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COURSE INTRODUCTION

Operating systems (OS) are essential for managing computer hardware
and software resources, ensuring efficient execution of applications.
This course provides a comprehensive understanding of operating
system fundamentals, including process and memory management, file
systems, I/O handling, and shell programming. Students will gain both
theoretical knowledge and practical skills necessary for OS
administration and system-level programming.
Module 1: Operating System Basic Concepts — Overview
An operating system serves as a bridge between users and
computer hardware, providing essential functionalities such as
resource management, multitasking, and security. This Unit
introduces the fundamental concepts, architecture, and types of
operating systems, highlighting their role in modern computing
environments.
Module2: Process Management and Process
Synchronization
Processes are the basic units of execution in an OS. This Unit
covers process creation, scheduling algorithms, inter-process
communication (IPC), and synchronization techniques.
Students will explore concurrency control, deadlock handling,
and techniques for efficient process execution in multi-tasking
systems.
Module 3: Memory Management
Efficient memory management is crucial for system
performance and resource optimization. This Unit explores
memory allocation techniques, paging, segmentation, virtual
memory, and memory swapping. Students will learn how
operating systems manage RAM efficiently to ensure smooth
application execution.
Module 4: File Systems and I/0 Management
File systems organize and store data systematically in an OS.
This Unit covers file system structures, file access methods,
disk scheduling algorithms, and I/O management techniques.
Students will gain an understanding of how OS handles file

storage, retrieval, and peripheral device management.
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Module 5: Basics of Shell Programming

Shell programming allows users to automate tasks and interact
with the OS using command-line scripts. This Unit introduces
shell scripting fundamentals, basic commands, control
structures, and script execution. Students will learn how to write

shell scripts for system automation and administration.
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MODULE 1
INTRODUCTION TO OPERATING SYSTEM

LEARNING OUTCOMES
o To understand the basic concepts of an operating system (OS).
e To explore the need and functions of an OS.
o To analyze different types of operating systems.
e To study OS services and system calls.

e To examine OS structure and design goals.

3
MATS Centre for Distance and Online Education, MATS University



3

v

\\\ ;
mars

ready for Iie......

Notes

|

Unit 1.1: Introduction to Operating Systems

1.1.1 Introduction to Operating Systems

Operating systems are one of the most essential classes of software in
computing technology. An operating system (commonly referred to as
an OS), on the other hand, is a critical bridge between the computer’s
physical machinery and the software applications you use on a day-to-
day basis. Because modern computing devices possess complex
hardware elements—from extremely powerful central processing units
to sophisticated memory hierarchies and numerous I/O devices—
without an operating system, they would remain haphazard,
uncoordinated components that cannot perform useful work.

For example: The operating system is the critical interface that turns
hardware into a cohesive, working computing machine, coordinating
the myriad interactions between physical resources and software
requirements. Operating system is fundamental, it manages computer
hardware, provides common services for computer programs, and
provide user with an user interface to computer system. They have
grown from simple program loaders and memory managers on early
mainframe computers into complex working environments, supporting
multitasking, multi-user operations and distributed computing over

networks.

INTRODUCTION TO
MODERN OS
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Figure 1.1..1 : Modern operating systems

Modern operating systems, from supercomputers to personal desktop
machines to mobile devices and even embedded systems in everyday
objects, all share core design and implementation utility principles,
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while also tailoring their designs to meet the needs of the hardware
environments and use cases they were chosen to serve. The detailed
exploration of operating systems provides us not just with the practical
knowledge of how computers work at a fundamental level, but also the
philosophical considerations concerning resource allocation, security
paradigms, and user interface design that have influenced the evolution
of computers and continue to shape its path forward.

This course will introduce you to the core concepts, components, and
design principles that require the powerful software systems we call
operating systems by providing a foundation upon which later study of
the specifics of implementations of operating systems and the
theoretical underpinnings of those implementations will be built.
Operating systems have evolved in much the same way as the
computers they serve, progressing in phases that respond to new
hardware and new applications. However, the earliest electronic
computers of the 1940s and 1950s had no components we’d recognize
as an operating system today; these machines had to be run directly by
their users, who physically input programs and data with the help of

switches, punch cards or paper tape.
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Figure 1.1.2: Punch Cards and Paper Tapes

Programs were fully in charge of the machine while executing, and
writing programs required intimate knowledge of the hardware
architecture. In the late 1950s, the emergence of batch processing
systems marked the beginning of the actual operating system, which
automated the loading and execution of series of programs in the
background, making use of costly and scarce computing resources by
reducing idle time between jobs.
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Figure 1.1.3: Batch Operating System

00O

Operating systems It was too complex to trust a single program directly
to the hardware, and it generally controlled the execution of one or
more workloads, and executed with the allocation of hardware
resources in memory and CPUs and allowed multiple users to

communicate interactively with the computing environment (time

sharing).
‘ Pmcessz/|¥>/"___'\<
( ) C_) ( )_Processtt
x Active

Figure 1.1.4: Time Sharing Operating System

Personal computing rose in the 1980s, still relying on command-line
interfaces but making operating systems like MS-DOS, the Macintosh
System Software, and various implementations of UNIX available for
individual computers, and user interfaces matured into graphical user
interfaces as the standard for human/machine interaction in the 1990s,
including Microsoft Windows, the Macintosh operating system, and
various Linux distributions with desktop environments. The 21%
century saw the rise of the networked operating system with focus on
internal security and multimedia, as then the mobile explosion of the
2010s saw the birth of new models altogether around touch, battery
and connection optimized operating systems like Android and iOS.
Cloud computing, virtualization, and containerization take this even
further — they extend the operating system to a distributed computing
environment where many devices serve as part of a dynamic resource

allocation and management pool across a vast web of connected server
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infrastructure. Across this evolution, operating systems have always
been dealing with basic problems: effectively managing hardware
resources, providing developers with layers of abstraction to simplify
application development, ensuring the security and stability of the
system, and building a user experience that is more convenient points
that are still valid no matter the specific implementation or hardware
platform used.

You learn from a variety of sources and specializations; however, the
definition and understanding of the architecture of an operating system
is often vague and can come across confusing to the common reader.

At the lowest level, the kernel is the heart of the operating system,

EVOLUTION OF COMPUTERS

Personal
UNIX System — Computer

T — Minicomputer

Figure 1.1.5: Evolution of Computer ( from CUI to GUI interface)

running in privileged mode with hardware access and handling
essential functions such as process and memory management, file
systems, device drivers, and inter-process communication. So, amongst
these processes, managing their access to the CPU is process
management (including process scheduling to give the illusion of
concurrency, process creation and termination, process synchronization
and communication and context switching on single core systems).
Memory management involves mapping virtual addresses to physical
memory addresses, allocating and deal locating chunks of memory,
maintaining a page or segment table, and providing memory protection
against unwanted access. Device Management Device management is
a process of controlling hardware peripheral through device drivers that
abstract device-specific details and present standardized interfaces,
allocate device to competing processes, service interrupts from
hardware components. The networking stack is at the core of modern

operating systems: it implements communication protocols, manages
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local network interfaces, provides socket abstractions for network
programming, and handles routing and packet filtering. Security
elements are woven throughout the operating system, providing user
authentication and user authorization, enforcing access to resources,
giving encryption services, and protecting against malware and other
security threats. On top of these basic services, modern operating
systems provide application programming interfaces (APIs) i.e.,
methods for applications to request standard services from an OS as
well as graphical subsystems to allocate display resources and act as a
windowing system, and user interface frameworks to abstract away

some of the complexities of building interactive applications.

APPLICATION
oS

Figure 1.1.6: Application Programming Interface (API)

The operating systems have intricately layered architecture
demonstrating several design principles: modularity (capability of
constructing components independently and modifying them without
having an effect on other components), abstraction (the ability of an
operation to hide details of implementation behind the sorts of
interfaces that are less complicated) protection (which prevents
unauthorized access to resources) and extensibility (refers to the
capability of the system to adapt to the ever-changing hardware and
software capabilities). This is a crucial aspect of operating system
functionality and is used heavily in system performance and resource
utilization, as well as the overall user experience. A process, from the
operating system’s perspective, represents a single task of running a
program and includes information not just about the program code, but
also the state of the work in progress, including the program counter,

register values, values of the program variables, files currently open,

8
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and the program’s memory allocations. When a new process is being
created—from a user request, an existing process request, or at boot
time by the system itself—the operating system allocates all the
necessary resources, sets up data structures to keep track of the state of
the process, and loads the program code into memory.

A process goes through several states during its lifecycle: running
(actively executing on some CPU), ready (waiting to be allocated to a
CPU), blocked (waiting for some event, such as I/O completion), and
terminated (execution has finished or has been aborted).

For Example: Imagine you send a document to a shared office printer.
At first, when you click the print button, the operating system creates a

new print job, which represents the New state of the process. The job is

NEW admitted (" READY
_/ &

scheduler
1/70 or event dispatch
exit | completion A 4

interrupt

h. 4

completion /

Figure1.1.7: Process Life Cycle in OS

then moved into the Ready state, waiting in the print queue because the
printer might be busy with other tasks. When the scheduler selects your
job and the printer begins to process it, the job enters the Running state.
Partway through, the printer might run out of paper, which forces the
process into a Waiting state while it pauses and waits for someone to
refill the paper tray. Once the paper is added, the process goes back to
the Ready state, waiting again for the printer to become available.
When the printer resumes and finishes printing your document, the
process transitions through Running one last time and then ends in the
Terminated state, as the job is removed from the queue. In this way,
the print job’s journey mirrors the process life cycle in an operating
system. The operating system’s scheduler must decide which ready

process to run next according to algorithms that balance competing

9
MATS Centre for Distance and Online Education, MATS University

\

4m

W

UNIVERSITY

ready for lfe......

Notes

ars)

=)

|



\| UNIVERSITY

ready for life

Notes

V)

objectives such as fairness, priority enforcement, response time,
throughput, and resource utilization.

Threads are the basic units of execution that share the address space
within a process, making it a lightweight alternative to concurrent
programming that avoids the cost of a full process creation. Similarly
in thread management, but with the added challenge of developing
concurrency control and synchronization to avoid race conditions and

provide safety in data access to shared resources.

Code Data Files Code ‘ Data | Files
Registers Counter Stack Registers ‘ Registers | Registers
Stack ‘ Stack | Stack
Counter ‘ Counter | Counter

Thread ;

Thread Thread Thread
Single-threaded process Multithreaded process

Figure 1.1.8: Thread in OS

To enable cooperating processes to coordinate their action and
exchange data, modern operating systems provide several interposes
communication and synchronization mechanisms, such as pipes,
message queues, shared memory, semaphores, and mutexes.

For Examples: Here are Few real-world examples of Thread system
as follows:

Web Browser:

A single browser process can have multiple threads—one for rendering
the page, one for handling user input, and others for downloading files
simultaneously.

Word Processor:

While typing in Microsoft Word, one thread handles text input, another
thread checks spelling and grammar in the background, and another

handles autosaving without interrupting your work.
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Multiprocessors and multicore systems further complicate process
management, as they must also consider processor affinity (keeping
certain work units on certain processors in order to make the best use
of local caches), balancing the load between multiple processing units,
and parallel execution models that take into account the multiple
sources of hardware parallelism. These have been developed over years
of research, leading to advanced operating system features such as
migrating processes between computational nodes in distributed
systems, check pointing processes to allow recovery from faults, and
dynamic scheduling algorithms that optimize resource allocation
according to varying uses of workload and environmental conditions.
Process and thread management is critical for the overall performance,
responsiveness, scalability and optimal utilization of hardware

resources while preserving system stability under different loads.

Multi-Core vs. Multi-Processor
Processor 0 Processor 0 | [ Processor 1 |
Core 0 Core | Core 0 Core | Core 0 Core |
| o il |
e

L2 Cache L2 Cache L2 Cache

System Memory System Memory
System Bus
Multi-Core Processor with Shared L2 Multi-Processor System with Cores that share
Cache L2 Cache

Figure1.1.9: Multi-Processor and Multi-Core Systems

An underlying OS feature that has wide-reaching effects for the
performance of the system and the programs running on it, as well as
the hardware being used, is Memory management. Perhaps the main
issue of memory management is to allocate the available physical
memory resources among the various competing processes in a way
that users know that their sensitive data is protected and are running in
their own “large” address space. Virtual memory: Modern operating
systems implement virtual memory systems, which provide an address
space for a program that is separate from the physical memory the
program runs in. Programs can use this space directly instead of the

physical memory they will actually occupy, allowing each program to
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think it has more memory than what is available and that it has access
to the complete memory space.

This conversion from virtual to physical memory is generally
performed by dedicated hardware (the Memory Management Unit,
MMU) under the direction of operating system data structures such as

page tables.

Virtual Memory

HARD DISK

DISK
T2 ls-A4| MEMORY

S

Figure 1.1.10: Virtual Memory System

Paging, which is the most commonly used virtual memory
implementation technique, splits virtual memory into equally sized
blocks of memory, or pages, and splits physical memory into frames,
paving the way for fine-grained memory allocation and efficient
allocation of infrequently (but potentially) used pages to secondary
storage when physical memory rack is full.

Page replacement algorithms, such as Least Recently Used (LRU),
First-In-First-Out (FIFO), and Clock algorithms, decide which pages
to evict and when, balancing access frequency, regency, and page fault
costs. More advanced memory management strategies include demand
paging (paging in memory pages on access), copy-on-write (sharing
read-only pages across processes until one of them writes to the page),
memory-mapped files (which map file contents directly into a specified
portion of the process address space), and large page support (using
variable size memory pages so that at least some applications can
reduce the translation of pages and fragmentation). Memory protection
mechanisms enforce access restrictions to prevent processes from
reading or writing to the memory allocated to other processes or (in
most cases) the operating system kernel itself, implemented through
protection bits in the page tables that are checked by the MMU during
address translation. Address space layout randomization (ASLR) is also
a technique employed by modern systems that adds another layer of

12
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security of randomly reordering important locations where the program
is occupying memory, making it harder for attackers to guess addresses.
Advanced memory management features include working set models
that attempt to keep a process's most actively used pages in physical
memory, non-uniform memory access (NUMA) in multiprocessor
systems, where access time to memory varies by distance to memory
module, and transparent huge pages that use larger page sizes to reduce
overhead for applications with contiguous memory access patterns.

Memory management is a critical part of an operating system design
and implementation because it affects not only the speed of program
execution, but also the responsiveness of the system, energy
consumption, and concurrency in terms of the number of applications

that can run without the overhead of pages being constantly made.
For Example: Imagine you are working on a laptop with multiple
applications open at the same time — Suppose, a web browser with
many tabs, a music player running in the background, and a graphics
editing tool. The operating system’s memory management is what
ensures each application gets enough memory space to function
properly without interfering with each other. It allocates specific
memory blocks to the browser so it can load web pages, assigns a
separate area of memory to the music player so it can buffer audio
smoothly, and reserves another area for the graphics tool to handle large
image files. If the browser closes a tab, memory management frees that
portion of memory so another application can use it. When you switch
from editing an image to browsing the web, the system may temporarily
move less-used data from RAM to virtual memory on the disk to make
room for what you’re actively using. Just like a skilled organizer in a
shared office, the memory manager keeps track of which areas are in
use, which are free, and how to shuffle things around so every
application runs efficiently without colliding with others.

The organization of I/O devices and decoupling between software and
hardware capabilities and resources is provided by file systems and I/O
management systems, which represent one of the most significant parts
of an Operating System. I/O management handles the classic problem
of presenting abstract, uniform, high-level interfaces to extremely
heterogeneous hardware devices ranging from disk drives and network
cards to keyboards, display units, and application-specific sensors each
with its own timing behaviors, data formats, and control interfaces.
Structured to separate and abstract various aspects of I/O, the operating

system adopts a layered design approach: the lowest level contains
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device drivers, which are hardware-dependent code responsible for
interfacing with devices; above that there is a device-independent I/O
layer that standardizes the common I/O operations of the same class of
devices; and ultimately higher up are high-level interfaces that provide
simple abstractions to applications. Depending on the specific
implementation, input and output can be either synchronous, where the
calling process gets suspended until the operation is complete, or
asynchronous, where the process continues executing while the 1/O
operation completes in the background, and most new systems use an

asynchronous model improving system responsiveness and throughput.

The OS uses a number of techniques to improve I/O performance,
these include buffering (storing a subset of data in memory temporarily
to help speed differences between devices and reducing batch operation
timings), caching (storing a copy of recently requested data in memory
to quickly access again, reducing access time), scheduling
(rescheduling I/O requests in their order to minimize mechanical

movements between devices), direct memory access (or DMA, which

Memory Monitor Keyboard USB Drive Disk Drive
cPU Memory Video Keyboard uss Disk
Controller Controller Controller Controller Controller
| " u \ W
¥ v 4 ¥ W

Input Output System and Subsystem

Figure1.1.11: Input Output Sub Systems

eliminates the need of the CPU in facilitating the transfer process
between certain devices and memory locations). At the larger scale of
I/O, file systems probably offer the most prevalent abstraction: the
structuring of persistent storage as named files grouped in
hierarchically arranged directory structures. Some more regarding the
functionality of file systems they perform one of the most important
jobs, map the logical file operations to the storage locations, keep track

14
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of what space is occupied, manage free space, record the metadata for
the files (such as creation dates, permission), maintain access control,
and ensure data integrity as well through journaling or copy-on-write
techniques that protect them from corruption even in case of the
system crashing. All modern operating systems support multiple types
of file systems, from general-purpose systems (e.g., NTFS, ext4, and
APFS) to specialized systems that are better optimized for specific use
cases (e.g., high-performance computing, network-attached storage, or
even solid-state drives which wear out differently than conventional
magnetic media). Some advanced file system features include
snapshots (point-in-time captures of file system state), transparent
compression and duplication to maximize storage efficiency, and
encryption to protect sensitive data, as well as distributed designs that

span multiple physical storage devices or network nodes.

Application
/'y
. 4
Operating system
Virtual
file system
NFTS FAT32 CD-ROM NFS

Figure 1.1.12: File System in OS

I/O management and file systems, taken together, allow applications to
communicate with the physical world via a multitude of devices and
discreetly store and retrieve data without needing to worry about the
intricacies of the hardware implementation, making them one of the
most useful services provided by the operating system from user and
programmer points of view. Security and protection mechanisms
pervade modern operating systems, a reflection of the evolution of
computing from isolated, single-user systems to interconnected devices
containing sensitive information and operating in possibly hostile
networked environments. In terms of operating system security, the
most fundamental aspect is the separation between user mode and

15
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kernel mode (or supervisor mode) of operation, which establishes a
privilege boundary, restricting applications from directly accessing
hardware resources or manipulating memory regions not assigned to
them, ensuring that transitions between modes are made safe by means
of system calls.

For Example: Users are authenticated by passwords, who they are as
a person, biometric factors, and cryptographic tokens, and authorization
mechanisms then allow or restrict what resources they can access
(typically implemented by ACLs or capability-based security models
that associate permissions with objects or subjects, respectively).
Process isolation ensures that one process cannot access the memory
or resources of another process unless explicitly allowed to do so and
achieves this through mechanisms such as virtual memory and
hardware aids like protection rings or privilege levels. Memory
protection takes that isolation even further by applying permissions on
these memory regions and marking them either as readable, writable,
or executable, while the hardware itself does not allow any operations
that bypass these rules, catching a lot of potential attacks at the
hardware level itself, before they get a chance to cause damage.
Modern operating systems are not statically defined but are tailored to
adapt to the hardware, and use case, and user when the environments
evolve, even if not always in a progressive manner, with at least a few
of the following trends becoming dominant to each new release within
current deployment matrices. Cloud-native OS are a radical break with
their predecessors, optimized for the deployment of workloads in
virtualized or containerized environments where resources are
elastically allocated, workloads are assumed to be distributed over a
number of nodes, and system services are accessed through standard
APIs to the resources instead of hardware interfaces. On the system
design front, containerization and micro services architectures have
driven operating system implementation toward a more modular,
lightweight style, in which system components are compostable on
demand rather than deployed as monolithic images, generating resource
overhead and reducing the flexibility to deploy distinct parts of the
system independently. Time-sensitive workloads driven by
requirements for deterministic performance guarantees and predictable
latency even under changing load conditions such as control of

autonomous vehicles, industrial automation and augmented reality,

16
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have propelled real-time operating systems (RTOS) into more than just
traditional embedded applications. From the design of operating
systems, where security in enforcing compatibility has taken
precedence over optimizations to rack mount servers behind firewalls
in grey rooms, displaying cold metrics in measured temperatures, even
to now newer patterns that incorporate validated modules of the OS
through axioms or providing remote attestation methods as always
verifying your mass surveillance hardware that forces your components
on hardware to trust no device only its configurations, all areas
throughout computing have been revised and are undergoing a much
more rigid recliner to minimize surfaces and reducing injury narratives.
At the same time, advances in aggressive power management,
workload-aware scheduling, and heterogeneous computing models that
partition workloads among the most energy-appropriate processing
units are now routine even on cloud computing platforms since user
experiences over this wide range of computing have moved now from
purely performance-driven to considering price and environmental
footprint as primary design considerations. To further mitigate this gap,
where CPU throughput is orders of magnitude greater than that of
memory, these advanced memory management techniques also
permeate both the multi-layer memory hierarchies of DRAM, persistent
memory and storage-class memory due to their varying performance
characteristics along with sophisticated perfecting and migration
policies that predict memory access patterns. Even when it comes to
interface paradigms, they are evolving away from solely pointing to
desktop metaphors and branching further into the world with
conversational interfaces powered by natural language processing,
ambient computing models where the interaction takes place through
environmental sensors instead of explicit commands, or cross-device
experiences where applications and workflows cross-pollinate various
hardware form factors. The era of specialized hardware accelerators—
Graphics Processing Units (GPUs), Tensor Processing Units (TPUs),
Field-Programmable Gate Arrays (FPGAs), and custom Application-
Specific Integrated Circuits (ASICs) for specific workloads such as
machine learning, cryptography, or video processing—has forced
operating systems to create more complex models of resource
abstraction and scheduling systems to manage the diversity of

computing resources. With the advent of quantum technologies such as
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quantum-randomness and quantum-superposition, we will witness the
need for new programming models, different resource management
strategies, fundamentally different operating systems, and error
correction techniques that are going to shape this field for years to
come and which need to be explored. Far from converging to a single
dominant fruit-of-the-meeting-of-the-twain OS model, these diverse
trends point to a continuing diversification of specialized systems,
optimized for specific hardware environments, workload
characteristics, and usage scenarios, around common theoretical
foundations but increasingly differentiated in their implementation

details and optimization priorities.

USER

APPLICATION

OPERATING SYSTEM

HARDWARE

Figurel.1.13: Operating System
[Source - https://medium.com/]
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Unit 1.2: Need and Functions of Operating Systems

1.2.1 Need and Functions of Operating Systems

The world of computing we experience today is built on a foundation
of ever-evolving hardware and software, all doing its job in concert.
Central to this ecosystem is the operating system (OS) a complex piece
of software that acts as the vital bridge between computer hardware and
the applications that operate on top of it. Operating systems are
everywhere, running everything from the smart phones in our pocket
to the supercomputer that are behind scientific breakthroughs. But at
that same time, operating systems are deeply complex and critical and
many users are shaped by their interactions with them without ever
fully contemplating the bedrock of their complexity and criticality.
Simply put, the operating system is a complex resource mediator and
service implementer that exposes a simpler and safer way to run
applications on top of real-world hardware. Without the layers of
abstraction an operating system provides, any application would have
to be responsible for directly manipulating hardware components from
managing memory and processing resources to managing input/output
operations to peripherals like keyboards, displays, and storage devices.
This would result in insane redundancy, bloat, and security holes and
would make the application development process a thousand times
harder. Operating system development has run side by side with the
progress of computing hardware, each generation responding to
progressively more intricate problems. Some early computing systems
were without operating systems or had very little system software, and
so operators had to run the machine and manage the timing of
operations manually. As computing power and other capabilities grew,
operating systems integrated to manage and protect the more complex
resources, becoming the multi-user, multi-tasking familial that they are
today and running across everything from embedded micro-controllers
to distributed cloud infrastructures.

1.2.2 The Need for Operating Systems: Bridging Hardware and
Software

We can also note that modern computing hardware includes many
different types of components multi-core, multi-threaded CPUs with

multiple, complex version processors in overall instruction set, a
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multi-level hierarchy of memory systems (registers, caches, RAM,
disk), graphics processing units, networking interfaces, different
input/output devices, etc. Each chunk operates on its own protocols
and clocks: it's a nightmare of complexity. Without any abstraction,
they would have to know all the details of the hardware: its
specifications, its operational characteristics, and so on, making it
extremely difficult to write software, and making that software only
hardware specific. This basic missing piece is supplemented by
operating system which provides abstraction layers over the hardware.
Training makes a native operating environment by hiding the
complexity of the underlying hardware and presents standardized
interfaces. The abstraction allows application developers to implement
functionality directly as opposed to worrying about the details of the
actual hardware. For instance, when an application wants to persist its
data, it can use high-level file system calls offered by the OS instead
of accessing directly the disk controllers, managing sector allocations

or creating error correction protocols.

MEMORY
MANAGEMENT T SECURITY

Joe

CONTROL
ACCOUNTING

OPERATING e
SYSTEM MANAGEMENT

NETWORKING

MONITORING DEVICE
HEALTH MANAGEMENT

FILE

COORDINATION MANAGEMENT

Figure 1.2.1: Functions of OS

1.2.3 Resource Sharing and Protection

Contemporary computing environments generally have multiple
applications vying for limited system resources processor time,
memory space, I/O bandwidth, and storage capacity. To avoid these
conflicts, a mediating system stands between the applications running
within the OS. Imagine two different applications wanting to access the
same memory region or the same storage space at the same time or one
application wants to capture the processor and not allow other
applications to run.

The operating system implements mechanisms for resource allocation,
scheduling, and protection to ensure:
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1. Fair access to resources: Through sophisticated scheduling
algorithms, the OS ensures that all applications receive appropriate
access to the CPU and other resources.

2. Memory protection: Modern operating systems implement virtual
memory systems that provide each process with its own address
space, preventing unauthorized access to memory regions
belonging to other processes or the OS itself.

3. /O management: By centralizing control of input/output
operations, the OS prevents conflicts in device usage and ensures
that all applications can access peripherals in a controlled manner.

4. File system management: The OS provides a structured way to
store and access data, preventing applications from directly
manipulating storage devices and potentially corrupting data.

1.2.4 Hardware Independence and Portability
Operating systems are one of the most valuable software in the
information technology world, as they allow portability for software
across hardware platforms. Without this layer of abstraction, programs
would have to be rewritten for every hardware configuration or
platform. The operating system provides standardized interfaces (APIs)
which are (for the most part) consistent between different hardware
implementations; this enables applications to run on various systems
with little or no change. The reason the OS can insulate its applications
from the actual hardware of the computer is by taking generic requests
made by the application and translating those requests into specific
operations on the hardware. As an example, when an application wants
to print something, the OS converts that into the printer specific
protocol that the connected printer supports. When an application
requests memory to be allocated, for example, the OS knows how to
abstract the complexity behind managing physical memory resources,
including virtual memory systems, paging and address translation.

1.2.5 Security and Access Control

In multi-user and networked computing environments, security

concerns become paramount. The operating system plays a crucial role

in implementing security mechanisms that protect:

1. System integrity: Preventing unauthorized modifications to the
system itself.

2. Data confidentiality: Ensuring that sensitive information is

accessible only to authorized users.
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Notes

3. User authentication: Verifying the identity of users before granting
access to resources.

4. Access control: Enforcing policies that determine which users can
access which resources and in what ways.

5. Isolation: Containing potential damage from malicious or
malfunctioning applications.

Applications and widespread vulnerabilities. If these protections were
not implemented at the level of the operating system, each application
would have been responsible for implementing its own security
features, which would have had the result of inconsistent protection
among Systems, file sandboxing for applications to limit inter-process
cooperation, and walking-talking real-time attack monitoring. With
computing systems becoming more networked and subject to a greater
variety of attacks, operating system security functions became more
advanced, adding secure boot procedures, encrypted file

1.2.6 Core Functions of Operating Systems: Process Management

Process Concept and Implementation

A process is the execution of a program, which contains the program

code as well as its current activity (it is a unit of work). We focus on

processes, one of the most basic abstractions provided by modern
operating systems, which enable multi-tasking and a fundamental unit
of isolation between executing software.

1. Program code: The executable instructions of the program.

2. Data: The variables and data structures used by the process.

3. Process stack: Containing temporary data such as function
parameters return addresses, and local variables.

4. Process heap: Dynamically allocated memory during process
runtime.

5. Process control block (PCB): A data structure maintained by the
OS containing process identification, state information, scheduling
information, memory management information, accounting
information, and I/O status information.

The operating system is responsible for creating processes when

programs are initiated, managing their lifecycle, and eventually

terminating them. This lifecycle typically follows transitions between
several states:

1. New: The process is being created.

2. Ready: The process is waiting to be assigned to a processor.
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3. Running: Instructions are being executed.
Waiting/Blocked: The process is waiting for some event to occur
(such as an I/O completion).

5. Terminated: The process has finished execution.

Process Scheduling

Process scheduling is one of the most complex functions performed by

operating systems, directly influencing system performance,

responsiveness, and resource utilization. The scheduler determines

which processes run when and for how long, based on scheduling

algorithms designed to meet specific system goals such as:

1. Maximizing CPU utilization: Keeping the processor as busy as
possible.

2. Maximizing throughput: Completing as many processes as
possible per unit time.

3. Minimizing turnaround time: Reducing the time between process
submission and completion.

4. Minimizing waiting time: Reducing the time processes spend
waiting in the ready queue.

5. Minimizing response time: Providing quick initial responses to
interactive users.

Operating systems implement various scheduling algorithms to balance

these often-conflicting goals:

e First-Come, First-Served (FCFS): Processes are executed in the
order they arrive.

o Shortest Job First (SJF): Prioritizes processes with the shortest
expected execution time.

e Priority Scheduling: Assigns priorities to processes and executes
the highest-priority process first.

¢ Round Robin (RR): Allocates a fixed time slice (quantum) to each
process in a circular queue.

e Multilevel Queue Scheduling: Partitions the ready queue into
separate queues for different process types.

e Multilevel Feedback Queue: Similar to multilevel queue but
allows processes to move between queues based on their behavior.

Modern operating systems often implement complex hybrid

approaches that consider factors such as process priority, execution

history, and system load to make scheduling decisions.
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Process Synchronization and Communication

In contemporary computing environments, processes rarely operate in

isolation. Instead, they frequently need to coordinate their activities and

share data. This necessity introduces two critical challenges that

operating systems must address:

1.

Race conditions: When multiple processes access and manipulate
shared data concurrently, the outcome can depend on the particular
order in which the accesses occur, potentially leading to
inconsistent or corrupt data.

Deadlocks: A situation where two or more processes are unable to
proceed because each is waiting for resources held by another

process.

Operating systems provide synchronization mechanisms to address

these challenges:

Mutual exclusion: Ensuring that only one process at a time can
access shared resources or critical sections of code.

Semaphores: Synchronization variables that control access to a
common resource in a multi-processing environment.

Monitors: High-level synchronization constructs that encapsulate
both the shared data and the operations that manipulate it.
Message passing: Allowing processes to communicate and
synchronize by exchanging messages.

Deadlock prevention, avoidance, detection, and recovery:

Strategies to handle the deadlock problem.

Inter-process communication (IPC) mechanisms enable processes to

exchange information and coordinate their activities:

Shared memory: Allows processes to communicate by reading and
writing to a common memory region.

Pipes: Provide a unidirectional communication channel.

Named pipes (FIFOs): Similar to pipes but with a name in the file
system, allowing unrelated processes to communicate.

Message queues: Allow processes to exchange messages through
system-provided queue structures.

Sockets: Enable communication between processes running on

different machines across a network.

These synchronization and communication mechanisms are essential

for building complex, cooperative software systems where multiple

processes work together to accomplish tasks.
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Memory Management: Optimizing a Critical Resource

Memory Hierarchy and Management Challenges

Many computer memory systems have a hierarchy from fast, but more

costly, limited capacity (registers and cache memory) to slower but

larger and cheaper (main memory and secondary storage). Memory is

a critical resource, and managing its use is paramount to system

performance, as access times can vary by orders of magnitude across

this hierarchy.

The operating system faces several key challenges in memory

management:

1. Allocation: Determining how to assign available memory to
processes as they are created and as they request additional memory
during execution.

2. Deal location: Reclaiming memory when processes terminate or
explicitly release memory.

3. Protection: Ensuring that processes can only access memory
allocated to them, preventing unauthorized access to memory
regions belonging to other processes or the operating system.

4. Sharing: Allowing controlled sharing of memory regions between
processes when appropriate.

5. Physical organization: Managing the physical arrangement of data
in memory to optimize access patterns and utilize memory
hierarchy effectively.

1.2.8 Memory Management Techniques

Operating systems employ various techniques to address these

challenges:

1. Contiguous Memory Allocation: In early systems, each process
was allocated a single contiguous block of memory. While simple
to implement, this approach led to fragmentation issues and
inefficient memory utilization.

2. Paging: A memory management scheme that eliminates the need
for contiguous allocation by dividing physical memory into fixed-
sized blocks called frames and logical memory into blocks of the
same size called pages. This allows the physical address space of a
process to be non-contiguous, with the operating system
maintaining a page table to map logical addresses to physical

addresses.
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Notes

Segmentation: Divides memory into variable-sized segments, each
corresponding to a logical unit of the program such as the code
segment, data segment, or stack segment. This approach aligns
more naturally with how programmers think about memory but can
lead to fragmentation.

Virtual Memory: An extension of the paging system that allows
programs to execute even when they are only partially loaded in
memory. The operating system keeps active portions of the
program in main memory and transfers other portions between main
memory and secondary storage as needed.

Page Replacement Algorithms: When implementing virtual
memory, the operating system must decide which pages to remove
from memory when space is needed. Algorithms such as Least
Recently Used (LRU), First-In-First-Out (FIFO), and Clock
algorithm help make these decisions to minimize page faults.
Memory Compression: Some modern operating systems compress
infrequently used memory pages rather than writing them to disk,

reducing the performance penalty associated with page swapping.

Virtual Memory Implementation

Multiple significant advantages: way memory management work. It

offers One of the groundbreaking innovations of any operating system

design is virtual memory, which changed the whole

1.

Programs can be larger than physical memory: By keeping only
portions of programs in memory, the system can execute programs
that are larger than the available physical memory.

Higher degree of multiprogramming: More programs can run
concurrently since each only needs part of its address space in
physical memory.

Less I/0 for loading and swapping: Programs can start execution
after loading just their initial pages, rather than waiting for the entire
program to load.

More efficient use of memory: Memory is allocated only when

needed, not based on worst-case estimates.

The implementation of virtual memory involves several components:

1.

Page tables: Data structures that map virtual addresses to physical
addresses.
Translation Look aside Buffer (TLB): A special cache that stores

recent address translations to improve performance.
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3. Page fault handling: When a program accesses a page that is not
in memory, a page fault occurs, and the operating system must load
the required page from secondary storage.

4. Swapping mechanism: The component responsible for
transferring pages between main memory and secondary storage.

5. Working set management: Tracking the set of pages a process is
actively using to make intelligent decisions about which pages to
keep in memory.

(loading pages only when accessed), copy-on-write (initially sharing

pages until they are modified), and memory-mapped files (mapping file

contents directly into virtual memory). For example, modern virtual
memory systems tend to contain advanced optimizations like demand
paging

1.2.9 File Systems and Storage Management

File Concepts and Organization

Files are the basic building blocks of permanent storage in the

computing world. We introduce the core function of the operating

system for file management, which provides an essential layer of
abstraction that protects applications from handling the details of
physical storage devices.

Key file concepts managed by operating systems include:

1. File attributes: Information about files, including name, type, size,
location, protection settings, creation time, last modification time,
and access permissions.

2. File operations: Functions such as create, delete, open, close, read,
write, append, seek, and get/set attributes.

3. File types: Regular files (containing user data or program data),
directories (catalogs that organize files), special files (representing
devices in UNIX-like systems), and other system-specific types.

4. File access methods: Sequential access (reading/writing records in
order), direct access (random access to any block), and indexed
access (using an index to locate records).

Operating systems organize files using directory structures, which have

evolved from simple single-level directories to sophisticated

hierarchical structures. Modern file systems implement:

1. Hierarchical directory structures: Organized as tree structures

with directories containing files and subdirectories.
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Notes

Path names: Absolute paths (from the root directory) and relative
paths (from the current directory).
Directory operations: Creating, deleting, opening, closing, and

traversing directories.

File System Implementation

The implementation of file systems involves several layers of

abstraction:

1. Logical file system: Manages metadata information, directory
structures, and file control blocks (inodes in UNIX-based systems).

2. File organization module: Maps logical blocks to physical blocks,
manages free space, and allocates storage.

3. Basic file system: Issues commands to device drivers to read/write
physical blocks.

4. 1/0 control: Device drivers that communicate directly with storage

hardware.

File systems must address several implementation challenges:

1.

Allocation methods: How to allocate disk space to files:

o Contiguous allocation: Allocates consecutive blocks, providing
excellent performance for sequential access but leading to
fragmentation.

o Linked allocation: Each block contains a pointer to the next
block, eliminating external fragmentation but complicating
random access.

e Indexed allocation: Uses an index block containing pointers to
data blocks, supporting efficient random access at the cost of
additional overhead.

Free space management: Tracking available storage space using

techniques such as bit maps or linked lists of free blocks.

Directory implementation: Typically implemented as files

containing entries that map file names to their metadata.

Efficiency and performance: Using techniques like block caching,

read-ahead, and delayed writes to improve performance.

Recovery mechanisms: Implementing journaling or other

techniques to maintain file system consistency after system crashes.

1.2.10 Advanced File System Features

Modern operating systems implement sophisticated file system features

to address evolving needs:

28
MATS Centre for Distance and Online Education, MATS University



1. Journaling: Records changes in a journal before applying them to
the main file system, ensuring consistency after crashes or power
failures.

2. Copy-on-write file systems: Never overwrite existing data, instead
writing modified data to new locations and updating pointers,
providing snapshots and simplified backup.

3. Logical Volume Management: Abstracts physical storage into
logical volumes that can span multiple disks and be resized
dynamically.

4. Encryption: Protecting file contents through transparent
encryption/decryption.

5. Compression: Reducing storage requirements by compressing file
contents.

Deduplication: Eliminating redundant data to save storage space.
Distributed file systems: Allowing access to files from multiple
hosts over a network.

8. Object-based storage: Managing data as objects rather than files
or blocks, often incorporating metadata and access methods.

The choice of file system significantly impacts performance, reliability,

and functionality. Modern operating systems typically support multiple

file system types to accommodate different needs, such as NTFS and

ReFS in Windows, ext4 and Btrfs in Linux, and APFS and HFS+ in

macOS.

1.2.11 Input/output Systems and Device Management

O Hardware and Challenges

Input/output (I/O) operations are fundamental to computing systems,

enabling interaction with users and the external world. I/O devices vary

tremendously in their characteristics, presenting significant challenges
for operating system design:

1. Diversity of devices: I/O devices range from simple character-
oriented devices like keyboards to complex block-oriented devices
like disk drives, each with different data rates, data formats, and
control requirements.

2. Varied data transfer modes:

e Programmed I/O: The CPU executes instructions that directly
control I/O operations.

e Interrupt-driven I/0O: Devices signal the CPU via interrupts when

they complete operations.
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Notes

Direct Memory Access (DMA): Hardware controllers transfer data
directly between devices and memory without CPU intervention.
Performance disparities: The speed gap between CPU processing
and I/O operations (particularly mechanical devices) can be orders
of magnitude, requiring sophisticated buffering and scheduling.
Error handling: I/O operations are prone to various errors (media
failures, transmission errors, device unavailability) requiring

detection and recovery mechanisms.

Subsystem Architecture

Operating systems implement layered I/O subsystems to manage

complexity:

1. User-level I/O interfaces: High-level libraries and system calls
that provide device-independent interfaces for applications.

2. Device-independent I/O software: Performs common functions
such as buffering, error handling, and managing device-
independent naming.

3. Device drivers: Software modules that understand the specifics of
particular devices and translate generic I/O requests into device-
specific commands.

4. Interrupt handlers: Manage device interrupts, acknowledging
completion of I/O operations and initiating next steps.

5. Hardware: The actual I/O devices and their controllers.

This layered approach provides several benefits:

1. Device independence: Applications can use generic I/O operations
without concerning themselves with device specifics.

2. Uniform naming: Devices can be accessed through a consistent
naming convention, regardless of their physical characteristics.

3. Error handling: Errors can be managed at appropriate levels of the
hierarchy.

4. Synchronous and asynchronous I/O: Support for both blocking
operations (where the process waits for completion) and non-
blocking operations (where the process continues execution while
I/O proceeds).

5. Buffering: Managing data transfer rate mismatches between
devices and processes.

6. Spooling: Handling devices that can serve only one process at a

time, such as printers.
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1.2.12 I/0 Performance Optimization

Operating systems employ numerous techniques to optimize I/O

performance:

Caching: Keeping recently accessed disk data in memory to reduce
access times for subsequent requests.

Buffering: Using memory areas to temporarily hold data during
transfers, accommodating speed mismatches and allowing for more
efficient batch processing.

Scheduling: Reordering I/O requests to minimize movement in
devices with mechanical components (such as disk head scheduling
in hard drives).

Request merging: Combining adjacent requests to reduce the
number of separate I/O operations.

Anticipatory 1/O: Predicting future I/O requests based on observed
patterns and prefetching data.

I/0 parallelism: Using techniques like RAID (Redundant Array of
Independent Disks) to spread I/O operations across multiple
devices.

Quality of Service (QoS): Ensuring that critical I/O operations

receive priority treatment.

of modern operating systems evolves to support new hardware types

and connection types. The I/O subsystem

1.2.13 Security, Protection, and Advanced OS Functions

Security Fundamentals and Implementation

Functions will be implemented at several levels by modern operating

systems: have become increasingly inter-connected and they store and

process sensitive information, the security of the operating system has

become even more important. Security As computing systems

1.

Authentication: Verifying the identity of users through methods
such as:
o Password-based authentication
e Multi-factor authentication
o Biometric authentication
o Token-based authentication

e Certificate-based authentication

2. Authorization: Determining what authenticated wusers are

permitted to do, typically implemented through:
e Access control lists (ACLs)

31
MATS Centre for Distance and Online Education, MATS University

[

\

==

\\\

UNIVERSITY
ready for life.

aTs)

i




Notes

e Role-based access control (RBAC)
e Mandatory access control (MAC)
o Capability-based security models
3. Cryptographic services: Providing encryption, decryption, and
cryptographic hashing functions to:
o Protect data confidentiality
o Ensure data integrity
e Verify the authenticity of software and communications
4. Process isolation: Preventing processes from interfering with each
other or with the operating system itself through:
e Memory protection mechanisms
e Hardware-supported privilege levels
o Containerization
e Virtual machine isolation
5. Security monitoring and auditing: Detecting and logging
security-relevant events to:
o Identify attempted breaches
e Support forensic analysis after security incidents
e Provide accountability and non-repudiation
6. Secure boot processes: Ensuring that only authenticated and
unmodified operating system components are loaded during system
startup.
Deployment environment. These security mechanisms need to find a
trade-off between protection, usability, performance, and
manageability, which often leads to complex trade-offs depending on
the security needs of the
1.2.14 Virtualization and Containerization
Virtualization has transformed modern computing by allowing multiple
operating systems to execute simultaneously on a single physical
machine, while containerization offers lightweight abstraction for
applications running in the same operating system instance.
Virtualization refers to the creation of virtual (rather than actual)
versions of computing resources, implemented through:
1. Hardware virtualization: Using a hypervisor that:
e Presents virtual hardware interfaces to guest operating systems
e Manages resource allocation between virtual machines
e Provides isolation between virtual environments

o Types include:
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= Type I (bare-metal) hypervisors that run directly on hardware
= Type 2 hypervisors that run on top of a host operating system

2. Para virtualization: Where guest operating systems are modified
to use special APIs for improved performance.

3. Memory virtualization: Techniques such as shadow page tables or
hardware-assisted memory virtualization that manage the mapping
between guest physical addresses and host physical addresses.

4. T/O virtualization: Methods for sharing physical I/O devices
among multiple virtual machines.

Containerization provides application isolation without the overhead

of full virtualization by:

1. Sharing the host operating system kernel while providing
isolated userspace environments.

2. Using namespace isolation to separate container process trees,
network interfaces, mount points, and user IDs.

3. Employing resource control mechanisms like cgroups to
limit and account for resource usage.

4. Providing standardized image formats and deployment
mechanisms.

Both virtualization and containerization have become fundamental

technologies in cloud computing and modern application deployment

strategies, enabling more efficient resource utilization, improved
isolation, and greater flexibility in application hosting.

Distributed Operating Systems and Cloud Infrastructure

Contemporary computing increasingly spans multiple physical

systems, leading to the development of distributed operating system

concepts and cloud computing infrastructures:

1. Distributed operating systems extend operating system functions
across multiple physical machines:

o Transparency: Hiding the distributed nature of the system from
users and applications

e Communication: Low-level message passing and higher-level
remote procedure calls

e Process migration: Moving processes between nodes for load
balancing

o Distributed file systems: Providing a unified file namespace

across machines
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Notes o Distributed synchronization: Mechanisms for coordinating
activities across nodes
o Fault tolerance: Handling node failures gracefully
2. Cloud computing infrastructure builds on virtualization and
distributed systems concepts to provide:
o Infrastructure as a Service (IaaS): Virtualized computing
resources
e Platform as a Service (PaaS): Runtime environments for
applications
o Software as a Service (SaaS): Complete applications delivered
over the network
o Elasticity: Dynamic scaling of resources based on demand
e Resource pooling: Sharing physical resources among multiple
tenants
e Measured service: Tracking resource usage for billing and
optimization
3. Emerging operating system paradigms adapt to these distributed
environments:
e Microkernel architectures: Minimizing kernel code and
moving functionality to user space
e Unikernel approaches: Creating specialized single-purpose
applications that include only the OS functionality they need
e Server less computing: Further abstracting infrastructure
management away from application developers
Operating systems advanced to support more complex applications,
requiring features like these to support interconnected and orchestrated
systems over the networks built up around computers as they became
pervasive. This is an example of how want to understand modern
computing systems and/or build software that interacts with them in a
meaningful way. Providing abstractions to simplify writing
applications, mechanisms that guarantee your applications utilize
resources as required, and protections to enable safe and reliable
computing; as we have discussed throughout this book. It is vital to
understand these basics and their functions if you the operating

systems are the ultimate base on which all other software.
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Unit 1.3: Computer System Operations

1.3.1 Computer System Operations

At the core of contemporary computing lies a complex choreography
involving the cooperation of myriad hardware and software elements,
working in unison to perform tasks from basic arithmetic to
sophisticated data processing. Computer system operations involve
how computers organization works under the guidance of standard
processes that describe the operational condition of the system which
is well defined by the standards represented through several protocols
and architectures A computer system is built on top of four main layers:
hardware, software, data, and users, with components of each layer
communicating via designed interfaces and communication channels.
These pieces of hardware share different characteristics and
performance specifications the CPU, memory, hard drives, 1/O

interfaces, network devices etc.

mouse  keyboard  printer  monitor
on-line
SSEY. Yl

N1/

L USB controller e

o controller adapter

memory

Figure 1.3.1: Computer System Operations

Hardware resources, user applications, operating system, utility
programs, development tools, and application software to carry out
certain tasks. Data lives in different states (input, information, layout
tables, files, streams) across a variety of protected boundaries and
access patterns within computer systems. Interfaces facilitate
interaction between users, be they human operators or automated
systems, and the individual components, translating intentions into

actionable commands. The details of how these bits and pieces
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cooperate are the domain of the science of computer system operation:
processor scheduling algorithms, methods of memory management,
input/output  operations, file system organization, network
communications protocols, all of the moving parts of physical
computers at the core of these systems. System architects, software
developers, IT administrators, and computer scientists use this
information regarding  operational frameworks to  improve
performance, security, reliability, and design new computing
paradigms. By now, the paradigm of present-day computational
environments has significantly changed from independent, self-
sufficient computing units to interrelated, systematized infrastructures,
that consist of cloud computing, virtualization, containerization, edge
computing, and several challenges that come with them all. With
computers increasingly dominating all facets of society, whether that is
through  corporate  processes, scientific  investigation, social
connection, or entertainment, the importance of fast, secure, and
reliable computation is further amplified. Inhabiting a singular text but
spanning through many disciplines, this textbook explores what makes
computer systems operate; it analyzes not only the theory behind it, but
also the practical considerations and approaches to ensure that our
computing systems operate as intended. Learning about how a
computer system works at the low level enables students and
professionals to create more efficient systems as well as solve complex
problems, design new solutions, and help to push computing
technology forward to meet the demands of modern society in ways

that were previously unimaginable or impossible.

1.3.2 Processor Management and Scheduling

Processor management is the kernel of computer system operations a
complex system of mechanisms that control the execution of
instructions on a system's central processing units. The architectures of
modern CPUs involve multiple cores, instruction pipelines, branch
prediction, speculative execution, and multiple levels of cache. For this
purpose, a CPU operates on a loop: fetches instructions from memory,
decodes what the instruction means and executes operations on data as
per the instruction. The control unit attempts to synchronize the time
of operations and make sure the instructions executed through the

arithmetic logic unit and registers inside the processor. Operating

36
MATS Centre for Distance and Online Education, MATS University



systems use processor scheduling algorithms to decide which
processes get CPU time and in what order, essentially juggling multiple

requests for this scarce resource.

CPU Scheduling
A
e "
Preemptive Non-Preemptive
Priority RLecr):gi(re]iSrtlg Shortest Longest
i Job First Job Firs’[\v
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Response
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Remaining Robin First- Next
Job First Serve

Figure 1.3.2: Process Management and Scheduling

Basic scheduling is about what to run processes, which are instances
of programs that are in execution, along with the state for the execution
of that process, such as the value of the program counter, the registers,
stack, and memory that those processes have allocated, and the
resources that such processes are utilizing. A process has different
states in its life cycle: new (has been created), ready (waiting for CPU
time), running (currently executing), waiting (waiting for an event or
resource), and terminated (finished executing). The operating system
kernel includes a scheduler that decides which processes get to execute
using an advanced algorithm that strives to optimize a particular metric
for the system. The simplest scheduling algorithm, First-Come-First-
Served (FCFS), executes processes in the order they arrive in the ready
state, assuring fairness but allowing short processes to be delayed by
long-running ones, a problem called the convoy effect. The Shortest
Job First (SJF) policy, which minimizes the average waiting time by
executing the process that will finish the quickest (predicted), but it
requires you to have the ability to make predictions, and it might starve
some of the processes. Round Robin scheduling assigns each process a
small time slice or quantum, and processes are served in a rotating
order, preserving the doctrine of fairness and responsiveness while
preventing a single process from dominating the CPU, although it does
incur context switching overhead. A priority-based scheduling scheme
marks every process with a priority level and only executes those with

the highest priority before others, with preemptive policies (suspending

37
MATS Centre for Distance and Online Education, MATS University

[

\

(\A/\

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i



Notes

tasks with lower priority) or non-preemptive methods (waiting for task
completion or voluntary release). It achieves this through the use of
meta data, and real-time file systems use specific algorithms like Rate
Monotonic Scheduling (RMS) or Earliest Deadline First (EDF) to
provide timing guarantees for real-time applications like medical
devices, automotive systems, or industrial control systems. With the
advent of modern multi-core processors, this has changed again;
scheduling becomes much more complex, as it must be able to deal with

the affinities between the cores, the cache coherence, and their ability

to be executed in parallel.
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Figure 1.3.1: Thread Scheduling

Thread scheduling (finer-grained) handles scheduling at the level of
threads, allowing multiple threads to execute in the same process
concurrently, sharing the same memory space and resource. The
sophisticated scheduling methods include multilevel feedback queues
that increase or decrease the priority of processes based on their
execution history; affinity-aware scheduling that keeps workloads on
the same processors to take advantage of cache reuse; and
heterogeneous computing scheduling that allocates concurrent
workloads to specialized processing units such as graphics processing
units (GPUs), field programmable gate arrays (FPGAs) or artificial
intelligence (Al) accelerators. Load balancing algorithms balance the
amount of computational work taking place at any given time, by
distributing the processes that execute across multiple systems or
processors, to maximize throughput & minimize response times. There
has been a growing need for energy-aware scheduling in mobile
devices as well as in data centers to perform intelligent trade-offs
between performance and power consumption through mechanisms
like dynamic voltage and frequency scaling (DVFES), core parking,
workload consolidation, etc. Practical implementations of scheduling
must also deal with cases of priority inversion (a high-priority process
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is waiting on (a resource controlled by) a low-priority process), which
can be managed with protocols such as priority inheritance or priority
ceiling. Processor management also includes interrupt handling—the
method used by external events to notify the CPU that it should
temporarily stop normal execution in order to address time-critical
tasks, such as state changes in hardware, the completion of an I/O
operation or error conditions. The enhanced sophistication of modern
processor management systems is a direct result of these challenges, as
a diverse set of workloads with widely differing requirements from
background batch processing to interactive user applications to time-
critical control systems must be able to be run and execute efficiently

in the same environment on common hardware resources.

1.3.3 Memory Management Systems

Memory management represents an essential component of
computational system functionality, involving the various methods and
processes operating systems utilize to oversee, distribute, and structure
the primary memory resources of a computer. Tiers of the memory
hierarchy: registers, cache memory, main memory (RAM), and virtual
memory (in secondary storage devices). To effectively do this, it needs
to address some basic issues: how to allocate memory to processes
when they need it, how to free the memory when it no longer needs it,
track usage to ensure performance, prevent unauthorized access and
maintain memory coherency in a multi-processor system. Virtual
memory is at the heart of modern memory management an abstraction
that gives to every process the illusion of owning its own large,
contiguous space of addresses without regard for available memory or
competing processes. The logical representation of memory allows
developers to get a finer-grained view of hardware, flexibility in
memory allocation, access protection between processes, and the
ability to run programs independent of physical memory (e.g. if an
executing program size exceeds physical memory). Virtual and
Physical Addresses the translation between virtual and physical
addresses is done through a mix of hardware and software
mechanisms, where address translation is performed through memory
management units (MMUSs), with the help of operating system-
maintained page tables. The most common implementation of virtual

memory is called paging, where both physical and virtual memory are
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divided into fixed-sized units called blocks or pages (usually between
four and sixty-four kilobytes in modern systems). Access to a virtual
address by a process would translate to a corresponding physical
location using a page table that stores a mapping between a virtual page
number to a physical frame number. When the page requested isn't
present in physical memory (page fault), the operating system suspends
the process, retrieves the page from the secondary storage (women's
clothing warehouse or hard disk), updates the page table, and resumes
execution, but these details are invisible to the application; even so, it's
key to extending memory.

Page replacement algorithms decide which pages to evict when

physical memory is full, with popular approaches being Least Recently

Page Replacement
Algorithms
. Random
FIFO LIFO LRU Optimal P
age

Used (LRU), which evicts pages that have not been accessed for the
longest time; First-In-First-Out (FIFO), which evicts pages in the order

Figure 1.3.4: Page Replacement Algorithms

they were loaded; and Clock algorithm, which approximates LRU
without the high overhead by maintaining a circular list of pages with
reference bits. Its advanced forms are approximations (e.g., CLOCK)
and improvements (e.g., CLOCK-Pro) which both try to get the
simplicity from FIFO but the performance from more advanced
caching algorithms. Paging divides physical memory into fixed-size
units, typically 4 or 8 KB pages, and maps logical address space pages
to physical pages without considering the program structure.
Segmentation is an alternative or complementary method of memory
management; it organizes memory according to the logical structure of
programs (procedures, data structures, etc.) rather than fixed-size
space. It allows more granular protection and sharing mechanisms as
each segment is a logical unit with attributes such as read only or
executable. Most modern systems use a combination of segmentation
to provide logical organization and paging for physical memory.
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Processes manage their own memory allocation in ways that can range
from basic contiguous allocation to complex dynamic memory
management. A part of memory known as the heap is devoted to
runtime allocation, and algorithms are required to process requests for
variable shaped allocations without causing fragmentation. These
strategies include first-fit (using the first sufficiently large free block),
best-fit (choosing the smallest block that still satisfies the request), and
buddy system allocation (dividing memory into contiguous power-of-
two sized blocks to simplify coalescing of free space). For instance,
advanced memory managers use either segregated fits (two or more free
lists for various classes of sizes, which keeps the fragmentation of
memory in check), or generational garbage collection in managed-
language settings, which keeps track of the time-to-die, since the
majority of objects exist for a short time only. Memory protection
mechanisms use hardware features such as protection bits in page
tables and memory protection keys to prevent processes from accessing
or modifying memory allocated to other processes, or the operating
system. Modern systems also wuse Address Space Layout
Randomization (ASLR) to protect against security vulnerabilities by
randomizing the locations in memory of program components. (Cache
management is almost always implemented in hardware, but it has a
lot to do with what the operating system does regarding memory
policies.) By influencing the manner in which virtual pages map to
cache lines, techniques such as cache coloring aim to improve cache
usage. Memory compression is a new paradigm for adding effective
memory capacity by compressing infrequently touched pages instead
of writing them to disk and later reading them back from disk to reduce
latencies for future accesses. Multi-processor systems with Non-
Uniform Memory Access (NUMA) architectures add further
complexity by making memory access times dependent on the
processor's proximity to the memory location, thus necessitating the use
of NUMA-aware allocation policies. To address this fragmentation,
heterogeneous memory management systems that take advantage of
the characteristics of different types of memory have been
implemented, such as placing data intelligently into different memory
regions as a function of access frequency and performance needs.
Despite these advances, effective memory management is still critical

to system performance and stability, with contemporary operating
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systems continuing to develop increasingly sophisticated memory
management techniques, managing the conflicting requirements of
capacity, performance, protection and power efficiency across a

complex and ever evolving hardware architecture.

1.3.4 Storage Systems and File Management

Storage systems are crucial for saving data after the computer is turned
off, transforming it into persistent data, whereas the file management
framework allows you to save that persistent data within the storage
system. The storage hierarchy ranges from fast, costly, and low-
capacity storage technologies (like solid-state drives (SSDs)) to
slower, cheaper, and larger-capacity technologies (such as hard disk
drives (HDDs), optical drives, and tape drives), each offering distinct
trade-offs in terms of performance, cost, and longevity. We rely on file
systems to offer this fundamental abstraction layer that turns raw
storage trafficking capabilities into structured, well-defined hierarchies
of organized blocks that users and applications can easily traverse and
maneuver in. At the hardware layer, storage devices use different
principles; HDDs rely on magnetic recording stored on spinning
platters and accessed by mechanical read/write heads so performance
is dependent on rotational latency, seek time, and transfer rates; SSDs
with no moving parts leverage flash memory cells laid out in pages and
blocks with rapid random access times, though introduce complications
like write amplification, wear leveling, and garbage collection;
emerging technologies such as 3D XPoint (Intel Optane) bridge the gap
between memory and storage with their own performance metrics.
Storage device drivers and I/O subsystems in the operating system
interact with the devices, abstracting hardware-specific details and
providing a standardized interface for higher-level components. RAID
(Redundant Array of Independent Disks) configurations that use
multiple physical drives as a single logical unit (potentially for
performance, capacity, and/or redundancy via striping (RAID 0),
mirroring (RAID 1), or parity-based redundancy (RAID 5, RAID 10),
are common in modern storage architectures. Block-level storage
virtualization abstracts physical devices in blocks, presenting logical
volumes that span multiple physical devices and process thin
provisioning, snapshots and replication, while storage area networks
(SANSs) and network-attached storage (NAS) extend those capabilities
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over a networked space. File systems abstract these block-level
capabilities into the hierarchical realm of files and directories, which
serve as the main interface for organizing and accessing the data. And
different file systems, based on the type used by the computer, could
take different approaches to primary problems like space allocation,
metadata, directory structure and crash recovery (for example FAT File
Allocation Table, ext4 Fourth Extended File System, NTFS New
Technology File System, and HFS+ — Hierarchical File System Plus).
You will need to retain critical metadata about the files, such as names,
timestamps, ownership, permissions, and the mapping of logical file
structures to physical storage locations. Modern file systems have
developed such sophisticated capabilities to meet new needs: logging
file systems such as ext4, XFS, and NTFS write metadata about data
changes in addition to the data itself, ensuring consistent operations
during catastrophic failures; copy-on-write file systems such as ZFS
and Btrfs never overwrite existing data locations, they write updates to
new locations and atomically update pointers in metadata, allowing
features like snapshots and providing protection from corruption after
unexpected power failures; log-structured file systems such as F2FS
map random writes to sequential writes to maximize performance for
SSD and other flash-based file systems, thereby improving write
performance and reducing write amplification. Obtaining knowledge
and status: File management activities encompass the file's entire
lifecycle, including creation, naming, access control, modification,
backup, and finally deletion or archiving. Each file can vary widely in
characteristics: Executable binaries require specific formats and
alignment; Databases often use their own internal storage structures
optimized for access patterns; Multimedia files utilize various
compression algorithms; and text files require character encoding
support. Different ways of access provide optimization opportunities as
well as challenges (sequential processing versus random access
patterns). Virtual File Systems (VFS) play an essential role in modern
operating systems by exposing a uniform interface to applications
while supporting a wide variety of wunderlying file system
implementations alike the network file systems and the local ones
having extremely diverse internal structures. When the same file is
accessed frequently, file caching improves performance by keeping

data and metadata in memory, using sophisticated algorithms that
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attempt to hold on to data that is useful without exceeding available
memory. Modern file systems support advanced features such as
encryption which secures sensitive data even if the physical storage is
compromised, deduplication which minimizes the storage of identical
data blocks, the ability to compress data to save space, and specification
of quotas to restrict the amount of resources consumed by users or
groups thereof. With the arrival of cloud storage, whole new paradigms
for files arose, with object storage systems like Amazon S3, Google
Cloud Storage, and Azure Blob Storage employing flat namespaces of
objects and (meta)data associated with them instead of hierarchical file
structures, along geared for scale, durability and while being easily
accessible over distributed environments. These systems include well-
known distributed file systems (e.g., Google File System (GFS),
Hadoop Distributed File System (HDFS), and Ceph ), which take the
concepts of traditional file systems and apply them over clusters of
machines, using replication, fault tolerance, and parallel access
mechanisms to achieve scalability and performance impractical with
single-system approaches. Emerging storage technologies further
obfuscate traditional categories: persistent memory provides byte-
addressable access with durability; storage-class memory delivers near-
DRAM performance with non-volatility; and computational storage
moves processing closer to data to mitigate data movement and
improve efficiency for select workloads. As workloads change, as
hardware capabilities and reliability requirements shift, so must file and
storage management systems, and researchers are focusing efforts in
areas such as improved performance for emerging non-volatile memory
technologies, secure transparent encryption for enhanced security, low
power consumption for massive storage arrays, and self-healing
mechanisms to maintain data integrity when hardware fails or is
victimized by a cyber-attack.

1.3.5 Input/Output Systems and Device Management

Input/output (I/O) systems and Strategies for effective Device
management antigen are the vital intermediary link between computing
systems and the outside environment, including the hardware
components, software subsystems and operational protocols that allow
computers to interact with peripheral devices, sensors, networks and
storage systems. I/O devices are the most diverse class of peripherals

and can be as simple as human interface peripherals such as keyboards
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and mice or as complex as communication equipment, graphics
processors, and special purpose controllers used in industrial control;
thus providing standard interfaces while attempting to provide some
range of performance characteristics, communication mechanisms, and
functionality can prove to be quite a challenge for the system designer.
In the context of hardware-level I/O communication architectures,
these authors describe four common modes: programmed I/O where the
CPU explicitly instructs devices to transfer blocks of data, interrupt-
driven I/O where devices can interrupt in the event of needing the
processor's attention, freeing up the CPU; DMA (Direct Memory
Access) which leads to devices pulling or pushing data from memory
without requiring the CPU to watch over; and channel I/O commonly
used in mainframe systems, where entire I/O programs can be sent to
special processors to be executed without the requirement of the
attention of the main CPU. Wired connections for devices and
computer systems have transitioned from parallel buses like ISA and
PCI to serial connections such as USB, PCle, and Thunderbolt
delivering higher speeds, fewer pins, and even the ability to hot-plug
the devices. Such connections are made via controllers, hardware that
can translate between the internal signals of a computer and the
specialized protocols of the devices, usually with some form of buffers
to account for differences in timing between CPUs and slower devices.
Through a layered system of device drivers, software components that
allow devices to communicate with the operating system and abstract
away device-specific implementation, this hardware is managed by the
operating system. There are driver frameworks built into modern
operating systems that describe application development patterns that
third parties can use to implement drivers that will be compatible
without needing to learn about the internal architecture of the system.
Such frameworks generally provide interrupt handling, memory
management, power management, error recovery, and other low-level
services so that driver developers can concentrate on device-specific
details. Purpose: ACPI, UEFI, PnP Device discovery and configuration
mechanisms that help in automatic detection, configuration and
allocation of resources for devices without any manual intervention.
From the application perspective, OSes expose devices through
abstraction layers that make interaction simple: character devices (like

keyboards and serial ports) transfer data byte by byte in streams; block
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devices (like disk drives) transfer fixed size blocks of data; and network
devices with their own interfaces for packet-based communication.
Even higher-level abstractions reduce development complexity file
system interfaces for storage devices, graphical frameworks for display
devices, and audio subsystems for sound equipment expose active APIs
that abstract applications from hardware specifics. Particularly for
devices such as disk drives, where the physical characteristics are a
major factor in their performance, I/O scheduling is an important
component of device management. Reordering requests based on
physical location using elevator algorithms (SCAN) and its derivatives
helps to keep mechanical movement to a minimum; anticipatory
scheduling has been shown to be useful in predicting future requests
based on previous patterns; and completely fair queuing ensures that
bandwidth is allocated fairly across processes. Most recent systems
employ a deadline-based mechanism that optimizes throughput while
providing service guarantees at a predefined level to time-sensitive
operations. Buffering and caching layers exist all throughout the I/O
stack to handle timing discrepancies between the various components
that all operate at different speeds: device controllers have hardware
buffers; OSes have buffer caches for block devices and network stacks;
and applications have their own buffering schemes. By using double-
buffering approaches, you can read and write to different buffers, such
that one can be used to write data while another is rendered or
transmitted, making them suitable for streaming like video playing or
audio recording. With the advent of virtual machines, containerized
applications, and other forms of system virtualization, the need for a
different approach for virtualized devices was created, including device
emulation (where hardware behavior is simulated through software),
par virtualization (modified drivers in guest systems interact with the
hypervisor) and direct device assignment (allowing virtual machines
to have direct, exclusive access to physical devices). You are familiar
with virtualized environments, where one physical device can be seen
by one or more guests; SR-IOV (Single Root I/O Virtualization) allows
a single physical device to advertise up to n virtual devices with
dedicated resources. However, the increasing adoption of mobile and
energy efficient systems has led to the advent of device power
management. Examples include selectively powering down unused

hardware components, dynamically adjusting its performance to match
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current needs, and aligning device states with global power
management policies. USB Power Delivery is one example of a
standards-based specification that allows for intelligent negotiation of
power requirements between devices and hosts. Domain-specific I/O
subsystems are designed for their specific type of needs, e.g. cameras
and graphics use APIs like DirectX, Vulkan, and Metal with
increasingly complex rendering pipelines, audio subsystems mix,
convert formats, and align playback across many channels, and human
interface device frameworks (HIDs) manage arbitrary input from many
sources with accessibility and internationalization considerations. The
two main differentiating features of true real-time I/O are deterministic
response time which is critical in industrial control systems, medical
devices, and automotive systems. As such, real-time systems use
dedicated I/O stacks with bounded latency guarantees, priority-based
IRQ servicing, and very little jitter. As IoT devices suitable for various
purposes can be very light-weight, /O management has always been
crucial for those devices with bandwidth constrained protocols, energy-
efficient communication patterns, etc. Edge computing architectures
allow the processing of data at or near the source, decreasing latency
and bandwidth consumption but also introducing new challenges for
device management across distributed environments. Security touches
every part of modern I/O systems: device attestation ensures the
hardware i1s what we expect; secure boot verifies device firmware;
access control restricts which processes may interact with sensitive
devices; and encryption protects data in flight. As computation expands
into new spheres, I/0 systems evolve further, with technologies such as
neuromorphic interfaces directly wired into biology; quantum I/O
enveloping the extreme environmental needs of quantum processors;
and brain-computer interfaces (BCI) transforming neural activity into
computational input, all presenting new levels of difficulty for device
management systems on which 1/O profiled devices depend.

1.3.6 Network Operations and Distributed Systems

Network operations and distributed systems are the fundamental
threads that connect the fabric of computing today, facilitating
communication, resource sharing, and collaborative processing across
components that are geographically or physically separated, whether
they be local clusters or global-scale infrastructure that spans

continents. A layered architectural view is essentially the foundation of
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computer networking and the most common manifestation of that is the
TCP/IP model: A link layer, which provides a similar physical
connection and media access to the alternate layer, a layer responsible
for addressing and routing between networks (Internet Layer), a
transport layer for reliable delivery and flow control of data, and finally
activated by a layer for user applications and network services
(Application Layer). Disparate physical characteristics of the
transmission mediums make a big difference in terms of bandwidth,
propagation delays, fault tolerance, etc. For these physical media, we
need some data encoding techniques to take our digital information and
convert it into signals suitable for those types of media, such as using a
scheme to enable the appropriate type of encoding like Manchester,
PAM-4 and QAM modulation, maximizing the density of the data and
minimizing errors. Media access control (MAC) mechanisms organize
when shared channels can be used, from deterministic techniques like
time-division multiplexing, to contention-based schemes such as
CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
in classical Ethernet or CSMA/CA (Collision Avoidance) in wireless.
Network addressing schemes form the backbone on the way to the
identification and location of devices: MAC addresses uniquely
identify physical network interfaces on the link layer; IP addresses
(both IPv4 and growing [Pv6) allow global routing in the internet layer;
and finally, domain names create human-readable identifiers (resolved
into [P addresses by the Domain Name System or DNS). Routing works
as a process of establishing routes and data transmission across the
interconnected networks through paths that are determined by using a
set of algorithms that strike a balance between the distances, reliability,
heaps and administrative policies. Routing protocols such as RIP
(Routing Information Protocol), OSPF (Open Shortest Path First), BGP
(Border Gateway Protocol) employ distinct methodologies for
exploring and administering routes; interior gateway protocols
concentrate on routing within organizations, while exterior gateway
protocols control routing across the internet between diverse
autonomous systems. The transport layer provides essential
functionalities such as connection management, reliable delivery, flow
control, and congestion avoidance. The Transmission Control Protocol
(TCP) uses connection-oriented transmission with reliable, ordered

service with mechanisms for acknowledgments of received data,
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retransmissions of lost packets, and dynamic adjustments of
transmission rates to conditions on the network. UDP (User Datagram
Protocol) is a connectionless protocol that provides communication
without the overhead of establishing a connection and is often used
when low latency is more important than reliability, such as for real-
time streaming and DNS lookups. Newer protocols like QUIC merge
elements from both strategies, offering reliability and security from the
application layer above UDP layers to minimize connection creation
latency and optimize performance across difficult link conditions.
Network security involves many specialized processes: encryption
preserves the confidentiality of information via protocols such as TLS
(Transport Layer Security); authentication validates communicating
endpoints through certificates, pre-shared keys, or multi-factor
systems; access control mechanisms like firewalls and segmentation
ensure communication routes are restricted according to rulesets and
policies; intrusion detection/prevention systems inspect traffic patterns
for the presence of malevolent behaviors. DDoS protection uses traffic
analysis, rate limiting and traffic spreading to keep service available in
the face of an attack. Quality of Service (QoS) involves mechanisms
that would allow traffic to be prioritized based on type, source, or
requirements of the application, and it works by implementing
techniques like packet classification, queue management, traffic
shaping, and reservation of resources to make sure that critical
communications are properly treated even when the network is
congested. The SDN 1is a new networking architecture that separates
the control and data planes, allowing for centralized control,
programmability, and more efficient resource allocation (most
commonly used with the Open Flow Protocol). Network virtualization,
then, takes these concepts and applies them at the network level,
allowing logical network abstractions of sufficient complexity to exist
independently of the physical infrastructure beneath them, facilitating
multiple isolated networks to share hardware concurrently. Different
flavors of this are radiating out in the form of virtual LANs (VLANS),
Virtual extensible LANs (VXLANs), and Network Function
Virtualization (NFV) which virtualizes hardware appliances (e.g., a
router) and firewalls and load balancers that are implemented as
virtualized software rather than hardware. Writing detailed networking

code does not usually lead to success; instead, distributed systems are
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built on top of these foundations for networking to create coherent
programming environments over multiple physical machines, using
middleware, protocols, and architectural structures to overcome the
inherent problems in distributed computing: heterogeneity of
components, open-ness to extension, security across trust boundaries,
scalability to increasing demand, failure handling, concurrency
enabling, and transparency that hides distribution from the programmer
Complexity of users and applications inside. There are varying designs
of distributed system architectures; client-server architecture separates
service providers from consumers, peer-to-peer distributes services
among participating nodes, hybrid architectures like edge computing
position processing at the edge of the network close to the sources of
data, and cloud computing offers resources that are virtualized and
accessible through standard interfaces. Distributed systems
communicate in multiple ways: remote procedure calls (RPCs) with
their object-oriented variant allow remote procedures to be invoked as
if they were local; message-oriented middleware’s implement queuing,
routing and transformation services to enable asynchronous
communication; publish-subscribe systems allow for many-to-many
communication with loose coupling between participants; streaming
platforms process continuous data flows across distributed
components. Consistency models govern what to expect around
visibility and order of data across other distributed components; they
stretch from strong consistency (all nodes see the same thing at the
same time) through eventual consistency (the data will converge with
time but does not require synchronization in the moment). The CAP
theorem presents absolute trade-offs for distributed systems by saying
that they can only offer two of three guarantees: consistency (all nodes
see the same data), availability (the system responds to requests) and
partition tolerance (the system still operates even when networks do
not). Modern distributed databases all implement different consistency
models depending on applications requirements: classical relational
databases tend to enforce ACID properties (Atomicity, Consistency,
Isolation, Durability) through two-phase commit protocols and
distributed transactions; NoSQL systems often embrace BASE
properties (Basically Available, Soft state, Eventually consistent) for
improving partition tolerance and scalability; and NewSQL approaches

try to combine ACID guarantees with horizontal scalability. Distributed
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coordination services such as Apache ZooKeeper, etcd, Consul, etc
provide primitives for leader election, configuration management,
service discovery, distributed locking that make it easy to build reliable
distributed applications. Container orchestration platforms (like
Kubernetes) automate the deployment, scaling, and management of
containerized applications across a cluster of servers with advanced
scheduling, load balancing, service discovery, and self-healing
capabilities. Distributed file systems and object stores, such as Hadoop
HDFS, Ceph, Amazon S3, and Google Cloud Storage, offer storage
services that span machine boundaries with replication, fault tolerance,
and scalability. Block chain technologies are a specialized subclass of
distributed system that enables decentralized consensus protocols to
have consistent state without a trusted central authority, leading to
applications from crypto currency to supply chain tracking to digital
identity management. Fundamental challenges in connecting and
coordinating computational resources across physical, organizational,
and trust boundaries continue to be tackled by evolving practices of
network operations and distributed systems underlying the operation
paradigms that have emerged; server less computing abstracts away
(even managing) the infrastructure; 5G and beyond wireless
technologies enable new classes of distributed applications; zero-trust
security eliminates implicit trust due to network location; edge

computing pushes the processing closer to the data source.

1.3.5 Security, Performance Optimization, and System Reliability
Security, performance optimization, and system reliability are critical
dimensions of computer system operations they define how well
systems protect sensitive assets, provide timely service, and continue
to operate consistently under stressful conditions. These three form a
triad of operational concerns that intersect in many complex ways
security practices can impact performance, performance improvements
can add reliability compromises, and reliability mechanisms can
influence both security posture and performance efficiency. Systematic
approaches that balance competing priorities, such as institutional,
macroeconomic, sectoral, and organizational factors, to robustly
implement practices across all three dimensions in specific operational
settings. Computer security involves the securing of hardware,

software, data, and communications of system assets from unintended
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access, use, disclosure, disruption, modification, or destruction.
Fundamentally, security enforces the CIA triad; Confidentiality ensures
that no one accesses sensitive information; integrity preserves
information integrity from intentional or accidental tampering; and
availability ensures authorized users can reach their resources when
needed. These objectives are accomplished through various defensive
mechanisms targeting distinct facets of the security dilemma:
cryptographic schemes that safeguard data utilizing encryption ciphers,
such as AES, RSA, and elliptic curve cryptography, alongside hashing
algorithms like SHA-256 that ensure data integrity(ies); authentication
systems that validate claims of identity through knowledge factors
(passwords, security questions), possession factors (hardware tokens,
mobile devices), and inherence factors (biometrics like fingerprints,
facial recognition); authorization schemes that delineate action
permissions for authenticated subjects through models such as
discretionary access control (DAC), mandatory access control (MAC),
role-based access control (RBAC), and attribute-based access control
(ABAC); secure communication protocols like TLS/SSL that establish
encrypted channels impervious to interception and modification; and
network security mechanisms encompassing firewalls, intrusion
detection/prevention units, and VPNs that confine communication
pathways to legitimate channels. Vulnerability management processes
are designed to identify, assess, and remediate security weaknesses in
a software application, often through activities such as static and
dynamic code analysis, penetration testing, and regular patching.
Security monitoring and incident response abilities that recognize and
respond to security occurrences (through log analysis, behavior
monitoring, and established threat-handling procedures). Zero-trust
architecture and similar approaches move away from perimeter-based
security models and instead analyze each access request, wherever it
originates from or however attached to a network, to verify that it’s
still valid. Optimizations improve overall performance as measured by
multiple metrics: throughput (amount of work done per unit time),
latency (time taken to finish given operations), resource utilization
(helping make use of relevant points of computing resources), energy
efficiency (amount of work accomplished per amount of energy
consumed). Optimization exists at all levels of the system from

hardware choices and configurations balancing compute resources
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with workload needs, to processor optimizations (instruction pipelines,
branch predictors, speculative execution, and synchronization of work
across cores), memory hierarchy tuning (including cache sizes,
memory alignment, perfecting and NUMA awareness), 1/O (effective
buffering, asynchronous I/O, and device selection), and networking
performance (protocol, buffering and topology). Software-level
improvements involve the implementation of more efficient algorithms
to minimize computational complexity, optimizing compilers for
specific target architectures to high-quality machine code,
improvements on databases with indexing, query rewriting, and
execution plan selection, and application-specific improvements that
focus on the hot paths in the code graph. Load Balancing and Capacity
Planning Techniques; Load balancing techniques distribute work
across multiple resources to prevent bottlenecks, while capacity
planning processes ensure sufficient resources for anticipated demands.
Performance monitoring and analysis tools help improve data-driven
optimizations by performing profiling, tracing, and benchmarking for
locating a performance bottleneck and validating the impact of
improvements. The system is reliable if, under typical operation, it
ensures consistent, correct operation regardless of the failures, flaws,
or environmental stresses that might occur in components. At a high
level, reliability engineering encompasses a few broad elements: defect
prevention avoids the introduction of defects through strict design
practices, formal verification, and quality methods; fault tolerance
enables continued operation in the face of component failures with
redundancy (keeping duplicate components to take over when primary
components fail), diversity (multiple different implementations of the
same solution to avoid common failure modes), isolation (restricting
the failure propagation to a limited scope), and graceful degradation
(maintaining the best possible level of service during partial failures);
fault detection finds problems through health monitors, watchdog
timers, checksums or error detection codes; and fault recovery restores
normal operations post-failure with techniques like rolling back to
known-good states, failing over to backups, and self-healing where
certain failure classes are automatically repaired. Reliability metrics
measure how dependable a system is: Mean Time Between Failures
(MTBF) indicates the average amount of operational time between one

failure and the next; Mean Time To Repair (MTTR) measures the
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average time taken to return a system to an operational state after a
failure; availability communicates the percent amount of time a system
is functioning; and durability represents the percentage chance that data
will remain intact over a certain period. High-strength structures use
active-passive or active-active setups between dispersed geographical
areas to keep the service running, regardless of localized failures or
such disasters. Chaos engineering tests reliability proactively by
sneaking in controlled failures into production systems and checking
to see if recovery mechanisms kick in, as expected. Approaches to
security, performance, and reliability are traditionally developed in
isolation, as though the three are independent; this plain non-sense.
Performance optimizations that avoid safety checks or reliability
mechanisms that leak diagnostic information are common sources of
security vulnerabilities. Security controls which add more processing
steps or reliability features that keep redundant state can cause
performance bottlenecks. Security mechanisms that raise the
complexity of the system or performance optimizations that narrow the
tolerable fault margins may lead to reliability challenges. In practice,
systems must be oriented to meet varying criteria across these
dimensions depending upon use case requirements—system must
balance security and reliability against raw performance (i.e. mission
critical systems will typically favor non-performant options over less
reliable systems); systems must maintain performance guarantees
whilst ensuring adequate security and reliability (e.g. real time
systems); or, systems must maintain optimal performance while
maintaining adequate security and reliability (e.g. consumer
applications). This evolution of computer systems continues to
fundamentally alter the operations landscape(s): Cloud introduces
shared responsibility models for security, performance, and reliability,
where some level of responsibility is managed by a service provider
with others maintained by the customer; containerization and micro
services architectures divide these concerns into smaller, more
manageable modules; DevSecOps incorporates security into the
development lifecycle (i.e. not an afterthought); site reliability
engineering (SRE) applies software engineering paradigms to
operationalize problems; and artificial intelligence increasingly
encroaches to help humans identify and profile security threats,

performance parameters, and reliability components that pose a risk to
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service and product offerings. As systems grow more complex and
interconnected, the strategic orchestration of the management of
security, performance, and reliability operations is becoming a core
function for delivering systems to support the increasing expectations
of both organizations and individuals in our digital society.

1.3.6 Emerging Trends and Future Directions in Computer
Systems

The operations of computer systems are evolving at an unprecedented
pace, highlighting the importance of writing semantics in the
continuous integration and deployment process. At the same time,
several disruptive trends are reformulating the very fabric of computer
systems, heralding a new realm of capabilities and new operation
challenges that will characterize the next generation of computing
infrastructure. Quantum computing is perhaps the most disruptive
change on the horizon, as it computes fundamentally differently than
classical computation, by utilizing quantum mechanical effects like
superposition and entanglement. In contrast to conventional bits with
distinguished states of 0 or 1, quantum bits or “qubits” can be in
superposition with multiple possible states at once, potentially allowing
for exponential parallelism on certain problems. Go to any specialized
quantum system from companies like IBM or Google or D-Wave or
other new starts, and you can find ways in which these experimental
systems demonstrate capabilities in areas such as cryptography,
optimization, simulation of quantum systems, and even some machine
learning functions. Modules. Operationally, quantum computing has
enormous implications: quantum algorithms need completely novel
ways of programming; quantum decoherence makes error correction
exponentially harder; dedicated environments with extremely low
temperature requirements lead to new types of infrastructure problems;
hybrid architectures with classical and quantum processors need new
interface paradigms. Although general-purpose quantum computers are
many years away from practical use, the security consequences are
already causing changes to quantum-resistant cryptographic algorithms
that would be safe against future quantum systems. Neuromorphic
computing mimics biological neural systems using hardware
architectures that more closely mirror the structures in the brain, in
contrast to traditional von Neumann architectures. Such systems use

massively parallel processing elements that integrate memory and
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Notes computation and provide large performance improvements for pattern
reorganization, Sens.
1.3.7 Types of Operating Systems: Batch Processing, Multi-
Programming, Time Sharing
An operating system (OS) is a crucial software layer that acts as a
bridge between computer hardware and its users, on top of which
users can conveniently and efficiently run programs. Operating
systems have come a long way since the birth of electronic
computers, continuously adapting to new hardware capabilities and
user needs. It represents a basic shift from primitive, single-function
applications to advanced, multi-feature settings that can run
several simultaneous processes in a resource-efficient manner. The
earliest computers didn’t contain anything that resembled an
operating system, as we understand the term today; they required
programmers to talk directly to the machine hardware through
physical switches and lights. This hands-on approach proved
insufficient with the increasing complexity behind our computing
hardware and the increasing expectations users had of their
applications. The ever-increasing sophistication of operating
system designs was driven by the need for more efficient resource
utilization and improved user experience. This Unit provides
insight into three base operating system paradigms that
approximate significant evolutionary stages in computer history:
batch processing systems, multiprogramming systems, and time-
sharing systems. These systems all addressed the shortcomings of
their predecessors and provided new abstractions that still shape
modern operating systems today. Understanding these fundamental
operating system types help us appreciate the principles that
underlie many of the modern computing environments we use today
and the historical context that drove their evolution. Batch
processing, multiprogramming, and time-sharing represent not just
an evolution in technology but also a shift in computing priorities;
in other words, from maximizing the usage of hardware to
maximizing the matched interactivity of the system. In this article,
we will delve into each of these types of operating systems
individually, highlighting what defines each one, their main
architectural components, advantages, disadvantages, and

historical significance to give you an all-encompassing perspective
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on how the evolution of operating system design has catered

towards the complex needs of computing in modern times.
1.3.8 Batch Processing Operating Systems
Batch processing represents the earliest systematic approach to
operating system design, emerging in the 1950s and early 1960s as a
response to the limitations of manual program loading. In a batch
processing operating system, similar jobs are grouped together into
"batches" and executed sequentially without user interaction during
processing. This revolutionary approach addressed significant
inefficiencies in early computing environments, where computer
operators had to manually load and unload programs and data, resulting
in considerable idle time for expensive hardware resources. The
fundamental architecture of a batch processing system consists of
several key components. First, the job scheduler maintains a queue of
submitted jobs, determining their execution order based on predefined
criteria such as priority or resource requirements. Second, the batch
monitor supervises job execution, loading the appropriate program into
memory, allocating necessary resources, and collecting output for later
retrieval. Third, job control language (JCL) provides a standardized
mechanism for users to specify job requirements and execution
parameters. The operational workflow typically begins with users
submitting programs and associated data (often on punch cards or
magnetic tape) to computer operators. These jobs are then grouped by
operators into batches with similar resource requirements. The batched
jobs are loaded onto input devices, and the batch processing system
automatically executes them in sequence, producing output that is
subsequently distributed to the appropriate users. This approach offered
several significant advantages over manual program loading. Primarily,
it improved throughput by reducing transition time between jobs and
eliminating the need for human intervention during execution. It also
enhanced resource utilization by keeping expensive computing
hardware operational for longer periods. Additionally, batch systems
introduced the concept of accounting and resource allocation, enabling
organizations to track and manage computing resources more
effectively. Despite these benefits, batch processing systems suffered
from notable limitations. The lack of interaction during program
execution meant that debugging was cumbersome, often requiring

multiple submission-execution cycles to identify and correct errors.
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Furthermore, turnaround time the interval between job submission and
result delivery could be substantial, ranging from hours to days
depending on system load and job priority. These systems also typically
operated with a "first-in, first-out" (FIFO) scheduling approach or
simple priority schemes, which could lead to inefficient resource
allocation. Historical examples of influential batch processing systems
include the IBM 7094 with its Fortran Monitor System (FMS) and the
IBM System/360 running OS/360. These systems demonstrated the
viability of automated job processing and established fundamental
concepts in operating system design, including job scheduling, resource
allocation, and system monitoring. Although pure batch processing
systems are rarely used in contemporary computing environments, their
core principles continue to influence modern computing, particularly in

high-performance = computing centers, scientific  computing

T

=
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Jobn

Operating

System CPU

Figurel.3.5: Batch Operating System
[Source - https://www.geeksforgeeks.org/]

applications, and financial processing systems where large volumes of
data must be processed without user interaction.

1.3.9 Multiprogramming Operating Systems

Multiprogramming was introduced in 1960s which was a leap over
batch processing systems, as it addressed one of the hot topics of CPU
underutilization. Batch systems ran jobs one at a time, but
multiprogramming brought the radical idea of having multiple
programs in memory together at once and transforming numbers
between jobs in a process that the OS could switch back and forth
among and save CPU cycles lost to I/O. This core adjustment increased
system  throughput and  resource  usage  dramatically.
Multiprogramming systems have many more features in their
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architecture than batch systems. Managing memory becomes a lot
harder, we need to make sure branches marked with load instructions
are protected against being scratched by other programs that are in
memory at the same time. Process management systems maintain the
state of each loaded program and coordinate transitions between them.
In advanced CPU scheduling algorithms meaning which ready process
should get processor time depending on factors such as priority,
resource needs, and fairness. System level types of operations that
allow for I/O requests and refinement. And complex I/O management
systems that allow for multiple active programs. From the operating
system perspective, when a program initiates an I/O operation, the
multiprogramming operating system will do a context switch, saving
the current program state and handing control to a different program
that is ready to execute. This context switching operation means saving
the contents of registers, program counters, and other relevant
information about the execution states of the blocked program and
loading that of the other program to be executed. When the I/O
completes, the first program is re-eligible for execution, enabling the
operating system to return control to it at an appropriate time. This was
a great improvement over simple batch processing. Most importantly,
it greatly enhanced CPU utilization because with this way the
processor never visited the idle state if programs were blocked waiting
on an I/O operation. More jobs could be completed in the same amount
of time, thus increasing system throughput accordingly. It also offered
more complex mechanisms for allocating resources such as: memory,
peripheral or even processor time among different workloads running
in parallel. These developments were in addition to the challenges and
limitations using multiprogramming systems. Memory limits became
especially real, since you needed enough physical memory to run
multiple programs at once. Now, with multiple processes running on
the system, there was contention for the various resources that a
process could use, such as I/O devices. Fairness, priority, and
throughput considerations required more complex scheduling
algorithms. They also introduced the possibility of deadlock, where
two or more programs each had resources that the others needed,
creating a standstill. Notable example of multiprogramming systems
are IBM's OS/360 MFT (Multiprogramming with a Fixed number of
Tasks) and MVT (Multiprogramming with a Variable number of
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Tasks), UNIVAC's EXEC 8, and derivatives of Unix. These systems
introduced essential concepts that would become the basis for
contemporary operating systems, such as process management,
memory protection, and resource allocation. Multiprogramming is still
a basic paradigm of modern computing and is built into the core
principles of almost every operating system in use today.
Multiprogramming laid the groundwork for concurrent computing,

which would be further realized in the form of time-sharing systems, a
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Figure 1.3.62: Multiprogramming Operating System
[Source - https.//www.geeksforgeeks.org]

subsequent category of operating system specifically designed to
support interactive computing experiences.

1.3.10 Time-Sharing Operating Systems

Time-sharing operating systems, which developed in the mid-1960s,
were a significant paradigm shift in computing. They overcame a
fundamental constraint of batch and early multiprogramming systems:
they did not offer interactive computing  capabilities.
Multiprogramming only increased the needs of the hardware, and
time-sharing systems changed this by creating an illusion of exclusive
accessibility of the system by each user. This development
fundamentally changed human-computer interactions, allowing people
to directly and interactively utilize computers in ways that vastly
broadened computing use cases and made computing accessible to
many more people. The interactive nature of time-sharing comes from
its implementation method—context switch at a high rate between
several programs that belong to users. Using time-slicing (usually in
milliseconds) this creates the illusion that programs are being executed

in parallel (this does not mirror the underlying hardware, which is
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inherently sequential). This methodology is distinctly differentiated
from multiprogramming through its primary intent as opposed to
multiprogramming, which focuses on maximizing CPU utilization by
swapping control between programs during I/O tasks, time sharing
switches programs based on the time that has been allotted to them
versus the waiting on I/O process the architecture of a time-sharing
operating  system  boasts numerous enhancements  over
multiprogramming executing systems. It needs better CPU scheduling
algorithms that balance responsiveness and fairness among many
interactive users. In such cases, virtual memory systems become vital,
enabling the aggregate memory requirements of all users in active
status to be larger than available system memory. Terminal handling
subsystems are responsible for interfacing with possibly hundreds of
attached user terminals. The file systems of time-sharing
environments also utilize concurrency controls to allow multiple users
to access shared files at the same time without causing conflicts. The
actual time-sharing works with slightly different processes. When a
user starts a session, a process is created to represent that user's
environment. The system grants short processor time slices to the
corresponding process, as the user inputs commands. A process is
allowed to run in the CPU until its time slice expires, and if it does not
finish its work in the time slice, the process is forcibly suspended and
the operating system saves its state and switches to the next one in the
ready queue. This is how preemptive multitasking works to prevent a
single user from hogging the system. Compared to its predecessors, the
time-sharing delivered revolutionary benefits. It pioneered interactive
computing, providing a means for users to enter commands and receive
immediate feedback. This interactivity made possible new classes of
applications, including real-time communication, interactive
programming environments and early computer-aided design systems.
In addition, time-sharing democratized access to computing resources
by enabling multiple users to share expensive hardware simultaneously,
making it feasible for many users who could not afford dedicated use.
In addition, it allowed many users to work on related tasks in a
cooperative manner, sharing both data and resources. Early time-
sharing systems did face considerable challenges, however, despite
these advantages. Context switches do incur overhead, so if they

become too frequent, they could impact overall system performance
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and should be avoided at large numbers of active users. These systems
needed many megabytes of memory and megahertz worth of processing
power to even approach acceptable response times compared to their
counterparts. Moreover, the prominence of security concerns added
another layer, as the system needed to defend users from unauthorized
access to each other's data and processes. Some of the pioneering time-
sharing systems include the Compatible Time-Sharing System (CTSS)
at MIT, Dartmouth Time Sharing System (DTSS), which introduced
the BASIC programming language, and MULTICS (Multiplexed
Information and Computing Service), which served as the model for
many future operating system designs, especially Unix. In addition to
its broad applicability to modern computing, these systems introduced
basic ideas such as interactive user interfaces, preemptive multitasking,
and user-oriented computing environments. The concept of time-
sharing was a profound leap forward in making computers accessible

to a wider audience and more useful, paving the way for principles that

User 3 User 4
User 2 User 5
(Active state)
User 1 User 6

(Ready state)

Figure 1.3.7: Time-Sharing Operating System

[Source - https://www.geeksforgeeks.org/]
still undergird modern operating systems and their interaction with

users.

1.3.11 Comparative Analysis: Evolution and Trade-offs

This evolution from batch processing to multiprogramming, and then
to time-sharing systems, represents a fundamental shift in computing
philosophy and capability, as each technique built on its predecessors
to overcome their limitations while adding new capabilities and
challenges. Plotting out the evolution of operating system design
reveals how balancing competing objectives such as hardware
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utilization versus system throughput versus response time versus user
experience have continued to drive optimization. One dimension to
compare these operating system paradigms is resource utilization.
Batch processing systems were designed to maximize resource
utilization on expensive computing hardware by minimizing idle time
between jobs, but at the expense of interactive capabilities.
Multiprogramming systems took this one step further by overlapping
I/O operations with CPU activity, thereby minimizing idle time for the
processor. While time-sharing systems managed to use their resources
fairly well on average, it did require some sacrifice of the raw efficiency
of the hardware in favor of interactive capabilities, accepting the
overhead of switching contexts often to remain responsive. Another
important difference between these operating system types is their
treatment of users. Batch processing systems created a great separation
between users and the computing environment, with operators acting
as intermediaries and users typically getting results hours or days after
their submission. Multiprogramming may have alleviated this
separation to an extent but still required limited direct intervention.
Before the arrival of time-sharing systems, this relationship was what I
would call sort of a batch processing thing, where there wasn't a lot of
interaction on demand because there were two degrees of separation
between the human and the resources available. These paradigms also
differed considerably in their performance metrics. Batch systems
optimized for throughput the number of jobs completed per unit time
and of necessity, low overhead processing of batch jobs, preferring
high-volume processing over minimizing per-job completion time.
Multiprogramming had already improved throughput but added a new
metric, device utilization. The emphasis of time-sharing systems
moved sharply toward response time the elapsed time from the user
request until the system response even when this sometimes had a
negative effect on overall throughput. These changing priorities are
reflected in the evolution of scheduling algorithms. Batch systems
mostly used either basic first-come-first-served or simple priority types.
This led to scheduling techniques such as shortest-job-first, priority-
based preemptive scheduling, and so forth in multiprogramming in
order to maximize throughput and CPU utilization. Time-sharing
systems implemented round robin scheduling with preemption and

complex priority aging mechanisms. Therefore, memory management
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techniques naturally evolved among these paradigms. Batch systems
usually handled a single program at a time with primitive memory
management. Multiprogramming required memory protection facilities
and introduced partitioned allocation strategies. Time-sharing systems
introduced virtual memory techniques that allowed programs to run as
if they had access to more memory than (actually) existed, and
facilitated new strategies to allocate memory in a more flexible way.
This evolution persists with modern operating system designs. Modern
systems are designed according to aspects of all three paradigms: batch
processing (for background tasks and processing of high-volume data)
and multiprogramming (to increase resource use efficiency) and time
sharing (for interactive users). Familiarity with these historical
paradigms exposes the origins of how contemporary operating systems
balance competing goals and make explicit tradeoffs necessary to
enable a wide range of computing applications. And as batch went to
multiprogramming to time-sharing, one didn't the other, but expanded
capabilities that enabled the operating system to handle an increasingly
wide variety of computing needs onto increasingly complex hardware

environments.

1.3.12 Modern Implementations and Legacies

Modern operating systems are characterized by some combination of
batch, multiprogramming and time sharing, and many aspects of these
historical models have adapted and carry through to their modern
counterparts. Rather than discarding such approaches to innovate these
paradigms, modern systems seamlessly incorporate these in a single
unifying architecture capable of addressing a broad variety of
computing demands, from high-throughput processing for background
jobs all the way to highly interactive applications for end-users. Aspects
of modern operating systems are still reminiscent of batch processing.
It's the background processing capabilities, which let resource-hungry
work happen in the background at the system level, usually when the
system is idle. In larger environments, job scheduling components
orchestrate the execution of batch administrative work, data processing
jobs, and systems maintenance functions. Print spooling systems
gather document printing requests and process them in the order in
which they were received or as resources allow, without user

intervention. These batch-oriented capabilities are still critical for
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operational efficiency in enterprise computing environments,
illustrating how ideas presented in early batch processing systems have
proved very useful and in-play even today. Multiprogramming
principles are pervasive throughout the design of almost every modern
operating system. Modern process management subsystems build on
this foundation of multiprogramming, and when the need arose for
thousands of concurrent processes, sophisticated scheduling algorithms
were introduced that allow balancing of throughput, fairness, and
responsiveness. Hardware virtualization techniques allow memory
management systems to contain such advanced protection mechanisms
which lets multiple processes run in parallel without one process's data
being affected by the other. I/O subsystems manage shared devices by
multiple processes, using techniques like buffering, caching, and
asynchronous I/O to balance throughput against wait time. These
functionalities are a natural extension of the fundamental ideas
developed in early multiprogramming systems but are also designed to
scale parallelism up to the broader parallelism required in
contemporary computing environments. Modern computing is a highly
interactive affair and so time-sharing principles have evolved to support
them. The use of dynamic sections and immediate usability, for
example, allows modern user interfaces to give a sense of almost
dedicated responsiveness due to always having blocks of resources
seemingly available regardless of underlying contexts. Preemptive
multitasking allows interactive applications to remain usable even
under resource strain from background actions. The advanced
scheduling paradigms incorporate ideas such as multilevel feedback
queues that shall dynamically change priorities in response to process
behavior and tend to favor interactive processes while ensuring
progress in compute-intensive background processes. These features
also represent the direct descendants of early time-sharing systems,
mapped into the context of personal computing, and extended to nurture
a wide set of interaction models, across devices and form factors. In
the present day, many operating system types illustrate the evolution
and convergence of these paradigms. General-purpose operating
systems (OSes) such as Windows, macOS, and desktop Linux
distributions provide both interactive components and significant
background processing by supporting both end-user applications (e.g.,
browsers, editors) and system services (e.g., drivers). Deterministic
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response times are extended to time-critical applications through the
use of real-time operating systems, in which many of the scheduling
concepts from the three paradigms are extended, and they continue to
be used in industrial control, aviation, and medical devices. Concepts
such as these are further expanded in distributed operating systems,
which work over a network of computers and control processes that
may exist on multiple physical machines, providing a single image for
users and applications. Cloud operating systems take these ideas a step
further, managing resources across entire data centers and dynamically
allocating computing capacity to serve variable workloads while
ensuring tenants can’t interfere with one another. Batch processing was
the earliest method of running programs and subsequently evolved into
multiprogramming and more recently, time-sharing, providing a
foundation for emerging technologies and future trends in operating
systems development. In multiprogramming systems, the concepts of
process isolation were first introduced, from which containerization
and micro service architectures extend. Server less computing
platforms combine elements of all three paradigms, delivering
responsiveness in an interactive style but managing background
processing over shared infrastructure with efficiency. It also helps
improve the responsiveness of edge computing systems, which
leverage time-sharing principles to partition computing resources
closer to users, subject to resource limitations. Though quantum
computing environments will need to implement aspects of these
classical paradigms likely augmented with new mechanisms to handle
the inherent properties of quantum processing. The evolution of
operating system paradigms over the years has laid the groundwork for
the sophisticated systems we enjoy today, and offers insight into the
trends that will define the future of computing, as software must
contend with an increasingly complex interplay between technology
and human interaction to deliver seamless user experiences.

1.3.13 Conclusion and Future Directions

From the historical perspective of operating systems, the evolution of
computing systems from batch-processing to multiprogramming to
time-sharing gives us a broad sense of where computing priorities were
focused, from hardware maximization to CPU utilization efficiency to
interactive-responsiveness. This evolutionary path reflects not only

progress in technology, but also changes in views regarding the purpose
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of computing and how computing resources should be made available.
This next paradigm was born out of the limitations of its predecessors,
providing innovative solutions that extended the power of computation
at the expense of other priorities. They all share the unifying theme of
managing complexity through abstraction and coordination of
resources — the core operating system functions. The advent of batch
processing brought about the notion of program automation and job
management, positioning the operating system as an intermediary or
mediator between users and hardware. Multiprogramming extended
this mediating role to manage multiple overlapping activities,
introducing features of process management and protection that are still
core to modern computing. Then came time-sharing that built even
further on this foundation; computers engaged users directly and
human-computer interaction established patterns (which survive today)
in how we interact with a computer. As this evolution surfaced,
principles stood out that continue to be surprisingly relevant and well-
suited to the future. Operating systems became more composed of and
layered upon these initial building blocks and abstractions, which have
yet to be challenged by fundamentally better alternatives (excepting
certain resource-constrained or bare-metal use cases). These
fundamental abstractions have not only persisted since its inception, but
have continued to remain relevant even as computing hardware
evolved from mainframes to personal computers to distributed systems,
proving to be both conceptually powerful and flexible. One can look
into the future where operating system design attempts to solve new
problems while following the principles laid in the past. The increasing
need for security and privacy protection is a result of widespread
awareness of the vulnerability of computing systems and the critical
nature of the data that they process. The explosive growth of
networked and distributed computing environments caused the focus of
the operating system be extended from individual machines, to
communication, coordination, and resource sharing among complex
networks. As new computational paradigms such as quantum
computing, neuromorphic systems and ambient computing emerge,
they will introduce new operating system requirements while still
leveraging the core principles created by the historical evolution of
classical systems. Operating systems are evolving as a process and not

a product. As technology capabilities grow and user needs change,
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operating systems have to evolve alongside them, walking a tightrope
between efficiency, security, usability and other competing priorities.
The need to evolved from batch processing to multiprogramming to
time-sharing, being necessary for a better understanding of that, the
ever-evolving need gained is more appreciation of the existing
structure, which always has core functionalities then addressed under
such needs. That historical view provides useful lessons for making
sense of existing systems and predicting future ones. Exploring how
operating systems have adapted to competing priorities and responded
to emerging needs is revealing of perennial principles likely to inform
the design of operating systems across future technology transitions.
The evolution from batch processing to multiprogramming to time-
sharing is not solely a matter of historical interest but rather, is living
history whose effects continue in the form of computing environments,
and by extension, modern society’s interaction with information
technology.

1.3.14 Operating-System Services

An Operating System (OS) is vital software that sits between the
hardware of a computer and a user, enabling the user to effectively run
programs in a user-friendly environment. It is a software that manages
the computer's hardware resources, including the processors, memory,
storage devices, and input/output devices, and provides them to all
users and tasks. It has to reconcile the often-conflicting objectives of
user convenience and efficient utilization of the computer system’s
resources. Over the years, operating systems have evolved and adapted
to new hardware technologies, materials and processing environments,
giving birth to specialized operating system designs to meet the diverse
needs of different computing scenarios. Operating systems have grown
increasingly complex in order to be expanded functionality-wise,
security-wise, and providing a support framework for cutting-edge
applications, ranging from the first batch systems that processed jobs
in a serial way without user-extent to the multi-user, multitasking
operating systems of today. Operating systems also have to provide a
user interface through which people interact with the computer, and a
set of services that programs can utilize. These services are the more
technical, lower-level functions that most users never directly use that
are necessary for the system and the programs that run on it to operate

correctly. Teaching some of the different types of operating systems

68
MATS Centre for Distance and Online Education, MATS University



and their respective services is a staple in the computer science
curriculum as it illustrates the interactions between software and
hardware and provides insight into how modern computing
environments operate. This is especially important for those who will
design or maintain computer systems, develop applications or make
decisions about computing infrastructure in an organizational context.

1.3.15 Types of Operating Systems

A range of operating system has evolved over time to cater to specific
computing requirements and environments. The first historical type of
operating system is a batch operating system, which takes jobs that are
similar to one another and minimizes user interaction in order to keep
the processor as busy as possible and minimize idle time between jobs;
the modern equivalent and still very relevant to any environment where
repetitive processing is needed in volume can be found in batch systems
of early mainframe systems (e.g. OS/360 from IBM) that keep jobs
running through job queues in environments like payroll systems or an
environment where something like a scientific batch computation is
needed. However, Multi-user operating systems are based upon the idea
of time-sharing systems where multiple processes from multiple users
can be run on a single computer more or less simultaneously as the
processor can switch among user programs extremely fast thereby
giving the impression that each user has an exclusive access to the
system, it was first implemented in CTSS (Compatible Time Sharing
System) in 1960s, streamlining multi-user access in the computer
system, this success led to the development of Multics system. For
single-user operating systems, the complexity lies in creating user-
friendly interfaces and maximizing responsiveness without
compromising too much on performance, examples include Microsoft
Windows, macOS, and many Linux distros, which cater to individual
users (but might not be as optimized as possible for resource
utilization). Multi-processor operating system types handle systems
with more than one standalone processor or with multi-core processors
by utilizing higher algorithms to execute multiple processes over the
processing units, while sustaining the system order and stability, which
becomes much tougher with every additional processor because it
needs to synchronize and allocate simultaneously different resources.
RTOS (real time operating systems) provide guarantee that something

will happen within a specific period of time; timing is critical in some
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applications like industrial control systems, medical devices or
avionics; RTOS focuses on deterministic behavior rather than
throughput or other performance metrics with examples such as
VxWorks, QNX, or RTLinux. Distributed operating systems, e.g.,
Amoeba, Mach, and recent cloud operating environments manage
resources spread over several physically separate computers to create
the illusion of single, unified system, no matter the complexity of
anthropogenic cally relevant inter-computer (networks of computers)
valid operations. Embedded operating systems are tailored for
dedicated systems with limited resources, like smart appliances,
automotive networks, and Internet of Things (IoT) devices; these
systems are optimized for resource-constrained environments and
emphasize simplicity and reliability over complex feature sets, with
examples like embedded Linux distributions, ThreadX, and FreeRTOS.
Network operating systems. Network operating systems (NOS) are
primarily concerned with managing network resources and providing
connectivity services such as file sharing, printer sharing, user
authentication, and network traffic management; e.g., early Novell
NetWare, Microsoft Windows Server, and portions of various
Unix/Linux distributions configured as network servers.

1.3.16 Core Operating System Services

OS Core Services Overview Every operating system consists of a core
services layer. Process management is central to multitasking
environments, where the operating system needs to create, schedule,
synchronize, communicate between and terminate processes while
maintaining a balanced allocation of resources and system stability; this
process juggle involves a harmonious process of scheduling algorithms
that ascertain which process runs when, by priority, its execution time,
requirements for resources, etc. Memory management services allocate
and deallocate portions of memory as needed by processes and
implement mechanisms such as paging and segmentation to provide
virtual memory which gives the illusion to the user that they have more
space of available memory than the physical memory present in the
system; now to further ensure that processes read only from their own
memory, memory protection mechanisms are in place that prevents
processes from accessing other processes' memory or the memory of
the kernel. Specifically, file system management introduces an

important layer of abstraction whereby a user interacts with files and
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directories, instead of with the tracks or sectors of a physical storage
device (such as a hard disk drive, solid-state drive, or network storage
device) it is responsible for managing entities, maintaining the file
metadata required and enforcing access control and sharing across users
and processes. Device drivers allow applications to interact with
different types of hardware components by providing a consistent
interface, which reduces the need for applications and the operating
system to know the intricate specifics of each device; this abstraction
helps operating systems support a wide range of devices, while also
shielding software developers from needing to manage each devices
unique features. Input/output (I/O) management is the process of
handling the transfer of data between the system memory and
peripheral devices, through the use of buffering, caching and spooling
mechanisms to maximize the performance of the system when the I/O
is performed, reconciling the speed discrepancy between the CPU and
slower external devices; the efficiency of I/O significantly affects
overall system performance, especially in applications that rely heavily
on data. They secure the system, the applications, and the data from
unauthorized access or modification by means of verifying user
identity, with authorization mechanisms that decide what authenticated
users can do, and audit logging that records security-relevant events for
later examination; in addition to this modern operating systems
incorporates several other isolation mechanisms, such as process
sandboxing, to mitigate potential security breaches. Error detection and
handling mechanisms detect hardware and software faults and trigger
recovery procedures if possible or terminate the faulty component so it
cannot bring down the whole system (which also applies to exceptional
conditions such as division by zero or invalid memory access that
would otherwise crash an application or system).

1.3.17User Interface and Interaction Services

Interface Operating systems offer many interfaces from the command
line to complex GUI. CLIs refer to text-based interaction using shells
like Bash in Unix/Linux environments, Power Shell in Windows or Zsh
in macOS by which users enter predefined commands that the OS
knows how to interpret and execute; typically not as user-friendly for
novices as graphical interfaces, CLIs give you exactness, script ability,
and often speed for seasoned users, thus especially useful for

automation and tasks in IT. Graphical user interfaces (GUIs) provide
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a framework of visual components such as windows, icons, menus, and
pointers, permitting intuitive interaction with pointing devices while
abstracting away underlying technical complexities and making
computers more accessible to non-technical users; notable GUI
environments include Microsoft Windows Desktop Environment,
Apple's Aqua interface in macOS, and diverse Linux desktop
environments such as GNOME, and KDE. Modern operating systems
have incorporated voice user interfaces (VUIs) and natural language
processing capabilities, enabling users to provide spoken commands
and queries by means of assistants like Microsoft's Cortana, Apple's
Siri, or Google Assistant in Android; there are advantages to this hands-
free operation in certain scenarios, but these interfaces continue to be
refined with respect to their accuracy and capabilities. Features that
make sure operating systems remain usable by people with a variety of
disabilities — screen readers for people with no sight, keyboard-only
access for those with motion limitations, closed captioning for people
who are hard of hearing, visual modes that help people with low or high
contrast sensitivity rely on accessibility services, whether that be
Microsoft's Narrator, Apple's Voiceover, or the Orca screen reader for
Linux; accessibility services implement frameworks on top of which
applications can build to ensure a high level of usability for their
software. These include help systems and documentation, which
provide contextual assistance, tutorials, and references to help users
understand system functionality and troubleshoot problems; these
resources have evolved from rudimentary manual pages to interactive,
searchable knowledge bases integrated directly into the operating
system. Notification services let users know about events in the system,
application updates, new communications, or situations that might
need attention; these systems have become progressively more
elaborate, with fine-grained user control over the notifications that are
displayed, and the means by which they're delivered to limit disruption
while filtering in important information that the user needs.
Configuration and customization services let users change how
systems work, how they look, and which applications are default; these
systems may include control panels, settings applications, and profile
management, which may support maintaining separate configurations
for individual users on shared systems.

1.3.18 Resource Management and System Performance
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Operating system is tested on a very large and hefty The CPU
scheduling algorithms decide which process receives CPU service and
how long it does, consequently applying complex policies balancing
delivery of throughput, response time, fairness, and prioritizing these
requirements; and include round-robin access to each process at
everything fixed time quantum, priority-based scheduling where
higher-priority processes are favored, and various hybrid methods
when workloads are known in advance. Virtual memory and memory
allocation virtually expands limited physical memory by effectively
treating portions of disk space as an external cache area for running
processes and applying page replacement algorithms like Least
Recently Used (LRU) or Clock to systematically decide which memory
pages to trade out of RAM when the physical-memory is over-
allocated; efficient memory management needs to facilitate keeping
frequently accessible data in faster physical memory while keeping
costly disk operations as low as possible. Storage management
services manage the allocation and location of disk space, building file
system structures (for example, NTFS on Windows, ext4 on Linux,
APFS on macOS) to optimally organize data for storage and retrieval,
and may offer advanced data protection features such as journaling to
help prevent data corruption in the event of system crashes, as well as
volume management to allow multiple physical devices to be combined
into a single logical storage unit, and transparent compression or
deduplication to optimize and maximize available space. In more detail,
energy management services create a profile of components in a
system to monitor and control their power consumption by dynamically
scaling back processor speed, for example, dimming displays,
suspending inactive devices, and employing advanced sleep states;
energy management services maintain a balance between performance
requirements and battery life issues, frequently tuning themselves to the
idiosyncrasies of active workloads as well as available energy. Load
balancing, state and memory monitors are tracking the actual utilization
of CPU cores, memory and swap utilization, disk I/O and network
resource usage, redistributing workloads to prevent bottlenecks as well
as visibility to the system to the admins using tools like Windows Task
Manager, top command under Linux or Activity monitor on Macs.
QoS mechanisms are implemented to ensure that certain applications

or services are prioritized, guaranteeing that important functions

73
MATS Centre for Distance and Online Education, MATS University

[

\

==

\\\

UNIVERSITY
eady for life

aTs)

i



Notes

receive the necessary resources even when the system is heavily loaded;
for instance, a video conferencing application could be assured of
sufficient bandwidth and processing priority, avoiding disrupted
communication even when other heavy applications may be running on
the system. Caching services keep and serve frequently accessed data
from their faster memory layers, greatly improving performance by
minimizing fetches from slower storage devices, with sophisticated
tracking that discriminates not only between processor caches and disk
buffer caches, but can also implement sophisticated algorithms that
predict what will be needed next based on access patterns and program
state.

1.3.19 Networking and Communication Services

Like (or worse than) host rewriting fun, it's well defined by modern
Operating systems with a stack of services up to local networks and the
world. At the higher level, network protocol support provides the
necessary foundation for communication standards such as TCP and IP,
ensuring that data transmission across different networks occurs
uniformly, irrespective of the underlying hardware differences; most
operating systems contain a protocol stack responsible for
encapsulating data, directing it toward the appropriate destination, and
ensuring reliable delivery despite issues such as network failure or
congestion. Network configuration and management services are
responsible for other networking tasks such as assigning an IP address
(either statically or through DHCP), subnet mask configuration,
gateway settings, and DNS server settings; they may also include
diagnostic tools responsible for finding and fix connectivity issues
through programs like ping, traceroute, or network configuration
panels. Remote access services enable users to log into a system from
far away and run commands or access files supposedly as though they
were in person; they include terminal services (such as SSH in
Unix/Linux systems), remote desktop protocols (such as Microsoft’s
RDP or VNC in cross-platform environments), and Enable secure
connections between the user and the system across the public
infrastructure, called the virtual private network (VPN) capability.
Distributed file systems and network file sharing make files stored on
remote computers available as though they were on the user's local
machine, typically supporting devices running the SMB/CIFS and NFS

protocols in Windows and Unix/Linux environments, respectively, or
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AFP, previously, in Apple environments, such services handle the
complexities of performing file operations on remote storage, caching,
and managing consistency with regard to shared files and multiple
users. Network security services safeguard systems against
unauthorized access and malicious activities by introducing the likes of
firewalls to filter incoming and outgoing network traffic according to a
system of predefined rules, intrusion detection systems to monitor for
suspicious patterns, encryption services to maintain the confidentiality
of data during transit, and other mechanisms; these defenses have
evolved in sophistication as network threats have grown more complex.
Directory Services allow you to authenticate users in a centralized
location and also allow wusers to search for resources; these
authentication systems include items such as Microsoft Active
Directory, Open DAP, and Apple Open Directory, which maintain
large databases of user accounts, group memberships, and callable
resources on the network. Internet and web services integrate browser
and related applications and tools into the operating system, providing
API for applications to access internet resources; most new operating
systems ship with libraries to common internet protocols like HTTP,
FTP, and email to facilitate application development and promote
consistency of network behavior.

1.3.20 Advanced and Specialized Operating System Services
Beyond essential functionality, modern OS provide advanced services
that accommodate specialized requirements and emerging
technologies. Hypervisors (such as those used in Microsoft's Hyper-V,
VMware, or KVM on Linux) allow multiple operating systems to run
at the same time on a single piece of hardware by creating isolated
virtual machines with their own allocated resources—leading to server
consolidation, testing environments and improved system utilization.
Container support, as evidenced by Docker support in many server
OSs, provides a lightweight application isolation approach without the
performance overhead of full virtualization; alongside, container
services manage namespace isolation, resource limits and
communication between container-based applications, yielding
deployment consistency between development and production setups.
Cloud integration is the integration of local operating systems with
remote cloud resources, which includes synchronizing files across

devices, offering backup services, and even hybrid computing since
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processing can occur between local environments and the cloud;
examples include Microsoft's Azure integration with Windows, Apple's
iCloud services within macOS and i0S, and multiple forms of cloud
connectivity within Linux distributions. Modern operating systems
increasingly include artificial intelligence and machine learning
services, which provide application programming interfaces and
frameworks that applications can take advantage of for speech
recognition, analysis of images, natural language processing, and
predictive functionality; these services often include a combination of
on-device processing for privacy and responsiveness and reliance on
the cloud for more compute-intensive tasks. These multimedia services
are responsible for handling audio and video processing, including
hardware acceleration, supporting codecs, and streaming capabilities
that enable applications to provide rich media experiences without
concerns about low-level details (Windows uses DirectX, macOS has
Core Audio and Core Video, and various frameworks are available in
Linux distributions). Database and information management services
provide structured data storage and retrieval capabilities, either via
embedded databases (e.g. SQLite) or standardized interfaces to external
database systems; some contemporary operating systems include
indexing services that scan catalog file contents for rapid queries,
facilitating user workflow by increasing user productivity when finding
data. Software update and maintenance services automatically check,
download and install updates to the operating system and applications,
balancing security vulnerabilities patches and new features with user
control by configuring update policies to suit organizations or users;
examples of these services are Yum and APT. Services are there to help
use different ecosystems, e.g., WSL that runs Linux code on Windows,
compatibility layer like Wine to run Windows programs on Linux, or
software solutions integrated into OS (virtualization software) that

allow the same or another OS to run in the main one.

1.3.21 Conclusion and Future Trends

Operating systems of today are in an ever-evolving phase, aren't they?
Multi-core processors and specialized hardware accelerators such as
GPUs, TPUs, and custom chips are becoming widespread; this leads to
a new generation of operating systems that can effectively allocate

resources and schedule jobs to both homogeneous and heterogeneous
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workload, offering streamlined, cohesive interfaces to applications and
users. Such profound growth of Internet of Things (IoT) devices
introduces specific challenges for operating system (OS) design,
particularly when you consider that these constrained environments
must leverage minimal resources, but still meet unprecedented scale
with regards security, connectivity, and manageability, as we're
witnessing the arrival of specific IoT OSs alongside the adaptation of
existing platforms to operate at some of these limitations. Unlike the
traditional centralized cloud model, edge computing necessitates
operating systems able to function well with sporadic connectivity,
variable resource availability, and strict latency constraints; the
distributed nature of the edge model challenges operating system core
assumptions about how resources are available to applications and how
they communicate. Security and privacy still propel operating system
really of their features, notable adoption of hardware-backed security
features, and strong encryption of data (the system and application
information), containerization for application isolation and a fine-
grained permission model for sensitive user information and this will
only get better in the future provides with more complex threats. The
lines separating diverse computing environments desktop, mobile,
cloud, embedded—are rapidly disappearing, with operating systems
moving towards more common systems that deliver consistent
experiences and application mobility across multiple device clases;
notably, Windows running on desktops, tablets, and servers; Linux
variants found everywhere from embedded devices to supercomputers.

Autonomous computing,

1.3.22 System Calls

Operating systems act as the crucial link between hardware
components that execute instructions and the software programs that
users interact with on a regular basis. One of the greatest feats in
computer science is the design of operating systems that manage the
resources of computer hardware while providing standard interfaces
that hide and abstract away the complexities that underlie the hardware.
The concept that lies behind this interaction is that of system calls.
They are the interface between user applications and the protected
kernel space, giving controlled access to hardware resources while

maintaining system stability and security. This Unit discusses the wide
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phonotypical spectrum of OS types and their mechanisms to
implement system calls. To this end, we first present the basic
principles regarding operating system architectural designs and the
importance of system calls within this context, followed by a survey of
operating system paradigms (i.e., monolithic, microkernel, hybrid
kernel, exokernel and virtualisation). We will explore how the design
and implementation of system calls affects important operating system
properties including performance overhead, security boundaries,
extensibility, and hardware abstraction. This should give students an
understanding of subtle differences in system call mechanisms among
operating system architectures and highlight key tradeoffs and
decisions found in system software in general. You learn how
computers operate at a systems level, context that is critical for writing,

optimizing, and securing software on various computing platforms.

Introduction to System Call

‘ User Programs ‘

User Interface

System Calls
Program File
Control L8 System Gomins
Error
Manage | |Resource| | Auditing | | Security
ment

Hardware |

Figure 1.3.9: : System Call
[Source - https://www.scaler.com/]

1.3.23 The Foundation of Operating Systems and System Calls

Operating systems is the most important software in any computing
environment and is the fundamental software layer on top of which all
other software runs. To appreciate the importance of syscalls, we'll first
have a look at how modern operating systems are organized and what
their responsibilities are. Operating systems do several important
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things: they manage and allocate the underlying hardware resources
(such as the CPU, memory, or I/O devices); they isolate and protect
separate processes from each other; they implement a file system and
networking stacks; and they expose standard interfaces that let
application developers write programs without a detailed
understanding of the underlying hardware specifications. An operating
system is divided into high level and low-level components with
respect to privileges. Application programs run with limited privilege
and have restricted access to system resources in user mode, but have
unrestricted access to memory and hardware devices in kernel mode. It
is important to note that this separation is not only a software construct,
as it is usually enforced by the hardware itself, for example, by
hardware implemented protection rings implemented by the CPU.
System calls are designed to be a controlled entry point to the
underlying system kernel from the user level applications, allowing
user applications to request services that require elevated privileges or
access to protected resources. If we look at the history behind system
calls, we can see they were born within early time-sharing systems like
MULTICS and early UNIX, where these systems needed to manage
resource access among multiple users, requiring a more formal
approach toward system services. System calls have been a consistent
abstraction for decades The fundamental concept of system calls
hasn’t changed much in decades of operating system designs, although
the implementation details and specific interfaces have improved quite
a bit. System calls usually require a context switch, which means the
processor must switch from user mode to kernel mode to perform the
requested privileged operation and then switch back to user mode. This
switch is tightly managed and is considered a major milestone along
the execution life of any application. Unlike regular library functions,
system calls do not return at the entry to user mode and the actual
implementation of these is often through a combination of interrupts
(software interrupts/ trap instruction or by special CPU instruction
depending on the hardware architecture). For example, on
contemporary x86-64 machines, the SYSCALL instruction provides a
fast mechanism upon an entry of user and kernel mode, while ARM
implementations may use the SWI (Software Interrupt) instruction.
Hardware mechanisms make sure the transitions go well, going to

different layers do not permit access to unwanted memory protected.
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System Calls: The system calls can be broadly grouped into the
following functional categories: process control (used to create and
terminate processes), file management (used to read, write, and
manipulate the file system), device management (used to interface with
hardware peripheral devices), information maintenance (for data
transfer between user and kernel space), and communications (used to
communicate between processes and networking). Each operating
system implements a different set of system calls, but there are many
common operations that run on both systems. For instance, process
generation on UNIX-like systems is performed with a sequence of
fork() and exec(); on Windows, Create Process is used. Similarly, file
operations like open(), read(), write() and close() have equivalents in
most OSs, but the parameters and specifics may vary. The number of
system calls varies widely by OS an embedded OS might implement
only a handful of system calls, while a complex general-purpose
operating system like Linux would have hundreds of specialized system
call functions. The performance of any operating system depends on
the design and the implementation of system calls, since each system
call has an overhead due to context switch from user mode to kernel
mode. To minimize this overhead, we use a number of optimization
techniques; modern operating systems actually use system call batching
to combine multiple operations into one system call, as well as fast
paths for common ones. In order to understand how the design and
implementation of each system call interface differs from those found
in other types of operating systems, it is essential we explore this
foundation.

1.3.24 Monolithic Kernels and Their System Call Architecture
Unlike the most optimized, derived Micro-kernel, monolithic kernels
are the default architecture for historic Operating System design
strategy. This architecture defines many mainstreams OSs like classic
UNIXs, Linux and the old Windows. By avoiding the overhead that
comes with inter-process communication (IPC) or message passing, the
monolithic approach provides substantial performance benefits since
various components can directly communicate with one another from
within the kernel. The primary interface between user applications and
kernel services is through system calls in a monolithic kernel. For a
monolithic environment, when a user program makes a system call

(which is the first step in any system call), a pretty simple chain of
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events happens. The first phase is for the application to fill CPU
registers with the system call number and any required arguments, and
then invoke a special instruction (such as SYSCALL on x86-64
processors) that makes the transition to kernel mode. Using the system
call number, the kernel's system call handler finds the right function in
a dispatch table, checks the arguments, and performs the requested
operation with full kernel privileges. Results are then stored in registers
or memory locations that may be accessed by the user program after
completion, and control is returned to user mode. The execution path
in this fashion leads to reasoned performance efficient patterns that are
a hallmark of monolithic designs. Linux (the operating system) is a
perfect example of the monolithic approach to system-call
implementation but with many modern improvements to the kernel
concept. If you get the same name as an application binary interface
(ABI) or processor architecture (due to Linux), the Linux system call
interface has grown: We maintain a wide range of entry points. For
example, while legacy 32-bit applications would use the INT 0x80
instruction to perform system calls, contemporary 64-bit applications
usually employ the more efficient SYSCALL instruction instead. Linux
takes additional steps to improve system call performance with things
like the vDSO (virtual dynamic shared object), which maps certain
parts of the kernel memory directly into user space so some system calls
can bypass the full context switch overhead. As an illustration,
operations such as gettimeofday can be performed fully in user mode if
the conditions are proper, leading to a reduction in latency by several
orders of magnitude. In Linux, you have a system call table with a
unique number for each system call. This table has grown significantly
over the years, and Linux kernel version 5.10 has support for more than
400 unique system calls. New system calls come into the kernel as part
of a carefully controlled process to minimize backward incompatibility,
because system call numbers and interfaces are a key part of the
kernel's guarantees about ABI stability. Looking at individual system
calls shows us a little bit about this monolithic approach. Take the open
system call in Linux which creates or opens a file. The open() system
call is the widely known interface, but underneath, the kernel's
implementation does so much more: it resolves the file path and
permission, traverses the file system directory hierarchy, works with

the correct file system driver, allocates the file descriptor and updates
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multiple internal data structure, all within the kernel's address space.
This highly cohesive, single-context execution is a prime example of
the monolithic philosophy behind tightly integrating various system
services directly into the kernel. While it has performance advantages,
the monolithic approach has some challenges. The single address
space design; A bug in any part of the system say in a third-party
device driver can crash the whole system or even take control of the
entire system. Moreover, the monolithic structure can make it
challenging to develop and test new kernel features due to the need to
integrate changes into the monolithic codebase, potentially
necessitating full system reboots during development. Policies get more
complicated too since kernel is running with highest level privileges,
and therefore presents a bigger attack surface. These restrictions have
driven alternative approaches to kernel architecture, but the
performance gains and practical benefits of monolithic kernels have
ensured their continued dominance in nearly all computing platforms.
Many of these concerns have been mitigated in modern monolithic
kernels similar to Linux, which utilize a modular design where
components can be dynamically loaded and unloaded, allowing for
some of the flexibility of a microkernel while still retaining the

performance benefits of the monolithic design. From monolithic kernel
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Figure1.3.10: Monolithic Operating System
[Source - https://tutoraspire.com/]

perspective, the implementations of various system calls are still
evolving towards some fancy implementations which reduces the
latency, enhance security and extensibility at high level, while retaining
its kernel architecture for general purpose computing.
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1.3.25 Microkernels: Minimalist Approach to System Calls

Microkernels, in the clearest possible departure from monolithic design
philosophy, put only the bare essentials in the privileged domain of the
kernel, embodying the most minimalist approach possible to operating
system architecture. This set of new ways of thinking about how an
operating system works came out in the 1980s, and there were a few
systems that became the first microkernel systems like Mach developed
at Carnegie Mellon University. Under the microkernel philosophy, only
those functions that are absolutely necessary to have kernel privileges
usually address space management, thread scheduling, and simple
inter-process communication (IPC) are kept within the kernel itself.
And, for the most part, all conventional operating system services (file
systems, device drivers, networking stacks, process management, etc)
are implemented as user-space servers running with regular privileges.
This architectural separation also fundamentally changes properties
and implementations of system calls as compared to monolithic
systems. Microkernel based operating systems ideally reduce the
system call interface to less than around 20 core system calls as opposed
to hundreds of systems calls in general monolithic kernels. Instead of
implementing diverse functionality this building component allows
only for system calls that bridge the user application to the numerous
separate server processes that facilitate the operating system services.
Instead of passing all the arguments which causes a lot of redundancy,
the microkernel will just expose system calls that you can call from a
process that communicates within the kernel the file operations to be
run by this file system server process. When a program wants to read a
file, for example, it constructs a message that describes the requested
parameters and sends it via the microkernel's [IPC mechanism to a file
system server; that server processes the request and returns results to
the application using the same IPC channel. That indirection makes
system service execution paths radically different from monolithic

systems. One such brilliant and successful project is MINIX, originally
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developed as an educational tool by Andrew S. Tanenbaum, and over
the years, evolved to grow into a robust microkernel-based operating
system. The entire MINIX 3 kernel comprises only the minimal core
functionality: interrupt handling, process scheduling, and basic IPC.
System services are implemented by independent processes with least-
privilege assigned. And the Virtual File System (VFS) server, which
sits atop the actual file system implementations, is responsible for
coordinating file operations, delegating work to individual server
processes for the file system implementations. Device drivers run as
separate user-space processes and communicate with hardware over
controlled interfaces offered by the kernel itself. This rigorous isolation
results in an architecture where even essential elements, such as device
drivers, are prevented from directly accessing memory beyond their
designated boundaries, which greatly improves the system immunity.
Another well-known example of commercially deployed microkernel
architecture, particularly in embedded, automotive, and safety-critical
environments, is the QNX Neutrino real-time operating system. QNX
employs a message-based architecture with system calls primarily
providing synchronous IPC between clients and servers. Using a very
small microkernel (100KB or less) that handles memory protection,
thread scheduling, and message passing, all other features of the system
are implemented in user-space processes. Pros of the microkernel
approach here on systems calls Second, it improves system reliability
via fault isolation — a crashing device driver or file system server can
never corrupt kernel memory; the system can detect and restart
individual components without bringing the entire system down.
Second, the architecture enhances security by limiting the privileged
code base (the “trusted computing base” or TCB) and enforcing least
privilege for system components. Third, microkernel’s enable
extensibility, as new services can be added without any kernel code
changes. Lastly, this architecture has the potential for lowering the cost
of the formal verification of the kernel, as exemplified by selL4, a
formally verified microkernel designed by NICTA (now a division of
Data61) that offers mathematical proofs of its correctness. But the
microkernel approach comes with performance challenges mostly
concerning [PC overhead. Microkernel systems have historically taken
a performance penalty versus monolithic designs, since even basic

operations may involve context switching between user processes
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multiple times. Many of these issues were addressed by the
implementation of modern microkernel’s using several optimization
methods. As an example, L4 family microkernels sew up IPC paths
very tight and efficient via direct process switching and messaging as
registers for short messages. Until these optimizations, the performance
gap between microkernel and monolithic systems was huge, but still,
although it was reduced to the size of a knife, it was never eliminated.
Mechanically, the system call implementation is different between
microkernel and monolithic systems. Although the basic hardware
primitives (like SYSCALL instructions or interrupts) are not much
different, the work done in the kernel is often much simpler. Instead of
executing complex operations directly, the microkernel typically
checks the validity of the system call parameters, delivers the
parameters to the corresponding user-space server via a message
passing mechanisms and manages the responses. This separation leads
to clean interfaces and minimizes the attack surface within the
privileged kernel code. The microkernel approach to system calls is a
philosophically different vision of operating system design — one
focused on modularity, reliability, and security, rather than maximum
performance. This leads us to the second point: Microkernels are not
the dominant architecture among general-purpose operating systems:
Because microkernel architectures involve a higher level of indirection
and typically introduce intercrosses communication (IPC) overhead,
they have not displaced their monolithic counterparts for general-
purpose workloads. Microkernel0 systems are still evolving, with
projects such as selL.4 and Genode taking this one step further by
proving the security / separation guarantees achieved through formal

verification.

Figure 1.3.12 Microkernel Operating System
[Source - https://en.wikipedia.org]
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1.3.26 Hybrid Kernels and Pragmatic System Call Implementations
Hybrid kernels are a practical solution born out of the theoretical
elegance and practical difficulties of pure microkernel designs,
incorporating elements from both monolithic and microkernel systems
to provide a compromise between modularity and performance. This
reflects an understanding that while the strong delineation of
components provided by microkernel provides significant advantages
for reliability and security, the performance penalties thereof especially
for I/O-intensive operations make this a deal-breaker for many real-
world workloads. Therefore, hybrid kernels allow performance-
critical subsystems to be implemented in kernel space while keeping
the microkernel philosophy of modularity and separation for other
components. This architectural trade-off has a strong impact on how
system calls are designed, implemented and behave in those operating
systems. Beginning with Windows NT, Microsoft Windows is
probably the most commercially successful example of hybrid kernel
architecture. The Windows NT kernel was first designed as a
microkernel, separating the kernel-mode Executive services from user-
mode subsystems. Though, to mitigate performance issues, the
following components previously held in user space in a pure
microkernel design (Window Manager, graphics drivers, portions of
the file system) were placed in kernel space. To facilitate performance
optimization, this pragmatic adaptation achieved a situation where the
theoretical boundaries between kernel and user components were
blurred. This Windows system call interface, referred to as "syscall" or
"Nt" functions (e.g., NtCreateFile, NtReadFile) is the basis for the
Windows API. Note that applications normally do not call these native
API functions directly, but instead call higher-level libraries like
kernel32. dll, which offer the more familiar Win32 API functions
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(CreateFile, ReadFile, etc.). This abstraction allows Windows to
implement multiple API personalities (Win32, POSIX, OS/2) on top of
a single system call interface, and subsystem independence also means
centralized access control and validation within the kernel. Now, in
Windows, there is a mechanism called the System Service Descriptor
Table (SSDT) through which the system calls are addressed in the
Windows. When an application advances a system call, the processor
switches to kernel mode with the specific hardware instruction (X86—
64 uses SYSCALL and older X86 systems use INT 2E), and the
kernel's system service dispatcher will use the syscall number to look
up and invoke the corresponding handler function. This pattern is
somewhat hybrid, as the dispatch mechanism is similar to that of a
monolithic kernel, while the actual architecture provides some degree
of separation between kernel objects. Another well-known example of
a hybrid kernel architecture is Apple’s macOS (formerly OS X). The
XNU (X is Not Unix) macOS kernel is a non-microkernel that
combines the Mach microkernel, a core component of the NeXT STEP
operating system, with parts from FreeBSD and Apple's proprietary I/O
Kit framework. In this hybrid exercise, the Mach parachute delivers
low level facilities like memory management, thread scheduling, and
IPC, for its part, the BSD level implements the UNIX system call
interface and \networking \stack. The I/O Kit, managed in the kernel,
but operating with an object-oriented design, helps increase
modularity of device drivers. An interesting case with hybrid design is
the system call interface in macOS. Applications access system
services through traditional UNIX system calls inherited from BSD,
and implemented by XNU directly in the kernel. Many of the macOS-
specific services use Mach messages instead of traditional system
calls, thus promoting a microkernel-like interaction model for those
services. This hybrid philosophy is in action for performance sensitive
operations so they are implemented directly in the kernel but other
services maintain a more separated message-passing architecture. For
example, hybrid kernels implement system calls with various
techniques to reduce the user-kernel barrier performance penalty. This
can include batching together related operations into single system
calls, user-space libraries that reduce system call frequency, or special
fast paths for common operations. Both Windows and macOS, for

example, provide mechanisms for speeding up certain graphics
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operations by allowing user applications to directly access frame buffer
memory, with user-mode access being controlled by the kernel, as long
as certain conditions are met, thus avoiding the need for kernel access
with every draw operation. Sandboxing hybrid kernel system calls:
Security minefield Hybrid kernels, while preserving the basic interface
between user and kernel modes, may present more opportunities for
exploitation than pure microkernel because of the greater architectural
complexity and a larger codebase in the kernel itself. In response to
these issues, contemporary hybrid kernels adopt several hardening
mechanisms, including kernel memory ASLR (Address Space Layout
Randomization), control flow integrity techniques, and rigorous
parameter validation for system calls. For example, Windows 10 and
later use Virtualization Based Security (VBS) features to drive this
same theme by using hardware virtualization to further isolate critical
kernel components from the rest of the system, achieving a more
microkernel-like division for security-sensitive subsystems alongside
the performance benefits of the hybrid architecture in normal operation.
System calls in hybrid kernels have evolved as a result of this
pragmatic approach to changing needs. Both Windows and macOS, for
example, have added mechanisms to allow kernel extension (filter
drivers, kernel extensions, or the entire open-source core kernel) which
third-party software can utilize to view and telescope back into system
call behavior without modifying the underlying core kernel. However,
both have evolved over time toward kernel extensibility models that
are more constrained than what either system started out with (Driver
Kit in macOS and Windows Driver Framework), moving a lot of this
functionality into user mode, suggesting a slow return toward a
microkernel model for these particular things. Hybrid kernels in short
capture an interplay between the theoretical ideal and the practical
upper bound of performance based on considerations of security,

compatibility, and architectural purity.

Specialized Operating Systems and Unique System Call Paradigms
Outside of the standard categories of monolithic, microkernel, and
hybrid architectures are specialized operating systems that are tailored
for niche computing environments and use cases. Such specialized
systems often tailor their system call implementations in a way that

bears little resemblance to traditional system calls, focusing instead on
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characteristics like real-time constraints, execution security, or limited
resources. Exploring these other paradigms, in turn, illustrates the
inherent wiggle room in the system call concept, and its ability to trade
off different requirements. RT systems (real-time systems) are one
example of a specialized system with a unique implementation of the
system call interface. In hard real-time systems where missing a
deadline can mean failure or even disaster determinism and
predictability are more important than average-case behavior. Real-
time operating systems (RTOS) implementations such as VxWorks,
FreeRTOS, and RTLinux modify the classic system call way to provide
bounded rate execution and minimized interrupt latency. For example,
many RTOS designs do disable interrupts in critical sections of system
call processing, preventing lower-priority interrupts from preempting
high-priority tasks. Also, RTOS system calls usually implement
priority inheritance protocols to avoid priority inversion situations in
which a high-priority task is blocked waiting for a resource from a low-
priority one. RTOS environments, for example, usually provide a
system call interface that includes dedicated APIs for fine-grained
timing control; absolute and relative sleep functions; high-resolution
timers; and predictable scheduling APIs. These specialized interfaces
take into account the unique needs of real-time applications, where the
timing of the response is just as important as the function of the
response. Exokernels are a radically different way of thinking about
operating system design, representing an extreme minimalism that
exceeds even microkernel. Originally conceived by researchers at MIT
in the mid-1990s, exokernels remove almost all abstraction from the
kernel, exposing hardware resources to applications directly through a
narrow interface of multiplexing primitives. Exokernel systems avoid
using traditional system calls such as read or write and use low-level
hardware access operations instead. Exokernels expose only physical
resources like disk blocks, memory pages and network interfaces,
instead of higher abstractions like files or processes, and their system
calls are centered on safely multiplexing these resources. Applications
(or their accompanying library operating systems (1ibOSes)) implement
higher-level abstractions depending on what is needed in the
application layer. For instance, rather than a traditional read system call
which acts on abstract files, an exokernel might expose primitives to

directly manipulate specific disk sectors, and the file abstraction is fully
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user-space. In such a model, domain applications gain the highest
possible level of control and performance, because kernel abstractions
are removed, and they can implement exactly those resource
management policies that the applications need. Exokernel MIT
implementation showed better performance for specific applications
but with more competence code development. A more recent
specialized approach, unikernels take us even further and destroy the
classic distinction between operating system and application altogether.
A unikernel system compiles the application together with only those
parts of the operating system that it needs, into a single-address-space
executable that runs directly on virtualized hardware. Unikernel
implementations, like MirageOS (in OCaml), IncludeOS (C++) and
Unik, often cut out traditional system calls altogether, substituting them
with calls to functions in the OS libraries slotted right in with the actual
application. Because the whole system operates on a single privilege
level, this scheme leaves very little overhead for user-kernel transition.
Although unikernels give up general-purpose functionality (like multi-
tenancy), they do offer large benefits around security (lowering the
attack surface), performance (removing mode transitions) and resource
efficiency (images are measured in MB, not GB). The system call
interface essentially becomes the API of the included OS libraries and
the boundaries between application and OS code become fuzzy or get
completely obliterated. For example, secure operating systems such as
seLL4, Genode, and KeyKOS utilize syscalls that have been explicitly
designed to ensure strong security and isolation properties. In these
systems, capabilities (unforgeable tokens used to denote access rights
to resources) typically replace or augment conventional system call
interfaces. In contrast to specifying resources by identifiers (like the
numbers of file descriptors or process identifiers), system calls in
capability-based systems operate on capability references that
implicitly represent both the resource identity and the operations that
it permits. This radically redefines the security model of system calls,
as access rights are proved via possession of capabilities rather than via
explicit permission checks in the system call implementation. Instead
of opening the file by path and checking permissions against user
credentials (as done in traditional UNIX systems), a capability system
would have the application present a directory capability, and obtain a

derived file capability through a controlled operation. Container-style
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OSes and library OSes are another flavor of system call
implementation. Other systems, such as gVisor from Google, intercept
system calls made by containerized applications and reimplement them
in the Go programming language, providing a higher level of isolation
and compatibility. gVisor intercepts these system calls through its
potential PTRACE platform (using ptrace) or its KVM platform
(acting as a KVM guest), essentially providing a backing
implementation of every single system call and mediating access to the
host kernel. By going with the existing concept of system calls to know
how to approach the security, Flexi gate can turn a traditional process
into a safer process. LibOSs, such as Graphene-SGX, do the same,
running applications inside Intel SGX enclaves and interposing on
system calls to the host system that can be reached via a secure
interface. A common approach adopted by many networks operating
systems (e.g. Cisco IOS, Arista EOS or Cumulus Linux) is to build up
a specialized system call interface mostly covering network
configuration and monitoring instead of general-purpose computing.
Because of the proprietary nature of the hardware and the needs of
network equipment in general, these systems tend to present proprietary
APIs alongside more typical interfaces. In some cases, these systems
employ restricted or modified standard system call interfaces to block
operations that would otherwise impact the networking functionality or
security. Perhaps the biggest deviation from the standard system call
story is for embedded operating systems that run on highly constrained
devices. In very severely resource-constrained environments like
microcontrollers with kilobytes of RAM, traditional system call
mechanisms may be outright too costly in terms of the amount of code
they require and the execution overhead that they incur. In systems such
as TinyOS and Contiki, traditional system calls are largely replaced by
event-based programming models (e.g., with event queues) or direct
function calls, both of which eliminate the mode transitions and
context switches often seen with more conventional system calls.
Sometimes the entire operating system might run at a single privilege
level, and be protected using features of the programming language or
just careful code review rather than through hardware means.
Particularly for the operating systems that do not follow the traditional
Unix architecture and their individual techniques to system calls, this

underscores the intrinsic pliability of the system call idea and allows
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for adjustments to myriad needs. By exploring these other paradigms
we can learn more about the tradeoffs embedded in system interface
design and how a unique system call mechanism can be suited to
particular operating environments and needs.

1.3.27 Virtual Machines, Containers, and Layered System Call
Implementations

The rise of virtualization technologies has added new tiers to the system
call model in terms of functionality and behavior, as system calls cross
numerous barriers in multi-layer architectures. Neither is a trivial
question, especially in our modern computing infrastructure where
applications tend to run in evermore nested environments than sitting
directly on the metal. To add further complexity, you must know how
system calls work inside these layered sectors to comprehend the
performance, security, and compatibility features of these systems
when they undergo virtualization or containerization. In contrast,
hardware virtualization uses hypervisors such as VMware ESXi,
Microsoft Hyper-V, Xen, and KVM, which implement a series of
resources in a virtualized type of virtual machine (VM), imitating a
complete computer, including virtual CPUs, memory, and devices.
From a system call perspective, this architecture introduces a massive
complexity: system calls made by applications within the VM are first
handled by the guest OS running inside the VM, not by the host system
controlling the physical hardware. This kind of indirection establishes
a multi-layer execution path which operations go through to eventually
access physical resources. When an application running inside a VM
makes a system call, the usual mechanisms (SYSCALL instruction,
software interrupt, etc.) trap to the guest OS kernel. Lack of information
from the host machine means the guest kernel processes the system call
in a normal way, as if it were running on physical hardware. However,
when the guest kernel tries to access hardware 1.e. if it wants to write
to a disk or send network packets it interacts with virtual hardware
devices that the hypervisor provides. These interactions most often lead
to additional transitions from guest to hypervisor (or VM
exits/hypercells) and inject additional context switches on the
execution path. As an example, here is a possible scenario for a simple
write to a file from an application running in a VM: (1) the application
performing a system call to the guest kernel; (2) the guest kernel

creating an I/O request to its virtual disk; (3) a VM exit to the
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hypervisor when the guest tries to talk to its virtual disk; (4) the
hypervisor translating this request to something dealing with the
underlying storage hardware, which may involve making system calls
to the host OS; and (5) completion of the physical I/O and walking back
through all of those layers. This layering comes at the price of
performance overhead, especially for I/O bound workloads. To
overcome these limitations, modern day virtualization systems use
several optimization techniques. Para-virtualization is a technique to
modify the guest operating system so that it communicates with the
hypervisor through special hyper calls and cannot directly access the
virtualized hardware, thus aiming to decrease the overhead of trapping
and emulating privileged instructions. Features like Intel VT-x and
AMD-V (surprisingly, those don't always get detected properly)
enable more optimized transitions between the guest and host contexts.
Further, methods like direct device assignment (pass-through) enable
VMs to communicate directly and use physical hardware for critical
devices, bypassing some of the layering overhead. Instead of relying
on this last deployment model, containers provide an alternative
virtualization strategy by using OS-level mechanisms without using
hardware emulation to make isolated environments. Container
technologies, such as Docker, LXC, and Kubernetes pods, take
advantage of kernel features like namespaces and control groups
(cgroups) to build isolated process environments without needing the
complexity of full hardware virtualization. Containers provide a very
different model from hardware virtualization at the system call level.
In containers, applications perform system calls directly to the host
kernel, with no intervening guest operating system layer. On the other
hand, these system calls are filtered, redirected, and translated between
namespaces in various ways to change their behavior with respect to
non-containerized programs. Container runtimes use system call
filtering modes to limit the set of system calls available to any given
containerized application (e.g., seccomp-bpf for Linux). This filter
decreases the kernel attack surface visible to the potentially malicious
app, so it is more secure. A containerized web server, for instance,
could be allowed to perform certain network-related system calls and
disallowed to perform others that modify kernel modules or access
unauthorized file systems. Namespace virtualization changes the

semantics of many system calls when inside containers. When a
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containerized application makes a system call that references global
resources such as process IDs, network interfaces, or mount points the
kernel resolves these references to the global resources in accordance
with the mappings set for the namespace associated with the container.
An example of this can be found when considering that the process
inside the container would see itself as PID 1 (the init process), while
in the global namespace of the host system effectively assigning the
container process a different PID. Likewise, when the containerized
process tries to reach the root file system, these operations get mapped
to a container’s designated root directory through mount namespace
mappings done by the kernel. These translations are invisible to the
application but radically change the impact of system calls made by an
application depending on how the container's namespaces are
configured. Advanced container security mechanisms such as gVisor
and Kata Containers provide extra layers of system call handling.
gVisor is a user-space kernel that intercepts and reimplements the
system calls from containerized apps while providing an isolation
boundary beyond ordinary container isolation. Instead of sending
container system calls directly to the host kernel, gVisor emulates
them in its Sentry component, and fulfill them over the more limited
interface to the host. Kata Containers follows a similar pattern, whereby
containers are executed inside lightweight VMs, a hybrid of sorts where
the system calls of the container are handled by a guest kernel inside a
tailored virtualization VM. Server less computing and Function-as-a-
Service (FaaS) platforms have added yet another layer of system call
complexity. The code gets executed in highly controlled environments,
sometimes with custom system call interception and a virtualization
(e.g., AWS Lambda, Google Functions, Azure Functions) when
developers deploy functions to the platforms listed above. Thus, these
platforms basically employ a mixture of container technologies, special
library interposition, and custom so-called runtime environments to
deliver secure and isolated execution environments while still trying to
ensure high efficiency for short-lived function invocations. These
technologies stack on top of each other and can result in complex paths
for the system calls a function running in a server less platform might
be running in a container that runs in a VM, with system calls
potentially traveling several layers of interception, filtering and

translation before reaching physical resources. System call security has
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special significance for virtualized and containerized system. Every
layer of virtualization generates attack surfaces for more security
boundaries but also potential attack vectors at the borders between
layers. Hypothetical example: Hypervisor vulnerabilities may allow
guest operating systems to escape their VM boundaries, whereas
container escape vulnerabilities are providing examples of how system
call implementation bugs can be exploited to bypass namespace or
capability restrictions. Current research efforts in this domain focus on
concepts like hardware-enforced isolation, formal verification of
security properties and least-privilege models with respect to system-
call permissions. Understanding the complex interplay of system calls
across virtualization boundaries is necessary for performance analysis
and optimization in these layered environments. Tools like Linux's
eBPF (extended Berkeley Packet Filter) tracing enable developers to
discover which system calls dominate in a mixed environment and
where the most important performance bottlenecks appear (as they
often cross container and virtualization boundaries). Likewise, various
hardware capabilities, such as Intel Performance Monitoring Units
(PMUs), can allow the detailed measurement of the impact that
virtualization has on the performance of system calls. Innovation in
system call implementation and optimization is still ongoing, driven
by the evolution of virtualization technologies. Emerging solutions like
Firecracker (used by AWS Lambda), lightweight hypervisors that are
tailored for container workloads, and unikernel-based isolation
techniques are example of continued attempts at striking the right
balance between the security advantages of enforced isolation and the
performance needs of modern cloud applications. It is important to
understand how system calls work across these layers of abstraction in
order to design, deploy and debug your applications on modern
virtualized infrastructure.

1.3.28 The Future of System Calls: Innovations and Emerging
Paradigms

In light of a wide variety of hardware, security needs, and application
trends, the operating system and system call interface has continued to
evolve. These frontier technologies & research areas indicate a
paradigm shift in how applications will interact with O/S, and the core
idea of system calls, which has been quite steady for decades. The final

section examines emerging technologies and theoretical concepts that
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may reshape system call design and implementation paradigms on
diverse operating system architectures in the years to come. One
important trend is a growing deployment of hardware extensions to
improve system call security and performance. Modern processors
include special features that enhance and protect privileged transitions.
Intel CET (Control-flow Enforcement Technology) and ARM PAC
(Pointer Authentication Code) prevent return-oriented programming
(ROP) and jump-oriented programming (JOP) attacks that could abuse
the system call interfaces. Likewise, AMD's Secure Encrypted
Virtualization (SEV) and Intel's Trust Domain Extensions (TDX) add
hardware-enforced divide between the virtual machines, resulting in
the modification of how system calls work in virtualized environment
and providing cryptographic isolation of guest’s memory. Such
hardware innovations enable new methods of implementing system
calls that do not compromise security for performance. An example of
such an optimization is the usage of user-interrupt by Intel — it
reduces the number of contexts save and restore calls when going from
user mode to kernel and the other way round. The increasing need for
these types of systems is helping shape new approaches to system call
design as part of efforts to create new confidential computing and
trusted execution environment (TEE) initiatives. Intel SGX, ARM
Trust Zone, and AMD SEV are environments that establish execution
contexts in which even the operating system kernel is untrusted. Such
models often use specialized "ocalls" (calls from enclave to outside)
and "ecalls" (calls from outside to enclave) that might replace (or
augment) traditional system calls, with cryptographic protection that
guarantees that sensitive data is protected even if we have to utilize
services from the untrusted operating system. Technologies like Asylo
from Google, the Open Enclave SDK from Microsoft and the Enarx
project are showing how these new systems call paradigms could end
up being transformed to accommodate confidential computing over a
range of hardware technologies. The recent proliferation of
programmable /O devices, most notably smart NICs and
computational storage devices, is forcing a rethinking of the syscall
interface for 1/0. Instead of funneling all of their I/O through the
operating system kernel using traditional system calls, applications
will increasingly communicate directly with smart peripherals through
memory-mapped interfaces, RDMA (Remote Direct Memory Access),
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or specialized programming frameworks. SPDK (Storage Performance
Development Kit) and DPDK (Data Plane Development Kit) are some
of the technologies that allow existing high-performance applications
to bypass system calls for the common I/O operations in favor of more
direct hardware access, which will only become more common as
devices are equipped with dual-purpose CPUs capable of executing
those workloads onboard. So, the programming languages environment
and runtime systems are also shaping system call evolution. With
runtimes like Was time, Wasmer, and WAMR (Web Assembly Micro
Runtime), Web Assembly, originally defined to only run compiled code

in the browser, is now growing into the server as well.

1.3.29 Operating-System Structure

An operating system (OS) is software that acts as an intermediary
between applications and the computer hardware, managing hardware
resources and providing a user environment in which programs can be
performed conveniently and efficiently. The operating system structure
describes how the components of the operating system interact with
each other and with the hardware underneath. Over the course of
computing history, OS designs have changed from monolithic OSes,
to multi-layered and distributed OS architectures. The earliest operating
systems date back to the mid-1950s as simple control programs for
batch processing on mainframe computers, performing little more than
sequencing through jobs and managing input/output. As computing
technology progressed through the decades, operating systems
expanded to support interactive time-sharing, real-time processing,
distributed computing, and the wide variety of personal and mobile
computing environments we have today. The architecture of an
operating system has a great impact on its performance attributes, fault
tolerance, maintainability, and application to specific computing
environments. Different structural approaches make different trade-offs
between these attributes, but there is no single best design for every
use case. In this Unit, we will analyze the main types of operating
system structures we have, their strengths, weaknesses, and when to use
the structure. We'll explore monolithic systems where the code base is
tightly integrated, layered systems that organize functionality
hierarchically, microkernel architectures with minimal privileged

code, modular designs that minimizing loose coupling with component
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isolation. Per each architectural type, we will discuss the philosophy
behind the design, implementation aspects, performance implications,
and real-world examples. We will also look at how new emerging
technologies, such as virtualization, containerization, and cloud
computing are shaping the range of available operating systems and
their layout. The students will also know when and why certain features
will become important along the history, various trade-offs made in
order to achieve a workable system, and understand how Operating

system organization is achieved in many systems.
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1.3.30 Monolithic Operating Systems: Comprehensive Integration
The first and arguably simplest approach to operating system design,
monolithic operating systems, refer to a set of operating system
components that reside in a single location, with all system services
running in kernel space with hardware access. Monolithic: The entire
operating system, including the kernel, device drivers, file systems,
memory management, process scheduling, and inter-process
communication mechanisms, runs as a single program in a single
address space in a privileged mode. This architecture was prevalent
from the 1960s on, with systems like UNIX and its descendants, and is
still reflected in contemporary systems like Linux, FreeBSD, and, at
least in a part, Windows, although the latter has taken on aspects of
other architectural ideas too. The primary benefit of the monolithic
approach is performance, as components of the system can
communicate by calling functions rather than having to pass messages
or utilize other inter-process communication methods, which tend to be
more expensive. All components operate in the same address space, and
so data structures can be shared directly without the overhead of
copying data between protected memory domains. In early computing
environments, where hardware was scarce and expensive, monolithic
systems dominated due to their performance. In a monolithic kernel,
the functionality within the kernel itself is often organized as many
logical layers, with the low-level hardware interfaces at the bottom and
higher-level application interfaces at the top, but this layered
implementation is not so much enforced by hardware protection
mechanisms, but by software conventions. Early UNIX systems can be
thought of this way, where the lowest layer was hardware management
and the next layer up was memory management, process scheduling
had its own, and file systems had theirs, and at the highest level was a
syscall interface where each level was separate but depended on lower
layers.  Monolithic  architectures, despite their  performance
advantages, pose considerable challenges for development,
maintenance, and reliability of the system. Because the code base is
unified, a bug in any component from a device driver to the virtual
memory system can potentially crash the entire operating system since
all code runs with full hardware privileges. With so much dependency
between components, the system can be particularly vulnerable, and

debugging can be a challenge, as bugs that originate in one subsystem
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can rear their ugly heads elsewhere in the system. In addition, the
construction and development of monolithic systems need to be
coordinated carefully between teams working on various components
with one subsystem change can have domino effects all around kernel.
The most common modern approach has been to maintain good
performance whilst still implementing some of the benefits of
modularity through loadable kernel modules, as the monolithic
architecture evolves. This allows components like device drivers to be
dynamically loaded and unloaded from the kernel at runtime, thereby
increasing system flexibility and incremental updates without a
complete boot. For instance, Linux implements a rich module system
that allows it to support a tremendous number of hardware devices and
specialized functionality while keeping its base kernel relatively small.
Modernizing monolithic operating systems such as Linux learn and
thus apply rich development and testing processes to address the
intrinsic weaknesses of their design. Additionally, a variety of testing
and debugging tools, like automated tests and code inspection
frameworks, can catch bugs before they go live, combined with an
extensive review process, help keep the system stable through such a
massive, complex code base. To solve this, there are certain techniques
that have been introduced, like kernel preemption and fine-grained
locking to improve the responsiveness and scalability on
multiprocessor systems, which used to be the weaknesses of the
monolithic design. Although monlithic architectures are more
problematic than new comers to computing and newer architectural
paradigms have been added to mitigate those problems, monolithic
systems such as Linux continue to be popular, suggesting that the
performance advantages and practical effectiveness of monolithic
architectures can remain relevant in modern computing environments,
especially in the arena of hardware classes geared toward server
systems in which are senriced by applications where performance and
hardware support breadth are the primary products of arguable utility.
It is a great example of the evolution of monolithic systems, showing
how a solution that looks relatively simple from an architectural
viewpoint can be improved and progressively developed to cope with
new needs while keep its weaknesses under control and, most

importantly, keep its advantages unscathed.
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1.3.31 Layered Operating Systems: Hierarchical Abstraction

Layered OS type is a structured way to design the system, where
functionality is divided into brows of functionalities, high level
functionalities are provided using lower layer, And abstraction of
services of lower layer are provided to upper layers. This architectural
paradigm is derived from some of the early theoretical work on
structured programming and systems design in the early 1960s that was
applied first through systems such as the (TechnischeHogeschool
Eindhoven) operating system developed by EdsgerDijkstra and later in
commercial systems like Multics. A layered architecture is one wherein
a strict hierarchy is maintained, so a component at layer N can only
make use of services offered by components at layer N-1 and lower N
(i.e. alayer N service cannot access a service or data structure provided
directly by a layer N-2 component. The main theoretical benefit of this
strict layering is that we can work on and validate each layer in
isolation, with clearly defined interfaces between adjacent layers giving
us well-rounded boundaries for testing and validation. The concept of
a layered operating system also typically involves functionalities to
form layers, from the lowest hardware dependent level, to the highest
user-oriented level. The first (bottom) level may deal with physical
hardware resources and interrupts, the next layers manage memory,
processes, inter-process communications, virtual memory, file system,
the higher most layers with user-interfaces and applications. You are
provided with layers of abstraction, where each layer obscures the
complexities of the layer(s) below and translates the naked hardware
into the ornate computational environment experienced by users and
applications. A major goal of an early operating system called THE,
built in the late 1960’s, was to implement this paradigm, and THE
itself was divided into five levels: process management, memory
management, console management, input/output buffering, and user
programs. With this level of clean separation, once the lower layers had
been verified, the upper layers could be independently tested in
systematic debugging of the entire system. But the IBM PL/1 system in
the 1970s ushered in a new model with the Venus operating system,
which had six distinct layers to tackle the many facets of process and
resource management. Although conceptually elegant, the strictly
layered model has practical challenges that, in practice, have made

strictly following it a challenge in modern systems. The loss of spatial
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locality and strict hierarchy can add a huge performance cost, because
something that could happen in a single monolithic system must now
cross multiple levels of indirection, each of which might involve a
context switch or even transform data. Also keep in mind that many
Operating System functions do not have a natural hierarchy: services
such as security, logging, or power management cut across various
layers of the system and do not really fit a single layer. Additionally,
rigid layering can make it challenging to implement efficient inter-
process communication and synchronization mechanisms, which
frequently depend on direct interaction between the components
residing within diverse layers. In the face of such practical constraints,
most modern operating systems take a more flexible approach to
layered architecture but still retain their organizational principles, with
carefully controlled breaches of strict layering where performance or
functionality require them. For instance, while Windows uses a layered
kernel architecture, with kernel components nested in various tiers, it
enables some cross-layer optimizations to improve system throughput.
Layering does end up looking something like this in modern systems,
but more through a combination of practices, interface definitions, and
documentation than through strict hardware boundaries enforced
between all layers. This more pragmatic strategy retains much of the
software engineering advantages of layering while avoiding many of
its worst performance penalties. The multi-layered OS model still
inspires OS design, especially in contexts like certain real-time and
embedded systems where reliability and verifiability are more
important than sheer performance. The idea also manifests in the way
software development teams are organized and documentation trees
are structured for complex operating systems, even where the
underlying implementation likely offers more freedom than a rigidly
layered model might imply. In practice, contemporary systems often
integrate layered design components with various architectural styles,
resulting in hybrid architectures that capitalize on the advantages of
different paradigms and offset their respective drawbacks.

1.3.32 Microkernel Operating Systems: Minimalist Core Design
Microkernel operating systems are an architectural evolution from
monolithic operating systems, based on a philosophy of reducing the
amount of code that executes in privileged mode to the minimal set of

components necessary to facilitate computing. This is an architectural
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style that is developed in the 1980s and early 1990s with systems such
as Mach, which was developed at Carnegie Mellon University, and has
formed the basis of many systems including QNX, MINIX, and parts
of macOS through its XNU kernel. Microkernel architecture's primary
realization lies in the fact that only the services that truly require
privileged or specialized access (generally IPC, basic memory power
management, and minimum scheduling) should be implemented within
the kernel itself, while the rest will run as user interaction processes
which will have limited control, hence limiting the risk of impacting
the entire system. This strict separation is intended to ensure greater
reliability, security and maintainability of the system by limiting the
trusted computing base (TCB) and isolating failure-induced
components. The microkernel approach has a solid, multi-sided
theoretical advantage. Because it minimizes the amount of code that
must run in privileged mode, the system becomes less susceptible to
catastrophic failure — for example a crash of a user-space file system
server need not bring down the entire operating system, as it would
have to do in a monolithic design. This provides better fault
containment, as you can restart individual servers without bringing
down the entire system. Similarly, security benefits arise due to the
reduced attack surface that the minimal kernel exposes and provides
fewer opportunities for privilege escalation attacks by targeting kernel
vulnerabilities. From a software engineering perspective, the
microkernel approach makes it easier to implement systems with
noticeable modularity, allowing development teams to focus on
specific servers with well-defined channels between components. This
modularity furthermore allows for extensibility of the system, as new
services can be introduced as user-space servers without any need to
update the microkernel itself. Also, the architecture in theory provides
greater portability, with hardware-dependent code mainly residing at
the microkernel level and in low-level device drivers, meaning that
porting the system to new hardware platforms is easier. Microkernel
System Design The advantage of microkernels is their small size;
everything most applications could need is implemented as a distinct
service that a monolithic kernel would contain, leading to high levels
of modularity but high communication costs as the interposes
communication needs to be deeply efficient given the nature of a

microkernel architecture where each service operates in its own space.
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A user application sends a message to the file system server, for
instance, when it has to perform a file system operation; the file system
server can send another message to the disk driver server, and the
microkernel takes care of this communication. Early hardware
microkernel implementations (the most notorious entry here being
Mach) suffered painful performance penalties due to the overhead
associated with such message passing and the resulting context
switches between address space. QNX, a commercial real-time
operating system with a more efficient implementation, yet more
forgiving of lower-performance hardware, especially in embedded
systems where timelines take precedence over other performance
statistics. The shortcoming of the pure microkernel approach from a
performance standpoint triggered many refinements and hybrid
implementations. L4 (originally developed by JochenLiedtke in the
1990s) was a second-generation microkernel that achieved astonishing
rates of interposes communication by virtue of careful design and
implementation, demonstrating that much of the theoretical overhead
of microkernel could be eliminated by amazing amounts of
optimization. macOS (formerly known as OS X) comes with a hybrid
approach on its XNU kernel, which incorporates the Mach microkernel
and a monolithic UNIX kernel into a single address space, trading
some of the fault isolation benefits for a performance improvement.
Although Windows NT has been designed with microkernel principles,
more and more components were incorporated into kernel space to
address performance issues. Notwithstanding the above compromise,
the conceptual impact of the microkernel architecture is far-reaching.
Andrew Tanenbaum's MINIX 3 was another early but significant
example, originally developed as an educational tool but then
substantially evolving into a research system, providing demonstration
of how microkernel principles continue to be refined, with a focus on
reliability through isolation of components. The seL4 microkernel,
developed by NICTA (now part of Data6l), is possibly the most
important recent development in this area and allows the formal
mathematical verification of certain properties that could only have
been accomplished at all due to the very smallness and clean design of
a microkernel. Though many recent systems may incorporate elements
beyond the classic microkernel philosophy, the microkernel's

optimization towards reducing privileged code and decoupling
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systems have undeniably left a mark on contemporary OS design,
specifically where security is of the utmost importance, such as in
embedded systems and those with high reliability constraints.
Microkernel systems are one place where this same idea plays out and
demonstrates how an architectural solution can continue to take shape
and drive innovation in the field even while the pure idea struggles to
be relevant in certain contexts.

1.3.33 Modular Operating Systems: Component-Based
Architecture

Modular operating systems are an architectural shift based on clean
interfaces between well-defined systems (modules) rather than strict
layering or minimal priv. execution. This approach came to
prominence in the 1990s and 2000s with systems such as Solaris (and
its Spring research predecessor) and Windows NT, which included
substantial modular design facets in them, even though they weren't
strictly modular in every way. The first of these innovations, Low-level
modular architecture focuses not on the vertical stack (layered systems)
or privilege levels (microkernel) used to organize elements of a system,
but rather on the set of interfaces defining the interactions between
components of a system, and allows any component of a system to be
developed, tested, and replaced independently of the other components
it interacts with, provided they adhere to agreed-upon specifications of
interaction. Modular architectures allow separate components at the
same conceptual level (i.e., layers) to interact horizontally with each
other in ways that are easier to express away from strictly layered
systems, enabling natural expression of cross-cutting concerns and
cross-layer functions. The principles that drive the design of modular
operating systems are based closely on object-oriented programming
principle, where system components implement their internal workings
behind a well-defined interface which describes both services offered
by the component and services the component require from other
components. Thus, it creates a system of modules, which are
interdependent on each other but are connected via explicit interface
declarations as opposed to implicit dependencies, enabling better
comprehensibility and maintainability of systems. In the ideal modular
architecture, the system is represented as a graph of components, with
edges representing module dependencies mediated through interfaces,

instead of a stack of layers. Modular operating systems usually feature
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a component framework that handles loading, initialization, and
communication between modules. For example, Microsoft's Windows
Driver Model (WDM) and later Windows Driver Framework (WDF)
enable device drivers to work together in a way that was previously
impossible by establishing standardized interfaces and support
infrastructure that allow dozens able devices to be implemented as
independent drivers but still interact in an orderly manner within the
driver stack. Jigsaw, as the Java-based project is called, inspired Java
9's module system, which embodied the same principles regarding
module dependencies and encapsulated implementations within the
context of programming language runtime environments. The
modularity approach, spurred by Solaris 7 and 8 major redesigns of the
solaris operating system, adopted the heuristics of ServicePlex
architecture a means of layering system significance into distinct
removable parts with standard interfaces. This allowed for things like
dynamic reconfiguration of system services without the need for a
reboot a market first, for enterprise systems where availability
requirements often mean upgrading the whole system cannot be taken
down in order to perform the upgrade. The subsequent implementation
makes use of methodologies like dynamic linking, runtime service
discovery and component registration to design a flexible yet strong
system architecture. Benefits of modular design go beyond just
software engineering to operational considerations. In a modular
architecture, it may be possible to implement “hot-swapping” of
components, allowing for updating or reconfiguration of the system
without downtime which is an important property of high-availability
environments, such as telecommunications systems or financial
services infrastructure. Moreover, the modular structure enables the use
of different configurations for various use cases or hardware platforms
by allowing components to be included or excluded as needed without
major changes to the rest of the system. However, we find many of
these same advantages pale in comparison to the nominal performance
efficiency of non-modular, tightly integrated designs. Runtime
overhead in these frameworks may be caused by interface compliance
checking, dynamic binding between components, or even potential
need to convert data from one module to another. Moreover, the
challenges of developing and maintaining an application tend to

escalate proportionally to the number of components involved when
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there are explicit dependencies to manage. The challenge of
comprehensive testing becomes more complicated with the increase in
the number of interchangeable modules, as the number of potential
combinations of the components grows exponentially. A hybrid
approach often features in modern modular operating system designs,
which retains a unified kernel core while enabling modular extensibility
via precisely designed frameworks. The Linux kernel, despite being
fundamentally a monolithic kernel, introduces a substantial layer of
modularity via its loadable kernel module system allowing for
dynamic extension of kernel functionalities while preserving
performance within the core system. Windows also has such a driver
model, but keeps a much more tight base system with options for
modular extension. For Example, The prevalence of micro service
architecture in distributed systems as well as containerization
technologies are part of the continuing evolution of modular
approaches, applying similar principles of componentization at a
higher level. So again, considering the evidence that we have been
exposed to, it would seem that pure modularity has potentially created
some pseudo-components that ultimately do not yield the fruitful
experience one may want but the overall principles of modularity
component isolation, interface-based design and explicit dependency
management remain bedrock of every level of the system that we
interact with. And as computing environments further diversify and
specifications deepen (even if only at particular segments of a
community), I suspect that the flexibility provided by such modular
design approaches will remain valuable; as long as it is married
pragmatically to efficiency with respect to performance and
complexity.

1.3.34 Hybrid Operating Systems: Pragmatic Integration

Hybrid operating systems serve as a pragmatic amalgamation of the
various architectures that can be seen on the operating system spectrum,
containing some monolithic, layered, micro, and modular features to
balance performance, reliability, maintainability, and flexibility.
Hybrid systems do not follow strictly any communication structural
philosophy but choose portions of each architecture that fit the specific
system functions and operational needs. This pragmatic idea has held
sway over commercial OS design since the late 1990s, and all

mainstream OSes today from Windows, macOS, i0S, and Android to
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modern Linux distributions are, to varying degrees, hybrids. The key
argument for hybrid architectures says that because different parts of
the system exercise different demands with regard to performance,
availability and development flexibility, you cannot lag the same
architectural solution for everything in the system. While performance
or stability may benefit from implementing network protocol stacks in-
kernel, experimental file systems may be better written as user-space
components that crash without taking down the rest of the system. A
hybrid system allows different subsystems to follow different
architectural models, enabling the most appropriate design approach to
be used on a given part of the overall system in pursuit of performance,
pragmatism, and real-world usage instead of theoretical purity. One of
the more recognizable examples of the hybrid approach is the macOS
(formerly OS X) operating system, which features a hybrid kernel
called XNU that integrates components of the Mach microkernel and
BSD Unix in a single privileged execution environment. Although this
design loses some of the fault isolation benefits of the pure microkernel
approach, it greatly increases performance by removing the message-
passing overhead for frequently used services. At the same time, the
I/O Kit driver framework, the BSD subsystem, and Mach-based
underpinnings are kept distinctly separate within the system, creating
internal boundaries that provide a great deal of potential for
maintainability with minimal impact on performance. Likewise, the
Windows version implemented by modern Windows products also
follows hybrid architecture principles, with a mixture of aspects of
monolithic integration, modularity and layering. Running in privileged
mode, the Windows kernel delivers essential services: the Hardware
Abstraction Layer (HAL), which insulates a lot of the system from
specifics of the hardware, memory management, process scheduling,
and an elaborate object manager. On top of this foundation the
Executive services provide higher-level functionality such as the
registry, security reference monitor, and I/O system. Even though the
various components execute in kernel mode for performance purposes,
they adhere to well-defined abstractions with a modular organization
that supports independent development and testing. The Win32
subsystem, along with various other environment subsystems, operate
partly in user mode, illustrating a practical separation of function across

privilege levels determined by security and stability concerns rather
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than strict architectural dogma. Linux has developed an extremely
successful hybrid, retaining much of the performance advantages of its
monolithic roots while also integrating concepts from alternative
architectural paradigms. We will use the term core kernel to refer to
such a high-privilege mode codebase, as the core kernel operates as a
single privileged-mode entity, but implements an extensive module
system to allow components such as device drivers, file systems and
networking protocols to be loaded and unloaded dynamically. This
method maintains performance efficiency with improved extensibility
and maintainability. Moreover, much of Linux's functionality has been
gradually pushed to user space when it makes sense to do so, with
systems such as FUSE (File system in Userspace) allowing file systems
to be written and run without modification to the kernel, as well as
container technologies such as Docker and Kubernetes that offer user-
space isolation mechanisms achieving many of the objectives of
microkernel-process  separation  without = compromising on
performance. Notable advances in the hybrid model have indeed been
made, particularly in mobile environments such as Android and iOS,
providing privilege separation and process isolation of third-party
applications which would be the primary threat of an untrusted
environment. Therefore, the logic behind Android is to isolate
applications into their own process spaces with limited permissions
over the core system services that run with elevated privileges. Running
on an XNU-derived kernel fused with Mach and BSD components in a
security model that embraces sandboxing at the per-app level, 10S also
takes a layered approach to security just like the Android variant. The
performance benefits of hybrid designs are significant in multi-
purpose operating systems that have to accommodate a wide range of
often conflicting requirements. Hybrid systems have the potential to
apply different architectural principles to different aspects of the
system, allowing them to optimize performance for performance-
critical paths, provide reliability through isolation of less stable
components, enable development through modularization where it
makes sense, and maintain backwards compatibility within existing
software ecosystems, all in a single, coherent operating system. They
illustrate that real systems are not mere implementations of theoretical
models but rather the solutions of engineering problems whose

challenges outstrip elegant abstractions — such that real systems are
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more like hybrid architectures, borrowing from different architectural
paradigms. It is this pragmatic synthesis that continues to define
modern operating system design, with each new generation
assimilating the lessons of multiple architectural traditions, while
responding to new hardware capabilities, security threats, and
application demands. Due to the continued diversification of computing
environments across a wider range of form factors extending from
embedded systems to cloud infrastructure, the versatility of hybrid
approaches may prove useful in the construction of systems that fulfill
their intended purpose, rather than over-commit to a single design
(which is associated with a set of trade-off in the articulation of
competing objectives of design).

1.3.35 Specialized and Emerging Operating System Structures

In addition to the mainstream architectural paradigms described earlier,
a large number of specialized and new operating system architectures
have emerged to meet specific computing configurations, workloads,
or design objectives. These tailored architectures often serve as
narrowly considered modifications of established methods toward
specific goals or as novel constructs made possible by technological
advances and changing computational models. The evolution of
computing — from "general purpose computing" across embedded
systems, mobile devices, cloud infrastructure and new advanced
platforms, including wearable’s and IoT devices — has made these
particular structures more and more relevant in the operating system
landscape. For instance, real-time operating systems (RTOS) are
tailored for predictable, deterministic behavior, as opposed to
maximum average throughput. Such operating systems (OSs) test and
operate to strict specifications to guarantee response times for time-
critical operations, and often employ specialized scheduling
algorithms, such as rate-monotonic and earliest deadline first
scheduling, rather than the fair-share algorithms found in general-
purpose OSs (like those in the UNIX family). This has architectural
implications that tend to polarize: you want to reduce non-deterministic
system behaviors like dynamic memory allocation, virtual memory
page faults, or complex caches that contribute to timing variability.
Some real-time systems use microkernel designs to increase reliability
(as in QNX) while others focus on minimal execution intervals and slim

designs that are akin to stripped-down monoliths showing a degree to
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which functional requirements can dictate architectural design stronger
than theories of software organization can. What are embedded
operating systems? Embedded operating systems are the systems
created for such resource-constrained environments as industrial
controllers, automotive systems or consumer electronics and often end
up having highly tailored architectures tuned for their limited
memories, processing power and energy budgets. An example is
TinyOS, which implements a component-based architecture but adopts
static composition; the system is built at compile time rather than run
time, allowing developers to avoid the cost to bind components
dynamically, while losing flexibility. Embedded Linux variants
commonly minimize the standard kernel removal of excess
components, and static methods where dynamic mechanisms are
unnecessary. These systems are examples of scaling limits that are
pushing innovations in architectures that would never work for general-
purpose computing but are exceptionally suitable for their targets.
Network Operating System: Another specialized category is called
distributed operating system which is a distributed version of an
operating system, meaning that the OS services are extended to
multiple networked computers and make it appear as a single coherent
system to its client. Distributed computing systems such as Amoeba
(1980-1999) took process migration, distributed shared memory, global
resource naming, and similar features from single user distributed
systems and implemented them across multiple physically independent
networked computers. Although pure distributed operating systems
have had limited commercial success, fundamental aspects of their
architecture have been incorporated in most contemporary cloud
infrastructure and cluster computing frameworks. First, Google's Borg
system (the inspiration for Kubernetes) comes in as a brilliant solution
for its distributed resource management and scheduling across a
cluster of data center machines, functioning as a distributed operating
system at the cluster level even while regular OSs are running on single
machines. Virtualization has even given rise to entire new hypervisor
architectures that reconfigure the OS actualization on the hardware.
Hypervisors like VMware ESXi, Microsoft Hyper-V, and Xen serve as
thin abstractions atop physical hardware to multiplex it among
multiple guests operating systems, providing them the illusion that they

are operating on exclusive hardware. In addition to requiring efficient
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mechanisms for hardware abstraction, these systems emphasize having
effective inter-virtual machine isolation and low performance
overhead, often resulting in designs that closely resemble microkernel
with a small trusted computing base but specialized to virtualization
primitives over generic operating system services. Architectural
implications of virtualization undergo changes at the syscalls layer such
as binary translation, par virtualization and/or hardware-assisted
virtualization that fundamentally alter the behavior of operating
system code interacting with the underlying hardware. Container-based
systems provide a lighter-weight form of virtualization and have led to
additional innovations in architecture. Unlike VMware, Virtual Box, or
similar technologies, which virtualized at the hardware level, Docker,
Kubernetes, and other related technologies virtualized at the operating
system level, allowing multiple isolated user-space instances to share
the same kernel. This model requires namespaces and the architectural
support to have isolated namespaces, resource control mechanisms and
multi-tenancy in the kernel level, needs that have already driven
mainstream kernel development and facilitated new deployment and
orchestration avenues in higher levels of the stack. The principle of
separating the protection of resources from their management is pushed
even further by Exokernels and library operating systems, which enable
abstraction of resources at the application level. In these systems,
demonstrated by MIT's Exokernel research and recently
commercialized through systems like Unikernel, the kernel simply
gives very low-level protection and multiplexing for resources, while
applications link directly to library implementations of standard
operating system services. This design takes away the distinction
between application and operating system, which may further reduce
overhead and enable applications to impose resource management
policies according to their own requirements. Things like MirageOS
compile high-level application code alongside only the OS components
a particular application needs into a specific image to run directly on
virtualized hardware, the commercial embodiment of those principles
in practice; The emergence of heterogeneous computing architectures
with specialized accelerators (e.g. GPUs, TPUs, FPGAs and other
domain-specific processors) has provided significant new pressures
for operating systems innovations. Systems now have to not just

manage traditional CPU resources but also allocate, schedule, and
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provide programming models for these heterogeneous compute
engines. This has resulted in traditional operating systems being
extended with new subsystems that mediates device- specific memory
management, task scheduling and data movement, forminga hybrid
architectures that incorporates multiple computational paradigms
within a single system. The fundamental nature of computing is
changing, and with it new architectural approaches. From unikernel
designs that package applications with minimal operating system
services inside specialized virtual machines to server less computing
models that remove operating system concerns entirely from the
developer workflow to edge computing paradigms that distribute
computation across networks of devices from sensors near the physical
world to cloud servers in the way of their own using novel storage and
networking abstractions, these challenges have forced innovation on
the structure of operating systems such that they are a vibrant space of
ongoing design engineering. These specialized and evolving
architectures show that operating system design is still a lively field that
continues to change in response to new hardware capabilities, new
application needs, and new computing paradigms. Instead of
converging on one optimal shape, operating systems continue to
diversify to meet an ever-growing set of computing needs and
scenarios, and architectural innovation occurs across the spectrum from
microcontrollers to global-scale distributed systems. These approaches
highlight the notion that operating systems are engineering artifacts:
elegant in theory but compromised by practicalities and imperatives
that are often very different from the original requirements.

1.3.36 Conclusion and Future Directions

Indeed, the subsequent coalescing of various operating systems
structures 1s an ongoing process, driven by the intersection of theory,
engineering, technology and application needs. Operating system
structures thus have a long evolution from early monolithic systems
optimized for performance and hardware utilization to modern hybrid
architectures that selectively embrace elements across multiple
paradigms, continuously adapting to new demands yet balancing the
inevitable tradeoffs of conflicting design goals.7 So, this adaptation
process reflects both the timelessness (tymaldb probably has things like
partitions, normalization, sharding, etc, etc) of some basic architectural

concepts plus the pragmatic flexibility needed to use them in different
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computing environments. Feeding into the ongoing development of
OS architectures are a number of trends that the future seems to hold.
The rise of heterogeneous computing architectures integrating
specialized processors alongside general-purpose CPUs creates new
resource management challenges that may catalyze even more
structural innovation. Operating systems must increasingly orchestrate
computation across diverse processing units with their own
programming models, memory architectures, and performance
characteristics, a need that tests the limits of traditional process and
memory management abstractions designed for homogeneous systems.
This trend might hasten the adoption of the more explicitly parallel and
distributed architectural models even within single-machine operating
systems. Security and reliability issues become more important as
computing systems are more deeply integrated into critical
infrastructure (power systems, transportation, etc.) and daily life. These
priorities often favor architectural approaches that emphasize
isolation, least privilege, and minimal trusted computing bases —
principles long promoted by microkernel and capability-based designs.
With hardware support for virtualization, memory protection and
secure execution environments steadily improving, the performance
penalty historically associated with these more formally secure
architectures is diminishing, making it feasible for them to be used
widely in mainstream systems. The growth of edge computing the
distribution of computation between everything from IoT devices to
cloud data centers challenges traditional operating system boundaries
and resource management models. By 2030, future operating systems
may have to work efficiently across such distributed settings,
coordinating resources, moving data, and determining where
computation occurs across heterogeneous networks rather than on
single machines. This may compel the fusion of traditional OS
structures with distributed system paradigms, leading to emergent
hybrid adjacently woven architectures spreading across device
ecosystems, while exposing consistent interfaces to applications and
end users. Virtualization is still remodeling how applications, operating
systems and hardware interact. Applications downloading services
provide for greater compos ability, and can serve as the basis for a
move toward more library-like systems, allowing applications to have

only the system services they need. The distinctions between
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application and operating system become less and less clear in this
transition. Domain like machine learning, augmented reality,
autonomous systems have emerged where the workloads exhibit
different characteristics and have different requirements that can drive
domain specific architectural innovations Specialized operating system
structures that would be radically different from general-purpose ones
optimized for traditional interactive and server workloads might be
needed for real-time constraints, massive parallelism and probabilistic
computing models. Enabling persistent memory technologies that
weaken the traditional boundaries between volatile memory and
persistent storage break common operating system abstractions and
might drive architectural updates in file systems, memory management,
and process models. Systems tailored to make the most of these new
technologies might take on structures that differ substantially from
those optimized for the strict hierarchy of memory-storage elements
that’s been the hallmark of computing for decades. These trends
indicate that we have just scratched the surface, and operating system
structures will only become more and more diverse rather than
converging on the one true path. We believe different computing
environments and workloads will continue to require specialized
architectural approaches, although particular fundamental principles
modularity, appropriate abstraction, separation of mechanism from
policy, and efficient resource utilization will remain applicable to many
different implementations. Perhaps the best lesson regarding the history
of operating system structures is one of pragmatism: the ability to adapt
to changing requirements and capabilities rather than faithfully
adhering to any given architectural paradigm is what best characterizes
successful systems design. Operating system developers must therefore
appreciate both the theoretical underpinnings of these varieties of
structure and the engineering requirements that colour their application
in individual circumstances. The ideal system architect will combine
principle and pragmatism, creating a new generation of operating
systems which will effectively serve the needs of all users, applications
and computing environments. But as we end this abstraction on
operating system structures, and it is necessary to state that operating
systems are a field of continuous development, full of new problems
and innovations. (The architectures explored in this Unit are not just

dead ends, but growing traditions that remain in the DNA of
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contemporary system design and will help guide future a direction as
computing continues to evolve into exciting new domains, form factors,
and application spaces.)

1.3.37 Design Goals

Introduction and Fundamental Concepts

Indeed, the subsequent coalescing of various operating systems
structures is an ongoing process, driven by the intersection of theory,
engineering, technology and application needs. Operating system
structures thus have a long evolution from early monolithic systems
optimized for performance and hardware utilization to modern hybrid
architectures that selectively embrace elements across multiple
paradigms, continuously adapting to new demands yet balancing the
inevitable tradeoffs of conflicting design goals.7 So, this adaptation
process reflects both the timelessness (tymaldb probably has things like
partitions, normalization, sharding, etc, etc) of some basic architectural
concepts plus the pragmatic flexibility needed to use them in different
computing environments. Feeding into the ongoing development of
OS architectures are a number of trends that the future seems to hold.
The rise of heterogeneous computing architectures integrating
specialized processors alongside general-purpose CPUs creates new
resource management challenges that may catalyze even more
structural innovation. Operating systems must increasingly orchestrate
computation across diverse processing units with their own
programming models, memory architectures, and performance
characteristics, a need that tests the limits of traditional process and
memory management abstractions designed for homogeneous systems.
This trend might hasten the adoption of the more explicitly parallel and
distributed architectural models even within single-machine operating
systems. Security and reliability issues become more important as
computing systems are more deeply integrated into critical
infrastructure (power systems, transportation, etc.) and daily life. These
priorities often favor architectural approaches that emphasize
isolation, least privilege, and minimal trusted computing bases —
principles long promoted by microkernel and capability-based designs.
With hardware support for virtualization, memory protection and
secure execution environments steadily improving, the performance
penalty historically associated with these more formally secure

architectures is diminishing, making it feasible for them to be used
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widely in mainstream systems. The growth of edge computing the
distribution of computation between everything from IoT devices to
cloud data centers challenges traditional operating system boundaries
and resource management models. By 2030, future operating systems
may have to work efficiently across such distributed settings,
coordinating resources, moving data, and determining where
computation occurs across heterogeneous networks rather than on
single machines. This may compel the fusion of traditional OS
structures with distributed system paradigms, leading to emergent
hybrid adjacently woven architectures spreading across device
ecosystems, while exposing consistent interfaces to applications and
end users. Virtualization is still remodeling how applications, operating
systems and hardware interact. Applications downloading services
provide for greater compensability, and can serve as the basis for a
move toward more library-like systems, allowing applications to have
only the system services they need. The distinctions between
application and operating system become less and less clear in this
transition. Domain like machine learning augmented reality,
autonomous systems have emerged where the workloads exhibit
different characteristics and have different requirements that can drive
domain specific architectural innovations Specialized operating system
structures that would be radically different from general-purpose ones
optimised for traditional interactive and server workloads might be
needed for real-time constraints, massive parallelism and probabilistic
computing models. Enabling persistent memory technologies that
weaken the traditional boundaries between volatile memory and
persistent storage break common operating system abstractions and
might drive architectural updates in file systems, memory management,
and process models. Systems tailored to make the most of these new
technologies might take on structures that differ substantially from
those optimized for the strict hierarchy of memory-storage elements
that’s been the hallmark of computing for decades. These trends
indicate that we have just scratched the surface, and operating system
structures will only become more and more diverse rather than
converging on the one true path. We believe different computing
environments and workloads will continue to require specialized
architectural approaches, although particular fundamental principles

modularity, appropriate abstraction, separation of mechanism from
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policy, and efficient resource utilization will remain applicable to many
different implementations. Perhaps the best lesson regarding the history
of operating system structures is one of pragmatism: the ability to adapt
to changing requirements and capabilities rather than faithfully
adhering to any given architectural paradigm is what best characterizes
successful systems design. Operating system developers must therefore
appreciate both the theoretical underpinnings of these varieties of
structure and the engineering requirements that color their application
in individual circumstances. The ideal system architect will combine
principle and pragmatism, creating a new generation of operating
systems which will effectively serve the needs of all users, applications
and computing environments. But as we end this abstraction on
operating system structures, and it is necessary to state that operating
systems are a field of continuous development, full of new problems
and innovations. (The architectures explored in this Unit are not just
dead ends, but growing traditions that remain in the DNA of
contemporary system design and will help guide future directions as
computing continue to evolve into exciting new domains, form factors,
and application spaces.)

1.3.38 Batch Operating Systems: Maximizing Throughput and
Resource Utilization

Operating systems are the most critical link between computer
hardware and the software applications that provide value to users.
Operating systems are sophisticated software ecosystems meant to
resolve computational resources for performance, giving core services
to applications, and to offer interfaces that are human and machine
accessible. The development of operating systems has been
inextricably linked to the development of computer hardware, with
each generation of operating systems reacting to and facilitating novel
possibilities in computing hardware. The evolution of operating
systems: from the first systems, this simply loaded programs up
sequentially into memory, through to modern complex environments
that manage distributed resources over global networks. Operating
systems must balance competing objectives: isolation or controlled
communication, security or accessibility, reliability or failure, high
performance or fairness. The architecture of an operating system is
ultimately a game of tradeoffs: architectural choices differ radically

based on what the system is optimizing for. This fundamental trade-off
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dynamic has spawned a diversity of OS types, each optimized for
specific use cases and environments. Batch systems care more about
throughput than interactivity, real-time systems care more about
predictability than general performance, distributed systems care more
about availability than simplicity, and desktop systems care more about
user experience than raw performance. That makes these distinctions
important for students of computer science, since the operating system
one chooses has fundamental implications regarding the applications
that can be built on top of a given operating system, the performance of
the operating system, and what guarantees can be given to users of
applications built on top of a given operating system. In this Unit we
discuss the different types of operating systems that operated as the
backbone of computer systems and analyzing their goals and
architectures as time progressed in computer science innovation. These
variations and the particular problems they solve give us a sense of
both the depth of diversity in computing environments, and the wide
principles that underlie all operating system design. Operating System
Design Goals Operating systems are about more than abstract design
goals they inform the features, shortcomings, and usability of our
computing systems. While exploring these differing approaches, we
will find overlapping themes in how the designers of these systems
manage complex requirements, balance competing objectives, and
address the timeless issues of resource management and coordination
of processes. From the embedded systems controlling household
appliances to the massive cloud infrastructures powering global
services, operating systems form the fundamental layer upon which all
applications run, thus making their study critical to understanding
modern computing.

1.3.39 Interactive and Time-Sharing Systems: Prioritizing User
Experience

Interactive operating systems were a radical paradigm shift that
changed the way we related to computers, turning computing
machinery from batch processing calculators into systems that could
respond in something more like closer to human thought processes and
work practices. Interactive systems are characterized by the presence
of a loop that delivers timely responses to user commands, giving the
appearance of having the machine dedicated to the user even when

resources are being shared among many users or processes. Of
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particular note in this cohort was time-sharing, which enabled multiple
concurrent user interactions with a single system by multiplexing
control through a rapid switching of attention on the system by the
operating system in order to keep the computing environment feeling
responsive. The initial rise of such systems in the 1960s as illustrated
by groundbreaking projects such as MIT's Compatible Time-Sharing
System (CTSS) and even MULTICS (Multiplexed Information and
Computing Service) were not merely technical advancements but a
philosophical reimagining of what the computing experience should be:
that a computer was a utility that could be always on for many users (as
opposed to a constrained resource that should be carefully docketed).
This highlights the central design goals of interactive systems:
maximizing response time to the user at the expense of raw throughput
(the measurement of how much work a computer can do), leading to
complex scheduling algorithms trading fairness for interactive
performance. These systems provided preemptive multiprogramming,
in which the operating system could interrupt running programs after
very short time slices in order to make sure that no individual program
hogged system resources to the detriment of interactivity. Another
important result of time-sharing research was virtual memory, a
mechanism that made it possible for programs to run as if they had
access to more memory than what was physically present, paving the
way in those days for more sophisticated applications and more
efficient use of the memory among many users working at the same
time. With interactive systems, user interfaces evolved significantly,
moving from command-line interactions, through early graphical user
interfaces to the rich multi-touch and voice driven interfaces we know
today. This evolution is illustrative of the continuing effort to make
computers usable for the non-expert while giving powerful
abstractions to the more knowledgeable. The need for protection
mechanisms in multi-user systems led to great strides in security since
these systems were required to prevent users from interfering with each
other’s processes or data. Compounding this demand, architects further
needed to ensure that different processes (types of applications) could
not interfere with each other, so memory protection, file access
controls, and user authentication systems were developed to meet these
needs and laid the groundwork for modern computer security. This is

perhaps the most recognizable form of interactive systems, with
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personal computer operating systems including Microsoft Windows,
Apple macOS and multiple distributions of Linux, representing the
maturation of several decades of interactive system development,
bringing time-sharing ideas that had previously been developed for
mainframes into personal computing environments. Modern personal
computers are optimized for a single user rather than multiple
concurrent users, but the low-level mechanisms created for time-
sharing (such as preemptive multitasking and virtual memory with the
concept of protection rings) are absolutely essential for multiple
concurrent applications and system stability. Besides the command
interface itself, interactive systems also introduced concepts like the
shell (command interpreter), hierarchical file systems, and graphical
windowing systems, which remain critical to how users engage with
computers today. The focus on human factors in system design has
resulted in rich research in the human-computer interaction literature
highlighting that technical performance metrics do not capture system
quality well enough — perceived responsiveness, consistency, and
usability translate directly to productivity and user satisfaction. We are
taught that the transition from batch to interactive computing is one of
the great paradigms shifts in all of computing and has had effects on
how computers are designed, programmed and used. The change shows
how operating system design goals directly impact technical
architecture and the overall computing experience, including hardware
design, programming languages and application capabilities. As
computing moves ever forward toward more natural, context-aware
interfaces, the lessons we learned in the formative days of interactive
computing are still relevant guideposts to find balance between
technical constraints and human needs.

1.3.40 Real-Time Operating Systems: Ensuring Predictable Timing
and Reliability

A Real-Time Operating System (RTOS) is an operating system with a
real-time application that processes data as it comes in, typically
without buffering delays. Real-time systems differ from general-
purpose operating systems in that most general-purpose operating
systems optimize for average performance rather than guarantee
someone meets deadlines, which is essential in applications like
industrial automation, automotive control systems, aerospace, medical

devices, telecommunication infrastructure and more. What sets real
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time systems apart from others is predictability; that is, meeting
constraints to response times within bounds, even at peak loads or
under stress. Such determinism is enforced by custom scheduling
algorithms, avoidance of stochastic mechanisms such as virtual
memory, and careful attention to interrupt latencies and context switch
overhead. Real-time systems fall generally into hard real time, in which
failure to meet a deadline constitutes system failure (like aircraft flight
controls or automotive anti-lock braking systems), or soft real time,
where infrequent failures to meet a deadline degrade quality but don’t
cause catastrophic failure (like multimedia streaming or
telecommunications). This distinction has a very strong repercussion
on architectural choices, as hard real-time systems typically use static
resource allocation and worst-case execution time analysis to deliver
absolute guarantees. For instance, the real-time operating system
employs a fundamentally different scheduler than that of a general-
purpose system, using algorithms such as Rate Monotonic Scheduling
(RMS) that allocate priority based on the frequency of tasks, or Earliest
Deadline First (EDF) which dynamically determines priority based on
which process has the impending deadline. These strategies help assure
that the right resources get to important tasks in time to meet their
limitations even if they need to be run in front of less time-critical
operations. Paging and virtual memory techniques that allow for
indeterminate timing behavior are usually avoided in memory
management for real-time systems, in favor of static allocation or
controlled dynamic memory allocation with bounded allocation times.
I/O operations similarly make predictable timing characteristics by,
e.g., using direct memory access (DMA) and dedicated hardware for
the transfer of data between the 1/O device and the processor without
being the bottleneck. Some commercial RTOS implementations like
VxWorks, FreeRTOS, QNX, and RTLinux are mature and cater to a
wide range of industries with diverse requirements of certification,
reliability, and performance. It is worth noting that these systems
include functionality rarely found in general-purpose operating
systems such as priority inversion prevention protocols, deterministic
inter-process communication mechanisms, and timing and
synchronization features. Verification techniques come into play
specifically for the development of real-time systems because they

cannot just be functionally correct, but they also need timing analysis;
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in most cases, formal methods are used to prove that a real-time system
meets its deadlines under all possible operating conditions. This level
of rigor is crucial for safety-critical applications where timing failures
may threaten human lives or cause immense economic loss. Embedded
systems, a related category of systems often using real-time operating
systems, impose an additional set of constraints with limited resources,
power efficiency and specialized hardware interfaces. These devices,
from basic microcontroller applications to complex multi-core systems,
frequently require specialized OS environments designed to optimize
resource utilization but still support real-time guarantees. Another
modern trend in real-time systems is the implementation of time-
sensitive networking protocols that can extend timing assurances across
distributed systems. Hypervisors that run both real-time and non-real-
time operating systems on one hardware are also trending. Finally,
artificial intelligence techniques are continuously applied to real-time
systems while providing timing productivity. The changing landscape
of real-time systems Several applications in mainstream computing are
now emerging requiring timing guarantees that were once only
employed in specialized domains, such as virtual reality, autonomous
vehicles, and industrial IoT hence the increasingly ubiquitous
importance of the principles of real-time computing. The design of real-
time operating systems is an example of how fundamentally divergent
goals yield tightly divergent architectural choices even while
performing the same basic sets of functions for process management,
memory allocation, and I/O handling. We have been allowing our
systems to become predictable instead of faster, and this shift has
enabled important applications that become critical where failure is not
an option, such as space exploration and medical devices that sustain
human life. As computation becomes more tightly woven into physical
systems that interact with the world in real time, the principles that
drove the development of specialized real-time operating systems are
finding wider applications throughout the computing stack.
Distributed Operating Systems and Network-Centric Approaches
They are a significant evolution from conventional single-node
computer focused models to a distributed environment where many
Linked computers operate as a single virtual computer. Whereas
traditional operating systems control resources on a single computer,

distributed systems coordinate across multiple machines that might be
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spread through worldwide networks, working together for goals that the
machines couldn’t achieve individually. These systems developed due
to the exponential growth of networked computing and the need for
scalability, high availability, and resource sharing between
organizations. Distributed systems are designed to achieve a set of
common goals, including location transparency, allowing users and
applications to access resources without the need to know the physical
location, fault tolerance, where the system maintains the availability of
services even in case of any component failure, scalability, where the
system grows with the increase in the number of users and resources,
and also geographic location of the resources, and consistent
performance irrespective of the hardware heterogeneity of the system.
To satisfy these objectives, more sophisticated mechanisms for
communication, coordination, resource management and failure
detection and handling are needed which go far beyond the needs of
standalone systems. The architectural approaches to distributed
operating systems vary widely, from completely decentralized peer-to-
peer systems in which all nodes are functionally equivalent, to
hierarchical architectures with specialized management nodes. Client-
server models are another common approach which provide the
benefits of both centralization and distribution by splitting the
functionality of the system between service providers and consumers.
More recently, micro service architecture has gained popularity as a
paradigm for building distributed applications, decoupling
functionality into small independently deployable services that
communicate over a well-defined interface. Messages can be delayed,
delivered out of order, or not delivered at all. Distributed operating
systems facilitate different forms of communication (such as remote
procedure calls (RPC), message passing, or distributed shared
memory), and use advanced protocols to address those uncertainties.
Clock Synchronization is another fundamental challenge, since every
node has its own idea of time that may deviate with respect to others,
complicating the ordering of events and carrying out time-dependent
operations. In general, process management in distributed systems
consists of traditional scheduling, process migration (which could be
as simple as moving running processes to other nodes based on load
balancing or resource access), detection of global deadlocks, and global

resource allocation. This allows the system to make more efficient use
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of available resources across the network as a whole while still
delivering acceptable levels of performance to individual users and
applications. Especially for distributed systems, one of the most
challenging parts is data consistency and duplication, because if we
keep more than one copy, it might lead to higher availability and
performance, but when we update the data, it would cause
inconsistency. Distributed operating systems support a range of
consistency models from strong consistency that gives the illusion of
single copy, to eventual consistency that allows for temporary
divergence with corresponding tradeoffs in terms of performance,
availability and programming complexity. Several distributed
operating systems stand out, including: Amoeba (VrijeUniversiteit
Amsterdam), Chorus (A microkernel-based OS that started the
revolution for distributed systems), and more recently, Borg and
Kubernetes from Google that schedule containerized applications on
Beowulf cluster. Though only a few pure distributed operating systems
have seen extensive commercial adoption, their principles have had an
immense impact on modern computing ecosystems. Cloud computing
platforms such as Amazon Web Services, Microsoft Azure, and Google
Cloud Platform use many ideas of distributed operating systems at a
massive scale, providing users the illusion of an infinite amount of
resources that are available on demand. Virtualization technologies,
which allow multiple logical systems to share physical hardware, have
become foundational techniques for deploying distributed systems,
allowing resources to be abstracted, isolated and managed in
heterogeneous environments. Finally, some models of Distributed
Systems today have autonomous management capabilities, which allow
them to learn the best configuration to use through machine learning
and adjustment through Al Security issues in distributed settings are
when challenges become most disturbing when continuous attack
surfaces grow with another type of node and every communication
channel. They should also implement comprehensive security
architecture with proper authentication, authorization, export risk
management and intrusion detection across organizational and
geographic boundaries. The gradual replacement of existing operating
systems with distributed ones indicates a paradigm shift in the
understanding of what computing means and what it can achieve,

moving from snapshot- or image-based computation to holistic systems
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that are defined more by their connectedness than by their individual
components. As computer technology continues to progress towards
more and more distributed models from edge computing at the network
periphery through to global cloud infrastructures human-centered
design principles as discovered through distributed operating system
research remain vital in guiding system designers aiming to strike the
right compromise of performance, reliability, security and
manageability across diverse, complex networks.

1.3.41 Specialized Operating Systems: Tailoring Design to Unique
Requirements

Outside of the general categories of languages there is a broader
operating systems ecosystem which addresses niche requirements or
constraints in specific domains. These specialized systems are instances
of how the bare metal principles of operating systems can be
repurposed and reshaped into something new that is uniform and
guided by some base constraints, often resorting to extreme design
choices that would be completely unthinkable in any sort of general-
purpose computing, hence perfect for their dedicated environment. The
most common subcategory here is embedded operating systems, which
power the billions of dedicated computing devices baked into
everything from cars and appliances to industrial equipment and
consumer electronics. These systems are typically resource-constrained
in terms of memory, processing power, energy consumption and
reliability, many of them requiring deterministic operation over years
of continuous operation without user intervention. Operating systems
such as FreeRTOS, Zephyr, and Rethread all prove that embracing a
more minimalist design approach can deliver a capable operating
system with memory footprints in kilobytes rather than gigabytes, and
are perfect for microcontrollers with limited resources. Operating
systems for mobile devices, such as Android and 10S, have become a
class of their own, combining the interactivity of desktop systems with
the resource-depleted environment and alternate interaction model that
mobile devices have. These systems are optimized for energy
efficiency, touch based interfaces, connectivity, and security based on
the personal nature of mobile devices. The design picks a number of
the classic trade-offs on mobile systems, including higher application
isolation, per-application permissions and complex power management

that to be definitively increases battery utilization by doing usage
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allocation and lessening background activity. High-performance
computing (HPC) operating systems cater to the specific requirements
of supercomputers and large computing clusters utilized in scientific
simulations, weather forecasting, genomic analysis, and various other
computationally demanding applications. Advanced job scheduling for
batch workloads, support for extreme parallelism across hundreds or
thousands of processors and optimized communication facilities on the
hardware level for tight-coupled parallel programs are built into
systems such as Cray Linux Environment and IBM Parallel
Environment. Since these systems are designed for machine workloads,
and not man-computers use, instruments are applications that prioritize
established computation throughput and efficient resource utilization
over the interactive responsiveness. Exadata and Oracle RAC, as
systems which combine traditional operating systems functionalities as
implemented with specialized functionalities for data processing,
storage management, and transaction management, use special
purpose systems for data management and data interaction. Such
systems employ advanced buffer management, query optimization, and
concurrency control techniques tuned for data-specific workloads,
often eschewing general purpose operating system facilities altogether
to ensure higher performance through direct access to the hardware
device. Network operating systems (like Cisco 10S, Juniper JUNOS,
and VyOS) are used for running the network infrastructure equipment
(like routers, switches, and firewalls). Such systems are designed to
process packets at an extremely high throughput, manage traffic, and
remain highly available under very high loads, often with some form
of a real-time scheduler to ensure the network functions well even
during peak demand times. Again, systems such as VMware ESXi,
Microsoft Hyper-V, and Xen are another more specialized category
providing the abstraction and multiplexing of the physical hardware
that offers support for several guest operating systems on the same
infrastructure. Hypervisor-based systems have advanced resource
management, isolation, and emulation capabilities that provide the
ability to run multiple different operating environments together on the
same hardware bases. Operating systems that fall into safety-critical
categories — which cover aerospace, medical devices, nuclear
facilities, and automotive applications — typically use formal

verification, redundancy, and fault-tolerance mechanisms that exceed
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those found in consumer devices. INTEGRITY, LynxOS and PikeOS,
for example, are designed for meeting stringent certification
requirements such as DO-178C (airborne) or ISO 26262 (automotive)
where the correctness of critical system components can often be
proven mathematically. For example, security-controlled OSs -- such
as SEL4 (with its formally verified microkernel), Qubes OS (with its
threat model that emphatically prioritizes isolation) and Open BSD
(which approaches secure defaults, and process separation) -- favor the
maximization of attack surface as opposed to features or performance,
making architectural decisions that systematically discard whole
classes of threats. They prioritize the correct drawing and playback of
multimedia content in real time according to parameters like scale and
type via specialized scheduling and resource management, all while
ensuring the sound and visuals remain in sync regardless of system
load. Over these 50 years operating systems concepts have proven
extremely adaptable over even very different environments and
requirements as evidenced by the great variety of these specialized
operating systems. Though the basic functions of process
management, memory allocation, and I/O handling are universal, their
wildly divergent design goals for their ecosystems lead to unique
architectures crafted for specific use cases. The specialization trend
continues to accelerate as computing is seeping into all manner of new
domains, from wearables to smart home systems to autonomous
vehicles to industrial [oT applications, each with its own set of unique
requirements that influences how operating systems are designed. By
studying these specialized systems, we gain valuable insights into the
flexibility of OS principles and the powerful effects that design goals
can have on the architecture of a system, lessons that we can apply
hopefully to innovation even with more general-purpose computing.
1.3.42 Future Directions and Emerging Paradigms in Operating
System Design

So continues the evolution of operating systems as we seek to broaden
the scope of computing and face increasing complexity and challenges
that test the limits of the designs we have known. A dozen or so trends
are revolutionizing operating system design, fueled by hardware
advances, evolving usage patterns, and pressing needs for security,
efficiency, and adaptability in an interconnected world. Cloud

computing, along with edge devices, is driving a sea change in the
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architectural distinction of operating systems and how that
functionality is spread across computing environments. Edge
computing is blurring traditional delineations between local and remote
execution, and is giving rise to new operating system paradigms that
enable the seamless relocation of processes, data, and state from edge
devices to cloud infrastructure (and vice versa) in response to dynamic
conditions, resource availability, and application requirements. Such a
distributed execution model calls for operating systems able to operate
across heterogeneous hardware while maintaining coherent
application state and security across trust boundaries. Operating system
functions are increasingly powered by artificial intelligence, which
allows for adaptive resource management and predictive optimization
with autonomous operations that exceed static policies or heuristics.
Machine learning or Al-based operating systems can offer benefits in
areas such as pre-fetching and scheduling based on system usage
patterns (more on this in the next section), optimizing power
consumption for anticipated workloads, discovering anomalies from
baseline usage patterns that may correlate with potential security
hazards, and automatically re-tuning system parameters to maximize
application performance as requirements change. The transition to self-
tuning systems encapsulates a radical move away from the
deterministic, rules-based systems that have defined operating system
design for decades, for systems that improve themselves over time
through usage. Architectural innovations that fundamentally rethink
traditional operating system models are being driven by security and
privacy concerns. Increased threats are pushing techniques such as
capability-based security, formal verification of critical components,
and hardware-enforced isolation from the research realm into the real
world. Perimeter-based security models are being supplanted by zero-
trust architectures that require every access request to be validated
irrespective of its origin, and privacy-preserving computation methods
such as homomorphic encryption and secure enclaves are now being
built into operating system services. Security as a Fundamental Design
Principle that Shapes Core Operating System Architecture These
developments make a departure from security as an add-on feature to
security as a fundamental design principle. The booming world of
Internet of Things (IoT) devices is forcing innovation in lightweight

operating systems that can run on limited hardware and that participate
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in distributed applications that potentially involve hundreds or
thousands of devices. This trend is evident in the various operating
systems (OS) for embedded devices, such as RIOT, TinyOS, and
Amazon FreeRTOS, which provide sophisticated functionality that is
also highly resource-efficient. This includes new network protocols
designed for low-power, low-bandwidth wireless communication;
discovery mechanisms allowing battery-powered devices to efficiently
find services; and security models that are both lightweight and suitable
for unattended operation in the face of possible attacks. It also hints
how containerization and micro services architectures are transforming
application deployment models, with operating systems adapted to this
model. Some third-party operating systems built specifically to host
containerized applications include those from CoreOS (now owned by
Red Hat), RancherOS and Google (Container-Optimized OS). They
are designed with the bare minimum components required for what
they do. This specialization trend is a return to purpose-built OSs,
following decades of convergence onto general-purpose platforms,
driven by virtualization technologies that allow many highly
specialized systems to co-exist on shared infrastructure. The use of
quantum processors, based on a range of principles that differ
fundamentally from classical designs, poses possibly the most
dramatic challenge to traditional designs for an operating system. New
quantum operating systems face unique challenges such as qubit
allocation, quantum error correction and the fusion of quantum and
classical processing. Although functional quantum computers are still
being developed, the operating systems used by these devices are
likely to need completely new abstraction and resource management
paradigms more similar to nature than to classical operating systems.
The increasing focus on sustainability and energy efficiency is driving
the operating system design from the mobile devices being designed to
maximize battery life to data centers being designed to lower their
carbon footprints. Energy-aware scheduling, dynamic voltage and
frequency scaling across multiple cores, workload consolidation,
intelligent resource hibernation, and other techniques are being
developed into fundamental components of the operating system,
rather than merely optional power-saving features. This move shows
that more and more people are starting to understand that energy

efficiency is not just an operational issue but the core design constraint

130
MATS Centre for Distance and Online Education, MATS University



that should inform system architecture from the ground up. Operating
systems innovations that minimize latency and provide consistent
performance guarantees in haselwareeug applications are driven by
real-time analytics and event processing requirements. The well-known
batch-oriented paradigms are replaced by the stream processing model
able to manage continuous data flows with predictable processing
times, supported by operating systems functionalities designed to
achieve such a behavior. This historical bifurcation has blurred, and
both workloads need to coexist on systems that efficiently support both
whilst maintaining isolation where required. Together these emerging
paradigms imply a new era of radical innovation in operating system
design, rivaling the paradigm shift from batch to interactive computing
or the rise of distributed systems. With the ubiquity of computing, its
increasing complexity, and its integration into essential infrastructure,
operating systems should move beyond acting merely as resource
managers of stand-alone platforms and instead become orchestration
systems for heterogeneous sets of distributed computational resources
that can self-adapt to novel operating conditions and needs. The
operating systems of tomorrow are likely to be based on a greater
degree of specialization (largely thanks to specialization in hardware
and firmware as well) running on tightly-coupled interoperation;
continuous self-optimization based on Al; active security models rather
than passive ones; and design paradigms treating sustainability directly
as a design goal rather than as a side consideration to performance, or
reliability, etc. We aren’t simply going to add to the existing space of
operating systems; What these changes will do is change the nature of
what an OS is and what is an OS to applications, to us to the outer
environment. Operating systems is one of the few aspects of computer
science that has tangential implications on almost everything; they are
foundational systems that either enable or constrain what can be
accomplished in computing, so it should come as no surprise that this
field remains centrally located to many of the most exciting problems
and opportunities in computer science today.

Summary

An operating system (OS) serves as the core software that manages
computer hardware and software resources, providing an essential
interface between users and machines. It enables users to interact with

a computer system without needing to understand hardware-level
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details. The introduction to operating systems outlines their historical
evolution from early batch processing systems to advanced
multitasking and multiuser systems like real-time, networked, and
distributed OS. These developments reflect the growing complexity
and versatility of modern computing needs, emphasizing the role of the
OS in simplifying and streamlining user interaction with computers.

The need for operating systems arises from the demand for efficient and
organized management of computing resources such as the CPU,
memory, input/output devices, and storage. Operating systems handle
key functions including process scheduling, memory allocation, file
system management, device control, and security enforcement. They
ensure that multiple applications and users can work smoothly and
concurrently without conflicts. In terms of system operations, the OS
controls how the CPU executes instructions, manages system
interrupts, initiates the boot process, and maintains synchronization
among processes. It facilitates system calls, manages hardware
communication, and handles errors and recovery. Together, these
functions illustrate how operating systems are indispensable for
ensuring performance, reliability, and usability in modern computing

environments.

Multiple-Choice Questions (MCQs)
1. Which of the following best defines an Operating System?
a) A collection of programs that manage hardware
resources
b) A software used for document processing
¢) A hardware component of the computer
d) A program used to browse the internet
(Answer: a)
2. Which is NOT a function of an Operating System?
a) Process management
b) Memory management
¢) Compiling programming languages
d) File system management
(Answer: c)
3. What is the main purpose of system calls?
a) To provide an interface between user programs and the
(ON}
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b) To execute application software Notes
c) To compile programs
d) To manage network devices
(Answer: a)
. Which type of OS executes jobs one at a time without user
interaction?
a) Multi-programming OS
b) Time-sharing OS
c) Batch processing OS
d) Real-time OS
(Answer: ¢)
. Which of the following is an example of an Operating System
service?
a) File creation and deletion
b) Providing direct access to hardware
c) Executing JavaScript in web browsers
d) Playing multimedia files
(Answer: a)
Time-sharing operating systems are designed for:
a) Running a single program at a time
b) Providing fast response time to multiple users
c) Executing batch jobs sequentially
d) Eliminating multitasking
(Answer: b)
. Which system call is used to create a new process in
Unix/Linux?
a) exec()
b) fork()
c) open()
d) exit()
(Answer: b)
. Which OS structure follows a hierarchical design with layers?
a) Monolithic OS
b) Layered OS
c) Distributed OS
d) Network OS
(Answer: b)
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Notes 9. Which design goal focuses on ensuring an OS remains

operational despite failures?
a) Security
b) Portability
c) Reliability
d) Efficiency

(Answer: ¢)

10. Which of the following is NOT an OS design goal?

a) User convenience
b) System security
¢) Hardware development
d) Efficient resource allocation

(Answer: c)

Short Questions
1. What is an Operating System, and why is it needed?
List three primary functions of an OS.
Define batch processing operating system.
What is time-sharing OS, and where is it used?

Explain the purpose of system calls.

A

What is the difference between multi-programming and

multitasking?

7. Describe two key services provided by an OS.

8. What is the role of the kernel in an OS?

9. Explain the concept of monolithic vs. layered OS structures.

10. Why is security an important OS design goal?

Long Questions

1. Explain the need and functions of an operating system in detail.

2. Compare and contrast batch processing, multi-programming,
and time-sharing OS.

3. Discuss the main services provided by an operating system.

4. Explain system calls with examples and their role in OS
functionality.

5. Describe different operating system structures and their
advantages.

6. How does the design of an OS affect its performance and

usability?
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7. Explain the importance of OS reliability, efficiency, and
security in modern computing.

8. Discuss the role of the kernel and user space in OS architecture.
How does an OS manage process scheduling and memory
allocation?

10. Explain different types of operating systems and their real-

world applications.
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MODULE 2
PROCESS MANAGEMENT AND
SYNCHRONIZATION

LEARNING OUTCOMES

To understand process concepts and states.

To explore process control and operations.

To analyze process scheduling and CPU scheduling algorithms.
To study inter-process communication and synchronization
techniques.

To examine deadlock characterization and handling

mechanisms.
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Unit 2.1: Process Concepts

2.1.1 Process Concepts

Aforementioned processes. times and speeding the instruction
processing. Control Unit; The control unit (CU) is in charge of
managing the instructions (pipelining) fetch and execute different
instructions at the same time (in different stage of the cycle)
significantly improves instruction throughput. Additionally, the
processor architecture uses caching techniques to temporarily store
frequently needed data in fast-access memory that is physically close
to the CPU, dramatically reducing memory read system performance,
and CPU designers have invested in improving the performance of
individual stages of this cycle. Overlap of fetch-execute of multiple

perform some complicated calculation.

Process Management

Interrupt or
Admited Timeout Exit
Scheduler
1/0 or Event Righateh 1/0 or Event
Completiton Wait

Figure 2.1.1: Process Management

Thus, this cycle efficiency directly dictates to is stored back to either
memory or a register. And it continues infinitely in the same fashion,
so the CPU can process a flow of instructions and an arithmetic/logic
operation, data transfer, or change control flow. The final output of the
execution the fetched instruction (opcode and operands). After
decoding, the CPU executes the instruction — which could be (a
register that keeps track of the instruction currently in execution). Once
fetched, the instruction is decoded, in this step, the CPU identifies the
operation to be done from loaded into memory of computer. The CPU
starts by fetching an instruction from the memory; the address is
determined by the program counter the fetch-decode-execute cycle, is
the basic way CPUs do stuff. When a program begins execution, the
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instructions it needs are that must be completed in order: fetch, decode,
execute and write back. This cycle, called to understanding how
computers operate at a fundamentally low level. At the core of how a
CPU operates is the instruction execution process, which is a series of
actions interplay of processes that allow it to carry out commands and
handle information. Learning these processes are key The CPU's
functionality is based on a complex Other running processes. not in
RAM at the time. These mechanisms are essential to support multiple
processes running concurrently without affecting the to process
memory beyond the one physically accessible to it, extending the
address space by treating secondary storage as an extension of RAM.
For Example: Imagine you open your music player app on your
computer. The moment you double-click the app icon, the operating
system creates a process for that program. This process includes the
program’s code, data, and resources like memory space and file
handles. While the music is playing, the operating system schedules the
process to run on the CPU, allowing it to read audio data from storage,
decode it, and send the sound to your speakers. At the same time, other
processes—such as your web browser or a document editor—are also
running, each with its own isolated memory and resources. The OS
manages these processes by rapidly switching between them, giving the
illusion that everything is running simultaneously. If you minimize the
music player or pause the song, the process doesn’t end; it simply waits,
ready to run again when needed. When you finally close the app, the
operating system terminates the process, freeing up the memory and
resources it was using.

As with execution of process, managing will be finite. These types of
scheduling algorithms are key for fairness and responsiveness in a
shortest execution time. With this, no single process can gain control of
the CPU for too long as the CPU time allocated for a process to execute
of resources and minimize wait times. This algorithm "First Come First
Served" means that the processes are scheduled in the order they arrive,
and the second is "Shortest Job Next" which decides based on the state,
which is then loaded into the context of the next process that is going
to be executed. The operating system scheduler uses algorithms such as
First-Come, First-Served (FCFS), Shortest Job Next (SJN), and Round
Robin to determine the order in which processes are executed in order

to optimize the use by giving time slices to each process and doing
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context switches extremely faster. This is the process of switching the
context, which means the current process must save its of
contemporary operating systems. The CPU does this involved in many
concurrent processes with concurrent threads using scheduling
algorithms and memory management. Multitasking, the ability to run
many programs at once, is one of the pillars The core of the CPU is the
instruction cycle but it is and exceptions are critical in their ability to
allow systems to respond promptly to incoming events and exceptions.
Exception handlers is not stored in memory, instead, the CPU accesses
the interrupt descriptor table (IDT), which contains an entry
representing the address of the handler for each interrupt or exception
vector. Interrupts to an interrupt controller, which decides their priority
and dispatches them to the CPU.

The location of interrupt and in keeping the system stable and
preventing errors from cascading through the system. Interrupt requests

are sent that takes proper actions to rectify the wrongdoing. Exceptions

Operating
system

__1 Program requests I

lnteﬂ'upt Software interrupts
controller

#} = = [}
Hardware interrupts

¢

(971
et

Figure 2.1.2: Interrupt In OS

play an important role event alerts emitted by the CPU itself when any
errors or unusual conditions, such as division by zero, invalid memory
access, or illegal instructions, occur. Similarly, when an exception gets
raised, the CPU as well gives up on its current instructions and passes
control to an exception handler happens, or, any hardware devices
need to be read, cpu gets interrupted. Exceptions are the continues its
previous execution after the interrupt has been handled. When data is

needed from storage, or, a network event handler, a special routine set
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up to deal with the interrupt. The CPU restores the saved state and the
CPU. When an interrupt happens, the CPU pauses its current
operations, saves the current state, and branches off to an interrupt can
react to external events and error conditions. Hardware devices like
keyboards, mice, and network interfaces generate signals to initiate an
interrupt request to these are vital mechanisms any CPU must have in
place so it and multicore design, enabling better performance and more
complex task processing. In addition, CPU architecture has evolved to
incorporate features such as parallelism tasks can be executed
simultaneously through the use of multicore processors, which is
crucial to meet the growing performance requirements of modern
applications. and throughput. These topics allow you to understand
how computational a common address space and resource pool,
making them lighter than processes. Multithreading enables
applications to execute multiple threads simultaneously (including
background computations while responding), which improves
responsiveness create multiple threads of execution. Threads have
systems and allow performance gains for applications that can use
parallel processing. Another technique that improves Parallelism is
threading, allowing a process to have multiple cores, each of those
cores can do things autonomously executing its own specific
instructions and managing its own resources. Multicore processors are
everywhere nowadays in computer threads/processes.

If you branch (conditional branch instruction) will go, in order to
reduce the amount of penalty cycles that occur from branch
instructions. This feature of Multicore processing integrates many on-
chip CPU cores together, enabling simultaneous execution of numerous
units in the CPU so the CPU can execute multiple instructions at the
same time. Branch prediction is the process of guessing which way a
executed at various stages simultaneously. This means that there is
multiple execution a CPU core, which makes it possible for the
processor to carry out several instructions at a time. Pipelining splits
the instruction execution cycle into stages, so you can have several
instructions being instructions (monads) simultaneously using one
core or even across multi-cores. Techniques like pipelining, superscalar
execution, and branch prediction enable instruction-level parallelism
(ILP) within Parallelization means executing the multiple process is

basically a program in execution, which includes the program code, the
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current activity represented by the value of the program counter, and
the contents of the processor's registers. an operating system schedules
computational task. A active entities (representing running programs)
that are owned, scheduled, and managed by the OS. Learning about the
process state and CPU utilization is essential to understand how A
modern operating system's core functionality is process management,
where processes are processes. and it is taken out of the system. The
process scheduler in the operating system takes care of this complexity
by ensuring efficient usage of the CPU and equitable distribution of
resources to competing to the ready state as well. Finally, when it
completes its work or if it is terminated by a user or system, the process
enters the 'terminated' or 'exit' state, during which its resources are freed
the process returns to the 'ready' state until it gets a chance to use the
CPU.

A process can also be preempted by the operating system, usually
because it has run out of its time slice, or because a higher-priority

process needs to run, sending the process back does not execute until

M

Figure 2.1.3: CPU in Multiprocessing Interface

the needed resource is released or the event it is waiting for gets
finished. Next, once the condition is satisfied, process may give up the
CPU voluntarily, for example, when it needs some input from user or
to read from a file, it moves into the waiting or blocked state. While in
this state the process not permanent. A this state, the queue executes
its operations with an active CPU. But this running state is 'running'.
In the CPU to become free. So the scheduler is an important part of an
operating system, which picks one of the processes from the ready

queue and allocates it the CPU which passes the state of the process
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from 'ready' to process starts in the 'new' state, adopting a process life-
cycle when it’s creating or loading itself into memory. On successful
creation, it moves into the ready state, indicating that it is ready to

execute and is waiting for and other system resources.

A By evolving through a series of states throughout its lifecycle, this
abstract entity indicates its relationship with the CPU Issues. and

Long term
Scheduler

Short term

Pull of Scheduler

Jobin
Disk

DISPATCHER

END

Ready Queue

Mid-term Waiting Queue Mid-term
Scheduler Scheduler

I/0

Figure 2.1.4: CPU Scheduling Mechanism

responsiveness. As an administrator, tools like your task manager and
performance monitoring utilities give real-time insight into your CPU
utilization, enabling rapid assessment and adjustment for performance
low CPU usage indicates that the CPU is not being fully utilized, which
might mean that certain resources are left idle, or that scheduling is
inefficient. CPU Usage Basics CPU utilization is one of the most
essential metrics for both system performance slowly spinning, may
raises response time, indicates the CPU is greatly loaded. On the other
hand, system loads and potential bottlenecks. Very high CPU usage, is
by assigning them equally sized time slices. The operating system
keeps track of CPU utilization using hardware timers and performance
counters to provide information about Number) can be starvation. It
ensures fairness among processes next (SIN): It is concerned with
processes that have the shortest execution time. In Priority Scheduling,
every process is assigned a priority number, and the CPU is allocated
to the process with the highest priority number (Lowest for short
processes. Shortest job Job Next (SJN), Priority Scheduling, Round
Robin, etc. The simplest CPU scheduling algorithm is First-Come,
First-Served (FCFS) which simply assigns the CPU to the processes
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arriving first but can cause long wait times algorithms designed to
maximise CPU usage with fairness and responsiveness. The common
types of scheduling algorithms are First-Come, First-Served (FCFS),
Shortest types of scheduling algorithms in the operating system to
decide which process will get the CPU at a particular time. They are
different gets CPU cycles. We use different utilization is the fraction
of time the CPU is active doing non-idle work. CPU utilization refers
to the percentage of time that a CPU is busy checking the state of
processes, and when a process is in the running state, it figure for
applications monitoring. CPU the central processing unit and the brain
of your computer; it runs instructions and processes calculations. Its
usage is an important The CPU is Fairness and responsiveness to make
sure that every process gets a fairly different share of the CPU time.
that is holding back for low priority processes for too long and it would
be not executed in a crude manner." The scheduling algorithm should
be designed such that it can balance between that important tasks are
run quickly. But, if all the processes get assigned priority at all time,
then that could lead to starvation; the scheduler. Generally, high-
priority processes get the CPU a lot more than low-priority processes,
so context switching is a key to reducing overhead while maximizing
CPU usage. The OS also manages process priorities which can affect
decisions made by data. Now, fast saves the state of one process and
load the state of the second process. This process also comes with
overhead in terms of the time taken to store and retrieve all register
values, memory mappings, and process-specific and thus controls the
selection process. But switching is a vital job of the scheduler and we
are the one who CPU. The scheduling algorithm determines in what
order processes are run, the state of becoming ready. When a process
is forced to wait or made to relinquish the CPU, the scheduler takes
another process from the ready queue to share the SJN are examples of
non-preemptive scheduling algorithms, where process can run to
completion w/o interruption and thus long wait times for other process.
It also maintains the ready queue that connects all the processes in the
utmost importance. FCFS and process, adding it to the in-wait queue
and giving the CPU to another process so no single process owns the
CPU for a long time. This is especially critical in interactive systems,
where responsiveness is of long it has been executing for, and what

resources the process needs, in order to make educated guesses on what
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process should be allocated the CPU. For example, a preemptive
scheduling algorithm like Round Robin or Priority Scheduling allows
the operating system to suspend the execution of a an involved
endeavor that must consider numerous conflicting goals regarding CPU

utilization, waiting time, and fairness among competing processes.
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Unit 2.2: Process State

2.2.1 Process State

The scheduler needs to also consider factors like process priority, how
Process scheduling is in order to optimize performance and remain
responsive. Through process system calls. It helps to understand the
process state and CPU utilization and communication. When a
program needs to interact with the operating system (e.g. to perform
file I/O, memory allocation, or create a new process), it uses manage
shared resources. You are using it to process management features
followed by the Linux operating system, including process creation,
termination, processes, ensuring data consistency and eliminating race
conditions. There are such as semaphores, mutexes, and monitors to
synchronize processes and process at previous executions. In addition,
the scheduler is responsible for inter-process communication and
synchronization: the coordination between several balancing is an
important part of multi-processor scheduling when processes are
evenly distributed among the available cores so that no core becomes a
bottleneck. To improve performance and minimize cache misses, the
scheduler must account for cache affinity, or the relative caching
similarity of a processors so that the maximum parallelism can be
achieved and consequently, the performance. Load process scheduling
gets a little harder. The operating system has to spread processes over
multiple cores or So with the modern-day multi-core and multi-
processor systems, the CPU resource allocation, the operating system
allows applications to run efficiently, ensuring a stable and reliable
computing environment. Management and resulting in chaos and
instability in the system. Switch In the absence of the PCB, the OS
would not be able to distinguish between processes, processes; which
resources are being used? This data structure is crucial for smooth
multitasking as it allows the OS to switch between processes
efficiently, a procedure called a context the OS’s dossier on every
running program, containing critical information that informs the
operating system so it can correctly allocate and coordinate their
execution. When a program is start, OS make matching PCB, which
contains information about the state of the delicate art of multitasking,

where multiple programs compete for the attention of the CPU, the PCB
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serves as an individual identity card for each process, containing and

preserving intrinsic and extrinsic data about the state of a process.

—

I/O event completid scheduler /O request

Waiting

Figure 2.2.1: Process State Model
[Source - https://www.researchgate.net/]

Key Process States

A process typically moves through a series of states from its creation to

its termination. The five primary states are:

e New: The process is being created and has not yet been loaded into
the main memory. It's a nascent process that the OS is preparing.

e Ready: The process has been loaded into main memory and is ready
to run. It's waiting for the CPU scheduler to allocate the CPU to it.

e Running: The process is currently being executed by the CPU. This
is the only state where the process can actually perform its
instructions.

e Waiting (or Blocked): The process has temporarily stopped its
execution because it is waiting for some event to occur. This could
be waiting for user input, waiting to access a file, or waiting for an
I/O operation to complete.

e Terminated: The process has finished its execution. It is no longer
active, but its process control block (PCB) might still exist to allow
the operating system to collect its final status.

State Transitions

A process's state changes as it progresses and interacts with the

operating system and hardware.

1. New — Ready: When a process is created, it moves from the New
state to the Ready state, where it awaits its turn on the CPU.

2. Ready — Running: The CPU scheduler selects a process from the

Ready queue and dispatches it to the CPU.
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Running — Waiting: A process can voluntarily move from the
Running state to the Waiting state if it needs to perform an I/O
operation or wait for an event.

Waiting — Ready: Once the event the process was waiting for
(e.g., I/O completion) occurs, it is moved back to the Ready state.
Running — Ready: This transition happens due to an interrupt. For
example, a timer interrupt may occur, indicating that the process
has exhausted its allocated time slice. The process is then
preempted and put back into the Ready queue.

Running — Terminated: When a process completes its execution
or is explicitly terminated by the operating system, it enters the

Terminated state
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Unit 2.3: Process Control Block

2.3.1 Process Control Block

In other words, its key structures used by an operating system is the
Process Control Block (PCB), which serves as the main repository of
information about the running processes. In the One of the processes
is currently running, in a ready state, or waiting, or has been terminated.
Multifaceted concept. The process state is a key component that
signifies if a A PCB itself can do many, and like process management
itself, is a of each process. can separate it from others. These data
points are aggregated within the PCB, which allows the operating
system full control and accounting info provides resource usage like
CPU time and memory usage. Lastly, the process ID uniquely identifies
itself among all the processes so the OS allocated CPU time. Status
info tracks the allocated input/output devices for the process, tables
and segment tables, control how the process accesses memory.
Moreover, the process control block (PCB) stores scheduling
information such as process priority and scheduling queues the OS uses
to decide which process should be registers, along with the PCB, and
preserves the computational state. Information about memory
management facts, like page the context switch. Temporary data that
is utilized by the process is stored in CPU A context switch involves
saving the state of the currently running process, and restoring the state
of the next scheduled process, the program counter is a critical part of
that state that tells the CPU where to resume execution of the process
after place and allowing it to quickly switch from one task to the next.
of performance, and the PCB serves to minimize the overhead
associated with this operation. PCB becomes the building block that
makes the context switching process possible and less complicated by
allowing the OS to store all the needed information in one allows the
new process to continue where it left off the other process. For
multitasking operating systems, the efficiency of switching contexts is
a key determinant PCB into memory, which allows the OS to restore
its saved state by copying the data stored in the PCB back into the CPU
registers. These process other relevant data in the PCB of the process.
Then, the OS loads the next process's running process. It does this by
storing the CPU registers, program counter, and context switching.

When the OS wants to switch from one process to another, it first has
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to save the state of the currently The PCB is especially useful during
from destabilizing the rest of the system. PCB's are stored in a
protected area of memory that normal users cannot access. This
prevents malicious (or inadvertent) data corruption importance. That's
why it has a smooth and efficient computing environment.
DONOTSPEC in PCB is of utmost share data and synchronize their
actions. In short, the PCB acts as the OS's main mechanism for process
management and control, which helps that higher-priority processes
get more CPU time. In addition, it provides intercrosses communication
as a means for processes to like memory, input/output devices to the
Processes. The PCB also enforces process priorities and scheduling
policies, ensuring for resource management and process
synchronization. PCB contains all the information, which is used by OS
to allocate and deallocate resources In addition to context switching,

the PCB is also crucial

Pointer

Process state

Process number

Program counter

Registers

Memory limits

Openfile list

Mis. accounting
and status data

Figure2.3.1: Process Control Block
[ Source - https.//techspace.co.th]

2.3.2 Operations on Processes

We also explore how the operating system, as orchestrator, manages
the processes (the unit of executing code) in the system, including the
method of scheduling those processes. Helpful for tuning resource
allocation and ensuring responsive UX. Processes are created and
executed, suspended, resumed, and terminated over their lifecycle.
Process creation is typically triggered by user input or software events
and involves allocating the necessary resources, such as memory and
file descriptors, and establishing the context in which the process will

execute. The CPU needs to save relevant data so it can resume
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execution from where it left off, such as the program counter, registers
etc. The operating system keeps a data structure called the process
table, which holds the information about every process, which allows
it to manage state and a much greater detail about processes. The
process states are — new, ready, running, waiting, terminated and they
represent the various stages a process undergoes in its lifecycle.
Processes transit between these states due to events like I/O requests,
time-slice expirations, and process termination. That is, from the
running state, the process maybe move to the waiting state whenever it
asks for I/O, the when it finishes with the I/O, process get back to the
ready state. Explanation: The IPC, or also known as inter-process
communicational low communication and data transmission between
multiple processes PIPE; In computing, a pipe is a mechanism for
connecting the output of one process to the input of another.
Graphically represented as a message queue is a queue of messages that
can be read and written by different processes or threads. These are
essential for cooperation, where one process needs to wait for another
to finish a task or share data, and so on. The OS exposes system calls
which the processes use to leverage these IPC mechanisms for
controlled and secure communications. The last phase is Process
termination, where all allocated resources are released and the process
is removed from the process table. This returns system resources,
making them available for use by other processes. The OS also needs
to deal with unexpected terminations, like crashes or users force-
quitting, to ensure system integrity. This means that the operating
system needs to handle all processes, allowing them to run
concurrently and ensuring a seamless user experience. CPU Scheduling
is an OS function that chooses one of the ready processes to be
allocated CPU at a given time.

Goal of CPU scheduling:

1. CPU utilization should be high

2. Throughput should be high

3. Turnaround time should be low

4. Waiting time should be low

5. Response time should be low

6. Fairness.

There are two types of scheduling algorithms Preemptive and Non-

preemptive. In non-preemptive scheduling, when a process gets the
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CPU, it holds it until it terminates or relinquishes the CPU by its own
accord. First-Come, First-Served (FCFS) is a simple non-preemptive
algorithm that handles the CPU to the process that arrives first.
Additionally, FCFS is straightforward to implement but can suffer
from the convoy effect, as a long process can block multiple smaller
ones, producing a poor average waiting time. Shortest-Job-Next (SJN)
~ SIN is non-preemptive which selects the process with a minimize
burst time. Shortest job next is an optimal algorithm for minimizing
average waiting time, but it needs knowledge about future burst times,
which is often impractical. On the other hand, preemptive scheduling
permits the operating system to suspend a currently executing process
and pass the CPU to another process. RR is a preemptive algorithm that
gives each process a fixed time slice, or quantum. If a process fails to
finish within its time quantum it is preempted and placed at the end of
the ready queue. When RR can ensure a fair share of the CPU to all
processes, small time slice can cause excessive context switching,
leading to lower CPU efficiency. Shortest-Remaining-Time (SRT) is a
preemptive implementation of SJN, which, at any point in time,
chooses the process with the shortest remaining burst time. The
Shortest Job First (SJF) algorithm, though has minimum average
waiting time, it hinges on accurately predicting burst times and may
lead to starvation for longer processes. We assign priority to each
process in priority scheduling and allocate CPU to the process that
reaches with the highest priority. Static or dynamic priority,
preemptive or non-preemptive. Therefore, while preemptive priorities
scheduling can preferentially run higher-priority processes, it cannot
starve low-priority processes. This can be mitigated by using aging
techniques wherein the priority of a process increases overtime. Multi-
level queue scheduling It splits the ready queue into multiple queues.
Processes are queued according to their properties, like whether they
are foreground or background processes. The multi-level feedback
queue scheduler is considered one of the most flexible and responsive
process scheduling algorithms, as individual processes are able to be
moved between queues based on their behavior.

In process management and CPU scheduling, context switching is an
important operation performed by the operating system. Simply put,
this is the process of saving the state of the currently executing process,

and loading the state of the next process that needs to execute. This
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includes information such as the program counter, registers, and
memory management. When a process gets preempted, blocked, or
terminated, or a new process is chosen to run, the operating system must
switch context. Context switching is an essential function in operating
systems, enabling multitasking by switching between processes, but it
comes with an overhead. Both the time slices and scheduling
algorithms affect how often context switching happens. In Round
Robin Scheduling, a time slice that is too small would cause lots of
context switches. Operating systems make use of context switching
optimization techniques like keeping the context switching routine fast
and utilizing hardware level support by having special registers that
stores process states. Context switching must be efficient so that CPU
resource usage stays high and the system responds quickly. The
underlying OS must balance between the overhead of context
switching to ensure fairness and responsiveness, and minimizing
overhead to maximize CPU throughput. Scenarios such as real-time
systems that must prioritize the timely execution of critical tasks are
another case where efficient context switching is a necessity. Reducing
the context switching latency can be more critical for these types of
system to maintain the deadlines and improve the system stability.
Modern operating systems utilize advanced techniques to enhance
task-switching efficiency such as lazy context switching (only saving
or restoring the context that is actually needed) or hardware-accelerated
context switching that uses specialized hardware to speed up the
process. The relationship between process operations and CPU
scheduling forms the basis for the efficient operation of a computer
system. You need to be able to do so with one of multiple processes
using multiple operating systems. It is essential to utilize CPU
scheduling algorithms that will enhance the efficiency of the system to
meet the demands of the workload being processed. You also learn
about the trade-off between different scheduling algorithms, and the
effect of context switching overhead. Advancements in operating
systems have resulted in advanced scheduling algorithms and process
management approaches that can accommodate a wide range of
workloads and system needs. Machine learning and artificial
intelligence techniques will likely become an integral part of future
operating systems for advanced process management and CPU

scheduling. Hardware and software co-designs would keep
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complementing each other leading to better performance and
responsiveness and energy efficient systems. This cycle continues as
operating systems strive to optimize both process operations and CPU
utilization for efficiency and responsiveness, creating a robust
environment for application execution and user engagement. Inter-
Process Communication (IPC) is a fundamental concept in operating
systems and is especially important in modern computing environments
with concurrent processes. It ensures these processes can communicate
and synchronize with each other, allowing them to exchange data,
coordinate actions, and work together toward a common goal. Such
inter-process interaction forms the foundation for developing
sophisticated applications that tap into the strengths of multi-tasking
and parallel processing. When it comes to CPU utilization, effective

IPC mechanisms play a vital role in boosting system performance.

2.3.3 Inter-Process Communications

The idea of inter-process communication (IPC) is quite standard
practice, but it can go wrong, and you will end up with bottlenecks,
context switches, and overhead, which can slow down CPU performing
tasks. On the other hand, well-designed IPC mechanisms support
efficient data transfer and synchronization between processes, helping

to keep the CPU busy and minimize inefficiency.

Approaches to Interprocess Communication

Process P1 Process P1
Shared Memory Process P2

Process P2

Message Queue

Shared Memory Message Queue

Figure2.3.2: Inter Process Communication

IPC covers various approaches, each with pros and cons, to cater to
different communication requirements and system architectures. Some
of these include shared memory, message passing, pipes, sockets,
semaphores, etc. The ideal approach depends on the specific

requirements of a program and the characteristics of its workload;
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knowing the difference between these methods is important for
maximizing a CPU's performance and maintaining the efficiency of
multi-process systems. Shared memory, for example, provides fast
communication by allowing processes to each access that same region
of memory. But it requires synchronization, lest you corrupt your data.
In contrast, message passing is a more structured form of
communication, where processes send messages to one another via a
communication channel. This approach comes in handy for distributed
systems or when processes are running on different machines. Certain
IPC mechanisms are chosen based on the communication latency, data
size, and the complexity of synchronization needed. Through effective
IPC, normal applications become more practical and system reliability
and responsiveness are improved, all of which lead to higher CPU
usage IPC is facilitated at a lower level by the CPU, which handles the
hardware resources and executes the communication primitives
associated with IPC. When processes communicate, whether via IPC,
the CPU is responsible for transferring the data, synchronizing
operations and ensuring that the communication protocol is addressed.
For instance, in shared memory intercrosses communication, it is the
CPU that must coordinate access to the shared memory region, enforce
memory protection, etc. In Message Passing, the CPU is responsible
for buffering messages and directing them to the destination process.
The number of such operations is directly proportional to the
performance of the [IPC mechanism and hence utilization of the CPU.
Context switching is a very important operation in a multi-processing
environment that is invoked during IPC. When one process issues a
communication request, such as a message sender or a shared memory
access, it 1s possible that it will have to wait for another process to
respond or release the resource. The CPU can then switch to another
process in this waiting time so that it can do some usefully work. On
the other hand, frequent context switching can introduce a performance
overhead, as the CPU must save the state of the interrupted process and
restore the state of the next process. Some effective [IPC mechanisms
improve the communication latency and minimize the synchronizing
efforts that eventually results in less number of context switches during
the message transfer. CPU also participates in IPC security and
integrity enforcing. For example, memory protection mechanisms

prevent unauthorized access to the shared memory regions, and thus
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ensure that all active processes can access the data they have
permission to access. For example, message authentication and
encryption may be used to secure the confidentiality and integrity of
messages exchanged between processes. These measures rely heavily
on the security capabilities of the CPU to help build strong, secure
IPCs. The CPU is responsible for a large part of the IPC process, as it
provides the necessary hardware and software infrastructure that
allows processes to efficiently and effectively communicate. This
article explains how the CPU can be optimized by optimizing IPC

mechanisms and minimizing overhead to improve multi-process

Process Synchronization

Read ' ‘

Shared
Memory

Figure 2.3.3: Process Synchronization in OS

applications.

Synchronization plays a crucial role in IPC, as it prevents conflicts
between accessing shared resources which can lead to race conditions
or data corruption. The CPU includes various synchronization
mechanisms, including semaphores, mutexes, and condition variables,
that processes can use to coordinate access to shared resources. For
example, semaphores are commonly used to manage access to a limited
number of resources, ensuring that multiple processes do not access
the same resource at the same time. In contrast, mutexes offer mutual
exclusion, preventing more than one process from entering a critical
code section simultaneously. Data that can be used to signal that the
shared resources state has changed. Q2: Why does the CPU need to
execute these operations? If synchronization is too inefficient,
deadlocks, livelocks, and other concurrency related problems would

limit performance of the system. For example, when two or more

155
MATS Centre for Distance and Online Education, MATS University

\

4m

W

UNIVERSITY

ready for lfe......

Notes

ars)

‘)

|



processes wait indefinitely for each other to release resources, it is
called Deadlock. Livelocks happen when the processes in execution are
constantly changing their state in response to each other, causing them
to make no progress. It is using limited data and observing to detect
these system stability problems and trigger the proper correction
mechanism. The CPU architecture, beyond primitive synchronization,
can directly impact synchronization performance. Hardware-level
support enables lock-free synchronization techniques (e.g., atomic
instructions such as compare-and-swap), which can greatly decrease
contention (when multiple threads are competing for the same resource,
causing some to wait for access) and reduce overhead under heavy
contention in comparison to software-based locks. Modern CPUs have
specialized instructions and cache coherence protocols to improve the
performance of these atomic operations. This fusion between hardware
and software is key to building highly perform ant and scalable
concurrent applications. The CPU has a lot to do with synchronizing
and handling interrupts, and you'd want to build up the ability for some
signals as well. For example, interrupts might be used to inform
processes about events or changes in the system, where signals could
be used to facilitate inter-process communication. More advanced
synchronization patterns, like event-driven programming or
asynchronous communication, can be implemented using these
mechanisms. Modern computing scenarios have introduced new CPU
architectures and operating systems that have altered IPC
considerably. These inter-process communication facilities have been
fundamentally impacted by factors such as multi-core processors,
distributed systems, and cloud computing environments. It becomes an
even more urgent requirement with the increased number of cores per
CPU. If you have a multi-core processor even that you have also multi-
processes can run in parallel on different cores. Nevertheless, this level
of parallelism brings its own problems relating to cache coherence,
memory consistency, and synchronization. And, seeking to fill a gap,
operating systems have delivered new IPC mechanisms that are tailor-
made for the multi-core world: lock-free data structures, message
queues that can be efficiently built on the underlying shared-memory
architecture, etc. Distributed systems, where processes are on different
machines connected over a network, would depend on IPC mechanisms

that can handle network communication. Inter-process communication
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across network barriers is often achieved in distributed environments
using something like remote procedure calls (RPC) or message
queuing systems. Dynamic resource allocation and the nature of
virtualized infrastructure in cloud computing environments introduce
unique challenges for IPC. Virtual machines (VMs) and containers, for
example, add another layer of abstraction, which potentially affects
communication latency and performance. Micro services Architecture:
Cloud-native applications can be developed using micro services
architecture, which means the applications are composed of small,
independent services that communicate with each other using
lightweight IPC (inter-process communication) mechanisms, such as
REST APIs or message brokers. It is important for the CPU to be able
to manage these different IPC types efficiently in order to create cloud
applications which can scale and remain resilient. The advent of
specialized hardware accelerators, e.g., GPUs, TPUs, etc., has further
introduced new paradigms for parallel processing and IPC. These
accelerators likely have different memory hierarchies as well as
communication protocols, which creates a need for specific inter-
process communication (IPC) strategies to effectively transmit data

from CPU to the accelerator.

Interprocess Communication (IPC)

Naming
send receive
Process P; Process P,
receive send

naming send(P;, message): P;identifies process j in the system

(direct) receive(P;, message): P,identifies process i in the system

Figure2.3.4: Inter-Process Communication
[Source - https://www.slideserve.com/]

2.3.4 Foundations of Process Management and Communication
In the delicate ballet of an operating system, processes serve as the
smallest entities of execution, an isolated instance of a program
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contending for the computer resources. The efficient scheduling of
these processes and the coordination of their interaction is the
cornerstone for a working operating system. Now, at the core of this
management is this thing called process scheduling, which is basically
a mechanism that determines the order in which the processes are given
access to the CPU. One CPU can only run one process at any instance,
but many processes may be ready or waiting to run, and this indicates
the need for process scheduling. New processes that need CPU time
will need to be queued up with deciding algorithms that balance
effective allocation of CPU time while preventing starvation for other
processes. But before we dive into these algorithms, it is important to
first understand how processes communicate with one another and
coordinate their activities. IPC (Inter-Process Communication) enables
processes to exchange data and synchronize their actions. This is
especially important for complex applications where multiple processes
handle various tasks to save resources and improve modularity. IPC
methods are used to allow processes to work together and share
resources in order to accomplish common tasks (such as shared
memory, message passage and pipes). Had these communication
pathways not been established, various processes would have been
functioning in isolation, which would have prevented the evolution of
complex and cooperative software systems. Sharing information and
synchronizing execution is crucial for not only application functionality
but also the efficient use of system resources. Examples include a print
spooler process that communicates with application processes to
receive print jobs, or a database server that coordinates with multiple
client processes to handle data requests. And that's why IPC is a vital
part of contemporary operating systems, allowing for the development
of resilient and highly networked applications. Furthermore, the
paradigm is also extended with the concept of process threads where a
single process can run several threads at the same time. A thread is a
small unit of process that may be addressed, which shares the same
address space and resources of its parent process, allowing for more
fine-grained parallelism and higher performance As such, this
threading model is widely useful for any application that can be broken
down into independent, smaller subtasks, such as web servers that can
concurrently handle multiple client requests or multimedia applications

that can process audio and video streams on separate threads at the
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same time. However, the addition of threads brings new problems
significantly around shared resources and preventing race conditions

which takes us to the critical section problem.

2.3.5 Process Scheduling and CPU Scheduling Algorithms

In multitasking operating systems, process scheduling is the keystone
of the system, making sure that the CPU is effectively utilized, and
making sure that processes are run in a timely manner. The scheduler
is part of the operating system that determines the next process that
gets to run from the ready queue. The scheduling algorithm we choose
has a great impact on the performance of the system such as throughput,
turnaround time, waiting time and response time, etc. As such,
different scheduling objectives and system requirements have led to
the development of various CPU scheduling algorithms. First-Come,
First-Served (FCFS) is the most basic algorithm you can have it
executes processes in the order in which they enter the ready queue.
FCEFES is easy to implement but can cause variants of the convoy effect:
a long process can block other, shorter processes, leading to large
average waiting time. Selecting the process with the shortest burst time
attempts to minimize average waiting time that is the goal of Shortest-
Job-Next (SIN). However, knowing future burst times as SIN requires
is often not feasible. Shortest-Remaining-Time (SRT) is a preemptive
version of SJN where a shorter process can preempt the currently
running process if its remaining burst time duration is less. In priority
scheduling each process is assigned a priority, the scheduler selects the
process with the highest priority. This algorithm can also be classified
as preemptive or non-preemptive, and it enables the use of various
scheduling policies based on process priority. However, the priority
inversion problem when a low priority process blocks a high priority
process can add more time as it cooks up counterproductive wait states.
Round-Robin (RR) is a time-sharing algorithm in which, every process
is assigned a fixed time quantum. In case a process has not completed
its quantum, it will be pausing (or will be preempt) and the process that
is at the front of the ready queue will start. RR is a little bit fairer in
assigning CPU time but with relatively poor averages compared to the
previous sorting algorithms, it is most appropriate for Interactive
Systems and depends heavily on the values for the Time Quantum.

Ready Queue Scheduling: Multilevel Queue Scheduling Multilevel
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queue scheduled the ready queue into several individual queues.
Processes are queued into these queues according to certain properties
such as types of processes or based on priority. A slightly more
complex scheduling algorithm is multilevel feedback queue
scheduling, in which processes can move between the various queues
based on their behavior (e.g. length of CPU burst or frequency of I/O
burst). This allows for a highly adaptable and efficient scheduling
system. Each of these algorithms has its own advantages and
disadvantages, and the selection of algorithm is based on the different
operating system requirement and corresponding workload. Therefore,
you must grasp these algorithms to design and optimize operating
systems capable of managing and executing numerous processes

efficiently.

2.3.6 Process Threads and Their Significance

Process threads can be seen as a radical departure from the traditional
model of process management, where separate processes operated in
isolation from one another; they allowed for much greater parallelism
and more efficient use of resources. A thread (or lightweight process)
is the basic unit of CPU utilization. At the same time, unlike processes
that have their own address space and resources, threads in the same
process share the same code section, data section, and operating-system
resources, such as open files and signals. Better yet, the model where
threads share the same resource means they can communicate and
collaborate more easily than separate process, since they just need to
read/write directly a shared data instead of using any IPC mechanisms.
User-Level and Kernel-Level Threads can be implemented either at
user level or kernel level. User-level threads: are managed without
kernel support by a thread library at the user level. This is a lightweight
solution, but not useful when there are blocking system calls or usage
of multiple CPUs. In contrast, kernel-level threads are handled by the
OS kernel, which offers improved parallelism and blockage operations.
But kernel level threads have relatively higher overhead as the kernel
is also in charge of managing the threads. Multithreading is the
concurrent execution of more than one sequence of instructions, or
thread. It increases application responsiveness by allowing multiple
threads to perform work in parallel, so the whole program isn't stuck

doing one task. It enhances resource utilization by enabling threads to
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share resources and run simultaneously on multiple CPUs. It simplifies
the development of complex applications by enabling tasks to be
broken down into smaller, independent threads. For example, a web
server might spawn a separate thread to service each client request,
allowing it to service multiple clients simultaneously. A multimedia
application can decode audio and video streams in separate threads for
smooth playback. But multithreading also comes with its own set of
challenges, including shared resource management and data
consistency. Race conditions which lead to unpredictable and
erroneous results result when the outcome of a computation depends
on the relative timing of threads executing in parallel. Synchronization:
You are built with the ability to synchronize yourself. Mutexes,
semaphores, and monitors are some of the synchronization methods
used to control automatically synchronized thread execution and to
safeguard shared resources. These mechanisms allow threads to safely
access shared resources without causing issues such as data corruption
or unexpected behavior. Has threads always been a part of Operating

System design and implementation?

2.3.7 The Critical Section Problem and Synchronization

The critical section problem is the challenge faced by multiple
processes/threads regarding the sharing of resources. Note that a critical
section 1is a piece of code that accesses and modifies shared resources.
If several processes or threads execute their critical sections at the
same time, data inconsistency and race conditions may arise, resulting
in incorrect and varying results. To avoid these problems,
synchronization mechanisms are implemented to make sure that only
one process/thread can access its critical section at a time. Protocols
that solve the critical section problem must meet three requirements,
namely mutual exclusion, progress, and bounded waiting. This means
that only one process or thread is allowed to access the critical section
atatime, aconcept known as mutual exclusion. Note that if no process
is in its critical section and some processes need to enter their critical
sections, only those processes that are not in their remainder sections
can take part in deciding which will enter its critical section next, and
such selection cannot take place indefinitely. Bounded waiting makes
sure that there is bound on the number of times that other processes are

allowed to enter their critical sections after a process has made a request
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to enter its critical section and before that request is granted. To
overcome the critical section problem several synchronization
mechanisms have been introduced. Mutex (Mutual exclusion) locks are
simple 2 state locks that can be acquired or released by a thread or a
process. The mutex ensures that a single process (or thread) holds the
mutex lock at a time, providing mutual exclusion. Semaphores are
more general-purpose synchronization mechanisms that can be used to
limit access to a given number of resources. Semaphores are integer
variables that can only be accessed through two atomic operations:
wait and signal. The wait operation: it decrements the semaphore
value, and it blocks the process or thread when the value goes negative.
The signal operation increases the value of the semaphore, and if the
value is greater than or equal to 0, a blocked process or thread is
released. The high-level synchronization constructs that encapsulate
shared data and the operations that can be applied to that shared data
are called monitors. It provides mutual exclusion by allowing only one
process (or thread) into the monitor at any time. Condition Variables
Condition variables are used to make a process or a thread wait until a
specific condition occurs. You can access shared data between threads
using constructs like Mutex, Atomic Int and other synchronization
mechanisms. It is essential to correctly implement these mechanisms to
avoid race conditions and ensure the correctness and reliability of

concurrent systems.

2.3.8 Semaphores and Classical Problems of Synchronization

Synchronization, the coordination of multiple processes to ensure
orderly execution and data integrity, is one of the fundamental
challenges in operating systems. Semaphores are a classic
synchronization data type in computer science, introduced by Edsger
W. Dijkstra, and are an incredibly useful mechanism for regulating
access to shared resources. A semaphore is an integer variable, the
value of which is never negative, that, during initialization, is only
accessed through two standard atomic operations: wait and signal. The
wait operation, also known as P (it comes from a Dutch word
"proberen", which means "to test"), is used to decrement the
semaphore value. If the value is negative then the process that is
executing wait is blocked until the semaphore value is non-negative.

On the other hand, the signal operation (also referred to as V, from the
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Dutch word "verhogen" which means "to increment") increases the
semaphore value. If any processes were blocked on the semaphore, one
is unblocked. There are two types of semaphores: binary semaphores,
which may only have values 0 or 1, and counting semaphores, which
allow any non-negative integer value. Mutual exclusion is commonly
implemented using binary semaphores, so only one process has access
to a critical section at a time. Counting semaphores, in contrast, control
access to a limited number of resources. The original value gives you
the total amount of available resources for this instance of your
counting semaphore. Semaphores offer a general solution to different
synchronization problems, in fact, the classical synchronization
problems. The bounded-buffer problem, also referred to as the
producer-consumer problem, describes a work environment with a
fixed-size shared buffer, where producers make the items that are put
in the buffer, and consumers take items from the buffer. The
Semaphores make sure the producers don't insert an item into the full
buffer and the consumers don't remove an item from the empty buffer.
The readers-writers problem is a common synchronization problem that
deals with concurrent access to a shared data set in which there are
multiple readers and only one writer. Semaphores can also be
implemented to ensure writers have exclusive access to the data set, and
that readers do not access the data set while a writer is modifying the
data set. The dining-philosophers problem consists of five
philosophers seated around a circular table, each with a plate of
spaghetti and two chopsticks. It takes both chopsticks to eat in a
philosopher way. One way not to have a deadlock, which is where
everyone is holding a chopstick and is waiting for the other, is to use
semaphores. These are classical problems that illustrate the challenges
of synchronization and the necessity of using the proper mechanisms,
such as semaphores, to correctly and effectively operate concurrent
systems. Though semaphores are powerful, they need to be used
cautiously to prevent synchronization errors which could lead to
deadlock and starvation, when processes are unable to proceed
indefinitely.

2.3.9 Deadlock Characterization

Deadlock in concurrent systems is a scheduling problem that occurs
when two or more process are blocked forever, each holding a resource

and waiting for another resource held by another process in the cycle.
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Notes

Before designing a deadlock handling mechanism, it is important to
know the features of deadlock. A deadlock can only occur under four
necessary conditions, which must hold (at the same time): mutual
exclusion, hold and wait, no preemption, circular wait. Mutual
exclusion means that resources are non-shareable i.e. only one process
can use a resource at a time. Hold and Wait: A process holding at least
one resource is requesting additional resources held by other
processes. In a no preemption scenario, resources cannot be forcefully
taken away from a process; they need to be released voluntarily by the
process holding them. Circular wait — We are having a set of waiting
process {PO, P1,..., Pn} such that PO is waiting for a resource hold by
P1, P1 is waiting for a resource hold by P2,..., Pn is waiting for a
resource hold by P0. All four of these conditions cause the processes to
hang and leave a wait, where the processes never move forward,
leaving the whole system as a standstill. Resource-allocation graphs:
These are very useful to both visualize and to analyze deadlock. A
resource-allocation graph G is defined by a set of verticesV, and a set
of edges E. The vertices are partitioned into two types, P = { P1, P2,..n
}, the set of processes currently active in the system, and R = { RI,
R2,...m }, the set of resource types in the system. If we say that there
is a directed edge from process Pi to resource Rj, written Pi — Rj, this
means that process Pi has requested one instance of resource type Rj.
Here, an edge from resource Rj to process Pi, Rj — Pi, indicates that a
resource of type Rj was allocated to process Pi. If a cycle exists in the
resource-allocation graph, there is a possibility of deadlock. If there is
only one instance of each resource type, then a cycle indicates that a
deadlock has occurred. If there are multiple instances of each resource
type, then a cycle does not necessarily indicate a deadlock. This means
you have to do additional work to see if there is a deadlock, in this case.
The deadlock characterization gives a technique to reason about the
scenarios that can lead to deadlock, and how to prevent, avoid, detect,
and recover from deadlock. By acknowledging the required conditions
and applying mechanisms such as resource-allocation graphs, system
architects can develop resilient strategies to avoid the threat of deadlock
and preserve the reliability and responsiveness of concurrent processor

systems.
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Figure 2.3.5: Deadlock
[Source - https.//www.scaler.com]

2.3.10 Deadlock Handling: Avoidance

Deadlock avoidance is the appropriate technique of eliminating
deadlock when the program executes, which ensures that the system
will not enter a deadlock state. Ithence requires the operating system
to know upfront the maximal resource needs of each process. It then
checks request on resources to see if doing so will cause deadlock. The
Banker's algorithm is a well-known deadlock avoidance algorithm,
which is inspired by a banker who grants loans to customers. The
Banker's algorithm needs every process to specify its maximum needs
in advance. In the operating system, information about available
resources, resources allocated to processes and maximum resources
required by processes are maintained. When a process requests a
resource, the system simulates the allocation to check if the resulting
state is safe. If there exists some order in which the remaining
resources can be allocated to each process then that state is called as
safe state. The resource is allocated if the resulting state is safe; else
the process has to wait. It is the Banker's algorithm which makes sure
that system always remains in safe state and there is no deadlock. But
it also has its limitations. It requires providing a declaration of
maximum resource request size in advance for each process, which is
not always possible. Computation can also be expensive since it
requires the operating system to run complex calculations to determine
if each state is safe. A different method of avoiding deadlock is the
resource-allocation graph algorithm. This algorithm is when there's
only one instance of each resource type. The system uses a resource-
allocation graph and checks it for cycles before allocating resources.

The resource is not allocated if allocating a resource will create a cycle.
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Notes

This algorithm is simpler than the Banker's algorithm, but it can only
be applied on single-instance resource types. Deadlock avoidance
methods are helpful to prevent deadlock but they incur an overhead
and not all resources can grow as per the demand. Deadlock avoidance
mechanisms in systems require careful consideration of the trade-offs
between deadlock prevention and resource usage.

Deadlock Handling:

Is a reactive approach for deadlock management, allows the system to
enter a deadlock state and detects and recovers from it. The second
approach is used by systems where it's not possible to avoid deadlocks
due to the overhead in maintaining information about the resource
needs and the lack of any advance information about the resource
needs. Periodic Checking for Deadlock; in this scheme, we check the
system for deadlock periodically. A popular technique is to utilize a
resource-allocation graph and look for cycles. A deadlock is detected
if a cycle is found. Another approach is the wait-for graph, a
modification of the resource-allocation graph that focuses on the
waiting relationships between processes. A wait-for graph has vertices
as processes and edges as waiting relationships. An edge from process
Pi to process Pj indicates that Pi is waiting for a resource that is being
held by Pj. The cycles in the wait-for graph are a deadlock. After the
deadlock is detected, the system needs to get out of that state. Many
recovery methods can be applied. One approach is to kill all processes
involved in the deadlock. While this is a very straightforward way to
do this, it can lead to a lot of work being lost. Another approach is to
kill one process at a time until the deadlock is broken. Based on like
priority, resource consumption, and the amount of work completed,
have a process chosen which will be aborted. A second recovery
strategy is preempting resources. This means stealing resources from
one process and giving them to another. You need to be careful not to
starve in this approach when a process is being preempted so many
times and it never reaches completion with its execution. The selection
of recovery mechanism depends on various aspects of the system and
the trade-off between performance and resource consumption.
Deadlock detection and recovery are flexible methods for managing
deadlocks, but they can incur overhead and cause work to be lost.

Designers of systems that need to support semantics like deadlock
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detection and recovery must evaluate these trade-offs against the rest
of their system requirements.

Deadlock Handling: Prevention

Deadlock prevention is a prevention-based scheme, this scheme tries to
remove one or more of the four necessary conditions for deadlock. If
the system can prevent those conditions from ever occurring, then
deadlock will never happen. To prevent deadlock that happens, mutual
exclusion should be removed. One way to do this is to make resources
shareable. Some resources, like printers and tape drives, are inherently
non-shareable, however. An alternative is to remove the hold and wait.
This is done by requiring processes to request all of their resources at
once before they begin execution, or by requiring that processes
release all of their resources before requesting more.

Summary

A process in an operating system is an active instance of a program in
execution, representing a fundamental unit of work within a system.
Unlike a program, which is a passive set of instructions, a process
includes the program code and its current activity, such as the value of
the program counter, contents of the processor's registers, and the
variables in use. Each process operates within its own context and
requires system resources like CPU time, memory, files, and 1/O
devices. Processes are created, scheduled, executed, and terminated by
the operating system, which ensures proper synchronization and
coordination among multiple processes running concurrently.

The state of a process reflects its current activity and can change as the
process executes. Typical process states include new (being created),
ready (waiting to be assigned to a processor), running (currently being
executed), waiting (waiting for some event like I/O completion), and
terminated (finished execution). These transitions are managed by the
operating system using a data structure known as the Process Control
Block (PCB). The PCB contains crucial information about each
process, such as process ID, current state, CPU registers, memory
limits, accounting information, and I/O status. It acts as a snapshot of
the process at any given time and is essential for process switching, as
it allows the OS to save the state of one process and load the state of
another seamlessly, enabling multitasking and efficient resource
utilization.

Multiple-Choice Questions (MCQs)
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Notes

. Which of the following is NOT a valid process state?

a) New
b) Running
¢) Terminated
d) Scheduled
(Answer: d)
The Process Control Block (PCB) contains which of the
following information?
a) Process state
b) Program counter
c) CPU scheduling information
d) All of the above
(Answer: d)

. Which operation creates a new process in an operating system?

a) Terminate

b) Fork

c) Kill

d) Swap
(Answer: b)

. Inter-process communication (IPC) allows:

a) Processes to share data and synchronize actions

b) A single process to run multiple times

c¢) The CPU to execute only one process at a time

d) A process to execute in kernel mode only
(Answer: a)

. Which CPU scheduling algorithm selects the process with the

shortest burst time first?
a) First-Come, First-Served (FCFS)
b) Shortest Job Next (SJN)
¢) Round Robin (RR)
d) Priority Scheduling
(Answer: b)

. Which of the following is NOT a characteristic of a thread?

a) Shares the same address space with other threads in the
same process

b) Requires more resources than a process

¢) Can run independently within a process

d) Improves program efficiency and responsiveness
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(Answer: b) Notes
7. Which of the following synchronization problems occurs when
multiple processes access shared resources incorrectly?
a) Thrashing
b) Critical Section Problem
c) Page Fault
d) Fragmentation
(Answer: b)
8. What is the role of semaphores in process synchronization?
a) They eliminate the need for process scheduling
b) They prevent deadlock conditions completely
c) They help control access to shared resources
d) They replace CPU scheduling algorithms
(Answer: ¢)
9. Which of the following is NOT a classical problem of
synchronization?
a) Producer-Consumer Problem
b) Readers-Writers Problem
c) Dining Philosophers Problem
d) Page Replacement Problem
(Answer: d)
10. Deadlock occurs when:
a) A process is forced to terminate by the OS
b) Multiple processes are waiting indefinitely for resources
held by each other
c) CPU scheduling fails to work
d) All processes finish execution successfully
(Answer: b)
Short Questions
1. Define a process in an operating system.
2. List the different process states and explain any two.
3. What is a Process Control Block (PCB)?
4. Name two operations on processes and explain their purpose.
5. What is Inter-Process Communication (IPC), and why is it
important?
List and briefly explain any two CPU scheduling algorithms.

= o

. What is a thread, and how does it differ from a process?

8. Define the Critical Section Problem in process synchronization.
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10.

What is a semaphore, and how does it help in synchronization?
Explain the concept of deadlock avoidance in process

management.

Long Questions

1.

10.

Explain the concept of a process and describe the different
process states with a state transition diagram.

What is a Process Control Block (PCB)? Discuss its
components and significance in OS.

Discuss the different operations on processes, including process
creation and termination.

What is Inter-Process Communication (IPC)? Explain message
passing and shared memory as IPC mechanisms.

Compare and contrast different CPU scheduling algorithms
with their advantages and disadvantages.

Explain the concept of process threads and the benefits of using
multithreading in an OS.

Discuss the Critical Section Problem and the different solutions
used to resolve it.

What is a semaphore, and how does it help in process
synchronization? Provide an example.

Explain the different strategies for handling deadlocks,
including avoidance, detection, and prevention.

Describe the Dining Philosophers Problem and propose a

solution using semaphores.

170
MATS Centre for Distance and Online Education, MATS University



MODULE 3
STORAGE MANAGEMENT

LEARNING OUTCOMES

To understand memory allocation techniques and paging.

To study virtual memory concepts and page replacement
algorithms.

To analyze file systems, access methods, and their
implementations.

To explore free space management in file systems.
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Unit 3.1: Contiguous Memory Allocation

3.3.1 Contiguous Memory Allocation

One key aspect of operating system function is memory management,
which begins with the simplest option, contiguous memory allocation.
Though deceptively simple, this technique sets the stage for
understanding more complex ones. Contiguous memory allocation =
All the data of a process is allocated in a single block. A process that is
executed must also have a memory laid out for its code and data. In
some ways it simplifies memory management for the operating system
because it only needs to track one starting address and a size for each
process's memory section. While this leads to benefits, it also presents
some major challenges; especially as far as memory fragmentation
goes. Consider a system with a fixed partition scheme (with pre-defined
number of fixed partition sizes). When a process arrives, it is assigned
to the smallest available partition that is large enough to hold it. Hence
proved external fragmentation while allocating memory using this
algorithm; where allocation takes little time and hits on memory.
External fragmentation when total free memory is enough for a
process's request but is not contiguous; So for example, after many
processes have been loaded and exited, free memory may hold many
small isolated blocks. Large process cannot get loaded even though the
total free memory is large enough, as no single free chunk is big
enough. & Variable partition schemes (try to address this by allowing
partitions to be created dynamically as per process size. When a process
loads, a current partition of the exact size is assigned. This is because
it minimizes internal fragmentation, which is created when the
allocated partition for a process is larger than the actual size, thereby
wasting space that belongs to that partition. But variable partitions add
to external fragmentation. When processes are loaded and ended,
memory gradually becomes more fragmented and memory usage is
less efficient. This compactionis a solution for external fragmentation;
it moves various processes in memory, to make the free space in
memory become a continuous block. Although effective, compaction
is neither cheap operation as it involves relocating processes and
updating their memory addresses. The cost of compaction could greatly
affect the throughput of the system, although it potentially only occurs

at large objects in systems where processes arrive and leave frequently
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as described in thin provisioning. Although mathematically Notes
straightforward, successive contiguity is burdened with issues of
fragmentation that more pliant

and effective strategies for memory management would tackle.

Operating System
{ 5MB Pl.‘ocess 1
___________________________ (Size3MB)
. ) 5MB Process 2
Fixed size ( Size 1IMB)
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Input
Main Memory Process Queue

Figure 3.1.13:Contiguous Memory Allocation

[Source - https://www.scaler.com]

Key Concepts and Challenges

o Fixed Partition Scheme: Memory is divided into a set number
of fixed-size partitions. A process is placed in the smallest
partition that can fit it. This can lead to internal fragmentation,
where the allocated partition is larger than the process, wasting
space within the partition. More importantly, it can also cause
external fragmentation because the total free space might be
large enough for a process, but it's scattered in small, non-
contiguous blocks.

e Variable Partition Scheme: This approach tries to reduce
internal fragmentation by dynamically creating partitions that
are exactly the size of the process. However, this method
worsens external fragmentation. As processes are loaded and
unloaded, the free memory becomes broken into many small,
unusable chunks.

o External Fragmentation: This occurs when there is enough
total free memory to satisfy a request, but it's not in one
contiguous block. This problem is a major drawback of

contiguous allocation schemes.
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Compaction: This is a solution to external fragmentation. It
involves moving all allocated processes in memory to
consolidate the free space into a single, large, continuous block.
While effective, compaction is a resource-intensive operation

that can impact system performance and throughput.
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Unit 3.2: Paging Techniques

3.2.1 Paging Techniques: Swapping, Paging, Segmentation,
Fragmentation

In order to improve when it comes to contiguous memory allocation,
operating systems started to use more complex methods, such as
swapping, paging, and segmentation. Swapping refers to memory
management process in which a process is moved from main memory
(RAM) to secondary storage (disk) and vice versa. When the principles
of working are full then one of the inactive processes or processes with
a low priority are transferred to the disk using Operating System and it
will free memory for other processes. When it is again needed, the
swapped-out process is brought back into main memory. Swapping is
when the memory used by a running process is written to the disk, to
free up RAM and reduce overall memory consumption, if the total
memory requirements of the running processes exceed the available
memory in RAM. This, however, incurs considerable overhead, as
moving processes back and forth from memory to disk takes a non-
negligible amount of time when compared with switching between
processes that are in memory. Paging, a more complex technique,
solves the problems of fragmentation that contiguous allocation has
many. The paging mechanism divides physical memory (Ram) as well
as logical memory (process address space) into fixed-size blocks,
namely frames (for physical memory) and pages (for logical memory).
The size of a frame is called the page size, which is usually from 4-
8KB. The pages of a process are placed into the free frames in memory
when the process is loaded. More specifically, the OS maintains a page
table for every process, which translates the logical pages used by the
process to the physical frames in which those logical pages are stored.
This enables a process's pages to be not consecutive in physical
memory, thus avoiding the issue of external fragmentation. Yet, paging
complicates internal fragmentation because the last page of a process
may not be fully used. Again, segmentation is another memory
management technique by which the logical address space of a process
is divided into a number of segments. Paging divides memory into
fixed-size pages, while segmentation allows variable-length segments.
Each process has a segment table maintained by the OS that maps base

address and limit (size) of the segment. Segmentation has the benefit of
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storing memory in a logical structure since the segments are related to
logical units of the program. They do suffer from external
fragmentation though, as segments can be of different length, leading
to gaps in physical memory. Fragmentation is the general term for
wasting memory, and it is a common problem in managing memory.
Paging has another drawback named as Internal Fragmentation since
allocated memory is greater than the required memory. In contiguous
allocation and segmentation, external fragmentation refers to the
condition of having enough total free memory, but it is spread
throughout the system in small blocks. Solving fragmentation is an
important aspect of memory management optimization and
advancement of the system performance. Many contemporary
operating systems implement a combination of paging and
segmentation in order to gain the benefits of both techniques while
minimizing their disadvantages. And, for instance, segmented paging
combines logical segmentation with fixed-size allocation (which of

course gives the best of both worlds).

Operating
System

Page 1 Page 1 4+—
Page 2 Page 2
Page 3 Page 3
Page 4 Page 4
Page 5 ‘W Page 5 Process
Page 6 Page 6
Page 7 Page 7
Page 8 Page 8
Page 9 Page 9 +—

Main Memory Pages

(Collection of Frames)

Figure 3.2.1: Paging
[Source - https://www.scaler.com]

1. Swapping

Swapping is a memory management technique that temporarily moves
a process from main memory to secondary storage (like a hard disk)
and then brings it back into memory later. This is done to free up RAM
for other processes when the main memory is full.

How it Works:

1. The OS identifies a process to be "swapped out." This is typically

an inactive or low-priority process.
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The entire process's memory image is written to the disk.

3. The freed memory can now be used by another process.

When the swapped-out process needs to run again, its memory
image is read back from the disk and loaded into a free block of
RAM.

Drawback: This method can be slow due to the high latency of disk

I/0, which is much slower than RAM access.

2. Paging

Paging is a non-contiguous memory allocation technique that solves the

problem of external fragmentation. It divides a process's logical address

space into fixed-size blocks called pages, and the physical memory into
equally sized blocks called frames.

How it Works:

1. When a process is loaded into memory, its pages can be placed into
any available frames in physical memory.

2. The pages do not need to be contiguous (next to each other) in
RAM.

3. The operating system maintains a page table for each process,
which maps its logical pages to their corresponding physical
frames.

Benefit: This eliminates external fragmentation, as a process's memory

can be spread across multiple free frames.

Drawback: It can lead to internal fragmentation, where the last page of

a process may not be completely filled, leaving some wasted space

within the allocated frame.

3. Segmentation

Segmentation is a memory management technique that divides a

process's logical address space into variable-sized blocks called

segments. Unlike paging, segments are not fixed in size and are often
used to represent logical units of a program, such as the code segment,
data segment, or stack.

How it Works:

1. The OS maintains a segment table for each process. This table
stores the base address and the length of each segment in physical
memory.

2. When a program is executed, its segments are loaded into non-

contiguous blocks of physical memory.
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Benefit: It provides a more logical view of memory from a

programmer's perspective.

Drawback: Because segments are of variable sizes, this technique can

lead to external fragmentation, as free memory can become broken into

small, unusable chunks.

4. Fragmentation is a general term for the inefficient use or waste of

memory. There are two main types:

o Internal Fragmentation: This occurs when an allocated block of
memory is larger than the size of the data or process that needs to
be stored. The unused space within the allocated block is wasted.
Paging is a technique that can lead to internal fragmentation.

o External Fragmentation: This happens when the total available
free memory is sufficient to satisfy a memory request, but it is not
in a single, contiguous block. Instead, it is scattered in many small,
non-contiguous chunks. Contiguous memory allocation and
segmentation are techniques that can suffer from external

fragmentation.
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Unit 3.3: Demand Paging

3.3.1 Demand Paging

It is a virtual memory management concept that allows a page to be
loaded into a virtual memory only when the page is needed. In classical
paging, all the pages of a process are brought into memory
immediately after the process is first invoked, even if some of these
pages were not used. Demand paging, however, loads pages on
demand, i.e., a page is loaded only when the process tries to access it.
In this way, the memory that the process only actively uses is in RAM,
thus drastically cutting down the required memory for a process to run.
A page fault happens when a process tries to access a page that is not
currently in memory. The operating system responds to the page fault
by bringing in the missing page from secondary storage (disk) and
placing it into a free frame in physical memory. The operating system
keeps track of which pages are valid (in memory) and which are invalid
(not in memory) by using a valid/invalid bit for each page in the page
table. When a page is loaded, valid bit is set to 1 else its set to 0. The
operating system will select one page currently in memory and evict it
in order to bring in the page that caused the page fault. In this case,
whichever page replacement algorithm decides to replace a certain
page. Page replacement algorithms include Common Page
Replacement Algorithms (First In, First Out - Least Recently Used -
Optimal). FIFO: Replace the oldest page in memory; LRU: Replace
the page not used for the longest time. Optimal replaces the page not
going to be used for the farthest future time, but it is not practical to
implement because it requires future knowledge. The performance of
demand paging is greatly influenced by the page replacement
algorithm used. A good algorithm should try to minimize page faults,
so as to reduce the overhead involved with disk I/O. Thrashing
happens when a process is executing so fast that it spends more time
paging than running. A page fault occurs when the number of pages
that are kept in memory at a time is less than the working set for a
process (i.e. the set of pages that a process is actively using). This poses
a serious problem, though; when thrashing occurs, the system is busy
thrashing pages and the CPU is waiting for page loads from disk more
time than it is spending in user space. The only solution left to avoid

thrashing is for the operating system to provide each process with
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enough frames to hold its working set. That was where working set
models come in handy to figure out the working set of a process and
the correct amount of frames to assign. In summary, demand paging is
an efficient memory management technique that allows for greater
flexibility in program execution and optimal memory usage. It is a key
feature of contemporary virtual memory architectures, allowing
optimal utilization of hardware resources and improving overall system

efficiency.

Swap In

Program A |::>

Swap Out

Program B <::I

Main Memory Secondary Memaory

Figure 3.3.1: Demand Paging

[Source - https://www.naukri.com ]

Advanced Demand Paging Considerations

There are a few more advanced topics concerning demand paging
beyond the scope of basic implementation. A key element of this is
managing changed pages, so-called dirty pages. If an operation
modifies a page in memory, the OS must write back the changes to
disk before replacing the page. This is generally done by keeping a
dirty bit in the page table, which is set when a page is modified. When
it is determined that a page needs to be replaced, the operating system
checks the dirty bit. If the bit is set, the page will be written back to
disk, if not, it gets discarded. However, keeping consistency across the
data has an implication that adds an overhead to the paging
replacement process which is an impact of the write-back operation.
Another factor is the use of shared pages. This reduces memory usage
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and can lead to performance improvements because shared pages allow
the same physical page to be used by multiple processes in-memory.
There are system-wide caches as well, for example, if there are
multiple processes running the same program, these processes can
share the code pages of the program. The pages are usually sharing
implemented with a reference count, which counts the how many
processes are sharing the page right now. If a process doesn’t need the
shared page anymore, the reference count is decremented. The page
can be reclaimed once the reference count drops to zero. In fact, you
are trained on shared pages although, copy-on-write (COW) pages are
given higher efficiency. The fork system call creates a new process, and
initially the pages are shared between the parent and the child. On the
other hand, as soon as one of the processes tries to modify a shared
page, a copy of the page gets created and the modification is applied to
the copy. Such system call results Page Fault on page level; So very
minimal pages are copied on process creation. You can also do things
like page buffering, which works to improve the performance of
demand paging by keeping a pool of free frames. When a page fault
happens, the operating system can easily take a free frame from the
pool, thus improving the latency of retrieving a page. So, before they
are really used, they put it in a memory page buffer, that is called page
buffering.

3.3.2 Page Replacement Algorithms and Virtual Memory

With the shift to modern OS, virtual memory is the backbone that
allows processes to run without needing to load their entire memory
into physical RAM. The trick is enabled by a subtle combination of
hardware and software working behind the scenes: pages — the discrete
units of virtual memory are transferred between the limited main
memory and more commodious secondary storage as needed. The
process of swapping pages in and out of memory is allowed, but
requires implementations of effective algorithms to practice a certain
strategy for when to evict a page to load in a new one to make it more
efficient. This approach is complicated, however, because the behavior
of a process is difficult to predict, and it is not easy to say which pages
are the least likely to be needed immediately. The earliest and one of
the conceptually simplest algorithms is called the First-In, First-Out
(FIFO) algorithm. It works on the principle of replacing the oldest page
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in memory. Although simple to implement, FIFO is subject to Belady's
anomaly, in which increasing the number of page frames may
sometimes result in an increase in the number of page faults, which is
counterintuitive and undesirable. In contrast, the Least Recently Used
(LRU) algorithm looks to evict a page that has not been accessed for
the longest time. The hint behind this algorithm is localization which
explains that recently accessed memory addresses are likely to be
accessed again in the near future. LRU is often more efficient than
FIFO, but it requires keeping track of a history of page usage, which
can have a non-negligible cost. Access time journals (aka workless
access time journal devices) (or seemingly all-in-ones (with pagetable
cache ontop of workless ram) computelemens or what have you) back
ends usually rely on hardware (counters getting set to zero (max delay)
on page access) to track access times. Page Replacement Algorithms

Belady's optimal (OPT) algorithm is a theoretical but unattainable
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Figure 3.3.2: Page Replacement Concept

optimum for page replacement.

The Optimal (OPT) algorithm. The page replacing Algorithm is the
best theoretical optimum scope for page replacement. It replaces the
page that will not be used for the longest period of time in the future.
Please note: OPT offers the optimal page fault rate; this is how it is
defined; however, in practice, it requires knowledge of future memory
accesses, which are impossible to have in real life, and hence,
impractical. Nevertheless, OPT is a good baseline to use for estimating
the performance of other page replacement algorithms. The clock

replacement algorithm, also called the Second Chance algorithm,
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provides a compromise between the simplicity of FIFO and the
efficiency of LRU. It has a circular queue of pages, and a use bit for
each page. When it’s time to replace a page, the algorithm walks down
the queue, resetting the use bit for every page it sees. If a page with a
cleared use bit is found, it is replaced. When all pages have their use
bits set, the algorithm resets use bits and keeps traversing the queue
until a page with a cleared use bit is encountered. Because it is efficient
and does not suffer from Belady's anomaly, the Clock algorithm is
widely used in many operating systems. The Clock algorithm and its
variants (e.g. Not Recently Used algorithm) refine the algorithm by
taking the use bit and modified bit (whether or not the page has been
modified since loading into memory) into account. This allows the
algorithm to focus on replacing clean pages before dirty pages, which
can save on the cost of writing existing modified values back to
secondary storage. Working Sets Working sets also help us understand
page replacement. A working set is the collection of pages being
actively used by a process over a time interval. Working set model: The
working set model tries to keep the working set of the process in the
memory to reduce page faults and improve performance. The model
requires estimating the size of the working set, which is difficult to do.
Thus, it does not give the complete image but it serves its purpose by
being a useful guide to prevent the memory from being shredded into
million pieces in a Virtual memory system. Another algorithm is called
the page fault frequency (PFF), which dynamically allocates page
frames to a process depending on its page fault rate. In performing this
algorithm, if the rate of page fault is high, the number of page frames
gets increased by the algorithm, and if the page fault rate is low, the
number of page frames gets decreased. By adapting in this manner,
memory usage is kept optimized, and the system's performance
benefits. One of the major concerns in the context of virtual memory is
the idea of thrashing, which is when a process spends more time
swapping pages in and out than executing instructions. These working
sets are what's stored in the system memory, including RAM, which is
why thrashing happens. Operating systems, to successfully eliminate
thrashing, can use load control, which is the adjustment of the level of
multiprogramming (the number of processes that can be in execution at
a given time), and working set. A study of an interface between

hardware and software 1is essential for understanding the
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implementation aspects of virtual memory. MMU (Memory
Management Unit) is a hardware unit that translates a virtual address
to a physical address from the physical address to a page table mapping
virtual memory to physical memory In contrast, the operating system is
responsible for maintaining the page table--the data structure that keeps
track of the mapping between virtual and physical pages--and executing
the page replacement algorithm. The performance of virtual memory
relies on how well this teamwork works. Though for the simplest sense,
the modern operating systems are still reliant on the base concepts of
page replacement but they also have integrated the concepts of demand
paging where the pages are loaded from disk into physical memory only
when they are needed and page clustering where similar pages are
clustered together in such a way that the number of page faults could
be less. The use of these approaches, in combination with smart page
replacement algorithms, allows virtual memory to operate smoothly
and effectively, facilitating the proper performance of processes,
regardless of the limited number of physical memory resources that the

system possesses.

3.3.3 File Concepts

Files are fundamental abstractions in operating systems, providing a
structured and persistent mechanism for storing and retrieving data.
They serve as the primary means for users and applications to interact
with data, whether it be documents, images, executables, or system
configuration files. A file, at its core, is a named collection of related
information that is recorded on secondary storage, such as hard disks,
solid-state drives, or optical media. The concept of a file encompasses
not only the data itself but also metadata, which includes information
about the file's attributes, such as its name, size, creation date, and
access permissions. The file system, a crucial component of the
operating system, is responsible for organizing and managing files and
directories. It provides a hierarchical structure that allows users to
organize files into directories, creating a logical and intuitive file
organization. Directories, also known as folders, can contain both files
and other directories, forming a tree-like structure that facilitates
efficient file management. The file system also manages the allocation
of storage space, ensuring that files are stored and retrieved efficiently.

Different file systems employ various data structures and algorithms to
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manage storage space, such as linked lists, bitmaps, and inodes. The
choice of file system can significantly impact performance, reliability,
and security. File naming conventions vary across operating systems,
but they generally adhere to certain rules and guidelines. File names
typically consist of a base name and an optional extension, separated
by a period. The extension indicates the file type, such as .txt for text
files, .jpg for image files, and .exe for executable files. Operating
systems impose restrictions on the length and characters allowed in file
names to ensure compatibility and avoid conflicts. File types are
essential for identifying the format and structure of a file. Operating
systems recognize various file types and associate them with specific
applications. This allows users to open and manipulate files using the
appropriate software. File types can be classified into several
categories, such as text files, binary files, executable files, and directory
files. Text files contain human-readable characters and are typically
used for storing documents, source code, and configuration files.
Binary files contain non-text data, such as images, audio, and video,
and are typically processed by specialized applications. Executable
files contain machine code that can be executed by the operating
system. Directory files contain information about other files and
directories, forming the hierarchical structure of the file system. File
access methods determine how data is accessed and manipulated within
a file. Sequential access is the simplest access method, where data is
accessed in a linear order, from the beginning to the end of the file. This
method 1is efficient for processing large files that are accessed
sequentially, such as log files and backup files. Direct access, also
known as random access, allows data to be accessed in any order,
regardless of its position in the file. This method is efficient for
accessing specific records or data elements within a file, such as
database files and index files. Indexed sequential access combines the
advantages of sequential and direct access. It uses an index to locate
specific records within a file, allowing for both sequential and direct
access. This method is commonly used in database management
systems and file systems that require efficient access to large amounts
of data. File attributes provide information about the characteristics of
a file, such as its name, size, creation date, modification date, and
access permissions. File attributes are stored in the file's metadata and

can be accessed and modified by users and applications. Access
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permissions control who can access and manipulate a file. They
typically include read, write, and execute permissions, which determine
whether a user can read, modify, or execute a file. Access permissions
can be set for different user groups, such as the file owner, group
members, and other users, ensuring that files are protected from
unauthorized access. File operations are the actions that can be
performed on files, such as creating, deleting, opening, closing,
reading, writing, and renaming. These operations are typically provided
by the operating system through system calls, which allow applications
to interact with the file system. File systems employ various techniques
to ensure file integrity and reliability, such as journaling, which logs
file system changes before they are applied, and checksums, which
detect data corruption. These techniques help to prevent data loss and
ensure that files are stored and retrieved correctly. File caching is
another technique used to improve file system performance. It involves
storing frequently accessed file data in memory, reducing the need to
access secondary storage. File caching can significantly improve
performance, especially for applications

3.3.4 File System Structures and Implementation

The file system structures and implementation is what underlines any
operating system's capability to manage persistent data. Why is there a
file system? At the most basic level, a file system is a natural way of
organizing data when stored, enabling users and applications to access,
modify and share data. It abstracts away the intricacies of physical
storage devices, providing a straightforward interface for data
management. From raw storage blocks to a coherent file system is a

long and complex journey involving a myriad of design decisions and
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Figure 3.3.3: File System in OS
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implementation details, each of which greatly impact the end product's
performance, reliability, and security. At the core, file system is built
upon a hierarchical structure usually represented as a tree, where
directories (or folders) act as containers for files and other directories.

Such a hierarchical structure encourages a logical organization of
related files, making it more navigable and manageable. At the very
top of the hierarchy is the root directory, which serves as the entry
point for the entire file system. In this arrangement, files are located by
their pathnames lists of directories to navigate through until the desired
file is located. Must also store metadata (e.g. names, size, timestamps,
permissions, owner, etc.) in addition to the actual data content. This
metadata is important in regards to file management operations and is
often stored in data structures such as inodes or file allocation tables.
A file system must manage both data and metadata, and the efficient
organizing and accessing of this information is key to performance.
Different allocation policies are used by file systems, which have
effects from fragmentation to access speed to storage utilization. Here
are some of the most commonly used methods of allocation: contiguous
allocation, linked allocation, and indexed allocation. Discontinuously,
on the other hand, is efficient with access but may leave behind
external fragmentation. In linked allocation, the blocks are connected
using pointers, which can reduce fragmentation but uses more memory
for random access. In contrast, indexed allocation creates an index
block that points to data blocks, allowing random access but also
requiring more storage for the index. The allocation strategies are
chosen based on the expected usage patterns and performance
requirements for the file system. Beyond merely managing data and
metadata, file systems must grapple with concurrency control, crash
recovery, and security. Concurrency control mechanisms, including
locks and transactions, provide the ability for multiple processes in a
system to read and write files without corrupting data. Crash recovery
mechanisms such as journaling, logging, etc., allow the file system to
restore its consistency post a system crash. Such as access control lists
(ACLs) and encryption help to secure sensitive data by preventing
unauthorized access. How these features are designed and
implemented have a major effect on the file system's reliability and

robustness.
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The implementation of a file system involves a complex interplay of
data structures, algorithms, and system calls. The operating system
kernel plays a central role in managing the file system, providing an
interface between user applications and the underlying storage devices.
The kernel maintains data structures that represent the file system
hierarchy, metadata, and allocation information. These structures are
often stored in memory to facilitate fast access and manipulation. When
a user application requests a file operation, such as opening, reading,
writing, or deleting a file, the kernel translates the request into a series
of operations on the storage device. This involves locating the file's data
and metadata, allocating or deal locating storage blocks, and updating
the relevant data structures. The kernel provides system calls, such as
open(), read(), write(), close(), mkdir(), and rmdir(), which serve as the
interface between user applications and the file system. These system
calls encapsulate the low-level details of file operations, allowing
applications to interact with the file system in a standardized and
platform-independent manner. The implementation of these system
calls involves intricate algorithms for navigating the file system
hierarchy, managing metadata, and accessing storage devices. For
instance, the open() system call typically involves searching the
directory structure for the specified file, verifying access permissions,
and allocating a file descriptor to represent the opened file. The read()
and write() system calls involve locating the file's data blocks,
transferring data between the storage device and the application's
memory, and updating the file's metadata. The close() system call
releases the file descriptor and updates the file's metadata, such as the
last access time. The kernel also manages the buffer cache, a region of
memory used to cache frequently accessed file data and metadata. The
buffer cache improves file system performance by reducing the number
of disk accesses, which are significantly slower than memory accesses.
When an application requests data from a file, the kernel first checks
the buffer cache. If the data is present in the cache, it is retrieved
directly from memory, avoiding a disk access. If the data is not in the
cache, the kernel reads it from the disk and stores it in the cache for
future use. The buffer cache employs various replacement algorithms,
such as least recently used (LRU), to manage the cached data and
ensure that frequently accessed data remains in the cache. The

implementation of the buffer cache is critical for file system
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performance, as it directly impacts the speed at which applications can
access and manipulate files.

The choice of file system implementation significantly impacts the
overall performance and reliability of the operating system. Different
file systems employ varying data structures, algorithms, and techniques
to manage data and metadata, each with its own set of trade-offs. For
example, the FAT (File Allocation Table) file system, commonly used
in older versions of Windows, uses a simple linked allocation scheme
and a flat directory structure. While FAT is relatively simple to
implement and understand, it suffers from performance limitations,
especially with large files and fragmented disks. The NTFS (New
Technology File System), used in modern versions of Windows,
employs a more sophisticated B-tree structure for managing metadata
and supports advanced features such as journaling, access control lists,
and encryption.NTFS offers better performance and reliability than
FAT, but it is more complex to implement and manage. The ext4
(Fourth Extended File system), commonly used in Linux distributions,
also employs a B-tree structure for metadata management and supports
features such as extents, which improve performance for large files, and
delayed allocation, which reduces fragmentation.Ext4 is known for its
performance and scalability, making it suitable for a wide range of
applications. The implementation of a file system also involves
considerations for portability and interoperability. Operating systems
may support multiple file systems, allowing users to access data stored
on different devices or partitions. The kernel must provide a common
interface for accessing these file systems, abstracting the differences in
their underlying implementations. This involves the use of virtual file
system (VFS) layers, which provide a uniform interface for file system
operations, regardless of the specific file system being used. The VFS
layer translates generic file system operations into specific operations
for the underlying file system, enabling applications to interact with
different file systems in a consistent manner. The implementation of
the VFS layer is crucial for supporting multiple file systems and
ensuring interoperability between different operating systems.
Furthermore, the implementation of distributed file systems, such as
NFS (Network File System) and AFS (Andrew File System), involves
additional complexities related to network communication, data

consistency, and fault tolerance. Distributed file systems allow multiple
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computers to access and share files over a network, enabling
collaborative work and resource sharing. The implementation of these
file systems requires careful consideration of network protocols,
caching strategies, and security mechanisms to ensure efficient and
reliable data access. The design and implementation of file systems
continue to evolve, driven by advancements in storage technology,
changing user requirements, and the need for improved performance,
reliability, and security. In essence, the file system implementation
constitutes a critical component of the operating system, bridging the
gap between user applications and physical storage devices. It involves
intricate algorithms, data structures, and system calls to manage data
and metadata effectively. The kernel plays a pivotal role in
orchestrating file system operations, providing an interface for user
applications and managing the buffer cache to enhance performance.
The choice of file system implementation significantly impacts the
overall performance, reliability, and security of the operating system.
Different file systems offer varying trade-offs, and the selection
depends on the specific requirements of the system and its intended
usage. The implementation of the VFS layer enables interoperability
between different file systems, while distributed file systems facilitate
network-based file sharing. As storage technology advances and user
demands evolve, file system implementations continue to adapt and
innovate, ensuring efficient and reliable data management. The
efficiency of a file system is judged by its speed of access, its reliability
in the face of system failures, and its ability to manage storage space
effectively. The speed of access is determined by factors such as the
allocation strategy, the buffer cache size, and the disk access time. The
reliability is ensured through mechanisms such as journaling, logging,
and redundant storage. The ability to manage storage space is
influenced by the file system's ability to minimize fragmentation and
utilize available space efficiently. Modern file systems also incorporate
features such as data compression and encryption to enhance
performance and security. Data compression reduces the amount of
storage space required for files, while encryption protects sensitive data
from unauthorized access. The implementation of these features
requires careful consideration of performance trade-offs and security
implications. The future of file system implementation lies in

addressing the challenges of managing increasingly large and complex
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data sets, supporting diverse storage technologies, and ensuring
security and reliability in distributed and cloud-based environments. As
data continues to grow exponentially, file systems must evolve to
handle the demands of modern computing and data management.
Finally, the intricacies of file system implementation extend beyond the
core functionalities of data storage and retrieval. The modern
computing landscape demands sophisticated features that cater to
diverse user needs and evolving technological paradigms. Features
such as snapshots, which allow for point-in-time recovery of file system
states, are increasingly vital for data protection and disaster recovery.
Similarly, copy-on-write (COW) techniques optimize storage usage
and enhance performance by delaying physical data copying until
modifications are made. These advancements underscore the
continuous innovation within file system design, driven by the need for
efficiency and resilience. Furthermore, the rise of cloud computing has

necessitated the development of scalable and distributed

3.3.5 Free Space Management: Principles, Techniques, and
Implementation

It is the core of a congruous operating system to expose persistent data
which lives inside its own file system structures and implementation.
Essentially, file system is a computing method known as the logical
organization of data being stored, so the user and any application can
read, edit or share information easily. It abstracts the chaff of physical
devices into a form that is much more useful, which allows you to deal
with data, rather than devices. Creating a complex file system on top
of ordinary storage blocks requires careful thought and systematic
execution: every decision at the design and implementation stages of
the project can have a tremendous impact on speed, dependability, or
even safety of data. Essentially, a file system is based on a hierarchy
one that is normally represented as a tree in which directory (folder)
nodes are used to contain files and other directory nodes. This Top-
Down Organization Makes for Naturally Related Files That Are More
Effortlessly Navigable and Manageable. The highest node in the
hierarchy is called the root directory, which provides the entry point to
the whole file system. Under this structure, files are referenced by their
pathnames, which define the path through the directory hierarchy to
the file. The file system has to keep track of metadata that describes file
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names, sizes, creation and modification timestamps, permissions, and
ownership data in addition to the actual data itself. This metadata is
essential for file management operations and is usually stored in data
structures such as inodes or file allocation tables. Efficient organization
and retrieval of data and metdata is paramount to the performance of
the file system. There are a number of different allocation strategies
that a file system can use to allocate the real physical space, which has
implications for fragmentation, speed of access, and overall utilization
of storage space. The most common methods include contiguous
allocation, linked allocation, and indexed allocation. In contiguous
allocation a file gets a sequence of blocks, providing faster sequential
access but causing external fragmentation. Linked allocation links
blocks using pointers which avoids fragmentation but adds random
access cost. Reloading of pointers from data block example in Indexed
allocation Indexed allocation uses index block that contains pointers to
data blocks which allows random access, but comes at the price of using
more space to store the index. Which allocation strategy to chose
depends on the access patterns and performance of the file system. File
systems also deal with concurrency control, crash recovery, and
security, among other things, in addition to data and metadata
management. Mechanisms for concurrency control, such as locks and
transactions, help ensure that multiple processes can simultaneously
access and modify files without corrupting the contents. Crash recovery
procedures (such as journaling and logging) allow the file system to
return to a consistent state after a system crash. Sensitive data is
safeguarded by security measures like access control lists (ACLs) and
encryption. What and how these features are designed and
implemented has a great influence on the reliability and robustness of
file system.

Theoretical Foundations and Fundamental Algorithms

The figure (left) shows how the operating system kernel manages the
file system, acting as an interface between the user applications and the
underlying storage devices. Data structures that represent the file
system hierarchy, metadata and allocation information are maintained
by the kernel. These are usually kept in the memory to enable them to
be accessed and modified quickly. When a user application needs to
perform a file operation like opening, reading, writing, and deleting a

file, the kernel converts that request to a series of operations on the
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storage device. This includes finding the file's data and metadata,
allocating or deal locating storage blocks, and wupdating the
corresponding data structures. User applications interact with the
system calls provided by the kernel, including open, read, write, close,
mkdir, and rmdir; these function calls act as the interface to the file
system. These system calls abstract the underlying complexities of file
manipulation, enabling applications to communicate with the file
system in a uniform and OS-agnostic approach. Basic file system
functionality: File systems provide a set of system calls for operations
like opening, reading, writing, and closing files. The open system call
usually requires traversing the directory structure to find the requested
file, checking access rights, and allocating a file descriptor to represent
the opened file. The read and write system calls go through finding the
file's data blocks, moving blocks of data around from the storage
device to the memory of the application and updating the file's
metadata, etc. assert close fd The close system call closes a file
descriptor and updates the file's metadata (e.g. last access update). The
kernel also controls a method called a buffer cache, which is a portion
of memory that is used to store file and metadata that is frequently
accessed. The post cache improves file system performance by
reducing the number of necessary accesses to disk, which are orders of
magnitude slower than memory accesses. It works by checking a cache
that sits between the application and the file itself. When there are a
huge number of records, this greatly speeds up data retrieval since the
data is only fetched from the memory, not from the disk. If the data is
no longer on the cache, the kernel fetches it from the disk and places it
in the cache for subsequent access. It uses various replacement
algorithms, including least recently used (LRU) as examples, to
efficiently manage the cached data (more frequently accessed data
should remain in the cache). The buffer cache is responsible for file
system performance, which is what makes every application read and

write files faster.

3.3.6 Memory Allocation Strategies and Fragmentation
Management

In other words, memory allocation strategies are tactical
implementations of free space management principles, moving us from

theoretical constructs to systems that balance competing objectives.
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Choosing the right allocation strategy is largely influenced by workload
characteristics, hardware architecture, and application needs. The
consecutive-fit strategies first-fit, next-fit, best-fit, and worst-fit
strategies only differ in the search policy for free lists. Unlike first-fit,
which always starts from the beginning of the free list, next-fit
continues from the last allocated location, which likely improves
locality but may fragment hot sections in memory over time. The best-
fit and the worst-fit strategies optimize for different goals by the former
minimizing the short-term waste of memory at the cost of creating
completely unallocatable small fragments while the latter preserves the
large continuous regions of memory at the cost of short-term wastage.

One example of a power-of-two strategy is the buddy system, which

r

v

First-Fit

Best-Fit Next-Fit

Worst-Fit

Figure3.3.4: Memory Allocation strategies

only allows for allocations to power-of-two sizes, making bookkeeping
easier; the drawback is internal fragmentation. If a block is freed in this
system, it can be combined with its buddy (the adjacent block of the
same size) to make a bigger block, which may make it possible to
mitigate external fragmentation.

Slab allocation, introduced in solaris, is a technique where memory
blocks are pre allocated (called slabs) for certain types of objects,
making it because each allocated object knows its size and freeing the
memory blocks for more easy insertion of allocated objects. Segregated
free lists keep a separate pool for each size class, allowing for fast
allocation of common sizes and improved locality, but at the cost of
increased overall memory consumption due to potential fragmentation,
since a smaller allocation won’t fit into the pool of a larger allocation.
These kinds of allocators are typically bitmap-based, meaning that they
store the state of each byte of memory in a bit vector very compact but
slightly slower allocation than with list-based allocators. The main
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problem with free space management is fragmentation, which occurs
when the free memory is broken into non-contiguous nodes so blocks
cannot be fully utilized, which has two kinds external fragmentation
(inaccessible gaps between allocated blocks) and internal
fragmentation (the space allocated but not actually used). Many
different techniques used in the implementation of allocation strategies
to avoid fragmentation such as split ( to break down the larger blocks
to satisfy smaller requests), coalescing (the merger of two adjacent free
blocks), compaction (the process of moving allocated objects to give
larger spaces of free in a contiguous manner), and size rounding (the
practice of standardizing the size of allocations, therefore, avoiding
very small ones) These techniques hit different performance notes
depending on the allocation profile of the application: programs that
allocate lots of short-lived objects benefit from allocation-time
optimizations like generational schemes, whereas long-running
systems are characterized by their small but more unpredictable
lifetimes and require balanced techniques that avoid the accumulation
of fragmentation over extended periods of time. Adaptive allocation
strategies monitor their workload and adapt their behavior according to
observed workload properties, changing policies when needed, for
example, depending on memory pressure or allocation patterns.
Adapting request optimization strategies dynamically based on data
regarding allocation requests, memory usage over time, and
fragmentation statistics. How freed memory is retained (or not) also
affects fragmentation and performance through memory reservation
policies, which dictate how memory is provisioned for use beyond
immediate needs: over-reserving memory decreases fragmentation but
wastes memory resources, while under-reserving memory (to keep it
less fragmented) means that you have to do increasingly frequent
resizing operations that involve costly system calls or reorganization of
memory.

Operating System Memory Management and Virtual Memory
Integration

The most obvious and important implementation of free space
management principles is in operating system memory management,
which gets instrumental as the bridge between hardware resources and
application needs. Most modern operating systems implement a layered

architecture on the topic of memory management, utilizing a virtual
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memory space that provides an additional layer of abstraction
separating the viewpoint of the application from the physical structure
of the storage devices. Giving this sort of abstraction allows advanced
free space management techniques that would simply not be possible
in systems with only physical memory. The virtual memory I/O sub-
system will divide the address space to fixed size pages (usually 4KB

OPERATING SYSTEM MEMORY MANAGEMENT &
VIRTUAL MEMORY INTEGRATION

VIRTUAL MEMORY PHYSICAL MEMORY (RAM)
(LOGICAL VIEW)
Process A (Pages 0-3 = B ! ﬁ
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- 2 |
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= < - T - |
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between RAM & Disk. Unsued space within allocated blocks. A
Figure3.3.5: Operating System Memory Management and Virtual Memory Integration

up to 64KB) which will be mapped to physical frame when using page
tables, and use Translation Lookaside Buffers (TLBs) to reduce the
address translation process. This paging mechanism adds a distinct type
of free space management at several levels: free virtual address ranges
within each process's address space, free physical memory frames, and
pages moving between main memory and secondary storage via page
replacement algorithms. During such periods the operating system free
space manager needs to balance conflicting requests from different
processes and ensure that the system remains responsive and stable at
different load levels. Demand paging, which is bringing pages into
memory and still keeping them on disk until they are accessed stands
as a more specialized version of the lazy allocation and seeks to
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improve memory resource utilization as it postpones the physical
resource commitment to pages until the very moment where such pages
are required. Low-level page replacement policies like LRU, Clock,
Working Set, and ARC carry out advanced free space management
techniques that follow past fault experiences to anticipate future access
patterns. Many operating systems have a mechanism called memory
over commit that adds a level of abstraction to memory management
the total of all virtual memory allocated can exceed the amount of
physical memory available; it allows the free space manager to act as if
it had all the resources it doesn't currently have at its disposal, based on
statistical multiplexing, keeping in mind that requesting all allocated
memory in the same time is rare. Operating systems provide multi-level
free space management at diverse granularities with distinct strategies:
coarse-grained management of large contiguous regions needed for
memory-mapped files or shared memory segments, medium-grained
management for process heap allocations and fine-grained management
for kernel-internal data structures. Most kernel physical frame
allocators use the buddy system, zones, or some hybrid which tries to
optimize performance and memory used by balancing the requirements
of both. Memory compaction methods are used to periodically
defragment physical memory into larger contiguous ranges, resulting
in larger contiguous physical memory to service enormous pages
(megabytes to gigabytes sized pages) on with less TLB pressure on
applications with sizable working collections. Operating system free
space manager and processor Memory Management Unit (MMU)
integration, in particular under NUMA (Non-Uniform Memory
Architecture), where memory access time varies as a function of the
distance between processor and memory location, adds more
complexity. Modern OS uses page migration and allocation policies to
favor local memory allocation while balancing the load amongst the
memory nodes. Free space management is furthermore complicated
when the kernel needs to deal with hardware prefacers, cache
hierarchies, and memory controllers, as decisions about where to place
memory affect not only how well you are packing the boxes but also
the latency of access to boxes and the use of bandwidth. Specialized
memory types such as persistent memory (PMEM) or high-bandwidth
memory (HBM) add even more complexity to free space management

by creating heterogeneous memory pools with varying performance
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characteristics, cost profiles and persistence guarantees, necessitating
sophisticated tiring and placement algorithms.

User-space Allocators: Design, Implementation, and Optimization
As the primary interface from applications to the operating system
memory management facilities—with each user-space memory
allocator utilizing their own sophisticated free space management
techniques tuned to application-specific workloads while abstracting
away system calls and virtual memory operations. Some allocators
allocate memory in bulk from the OS using sbrk or mmap or some other
syscall, and implement free space management through return stacks
and per-thread caches as optimizations on top of the more granular
allocations. General-purpose  allocators like  malloc/free
implementations must strike a balance between performance across a
variety of workloads with unpredictable allocation patterns, object
lifetimes and size distributions. These allocators are designed with
attention to thread safety, cache locality, fragmentation, and allocation
speed. There are a variety of production-quality implementations such
as ptmalloc (the allocator used by GNU libc), jemalloc, tcmalloc, and
mimalloc which in combination cover many points in the design space
each with a different focus on different aspects of the allocation
problem. Ptmalloc uses per-thread arenas to avoid contention, where
each of these arenas implements a hybrid best-fit and segregated fit
algorithm. Jemalloc, on the other hand, focuses on reducing
fragmentation by using a carefully chosen set of size classes and
regularly purging unused memory, making it especially well-suited for
long-lived applications. The primary focus of tcmalloc is scalability in
multi-threaded environments using thread-local caches and a central
heap for pages, while mimalloc emphasizes security and performance
by techniques like eager coalescing and secure free lists. Specialized
allocators are optimized for certain workload characteristics: pool
allocators preallocate memory for objects of a single size, which allows
for very rapid allocation and deal location in returns for absolute
flexibility; region-based allocators (aka arena allocators) allow only
bulk deal location, simplifying memory management for phases of a
computation with well-defined lifetimes; and object-specific allocators
will implement custom strategies that suit particular data structures or
usage patterns. In garbage-collected environments, free space

management encompasses memory reclamation by means of automated
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compaction, and allocators that are tailored to work with collector
algorithms. These allocators commonly reflected fast paths for
allocation, object contiguity to allow efficient collection, and
management of metadata for efficient reference tracking. Mark-sweep
collectors want allocators that can effectively reuse variably-sized free
blocks, and copying collectors capitalize on bump-pointer allocation
strategies over if contiguous memory regions. Thread-safe memory
management functions provide behavioral guarantees that help ensure
safe usage in multi-threaded environments. Modern allocators utilize
strategies to reduce contention, such as thread-local caches, lock-free
data structures for common operations, and fine-grained locking
approaches that improve parallelism at the cost of more complex
memory handling. Optimizing the performance of user-space allocators
requires clever engineering set of practices like size classes where the
sizes of various classes were designed to find the trade-off between
internal fragmentation and management overhead, hot/cold splitting,
perfecting, and alignment of each slab on the heap to help utilization of
the hardware. State-of-the-art allocators utilize hardware features, e.g.,
transparent huge pages, non-temporal instructions, and cache control
primitives, to achieve high performance. Security has become an
important consideration in the design of allocators, and many modern
allocations have incorporated additional features such as guard pages,
canaries, randomization of object addresses, and even separation of the
metadata of objects from the objects themselves, to mitigate issues
such as buffer overflows, use-after-free vulnerabilities, and double-free
attacks. Production allocators are common with cross-system memory
management tricks like madvise calls, decommitting of unused pages,
memory compaction and so on, which reduce physical pages and
vastly enhance overall performance. Another important aspect of
modern allocators is their debug ability and introspection capabilities,
with support leak detection, heap validation, allocation tracking,
detailed statistics gathering, etc. to aid development and debugging
efforts.

3.3.7 Specialized Free Space Management Systems

Most memory allocators deal with general-purpose usage, but requires
for more specialized free space management systems that can fit the
needs of specific domains also are common an impressive

demonstration of how the core ideas of memory management can be
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customized to specific restrictions and optimization possibilities. While
database management systems (DBMS) employ a buffer pool manager
responsible for many optimizations triggered by the integration of a
specialized free space manager and the in-memory database page
cache, the forced-page-layering policies can go beyond simple regency
used within memory even to page dirtyness, and I/O scheduling
opportunities, and query execution plans. It is common for these
systems to include their own application-level memory allocators that
are attuned to database workloads, with features such as block-oriented
allocation, specialized structures for index nodes, and separate pools
for different object types. Another area is they can record information
about free space availability, which file systems usually do with a
bitmap, extent trees, free lists, etc. Copy-on-write file systems such as
ZFS and Btrfs use novel strategies for file space that is free but that also
adheres to transactional semantics, while log-structured file systems
like F2FS organize free space around sequential writes. Free space
management techniques for real-time systems trade off memory
utilization efficiency for bounded allocation and deal location times,
which is often more critical than memory utilization efficiency in these
systems. These systems often seldom use variable latency techniques
like global coalescing or complex search algorithms where the time
complexity can rapidly increase, in favor of a combination of pre-
allocated pools, static partitioning, or scope-based memory allocation.
High-performance computing (HPC) environments use specialized
allocators that are tuned for extreme levels of parallelism, NUMA
awareness, and dedicated computation patterns. This includes
topology-aware allocators, custom alignment for vectorized access,
and integration with job scheduling systems for whole-node memory
usage. Graphics Pipelines use domain-specific memory management
for resources such as textures, frame buffers, and geometry data, with
custom allocators that understand the 2D or 3D nature of the resources
and hardware-specific alignment and padding requirements. Modern
GPU compute frameworks offer unified memory models with
sophisticated free space management that crosses host and device
memory and automatically migrates data based on access patterns,
hiding the complexity of explicit transfers. However, embedded
systems have limited memory resources and rely on specialized free

space management techniques that are applied based on specialized
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constraints such as statically allocated objects that require determinism,
or objects of fixed size requiring a pool-based allocation as well as
custom fragmentation mitigation techniques that exploit application-
specific information about allocation patterns and lifetimes. High-
throughput, low-latency network stacks employ zero-copy buffer
management and must use specialized memory pools for common
packet sizes, present in systems such as packet processing systems.
Garbage collection systems are perhaps the most specialized type of
free space management, containing techniques such as generational
collection, concurrent marking, incremental compaction, and region-
based collection that take advantage of specific properties and
information from the managed languages and runtime environments.
Just-in-time (JIT) compilers manage code memory according to their
unique needs such as executable memory, alignment requirements in
addition to constant caches to invalidate instructions. For example,
hypervisors and virtual machine monitors maintain multi-level free
space management that must account for physical memory allocation
to virtual machines and be able to support features such as memory
ballooning, page sharing by using deduplication, and live migration
between physical hosts. Container runtimes use specialized memory
management techniques that work with cgroup limits, accelerate page
cache pressure and enable efficient copy-on-write for container images.
Big data frameworks also have custom memory management systems
understanding the lifecycle of distributed computations, with
specialized techniques for spilling to disk, managing data from shuffles,
or leveraging the memory of heterogeneous nodes. When it comes to
in-memory databases and caching systems, free space management is
typically optimized for key-value storage using techniques such as log-
structured memory allocation or slab allocation to minimize
fragmentation and maximize throughput.

Future Directions and Emerging Research in Free Space
Management

The state of device-free space management is constantly equipped to
navigate these shifts driven by technologies, workload characteristics,
and computing paradigms that are also evolving. Non-volatile memory
technologies (NVM) like Intel Optane, Samsung Z-NAND, and
multiple flavors of resistance RAM are obfuscating the classic

boundary dividing memory and storage, prompting novel Layers of
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Indirection for managing free space that take into consideration
persistence, wear-leveling, and hybrid memory hierarchies. The
existence of these technologies brings new floors for multi-tenant read
/ writes performance, write endurance, and failure atomicity that lead
to research into special-purpose allocators minimizing writes, batching
updates, and recovering from power failures to keep metadata
consistent. This heterogeneous memory architectures interoperability
of DRAM, HBM, NVM, and traditional storage introduces intricate
memory hierarchies, necessitating sophisticated tiering algorithms,
placement policies, and migration strategies to cost-efficiently
accommodate diverse access patterns and performance characteristics.
Increasing popularity of multi-tenant environments in cloud computing
has motivated research into isolation-minded free space management
techniques that avoid performance interference while maximizing
resource utilization through techniques such as page coloring, NUMA-
aware allocation, and quality-of-service guarantees for memory
bandwidth. As free space management research has turned to security
considerations, new techniques such as address space layout
randomization (ASLR), fine-grained object protection, guard regions,
and memory tagging have emerged to help mitigate vulnerabilities that
spring from mistakes in memory management. By combining machine
learning and systems programming, new horizons emerge learning-
based free space management with allocation strategies adapting to
seen distributions, predicting future memory usage patterns with
predictive models, and employing reinforcement learning to optimize
long-term memory usage on varied workloads. These allocations of
resources are made under the influence of energy efficiency, which has
become a key design constraint in contemporary computing systems
and motivates research on power-aware memory management
techniques that factor in the energy cost of allocation decisions,
placement decisions and data movement operations. To keep up with
the never-ending memory size race, ignoring the properties of the
order-of-magnitude difference in the size of memory addressed and the
used datasets, research of techniques that keep optimal memory
behavior at extreme scales such as hierarchical metadata, probabilistic
(and shrinking) data structures for free space management or
approximate allocation techniques that absolutely do trade perfect

allocation size for allocation algorithm range - have popped up as points
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of interest. Rust, Web Assembly, and other memory-safe models are
inspiring research works on ownership-based memory systems that use
compile-time knowledge about the lifetimes and access patterns of
objects to make smarter allocation choices and eradicate entire
categories of memory errors. With the increasing significance of
domain-specific workloads such as machine learning, genomics, and
cryptography — there is a rising interest in domain-specific memory
allocation strategies that go beyond the traditional abstraction of a
memory page to capture the access patterns/characteristics/life-
times/performance requirements of such workloads. New concurrency
models beyond classical threading (e.g., asynchronous programming,
actor-based and dataflow models) are challenging traditional
assumptions of free space management regarding thread-local caching,
allocation ordering and synchronization strategies. Although the field
of quantum computing is in its early days, it presents many new free
space management challenges that are opportunities for terrestrial
systems, stemming from the probabilistic nature of quantum states,
finite coherence time of qubits, and different demands of quantum
algorithms. Besides driving technology, methodological innovations in
research on free space management include enhanced analysis and
modeling techniques, systematic benchmarking approaches, and
formal verification techniques that yield stronger guarantees regarding
correctness, performance characteristics and security properties of
allocators. Going forward, we will see free space management become
even more specialization and adaptive, with systems dynamically
choosing between many different strategies based on workload
characteristics and the utilization of hardware resources, as well as
application-specific needs.

Summary

Contiguous memory allocation is a traditional memory management
method in which each process is allocated a single, continuous block of
memory. This approach is simple and allows for quick access since
memory blocks are adjacent, but it leads to problems such as external
fragmentation. As processes are created and terminated, free memory
gets scattered in small chunks, which may not be usable even if the total
free memory is sufficient, thereby reducing the efficiency of memory

usage. To overcome these issues, non-contiguous memory allocation
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techniques like paging were introduced, allowing more flexible and
efficient memory management.

Paging eliminates the need for contiguous blocks by dividing the
process’s memory into equal-sized pages and physical memory into
frames of the same size. Pages from a process can be loaded into any
available memory frames, which removes the problem of external
fragmentation and makes better use of available memory. The
operating system keeps track of page-to-frame mappings using a page
table. Building on this, demand paging is a more advanced concept
where pages are loaded into memory only when they are needed during
program execution, rather than all at once. This reduces the amount of
memory used and speeds up the process load time. However, it
introduces the possibility of page faults—when a requested page is not
in memory—requiring data to be fetched from secondary storage,
which can slow down execution if not optimized properly. Demand
paging is a crucial feature in virtual memory systems, helping modern

operating systems manage memory more efficiently.

Multiple-Choice Questions (MCQs)
1. Which memory allocation method assigns a single contiguous
block to a process?
a) Paging
b) Segmentation
c) Contiguous Memory Allocation
d) Virtual Memory
(Answer: ¢)
2. What is the main drawback of contiguous memory allocation?
a) High efficiency
b) Internal fragmentation
¢) Increased system security
d) Low overhead
(Answer: b)
3. Which memory management technique allows processes to be
swapped in and out of memory?
a) Paging
b) Swapping
c) Segmentation
d) Virtual Memory
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(Answer: b) Notes
. In paging, what is a page?
a) A fixed-size block of data stored in main memory
b) A dynamic memory allocation technique
c) A method for organizing files
d) A replacement algorithm
(Answer: a)
. Which type of fragmentation occurs in paging?
a) External fragmentation
b) Internal fragmentation
c) Logical fragmentation
d) No fragmentation
(Answer: b)
. Which page replacement algorithm replaces the page that has
not been used for the longest time?
a) FIFO (First In First Out)
b) LRU (Least Recently Used)
c) Optimal Page Replacement
d) MRU (Most Recently Used)
(Answer: b)

. Virtual memory allows:

a) More processes to be executed than the available
physical memory

b) Only real-time execution of processes

c¢) Immediate swapping of processes without demand
paging

d) Elimination of the need for secondary storage

(Answer: a)

. Which file access method reads data in the same order in which

it is stored?
a) Sequential access
b) Direct access
c) Indexed access
d) Random access
(Answer: a)
. What is the purpose of free space management in file systems?
a) To increase file security

b) To track unused storage blocks
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10.

¢) To reduce file sizes
d) To prevent user access to certain files
(Answer: b)
Which of the following is NOT a common file system structure?
a) Single-level directory
b) Two-level directory
c) Hierarchical directory
d) Random directory
(Answer: d)

Short Questions

1.

What is contiguous memory allocation, and what are its
limitations?

Explain the difference between paging and segmentation.
What is swapping, and how does it work in memory
management?

Define internal and external fragmentation.

What is demand paging, and how does it improve memory
utilization?

6. Name and briefly describe two page replacement algorithms.

10.

Define virtual memory, and why is it important in modern
operating systems?

What are the different file access methods?

Describe the structure of a file system in an operating system.
What are the different techniques used for free space

management in file systems?

Long Questions

1.

Explain contiguous memory allocation, its advantages, and its
disadvantages.

Compare and contrast paging and segmentation, highlighting
their advantages and disadvantages.

Discuss the concept of demand paging, including the steps
involved and its advantages.

Explain the different page replacement algorithms (FIFO, LRU,
Optimal) and compare their efficiency.

What is virtual memory? Discuss its role in memory
management and how it is implemented.

Describe file system structures and explain the different types

of file organizations.
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7. How are file systems implemented in an operating system?
Discuss various implementation techniques.

8. Explain different file access methods, with examples of where
they are used.

9. Discuss the challenges of free space management and describe

the various strategies used to manage free space in file systems.

10. How does file system security impact file management, and

what are the methods used to ensure data protection?
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MODULE 4
DISK SCHEDULING AND DISTRIBUTED
SYSTEMS

LEARNING OUTCOMES
o To explore disk structures and scheduling techniques.
e To understand RAID structures and disk management.
o To study distributed system structures and file systems.

o To analyze remote file access, naming, and transparency.
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Unit 4.1: Disk Scheduling and Distributed Systems

4.1.1 Disk Scheduling and Distributed Systems

Data management in modern computing systems is a complex dance
between data requests, commonly controlled by disk scheduling, and
distributed systems, necessitating effective coordination between
distributed systems. This article would cover Disk scheduling part part
of Operating system which is a huge topic and addresses an important
challenge of minimizing the seek time and maximizing the disk
throughput. The order in which requests are serviced has a major
impact on performance, especially when there are multiple processes
simultaneously requesting access to disk blocks. Many disk scheduling
algorithms have been designed to solve this optimization problem,
including First-Come, First-Served, Shortest Seek Time First (SSTF),
SCAN, C-SCAN, and LOOK. FCFS is a straightforward but inefficient
disk scheduling algorithm that services requests in the order of their
arrival; it results in excessive head movement. SSTF (Shortest Seek
Time First) selects the request with minimum seek time from the
current head position, optimizing seek time in total but may cause
starvation to other requests if far from the current head position. The
elevator algorithm, also known as SCAN, moves the disk head either
way and services the requests along the way until it reaches one end of
the disk, at which point it reverses direction. To counteract this uneven
distribution of service, C-SCAN (Circular SCAN) is an option, which
moves the head in one direction and begins serving requests back at the
beginning of the disk instead of servicing requests on the back trip.
LOOK and C-LOOK are optimized versions of SCAN and C-SCAN
algorithms, respectively, which do not go to the end of the disk if there
are no requests in that direction. This is single-disk, but distributed
systems add even more complexity. At first sight, distributed storage
and network storage do not sound like the same thing. Distributed file
systems, like Hadoop Distributed File System (HDFS) and Google File
System (GFS), use data replication and distributed caching to increase
fault tolerance and approach high performance. These systems also
have to manage network latency, data partitioning and consistency
models (e.g., eventual consistency versus strong consistency). In such
distributed databases, two-phase commit and Paxos are examples of

methods to ensure the atomicity of transactions and consensus in
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execution among the nodes. Additionally, incorporating derivative
models through cloud computing and edge computing has
revolutionized both disk scheduling and distributed systems, leading to
virtualized storage and widespread distributed data processing. To
address these challenges, organizations increasingly leverage cloud
storage services, such as Amazon S3 or Azure Blob Storage for scalable
and durable storage, and edge computing platforms that allow for

distributed data processing closer to end-users to minimize latency and

DISK SCHEDULING AND DISTRIBUTED SYSTEMS

DISK SCHEULING DISTRIBUTED SYSTEMS
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Figure 4.1.1: Disk Scheduling and Distributed Systems

bandwidth usage. From these past trends, newer storage technologies
such as SSDs and NVMe have begun entering the market, with SSDs
containing orders of magnitude faster access times followed by no seek
time at all. For such situations, scheduling algorithms usually target
load balancing/ wear leveling for SSD lifetime support. The interaction
between disk scheduling and distributed systems remains dynamic, as
emerging trends in big data analytics, machine learning, and latency-

sensitive workloads push the boundaries of existing architectures,
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highlighting the need for dedicated research on the intersection of
storage and distributed domain.
Architectures of Distributed Systems

Client-Server Peer-to-Peere Three-Tier Microservices
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Architectures of Distributed Systems. JPEG File, Low quality under 60 KB,

Figure 4.1.2: Architectures of Distributed Systems

e Client-Server: Clients request services or resources from a
central server. While a simple model, it can become a bottleneck
if the server is not redundant.

e Peer-to-Peer (P2P): Each node acts as both a client and a
server, sharing resources directly with other nodes. This offers
high redundancy and no single point of failure.

e Three-Tier / Multi-Tier: This expands on the client-server
model by adding separate layers for presentation, application
logic, and data management. It's common in web applications.

e Microservices: An application is broken down into small,
independent services that communicate over a network. This

provides flexibility and scalability.

Key Characteristics:
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Notes e Resource Sharing: Nodes can share hardware, software, and
data.

e Scalability: The system's capacity can be increased by simply
adding more nodes.

e Fault Tolerance: If one node fails, the rest of the system can
continue to operate, ensuring high availability.

e Concurrency: Multiple components can operate
simultaneously.

e Transparency: The user is not aware of the underlying
architecture and interacts with the system as a single unit.

Common Algorithms

o First-Come, First-Served (FCFS): The simplest algorithm, it
processes requests in the order they arrive. It's easy to
implement and fair, but can be very inefficient due to long
seek times if requests are scattered across the disk.

e Shortest Seek Time First (SSTF): This algorithm services the
request that is closest to the current position of the disk arm. It
significantly reduces total seek time but can lead to starvation,
where requests far from the head may never be serviced.

e SCAN (Elevator Algorithm): The disk arm moves in a single
direction, servicing all requests in its path. When it reaches the
end of the disk, it reverses direction and services the remaining
requests. This provides a good balance between performance
and fairness.

e (C-SCAN (Circular SCAN): Similar to SCAN, but the disk arm
only services requests in one direction. When it reaches the
end, it quickly returns to the beginning of the disk without
servicing any requests on the return trip. This provides a more
uniform waiting time.

e LOOK and C-LOOK: These are optimized versions of SCAN
and C-SCAN. The disk arm only moves as far as the last
request in a given direction, instead of going all the way to the
end of the disk.
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Unit 4.2: I/O Hardware

4.2.1 I/0 Hardware

The I/O hardware is the glue that allows seamless interaction between
a computer and its external environment and is a key component of any
computing system. Wide variety of I/O hardware, including keyboard,
mouse, monitor, printer, scanner, network interface, storage devices.
Each of these devices are communicating through physical hardware
interfaces and protocols to send and receive data and control state.
Introduction The fundamental operation of I/O hardware is the
communication between the CPU and peripheral devices. These
communications are usually controlled by I/O controllers, dedicated
pieces of hardware that manage data transfers and interactions with
external devices. I/O controllers serve as bridges, converting high-level
instructions given by the CPU into low-level signals that the peripheral
devices can interpret. One such device might be a disk controller, which
will handle the positioning of the disk head, along with actually
transferring the data between the disk and the system memory. Just like
a network interface controller (NIC) is responsible for sending and
receiving data packets on a network. Further training on I/O hardware
I/O hardware's continued advancement in speed, key, and connectivity
older interfaces have been superseded by high-speed variants, such as
PCI Express (PCle) or Thunderbolt, which provide vastly improved
throughput rates compared to their predecessors (PCI & ISA). PCle
Domination One notable aspect of the evolution of the computer
motherboard is the widespread adoption of the PCle standard. The
evolution of USB (Universal Serial Bus) has transformed the way we
connect peripheral devices, offering a standardized plug-and-play
interface for everything from keyboards and mice when was this
difference of devices to external hard drives and cameras. USB has
gone through many generations, and USB 3.0 and USB 3.1 deliver far
greater data transfer speeds than previous iterations. These 1/O
operations can be leveraged as Shared Network resources or shared
disk network, while the development of wireless technology, includes
Wi-Fi, Bluetooth that enhance the connection of I/O devices and also
allows wireless data transfer. The industry standard for wireless
network connection is Wi-Fi, and Bluetooth is used for connecting

devices like headsets, speakers, and mobile devices for short-range
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wireless connectivity. As a result, there has been a growing need for
multimedia applications, and therefore the design of specialized 1/O
hardware, like a graphics processing unit (GPU), a digital signal
processor (DSP). For instance, GPUs are specialized in accelerating
graphics rendering and parallel processing and DSPs are designed
explicitly to process audio and video. As I/O hardware gets integrated
into embedded systems and the Internet of Things (IoT), specialized
interfaces and protocols have been developed. IoT devices commonly
use low-power wireless technologies (such as Zigbee and LoRaWAN)
to connect to the network. All in all, the future of I/O hardware is
expected to be influenced by ongoing developments in high-speed
connectivity, wireless technologies, and dedicated processors, leading
to more immersive and interactive computing experiences.

4.2.2 Application of I/O Interface

|/O Commands
CPU - » 1/0 Device

D
Data o

.

*  Memory

Figure 4.2.1 I/O Hardware
[Source - https://www.tutorialspoint.com]

Due to the versatility of I/O interfaces, they have been utilized in a
wide range of fields to facilitate communication between computing
systems and the rest of the world. One key component in the
architecture of a personal computer is the I/O subsystem that handles
input and output interactions between the user and multimedia. They
interact with software applications through the use of input devices
such as keyboards, mice, and touch screens. Visual output comes from
monitors and projectors, whereas audio output comes from speakers
and headphones. Which printers and scanners for digitizing/uploading

documents and printing output? Multimedia applications have spawned
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specialized /O interfaces like HDMI and Display Port that render
high-definition video (HDMI) and audio (HDMI, Display Port) output.
USB also comes with a variant of formats various from regular A/B
shaped USB plug and cable connection for mobility or as compact as
for on the motion like portable solid-state driver, USB interface is
anyhow most widely interfaced connector amongst all peripheral
devises from external storage devices to cameras has now also become
for connectivity in mobiles and tablet. Networking I/O interfaces
connect computers and devices to both local area networks (LANSs)
and wide area networks (WANSs). Ethernet interface to translate the
packet on a local area network (LAN) and modems and/or routers to
bridge between the user and the internet. Examples of network
applications especially web browsing, email, and video conferencing
depend heavily on the I/O interfaces to transmit and receive data. You
are specialized in IoT and embedded systems -Complete Input/ Output
interfaces Typically, however, serial interfaces like UART and SPI are
used for communication between embedded devices. Wireless
interfaces, including Bluetooth and Wi-Fi, provide wireless
communication capabilities for IoT devices, empowering them to
connect to the Internet. I/O interfaces play a critical role in industrial
automation systems to control and monitor machinery and processes.
I/O interfaces are used for data acquisition and control in PLCs and
DCS. 1/O Interfaces: I/O interfaces play a vital role in the
communication between storage devices and computers/servers.
Common interfaces for hard drives and SSDs include SATA and
NVMe, while Fibre Channel and iSCSI are used for SANs. Storage: A
bottleneck at scale in Cloud Computing and Data Centers, which use
I/O interfaces for data transfer and storage management Cloud apps
generate enormous amounts of data, making high-speed network
interfaces and storage interfaces critical. I/O interfaces are also used in
specialized areas, including medical imaging, scientific research, and
virtual reality. I/O Interfaces are Required in Medical Imaging Devices
Instrument and scientific devices, famous are Spectrometers,
Microscopes, etc. Motion tracking and haptic feedback in virtual
reality systems is managed through I/O interfaces. The automobile and
the smarting of everything are modes of I/O interfaces that have piqued

my interest beyond abstraction in a display or monitor.
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Security and Virtualization in I/O Operations

Such developments, alongside the traditionally more complicated
computing systems and the growing pervasiveness of virtualization
technologies, have created an environment of critical concerns of
security in I/O. The importance of securing input, output, and other I[/O
operations cannot be overstated—from data breaches to system
compromises and even denial-of-service attacks, vulnerabilities found
in such interfaces could lead to disastrous consequences. Such
unauthorized access can lead to theft/corruption of sensitive data from
I/O devices. I/O drivers and firmware vulnerabilities can be exploited
by malware to control the system or attack. Secure I/O operations: the
procedures for protecting I/O devices and data from unauthorized
access and attacks This entails the use of robust authentication and
authorization mechanisms, encryption of all data in transit and at rest,
regular updating of I/O drivers and firmware to rectify security
vulnerabilities, etc. Implementing additional hardware-based security
elements, including Trusted Platform Modules (TPMs) and secure
boot, to further secure I/Os, the field of virtualization is already well
established, particularly for running multiple often disparate operating

systems on a single physical machine to maximize utilization.
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Unit 4.3: Disk Structures

4.3.1 Fundamentals of Disk Structures

Secondary storage, namely hard disk drives (HDDs) and solid-state
drives (SSDs), is the bedrock of virtually all computer systems today,
providing permanent data storage. Now, understanding the structure of
these disks becomes fundamental to comprehend how data is
organized, accessed and managed. Data organization HDD
Hierarchical structure Traditional HDDs use magnetic platters to store
data. Each platter is divided into concentric circles called tracks and
tracks are further divided into sectors. Sectors, which are usually 512
bytes or 4 kilobytes long, are the smallest amounts of data that can
easily be read or written. The read/write head is mounted on top of the
actuator arm and on the surface of the platters to access certain tracks
and sectors. A several platters stacked on an spindle, creating a
cylinder, which contains tracks at an equal radial distance on all
platters. The next method of addressing data is by means of cylinder,
head, and sector (CHS), though this has now been mostly replaced by
logical block addressing (LBA). LBA abstracts away these physical
details and presents the operating system with a linear sequence of
blocks. It abstracts over the disk management and enables faster data
access. In terms of components, HDD performance is impacted by the
seek time (the time it takes to move the read/write head to the correct
track), rotational latency (the time it takes for the target sector to come
into position by rotating under the head), and data transfer rate (the rate
at which data can be read or recorded to and from the disk). HDDs use
spinning disks to write data; SSDs use flash memory which removes
HDD mechanical components. Every solid-state drive (SSD) stores
data in the form of blocks and pages, where a page is the smallest unit
of a read/write operation and a block is a collection of such pages. This
is because SSDs don't suffer from seek time or rotate latency like HDDs
do, resulting in much faster access times. But SSDs can write only a
certain number of times (limited write cycles), which is why wear-
leveling techniques are used to ensure write operations are spread
across the memory cells evenly. On the disk, the file system handles
how files and directories are stored and retrieved. It stores metadata
with file names, sizes and timestamps, and allocates disk space to files.

The file system, including boot sector and file allocation table (FAT),
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and directory structure, can be defined differently based on the
operating system and file system type (e.g. FAT32, NTFS, ext4). The
file system and the layout of various files and directories on disk, for

example.

track ]
spindle

arm assembly

sector —/‘?\

cylinder |
; ©/whead

Figure 4.3.1: Disk Structure

[ Source - https://www.computersciencejunction.in]
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Unit 4.4: Disk Scheduling Algorithms

4.4.1 The Importance and Nuances of Disk Scheduling Algorithms
In a multitasking environment, typically multiple processes request
access to the disk at the same time, resulting in a queue of pending /O
requests. Various disk scheduling algorithms are used to manage the
serving sequence of these requests, with the goal of reducing seek time
and thus enhancing overall disk performance. The floating-point
purposes of these algorithms have a significant impact on system
responsiveness and throughput. There are different algorithms to
detect and decrypt a given cipher text, with their own merits and
demerits. The first in, first out (FIFO) algorithm is the simplest it
services requests in the order they arrive. FCFS is fair, but seek times
can be large if requests are scattered all over the disk. Shortest Seek
Time First: For each incoming request, SSTF finds the one that has the
shortest distance from the current head position and fulfills that. One
drawback of SSTF is starvation, where requests too far from the head
get stalled indefinitely. Another simple method is the SCAN algorithm
(for "elevator"), in which the head moves in one direction, servicing
requests as it finds them, until it reaches the end of the disk and then
reverses direction. However, while SCAN is favorable for fairness, it
may still become detrimental to requests at the far side of the disk,
resulting in these requests having very long waiting times. C-SCAN
(Circular SCAN); A variant of SCAN where the disk arm services
requests in one direction only. C-SCAN offers more consistent wait
times than SCAN. Continued algorithm of SCAN and C-SCAN are
LOOK and C-LOOK respectively. They do not move to the end of the
disk but instead only the farthest request in the current direction.
Decreasing unnecessary head movement all the while enhances
performance. Depending on the workload and performance
requirement, different disk scheduling algorithms can be chosen. The
SSTF or LOOK algorithms may be used for applications with large
amounts of random workload. Instead, SCAN or C-SCAN algorithms
may be better for workloads that have sequential requests. One such
advanced disk scheduling algorithm is the Deadline algorithm, which
supports real-time guarantees based on the request deadlines. In some
cases, the OS may also employ hybrid strategies, blending various

algorithms to achieve the best performance over a range of scenarios.
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Knowledge of the trade-offs between these algorithms is critical in

devising optimal disk management strategies.

Disk Scheduling Algorithms

FCFS Algorithm SSTF Algorithm SCAN Algorithm C-SCAN Algorithm

LOOK Algorithm C-LOOK Algorithm

Figure 4.4.1: Disk Scheduling Algorithm

Source - https://www.scaler.com/topics/disk-scheduling

4.4.2 Comprehensive Disk Management Techniques

Proper disk management is essential for keeping systems functioning
efficiently, ensuring that data remains intact, and that resources are
used in an optimal manner. It involves various methods such as disk
formatting, partitioning, file system management, and disk
defragmentation. Formatting a disk sets up a file system structure that's
required to use the disk. This relies on writing metadata to the disk,
like the boot sector, the file allocation table and the directory structure.
Disk partitioning is a technique by which we divide the physical disk
into logical partitions and use these partitions to run multiple operating
systems or file systems on a single disk. Partitions are like separate
disk drives and they help keep everything organized and flexible. File
systems manage how files are stored and retrieved in storage systems.
The file system maintains data structures (such as inodes and file
allocation tables) to track the location and metadata of files. In this
article, we will learn about disk cleanup, disk defragmentation, how to
disk defragmentation and why we need to perform disk
defragmentation? How fragmentation happens over time, files can get
fragmented. Defragmentation restacks these fragments into cluster
blocks minimizing seek time and thus file retrieval. In GNU/Linux,
Disk quotas are used to limits, or restrict the amount of disk space that
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users or groups can consume, preventing disk space exhaustion, and
thus ensuring fair resource distribution. RAID 1; Disk Mirroring RAID
1, or Disk Mirroring, creates a mirror copy of the data across multiple
disks for redundancy and flock tolerance. In the event of failure of one
disk, the system can still run with the mirrored copy. With disk striping
(RAID 0), data is spread across many disks to accelerate read/write
speeds. But RAID 0 does not offer redundancy. RAID 5 and RAID 10,
for instance, offer both striping and mirroring to provide a balance
between performance and redundancy. Disk caching can save the data
that is used very frequently in the memory and avoids the excess work
over the disk. When the cache is full, you use some cache replacement
algorithm like LRU (least recently used) or LFU (least frequently used)
to decide which data to remove from the cache. Disk scheduling
algorithms are also an important aspect of disk management and they
are discussed before where a step is taken for how to optimize the order
of I/O requests. When merged, all of them form a potent and

operational disk management system.

Memory
Management

Resource
Management

Input / Output
Management

Operating
System

File
Management

Security
Management

Command
Interpreter

Figure 4.4.2: Disk Management Techniques

Source - https: //www.scaler.com/topics/operating-system/disk-management
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Advanced Disk Management and Optimization

Also, advanced disk management encompasses more technical
strategies that enhance performance, reliability, and security. The
introduction of SSDs has brought both challenges and opportunities
for disk management. Wear leveling, garbage collection, and TRIM
commands are all functions designed to improve the performance and
longevity of the SSD. In order to avoid this premature wear the flash
controller needs to implement what is called wear leveling which
distributes the write operations among the memory cells. When blocks
are no longer needed, they will be freed up through garbage collection,
with this process helping to make writes faster. TRIM Command
Which Helps SSD to Recover Deleted Data It is accomplished through
disk encryption which secures sensitive data by encrypting it prior to
writing it to a disk. While full-disk encryption (FDE) encrypts the
entire disk, file-level encryption encrypts individual files. When files
get compressed, the amount of disk space required to store data storage
gets lessened. So that means you turn in the no compression, -- no
bzip2, -- and you run through the lossless compression algorithms
(gzip, zip). Disk snapshots — create point-in-time versions of the disk.
They are implemented using copy-on-write and redirect-on-write and
other techniques. Centralized storage solutions, such as storage area
networks (SANs) and network-attached storage (NAS), support large
environments. SANs use high-speed fiber channel or 1SCSI
connections for block-level access to storage, and NAS uses Ethernet
connections for file-level access. Logical Units (LUNSs) for storage are
created by these storage virtualization solutions, which abstract their
resources. and can create virtual pools of storage to efficiently resize
dynamically. Thin provisioned - storage allocated on demand to avoid
wasting space. Using storage tiering, commonly used data is
automatically placed to faster tiers, like SSDs, while data that is
accessed less frequently can remain in slower tiers, like HDDs. AI/ML
together is becoming as a powerful method to focus on performance,

reliability, and cost of storage infrastructure in organizations.
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Emerging Trends and Future Directions in Disk Storage and
Management

Constantly innovating itself and evolving with technologies and the
data storage needs. New paradigms, such as the adoption of NVMe
(Non-Volatile Memory Express) and NVMe-oF (NVMe over Fabrics),
persistent memory technology, and the increasing use of cloud-based
storage systems, represent the future of storage, Branham added. What
is NVMe: NVMe is an interface protocol focused on high-performance
SSDs and can achieve much higher data transfer rates than other
interfaces such as SATA and SAS. NVMe-oF adds a layer of
abstraction to NVMe, allowing NVMe traffic to be sent over network
fabrics like Ethernet and Fiber Channel, facilitating high-speed remote

storage access.

4.4.3 RAID Structure

RAID (Redundant Array of Independent Disks) is a technology that
uses multiple hard disk drives to achieve redundancy and/or
performance improvements. Essentially, RAID is designed to increase
the reliability and speed of data storage by spreading the data across
multiple disks in such a manner that the impact of a single disk failure
i1s minimized. It was first introduced during the late 1980s in an effort
to satisfy the demand for both fault-tolerant and high-performance
storage in increasingly complex computing environments. RAID levels
differ in terms of data distribution and protection. At its most basic
level, RAID 0 (striping) splits evenly or by segments of data across two
or more disks, allowing simultaneous access that maximizes read and
write speeds. That said, RAID 0 provides no redundancy, so the failure
of a single disk results in loss of all data. RAID 1 (mirroring): Data is
stored on two (or more) disks as a copy for 100% redundancy. Whether
you lose one disk, data is still accessible from the other. RAID 1 is
known for great fault tolerance, but it halves the available storage
capacity because every piece of data is written twice. RAID 5, known
as striping with distributed parity, is a balance between RAID 0's speed
and the redundancy of having parity information spread across all of
the disks. The parity information can be used to reconstruct data in the
event of failure of any one disk, which gives a compromise between
performance and fault tolerance. RAID 6 (striping with double parity)
is like RAID 5, but includes two sets of parity data, meaning it can
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recover from two simultaneous disk failures. RAID 10 (also known as
RAID 1+0) takes the mirroring and striping approach to combine both
high performance and high redundancy. Requires at least four disks,
with data mirrored across each of pairs of (2) disks and then striped
across the mirrored pairs. RAID 01 (or RAID 0+1) combines striping
and mirroring by striping data across disks and mirroring it to another
group of striped disks. The one significant difference between RAID
10 and RAID 01 is the order of operations: RAID 10 mirrors then
stripes, but RAID 01 stripes then mirrors. Different RAID levels cater
to varying applications based on the requirements of performance,
redundancy, and the cost. For instance, where database servers use
RAID 10 or RAID 5 for best performance and data protection, video
editing workstations may use RAID 0 for speed. Along with these
conventional RAID levels, there are also some proprietary RAID
implementations that provide additional features and capabilities.
These approaches might have different flavors of the standard levels,
or they might have completely new ways of distributing and protecting
data. There are primarily two types of RAID implementations, software
RAID, which is based on an implementation from the operating
system, and hardware RAID which is based on dedicated, physical
RAID controller. Hardware RAID provides a higher level of
performance and reliability because the RAID processing is offloaded
from the CPU, whereas software RAID is more cost-effective and
more flexible. Choosing a RAID level is a decision that balances
performance and cost from the perspective of redundancy. Making the
most appropriate selection operates based on having a crystal clean
insight of the particular non-IT related demands of the usage, in
addition to all of the high-level attributes of the RAID amounts on offer.
Moreover, new RAID formulations and optimization methods have
emerged, due to ongoing changes in storage technology like with solid-
state drives (SSDs) and NVMe. They provide far superior performance
to legacy hard disk drives (HDDs) and they need different techniques
in order to implement RAID. It is also leading to more and more RAID-
animal hybrids with SSD and HDD storage as writing in storage can be
more costly but would require only a fraction of the speed needed for
aread. RAID technology has been sold on many fronts, and the future
of RAID will most certainly lead to more seamless integration with new

storage methods and technologies and to more advanced data protection
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solutions. This will encompass improvements on error correction, Notes
prediction of possible failures and automated data recovery systems. It
aims at building intelligent storage systems which are self-managed,

fault free and performant.
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Figure 4.4.3: Raid Controller

Source: RAID (Redundant Arrays of Independent Disks) - GeeksforGeeks

4.4.4 Distributed System Structure

A distributed system is a system whose components are located on
different networked computers, which communicate and coordinate
their actions by passing messages to one another. Such computers (or
nodes) exchange messages over a network and coordinate their
actions. Distributed system’s main purpose is to share resources and it
achieves scalability, fault tolerance, and improved availability.
Distributed systems, in contrast to centralized systems (where a single
server processes and stores data), reduce the risk of failure and increase
system performance by distributing processing and storage over
multiple nodes. While they offer numerous benefits, distributed
systems can be challenging to implement and require careful design
and management to ensure reliability and efficiency. Distributed
systems and their architecture play a vital role in promoting
performance, scalability and fault-tolerance. A very common
architecture pattern is a client-server where there are clients sending
requests to the server in orders to get some services. This is a very
common model in web applications where web browsers (clients) serve
requests for web pages from web servers. Another architectural pattern
you can choose is P2P (peer-to-peer), where all nodes are equal and
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have the same role and responsibility. Typically, P2P networks are
utilized for file sharing and distributed computing. Another one is
Layered Architecture, where the system is organized into layers, where
each layer provides a particular range of services. As a result, it
encourages modularity and results in a simpler system design.
Microkernel architecture, where the operating system kernel provides
the fewest number of services necessary and other services run in user
space. This architecture expands both flexibility and fault tolerance. In
this approach, the operating system itself is distributed among multiple
nodes, that is, a more integrated distributed operating system. This
alternative offers users a more transparent and seamless experience. Of
course, there are things to consider when designing a distributed
system, such as communication, synchronization, fault tolerance, and
security. Nodes communicate with each other by means of message
passing, that can be either synchronous or asynchronous. The former
involves synchronous communication; the sender must be willing to
wait for a response from the receiver, whereas with the latter, the
sender can keep on doing their processing without waiting for a
response. Synchronization is vital to managing the functionality of
different nodes, so that they act in a coherent and consistent way. This
can be done using different mechanisms like distributed locks and
consensus algorithms. The tolerance of faults of the system is the ability
of the given system to keep working with the failure of the nodes.
Redundancy and replication are how this is accomplished. As
distributed systems are vulnerable to multiple types of attacks, such as
denial-of-service attacks and data breaches, security is also a crucial
issue in these systems. Protecting the system and its data requires
security measures such as encryption and authentication. The
scalability of a distributed system refers to its capacity to manage
higher workloads with the addition of nodes. Horizontal scaling adding
nodes to the system, or vertical scaling upgrading the nodes' hardware,
will allow those storage systems to scale out and handle more traffic.
The decision tree for whether to scale horizontally vs. vertically is app-
specific. And how do we define the reliability of a distributed system?
They do this by the use of techniques such as redundancy, full copies
of data, and error correction and detection. Its ability to perform tasks

efficiently and effectively is the performance of a distributed system.
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Load balancing, caching, and parallel processing are a few techniques

that will help- Distributed systems are set to witness advancements in
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Figure 4.4.5: A Distributed System

Source: https://image2.slideserve.com/3941643/a-distributed-system-I.jpg

the realm of cloud computing, edge computing, and the Internet of
Things (IoT) in ongoing future. With data being the operative word, fall
of data sizes means the systems need to be adequately sophisticated to

manage such data internally or over the network only.

4.4.5 Distributed File Systems (Approx. 1900 words)

A distributed file system (DFS), is a file system that enables clients to
access and share files stored on multiple servers over a network as if
they are stored on a single, local file system. DFSs are critical for
supporting collaboration and sharing in distributed settings. They offer
a single namespace so that users can access files without understanding
the underlying location of the file. We can find very interesting features
of DFS which make it scalable, available, fault tolerance and cover the
performance maximally. Scalability The file system's capacity to
manage growing volumes of data and user requests. This is done in two
ways either adding more servers to the system. Availability: It allows
the file system to be still available in the failure of the servers. This is
done with replication and redundancy. Fault tolerance refers to the
ability of the file system to tolerate errors or failures and continue
operating correctly. Data redundancy and error detection and correction
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mechanisms are employed to achieve this. Performance defines how
fast and efficiently the file system can grant access to the files. It can
be performed with caching, load balancing, and parallel processing. A
common architecture of a DFS isa client/server model where the client
accesses files from the server. The metadata about the files, including
things like their names, permissions, and locations, are stored on one or
more metadata servers. This is where the actual file data is stored
which is on data servers. The metadata servers maintain the namespace
and information about where the file is contained, while data servers
store and access file data. Network File System (NFS), Andrew File
System (AFS) and Hadoop Distributed File System (HDFS) are
common DFS architectures. One of the most popular examples of DFS
is NFS (Network File System), which enables clients to access files
located on remote servers on the network. It uses client-server
architecture and provides an easy and efficient way to share a file. AFS
is a more advanced version of DFS with added strength, security,
scalability, and so forth. It employs a distributed caching mechanism
to boost performance. HDFS is a DFS for large-scale data processing.
It enhances the performance of the Hadoop Framework and gives a
high throughput as well as fault tolerance. With that said, designing a
DFS comes with many challenges such as naming, caching, replication,

and consistency.

4.4.6 Naming and Transparency Remote File Accesses

Naming and transparency are paramount themes in distributed systems,
especially for remote file accesses. These principles provide a way for
users and applications to behave as if they were working with files on
local disk, to speak with data located on remote servers. At core,
naming is about establishing a logical, human-friendly way to identify
and locate files in a distributed setting. This includes creating a naming
scheme which adds a layer of abstraction between the physical location
of the data and the logic used to access it, permitting users to specify a
file with a symbolic name, rather than a complex network address.
Transparency, in contrast, is the extent to which a distributed nature of
the system is hidden from users. A distributed file system should
fundamentally attempt to be as transparent as possible, where accessing
remote files should seem no different from accessing a local file. This

includes location transparency (the user doesn't know where the file
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actually resides), access transparency (the same access methods are
employed for local and remote files), and concurrency transparency
(simultaneous access to a shared file is together without interference
from users). The difficulties in working to implement these
transparencies are profound: they involve coordinating operations
across a collection of machines, isolating the impact of network
latencies, and so on, including reintegrating which nodes may fail. The
nomenclature schemes used have to be robust, scalable and be able to
adapt to the dynamic nature of a distributed environment. These higher-
level abstractions are often implemented using techniques such as
hierarchical naming (where names to files are organized into logical
structures through directories and subdirectories, and through physical
access paths) and attribute-based naming (where files are referenced
based on their attributes). Moreover, name resolution must also be
performed by the system, as symbolic names must translate to physical
addresses efficiently.

If you have to implement remote file access systems, I suggest you
think about the different design choices you make and the overall
performance, scalability, and reliability of the system that you end up
with. The right file access protocols is one key factor. They establish
the methods of communication between clients and servers, outlining
the process of file requests and data retrieval. In file sharing, protocols
like Network File System (NFS) and Server Message Block (SMB) are
prevalent, each with its unique benefits and trade-offs. For example,
NFSis known for its simplicity and platform independence; SMBis
frequently used in home windows environments and has strong
support for file sharing and printing. Caching strategy is another
important design consideration. Caching refers to holding repeatedly
accessed information on the machines of the client, eliminating the
need to resubmit requests over a network. This can often improve
performance markedly, but also brings cache consistency challenges.
When the same file is coached by multiple clients, it must ensure that
all clients have the latest version. To solve this problem there are some
techniques such as cache invalidation, write through cache and others.
And, the system needs to deal with fault tolerance. In a distributed
system, failures are not a bug; they are a feature. Servers can crash, and
networks can be disconnected, and data can be corrupted. The files

system needs to be built to endure such failures and should guarantee
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that services are available and data is not lost. This can include
techniques such as data replication to multiple servers, error detection
and recovery mechanisms, and using distributed consensus algorithms
to ensure consistency in the presence of failures. Another vital
component of accessing files remotely is security. The system will only
allow authorized users to expose sensitive data, and must implement
access control mechanisms for this purpose. For instance, you might
implement authentication protocols to confirm the identity of users,
apply encryption to keep data secure while it's being transmitted, and
create access control lists that limit what specific users and groups are
allowed to do.

The rise of the internet and distributed computing has left an imprint
on the development of remote file access. The initial systems
emphasized simple file sharing in localized networks. With the
increasing prevalence of networks, there was demand for more
advanced systems able to operate in large-scale distributed settings.
Evolution in remote file access: From e-mails to cloud computing In
the 1990s, the use of e-mail grew exponentially. The level of scaling
and availability of these services is like never before with the ability to
access your data from virtually anywhere on the planet. But they also
bring mew risks concerning data security, privacy, and compliance.
With the rising data generation and storage, works on efficient ways of
data storage and retrieval have also increased. Today’s distributed file
systems are designed to store petabytes and even exabytes of data,
employing techniques such as data striping, erasure coding and
distributed hash tables. There are also file access systems for mobile
devices that are more adapted to low-bandwidth and intermittent
network connections. Offline caching and data synchronization
techniques are often employed to ensure that the data served by the
application is available even if the user is not connected to the network.
This trend toward edge computing, in which data processing and
storage are pushed closer to the edge of the network, is also affecting
how remote file access systems are designed. Edge computing can help
reduce network latency and improve performance by processing data
locally. These trends are expected to shape the future of remote file
access, which will determine how we seamlessly, securely, and
efficiently access data in increasingly complex and distributed

environments.
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There are numerous, difficult trade-offs to make when you strive for
transparency in remote file access. Network latency Fixed by:
Implementing zero-trust principles One of the key obstacles is network
latency. Data network round trip latency degrades both the network
file access response time and the remote file system performance. Many
systems approach this through techniques like caching and prefetching
that try to predict your data and pull data on your behalf before you
actually ask for it. Yet, these techniques also add additional complexity
regarding cache consistency and data staleness. The second issue is
partial failure. In a distributed environment, you can have failures in
some components while the rest are running. If this is not controlled
properly it can lead to data inconsistencies and corruption. To do this
we use distributed consensus algorithms (like Paxos and Raft) to make
sure that all replicas in the system of a file are in sync, even in the
presence of failures. These algorithms enable a set of machines to
reach consensus on a value, even if some fail. Yet, their
implementation may also be rather complex and can incur a
performance overhead. Another major concern is security. The remote
file access systems must protect the data from unauthorized access,
modification, and disclosure. This calls for strong authentication and
authorization mechanisms, together with encryption to secure data at
rest and in transit. This has led to a great focus towards security in
distributed file systems due to the rising frequency of cyber-attacks.
Scalability is another important factor to consider. File systems need
to scale as they scale to continue to feast on more users and more data.
This necessitates thoughtful design of data structures, algorithms and
protocols. Sharding (partitioning data across multiple machines) and
load balancing (distributing requests among servers) are applied to
achieve scalability. Another challenge is the variety of operating
systems and devices each client has. Client support: File systems need
to interact with a diverse set of clients, which may have varying levels
of capabilities and limitations. This may include platform-independent
protocols and data formats. the principles of naming and transparency
are central to the design and implementation of remote file access
systems. High levels of transparency in using Reveal require
overcoming many performances, consistency, fault tolerance, security,
and scalability challenges. The need for better remote file access has

emerged with the rise of distributed computing and the internet and
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later cloud computing, which led to the development of solutions for
accessing data in new, massive and distributed environments, given the
necessary emphasis on access without intervening systems on the data
access process, while maintaining security and efficiency in data
transfer. It is probable that some of the trends that will either directly
or indirectly define the future of remote file access will include edge
computing, mobile computing, and the growing volume of data, as
there will be a need to build even more intelligent and adaptive systems.
The continued evolution of new technologies and protocols will further
enhance the performance, reliability, and security of remote file
access, allowing users to access their data from anywhere and at any
time.

Summary

Disk scheduling and distributed systems are vital components in the
operation of modern computing environments. Disk scheduling refers
to the method by which operating systems decide the order in which
read and write requests to the disk are processed. Since multiple
processes may request access to a disk simultaneously, an efficient
scheduling algorithm ensures optimal disk utilization and reduced seek
time. Common algorithms include FCFS (First Come First Serve),
SSTF (Shortest Seek Time First), SCAN, C-SCAN, and LOOK, each
offering different trade-offs in terms of fairness, speed, and complexity.
These algorithms aim to reduce the movement of the disk’s read/write
head and improve the response time for processes.

I/O hardware forms the interface between the system and external
devices. It consists of components such as device controllers, buses,
and ports that facilitate communication and data transfer. The operating
system interacts with I/O hardware using device drivers and I/O control
methods like polling, interrupts, and Direct Memory Access (DMA).
Efficient I/O handling is essential for system performance, as it
minimizes the time the CPU waits for data input or output operations.
Disk structures define how data is organized and accessed on the
physical storage medium. This includes sectors, tracks, cylinders, and
platters. Understanding the physical structure of disks helps in
designing better disk scheduling algorithms and optimizing file
systems. In distributed systems, where resources and data are spread
across multiple networked computers, coordination and consistency are

crucial. Distributed systems aim to provide users with a seamless
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experience of a unified system while handling complexities like data Notes
replication, synchronization, and fault tolerance in the background.
Together, disk scheduling and distributed system principles ensure that
storage and data access are managed efficiently in both local and

networked environments.

Multiple-Choice Questions (MCQs)
1. Which of the following is NOT a disk scheduling algorithm?
a) First-Come, First-Served (FCFS)
b) Shortest Seek Time First (SSTF)
¢) Round Robin (RR)
d) SCAN
(Answer: ¢)
2. Which component is responsible for managing input and output
operations in a computer?
a) CPU
b) I/O Controller
c) Cache Memory
d) Registers
(Answer: b)
3. What is the purpose of an I/O interface?
a) To facilitate communication between the CPU and
storage devices
b) To execute user programs
c) To process high-priority interrupts
d) To store temporary data
(Answer: a)
4. Which of the following is a primary function of disk
management?
a) Process scheduling
b) Memory fragmentation
¢) Formatting and partitioning disks
d) Program execution
(Answer: c)
5. Which RAID level uses striping without redundancy?
a) RAID O
b) RAID 1
c) RAIDS

233
MATS Centre for Distance and Online Education, MATS University



Notes

10.

d) RAID 10
(Answer: a)
What is the key characteristic of a distributed system?
a) Centralized control over all processes
b) Multiple independent processors working together
c) Use of a single file system for all devices
d) Only local execution of processes
(Answer: b)
Which of the following is NOT an advantage of a distributed
file system?
a) Scalability
b) Data redundancy
c¢) Single point of failure
d) Remote file access
(Answer: ¢)
What is transparency in a distributed system?
a) The ability to hide implementation details from users
b) A mechanism for encrypting data
c) The process of data fragmentation
d) A technique for improving network latency
(Answer: a)
Remote file access allows users to:
a) Access files stored on a local disk only
b) Retrieve and modify files stored on another system over
a network
c) Use physical hard drives instead of cloud storage
d) Remove files permanently from all servers
(Answer: b)
Which disk scheduling algorithm favors the request closest to
the current head position?
a) FCFS
b) SSTF
c¢) LOOK
d) C-SCAN
(Answer: b)

Short Questions

1.

What is the purpose of disk scheduling in an operating system?
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10.

List two common disk scheduling algorithms and briefly
explain them.

What is an I/O interface, and why is it important?

Explain the basic structure of a hard disk.

What is the function of a RAID system, and why is it used?
Differentiate between RAID 0 and RAID 1.

What are distributed systems, and how do they improve
computing efficiency?

Define naming transparency in a distributed file system.

What is remote file access, and how does it benefit users?
How does a distributed file system differ from a traditional file

system?

Long Questions

1.

10.

Explain the need for disk scheduling and discuss different disk
scheduling algorithms.

What are the key components of I/O hardware, and how do they
function?

Discuss the applications of an /O interface in operating
systems.

Explain the structure of a hard disk and its role in data storage.
Compare different RAID levels and their advantages and
disadvantages.

What is a distributed system, and how does it improve resource
utilization?

Discuss the features and architecture of a distributed file
system.

Explain the concept of naming transparency and its importance
in distributed systems.

How does remote file access work, and what are the security
concerns associated with 1t?

Analyze the challenges in implementing distributed systems

and how they can be overcome.
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MODULE 5§
STATEFUL VERSUS STATELESS SERVICE AND
SHELL PROGRAMMING

LEARNING OUTCOMES
e To understand stateful and stateless services in OS.
o To explore different shell programming techniques.
o To study command execution processes and shell scripting.
o To analyze decision-making selections and function parameter

passing in shell scripts.
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Unit 5.1: Shell Programming & Introduction to Shell
Programming

5.1.1 Shell Programming & Introduction to Shell Programming

In the realm of operating systems, particularly Linux and Unix, the shell
is a crucial command-line interpreter, bridging the gap between the user
and the kernel, the core of the operating system. It allows users to
interact with the computer by executing commands, managing files,
and controlling system processes via a text-based interface. Shell
programming is simply writing the shell command language scripts for
repeating the tasks and is used to create powerful utilities. Essentially,
the shell is a command line interpreter which takes commands from
the user and translates them into instructions that the kernel can
comprehend and execute. This feature is not limited just to running a
single command; all in one and you can write complex scripts to
automate repetitive tasks, manage the system configuration, and
process data in a complex structure. By combining, controlling
execution, and calling various available commands or built-in
functionality, the shell is very powerful and flexible. The basics of
shell programming using various shells are taught as an essential aspect
of the concepts of operating system development by undergraduate
students, highlighting their significance in system administration as
well as automation. The shell environment gives students a direct view
into the inner workings of the operating system: they can experiment
with system commands and see their effects firsthand, gaining a hands-
on understanding of how the operating system works. Students
pursuing careers in computer programming, software development, and
systems administration gain important hands-on experience. Users
write shell scripts that are a single file combining multiple commands,
automating complex workflows and eliminating manual steps. Tools
and Ultilities: You can write shell scripts to create custom utilities and
tools that extend the OS's capabilities, enabling users to customize their
environment according to their specific requirements. Additionally,
shell scripting offers a programming environment with access to
variables, control flow (loops and if statements), and functions, making
it a powerful medium for writing complex programs. With the help of
variables, users can store and manipulate data within scripts, and with

control structures the flow of execution can be controlled based on
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specific conditions. With functions, a user can encapsulate reusable
code blocks, promote modularity and facilitate code reuse. Shell also

has a rich set of built-in commands and utilities like file manipulation,

SHELL

PROGRAMMING INTRODUNTING

TO SHELL PROGRAMMING
What is a Shell?
-| Command-line Interface (CLI)

L Automate Tasks

2 )
‘- @ (ol ‘. = * o(f3 Automate Tasks
% E l o

° @[1 Scripting Languages (Bash, Zzh)

User Input Shell (interpreter ° / ¢/ File Management

05 Kemel

references, and system administration commands which you can use
inside the scripts. All these built-in functions, along with the shell's
ability to use scripts, make it a powerful platform for building all sorts
of applications. Shell programming is a skill set that is fundamental
and a necessary basic building skill for more advanced aspects of
programming. Learning to write shell scripts teaches students critical
skills such as the ability to solve problems, think through their logic,
and break complex tasks into smaller, more readable actions. Students
aiming to be proficient programmers and system administrators

require this hands-on learning.

Shell programming is the foundation of understanding how to use
commands. The command language of the shell is made to be
predictable and simple to Joomla, its key strengths being simplicity
and versatility. Commands are usually specified as a command name,
its options, and its arguments. If options customize how a command
runs, arguments define what data or files the command manipulates.
The -1 option lists the contents in a long format; so, for one example,
Is lists the contents of a directory. Structured... Shell scripts are usually
written in some text editor and saved with a. sh extension. The first
line of a shell script contains a command that indicates which shell
interpreter to use to execute the script, usually #! /bin/bash for the Bash

shell. This is called the shebang, it informs the operating system that
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the script uses the interpreter that follows it. The shell script you can
call with a simple command like shellscriptname, and it will execute
commands sequentially, and any command can take the output of
another command using pipes and redirection. Pipes enable the output
of one command to be passed as input for another, while redirection
enables you to redirect the input and output of a command to files or
other devices. Shell programming variables: Variables are used to
store data in a shell programming script. Values are assigned to
variables using the = operator, while values can be accessed using the
$ symbol. Built-in Shell Variables: The shell also has a set of built-in
variables that provide information about the shell environment, such as
the current working directory, and the user's login name. Control
structures, (if statements, for loops, etc.) these are used by users to
execute flow control in scripts. If statements are used to execute
different commands based on specific conditions, and for loops that
enable users to iterate over a set of values or files. Functions allow users
to wrap reusable code sections, fostering modularity and code reuse.
Undergraduate students, within their learning and understanding of
these basic concepts can also start building their own shell scripts to
automate some of their tasks and processes. The big power of shell
programming being able to connect all other programming languages
and tools together. Some of the programs could be written in other
languages, such as C, Python, and Perl, and shell scripts could invoke
these programs and also pass data from one program to the other. Since
shell can integrate other utilities, it is suitable for building complicated
applications/systems. A shell script, for example, can be used to
compile and run a C program, or to manipulate data produced by a
Python script. Shell scripts can mix in with other UNIX and Linux
commands to carry out basic tasks or perform more complex actions.
Shell Environment  for  Debugging and  Troubleshooting
(ShellNamespaces.com) The set command will enable debugging
options such as command execution tracing and variable value output.
Here at SCRIPT execution the value of the messages and the value of
the variables get displayed with the help of echo command, these are
very helpful to understand errors and find the bugs. Command-line
debuggers, like bashdb, are also supported with shell programming and
offer advanced debugging capabilities, including but not limited to

breakpoints, stepping, and variable inspection. These debugging tools
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help undergraduate students to learn how to write solid and dependable
shell scripts. System administrators also benefit from shell
programming since they use shell scripts to automate routine tasks such
as system maintenance, managing user accounts, and monitoring
system performance. Shell scripts also enable administrators to build
custom tools and utilities that can be used for system administration
tasks, making it easier for them to work efficiently. As I mentioned
earlier, a shell script can be used to automate some tasks such as
creating user accounts, installing software packages, or copying
system files. Finally, the study of shell programming is important for
undergraduate students aspiring to build careers in computer science
and its allied fields. It is a command line shell that serves as a powerful
and flexible environment to automate tasks, to customize the operating
system and to integrate with other programming languages and tools.
Students learn the command line and write their first shell program,
without any knowledge, become the groundwork for learning about
operating systems and basic building blocks of sysadmin and
automation. If you don’t know how shell scripting sessions work, that’s
fine but you should, because writing scripts isn’t enough to be a good
shell programmer. The shell is a command line interpreter which
allows the user to input command to manage the processes, files and
configurations on the system. Shell programming is an important tool
for both system administrators and developers as it has a close link
with the operating system. Moreover, the shell provides advanced
scripting features that allow you to combine multiple commands into
a sequence of actions. The versatility of the shell comes from its ability
to compose existing commands, control the flow of the program, and
to leverage its rich set of built-in capabilities to manipulate data. Shell
programming also exposes students (primarily in their undergraduate
curriculum) to a programming paradigm which they can extend into
other languages as they learn them. These types of programming
quizzes can help students practice their problem-solving skills, as shell
scripting requires not only knowledge and skills IT but they know how
to put it to use. This hands-on experience is critical for students who
want to become competent programmers and system administrators.
The Shell Shells are essential because they enter every organization
with X applications. Shell programming allows for building complex

systems, from automating software product development workflows
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via web servers and databases. With the advancement of technology,
the need for skilled shell programmers will only rise; it is an essential

skill for students to learn.

5.1.2 Various Types of Shells and Their Comparisons

Many more shell implementations were developed over the years, each
featuring different syntax and capabilities, targeting various user bases
and needs. These different types of shells play a significant role in
system administration and software development. Purely repercussive
shells including the Bourne shell (sh) were the very early shells whilst
targeting simplicity and efficiency, looking only towards basic
command execution and scripting functionality. The syntax of the
Bourne shell, while perhaps not as powerful as its successors, served
as the blueprint for the development of future shells. With
advancements in computing, users began to have different needs, and
thus, more advanced shells were created that had better features and
functionalities. You might also implement a more interactive feature
such as command history, job control, and aliases with csh, etc. Its C-
like syntax attracted C users, though the C shell's scripting capabilities
had received complaints as inconsistent and limited. David Korn wrote
the Korn shell (ksh), which attempted to merge the best features of the
Bourne and C shells in an interactive and scripting environment. It also
added command-line editing, job control improvements and many
other features that made it popular among system administrators. The
Bourne-Again shell (bash) is an improved version of the original
Bourne shell that adds many features from the Korn shell and C shell
and 1s the default shell for most Linux distributions. Bash has numerous
more advantages and options for the interactive user and the script
writer, together with command-line completion, history growth, and
plenty of scraping choices. This popularity is due to its ability to run
Bourne shell scripts, as well as its extensive feature set and
availability. In addition, yet another popular shell is the Z shell (zsh),
which is built on top of bash to provide advanced features like
advanced command-line completion, spell correction, and plugin
support. Make Zsh Your Own (and Others Again) Zsh is highly
customizable and extensible, which is why it 1s loved by power users
and developers. Now when it comes to comparing these shells, things

like syntax, scripting capabilities, interactive features, and
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customization options come into play. With simplicity and efficiency,
the Bourne shell didn't offer many user-friendly features introduced in
later shells. While the C shell is interactive, it isn't that great for
scripting. The Korn shell strikes a good balance between interactive and
scripting features, while bash and zsh have plenty of features aimed
more at interactive use with the script features there too. The normal
shell to use is a matter of preference this leads to bash and zsh being
the most popular and recommended for use due to the large set of

features.

5.1.3 Command Execution

Here are the steps of command execution in a shell: parsing the
command line, executing the corresponding command, collecting the
result. The shell is the command-line interface that is responsible for
processing user input. It expands. The shell makes lots of expansions
variable expansion, tilde expansion, wildcard expansion, and so on to
fix any special characters or variables in the command line. Variable
expansion will put the value of variables instead of the variables in
command, which allows us to build a command dynamically. Tilde
expansion refers to the opening of a user account in this directory using
the tilde character (~) for ease of use, so that users do not have to write
out the full path to the user's home directory when the file or directory
is in the home directory. Using Wildcard expansion means expanding
the patterns using Wildcards like and?, thus allowing a user to perform
operations and actions on multiple files with a single command. Then,
after the parsing and argument expansion the shell checks whether the
command executed is a built-in command or an external command
Built-in commands include the commands that are implemented in
shell itself, eg commands like cd, echo, exit etc. The commands here
are run in the shell itself without invoking a new sub process. External
commands refer to program residing on a file system like Is, grep, and
gcc. When an external command is executed, the shell forks a new
process calling fork system call and the image of the new process is
then replaced with the specified program using the exec system call.
Creating a child process through the fork system call including a new
process replacing its memory through the exec system call The shell
also waits for the process to terminate by using the wait system call

once the program executes. Next, the shell collects the exit status of
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the process, which tells it if the command successfully executed or if
an error occurred. Input Output Redirection (Using and ) Shell uses
special characters like and to redirect input and output. The input is read
from a file using input redirection Used to send the output from one
command to another command as input, which gives the user the
ability to elaborate commands and create complex operations. Another
topic which is essential to command execution is job control, allowing
users to run multiple processes at one time. The shell has commands
like bg, fg, and jobs to manage the transitions between foreground and
background processes, and to list background jobs that are currently
running. In addition to handling separate processes, the shell also
handles signals, which are messages sent to any process to notify it of
asynchronous actions like interrupts, termination requests, and errors.
The shell includes commands such as kill that are used to send signals
to processes, enabling the user to kill or otherwise control their
behavior. The understanding of these steps and functionalities is
required to work with command line in an efficient manner as well as
scripting.
The shell, as the command-line interface (CLI), is the fundamental
program responsible for processing user input and orchestrating the
execution of commands. It acts as an interpreter, translating human-
readable instructions into actions the operating system can understand.
Understanding the steps involved in command execution is crucial for
efficient command-line usage and effective shell scripting.
Step 1: Parsing the Command Line and Expansions
When a user types a command and presses Enter, the shell doesn't
immediately execute it. Instead, it first parses the command line,
breaking it down into individual components (command and
arguments) and then performs various expansions. These expansions
replace special characters and variables with their actual values,
constructing the final command string that the system will interpret.

1. Variable Expansion: This is one of the most common expansions.
When the shell encounters a variable (e.g., SHOME, $PATH, or
user-defined variables like $my var), it replaces the variable name
with its stored value. This allows for dynamic command
construction, where parts of a command can change based on the

environment or user input.
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Example: echo "My home directory is SHOME" will replace SHOME

with /home/username (or /Users/username on macOS).

2. Tilde Expansion: The tilde character (~) is a convenient shortcut
for a user's home directory. When the shell sees a ~ at the beginning
of a path, it expands it to the full path of the current user's home
directory (e.g., /home/username). This saves typing and makes
commands more portable.

Example: Is ~/documents is expanded to Is

/home/username/documents.

3. Wildcard Expansion (Globbing): Wildcards are special
characters that allow users to specify patterns for multiple files or
directories. The shell expands these patterns into a list of matching
file names before the command is executed.

o * (asterisk): Matches any sequence of zero or more characters.

Example: Is *.txt expands to Is filel.txt report.txt data.txt

o ?(question mark): Matches any single character.

Example: mv file?.log expands to mv fileA.log fileB.log

o [ ] (brackets): Matches any one of the characters enclosed within
the brackets, or a range of characters.

Example: rm [abc]*.tmp expands to rm afile.tmp bdata.tmp cdoc.tmp

After these expansions, the shell has a fully resolved command and a

list of arguments ready for execution.

Step 2: Determining Command Type and Execution

Once the command line is parsed and expanded, the shell determines

whether the command is a built-in command or an external

command. This distinction is critical because it dictates how the
command is executed.

1. Built-in Commands: These are commands that are an integral part
of the shell itself. They are implemented directly within the shell's
executable code and do not require a separate program to be
launched.

Examples: cd (change directory), echo (print text), exit (terminate

shell), pwd (print working directory), source (read and execute

commands from a file in the current shell context).

Execution: When a built-in command is encountered, the shell

executes it directly within its own process. This makes built-ins very

fast as they avoid the overhead of creating a new process.
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2. External Commands: These are executable programs or scripts
that reside as separate files on the file system. They are not part of
the shell's internal code.

Examples: Is (list directory contents), grep (search text), cat
(concatenate files), gcc (GNU C Compiler), python (Python
interpreter).
Location: For the shell to find an external command, its location must
be specified in the PATH environment variable. The shell searches
through the directories listed in PATH (e.g., /ust/local/bin, /usr/bin,
/bin) to find the executable file.
Execution Process (Fork and Exec):
Fork: When an external command is to be executed, the shell makes a
system call named fork(). This fork() system call creates a new, exact
copy of the current shell process, known as a child process. This
child process inherits most of the parent shell's environment, including
open file descriptors, environment variables, and current working
directory.
Exec: Immediately after the fork(), the child process makes an exec()
system call (e.g., execve()). The exec() system call replaces the entire
memory image of the child process with the program specified by the
external command. This means the child process stops being a copy of
the shell and becomes the new program (e.g., Is). The exec() call does
not create a new process ID; it replaces the current process with a new
program.

Wait: Meanwhile, the original parent shell process (which created the

child) typically makes a wait() system call. This wait() call causes the

parent shell to pause its own execution and wait for the child process

(the executed command) to complete.

Termination: Once the child process (the external command) finishes

its execution, it exits. The parent shell, which was waiting, then

resumes its own execution.

Step 3: Collecting the Result (Exit Status)

Upon the termination of a command (whether built-in or external), the

shell collects its exit status. The exit status is an integer value that

communicates the success or failure of the command.

e By convention, an exit status of 0 (zero) indicates successful

execution.
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e Any non-zero exit status (e.g., 1, 2, 127) indicates that an error
occurred or the command terminated abnormally. Different non-
zero values often correspond to specific types of errors. The exit
status is stored in a special shell variable, $?, which can be checked
by scripts to control their flow based on the outcome of previous
commands.

Advanced Functionalities: Redirection, Pipelines, Job Control, and

Signals

The shell offers powerful features that extend simple command

execution to enable complex operations and process management.

1. Input/Output Redirection: The shell uses special characters to
alter where a command reads its input from or sends its output to.

Output Redirection (>, >>):

= >:Redirects a command's standard output to a file, overwriting the
file if it already exists.

= >>: Redirects a command's standard output to a file, appending to
the file if it already exists.

=  Example: Is -1 > file list.txt (sends the Is output to file list.txt)

Input Redirection (<): Redirects a command's standard input to read

from a file instead of the keyboard.

= Example: grep "pattern" < input.txt (reads input for grep from
input.txt)

Error Redirection (2>): Redirects standard error (stderr) to a file.

= Example: command that might fail 2> error.log

2. Pipes (]): The pipe operator allows the output of one command to
be directly fed as the input to another command. This enables
chaining commands to perform sophisticated operations.

Example: Is -1 | grep ".txt" | sort (lists files, filters for .txt files, then

sorts the result)

3. Job Control: This functionality allows users to manage multiple
processes concurrently, moving them between the foreground and
background.

e Foreground Process: A process actively interacting with the user,
receiving input from the terminal.

e Background Process: A process running independently in the
background, not requiring immediate interaction, freeing up the
terminal for other commands.

e Commands:
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&: Runs a command in the background immediately.

= Ctrl+Z: Suspends the current foreground process.

= bg: Resumes a suspended process in the background.

= fg: Brings a background or suspended process to the foreground.

= jobs: Lists all currently running or suspended background jobs.

4. Signals: Signals are software interrupts or asynchronous
notifications sent to processes to inform them of events. The shell
allows users to send signals to manage process behavior.

e Common Signals:

=  SIGINT (Interrupt - Ctrl+C): Typically terminates a process.

= SIGTERM (Terminate): Requests a process to terminate gracefully.

= SIGKILL (Kill): Forcibly terminates a process (cannot be caught or
ignored by the process).

= SIGHUP (Hangup): Often used to signal a process to reload its
configuration.

e kill Command: The kill command is used to send specific signals
to processes, identified by their Process ID (PID).

=  Example: kill 9 12345 (sends SIGKILL to process with PID 12345)

Mastering these steps and functionalities provides a robust foundation

for effective command-line interaction and advanced shell scripting,

transforming the shell from a simple command runner into a powerful
environment for system administration and automation.

5.1.4 Detailed Breakdown of Command Execution Processes

In order to do more details about command execution, we need discuss

what happens behind the scene. The shell’s parser goes to work as soon

as a command is typed; breaking down the input into its parts: the
command name, any arguments, and options. Parsing is a critical stage
for the shell to know the user's intention. After parsing, the shell begins

a sequence of expansions to convert the command line to its equivalent

executable form. The heart of Bash, variable expansion replaces

variables with their assigned values, enabling the flexible crafting of
commands. Variable DIR is set to /home/user/documents so when
command cd $DIR runs it is substituted into of cd

/home/user/documents before executing. Tilde expansion is a shortcut

for navigating and designating files, converting ~ to the user's home

directory. Another powerful feature of the shell is wildcard expansion,
which lets you apply operations to multiple files based on a pattern.

For instance, Is. Txt will show the output of all files with. in the
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current directory. Hash table or after expansions, the shell determines
whether the command is built-in Unix like operating system command
execution is an essential concept that enables all user interactions and
system activities. Once a user provides a command to the shell, it goes
through a complex sequence of processes that converts the command
to actions that can be executed. First, the shell parses the command line,
splitting it into separate tokens, like the command name and its
arguments. This parsing includes anything from interpreting special
characters, to quote-handling to wildcard expansion. The shell also
aliases, allowing users to define custom command line shortcuts to
possible forward to common command lines. After that, the shell looks
for built-ins, commands that are built into the shell itself, like cd, echo,
or exit. In case the command is built-in, the shell executes the command
itself, so no new process needs to be created. Then if the command is
not a built-in, the shell searches the directories in the PATH
environment variable for an executable file of this name. PATH is a
colon-separated list of directories that the shell looks through, in turns.
The shell forks a new process using the fork system call when it has
located the executable file. The child process subsequently invokes the
exec set of system calls to overlay its image with the executable file of
its command. The parent shell process, on the other hand, invokes the
wait() system call to block whilst the child process executes. The input
and output streams are controlled via file descriptors when the
command is executed. Standard input (stdin), standard
output(stouts)and standard error(stderr) are usually attached to the
terminal, but they can be redirected to files or passed to other
commands. The shell also handles environment variables (key-value
pairs that hold relevant information to processes). These variables can
affect the way commands execute and are passed through to sub
processes. After executing the command, the child process exits,
providing an exit status reflecting success with zero or an error with a
positive integer. The parent then displays its prompt, awaiting the next
command. From parsing the command line to managing input/output
and environment variables, the shell orchestrates this entire process,
and acts as the main interface between the user and the kernel of the
operating system. Therefore, for the effective fulfillment of tasks of a
system administrator and shell programmer, it is important to have

knowledge of this process to understand the very process of command
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execution and control over it. In this context, shell programming, the
act of developing scripts that automate and enhance the capabilities of
the command-line interface, is an incredibly powerful tool for both
system administrators and developers. Different shells, like Bash, Zsh,
and Ksh, offer different levels of features and syntax, with their
respective strengths and weaknesses. Bash (Bourne Again SHell) is a
widely used Linux shell that is the default shell in many distributions,
and it is also the most commonly used shell for writing scripts. You
can use variables, conditional statements, loops, and functions within
Bash scripts to create complex automation routines. Bash variables are
dynamically typed and can hold strings, numbers, or arrays. Flow
Control; Uses conditional statements for decision making (if; elif, else)
Sequence, selection, and repetition: The sequence section specifies a
list of commands to execute one after the other, while conditional
execution (via an if statement) allows for decisions to be made in the
flow of code, and for loops, such as for and while, permit commands to
be executed in repeat for a number of times, automating tasks that
would otherwise require manual intervention. Bash functions help in
making the scripts modular, organized, and reusable. Another popular
shell is Zsh (Z Shell), which extends many of the features found in Bash
and also offers better tab completion, spell checking, and theming. Zsh
is highly customizable and configurable, making it great for users that
want to make their shell environment suited to their specific freedoms.
Enter Ksh (Korn Shell) a shell that merges the best of Bourne shell and
C shell, providing an efficient and powerful scripting environment.
These two features make ksh widely used in terms of performance
while retaining compatibility for older shell scripts. Another thing to
keep into consideration when writing shell scripts is that there are best
practices—using comments to explain what the code is doing, using
proper variable names, error handling, and so on. Error handling is done
by conditional statements and the trap command, which enables the
execution of certain commands on receiving certain signals. Shell also
communicates with the operating system by making system calls or

executing any external commands.
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Unit 5.2: Shell Programming in Different Shells

5.2.1 Shell Programming in Different Shells

The script uses grep to search for pattern(s) in files, or use sed to
perform basic text transformations. Automation alone is just a small
part of writing shell scripts, but to add more utilities that help within
the command-line interface. Learning shell programming can help
users automate tasks, understand the inner workings of the shell, and
improve their productivity. Now a further look into shell programming
in one of the most popular shell, Bash shows a lot of rich functionality
for automating complex tasks. A bash script starts with a shebang line,
Already, the first line starts with /bin/bash, which refers to the
interpreter that is used to run the script. Bash does not require explicit
types when declaring variables, which are referenced using the prefix.
syntax is used for arithmetic operations, and various built-in commands
or parameter expansions are used for string manipulations. Conditional
statements including if, elif, and else are used to make decisions based
on whether an expression evaluates true or false in Bash. These may
be comparisons of strings, numbers, or file properties. Bash loops: for,
while and until loop in Bash allow you to run the same command
multiple times. The for loop is especially handy to iterate over
collections of items; whereas while and until loops are used to iterate
conditionally. In Bash, you define a function by writing the keyword
function, or by writing the function name followed by parentheses.
Makes up the arched arguments and return values that enable modular
and reusable code. One of the core parts of bash scripting is the input
and output redirection. The operator writes standard output to a file, and
the operator appends standard output to a file. Pipes Let’s us link
commands together so that the output from one command is the input
to the next command. Bash error handling can be done using
conditional statements and trap command. The command trap enables
us to execute some specific commands whenever we receive some
signals such as, SIGINT (interrupt), SIGTERM (terminate) etc. It
offers several built-in commands like grep, sed, awk, and cut for text
processing and data manipulation. Together with its scripting
capabilities, Bash can easily be one of the most powerful tools in
automating work and managing systems. Learning what Bash scripts

are and why they matter are key for any Linux or Unix-like operating
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systems user looking to write automation that is as efficient and
effective as possible.

While Bash has wide availability, features unique to Zsh and Ksh
showcase the variety of shell programming. Zsh provides more
powerful interactive features like improved tab-completion, spelling
correction and a powerful theming system. That is not all, the tab
completion in Zsh is context-sensitive, suggesting commands
depending upon the type of command and the arguments being passed
against them. Say goodbye to typing long command names and file
paths, this feature improves our productivity considerably. So, user's
after most time are looking for more spelling verification, Zsh
automatic corrects typos for command names and file paths, making
the interactive experience better. Zsh theming feature provides
customizing functionality to alter the look and feel of the shell prompt
and surrounding components. In addition to this, Zsh offers advanced
scripting features like arrays and associative arrays alongside regular
expressions, which makes it an excellent tool for automating complex
tasks. Another powerful shell that combines features of a Bourne shell
and a C shell is Ksh, the Korn Shell. Ksh does, however, have great
performance and compatibility with older shell scripts. Ksh supports
functions, arrays, arithmetic operations and all the other bells and
whistles a programming language would have. Ksh also supports
powerful features like co-processes, enabling commands to run
simultaneously. This is Ksh as it plays along with legacy Bourne shell
scripts popular with many system admin type users. Shell is broadly
categorized into two different ways, which is, one is Zsh and Ksh that
have some syntax and file features. Hope this answers your question
while most of the fundamental features and syntax (for example:
variables, conditional branching statements, looping constructs) are
similar albeit with minor variations in all of these shells, the differences
can be subtle enough to mess up the behaviour of your scripts. For
instance, Bash's syntax for arithmetic operations, or array
manipulations, is different from Ksh and Zsh. The aim of this article
is to explore these differences and ultimately to write portable and
compatible shell scripts, Zsh has many interactive features that make it
a better choice for interactive work, while Ksh may perform better for
system administration tasks. This can help users to expand their shell

programming toolkit and pick the individual shell that may serve them
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best. To summarize, command execution process and shell
programming are the integral concepts of Unix and Unix-like operating
systems. The shell remains the primary interface between the user and
the kernel, handling the actual execution of commands and overseeing
input/output and environment variables. Shell programming, the art of
writing scripts that automate tasks and extend the utility of the
command-line interface, is a powerful weapon in the arsenal of any
system administrator or developer. There are different shells like Bash,
Zsh, and Ksh with different levels of both features and syntax. Here we
will focus on "Bash" the popular default shell used on many Linux
distributions. The parameter passing is the mechanism in which the
values are sent from a function to its caller. When a function is
invoked, its caller has to provide the values that will be passed as
arguments to the function to perform its operation. The two main
forms of parameter passing are pass-by-value and pass-by-reference.
Pass by value is when you pass a copy of the value of the argument to
the function. The parameter is a local variable within the function that
refers to the same object in memory as the argument passed when the
function is called. This approach is used when the function needs a
copy of the data to work with and is not going to modify the original.
This gives the caller more control over their data, providing a degree of
safety by preventing unplanned side effects, since the callee never has
access to the original data. Instead, pass-by-reference passes the
address in memory of the argument being passed to the function. Any
modification to the parameter inside the body of the function modifies
the argument in the caller. This is required when the function may need
to update the data inside caller or typically used for large data
structures where copying it would be costly. Pass-by-reference enables
functions to alter multiple values and to produce results via their
parameters. But it also has the potential for unintended side effects: If
the function changes the caller’s data in an unexpected way. Pass-by-
constant-reference 1is a similar variation some programming languages
do offer this is when the function can access the caller's data, but there
is no ability to modify it. This gives the performance of pass-by-
reference, but the data protection of pass-by-value. Many times, you
need to decide if you want to pass-by-value or pass-by-reference. If
you want a function to be able to change the data from the caller, then

pass-by-reference is the way to go. If the function only needs to work
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with a copy of the data (for example, if it is going to mutate it), then
you should use pass-by-value as it is a lot to pass the data structure as
a reference. It is really important to know how args are passed because
it matters for writing efficient and correct code passing a parameter
incorrectly causes obfuscated bugs which are hard to find and correct.
For instance, passing a complex data structure by value incurs an
overhead in performance because of the copying process. Just as we
can accidentally modify the caller's data by passing the variable by
reference manually, we can do this just as easily by passing it by a
default value. Parameter passing is not confined to primitive data types;
itis also relevant for complex data structures, including arrays, objects,
and pointers. Similar rules apply for when passing arrays or objects,
however may differ from language to language. Some programming
languages may pass arrays by reference, while others may use
relinquish via value by default. Details of our parameter passing are
also important in function interface designs Developers can write
flexible and robust functions by carefully selecting the correct
parameter passing strategy. They are able to design reusable
components that can be easily integrated into different parts of a
program. Long story short, parameter passing is a fundamental concept
in programming that enables functions to communicate with their
callers.
Shell programming, or scripting, is the process of writing commands in
a shell to automate tasks, perform administrative functions, and create
powerful command-line tools. While all shells serve as an interface to
the operating system, different shells offer unique features and syntax,
catering to different user needs. The choice of shell often depends on
whether the primary goal is robust scripting, interactive use, or a
balance of both.
Bash (Bourne-Again Shell)
Bash is the most widely used shell on Linux and macOS, serving as the
default shell for many distributions. It's an enhanced version of the
original Bourne Shell and is POSIX-compliant, which means scripts
written for it are highly portable across different Unix-like systems.
This makes Bash the de facto standard for general-purpose shell
scripting.

o Key Features: Bash excels at robust scripting. It supports a

comprehensive range of control flow statements (if-else, for
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Notes loops, while loops), functions, arrays, and associative arrays. It
also includes useful interactive features like command history
and command-line editing.

e Syntax: Its syntax is well-established and powerful. Variables
are declared without special characters (e.g., my var="hello")
and accessed with a dollar sign ($my var). Conditional
expressions often use [ ] or [[ ]].

Example Bash Script:
Bash
#!/bin/bash
echo "Hello, what is your name?"
read name
if [ "$name" == "Bash" ]; then
echo "Welcome, mighty shell!"
else
echo "Hello, $name."

fi

Zsh (Z Shell)

Zsh is a modern and highly customizable shell that builds on the
features of Bash. While it is largely Bash-compatible, it introduces
significant improvements that make it a favorite for interactive use.
Zsh's powerful features have led it to become the default shell on
macOS since Catalina.

e Key Features: Zsh's primary appeal lies in its interactive
enhancements, such as intelligent and extensive tab
completion for commands and file paths, built-in spell
correction, and advanced globbing (wildcard expansion). It also
has a more powerful history command. The most notable
feature is its vibrant ecosystem of plugins and themes,
particularly through frameworks like Oh My Zsh.

e Syntax: Zsh's scripting syntax is very similar to Bash, making

it easy for Bash users to transition. However, it offers some
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advanced features, such as for loops over C-style syntax and an Notes
improved way to handle arrays.
Example Zsh Script:

Bash
#!/bin/zsh
files=(*.log)
if (( ${#files} > 0)); then
echo "Found log files: ${files[@]}"
else

echo "No log files found."

Fish (Friendly Interactive Shell)

Fish is a unique shell designed from the ground up to be user-friendly
and interactive. Unlike Bash and Zsh, it is not POSIX-compliant,
which means its syntax is different and scripts written for it won't run
in other shells. This non-compliance allows for a simpler, more
intuitive syntax.

e Key Features: Fish provides out-of-the-box features that
require plugins in other shells. These include syntax
highlighting, intelligent auto-suggestions as you type based on
command history and man pages, and a simple configuration
process.

e Syntax: Fish's syntax is much more like a high-level
programming language. It uses end to close blocks (if, for,
function), and variables are scoped by default (set for local, set
-g for global). It avoids the complex quoting and special
characters common in other shells.

Example Fish Script:

Code snippet

#!/usr/bin/env fish

echo "Hello, what is your favorite color?"

read color
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if test "$color" = "blue"

echo "Blue is a great color!"
else

echo "That's a nice color too."

end

5.2.2 Comparison of Shell Features in Detail

Building on the above shell comparisons, the unique set of features of
each opens them up for specific use cases and a dedicated user base.
The Bourne shell is the most basic (the original) and most portable. Its
syntax, although bleak compared to shells in widespread use today, is
extremely consistent, meaning it’s great for writing scripts that need to
work on a huge number of systems. Its main purpose is to execute
commands and handle simple scripting tasks. But it does not implement
any of the interactive features like command history, job control,
aliases or things that modern interactive usage relies upon. The C shell
(csh), aimed at a more casual user base, brought many virtual machine-
like features that fundamentally changed how users interacted with
commands and their arguments. It was much more convenient for
interactive use due to its command history, aliases, and job control. Yet,
the scripting functionalities were often mocked for their inconsistencies
and non-standard syntax. Things like its handling of control structures
and variables were seen as clunky and error-prone. To overcome the
limitations of both Bourne and C shell, the Korn shell (ksh) was
introduced which provided a powerful versatile environment for
interactive use as well as scripting. It combined features from shells,
including command-line editing, improved job control, and better
scripting features. Its scripting syntax, for instance, was bolder and
more consistent than that of the C shell, which made it a favorite of
systems administrators and developers alike. The Bourne-Again shell
(bash) is one of the most popular it is compatible with Bourne shell
scripts, comes with many powerful features, and is very commonly
available. Bash is as customizable as it gets and has tons of features
under the hood for interactive use as well as for scripting. Its powerful
command-line completion, history expansion, and rich scripting
capabilities make it popular with both casual users and advanced

developers. Bash is an acronym for the Bourne Again Shell, signaling
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that its scripting syntax is from the Bourne shell, but with many
improvements and extensions that deliver much more power and
flexibility. Fast forward to zsh, which adds even more advanced
features on top of bash. Power users and developers love it for its
enhanced command-line completion, spelling correction, and its
support for plugins. Zsh is customizable and extensible, enabling users
to customize their shell environment according to their needs. Oh My
Zsh, its plugin system, offers a large library of plugins and themes, so
you can easily extend the shell's functionality and appearance. All
shells have their own unique strengths and weaknesses, so users should
evaluate based on individual requirements. The Bourne shell might be
enough for some simple scripting tasks. The C shell or Korn shell
might be good for writing the shell scripts interactively. For a robust
and flexible shell that works great interactively and can be scriptable
faster than you can say "reverse-timestamp-auto complete", bash or zsh
is the way to go. If you prefer a command-line shell that is compatible
with most Unix systems, Bash would be a good option, whereas if you
want extensive customizability, zsh would be preferable.

Summary

Shell programming is a powerful method for automating tasks in Unix-
like operating systems by writing scripts composed of shell commands.
It serves as a user interface between the user and the operating system,
allowing command execution, file manipulation, program execution,
and text output in a programmable format. Shell scripts can include
loops, conditionals, and variables, making them useful for automating
repetitive tasks such as backups, software installation, and log analysis.
Shell programming supports logic control structures similar to those
found in high-level programming languages, allowing complex
workflows to be expressed concisely in a script.

Different types of shells are available, each offering unique features and
syntax. Common shells include the Bourne Shell (sh), Bourne Again
Shell (bash), C Shell (csh), Korn Shell (ksh), and Z Shell (zsh). Bash is
the most widely used, particularly in Linux environments, and provides
extensive scripting capabilities, compatibility with the original Bourne
shell, and advanced features such as command history, job control, and
tab completion. C Shell, on the other hand, uses a syntax resembling
the C programming language, making it preferable for users with a

background in C. Korn Shell combines features of both the Bourne and
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C shells, offering advanced scripting functionality and performance
improvements.
Writing shell programs involves understanding shell-specific syntax
and conventions. A script typically begins with a "shebang" (#!) line
that indicates the interpreter to be used, followed by a series of
commands or logic structures. Shell programming is particularly
valuable in system administration, as it allows administrators to write
scripts to monitor systems, manage user accounts, and perform routine
maintenance tasks. It simplifies the execution of batch commands and
helps users to create customized workflows tailored to their system
needs.
Multiple-Choice Questions (MCQs)
1. Which of the following is NOT a type of shell in Unix/Linux?
a) Bourne Shell (sh)
b) Korn Shell (ksh)
c) Python Shell (pysh)
d) C Shell (csh)
(Answer: ¢)
2. Which shell is the default for most Linux distributions?
a) C Shell (csh)
b) Korn Shell (ksh)
c) Bash (Bourne Again Shell)
d) Z Shell (zsh)
(Answer: ¢)
3. In a shell script, which symbol is used for comments?
a) //
b) #
c) /**
d $
(Answer: b)
4. Which command is used to make a shell script executable?
a) chmod +x script.sh
b) execute script.sh
¢) run script.sh
d) compile script.sh
(Answer: a)
5. What is the correct syntax for an if statement in a shell script?
a) if (condition) then ... fi
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b) if[ condition ]; then ... fi Notes
c) if condition { ... }
d) if: condition -> ... fi
(Answer: b)
6. Which command is used to display the currently running
processes in Linux?
a) ps
b) Is
c) pwd
d) kill
(Answer: a)
7. What is the purpose of the read command in shell scripting?
a) To print text on the screen
b) To read input from the user
c) To delete a file
d) To execute another script
(Answer: b)
8. Which loop structure is used in shell scripting to repeat
commands?
a) while
b) do-while
c) until
d) Bothaandc
(Answer: d)
9. Which symbol is used for passing parameters to a shell script?
a) &
b) %
c) $
d) #
(Answer: ¢)
10. What is the function of the grep command in shell scripting?
a) To search for a pattern in a file
b) To copy a file
c) To move files
d) To delete files
(Answer: a)
Short Questions

1. What is shell programming, and why is it used?
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List and explain three types of shells in Unix/Linux.

What is the difference between interactive and non-interactive
shells?

How does command execution work in a shell?

What is the purpose of the shebang (#!) line in shell scripts?

. How does decision-making work in shell programming?

Provide an example.

7. What is a function in shell scripting, and why is it useful?

10.

How can parameters be passed to a shell script? Provide an
example.

Explain the use of filters like grep, awk, and sed in shell
programming.

What is the difference between $1, $2, and $@ in shell
scripting?

Long Questions

1.

10.

Explain the concept of shell programming, its importance, and
common applications.

Compare various types of shells (sh, bash, csh, ksh, zsh) and
their differences.

Discuss the command execution process in Linux, from user
input to execution.

Write a shell script to check if a given number is even or odd.
Explain the script.

What is decision-making in shell scripting? Provide examples
of if, case, and for loops.

Explain functions in shell scripting, how they work, and their
advantages.

How does parameter pass and argument handling work in shell
scripting? Provide examples.

Describe how filtering commands like grep, sed, and awk are
used in shell programming.

Explain error handling and debugging techniques in shell
scripting.

Write a shell script that accepts a filename as an argument and

checks whether it exists and is readable. Explain the script.
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Glossary

Operating System (OS): A system software that manages hardware and
software resources, providing services for computer programs.

Process: A program in execution, which includes the current activity,
program counter, registers, and variables.

Kernel: The core component of the operating system that controls all
system operations and hardware communication.

System Call: A request made by a program to the OS for performing
tasks like file manipulation or process control.

Multitasking: An OS feature that allows multiple processes to run
concurrently by time-sharing CPU resources.

Process State: The current status of a process, typically categorized as
new, ready, running, waiting, or terminated.

Process Control Block (PCB): A data structure maintained by the OS
for each process, containing process 1D, state, program counter, CPU
registers, and memory management info.

Contiguous Memory Allocation: Memory allocation method where
each process gets a single, continuous memory block. Prone to
fragmentation.

Paging: A memory management technique that breaks physical and
logical memory into fixed-size blocks to enable non-contiguous
allocation.

Demand Paging: A strategy where pages are loaded into memory only
when they are required during execution, reducing memory usage.

Page Table: A data structure used to map logical pages to physical
frames in paging systems.

Page Fault: An interrupt triggered when a process tries to access a page
not currently in memory.

Thrashing: A condition where excessive paging operations hinder
system performance due to insufficient memory.

Disk Scheduling: The method used by OS to determine the order in
which disk 1/O requests are processed to optimize performance.

FCFS (First-Come, First-Served): A disk scheduling algorithm that
serves I/O requests in the order they arrive.

SSTF (Shortest Seek Time First): Disk scheduling algorithm that serves
the request closest to the current disk head position.
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SCAN and LOOK: Disk scheduling algorithms where the disk arm
moves in one direction to service requests, then reverses.

Distributed System: A model where processing is distributed across
multiple networked computers, working as a single system.

I/0O Hardware: Physical devices used for input/output operations, such
as keyboards, printers, disk drives, and controllers.

Disk Structure: The layout of data on a hard disk, including platters,
tracks, sectors, and cylinders.

Stateless Service: A service that does not retain client information
between sessions. Each request is treated independently.

Stateful Service: A service that maintains state information across
multiple requests from the same client.

Shell: A command-line interface between the user and the OS for
executing commands and running programs.

Shell Script: A file containing a sequence of shell commands for
automated execution.

Bash (Bourne Again Shell): A widely used Unix shell that supports
scripting, command history, job control, and more.

sh, csh, ksh, zsh: Different Unix shell types with varying syntax and
capabilities for scripting and user interaction.

Echo: A shell command that prints text to the terminal.

Variables (in Shell): Used to store data values in a script, defined using
var=value syntax.

Conditional Statements (Shell): Used to make decisions in scripts,
using if, else, elif, and case.

Looping (Shell): Shell constructs like for, while, and until used to repeat
code blocks.

Command Substitution: Allows the output of a command to replace the
command itself using backticks (*) or $(...).

Redirection: Used to direct input/output from/to files instead of the
default terminal using >, <, >>.

Pipelines (|): A feature that passes the output of one command as input
to another.
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