhanced in the next versions

to help tackle scalability issues from long-running operations by

releasing a thread during processing. This allows servlets to start async

operations that could take a long time to complete without holding up

container threads, and can help applications become more responsive

to incoming requests and use system resources more efficiently under

load. The API supports container-managed asynchronous processing

and application-managed threading, with mechanisms for timeout

handling and completion notification. Servlet 3.1: As the first major

specification after Servlet 3.0, Servlet 3.1 introduced Non-blocking I/O

support, which allowing Servlet vendors to implement a scale-out

model for improved scalability by allowing asynchronous reading and

writing of request and response data. This ability to react to events as

they occur, rather than waiting for all the elements to be present at once

can be important when uploading or downloading files over the wire,

as well as processing streamed data or integrating with reactive

programming models. To support such db functions, both the

ReadListener and WriteListener interfaces enable it to send

notifications to its applications where data can be read, or it can write

the output buffer which is empty and its post data isn't blocked. Servlet

40 enables HTTP/2 supported servlets through which servlets can take

advantage of performance characteristics offered by the new protocol

version, such as multiplexing, header compression and server push

features. PushBuilder provides an API that allows for server push,

where the Servlet can send resources to the client out of band, before

the client has even requested them. This includes stochastic servlets,

filters, and listeners for web applications, enabling application

initialization code to programmatically attach them instead of a static

declaration in the web.xml file. This breaks apart a glass wall and builds

165
MATS Centre for Distance and Online Education, MATS University

Notes flexible structures between web applications and frameworks.

Subsequent servlet versions introduced embedded container

capabilities, allowing applications to programmatically configure and

launch servlet containers themselves, supporting microservice

architectures and simpler deployment models. Fragment web. This is

similar to the built-in ability of Spring to provide extension points that

the libraries can also contribute to when configuring the web

applications, and the web.xml support allows libraries to contribute as

well. The other important concept is the ServletContainerInitializer

mechanism through which library authors can add hooks to the

framework initialization by configuring information on integration

points in their last descriptor. Security lattice across versions is having

great features like, programmatic authentication, role mapping, and

integration with Java EE/Jakarta EE security frameworks. Same with

multipart request handler allows you to process file uploads, if API is

common then all multipart requests will be parsed in the same way and

protocol upgrade support allows you transition from HTTP to

WebSocket or similar protocols. As for security, we use JSR-375 (Java

EE Security API) integration, which gives us the latest security

practices from identity stores to authentication mechanims to security

context concerns. Together, they facilitate modern web development

yet retain compatibility with existing code bases. By recognizing and

harnessing these capabilities, developers can create advanced, high-

performing web applications that align with contemporary demands for

responsiveness, scalability, and developer productivity, thereby

ensuring that servlet technology retains its relevance in the modern

software development landscape, despite the rise of alternative

frameworks and architectural approaches.

3.3.6 Integration with Java EE/Jakarta EE and Ecosystem

Considerations

Java Servlets are a part of the larger Java EE (now Jakarta EE)

ecosystem, providing a building block technology that interacts with

many other specifications and frameworks to build complete enterprise

applications. So, in-development systems, where servlets work, quite

integrates well into those convolution landscapes. At the specification

level, servlets work closely with many Java EE technologies, including

JavaServer Pages (JSP), which is a view technology that compiles into

servlets behind the curtains; Expression Language (EL), which

166
MATS Centre for Distance and Online Education, MATS University

Notes provides a clean syntax for accessing data within JSP pages and other

templating technologies; the JSP Standard Tag Library (JSTL) to

extend JSP functionality with reusable tag components; and lastly,

JavaServer Faces (JSF), which builds a component-based UI

framework on top of the servlet foundation. The servlet container also

implements a number of Java EE specifications other than servlets such

as JNDI (Java Naming and Directory Interface) for resource lookups,

JDBC (Java Database Connectivity) for database access, JTA (Java

Transaction API) for transaction management, JMS (Java Message

Service) for messaging, and various security technologies like JAAS

(Java Authentication and Authorization Service). Such a container

environment helps servlets access them through standard APIs, readily

available data sources include DataSources, JMS destinations, and

EJBs (Enterprise JavaBeans) via JNDI lookups or injection

mechanisms. In modern servlet environments (Java Servlets, Java EE,

Jakarta EE, etc.), dependency injection happens with CDI (Contexts

and Dependency Injection), which is the type-safe, extensible way to

access a resource/component. Then, through annotations like @Inject

(along with producer methods and qualifiers), servlets can get their

dependencies as injected without any code to look them up manually.

Bean Validation with Servlets Bean Validation enables declarative

validation of request parameters and form submissions. Servlets can

leverage a number of frameworks and libraries beyond servlet

technology itself: persistence technologies such as JPA (Java

Persistence API), Hibernate, or MyBatis; web frameworks such as

Spring MVC, Struts or Play Framework (most are designed on top of

servlet technology); template engines such as Thymeleaf, FreeMarker,

or Velocity; and utility libraries for JSON processing, XML, logging,

and other cross-cutting concerns. The microservices architectural trend

impacted how servlets are deployed, as frameworks such as Spring

Boot, WildFly Swarm/Thorntail, and Payara Micro allow for the

serving of self-contained applications with embedded servlet

containers. These cloud deployment factors influence servlet

applications via Docker containerization, Kubernetes orchestration

and integration of cloud services. In servlet-based environments,

performance-enhancing techniques include connection pooling, in-

memory and distributed caching strategies, distributing loads among

several containers and resource management. To test servlet

167
MATS Centre for Distance and Online Education, MATS University

Notes applications, you have specialized frameworks like JUnit, Mockito,

Spring Test, Arquillian, and tools that simulate HTTP requests. There

are also namespace changes because of the transition from Java EE to

Jakarta EE (from javax. * to jakarta. *) and governance changes but

the core integration archetypes remain unchanged. Technologies such

as Jakarta EE Faces Flow and Security, MicroProfile for microservices

development and GraalVM native image compilation will continue to

evolve the ecosystem around reactive programming models, better

application microservice development and consumption in startup

time and resources. By being aware of these integration points and

ecosystem considerations, developers can make informed architectural

decisions, choose the right technologies for the different needs of their

application, and build servlet-based applications that take full

advantage of the rich features and services offered by the Java

enterprise platform as a whole.

3.3.7 Servlet Life Cycle: Stages in Servlet Execution

The servlet life cycle is one of the basic concepts of Java web

development, indicating the specific order of actions that take place

between the instantiation and finalization of the servlet. Servlets differ

from regular Java applications in that there is no well-defined main

method that serves as their entry point; they run inside the managed

environment of a servlet container (for example, Apache Tomcat, Jetty

or JBoss) which takes responsibility for handling the lifecycle of servlet

instances by instantiating, initializing, invoking, and finally destroying

servlet instances according to a specified protocol. This lifecycle is

vitally important for Java developers who are creating enterprise web

applications, as it gives a roadmap of how to manage HTTP requests

properly while allowing for appropriate resource management,

resulting in the application working smoothly during its time running.

Now, servlets go through the following phases: loading and

instantiation, initialization, service processing (request handling,

response generation), and destruction. So, these stages serves for a

specific purpose and they provides developers with hooks to implement

specific behavior through methods that are defined in the javax.

servlet. Servlet interface. In this Unit, we will take a closer look at these

stages and the evolution of servlets in terms of their purpose, details

on how they work and the proper techniques to handling the execution

process in enjoyable Java Web applications. Understanding servlet life

168
MATS Centre for Distance and Online Education, MATS University

Notes cycle empowers developers to build not only powerful but highly

efficient and scalable web applications that manage resources

effectively, handle concurrent requests, and implement complex

business logic while adhering to the separation of concerns principle

that is a cornerstone of modern software architecture.

I. Loading and Instantiation Phase

The loading and instantiation phase is the first phase in the servlet life

cycle, during which the servlet container is first notified of a servlet and

loads the servlet into an execution environment. A servlet class is

loaded usually at one of the 3 moments in time: at container startup,

during first request of the servlet, or at an explicit time, defined in the

deployment descriptor (web. xml) or through annotations. When the

servlet container is initialized, it looks at the web application's

configuration files, most notably the deployment descriptor (web. xml)

or servlet annotations in the case of modern applications—would

indicate servlets to be loaded on startup, by marking these servlets with

a element in web. xml or by using the loadOnStartup attribute of the

@WebServlet annotation in code. These elements take integers

representing the relative order in which servlets are to be initialized,

with smaller numbers receiving higher priority; negative values (or the

absence of the element) signify that the servlet is to be loaded only on

its first request. Now when the container finds the servlet class, it loads

the servlet class into memory using the Java ClassLoader also making

sure that the classes and the libraries required by the class are available

in the classpath. And only after loading successfully this container calls

its no-argument constructor of the servlet, which is an instance we will

use for dealing with all the requests for the application, keeping in mind

that is actually a singleton in relation to the servlet context.

Understanding this instantiation mechanism is crucial for developers

to implement servlets correctly according to certain rules. First, servlet

classes must implement a public no-argument constructor, since the

container uses reflection to create instances without passing

parameters. This constructor should remain lightweight and should not

contain complex initialization logic: proper initialization will need to

be deferred until the initialization phase discussed in the upcoming

section. Second, a single servlet instance is used to process multiple

requests, and they might come at the same time, so instance variables

should be used with caution because this can be a thread safety issue

169
MATS Centre for Distance and Online Education, MATS University

Notes — otherwise it is better to use immutable objects or thread-local storage

to maintain state between method invocations. It must implement the

javax. servlet. Servlet interface, usually by sub-classing the javax.

servlet. GenericServlet class for protocol-independent servlets or the

javax. servlet. http. HttpServlet A class for HTTP-specific servlets,

which is a base class that provides default implementations of the

interface methods. The servlet context is selected too at the time of

instantiation, allowing the servlet to be served with access to the

application-wide ServletContext that gives it access to key elements of

configuration, keys for parameters, and connectors for applications that

allow for inter-app communication across the application. This context

allows servlets to share information among themselves, read

configuration parameters, and interact with other components of the

web application. This loading and instantiation step culminates in the

servlet instance being created (but not yet ready to be called), ready for

an initialization step. This phase is mainly based on activities managed

by the container, with little developer intervention, but knowing how it

works under the hood is important so that you can implement the design

of your servlets in such a way that they work well in the container

environment, especially when you implement custom classloading or

need to work with complex dependency scenarios.

II. Initialization Phase

The Initialization Phase signifies the servlet moves away from just

being an instance of a class to an entity that can actually serve requests.

So you know this important moment occurs right after instantiation,

when the servlet container invokes the servlet's init(ServletConfig

config) method, a contract method defined in the javax. servlet. All

servlets must implement this interface, which is a Servlet interface.

The key objective of this step is to provide an opportunity for the

servlet to initialize one-time setup stuff (like loading configuration

values, getting database connections, creating resource pools, etc.) that

will be used during the full lifecycle of the servlet. A ServletConfig

object is passed to the init() method by the container — this object

allows the servlet to access configuration parameters specified in the

deployment descriptor(web. xml) or through annotations. This object

acts as a middle ground between the deployment configuration and the

servlet code itself enabling the developer to extract configuration

details away from the code, thus changing behavior without changing

170
MATS Centre for Distance and Online Education, MATS University

Notes code. In addition, the servlet can get a reference to the ServletContext

object that represents the web application and can be used to get access

to application-wide resources and functionality via the ServletConfig.

It is contra the event if the init() method is invoked at least once in the

life cycle of a servlet, so controlling the initialization that never repeats

if once the servlet instance will initialize. Because the initialization

phase offers a precious opportunity to create resource-intensive setup

tasks that can be then amortized to all the following request processing,

since many requests may be ultimately processed by this one servlet

instance.

If initialization fails the init() method throws a ServletException,

allowing servlets to signal serious errors that preclude their

functioning. By doing so, it ensures that the servlet doesn't get into

action in a half-baked or bad state, which can lead to erratic application

behavior or even expose a servlet to security threats. Initialization tasks

can include opening database connections, creating connection pools,

initializing caching mechanisms, loading configuration files,

establishing a network connection to a remote service, precomputing

results, and constructing data structures that are used to support the

servlet's primary function. Because the init() method is only called

once, developers need to make sure that all necessary resources are

acquired and configured correctly at this stage, with suitable error

handling in place so that initialization errors can be handled gracefully.

The GenericServlet abstract class implements a default version of the

init(ServletConfig) method, which stores the config object and then

calls a no-argument init() method that subclasses can override to

implement their initialization logic without needing to manage the

ServletConfig reference that will be stored for them. The configuration

management separation pattern helps in the development of servlets by

allowing the configuration management logic to be separate from the

specific business logic implementation. Different approaches can be

taken in the initialization phase to gear up for an application, e.g., lazy

initialization of expensive resources or eager initialization of critical

components, based on the performance needs and resource limits of the

application. The initialization phase ends when the servlet goes into

the service phase awaiting requests from the client.

III. Service Phase - Request Processing

171
MATS Centre for Distance and Online Education, MATS University

Notes Servlet Life Cycle The service methodServlet Life Cycle--The Service

Phase. This step starts when the servlet container receives an

appropriate HTTP request and invokes the servlet's

service(ServletRequest req, ServletResponse res) method, which

details the request and a channel to build the response. For HTTP

servlets (the most usual species in modern web applications), the

container actually invokes the service(HttpServletRequest req,

HttpServletResponse res) method of the HttpServlet class, which

receives HTTP-specific request and response objects populated with

protocol-relevant information. The default implementation of this

method given by HttpServlet checks the HTTP method (GET, POST,

PUT, DELETE… etc.) and calls the relevant method of the servlet:

doGet(), doPost(), doPut(), doDelete()… etc. The pattern of delegation

simplifies the servlet development because developers only need to

implement the methods representing the HTTP methods the application

supports and not handle the dispatching themselves. All of those

method specific handlers receive identical request and response objects

that allows them to inspect any request params, any request headers,

and request content and to produce appropriate responses, including

status codes, response headers, and response body content. The service

phase, unlike initialization and destruction, occurs during the lifetime

of the servlet and will be executed whenever a request is made to the

servlet, either once or multiple times, on different threads, to handle

multiple requests.

Handling requests in a multi-threaded manner is both a performance

gain and a huge development hurdle. Handling concurrent requests

efficiently without creating a new request thread per client per request

is typically accomplished by the servlet container (e.g., Tomcat) by

means of a request context (thread pool) that it manages under the

covers. This model enables a single instance of a servlet to handle

multiple clients simultaneously, thereby significantly improving

scalability compared to creating a separate instance per client. But this

shared-instance model makes it important to focus on thread safety,

because instance variable is shared across all service method

invocations. To avoid the inevitable pitfalls of managing state in this

environment, there are a few strategies: we can use synchronization to

guard shared resources, we can use thread-local storage to store request

specific data, the local variables that are scoped to the thread's stack,

172
MATS Centre for Distance and Online Education, MATS University

Notes we can use immutable objects that we can pass around safely, or we can

use session mechanisms to hold client specific state. It also includes

important processing steps that developers have to implement, e.g.

parsing request parameters and headers, mariage or authenticate the

user if applicable, apply the application-specific business logic and

formulate a fitting response, which covers the status code as well as

headers and content. Service phase: Handling errors is pivotal,

exceptions should be caught and converted into HTTP compatible

error representations. Also, the servlet API allows request dispatching

between servlets, which is useful for maintainability, permission

checking, and modularity. During the service phase, performance

considerations of minimizing processing time, good memory usage,

resource management and caching of frequently used data or

computations to decrease response time come into account. We can say

that the service phase exists for as long as the servlet is running,

handling requests until the servlet container calls the destroy phase.

IV. Service Phase - Response Generation

After processing the request during the service phase, servlets need to

create and send appropriate responses back to clients, thus completing

the request-response loop at the core of HTTP interaction. For the

response generation, we use (and are given) the HttpServletResponse

object provided by the container, which includes methods to set status

codes, headers, content type, get output streams or writers to send the

response body, etc. Status codes convey the result of processing

requests—for example, 200 (OK) if a request was processed

successfully, 404 (Not Found) if it tried to access resources that don’t

exist, or 500 (Internal Server Error) if the server failed to handle the

request—and should always be configured before writing any response

content. HTTP headers are used to send additional information about

the data being transmitted along with the response, and they control

how caching should work, attributes of the transport layer, security

rules, and many other things between the client and server; for example,

common headers include Content-Type, Content-Length, Cache-

Control, and Set-Cookie. Using the setContentType() method, the

response content type, or the format of the data (text/html,

application/json, image/jpeg, etc), and the character encoding for

textual content is included on the response to help the client correctly

parse and render the response data. Servlets can generate the response

173
MATS Centre for Distance and Online Education, MATS University

Notes body with either a PrintWriter (obtained by calling getWriter()) (for

character data), or another type of output stream (obtained by calling

getOutputStream()) (for binary data), but not both within the same

response (as this constitutes a violation of the servlet specification and

results in an IllegalStateException being thrown).

The response generation technique largely depends on type and nature

of the application. Servlets directly create markup using print

statements or use template engines like Thymeleaf or FreeMarker to

separate presentation logic from business logic for HTML based

applications, which will delegate rendering JSP (JavaServer Pages)

using request dispatch. In data-centric applications, servlets typically

return JSON or XML payloads, leveraging libraries such as Jackson,

Gson or JAXB to marshal/unmarshal Java beans to/from these

serialized representations. Binary data lowers content—like PDF,

images, or downloadable files—requires some business and particular

consideration, including content kind, content disposition headers, and

safe streaming strategies to handle massive files effectively. Complex

response patterns are now common in web applications, such as partial

updates for AJAX-based interfaces, streaming for large data sets or

real-time updates, compression to reduce the bandwidth footprint, and

content negotiation to return different representations depending on

what the clients can or want. Caching directives are another important

part of response generation, allowing servlets to hint to clients and

intermediaries about whether contents are fresh and reusable, reducing

load and improving performance. Likewise, the ability to manage

cookies via the Cookie class and the addCookie() method allows

servers to track sessions and maintain stateful interactions through the

inherently stateless HTTP protocol. Error handling during response

generation needs to be treated differently, since exceptions raised after

part of the response was delivered can cause corrupted or partial content

to be delivered; typically proper error handling involves both buffer

management and error pages mapped in the deployment descriptor.

Once the response has been generated, the servlet container takes care

of the underlying work of sending the response back over the network

connection and getting ready for the next request. While generating the

response, servlet must be aware of performance implications, such as

memory consumed when generating large response, buffered output to

174
MATS Centre for Distance and Online Education, MATS University

Notes tradeoff between memory usage and responsive, and freeing resource

associated with response to avoid leak when operating in high volume.

V. Destruction Phase

Although the destruction phase marks the last stage in the servlet life

cycle, it takes place when a servlet needs to be taken out of service by

the servlet container. This phase is invoked under a variety of

situations, such as when the web application is being undeployed or

redeployed or if the servlet container is shutting down gracefully, or

when the container needs to recover resources. The service phase will

be invoked thousands or millions of times in the lifetime of the servlet

(and will also be executed on a separate thread for each request), but

the destruction phase will be executed (like the initialization phase) a

guaranteed — exactly once — for each servlet instance that is created.

This container indicates the start of this phase by invoking the destroy()

method on the servlet, which is a contract method written in javax.

servlet. This interface allows servlets to be given the chance to do some

cleanup work when the servlet is being taken out of service. The

destroy() method is primarily responsible for releasing resources —

closing database connections, terminating network connections,

shutting down thread pools, releasing file handles, and freeing any

other system resources that the initialized acquired during the

initialization phase or in the servlet's operational life. The cleanup also

prevents resource leaks that might exist beyond the servlet lifetime,

eventually leading to performance degradation or server instability.

Moreover, the destruction phase allows you to persist state information

that must outlive the current application instance (for example, saving

accumulated statistics, unsaved data, or configuration changes to

permanent storage).

During the destruction phase, the servlet container guarantees a

graceful shutdown. It guarantees that before calling destroy() all the

threads currently running in the service method must complete their

processing or are given a reasonable time to do so. That is, the destroy()

method will not fire until ALL service method invocations have exited

or a container-specific timeout has occurred. After calling destroy(),

VI. Concurrency and Thread Safety

Managing concurrency is one of the biggest challenges in servlet

development because a servlet by design pattern, is a single instance

that is invoked by multiple clients (in parallel). Instead of the common

175
MATS Centre for Distance and Online Education, MATS University

Notes approach in programming model where each client request receives its

own application instance, the servlet container follows the singleton

approach with multi-threaded execution, leading to a shared

application space with the necessity of mitigating the risks associated

with shared state in a multi-threaded environment. Hint: When a servlet

container (like an application server or web server) handles multiple

concurrent requests directed at the same servlet, it may forward these

requests in parallel by calling the servlet's service() method in separate

threads. The potentially huge performance advantages derived from

this concurrency model comes at the expense of a shared state with

respect to instance variables (fields) of the servlet as it is instantiated

per application rather than per request. Therefore, at the servlet instance

level, every instance variable is at risk of race conditions, data

corruption, and other concurrency problems unless appropriately

safeguarded. Concurrency can be handled in servlets in four ways:

making your servlet thread-safe by synchronizing yourself with your

critical section code or maintaining an immutable state, using local

variables instead of instance variables — since local variables are

thread-local automatically as they are created on the stack of the thread,

using the thread-local storage pattern or ThreadLocal class to persist

thread-specific state, or using an interface known as

SingleThreadModel (which has been deprecated for now in at least the

last couple of servlet specifications) which allows the web container to

enforce that only one thread accesses a servlet instance at any time, so

that the container needs to keep a pool of servlet instances.

For servlets that need to retain state between requests, certain

concurrent programming strategies are helpful. Synchronization is the

most simple solution to the problem, using Java's synchronized

keyword or explicit locks provided in java. util. concurrent. ensure that

only a single thread can execute a specific part of code or a shared

resource at a time and can be found in the locks package.

Synchronization, on the other hand, comes with performance overhead

in the forms of thread contention and possible deadlocks and so is only

appropriate for short-lived, sparse operations. Many concurrency

scenarios can be elegantly addressed using immutable objects [Java

Concurrency] which can safely be shared across threads, without

synchronization, after they've been built; this is the case for things like

configuration data or pre-computed results that will not change during

176
MATS Centre for Distance and Online Education, MATS University

Notes servlet execution. Java.Core. Concurrent.Collections classes util.

implementations in the java.util.concurrent package —

ConcurrentHashMap, CopyOnWriteArrayList, and BlockingQueue

implementations, for example—provide thread-safe alternatives to the

standard collections with better performance characteristics than

explicitly synchronized collections. The HttpSession API is designed

to handle user-specific state by maintaining a container-managed

thread-safe association between data and a particular client session

instead of relying on a servlet to do so, which further delegates the

thread-safety concern to the container. Other than these basic

techniques, servlets supporting significant concurrent traffic will often

use more advanced patterns like the read-write lock pattern for

resources that are expensive to acquire but that are heavily read and

seldom written, double-check locking for lazily initialized expensive

resources, or compare-and-swap operations provided by atomic classes

such as AtomicInteger and AtomicReference lock-free updates to

trivial values. Testing servlets for thread safety is particularly difficult,

needing specialized tools such as stress testing frameworks, static

analysis tools to catch possible concurrency issues or explicit

concurrency testing frameworks that can generate managed race

conditions. Servlet concurrency can be achieved by following certain

principles and practices in your application development lifecycle.

VII. Advanced Life Cycle Considerations

In addition to the basic lifecycles stages, there are various advanced

aspects that heavily influence servlet functioning and efficiency in real-

world applications. Servlet initialization parameters is a method of

configuring servlets without changing code so the deployment can set

it to whatever it wants. These parameters can be defined through the

element in web. xml or the initParams field of the @WebServlet

annotation and accessed during initialization phase via the

ServletConfig. getInitParameter() method. This configuration construct

fosters the separation of code from configuration, allowing the same

piece of servlet code to run differently on different environments. Load-

on-startup settings dictate exactly when servlet initialization happens,

optimizing startup time and request latency. Servlets with positive

integers in their element or loadOnStartup annotation attribute are

constructed at container startup in increasing numerical order so that

critical servlets are in place when the application first receives traffic,

177
MATS Centre for Distance and Online Education, MATS University

Notes while servlets that lack this directive or have negative values construct

lazy on first request. This helps a lot for servlets which have expensive

initialization processes, and the servlets provides low-level or any

services which are required by other components. Error handling is

another high-level concept that straddles the servlet life cycle,

including both programmatic exception handling in servlet methods

and declaratively defined error page mappings in the deployment

descriptor, which direct specific types of exception or HTTP error

codes to dedicated error-handling servlets or JSP pages, thereby

allowing for consistent error presentation across the application while

allowing for generic information to be hidden that a developer can use

to troubleshoot.

Servlet context listeners allow for the management of an application's

life cycle, passing the life cycle management from individual servlets

to the application level, by implementing the ServletContextListener

interface and being notified of an applications startup and shutdown

through the contextInitialized() and contextDestroyed() methods

respectively. These listeners usually make application-wide

initializations and clean-ups like creating database connection pools,

logging configuration, Caches preloading, JDBC drivers registration,

In a similar way, session listeners — that is, classes that implement the

HttpSessionListener, HttpSessionAttributeListener, and

HttpSessionBindingListener interfaces — allow code to be executed

when a session is created, destroyed, and when its attributes change:

useful for keeping track of users, managing resources, and for security

monitoring purposes. The asynchronous processing, which was

introduced in the Servlet 3.0 specification, changes the conventional

request-response life cycle by letting servlets perform long-running

operations while freeing the container's request-processing thread. By

calling request. Either doAllInOneThread() of startAsync() method in

some servlet, where the servlet get the AsyncContext object, which

disassociates the request and response object from the current thread,

allowing original thread for returning to the container’s thread pool

while processing is continued on another thread, and may be end much

later. This pattern is useful for long-running operations, server-push

technologies, and non-blocking I/O system integration. The servlet

specification additionally defines resource management through

178
MATS Centre for Distance and Online Education, MATS University

Notes annotations including @Resource, @Resources, and

@PostConstruct/@PreDestroy, which enables resource injection and

life cycle method designation that incorporates with the container's

higher resource management amenities.

Production deployments add a number of other life cycle

considerations. For example, many containers will be able to reload

servlets, so that if a servlet class changes, the servlet can be detected

and getting going through the life cycle of destruction and initialization

without a restart of the application, which can be useful during

development but can sometimes be turned off in production for

performance reasons. One of the special challenges with clustering

environments, where different physical or virtual machines may run

multiple servlet containers: session replication, distributed caching,

synchronized initialization have to be considered because servlets aren't

singletons, and their life cycle management should be handled

specifically. While supplying a servlet involves specifying which

bytecode will be executed, there are security concerns that intersect the

servlet life cycle that you need to include in your design, including role-

based access controls that restrict which users can access which

servlets, programmatic security checks that you perform in servlet

methods, and secure initialization that protects sensitive configuration

data. Lifecycle performance tuning through connection pooling at

initialization, request dispatching during the service phase, response

caching between requests, and resource management at destruction.

Most servlet life cycle monitoring and debugging relies on recording

important transitions into a log file, container-specific utilities (such as

the one that tracks servlet life cycle and state), or JMX (Java

Management Extensions), exposing servlet metrics and state data to

outboard monitoring systems. Having advanced the understanding of

the servlets life cycle, developers can ideally design servlets for

correctness, efficiency, scalability, enterprise integration, and optimal

operation in hard times.

With Java EE, a specified life cycle for the servlet engines gives a

structured life cycle framework — characterized in tall levels below.

By thoroughly understanding and appropriately utilizing the

functionalities of each phase, developers are able to craft resilient,

performant, and maintainable web applications that make effective use

of the servlet container's services and adhere to correct resource

179
MATS Centre for Distance and Online Education, MATS University

Notes management and concurrency control protocols. However, a deep

understanding of servlet life cycle is always essential to Java web

application development regardless of being simple web applications

or complex enterprise solutions.

3.3.8 Reading Form Data from Servlet

Enter user input One of the most basic tasks that are performed in

web applications. [To know more JAVA SERVLETS] – How To

Handle HTML Forms In Servlets? Knowing how to retrieve, validate

and then use this data effectively is one of the key parts of building

interactive web applications.

3.3.8.1 Understanding HTTP Form Submission

So, when someone fills a form on a webpage, the data is sent to a

server with an HTTP request. The form data can be sent in one of two

ways, depending on how the form is configured:

GET Method: The form data is added to the URL as a query

string parameter. This is usable with non-sensitive data and when

you may want to bookmark the outcome.

POST Method: As the form data is sent as part of the HTTP

request body, it is not visible in the URL. Sensitive information,

large amounts of data, or a request that might mutate server state

should be passed via the body by this method The HTML markup

for these form types looks like this:

<!-- GET method form -->

<form action="processForm" method="get">

<input type="text" name="username">

<input type="submit" value="Submit">

</form>

<!-- POST method form -->

<form action="processForm" method="post">

<input type="password" name="password">

<input type="submit" value="Submit">

</form>

3.3.8.2 Extracting Form Data in Servlets

There are some methods in Java servlets for extracting the form data.

The main methods are defined in the HttpServletRequest interface,

and are slightly different depending on whether the data was

submitted using GET or POST.

180
MATS Centre for Distance and Online Education, MATS University

Notes Basic Parameter Retrieval

getParameter(String name) is the most common and used method

which receives the parameter name and returns the value associated

with the parameter name as a String

@WebServlet("/processForm")

public class FormProcessorServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Retrieve a single parameter value

 String username = request.getParameter("username");

 // Process the username

 if (username != null && !username.isEmpty()) {

 // Valid username provided

 response.getWriter().println("Hello, " + username + "!");

 } else {

 // No username or empty username

 response.getWriter().println("Hello, guest!");

 }

 }

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // For POST requests, we can use the same getParameter method

 doGet(request, response);

 }

}

Handling Multiple Values

We use getParameterValues(String name) to get multiple values

(when we have checkbox or multi-select list in our form, with the

same name) as a String array.:

@WebServlet("/processInterests")

public class InterestProcessorServlet extends HttpServlet {

181
MATS Centre for Distance and Online Education, MATS University

Notes protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Retrieve multiple values for the same parameter

 String[] interests = request.getParameterValues("interest");

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Your Selected Interests:</h2>");

 if (interests != null && interests.length > 0) {

 out.println("");

 for (String interest : interests) {

 out.println("" + interest + "");

 }

 out.println("");

 } else {

 out.println("<p>No interests selected.</p>");

 }

 out.println("</body></html>");

 }

}

Retrieving All Parameters

To retrieve all the parameters that were passed in with a form, use

getParameterNames() to obtain an enumeration of the parameter

names, then iterate through them to get the values of each parameter:

@WebServlet("/displayAllParams")

public class ParameterDisplayServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

182
MATS Centre for Distance and Online Education, MATS University

Notes

 out.println("<html><body>");

 out.println("<h2>All Form Parameters:</h2>");

 out.println("<table border='1'>");

 out.println("<tr><th>Parameter Name</th><th>Parameter

Value(s)</th></tr>");

 Enumeration<String> paramNames =

request.getParameterNames();

 while (paramNames.hasMoreElements()) {

 String paramName = paramNames.nextElement();

 out.println("<tr><td>" + paramName + "</td><td>");

 String[] paramValues =

request.getParameterValues(paramName);

 if (paramValues.length == 1) {

 String paramValue = paramValues[0];

 if (paramValue.length() == 0) {

 out.println("<i>No Value</i>");

 } else {

 out.println(paramValue);

 }

 } else {

 out.println("");

 for (String paramValue : paramValues) {

 out.println("" + paramValue + "");

 }

 out.println("");

 }

 out.println("</td></tr>");

 }

 out.println("</table>");

 out.println("</body></html>");

 }

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

183
MATS Centre for Distance and Online Education, MATS University

Notes throws ServletException, IOException {

 doGet(request, response);

 }

}

Using the Parameter Map

For more structured parameter handling, getParameterMap() returns a

Map containing parameter names as keys and parameter values as

String arrays:

@WebServlet("/processMapForm")

public class ParameterMapServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 Map<String, String[]> parameterMap =

request.getParameterMap();

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Form Data Summary:</h2>");

 // Process all parameters using the map

 for (Map.Entry<String, String[]> entry :

parameterMap.entrySet()) {

 String paramName = entry.getKey();

 String[] paramValues = entry.getValue();

 out.println("<p>" + paramName + ": ");

 if (paramValues.length == 1) {

 out.println(paramValues[0]);

 } else {

 out.println("
");

 for (String value : paramValues) {

 out.println("- " + value + "
");

 }

184
MATS Centre for Distance and Online Education, MATS University

Notes }

 out.println("</p>");

 }

 out.println("</body></html>");

 }

}

3.3.9 Character Encoding Considerations

To retrieve all the parameters that were passed in with a form, use

getParameterNames() to obtain an enumeration of the parameter

names, then iterate through them to get the values of each parameter:

@WebServlet("/internationalForm")

public class InternationalFormServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Set character encoding before retrieving parameters

 request.setCharacterEncoding("UTF-8");

 // Now retrieve parameters with proper encoding

 String name = request.getParameter("name");

 String address = request.getParameter("address");

 // Set response encoding

 response.setContentType("text/html; charset=UTF-8");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>International Form Data:</h2>");

 out.println("<p>Name: " + name + "</p>");

 out.println("<p>Address: " + address + "</p>");

 out.println("</body></html>");

 }

}

3.3.10 Processing Different Form Data Types

185
MATS Centre for Distance and Online Education, MATS University

Notes Form data is always transmitted as strings, but your application may

need to convert these strings to appropriate data types for processing.

Type Conversion

If you want to handle the parameters in a more structured way, you

can use getParameterMap(): It returns a Map that has parameter

names as keys and parameter values as String arrays

:

@WebServlet("/calculateTotal")

public class ShoppingCartServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 try {

 // Convert string to integer

 int quantity =

Integer.parseInt(request.getParameter("quantity"));

 // Convert string to double

 double price =

Double.parseDouble(request.getParameter("price"));

 // Convert string to boolean

 boolean isGift =

Boolean.parseBoolean(request.getParameter("gift"));

 // Perform calculations

 double total = quantity * price;

 if (isGift) {

 total += 5.00; // Gift wrapping fee

 }

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Order Summary</h2>");

 out.println("<p>Quantity: " + quantity + "</p>");

186
MATS Centre for Distance and Online Education, MATS University

Notes out.println("<p>Price per unit: $" + String.format("%.2f",

price) + "</p>");

 out.println("<p>Gift wrapping: " + (isGift ? "Yes" : "No") +

"</p>");

 out.println("<p>Total: $" + String.format("%.2f", total) +

"</p>");

 out.println("</body></html>");

 } catch (NumberFormatException e) {

 // Handle parsing errors

response.sendError(HttpServletResponse.SC_BAD_REQUEST,

"Invalid number format in form data");

 }

 }

}

Handling Date Inputs

Converting string date inputs to java.util.Date objects:

@WebServlet("/processDate")

public class DateProcessorServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 String dateString = request.getParameter("eventDate");

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 try {

 SimpleDateFormat dateFormat = new

SimpleDateFormat("yyyy-MM-dd");

 Date eventDate = dateFormat.parse(dateString);

 // Calculate days until event

 long daysDiff = (eventDate.getTime() - new Date().getTime())

/ (1000 * 60 * 60 * 24);

187
MATS Centre for Distance and Online Education, MATS University

Notes out.println("<html><body>");

 out.println("<h2>Event Information</h2>");

 out.println("<p>Event Date: " + dateFormat.format(eventDate)

+ "</p>");

 out.println("<p>Days until event: " + daysDiff + "</p>");

 out.println("</body></html>");

 } catch (ParseException e) {

 out.println("<html><body>");

 out.println("<h2>Error</h2>");

 out.println("<p>Invalid date format. Please use yyyy-MM-dd

format.</p>");

 out.println("</body></html>");

 }

 }

}

3.3.11 Handling File Uploads

For flowing files, the getParameter() methods of the standard are not

enough. Instead, you must refer to the Part API added in Servlet 3.0

or third-party library such as Apache Commons FileUpload.

Using Servlet 3.0 Part API

@WebServlet("/fileUpload")

@MultipartConfig(

 fileSizeThreshold = 1024 * 1024, // 1 MB

 maxFileSize = 1024 * 1024 * 10, // 10 MB

 maxRequestSize = 1024 * 1024 * 50) // 50 MB

public class FileUploadServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Get the file part from the request

 Part filePart = request.getPart("file");

 // Extract file information

 String fileName = getSubmittedFileName(filePart);

188
MATS Centre for Distance and Online Education, MATS University

Notes long fileSize = filePart.getSize();

 String contentType = filePart.getContentType();

 // Define the location to save the file

 String uploadPath =

getServletContext().getRealPath("/uploads");

 File uploadDir = new File(uploadPath);

 if (!uploadDir.exists()) {

 uploadDir.mkdir();

 }

 // Save the file

 filePart.write(uploadPath + File.separator + fileName);

 // Process other form fields

 String description = request.getParameter("description");

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>File Upload Summary</h2>");

 out.println("<p>File Name: " + fileName + "</p>");

 out.println("<p>File Size: " + fileSize + " bytes</p>");

 out.println("<p>Content Type: " + contentType + "</p>");

 out.println("<p>Description: " + description + "</p>");

 out.println("<p>File saved successfully to: " + uploadPath +

"</p>");

 out.println("</body></html>");

 }

 // Helper method to extract the file name from the Part header

 private String getSubmittedFileName(Part part) {

 String contentDisp = part.getHeader("content-disposition");

 String[] items = contentDisp.split(";");

 for (String item : items) {

 if (item.trim().startsWith("filename")) {

189
MATS Centre for Distance and Online Education, MATS University

Notes return item.substring(item.indexOf("=") + 2, item.length() -

1);

 }

 }

 return "";

 }

}

3.3.12 Form Data Validation

Always put security first when dealing with form data. Here are

some crucial security practices:

@WebServlet("/registerUser")

public class UserRegistrationServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 String username = request.getParameter("username");

 String email = request.getParameter("email");

 String password = request.getParameter("password");

 String confirmPassword =

request.getParameter("confirmPassword");

 List<String> errors = new ArrayList<>();

 // Validate username

 if (username == null || username.trim().length() < 3) {

 errors.add("Username must be at least 3 characters long");

 }

 // Validate email

 if (email == null || !email.matches("^[\\w-\\.]+@([\\w-]+\\.)+[\\w-

]{2,4}$")) {

 errors.add("Please enter a valid email address");

 }

 // Validate password

 if (password == null || password.length() < 8) {

 errors.add("Password must be at least 8 characters long");

190
MATS Centre for Distance and Online Education, MATS University

Notes }

 // Confirm passwords match

 if (!password.equals(confirmPassword)) {

 errors.add("Passwords do not match");

 }

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 if (errors.isEmpty()) {

 // All validations passed, process the registration

 out.println("<h2>Registration Successful</h2>");

 out.println("<p>Username: " + username + "</p>");

 out.println("<p>Email: " + email + "</p>");

 // In a real application, you would save the user to a database

here

 } else {

 // Validation errors found

 out.println("<h2>Registration Failed</h2>");

 out.println("<p>Please correct the following errors:</p>");

 out.println("");

 for (String error : errors) {

 out.println("" + error + "");

 }

 out.println("");

 out.println("<p>Go back

and try again</p>");

 }

 out.println("</body></html>");

 }

}

3.3.13 Security Considerations

191
MATS Centre for Distance and Online Education, MATS University

Notes Always put security first when dealing with form data. Here are

some crucial security practices:

Input Sanitization

Note: Always sanitize user input to avoid security problems such as

XSS attacks:

@WebServlet("/commentProcess")

public class CommentProcessorServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 String name = request.getParameter("name");

 String comment = request.getParameter("comment");

 // Sanitize input to prevent XSS attacks

 name = sanitizeInput(name);

 comment = sanitizeInput(comment);

 // Process the sanitized data

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Comment Received</h2>");

 out.println("<p>From: " + name + "</p>");

 out.println("<p>Comment: " + comment + "</p>");

 out.println("</body></html>");

 }

 private String sanitizeInput(String input) {

 if (input == null) {

 return "";

 }

 // Replace potentially dangerous characters with their HTML

entities

 String sanitized = input

 .replace("&", "&")

192
MATS Centre for Distance and Online Education, MATS University

Notes .replace("<", "<")

 .replace(">", ">")

 .replace("\"", """)

 .replace("'", "'")

 .replace("/", "/");

 return sanitized;

 }

}

CSRF Protection

Implement Cross-Site Request Forgery (CSRF) protection by using

tokens:

@WebServlet("/secureForm")

public class SecureFormServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Generate a CSRF token

 String csrfToken = generateCSRFToken();

 // Store the token in the session

 HttpSession session = request.getSession();

 session.setAttribute("csrfToken", csrfToken);

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Secure Form</h2>");

 out.println("<form action='processSecureForm'

method='post'>");

 out.println("Name: <input type='text' name='name'>
");

 out.println("Email: <input type='email' name='email'>
");

 // Include the CSRF token as a hidden field

 out.println("<input type='hidden' name='csrfToken' value='" +

csrfToken + "'>");

 out.println("<input type='submit' value='Submit'>");

193
MATS Centre for Distance and Online Education, MATS University

Notes out.println("</form>");

 out.println("</body></html>");

 }

 private String generateCSRFToken() {

 // Generate a random token (in a real application, use a

cryptographically secure method)

 return UUID.randomUUID().toString();

 }

}

@WebServlet("/processSecureForm")

public class SecureFormProcessorServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Retrieve the submitted token

 String submittedToken = request.getParameter("csrfToken");

 // Retrieve the stored token from the session

 HttpSession session = request.getSession();

 String storedToken = (String) session.getAttribute("csrfToken");

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 // Validate the CSRF token

 if (storedToken != null &&

storedToken.equals(submittedToken)) {

 // Token is valid, process the form

 String name = request.getParameter("name");

 String email = request.getParameter("email");

 out.println("<html><body>");

 out.println("<h2>Form Processed Successfully</h2>");

 out.println("<p>Name: " + name + "</p>");

 out.println("<p>Email: " + email + "</p>");

194
MATS Centre for Distance and Online Education, MATS University

Notes out.println("</body></html>");

 // Invalidate the token after use (one-time use)

 session.removeAttribute("csrfToken");

 } else {

 // Invalid or missing token, potential CSRF attack

 response.setStatus(HttpServletResponse.SC_FORBIDDEN);

 out.println("<html><body>");

 out.println("<h2>Error: Invalid Request</h2>");

 out.println("<p>The form submission could not be processed

due to security concerns.</p>");

 out.println("</body></html>");

 }

 }

}

3.5 Handling Client Request and Generating Server Response

Java servlets operate on the fundamental principle of handling client

requests and providing responses. This section walks through all

aspects of this request-response cycle, from understanding what an

HTTP protocol is to generating dynamic content based on user input..

3.3.13.1 Understanding the HTTP Request-Response Cycle

In order to understand the specifics of how to handle requests in

servlets, we need to learn the HTTP request-response cycle::

Client Request: The client (typically a web browser) sends an HTTP

request to the server.

Server Processing: The server processes the request, which may

involve:

Routing the request to the appropriate servlet

Extracting request parameters

Processing business logic

Accessing databases or external services

Server Response: The server generates an HTTP response and sends

it back to the client.

Client Rendering: The client processes the response (e.g., rendering

HTML, executing JavaScript).

In Java servlets, this cycle is represented by:

The HttpServletRequest object, which encapsulates the client request

195
MATS Centre for Distance and Online Education, MATS University

Notes The HttpServletResponse object, which provides methods to generate

the response

3.3.13.2 Analyzing the Request

In order to handle an incoming request we need to understand it.

Servlets offer several ways to get information from the request.

Request Headers

HTTP headers are metadata about the request. Using the getHeader()

method you can fetch headers equal to:

@WebServlet("/requestInfo")

public class RequestInfoServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Request Information</h2>");

 // Get basic request information

 out.println("<h3>Basic Info</h3>");

 out.println("<p>Request Method: " + request.getMethod() +

"</p>");

 out.println("<p>Request URI: " + request.getRequestURI() +

"</p>");

 out.println("<p>Protocol: " + request.getProtocol() + "</p>");

 // Get request headers

 out.println("<h3>Request Headers</h3>");

 out.println("<table border='1'>");

 out.println("<tr><th>Header Name</th><th>Header

Value</th></tr>");

 Enumeration<String> headerNames =

request.getHeaderNames();

 while (headerNames.hasMoreElements()) {

 String headerName = headerNames.nextElement();

196
MATS Centre for Distance and Online Education, MATS University

Notes String headerValue = request.getHeader(headerName);

 out.println("<tr><td>" + headerName + "</td><td>" +

headerValue + "</td></tr>");

 }

 out.println("</table>");

 out.println("</body></html>");

 }

}

Cookie Information

Cookies sent by the client can be retrieved using the getCookies()

method:

@WebServlet("/cookieInfo")

public class CookieInfoServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Cookie Information</h2>");

 Cookie[] cookies = request.getCookies();

 if (cookies != null && cookies.length > 0) {

 out.println("<table border='1'>");

 out.println("<tr><th>Cookie Name</th><th>Cookie

Value</th></tr>");

 for (Cookie cookie : cookies) {

 out.println("<tr>");

 out.println("<td>" + cookie.getName() + "</td>");

 out.println("<td>" + cookie.getValue() + "</td>");

 out.println("</tr>");

 }

197
MATS Centre for Distance and Online Education, MATS University

Notes out.println("</table>");

 } else {

 out.println("<p>No cookies found in this request.</p>");

 }

 out.println("</body></html>");

 }

}

Session Information

HTTP sessions allow you to track user state across multiple requests:

@WebServlet("/sessionInfo")

public class SessionInfoServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 // Get or create a session

 HttpSession session = request.getSession();

 // Update session access counter

 Integer accessCount = (Integer)

session.getAttribute("accessCount");

 if (accessCount == null) {

 accessCount = 1;

 } else {

 accessCount++;

 }

 session.setAttribute("accessCount", accessCount);

 out.println("<html><body>");

 out.println("<h2>Session Information</h2>");

 out.println("<p>Session ID: " + session.getId() + "</p>");

 out.println("<p>Session Creation Time: " + new

Date(session.getCreationTime()) + "</p>");

198
MATS Centre for Distance and Online Education, MATS University

Notes out.println("<p>Last Accessed Time: " + new

Date(session.getLastAccessedTime()) + "</p>");

 out.println("<p>Is New Session: " + session.isNew() + "</p>");

 out.println("<p>Session Access Count: " + accessCount +

"</p>");

 out.println("</body></html>");

 }

}

Request Attributes

Servlets can set and retrieve attributes within each request scope,

which is useful for storing information relevant to those components.:

@WebServlet("/setAttributes")

public class AttributeSetterServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Set some request attributes

 request.setAttribute("username", "john_doe");

 request.setAttribute("userRole", "admin");

 request.setAttribute("lastLogin", new Date());

 // Forward the request to another servlet to display the attributes

 RequestDispatcher dispatcher =

request.getRequestDispatcher("/displayAttributes");

 dispatcher.forward(request, response);

 }

}

@WebServlet("/displayAttributes")

public class AttributeDisplayServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

199
MATS Centre for Distance and Online Education, MATS University

Notes

 out.println("<html><body>");

 out.println("<h2>Request Attributes</h2>");

 // Retrieve and display attributes

 String username = (String) request.getAttribute("username");

 String userRole = (String) request.getAttribute("userRole");

 Date lastLogin = (Date) request.getAttribute("lastLogin");

 out.println("<p>Username: " + username + "</p>");

 out.println("<p>User Role: " + userRole + "</p>");

 out.println("<p>Last Login: " + lastLogin + "</p>");

 out.println("</body></html>");

 }

}

1.3.13.3 Generating the Response

Now, servlets must provide a proper reply after handling the request.

You can create different types of responses using

HttpServletResponse object.

Setting Response Headers

Response headers provide metadata about the response:

@WebServlet("/setHeaders")

public class HeaderSetterServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Set response headers

 response.setContentType("text/html");

 response.setHeader("Cache-Control", "no-cache, no-store, must-

revalidate");

 response.setHeader("Pragma", "no-cache");

 response.setHeader("Expires", "0");

 response.setHeader("Custom-Header", "Custom Value");

 PrintWriter out = response.getWriter();

200
MATS Centre for Distance and Online Education, MATS University

Notes out.println("<html><body>");

 out.println("<h2>Custom Headers Set</h2>");

 out.println("<p>This response includes custom HTTP headers

that control caching and demonstrate header setting.</p>");

 out.println("</body></html>");

 }

}

Setting Cookies

Cookies allow you to store small pieces of data on the client:

@WebServlet("/setCookie")

public class CookieSetterServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Create a new cookie

 Cookie userCookie = new Cookie("username", "john_doe");

 // Configure the cookie

 userCookie.setMaxAge(24 * 60 * 60); // Expires in 24 hours

 userCookie.setPath("/"); // Available across the entire

application

 userCookie.setHttpOnly(true); // Not accessible via

JavaScript

 userCookie.setSecure(true); // Only sent over HTTPS

 // Add the cookie to the response

 response.addCookie(userCookie);

 // Create a session tracking cookie

 Cookie trackingCookie = new Cookie("sessionTracker",

UUID.randomUUID().toString());

 trackingCookie.setMaxAge(30 * 60); // Expires in 30 minutes

 response.addCookie(trackingCookie);

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

201
MATS Centre for Distance and Online Education, MATS University

Notes out.println("<html><body>");

 out.println("<h2>Cookies Set</h2>");

 out.println("<p>The following cookies have been set:</p>");

 out.println("");

 out.println("username: john_doe (expires in 24 hours)");

 out.println("sessionTracker: " + trackingCookie.getValue() +

" (expires in 30 minutes)");

 out.println("");

 out.println("</body></html>");

 }

}

HTTP Status Codes

Setting the appropriate HTTP status code is important for proper

client-server communication:

@WebServlet("/statusCodes")

public class StatusCodeDemoServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 String codeParam = request.getParameter("code");

 if (codeParam != null) {

 try {

 int statusCode = Integer.parseInt(codeParam);

 switch (statusCode) {

 case 200:

 response.setStatus(HttpServletResponse.SC_OK);

 sendResponse(response, "200 OK", "The request has

succeeded.");

 break;

 case 201:

response.setStatus(HttpServletResponse.SC_CREATED);

 sendResponse(response, "201 Created", "The request

has been fulfilled and a new.

202
MATS Centre for Distance and Online Education, MATS University

Notes 3.3.13.4 Handling Cookies

Cookies are one of the core technologies that allow managing state on

web apps. One of the challenges developers who use HTTP protocol

face is that it is stateless. Cookies became the elegant solution to this

problem, peas in a pod of data that could be stored on the client’s side

and sent with every request. Specifically in Java web development,

within the Servlets and JSP framework, cookies miss an elegant way to

persist user settings, track user's activities, and maintain the state of a

user's session. In a way, a cookie is just a small text file, which is stored

in the client browser. When a user visits a site, the server can send one

or more cookies to that user's browser, which the browser keeps

locally. When using the same server on additional requests, the

browser automatically adds these cookies to the request headers. This

mechanism enables the server to identify returning users and pull up

previously stored information without relying on users needing to

introduce themselves on each and every page request. The Java Servlet

API provides a rich set of classes and methods that can be used to

create, modify, and retrieve cookies. The main class for cookie

operations is javax. servlet. http. Cookie: This is just a handy way to

encapsulate the name/value pairs that make up a cookie. This API

allows the Java developer to work with cookies in their web

applications, providing a rich, personalized experience for the user.

Cookies offer a key feature in modern web development, allowing

websites to remember user preferences, store their shopping cart data,

implement authentication mechanisms, and facilitate personalized

content delivery. But in recent years with GDPR, the CCPA and

growing focus on user privacy, the standard use of cookies by

developers means they have to be careful about how they implement

cookie-based solutions. We will cover the technical details related to

cookies in Java web applications but also some important concerns

around privacy, security, and best practices.

This article will cover deeper cookie management — the attributes used

to specify cookie behaviour, how cookies are sent and received,

removing cookies and the benefits and drawbacks of using cookies. We

will also delve into how cookies fit into larger session management

paradigms, discussing the use of cookies, session tracking mechanisms,

and their achievements to provide all-encompassing state preservation

in Java web applications.

203
MATS Centre for Distance and Online Education, MATS University

Notes 3.3.14 Handling Cookies in Java Web Applications: The

javaxz.servlet.http package in Java's Servlet API enables powerful

cookie support. servlet. http. Cookie class. In this section you study

core functionality for creating, sending and receiving, and

manipulating cookies in Java web applications.

3.3.15 Creating and Sending Cookies: In Java, a cookie can be

created easily. The Cookie class's constructor takes the cookie name

and cookieValue as string parameters. You create a cookie, and then

send it to the client browser through the response. addCookie()

method. Here is the process translated into an example::

// Create a new cookie

Cookie userCookie = new Cookie("username", "john_doe");

// Set cookie properties (optional)

userCookie.setMaxAge(60 * 60 * 24 * 30); // Expires in 30 days (in

seconds)

userCookie.setPath("/"); // Available across the entire

application

userCookie.setSecure(true); // Only sent over HTTPS

userCookie.setHttpOnly(true); // Not accessible via JavaScript

// Send the cookie to the client

response.addCookie(userCookie);

Here, we have created a cookie with a name "username" and value

"john_doe". Then, we set multiple properties and set it to send it to

client browser. These attributes determine the cookie's behavior, such

as its duration, accessibility, and security properties

204
MATS Centre for Distance and Online Education, MATS University

Notes 3.3.16 Receiving and Reading Cookies

All cookies for the domain are included in request headers when a

client does a request to the server. You retrieve these cookies in a

servlet, by using the request. getCookies() method which return array

of Cookie objects. The code below shows how to obtain and read the

cookies:

// Get all cookies from the request

Cookie[] cookies = request.getCookies();

// Check if cookies exist

if (cookies != null) {

 // Iterate through all cookies

 for (Cookie cookie : cookies) {

 // Retrieve the cookie name and value

 String name = cookie.getName();

 String value = cookie.getValue();

 // Process the cookie based on its name

 if ("username".equals(name)) {

 // Found the username cookie

 System.out.println("Welcome back, " + value);

 break;

 }

 }

}

The above code iterates through all cookies received in the request,

searching for a specific cookie by name. Once found, the cookie's

value can be retrieved and used to customize the response or make

application decisions.

3.3.17 Modifying Cookies

The above code loops through all the cookies that were sent with the

request and looks for one with a specific name. When located, the

cookie value can be accessed, and the data can be used to tailor the

response or to decide on actions to take within the application:

// Get all cookies from the request

Cookie[] cookies = request.getCookies();

if (cookies != null) {

205
MATS Centre for Distance and Online Education, MATS University

Notes for (Cookie cookie : cookies) {

 if ("username".equals(cookie.getName())) {

 // Create a new cookie with the same name but updated value

 Cookie updatedCookie = new Cookie("username",

"jane_doe");

 updatedCookie.setMaxAge(cookie.getMaxAge());

 updatedCookie.setPath(cookie.getPath());

 // Send the updated cookie to the client

 response.addCookie(updatedCookie);

 break;

 }

 }

}

In this example, we search for the "username" cookie and create a

new cookie with the same name but an updated value. We also

preserve the original cookie's attributes to ensure consistent behavior.

3.3.18 Deleting Cookies

In order to remove a cookie, set its age to zero or a negative value and

send it back to the client. This is an instruction in your web browser

to delete the cookie. Here is some code that shows how this can be

done:

// Create a cookie with the same name

Cookie cookieToDelete = new Cookie("username", "");

// Set the maximum age to 0 (delete immediately)

cookieToDelete.setMaxAge(0);

// Ensure it's on the same path as the original cookie

cookieToDelete.setPath("/");

// Send the cookie to the client

response.addCookie(cookieToDelete);

You must set the path for the cookie being deleted to be the same as

the original cookie. If the paths differ, the browser may not treat it as

the same cookie, so the deletion will silently fail

Cookie Persistence

Cookies can be classified into two types based on their persistence:

206
MATS Centre for Distance and Online Education, MATS University

Notes 3.3.19 Session Cookies: These cookies expire when the browser

session ends. They are stored in memory and are not written to disk.

To create a session cookie, don't set the maxAge property or set it to -

1.

Cookie sessionCookie = new Cookie("sessionId",

generateSessionId());

// No maxAge means it's a session cookie

response.addCookie(sessionCookie);

3.3.20 Persistent Cookies: These cookies have a specific expiration

time and are stored on disk. They persist even after the browser is

closed and are sent with requests until they expire.

Cookie persistentCookie = new Cookie("preferredLanguage", "en");

persistentCookie.setMaxAge(60 * 60 * 24 * 365); // 1 year in seconds

response.addCookie(persistentCookie);

Choosing between session and persistent cookies depends on the

application's requirements and the nature of the data being stored.

3.3.21 Benefits of Using Cookies

Cookies offer numerous advantages for web applications, particularly

in the context of Java-based systems. This section explores the key

benefits of incorporating cookies into your application architecture.

3.3.22 User Experience Enhancement: One of the primary benefits of

cookies is their ability to enhance user experience by remembering user

preferences and settings. Consider a web application that allows users

to customize the interface, such as choosing a theme or language. By

storing these preferences in cookies, the application can provide a

consistent experience across multiple visits without requiring users to

reconfigure their settings each time.

// Example: Storing user theme preference

String selectedTheme = request.getParameter("theme");

if (selectedTheme != null && !selectedTheme.isEmpty()) {

 Cookie themeCookie = new Cookie("userTheme", selectedTheme);

 themeCookie.setMaxAge(60 * 60 * 24 * 365); // 1 year

 themeCookie.setPath("/");

 response.addCookie(themeCookie);

}

This kind of personalization significantly improves user satisfaction

and engagement by creating a tailored experience that acknowledges

and respects individual preferences.

207
MATS Centre for Distance and Online Education, MATS University

Notes 3.3.23 State Management in Stateless Protocols: HTTP is stateless

by design, that is, every request to the server is considered

independent and does not know about prior requests. Cookies allow

you to maintain state across multiple requests. For example, cookie

functions in insurance apps for shopping carts are track selected

items:

// Example: Adding item to cart (simplified)

String itemId = request.getParameter("itemId");

if (itemId != null) {

 // Get existing cart cookie

 String cartItems = "";

 Cookie[] cookies = request.getCookies();

 if (cookies != null) {

 for (Cookie cookie : cookies) {

 if ("cartItems".equals(cookie.getName())) {

 cartItems = cookie.getValue();

 break;

 }

 }

 }

 // Add new item to cart

 if (!cartItems.isEmpty()) {

 cartItems += "," + itemId;

 } else {

 cartItems = itemId;

 }

 // Update cart cookie

 Cookie cartCookie = new Cookie("cartItems", cartItems);

 cartCookie.setMaxAge(60 * 60 * 24 * 7); // 1 week

 cartCookie.setPath("/");

 response.addCookie(cartCookie);

}

Whenever you visit a store and start browsing, you can add things to

your cart, and it goes around without you losing what you’ve selected

for a smooth shopping experience.

208
MATS Centre for Distance and Online Education, MATS University

Notes 3.3.24 Performance Optimization: When used correctly, cookies can

greatly enhance the performance of the application by avoiding

database queries or server-side storage. You are also enabled for the

terrible site fetches if stored in cookies for non-sensitive, frequently

accessed data, which can reduce server load and improve response

times. For instance, placing display preferences or non-sensitive user

data into cookies can save you from needing to pull this data from the

database on each request:

// First-time user setup

if (request.getCookies() == null ||

!containsCookie(request.getCookies(), "displaySettings")) {

 // Default settings

 Cookie settingsCookie = new Cookie("displaySettings",

"compact:true,showImages:true,fontSize:medium");

 settingsCookie.setMaxAge(60 * 60 * 24 * 30); // 30 days

 settingsCookie.setPath("/");

 response.addCookie(settingsCookie);

}

// Helper method to check if a cookie exists

private boolean containsCookie(Cookie[] cookies, String name) {

 for (Cookie cookie : cookies) {

 if (name.equals(cookie.getName())) {

 return true;

 }

 }

 return false;

}

Client-side storage also helps offload data to the front-end which

ultimately relieves the database service and results in quicker

response times and improved scalability.

3.3.25 Authentication and Remember Me Functionality

Cookies are essential for implementing "Remember Me" functionality,

which allows users to remain authenticated across browser sessions

without re-entering credentials. This feature significantly enhances user

convenience while maintaining security.

// Example: Implementing "Remember Me" functionality

209
MATS Centre for Distance and Online Education, MATS University

Notes boolean rememberMe =

"true".equals(request.getParameter("rememberMe"));

if (rememberMe) {

 // Generate secure token (simplistic example)

 String rememberToken = generateSecureToken(username);

 // Store token in database (associated with user)

 storeRememberTokenInDatabase(username, rememberToken);

 // Create persistent cookie with token

 Cookie rememberCookie = new Cookie("rememberToken",

rememberToken);

 rememberCookie.setMaxAge(60 * 60 * 24 * 30); // 30 days

 rememberCookie.setHttpOnly(true); // Prevent JavaScript access

 rememberCookie.setSecure(true); // HTTPS only

 rememberCookie.setPath("/");

 response.addCookie(rememberCookie);

}

In this example, a secure token is generated, stored in the database, and

also sent to the client as a cookie. On subsequent visits, the application

can validate this token to automatically authenticate the user without

requiring a new login.

3.3.26 Analytics and User Behavior Tracking

Cookies are useful for tracking user behavior and collecting analytics

data. This enables applications to track navigation patterns, feature

usage, and user preferences by assigning unique identifiers to visitors.

// Example: Setting analytics tracking cookie

String visitorId = UUID.randomUUID().toString();

Cookie analyticsCookie = new Cookie("visitorId", visitorId);

analyticsCookie.setMaxAge(60 * 60 * 24 * 365 * 2); // 2 years

analyticsCookie.setPath("/");

response.addCookie(analyticsCookie);

// Log page visit

logPageVisit(visitorId, request.getRequestURI());

210
MATS Centre for Distance and Online Education, MATS University

Notes This helps product development, marketing strategies and interface

refinements, which in turn contribute to improved user experiences

and business results.

3.3.27 Cookie Attributes and Security Considerations

In addition to the simple name-value pair, cookies also support a

range of attributes which can influence their behavior, scope, and

security characteristics. "It is important to comprehend these attributes

if you want to deploy safe and efficient cookie-based solutions..

Domain and Path Attributes: Domain and Path attributes help us

identify the URLs to which a cookie needs to be sent..

Domain — The dot character (.) specifies the domain for which

the cookie is valid. A cookie is, by default, sent only to the domain

that set it. But you can set a cookie accessible to subdomains by

providing a domain prepended with a dot.

Cookie domainCookie = new Cookie("sitePreferences",

"darkMode:true");

domainCookie. setDomain(". example. com"); // Only available on

example. com

response. addCookie(domainCookie);.

Path Attribute: Specifies the portion of the URL path that must

exist in the requested resource before sending the Cookie header.

Cookies are by default set for the path of the URL where the

setting occurs. Domain and Path Example: Setting the path to “/”

will make the cookie accessible across the entire domain.

Cookie pathCookie = new Cookie("shopCart", "item1:3,item2:1");

pathCookie.setPath("/shop"); // Only available to URLs starting with

/shop

response.addCookie(pathCookie);

In this example, the cookie will be sent only to pages under the /shop

path, such as /shop/cart and /shop/products.

Secure and HttpOnly Flags

These flags enhance cookie security by restricting when and how

cookies are transmitted and accessed.

Secure Flag: When set, the cookie is only sent over HTTPS

connections, protecting it from interception over unsecured channels.

Cookie secureCookie = new Cookie("authToken", generateToken());

secureCookie.setSecure(true); // Only sent over HTTPS

response.addCookie(secureCookie);

211
MATS Centre for Distance and Online Education, MATS University

Notes This is particularly important for cookies containing sensitive

information like authentication tokens.

3.3.28 HttpOnly Flag: Prevents client-side JavaScript from accessing

the cookie, mitigating the risk of cross-site scripting (XSS) attacks.

Cookie httpOnlyCookie = new Cookie("sessionId", sessionId);

httpOnlyCookie.setHttpOnly(true); // Not accessible via JavaScript

response.addCookie(httpOnlyCookie);

By using the HttpOnly flag, even if an attacker manages to inject

malicious JavaScript into your page, they won't be able to access the

cookie directly.

3.3.29 SameSite Attribute (Servlet API 4.0+): The SameSite

attribute, introduced in newer servlet specifications, controls whether

cookies are sent with cross-site requests, providing protection against

cross-site request forgery (CSRF) attacks.

Cookie sameSiteCookie = new Cookie("csrfToken",

generateCSRFToken());

sameSiteCookie.setAttribute("SameSite", "Strict"); // Only sent in

same-site context

response.addCookie(sameSiteCookie);

The SameSite attribute can have three values:

Strict: The cookie is only sent in a first-party context.

Lax: The cookie is sent with top-level navigations and with GET

requests from other sites.

None: The cookie is sent in all contexts, including cross-site requests.

Note that when using SameSite=None, the cookie must also have the

Secure flag set.

7.4.4 Expiration and MaxAge

The expiration time of a cookie can be controlled using the

setMaxAge() method, which specifies the cookie's lifespan in

seconds.

// Session cookie (expires when the browser is closed)

Cookie sessionCookie = new Cookie("tempData", "value");

sessionCookie.setMaxAge(-1); // Default behavior for session cookies

response.addCookie(sessionCookie);

// Persistent cookie (expires after a specific time)

Cookie persistentCookie = new Cookie("userPrefs", "theme:dark");

persistentCookie.setMaxAge(60 * 60 * 24 * 30); // 30 days in seconds

212
MATS Centre for Distance and Online Education, MATS University

Notes response.addCookie(persistentCookie);

// Delete a cookie

Cookie deleteCookie = new Cookie("oldCookie", "");

deleteCookie.setMaxAge(0); // Expires immediately

response.addCookie(deleteCookie);

The MaxAge value determines whether a cookie is stored temporarily

in memory or persistently on disk, and for how long it remains valid.

3.3.30 Cookie Size Limitations: Browsers impose limits on cookie

size and the number of cookies allowed per domain. These limitations

vary by browser but generally include:

• Maximum size per cookie: Usually around 4KB

• Maximum number of cookies per domain: Typically 50-60

• Maximum total size of all cookies for a domain: Around 4KB

to 10KB

Given these constraints, it's important to use cookies efficiently:

// BAD PRACTICE: Storing large data in cookies

Cookie largeCookie = new Cookie("userData", largeJsonObject); //

May exceed limits

// BETTER PRACTICE: Store minimal data in cookies

Cookie idCookie = new Cookie("userId", "12345");

response.addCookie(idCookie);

// Retrieve additional data from server-side storage as needed

For large amounts of data, consider alternatives like HTML5 Web

Storage (localStorage/sessionStorage) or IndexedDB, with cookies

used primarily for authentication and session management.

3.3.31 Cookie Security Best Practices :Implementing secure cookie

practices is essential for protecting user data and preventing common

attacks:

3.3.32 Use the Secure flag for sensitive cookies:

authCookie.setSecure(true);

3.3.33 Apply the HttpOnly flag to prevent XSS attacks:

authCookie.setHttpOnly(true);

3.3.34 Implement proper cookie expiration:

// Set reasonable expiration times based on the cookie's purpose

authCookie.setMaxAge(60 * 30); // 30 minutes for authentication

213
MATS Centre for Distance and Online Education, MATS University

Notes 3.3.35 Validate cookie data:

String cookieValue = cookie.getValue();

if (isValidFormat(cookieValue)) {

 // Process the cookie

} else {

 // Handle invalid data (potential tampering)

}

3.3.36 Encrypt sensitive cookie values:

// Example of encrypting cookie value

String encryptedValue = encryptData(rawValue, encryptionKey);

Cookie encryptedCookie = new Cookie("sensitiveData",

encryptedValue);

3.3.37 Implement CSRF protection alongside cookies:

// Generate and store CSRF token

String csrfToken = generateRandomToken();

Cookie csrfCookie = new Cookie("csrfToken", csrfToken);

csrfCookie.setHttpOnly(false); // Allow JavaScript access for form

submission

response.addCookie(csrfCookie);

// Store token in session for server-side verification

session.setAttribute("csrfToken", csrfToken);

By following these best practices, developers can leverage the

benefits of cookies while minimizing security risks.

3.3.38 Session Tracking in Java Web Applications

In contrast, cookies are a mechanism for storing small bits of

information on the client side, but come with limitations in terms of

size, count, and security. Whereas cookie is limited to a single

request, session tracking is used to maintain status between multiple

requests.

3.3.39 Need for Session Tracking: The statelessness of HTTP poses

great difficulties for interactive web application development. You

have no context beyond the input you received with every request.

This limitation presents a problem in situations like:

• Multi-step processes: These are operations such as checkout

workflows, multi-page forms, or wizard interfaces that

involve multiple steps and require maintaining state across

multiple requests.

214
MATS Centre for Distance and Online Education, MATS University

Notes • User authentication: Remembering who is logged-in without

asking for credentials on every request.

• Application state: Value can be used to to keep and manage

complex state for an application, such as shopping carts, game

states, or workspace configurations.

• Customization: Providing tailored content based on user

preference or browsing history.

3.3.40 Session Tracking

The Servlet specification in Java has support for multiple session

tracking mechanisms:

• Cookie-Based Sessions : The server creates it and sends it to

the client as a cookie. This cookie is included in subsequent

requests, permitting the server to identify the session.

• URL Rewriting: For those browsers that do not support or

have disabled cookies, at the end of the URLs the session ID

may be appended as a parameter.

• SSL Sessions: The SSL session ID can be used to keep the

session state for HTTPS connections without cookies or URL

parameters.

Hidden Form Fields One way is to use session IDs as hidden fields in

HTML forms and post them along with form data. Out of which,

session through cookies is the most common and reliable way to

implement it, whereas URL rewriting could be fall back when no

cookies available Of these mechanisms, cookie-based sessions are the

most common and reliable approach, with URL rewriting often used

as a fallback when cookies are unavailable.

3.3.41 The HttpSession API: Java's Servlet API offers complete

interaction with session management using the HttpSession interface.

This means developers can use this API for session tracking without

worrying about the underlying mechanism.

3.3.42 Creating or Retrieving a Session:

// Get the current session, or create one if it doesn't exist

HttpSession session = request.getSession();

// Get the current session only if it exists, without creating a new one

HttpSession existingSession = request.getSession(false);

The request.getSession() method returns the current session object

associated with the request. If no session exists, it creates a new one

215
MATS Centre for Distance and Online Education, MATS University

Notes automatically. This behavior can be controlled using the boolean

parameter: request.getSession(boolean create).

3.3.43 Storing and Retrieving Data in Sessions:

// Store data in the session

session.setAttribute("username", "john_doe");

session.setAttribute("loginTime", new Date());

session.setAttribute("shoppingCart", cartObject);

// Retrieve data from the session

String username = (String) session.getAttribute("username");

Date loginTime = (Date) session.getAttribute("loginTime");

ShoppingCart cart = (ShoppingCart)

session.getAttribute("shoppingCart");

// Remove data from the session

session.removeAttribute("temporaryData");

The session acts as a map-like structure, storing attributes as key-

value pairs. These attributes can be of any Java type, including

complex objects, as long as they implement the Serializable interface.

3.3.44 Managing Session Lifecycle:

// Get session creation time

long creationTime = session.getCreationTime();

// Get last accessed time

long lastAccessTime = session.getLastAccessedTime();

// Set session timeout (in seconds)

session.setMaxInactiveInterval(1800); // 30 minutes

// Invalidate (terminate) the session

session.invalidate();

The session timeout specifies how long the session remains active

without client interaction. After the specified period of inactivity, the

server automatically invalidates the session. Sessions can also be

explicitly invalidated using the invalidate() method, typically during

logout operations.

3.3.45 Accessing Session Metadata:

// Get the session ID

216
MATS Centre for Distance and Online Education, MATS University

Notes String sessionId = session.getId();

// Check if this is a new session

boolean isNew = session.isNew();

// Get the maximum inactive interval

int maxInactiveInterval = session.getMaxInactiveInterval();

These methods provide access to session metadata, which can be

useful for debugging, logging, and session management operations.

3.3.46 Session Tracking Implementation Examples

Let's explore some practical examples of session tracking in Java web

applications:

Example 1: User Authentication and Authorization

@WebServlet("/login")

public class LoginServlet extends HttpServlet {

 @Override

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 String username = request.getParameter("username");

 String password = request.getParameter("password");

 // Validate credentials (simplified example)

 if (isValidUser(username, password)) {

 // Get the session (create if it doesn't exist)

 HttpSession session = request.getSession();

 // Store user information in the session

 User user = getUserDetails(username);

 session.setAttribute("user", user);

 session.setAttribute("authenticated", true);

 session.setAttribute("loginTime", new Date());

 // Set session timeout (30 minutes)

 session.setMaxInactiveInterval(30 * 60);

217
MATS Centre for Distance and Online Education, MATS University

Notes // Redirect to dashboard

 response.sendRedirect("dashboard");

 } else {

 // Authentication failed - redirect back to login page

 request.setAttribute("errorMessage", "Invalid username or

password");

 request.getRequestDispatcher("/login.jsp").forward(request,

response);

 }

 }

 // Validation methods (implementation details omitted)

 private boolean isValidUser(String username, String password) { /*

... */ }

 private User getUserDetails(String username) { /* ... */ }

}

This example demonstrates how sessions can be used to track

authenticated users. After successful authentication, user information

is stored in the session, allowing subsequent requests to verify the

user's identity without re-authenticating.

Example 2: Shopping Cart Implementation

@WebServlet("/cart/*")

public class ShoppingCartServlet extends HttpServlet {

 @Override

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Get the current session (don't create a new one)

 HttpSession session = request.getSession(false);

 if (session == null) {

 // No session exists - redirect to homepage

 response.sendRedirect("/home");

 return;

 }

218
MATS Centre for Distance and Online Education, MATS University

Notes // Retrieve cart from session

 ShoppingCart cart = (ShoppingCart) session.getAttribute("cart");

 if (cart == null) {

 // Initialize cart if it doesn't exist

 cart = new ShoppingCart();

 session.setAttribute("cart", cart);

 }

 // Display cart contents

 request.setAttribute("cartItems", cart.getItems());

 request.setAttribute("totalPrice", cart.getTotalPrice());

 request.getRequestDispatcher("/cart.jsp").forward(request,

response);

 }

 @Override

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Get current session or create one

 HttpSession session = request.getSession();

 // Get cart from session or create a new one

 ShoppingCart cart = (ShoppingCart) session.getAttribute("cart");

 if (cart == null) {

 cart = new ShoppingCart();

 session.setAttribute("cart", cart);

 }

 // Process cart operation

 String action = request.getParameter("action");

 if ("add".equals(action)) {

 // Add item to cart

 String productId = request.getParameter("productId");

 int quantity =

Integer.parseInt(request.getParameter("quantity"));

219
MATS Centre for Distance and Online Education, MATS University

Notes cart.addItem(productId, quantity);

 } else if ("remove".equals(action)) {

 // Remove item from cart

 String productId = request.getParameter("productId");

 cart.removeItem(productId);

 } else if ("clear".equals(action)) {

 // Clear cart

 cart.clear();

 }

 // Redirect back to cart display

 response.sendRedirect("/cart");

 }

}

In this example, we highlight a cart functionality implemented to

keep track of the items in your session. This cart object is saved in the

session object giving the user the ability to add, delete, and view items

while making multiple requests..

7.5.5 Session Management Best Practices

Session management needs to be done with the utmost attention to

detail with regards to security, performance, and user experience:

3.3.47 Security Considerations:

Session ID Protection:

// Configure the session cookie to be secure and HttpOnly

@WebServlet("/secureApp")

public class SecureAppServlet extends HttpServlet {

 @Override

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 // Configure session cookies

 ServletContext context = config.getServletContext();

 context.getSessionCookieConfig().setHttpOnly(true);

 context.getSessionCookieConfig().setSecure(true);

 }

 // Servlet methods...

}

Session Fixation Prevention:

220
MATS Centre for Distance and Online Education, MATS University

Notes // After successful authentication, regenerate the session ID

@WebServlet("/login")

public class SecureLoginServlet extends HttpServlet {

 @Override

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Authenticate user...

 // After successful authentication

 if (authenticated) {

 // Get current session data

 HttpSession oldSession = request.getSession();

 Map<String, Object> attributes = new HashMap<>();

 Enumeration<String> names =

oldSession.getAttributeNames();

 while (names.hasMoreElements()) {

 String name = names.nextElement();

 attributes.put(name, oldSession.getAttribute(name));

 }

 // Invalidate current session

 oldSession.invalidate();

 // Create new session

 HttpSession newSession = request.getSession(true);

 // Copy attributes to new session

 for (Map.Entry<String, Object> entry : attributes.entrySet()) {

 newSession.setAttribute(entry.getKey(), entry.getValue());

 }

 // Set authentication flag

 newSession.setAttribute("authenticated", true);

 }

 }

}

221
MATS Centre for Distance and Online Education, MATS University

Notes 3.3.48 Proper Session Termination:

@WebServlet("/logout")

public class LogoutServlet extends HttpServlet {

 @Override

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 // Get current session

 HttpSession session = request.getSession(false);

 if (session != null) {

 // Invalidate the session

 session.invalidate();

 }

 // Clear authentication cookie if used

 Cookie authCookie = new Cookie("authToken", "");

 authCookie.setMaxAge(0);

 authCookie.setPath("/");

 response.addCookie(authCookie);

 // Redirect to login page

 response.sendRedirect("/login");

 }

}

3.3.49 Performance Optimization:

Minimize Session Data: Store only necessary data in the session to

reduce memory consumption and serialization/deserialization

overhead.

Session Timeout Management: Balance security and user experience

when setting session timeouts:

// Short timeout for sensitive operations

session.setMaxInactiveInterval(900); // 15 minutes

// Longer timeout for regular browsing

session.setMaxInactiveInterval(3600); // 1 hour

222
MATS Centre for Distance and Online Education, MATS University

Notes Session Clustering and Persistence: For high-availability

applications, configure session replication or persistence:

<!-- Example Tomcat context.xml configuration -->

<Context>

<Manager

className="org.apache.catalina.session.PersistentManager"

 saveOnRestart="true">

<Store className="org.apache.catalina.session.FileStore"

 directory="/tmp/sessions"/>

</Manager>

</Context>

Summary

This module focuses on Servlet Technology, a crucial component of

Java 2 Enterprise Edition (J2EE), used for developing dynamic and

scalable web applications. It begins with an introduction to the J2EE

architecture, helping learners understand the multi-tiered structure of

enterprise applications. Key components such as client-tier, web-tier,

business-tier, and enterprise information systems (EIS) are explained

to provide a clear picture of how web applications are structured and

deployed.

A significant part of the module is dedicated to exploring the Servlet

API, including the creation and structure of servlets. Learners study

how servlets are initialized, executed, and destroyed through their life

cycle methods: init(), service(), and destroy(). This foundation

enables them to build and manage servlets within web containers such

as Apache Tomcat.

The module also covers form data handling, where users interact with

a web form and send data to the server. Students learn how to retrieve

this data using methods like getParameter() and process it

effectively. The request-response mechanism is analyzed in depth,

showing how client inputs are captured and meaningful responses are

sent back using HttpServletRequest and HttpServletResponse.

Furthermore, the module introduces session tracking techniques,

essential for maintaining user state across multiple requests in stateless

HTTP. It includes concepts like cookies, hidden form fields, URL

rewriting, and HttpSession management, enabling developers to build

user-friendly and personalized web applications.

By the end of this module, learners gain a strong understanding of

servlet programming, including handling client-server communication,

managing sessions, and building dynamic web components within the

J2EE platform.

223
MATS Centre for Distance and Online Education, MATS University

Notes 3.3.50 Multiple-Choice Questions (MCQs)

1. What does J2EE stand for?

a) Java 2 Enterprise Edition

b) Java 2 Embedded Edition

c) Java Enterprise and Embedded Edition

d) Java Enterprise Evolution

Answer: a) Java 2 Enterprise Edition

2. Which of the following is not a component of a Java Servlet?

a) doGet()

b) doPost()

c) doPush()

d) init()

Answer: c) doPush()

3. In which phase of the servlet life cycle is the destroy() method

called?

a) Initialization phase

b) Service phase

c) Termination phase

d) Compilation phase

Answer: c) Termination phase

4. How can a servlet read form data sent by an HTML form?

a) request.getParameter("name")

b) request.readFormData("name")

c) request.getInput("name")

d) request.receive("name")

Answer: a) request.getParameter("name")

5. What is the purpose of session tracking in servlets?

a) To maintain client state across multiple requests

b) To validate user input

c) To handle file uploads

d) To close database connections

Answer: a) To maintain client state across multiple requests

Short Answer Questions

1. What are the main components of J2EE architecture?

2. Explain the purpose of the doGet() and doPost() methods in

servlets.

3. What are the different phases of the servlet life cycle?

4. How do you store and retrieve cookies in a servlet?

224
MATS Centre for Distance and Online Education, MATS University

Notes 5. What is the difference between session tracking using cookies

and using HttpSession?

Long Answer Questions

1. Explain the architecture of J2EE and its key components.

2. Describe the life cycle of a Java servlet with an example.

3. How can a servlet handle user input from an HTML form?

Provide an example program.

4. Explain the process of handling client requests and generating

server responses in Java servlets.

5. What are the different session tracking techniques in servlets?

Compare them with examples.

225

Module 4

JSP Technology

LEARNING OUTCOMES

• To understand the concept, need, and benefits of JSP.

• To explore the life cycle of JSP.

• To study scripting elements and implicit objects.

• To analyze directive elements and action elements in JSP.

226
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4.1: Introduction, Need and Benefit of JSP, Life

Cycle of JSP

4.1.1 Introduction to JSP

JSP(JavaServer Pages) server-side technology to create dynamic web

pages and web applications. Java Server Pages (JSP) is a web

application technology that is used to create dynamic web content. JSP

separates presentation logic (HTML, CSS) from business logic (Java

code), making web applications easier to maintain and scalable. JSP

allows the development of web pages that are created dynamically,

responding to user actions, form submission results, and return values

from databases, instead of static web pages that are always the same

when accessed. This is done by embedding Java code in special

delimiters () in an HTML page. During the run time, JSPs are

converted into Servlets, which makes it highly performant and reliable.

Due to this feature, JSP is widely used in enterprise-level web

applications, online portals, and content management systems that need

to process data in real-time.

Need and Benefits of JSP: The need for JSP to come into existence

came because static web technologies at that time like HTML and

JavaScript couldn't generate content dynamically on the server side.

The alternative is to use Servlets, but it can be tiresome and less

maintainable when writing HTML inside Java classes using Servlets.

This problem is overcome by JSP in that it allows developers to code

using Java code within an HTML file. Platform independent is one of

the main advantages of JSP as it can be executed on any OS that

supports Java. Then, JSP also provides automatic session management,

which makes it easier to manage user sessions as compared to handling

it manually. Plus, it works in harmony with JavaBeans, JDBC, and

other Java technologies to facilitate database connections and data

management. One of the other major benefits is tag libraries (JSTL),

enabling the code to be reused and improves code modularity and

maintainability. These benefits make JSP a popular choice for

developing enterprise applications, e-commerce simply by using, and

interactive web platforms.

4.1.2 Life Cycle of JSP

A JSP page has three main stages during its life cycle: compilation,

execution, and request handling. The JSP engine first checks if the

227
MATS Centre for Distance and Online Education, MATS University

Notes requested JSP page has already been compiled when a client sends a

request for a JSP page. If not, it compiles the JSP file to a Servlet class.

The translation step converts JSP constructs, such as scriptlets (),

expressions (), and directives (), into corresponding Java code. Once

translated, the Servlet class is compiled to bytecode and loaded into

memory of the web server. At this point, the JSP is ready to deal with

client requests. Execution starts when an HTTP request comes to the

compiled Servlet. The service() method of the created Servlet gets

called, which in turn calls the doGet() or doPost() method based on the

request. The response is then generated and is usually an HTML

document returned to the client's browser. If the JSP file is modified,

translation and compilation processes are restarted to account for

changes.

Compilation, Execution, and Request Handling: After it is compiled

into a Servlet, execution of a JSP page is no different than that for a

conventional Servlet. Initialization — the jspInit() method is called just

once when the JSP page is visited for the first time. This is useful for

configuring database connections or initializing global application-

wide variables. Next step is request processing (the jspService()

method is invoked on each HTTP request) This approach collects the

request parameters, accesses the business logic layer, and construct

Figure 4.1.1: JSP Life Cycle
[Source: https://www.researchgate.net/]

228
MATS Centre for Distance and Online Education, MATS University

Notes HTML content on the fly to serve a response. Destruction: Is the last

step in the life cycle where before the JSP instance is removed from

memory jspDestroy() method is called. This is handy for closing

database connections, freeing resources, or doing cleanup tasks. JSP

uses all the performance enhancements provided by Servlets (e.g.

Caching, Session management) so it is a better technology in terms of

building a scalable web app. The life cycle of a JSP is, therefore,

essential to understanding how JSP-based applications can be

optimized and how data is handled during request processing in actual

production environments.

229
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4.2: JSP Scripting Elements

4.2.1 JSP Scripting Elements:

JSP Declaration

• A declaration tag is a piece of Java code for declaring variables,

methods and classes. If we declare a variable or method inside

declaration tag it means that the declaration is made inside the

servlet class but outside the service method.

• We can declare a static member, an instance variable (can

declare a number or string) and methods inside the declaration

tag.

Syntax of declaration tag:

<%! Dec var %>

Here Dec var is the method or a variable inside the declaration tag.

Example:

In this example, we are going to use the declaration tags

<%@ page language="java" contentType="text/html; charset=ISO-

8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1">

<title>Guru Declaration Tag</title>

</head>

<body>

<%! int count =10; %>

<% out.println("The Number is " +count); %>

</body>

</html>

Explanation the code:

Code Line 10: Here we are using declaration tag for initializing a

variable count to 10.

When you execute the above code you get the following output:

https://www.guru99.com/java-tutorial.html

230
MATS Centre for Distance and Online Education, MATS University

Notes

Output:

The variable which is declared in the declaration tag is printed as

output.

JSP Scriptlet

• Scriptlet tag allows to write Java code into JSP file.

• JSP container moves statements in _jspservice() method while

generating servlet from jsp.

• For each request of the client, service method of the JSP gets

invoked hence the code inside the Scriptlet executes for every

request.

• A Scriptlet contains java code that is executed every time JSP

is invoked.

Syntax of Scriptlet tag:

<% java code %>

Here <%%> tags are scriplets tag and within it, we can place java code.

Example:

In this example, we are taking Scriptlet tags which enclose java code.

<%@ page language="java" contentType="text/html; charset=ISO-

8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1">

<title>Guru Scriplet</title>

</head>

<body>

<% int num1=10;

 int num2=40;

 int num3 = num1+num2;

https://www.guru99.com/images/jsp/022716_0859_JSPElements2.png

231
MATS Centre for Distance and Online Education, MATS University

Notes out.println("Scriplet Number is " +num3);

%>

</body>

</html>

Explanation of the code:

Code Line 10-14: In the Scriptlet tags where we are taking two

variables num1 and num2 . Third variable num3 is taken which adds up

as num1 and num2.The output is num3.

When you execute the code, you get the following output:

Output:

The output for the Scriptlet Number is 50 which is addition of num1

and num2.

JSP Expression

• Expression tag evaluates the expression placed in it.

• It accesses the data stored in stored application.

• It allows create expressions like arithmetic and logical.

• It produces scriptless JSP page.

Syntax:

<%= expression %>

Here the expression is the arithmetic or logical expression.

Example:

In this example, we are using expression tag

<%@ page language="java" contentType="text/html; charset=ISO-

8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1">

https://www.guru99.com/images/jsp/022716_0859_JSPElements4.png

232
MATS Centre for Distance and Online Education, MATS University

Notes <title>Guru Expression</title>

</head>

<body>

<% out.println("The expression number is "); %>

<% int num1=10; int num2=10; int num3 = 20; %>

<%= num1*num2+num3 %>

</body>

</html>

Explanation of the code:

Code Line 12: Here we are using expression tags where we are using

an expression by multiplying two numbers i.e. num1 and num 2 and

then adding the third number i.e. num3.

When you execute the above code, you get the following output:

Output:

The expression number is 120 where we are multiplying two numbers

num1 and num2 and adding that number with the third number.

JSP Comments

Comments are the one when JSP container wants to ignore certain texts

and statements.

When we want to hide certain content, then we can add that to the

comments section.

Syntax:

<% -- JSP Comments %>

T his tags are used to comment in JSP and ignored by the JSP container.

<!—comment –>

This is HTML comment which is ignored by browser

Example:

In this example, we are using JSP comments

<%@ page language="java" contentType="text/html; charset=ISO-

8859-1"

 pageEncoding="ISO-8859-1"%>

https://www.guru99.com/images/jsp/022716_0859_JSPElements6.png

233
MATS Centre for Distance and Online Education, MATS University

Notes <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1">

<title>Guru Comments</title>

</head>

<body>

<%-- Guru Comments section --%>

<% out.println("This is comments example"); %>

</body>

</html>

Explanation of the code:

Code Line 10: Here we are adding JSP comments to the code to

explain what code has. It is been ignored by the JSP container

When you execute the above code you get the following output:

Output:

We get the output that is printed in println method. Comments are

ignored by container

4.2.2 Creating a simple JSP Page

• A JSP page has an HTML body incorporated with Java code

into it

• We are creating a simple JSP page which includes declarations,

scriplets, expressions, comments tags in it.

Example:

<%@ page language="java" contentType="text/html; charset=ISO-

8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

https://www.guru99.com/images/jsp/022716_0859_JSPElements8.png

234
MATS Centre for Distance and Online Education, MATS University

Notes <html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1">

<title>Guru JSP Example</title>

</head>

<body>

<%-- This is a JSP example with scriplets, comments , expressions --

%>

<% out.println("This is guru JSP Example"); %>

<% out.println("The number is "); %>

<%! int num12 = 12; int num32 = 12; %>

<%= num12*num32 %>

Today's date: <%= (new java.util.Date()).toLocaleString()%>

</body>

</html>

Explanation of the code:

Code Line 1: Here we are using directives like language, contentType

and pageEncoding. Language is Java and content type is text/html with

standard charset ISO 8859. Page encoding is standard charset.

Code Line 11: Here we are using JSP comments to add comments to

the JSP

Code Line 14: Here we are declaring variables num12 and num32

initializing with 12.

Code Line 15: Here we are using an expression where we are

multiplying two numbers num12 and num32.

Code Line 16: Here we are fetching today’s date using date object.

When you execute the above code, you get the following output

Output:

We are printing overhere,

• This is guru JSP example.

https://www.guru99.com/images/jsp/022716_0859_JSPElements10.png

235
MATS Centre for Distance and Online Education, MATS University

Notes • The number is num12*num32 (12*12).

• Today’s date is the current date

4.2.3 How to run simple JSP Page

• JSP can be run on web servers or application servers.

• Here we will be using a webserver, and we can deploy it on the

server enclosing it in a war application.

• We can create JSP in an application (war).

This is an application which has following directory structure, and the

application has to be build.

This application has to be built, and the following message will appear

after the build is successful:

After the application is built then, the application has to be run on the

server.

To run JSP on the webserver, right click on the project of the IDE

(eclipse used in this case) and there are many options. Select the option

of run on the server. It is shown in the screenshot below;

From the diagram, following points are explained:

1. There are two options either to choose a server or manually add

the server to this application. In this case, we have already

added JBoss server to the application hence, we select the

existing server.

2. Once we select the server the server option is shown in point 2

which server we want to select. There can be multiple servers

configured on this application. We can select one server from

all those options

3. Once that option is selected click on finish button and

application will run on that server.

https://www.guru99.com/images/jsp/022716_0859_JSPElements11.png
https://www.guru99.com/images/jsp/022716_0859_JSPElements12.png

236
MATS Centre for Distance and Online Education, MATS University

Notes

In the below screenshots, you can notice that our JSP program gets

executed, and the test application is deployed in JBoss server marked

in the red box.

https://www.guru99.com/images/jsp/022716_0859_JSPElements13.png
https://www.guru99.com/images/jsp/022716_0859_JSPElements14.png

237
MATS Centre for Distance and Online Education, MATS University

Notes Directory Structure of JSP

In directory structure, there is a root folder which has folder WEB-INF,

which has all configuration files and library files.

JSP files are outside WEB-INF folder

Directory structure of JSP

Example:

In this example there is test application which has folder structure has

following:

https://www.guru99.com/images/jsp/022716_0859_JSPElements15.png
https://www.guru99.com/images/jsp/022716_0859_JSPElements16.png

238
MATS Centre for Distance and Online Education, MATS University

Notes So JavaServer Pages (JSP) technology allows developers to create

dynamic web content by embedding Java code within HTML pages.

JSP scripting elements are the mechanisms through which this

integration occurs, enabling the execution of Java logic within the web

page. These elements fall into three primary categories: scriptlet tags,

expression tags, and declaration tags. Scriptlet tags, denoted by <% ...

%>, are used to embed Java code that will be executed when the JSP

page is requested. This code can include any valid Java statement, such

as variable declarations, control flow statements (if-else, loops), and

method calls. Scriptlets are particularly useful for performing server-

side processing, such as retrieving data from a database, manipulating

data, and generating dynamic content. For instance, a scriptlet could be

used to iterate through a list of products and display them in an HTML

table. Expression tags, represented by <%= ... %>, are used to insert the

result of a Java expression directly into the output stream. The

expression within the tag is evaluated, and the result is converted to a

string and inserted into the HTML. This is useful for displaying

dynamic data, such as the current date and time, user input, or the result

of a calculation. For example, <%= new java.util.Date() %> would

display the current date and time. Declaration tags, denoted by <%! ...

%>, are used to declare variables and methods that are accessible

throughout the JSP page. Declarations are typically placed at the

beginning of the JSP page and are used to define reusable code

components. For example, a declaration could be used to define a

method that calculates the sum of two numbers, which can then be

called from scriptlets or expression tags within the page. The order in

which these scripting elements are processed is crucial. Scriptlets are

executed first, followed by declarations, and then expressions.

Scriptlets can modify the state of the page, such as by setting request or

session attributes, which can then be accessed by subsequent scriptlets

or expressions. Declarations define the structure of the JSP page, such

as by defining variables and methods that can be used throughout the

page. Expressions are evaluated and their results are inserted into the

output stream, generating the dynamic content that is displayed to the

user. The use of scripting elements allows developers to create dynamic

web pages that respond to user input and server-side events. However,

excessive use of scriptlets can lead to code that is difficult to maintain

and debug. Best practices suggest minimizing the use of scriptlets and

239
MATS Centre for Distance and Online Education, MATS University

Notes encapsulating business logic in Java classes, which can then be

accessed from the JSP page using JavaBeans or custom tags. This

approach promotes code reusability, maintainability, and separation of

concerns.Answer: JavaServer Pages (JSP) is a technology that helps

software developers create dynamically-generated web pages based on

HTML, XML, or other document types. This integration occurs by

way of JSP scripting elements, which allow Java logic to be executed

inside the web page. These components are divided into three types :

scriptlet tags, expression tags and declaration tags. The flags denoted

by are scriptlets which are hashed embedded Java Code that will be

executed when the JSP page will be requested. Your code here can be

any legal Java statement – variable declarations, control flow

statements (if-else, loops), or a call to a method. One of the special

purposes where scriptlets can be very helpful is server-side processing

in which it can be used to pull to data from the database, process data,

and generate dynamic content. Example: Show products in an HTML

table using Scriptlet But example: You can show the list of products in

an HTML table using a Scriptlet. Expression tags () insert the result of

a Java expression into the output stream. It evaluates the expression

found inside the tag, converts the result to a string, and inserts it in the

HTML. This is also useful for showing dynamic data like current

date/time, user input, or result of a calculation. For example, — would

render the current date and time. These declaration tags start with is

used to import any Java classes/page variables declared here are

available throughout the JSP page. Declarations are used to define

reusable code components and are normally found at the top of the JSP

page. For purpose, a declaration will help you tell Jsp that it's a method

that calculates the addition of 2 numbers and that method can also be

called in Jsp via script lets or expression tags. The sequence for the

processing of these scripting components is very important. The order

of scriptlets, declarations, and expressions are executed one after the

other. Scriptlets can change the state of the page, such as by setting

request or session attributes, which can be read by subsequent scriptlets

or expressions. Declarations specifies the structure of a JSP page by

declaring a variables and methods, these can be used in the whole JSP

page. This is done by evaluating the expressions and inserting their

results into the output stream, which is the dynamic content shown to

the user as well. This is how to use scripting elements to develop

240
MATS Centre for Distance and Online Education, MATS University

Notes dynamic web pages which respond and update showing user

information and activities on the server. This doesn't always translate

well when working with snippets of code, for example, in file

processing or scrapers, where code is quickly written and deployed,

sometimes in languages that require multiple steps to execute, such as

Python. Recommended practice is to have a less use of scriptlet, keep

the business logic in java classes and access these classes from the JSP

page using JavaBeans or custom tags. It helps in reusing the code,

maintainability and separation.

241
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4.3: Implicit Objects

4.3.1 Implicit Objects:

What is JSP Implicit object?

• JSP implicit objects are created during the translation phase of

JSP to the servlet.

• These objects can be directly used in scriplets that goes in the

service method.

• They are created by the container automatically, and they can

be accessed using objects.

How many Implicit Objects are available in JSP?

There are 9 types of implicit objects available in the container:

1. Out

2. Request

3. Response

4. Config

5. Application

6. Session

7. PageContext

8. Page

9. Exception

1) Out

• Out is one of the implicit objects to write the data to the buffer

and send output to the client in response

• Out object allows us to access the servlet’s output stream

• Out is object of javax.servlet.jsp.jspWriter class

• While working with servlet, we need printwriter object

Example:

<%@ page language="java" contentType="text/html; charset=ISO-

8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1">

https://www.guru99.com/difference-between-servlets-vs-jsp.html

242
MATS Centre for Distance and Online Education, MATS University

Notes <title>Implicit Guru JSP1</title>

</head>

<body>

<% int num1=10;int num2=20;

out.println("num1 is " +num1);

out.println("num2 is "+num2);

%>

</body>

</html>

Explanation of the code:

Code Line 11-12– out is used to print into output stream

When we execute the above code, we get the following output:

Output:

• In the output, we get the values of num1 and num2

2) Request

• The request object is an instance of

java.servlet.http.HttpServletRequest and it is one of the

argument of service method

• It will be created by container for every request.

• It will be used to request the information like parameter, header

information , server name, etc.

• It uses getParameter() to access the request parameter.

Example:

Implicit_jsp2.jsp(form from which request is sent to guru.jsp)

<%@ page language="java" contentType="text/html; charset=ISO-

8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ8.png

243
MATS Centre for Distance and Online Education, MATS University

Notes <head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1">

<title>Implicit Guru form JSP2</title>

</head>

<body>

<form action="guru.jsp">

<input type="text" name="username">

<input type="submit" value="submit">

</form>

</body>

</html>

Guru.jsp (where the action is taken)

Explanation of code:

Code Line 10-13 : In implicit_jsp2.jsp(form) request is sent, hence the

variable username is processed and sent to guru.jsp which is action of

JSP.

Guru.jsp

Code Line10-11: It is action jsp where the request is processed, and

username is taken from form jsp.

When you execute the above code, you get the following output

Output:

https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ10.png
https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ11.png

244
MATS Centre for Distance and Online Education, MATS University

Notes When you write test and click on the submit button, then you get the

following output “Welcome Test.”

3) Response

• “Response” is an instance of class which implements

HttpServletResponse interface

• Container generates this object and passes to _jspservice()

method as parameter

• “Response object” will be created by the container for each

request.

• It represents the response that can be given to the client

• The response implicit object is used to content type, add cookie

and redirect to response page

Example:

<%@ page language="java" contentType="text/html; charset=ISO-

8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1">

<title>Implicit Guru JSP4</title>

</head>

<body>

<%response.setContentType("text/html"); %>

</body>

</html>

Explanation of the code:

Code Line 11: In the response object we can set the content type

https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ12.png

245
MATS Centre for Distance and Online Education, MATS University

Notes Here we are setting only the content type in the response object. Hence,

there is no output for this.

4) Config

• “Config” is of the type java.servlet.servletConfig

• It is created by the container for each jsp page

• It is used to get the initialization parameter in web.xml

Example:

Web.xml (specifies the name and mapping of the servlet)

Implicit_jsp5.jsp (getting the value of servlet name)

<%@ page language="java" contentType="text/html; charset=ISO-

8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1">

<title>Implicit Guru JSP5</title>

</head>

<body>

<% String servletName = config.getServletName();

out.println("Servlet Name is " +servletName);%>

</body>

</html>

Explanation of the code:

In web.xml

Code Line 14-17: In web.xml we have mapping of servlets to the

classes.

https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ14.png

246
MATS Centre for Distance and Online Education, MATS University

Notes Implicit_jsp5.jsp

Code Line 10-11: To get the name of the servlet in JSP, we can use

config.getServletName, which will help us to get the name of the

servlet.

When you execute the above code you get the following output:

Output:

• Servlet name is “GuruServlet” as the name is present in

web.xml

5) Application

• Application object (code line 10) is an instance of

javax.servlet.ServletContext and it is used to get the context

information and attributes in JSP.

• Application object is created by container one per application,

when the application gets deployed.

• Servletcontext object contains a set of methods which are used

to interact with the servlet container.We can find information

about the servlet container

Example:

<%@ page language="java" contentType="text/html; charset=ISO-

8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1">

<title>Guru Implicit JSP6</title>

</head>

<body>

<% application.getContextPath(); %>

https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ16.png

247
MATS Centre for Distance and Online Education, MATS University

Notes </body>

</html>

Explanation of the code:

• In the above code, application attribute helps to get the context

path of the JSP page.

6) Session

• The session is holding “httpsession” object(code line 10).

• Session object is used to get, set and remove attributes to session

scope and also used to get session information

Example:

Implicit_jsp7(attribute is set)

<%@ page language="java" contentType="text/html; charset=ISO-

8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1">

<title>Implicit JSP</title>

</head>

<body>

<% session.setAttribute("user","GuruJSP"); %>

Click here to get user name

</body>

</html>

Implicit_jsp8.jsp (getAttribute)

<%@ page language="java" contentType="text/html; charset=ISO-

8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

248
MATS Centre for Distance and Online Education, MATS University

Notes <meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1">

<title>implicit Guru JSP8</title>

</head>

<body>

<% String name = (String)session.getAttribute("user");

out.println("User Name is " +name);

%>

</body>

</html>

Explanation of the code:

Implicit_jsp7.jsp

Code Line 11: we are setting the attribute user in the session variable,

and that value can be fetched from the session in whichever jsp is called

from that (_jsp8.jsp).

Code Line 12: We are calling another jsp on href in which we will get

the value for attribute user which is set.

Implicit_jsp8.jsp

Code Line 11: We are getting the value of user attribute from session

object and displaying that value

When you execute the above code, you get the following output:

When you click on the link for the username. You will get the following

output.

https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ20.png
https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ21.png

249
MATS Centre for Distance and Online Education, MATS University

Notes Output:

• When we click on link given in implicit_jsp7.jsp then we are

redirected to second jsp page, i.e (_jsp8.jsp) page and we get the

value from session object of the user attribute (_jsp7.jsp).

7) PageContext

• This object is of the type of pagecontext.

• It is used to get, set and remove the attributes from a particular

scope

Scopes are of 4 types:

• Page

• Request

• Session

• Application

Example:

<%@ page language="java" contentType="text/html; charset=ISO-

8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1">

<title>Implicit Guru JSP9</title>

</head>

<body>

<%

pageContext.setAttribute("student","gurustudent",pageContext.PAGE

_SCOPE);

String name = (String)pageContext.getAttribute("student");

out.println("student name is " +name);

%>

</body>

</html>

250
MATS Centre for Distance and Online Education, MATS University

Notes Explanation of the code:

Code Line 11: we are setting the attribute using pageContext object,

and it has three parameters:

• Key

• Value

• Scope

In the above code, the key is student and value is “gurustudent” while

the scope is the page scope. Here the scope is “page” and it can get

using page scope only.

Code Line 12: We are getting the value of the attribute using

pageContext

When you execute the above code, you get the following output:

Output:

• The output will print “student name is gurustudent”.

8) Page

• Page implicit variable holds the currently executed servlet

object for the corresponding jsp.

• Acts as this object for current jsp page.

Example:

In this example, we are using page object to get the page name using

toString method

<%@ page language="java" contentType="text/html; charset=ISO-

8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1">

251
MATS Centre for Distance and Online Education, MATS University

Notes <title>Implicit Guru JSP10</title>

</head>

<body>

<% String pageName = page.toString();

out.println("Page Name is " +pageName);%>

</body>

</html>

Explanation of the code:

Code Line 10-11: In this example, we are trying to use the method

toString() of the page object and trying to get the string name of theJSP

Page.

When you execute the code you get the following output:

Output:

• Output is string name of above jsp page

9) Exception

• Exception is the implicit object of the throwable class.

• It is used for exception handling in JSP.

• The exception object can be only used in error pages.Example:

<%@ page language="java" contentType="text/html; charset=ISO-

8859-1"

 pageEncoding="ISO-8859-1" isErrorPage="true"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-

8859-1">

<title>Implicit Guru JSP 11</title>

</head>

<body>

https://www.guru99.com/jsp-exception-handling.html
https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ25.png

252
MATS Centre for Distance and Online Education, MATS University

Notes <%int[] num1={1,2,3,4};

out.println(num1[5]);%>

<%= exception %>

</body>

</html>

Explanation of the code:

Code Line 10-12 – It has an array of numbers, i.e., num1 with four

elements. In the output, we are trying to print the fifth element of the

array from num1, which is not declared in the array list. So it is used to

get exception object of the jsp.

Output:

We are getting ArrayIndexOfBoundsException in the array where we

are getting a num1 array of the fifth element.

So JSP provides a set of predefined objects, known as implicit objects,

which are automatically available to developers within the JSP page.

These objects provide access to server-side resources and contextual

information, simplifying the development of dynamic web

applications. The implicit objects include request, response, config,

application, session, pageContext, page, and exception. The request

https://www.guru99.com/images/jsp/022716_0953_JSPActionsJ27.png

253
MATS Centre for Distance and Online Education, MATS University

Notes object, an instance of javax.servlet.http.HttpServletRequest, provides

access to information about the client's request, such as request

parameters, headers, and cookies. Developers can use the request object

to retrieve form data, access session attributes, and handle file uploads.

The response object, an instance of

javax.servlet.http.HttpServletResponse, allows developers to send data

back to the client, such as HTML content, images, and other resources.

Developers can use the response object to set response headers,

cookies, and redirect the client to another page. The config object, an

instance of javax.servlet.ServletConfig, provides access to servlet

configuration information, such as initialization parameters and servlet

context. Developers can use the config object to retrieve configuration

settings for the JSP page. The application object, an instance of

javax.servlet.ServletContext, provides access to application-wide

resources and attributes. Developers can use the application object to

share data between different JSP pages and servlets within the same

web application. The session object, an instance of

javax.servlet.http.HttpSession, provides access to session-specific data

and attributes. Developers can use the session object to store user-

specific information, such as login credentials and shopping cart

contents. The pageContext object, an instance of

javax.servlet.jsp.PageContext, provides access to the JSP page's

context, including access to other implicit objects and page-scoped

attributes. Developers can use the pageContext object to forward

requests to other pages, include other resources, and manage page-

scoped attributes. The page object, an instance of java.lang.Object,

represents the JSP page itself. In most cases, it is equivalent to the this

keyword. The exception object, an instance of java.lang.Throwable, is

available only in error pages and provides access to the exception that

caused the error. Developers can use the exception object to display

error messages and log error details. The implicit objects are

automatically created and initialized by the JSP container when the JSP

page is requested. They are accessible within scriptlets, expression tags,

and declaration tags. The request and session objects are particularly

useful for managing user sessions and handling form data. The

application object is useful for sharing data between different parts of

the web application. The pageContext object provides a convenient

way to access other implicit objects and manage page-scoped attributes.

254
MATS Centre for Distance and Online Education, MATS University

Notes The exception object simplifies error handling in JSP pages.

Understanding and effectively using these implicit objects is essential

for developing robust and efficient JSP applications.

4.3.2 Directive Elements:

Directive Elements JSP directive elements used to control the overall

behavior of the JSP page and also to provide the configuration

information to the JSP page to the container. These elements do not

produce any output that has to be sent to the client, instead they control

the general structure and behavior of the JSP page. Directive elements

are found at the top of the JSP page and start with . Directive elements

can be of three types: page, include, and taglib. Indeed, the page

directive defines page-specific properties like content type, import

statements, and error page configuration. The page directive contain

attributes like contentType, import, errorPage, isErrorPage, session,

buffer, autoFlush, info, isThreadSafe, language, extends. The

contentType is a string representation of the MIME type of the

response, e.g., text/html or application/json. The import attribute allows

for the importing of Java classes and packages so that they are

available for use in the JSP page. The URL of the error page to be

displayed in case of Exception is defined using the errorPage attribute.

isErrorPage attribute determines whether the page is an error page

Example of using session in in JSP page The session attribute:

Determines whether the JSP page participates in a session.

ParseBuffer(buffer,20); This instruction parses a response buffer of 20

bytes. autoFlush attribute specifies the buffer autoFlush or not The info

attribute provides a description of the JSP page. The isThreadSafe

attribute indicates if the JSP page is thread safe. The language

parameter specifies the scripting language in the JSP page. The

extends attribute in id extends the superclass of the generated servlet.

The line with the include directive looks like this: Other than that, the

included file can be a static HTML file, another JSP, servlet or any

other resource that is available to the JSP container. There are two

forms of the include directive: a static one and a dynamic one. Static

include: () – Includes the file at translation time, that is, the included

file is processed only once, during JSP page compilation. Dynamic

include or generates the file at request time which means the included

file will be processed each time the JSP page is requested. This article

explains the usage of JSP Taglibs along with an example JSP page. The

255
MATS Centre for Distance and Online Education, MATS University

Notes taglib directive has two attributes: prefix and uri. The uri attribute

indicates the URI of the tag library descriptor (TLD) file that defines

the custom tags. The prefix attribute defines the prefix to be used by the

custom tags in the JSP page. At the same time, directive elements can

guide the JSP pages in behavior and structure. They allows us to

process page-level settings (like external resources) and add a custom

tag. So keyword such are Directive element must be used appropriately

in JSP application to more effectively.

4.3.3 Advanced JSP Scripting and Implicit Object Utilization

While its basic usage—combining JSP scripting elements and implicit

objects—serves most purposes, advanced techniques can help optimise

the functionality and efficiency of JSP applications significantly. For

example, scriptlets can be utilized to execute complicated business

logic like data validation, which involves checking data integrity and

accuracy against specific criteria, form processing can process user

input from HTML forms to operate on, and database interactions can

fetch data from a database. Using scriptlets for presentation logic

should be minimized, as it may cause code that is hard to maintain and

debug.

Directive Elements:

In this Article JSP (JavaServer Pages) directive elements define

essential construction information for the JSP container regarding the

information, dependencies and handling requirements of a webpage.

These are not included in the output instead they are configuration

directives that guide how the JSP page will be translated and executed.

1 There are three primary directive elements: the page directive, the

include directive, and the taglib directive. You can give page specific

information using this directive like content type of the page, how to

handle the error for the page and about session management. It appears

at the start of a JSP page and can consist of several attributes. The

contentType property carries the MIME type and character encoding of

the response, so that the client browser interprets the response.

Example: → This sets the content type as HTML with UTF-8

encoding. In this example, the errorPage attribute defines the URL of

an error page to be displayed in case of an exception as part of that

page processing. This gives a chance to handle errors gracefully &

prevents users from having the raw stack traces. The isErrorPage

property informs whether in the current context an error page is present,

256
MATS Centre for Distance and Online Education, MATS University

Notes making possible the implementation of conditional error handling

logic. Session AttributeExecutes on endInitialize | endLoadSyntaxPage

Attributes When set to true, the session attribute allows or prevents

SQL session management for the page. If set to true, the session implicit

object will be available as well, enabling developers to access the

session data. Developers can import Java classes and packages, which

become available for use in the JSP page by using the import attribute.

For multiple import attributes multiple classes or packages can be

imported. The language attribute also specifies the scripting language

of the JSP page which is usually Java. Other properties, like buffer,

autoFlush, and info, offer more fine-grained control over the process

of paging. The include directive allows you to include a file in the JSP

page at translation time. It enables code reuse and modular

development. The file to include could be a JSP page, HTML file, or

any text file. The file attribute defines the path to the file to be

included. For example, // contains master header jsp file. Since the

included file is processed just like part of the current page, any changes

to the included file would cause the JSP page to be recompiled. 2 The

taglib directive is used to declare a tag library so that its custom tags

can be used in this JSP page. They offer a way to encapsulate

commonly-used functionality and make JSP development simpler. 3

The uri attribute declares the URI of the tag library and the prefix

attribute declares a prefix to identify in the library the tags. For

example, declares the JSTL core tag library with prefix c. After

declaring a tag library, its custom tags can be used in the JSP page using

the specified prefix within the JSP page. 4 It is three-line

configuration. Because they perform the directives, which control the

behaviour of JSP, they allow page authors to have more control over

their JSP

4.3.4 Action Elements:

JSP action elements are runtime instructions that dynamically generate

content or control the flow of execution within a JSP page. Unlike

directive elements, which are processed at translation time, action

elements are executed at runtime, allowing for dynamic behavior. The

two primary action elements are jsp:forward and jsp:include, each

serving distinct purposes in JSP development. The jsp:forward action

element is used to transfer control from the current JSP page to another

resource, such as another JSP page, servlet, or HTML file. It effectively

257
MATS Centre for Distance and Online Education, MATS University

Notes redirects the request to the specified resource, and the current page

ceases processing. The page attribute specifies the relative or absolute

URL of the resource to which control should be transferred. For

instance, <jsp:forward page="welcome.jsp" /> forwards the request to

the welcome.jsp page. The jsp:forward action can also include

parameters using the jsp:param sub-element, allowing developers to

pass data to the target resource. For instance, <jsp:forward

page="profile.jsp"><jsp:param name="userId" value="123"

/></jsp:forward> forwards the request to the profile.jsp page with the

userId parameter set to 123. The jsp:forward action is often used for

implementing navigation logic, error handling, and conditional page

flow. It is crucial to note that once the jsp:forward action is executed,

any output buffered by the current page is discarded, and the response

is generated by the target resource. The jsp:include action element is

used to include the output of another resource into the current JSP page

at runtime. This allows for dynamic content inclusion and modular

development. The page attribute specifies the relative or absolute URL

of the resource to be included. For instance, <jsp:include

page="footer.jsp" /> includes the output of the footer.jsp page. The

included resource is executed, and its output is inserted into the

response stream of the current page. The jsp:include action can also

include parameters using the jsp:param sub-element, allowing

developers to pass data to the included resource. For instance,

<jsp:include page="news.jsp"><jsp:param name="category"

value="sports" /></jsp:include> includes the output of the news.jsp

page with the category parameter set to sports. The jsp:include action

is often used for including common page elements, such as headers,

footers, and navigation bars, dynamically. It allows for creating

reusable components and maintaining consistency across multiple

pages. Unlike the include directive, which includes files at translation

time, the jsp:include action includes resources at runtime, allowing for

dynamic content generation. Action elements provide a powerful

mechanism for controlling the flow of execution and generating

dynamic content within JSP pages, enabling developers to create

interactive and dynamic web applications.JSP action elements are

instructions that are executed during runtime and are used to

dynamically generate content or control the flow of execution in a JSP

page. Whereas directive elements are processed during the translation

258
MATS Centre for Distance and Online Education, MATS University

Notes phase, action elements are executed in the runtime phase, providing

dynamic run-time behavior. The only two dominant action elements are

jsp:forward and jsp:include and they serve different purposes.

jsp:forward action element Transfers control from one JSP page to

another JSP page, servlet, or HTML file. This is useful as it makes use

of the request and is placed on the JSP page itself. It does its job of re-

routing the request to the targeted resource and the current page stops

its processing. The page attribute indicates the relative or absolute URL

of the resource to which control will be transferred. Such as forwards

the request to welcome. jsp page. jsp:forward action may also pass

parameters to the target resource with the jsp:param sub-element, thus,

developers can also pass some data to the target resource. Example,

forwards the request to the profile. The Web/cgi-bin/launchpage.jsp

page with the userId parameter set to 123. Also, jsp:forward action is

commonly used for navigation logic, error handling and conditional

page flow. Please note that, upon executing the jsp:forward action,

anything that is output buffered by the current page will be: discarded

and the response will be generated by the target resource. JSP

JSP:include The jsp:include action element is used to include the

output of another resource (servlet, JSP file, etc) in the current JSP page

at runtime. Dynamic content inclusion and modular development. The

page property points to the relative or absolute URL of the page to

include For example, outputs the footer. jsp page. The included

resource is invoked and the result is inserted directly into the response

stream such that it becomes part of the output of the current page. The

developer of the included resource must access the included resource

through the request object just as with the request, but the developer of

the included resource can also pass parameters if they exist within it as

sub-elements to the parent include. For example, includes the output of

the news jsp page — the category parameter set to sports. jsp:include

action is frequently utilized to dynamically include shared components

like headers, footers, or navigation bars. It enables the development of

reusable components and the seamless preservation of uniformity

across different pages. The jsp:include action differs from the include

directive in that the include directive includes files at translation time,

whereas the jsp:include action includes resources at runtime, enabling

dynamic content generation. By acting as a combination of XML and

259
MATS Centre for Distance and Online Education, MATS University

Notes Java, action elements are a great way to control your flow of execution

and generate dynamic content within JSP pages.

4.3.5 Page Directive: Configuring Page-Specific Attributes

The page directive in JSP development is one of the primary methods

through which a developer can define several things on a page that

affect the way the JSP container manages this page. Syntax : It is

usually found at the top of a JSP page and it has one or more attributes

each of which has its own purpose. Here the contentType attribute is

used to state the mime type of JSP page response and the character

encoding. This attribute makes sure that the client browser understand

the content. For example: defines that the content type is HTML,

encoded in UTF-8, so the page will render the HTML content encoded

in UTF-8 Some other widely used values are text/plain,

application/json, and application/xml, according to the content being

produced. On imports tag JSP developers can make use of Java classes

and packages in JSP page. It makes development JSP so simpler

because you will not have to use fully qualified class names. Import

multiple classes or packages using import for multiple import attributes

e.g. imports all classes in the java. util package. If an exception occurs

and the errorPage attribute of the page is specified, the page URL

specified in errorPage will be invoked. That means we can implement

graceful error handling and avoid raw stack traces from being

displayed to users. For example, If there is any Exception then a jsp

page should be shown. Check whether the current page is an error page

with the isErrorPage attribute This post is related to the exception

implicit object that is available when the isException=true. For

example, specifies that the page in question is an error page. The

session attribute is used to enable or disable session management for

the page. When this is true, the session implicit object is made

available and developers can store and read session data. Example: The

creates session management for the page. This uses a buffer attribute

where you can set the buffer size for the output stream before writing

it to the client autoFlush Specifies whether the buffer will be

automatically flushed if the buffer is full. The info attribute is a string

storing a description of the page, which can be obtained through calling

the HttpServlet class getServletInfo() method. The language attribute

defines the scripting language that's used in a JSP page, it is Java in

usual. The other attributes that can be specified (extends, pageEncoding

260
MATS Centre for Distance and Online Education, MATS University

Notes and isThreadSafe) give more control over how the page is processed. It

is important to note that the page directive is critically important in

setting up page-specific information so that the JSP container can

process the page as per the information given.

4.3.6 Include Directive:

One is the include directive, which is a powerful tool in JSP

development, allowing developers to insert the content of another file

into the current JSP page at translation time. This allows for modular

development and code reuse, as common elements that appear on

multiple pages can be factored out into separate files and then included

in multiple JSP pages. This last parameter is the file to be included.

The path can be a relative/absolute path depending upon where the

included file is.

Summary

This module introduces learners to JavaServer Pages (JSP), a powerful

server-side technology used to create dynamic web content. It begins

by explaining the concept, need, and advantages of JSP over traditional

servlet-based programming. JSP allows embedding Java code directly

into HTML, making web development more efficient and content

easier to manage.Learners explore the JSP life cycle, which includes

stages like translation, compilation, initialization, execution, and

destruction.

Understanding this life cycle helps in managing how JSP pages are

processed and served by the web server.The module also covers various

scripting elements—such as declarations, expressions, and scriptlets—

which are used to insert Java code into JSP pages. Additionally, it

introduces implicit objects like request, response, session, application,

and out, which simplify coding by giving direct access to common

functionalities. Further, the module dives into directive elements (e.g.,

page, include, taglib) and action elements (e.g., <jsp:include>,

<jsp:forward>, <jsp:useBean>) that control page behavior and enhance

dynamic content management.By the end of this module, learners gain

a comprehensive understanding of JSP development, enabling them to

build robust, dynamic, and maintainable web applications.

Multiple-Choice Questions (MCQs)

1. What is the primary purpose of JSP?

a) To create standalone Java applications

b) To generate dynamic web content

c) To replace JavaScript in web pages

261
MATS Centre for Distance and Online Education, MATS University

Notes d) To manage databases

Answer: b) To generate dynamic web content

2. Which of the following is not a JSP scripting element?

a) Scriptlet (<% %>)

b) Expression (<%= %>)

c) Declaration (<%! %>)

d) Method (<%method%>)

Answer: d) Method (<%method%>)

3. Which implicit object in JSP is used to access session-related

data?

a) request

b) session

c) application

d) config

Answer: b) session

4. What does the <%@ page %> directive do in JSP?

a) Includes another JSP file

b) Defines global settings for a JSP page

c) Forwards a request to another page

d) Declares a Java variable

Answer: b) Defines global settings for a JSP page

5. Which action element is used to forward a request to another

resource in JSP?

a) <jsp:forward>

b) <jsp:include>

c) <jsp:action>

d) <jsp:redirect>

Answer: a) <jsp:forward>

Short Answer Questions

1. What are the advantages of using JSP over servlets?

2. Explain the different phases in the life cycle of a JSP page.

3. What is the difference between a scriptlet and an expression in

JSP?

4. Name and explain three JSP implicit objects.

5. What is the difference between <jsp:forward> and

<jsp:include>?

Long Answer Questions

262
MATS Centre for Distance and Online Education, MATS University

Notes 1. Describe the life cycle of a JSP page with a detailed explanation

of each phase.

2. Explain JSP scripting elements with examples of each.

3. What are JSP implicit objects? Describe any five with their

usage.

4. Explain the different types of JSP directive elements and their

purposes.

5. How do JSP action elements work? Compare <jsp:forward> and

<jsp:include> with examples.

263

Module 5

Spring and Spring Boot Framework

LEARNING OUTCOMES

• To understand the core concepts of Spring and Spring Boot.

• To explore dependency injection and IOC container.

• To analyze web application development using Spring.

• To study Spring Boot architecture and key components.

• To implement database connectivity using Spring JDBC.

• To explore Aspect-Oriented Programming (AOP) in Spring

Boot.

264
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5.1: Introduction to Spring Initializing and Writing

Spring application

5.1.1 Introduction to Spring:

With Spring, a full-fledged and well-accepted framework that has

absolutely changed the way Java applications are developed by

providing an infrastructure to develop enterprise applications. Spring is

a container framework that is designed to develop very loosely coupled

easily testable and maintainable applications based on DI(AOP)

principles under the hood. Spring is designed in a modular way,

meaning developers can pick and choose only the aspects that they will

need, making it a light development environment. The framework is

capable of serving different types of applications like web

applications, microservices, and batch processing systems. Spring was

conceived out of a desire to overcome the challenges and confines of

Java EE, providing a more agile and pragmatic approach to application

development. Over the years, the framework has evolved to support

new technologies and methodologies, making it a popular choice

among developers. Spring is a collection of many different modules

that focus on different aspects of application development. The heart

of this framework is its core container, responsible for managing the

full lifecycle of application components (beans). The Spring's DI

mechanism helps developers configure the dependencies for beans and

process these beans by injecting the dependencies for them in runtime.

By doing so, we encourage loose coupling, such that interdependencies

between code are reduced and code is more reusable. Aspect-Oriented

Programming, or AOP, is another key pillar of Spring, offering a way

to modularize cross-cutting concerns like logging, security, and

transaction management. Aspects can also handle cross-cutting

concerns, allowing developers to encapsulate these concerns into facets

that can be applied uniformly to the application without polluting the

business logic itself. The Spring framework enables seamless

interaction with different data access technologies like JDBC,

Hibernate, JPA, etc., to facilitate data persistence. Spring Boot is a sub-

project of Spring that has taken the core components of Spring and

provided sensible defaults for creating stand-alone, production-ready

Spring applications (also known as Auto-Configuration). Spring offers

265
MATS Centre for Distance and Online Education, MATS University

Notes a wealth of documentation, an active community, and an abundance of

resources that make it suitable for both novice and expert developers.

5.1.2 Initializing a Spring Application:

When a Spring application starts, it initializes the Spring container that

serves as the central interface in the Spring framework to manage the

components of your application. A Spring application consists of

different types of objects called "beans". 4 Techniques to Initialize a

Spring Container Historically, bean configuration, including properties

to inject and bean dependencies, was done primarily in XML. An

XML file is created and is usually called applicationContext. xml but

defining the beans using elements. The container would parse this

XML file and create the beans. XML and its configuration can be

lengthy and cumbersome, particularly for large and complex

applications. The solution Spring provided, was an annotation-based

configuration which allowed the developers to define beans (and their

dependencies) inside the code written in Java. With annotations like

@Component, @Service, @Repository and @Controller, classes are

marked as beans, while @Autowired and @Qualifier determine which

dependency is to be injected. Spring also provides Java-based

configuration, which is a more programmatic way of defining beans

Figure 5.1: Spring Framework
[Source: https://www.careerride.com/]

266
MATS Centre for Distance and Online Education, MATS University

Notes and their dependencies. Developers may write configuration classes

(with annotation @Configuration) and specify beans (with @Bean

methods). It gives them more control and flexibility for configuring

how they handle data. Spring Boot comes with autoconfiguration which

makes the bootstrapping process even simpler. Spring Boot

automatically instantiates the Spring container and configures it with

the dependencies that exist in the classpath. One of its key features is

auto-configuration, meaning if Spring MVC is found on the classpath,

a dispatcher servlet and other beans will be automatically populated.

This means that in most cases there is no manual configuration

required. The decision on which method to use depends on the

characteristics required by the application. In general annotation based

and java based configuration is preferred in modern spring

applications due to better readability and flexibility. XML-based

configuration is still possible but primarily exists for legacy

applications or when very specific configuration is required. In

whichever way we choose to go about it, the initialization is upon us

and we create an ApplicationContext, which is your Spring container.

In ApplicationContext, you have many methods to access the beans,

retrieve the configuration properties, and also to publish the events.

Now, the ApplicationContext is helpful when it comes to obtaining the

beans and calling the methods from those beans. SpringApplication is

typically used in Spring Boot applications. run() method part to create

the ApplicationContext. This means that the container will be

configured automatically and the application will be started. Bean

validation also takes place in Spring for this reason, where Spring

ensures that all beans have either been created properly or possess the

correct configuration and parameterization for the application to run

properly. Knowing the different initialization modes and their impact

helps developers in properly configuring their Spring applications and

making the advantages of the framework.

5.1.3 Writing Spring Applications:

Creating Spring applications is based on the use of the framework's

main attributesDependency Injection (DI) and a component-based

style. DI encourages loose coupling because the beans do not create

their dependencies, but rather, define them. It frees the components

from each other using dependency injection (DI) at runtime and

increases code reusability by maintaining loosely coupled components.

267
MATS Centre for Distance and Online Education, MATS University

Notes Spring Applications are, generally speaking, layered with

presentation, service, data access layers, etc. All three layers contain

components, which are classes annotated with @Component,

@Service, @Repository, or @Controller. These annotations indicate

that these classes are beans, which enables the Spring container to

manage their lifecycle. The Service Implementation classes are also

annotated with the @Service annotation and the different classes that

are used to interact with the database (DAO classes) are annotated with

the @Repository annotation. It is about @Controller annotation used

in spring framework to decorate classes which handle HTTP request.

@Autowired: Used to specify dependencies between beans. When one

bean needs another, the @Autowired annotation can be used to inject

the needed bean instance. There are many types of dependency

injection Constructor Injection, Setter Injection, Field Injection

supported by Spring. However, in most cases, constructor injection is

preferable so that all dependencies are set when the bean is created.

Setter injection and field injection can be applied for situations where

constructor injection is impractical. It also provides support for

dependency injection through Java-based configuration. Developers

configure beans and their dependencies using @Bean methods in

@Configuration classes. It allows for more flexibility in the

configuration process. By using AOP and aspect-oriented

programming, developers can modularize cross-cutting concerns, such

as logging, security, and transaction management, into aspects that can

be applied across multiple classes and components. Upon encapsulating

these concerns into aspects, developers would be able to apply them

consistently across the application without muddling the core business

logic. We define aspects using @Aspect classes and pointscuts using

annotations such as @Before, @After, @Around, @Pcumptcut, etc.

Because Spring also supports multiple data access technologies,

interacting with a database becomes more straightforward. The

database can be accessed using JDBC, Hibernate, or JPA by the

developers. It can be tricky to access data easily as the project grows in

size and the codebase gets bigger, but Spring definitely reduces that

complication by providing repositories that create database queries

based on the name of the method you wroteSpring Data is a sub-project

under the Spring umbrella that makes it easier to access data by

providing functionality to create repositories, which automatically

268
MATS Centre for Distance and Online Education, MATS University

Notes builds database queries based on the name of the method you wrote.

Spring MVC is a model-view-controller framework for building web

applications. The Spring MVC framework makes use of the Dispatcher

Servlet, which is responsible for processing incoming HTTP requests

and sending it to the appropriate controllers. Controller - Classes

annotated with the @Controller handle specific HTTP requests. JUnit

and Mockito are usually used to test spring applications. Thanks to

Spring's dependency injection support, you can mock and stub

dependencies easily, hence also write unit tests easily. Spring Boot

makes it easy to create stand-alone, production-grade Spring-based

Applications that you can "just run". Spring Boot lets you package

your applications as executable JAR files, for quick deployment and

running. Spring framework helps to develop a flexible and easy

oriented application.

5.1.4 Spring Boot:

Enter Spring Boot which has become a real-deal-industry-changer for

all Spring Development, liberating developers with quicker and more

efficient development of stand-alone, production-ready Spring

Applications. It handles a lot of the boilerplate configuration needed in

a traditional Spring application, so developers can concentrate on

writing business logic. It does this with its auto-configuration features,

which provide Spring container configuration whenever your classpath

has dependencies. So if Spring MVC is on the class path, Spring Boot

configures a dispatcher servlet and other necessary components. That

means much less setup is required manually. Spring Boot comes with

sensible defaults for many aspects of application development,

including embedded servers, logging, and security. If necessary,

developers can override these defaults, but usually, they are enough for

most applications. Since spring-boot applications need to include all

jars for uses (zipped into a jar) and load an embedded server. This is

what simplifies their deployment and execution since they can be run

from the command line with the java -jar command. The Spring Boot

CLI is a command-line tool that you can use to create and run Spring

Boot applications with ease. The CLI has also your back for

dependencies management and test running. The Spring Boot Actuator

Module: The Spring Boot actuator module provides endpoints to

monitor and manage your Spring Boot application. This endpoints

gives information of application bsolutely. By using DI in our Web

269
MATS Centre for Distance and Online Education, MATS University

Notes Application we can ensure that our components or services are unload

and reuseable, let us dive into Dependency Injection, Web Application

Development, and return 8800−word answer in Eight paragraphs on

what DI we can achieve through Web Application Development in the

context or any learnings out there, DI in combination with Web

Application Development.

270
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5.2: Dependency Injection

5.2.1 Dependency Injection

Dependency Injection (DI) helps achieve loose coupling and

modularity within the systems. Basically, DI helps provide the

dependencies of a class from an outside source instead of the class

creating/managing them itself.

At the heart of the Spring Framework lies the Spring container, which

is responsible for creating, configuring, wiring, and managing the

complete lifecycle of objects within an application. These objects,

known as Spring Beans, are managed through a process called

Dependency Injection (DI).

The container determines which objects to instantiate and how to

configure and assemble them based on the configuration metadata

provided. This metadata can come in various forms, such as XML

configuration files, Java annotations, or Java-based configuration

classes. The diagram below (not shown here) illustrates a high-level

overview of how the Spring Framework operates: the Inversion of

Control (IoC) container uses POJO (Plain Old Java Object) classes

and the configuration metadata to build a fully functioning application.

Types of Spring IoC Containers

271
MATS Centre for Distance and Online Education, MATS University

Notes Spring offers two primary types of IoC containers:

Sr.No. Container Description

1

Spring

BeanFactory

Container

This is the most basic type of container,

definedby the

org.springframework.beans.factory.BeanFa

ctory interface. It supports fundamental

dependency injection features. Interfaces

such as BeanFactoryAware,

InitializingBean, and DisposableBean are

also part of this container. Though

BeanFactory is retained for backward

compatibility with many third-party tools, it

is less commonly used in modern Spring

applications.

2

Spring

Application

Context

Container

This is a more advanced container that

extends BeanFactory and includes additional

enterprise features, such as resolving text

messages from properties files and

publishing application events to listeners. It

is defined by the

org.springframework.context.ApplicationC

ontext interface.

The ApplicationContext container is a superset of BeanFactory,

offering all its features and more. For most applications,

ApplicationContext is preferred, as it provides richer functionality.

However, BeanFactory may still be suitable for lightweight

environments, such as mobile or embedded applications, where

memory and speed are critical concerns.

This inversion of control (IoC) means the class does not take

responsibility for managing its dependencies, instead, the

responsibility is delegated to an external agent, normally an IoC

container. DI is a design principle that follows the Dependency

Inversion Principle, which puts the high-level modules not relying on

the low-level modules to maintain the code, but both rely on

abstractions. Decoupled components allow easy replacement of a

dependency and hence would result in more flexibility, testability,

maintainability. In classical application development classes usually

272
MATS Centre for Distance and Online Education, MATS University

Notes instantiate their dependencies directly and this leads to tight coupling.

If there are any changes in the dependency, dependent class must also

be modified leading to a chain of modifications in the significant part

of code. DI solves this problem by introducing an intermediary (the IoC

container) that manages the instantiation and provisioning of

dependencies. The IoC container instantiates objects and injects them

into dependent classes, according to configuration or conventions. This

is because classes can now focus on their core logic, and not on how to

create and manage their dependencies. In between simple factory-style

IoC containers and advanced framework-style IoC containers. They

have features like dependency resolution, lifecycle management, and

configuration management. Using IoC containers, developers are able

to build more modular, testable, and maintainable applications. The

container abstracts away the details of object instantiation and

dependency injection, allowing developers to focus on business logic.

5.2.2 Understanding Constructor Injection and Its Benefits

Constructor Injection: It is a type of dependency injection in which

dependencies are injected into a class via its constructor. With this

design, a class is guaranteed to receive all of the dependencies it

requires when it is constructed; as a result, the class is fully initialized

and prepared for any subsequent interaction. In Constructor Injection,

your dependencies can declared as final fields, thereby ensuring

immutability. Because this structure is immutable, it is easier to work

with across threads and you are less likely to accidentally cause side

effects. In addition, constructor injection provides clarity to a class in

terms of its dependencies only by looking at its constructor parameters.

In addition, you are using Dependency Injection, which is an explicit

declaration of dependencies for classes, and thus it offers better

readability, maintainability and testability.

5.2.3 Delving Deeper into IoC Containers and Dependency

Resolution

Well, IoC containers are the all-time base work of Dependency

Injection this allows you to separate the creation of a service from

using it. Container runtimes, for example, are responsible for running

containers, providing features like dependency resolution, lifecycle

management, and configuration management. Dependency resolution

is discovering and supplying the correct dependencies to a class based

on its constructor parameters or setter methods. IoC containers use

273
MATS Centre for Distance and Online Education, MATS University

Notes metadata (like annotations or XML configurations) to identify the

dependencies and their implementations. Based on such type matching

or named binding, they automatically resolve dependencies and allows

you to easily construct complex object graphs. Another important

feature of IoC containers is lifecycle management. They handle object

life-cycle management (creating, initializing, and destroying them).

The containers can invoke initialization methods after the object is

created and destruction methods before disposing of the object,

providing the developers an opportunity to do the necessary work in

setting up and cleaning up the resources associated with the object. In

configuration management, the developers specify dependencies and

implementations using configuration files or annotations. IoC

containers will read these configurations and use them to wire them

up. The separation of configuration from code allows for easy

management and modifications of an application's dependencies

without compiling the code. Another feature offered by IoC containers

is scope management where developers can specify the lifecycle and

visibility of the objects. They can define singleton objects, which are

objects that have a single instance within the application, or prototype

objects, which create a new instance for each request. Also, the

containers provide support for aspect-oriented programming (AOP)

which allows developers to write cross-cutting concerns such as

logging or transaction management and apply it to multiple objects.

That make it easy for the application to be separated into modules

implementing common functionality.

274
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5.3: Developing web applications

5.3.1 Developing Web Applications

Web application development refers to the process of designing,

building, deploying, and maintaining web applications. These apps

usually deal with showing and processing information, validating user

input, and maintaining the state of the application. To present

information in a web app, developers use HTML, CSS, and JavaScript

among other techniques. Hypertext Markup Language (HTML) is used

to create the structure and content of a web page, and cascading style

sheets (CSS) are used to style and format that content. FIGURE 22:

JavaScript adds interactivity and dynamic behavior to web pages. Most

of the time web applications receive data from databases or external

APIs and show it to the user. This data may be shown in many forms,

including tables, lists, or charts. Server-side programming languages

like Java, Python, or PHP, are used by developers to process the data,

and generate HTML before sending it to the browser. JavaScript

running on the client-side can also be used to dynamically update the

web page content, in real time, without the need of a full page reload.

One such technique, commonly abbreviated to AJAX (Asynchronous

JavaScript and XML), enables the development of more dynamic and

interactive user interfaces. Handling user input, including form

submissions and search queries, is another core functionality for Web

applications. The server-side code processes this data after the forms

collect data from the users. Various techniques for user input

validation exist, and developers make sure the input is formatted

correctly. Client-side validation using JavaScript or server-side

validation using the chosen programming language can perform this

check. Similarly, web applications need to perform maintain the

application's state, such as user sessions and application settings.

Cookies, session variables and databases are some of the different

methods to store this state. There are many ways the developers ensure

that the state is consistent across multiple requests. Web Application

Development Conclusion The web application development process

includes client-side and server-side technologies that combine to create

dynamic and interactive applications that react to user input and

manipulate data.

275
MATS Centre for Distance and Online Education, MATS University

Notes From the perspective of Web applications, we often take care of Form

input validation and processing information in it.

5.3.2 Processing Information and Validating Form Input in Web

Applications

Thus works in a web application processing information such as

fetching data from multiple sources, transforming it and showing it to

users. This can be in the form of databases, external APIs, or user

input. Data is processed and HTML content is generated using server-

side programming languages before being submitted to the browser.

Developers employ numerous methods to query databases, modify

data structures, and create dynamic content. They may utilize SQL

(Structured Query Language) to access relational databases, or employ

object-relational mapping (ORM) frameworks to convert database

tables into objects. After getting the data, developers can apply

different methods to transform it into the required format. That could

mean filtering, sorting, or aggregating the data. Word processors

include features related to formatting, editing, and printing, while they

can also utilize templating engines to build up HTML content by filling

dynamic data into pre-constructed templates. Form Validation is one

of the key parts of web application development. Then the application

makes utilization of this data by collecting the output as per the

conditions stated in the validation object. Basic level validation can be

done on client-side JavaScript, like checking if required fields are

filled out or checking validity of email address. It's also important to

mention that server-side validation is required to stop malicious input

and maintain data integrity. Renowned developers tempt respective

patterns to verify that the input was as expected,adding checks on data

types,longitudinal arrangements, etc. They can also validate complex

input formats using a regular expression. For instance, if the input is

invalid, developers can show error messages to the user and stop the

form from being submitted.

5.3.3 Working with Data in Spring

Developers have control over data persistence with the Spring data

access layer, that offers powerful tools to interact with databases. Java

Database Connectivity (JDBC) is the old way of directly interacting

with the relational database, where developers write SQL queries and

manually maintain the database connections. Spring does an excellent

job of doing this by encapsulating abstraction layers and helper classes

276
MATS Centre for Distance and Online Education, MATS University

Notes that minimize boilerplate code. JDBC by itself is about making a

connection, creating statements, executing queries, and processing the

result set. In complex applications, this can be tedious and error-prone.

One solution to the above difficulties is Spring's JdbcTemplate class,

which abstracts JDBC operations, manages resources and offers a

cleaner API. JdbcTemplate allows developers to run SQL queries in a

few words by utilizing its query(), update(), and execute() methods. An

example would be to fetch the data, you would call the query() method

by passing SQL query and RowMapper implementation to map the

result set to Java objects. This interface contains one method,

mapRow(), which is responsible for converting a row of the result set

into an object. For executing queries with named parameters, Spring

provides the NamedParameterJdbcTemplate, which makes the code

more readable and maintainable. JdbcTemplate only gets us halfway

there, though, as Spring also provides DataSource implementations for

establishing connections to our databases. This means that the

DataSource interface is actually a type of factory for connections;

developers can configure connection pools and so on. For example,

Spring has DriverManagerDataSource, that creates new connection

each time request is made, and BasicDataSource from Apache

Commons DBCP provides connection pooling. Another important

feature of Spring data access is transaction management.

TransactionTemplate provides a way of committing a transaction, so

makes transaction transactional very easy and reduces the boilerplate

to write, you will just have to focus on all your normal transaction

overall logic. Transactional management with declarative transactions

(e.g. using @Transactional annotations) further abstracts transaction

management by automatically opening and closing transactions. Spring

Data JDBC, one of the newer members of the Spring Data clan, offers

a minimalist and object-oriented approach to data access. You focus on

mappng domain objects to relational database table mappings, which

will reduce the need to write manual SQL queries. Spring Data JDBC

follows an aggregate oriented approach, which means that domain

objects are regarded as aggregates, which are further defined as

collections of related objects. This strategy is cohesive with domain-

driven design, crafting a more organic correspondence between the

domain models and the database schemas. JdbcAggregateTemplate sits

behind Spring Data JDBC for all database operations. This template

277
MATS Centre for Distance and Online Education, MATS University

Notes comes with a set of functions on how to save, delete and query for

aggregates. Spring Data JDBC uses annotation mapping like @Table,

@Id and @Column for mapping domain objects to database tables.

Each of those are explained below @Table annotation specifies the

table name, @Id specifies the primary key, and @Column specifies the

column name. These annotations help Spring Data JDBC to map

objects to the database table, it will generate SQL queries automatically

so user need not to write the query themselves. Spring Data JDBC does

also support relationships between aggregates. You can map one-to-

one, one-to-many, and many-to-many relationships using annotations

such as @MappedCollection and @Reference. @MappedCollection

===> @Reference: Mapped collection of related objects, and mapped

a single related object. Spring Data JDBC caters you with an

aggregate-root mapping model, thus making for a simpler data access

by eliminating the need for writing SQL queries on your own and

handling a lot of mapping. Full-fledged Data Access Solution: It is

deeply integrated with Spring's transaction management and other

features, providing a full data access solution.

5.3.4 Introduction to Spring Boot:

Spring Boot is a new milestone on the way to evolution of the Spring

ecosystem — it alleviates the pain of extra configuration and

complexities of the traditional Spring development cycle. A Heavy

framework for enterprise applications tightly packed with

configurations which is end of the case nightmare for developers

especially for the newbies. Spring Boot minimizes all of these into

sensible defaults, tracking configuration and an embedded server,

making it simple and possible for developers to bootstrap and deploy

applications. Difference between Spring Framework and Spring Boot –

The Spring is a Framework where another is reduce or eliminate, the

requirement to make three-letter dependency in specific modules. This

is in stark contrast to Spring itself, which is a huge framework and

requires you to configure everything you want even the beans,

datasources, web components etc. Usually this is set up using XML or

Java annotations. On the other hand, Spring Boot follows the

Convention over Configuration approach by providing sensible

defaults for most of the configuration. To do this, it automatically sets

up components based on the dependencies in the classpath, with the

least amount of configuration. Example: You can see that when it finds

278
MATS Centre for Distance and Online Education, MATS University

Notes a database driver in the classpath, Spring Boot will automatically

configure a DataSource and JdbcTemplate. It includes an Embedded

Server (Tomcat, Jetty, and Undertow), so there is not necessity for

external deployment server. γ This simplifies the deployment steps, as

developers can bundle applications into runnable JAR files that can be

executed without a separate server. One of the most important feature

of spring boot is auto-configuration, which makes developer's life

easy. It auto detects beans by looking for dependencies in the

classpath. What this means is if a web dependency exists, Spring Boot

will automatically configure a DispatcherServlet and other web related

classes. Because of that less the configuration required, which helps the

developer to concentrate more on the business logic. Spring Boot

provides several starters — a set of convenient dependency descriptors

to simplify the dependency management. Starter dependencies is self-

explanatory; it is basically a wrap for related dependencies grouped

together as a single dependency to avoid declaring them one by one.

Adding a starter dependency like spring-boot-starter-web pulls in the

required dependencies to create web applications with Spring MVC,

Tomcat and Jackson. Spring Boot Actuator provides a set of

production-ready features, such as health checks, application metrics,

and auditing. Features helpful for tracking and operating the

applications in production environments. It provides excellent testing

support and has a suite of testing solutions, such as @SpringBootTest

and MockMvc, making integration tests easier to implement. These

tools ease integration and unit testing so developers can mock extensive

tests to their applications. Basically, Spring Boot is a tiny little baby of

Spring with all its goodness and no in-depth complexity. It also

removes the configuration burden, improves deployment, and

introduces production-ready features, making it the ideal framework for

building modern enterprise applications.

5.3.5 Spring Boot Architecture:

The architecture of Spring Boot is a significant set of core components

to simplify and accelerate the applications development process by

providing an overview of the framework. Spring Boot is built on a core

component called its auto-configuration mechanism that, based on

dependencies available in the classpath, it auto configures the beans.

This leads to less manual configuration, allowing developers to

concentrate on business logic.

279
MATS Centre for Distance and Online Education, MATS University

Notes

The Spring Web MVC framework provides Model-View-Controller

(MVC) architecture and ready components that can be used to develop

flexible and loosely coupled web applications. The MVC pattern results

in separating the different aspects of the application (input logic,

business logic, and UI logic), while providing a loose coupling between

these elements.

• The Model encapsulates the application data and in general

they will consist of POJO.

• The View is responsible for rendering the model data and in

general it generates HTML output that the client's browser can

interpret.

• The Controller is responsible for processing user requests and

building an appropriate model and passes it to the view for

rendering.

The DispatcherServlet

The Spring Web model-view-controller (MVC) framework is designed

around a DispatcherServlet that handles all the HTTP requests and

responses. The request processing workflow of the Spring Web

MVC DispatcherServlet is illustrated in the following diagram −

Following is the sequence of events corresponding to an incoming

HTTP request to DispatcherServlet −

• After receiving an HTTP request, DispatcherServlet consults

the HandlerMapping to call the appropriate Controller.

280
MATS Centre for Distance and Online Education, MATS University

Notes • The Controller takes the request and calls the appropriate

service methods based on used GET or POST method. The

service method will set model data based on defined business

logic and returns view name to the DispatcherServlet.

• The DispatcherServlet will take help from ViewResolver to

pickup the defined view for the request.

• Once view is finalized, The DispatcherServlet passes the model

data to the view which is finally rendered on the browser.

All the above-mentioned components, i.e. HandlerMapping,

Controller, and ViewResolver are parts

of WebApplicationContext which is an extension of the

plainApplicationContext with some extra features necessary for web

applications.

Required Configuration

You need to map requests that you want the DispatcherServlet to

handle, by using a URL mapping in the web.xml file. The following is

an example to show declaration and mapping

for HelloWeb DispatcherServlet example −

<web-app id = "WebApp_ID" version = "2.4"

 xmlns = "http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation = "http://java.sun.com/xml/ns/j2ee

 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<display-name>Spring MVC Application</display-name>

<servlet>

<servlet-name>HelloWeb</servlet-name>

<servlet-class>

 org.springframework.web.servlet.DispatcherServlet

</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>HelloWeb</servlet-name>

<url-pattern>*.jsp</url-pattern>

281
MATS Centre for Distance and Online Education, MATS University

Notes </servlet-mapping>

</web-app>

The web.xml file will be kept in the WebContent/WEB-INF directory

of your web application. Upon initialization

of HelloWeb DispatcherServlet, the framework will try to load the

application context from a file named [servlet-name]-

servlet.xml located in the application's WebContent/WEB-INF

directory. In this case, our file will be HelloWebservlet.xml.

Next, <servlet-mapping> tag indicates what URLs will be handled by

which DispatcherServlet. Here all the HTTP requests ending

with .jsp will be handled by the HelloWeb DispatcherServlet.

If you do not want to go with default filename as [servlet-name]-

servlet.xml and default location as WebContent/WEB-INF, you can

customize this file name and location by adding the servlet

listener ContextLoaderListener in your web.xml file as follows −

<web-app...>

<!-------- DispatcherServlet definition goes here----->

<context-param>

<param-name>contextConfigLocation</param-name>

<param-value>/WEB-INF/HelloWeb-servlet.xml</param-value>

</context-param>

<listener>

<listener-class>

 org.springframework.web.context.ContextLoaderListener

</listener-class>

</listener>

</web-app>

282
MATS Centre for Distance and Online Education, MATS University

Notes Now, let us check the required configuration for HelloWeb-

servlet.xml file, placed in your web application's WebContent/WEB-

INF directory –

<beans xmlns = "http://www.springframework.org/schema/beans"

 xmlns:context = "http://www.springframework.org/schema/context"

 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation =

"http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-

3.0.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-

3.0.xsd">

<context:component-scan base-package = "com.tutorialspoint" />

<bean class =

"org.springframework.web.servlet.view.InternalResourceViewResolv

er">

<property name = "prefix" value = "/WEB-INF/jsp/" />

<property name = "suffix" value = ".jsp" />

</bean>

</beans>

Following are the important points about HelloWeb-servlet.xml file −

• The [servlet-name]-servlet.xml file will be used to create the

beans defined, overriding the definitions of any beans defined

with the same name in the global scope.

• The <context:component-scan...> tag will be use to activate

Spring MVC annotation scanning capability which allows to

make use of annotations like @Controller and

@RequestMapping etc.

• The InternalResourceViewResolver will have rules defined to

resolve the view names. As per the above defined rule, a logical

view named hello is delegated to a view implementation

located at /WEB-INF/jsp/hello.jsp .

283
MATS Centre for Distance and Online Education, MATS University

Notes The following section will show you how to create your actual

components, i.e., Controller, Model, and View.

Defining a Controller

The DispatcherServlet delegates the request to the controllers to

execute the functionality specific to it. The @Controller annotation

indicates that a particular class serves the role of a controller.

The @RequestMapping annotation is used to map a URL to either an

entire class or a particular handler method.

@Controller

@RequestMapping("/hello")

public class HelloController {

 @RequestMapping(method = RequestMethod.GET)

 public String printHello(ModelMap model) {

 model.addAttribute("message", "Hello Spring MVC

Framework!");

 return "hello";

 }

}

The value attribute indicates the URL to which the handler method is

mapped and the method attribute defines the service method to handle

HTTP GET request. The following important points are to be noted

about the controller defined above −

• You will define required business logic inside a service method.

You can call another method inside this method as per

requirement.

• Based on the business logic defined, you will create a model

within this method. You can use setter different model attributes

and these attributes will be accessed by the view to present the

final result. This example creates a model with its attribute

"message".

• A defined service method can return a String, which contains

the name of the view to be used to render the model. This

example returns "hello" as logical view name.

5.3.6 Creating JSP Views

Spring MVC supports many types of views for different presentation

technologies. These include - JSPs, HTML, PDF, Excel worksheets,

284
MATS Centre for Distance and Online Education, MATS University

Notes XML, Velocity templates, XSLT, JSON, Atom and RSS feeds,

JasperReports, etc. But most commonly we use JSP templates written

with JSTL.

Let us write a simple hello view in /WEB-INF/hello/hello.jsp −

<html>

<head>

<title>Hello Spring MVC</title>

</head>

<body>

<h2>${message}</h2>

</body>

</html>

Here ${message} is the attribute which we have set up inside the

Controller. You can have multiple attributes to be displayed inside your

view.

Spring Web MVC Framework Examples

Based on the above concepts, let us check few important examples

which will help you in building your Spring Web Applications –

Sr.No. Example & Description

1

Spring MVC Hello World Example

This example will explain how to write a simple Spring

Web Hello World application.

2

Spring MVC Form Handling Example

This example will explain how to write a Spring Web

application using HTML forms to submit the data to the

controller and display a processed result.

3

Spring Page Redirection Example

Learn how to use page redirection functionality in Spring

MVC Framework.

285
MATS Centre for Distance and Online Education, MATS University

Notes

4

Spring Static Pages Example

Learn how to access static pages along with dynamic

pages in Spring MVC Framework.

5

Spring Exception Handling Example

Learn how to handle exceptions in Spring MVC

Framework.

Spring Boot auto-configuration works through conditional

configuration classes, which are annotated with @Configuration and

either @ConditionalOnClass or @ConditionalOnBean. No translation

availableSorry, your browser doesn't support embedded videos. A

conditional annotation, for example a configuration class annotated

with @ConditionalOnClass(DataSource. Those will be effective only

in case DataSource class is on the classpath. Another important parts

of spring boot architecture is spring boot’s starters. Starters are

dependency descriptors that aggregating similar dependencies into a

single dependency. They help manage dependencies: Since you don’t

have to specify all dependencies one by one. The spring-boot-starter-

web starter, for example, aggregates all dependencies needed for web

app development, including Spring MVC, Tomcat, and Jackson.

Bootstrap also supplies some sensible defaults for configuration,

making development even easier. One of the significant features of

Spring Boot is its embedded server. It does not require it to run on an

external server, which means Joseph needs to deploy physical server

or any server which just runs JET, builds standalone executable JAR

file which can be launched without an external server. Spring Boot does

have an Embedded Container of its own, supporting Tomcat, Jetty, and

Undertow. Spring Boot provides a way to configure which embedded

server to use with the spring. called in a properties file or via command

line. Spring Boot actuator module contains production-ready features

like health checks, metrics and auditing. It can help the production

applications to monitor and manage. The actuator module exposes

various endpoints that offer insight into the application's operation,

such as health, metrics, and more. You can use HTTP or JMX to access

these endpoints. Spring Boot's command-line interface (CLI) makes it

easy to use Spring features as you build succinct and concise scripts

286
MATS Centre for Distance and Online Education, MATS University

Notes and even for rapid prototyping. To create and run Spring Boot

applications, the CLI provides a list of commands. It is also equipped

with a suite of Groovy scripts that can be used to automate common

development tasks. Testing Tools: @SpringBootTest and MockMvc

make integration and unit testing easier. @SpringBootTest to create an

application context for testing, and MockMvc to test web controllers.

For testing, Spring Boot offers testing starters, too — spring-boot-

starter-test being the starter that contains all testing dependencies.

Recognizing the pros and cons of these usages — Spring Boot

Externalized Configuration This makes configuration management

very simple as you can change configuration values without

recompiling the application. Spring Boot provides profile-specific

configuration, which enables its user to configure the application by

different environments such as Development, Testing, and Production.

Spring Boot Event Publishing: Spring Boot provides a powerful

mechanism to publish and listen to application events. This is suitable

for async processing and decoupling components.

5.3.7 Project Components in Spring Boot

The architecture of Spring Boot is created in such a way that it

simplifies the effort involved in the development phase; and the project

components in Spring Boot are a fundamental aspect of this design.

Among those, annotations, dependency management, and application

properties are fundamental. Annotations are a type of metadata that

provides a declarative way to add information to source code.

Annotations are widely used in Spring Boot for the configuration of

beans, mappings, and transactions. To give you an example, it uses

@Component, @Service and @Repository annotations to annotate the

classes so that these classes are discovered automatically and registered

as Spring beans. @Autowired must be followed by, is Autowired,

which reduces the code to be written for instantiation. In Spring

Framework, @RequestMapping and its variants (@GetMapping,

@PostMapping, etc.) allow developers to map HTTP requests to

controller methods, making it easier to create web applications. Data

consistency is taken care of by annotations like @Transactional which

manages the transaction management functionality. Annotations in

Spring Boot greatly minimize boilerplate code and xml configuration.

You can also create custom annotations to consolidate common

patterns and configurations, allowing for code reusability.

287
MATS Centre for Distance and Online Education, MATS University

Notes

Spring boot manages its dependency primarily through Maven or

Gradle and relies on transitive dependencies to work. Spring Boot

starters are pre-configured dependency sets for different functionalities.

As an example, spring-boot-starter-web contains the dependencies

needed to create a web app with Spring MVC, Tomcat, and Jackson.

spring-boot-starter-data-jpa contains dependencies for working with a

JPA and databases (Hibernate, JDBC drivers, etc.). spring-boot-starter-

security → Dependency for authentication and authorization. These

starter dependencies make the project setup easier, which means fewer

dependency conflicts and compatibility issues. Spring Boot provides a

parent pom, spring-boot-starter-parent, which defines the versions of

common dependencies, making it even easier to manage dependencies.

This parent POM also defaults some configurations to build plugins

like the one from the Spring Boot Maven plugin that helps simplify

creating executable JARs. Spring Boot dependency management is

also highly extensible. It allows overrides for some dependency

versions and the addition of as needed depending on the use case. This

level of flexibility enables developers to adapt the project to their

particular needs.

Application properties managed at application-level properties or

application. Also remember that application settings like env, yml files

let you centralize the place for managing application settings. Using

these properties, you can set up the details to connect with a DB, server

port numbers, logging level, and many other application-specific

configurations. These properties are loaded automatically by Spring

Boot and they get fed into the application. You can access Properties

using the @Value annotation or through Environment objects. For

instance, @Value("${server. This piece "/schedule/secrets/" + port

injects the value of the server. port property into a field. It also allows

you to have sub keys (flattened hierarchies) to allow you to make your

properties easier to read, like when they are defined in the same

context. You can learn more in the system, Spring Boot supports

Externalized configuration, properties can be loaded from several

sources including command-line arguments, environmental variable,

external configuration file. This resistance allows developers to prevent

modifying source code when adapting the application actions on new

environments. Profiles are used to define the configuration of any

288
MATS Centre for Distance and Online Education, MATS University

Notes environment (development, tests, production). For example,

application-dev. properties for production-specific settings. properties

allow to configure settings specific to production. Spring boot

automatically loads the right profile quiet properties depending on the

playing profile. The application properties are also important to

configure Spring boot's auto-configuration. Most of Spring Boot's auto-

configurations are configurable by properties, which means developers

can tweak the behavior of these configurations. For instance, the

spring. datasource. The url property is used for setting up the database

connection URL, whereas the spring. jpa. hibernate. Schema

Generation ddl-auto Property ddl-auto property is used to configure

the behavior of Hibernate's Schema generation. These properties give

you an extremely powerful and flexible way to customize your Spring

Boot applications.

5.3.8 Developing Spring Boot Applications

That's because Spring Boot applications are meant to be developed as

simply as possible by using starter dependencies and automatic

configurations. As noted, before, Starter dependencies give a pre-

configured set of dependencies for particular functionalities. It saves

developers from spending much more time just setting up a project

rather than writing business logic code. For instance, to build a web

application, developers only have to add spring-boot-starter-web

dependency in a project. Spring Boot Starter Web - This starter

dependency comes with all necessary dependencies required to create

a web application like Spring MVC, Tomcat, Jackson. Similarly, if a

data access layer needs to be created, developers can simply add the

spring-boot-starter-data-jpa dependency, which includes the necessary

dependencies for interaction with JPA and databases. They are modular

and compositional starter dependencies you use the parts you need and

leave out the rest. One such critical feature of Spring Boot is the auto

configurations, which ease the development process even more. So

basically, Spring Boot does have default configuration classes which

it configures (beans, components) by checking the available

dependencies in the classpath and properties file provided like

application. It removes the need for XML or Java-based configuration,

decreasing boilerplate code and increasing maintainability. For

instance, if we have the spring-boot-starter-web dependency, Spring

Boot automatically configures a dispatcher servlet, view resolvers, etc.

289
MATS Centre for Distance and Online Education, MATS University

Notes Likewise, If spring-boot-starter-data-jpa dependency is found, Spring

Boot will configure a data source, an entity manager factory and a

transaction manager. Each of these auto-configurations is an

intelligent, adaptive component that automatically recognizes and

configures the necessary components according to the project

dependencies and properties. It is also very powerful mechanism to

customize the auto-configurations as well. By declaring their own

beans or properties, developers can customize the default

configurations. If, for instance, developers want to configure a data

source, they can define a DataSource bean in their application context.

In the same thought, if developers want to know how to customize the

web configuration, they can define a WebMvcConfigurer bean. With

such customization possibilities, you can fully customize the app as per

your needs.

The Spring Boot command line interface (CLI) also helps to ease

getting started with Spring Boot. The build tool and CLI enable

creating, running, and packaging Spring Boot applications in a very

convenient way. It also offers a command package to handle

dependency management, code generation, and various other

development steps. You can use spring init to generate a new Spring

Boot Project and spring run to execute one. We have ancripción and

automation tools and loads of distribution information close to Maych

to save time and allow productivity. Also, Spring boot gives us

developer tools such as spring boot DevTools to improve the developer

experience. With features like Hot Module Replacement (HMR) and

remote debugging, DevTools drastically empowers productivity for

developers. With automatic application restarts, developers do not

have to manually restart the application in order to see changes to the

code in real-time. Live reload refreshes the browser automatically upon

modifying static resources like HTML, CSS, and JavaScript.

Debugging applications running on remote servers is called remote

debugging. These servers are embedded into developers' applications

allowing packages to be deployed as executable JARs in any

environment without needing an external server. This makes the

deployment process easier and provides consistency across

environments. Another reason is that Spring Boot offers remarkable

deployment options, including Docker containers and cloud platforms,

290
MATS Centre for Distance and Online Education, MATS University

Notes enabling developers to select the deployment method that is most

appropriate for them.

5.3.9 Aspect-Oriented Programming (AOP) in Spring Boot

Aspect-Oriented Programming (AOP) is a programming paradigm that

provides a way to modularize cross-cutting concerns, such as logging,

security, and transaction management.

One of the core components of the Spring Framework is its support for

Aspect-Oriented Programming (AOP). AOP is a programming

paradigm that allows you to separate concerns within your application,

especially those that cut across multiple layers—known as cross-

cutting concerns. These concerns, such as logging, security,

transaction management, auditing, and caching, often impact

multiple parts of the application but do not belong to the core business

logic.

In Object-Oriented Programming (OOP), the primary unit of

modularity is the class, whereas in AOP, it is the aspect. While

Dependency Injection (DI) is used to decouple objects from one

another, AOP is used to decouple cross-cutting concerns from the

business logic they influence. In essence, AOP is somewhat analogous

to triggers in other languages like Java, .NET, or Perl, where you can

hook into specific events in code execution.

Spring's AOP module enables this capability by providing interceptors

that can execute custom code at defined points in a method's

execution—either before, after, or around the method call.

AOP Core Terminologies

Term Description

Aspect

A module that encapsulates behaviors affecting

multiple classes. For example, a logging aspect can

capture logs across the application. Multiple aspects

can exist within a single application.

Join Point
A specific point in the program flow where an aspect

can be applied—typically a method call or execution.

Advice

The actual code to be executed at a join point. It defines

what action should occur and when (e.g., before or after

a method).

291
MATS Centre for Distance and Online Education, MATS University

Notes Term Description

Pointcut

A collection of join points where an advice should be

applied. Pointcuts are often defined using expressions

or method patterns.

Introduction
A mechanism to add new methods or fields to existing

classes dynamically.

Target

Object

The object being advised. In Spring, this is always a

proxy object (also called the advised object).

Weaving

The process of linking aspects with target objects to

create advised objects. This can occur at compile-time,

load-time, or runtime.

Types of Advice in Spring AOP

Spring supports the following five types of advice mechanisms:

Advice Type Description

before Executes the advice before the method runs.

after
Executes the advice after the method finishes,

regardless of outcome.

after-

returning

Executes the advice only if the method completes

successfully.

after-

throwing

Executes the advice only if the method throws an

exception.

around
Executes advice both before and after the method

invocation, providing the most control.

292
MATS Centre for Distance and Online Education, MATS University

Notes

Implementing Custom Aspects in Spring

Spring offers two main approaches to define and apply aspects in your

applications:

Approach Description

XML Schema-

based

Configuration

Aspects are defined as regular Java classes, and

AOP behavior is configured through XML. This

method was commonly used in earlier Spring

versions.

@AspectJ

Annotation Style

This modern approach allows developers to define

aspects using annotations. Regular Java classes

are annotated with @Aspect, and pointcuts and

advice methods use annotations like @Before,

@After, @Around, etc.

Spring AOP is a fully featured AOP used in Spring for both defining

and applying aspects with Spring boot. It uses annotations or XML

configurations to define aspects and applies those aspects to join

points, which are defined as points in an application execution such as

method calls and exception handling. Using AOP with Spring Bootis

even easy, because Spring Boot creates auto-configurations and starter

dependencies for it. AOP is a cross-cutting concern, and it is available

by simply adding the spring-boot-starter-aop dependency. However,

this starter dependency is already packing all the required dependencies

to use Spring AOP.

New types of advice in Spring AOP, we have five types of advice in

Spring AOP, these are actions that are taken

before/after/around/returning/throwing a join point. Before advice runs

before a join point, e.g. a method call. It can be utilized to carry out

pre-processing functions like logging input parameters or checking

user permissions. After advice that’s executed after a join point,

regardless of if the join point completes successfully or throws an

exception. This can be handy for post-processing like logging

execution time or releasing resources. Advice is done around a join

point and developer can control the execution of the join point. It can

be used for complex operations, such as transaction management or

293
MATS Centre for Distance and Online Education, MATS University

Notes caching. Returning advice is executed following the successful

completion of a join point, providing a means to examine the join

point's return value. It can then be used for example to log the return

value or transform the return value.

Summary
This module offers a detailed introduction to the Spring Framework and

Spring Boot, which are widely used for developing strong, scalable

Java-based enterprise applications. It starts with the basic principles of

Spring, its architecture, and the benefits it provides in creating modular

and organized applications. A significant part of the module focuses on

dependency injection (DI) and the inversion of control (IoC) container.

These concepts help manage object creation and their dependencies

more efficiently, making the application easier to maintain and test.The

module also covers the development of web applications using Spring,

guiding learners through the creation of RESTful services, handling of

HTTP requests, and view management through Spring MVC.

Spring Boot is introduced as an extension of Spring that simplifies

application setup with features like auto-configuration, starter

dependencies, and an embedded server. Key components such as

@SpringBootApplication, ApplicationContext, and actuator endpoints

are also discussed to help learners understand how Spring Boot

operates behind the scenes. Additionally, the module explains how to

work with databases using Spring JDBC, showing how to perform basic

database operations and manage transactions effectively. Finally,

learners explore aspect-oriented programming (AOP) in Spring Boot,

which allows separation of tasks like logging, security, and transaction

control from the main business logic.

By completing this module, students will be able to design and build

well-structured, efficient, and scalable Java applications using Spring

and Spring Boot.

Multiple-Choice Questions (MCQs)

1. What is the primary purpose of the Spring framework?

a) To develop mobile applications

b) To simplify Java application development

c) To replace SQL databases

d) To manage operating system processes

Answer: b) To simplify Java application development

2. Which of the following is not a type of dependency injection

in Spring?

a) Constructor Injection

b) Setter Injection

294
MATS Centre for Distance and Online Education, MATS University

Notes c) Interface Injection

d) Field Injection

Answer: c) Interface Injection

3. What does the IOC Container in Spring do?

a) Manages the lifecycle of objects and their

dependencies

b) Executes SQL queries

c) Handles user authentication

d) Provides a user interface

Answer: a) Manages the lifecycle of objects and their

dependencies

4. Which annotation in Spring Boot is used to mark a class as a

Spring Boot application?

a) @SpringApplication

b) @SpringBootApp

c) @SpringBootApplication

d) @BootApp

Answer: c) @SpringBootApplication

5. In Aspect-Oriented Programming (AOP), which advice runs

before the execution of a method?

a) @After

b) @Before

c) @Around

d) @AfterReturning

Answer: b) @Before

295
MATS Centre for Distance and Online Education, MATS University

Notes Short Answer Questions

a) What are the key advantages of using the Spring framework?

b) Explain the difference between dependency injection and

Inversion of Control (IoC).

c) What are the main components of Spring Boot architecture?

d) How does Spring Boot simplify dependency management?

e) What are the different types of AOP advice in Spring Boot?

Long Answer Questions

a) Describe the steps involved in creating a simple Spring

application.

b) Explain the different types of dependency injection with

examples.

c) How do you develop a web application using Spring Boot?

Explain with an example.

d) Compare traditional Spring applications with Spring Boot

applications.

e) Explain Aspect-Oriented Programming (AOP) in Spring Boot

and describe how it improves modularity.

296
MATS Centre for Distance and Online Education, MATS University

Notes Glossary

Abstraction: A concept in OOP that hides internal implementation

details and shows only functionality to the user.

Access Modifiers: Keywords used to set the access level for classes,

methods, and variables (e.g., public, private, protected).

Animation: In JavaFX, animation involves changing property values

over time to create motion or visual effects.

Annotation: Metadata in Java used to provide information to the

compiler and frameworks like Spring (e.g., @Component, @Autowired).

Application Context: The central interface in Spring for providing

configuration and managing beans.

Bean: An object managed by the Spring IoC container.

Binding: A feature in JavaFX that links properties so that a change in

one automatically updates the other.

Catch Block: Used in exception handling to catch and handle

exceptions.

Class: A user-defined blueprint or prototype from which objects are

created.

Component: A Spring stereotype annotation used to indicate that a

class is a Spring-managed bean.

Constructor: A special method used to initialize objects.

CSS in JavaFX: Cascading Style Sheets used to style JavaFX UI

elements.

Dependency Injection (DI): A design pattern in Spring where objects

are passed their dependencies rather than creating them.

Directive Tag: JSP element that provides global information (e.g.,

page, include, taglib).

Encapsulation: Wrapping code and data into a single unit, usually a

class.

Exception: An event that disrupts normal program flow, handled using

try-catch blocks.

Expression Language (EL): A JSP feature to simplify the access of

Java objects and attributes without using Java code.

297
MATS Centre for Distance and Online Education, MATS University

Notes FXML: An XML-based language used to define the JavaFX UI

structure.

finally Block: Executed after the try and catch blocks regardless of

exception occurrence.

FX Effects: Visual effects in JavaFX like shadow, bloom, and

reflection.

FX Shapes: 2D shapes such as rectangles, circles, and lines used in

JavaFX applications.

HashMap: A collection class in Java that stores data in key-value pairs.

Implicit Objects: Predefined JSP objects like request, response,

session, application, etc.

init() Method: Servlet lifecycle method called once during

initialization.

Inversion of Control (IoC): A principle where control over object

creation is transferred from the program to a container or framework

like Spring.

JavaFX: A GUI toolkit for developing rich internet applications using

Java.

Java Package: A namespace for organizing Java classes and

interfaces.

JSP (JavaServer Pages): A server-side technology that allows

embedding Java code in HTML pages for dynamic content.

JSP Life Cycle: The process involving translation, compilation,

initialization, execution, and destruction of a JSP page.

J2EE (Java 2 Enterprise Edition): A platform for developing multi-

tier enterprise-level applications.

KeyFrame: In JavaFX, represents a specific point in time in a Timeline

animation.

Method Overloading: Defining multiple methods in the same class

with the same name but different parameters.

Method Overriding: Providing a new implementation of a method in

a subclass that is already defined in its superclass.

Model-View-Controller (MVC): A design pattern that separates

business logic, UI, and input handling.

298
MATS Centre for Distance and Online Education, MATS University

Notes Multithreading: A process of executing multiple threads

simultaneously to perform multiple tasks.

Node: The base class for all JavaFX scene graph objects.

Object: An instance of a class that contains state and behavior.

Package: A grouping of related classes and interfaces.

Pane: A layout container in JavaFX used to organize UI elements.

Polymorphism: An OOP concept that allows a method or object to

behave in different ways.

Request Object: In Servlets and JSP, it represents the client’s request

and provides data like parameters and headers.

Response Object: Sends data back to the client from the server.

Runnable Interface: Used to define a task that can be executed by a

thread.

Scene: In JavaFX, a container for all content in a window (stage).

Scene Graph: A hierarchical tree structure in JavaFX where each

element is a node.

Servlet: A Java class used to handle HTTP requests and responses in

web applications.

Servlet Container: Software that manages servlets, like Apache

Tomcat.

Servlet Life Cycle: Consists of init(), service(), and destroy()

methods.

Spring Boot: An extension of the Spring framework that simplifies

development with auto-configuration and embedded servers.

Spring Framework: A comprehensive framework for building Java

applications with features like DI, AOP, and transaction management.

Stage: The top-level JavaFX container representing a window.

Static Keyword: Used for defining class-level variables and methods.

super Keyword: Used to call the constructor or methods of a parent

class.

Scripting Elements (JSP): Include scriptlets (<% %>), expressions

(<%= %>), and declarations (<%! %>).

299
MATS Centre for Distance and Online Education, MATS University

Notes Synchronization: A mechanism in Java to control access of multiple

threads to shared resources.

Text Class: Used in JavaFX to display a string of text.

Thread: A lightweight subprocess for concurrent execution.

Thread Lifecycle: Includes New, Runnable, Running, Blocked, and

Terminated states.

this Keyword: Refers to the current object in a method or constructor.

Thymeleaf: A Java template engine commonly used with Spring Boot

for rendering HTML pages.

Timeline: In JavaFX, used to create animations over time.

Transformations (JavaFX): Operations like scaling, translating, and

rotating nodes.

try Block: Used to enclose code that may throw exceptions.

wait(), notify(), notifyAll(): Methods for inter-thread communication

in Java.

@SpringBootApplication: A convenience annotation for Spring Boot

applications.

WebApplicationInitializer: Interface for configuring Spring

applications in a servlet container.

@Autowired: Spring annotation used to inject bean dependencies

automatically.

@Controller: Annotation that marks a class as a web controller in

Spring MVC.

Java Initializer: Used to bootstrap Spring Boot projects with selected

dependencies.

300
MATS Centre for Distance and Online Education, MATS University

Notes References

Java Programming References

Chapter 1: Object-Oriented Programming Concepts and

Implementations

1. Horstmann, C. S. (2021). Core Java, Volume I: Fundamentals

(12th ed.). Pearson.

2. Bloch, J. (2018). Effective Java (3rd ed.). Addison-Wesley

Professional.

3. Freeman, E., & Robson, E. (2020). Head First Design Patterns

(2nd ed.). O'Reilly Media.

4. Schildt, H. (2021). Java: The Complete Reference (12th ed.).

McGraw-Hill Education.

5. Deitel, P., & Deitel, H. (2020). Java How to Program (11th

ed.). Pearson.

Chapter 2: Java FX Technology

1. Sharan, K. (2017). Learn JavaFX: Building User Experience

and Interfaces with Java (2nd ed.). Apress.

2. Vos, J., Gao, W., Chin, S., & Weaver, J. L. (2017). Pro JavaFX

9: A Definitive Guide to Building Desktop, Mobile, and

Embedded Java Clients. Apress.

3. McKenzie, C. (2014). JavaFX 8: Introduction by Example

(2nd ed.). Apress.

4. Lyon, D. A. (2015). The Definitive Guide to Modern Java

Clients with JavaFX: Cross-Platform Mobile and Cloud

Development. Apress.

5. Hommel, S. (2014). Mastering JavaFX 8 Controls. Oracle

Press.

Chapter 3: Servlet Technology

1. Hall, M., & Brown, L. (2014). Core Servlets and JavaServer

Pages (2nd ed.). Prentice Hall.

2. Basham, B., Sierra, K., & Bates, B. (2008). Head First Servlets

and JSP (2nd ed.). O'Reilly Media.

3. Williams, L. (2018). An Introduction to Servlet Technology.

Springer.

301
MATS Centre for Distance and Online Education, MATS University

Notes 4. Crawford, W., & Hunter, J. (2001). Java Servlet Programming

(2nd ed.). O'Reilly Media.

5. Murach, J., & Urban, M. (2014). Murach's Java Servlets and

JSP (3rd ed.). Mike Murach & Associates.

Chapter 4: JSP Technology

1. Zambon, G., & Sekler, M. (2007). Beginning JSP, JSF, and

Tomcat Web Development. Apress.

2. Bergsten, H. (2003). JavaServer Pages (3rd ed.). O'Reilly

Media.

3. Goodwill, J., & Hightower, R. (2009). Professional Jakarta

Struts. Wrox Press.

4. Mukhar, K., Zelenak, C., Weaver, J. L., & Crume, J. (2006).

Beginning Java EE 5: From Novice to Professional. Apress.

5. Budi Kurniawan. (2012). JSP and Servlets: A Comprehensive

Study. Brainy Software Inc.

Chapter 5: Spring and Spring Boot Framework

1. Walls, C. (2022). Spring in Action (6th ed.). Manning

Publications.

2. Sharma, K. (2020). Building REST APIs with Spring 5.0.

Packt Publishing.

3. Gutierrez, F. (2019). Pro Spring Boot 2: An Authoritative

Guide to Building Microservices, Web and Enterprise

Applications, and Best Practices. Apress.

4. Cosmina, I., Harrop, R., Schaefer, C., & Ho, C. (2017). Pro

Spring 5: An In-Depth Guide to the Spring Framework and Its

Tools. Apress.

5. Prasad Reddy, K. S. (2017). Beginning Spring Boot 2:

Applications and Microservices with the Spring Framework.

Apress.

302

