
1
MATS Centre for Distance and Online Education, MATS University

Master of Computer Applications

MCA 203
Operating System Concepts and Shell Programming

`

Course Introduction 1

Module 1

Introduction to operating system
3

Unit 1.1: Introduction to Operating Systems 4

Unit 1.2: Need and Functions of Operating Systems 19

Unit 1.3: Computer System Operations 35

Module 2

Process management and synchronization
136

Unit 2.1: Process Concepts 137

Unit 2.2: Process State 147

Unit 2.3: Process Control Block 148

Module 3

Storage management
171

Unit 3.1: Contiguous Memory Allocation 172

Unit 3.2: Paging Techniques 175

Unit 3.3: Demand Paging 179

Module 4

Disk scheduling and distributed systems
208

Unit 4.1: Disk Scheduling and Distributed Systems 209

Unit 4.2: I/O Hardware 213

Unit 4.3: Disk Structures 217

Unit 4.4: Disk Scheduling Algorithms 218

Module 5

Stateful versus stateless service and shell programming
236

Unit 5.1: Shell Programming & Introduction to Shell Programming 237

Unit 5.2: Shell Programming in Different Shells 250

Glossary 261

References 263

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,

Chhattisgarh

Prof. (Dr.) Jatinder Kumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies

and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSE COORDINATOR

Dr. Sunita Kushwaha, Associate Professor, School of Information Technology, MATS University,

Raipur, Chhattisgarh

COURSE PREPARATION

Dr. Sunita Kushwaha, Associate Professor and Mr. Digvijay Singh Thakur, Assistant Professor, School

of Information Technology, MATS University, Raipur, Chhattisgarh

March, 2025

ISBN: 978-93-49916-81-4

@MATS Centre for Distance and Online Education, MATS University, Village- Gullu, Aarang, Raipur-

(Chhattisgarh)

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in any

form, by mimeograph or any other means, without permission in writing from MATS University,

Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed & Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.

Meghanadhudu Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Disclaimer-Publisher of this printing material is not responsible for any error or dispute from

contents of this course material, this is completely depends on AUTHOR’S MANUSCRIPT.

Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

Acknowledgement

The material (pictures and passages) we have used is purely for educational

purposes. Every effort has been made to trace the copyright holders of material

reproduced in this book. Should any infringement have occurred, the publishers and

editors apologize and will be pleased to make the necessary corrections in future

editions of this book.

1
MATS Centre for Distance and Online Education, MATS University

COURSE INTRODUCTION

Operating systems (OS) are essential for managing computer hardware

and software resources, ensuring efficient execution of applications.

This course provides a comprehensive understanding of operating

system fundamentals, including process and memory management, file

systems, I/O handling, and shell programming. Students will gain both

theoretical knowledge and practical skills necessary for OS

administration and system-level programming.

Module 1: Operating System Basic Concepts – Overview

An operating system serves as a bridge between users and

computer hardware, providing essential functionalities such as

resource management, multitasking, and security. This Unit

introduces the fundamental concepts, architecture, and types of

operating systems, highlighting their role in modern computing

environments.

Module2: Process Management and Process

Synchronization

Processes are the basic units of execution in an OS. This Unit

covers process creation, scheduling algorithms, inter-process

communication (IPC), and synchronization techniques.

Students will explore concurrency control, deadlock handling,

and techniques for efficient process execution in multi-tasking

systems.

Module 3: Memory Management

Efficient memory management is crucial for system

performance and resource optimization. This Unit explores

memory allocation techniques, paging, segmentation, virtual

memory, and memory swapping. Students will learn how

operating systems manage RAM efficiently to ensure smooth

application execution.

Module 4: File Systems and I/O Management

File systems organize and store data systematically in an OS.

This Unit covers file system structures, file access methods,

disk scheduling algorithms, and I/O management techniques.

Students will gain an understanding of how OS handles file

storage, retrieval, and peripheral device management.

2
MATS Centre for Distance and Online Education, MATS University

Module 5: Basics of Shell Programming

Shell programming allows users to automate tasks and interact

with the OS using command-line scripts. This Unit introduces

shell scripting fundamentals, basic commands, control

structures, and script execution. Students will learn how to write

shell scripts for system automation and administration.

3
MATS Centre for Distance and Online Education, MATS University

MODULE 1

INTRODUCTION TO OPERATING SYSTEM

LEARNING OUTCOMES

• To understand the basic concepts of an operating system (OS).

• To explore the need and functions of an OS.

• To analyze different types of operating systems.

• To study OS services and system calls.

• To examine OS structure and design goals.

4
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1.1: Introduction to Operating Systems

1.1.1 Introduction to Operating Systems

Operating systems are one of the most essential classes of software in

computing technology. An operating system (commonly referred to as

an OS), on the other hand, is a critical bridge between the computer’s

physical machinery and the software applications you use on a day-to-

day basis. Because modern computing devices possess complex

hardware elements—from extremely powerful central processing units

to sophisticated memory hierarchies and numerous I/O devices—

without an operating system, they would remain haphazard,

uncoordinated components that cannot perform useful work.

For example: The operating system is the critical interface that turns

hardware into a cohesive, working computing machine, coordinating

the myriad interactions between physical resources and software

requirements. Operating system is fundamental, it manages computer

hardware, provides common services for computer programs, and

provide user with an user interface to computer system. They have

grown from simple program loaders and memory managers on early

mainframe computers into complex working environments, supporting

multitasking, multi-user operations and distributed computing over

networks.

Modern operating systems, from supercomputers to personal desktop

machines to mobile devices and even embedded systems in everyday

objects, all share core design and implementation utility principles,

Figure 1.1..1 : Modern operating systems

5
MATS Centre for Distance and Online Education, MATS University

Notes while also tailoring their designs to meet the needs of the hardware

environments and use cases they were chosen to serve. The detailed

exploration of operating systems provides us not just with the practical

knowledge of how computers work at a fundamental level, but also the

philosophical considerations concerning resource allocation, security

paradigms, and user interface design that have influenced the evolution

of computers and continue to shape its path forward.

This course will introduce you to the core concepts, components, and

design principles that require the powerful software systems we call

operating systems by providing a foundation upon which later study of

the specifics of implementations of operating systems and the

theoretical underpinnings of those implementations will be built.

Operating systems have evolved in much the same way as the

computers they serve, progressing in phases that respond to new

hardware and new applications. However, the earliest electronic

computers of the 1940s and 1950s had no components we’d recognize

as an operating system today; these machines had to be run directly by

their users, who physically input programs and data with the help of

switches, punch cards or paper tape.

Programs were fully in charge of the machine while executing, and

writing programs required intimate knowledge of the hardware

architecture. In the late 1950s, the emergence of batch processing

systems marked the beginning of the actual operating system, which

automated the loading and execution of series of programs in the

background, making use of costly and scarce computing resources by

reducing idle time between jobs.

Figure 1.1.2: Punch Cards and Paper Tapes

6
MATS Centre for Distance and Online Education, MATS University

Notes

Operating systems It was too complex to trust a single program directly

to the hardware, and it generally controlled the execution of one or

more workloads, and executed with the allocation of hardware

resources in memory and CPUs and allowed multiple users to

communicate interactively with the computing environment (time

sharing).

Personal computing rose in the 1980s, still relying on command-line

interfaces but making operating systems like MS-DOS, the Macintosh

System Software, and various implementations of UNIX available for

individual computers, and user interfaces matured into graphical user

interfaces as the standard for human/machine interaction in the 1990s,

including Microsoft Windows, the Macintosh operating system, and

various Linux distributions with desktop environments. The 21st

century saw the rise of the networked operating system with focus on

internal security and multimedia, as then the mobile explosion of the

2010s saw the birth of new models altogether around touch, battery

and connection optimized operating systems like Android and iOS.

Cloud computing, virtualization, and containerization take this even

further — they extend the operating system to a distributed computing

environment where many devices serve as part of a dynamic resource

allocation and management pool across a vast web of connected server

Figure 1.1.3: Batch Operating System

Figure 1.1.4: Time Sharing Operating System

7
MATS Centre for Distance and Online Education, MATS University

Notes infrastructure. Across this evolution, operating systems have always

been dealing with basic problems: effectively managing hardware

resources, providing developers with layers of abstraction to simplify

application development, ensuring the security and stability of the

system, and building a user experience that is more convenient points

that are still valid no matter the specific implementation or hardware

platform used.

You learn from a variety of sources and specializations; however, the

definition and understanding of the architecture of an operating system

is often vague and can come across confusing to the common reader.

At the lowest level, the kernel is the heart of the operating system,

running in privileged mode with hardware access and handling

essential functions such as process and memory management, file

systems, device drivers, and inter-process communication. So, amongst

these processes, managing their access to the CPU is process

management (including process scheduling to give the illusion of

concurrency, process creation and termination, process synchronization

and communication and context switching on single core systems).

Memory management involves mapping virtual addresses to physical

memory addresses, allocating and deal locating chunks of memory,

maintaining a page or segment table, and providing memory protection

against unwanted access. Device Management Device management is

a process of controlling hardware peripheral through device drivers that

abstract device-specific details and present standardized interfaces,

allocate device to competing processes, service interrupts from

hardware components. The networking stack is at the core of modern

operating systems: it implements communication protocols, manages

Figure 1.1.5: Evolution of Computer (from CUI to GUI interface)

8
MATS Centre for Distance and Online Education, MATS University

Notes local network interfaces, provides socket abstractions for network

programming, and handles routing and packet filtering. Security

elements are woven throughout the operating system, providing user

authentication and user authorization, enforcing access to resources,

giving encryption services, and protecting against malware and other

security threats. On top of these basic services, modern operating

systems provide application programming interfaces (APIs) i.e.,

methods for applications to request standard services from an OS as

well as graphical subsystems to allocate display resources and act as a

windowing system, and user interface frameworks to abstract away

some of the complexities of building interactive applications.

The operating systems have intricately layered architecture

demonstrating several design principles: modularity (capability of

constructing components independently and modifying them without

having an effect on other components), abstraction (the ability of an

operation to hide details of implementation behind the sorts of

interfaces that are less complicated) protection (which prevents

unauthorized access to resources) and extensibility (refers to the

capability of the system to adapt to the ever-changing hardware and

software capabilities). This is a crucial aspect of operating system

functionality and is used heavily in system performance and resource

utilization, as well as the overall user experience. A process, from the

operating system’s perspective, represents a single task of running a

program and includes information not just about the program code, but

also the state of the work in progress, including the program counter,

register values, values of the program variables, files currently open,

Figure 1.1.6: Application Programming Interface (API)

9
MATS Centre for Distance and Online Education, MATS University

Notes and the program’s memory allocations. When a new process is being

created—from a user request, an existing process request, or at boot

time by the system itself—the operating system allocates all the

necessary resources, sets up data structures to keep track of the state of

the process, and loads the program code into memory.

A process goes through several states during its lifecycle: running

(actively executing on some CPU), ready (waiting to be allocated to a

CPU), blocked (waiting for some event, such as I/O completion), and

terminated (execution has finished or has been aborted).

For Example: Imagine you send a document to a shared office printer.

At first, when you click the print button, the operating system creates a

new print job, which represents the New state of the process. The job is

then moved into the Ready state, waiting in the print queue because the

printer might be busy with other tasks. When the scheduler selects your

job and the printer begins to process it, the job enters the Running state.

Partway through, the printer might run out of paper, which forces the

process into a Waiting state while it pauses and waits for someone to

refill the paper tray. Once the paper is added, the process goes back to

the Ready state, waiting again for the printer to become available.

When the printer resumes and finishes printing your document, the

process transitions through Running one last time and then ends in the

Terminated state, as the job is removed from the queue. In this way,

the print job’s journey mirrors the process life cycle in an operating

system. The operating system’s scheduler must decide which ready

process to run next according to algorithms that balance competing

Figure1.1.7: Process Life Cycle in OS

10
MATS Centre for Distance and Online Education, MATS University

Notes objectives such as fairness, priority enforcement, response time,

throughput, and resource utilization.

Threads are the basic units of execution that share the address space

within a process, making it a lightweight alternative to concurrent

programming that avoids the cost of a full process creation. Similarly

in thread management, but with the added challenge of developing

concurrency control and synchronization to avoid race conditions and

provide safety in data access to shared resources.

To enable cooperating processes to coordinate their action and

exchange data, modern operating systems provide several interposes

communication and synchronization mechanisms, such as pipes,

message queues, shared memory, semaphores, and mutexes.

For Examples: Here are Few real-world examples of Thread system

as follows:

Web Browser:

A single browser process can have multiple threads—one for rendering

the page, one for handling user input, and others for downloading files

simultaneously.

 Word Processor:

While typing in Microsoft Word, one thread handles text input, another

thread checks spelling and grammar in the background, and another

handles autosaving without interrupting your work.

Figure 1.1.8: Thread in OS

11
MATS Centre for Distance and Online Education, MATS University

Notes Multiprocessors and multicore systems further complicate process

management, as they must also consider processor affinity (keeping

certain work units on certain processors in order to make the best use

of local caches), balancing the load between multiple processing units,

and parallel execution models that take into account the multiple

sources of hardware parallelism. These have been developed over years

of research, leading to advanced operating system features such as

migrating processes between computational nodes in distributed

systems, check pointing processes to allow recovery from faults, and

dynamic scheduling algorithms that optimize resource allocation

according to varying uses of workload and environmental conditions.

Process and thread management is critical for the overall performance,

responsiveness, scalability and optimal utilization of hardware

resources while preserving system stability under different loads.

An underlying OS feature that has wide-reaching effects for the

performance of the system and the programs running on it, as well as

the hardware being used, is Memory management. Perhaps the main

issue of memory management is to allocate the available physical

memory resources among the various competing processes in a way

that users know that their sensitive data is protected and are running in

their own “large” address space. Virtual memory: Modern operating

systems implement virtual memory systems, which provide an address

space for a program that is separate from the physical memory the

program runs in. Programs can use this space directly instead of the

physical memory they will actually occupy, allowing each program to

Figure1.1.9: Multi-Processor and Multi-Core Systems

12
MATS Centre for Distance and Online Education, MATS University

Notes think it has more memory than what is available and that it has access

to the complete memory space.

This conversion from virtual to physical memory is generally

performed by dedicated hardware (the Memory Management Unit,

MMU) under the direction of operating system data structures such as

page tables.

Paging, which is the most commonly used virtual memory

implementation technique, splits virtual memory into equally sized

blocks of memory, or pages, and splits physical memory into frames,

paving the way for fine-grained memory allocation and efficient

allocation of infrequently (but potentially) used pages to secondary

storage when physical memory rack is full.

Page replacement algorithms, such as Least Recently Used (LRU),

First-In-First-Out (FIFO), and Clock algorithms, decide which pages

to evict and when, balancing access frequency, regency, and page fault

costs. More advanced memory management strategies include demand

paging (paging in memory pages on access), copy-on-write (sharing

read-only pages across processes until one of them writes to the page),

memory-mapped files (which map file contents directly into a specified

portion of the process address space), and large page support (using

variable size memory pages so that at least some applications can

reduce the translation of pages and fragmentation). Memory protection

mechanisms enforce access restrictions to prevent processes from

reading or writing to the memory allocated to other processes or (in

most cases) the operating system kernel itself, implemented through

protection bits in the page tables that are checked by the MMU during

address translation. Address space layout randomization (ASLR) is also

a technique employed by modern systems that adds another layer of

Figure 1.1.10: Virtual Memory System

13
MATS Centre for Distance and Online Education, MATS University

Notes security of randomly reordering important locations where the program

is occupying memory, making it harder for attackers to guess addresses.

Advanced memory management features include working set models

that attempt to keep a process's most actively used pages in physical

memory, non-uniform memory access (NUMA) in multiprocessor

systems, where access time to memory varies by distance to memory

module, and transparent huge pages that use larger page sizes to reduce

overhead for applications with contiguous memory access patterns.

 Memory management is a critical part of an operating system design

and implementation because it affects not only the speed of program

execution, but also the responsiveness of the system, energy

consumption, and concurrency in terms of the number of applications

that can run without the overhead of pages being constantly made.

For Example: Imagine you are working on a laptop with multiple

applications open at the same time — Suppose, a web browser with

many tabs, a music player running in the background, and a graphics

editing tool. The operating system’s memory management is what

ensures each application gets enough memory space to function

properly without interfering with each other. It allocates specific

memory blocks to the browser so it can load web pages, assigns a

separate area of memory to the music player so it can buffer audio

smoothly, and reserves another area for the graphics tool to handle large

image files. If the browser closes a tab, memory management frees that

portion of memory so another application can use it. When you switch

from editing an image to browsing the web, the system may temporarily

move less‑used data from RAM to virtual memory on the disk to make

room for what you’re actively using. Just like a skilled organizer in a

shared office, the memory manager keeps track of which areas are in

use, which are free, and how to shuffle things around so every

application runs efficiently without colliding with others.

The organization of I/O devices and decoupling between software and

hardware capabilities and resources is provided by file systems and I/O

management systems, which represent one of the most significant parts

of an Operating System. I/O management handles the classic problem

of presenting abstract, uniform, high-level interfaces to extremely

heterogeneous hardware devices ranging from disk drives and network

cards to keyboards, display units, and application-specific sensors each

with its own timing behaviors, data formats, and control interfaces.

Structured to separate and abstract various aspects of I/O, the operating

system adopts a layered design approach: the lowest level contains

14
MATS Centre for Distance and Online Education, MATS University

Notes device drivers, which are hardware-dependent code responsible for

interfacing with devices; above that there is a device-independent I/O

layer that standardizes the common I/O operations of the same class of

devices; and ultimately higher up are high-level interfaces that provide

simple abstractions to applications. Depending on the specific

implementation, input and output can be either synchronous, where the

calling process gets suspended until the operation is complete, or

asynchronous, where the process continues executing while the I/O

operation completes in the background, and most new systems use an

asynchronous model improving system responsiveness and throughput.

 The OS uses a number of techniques to improve I/O performance,

these include buffering (storing a subset of data in memory temporarily

to help speed differences between devices and reducing batch operation

timings), caching (storing a copy of recently requested data in memory

to quickly access again, reducing access time), scheduling

(rescheduling I/O requests in their order to minimize mechanical

movements between devices), direct memory access (or DMA, which

eliminates the need of the CPU in facilitating the transfer process

between certain devices and memory locations). At the larger scale of

I/O, file systems probably offer the most prevalent abstraction: the

structuring of persistent storage as named files grouped in

hierarchically arranged directory structures. Some more regarding the

functionality of file systems they perform one of the most important

jobs, map the logical file operations to the storage locations, keep track

Figure1.1.11: Input Output Sub Systems

15
MATS Centre for Distance and Online Education, MATS University

Notes of what space is occupied, manage free space, record the metadata for

the files (such as creation dates, permission), maintain access control,

and ensure data integrity as well through journaling or copy-on-write

techniques that protect them from corruption even in case of the

system crashing. All modern operating systems support multiple types

of file systems, from general-purpose systems (e.g., NTFS, ext4, and

APFS) to specialized systems that are better optimized for specific use

cases (e.g., high-performance computing, network-attached storage, or

even solid-state drives which wear out differently than conventional

magnetic media). Some advanced file system features include

snapshots (point-in-time captures of file system state), transparent

compression and duplication to maximize storage efficiency, and

encryption to protect sensitive data, as well as distributed designs that

span multiple physical storage devices or network nodes.

I/O management and file systems, taken together, allow applications to

communicate with the physical world via a multitude of devices and

discreetly store and retrieve data without needing to worry about the

intricacies of the hardware implementation, making them one of the

most useful services provided by the operating system from user and

programmer points of view. Security and protection mechanisms

pervade modern operating systems, a reflection of the evolution of

computing from isolated, single-user systems to interconnected devices

containing sensitive information and operating in possibly hostile

networked environments. In terms of operating system security, the

most fundamental aspect is the separation between user mode and

Figure 1.1.12: File System in OS

16
MATS Centre for Distance and Online Education, MATS University

Notes kernel mode (or supervisor mode) of operation, which establishes a

privilege boundary, restricting applications from directly accessing

hardware resources or manipulating memory regions not assigned to

them, ensuring that transitions between modes are made safe by means

of system calls.

For Example: Users are authenticated by passwords, who they are as

a person, biometric factors, and cryptographic tokens, and authorization

mechanisms then allow or restrict what resources they can access

(typically implemented by ACLs or capability-based security models

that associate permissions with objects or subjects, respectively).

Process isolation ensures that one process cannot access the memory

or resources of another process unless explicitly allowed to do so and

achieves this through mechanisms such as virtual memory and

hardware aids like protection rings or privilege levels. Memory

protection takes that isolation even further by applying permissions on

these memory regions and marking them either as readable, writable,

or executable, while the hardware itself does not allow any operations

that bypass these rules, catching a lot of potential attacks at the

hardware level itself, before they get a chance to cause damage.

Modern operating systems are not statically defined but are tailored to

adapt to the hardware, and use case, and user when the environments

evolve, even if not always in a progressive manner, with at least a few

of the following trends becoming dominant to each new release within

current deployment matrices. Cloud-native OS are a radical break with

their predecessors, optimized for the deployment of workloads in

virtualized or containerized environments where resources are

elastically allocated, workloads are assumed to be distributed over a

number of nodes, and system services are accessed through standard

APIs to the resources instead of hardware interfaces. On the system

design front, containerization and micro services architectures have

driven operating system implementation toward a more modular,

lightweight style, in which system components are compostable on

demand rather than deployed as monolithic images, generating resource

overhead and reducing the flexibility to deploy distinct parts of the

system independently. Time-sensitive workloads driven by

requirements for deterministic performance guarantees and predictable

latency even under changing load conditions such as control of

autonomous vehicles, industrial automation and augmented reality,

17
MATS Centre for Distance and Online Education, MATS University

Notes have propelled real-time operating systems (RTOS) into more than just

traditional embedded applications. From the design of operating

systems, where security in enforcing compatibility has taken

precedence over optimizations to rack mount servers behind firewalls

in grey rooms, displaying cold metrics in measured temperatures, even

to now newer patterns that incorporate validated modules of the OS

through axioms or providing remote attestation methods as always

verifying your mass surveillance hardware that forces your components

on hardware to trust no device only its configurations, all areas

throughout computing have been revised and are undergoing a much

more rigid recliner to minimize surfaces and reducing injury narratives.

At the same time, advances in aggressive power management,

workload-aware scheduling, and heterogeneous computing models that

partition workloads among the most energy-appropriate processing

units are now routine even on cloud computing platforms since user

experiences over this wide range of computing have moved now from

purely performance-driven to considering price and environmental

footprint as primary design considerations. To further mitigate this gap,

where CPU throughput is orders of magnitude greater than that of

memory, these advanced memory management techniques also

permeate both the multi-layer memory hierarchies of DRAM, persistent

memory and storage-class memory due to their varying performance

characteristics along with sophisticated perfecting and migration

policies that predict memory access patterns. Even when it comes to

interface paradigms, they are evolving away from solely pointing to

desktop metaphors and branching further into the world with

conversational interfaces powered by natural language processing,

ambient computing models where the interaction takes place through

environmental sensors instead of explicit commands, or cross-device

experiences where applications and workflows cross-pollinate various

hardware form factors. The era of specialized hardware accelerators—

Graphics Processing Units (GPUs), Tensor Processing Units (TPUs),

Field-Programmable Gate Arrays (FPGAs), and custom Application-

Specific Integrated Circuits (ASICs) for specific workloads such as

machine learning, cryptography, or video processing—has forced

operating systems to create more complex models of resource

abstraction and scheduling systems to manage the diversity of

computing resources. With the advent of quantum technologies such as

18
MATS Centre for Distance and Online Education, MATS University

Notes quantum-randomness and quantum-superposition, we will witness the

need for new programming models, different resource management

strategies, fundamentally different operating systems, and error

correction techniques that are going to shape this field for years to

come and which need to be explored. Far from converging to a single

dominant fruit-of-the-meeting-of-the-twain OS model, these diverse

trends point to a continuing diversification of specialized systems,

optimized for specific hardware environments, workload

characteristics, and usage scenarios, around common theoretical

foundations but increasingly differentiated in their implementation

details and optimization priorities.

Figure1.1.13: Operating System
[Source - https://medium.com/]

19
MATS Centre for Distance and Online Education, MATS University

Notes

Unit 1.2: Need and Functions of Operating Systems

1.2.1 Need and Functions of Operating Systems

The world of computing we experience today is built on a foundation

of ever-evolving hardware and software, all doing its job in concert.

Central to this ecosystem is the operating system (OS) a complex piece

of software that acts as the vital bridge between computer hardware and

the applications that operate on top of it. Operating systems are

everywhere, running everything from the smart phones in our pocket

to the supercomputer that are behind scientific breakthroughs. But at

that same time, operating systems are deeply complex and critical and

many users are shaped by their interactions with them without ever

fully contemplating the bedrock of their complexity and criticality.

Simply put, the operating system is a complex resource mediator and

service implementer that exposes a simpler and safer way to run

applications on top of real-world hardware. Without the layers of

abstraction an operating system provides, any application would have

to be responsible for directly manipulating hardware components from

managing memory and processing resources to managing input/output

operations to peripherals like keyboards, displays, and storage devices.

This would result in insane redundancy, bloat, and security holes and

would make the application development process a thousand times

harder. Operating system development has run side by side with the

progress of computing hardware, each generation responding to

progressively more intricate problems. Some early computing systems

were without operating systems or had very little system software, and

so operators had to run the machine and manage the timing of

operations manually. As computing power and other capabilities grew,

operating systems integrated to manage and protect the more complex

resources, becoming the multi-user, multi-tasking familial that they are

today and running across everything from embedded micro-controllers

to distributed cloud infrastructures.

1.2.2 The Need for Operating Systems: Bridging Hardware and

Software

We can also note that modern computing hardware includes many

different types of components multi-core, multi-threaded CPUs with

multiple, complex version processors in overall instruction set, a

20
MATS Centre for Distance and Online Education, MATS University

Notes multi-level hierarchy of memory systems (registers, caches, RAM,

disk), graphics processing units, networking interfaces, different

input/output devices, etc. Each chunk operates on its own protocols

and clocks: it's a nightmare of complexity. Without any abstraction,

they would have to know all the details of the hardware: its

specifications, its operational characteristics, and so on, making it

extremely difficult to write software, and making that software only

hardware specific. This basic missing piece is supplemented by

operating system which provides abstraction layers over the hardware.

Training makes a native operating environment by hiding the

complexity of the underlying hardware and presents standardized

interfaces. The abstraction allows application developers to implement

functionality directly as opposed to worrying about the details of the

actual hardware. For instance, when an application wants to persist its

data, it can use high-level file system calls offered by the OS instead

of accessing directly the disk controllers, managing sector allocations

or creating error correction protocols.

1.2.3 Resource Sharing and Protection

Contemporary computing environments generally have multiple

applications vying for limited system resources processor time,

memory space, I/O bandwidth, and storage capacity. To avoid these

conflicts, a mediating system stands between the applications running

within the OS. Imagine two different applications wanting to access the

same memory region or the same storage space at the same time or one

application wants to capture the processor and not allow other

applications to run.

The operating system implements mechanisms for resource allocation,

scheduling, and protection to ensure:

Figure 1.2.1: Functions of OS

21
MATS Centre for Distance and Online Education, MATS University

Notes 1. Fair access to resources: Through sophisticated scheduling

algorithms, the OS ensures that all applications receive appropriate

access to the CPU and other resources.

2. Memory protection: Modern operating systems implement virtual

memory systems that provide each process with its own address

space, preventing unauthorized access to memory regions

belonging to other processes or the OS itself.

3. I/O management: By centralizing control of input/output

operations, the OS prevents conflicts in device usage and ensures

that all applications can access peripherals in a controlled manner.

4. File system management: The OS provides a structured way to

store and access data, preventing applications from directly

manipulating storage devices and potentially corrupting data.

1.2.4 Hardware Independence and Portability

Operating systems are one of the most valuable software in the

information technology world, as they allow portability for software

across hardware platforms. Without this layer of abstraction, programs

would have to be rewritten for every hardware configuration or

platform. The operating system provides standardized interfaces (APIs)

which are (for the most part) consistent between different hardware

implementations; this enables applications to run on various systems

with little or no change. The reason the OS can insulate its applications

from the actual hardware of the computer is by taking generic requests

made by the application and translating those requests into specific

operations on the hardware. As an example, when an application wants

to print something, the OS converts that into the printer specific

protocol that the connected printer supports. When an application

requests memory to be allocated, for example, the OS knows how to

abstract the complexity behind managing physical memory resources,

including virtual memory systems, paging and address translation.

1.2.5 Security and Access Control

In multi-user and networked computing environments, security

concerns become paramount. The operating system plays a crucial role

in implementing security mechanisms that protect:

1. System integrity: Preventing unauthorized modifications to the

system itself.

2. Data confidentiality: Ensuring that sensitive information is

accessible only to authorized users.

22
MATS Centre for Distance and Online Education, MATS University

Notes 3. User authentication: Verifying the identity of users before granting

access to resources.

4. Access control: Enforcing policies that determine which users can

access which resources and in what ways.

5. Isolation: Containing potential damage from malicious or

malfunctioning applications.

Applications and widespread vulnerabilities. If these protections were

not implemented at the level of the operating system, each application

would have been responsible for implementing its own security

features, which would have had the result of inconsistent protection

among Systems, file sandboxing for applications to limit inter-process

cooperation, and walking-talking real-time attack monitoring. With

computing systems becoming more networked and subject to a greater

variety of attacks, operating system security functions became more

advanced, adding secure boot procedures, encrypted file

1.2.6 Core Functions of Operating Systems: Process Management

Process Concept and Implementation

A process is the execution of a program, which contains the program

code as well as its current activity (it is a unit of work). We focus on

processes, one of the most basic abstractions provided by modern

operating systems, which enable multi-tasking and a fundamental unit

of isolation between executing software.

1. Program code: The executable instructions of the program.

2. Data: The variables and data structures used by the process.

3. Process stack: Containing temporary data such as function

parameters return addresses, and local variables.

4. Process heap: Dynamically allocated memory during process

runtime.

5. Process control block (PCB): A data structure maintained by the

OS containing process identification, state information, scheduling

information, memory management information, accounting

information, and I/O status information.

The operating system is responsible for creating processes when

programs are initiated, managing their lifecycle, and eventually

terminating them. This lifecycle typically follows transitions between

several states:

1. New: The process is being created.

2. Ready: The process is waiting to be assigned to a processor.

23
MATS Centre for Distance and Online Education, MATS University

Notes 3. Running: Instructions are being executed.

4. Waiting/Blocked: The process is waiting for some event to occur

(such as an I/O completion).

5. Terminated: The process has finished execution.

Process Scheduling

Process scheduling is one of the most complex functions performed by

operating systems, directly influencing system performance,

responsiveness, and resource utilization. The scheduler determines

which processes run when and for how long, based on scheduling

algorithms designed to meet specific system goals such as:

1. Maximizing CPU utilization: Keeping the processor as busy as

possible.

2. Maximizing throughput: Completing as many processes as

possible per unit time.

3. Minimizing turnaround time: Reducing the time between process

submission and completion.

4. Minimizing waiting time: Reducing the time processes spend

waiting in the ready queue.

5. Minimizing response time: Providing quick initial responses to

interactive users.

Operating systems implement various scheduling algorithms to balance

these often-conflicting goals:

• First-Come, First-Served (FCFS): Processes are executed in the

order they arrive.

• Shortest Job First (SJF): Prioritizes processes with the shortest

expected execution time.

• Priority Scheduling: Assigns priorities to processes and executes

the highest-priority process first.

• Round Robin (RR): Allocates a fixed time slice (quantum) to each

process in a circular queue.

• Multilevel Queue Scheduling: Partitions the ready queue into

separate queues for different process types.

• Multilevel Feedback Queue: Similar to multilevel queue but

allows processes to move between queues based on their behavior.

Modern operating systems often implement complex hybrid

approaches that consider factors such as process priority, execution

history, and system load to make scheduling decisions.

24
MATS Centre for Distance and Online Education, MATS University

Notes Process Synchronization and Communication

In contemporary computing environments, processes rarely operate in

isolation. Instead, they frequently need to coordinate their activities and

share data. This necessity introduces two critical challenges that

operating systems must address:

1. Race conditions: When multiple processes access and manipulate

shared data concurrently, the outcome can depend on the particular

order in which the accesses occur, potentially leading to

inconsistent or corrupt data.

2. Deadlocks: A situation where two or more processes are unable to

proceed because each is waiting for resources held by another

process.

Operating systems provide synchronization mechanisms to address

these challenges:

• Mutual exclusion: Ensuring that only one process at a time can

access shared resources or critical sections of code.

• Semaphores: Synchronization variables that control access to a

common resource in a multi-processing environment.

• Monitors: High-level synchronization constructs that encapsulate

both the shared data and the operations that manipulate it.

• Message passing: Allowing processes to communicate and

synchronize by exchanging messages.

• Deadlock prevention, avoidance, detection, and recovery:

Strategies to handle the deadlock problem.

Inter-process communication (IPC) mechanisms enable processes to

exchange information and coordinate their activities:

• Shared memory: Allows processes to communicate by reading and

writing to a common memory region.

• Pipes: Provide a unidirectional communication channel.

• Named pipes (FIFOs): Similar to pipes but with a name in the file

system, allowing unrelated processes to communicate.

• Message queues: Allow processes to exchange messages through

system-provided queue structures.

• Sockets: Enable communication between processes running on

different machines across a network.

These synchronization and communication mechanisms are essential

for building complex, cooperative software systems where multiple

processes work together to accomplish tasks.

25
MATS Centre for Distance and Online Education, MATS University

Notes Memory Management: Optimizing a Critical Resource

Memory Hierarchy and Management Challenges

Many computer memory systems have a hierarchy from fast, but more

costly, limited capacity (registers and cache memory) to slower but

larger and cheaper (main memory and secondary storage). Memory is

a critical resource, and managing its use is paramount to system

performance, as access times can vary by orders of magnitude across

this hierarchy.

The operating system faces several key challenges in memory

management:

1. Allocation: Determining how to assign available memory to

processes as they are created and as they request additional memory

during execution.

2. Deal location: Reclaiming memory when processes terminate or

explicitly release memory.

3. Protection: Ensuring that processes can only access memory

allocated to them, preventing unauthorized access to memory

regions belonging to other processes or the operating system.

4. Sharing: Allowing controlled sharing of memory regions between

processes when appropriate.

5. Physical organization: Managing the physical arrangement of data

in memory to optimize access patterns and utilize memory

hierarchy effectively.

1.2.8 Memory Management Techniques

Operating systems employ various techniques to address these

challenges:

1. Contiguous Memory Allocation: In early systems, each process

was allocated a single contiguous block of memory. While simple

to implement, this approach led to fragmentation issues and

inefficient memory utilization.

2. Paging: A memory management scheme that eliminates the need

for contiguous allocation by dividing physical memory into fixed-

sized blocks called frames and logical memory into blocks of the

same size called pages. This allows the physical address space of a

process to be non-contiguous, with the operating system

maintaining a page table to map logical addresses to physical

addresses.

26
MATS Centre for Distance and Online Education, MATS University

Notes 3. Segmentation: Divides memory into variable-sized segments, each

corresponding to a logical unit of the program such as the code

segment, data segment, or stack segment. This approach aligns

more naturally with how programmers think about memory but can

lead to fragmentation.

4. Virtual Memory: An extension of the paging system that allows

programs to execute even when they are only partially loaded in

memory. The operating system keeps active portions of the

program in main memory and transfers other portions between main

memory and secondary storage as needed.

5. Page Replacement Algorithms: When implementing virtual

memory, the operating system must decide which pages to remove

from memory when space is needed. Algorithms such as Least

Recently Used (LRU), First-In-First-Out (FIFO), and Clock

algorithm help make these decisions to minimize page faults.

6. Memory Compression: Some modern operating systems compress

infrequently used memory pages rather than writing them to disk,

reducing the performance penalty associated with page swapping.

Virtual Memory Implementation

Multiple significant advantages: way memory management work. It

offers One of the groundbreaking innovations of any operating system

design is virtual memory, which changed the whole

1. Programs can be larger than physical memory: By keeping only

portions of programs in memory, the system can execute programs

that are larger than the available physical memory.

2. Higher degree of multiprogramming: More programs can run

concurrently since each only needs part of its address space in

physical memory.

3. Less I/O for loading and swapping: Programs can start execution

after loading just their initial pages, rather than waiting for the entire

program to load.

4. More efficient use of memory: Memory is allocated only when

needed, not based on worst-case estimates.

The implementation of virtual memory involves several components:

1. Page tables: Data structures that map virtual addresses to physical

addresses.

2. Translation Look aside Buffer (TLB): A special cache that stores

recent address translations to improve performance.

27
MATS Centre for Distance and Online Education, MATS University

Notes 3. Page fault handling: When a program accesses a page that is not

in memory, a page fault occurs, and the operating system must load

the required page from secondary storage.

4. Swapping mechanism: The component responsible for

transferring pages between main memory and secondary storage.

5. Working set management: Tracking the set of pages a process is

actively using to make intelligent decisions about which pages to

keep in memory.

(loading pages only when accessed), copy-on-write (initially sharing

pages until they are modified), and memory-mapped files (mapping file

contents directly into virtual memory). For example, modern virtual

memory systems tend to contain advanced optimizations like demand

paging

1.2.9 File Systems and Storage Management

File Concepts and Organization

Files are the basic building blocks of permanent storage in the

computing world. We introduce the core function of the operating

system for file management, which provides an essential layer of

abstraction that protects applications from handling the details of

physical storage devices.

Key file concepts managed by operating systems include:

1. File attributes: Information about files, including name, type, size,

location, protection settings, creation time, last modification time,

and access permissions.

2. File operations: Functions such as create, delete, open, close, read,

write, append, seek, and get/set attributes.

3. File types: Regular files (containing user data or program data),

directories (catalogs that organize files), special files (representing

devices in UNIX-like systems), and other system-specific types.

4. File access methods: Sequential access (reading/writing records in

order), direct access (random access to any block), and indexed

access (using an index to locate records).

Operating systems organize files using directory structures, which have

evolved from simple single-level directories to sophisticated

hierarchical structures. Modern file systems implement:

1. Hierarchical directory structures: Organized as tree structures

with directories containing files and subdirectories.

28
MATS Centre for Distance and Online Education, MATS University

Notes 2. Path names: Absolute paths (from the root directory) and relative

paths (from the current directory).

3. Directory operations: Creating, deleting, opening, closing, and

traversing directories.

File System Implementation

The implementation of file systems involves several layers of

abstraction:

1. Logical file system: Manages metadata information, directory

structures, and file control blocks (inodes in UNIX-based systems).

2. File organization module: Maps logical blocks to physical blocks,

manages free space, and allocates storage.

3. Basic file system: Issues commands to device drivers to read/write

physical blocks.

4. I/O control: Device drivers that communicate directly with storage

hardware.

File systems must address several implementation challenges:

1. Allocation methods: How to allocate disk space to files:

• Contiguous allocation: Allocates consecutive blocks, providing

excellent performance for sequential access but leading to

fragmentation.

• Linked allocation: Each block contains a pointer to the next

block, eliminating external fragmentation but complicating

random access.

• Indexed allocation: Uses an index block containing pointers to

data blocks, supporting efficient random access at the cost of

additional overhead.

2. Free space management: Tracking available storage space using

techniques such as bit maps or linked lists of free blocks.

3. Directory implementation: Typically implemented as files

containing entries that map file names to their metadata.

4. Efficiency and performance: Using techniques like block caching,

read-ahead, and delayed writes to improve performance.

5. Recovery mechanisms: Implementing journaling or other

techniques to maintain file system consistency after system crashes.

1.2.10 Advanced File System Features

Modern operating systems implement sophisticated file system features

to address evolving needs:

29
MATS Centre for Distance and Online Education, MATS University

Notes 1. Journaling: Records changes in a journal before applying them to

the main file system, ensuring consistency after crashes or power

failures.

2. Copy-on-write file systems: Never overwrite existing data, instead

writing modified data to new locations and updating pointers,

providing snapshots and simplified backup.

3. Logical Volume Management: Abstracts physical storage into

logical volumes that can span multiple disks and be resized

dynamically.

4. Encryption: Protecting file contents through transparent

encryption/decryption.

5. Compression: Reducing storage requirements by compressing file

contents.

6. Deduplication: Eliminating redundant data to save storage space.

7. Distributed file systems: Allowing access to files from multiple

hosts over a network.

8. Object-based storage: Managing data as objects rather than files

or blocks, often incorporating metadata and access methods.

The choice of file system significantly impacts performance, reliability,

and functionality. Modern operating systems typically support multiple

file system types to accommodate different needs, such as NTFS and

ReFS in Windows, ext4 and Btrfs in Linux, and APFS and HFS+ in

macOS.

1.2.11 Input/output Systems and Device Management

O Hardware and Challenges

Input/output (I/O) operations are fundamental to computing systems,

enabling interaction with users and the external world. I/O devices vary

tremendously in their characteristics, presenting significant challenges

for operating system design:

1. Diversity of devices: I/O devices range from simple character-

oriented devices like keyboards to complex block-oriented devices

like disk drives, each with different data rates, data formats, and

control requirements.

2. Varied data transfer modes:

• Programmed I/O: The CPU executes instructions that directly

control I/O operations.

• Interrupt-driven I/O: Devices signal the CPU via interrupts when

they complete operations.

30
MATS Centre for Distance and Online Education, MATS University

Notes • Direct Memory Access (DMA): Hardware controllers transfer data

directly between devices and memory without CPU intervention.

3. Performance disparities: The speed gap between CPU processing

and I/O operations (particularly mechanical devices) can be orders

of magnitude, requiring sophisticated buffering and scheduling.

4. Error handling: I/O operations are prone to various errors (media

failures, transmission errors, device unavailability) requiring

detection and recovery mechanisms.

Subsystem Architecture

Operating systems implement layered I/O subsystems to manage

complexity:

1. User-level I/O interfaces: High-level libraries and system calls

that provide device-independent interfaces for applications.

2. Device-independent I/O software: Performs common functions

such as buffering, error handling, and managing device-

independent naming.

3. Device drivers: Software modules that understand the specifics of

particular devices and translate generic I/O requests into device-

specific commands.

4. Interrupt handlers: Manage device interrupts, acknowledging

completion of I/O operations and initiating next steps.

5. Hardware: The actual I/O devices and their controllers.

This layered approach provides several benefits:

1. Device independence: Applications can use generic I/O operations

without concerning themselves with device specifics.

2. Uniform naming: Devices can be accessed through a consistent

naming convention, regardless of their physical characteristics.

3. Error handling: Errors can be managed at appropriate levels of the

hierarchy.

4. Synchronous and asynchronous I/O: Support for both blocking

operations (where the process waits for completion) and non-

blocking operations (where the process continues execution while

I/O proceeds).

5. Buffering: Managing data transfer rate mismatches between

devices and processes.

6. Spooling: Handling devices that can serve only one process at a

time, such as printers.

31
MATS Centre for Distance and Online Education, MATS University

Notes 1.2.12 I/O Performance Optimization

Operating systems employ numerous techniques to optimize I/O

performance:

• Caching: Keeping recently accessed disk data in memory to reduce

access times for subsequent requests.

• Buffering: Using memory areas to temporarily hold data during

transfers, accommodating speed mismatches and allowing for more

efficient batch processing.

• Scheduling: Reordering I/O requests to minimize movement in

devices with mechanical components (such as disk head scheduling

in hard drives).

• Request merging: Combining adjacent requests to reduce the

number of separate I/O operations.

• Anticipatory I/O: Predicting future I/O requests based on observed

patterns and prefetching data.

• I/O parallelism: Using techniques like RAID (Redundant Array of

Independent Disks) to spread I/O operations across multiple

devices.

1. Quality of Service (QoS): Ensuring that critical I/O operations

receive priority treatment.

of modern operating systems evolves to support new hardware types

and connection types. The I/O subsystem

1.2.13 Security, Protection, and Advanced OS Functions

Security Fundamentals and Implementation

Functions will be implemented at several levels by modern operating

systems: have become increasingly inter-connected and they store and

process sensitive information, the security of the operating system has

become even more important. Security As computing systems

1. Authentication: Verifying the identity of users through methods

such as:

• Password-based authentication

• Multi-factor authentication

• Biometric authentication

• Token-based authentication

• Certificate-based authentication

2. Authorization: Determining what authenticated users are

permitted to do, typically implemented through:

• Access control lists (ACLs)

32
MATS Centre for Distance and Online Education, MATS University

Notes • Role-based access control (RBAC)

• Mandatory access control (MAC)

• Capability-based security models

3. Cryptographic services: Providing encryption, decryption, and

cryptographic hashing functions to:

• Protect data confidentiality

• Ensure data integrity

• Verify the authenticity of software and communications

4. Process isolation: Preventing processes from interfering with each

other or with the operating system itself through:

• Memory protection mechanisms

• Hardware-supported privilege levels

• Containerization

• Virtual machine isolation

5. Security monitoring and auditing: Detecting and logging

security-relevant events to:

• Identify attempted breaches

• Support forensic analysis after security incidents

• Provide accountability and non-repudiation

6. Secure boot processes: Ensuring that only authenticated and

unmodified operating system components are loaded during system

startup.

Deployment environment. These security mechanisms need to find a

trade-off between protection, usability, performance, and

manageability, which often leads to complex trade-offs depending on

the security needs of the

1.2.14 Virtualization and Containerization

Virtualization has transformed modern computing by allowing multiple

operating systems to execute simultaneously on a single physical

machine, while containerization offers lightweight abstraction for

applications running in the same operating system instance.

Virtualization refers to the creation of virtual (rather than actual)

versions of computing resources, implemented through:

1. Hardware virtualization: Using a hypervisor that:

• Presents virtual hardware interfaces to guest operating systems

• Manages resource allocation between virtual machines

• Provides isolation between virtual environments

• Types include:

33
MATS Centre for Distance and Online Education, MATS University

Notes ▪ Type 1 (bare-metal) hypervisors that run directly on hardware

▪ Type 2 hypervisors that run on top of a host operating system

2. Para virtualization: Where guest operating systems are modified

to use special APIs for improved performance.

3. Memory virtualization: Techniques such as shadow page tables or

hardware-assisted memory virtualization that manage the mapping

between guest physical addresses and host physical addresses.

4. I/O virtualization: Methods for sharing physical I/O devices

among multiple virtual machines.

Containerization provides application isolation without the overhead

of full virtualization by:

1. Sharing the host operating system kernel while providing

isolated userspace environments.

2. Using namespace isolation to separate container process trees,

network interfaces, mount points, and user IDs.

3. Employing resource control mechanisms like cgroups to

limit and account for resource usage.

4. Providing standardized image formats and deployment

mechanisms.

Both virtualization and containerization have become fundamental

technologies in cloud computing and modern application deployment

strategies, enabling more efficient resource utilization, improved

isolation, and greater flexibility in application hosting.

Distributed Operating Systems and Cloud Infrastructure

Contemporary computing increasingly spans multiple physical

systems, leading to the development of distributed operating system

concepts and cloud computing infrastructures:

1. Distributed operating systems extend operating system functions

across multiple physical machines:

• Transparency: Hiding the distributed nature of the system from

users and applications

• Communication: Low-level message passing and higher-level

remote procedure calls

• Process migration: Moving processes between nodes for load

balancing

• Distributed file systems: Providing a unified file namespace

across machines

34
MATS Centre for Distance and Online Education, MATS University

Notes • Distributed synchronization: Mechanisms for coordinating

activities across nodes

• Fault tolerance: Handling node failures gracefully

2. Cloud computing infrastructure builds on virtualization and

distributed systems concepts to provide:

• Infrastructure as a Service (IaaS): Virtualized computing

resources

• Platform as a Service (PaaS): Runtime environments for

applications

• Software as a Service (SaaS): Complete applications delivered

over the network

• Elasticity: Dynamic scaling of resources based on demand

• Resource pooling: Sharing physical resources among multiple

tenants

• Measured service: Tracking resource usage for billing and

optimization

3. Emerging operating system paradigms adapt to these distributed

environments:

• Microkernel architectures: Minimizing kernel code and

moving functionality to user space

• Unikernel approaches: Creating specialized single-purpose

applications that include only the OS functionality they need

• Server less computing: Further abstracting infrastructure

management away from application developers

Operating systems advanced to support more complex applications,

requiring features like these to support interconnected and orchestrated

systems over the networks built up around computers as they became

pervasive. This is an example of how want to understand modern

computing systems and/or build software that interacts with them in a

meaningful way. Providing abstractions to simplify writing

applications, mechanisms that guarantee your applications utilize

resources as required, and protections to enable safe and reliable

computing; as we have discussed throughout this book. It is vital to

understand these basics and their functions if you the operating

systems are the ultimate base on which all other software.

35
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1.3: Computer System Operations

1.3.1 Computer System Operations

At the core of contemporary computing lies a complex choreography

involving the cooperation of myriad hardware and software elements,

working in unison to perform tasks from basic arithmetic to

sophisticated data processing. Computer system operations involve

how computers organization works under the guidance of standard

processes that describe the operational condition of the system which

is well defined by the standards represented through several protocols

and architectures A computer system is built on top of four main layers:

hardware, software, data, and users, with components of each layer

communicating via designed interfaces and communication channels.

These pieces of hardware share different characteristics and

performance specifications the CPU, memory, hard drives, I/O

interfaces, network devices etc.

Hardware resources, user applications, operating system, utility

programs, development tools, and application software to carry out

certain tasks. Data lives in different states (input, information, layout

tables, files, streams) across a variety of protected boundaries and

access patterns within computer systems. Interfaces facilitate

interaction between users, be they human operators or automated

systems, and the individual components, translating intentions into

actionable commands. The details of how these bits and pieces

Figure 1.3.1: Computer System Operations

36
MATS Centre for Distance and Online Education, MATS University

Notes cooperate are the domain of the science of computer system operation:

processor scheduling algorithms, methods of memory management,

input/output operations, file system organization, network

communications protocols, all of the moving parts of physical

computers at the core of these systems. System architects, software

developers, IT administrators, and computer scientists use this

information regarding operational frameworks to improve

performance, security, reliability, and design new computing

paradigms. By now, the paradigm of present-day computational

environments has significantly changed from independent, self-

sufficient computing units to interrelated, systematized infrastructures,

that consist of cloud computing, virtualization, containerization, edge

computing, and several challenges that come with them all. With

computers increasingly dominating all facets of society, whether that is

through corporate processes, scientific investigation, social

connection, or entertainment, the importance of fast, secure, and

reliable computation is further amplified. Inhabiting a singular text but

spanning through many disciplines, this textbook explores what makes

computer systems operate; it analyzes not only the theory behind it, but

also the practical considerations and approaches to ensure that our

computing systems operate as intended. Learning about how a

computer system works at the low level enables students and

professionals to create more efficient systems as well as solve complex

problems, design new solutions, and help to push computing

technology forward to meet the demands of modern society in ways

that were previously unimaginable or impossible.

1.3.2 Processor Management and Scheduling

Processor management is the kernel of computer system operations a

complex system of mechanisms that control the execution of

instructions on a system's central processing units. The architectures of

modern CPUs involve multiple cores, instruction pipelines, branch

prediction, speculative execution, and multiple levels of cache. For this

purpose, a CPU operates on a loop: fetches instructions from memory,

decodes what the instruction means and executes operations on data as

per the instruction. The control unit attempts to synchronize the time

of operations and make sure the instructions executed through the

arithmetic logic unit and registers inside the processor. Operating

37
MATS Centre for Distance and Online Education, MATS University

Notes systems use processor scheduling algorithms to decide which

processes get CPU time and in what order, essentially juggling multiple

requests for this scarce resource.

 Basic scheduling is about what to run processes, which are instances

of programs that are in execution, along with the state for the execution

of that process, such as the value of the program counter, the registers,

stack, and memory that those processes have allocated, and the

resources that such processes are utilizing. A process has different

states in its life cycle: new (has been created), ready (waiting for CPU

time), running (currently executing), waiting (waiting for an event or

resource), and terminated (finished executing). The operating system

kernel includes a scheduler that decides which processes get to execute

using an advanced algorithm that strives to optimize a particular metric

for the system. The simplest scheduling algorithm, First-Come-First-

Served (FCFS), executes processes in the order they arrive in the ready

state, assuring fairness but allowing short processes to be delayed by

long-running ones, a problem called the convoy effect. The Shortest

Job First (SJF) policy, which minimizes the average waiting time by

executing the process that will finish the quickest (predicted), but it

requires you to have the ability to make predictions, and it might starve

some of the processes. Round Robin scheduling assigns each process a

small time slice or quantum, and processes are served in a rotating

order, preserving the doctrine of fairness and responsiveness while

preventing a single process from dominating the CPU, although it does

incur context switching overhead. A priority-based scheduling scheme

marks every process with a priority level and only executes those with

the highest priority before others, with preemptive policies (suspending

Figure 1.3.2: Process Management and Scheduling

38
MATS Centre for Distance and Online Education, MATS University

Notes tasks with lower priority) or non-preemptive methods (waiting for task

completion or voluntary release). It achieves this through the use of

meta data, and real-time file systems use specific algorithms like Rate

Monotonic Scheduling (RMS) or Earliest Deadline First (EDF) to

provide timing guarantees for real-time applications like medical

devices, automotive systems, or industrial control systems. With the

advent of modern multi-core processors, this has changed again;

scheduling becomes much more complex, as it must be able to deal with

the affinities between the cores, the cache coherence, and their ability

to be executed in parallel.

Thread scheduling (finer-grained) handles scheduling at the level of

threads, allowing multiple threads to execute in the same process

concurrently, sharing the same memory space and resource. The

sophisticated scheduling methods include multilevel feedback queues

that increase or decrease the priority of processes based on their

execution history; affinity-aware scheduling that keeps workloads on

the same processors to take advantage of cache reuse; and

heterogeneous computing scheduling that allocates concurrent

workloads to specialized processing units such as graphics processing

units (GPUs), field programmable gate arrays (FPGAs) or artificial

intelligence (AI) accelerators. Load balancing algorithms balance the

amount of computational work taking place at any given time, by

distributing the processes that execute across multiple systems or

processors, to maximize throughput & minimize response times. There

has been a growing need for energy-aware scheduling in mobile

devices as well as in data centers to perform intelligent trade-offs

between performance and power consumption through mechanisms

like dynamic voltage and frequency scaling (DVFS), core parking,

workload consolidation, etc. Practical implementations of scheduling

must also deal with cases of priority inversion (a high-priority process

Figure 1.3.1: Thread Scheduling

39
MATS Centre for Distance and Online Education, MATS University

Notes is waiting on (a resource controlled by) a low-priority process), which

can be managed with protocols such as priority inheritance or priority

ceiling. Processor management also includes interrupt handling—the

method used by external events to notify the CPU that it should

temporarily stop normal execution in order to address time-critical

tasks, such as state changes in hardware, the completion of an I/O

operation or error conditions. The enhanced sophistication of modern

processor management systems is a direct result of these challenges, as

a diverse set of workloads with widely differing requirements from

background batch processing to interactive user applications to time-

critical control systems must be able to be run and execute efficiently

in the same environment on common hardware resources.

1.3.3 Memory Management Systems

Memory management represents an essential component of

computational system functionality, involving the various methods and

processes operating systems utilize to oversee, distribute, and structure

the primary memory resources of a computer. Tiers of the memory

hierarchy: registers, cache memory, main memory (RAM), and virtual

memory (in secondary storage devices). To effectively do this, it needs

to address some basic issues: how to allocate memory to processes

when they need it, how to free the memory when it no longer needs it,

track usage to ensure performance, prevent unauthorized access and

maintain memory coherency in a multi-processor system. Virtual

memory is at the heart of modern memory management an abstraction

that gives to every process the illusion of owning its own large,

contiguous space of addresses without regard for available memory or

competing processes. The logical representation of memory allows

developers to get a finer-grained view of hardware, flexibility in

memory allocation, access protection between processes, and the

ability to run programs independent of physical memory (e.g. if an

executing program size exceeds physical memory). Virtual and

Physical Addresses the translation between virtual and physical

addresses is done through a mix of hardware and software

mechanisms, where address translation is performed through memory

management units (MMUs), with the help of operating system-

maintained page tables. The most common implementation of virtual

memory is called paging, where both physical and virtual memory are

40
MATS Centre for Distance and Online Education, MATS University

Notes divided into fixed-sized units called blocks or pages (usually between

four and sixty-four kilobytes in modern systems). Access to a virtual

address by a process would translate to a corresponding physical

location using a page table that stores a mapping between a virtual page

number to a physical frame number. When the page requested isn't

present in physical memory (page fault), the operating system suspends

the process, retrieves the page from the secondary storage (women's

clothing warehouse or hard disk), updates the page table, and resumes

execution, but these details are invisible to the application; even so, it's

key to extending memory.

Page replacement algorithms decide which pages to evict when

physical memory is full, with popular approaches being Least Recently

Used (LRU), which evicts pages that have not been accessed for the

longest time; First-In-First-Out (FIFO), which evicts pages in the order

they were loaded; and Clock algorithm, which approximates LRU

without the high overhead by maintaining a circular list of pages with

reference bits. Its advanced forms are approximations (e.g., CLOCK)

and improvements (e.g., CLOCK-Pro) which both try to get the

simplicity from FIFO but the performance from more advanced

caching algorithms. Paging divides physical memory into fixed-size

units, typically 4 or 8 KB pages, and maps logical address space pages

to physical pages without considering the program structure.

Segmentation is an alternative or complementary method of memory

management; it organizes memory according to the logical structure of

programs (procedures, data structures, etc.) rather than fixed-size

space. It allows more granular protection and sharing mechanisms as

each segment is a logical unit with attributes such as read only or

executable. Most modern systems use a combination of segmentation

to provide logical organization and paging for physical memory.

Figure 1.3.4: Page Replacement Algorithms

41
MATS Centre for Distance and Online Education, MATS University

Notes Processes manage their own memory allocation in ways that can range

from basic contiguous allocation to complex dynamic memory

management. A part of memory known as the heap is devoted to

runtime allocation, and algorithms are required to process requests for

variable shaped allocations without causing fragmentation. These

strategies include first-fit (using the first sufficiently large free block),

best-fit (choosing the smallest block that still satisfies the request), and

buddy system allocation (dividing memory into contiguous power-of-

two sized blocks to simplify coalescing of free space). For instance,

advanced memory managers use either segregated fits (two or more free

lists for various classes of sizes, which keeps the fragmentation of

memory in check), or generational garbage collection in managed-

language settings, which keeps track of the time-to-die, since the

majority of objects exist for a short time only. Memory protection

mechanisms use hardware features such as protection bits in page

tables and memory protection keys to prevent processes from accessing

or modifying memory allocated to other processes, or the operating

system. Modern systems also use Address Space Layout

Randomization (ASLR) to protect against security vulnerabilities by

randomizing the locations in memory of program components. (Cache

management is almost always implemented in hardware, but it has a

lot to do with what the operating system does regarding memory

policies.) By influencing the manner in which virtual pages map to

cache lines, techniques such as cache coloring aim to improve cache

usage. Memory compression is a new paradigm for adding effective

memory capacity by compressing infrequently touched pages instead

of writing them to disk and later reading them back from disk to reduce

latencies for future accesses. Multi-processor systems with Non-

Uniform Memory Access (NUMA) architectures add further

complexity by making memory access times dependent on the

processor's proximity to the memory location, thus necessitating the use

of NUMA-aware allocation policies. To address this fragmentation,

heterogeneous memory management systems that take advantage of

the characteristics of different types of memory have been

implemented, such as placing data intelligently into different memory

regions as a function of access frequency and performance needs.

Despite these advances, effective memory management is still critical

to system performance and stability, with contemporary operating

42
MATS Centre for Distance and Online Education, MATS University

Notes systems continuing to develop increasingly sophisticated memory

management techniques, managing the conflicting requirements of

capacity, performance, protection and power efficiency across a

complex and ever evolving hardware architecture.

1.3.4 Storage Systems and File Management

Storage systems are crucial for saving data after the computer is turned

off, transforming it into persistent data, whereas the file management

framework allows you to save that persistent data within the storage

system. The storage hierarchy ranges from fast, costly, and low-

capacity storage technologies (like solid-state drives (SSDs)) to

slower, cheaper, and larger-capacity technologies (such as hard disk

drives (HDDs), optical drives, and tape drives), each offering distinct

trade-offs in terms of performance, cost, and longevity. We rely on file

systems to offer this fundamental abstraction layer that turns raw

storage trafficking capabilities into structured, well-defined hierarchies

of organized blocks that users and applications can easily traverse and

maneuver in. At the hardware layer, storage devices use different

principles; HDDs rely on magnetic recording stored on spinning

platters and accessed by mechanical read/write heads so performance

is dependent on rotational latency, seek time, and transfer rates; SSDs

with no moving parts leverage flash memory cells laid out in pages and

blocks with rapid random access times, though introduce complications

like write amplification, wear leveling, and garbage collection;

emerging technologies such as 3D XPoint (Intel Optane) bridge the gap

between memory and storage with their own performance metrics.

Storage device drivers and I/O subsystems in the operating system

interact with the devices, abstracting hardware-specific details and

providing a standardized interface for higher-level components. RAID

(Redundant Array of Independent Disks) configurations that use

multiple physical drives as a single logical unit (potentially for

performance, capacity, and/or redundancy via striping (RAID 0),

mirroring (RAID 1), or parity-based redundancy (RAID 5, RAID 10),

are common in modern storage architectures. Block-level storage

virtualization abstracts physical devices in blocks, presenting logical

volumes that span multiple physical devices and process thin

provisioning, snapshots and replication, while storage area networks

(SANs) and network-attached storage (NAS) extend those capabilities

43
MATS Centre for Distance and Online Education, MATS University

Notes over a networked space. File systems abstract these block-level

capabilities into the hierarchical realm of files and directories, which

serve as the main interface for organizing and accessing the data. And

different file systems, based on the type used by the computer, could

take different approaches to primary problems like space allocation,

metadata, directory structure and crash recovery (for example FAT File

Allocation Table, ext4 Fourth Extended File System, NTFS New

Technology File System, and HFS+ — Hierarchical File System Plus).

You will need to retain critical metadata about the files, such as names,

timestamps, ownership, permissions, and the mapping of logical file

structures to physical storage locations. Modern file systems have

developed such sophisticated capabilities to meet new needs: logging

file systems such as ext4, XFS, and NTFS write metadata about data

changes in addition to the data itself, ensuring consistent operations

during catastrophic failures; copy-on-write file systems such as ZFS

and Btrfs never overwrite existing data locations, they write updates to

new locations and atomically update pointers in metadata, allowing

features like snapshots and providing protection from corruption after

unexpected power failures; log-structured file systems such as F2FS

map random writes to sequential writes to maximize performance for

SSD and other flash-based file systems, thereby improving write

performance and reducing write amplification. Obtaining knowledge

and status: File management activities encompass the file's entire

lifecycle, including creation, naming, access control, modification,

backup, and finally deletion or archiving. Each file can vary widely in

characteristics: Executable binaries require specific formats and

alignment; Databases often use their own internal storage structures

optimized for access patterns; Multimedia files utilize various

compression algorithms; and text files require character encoding

support. Different ways of access provide optimization opportunities as

well as challenges (sequential processing versus random access

patterns). Virtual File Systems (VFS) play an essential role in modern

operating systems by exposing a uniform interface to applications

while supporting a wide variety of underlying file system

implementations alike the network file systems and the local ones

having extremely diverse internal structures. When the same file is

accessed frequently, file caching improves performance by keeping

data and metadata in memory, using sophisticated algorithms that

44
MATS Centre for Distance and Online Education, MATS University

Notes attempt to hold on to data that is useful without exceeding available

memory. Modern file systems support advanced features such as

encryption which secures sensitive data even if the physical storage is

compromised, deduplication which minimizes the storage of identical

data blocks, the ability to compress data to save space, and specification

of quotas to restrict the amount of resources consumed by users or

groups thereof. With the arrival of cloud storage, whole new paradigms

for files arose, with object storage systems like Amazon S3, Google

Cloud Storage, and Azure Blob Storage employing flat namespaces of

objects and (meta)data associated with them instead of hierarchical file

structures, along geared for scale, durability and while being easily

accessible over distributed environments. These systems include well-

known distributed file systems (e.g., Google File System (GFS),

Hadoop Distributed File System (HDFS), and Ceph), which take the

concepts of traditional file systems and apply them over clusters of

machines, using replication, fault tolerance, and parallel access

mechanisms to achieve scalability and performance impractical with

single-system approaches. Emerging storage technologies further

obfuscate traditional categories: persistent memory provides byte-

addressable access with durability; storage-class memory delivers near-

DRAM performance with non-volatility; and computational storage

moves processing closer to data to mitigate data movement and

improve efficiency for select workloads. As workloads change, as

hardware capabilities and reliability requirements shift, so must file and

storage management systems, and researchers are focusing efforts in

areas such as improved performance for emerging non-volatile memory

technologies, secure transparent encryption for enhanced security, low

power consumption for massive storage arrays, and self-healing

mechanisms to maintain data integrity when hardware fails or is

victimized by a cyber-attack.

1.3.5 Input/Output Systems and Device Management

Input/output (I/O) systems and Strategies for effective Device

management antigen are the vital intermediary link between computing

systems and the outside environment, including the hardware

components, software subsystems and operational protocols that allow

computers to interact with peripheral devices, sensors, networks and

storage systems. I/O devices are the most diverse class of peripherals

and can be as simple as human interface peripherals such as keyboards

45
MATS Centre for Distance and Online Education, MATS University

Notes and mice or as complex as communication equipment, graphics

processors, and special purpose controllers used in industrial control;

thus providing standard interfaces while attempting to provide some

range of performance characteristics, communication mechanisms, and

functionality can prove to be quite a challenge for the system designer.

In the context of hardware-level I/O communication architectures,

these authors describe four common modes: programmed I/O where the

CPU explicitly instructs devices to transfer blocks of data, interrupt-

driven I/O where devices can interrupt in the event of needing the

processor's attention, freeing up the CPU; DMA (Direct Memory

Access) which leads to devices pulling or pushing data from memory

without requiring the CPU to watch over; and channel I/O commonly

used in mainframe systems, where entire I/O programs can be sent to

special processors to be executed without the requirement of the

attention of the main CPU. Wired connections for devices and

computer systems have transitioned from parallel buses like ISA and

PCI to serial connections such as USB, PCIe, and Thunderbolt

delivering higher speeds, fewer pins, and even the ability to hot-plug

the devices. Such connections are made via controllers, hardware that

can translate between the internal signals of a computer and the

specialized protocols of the devices, usually with some form of buffers

to account for differences in timing between CPUs and slower devices.

Through a layered system of device drivers, software components that

allow devices to communicate with the operating system and abstract

away device-specific implementation, this hardware is managed by the

operating system. There are driver frameworks built into modern

operating systems that describe application development patterns that

third parties can use to implement drivers that will be compatible

without needing to learn about the internal architecture of the system.

Such frameworks generally provide interrupt handling, memory

management, power management, error recovery, and other low-level

services so that driver developers can concentrate on device-specific

details. Purpose: ACPI, UEFI, PnP Device discovery and configuration

mechanisms that help in automatic detection, configuration and

allocation of resources for devices without any manual intervention.

From the application perspective, OSes expose devices through

abstraction layers that make interaction simple: character devices (like

keyboards and serial ports) transfer data byte by byte in streams; block

46
MATS Centre for Distance and Online Education, MATS University

Notes devices (like disk drives) transfer fixed size blocks of data; and network

devices with their own interfaces for packet-based communication.

Even higher-level abstractions reduce development complexity file

system interfaces for storage devices, graphical frameworks for display

devices, and audio subsystems for sound equipment expose active APIs

that abstract applications from hardware specifics. Particularly for

devices such as disk drives, where the physical characteristics are a

major factor in their performance, I/O scheduling is an important

component of device management. Reordering requests based on

physical location using elevator algorithms (SCAN) and its derivatives

helps to keep mechanical movement to a minimum; anticipatory

scheduling has been shown to be useful in predicting future requests

based on previous patterns; and completely fair queuing ensures that

bandwidth is allocated fairly across processes. Most recent systems

employ a deadline-based mechanism that optimizes throughput while

providing service guarantees at a predefined level to time-sensitive

operations. Buffering and caching layers exist all throughout the I/O

stack to handle timing discrepancies between the various components

that all operate at different speeds: device controllers have hardware

buffers; OSes have buffer caches for block devices and network stacks;

and applications have their own buffering schemes. By using double-

buffering approaches, you can read and write to different buffers, such

that one can be used to write data while another is rendered or

transmitted, making them suitable for streaming like video playing or

audio recording. With the advent of virtual machines, containerized

applications, and other forms of system virtualization, the need for a

different approach for virtualized devices was created, including device

emulation (where hardware behavior is simulated through software),

par virtualization (modified drivers in guest systems interact with the

hypervisor) and direct device assignment (allowing virtual machines

to have direct, exclusive access to physical devices). You are familiar

with virtualized environments, where one physical device can be seen

by one or more guests; SR-IOV (Single Root I/O Virtualization) allows

a single physical device to advertise up to n virtual devices with

dedicated resources. However, the increasing adoption of mobile and

energy efficient systems has led to the advent of device power

management. Examples include selectively powering down unused

hardware components, dynamically adjusting its performance to match

47
MATS Centre for Distance and Online Education, MATS University

Notes current needs, and aligning device states with global power

management policies. USB Power Delivery is one example of a

standards-based specification that allows for intelligent negotiation of

power requirements between devices and hosts. Domain-specific I/O

subsystems are designed for their specific type of needs, e.g. cameras

and graphics use APIs like DirectX, Vulkan, and Metal with

increasingly complex rendering pipelines, audio subsystems mix,

convert formats, and align playback across many channels, and human

interface device frameworks (HIDs) manage arbitrary input from many

sources with accessibility and internationalization considerations. The

two main differentiating features of true real-time I/O are deterministic

response time which is critical in industrial control systems, medical

devices, and automotive systems. As such, real-time systems use

dedicated I/O stacks with bounded latency guarantees, priority-based

IRQ servicing, and very little jitter. As IoT devices suitable for various

purposes can be very light-weight, I/O management has always been

crucial for those devices with bandwidth constrained protocols, energy-

efficient communication patterns, etc. Edge computing architectures

allow the processing of data at or near the source, decreasing latency

and bandwidth consumption but also introducing new challenges for

device management across distributed environments. Security touches

every part of modern I/O systems: device attestation ensures the

hardware is what we expect; secure boot verifies device firmware;

access control restricts which processes may interact with sensitive

devices; and encryption protects data in flight. As computation expands

into new spheres, I/O systems evolve further, with technologies such as

neuromorphic interfaces directly wired into biology; quantum I/O

enveloping the extreme environmental needs of quantum processors;

and brain-computer interfaces (BCI) transforming neural activity into

computational input, all presenting new levels of difficulty for device

management systems on which I/O profiled devices depend.

1.3.6 Network Operations and Distributed Systems

Network operations and distributed systems are the fundamental

threads that connect the fabric of computing today, facilitating

communication, resource sharing, and collaborative processing across

components that are geographically or physically separated, whether

they be local clusters or global-scale infrastructure that spans

continents. A layered architectural view is essentially the foundation of

48
MATS Centre for Distance and Online Education, MATS University

Notes computer networking and the most common manifestation of that is the

TCP/IP model: A link layer, which provides a similar physical

connection and media access to the alternate layer, a layer responsible

for addressing and routing between networks (Internet Layer), a

transport layer for reliable delivery and flow control of data, and finally

activated by a layer for user applications and network services

(Application Layer). Disparate physical characteristics of the

transmission mediums make a big difference in terms of bandwidth,

propagation delays, fault tolerance, etc. For these physical media, we

need some data encoding techniques to take our digital information and

convert it into signals suitable for those types of media, such as using a

scheme to enable the appropriate type of encoding like Manchester,

PAM-4 and QAM modulation, maximizing the density of the data and

minimizing errors. Media access control (MAC) mechanisms organize

when shared channels can be used, from deterministic techniques like

time-division multiplexing, to contention-based schemes such as

CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

in classical Ethernet or CSMA/CA (Collision Avoidance) in wireless.

Network addressing schemes form the backbone on the way to the

identification and location of devices: MAC addresses uniquely

identify physical network interfaces on the link layer; IP addresses

(both IPv4 and growing IPv6) allow global routing in the internet layer;

and finally, domain names create human-readable identifiers (resolved

into IP addresses by the Domain Name System or DNS). Routing works

as a process of establishing routes and data transmission across the

interconnected networks through paths that are determined by using a

set of algorithms that strike a balance between the distances, reliability,

heaps and administrative policies. Routing protocols such as RIP

(Routing Information Protocol), OSPF (Open Shortest Path First), BGP

(Border Gateway Protocol) employ distinct methodologies for

exploring and administering routes; interior gateway protocols

concentrate on routing within organizations, while exterior gateway

protocols control routing across the internet between diverse

autonomous systems. The transport layer provides essential

functionalities such as connection management, reliable delivery, flow

control, and congestion avoidance. The Transmission Control Protocol

(TCP) uses connection-oriented transmission with reliable, ordered

service with mechanisms for acknowledgments of received data,

49
MATS Centre for Distance and Online Education, MATS University

Notes retransmissions of lost packets, and dynamic adjustments of

transmission rates to conditions on the network. UDP (User Datagram

Protocol) is a connectionless protocol that provides communication

without the overhead of establishing a connection and is often used

when low latency is more important than reliability, such as for real-

time streaming and DNS lookups. Newer protocols like QUIC merge

elements from both strategies, offering reliability and security from the

application layer above UDP layers to minimize connection creation

latency and optimize performance across difficult link conditions.

Network security involves many specialized processes: encryption

preserves the confidentiality of information via protocols such as TLS

(Transport Layer Security); authentication validates communicating

endpoints through certificates, pre-shared keys, or multi-factor

systems; access control mechanisms like firewalls and segmentation

ensure communication routes are restricted according to rulesets and

policies; intrusion detection/prevention systems inspect traffic patterns

for the presence of malevolent behaviors. DDoS protection uses traffic

analysis, rate limiting and traffic spreading to keep service available in

the face of an attack. Quality of Service (QoS) involves mechanisms

that would allow traffic to be prioritized based on type, source, or

requirements of the application, and it works by implementing

techniques like packet classification, queue management, traffic

shaping, and reservation of resources to make sure that critical

communications are properly treated even when the network is

congested. The SDN is a new networking architecture that separates

the control and data planes, allowing for centralized control,

programmability, and more efficient resource allocation (most

commonly used with the Open Flow Protocol). Network virtualization,

then, takes these concepts and applies them at the network level,

allowing logical network abstractions of sufficient complexity to exist

independently of the physical infrastructure beneath them, facilitating

multiple isolated networks to share hardware concurrently. Different

flavors of this are radiating out in the form of virtual LANs (VLANs),

Virtual extensible LANs (VXLANs), and Network Function

Virtualization (NFV) which virtualizes hardware appliances (e.g., a

router) and firewalls and load balancers that are implemented as

virtualized software rather than hardware. Writing detailed networking

code does not usually lead to success; instead, distributed systems are

50
MATS Centre for Distance and Online Education, MATS University

Notes built on top of these foundations for networking to create coherent

programming environments over multiple physical machines, using

middleware, protocols, and architectural structures to overcome the

inherent problems in distributed computing: heterogeneity of

components, open-ness to extension, security across trust boundaries,

scalability to increasing demand, failure handling, concurrency

enabling, and transparency that hides distribution from the programmer

Complexity of users and applications inside. There are varying designs

of distributed system architectures; client-server architecture separates

service providers from consumers, peer-to-peer distributes services

among participating nodes, hybrid architectures like edge computing

position processing at the edge of the network close to the sources of

data, and cloud computing offers resources that are virtualized and

accessible through standard interfaces. Distributed systems

communicate in multiple ways: remote procedure calls (RPCs) with

their object-oriented variant allow remote procedures to be invoked as

if they were local; message-oriented middleware’s implement queuing,

routing and transformation services to enable asynchronous

communication; publish-subscribe systems allow for many-to-many

communication with loose coupling between participants; streaming

platforms process continuous data flows across distributed

components. Consistency models govern what to expect around

visibility and order of data across other distributed components; they

stretch from strong consistency (all nodes see the same thing at the

same time) through eventual consistency (the data will converge with

time but does not require synchronization in the moment). The CAP

theorem presents absolute trade-offs for distributed systems by saying

that they can only offer two of three guarantees: consistency (all nodes

see the same data), availability (the system responds to requests) and

partition tolerance (the system still operates even when networks do

not). Modern distributed databases all implement different consistency

models depending on applications requirements: classical relational

databases tend to enforce ACID properties (Atomicity, Consistency,

Isolation, Durability) through two-phase commit protocols and

distributed transactions; NoSQL systems often embrace BASE

properties (Basically Available, Soft state, Eventually consistent) for

improving partition tolerance and scalability; and NewSQL approaches

try to combine ACID guarantees with horizontal scalability. Distributed

51
MATS Centre for Distance and Online Education, MATS University

Notes coordination services such as Apache ZooKeeper, etcd, Consul, etc

provide primitives for leader election, configuration management,

service discovery, distributed locking that make it easy to build reliable

distributed applications. Container orchestration platforms (like

Kubernetes) automate the deployment, scaling, and management of

containerized applications across a cluster of servers with advanced

scheduling, load balancing, service discovery, and self-healing

capabilities. Distributed file systems and object stores, such as Hadoop

HDFS, Ceph, Amazon S3, and Google Cloud Storage, offer storage

services that span machine boundaries with replication, fault tolerance,

and scalability. Block chain technologies are a specialized subclass of

distributed system that enables decentralized consensus protocols to

have consistent state without a trusted central authority, leading to

applications from crypto currency to supply chain tracking to digital

identity management. Fundamental challenges in connecting and

coordinating computational resources across physical, organizational,

and trust boundaries continue to be tackled by evolving practices of

network operations and distributed systems underlying the operation

paradigms that have emerged; server less computing abstracts away

(even managing) the infrastructure; 5G and beyond wireless

technologies enable new classes of distributed applications; zero-trust

security eliminates implicit trust due to network location; edge

computing pushes the processing closer to the data source.

1.3.5 Security, Performance Optimization, and System Reliability

Security, performance optimization, and system reliability are critical

dimensions of computer system operations they define how well

systems protect sensitive assets, provide timely service, and continue

to operate consistently under stressful conditions. These three form a

triad of operational concerns that intersect in many complex ways

security practices can impact performance, performance improvements

can add reliability compromises, and reliability mechanisms can

influence both security posture and performance efficiency. Systematic

approaches that balance competing priorities, such as institutional,

macroeconomic, sectoral, and organizational factors, to robustly

implement practices across all three dimensions in specific operational

settings. Computer security involves the securing of hardware,

software, data, and communications of system assets from unintended

52
MATS Centre for Distance and Online Education, MATS University

Notes access, use, disclosure, disruption, modification, or destruction.

Fundamentally, security enforces the CIA triad; Confidentiality ensures

that no one accesses sensitive information; integrity preserves

information integrity from intentional or accidental tampering; and

availability ensures authorized users can reach their resources when

needed. These objectives are accomplished through various defensive

mechanisms targeting distinct facets of the security dilemma:

cryptographic schemes that safeguard data utilizing encryption ciphers,

such as AES, RSA, and elliptic curve cryptography, alongside hashing

algorithms like SHA-256 that ensure data integrity(ies); authentication

systems that validate claims of identity through knowledge factors

(passwords, security questions), possession factors (hardware tokens,

mobile devices), and inherence factors (biometrics like fingerprints,

facial recognition); authorization schemes that delineate action

permissions for authenticated subjects through models such as

discretionary access control (DAC), mandatory access control (MAC),

role-based access control (RBAC), and attribute-based access control

(ABAC); secure communication protocols like TLS/SSL that establish

encrypted channels impervious to interception and modification; and

network security mechanisms encompassing firewalls, intrusion

detection/prevention units, and VPNs that confine communication

pathways to legitimate channels. Vulnerability management processes

are designed to identify, assess, and remediate security weaknesses in

a software application, often through activities such as static and

dynamic code analysis, penetration testing, and regular patching.

Security monitoring and incident response abilities that recognize and

respond to security occurrences (through log analysis, behavior

monitoring, and established threat-handling procedures). Zero-trust

architecture and similar approaches move away from perimeter-based

security models and instead analyze each access request, wherever it

originates from or however attached to a network, to verify that it’s

still valid. Optimizations improve overall performance as measured by

multiple metrics: throughput (amount of work done per unit time),

latency (time taken to finish given operations), resource utilization

(helping make use of relevant points of computing resources), energy

efficiency (amount of work accomplished per amount of energy

consumed). Optimization exists at all levels of the system from

hardware choices and configurations balancing compute resources

53
MATS Centre for Distance and Online Education, MATS University

Notes with workload needs, to processor optimizations (instruction pipelines,

branch predictors, speculative execution, and synchronization of work

across cores), memory hierarchy tuning (including cache sizes,

memory alignment, perfecting and NUMA awareness), I/O (effective

buffering, asynchronous I/O, and device selection), and networking

performance (protocol, buffering and topology). Software-level

improvements involve the implementation of more efficient algorithms

to minimize computational complexity, optimizing compilers for

specific target architectures to high-quality machine code,

improvements on databases with indexing, query rewriting, and

execution plan selection, and application-specific improvements that

focus on the hot paths in the code graph. Load Balancing and Capacity

Planning Techniques; Load balancing techniques distribute work

across multiple resources to prevent bottlenecks, while capacity

planning processes ensure sufficient resources for anticipated demands.

Performance monitoring and analysis tools help improve data-driven

optimizations by performing profiling, tracing, and benchmarking for

locating a performance bottleneck and validating the impact of

improvements. The system is reliable if, under typical operation, it

ensures consistent, correct operation regardless of the failures, flaws,

or environmental stresses that might occur in components. At a high

level, reliability engineering encompasses a few broad elements: defect

prevention avoids the introduction of defects through strict design

practices, formal verification, and quality methods; fault tolerance

enables continued operation in the face of component failures with

redundancy (keeping duplicate components to take over when primary

components fail), diversity (multiple different implementations of the

same solution to avoid common failure modes), isolation (restricting

the failure propagation to a limited scope), and graceful degradation

(maintaining the best possible level of service during partial failures);

fault detection finds problems through health monitors, watchdog

timers, checksums or error detection codes; and fault recovery restores

normal operations post-failure with techniques like rolling back to

known-good states, failing over to backups, and self-healing where

certain failure classes are automatically repaired. Reliability metrics

measure how dependable a system is: Mean Time Between Failures

(MTBF) indicates the average amount of operational time between one

failure and the next; Mean Time To Repair (MTTR) measures the

54
MATS Centre for Distance and Online Education, MATS University

Notes average time taken to return a system to an operational state after a

failure; availability communicates the percent amount of time a system

is functioning; and durability represents the percentage chance that data

will remain intact over a certain period. High-strength structures use

active-passive or active-active setups between dispersed geographical

areas to keep the service running, regardless of localized failures or

such disasters. Chaos engineering tests reliability proactively by

sneaking in controlled failures into production systems and checking

to see if recovery mechanisms kick in, as expected. Approaches to

security, performance, and reliability are traditionally developed in

isolation, as though the three are independent; this plain non-sense.

Performance optimizations that avoid safety checks or reliability

mechanisms that leak diagnostic information are common sources of

security vulnerabilities. Security controls which add more processing

steps or reliability features that keep redundant state can cause

performance bottlenecks. Security mechanisms that raise the

complexity of the system or performance optimizations that narrow the

tolerable fault margins may lead to reliability challenges. In practice,

systems must be oriented to meet varying criteria across these

dimensions depending upon use case requirements—system must

balance security and reliability against raw performance (i.e. mission

critical systems will typically favor non-performant options over less

reliable systems); systems must maintain performance guarantees

whilst ensuring adequate security and reliability (e.g. real time

systems); or, systems must maintain optimal performance while

maintaining adequate security and reliability (e.g. consumer

applications). This evolution of computer systems continues to

fundamentally alter the operations landscape(s): Cloud introduces

shared responsibility models for security, performance, and reliability,

where some level of responsibility is managed by a service provider

with others maintained by the customer; containerization and micro

services architectures divide these concerns into smaller, more

manageable modules; DevSecOps incorporates security into the

development lifecycle (i.e. not an afterthought); site reliability

engineering (SRE) applies software engineering paradigms to

operationalize problems; and artificial intelligence increasingly

encroaches to help humans identify and profile security threats,

performance parameters, and reliability components that pose a risk to

55
MATS Centre for Distance and Online Education, MATS University

Notes service and product offerings. As systems grow more complex and

interconnected, the strategic orchestration of the management of

security, performance, and reliability operations is becoming a core

function for delivering systems to support the increasing expectations

of both organizations and individuals in our digital society.

1.3.6 Emerging Trends and Future Directions in Computer

Systems

The operations of computer systems are evolving at an unprecedented

pace, highlighting the importance of writing semantics in the

continuous integration and deployment process. At the same time,

several disruptive trends are reformulating the very fabric of computer

systems, heralding a new realm of capabilities and new operation

challenges that will characterize the next generation of computing

infrastructure. Quantum computing is perhaps the most disruptive

change on the horizon, as it computes fundamentally differently than

classical computation, by utilizing quantum mechanical effects like

superposition and entanglement. In contrast to conventional bits with

distinguished states of 0 or 1, quantum bits or “qubits” can be in

superposition with multiple possible states at once, potentially allowing

for exponential parallelism on certain problems. Go to any specialized

quantum system from companies like IBM or Google or D-Wave or

other new starts, and you can find ways in which these experimental

systems demonstrate capabilities in areas such as cryptography,

optimization, simulation of quantum systems, and even some machine

learning functions. Modules. Operationally, quantum computing has

enormous implications: quantum algorithms need completely novel

ways of programming; quantum decoherence makes error correction

exponentially harder; dedicated environments with extremely low

temperature requirements lead to new types of infrastructure problems;

hybrid architectures with classical and quantum processors need new

interface paradigms. Although general-purpose quantum computers are

many years away from practical use, the security consequences are

already causing changes to quantum-resistant cryptographic algorithms

that would be safe against future quantum systems. Neuromorphic

computing mimics biological neural systems using hardware

architectures that more closely mirror the structures in the brain, in

contrast to traditional von Neumann architectures. Such systems use

massively parallel processing elements that integrate memory and

56
MATS Centre for Distance and Online Education, MATS University

Notes computation and provide large performance improvements for pattern

reorganization, Sens.

1.3.7 Types of Operating Systems: Batch Processing, Multi-

Programming, Time Sharing

An operating system (OS) is a crucial software layer that acts as a

bridge between computer hardware and its users, on top of which

users can conveniently and efficiently run programs. Operating

systems have come a long way since the birth of electronic

computers, continuously adapting to new hardware capabilities and

user needs. It represents a basic shift from primitive, single-function

applications to advanced, multi-feature settings that can run

several simultaneous processes in a resource-efficient manner. The

earliest computers didn’t contain anything that resembled an

operating system, as we understand the term today; they required

programmers to talk directly to the machine hardware through

physical switches and lights. This hands-on approach proved

insufficient with the increasing complexity behind our computing

hardware and the increasing expectations users had of their

applications. The ever-increasing sophistication of operating

system designs was driven by the need for more efficient resource

utilization and improved user experience. This Unit provides

insight into three base operating system paradigms that

approximate significant evolutionary stages in computer history:

batch processing systems, multiprogramming systems, and time-

sharing systems. These systems all addressed the shortcomings of

their predecessors and provided new abstractions that still shape

modern operating systems today. Understanding these fundamental

operating system types help us appreciate the principles that

underlie many of the modern computing environments we use today

and the historical context that drove their evolution. Batch

processing, multiprogramming, and time-sharing represent not just

an evolution in technology but also a shift in computing priorities;

in other words, from maximizing the usage of hardware to

maximizing the matched interactivity of the system. In this article,

we will delve into each of these types of operating systems

individually, highlighting what defines each one, their main

architectural components, advantages, disadvantages, and

historical significance to give you an all-encompassing perspective

57
MATS Centre for Distance and Online Education, MATS University

Notes on how the evolution of operating system design has catered

towards the complex needs of computing in modern times.

1.3.8 Batch Processing Operating Systems

Batch processing represents the earliest systematic approach to

operating system design, emerging in the 1950s and early 1960s as a

response to the limitations of manual program loading. In a batch

processing operating system, similar jobs are grouped together into

"batches" and executed sequentially without user interaction during

processing. This revolutionary approach addressed significant

inefficiencies in early computing environments, where computer

operators had to manually load and unload programs and data, resulting

in considerable idle time for expensive hardware resources. The

fundamental architecture of a batch processing system consists of

several key components. First, the job scheduler maintains a queue of

submitted jobs, determining their execution order based on predefined

criteria such as priority or resource requirements. Second, the batch

monitor supervises job execution, loading the appropriate program into

memory, allocating necessary resources, and collecting output for later

retrieval. Third, job control language (JCL) provides a standardized

mechanism for users to specify job requirements and execution

parameters. The operational workflow typically begins with users

submitting programs and associated data (often on punch cards or

magnetic tape) to computer operators. These jobs are then grouped by

operators into batches with similar resource requirements. The batched

jobs are loaded onto input devices, and the batch processing system

automatically executes them in sequence, producing output that is

subsequently distributed to the appropriate users. This approach offered

several significant advantages over manual program loading. Primarily,

it improved throughput by reducing transition time between jobs and

eliminating the need for human intervention during execution. It also

enhanced resource utilization by keeping expensive computing

hardware operational for longer periods. Additionally, batch systems

introduced the concept of accounting and resource allocation, enabling

organizations to track and manage computing resources more

effectively. Despite these benefits, batch processing systems suffered

from notable limitations. The lack of interaction during program

execution meant that debugging was cumbersome, often requiring

multiple submission-execution cycles to identify and correct errors.

58
MATS Centre for Distance and Online Education, MATS University

Notes Furthermore, turnaround time the interval between job submission and

result delivery could be substantial, ranging from hours to days

depending on system load and job priority. These systems also typically

operated with a "first-in, first-out" (FIFO) scheduling approach or

simple priority schemes, which could lead to inefficient resource

allocation. Historical examples of influential batch processing systems

include the IBM 7094 with its Fortran Monitor System (FMS) and the

IBM System/360 running OS/360. These systems demonstrated the

viability of automated job processing and established fundamental

concepts in operating system design, including job scheduling, resource

allocation, and system monitoring. Although pure batch processing

systems are rarely used in contemporary computing environments, their

core principles continue to influence modern computing, particularly in

high-performance computing centers, scientific computing

applications, and financial processing systems where large volumes of

data must be processed without user interaction.

1.3.9 Multiprogramming Operating Systems

Multiprogramming was introduced in 1960s which was a leap over

batch processing systems, as it addressed one of the hot topics of CPU

underutilization. Batch systems ran jobs one at a time, but

multiprogramming brought the radical idea of having multiple

programs in memory together at once and transforming numbers

between jobs in a process that the OS could switch back and forth

among and save CPU cycles lost to I/O. This core adjustment increased

system throughput and resource usage dramatically.

Multiprogramming systems have many more features in their

Figure1.3.5: Batch Operating System
[Source - https://www.geeksforgeeks.org/]

59
MATS Centre for Distance and Online Education, MATS University

Notes architecture than batch systems. Managing memory becomes a lot

harder, we need to make sure branches marked with load instructions

are protected against being scratched by other programs that are in

memory at the same time. Process management systems maintain the

state of each loaded program and coordinate transitions between them.

In advanced CPU scheduling algorithms meaning which ready process

should get processor time depending on factors such as priority,

resource needs, and fairness. System level types of operations that

allow for I/O requests and refinement. And complex I/O management

systems that allow for multiple active programs. From the operating

system perspective, when a program initiates an I/O operation, the

multiprogramming operating system will do a context switch, saving

the current program state and handing control to a different program

that is ready to execute. This context switching operation means saving

the contents of registers, program counters, and other relevant

information about the execution states of the blocked program and

loading that of the other program to be executed. When the I/O

completes, the first program is re-eligible for execution, enabling the

operating system to return control to it at an appropriate time. This was

a great improvement over simple batch processing. Most importantly,

it greatly enhanced CPU utilization because with this way the

processor never visited the idle state if programs were blocked waiting

on an I/O operation. More jobs could be completed in the same amount

of time, thus increasing system throughput accordingly. It also offered

more complex mechanisms for allocating resources such as: memory,

peripheral or even processor time among different workloads running

in parallel. These developments were in addition to the challenges and

limitations using multiprogramming systems. Memory limits became

especially real, since you needed enough physical memory to run

multiple programs at once. Now, with multiple processes running on

the system, there was contention for the various resources that a

process could use, such as I/O devices. Fairness, priority, and

throughput considerations required more complex scheduling

algorithms. They also introduced the possibility of deadlock, where

two or more programs each had resources that the others needed,

creating a standstill. Notable example of multiprogramming systems

are IBM's OS/360 MFT (Multiprogramming with a Fixed number of

Tasks) and MVT (Multiprogramming with a Variable number of

60
MATS Centre for Distance and Online Education, MATS University

Notes Tasks), UNIVAC's EXEC 8, and derivatives of Unix. These systems

introduced essential concepts that would become the basis for

contemporary operating systems, such as process management,

memory protection, and resource allocation. Multiprogramming is still

a basic paradigm of modern computing and is built into the core

principles of almost every operating system in use today.

Multiprogramming laid the groundwork for concurrent computing,

which would be further realized in the form of time-sharing systems, a

subsequent category of operating system specifically designed to

support interactive computing experiences.

1.3.10 Time-Sharing Operating Systems

Time-sharing operating systems, which developed in the mid-1960s,

were a significant paradigm shift in computing. They overcame a

fundamental constraint of batch and early multiprogramming systems:

they did not offer interactive computing capabilities.

Multiprogramming only increased the needs of the hardware, and

time-sharing systems changed this by creating an illusion of exclusive

accessibility of the system by each user. This development

fundamentally changed human-computer interactions, allowing people

to directly and interactively utilize computers in ways that vastly

broadened computing use cases and made computing accessible to

many more people. The interactive nature of time-sharing comes from

its implementation method—context switch at a high rate between

several programs that belong to users. Using time-slicing (usually in

milliseconds) this creates the illusion that programs are being executed

in parallel (this does not mirror the underlying hardware, which is

Figure 1.3.62: Multiprogramming Operating System
[Source - https://www.geeksforgeeks.org]

61
MATS Centre for Distance and Online Education, MATS University

Notes inherently sequential). This methodology is distinctly differentiated

from multiprogramming through its primary intent as opposed to

multiprogramming, which focuses on maximizing CPU utilization by

swapping control between programs during I/O tasks, time sharing

switches programs based on the time that has been allotted to them

versus the waiting on I/O process the architecture of a time-sharing

operating system boasts numerous enhancements over

multiprogramming executing systems. It needs better CPU scheduling

algorithms that balance responsiveness and fairness among many

interactive users. In such cases, virtual memory systems become vital,

enabling the aggregate memory requirements of all users in active

status to be larger than available system memory. Terminal handling

subsystems are responsible for interfacing with possibly hundreds of

attached user terminals. The file systems of time-sharing

environments also utilize concurrency controls to allow multiple users

to access shared files at the same time without causing conflicts. The

actual time-sharing works with slightly different processes. When a

user starts a session, a process is created to represent that user's

environment. The system grants short processor time slices to the

corresponding process, as the user inputs commands. A process is

allowed to run in the CPU until its time slice expires, and if it does not

finish its work in the time slice, the process is forcibly suspended and

the operating system saves its state and switches to the next one in the

ready queue. This is how preemptive multitasking works to prevent a

single user from hogging the system. Compared to its predecessors, the

time-sharing delivered revolutionary benefits. It pioneered interactive

computing, providing a means for users to enter commands and receive

immediate feedback. This interactivity made possible new classes of

applications, including real-time communication, interactive

programming environments and early computer-aided design systems.

In addition, time-sharing democratized access to computing resources

by enabling multiple users to share expensive hardware simultaneously,

making it feasible for many users who could not afford dedicated use.

In addition, it allowed many users to work on related tasks in a

cooperative manner, sharing both data and resources. Early time-

sharing systems did face considerable challenges, however, despite

these advantages. Context switches do incur overhead, so if they

become too frequent, they could impact overall system performance

62
MATS Centre for Distance and Online Education, MATS University

Notes and should be avoided at large numbers of active users. These systems

needed many megabytes of memory and megahertz worth of processing

power to even approach acceptable response times compared to their

counterparts. Moreover, the prominence of security concerns added

another layer, as the system needed to defend users from unauthorized

access to each other's data and processes. Some of the pioneering time-

sharing systems include the Compatible Time-Sharing System (CTSS)

at MIT, Dartmouth Time Sharing System (DTSS), which introduced

the BASIC programming language, and MULTICS (Multiplexed

Information and Computing Service), which served as the model for

many future operating system designs, especially Unix. In addition to

its broad applicability to modern computing, these systems introduced

basic ideas such as interactive user interfaces, preemptive multitasking,

and user-oriented computing environments. The concept of time-

sharing was a profound leap forward in making computers accessible

to a wider audience and more useful, paving the way for principles that

still undergird modern operating systems and their interaction with

users.

1.3.11 Comparative Analysis: Evolution and Trade-offs

This evolution from batch processing to multiprogramming, and then

to time-sharing systems, represents a fundamental shift in computing

philosophy and capability, as each technique built on its predecessors

to overcome their limitations while adding new capabilities and

challenges. Plotting out the evolution of operating system design

reveals how balancing competing objectives such as hardware

Figure 1.3.7: Time-Sharing Operating System

[Source - https://www.geeksforgeeks.org/]

63
MATS Centre for Distance and Online Education, MATS University

Notes utilization versus system throughput versus response time versus user

experience have continued to drive optimization. One dimension to

compare these operating system paradigms is resource utilization.

Batch processing systems were designed to maximize resource

utilization on expensive computing hardware by minimizing idle time

between jobs, but at the expense of interactive capabilities.

Multiprogramming systems took this one step further by overlapping

I/O operations with CPU activity, thereby minimizing idle time for the

processor. While time-sharing systems managed to use their resources

fairly well on average, it did require some sacrifice of the raw efficiency

of the hardware in favor of interactive capabilities, accepting the

overhead of switching contexts often to remain responsive. Another

important difference between these operating system types is their

treatment of users. Batch processing systems created a great separation

between users and the computing environment, with operators acting

as intermediaries and users typically getting results hours or days after

their submission. Multiprogramming may have alleviated this

separation to an extent but still required limited direct intervention.

Before the arrival of time-sharing systems, this relationship was what I

would call sort of a batch processing thing, where there wasn't a lot of

interaction on demand because there were two degrees of separation

between the human and the resources available. These paradigms also

differed considerably in their performance metrics. Batch systems

optimized for throughput the number of jobs completed per unit time

and of necessity, low overhead processing of batch jobs, preferring

high-volume processing over minimizing per-job completion time.

Multiprogramming had already improved throughput but added a new

metric, device utilization. The emphasis of time-sharing systems

moved sharply toward response time the elapsed time from the user

request until the system response even when this sometimes had a

negative effect on overall throughput. These changing priorities are

reflected in the evolution of scheduling algorithms. Batch systems

mostly used either basic first-come-first-served or simple priority types.

This led to scheduling techniques such as shortest-job-first, priority-

based preemptive scheduling, and so forth in multiprogramming in

order to maximize throughput and CPU utilization. Time-sharing

systems implemented round robin scheduling with preemption and

complex priority aging mechanisms. Therefore, memory management

64
MATS Centre for Distance and Online Education, MATS University

Notes techniques naturally evolved among these paradigms. Batch systems

usually handled a single program at a time with primitive memory

management. Multiprogramming required memory protection facilities

and introduced partitioned allocation strategies. Time-sharing systems

introduced virtual memory techniques that allowed programs to run as

if they had access to more memory than (actually) existed, and

facilitated new strategies to allocate memory in a more flexible way.

This evolution persists with modern operating system designs. Modern

systems are designed according to aspects of all three paradigms: batch

processing (for background tasks and processing of high-volume data)

and multiprogramming (to increase resource use efficiency) and time

sharing (for interactive users). Familiarity with these historical

paradigms exposes the origins of how contemporary operating systems

balance competing goals and make explicit tradeoffs necessary to

enable a wide range of computing applications. And as batch went to

multiprogramming to time-sharing, one didn't the other, but expanded

capabilities that enabled the operating system to handle an increasingly

wide variety of computing needs onto increasingly complex hardware

environments.

1.3.12 Modern Implementations and Legacies

Modern operating systems are characterized by some combination of

batch, multiprogramming and time sharing, and many aspects of these

historical models have adapted and carry through to their modern

counterparts. Rather than discarding such approaches to innovate these

paradigms, modern systems seamlessly incorporate these in a single

unifying architecture capable of addressing a broad variety of

computing demands, from high-throughput processing for background

jobs all the way to highly interactive applications for end-users. Aspects

of modern operating systems are still reminiscent of batch processing.

It's the background processing capabilities, which let resource-hungry

work happen in the background at the system level, usually when the

system is idle. In larger environments, job scheduling components

orchestrate the execution of batch administrative work, data processing

jobs, and systems maintenance functions. Print spooling systems

gather document printing requests and process them in the order in

which they were received or as resources allow, without user

intervention. These batch-oriented capabilities are still critical for

65
MATS Centre for Distance and Online Education, MATS University

Notes operational efficiency in enterprise computing environments,

illustrating how ideas presented in early batch processing systems have

proved very useful and in-play even today. Multiprogramming

principles are pervasive throughout the design of almost every modern

operating system. Modern process management subsystems build on

this foundation of multiprogramming, and when the need arose for

thousands of concurrent processes, sophisticated scheduling algorithms

were introduced that allow balancing of throughput, fairness, and

responsiveness. Hardware virtualization techniques allow memory

management systems to contain such advanced protection mechanisms

which lets multiple processes run in parallel without one process's data

being affected by the other. I/O subsystems manage shared devices by

multiple processes, using techniques like buffering, caching, and

asynchronous I/O to balance throughput against wait time. These

functionalities are a natural extension of the fundamental ideas

developed in early multiprogramming systems but are also designed to

scale parallelism up to the broader parallelism required in

contemporary computing environments. Modern computing is a highly

interactive affair and so time-sharing principles have evolved to support

them. The use of dynamic sections and immediate usability, for

example, allows modern user interfaces to give a sense of almost

dedicated responsiveness due to always having blocks of resources

seemingly available regardless of underlying contexts. Preemptive

multitasking allows interactive applications to remain usable even

under resource strain from background actions. The advanced

scheduling paradigms incorporate ideas such as multilevel feedback

queues that shall dynamically change priorities in response to process

behavior and tend to favor interactive processes while ensuring

progress in compute-intensive background processes. These features

also represent the direct descendants of early time-sharing systems,

mapped into the context of personal computing, and extended to nurture

a wide set of interaction models, across devices and form factors. In

the present day, many operating system types illustrate the evolution

and convergence of these paradigms. General-purpose operating

systems (OSes) such as Windows, macOS, and desktop Linux

distributions provide both interactive components and significant

background processing by supporting both end-user applications (e.g.,

browsers, editors) and system services (e.g., drivers). Deterministic

66
MATS Centre for Distance and Online Education, MATS University

Notes response times are extended to time-critical applications through the

use of real-time operating systems, in which many of the scheduling

concepts from the three paradigms are extended, and they continue to

be used in industrial control, aviation, and medical devices. Concepts

such as these are further expanded in distributed operating systems,

which work over a network of computers and control processes that

may exist on multiple physical machines, providing a single image for

users and applications. Cloud operating systems take these ideas a step

further, managing resources across entire data centers and dynamically

allocating computing capacity to serve variable workloads while

ensuring tenants can’t interfere with one another. Batch processing was

the earliest method of running programs and subsequently evolved into

multiprogramming and more recently, time-sharing, providing a

foundation for emerging technologies and future trends in operating

systems development. In multiprogramming systems, the concepts of

process isolation were first introduced, from which containerization

and micro service architectures extend. Server less computing

platforms combine elements of all three paradigms, delivering

responsiveness in an interactive style but managing background

processing over shared infrastructure with efficiency. It also helps

improve the responsiveness of edge computing systems, which

leverage time-sharing principles to partition computing resources

closer to users, subject to resource limitations. Though quantum

computing environments will need to implement aspects of these

classical paradigms likely augmented with new mechanisms to handle

the inherent properties of quantum processing. The evolution of

operating system paradigms over the years has laid the groundwork for

the sophisticated systems we enjoy today, and offers insight into the

trends that will define the future of computing, as software must

contend with an increasingly complex interplay between technology

and human interaction to deliver seamless user experiences.

1.3.13 Conclusion and Future Directions

From the historical perspective of operating systems, the evolution of

computing systems from batch-processing to multiprogramming to

time-sharing gives us a broad sense of where computing priorities were

focused, from hardware maximization to CPU utilization efficiency to

interactive-responsiveness. This evolutionary path reflects not only

progress in technology, but also changes in views regarding the purpose

67
MATS Centre for Distance and Online Education, MATS University

Notes of computing and how computing resources should be made available.

This next paradigm was born out of the limitations of its predecessors,

providing innovative solutions that extended the power of computation

at the expense of other priorities. They all share the unifying theme of

managing complexity through abstraction and coordination of

resources — the core operating system functions. The advent of batch

processing brought about the notion of program automation and job

management, positioning the operating system as an intermediary or

mediator between users and hardware. Multiprogramming extended

this mediating role to manage multiple overlapping activities,

introducing features of process management and protection that are still

core to modern computing. Then came time-sharing that built even

further on this foundation; computers engaged users directly and

human-computer interaction established patterns (which survive today)

in how we interact with a computer. As this evolution surfaced,

principles stood out that continue to be surprisingly relevant and well-

suited to the future. Operating systems became more composed of and

layered upon these initial building blocks and abstractions, which have

yet to be challenged by fundamentally better alternatives (excepting

certain resource-constrained or bare-metal use cases). These

fundamental abstractions have not only persisted since its inception, but

have continued to remain relevant even as computing hardware

evolved from mainframes to personal computers to distributed systems,

proving to be both conceptually powerful and flexible. One can look

into the future where operating system design attempts to solve new

problems while following the principles laid in the past. The increasing

need for security and privacy protection is a result of widespread

awareness of the vulnerability of computing systems and the critical

nature of the data that they process. The explosive growth of

networked and distributed computing environments caused the focus of

the operating system be extended from individual machines, to

communication, coordination, and resource sharing among complex

networks. As new computational paradigms such as quantum

computing, neuromorphic systems and ambient computing emerge,

they will introduce new operating system requirements while still

leveraging the core principles created by the historical evolution of

classical systems. Operating systems are evolving as a process and not

a product. As technology capabilities grow and user needs change,

68
MATS Centre for Distance and Online Education, MATS University

Notes operating systems have to evolve alongside them, walking a tightrope

between efficiency, security, usability and other competing priorities.

The need to evolved from batch processing to multiprogramming to

time-sharing, being necessary for a better understanding of that, the

ever-evolving need gained is more appreciation of the existing

structure, which always has core functionalities then addressed under

such needs. That historical view provides useful lessons for making

sense of existing systems and predicting future ones. Exploring how

operating systems have adapted to competing priorities and responded

to emerging needs is revealing of perennial principles likely to inform

the design of operating systems across future technology transitions.

The evolution from batch processing to multiprogramming to time-

sharing is not solely a matter of historical interest but rather, is living

history whose effects continue in the form of computing environments,

and by extension, modern society’s interaction with information

technology.

1.3.14 Operating-System Services

An Operating System (OS) is vital software that sits between the

hardware of a computer and a user, enabling the user to effectively run

programs in a user-friendly environment. It is a software that manages

the computer's hardware resources, including the processors, memory,

storage devices, and input/output devices, and provides them to all

users and tasks. It has to reconcile the often-conflicting objectives of

user convenience and efficient utilization of the computer system’s

resources. Over the years, operating systems have evolved and adapted

to new hardware technologies, materials and processing environments,

giving birth to specialized operating system designs to meet the diverse

needs of different computing scenarios. Operating systems have grown

increasingly complex in order to be expanded functionality-wise,

security-wise, and providing a support framework for cutting-edge

applications, ranging from the first batch systems that processed jobs

in a serial way without user-extent to the multi-user, multitasking

operating systems of today. Operating systems also have to provide a

user interface through which people interact with the computer, and a

set of services that programs can utilize. These services are the more

technical, lower-level functions that most users never directly use that

are necessary for the system and the programs that run on it to operate

correctly. Teaching some of the different types of operating systems

69
MATS Centre for Distance and Online Education, MATS University

Notes and their respective services is a staple in the computer science

curriculum as it illustrates the interactions between software and

hardware and provides insight into how modern computing

environments operate. This is especially important for those who will

design or maintain computer systems, develop applications or make

decisions about computing infrastructure in an organizational context.

1.3.15 Types of Operating Systems

A range of operating system has evolved over time to cater to specific

computing requirements and environments. The first historical type of

operating system is a batch operating system, which takes jobs that are

similar to one another and minimizes user interaction in order to keep

the processor as busy as possible and minimize idle time between jobs;

the modern equivalent and still very relevant to any environment where

repetitive processing is needed in volume can be found in batch systems

of early mainframe systems (e.g. OS/360 from IBM) that keep jobs

running through job queues in environments like payroll systems or an

environment where something like a scientific batch computation is

needed. However, Multi-user operating systems are based upon the idea

of time-sharing systems where multiple processes from multiple users

can be run on a single computer more or less simultaneously as the

processor can switch among user programs extremely fast thereby

giving the impression that each user has an exclusive access to the

system, it was first implemented in CTSS (Compatible Time Sharing

System) in 1960s, streamlining multi-user access in the computer

system, this success led to the development of Multics system. For

single-user operating systems, the complexity lies in creating user-

friendly interfaces and maximizing responsiveness without

compromising too much on performance, examples include Microsoft

Windows, macOS, and many Linux distros, which cater to individual

users (but might not be as optimized as possible for resource

utilization). Multi-processor operating system types handle systems

with more than one standalone processor or with multi-core processors

by utilizing higher algorithms to execute multiple processes over the

processing units, while sustaining the system order and stability, which

becomes much tougher with every additional processor because it

needs to synchronize and allocate simultaneously different resources.

RTOS (real time operating systems) provide guarantee that something

will happen within a specific period of time; timing is critical in some

70
MATS Centre for Distance and Online Education, MATS University

Notes applications like industrial control systems, medical devices or

avionics; RTOS focuses on deterministic behavior rather than

throughput or other performance metrics with examples such as

VxWorks, QNX, or RTLinux. Distributed operating systems, e.g.,

Amoeba, Mach, and recent cloud operating environments manage

resources spread over several physically separate computers to create

the illusion of single, unified system, no matter the complexity of

anthropogenic cally relevant inter-computer (networks of computers)

valid operations. Embedded operating systems are tailored for

dedicated systems with limited resources, like smart appliances,

automotive networks, and Internet of Things (IoT) devices; these

systems are optimized for resource-constrained environments and

emphasize simplicity and reliability over complex feature sets, with

examples like embedded Linux distributions, ThreadX, and FreeRTOS.

Network operating systems. Network operating systems (NOS) are

primarily concerned with managing network resources and providing

connectivity services such as file sharing, printer sharing, user

authentication, and network traffic management; e.g., early Novell

NetWare, Microsoft Windows Server, and portions of various

Unix/Linux distributions configured as network servers.

1.3.16 Core Operating System Services

OS Core Services Overview Every operating system consists of a core

services layer. Process management is central to multitasking

environments, where the operating system needs to create, schedule,

synchronize, communicate between and terminate processes while

maintaining a balanced allocation of resources and system stability; this

process juggle involves a harmonious process of scheduling algorithms

that ascertain which process runs when, by priority, its execution time,

requirements for resources, etc. Memory management services allocate

and deallocate portions of memory as needed by processes and

implement mechanisms such as paging and segmentation to provide

virtual memory which gives the illusion to the user that they have more

space of available memory than the physical memory present in the

system; now to further ensure that processes read only from their own

memory, memory protection mechanisms are in place that prevents

processes from accessing other processes' memory or the memory of

the kernel. Specifically, file system management introduces an

important layer of abstraction whereby a user interacts with files and

71
MATS Centre for Distance and Online Education, MATS University

Notes directories, instead of with the tracks or sectors of a physical storage

device (such as a hard disk drive, solid-state drive, or network storage

device) it is responsible for managing entities, maintaining the file

metadata required and enforcing access control and sharing across users

and processes. Device drivers allow applications to interact with

different types of hardware components by providing a consistent

interface, which reduces the need for applications and the operating

system to know the intricate specifics of each device; this abstraction

helps operating systems support a wide range of devices, while also

shielding software developers from needing to manage each devices

unique features. Input/output (I/O) management is the process of

handling the transfer of data between the system memory and

peripheral devices, through the use of buffering, caching and spooling

mechanisms to maximize the performance of the system when the I/O

is performed, reconciling the speed discrepancy between the CPU and

slower external devices; the efficiency of I/O significantly affects

overall system performance, especially in applications that rely heavily

on data. They secure the system, the applications, and the data from

unauthorized access or modification by means of verifying user

identity, with authorization mechanisms that decide what authenticated

users can do, and audit logging that records security-relevant events for

later examination; in addition to this modern operating systems

incorporates several other isolation mechanisms, such as process

sandboxing, to mitigate potential security breaches. Error detection and

handling mechanisms detect hardware and software faults and trigger

recovery procedures if possible or terminate the faulty component so it

cannot bring down the whole system (which also applies to exceptional

conditions such as division by zero or invalid memory access that

would otherwise crash an application or system).

1.3.17User Interface and Interaction Services

Interface Operating systems offer many interfaces from the command

line to complex GUI. CLIs refer to text-based interaction using shells

like Bash in Unix/Linux environments, Power Shell in Windows or Zsh

in macOS by which users enter predefined commands that the OS

knows how to interpret and execute; typically not as user-friendly for

novices as graphical interfaces, CLIs give you exactness, script ability,

and often speed for seasoned users, thus especially useful for

automation and tasks in IT. Graphical user interfaces (GUIs) provide

72
MATS Centre for Distance and Online Education, MATS University

Notes a framework of visual components such as windows, icons, menus, and

pointers, permitting intuitive interaction with pointing devices while

abstracting away underlying technical complexities and making

computers more accessible to non-technical users; notable GUI

environments include Microsoft Windows Desktop Environment,

Apple's Aqua interface in macOS, and diverse Linux desktop

environments such as GNOME, and KDE. Modern operating systems

have incorporated voice user interfaces (VUIs) and natural language

processing capabilities, enabling users to provide spoken commands

and queries by means of assistants like Microsoft's Cortana, Apple's

Siri, or Google Assistant in Android; there are advantages to this hands-

free operation in certain scenarios, but these interfaces continue to be

refined with respect to their accuracy and capabilities. Features that

make sure operating systems remain usable by people with a variety of

disabilities — screen readers for people with no sight, keyboard-only

access for those with motion limitations, closed captioning for people

who are hard of hearing, visual modes that help people with low or high

contrast sensitivity rely on accessibility services, whether that be

Microsoft's Narrator, Apple's Voiceover, or the Orca screen reader for

Linux; accessibility services implement frameworks on top of which

applications can build to ensure a high level of usability for their

software. These include help systems and documentation, which

provide contextual assistance, tutorials, and references to help users

understand system functionality and troubleshoot problems; these

resources have evolved from rudimentary manual pages to interactive,

searchable knowledge bases integrated directly into the operating

system. Notification services let users know about events in the system,

application updates, new communications, or situations that might

need attention; these systems have become progressively more

elaborate, with fine-grained user control over the notifications that are

displayed, and the means by which they're delivered to limit disruption

while filtering in important information that the user needs.

Configuration and customization services let users change how

systems work, how they look, and which applications are default; these

systems may include control panels, settings applications, and profile

management, which may support maintaining separate configurations

for individual users on shared systems.

1.3.18 Resource Management and System Performance

73
MATS Centre for Distance and Online Education, MATS University

Notes Operating system is tested on a very large and hefty The CPU

scheduling algorithms decide which process receives CPU service and

how long it does, consequently applying complex policies balancing

delivery of throughput, response time, fairness, and prioritizing these

requirements; and include round-robin access to each process at

everything fixed time quantum, priority-based scheduling where

higher-priority processes are favored, and various hybrid methods

when workloads are known in advance. Virtual memory and memory

allocation virtually expands limited physical memory by effectively

treating portions of disk space as an external cache area for running

processes and applying page replacement algorithms like Least

Recently Used (LRU) or Clock to systematically decide which memory

pages to trade out of RAM when the physical-memory is over-

allocated; efficient memory management needs to facilitate keeping

frequently accessible data in faster physical memory while keeping

costly disk operations as low as possible. Storage management

services manage the allocation and location of disk space, building file

system structures (for example, NTFS on Windows, ext4 on Linux,

APFS on macOS) to optimally organize data for storage and retrieval,

and may offer advanced data protection features such as journaling to

help prevent data corruption in the event of system crashes, as well as

volume management to allow multiple physical devices to be combined

into a single logical storage unit, and transparent compression or

deduplication to optimize and maximize available space. In more detail,

energy management services create a profile of components in a

system to monitor and control their power consumption by dynamically

scaling back processor speed, for example, dimming displays,

suspending inactive devices, and employing advanced sleep states;

energy management services maintain a balance between performance

requirements and battery life issues, frequently tuning themselves to the

idiosyncrasies of active workloads as well as available energy. Load

balancing, state and memory monitors are tracking the actual utilization

of CPU cores, memory and swap utilization, disk I/O and network

resource usage, redistributing workloads to prevent bottlenecks as well

as visibility to the system to the admins using tools like Windows Task

Manager, top command under Linux or Activity monitor on Macs.

QoS mechanisms are implemented to ensure that certain applications

or services are prioritized, guaranteeing that important functions

74
MATS Centre for Distance and Online Education, MATS University

Notes receive the necessary resources even when the system is heavily loaded;

for instance, a video conferencing application could be assured of

sufficient bandwidth and processing priority, avoiding disrupted

communication even when other heavy applications may be running on

the system. Caching services keep and serve frequently accessed data

from their faster memory layers, greatly improving performance by

minimizing fetches from slower storage devices, with sophisticated

tracking that discriminates not only between processor caches and disk

buffer caches, but can also implement sophisticated algorithms that

predict what will be needed next based on access patterns and program

state.

1.3.19 Networking and Communication Services

Like (or worse than) host rewriting fun, it's well defined by modern

Operating systems with a stack of services up to local networks and the

world. At the higher level, network protocol support provides the

necessary foundation for communication standards such as TCP and IP,

ensuring that data transmission across different networks occurs

uniformly, irrespective of the underlying hardware differences; most

operating systems contain a protocol stack responsible for

encapsulating data, directing it toward the appropriate destination, and

ensuring reliable delivery despite issues such as network failure or

congestion. Network configuration and management services are

responsible for other networking tasks such as assigning an IP address

(either statically or through DHCP), subnet mask configuration,

gateway settings, and DNS server settings; they may also include

diagnostic tools responsible for finding and fix connectivity issues

through programs like ping, traceroute, or network configuration

panels. Remote access services enable users to log into a system from

far away and run commands or access files supposedly as though they

were in person; they include terminal services (such as SSH in

Unix/Linux systems), remote desktop protocols (such as Microsoft’s

RDP or VNC in cross-platform environments), and Enable secure

connections between the user and the system across the public

infrastructure, called the virtual private network (VPN) capability.

Distributed file systems and network file sharing make files stored on

remote computers available as though they were on the user's local

machine, typically supporting devices running the SMB/CIFS and NFS

protocols in Windows and Unix/Linux environments, respectively, or

75
MATS Centre for Distance and Online Education, MATS University

Notes AFP, previously, in Apple environments, such services handle the

complexities of performing file operations on remote storage, caching,

and managing consistency with regard to shared files and multiple

users. Network security services safeguard systems against

unauthorized access and malicious activities by introducing the likes of

firewalls to filter incoming and outgoing network traffic according to a

system of predefined rules, intrusion detection systems to monitor for

suspicious patterns, encryption services to maintain the confidentiality

of data during transit, and other mechanisms; these defenses have

evolved in sophistication as network threats have grown more complex.

Directory Services allow you to authenticate users in a centralized

location and also allow users to search for resources; these

authentication systems include items such as Microsoft Active

Directory, Open DAP, and Apple Open Directory, which maintain

large databases of user accounts, group memberships, and callable

resources on the network. Internet and web services integrate browser

and related applications and tools into the operating system, providing

API for applications to access internet resources; most new operating

systems ship with libraries to common internet protocols like HTTP,

FTP, and email to facilitate application development and promote

consistency of network behavior.

1.3.20 Advanced and Specialized Operating System Services

Beyond essential functionality, modern OS provide advanced services

that accommodate specialized requirements and emerging

technologies. Hypervisors (such as those used in Microsoft's Hyper-V,

VMware, or KVM on Linux) allow multiple operating systems to run

at the same time on a single piece of hardware by creating isolated

virtual machines with their own allocated resources—leading to server

consolidation, testing environments and improved system utilization.

Container support, as evidenced by Docker support in many server

OSs, provides a lightweight application isolation approach without the

performance overhead of full virtualization; alongside, container

services manage namespace isolation, resource limits and

communication between container-based applications, yielding

deployment consistency between development and production setups.

Cloud integration is the integration of local operating systems with

remote cloud resources, which includes synchronizing files across

devices, offering backup services, and even hybrid computing since

76
MATS Centre for Distance and Online Education, MATS University

Notes processing can occur between local environments and the cloud;

examples include Microsoft's Azure integration with Windows, Apple's

iCloud services within macOS and iOS, and multiple forms of cloud

connectivity within Linux distributions. Modern operating systems

increasingly include artificial intelligence and machine learning

services, which provide application programming interfaces and

frameworks that applications can take advantage of for speech

recognition, analysis of images, natural language processing, and

predictive functionality; these services often include a combination of

on-device processing for privacy and responsiveness and reliance on

the cloud for more compute-intensive tasks. These multimedia services

are responsible for handling audio and video processing, including

hardware acceleration, supporting codecs, and streaming capabilities

that enable applications to provide rich media experiences without

concerns about low-level details (Windows uses DirectX, macOS has

Core Audio and Core Video, and various frameworks are available in

Linux distributions). Database and information management services

provide structured data storage and retrieval capabilities, either via

embedded databases (e.g. SQLite) or standardized interfaces to external

database systems; some contemporary operating systems include

indexing services that scan catalog file contents for rapid queries,

facilitating user workflow by increasing user productivity when finding

data. Software update and maintenance services automatically check,

download and install updates to the operating system and applications,

balancing security vulnerabilities patches and new features with user

control by configuring update policies to suit organizations or users;

examples of these services are Yum and APT. Services are there to help

use different ecosystems, e.g., WSL that runs Linux code on Windows,

compatibility layer like Wine to run Windows programs on Linux, or

software solutions integrated into OS (virtualization software) that

allow the same or another OS to run in the main one.

1.3.21 Conclusion and Future Trends

Operating systems of today are in an ever-evolving phase, aren't they?

Multi-core processors and specialized hardware accelerators such as

GPUs, TPUs, and custom chips are becoming widespread; this leads to

a new generation of operating systems that can effectively allocate

resources and schedule jobs to both homogeneous and heterogeneous

77
MATS Centre for Distance and Online Education, MATS University

Notes workload, offering streamlined, cohesive interfaces to applications and

users. Such profound growth of Internet of Things (IoT) devices

introduces specific challenges for operating system (OS) design,

particularly when you consider that these constrained environments

must leverage minimal resources, but still meet unprecedented scale

with regards security, connectivity, and manageability, as we're

witnessing the arrival of specific IoT OSs alongside the adaptation of

existing platforms to operate at some of these limitations. Unlike the

traditional centralized cloud model, edge computing necessitates

operating systems able to function well with sporadic connectivity,

variable resource availability, and strict latency constraints; the

distributed nature of the edge model challenges operating system core

assumptions about how resources are available to applications and how

they communicate. Security and privacy still propel operating system

really of their features, notable adoption of hardware-backed security

features, and strong encryption of data (the system and application

information), containerization for application isolation and a fine-

grained permission model for sensitive user information and this will

only get better in the future provides with more complex threats. The

lines separating diverse computing environments desktop, mobile,

cloud, embedded—are rapidly disappearing, with operating systems

moving towards more common systems that deliver consistent

experiences and application mobility across multiple device clases;

notably, Windows running on desktops, tablets, and servers; Linux

variants found everywhere from embedded devices to supercomputers.

Autonomous computing,

1.3.22 System Calls

Operating systems act as the crucial link between hardware

components that execute instructions and the software programs that

users interact with on a regular basis. One of the greatest feats in

computer science is the design of operating systems that manage the

resources of computer hardware while providing standard interfaces

that hide and abstract away the complexities that underlie the hardware.

The concept that lies behind this interaction is that of system calls.

They are the interface between user applications and the protected

kernel space, giving controlled access to hardware resources while

maintaining system stability and security. This Unit discusses the wide

78
MATS Centre for Distance and Online Education, MATS University

Notes phonotypical spectrum of OS types and their mechanisms to

implement system calls. To this end, we first present the basic

principles regarding operating system architectural designs and the

importance of system calls within this context, followed by a survey of

operating system paradigms (i.e., monolithic, microkernel, hybrid

kernel, exokernel and virtualisation). We will explore how the design

and implementation of system calls affects important operating system

properties including performance overhead, security boundaries,

extensibility, and hardware abstraction. This should give students an

understanding of subtle differences in system call mechanisms among

operating system architectures and highlight key tradeoffs and

decisions found in system software in general. You learn how

computers operate at a systems level, context that is critical for writing,

optimizing, and securing software on various computing platforms.

1.3.23 The Foundation of Operating Systems and System Calls

Operating systems is the most important software in any computing

environment and is the fundamental software layer on top of which all

other software runs. To appreciate the importance of syscalls, we'll first

have a look at how modern operating systems are organized and what

their responsibilities are. Operating systems do several important

Figure 1.3.9: : System Call
[Source - https://www.scaler.com/]

79
MATS Centre for Distance and Online Education, MATS University

Notes things: they manage and allocate the underlying hardware resources

(such as the CPU, memory, or I/O devices); they isolate and protect

separate processes from each other; they implement a file system and

networking stacks; and they expose standard interfaces that let

application developers write programs without a detailed

understanding of the underlying hardware specifications. An operating

system is divided into high level and low-level components with

respect to privileges. Application programs run with limited privilege

and have restricted access to system resources in user mode, but have

unrestricted access to memory and hardware devices in kernel mode. It

is important to note that this separation is not only a software construct,

as it is usually enforced by the hardware itself, for example, by

hardware implemented protection rings implemented by the CPU.

System calls are designed to be a controlled entry point to the

underlying system kernel from the user level applications, allowing

user applications to request services that require elevated privileges or

access to protected resources. If we look at the history behind system

calls, we can see they were born within early time-sharing systems like

MULTICS and early UNIX, where these systems needed to manage

resource access among multiple users, requiring a more formal

approach toward system services. System calls have been a consistent

abstraction for decades The fundamental concept of system calls

hasn’t changed much in decades of operating system designs, although

the implementation details and specific interfaces have improved quite

a bit. System calls usually require a context switch, which means the

processor must switch from user mode to kernel mode to perform the

requested privileged operation and then switch back to user mode. This

switch is tightly managed and is considered a major milestone along

the execution life of any application. Unlike regular library functions,

system calls do not return at the entry to user mode and the actual

implementation of these is often through a combination of interrupts

(software interrupts/ trap instruction or by special CPU instruction

depending on the hardware architecture). For example, on

contemporary x86-64 machines, the SYSCALL instruction provides a

fast mechanism upon an entry of user and kernel mode, while ARM

implementations may use the SWI (Software Interrupt) instruction.

Hardware mechanisms make sure the transitions go well, going to

different layers do not permit access to unwanted memory protected.

80
MATS Centre for Distance and Online Education, MATS University

Notes System Calls: The system calls can be broadly grouped into the

following functional categories: process control (used to create and

terminate processes), file management (used to read, write, and

manipulate the file system), device management (used to interface with

hardware peripheral devices), information maintenance (for data

transfer between user and kernel space), and communications (used to

communicate between processes and networking). Each operating

system implements a different set of system calls, but there are many

common operations that run on both systems. For instance, process

generation on UNIX-like systems is performed with a sequence of

fork() and exec(); on Windows, Create Process is used. Similarly, file

operations like open(), read(), write() and close() have equivalents in

most OSs, but the parameters and specifics may vary. The number of

system calls varies widely by OS an embedded OS might implement

only a handful of system calls, while a complex general-purpose

operating system like Linux would have hundreds of specialized system

call functions. The performance of any operating system depends on

the design and the implementation of system calls, since each system

call has an overhead due to context switch from user mode to kernel

mode. To minimize this overhead, we use a number of optimization

techniques; modern operating systems actually use system call batching

to combine multiple operations into one system call, as well as fast

paths for common ones. In order to understand how the design and

implementation of each system call interface differs from those found

in other types of operating systems, it is essential we explore this

foundation.

1.3.24 Monolithic Kernels and Their System Call Architecture

Unlike the most optimized, derived Micro-kernel, monolithic kernels

are the default architecture for historic Operating System design

strategy. This architecture defines many mainstreams OSs like classic

UNIXs, Linux and the old Windows. By avoiding the overhead that

comes with inter-process communication (IPC) or message passing, the

monolithic approach provides substantial performance benefits since

various components can directly communicate with one another from

within the kernel. The primary interface between user applications and

kernel services is through system calls in a monolithic kernel. For a

monolithic environment, when a user program makes a system call

(which is the first step in any system call), a pretty simple chain of

81
MATS Centre for Distance and Online Education, MATS University

Notes events happens. The first phase is for the application to fill CPU

registers with the system call number and any required arguments, and

then invoke a special instruction (such as SYSCALL on x86-64

processors) that makes the transition to kernel mode. Using the system

call number, the kernel's system call handler finds the right function in

a dispatch table, checks the arguments, and performs the requested

operation with full kernel privileges. Results are then stored in registers

or memory locations that may be accessed by the user program after

completion, and control is returned to user mode. The execution path

in this fashion leads to reasoned performance efficient patterns that are

a hallmark of monolithic designs. Linux (the operating system) is a

perfect example of the monolithic approach to system-call

implementation but with many modern improvements to the kernel

concept. If you get the same name as an application binary interface

(ABI) or processor architecture (due to Linux), the Linux system call

interface has grown: We maintain a wide range of entry points. For

example, while legacy 32-bit applications would use the INT 0x80

instruction to perform system calls, contemporary 64-bit applications

usually employ the more efficient SYSCALL instruction instead. Linux

takes additional steps to improve system call performance with things

like the vDSO (virtual dynamic shared object), which maps certain

parts of the kernel memory directly into user space so some system calls

can bypass the full context switch overhead. As an illustration,

operations such as gettimeofday can be performed fully in user mode if

the conditions are proper, leading to a reduction in latency by several

orders of magnitude. In Linux, you have a system call table with a

unique number for each system call. This table has grown significantly

over the years, and Linux kernel version 5.10 has support for more than

400 unique system calls. New system calls come into the kernel as part

of a carefully controlled process to minimize backward incompatibility,

because system call numbers and interfaces are a key part of the

kernel's guarantees about ABI stability. Looking at individual system

calls shows us a little bit about this monolithic approach. Take the open

system call in Linux which creates or opens a file. The open() system

call is the widely known interface, but underneath, the kernel's

implementation does so much more: it resolves the file path and

permission, traverses the file system directory hierarchy, works with

the correct file system driver, allocates the file descriptor and updates

82
MATS Centre for Distance and Online Education, MATS University

Notes multiple internal data structure, all within the kernel's address space.

This highly cohesive, single-context execution is a prime example of

the monolithic philosophy behind tightly integrating various system

services directly into the kernel. While it has performance advantages,

the monolithic approach has some challenges. The single address

space design; A bug in any part of the system say in a third-party

device driver can crash the whole system or even take control of the

entire system. Moreover, the monolithic structure can make it

challenging to develop and test new kernel features due to the need to

integrate changes into the monolithic codebase, potentially

necessitating full system reboots during development. Policies get more

complicated too since kernel is running with highest level privileges,

and therefore presents a bigger attack surface. These restrictions have

driven alternative approaches to kernel architecture, but the

performance gains and practical benefits of monolithic kernels have

ensured their continued dominance in nearly all computing platforms.

Many of these concerns have been mitigated in modern monolithic

kernels similar to Linux, which utilize a modular design where

components can be dynamically loaded and unloaded, allowing for

some of the flexibility of a microkernel while still retaining the

performance benefits of the monolithic design. From monolithic kernel

perspective, the implementations of various system calls are still

evolving towards some fancy implementations which reduces the

latency, enhance security and extensibility at high level, while retaining

its kernel architecture for general purpose computing.

Figure1.3.10: Monolithic Operating System
[Source - https://tutoraspire.com/]

83
MATS Centre for Distance and Online Education, MATS University

Notes

1.3.25 Microkernels: Minimalist Approach to System Calls

Microkernels, in the clearest possible departure from monolithic design

philosophy, put only the bare essentials in the privileged domain of the

kernel, embodying the most minimalist approach possible to operating

system architecture. This set of new ways of thinking about how an

operating system works came out in the 1980s, and there were a few

systems that became the first microkernel systems like Mach developed

at Carnegie Mellon University. Under the microkernel philosophy, only

those functions that are absolutely necessary to have kernel privileges

usually address space management, thread scheduling, and simple

inter-process communication (IPC) are kept within the kernel itself.

And, for the most part, all conventional operating system services (file

systems, device drivers, networking stacks, process management, etc)

are implemented as user-space servers running with regular privileges.

This architectural separation also fundamentally changes properties

and implementations of system calls as compared to monolithic

systems. Microkernel based operating systems ideally reduce the

system call interface to less than around 20 core system calls as opposed

to hundreds of systems calls in general monolithic kernels. Instead of

implementing diverse functionality this building component allows

only for system calls that bridge the user application to the numerous

separate server processes that facilitate the operating system services.

Instead of passing all the arguments which causes a lot of redundancy,

the microkernel will just expose system calls that you can call from a

process that communicates within the kernel the file operations to be

run by this file system server process. When a program wants to read a

file, for example, it constructs a message that describes the requested

parameters and sends it via the microkernel's IPC mechanism to a file

system server; that server processes the request and returns results to

the application using the same IPC channel. That indirection makes

system service execution paths radically different from monolithic

systems. One such brilliant and successful project is MINIX, originally

84
MATS Centre for Distance and Online Education, MATS University

Notes developed as an educational tool by Andrew S. Tanenbaum, and over

the years, evolved to grow into a robust microkernel-based operating

system. The entire MINIX 3 kernel comprises only the minimal core

functionality: interrupt handling, process scheduling, and basic IPC.

System services are implemented by independent processes with least-

privilege assigned. And the Virtual File System (VFS) server, which

sits atop the actual file system implementations, is responsible for

coordinating file operations, delegating work to individual server

processes for the file system implementations. Device drivers run as

separate user-space processes and communicate with hardware over

controlled interfaces offered by the kernel itself. This rigorous isolation

results in an architecture where even essential elements, such as device

drivers, are prevented from directly accessing memory beyond their

designated boundaries, which greatly improves the system immunity.

Another well-known example of commercially deployed microkernel

architecture, particularly in embedded, automotive, and safety-critical

environments, is the QNX Neutrino real-time operating system. QNX

employs a message-based architecture with system calls primarily

providing synchronous IPC between clients and servers. Using a very

small microkernel (100KB or less) that handles memory protection,

thread scheduling, and message passing, all other features of the system

are implemented in user-space processes. Pros of the microkernel

approach here on systems calls Second, it improves system reliability

via fault isolation — a crashing device driver or file system server can

never corrupt kernel memory; the system can detect and restart

individual components without bringing the entire system down.

Second, the architecture enhances security by limiting the privileged

code base (the “trusted computing base” or TCB) and enforcing least

privilege for system components. Third, microkernel’s enable

extensibility, as new services can be added without any kernel code

changes. Lastly, this architecture has the potential for lowering the cost

of the formal verification of the kernel, as exemplified by seL4, a

formally verified microkernel designed by NICTA (now a division of

Data61) that offers mathematical proofs of its correctness. But the

microkernel approach comes with performance challenges mostly

concerning IPC overhead. Microkernel systems have historically taken

a performance penalty versus monolithic designs, since even basic

operations may involve context switching between user processes

85
MATS Centre for Distance and Online Education, MATS University

Notes multiple times. Many of these issues were addressed by the

implementation of modern microkernel’s using several optimization

methods. As an example, L4 family microkernels sew up IPC paths

very tight and efficient via direct process switching and messaging as

registers for short messages. Until these optimizations, the performance

gap between microkernel and monolithic systems was huge, but still,

although it was reduced to the size of a knife, it was never eliminated.

Mechanically, the system call implementation is different between

microkernel and monolithic systems. Although the basic hardware

primitives (like SYSCALL instructions or interrupts) are not much

different, the work done in the kernel is often much simpler. Instead of

executing complex operations directly, the microkernel typically

checks the validity of the system call parameters, delivers the

parameters to the corresponding user-space server via a message

passing mechanisms and manages the responses. This separation leads

to clean interfaces and minimizes the attack surface within the

privileged kernel code. The microkernel approach to system calls is a

philosophically different vision of operating system design – one

focused on modularity, reliability, and security, rather than maximum

performance. This leads us to the second point: Microkernels are not

the dominant architecture among general-purpose operating systems:

Because microkernel architectures involve a higher level of indirection

and typically introduce intercrosses communication (IPC) overhead,

they have not displaced their monolithic counterparts for general-

purpose workloads. Microkernel0 systems are still evolving, with

projects such as seL4 and Genode taking this one step further by

proving the security / separation guarantees achieved through formal

verification.

Figure 1.3.12 Microkernel Operating System

[Source - https://en.wikipedia.org]

86
MATS Centre for Distance and Online Education, MATS University

Notes

1.3.26 Hybrid Kernels and Pragmatic System Call Implementations

Hybrid kernels are a practical solution born out of the theoretical

elegance and practical difficulties of pure microkernel designs,

incorporating elements from both monolithic and microkernel systems

to provide a compromise between modularity and performance. This

reflects an understanding that while the strong delineation of

components provided by microkernel provides significant advantages

for reliability and security, the performance penalties thereof especially

for I/O-intensive operations make this a deal-breaker for many real-

world workloads. Therefore, hybrid kernels allow performance-

critical subsystems to be implemented in kernel space while keeping

the microkernel philosophy of modularity and separation for other

components. This architectural trade-off has a strong impact on how

system calls are designed, implemented and behave in those operating

systems. Beginning with Windows NT, Microsoft Windows is

probably the most commercially successful example of hybrid kernel

architecture. The Windows NT kernel was first designed as a

microkernel, separating the kernel-mode Executive services from user-

mode subsystems. Though, to mitigate performance issues, the

following components previously held in user space in a pure

microkernel design (Window Manager, graphics drivers, portions of

the file system) were placed in kernel space. To facilitate performance

optimization, this pragmatic adaptation achieved a situation where the

theoretical boundaries between kernel and user components were

blurred. This Windows system call interface, referred to as "syscall" or

"Nt" functions (e.g., NtCreateFile, NtReadFile) is the basis for the

Windows API. Note that applications normally do not call these native

API functions directly, but instead call higher-level libraries like

kernel32. dll, which offer the more familiar Win32 API functions

87
MATS Centre for Distance and Online Education, MATS University

Notes (CreateFile, ReadFile, etc.). This abstraction allows Windows to

implement multiple API personalities (Win32, POSIX, OS/2) on top of

a single system call interface, and subsystem independence also means

centralized access control and validation within the kernel. Now, in

Windows, there is a mechanism called the System Service Descriptor

Table (SSDT) through which the system calls are addressed in the

Windows. When an application advances a system call, the processor

switches to kernel mode with the specific hardware instruction (X86–

64 uses SYSCALL and older X86 systems use INT 2E), and the

kernel's system service dispatcher will use the syscall number to look

up and invoke the corresponding handler function. This pattern is

somewhat hybrid, as the dispatch mechanism is similar to that of a

monolithic kernel, while the actual architecture provides some degree

of separation between kernel objects. Another well-known example of

a hybrid kernel architecture is Apple’s macOS (formerly OS X). The

XNU (X is Not Unix) macOS kernel is a non-microkernel that

combines the Mach microkernel, a core component of the NeXT STEP

operating system, with parts from FreeBSD and Apple's proprietary I/O

Kit framework. In this hybrid exercise, the Mach parachute delivers

low level facilities like memory management, thread scheduling, and

IPC, for its part, the BSD level implements the UNIX system call

interface and \networking \stack. The I/O Kit, managed in the kernel,

but operating with an object-oriented design, helps increase

modularity of device drivers. An interesting case with hybrid design is

the system call interface in macOS. Applications access system

services through traditional UNIX system calls inherited from BSD,

and implemented by XNU directly in the kernel. Many of the macOS-

specific services use Mach messages instead of traditional system

calls, thus promoting a microkernel-like interaction model for those

services. This hybrid philosophy is in action for performance sensitive

operations so they are implemented directly in the kernel but other

services maintain a more separated message-passing architecture. For

example, hybrid kernels implement system calls with various

techniques to reduce the user-kernel barrier performance penalty. This

can include batching together related operations into single system

calls, user-space libraries that reduce system call frequency, or special

fast paths for common operations. Both Windows and macOS, for

example, provide mechanisms for speeding up certain graphics

88
MATS Centre for Distance and Online Education, MATS University

Notes operations by allowing user applications to directly access frame buffer

memory, with user-mode access being controlled by the kernel, as long

as certain conditions are met, thus avoiding the need for kernel access

with every draw operation. Sandboxing hybrid kernel system calls:

Security minefield Hybrid kernels, while preserving the basic interface

between user and kernel modes, may present more opportunities for

exploitation than pure microkernel because of the greater architectural

complexity and a larger codebase in the kernel itself. In response to

these issues, contemporary hybrid kernels adopt several hardening

mechanisms, including kernel memory ASLR (Address Space Layout

Randomization), control flow integrity techniques, and rigorous

parameter validation for system calls. For example, Windows 10 and

later use Virtualization Based Security (VBS) features to drive this

same theme by using hardware virtualization to further isolate critical

kernel components from the rest of the system, achieving a more

microkernel-like division for security-sensitive subsystems alongside

the performance benefits of the hybrid architecture in normal operation.

System calls in hybrid kernels have evolved as a result of this

pragmatic approach to changing needs. Both Windows and macOS, for

example, have added mechanisms to allow kernel extension (filter

drivers, kernel extensions, or the entire open-source core kernel) which

third-party software can utilize to view and telescope back into system

call behavior without modifying the underlying core kernel. However,

both have evolved over time toward kernel extensibility models that

are more constrained than what either system started out with (Driver

Kit in macOS and Windows Driver Framework), moving a lot of this

functionality into user mode, suggesting a slow return toward a

microkernel model for these particular things. Hybrid kernels in short

capture an interplay between the theoretical ideal and the practical

upper bound of performance based on considerations of security,

compatibility, and architectural purity.

Specialized Operating Systems and Unique System Call Paradigms

Outside of the standard categories of monolithic, microkernel, and

hybrid architectures are specialized operating systems that are tailored

for niche computing environments and use cases. Such specialized

systems often tailor their system call implementations in a way that

bears little resemblance to traditional system calls, focusing instead on

89
MATS Centre for Distance and Online Education, MATS University

Notes characteristics like real-time constraints, execution security, or limited

resources. Exploring these other paradigms, in turn, illustrates the

inherent wiggle room in the system call concept, and its ability to trade

off different requirements. RT systems (real-time systems) are one

example of a specialized system with a unique implementation of the

system call interface. In hard real-time systems where missing a

deadline can mean failure or even disaster determinism and

predictability are more important than average-case behavior. Real-

time operating systems (RTOS) implementations such as VxWorks,

FreeRTOS, and RTLinux modify the classic system call way to provide

bounded rate execution and minimized interrupt latency. For example,

many RTOS designs do disable interrupts in critical sections of system

call processing, preventing lower-priority interrupts from preempting

high-priority tasks. Also, RTOS system calls usually implement

priority inheritance protocols to avoid priority inversion situations in

which a high-priority task is blocked waiting for a resource from a low-

priority one. RTOS environments, for example, usually provide a

system call interface that includes dedicated APIs for fine-grained

timing control; absolute and relative sleep functions; high-resolution

timers; and predictable scheduling APIs. These specialized interfaces

take into account the unique needs of real-time applications, where the

timing of the response is just as important as the function of the

response. Exokernels are a radically different way of thinking about

operating system design, representing an extreme minimalism that

exceeds even microkernel. Originally conceived by researchers at MIT

in the mid-1990s, exokernels remove almost all abstraction from the

kernel, exposing hardware resources to applications directly through a

narrow interface of multiplexing primitives. Exokernel systems avoid

using traditional system calls such as read or write and use low-level

hardware access operations instead. Exokernels expose only physical

resources like disk blocks, memory pages and network interfaces,

instead of higher abstractions like files or processes, and their system

calls are centered on safely multiplexing these resources. Applications

(or their accompanying library operating systems (libOSes)) implement

higher-level abstractions depending on what is needed in the

application layer. For instance, rather than a traditional read system call

which acts on abstract files, an exokernel might expose primitives to

directly manipulate specific disk sectors, and the file abstraction is fully

90
MATS Centre for Distance and Online Education, MATS University

Notes user-space. In such a model, domain applications gain the highest

possible level of control and performance, because kernel abstractions

are removed, and they can implement exactly those resource

management policies that the applications need. Exokernel MIT

implementation showed better performance for specific applications

but with more competence code development. A more recent

specialized approach, unikernels take us even further and destroy the

classic distinction between operating system and application altogether.

A unikernel system compiles the application together with only those

parts of the operating system that it needs, into a single-address-space

executable that runs directly on virtualized hardware. Unikernel

implementations, like MirageOS (in OCaml), IncludeOS (C++) and

Unik, often cut out traditional system calls altogether, substituting them

with calls to functions in the OS libraries slotted right in with the actual

application. Because the whole system operates on a single privilege

level, this scheme leaves very little overhead for user-kernel transition.

Although unikernels give up general-purpose functionality (like multi-

tenancy), they do offer large benefits around security (lowering the

attack surface), performance (removing mode transitions) and resource

efficiency (images are measured in MB, not GB). The system call

interface essentially becomes the API of the included OS libraries and

the boundaries between application and OS code become fuzzy or get

completely obliterated. For example, secure operating systems such as

seL4, Genode, and KeyKOS utilize syscalls that have been explicitly

designed to ensure strong security and isolation properties. In these

systems, capabilities (unforgeable tokens used to denote access rights

to resources) typically replace or augment conventional system call

interfaces. In contrast to specifying resources by identifiers (like the

numbers of file descriptors or process identifiers), system calls in

capability-based systems operate on capability references that

implicitly represent both the resource identity and the operations that

it permits. This radically redefines the security model of system calls,

as access rights are proved via possession of capabilities rather than via

explicit permission checks in the system call implementation. Instead

of opening the file by path and checking permissions against user

credentials (as done in traditional UNIX systems), a capability system

would have the application present a directory capability, and obtain a

derived file capability through a controlled operation. Container-style

91
MATS Centre for Distance and Online Education, MATS University

Notes OSes and library OSes are another flavor of system call

implementation. Other systems, such as gVisor from Google, intercept

system calls made by containerized applications and reimplement them

in the Go programming language, providing a higher level of isolation

and compatibility. gVisor intercepts these system calls through its

potential PTRACE platform (using ptrace) or its KVM platform

(acting as a KVM guest), essentially providing a backing

implementation of every single system call and mediating access to the

host kernel. By going with the existing concept of system calls to know

how to approach the security, Flexi gate can turn a traditional process

into a safer process. LibOSs, such as Graphene-SGX, do the same,

running applications inside Intel SGX enclaves and interposing on

system calls to the host system that can be reached via a secure

interface. A common approach adopted by many networks operating

systems (e.g. Cisco IOS, Arista EOS or Cumulus Linux) is to build up

a specialized system call interface mostly covering network

configuration and monitoring instead of general-purpose computing.

Because of the proprietary nature of the hardware and the needs of

network equipment in general, these systems tend to present proprietary

APIs alongside more typical interfaces. In some cases, these systems

employ restricted or modified standard system call interfaces to block

operations that would otherwise impact the networking functionality or

security. Perhaps the biggest deviation from the standard system call

story is for embedded operating systems that run on highly constrained

devices. In very severely resource-constrained environments like

microcontrollers with kilobytes of RAM, traditional system call

mechanisms may be outright too costly in terms of the amount of code

they require and the execution overhead that they incur. In systems such

as TinyOS and Contiki, traditional system calls are largely replaced by

event-based programming models (e.g., with event queues) or direct

function calls, both of which eliminate the mode transitions and

context switches often seen with more conventional system calls.

Sometimes the entire operating system might run at a single privilege

level, and be protected using features of the programming language or

just careful code review rather than through hardware means.

Particularly for the operating systems that do not follow the traditional

Unix architecture and their individual techniques to system calls, this

underscores the intrinsic pliability of the system call idea and allows

92
MATS Centre for Distance and Online Education, MATS University

Notes for adjustments to myriad needs. By exploring these other paradigms

we can learn more about the tradeoffs embedded in system interface

design and how a unique system call mechanism can be suited to

particular operating environments and needs.

1.3.27 Virtual Machines, Containers, and Layered System Call

Implementations

The rise of virtualization technologies has added new tiers to the system

call model in terms of functionality and behavior, as system calls cross

numerous barriers in multi-layer architectures. Neither is a trivial

question, especially in our modern computing infrastructure where

applications tend to run in evermore nested environments than sitting

directly on the metal. To add further complexity, you must know how

system calls work inside these layered sectors to comprehend the

performance, security, and compatibility features of these systems

when they undergo virtualization or containerization. In contrast,

hardware virtualization uses hypervisors such as VMware ESXi,

Microsoft Hyper-V, Xen, and KVM, which implement a series of

resources in a virtualized type of virtual machine (VM), imitating a

complete computer, including virtual CPUs, memory, and devices.

From a system call perspective, this architecture introduces a massive

complexity: system calls made by applications within the VM are first

handled by the guest OS running inside the VM, not by the host system

controlling the physical hardware. This kind of indirection establishes

a multi-layer execution path which operations go through to eventually

access physical resources. When an application running inside a VM

makes a system call, the usual mechanisms (SYSCALL instruction,

software interrupt, etc.) trap to the guest OS kernel. Lack of information

from the host machine means the guest kernel processes the system call

in a normal way, as if it were running on physical hardware. However,

when the guest kernel tries to access hardware i.e. if it wants to write

to a disk or send network packets it interacts with virtual hardware

devices that the hypervisor provides. These interactions most often lead

to additional transitions from guest to hypervisor (or VM

exits/hypercells) and inject additional context switches on the

execution path. As an example, here is a possible scenario for a simple

write to a file from an application running in a VM: (1) the application

performing a system call to the guest kernel; (2) the guest kernel

creating an I/O request to its virtual disk; (3) a VM exit to the

93
MATS Centre for Distance and Online Education, MATS University

Notes hypervisor when the guest tries to talk to its virtual disk; (4) the

hypervisor translating this request to something dealing with the

underlying storage hardware, which may involve making system calls

to the host OS; and (5) completion of the physical I/O and walking back

through all of those layers. This layering comes at the price of

performance overhead, especially for I/O bound workloads. To

overcome these limitations, modern day virtualization systems use

several optimization techniques. Para-virtualization is a technique to

modify the guest operating system so that it communicates with the

hypervisor through special hyper calls and cannot directly access the

virtualized hardware, thus aiming to decrease the overhead of trapping

and emulating privileged instructions. Features like Intel VT-x and

AMD-V (surprisingly, those don't always get detected properly)

enable more optimized transitions between the guest and host contexts.

Further, methods like direct device assignment (pass-through) enable

VMs to communicate directly and use physical hardware for critical

devices, bypassing some of the layering overhead. Instead of relying

on this last deployment model, containers provide an alternative

virtualization strategy by using OS-level mechanisms without using

hardware emulation to make isolated environments. Container

technologies, such as Docker, LXC, and Kubernetes pods, take

advantage of kernel features like namespaces and control groups

(cgroups) to build isolated process environments without needing the

complexity of full hardware virtualization. Containers provide a very

different model from hardware virtualization at the system call level.

In containers, applications perform system calls directly to the host

kernel, with no intervening guest operating system layer. On the other

hand, these system calls are filtered, redirected, and translated between

namespaces in various ways to change their behavior with respect to

non-containerized programs. Container runtimes use system call

filtering modes to limit the set of system calls available to any given

containerized application (e.g., seccomp-bpf for Linux). This filter

decreases the kernel attack surface visible to the potentially malicious

app, so it is more secure. A containerized web server, for instance,

could be allowed to perform certain network-related system calls and

disallowed to perform others that modify kernel modules or access

unauthorized file systems. Namespace virtualization changes the

semantics of many system calls when inside containers. When a

94
MATS Centre for Distance and Online Education, MATS University

Notes containerized application makes a system call that references global

resources such as process IDs, network interfaces, or mount points the

kernel resolves these references to the global resources in accordance

with the mappings set for the namespace associated with the container.

An example of this can be found when considering that the process

inside the container would see itself as PID 1 (the init process), while

in the global namespace of the host system effectively assigning the

container process a different PID. Likewise, when the containerized

process tries to reach the root file system, these operations get mapped

to a container’s designated root directory through mount namespace

mappings done by the kernel. These translations are invisible to the

application but radically change the impact of system calls made by an

application depending on how the container's namespaces are

configured. Advanced container security mechanisms such as gVisor

and Kata Containers provide extra layers of system call handling.

gVisor is a user-space kernel that intercepts and reimplements the

system calls from containerized apps while providing an isolation

boundary beyond ordinary container isolation. Instead of sending

container system calls directly to the host kernel, gVisor emulates

them in its Sentry component, and fulfill them over the more limited

interface to the host. Kata Containers follows a similar pattern, whereby

containers are executed inside lightweight VMs, a hybrid of sorts where

the system calls of the container are handled by a guest kernel inside a

tailored virtualization VM. Server less computing and Function-as-a-

Service (FaaS) platforms have added yet another layer of system call

complexity. The code gets executed in highly controlled environments,

sometimes with custom system call interception and a virtualization

(e.g., AWS Lambda, Google Functions, Azure Functions) when

developers deploy functions to the platforms listed above. Thus, these

platforms basically employ a mixture of container technologies, special

library interposition, and custom so-called runtime environments to

deliver secure and isolated execution environments while still trying to

ensure high efficiency for short-lived function invocations. These

technologies stack on top of each other and can result in complex paths

for the system calls a function running in a server less platform might

be running in a container that runs in a VM, with system calls

potentially traveling several layers of interception, filtering and

translation before reaching physical resources. System call security has

95
MATS Centre for Distance and Online Education, MATS University

Notes special significance for virtualized and containerized system. Every

layer of virtualization generates attack surfaces for more security

boundaries but also potential attack vectors at the borders between

layers. Hypothetical example: Hypervisor vulnerabilities may allow

guest operating systems to escape their VM boundaries, whereas

container escape vulnerabilities are providing examples of how system

call implementation bugs can be exploited to bypass namespace or

capability restrictions. Current research efforts in this domain focus on

concepts like hardware-enforced isolation, formal verification of

security properties and least-privilege models with respect to system-

call permissions. Understanding the complex interplay of system calls

across virtualization boundaries is necessary for performance analysis

and optimization in these layered environments. Tools like Linux's

eBPF (extended Berkeley Packet Filter) tracing enable developers to

discover which system calls dominate in a mixed environment and

where the most important performance bottlenecks appear (as they

often cross container and virtualization boundaries). Likewise, various

hardware capabilities, such as Intel Performance Monitoring Units

(PMUs), can allow the detailed measurement of the impact that

virtualization has on the performance of system calls. Innovation in

system call implementation and optimization is still ongoing, driven

by the evolution of virtualization technologies. Emerging solutions like

Firecracker (used by AWS Lambda), lightweight hypervisors that are

tailored for container workloads, and unikernel-based isolation

techniques are example of continued attempts at striking the right

balance between the security advantages of enforced isolation and the

performance needs of modern cloud applications. It is important to

understand how system calls work across these layers of abstraction in

order to design, deploy and debug your applications on modern

virtualized infrastructure.

1.3.28 The Future of System Calls: Innovations and Emerging

Paradigms

In light of a wide variety of hardware, security needs, and application

trends, the operating system and system call interface has continued to

evolve. These frontier technologies & research areas indicate a

paradigm shift in how applications will interact with O/S, and the core

idea of system calls, which has been quite steady for decades. The final

section examines emerging technologies and theoretical concepts that

96
MATS Centre for Distance and Online Education, MATS University

Notes may reshape system call design and implementation paradigms on

diverse operating system architectures in the years to come. One

important trend is a growing deployment of hardware extensions to

improve system call security and performance. Modern processors

include special features that enhance and protect privileged transitions.

Intel CET (Control-flow Enforcement Technology) and ARM PAC

(Pointer Authentication Code) prevent return-oriented programming

(ROP) and jump-oriented programming (JOP) attacks that could abuse

the system call interfaces. Likewise, AMD's Secure Encrypted

Virtualization (SEV) and Intel's Trust Domain Extensions (TDX) add

hardware-enforced divide between the virtual machines, resulting in

the modification of how system calls work in virtualized environment

and providing cryptographic isolation of guest’s memory. Such

hardware innovations enable new methods of implementing system

calls that do not compromise security for performance. An example of

such an optimization is the usage of user-interrupt by Intel — it

reduces the number of contexts save and restore calls when going from

user mode to kernel and the other way round. The increasing need for

these types of systems is helping shape new approaches to system call

design as part of efforts to create new confidential computing and

trusted execution environment (TEE) initiatives. Intel SGX, ARM

Trust Zone, and AMD SEV are environments that establish execution

contexts in which even the operating system kernel is untrusted. Such

models often use specialized "ocalls" (calls from enclave to outside)

and "ecalls" (calls from outside to enclave) that might replace (or

augment) traditional system calls, with cryptographic protection that

guarantees that sensitive data is protected even if we have to utilize

services from the untrusted operating system. Technologies like Asylo

from Google, the Open Enclave SDK from Microsoft and the Enarx

project are showing how these new systems call paradigms could end

up being transformed to accommodate confidential computing over a

range of hardware technologies. The recent proliferation of

programmable I/O devices, most notably smart NICs and

computational storage devices, is forcing a rethinking of the syscall

interface for I/O. Instead of funneling all of their I/O through the

operating system kernel using traditional system calls, applications

will increasingly communicate directly with smart peripherals through

memory-mapped interfaces, RDMA (Remote Direct Memory Access),

97
MATS Centre for Distance and Online Education, MATS University

Notes or specialized programming frameworks. SPDK (Storage Performance

Development Kit) and DPDK (Data Plane Development Kit) are some

of the technologies that allow existing high-performance applications

to bypass system calls for the common I/O operations in favor of more

direct hardware access, which will only become more common as

devices are equipped with dual-purpose CPUs capable of executing

those workloads onboard. So, the programming languages environment

and runtime systems are also shaping system call evolution. With

runtimes like Was time, Wasmer, and WAMR (Web Assembly Micro

Runtime), Web Assembly, originally defined to only run compiled code

in the browser, is now growing into the server as well.

1.3.29 Operating-System Structure

An operating system (OS) is software that acts as an intermediary

between applications and the computer hardware, managing hardware

resources and providing a user environment in which programs can be

performed conveniently and efficiently. The operating system structure

describes how the components of the operating system interact with

each other and with the hardware underneath. Over the course of

computing history, OS designs have changed from monolithic OSes,

to multi‐layered and distributed OS architectures. The earliest operating

systems date back to the mid-1950s as simple control programs for

batch processing on mainframe computers, performing little more than

sequencing through jobs and managing input/output. As computing

technology progressed through the decades, operating systems

expanded to support interactive time-sharing, real-time processing,

distributed computing, and the wide variety of personal and mobile

computing environments we have today. The architecture of an

operating system has a great impact on its performance attributes, fault

tolerance, maintainability, and application to specific computing

environments. Different structural approaches make different trade-offs

between these attributes, but there is no single best design for every

use case. In this Unit, we will analyze the main types of operating

system structures we have, their strengths, weaknesses, and when to use

the structure. We'll explore monolithic systems where the code base is

tightly integrated, layered systems that organize functionality

hierarchically, microkernel architectures with minimal privileged

code, modular designs that minimizing loose coupling with component

98
MATS Centre for Distance and Online Education, MATS University

Notes isolation. Per each architectural type, we will discuss the philosophy

behind the design, implementation aspects, performance implications,

and real-world examples. We will also look at how new emerging

technologies, such as virtualization, containerization, and cloud

computing are shaping the range of available operating systems and

their layout. The students will also know when and why certain features

will become important along the history, various trade-offs made in

order to achieve a workable system, and understand how Operating

system organization is achieved in many systems.

99
MATS Centre for Distance and Online Education, MATS University

Notes 1.3.30 Monolithic Operating Systems: Comprehensive Integration

The first and arguably simplest approach to operating system design,

monolithic operating systems, refer to a set of operating system

components that reside in a single location, with all system services

running in kernel space with hardware access. Monolithic: The entire

operating system, including the kernel, device drivers, file systems,

memory management, process scheduling, and inter-process

communication mechanisms, runs as a single program in a single

address space in a privileged mode. This architecture was prevalent

from the 1960s on, with systems like UNIX and its descendants, and is

still reflected in contemporary systems like Linux, FreeBSD, and, at

least in a part, Windows, although the latter has taken on aspects of

other architectural ideas too. The primary benefit of the monolithic

approach is performance, as components of the system can

communicate by calling functions rather than having to pass messages

or utilize other inter-process communication methods, which tend to be

more expensive. All components operate in the same address space, and

so data structures can be shared directly without the overhead of

copying data between protected memory domains. In early computing

environments, where hardware was scarce and expensive, monolithic

systems dominated due to their performance. In a monolithic kernel,

the functionality within the kernel itself is often organized as many

logical layers, with the low-level hardware interfaces at the bottom and

higher-level application interfaces at the top, but this layered

implementation is not so much enforced by hardware protection

mechanisms, but by software conventions. Early UNIX systems can be

thought of this way, where the lowest layer was hardware management

and the next layer up was memory management, process scheduling

had its own, and file systems had theirs, and at the highest level was a

syscall interface where each level was separate but depended on lower

layers. Monolithic architectures, despite their performance

advantages, pose considerable challenges for development,

maintenance, and reliability of the system. Because the code base is

unified, a bug in any component from a device driver to the virtual

memory system can potentially crash the entire operating system since

all code runs with full hardware privileges. With so much dependency

between components, the system can be particularly vulnerable, and

debugging can be a challenge, as bugs that originate in one subsystem

100
MATS Centre for Distance and Online Education, MATS University

Notes can rear their ugly heads elsewhere in the system. In addition, the

construction and development of monolithic systems need to be

coordinated carefully between teams working on various components

with one subsystem change can have domino effects all around kernel.

The most common modern approach has been to maintain good

performance whilst still implementing some of the benefits of

modularity through loadable kernel modules, as the monolithic

architecture evolves. This allows components like device drivers to be

dynamically loaded and unloaded from the kernel at runtime, thereby

increasing system flexibility and incremental updates without a

complete boot. For instance, Linux implements a rich module system

that allows it to support a tremendous number of hardware devices and

specialized functionality while keeping its base kernel relatively small.

Modernizing monolithic operating systems such as Linux learn and

thus apply rich development and testing processes to address the

intrinsic weaknesses of their design. Additionally, a variety of testing

and debugging tools, like automated tests and code inspection

frameworks, can catch bugs before they go live, combined with an

extensive review process, help keep the system stable through such a

massive, complex code base. To solve this, there are certain techniques

that have been introduced, like kernel preemption and fine-grained

locking to improve the responsiveness and scalability on

multiprocessor systems, which used to be the weaknesses of the

monolithic design. Although monlithic architectures are more

problematic than new comers to computing and newer architectural

paradigms have been added to mitigate those problems, monolithic

systems such as Linux continue to be popular, suggesting that the

performance advantages and practical effectiveness of monolithic

architectures can remain relevant in modern computing environments,

especially in the arena of hardware classes geared toward server

systems in which are senriced by applications where performance and

hardware support breadth are the primary products of arguable utility.

It is a great example of the evolution of monolithic systems, showing

how a solution that looks relatively simple from an architectural

viewpoint can be improved and progressively developed to cope with

new needs while keep its weaknesses under control and, most

importantly, keep its advantages unscathed.

101
MATS Centre for Distance and Online Education, MATS University

Notes 1.3.31 Layered Operating Systems: Hierarchical Abstraction

Layered OS type is a structured way to design the system, where

functionality is divided into brows of functionalities, high level

functionalities are provided using lower layer, And abstraction of

services of lower layer are provided to upper layers. This architectural

paradigm is derived from some of the early theoretical work on

structured programming and systems design in the early 1960s that was

applied first through systems such as the (TechnischeHogeschool

Eindhoven) operating system developed by EdsgerDijkstra and later in

commercial systems like Multics. A layered architecture is one wherein

a strict hierarchy is maintained, so a component at layer N can only

make use of services offered by components at layer N-1 and lower N

(i.e. a layer N service cannot access a service or data structure provided

directly by a layer N-2 component. The main theoretical benefit of this

strict layering is that we can work on and validate each layer in

isolation, with clearly defined interfaces between adjacent layers giving

us well-rounded boundaries for testing and validation. The concept of

a layered operating system also typically involves functionalities to

form layers, from the lowest hardware dependent level, to the highest

user-oriented level. The first (bottom) level may deal with physical

hardware resources and interrupts, the next layers manage memory,

processes, inter-process communications, virtual memory, file system,

the higher most layers with user-interfaces and applications. You are

provided with layers of abstraction, where each layer obscures the

complexities of the layer(s) below and translates the naked hardware

into the ornate computational environment experienced by users and

applications. A major goal of an early operating system called THE,

built in the late 1960’s, was to implement this paradigm, and THE

itself was divided into five levels: process management, memory

management, console management, input/output buffering, and user

programs. With this level of clean separation, once the lower layers had

been verified, the upper layers could be independently tested in

systematic debugging of the entire system. But the IBM PL/1 system in

the 1970s ushered in a new model with the Venus operating system,

which had six distinct layers to tackle the many facets of process and

resource management. Although conceptually elegant, the strictly

layered model has practical challenges that, in practice, have made

strictly following it a challenge in modern systems. The loss of spatial

102
MATS Centre for Distance and Online Education, MATS University

Notes locality and strict hierarchy can add a huge performance cost, because

something that could happen in a single monolithic system must now

cross multiple levels of indirection, each of which might involve a

context switch or even transform data. Also keep in mind that many

Operating System functions do not have a natural hierarchy: services

such as security, logging, or power management cut across various

layers of the system and do not really fit a single layer. Additionally,

rigid layering can make it challenging to implement efficient inter-

process communication and synchronization mechanisms, which

frequently depend on direct interaction between the components

residing within diverse layers. In the face of such practical constraints,

most modern operating systems take a more flexible approach to

layered architecture but still retain their organizational principles, with

carefully controlled breaches of strict layering where performance or

functionality require them. For instance, while Windows uses a layered

kernel architecture, with kernel components nested in various tiers, it

enables some cross-layer optimizations to improve system throughput.

Layering does end up looking something like this in modern systems,

but more through a combination of practices, interface definitions, and

documentation than through strict hardware boundaries enforced

between all layers. This more pragmatic strategy retains much of the

software engineering advantages of layering while avoiding many of

its worst performance penalties. The multi-layered OS model still

inspires OS design, especially in contexts like certain real-time and

embedded systems where reliability and verifiability are more

important than sheer performance. The idea also manifests in the way

software development teams are organized and documentation trees

are structured for complex operating systems, even where the

underlying implementation likely offers more freedom than a rigidly

layered model might imply. In practice, contemporary systems often

integrate layered design components with various architectural styles,

resulting in hybrid architectures that capitalize on the advantages of

different paradigms and offset their respective drawbacks.

1.3.32 Microkernel Operating Systems: Minimalist Core Design

Microkernel operating systems are an architectural evolution from

monolithic operating systems, based on a philosophy of reducing the

amount of code that executes in privileged mode to the minimal set of

components necessary to facilitate computing. This is an architectural

103
MATS Centre for Distance and Online Education, MATS University

Notes style that is developed in the 1980s and early 1990s with systems such

as Mach, which was developed at Carnegie Mellon University, and has

formed the basis of many systems including QNX, MINIX, and parts

of macOS through its XNU kernel. Microkernel architecture's primary

realization lies in the fact that only the services that truly require

privileged or specialized access (generally IPC, basic memory power

management, and minimum scheduling) should be implemented within

the kernel itself, while the rest will run as user interaction processes

which will have limited control, hence limiting the risk of impacting

the entire system. This strict separation is intended to ensure greater

reliability, security and maintainability of the system by limiting the

trusted computing base (TCB) and isolating failure-induced

components. The microkernel approach has a solid, multi-sided

theoretical advantage. Because it minimizes the amount of code that

must run in privileged mode, the system becomes less susceptible to

catastrophic failure — for example a crash of a user-space file system

server need not bring down the entire operating system, as it would

have to do in a monolithic design. This provides better fault

containment, as you can restart individual servers without bringing

down the entire system. Similarly, security benefits arise due to the

reduced attack surface that the minimal kernel exposes and provides

fewer opportunities for privilege escalation attacks by targeting kernel

vulnerabilities. From a software engineering perspective, the

microkernel approach makes it easier to implement systems with

noticeable modularity, allowing development teams to focus on

specific servers with well-defined channels between components. This

modularity furthermore allows for extensibility of the system, as new

services can be introduced as user-space servers without any need to

update the microkernel itself. Also, the architecture in theory provides

greater portability, with hardware-dependent code mainly residing at

the microkernel level and in low-level device drivers, meaning that

porting the system to new hardware platforms is easier. Microkernel

System Design The advantage of microkernels is their small size;

everything most applications could need is implemented as a distinct

service that a monolithic kernel would contain, leading to high levels

of modularity but high communication costs as the interposes

communication needs to be deeply efficient given the nature of a

microkernel architecture where each service operates in its own space.

104
MATS Centre for Distance and Online Education, MATS University

Notes A user application sends a message to the file system server, for

instance, when it has to perform a file system operation; the file system

server can send another message to the disk driver server, and the

microkernel takes care of this communication. Early hardware

microkernel implementations (the most notorious entry here being

Mach) suffered painful performance penalties due to the overhead

associated with such message passing and the resulting context

switches between address space. QNX, a commercial real-time

operating system with a more efficient implementation, yet more

forgiving of lower-performance hardware, especially in embedded

systems where timelines take precedence over other performance

statistics. The shortcoming of the pure microkernel approach from a

performance standpoint triggered many refinements and hybrid

implementations. L4 (originally developed by JochenLiedtke in the

1990s) was a second-generation microkernel that achieved astonishing

rates of interposes communication by virtue of careful design and

implementation, demonstrating that much of the theoretical overhead

of microkernel could be eliminated by amazing amounts of

optimization. macOS (formerly known as OS X) comes with a hybrid

approach on its XNU kernel, which incorporates the Mach microkernel

and a monolithic UNIX kernel into a single address space, trading

some of the fault isolation benefits for a performance improvement.

Although Windows NT has been designed with microkernel principles,

more and more components were incorporated into kernel space to

address performance issues. Notwithstanding the above compromise,

the conceptual impact of the microkernel architecture is far-reaching.

Andrew Tanenbaum's MINIX 3 was another early but significant

example, originally developed as an educational tool but then

substantially evolving into a research system, providing demonstration

of how microkernel principles continue to be refined, with a focus on

reliability through isolation of components. The seL4 microkernel,

developed by NICTA (now part of Data61), is possibly the most

important recent development in this area and allows the formal

mathematical verification of certain properties that could only have

been accomplished at all due to the very smallness and clean design of

a microkernel. Though many recent systems may incorporate elements

beyond the classic microkernel philosophy, the microkernel's

optimization towards reducing privileged code and decoupling

105
MATS Centre for Distance and Online Education, MATS University

Notes systems have undeniably left a mark on contemporary OS design,

specifically where security is of the utmost importance, such as in

embedded systems and those with high reliability constraints.

Microkernel systems are one place where this same idea plays out and

demonstrates how an architectural solution can continue to take shape

and drive innovation in the field even while the pure idea struggles to

be relevant in certain contexts.

1.3.33 Modular Operating Systems: Component-Based

Architecture

Modular operating systems are an architectural shift based on clean

interfaces between well-defined systems (modules) rather than strict

layering or minimal priv. execution. This approach came to

prominence in the 1990s and 2000s with systems such as Solaris (and

its Spring research predecessor) and Windows NT, which included

substantial modular design facets in them, even though they weren't

strictly modular in every way. The first of these innovations, Low-level

modular architecture focuses not on the vertical stack (layered systems)

or privilege levels (microkernel) used to organize elements of a system,

but rather on the set of interfaces defining the interactions between

components of a system, and allows any component of a system to be

developed, tested, and replaced independently of the other components

it interacts with, provided they adhere to agreed-upon specifications of

interaction. Modular architectures allow separate components at the

same conceptual level (i.e., layers) to interact horizontally with each

other in ways that are easier to express away from strictly layered

systems, enabling natural expression of cross-cutting concerns and

cross-layer functions. The principles that drive the design of modular

operating systems are based closely on object-oriented programming

principle, where system components implement their internal workings

behind a well-defined interface which describes both services offered

by the component and services the component require from other

components. Thus, it creates a system of modules, which are

interdependent on each other but are connected via explicit interface

declarations as opposed to implicit dependencies, enabling better

comprehensibility and maintainability of systems. In the ideal modular

architecture, the system is represented as a graph of components, with

edges representing module dependencies mediated through interfaces,

instead of a stack of layers. Modular operating systems usually feature

106
MATS Centre for Distance and Online Education, MATS University

Notes a component framework that handles loading, initialization, and

communication between modules. For example, Microsoft's Windows

Driver Model (WDM) and later Windows Driver Framework (WDF)

enable device drivers to work together in a way that was previously

impossible by establishing standardized interfaces and support

infrastructure that allow dozens able devices to be implemented as

independent drivers but still interact in an orderly manner within the

driver stack. Jigsaw, as the Java-based project is called, inspired Java

9's module system, which embodied the same principles regarding

module dependencies and encapsulated implementations within the

context of programming language runtime environments. The

modularity approach, spurred by Solaris 7 and 8 major redesigns of the

solaris operating system, adopted the heuristics of ServicePlex

architecture a means of layering system significance into distinct

removable parts with standard interfaces. This allowed for things like

dynamic reconfiguration of system services without the need for a

reboot a market first, for enterprise systems where availability

requirements often mean upgrading the whole system cannot be taken

down in order to perform the upgrade. The subsequent implementation

makes use of methodologies like dynamic linking, runtime service

discovery and component registration to design a flexible yet strong

system architecture. Benefits of modular design go beyond just

software engineering to operational considerations. In a modular

architecture, it may be possible to implement “hot-swapping” of

components, allowing for updating or reconfiguration of the system

without downtime which is an important property of high-availability

environments, such as telecommunications systems or financial

services infrastructure. Moreover, the modular structure enables the use

of different configurations for various use cases or hardware platforms

by allowing components to be included or excluded as needed without

major changes to the rest of the system. However, we find many of

these same advantages pale in comparison to the nominal performance

efficiency of non-modular, tightly integrated designs. Runtime

overhead in these frameworks may be caused by interface compliance

checking, dynamic binding between components, or even potential

need to convert data from one module to another. Moreover, the

challenges of developing and maintaining an application tend to

escalate proportionally to the number of components involved when

107
MATS Centre for Distance and Online Education, MATS University

Notes there are explicit dependencies to manage. The challenge of

comprehensive testing becomes more complicated with the increase in

the number of interchangeable modules, as the number of potential

combinations of the components grows exponentially. A hybrid

approach often features in modern modular operating system designs,

which retains a unified kernel core while enabling modular extensibility

via precisely designed frameworks. The Linux kernel, despite being

fundamentally a monolithic kernel, introduces a substantial layer of

modularity via its loadable kernel module system allowing for

dynamic extension of kernel functionalities while preserving

performance within the core system. Windows also has such a driver

model, but keeps a much more tight base system with options for

modular extension. For Example, The prevalence of micro service

architecture in distributed systems as well as containerization

technologies are part of the continuing evolution of modular

approaches, applying similar principles of componentization at a

higher level. So again, considering the evidence that we have been

exposed to, it would seem that pure modularity has potentially created

some pseudo-components that ultimately do not yield the fruitful

experience one may want but the overall principles of modularity

component isolation, interface-based design and explicit dependency

management remain bedrock of every level of the system that we

interact with. And as computing environments further diversify and

specifications deepen (even if only at particular segments of a

community), I suspect that the flexibility provided by such modular

design approaches will remain valuable; as long as it is married

pragmatically to efficiency with respect to performance and

complexity.

1.3.34 Hybrid Operating Systems: Pragmatic Integration

Hybrid operating systems serve as a pragmatic amalgamation of the

various architectures that can be seen on the operating system spectrum,

containing some monolithic, layered, micro, and modular features to

balance performance, reliability, maintainability, and flexibility.

Hybrid systems do not follow strictly any communication structural

philosophy but choose portions of each architecture that fit the specific

system functions and operational needs. This pragmatic idea has held

sway over commercial OS design since the late 1990s, and all

mainstream OSes today from Windows, macOS, iOS, and Android to

108
MATS Centre for Distance and Online Education, MATS University

Notes modern Linux distributions are, to varying degrees, hybrids. The key

argument for hybrid architectures says that because different parts of

the system exercise different demands with regard to performance,

availability and development flexibility, you cannot lag the same

architectural solution for everything in the system. While performance

or stability may benefit from implementing network protocol stacks in-

kernel, experimental file systems may be better written as user-space

components that crash without taking down the rest of the system. A

hybrid system allows different subsystems to follow different

architectural models, enabling the most appropriate design approach to

be used on a given part of the overall system in pursuit of performance,

pragmatism, and real-world usage instead of theoretical purity. One of

the more recognizable examples of the hybrid approach is the macOS

(formerly OS X) operating system, which features a hybrid kernel

called XNU that integrates components of the Mach microkernel and

BSD Unix in a single privileged execution environment. Although this

design loses some of the fault isolation benefits of the pure microkernel

approach, it greatly increases performance by removing the message-

passing overhead for frequently used services. At the same time, the

I/O Kit driver framework, the BSD subsystem, and Mach-based

underpinnings are kept distinctly separate within the system, creating

internal boundaries that provide a great deal of potential for

maintainability with minimal impact on performance. Likewise, the

Windows version implemented by modern Windows products also

follows hybrid architecture principles, with a mixture of aspects of

monolithic integration, modularity and layering. Running in privileged

mode, the Windows kernel delivers essential services: the Hardware

Abstraction Layer (HAL), which insulates a lot of the system from

specifics of the hardware, memory management, process scheduling,

and an elaborate object manager. On top of this foundation the

Executive services provide higher-level functionality such as the

registry, security reference monitor, and I/O system. Even though the

various components execute in kernel mode for performance purposes,

they adhere to well-defined abstractions with a modular organization

that supports independent development and testing. The Win32

subsystem, along with various other environment subsystems, operate

partly in user mode, illustrating a practical separation of function across

privilege levels determined by security and stability concerns rather

109
MATS Centre for Distance and Online Education, MATS University

Notes than strict architectural dogma. Linux has developed an extremely

successful hybrid, retaining much of the performance advantages of its

monolithic roots while also integrating concepts from alternative

architectural paradigms. We will use the term core kernel to refer to

such a high-privilege mode codebase, as the core kernel operates as a

single privileged-mode entity, but implements an extensive module

system to allow components such as device drivers, file systems and

networking protocols to be loaded and unloaded dynamically. This

method maintains performance efficiency with improved extensibility

and maintainability. Moreover, much of Linux's functionality has been

gradually pushed to user space when it makes sense to do so, with

systems such as FUSE (File system in Userspace) allowing file systems

to be written and run without modification to the kernel, as well as

container technologies such as Docker and Kubernetes that offer user-

space isolation mechanisms achieving many of the objectives of

microkernel-process separation without compromising on

performance. Notable advances in the hybrid model have indeed been

made, particularly in mobile environments such as Android and iOS,

providing privilege separation and process isolation of third-party

applications which would be the primary threat of an untrusted

environment. Therefore, the logic behind Android is to isolate

applications into their own process spaces with limited permissions

over the core system services that run with elevated privileges. Running

on an XNU-derived kernel fused with Mach and BSD components in a

security model that embraces sandboxing at the per-app level, iOS also

takes a layered approach to security just like the Android variant. The

performance benefits of hybrid designs are significant in multi-

purpose operating systems that have to accommodate a wide range of

often conflicting requirements. Hybrid systems have the potential to

apply different architectural principles to different aspects of the

system, allowing them to optimize performance for performance-

critical paths, provide reliability through isolation of less stable

components, enable development through modularization where it

makes sense, and maintain backwards compatibility within existing

software ecosystems, all in a single, coherent operating system. They

illustrate that real systems are not mere implementations of theoretical

models but rather the solutions of engineering problems whose

challenges outstrip elegant abstractions — such that real systems are

110
MATS Centre for Distance and Online Education, MATS University

Notes more like hybrid architectures, borrowing from different architectural

paradigms. It is this pragmatic synthesis that continues to define

modern operating system design, with each new generation

assimilating the lessons of multiple architectural traditions, while

responding to new hardware capabilities, security threats, and

application demands. Due to the continued diversification of computing

environments across a wider range of form factors extending from

embedded systems to cloud infrastructure, the versatility of hybrid

approaches may prove useful in the construction of systems that fulfill

their intended purpose, rather than over-commit to a single design

(which is associated with a set of trade-off in the articulation of

competing objectives of design).

1.3.35 Specialized and Emerging Operating System Structures

In addition to the mainstream architectural paradigms described earlier,

a large number of specialized and new operating system architectures

have emerged to meet specific computing configurations, workloads,

or design objectives. These tailored architectures often serve as

narrowly considered modifications of established methods toward

specific goals or as novel constructs made possible by technological

advances and changing computational models. The evolution of

computing — from "general purpose computing" across embedded

systems, mobile devices, cloud infrastructure and new advanced

platforms, including wearable’s and IoT devices — has made these

particular structures more and more relevant in the operating system

landscape. For instance, real-time operating systems (RTOS) are

tailored for predictable, deterministic behavior, as opposed to

maximum average throughput. Such operating systems (OSs) test and

operate to strict specifications to guarantee response times for time-

critical operations, and often employ specialized scheduling

algorithms, such as rate-monotonic and earliest deadline first

scheduling, rather than the fair-share algorithms found in general-

purpose OSs (like those in the UNIX family). This has architectural

implications that tend to polarize: you want to reduce non-deterministic

system behaviors like dynamic memory allocation, virtual memory

page faults, or complex caches that contribute to timing variability.

Some real-time systems use microkernel designs to increase reliability

(as in QNX) while others focus on minimal execution intervals and slim

designs that are akin to stripped-down monoliths showing a degree to

111
MATS Centre for Distance and Online Education, MATS University

Notes which functional requirements can dictate architectural design stronger

than theories of software organization can. What are embedded

operating systems? Embedded operating systems are the systems

created for such resource-constrained environments as industrial

controllers, automotive systems or consumer electronics and often end

up having highly tailored architectures tuned for their limited

memories, processing power and energy budgets. An example is

TinyOS, which implements a component-based architecture but adopts

static composition; the system is built at compile time rather than run

time, allowing developers to avoid the cost to bind components

dynamically, while losing flexibility. Embedded Linux variants

commonly minimize the standard kernel removal of excess

components, and static methods where dynamic mechanisms are

unnecessary. These systems are examples of scaling limits that are

pushing innovations in architectures that would never work for general-

purpose computing but are exceptionally suitable for their targets.

Network Operating System: Another specialized category is called

distributed operating system which is a distributed version of an

operating system, meaning that the OS services are extended to

multiple networked computers and make it appear as a single coherent

system to its client. Distributed computing systems such as Amoeba

(1980-1999) took process migration, distributed shared memory, global

resource naming, and similar features from single user distributed

systems and implemented them across multiple physically independent

networked computers. Although pure distributed operating systems

have had limited commercial success, fundamental aspects of their

architecture have been incorporated in most contemporary cloud

infrastructure and cluster computing frameworks. First, Google's Borg

system (the inspiration for Kubernetes) comes in as a brilliant solution

for its distributed resource management and scheduling across a

cluster of data center machines, functioning as a distributed operating

system at the cluster level even while regular OSs are running on single

machines. Virtualization has even given rise to entire new hypervisor

architectures that reconfigure the OS actualization on the hardware.

Hypervisors like VMware ESXi, Microsoft Hyper-V, and Xen serve as

thin abstractions atop physical hardware to multiplex it among

multiple guests operating systems, providing them the illusion that they

are operating on exclusive hardware. In addition to requiring efficient

112
MATS Centre for Distance and Online Education, MATS University

Notes mechanisms for hardware abstraction, these systems emphasize having

effective inter-virtual machine isolation and low performance

overhead, often resulting in designs that closely resemble microkernel

with a small trusted computing base but specialized to virtualization

primitives over generic operating system services. Architectural

implications of virtualization undergo changes at the syscalls layer such

as binary translation, par virtualization and/or hardware-assisted

virtualization that fundamentally alter the behavior of operating

system code interacting with the underlying hardware. Container-based

systems provide a lighter-weight form of virtualization and have led to

additional innovations in architecture. Unlike VMware, Virtual Box, or

similar technologies, which virtualized at the hardware level, Docker,

Kubernetes, and other related technologies virtualized at the operating

system level, allowing multiple isolated user-space instances to share

the same kernel. This model requires namespaces and the architectural

support to have isolated namespaces, resource control mechanisms and

multi-tenancy in the kernel level, needs that have already driven

mainstream kernel development and facilitated new deployment and

orchestration avenues in higher levels of the stack. The principle of

separating the protection of resources from their management is pushed

even further by Exokernels and library operating systems, which enable

abstraction of resources at the application level. In these systems,

demonstrated by MIT's Exokernel research and recently

commercialized through systems like Unikernel, the kernel simply

gives very low-level protection and multiplexing for resources, while

applications link directly to library implementations of standard

operating system services. This design takes away the distinction

between application and operating system, which may further reduce

overhead and enable applications to impose resource management

policies according to their own requirements. Things like MirageOS

compile high-level application code alongside only the OS components

a particular application needs into a specific image to run directly on

virtualized hardware, the commercial embodiment of those principles

in practice; The emergence of heterogeneous computing architectures

with specialized accelerators (e.g. GPUs, TPUs, FPGAs and other

domain-specific processors) has provided significant new pressures

for operating systems innovations. Systems now have to not just

manage traditional CPU resources but also allocate, schedule, and

113
MATS Centre for Distance and Online Education, MATS University

Notes provide programming models for these heterogeneous compute

engines. This has resulted in traditional operating systems being

extended with new subsystems that mediates device- specific memory

management, task scheduling and data movement, forminga hybrid

architectures that incorporates multiple computational paradigms

within a single system. The fundamental nature of computing is

changing, and with it new architectural approaches. From unikernel

designs that package applications with minimal operating system

services inside specialized virtual machines to server less computing

models that remove operating system concerns entirely from the

developer workflow to edge computing paradigms that distribute

computation across networks of devices from sensors near the physical

world to cloud servers in the way of their own using novel storage and

networking abstractions, these challenges have forced innovation on

the structure of operating systems such that they are a vibrant space of

ongoing design engineering. These specialized and evolving

architectures show that operating system design is still a lively field that

continues to change in response to new hardware capabilities, new

application needs, and new computing paradigms. Instead of

converging on one optimal shape, operating systems continue to

diversify to meet an ever-growing set of computing needs and

scenarios, and architectural innovation occurs across the spectrum from

microcontrollers to global-scale distributed systems. These approaches

highlight the notion that operating systems are engineering artifacts:

elegant in theory but compromised by practicalities and imperatives

that are often very different from the original requirements.

1.3.36 Conclusion and Future Directions

Indeed, the subsequent coalescing of various operating systems

structures is an ongoing process, driven by the intersection of theory,

engineering, technology and application needs. Operating system

structures thus have a long evolution from early monolithic systems

optimized for performance and hardware utilization to modern hybrid

architectures that selectively embrace elements across multiple

paradigms, continuously adapting to new demands yet balancing the

inevitable tradeoffs of conflicting design goals.7 So, this adaptation

process reflects both the timelessness (tymaldb probably has things like

partitions, normalization, sharding, etc, etc) of some basic architectural

concepts plus the pragmatic flexibility needed to use them in different

114
MATS Centre for Distance and Online Education, MATS University

Notes computing environments. Feeding into the ongoing development of

OS architectures are a number of trends that the future seems to hold.

The rise of heterogeneous computing architectures integrating

specialized processors alongside general-purpose CPUs creates new

resource management challenges that may catalyze even more

structural innovation. Operating systems must increasingly orchestrate

computation across diverse processing units with their own

programming models, memory architectures, and performance

characteristics, a need that tests the limits of traditional process and

memory management abstractions designed for homogeneous systems.

This trend might hasten the adoption of the more explicitly parallel and

distributed architectural models even within single-machine operating

systems. Security and reliability issues become more important as

computing systems are more deeply integrated into critical

infrastructure (power systems, transportation, etc.) and daily life. These

priorities often favor architectural approaches that emphasize

isolation, least privilege, and minimal trusted computing bases —

principles long promoted by microkernel and capability-based designs.

With hardware support for virtualization, memory protection and

secure execution environments steadily improving, the performance

penalty historically associated with these more formally secure

architectures is diminishing, making it feasible for them to be used

widely in mainstream systems. The growth of edge computing the

distribution of computation between everything from IoT devices to

cloud data centers challenges traditional operating system boundaries

and resource management models. By 2030, future operating systems

may have to work efficiently across such distributed settings,

coordinating resources, moving data, and determining where

computation occurs across heterogeneous networks rather than on

single machines. This may compel the fusion of traditional OS

structures with distributed system paradigms, leading to emergent

hybrid adjacently woven architectures spreading across device

ecosystems, while exposing consistent interfaces to applications and

end users. Virtualization is still remodeling how applications, operating

systems and hardware interact. Applications downloading services

provide for greater compos ability, and can serve as the basis for a

move toward more library-like systems, allowing applications to have

only the system services they need. The distinctions between

115
MATS Centre for Distance and Online Education, MATS University

Notes application and operating system become less and less clear in this

transition. Domain like machine learning, augmented reality,

autonomous systems have emerged where the workloads exhibit

different characteristics and have different requirements that can drive

domain specific architectural innovations Specialized operating system

structures that would be radically different from general-purpose ones

optimized for traditional interactive and server workloads might be

needed for real-time constraints, massive parallelism and probabilistic

computing models. Enabling persistent memory technologies that

weaken the traditional boundaries between volatile memory and

persistent storage break common operating system abstractions and

might drive architectural updates in file systems, memory management,

and process models. Systems tailored to make the most of these new

technologies might take on structures that differ substantially from

those optimized for the strict hierarchy of memory-storage elements

that’s been the hallmark of computing for decades. These trends

indicate that we have just scratched the surface, and operating system

structures will only become more and more diverse rather than

converging on the one true path. We believe different computing

environments and workloads will continue to require specialized

architectural approaches, although particular fundamental principles

modularity, appropriate abstraction, separation of mechanism from

policy, and efficient resource utilization will remain applicable to many

different implementations. Perhaps the best lesson regarding the history

of operating system structures is one of pragmatism: the ability to adapt

to changing requirements and capabilities rather than faithfully

adhering to any given architectural paradigm is what best characterizes

successful systems design. Operating system developers must therefore

appreciate both the theoretical underpinnings of these varieties of

structure and the engineering requirements that colour their application

in individual circumstances. The ideal system architect will combine

principle and pragmatism, creating a new generation of operating

systems which will effectively serve the needs of all users, applications

and computing environments. But as we end this abstraction on

operating system structures, and it is necessary to state that operating

systems are a field of continuous development, full of new problems

and innovations. (The architectures explored in this Unit are not just

dead ends, but growing traditions that remain in the DNA of

116
MATS Centre for Distance and Online Education, MATS University

Notes contemporary system design and will help guide future a direction as

computing continues to evolve into exciting new domains, form factors,

and application spaces.)

1.3.37 Design Goals

Introduction and Fundamental Concepts

Indeed, the subsequent coalescing of various operating systems

structures is an ongoing process, driven by the intersection of theory,

engineering, technology and application needs. Operating system

structures thus have a long evolution from early monolithic systems

optimized for performance and hardware utilization to modern hybrid

architectures that selectively embrace elements across multiple

paradigms, continuously adapting to new demands yet balancing the

inevitable tradeoffs of conflicting design goals.7 So, this adaptation

process reflects both the timelessness (tymaldb probably has things like

partitions, normalization, sharding, etc, etc) of some basic architectural

concepts plus the pragmatic flexibility needed to use them in different

computing environments. Feeding into the ongoing development of

OS architectures are a number of trends that the future seems to hold.

The rise of heterogeneous computing architectures integrating

specialized processors alongside general-purpose CPUs creates new

resource management challenges that may catalyze even more

structural innovation. Operating systems must increasingly orchestrate

computation across diverse processing units with their own

programming models, memory architectures, and performance

characteristics, a need that tests the limits of traditional process and

memory management abstractions designed for homogeneous systems.

This trend might hasten the adoption of the more explicitly parallel and

distributed architectural models even within single-machine operating

systems. Security and reliability issues become more important as

computing systems are more deeply integrated into critical

infrastructure (power systems, transportation, etc.) and daily life. These

priorities often favor architectural approaches that emphasize

isolation, least privilege, and minimal trusted computing bases —

principles long promoted by microkernel and capability-based designs.

With hardware support for virtualization, memory protection and

secure execution environments steadily improving, the performance

penalty historically associated with these more formally secure

architectures is diminishing, making it feasible for them to be used

117
MATS Centre for Distance and Online Education, MATS University

Notes widely in mainstream systems. The growth of edge computing the

distribution of computation between everything from IoT devices to

cloud data centers challenges traditional operating system boundaries

and resource management models. By 2030, future operating systems

may have to work efficiently across such distributed settings,

coordinating resources, moving data, and determining where

computation occurs across heterogeneous networks rather than on

single machines. This may compel the fusion of traditional OS

structures with distributed system paradigms, leading to emergent

hybrid adjacently woven architectures spreading across device

ecosystems, while exposing consistent interfaces to applications and

end users. Virtualization is still remodeling how applications, operating

systems and hardware interact. Applications downloading services

provide for greater compensability, and can serve as the basis for a

move toward more library-like systems, allowing applications to have

only the system services they need. The distinctions between

application and operating system become less and less clear in this

transition. Domain like machine learning augmented reality,

autonomous systems have emerged where the workloads exhibit

different characteristics and have different requirements that can drive

domain specific architectural innovations Specialized operating system

structures that would be radically different from general-purpose ones

optimised for traditional interactive and server workloads might be

needed for real-time constraints, massive parallelism and probabilistic

computing models. Enabling persistent memory technologies that

weaken the traditional boundaries between volatile memory and

persistent storage break common operating system abstractions and

might drive architectural updates in file systems, memory management,

and process models. Systems tailored to make the most of these new

technologies might take on structures that differ substantially from

those optimized for the strict hierarchy of memory-storage elements

that’s been the hallmark of computing for decades. These trends

indicate that we have just scratched the surface, and operating system

structures will only become more and more diverse rather than

converging on the one true path. We believe different computing

environments and workloads will continue to require specialized

architectural approaches, although particular fundamental principles

modularity, appropriate abstraction, separation of mechanism from

118
MATS Centre for Distance and Online Education, MATS University

Notes policy, and efficient resource utilization will remain applicable to many

different implementations. Perhaps the best lesson regarding the history

of operating system structures is one of pragmatism: the ability to adapt

to changing requirements and capabilities rather than faithfully

adhering to any given architectural paradigm is what best characterizes

successful systems design. Operating system developers must therefore

appreciate both the theoretical underpinnings of these varieties of

structure and the engineering requirements that color their application

in individual circumstances. The ideal system architect will combine

principle and pragmatism, creating a new generation of operating

systems which will effectively serve the needs of all users, applications

and computing environments. But as we end this abstraction on

operating system structures, and it is necessary to state that operating

systems are a field of continuous development, full of new problems

and innovations. (The architectures explored in this Unit are not just

dead ends, but growing traditions that remain in the DNA of

contemporary system design and will help guide future directions as

computing continue to evolve into exciting new domains, form factors,

and application spaces.)

1.3.38 Batch Operating Systems: Maximizing Throughput and

Resource Utilization

Operating systems are the most critical link between computer

hardware and the software applications that provide value to users.

Operating systems are sophisticated software ecosystems meant to

resolve computational resources for performance, giving core services

to applications, and to offer interfaces that are human and machine

accessible. The development of operating systems has been

inextricably linked to the development of computer hardware, with

each generation of operating systems reacting to and facilitating novel

possibilities in computing hardware. The evolution of operating

systems: from the first systems, this simply loaded programs up

sequentially into memory, through to modern complex environments

that manage distributed resources over global networks. Operating

systems must balance competing objectives: isolation or controlled

communication, security or accessibility, reliability or failure, high

performance or fairness. The architecture of an operating system is

ultimately a game of tradeoffs: architectural choices differ radically

based on what the system is optimizing for. This fundamental trade-off

119
MATS Centre for Distance and Online Education, MATS University

Notes dynamic has spawned a diversity of OS types, each optimized for

specific use cases and environments. Batch systems care more about

throughput than interactivity, real-time systems care more about

predictability than general performance, distributed systems care more

about availability than simplicity, and desktop systems care more about

user experience than raw performance. That makes these distinctions

important for students of computer science, since the operating system

one chooses has fundamental implications regarding the applications

that can be built on top of a given operating system, the performance of

the operating system, and what guarantees can be given to users of

applications built on top of a given operating system. In this Unit we

discuss the different types of operating systems that operated as the

backbone of computer systems and analyzing their goals and

architectures as time progressed in computer science innovation. These

variations and the particular problems they solve give us a sense of

both the depth of diversity in computing environments, and the wide

principles that underlie all operating system design. Operating System

Design Goals Operating systems are about more than abstract design

goals they inform the features, shortcomings, and usability of our

computing systems. While exploring these differing approaches, we

will find overlapping themes in how the designers of these systems

manage complex requirements, balance competing objectives, and

address the timeless issues of resource management and coordination

of processes. From the embedded systems controlling household

appliances to the massive cloud infrastructures powering global

services, operating systems form the fundamental layer upon which all

applications run, thus making their study critical to understanding

modern computing.

1.3.39 Interactive and Time-Sharing Systems: Prioritizing User

Experience

Interactive operating systems were a radical paradigm shift that

changed the way we related to computers, turning computing

machinery from batch processing calculators into systems that could

respond in something more like closer to human thought processes and

work practices. Interactive systems are characterized by the presence

of a loop that delivers timely responses to user commands, giving the

appearance of having the machine dedicated to the user even when

resources are being shared among many users or processes. Of

120
MATS Centre for Distance and Online Education, MATS University

Notes particular note in this cohort was time-sharing, which enabled multiple

concurrent user interactions with a single system by multiplexing

control through a rapid switching of attention on the system by the

operating system in order to keep the computing environment feeling

responsive. The initial rise of such systems in the 1960s as illustrated

by groundbreaking projects such as MIT's Compatible Time-Sharing

System (CTSS) and even MULTICS (Multiplexed Information and

Computing Service) were not merely technical advancements but a

philosophical reimagining of what the computing experience should be:

that a computer was a utility that could be always on for many users (as

opposed to a constrained resource that should be carefully docketed).

This highlights the central design goals of interactive systems:

maximizing response time to the user at the expense of raw throughput

(the measurement of how much work a computer can do), leading to

complex scheduling algorithms trading fairness for interactive

performance. These systems provided preemptive multiprogramming,

in which the operating system could interrupt running programs after

very short time slices in order to make sure that no individual program

hogged system resources to the detriment of interactivity. Another

important result of time-sharing research was virtual memory, a

mechanism that made it possible for programs to run as if they had

access to more memory than what was physically present, paving the

way in those days for more sophisticated applications and more

efficient use of the memory among many users working at the same

time. With interactive systems, user interfaces evolved significantly,

moving from command-line interactions, through early graphical user

interfaces to the rich multi-touch and voice driven interfaces we know

today. This evolution is illustrative of the continuing effort to make

computers usable for the non-expert while giving powerful

abstractions to the more knowledgeable. The need for protection

mechanisms in multi-user systems led to great strides in security since

these systems were required to prevent users from interfering with each

other’s processes or data. Compounding this demand, architects further

needed to ensure that different processes (types of applications) could

not interfere with each other, so memory protection, file access

controls, and user authentication systems were developed to meet these

needs and laid the groundwork for modern computer security. This is

perhaps the most recognizable form of interactive systems, with

121
MATS Centre for Distance and Online Education, MATS University

Notes personal computer operating systems including Microsoft Windows,

Apple macOS and multiple distributions of Linux, representing the

maturation of several decades of interactive system development,

bringing time-sharing ideas that had previously been developed for

mainframes into personal computing environments. Modern personal

computers are optimized for a single user rather than multiple

concurrent users, but the low-level mechanisms created for time-

sharing (such as preemptive multitasking and virtual memory with the

concept of protection rings) are absolutely essential for multiple

concurrent applications and system stability. Besides the command

interface itself, interactive systems also introduced concepts like the

shell (command interpreter), hierarchical file systems, and graphical

windowing systems, which remain critical to how users engage with

computers today. The focus on human factors in system design has

resulted in rich research in the human-computer interaction literature

highlighting that technical performance metrics do not capture system

quality well enough — perceived responsiveness, consistency, and

usability translate directly to productivity and user satisfaction. We are

taught that the transition from batch to interactive computing is one of

the great paradigms shifts in all of computing and has had effects on

how computers are designed, programmed and used. The change shows

how operating system design goals directly impact technical

architecture and the overall computing experience, including hardware

design, programming languages and application capabilities. As

computing moves ever forward toward more natural, context-aware

interfaces, the lessons we learned in the formative days of interactive

computing are still relevant guideposts to find balance between

technical constraints and human needs.

1.3.40 Real-Time Operating Systems: Ensuring Predictable Timing

and Reliability

A Real-Time Operating System (RTOS) is an operating system with a

real-time application that processes data as it comes in, typically

without buffering delays. Real-time systems differ from general-

purpose operating systems in that most general-purpose operating

systems optimize for average performance rather than guarantee

someone meets deadlines, which is essential in applications like

industrial automation, automotive control systems, aerospace, medical

devices, telecommunication infrastructure and more. What sets real

122
MATS Centre for Distance and Online Education, MATS University

Notes time systems apart from others is predictability; that is, meeting

constraints to response times within bounds, even at peak loads or

under stress. Such determinism is enforced by custom scheduling

algorithms, avoidance of stochastic mechanisms such as virtual

memory, and careful attention to interrupt latencies and context switch

overhead. Real-time systems fall generally into hard real time, in which

failure to meet a deadline constitutes system failure (like aircraft flight

controls or automotive anti-lock braking systems), or soft real time,

where infrequent failures to meet a deadline degrade quality but don’t

cause catastrophic failure (like multimedia streaming or

telecommunications). This distinction has a very strong repercussion

on architectural choices, as hard real-time systems typically use static

resource allocation and worst-case execution time analysis to deliver

absolute guarantees. For instance, the real-time operating system

employs a fundamentally different scheduler than that of a general-

purpose system, using algorithms such as Rate Monotonic Scheduling

(RMS) that allocate priority based on the frequency of tasks, or Earliest

Deadline First (EDF) which dynamically determines priority based on

which process has the impending deadline. These strategies help assure

that the right resources get to important tasks in time to meet their

limitations even if they need to be run in front of less time-critical

operations. Paging and virtual memory techniques that allow for

indeterminate timing behavior are usually avoided in memory

management for real-time systems, in favor of static allocation or

controlled dynamic memory allocation with bounded allocation times.

I/O operations similarly make predictable timing characteristics by,

e.g., using direct memory access (DMA) and dedicated hardware for

the transfer of data between the I/O device and the processor without

being the bottleneck. Some commercial RTOS implementations like

VxWorks, FreeRTOS, QNX, and RTLinux are mature and cater to a

wide range of industries with diverse requirements of certification,

reliability, and performance. It is worth noting that these systems

include functionality rarely found in general-purpose operating

systems such as priority inversion prevention protocols, deterministic

inter-process communication mechanisms, and timing and

synchronization features. Verification techniques come into play

specifically for the development of real-time systems because they

cannot just be functionally correct, but they also need timing analysis;

123
MATS Centre for Distance and Online Education, MATS University

Notes in most cases, formal methods are used to prove that a real-time system

meets its deadlines under all possible operating conditions. This level

of rigor is crucial for safety-critical applications where timing failures

may threaten human lives or cause immense economic loss. Embedded

systems, a related category of systems often using real-time operating

systems, impose an additional set of constraints with limited resources,

power efficiency and specialized hardware interfaces. These devices,

from basic microcontroller applications to complex multi-core systems,

frequently require specialized OS environments designed to optimize

resource utilization but still support real-time guarantees. Another

modern trend in real-time systems is the implementation of time-

sensitive networking protocols that can extend timing assurances across

distributed systems. Hypervisors that run both real-time and non-real-

time operating systems on one hardware are also trending. Finally,

artificial intelligence techniques are continuously applied to real-time

systems while providing timing productivity. The changing landscape

of real-time systems Several applications in mainstream computing are

now emerging requiring timing guarantees that were once only

employed in specialized domains, such as virtual reality, autonomous

vehicles, and industrial IoT hence the increasingly ubiquitous

importance of the principles of real-time computing. The design of real-

time operating systems is an example of how fundamentally divergent

goals yield tightly divergent architectural choices even while

performing the same basic sets of functions for process management,

memory allocation, and I/O handling. We have been allowing our

systems to become predictable instead of faster, and this shift has

enabled important applications that become critical where failure is not

an option, such as space exploration and medical devices that sustain

human life. As computation becomes more tightly woven into physical

systems that interact with the world in real time, the principles that

drove the development of specialized real-time operating systems are

finding wider applications throughout the computing stack.

Distributed Operating Systems and Network-Centric Approaches

They are a significant evolution from conventional single-node

computer focused models to a distributed environment where many

Linked computers operate as a single virtual computer. Whereas

traditional operating systems control resources on a single computer,

distributed systems coordinate across multiple machines that might be

124
MATS Centre for Distance and Online Education, MATS University

Notes spread through worldwide networks, working together for goals that the

machines couldn’t achieve individually. These systems developed due

to the exponential growth of networked computing and the need for

scalability, high availability, and resource sharing between

organizations. Distributed systems are designed to achieve a set of

common goals, including location transparency, allowing users and

applications to access resources without the need to know the physical

location, fault tolerance, where the system maintains the availability of

services even in case of any component failure, scalability, where the

system grows with the increase in the number of users and resources,

and also geographic location of the resources, and consistent

performance irrespective of the hardware heterogeneity of the system.

To satisfy these objectives, more sophisticated mechanisms for

communication, coordination, resource management and failure

detection and handling are needed which go far beyond the needs of

standalone systems. The architectural approaches to distributed

operating systems vary widely, from completely decentralized peer-to-

peer systems in which all nodes are functionally equivalent, to

hierarchical architectures with specialized management nodes. Client-

server models are another common approach which provide the

benefits of both centralization and distribution by splitting the

functionality of the system between service providers and consumers.

More recently, micro service architecture has gained popularity as a

paradigm for building distributed applications, decoupling

functionality into small independently deployable services that

communicate over a well-defined interface. Messages can be delayed,

delivered out of order, or not delivered at all. Distributed operating

systems facilitate different forms of communication (such as remote

procedure calls (RPC), message passing, or distributed shared

memory), and use advanced protocols to address those uncertainties.

Clock Synchronization is another fundamental challenge, since every

node has its own idea of time that may deviate with respect to others,

complicating the ordering of events and carrying out time-dependent

operations. In general, process management in distributed systems

consists of traditional scheduling, process migration (which could be

as simple as moving running processes to other nodes based on load

balancing or resource access), detection of global deadlocks, and global

resource allocation. This allows the system to make more efficient use

125
MATS Centre for Distance and Online Education, MATS University

Notes of available resources across the network as a whole while still

delivering acceptable levels of performance to individual users and

applications. Especially for distributed systems, one of the most

challenging parts is data consistency and duplication, because if we

keep more than one copy, it might lead to higher availability and

performance, but when we update the data, it would cause

inconsistency. Distributed operating systems support a range of

consistency models from strong consistency that gives the illusion of

single copy, to eventual consistency that allows for temporary

divergence with corresponding tradeoffs in terms of performance,

availability and programming complexity. Several distributed

operating systems stand out, including: Amoeba (VrijeUniversiteit

Amsterdam), Chorus (A microkernel-based OS that started the

revolution for distributed systems), and more recently, Borg and

Kubernetes from Google that schedule containerized applications on

Beowulf cluster. Though only a few pure distributed operating systems

have seen extensive commercial adoption, their principles have had an

immense impact on modern computing ecosystems. Cloud computing

platforms such as Amazon Web Services, Microsoft Azure, and Google

Cloud Platform use many ideas of distributed operating systems at a

massive scale, providing users the illusion of an infinite amount of

resources that are available on demand. Virtualization technologies,

which allow multiple logical systems to share physical hardware, have

become foundational techniques for deploying distributed systems,

allowing resources to be abstracted, isolated and managed in

heterogeneous environments. Finally, some models of Distributed

Systems today have autonomous management capabilities, which allow

them to learn the best configuration to use through machine learning

and adjustment through AI. Security issues in distributed settings are

when challenges become most disturbing when continuous attack

surfaces grow with another type of node and every communication

channel. They should also implement comprehensive security

architecture with proper authentication, authorization, export risk

management and intrusion detection across organizational and

geographic boundaries. The gradual replacement of existing operating

systems with distributed ones indicates a paradigm shift in the

understanding of what computing means and what it can achieve,

moving from snapshot- or image-based computation to holistic systems

126
MATS Centre for Distance and Online Education, MATS University

Notes that are defined more by their connectedness than by their individual

components. As computer technology continues to progress towards

more and more distributed models from edge computing at the network

periphery through to global cloud infrastructures human-centered

design principles as discovered through distributed operating system

research remain vital in guiding system designers aiming to strike the

right compromise of performance, reliability, security and

manageability across diverse, complex networks.

1.3.41 Specialized Operating Systems: Tailoring Design to Unique

Requirements

Outside of the general categories of languages there is a broader

operating systems ecosystem which addresses niche requirements or

constraints in specific domains. These specialized systems are instances

of how the bare metal principles of operating systems can be

repurposed and reshaped into something new that is uniform and

guided by some base constraints, often resorting to extreme design

choices that would be completely unthinkable in any sort of general-

purpose computing, hence perfect for their dedicated environment. The

most common subcategory here is embedded operating systems, which

power the billions of dedicated computing devices baked into

everything from cars and appliances to industrial equipment and

consumer electronics. These systems are typically resource-constrained

in terms of memory, processing power, energy consumption and

reliability, many of them requiring deterministic operation over years

of continuous operation without user intervention. Operating systems

such as FreeRTOS, Zephyr, and Rethread all prove that embracing a

more minimalist design approach can deliver a capable operating

system with memory footprints in kilobytes rather than gigabytes, and

are perfect for microcontrollers with limited resources. Operating

systems for mobile devices, such as Android and iOS, have become a

class of their own, combining the interactivity of desktop systems with

the resource-depleted environment and alternate interaction model that

mobile devices have. These systems are optimized for energy

efficiency, touch based interfaces, connectivity, and security based on

the personal nature of mobile devices. The design picks a number of

the classic trade-offs on mobile systems, including higher application

isolation, per-application permissions and complex power management

that to be definitively increases battery utilization by doing usage

127
MATS Centre for Distance and Online Education, MATS University

Notes allocation and lessening background activity. High-performance

computing (HPC) operating systems cater to the specific requirements

of supercomputers and large computing clusters utilized in scientific

simulations, weather forecasting, genomic analysis, and various other

computationally demanding applications. Advanced job scheduling for

batch workloads, support for extreme parallelism across hundreds or

thousands of processors and optimized communication facilities on the

hardware level for tight-coupled parallel programs are built into

systems such as Cray Linux Environment and IBM Parallel

Environment. Since these systems are designed for machine workloads,

and not man-computers use, instruments are applications that prioritize

established computation throughput and efficient resource utilization

over the interactive responsiveness. Exadata and Oracle RAC, as

systems which combine traditional operating systems functionalities as

implemented with specialized functionalities for data processing,

storage management, and transaction management, use special

purpose systems for data management and data interaction. Such

systems employ advanced buffer management, query optimization, and

concurrency control techniques tuned for data-specific workloads,

often eschewing general purpose operating system facilities altogether

to ensure higher performance through direct access to the hardware

device. Network operating systems (like Cisco IOS, Juniper JUNOS,

and VyOS) are used for running the network infrastructure equipment

(like routers, switches, and firewalls). Such systems are designed to

process packets at an extremely high throughput, manage traffic, and

remain highly available under very high loads, often with some form

of a real-time scheduler to ensure the network functions well even

during peak demand times. Again, systems such as VMware ESXi,

Microsoft Hyper-V, and Xen are another more specialized category

providing the abstraction and multiplexing of the physical hardware

that offers support for several guest operating systems on the same

infrastructure. Hypervisor-based systems have advanced resource

management, isolation, and emulation capabilities that provide the

ability to run multiple different operating environments together on the

same hardware bases. Operating systems that fall into safety-critical

categories — which cover aerospace, medical devices, nuclear

facilities, and automotive applications — typically use formal

verification, redundancy, and fault-tolerance mechanisms that exceed

128
MATS Centre for Distance and Online Education, MATS University

Notes those found in consumer devices. INTEGRITY, LynxOS and PikeOS,

for example, are designed for meeting stringent certification

requirements such as DO-178C (airborne) or ISO 26262 (automotive)

where the correctness of critical system components can often be

proven mathematically. For example, security-controlled OSs -- such

as SEL4 (with its formally verified microkernel), Qubes OS (with its

threat model that emphatically prioritizes isolation) and Open BSD

(which approaches secure defaults, and process separation) -- favor the

maximization of attack surface as opposed to features or performance,

making architectural decisions that systematically discard whole

classes of threats. They prioritize the correct drawing and playback of

multimedia content in real time according to parameters like scale and

type via specialized scheduling and resource management, all while

ensuring the sound and visuals remain in sync regardless of system

load. Over these 50 years operating systems concepts have proven

extremely adaptable over even very different environments and

requirements as evidenced by the great variety of these specialized

operating systems. Though the basic functions of process

management, memory allocation, and I/O handling are universal, their

wildly divergent design goals for their ecosystems lead to unique

architectures crafted for specific use cases. The specialization trend

continues to accelerate as computing is seeping into all manner of new

domains, from wearables to smart home systems to autonomous

vehicles to industrial IoT applications, each with its own set of unique

requirements that influences how operating systems are designed. By

studying these specialized systems, we gain valuable insights into the

flexibility of OS principles and the powerful effects that design goals

can have on the architecture of a system, lessons that we can apply

hopefully to innovation even with more general-purpose computing.

1.3.42 Future Directions and Emerging Paradigms in Operating

System Design

So continues the evolution of operating systems as we seek to broaden

the scope of computing and face increasing complexity and challenges

that test the limits of the designs we have known. A dozen or so trends

are revolutionizing operating system design, fueled by hardware

advances, evolving usage patterns, and pressing needs for security,

efficiency, and adaptability in an interconnected world. Cloud

computing, along with edge devices, is driving a sea change in the

129
MATS Centre for Distance and Online Education, MATS University

Notes architectural distinction of operating systems and how that

functionality is spread across computing environments. Edge

computing is blurring traditional delineations between local and remote

execution, and is giving rise to new operating system paradigms that

enable the seamless relocation of processes, data, and state from edge

devices to cloud infrastructure (and vice versa) in response to dynamic

conditions, resource availability, and application requirements. Such a

distributed execution model calls for operating systems able to operate

across heterogeneous hardware while maintaining coherent

application state and security across trust boundaries. Operating system

functions are increasingly powered by artificial intelligence, which

allows for adaptive resource management and predictive optimization

with autonomous operations that exceed static policies or heuristics.

Machine learning or AI-based operating systems can offer benefits in

areas such as pre-fetching and scheduling based on system usage

patterns (more on this in the next section), optimizing power

consumption for anticipated workloads, discovering anomalies from

baseline usage patterns that may correlate with potential security

hazards, and automatically re-tuning system parameters to maximize

application performance as requirements change. The transition to self-

tuning systems encapsulates a radical move away from the

deterministic, rules-based systems that have defined operating system

design for decades, for systems that improve themselves over time

through usage. Architectural innovations that fundamentally rethink

traditional operating system models are being driven by security and

privacy concerns. Increased threats are pushing techniques such as

capability-based security, formal verification of critical components,

and hardware-enforced isolation from the research realm into the real

world. Perimeter-based security models are being supplanted by zero-

trust architectures that require every access request to be validated

irrespective of its origin, and privacy-preserving computation methods

such as homomorphic encryption and secure enclaves are now being

built into operating system services. Security as a Fundamental Design

Principle that Shapes Core Operating System Architecture These

developments make a departure from security as an add-on feature to

security as a fundamental design principle. The booming world of

Internet of Things (IoT) devices is forcing innovation in lightweight

operating systems that can run on limited hardware and that participate

130
MATS Centre for Distance and Online Education, MATS University

Notes in distributed applications that potentially involve hundreds or

thousands of devices. This trend is evident in the various operating

systems (OS) for embedded devices, such as RIOT, TinyOS, and

Amazon FreeRTOS, which provide sophisticated functionality that is

also highly resource-efficient. This includes new network protocols

designed for low-power, low-bandwidth wireless communication;

discovery mechanisms allowing battery-powered devices to efficiently

find services; and security models that are both lightweight and suitable

for unattended operation in the face of possible attacks. It also hints

how containerization and micro services architectures are transforming

application deployment models, with operating systems adapted to this

model. Some third-party operating systems built specifically to host

containerized applications include those from CoreOS (now owned by

Red Hat), RancherOS and Google (Container-Optimized OS). They

are designed with the bare minimum components required for what

they do. This specialization trend is a return to purpose-built OSs,

following decades of convergence onto general-purpose platforms,

driven by virtualization technologies that allow many highly

specialized systems to co-exist on shared infrastructure. The use of

quantum processors, based on a range of principles that differ

fundamentally from classical designs, poses possibly the most

dramatic challenge to traditional designs for an operating system. New

quantum operating systems face unique challenges such as qubit

allocation, quantum error correction and the fusion of quantum and

classical processing. Although functional quantum computers are still

being developed, the operating systems used by these devices are

likely to need completely new abstraction and resource management

paradigms more similar to nature than to classical operating systems.

The increasing focus on sustainability and energy efficiency is driving

the operating system design from the mobile devices being designed to

maximize battery life to data centers being designed to lower their

carbon footprints. Energy-aware scheduling, dynamic voltage and

frequency scaling across multiple cores, workload consolidation,

intelligent resource hibernation, and other techniques are being

developed into fundamental components of the operating system,

rather than merely optional power-saving features. This move shows

that more and more people are starting to understand that energy

efficiency is not just an operational issue but the core design constraint

131
MATS Centre for Distance and Online Education, MATS University

Notes that should inform system architecture from the ground up. Operating

systems innovations that minimize latency and provide consistent

performance guarantees in haselwareeug applications are driven by

real-time analytics and event processing requirements. The well-known

batch-oriented paradigms are replaced by the stream processing model

able to manage continuous data flows with predictable processing

times, supported by operating systems functionalities designed to

achieve such a behavior. This historical bifurcation has blurred, and

both workloads need to coexist on systems that efficiently support both

whilst maintaining isolation where required. Together these emerging

paradigms imply a new era of radical innovation in operating system

design, rivaling the paradigm shift from batch to interactive computing

or the rise of distributed systems. With the ubiquity of computing, its

increasing complexity, and its integration into essential infrastructure,

operating systems should move beyond acting merely as resource

managers of stand-alone platforms and instead become orchestration

systems for heterogeneous sets of distributed computational resources

that can self-adapt to novel operating conditions and needs. The

operating systems of tomorrow are likely to be based on a greater

degree of specialization (largely thanks to specialization in hardware

and firmware as well) running on tightly-coupled interoperation;

continuous self-optimization based on AI; active security models rather

than passive ones; and design paradigms treating sustainability directly

as a design goal rather than as a side consideration to performance, or

reliability, etc. We aren’t simply going to add to the existing space of

operating systems; What these changes will do is change the nature of

what an OS is and what is an OS to applications, to us to the outer

environment. Operating systems is one of the few aspects of computer

science that has tangential implications on almost everything; they are

foundational systems that either enable or constrain what can be

accomplished in computing, so it should come as no surprise that this

field remains centrally located to many of the most exciting problems

and opportunities in computer science today.

Summary

An operating system (OS) serves as the core software that manages

computer hardware and software resources, providing an essential

interface between users and machines. It enables users to interact with

a computer system without needing to understand hardware-level

132
MATS Centre for Distance and Online Education, MATS University

Notes details. The introduction to operating systems outlines their historical

evolution from early batch processing systems to advanced

multitasking and multiuser systems like real-time, networked, and

distributed OS. These developments reflect the growing complexity

and versatility of modern computing needs, emphasizing the role of the

OS in simplifying and streamlining user interaction with computers.

The need for operating systems arises from the demand for efficient and

organized management of computing resources such as the CPU,

memory, input/output devices, and storage. Operating systems handle

key functions including process scheduling, memory allocation, file

system management, device control, and security enforcement. They

ensure that multiple applications and users can work smoothly and

concurrently without conflicts. In terms of system operations, the OS

controls how the CPU executes instructions, manages system

interrupts, initiates the boot process, and maintains synchronization

among processes. It facilitates system calls, manages hardware

communication, and handles errors and recovery. Together, these

functions illustrate how operating systems are indispensable for

ensuring performance, reliability, and usability in modern computing

environments.

Multiple-Choice Questions (MCQs)

1. Which of the following best defines an Operating System?

a) A collection of programs that manage hardware

resources

b) A software used for document processing

c) A hardware component of the computer

d) A program used to browse the internet

(Answer: a)

2. Which is NOT a function of an Operating System?

a) Process management

b) Memory management

c) Compiling programming languages

d) File system management

(Answer: c)

3. What is the main purpose of system calls?

a) To provide an interface between user programs and the

OS

133
MATS Centre for Distance and Online Education, MATS University

Notes b) To execute application software

c) To compile programs

d) To manage network devices

(Answer: a)

4. Which type of OS executes jobs one at a time without user

interaction?

a) Multi-programming OS

b) Time-sharing OS

c) Batch processing OS

d) Real-time OS

(Answer: c)

5. Which of the following is an example of an Operating System

service?

a) File creation and deletion

b) Providing direct access to hardware

c) Executing JavaScript in web browsers

d) Playing multimedia files

(Answer: a)

6. Time-sharing operating systems are designed for:

a) Running a single program at a time

b) Providing fast response time to multiple users

c) Executing batch jobs sequentially

d) Eliminating multitasking

(Answer: b)

7. Which system call is used to create a new process in

Unix/Linux?

a) exec()

b) fork()

c) open()

d) exit()

(Answer: b)

8. Which OS structure follows a hierarchical design with layers?

a) Monolithic OS

b) Layered OS

c) Distributed OS

d) Network OS

(Answer: b)

134
MATS Centre for Distance and Online Education, MATS University

Notes 9. Which design goal focuses on ensuring an OS remains

operational despite failures?

a) Security

b) Portability

c) Reliability

d) Efficiency

(Answer: c)

10. Which of the following is NOT an OS design goal?

a) User convenience

b) System security

c) Hardware development

d) Efficient resource allocation

(Answer: c)

Short Questions

1. What is an Operating System, and why is it needed?

2. List three primary functions of an OS.

3. Define batch processing operating system.

4. What is time-sharing OS, and where is it used?

5. Explain the purpose of system calls.

6. What is the difference between multi-programming and

multitasking?

7. Describe two key services provided by an OS.

8. What is the role of the kernel in an OS?

9. Explain the concept of monolithic vs. layered OS structures.

10. Why is security an important OS design goal?

Long Questions

1. Explain the need and functions of an operating system in detail.

2. Compare and contrast batch processing, multi-programming,

and time-sharing OS.

3. Discuss the main services provided by an operating system.

4. Explain system calls with examples and their role in OS

functionality.

5. Describe different operating system structures and their

advantages.

6. How does the design of an OS affect its performance and

usability?

135
MATS Centre for Distance and Online Education, MATS University

Notes 7. Explain the importance of OS reliability, efficiency, and

security in modern computing.

8. Discuss the role of the kernel and user space in OS architecture.

9. How does an OS manage process scheduling and memory

allocation?

10. Explain different types of operating systems and their real-

world applications.

136
MATS Centre for Distance and Online Education, MATS University

MODULE 2

PROCESS MANAGEMENT AND

SYNCHRONIZATION

LEARNING OUTCOMES

• To understand process concepts and states.

• To explore process control and operations.

• To analyze process scheduling and CPU scheduling algorithms.

• To study inter-process communication and synchronization

techniques.

• To examine deadlock characterization and handling

mechanisms.

137
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2.1: Process Concepts

2.1.1 Process Concepts

Aforementioned processes. times and speeding the instruction

processing. Control Unit; The control unit (CU) is in charge of

managing the instructions (pipelining) fetch and execute different

instructions at the same time (in different stage of the cycle)

significantly improves instruction throughput. Additionally, the

processor architecture uses caching techniques to temporarily store

frequently needed data in fast-access memory that is physically close

to the CPU, dramatically reducing memory read system performance,

and CPU designers have invested in improving the performance of

individual stages of this cycle. Overlap of fetch-execute of multiple

perform some complicated calculation.

 Thus, this cycle efficiency directly dictates to is stored back to either

memory or a register. And it continues infinitely in the same fashion,

so the CPU can process a flow of instructions and an arithmetic/logic

operation, data transfer, or change control flow. The final output of the

execution the fetched instruction (opcode and operands). After

decoding, the CPU executes the instruction – which could be (a

register that keeps track of the instruction currently in execution). Once

fetched, the instruction is decoded, in this step, the CPU identifies the

operation to be done from loaded into memory of computer. The CPU

starts by fetching an instruction from the memory; the address is

determined by the program counter the fetch-decode-execute cycle, is

the basic way CPUs do stuff. When a program begins execution, the

Figure 2.1.1: Process Management

138
MATS Centre for Distance and Online Education, MATS University

Notes instructions it needs are that must be completed in order: fetch, decode,

execute and write back. This cycle, called to understanding how

computers operate at a fundamentally low level. At the core of how a

CPU operates is the instruction execution process, which is a series of

actions interplay of processes that allow it to carry out commands and

handle information. Learning these processes are key The CPU's

functionality is based on a complex Other running processes. not in

RAM at the time. These mechanisms are essential to support multiple

processes running concurrently without affecting the to process

memory beyond the one physically accessible to it, extending the

address space by treating secondary storage as an extension of RAM.

 For Example: Imagine you open your music player app on your

computer. The moment you double‑click the app icon, the operating

system creates a process for that program. This process includes the

program’s code, data, and resources like memory space and file

handles. While the music is playing, the operating system schedules the

process to run on the CPU, allowing it to read audio data from storage,

decode it, and send the sound to your speakers. At the same time, other

processes—such as your web browser or a document editor—are also

running, each with its own isolated memory and resources. The OS

manages these processes by rapidly switching between them, giving the

illusion that everything is running simultaneously. If you minimize the

music player or pause the song, the process doesn’t end; it simply waits,

ready to run again when needed. When you finally close the app, the

operating system terminates the process, freeing up the memory and

resources it was using.

As with execution of process, managing will be finite. These types of

scheduling algorithms are key for fairness and responsiveness in a

shortest execution time. With this, no single process can gain control of

the CPU for too long as the CPU time allocated for a process to execute

of resources and minimize wait times. This algorithm "First Come First

Served" means that the processes are scheduled in the order they arrive,

and the second is "Shortest Job Next" which decides based on the state,

which is then loaded into the context of the next process that is going

to be executed. The operating system scheduler uses algorithms such as

First-Come, First-Served (FCFS), Shortest Job Next (SJN), and Round

Robin to determine the order in which processes are executed in order

to optimize the use by giving time slices to each process and doing

139
MATS Centre for Distance and Online Education, MATS University

Notes context switches extremely faster. This is the process of switching the

context, which means the current process must save its of

contemporary operating systems. The CPU does this involved in many

concurrent processes with concurrent threads using scheduling

algorithms and memory management. Multitasking, the ability to run

many programs at once, is one of the pillars The core of the CPU is the

instruction cycle but it is and exceptions are critical in their ability to

allow systems to respond promptly to incoming events and exceptions.

Exception handlers is not stored in memory, instead, the CPU accesses

the interrupt descriptor table (IDT), which contains an entry

representing the address of the handler for each interrupt or exception

vector. Interrupts to an interrupt controller, which decides their priority

and dispatches them to the CPU.

 The location of interrupt and in keeping the system stable and

preventing errors from cascading through the system. Interrupt requests

are sent that takes proper actions to rectify the wrongdoing. Exceptions

play an important role event alerts emitted by the CPU itself when any

errors or unusual conditions, such as division by zero, invalid memory

access, or illegal instructions, occur. Similarly, when an exception gets

raised, the CPU as well gives up on its current instructions and passes

control to an exception handler happens, or, any hardware devices

need to be read, cpu gets interrupted. Exceptions are the continues its

previous execution after the interrupt has been handled. When data is

needed from storage, or, a network event handler, a special routine set

Figure 2.1.2: Interrupt In OS

140
MATS Centre for Distance and Online Education, MATS University

Notes up to deal with the interrupt. The CPU restores the saved state and the

CPU. When an interrupt happens, the CPU pauses its current

operations, saves the current state, and branches off to an interrupt can

react to external events and error conditions. Hardware devices like

keyboards, mice, and network interfaces generate signals to initiate an

interrupt request to these are vital mechanisms any CPU must have in

place so it and multicore design, enabling better performance and more

complex task processing. In addition, CPU architecture has evolved to

incorporate features such as parallelism tasks can be executed

simultaneously through the use of multicore processors, which is

crucial to meet the growing performance requirements of modern

applications. and throughput. These topics allow you to understand

how computational a common address space and resource pool,

making them lighter than processes. Multithreading enables

applications to execute multiple threads simultaneously (including

background computations while responding), which improves

responsiveness create multiple threads of execution. Threads have

systems and allow performance gains for applications that can use

parallel processing. Another technique that improves Parallelism is

threading, allowing a process to have multiple cores, each of those

cores can do things autonomously executing its own specific

instructions and managing its own resources. Multicore processors are

everywhere nowadays in computer threads/processes.

If you branch (conditional branch instruction) will go, in order to

reduce the amount of penalty cycles that occur from branch

instructions. This feature of Multicore processing integrates many on-

chip CPU cores together, enabling simultaneous execution of numerous

units in the CPU so the CPU can execute multiple instructions at the

same time. Branch prediction is the process of guessing which way a

executed at various stages simultaneously. This means that there is

multiple execution a CPU core, which makes it possible for the

processor to carry out several instructions at a time. Pipelining splits

the instruction execution cycle into stages, so you can have several

instructions being instructions (monads) simultaneously using one

core or even across multi-cores. Techniques like pipelining, superscalar

execution, and branch prediction enable instruction-level parallelism

(ILP) within Parallelization means executing the multiple process is

basically a program in execution, which includes the program code, the

141
MATS Centre for Distance and Online Education, MATS University

Notes current activity represented by the value of the program counter, and

the contents of the processor's registers. an operating system schedules

computational task. A active entities (representing running programs)

that are owned, scheduled, and managed by the OS. Learning about the

process state and CPU utilization is essential to understand how A

modern operating system's core functionality is process management,

where processes are processes. and it is taken out of the system. The

process scheduler in the operating system takes care of this complexity

by ensuring efficient usage of the CPU and equitable distribution of

resources to competing to the ready state as well. Finally, when it

completes its work or if it is terminated by a user or system, the process

enters the 'terminated' or 'exit' state, during which its resources are freed

the process returns to the 'ready' state until it gets a chance to use the

CPU.

A process can also be preempted by the operating system, usually

because it has run out of its time slice, or because a higher-priority

process needs to run, sending the process back does not execute until

the needed resource is released or the event it is waiting for gets

finished. Next, once the condition is satisfied, process may give up the

CPU voluntarily, for example, when it needs some input from user or

to read from a file, it moves into the waiting or blocked state. While in

this state the process not permanent. A this state, the queue executes

its operations with an active CPU. But this running state is 'running'.

In the CPU to become free. So the scheduler is an important part of an

operating system, which picks one of the processes from the ready

queue and allocates it the CPU which passes the state of the process

Figure 2.1.3: CPU in Multiprocessing Interface

142
MATS Centre for Distance and Online Education, MATS University

Notes from 'ready' to process starts in the 'new' state, adopting a process life-

cycle when it’s creating or loading itself into memory. On successful

creation, it moves into the ready state, indicating that it is ready to

execute and is waiting for and other system resources.

A By evolving through a series of states throughout its lifecycle, this

abstract entity indicates its relationship with the CPU Issues. and

responsiveness. As an administrator, tools like your task manager and

performance monitoring utilities give real-time insight into your CPU

utilization, enabling rapid assessment and adjustment for performance

low CPU usage indicates that the CPU is not being fully utilized, which

might mean that certain resources are left idle, or that scheduling is

inefficient. CPU Usage Basics CPU utilization is one of the most

essential metrics for both system performance slowly spinning, may

raises response time, indicates the CPU is greatly loaded. On the other

hand, system loads and potential bottlenecks. Very high CPU usage, is

by assigning them equally sized time slices. The operating system

keeps track of CPU utilization using hardware timers and performance

counters to provide information about Number) can be starvation. It

ensures fairness among processes next (SJN): It is concerned with

processes that have the shortest execution time. In Priority Scheduling,

every process is assigned a priority number, and the CPU is allocated

to the process with the highest priority number (Lowest for short

processes. Shortest job Job Next (SJN), Priority Scheduling, Round

Robin, etc. The simplest CPU scheduling algorithm is First-Come,

First-Served (FCFS) which simply assigns the CPU to the processes

Figure 2.1.4: CPU Scheduling Mechanism

143
MATS Centre for Distance and Online Education, MATS University

Notes arriving first but can cause long wait times algorithms designed to

maximise CPU usage with fairness and responsiveness. The common

types of scheduling algorithms are First-Come, First-Served (FCFS),

Shortest types of scheduling algorithms in the operating system to

decide which process will get the CPU at a particular time. They are

different gets CPU cycles. We use different utilization is the fraction

of time the CPU is active doing non-idle work. CPU utilization refers

to the percentage of time that a CPU is busy checking the state of

processes, and when a process is in the running state, it figure for

applications monitoring. CPU the central processing unit and the brain

of your computer; it runs instructions and processes calculations. Its

usage is an important The CPU is Fairness and responsiveness to make

sure that every process gets a fairly different share of the CPU time.

that is holding back for low priority processes for too long and it would

be not executed in a crude manner." The scheduling algorithm should

be designed such that it can balance between that important tasks are

run quickly. But, if all the processes get assigned priority at all time,

then that could lead to starvation; the scheduler. Generally, high-

priority processes get the CPU a lot more than low-priority processes,

so context switching is a key to reducing overhead while maximizing

CPU usage. The OS also manages process priorities which can affect

decisions made by data. Now, fast saves the state of one process and

load the state of the second process. This process also comes with

overhead in terms of the time taken to store and retrieve all register

values, memory mappings, and process-specific and thus controls the

selection process. But switching is a vital job of the scheduler and we

are the one who CPU. The scheduling algorithm determines in what

order processes are run, the state of becoming ready. When a process

is forced to wait or made to relinquish the CPU, the scheduler takes

another process from the ready queue to share the SJN are examples of

non-preemptive scheduling algorithms, where process can run to

completion w/o interruption and thus long wait times for other process.

It also maintains the ready queue that connects all the processes in the

utmost importance. FCFS and process, adding it to the in-wait queue

and giving the CPU to another process so no single process owns the

CPU for a long time. This is especially critical in interactive systems,

where responsiveness is of long it has been executing for, and what

resources the process needs, in order to make educated guesses on what

144
MATS Centre for Distance and Online Education, MATS University

Notes process should be allocated the CPU. For example, a preemptive

scheduling algorithm like Round Robin or Priority Scheduling allows

the operating system to suspend the execution of a an involved

endeavor that must consider numerous conflicting goals regarding CPU

utilization, waiting time, and fairness among competing processes.

145
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2.2: Process State

2.2.1 Process State

The scheduler needs to also consider factors like process priority, how

Process scheduling is in order to optimize performance and remain

responsive. Through process system calls. It helps to understand the

process state and CPU utilization and communication. When a

program needs to interact with the operating system (e.g. to perform

file I/O, memory allocation, or create a new process), it uses manage

shared resources. You are using it to process management features

followed by the Linux operating system, including process creation,

termination, processes, ensuring data consistency and eliminating race

conditions. There are such as semaphores, mutexes, and monitors to

synchronize processes and process at previous executions. In addition,

the scheduler is responsible for inter-process communication and

synchronization: the coordination between several balancing is an

important part of multi-processor scheduling when processes are

evenly distributed among the available cores so that no core becomes a

bottleneck. To improve performance and minimize cache misses, the

scheduler must account for cache affinity, or the relative caching

similarity of a processors so that the maximum parallelism can be

achieved and consequently, the performance. Load process scheduling

gets a little harder. The operating system has to spread processes over

multiple cores or So with the modern-day multi-core and multi-

processor systems, the CPU resource allocation, the operating system

allows applications to run efficiently, ensuring a stable and reliable

computing environment. Management and resulting in chaos and

instability in the system. Switch In the absence of the PCB, the OS

would not be able to distinguish between processes, processes; which

resources are being used? This data structure is crucial for smooth

multitasking as it allows the OS to switch between processes

efficiently, a procedure called a context the OS’s dossier on every

running program, containing critical information that informs the

operating system so it can correctly allocate and coordinate their

execution. When a program is start, OS make matching PCB, which

contains information about the state of the delicate art of multitasking,

where multiple programs compete for the attention of the CPU, the PCB

146
MATS Centre for Distance and Online Education, MATS University

Notes serves as an individual identity card for each process, containing and

preserving intrinsic and extrinsic data about the state of a process.

Key Process States

A process typically moves through a series of states from its creation to

its termination. The five primary states are:

• New: The process is being created and has not yet been loaded into

the main memory. It's a nascent process that the OS is preparing.

• Ready: The process has been loaded into main memory and is ready

to run. It's waiting for the CPU scheduler to allocate the CPU to it.

• Running: The process is currently being executed by the CPU. This

is the only state where the process can actually perform its

instructions.

• Waiting (or Blocked): The process has temporarily stopped its

execution because it is waiting for some event to occur. This could

be waiting for user input, waiting to access a file, or waiting for an

I/O operation to complete.

• Terminated: The process has finished its execution. It is no longer

active, but its process control block (PCB) might still exist to allow

the operating system to collect its final status.

State Transitions

A process's state changes as it progresses and interacts with the

operating system and hardware.

1. New → Ready: When a process is created, it moves from the New

state to the Ready state, where it awaits its turn on the CPU.

2. Ready → Running: The CPU scheduler selects a process from the

Ready queue and dispatches it to the CPU.

Figure 2.2.1: Process State Model
[Source - https://www.researchgate.net/]

147
MATS Centre for Distance and Online Education, MATS University

Notes 3. Running → Waiting: A process can voluntarily move from the

Running state to the Waiting state if it needs to perform an I/O

operation or wait for an event.

4. Waiting → Ready: Once the event the process was waiting for

(e.g., I/O completion) occurs, it is moved back to the Ready state.

5. Running → Ready: This transition happens due to an interrupt. For

example, a timer interrupt may occur, indicating that the process

has exhausted its allocated time slice. The process is then

preempted and put back into the Ready queue.

6. Running → Terminated: When a process completes its execution

or is explicitly terminated by the operating system, it enters the

Terminated state

148
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2.3: Process Control Block

2.3.1 Process Control Block

In other words, its key structures used by an operating system is the

Process Control Block (PCB), which serves as the main repository of

information about the running processes. In the One of the processes

is currently running, in a ready state, or waiting, or has been terminated.

Multifaceted concept. The process state is a key component that

signifies if a A PCB itself can do many, and like process management

itself, is a of each process. can separate it from others. These data

points are aggregated within the PCB, which allows the operating

system full control and accounting info provides resource usage like

CPU time and memory usage. Lastly, the process ID uniquely identifies

itself among all the processes so the OS allocated CPU time. Status

info tracks the allocated input/output devices for the process, tables

and segment tables, control how the process accesses memory.

Moreover, the process control block (PCB) stores scheduling

information such as process priority and scheduling queues the OS uses

to decide which process should be registers, along with the PCB, and

preserves the computational state. Information about memory

management facts, like page the context switch. Temporary data that

is utilized by the process is stored in CPU A context switch involves

saving the state of the currently running process, and restoring the state

of the next scheduled process, the program counter is a critical part of

that state that tells the CPU where to resume execution of the process

after place and allowing it to quickly switch from one task to the next.

of performance, and the PCB serves to minimize the overhead

associated with this operation. PCB becomes the building block that

makes the context switching process possible and less complicated by

allowing the OS to store all the needed information in one allows the

new process to continue where it left off the other process. For

multitasking operating systems, the efficiency of switching contexts is

a key determinant PCB into memory, which allows the OS to restore

its saved state by copying the data stored in the PCB back into the CPU

registers. These process other relevant data in the PCB of the process.

Then, the OS loads the next process's running process. It does this by

storing the CPU registers, program counter, and context switching.

When the OS wants to switch from one process to another, it first has

149
MATS Centre for Distance and Online Education, MATS University

Notes to save the state of the currently The PCB is especially useful during

from destabilizing the rest of the system. PCB's are stored in a

protected area of memory that normal users cannot access. This

prevents malicious (or inadvertent) data corruption importance. That's

why it has a smooth and efficient computing environment.

DONOTSPEC in PCB is of utmost share data and synchronize their

actions. In short, the PCB acts as the OS's main mechanism for process

management and control, which helps that higher-priority processes

get more CPU time. In addition, it provides intercrosses communication

as a means for processes to like memory, input/output devices to the

Processes. The PCB also enforces process priorities and scheduling

policies, ensuring for resource management and process

synchronization. PCB contains all the information, which is used by OS

to allocate and deallocate resources In addition to context switching,

the PCB is also crucial

2.3.2 Operations on Processes

We also explore how the operating system, as orchestrator, manages

the processes (the unit of executing code) in the system, including the

method of scheduling those processes. Helpful for tuning resource

allocation and ensuring responsive UX. Processes are created and

executed, suspended, resumed, and terminated over their lifecycle.

Process creation is typically triggered by user input or software events

and involves allocating the necessary resources, such as memory and

file descriptors, and establishing the context in which the process will

execute. The CPU needs to save relevant data so it can resume

Figure2.3.1: Process Control Block
[Source - https://techspace.co.th]

150
MATS Centre for Distance and Online Education, MATS University

Notes execution from where it left off, such as the program counter, registers

etc. The operating system keeps a data structure called the process

table, which holds the information about every process, which allows

it to manage state and a much greater detail about processes. The

process states are — new, ready, running, waiting, terminated and they

represent the various stages a process undergoes in its lifecycle.

Processes transit between these states due to events like I/O requests,

time-slice expirations, and process termination. That is, from the

running state, the process maybe move to the waiting state whenever it

asks for I/O, the when it finishes with the I/O, process get back to the

ready state. Explanation: The IPC, or also known as inter-process

communicational low communication and data transmission between

multiple processes PIPE; In computing, a pipe is a mechanism for

connecting the output of one process to the input of another.

Graphically represented as a message queue is a queue of messages that

can be read and written by different processes or threads. These are

essential for cooperation, where one process needs to wait for another

to finish a task or share data, and so on. The OS exposes system calls

which the processes use to leverage these IPC mechanisms for

controlled and secure communications. The last phase is Process

termination, where all allocated resources are released and the process

is removed from the process table. This returns system resources,

making them available for use by other processes. The OS also needs

to deal with unexpected terminations, like crashes or users force-

quitting, to ensure system integrity. This means that the operating

system needs to handle all processes, allowing them to run

concurrently and ensuring a seamless user experience. CPU Scheduling

is an OS function that chooses one of the ready processes to be

allocated CPU at a given time.

Goal of CPU scheduling:

1. CPU utilization should be high

2. Throughput should be high

3. Turnaround time should be low

4. Waiting time should be low

5. Response time should be low

6. Fairness.

There are two types of scheduling algorithms Preemptive and Non-

preemptive. In non-preemptive scheduling, when a process gets the

151
MATS Centre for Distance and Online Education, MATS University

Notes CPU, it holds it until it terminates or relinquishes the CPU by its own

accord. First-Come, First-Served (FCFS) is a simple non-preemptive

algorithm that handles the CPU to the process that arrives first.

Additionally, FCFS is straightforward to implement but can suffer

from the convoy effect, as a long process can block multiple smaller

ones, producing a poor average waiting time. Shortest-Job-Next (SJN)

~ SJN is non-preemptive which selects the process with a minimize

burst time. Shortest job next is an optimal algorithm for minimizing

average waiting time, but it needs knowledge about future burst times,

which is often impractical. On the other hand, preemptive scheduling

permits the operating system to suspend a currently executing process

and pass the CPU to another process. RR is a preemptive algorithm that

gives each process a fixed time slice, or quantum. If a process fails to

finish within its time quantum it is preempted and placed at the end of

the ready queue. When RR can ensure a fair share of the CPU to all

processes, small time slice can cause excessive context switching,

leading to lower CPU efficiency. Shortest-Remaining-Time (SRT) is a

preemptive implementation of SJN, which, at any point in time,

chooses the process with the shortest remaining burst time. The

Shortest Job First (SJF) algorithm, though has minimum average

waiting time, it hinges on accurately predicting burst times and may

lead to starvation for longer processes. We assign priority to each

process in priority scheduling and allocate CPU to the process that

reaches with the highest priority. Static or dynamic priority,

preemptive or non-preemptive. Therefore, while preemptive priorities

scheduling can preferentially run higher-priority processes, it cannot

starve low-priority processes. This can be mitigated by using aging

techniques wherein the priority of a process increases overtime. Multi-

level queue scheduling It splits the ready queue into multiple queues.

Processes are queued according to their properties, like whether they

are foreground or background processes. The multi-level feedback

queue scheduler is considered one of the most flexible and responsive

process scheduling algorithms, as individual processes are able to be

moved between queues based on their behavior.

In process management and CPU scheduling, context switching is an

important operation performed by the operating system. Simply put,

this is the process of saving the state of the currently executing process,

and loading the state of the next process that needs to execute. This

152
MATS Centre for Distance and Online Education, MATS University

Notes includes information such as the program counter, registers, and

memory management. When a process gets preempted, blocked, or

terminated, or a new process is chosen to run, the operating system must

switch context. Context switching is an essential function in operating

systems, enabling multitasking by switching between processes, but it

comes with an overhead. Both the time slices and scheduling

algorithms affect how often context switching happens. In Round

Robin Scheduling, a time slice that is too small would cause lots of

context switches. Operating systems make use of context switching

optimization techniques like keeping the context switching routine fast

and utilizing hardware level support by having special registers that

stores process states. Context switching must be efficient so that CPU

resource usage stays high and the system responds quickly. The

underlying OS must balance between the overhead of context

switching to ensure fairness and responsiveness, and minimizing

overhead to maximize CPU throughput. Scenarios such as real-time

systems that must prioritize the timely execution of critical tasks are

another case where efficient context switching is a necessity. Reducing

the context switching latency can be more critical for these types of

system to maintain the deadlines and improve the system stability.

Modern operating systems utilize advanced techniques to enhance

task-switching efficiency such as lazy context switching (only saving

or restoring the context that is actually needed) or hardware-accelerated

context switching that uses specialized hardware to speed up the

process. The relationship between process operations and CPU

scheduling forms the basis for the efficient operation of a computer

system. You need to be able to do so with one of multiple processes

using multiple operating systems. It is essential to utilize CPU

scheduling algorithms that will enhance the efficiency of the system to

meet the demands of the workload being processed. You also learn

about the trade-off between different scheduling algorithms, and the

effect of context switching overhead. Advancements in operating

systems have resulted in advanced scheduling algorithms and process

management approaches that can accommodate a wide range of

workloads and system needs. Machine learning and artificial

intelligence techniques will likely become an integral part of future

operating systems for advanced process management and CPU

scheduling. Hardware and software co-designs would keep

153
MATS Centre for Distance and Online Education, MATS University

Notes complementing each other leading to better performance and

responsiveness and energy efficient systems. This cycle continues as

operating systems strive to optimize both process operations and CPU

utilization for efficiency and responsiveness, creating a robust

environment for application execution and user engagement. Inter-

Process Communication (IPC) is a fundamental concept in operating

systems and is especially important in modern computing environments

with concurrent processes. It ensures these processes can communicate

and synchronize with each other, allowing them to exchange data,

coordinate actions, and work together toward a common goal. Such

inter-process interaction forms the foundation for developing

sophisticated applications that tap into the strengths of multi-tasking

and parallel processing. When it comes to CPU utilization, effective

IPC mechanisms play a vital role in boosting system performance.

2.3.3 Inter-Process Communications

The idea of inter-process communication (IPC) is quite standard

practice, but it can go wrong, and you will end up with bottlenecks,

context switches, and overhead, which can slow down CPU performing

tasks. On the other hand, well-designed IPC mechanisms support

efficient data transfer and synchronization between processes, helping

to keep the CPU busy and minimize inefficiency.

IPC covers various approaches, each with pros and cons, to cater to

different communication requirements and system architectures. Some

of these include shared memory, message passing, pipes, sockets,

semaphores, etc. The ideal approach depends on the specific

requirements of a program and the characteristics of its workload;

Figure2.3.2: Inter Process Communication

154
MATS Centre for Distance and Online Education, MATS University

Notes knowing the difference between these methods is important for

maximizing a CPU's performance and maintaining the efficiency of

multi-process systems. Shared memory, for example, provides fast

communication by allowing processes to each access that same region

of memory. But it requires synchronization, lest you corrupt your data.

In contrast, message passing is a more structured form of

communication, where processes send messages to one another via a

communication channel. This approach comes in handy for distributed

systems or when processes are running on different machines. Certain

IPC mechanisms are chosen based on the communication latency, data

size, and the complexity of synchronization needed. Through effective

IPC, normal applications become more practical and system reliability

and responsiveness are improved, all of which lead to higher CPU

usage IPC is facilitated at a lower level by the CPU, which handles the

hardware resources and executes the communication primitives

associated with IPC. When processes communicate, whether via IPC,

the CPU is responsible for transferring the data, synchronizing

operations and ensuring that the communication protocol is addressed.

For instance, in shared memory intercrosses communication, it is the

CPU that must coordinate access to the shared memory region, enforce

memory protection, etc. In Message Passing, the CPU is responsible

for buffering messages and directing them to the destination process.

The number of such operations is directly proportional to the

performance of the IPC mechanism and hence utilization of the CPU.

Context switching is a very important operation in a multi-processing

environment that is invoked during IPC. When one process issues a

communication request, such as a message sender or a shared memory

access, it is possible that it will have to wait for another process to

respond or release the resource. The CPU can then switch to another

process in this waiting time so that it can do some usefully work. On

the other hand, frequent context switching can introduce a performance

overhead, as the CPU must save the state of the interrupted process and

restore the state of the next process. Some effective IPC mechanisms

improve the communication latency and minimize the synchronizing

efforts that eventually results in less number of context switches during

the message transfer. CPU also participates in IPC security and

integrity enforcing. For example, memory protection mechanisms

prevent unauthorized access to the shared memory regions, and thus

155
MATS Centre for Distance and Online Education, MATS University

Notes ensure that all active processes can access the data they have

permission to access. For example, message authentication and

encryption may be used to secure the confidentiality and integrity of

messages exchanged between processes. These measures rely heavily

on the security capabilities of the CPU to help build strong, secure

IPCs. The CPU is responsible for a large part of the IPC process, as it

provides the necessary hardware and software infrastructure that

allows processes to efficiently and effectively communicate. This

article explains how the CPU can be optimized by optimizing IPC

mechanisms and minimizing overhead to improve multi-process

applications.

Synchronization plays a crucial role in IPC, as it prevents conflicts

between accessing shared resources which can lead to race conditions

or data corruption. The CPU includes various synchronization

mechanisms, including semaphores, mutexes, and condition variables,

that processes can use to coordinate access to shared resources. For

example, semaphores are commonly used to manage access to a limited

number of resources, ensuring that multiple processes do not access

the same resource at the same time. In contrast, mutexes offer mutual

exclusion, preventing more than one process from entering a critical

code section simultaneously. Data that can be used to signal that the

shared resources state has changed. Q2: Why does the CPU need to

execute these operations? If synchronization is too inefficient,

deadlocks, livelocks, and other concurrency related problems would

limit performance of the system. For example, when two or more

Figure 2.3.3: Process Synchronization in OS

156
MATS Centre for Distance and Online Education, MATS University

Notes processes wait indefinitely for each other to release resources, it is

called Deadlock. Livelocks happen when the processes in execution are

constantly changing their state in response to each other, causing them

to make no progress. It is using limited data and observing to detect

these system stability problems and trigger the proper correction

mechanism. The CPU architecture, beyond primitive synchronization,

can directly impact synchronization performance. Hardware-level

support enables lock-free synchronization techniques (e.g., atomic

instructions such as compare-and-swap), which can greatly decrease

contention (when multiple threads are competing for the same resource,

causing some to wait for access) and reduce overhead under heavy

contention in comparison to software-based locks. Modern CPUs have

specialized instructions and cache coherence protocols to improve the

performance of these atomic operations. This fusion between hardware

and software is key to building highly perform ant and scalable

concurrent applications. The CPU has a lot to do with synchronizing

and handling interrupts, and you'd want to build up the ability for some

signals as well. For example, interrupts might be used to inform

processes about events or changes in the system, where signals could

be used to facilitate inter-process communication. More advanced

synchronization patterns, like event-driven programming or

asynchronous communication, can be implemented using these

mechanisms. Modern computing scenarios have introduced new CPU

architectures and operating systems that have altered IPC

considerably. These inter-process communication facilities have been

fundamentally impacted by factors such as multi-core processors,

distributed systems, and cloud computing environments. It becomes an

even more urgent requirement with the increased number of cores per

CPU. If you have a multi-core processor even that you have also multi-

processes can run in parallel on different cores. Nevertheless, this level

of parallelism brings its own problems relating to cache coherence,

memory consistency, and synchronization. And, seeking to fill a gap,

operating systems have delivered new IPC mechanisms that are tailor-

made for the multi-core world: lock-free data structures, message

queues that can be efficiently built on the underlying shared-memory

architecture, etc. Distributed systems, where processes are on different

machines connected over a network, would depend on IPC mechanisms

that can handle network communication. Inter-process communication

157
MATS Centre for Distance and Online Education, MATS University

Notes across network barriers is often achieved in distributed environments

using something like remote procedure calls (RPC) or message

queuing systems. Dynamic resource allocation and the nature of

virtualized infrastructure in cloud computing environments introduce

unique challenges for IPC. Virtual machines (VMs) and containers, for

example, add another layer of abstraction, which potentially affects

communication latency and performance. Micro services Architecture:

Cloud-native applications can be developed using micro services

architecture, which means the applications are composed of small,

independent services that communicate with each other using

lightweight IPC (inter-process communication) mechanisms, such as

REST APIs or message brokers. It is important for the CPU to be able

to manage these different IPC types efficiently in order to create cloud

applications which can scale and remain resilient. The advent of

specialized hardware accelerators, e.g., GPUs, TPUs, etc., has further

introduced new paradigms for parallel processing and IPC. These

accelerators likely have different memory hierarchies as well as

communication protocols, which creates a need for specific inter-

process communication (IPC) strategies to effectively transmit data

from CPU to the accelerator.

2.3.4 Foundations of Process Management and Communication

In the delicate ballet of an operating system, processes serve as the

smallest entities of execution, an isolated instance of a program

Figure2.3.4: Inter-Process Communication
[Source - https://www.slideserve.com/]

158
MATS Centre for Distance and Online Education, MATS University

Notes contending for the computer resources. The efficient scheduling of

these processes and the coordination of their interaction is the

cornerstone for a working operating system. Now, at the core of this

management is this thing called process scheduling, which is basically

a mechanism that determines the order in which the processes are given

access to the CPU. One CPU can only run one process at any instance,

but many processes may be ready or waiting to run, and this indicates

the need for process scheduling. New processes that need CPU time

will need to be queued up with deciding algorithms that balance

effective allocation of CPU time while preventing starvation for other

processes. But before we dive into these algorithms, it is important to

first understand how processes communicate with one another and

coordinate their activities. IPC (Inter-Process Communication) enables

processes to exchange data and synchronize their actions. This is

especially important for complex applications where multiple processes

handle various tasks to save resources and improve modularity. IPC

methods are used to allow processes to work together and share

resources in order to accomplish common tasks (such as shared

memory, message passage and pipes). Had these communication

pathways not been established, various processes would have been

functioning in isolation, which would have prevented the evolution of

complex and cooperative software systems. Sharing information and

synchronizing execution is crucial for not only application functionality

but also the efficient use of system resources. Examples include a print

spooler process that communicates with application processes to

receive print jobs, or a database server that coordinates with multiple

client processes to handle data requests. And that's why IPC is a vital

part of contemporary operating systems, allowing for the development

of resilient and highly networked applications. Furthermore, the

paradigm is also extended with the concept of process threads where a

single process can run several threads at the same time. A thread is a

small unit of process that may be addressed, which shares the same

address space and resources of its parent process, allowing for more

fine-grained parallelism and higher performance As such, this

threading model is widely useful for any application that can be broken

down into independent, smaller subtasks, such as web servers that can

concurrently handle multiple client requests or multimedia applications

that can process audio and video streams on separate threads at the

159
MATS Centre for Distance and Online Education, MATS University

Notes same time. However, the addition of threads brings new problems

significantly around shared resources and preventing race conditions

which takes us to the critical section problem.

2.3.5 Process Scheduling and CPU Scheduling Algorithms

In multitasking operating systems, process scheduling is the keystone

of the system, making sure that the CPU is effectively utilized, and

making sure that processes are run in a timely manner. The scheduler

is part of the operating system that determines the next process that

gets to run from the ready queue. The scheduling algorithm we choose

has a great impact on the performance of the system such as throughput,

turnaround time, waiting time and response time, etc. As such,

different scheduling objectives and system requirements have led to

the development of various CPU scheduling algorithms. First-Come,

First-Served (FCFS) is the most basic algorithm you can have it

executes processes in the order in which they enter the ready queue.

FCFS is easy to implement but can cause variants of the convoy effect:

a long process can block other, shorter processes, leading to large

average waiting time. Selecting the process with the shortest burst time

attempts to minimize average waiting time that is the goal of Shortest-

Job-Next (SJN). However, knowing future burst times as SJN requires

is often not feasible. Shortest-Remaining-Time (SRT) is a preemptive

version of SJN where a shorter process can preempt the currently

running process if its remaining burst time duration is less. In priority

scheduling each process is assigned a priority, the scheduler selects the

process with the highest priority. This algorithm can also be classified

as preemptive or non-preemptive, and it enables the use of various

scheduling policies based on process priority. However, the priority

inversion problem when a low priority process blocks a high priority

process can add more time as it cooks up counterproductive wait states.

Round-Robin (RR) is a time-sharing algorithm in which, every process

is assigned a fixed time quantum. In case a process has not completed

its quantum, it will be pausing (or will be preempt) and the process that

is at the front of the ready queue will start. RR is a little bit fairer in

assigning CPU time but with relatively poor averages compared to the

previous sorting algorithms, it is most appropriate for Interactive

Systems and depends heavily on the values for the Time Quantum.

Ready Queue Scheduling: Multilevel Queue Scheduling Multilevel

160
MATS Centre for Distance and Online Education, MATS University

Notes queue scheduled the ready queue into several individual queues.

Processes are queued into these queues according to certain properties

such as types of processes or based on priority. A slightly more

complex scheduling algorithm is multilevel feedback queue

scheduling, in which processes can move between the various queues

based on their behavior (e.g. length of CPU burst or frequency of I/O

burst). This allows for a highly adaptable and efficient scheduling

system. Each of these algorithms has its own advantages and

disadvantages, and the selection of algorithm is based on the different

operating system requirement and corresponding workload. Therefore,

you must grasp these algorithms to design and optimize operating

systems capable of managing and executing numerous processes

efficiently.

2.3.6 Process Threads and Their Significance

Process threads can be seen as a radical departure from the traditional

model of process management, where separate processes operated in

isolation from one another; they allowed for much greater parallelism

and more efficient use of resources. A thread (or lightweight process)

is the basic unit of CPU utilization. At the same time, unlike processes

that have their own address space and resources, threads in the same

process share the same code section, data section, and operating-system

resources, such as open files and signals. Better yet, the model where

threads share the same resource means they can communicate and

collaborate more easily than separate process, since they just need to

read/write directly a shared data instead of using any IPC mechanisms.

User-Level and Kernel-Level Threads can be implemented either at

user level or kernel level. User-level threads: are managed without

kernel support by a thread library at the user level. This is a lightweight

solution, but not useful when there are blocking system calls or usage

of multiple CPUs. In contrast, kernel-level threads are handled by the

OS kernel, which offers improved parallelism and blockage operations.

But kernel level threads have relatively higher overhead as the kernel

is also in charge of managing the threads. Multithreading is the

concurrent execution of more than one sequence of instructions, or

thread. It increases application responsiveness by allowing multiple

threads to perform work in parallel, so the whole program isn't stuck

doing one task. It enhances resource utilization by enabling threads to

161
MATS Centre for Distance and Online Education, MATS University

Notes share resources and run simultaneously on multiple CPUs. It simplifies

the development of complex applications by enabling tasks to be

broken down into smaller, independent threads. For example, a web

server might spawn a separate thread to service each client request,

allowing it to service multiple clients simultaneously. A multimedia

application can decode audio and video streams in separate threads for

smooth playback. But multithreading also comes with its own set of

challenges, including shared resource management and data

consistency. Race conditions which lead to unpredictable and

erroneous results result when the outcome of a computation depends

on the relative timing of threads executing in parallel. Synchronization:

You are built with the ability to synchronize yourself. Mutexes,

semaphores, and monitors are some of the synchronization methods

used to control automatically synchronized thread execution and to

safeguard shared resources. These mechanisms allow threads to safely

access shared resources without causing issues such as data corruption

or unexpected behavior. Has threads always been a part of Operating

System design and implementation?

2.3.7 The Critical Section Problem and Synchronization

The critical section problem is the challenge faced by multiple

processes/threads regarding the sharing of resources. Note that a critical

section is a piece of code that accesses and modifies shared resources.

If several processes or threads execute their critical sections at the

same time, data inconsistency and race conditions may arise, resulting

in incorrect and varying results. To avoid these problems,

synchronization mechanisms are implemented to make sure that only

one process/thread can access its critical section at a time. Protocols

that solve the critical section problem must meet three requirements,

namely mutual exclusion, progress, and bounded waiting. This means

that only one process or thread is allowed to access the critical section

at a time, a concept known as mutual exclusion. Note that if no process

is in its critical section and some processes need to enter their critical

sections, only those processes that are not in their remainder sections

can take part in deciding which will enter its critical section next, and

such selection cannot take place indefinitely. Bounded waiting makes

sure that there is bound on the number of times that other processes are

allowed to enter their critical sections after a process has made a request

162
MATS Centre for Distance and Online Education, MATS University

Notes to enter its critical section and before that request is granted. To

overcome the critical section problem several synchronization

mechanisms have been introduced. Mutex (Mutual exclusion) locks are

simple 2 state locks that can be acquired or released by a thread or a

process. The mutex ensures that a single process (or thread) holds the

mutex lock at a time, providing mutual exclusion. Semaphores are

more general-purpose synchronization mechanisms that can be used to

limit access to a given number of resources. Semaphores are integer

variables that can only be accessed through two atomic operations:

wait and signal. The wait operation: it decrements the semaphore

value, and it blocks the process or thread when the value goes negative.

The signal operation increases the value of the semaphore, and if the

value is greater than or equal to 0, a blocked process or thread is

released. The high-level synchronization constructs that encapsulate

shared data and the operations that can be applied to that shared data

are called monitors. It provides mutual exclusion by allowing only one

process (or thread) into the monitor at any time. Condition Variables

Condition variables are used to make a process or a thread wait until a

specific condition occurs. You can access shared data between threads

using constructs like Mutex, Atomic Int and other synchronization

mechanisms. It is essential to correctly implement these mechanisms to

avoid race conditions and ensure the correctness and reliability of

concurrent systems.

2.3.8 Semaphores and Classical Problems of Synchronization

Synchronization, the coordination of multiple processes to ensure

orderly execution and data integrity, is one of the fundamental

challenges in operating systems. Semaphores are a classic

synchronization data type in computer science, introduced by Edsger

W. Dijkstra, and are an incredibly useful mechanism for regulating

access to shared resources. A semaphore is an integer variable, the

value of which is never negative, that, during initialization, is only

accessed through two standard atomic operations: wait and signal. The

wait operation, also known as P (it comes from a Dutch word

"proberen", which means "to test"), is used to decrement the

semaphore value. If the value is negative then the process that is

executing wait is blocked until the semaphore value is non-negative.

On the other hand, the signal operation (also referred to as V, from the

163
MATS Centre for Distance and Online Education, MATS University

Notes Dutch word "verhogen" which means "to increment") increases the

semaphore value. If any processes were blocked on the semaphore, one

is unblocked. There are two types of semaphores: binary semaphores,

which may only have values 0 or 1, and counting semaphores, which

allow any non-negative integer value. Mutual exclusion is commonly

implemented using binary semaphores, so only one process has access

to a critical section at a time. Counting semaphores, in contrast, control

access to a limited number of resources. The original value gives you

the total amount of available resources for this instance of your

counting semaphore. Semaphores offer a general solution to different

synchronization problems, in fact, the classical synchronization

problems. The bounded-buffer problem, also referred to as the

producer-consumer problem, describes a work environment with a

fixed-size shared buffer, where producers make the items that are put

in the buffer, and consumers take items from the buffer. The

Semaphores make sure the producers don't insert an item into the full

buffer and the consumers don't remove an item from the empty buffer.

The readers-writers problem is a common synchronization problem that

deals with concurrent access to a shared data set in which there are

multiple readers and only one writer. Semaphores can also be

implemented to ensure writers have exclusive access to the data set, and

that readers do not access the data set while a writer is modifying the

data set. The dining-philosophers problem consists of five

philosophers seated around a circular table, each with a plate of

spaghetti and two chopsticks. It takes both chopsticks to eat in a

philosopher way. One way not to have a deadlock, which is where

everyone is holding a chopstick and is waiting for the other, is to use

semaphores. These are classical problems that illustrate the challenges

of synchronization and the necessity of using the proper mechanisms,

such as semaphores, to correctly and effectively operate concurrent

systems. Though semaphores are powerful, they need to be used

cautiously to prevent synchronization errors which could lead to

deadlock and starvation, when processes are unable to proceed

indefinitely.

2.3.9 Deadlock Characterization

Deadlock in concurrent systems is a scheduling problem that occurs

when two or more process are blocked forever, each holding a resource

and waiting for another resource held by another process in the cycle.

164
MATS Centre for Distance and Online Education, MATS University

Notes Before designing a deadlock handling mechanism, it is important to

know the features of deadlock. A deadlock can only occur under four

necessary conditions, which must hold (at the same time): mutual

exclusion, hold and wait, no preemption, circular wait. Mutual

exclusion means that resources are non-shareable i.e. only one process

can use a resource at a time. Hold and Wait: A process holding at least

one resource is requesting additional resources held by other

processes. In a no preemption scenario, resources cannot be forcefully

taken away from a process; they need to be released voluntarily by the

process holding them. Circular wait → We are having a set of waiting

process {P0, P1,..., Pn} such that P0 is waiting for a resource hold by

P1, P1 is waiting for a resource hold by P2,..., Pn is waiting for a

resource hold by P0. All four of these conditions cause the processes to

hang and leave a wait, where the processes never move forward,

leaving the whole system as a standstill. Resource-allocation graphs:

These are very useful to both visualize and to analyze deadlock. A

resource-allocation graph G is defined by a set of verticesV, and a set

of edges E. The vertices are partitioned into two types, P = { P1, P2,..n

}, the set of processes currently active in the system, and R = { R1,

R2,…m }, the set of resource types in the system. If we say that there

is a directed edge from process Pi to resource Rj, written Pi → Rj, this

means that process Pi has requested one instance of resource type Rj.

Here, an edge from resource Rj to process Pi, Rj → Pi, indicates that a

resource of type Rj was allocated to process Pi. If a cycle exists in the

resource-allocation graph, there is a possibility of deadlock. If there is

only one instance of each resource type, then a cycle indicates that a

deadlock has occurred. If there are multiple instances of each resource

type, then a cycle does not necessarily indicate a deadlock. This means

you have to do additional work to see if there is a deadlock, in this case.

The deadlock characterization gives a technique to reason about the

scenarios that can lead to deadlock, and how to prevent, avoid, detect,

and recover from deadlock. By acknowledging the required conditions

and applying mechanisms such as resource-allocation graphs, system

architects can develop resilient strategies to avoid the threat of deadlock

and preserve the reliability and responsiveness of concurrent processor

systems.

165
MATS Centre for Distance and Online Education, MATS University

Notes

2.3.10 Deadlock Handling: Avoidance

Deadlock avoidance is the appropriate technique of eliminating

deadlock when the program executes, which ensures that the system

will not enter a deadlock state. Ithence requires the operating system

to know upfront the maximal resource needs of each process. It then

checks request on resources to see if doing so will cause deadlock. The

Banker's algorithm is a well-known deadlock avoidance algorithm,

which is inspired by a banker who grants loans to customers. The

Banker's algorithm needs every process to specify its maximum needs

in advance. In the operating system, information about available

resources, resources allocated to processes and maximum resources

required by processes are maintained. When a process requests a

resource, the system simulates the allocation to check if the resulting

state is safe. If there exists some order in which the remaining

resources can be allocated to each process then that state is called as

safe state. The resource is allocated if the resulting state is safe; else

the process has to wait. It is the Banker's algorithm which makes sure

that system always remains in safe state and there is no deadlock. But

it also has its limitations. It requires providing a declaration of

maximum resource request size in advance for each process, which is

not always possible. Computation can also be expensive since it

requires the operating system to run complex calculations to determine

if each state is safe. A different method of avoiding deadlock is the

resource-allocation graph algorithm. This algorithm is when there's

only one instance of each resource type. The system uses a resource-

allocation graph and checks it for cycles before allocating resources.

The resource is not allocated if allocating a resource will create a cycle.

Figure 2.3.5: Deadlock
[Source - https://www.scaler.com]

166
MATS Centre for Distance and Online Education, MATS University

Notes This algorithm is simpler than the Banker's algorithm, but it can only

be applied on single-instance resource types. Deadlock avoidance

methods are helpful to prevent deadlock but they incur an overhead

and not all resources can grow as per the demand. Deadlock avoidance

mechanisms in systems require careful consideration of the trade-offs

between deadlock prevention and resource usage.

Deadlock Handling:

Is a reactive approach for deadlock management, allows the system to

enter a deadlock state and detects and recovers from it. The second

approach is used by systems where it's not possible to avoid deadlocks

due to the overhead in maintaining information about the resource

needs and the lack of any advance information about the resource

needs. Periodic Checking for Deadlock; in this scheme, we check the

system for deadlock periodically. A popular technique is to utilize a

resource-allocation graph and look for cycles. A deadlock is detected

if a cycle is found. Another approach is the wait-for graph, a

modification of the resource-allocation graph that focuses on the

waiting relationships between processes. A wait-for graph has vertices

as processes and edges as waiting relationships. An edge from process

Pi to process Pj indicates that Pi is waiting for a resource that is being

held by Pj. The cycles in the wait-for graph are a deadlock. After the

deadlock is detected, the system needs to get out of that state. Many

recovery methods can be applied. One approach is to kill all processes

involved in the deadlock. While this is a very straightforward way to

do this, it can lead to a lot of work being lost. Another approach is to

kill one process at a time until the deadlock is broken. Based on like

priority, resource consumption, and the amount of work completed,

have a process chosen which will be aborted. A second recovery

strategy is preempting resources. This means stealing resources from

one process and giving them to another. You need to be careful not to

starve in this approach when a process is being preempted so many

times and it never reaches completion with its execution. The selection

of recovery mechanism depends on various aspects of the system and

the trade-off between performance and resource consumption.

Deadlock detection and recovery are flexible methods for managing

deadlocks, but they can incur overhead and cause work to be lost.

Designers of systems that need to support semantics like deadlock

167
MATS Centre for Distance and Online Education, MATS University

Notes detection and recovery must evaluate these trade-offs against the rest

of their system requirements.

Deadlock Handling: Prevention

Deadlock prevention is a prevention-based scheme, this scheme tries to

remove one or more of the four necessary conditions for deadlock. If

the system can prevent those conditions from ever occurring, then

deadlock will never happen. To prevent deadlock that happens, mutual

exclusion should be removed. One way to do this is to make resources

shareable. Some resources, like printers and tape drives, are inherently

non-shareable, however. An alternative is to remove the hold and wait.

This is done by requiring processes to request all of their resources at

once before they begin execution, or by requiring that processes

release all of their resources before requesting more.

Summary

A process in an operating system is an active instance of a program in

execution, representing a fundamental unit of work within a system.

Unlike a program, which is a passive set of instructions, a process

includes the program code and its current activity, such as the value of

the program counter, contents of the processor's registers, and the

variables in use. Each process operates within its own context and

requires system resources like CPU time, memory, files, and I/O

devices. Processes are created, scheduled, executed, and terminated by

the operating system, which ensures proper synchronization and

coordination among multiple processes running concurrently.

The state of a process reflects its current activity and can change as the

process executes. Typical process states include new (being created),

ready (waiting to be assigned to a processor), running (currently being

executed), waiting (waiting for some event like I/O completion), and

terminated (finished execution). These transitions are managed by the

operating system using a data structure known as the Process Control

Block (PCB). The PCB contains crucial information about each

process, such as process ID, current state, CPU registers, memory

limits, accounting information, and I/O status. It acts as a snapshot of

the process at any given time and is essential for process switching, as

it allows the OS to save the state of one process and load the state of

another seamlessly, enabling multitasking and efficient resource

utilization.

Multiple-Choice Questions (MCQs)

https://www.scribd.com/document/258572954/OS-CN-DS-DBMS-SE-Interview-Questions
https://www.scribd.com/document/258572954/OS-CN-DS-DBMS-SE-Interview-Questions

168
MATS Centre for Distance and Online Education, MATS University

Notes 1. Which of the following is NOT a valid process state?

a) New

b) Running

c) Terminated

d) Scheduled

(Answer: d)

2. The Process Control Block (PCB) contains which of the

following information?

a) Process state

b) Program counter

c) CPU scheduling information

d) All of the above

(Answer: d)

3. Which operation creates a new process in an operating system?

a) Terminate

b) Fork

c) Kill

d) Swap

(Answer: b)

4. Inter-process communication (IPC) allows:

a) Processes to share data and synchronize actions

b) A single process to run multiple times

c) The CPU to execute only one process at a time

d) A process to execute in kernel mode only

(Answer: a)

5. Which CPU scheduling algorithm selects the process with the

shortest burst time first?

a) First-Come, First-Served (FCFS)

b) Shortest Job Next (SJN)

c) Round Robin (RR)

d) Priority Scheduling

(Answer: b)

6. Which of the following is NOT a characteristic of a thread?

a) Shares the same address space with other threads in the

same process

b) Requires more resources than a process

c) Can run independently within a process

d) Improves program efficiency and responsiveness

169
MATS Centre for Distance and Online Education, MATS University

Notes (Answer: b)

7. Which of the following synchronization problems occurs when

multiple processes access shared resources incorrectly?

a) Thrashing

b) Critical Section Problem

c) Page Fault

d) Fragmentation

(Answer: b)

8. What is the role of semaphores in process synchronization?

a) They eliminate the need for process scheduling

b) They prevent deadlock conditions completely

c) They help control access to shared resources

d) They replace CPU scheduling algorithms

(Answer: c)

9. Which of the following is NOT a classical problem of

synchronization?

a) Producer-Consumer Problem

b) Readers-Writers Problem

c) Dining Philosophers Problem

d) Page Replacement Problem

(Answer: d)

10. Deadlock occurs when:

a) A process is forced to terminate by the OS

b) Multiple processes are waiting indefinitely for resources

held by each other

c) CPU scheduling fails to work

d) All processes finish execution successfully

(Answer: b)

Short Questions

1. Define a process in an operating system.

2. List the different process states and explain any two.

3. What is a Process Control Block (PCB)?

4. Name two operations on processes and explain their purpose.

5. What is Inter-Process Communication (IPC), and why is it

important?

6. List and briefly explain any two CPU scheduling algorithms.

7. What is a thread, and how does it differ from a process?

8. Define the Critical Section Problem in process synchronization.

170
MATS Centre for Distance and Online Education, MATS University

Notes 9. What is a semaphore, and how does it help in synchronization?

10. Explain the concept of deadlock avoidance in process

management.

Long Questions

1. Explain the concept of a process and describe the different

process states with a state transition diagram.

2. What is a Process Control Block (PCB)? Discuss its

components and significance in OS.

3. Discuss the different operations on processes, including process

creation and termination.

4. What is Inter-Process Communication (IPC)? Explain message

passing and shared memory as IPC mechanisms.

5. Compare and contrast different CPU scheduling algorithms

with their advantages and disadvantages.

6. Explain the concept of process threads and the benefits of using

multithreading in an OS.

7. Discuss the Critical Section Problem and the different solutions

used to resolve it.

8. What is a semaphore, and how does it help in process

synchronization? Provide an example.

9. Explain the different strategies for handling deadlocks,

including avoidance, detection, and prevention.

10. Describe the Dining Philosophers Problem and propose a

solution using semaphores.

171
MATS Centre for Distance and Online Education, MATS University

MODULE 3

STORAGE MANAGEMENT

LEARNING OUTCOMES

• To understand memory allocation techniques and paging.

• To study virtual memory concepts and page replacement

algorithms.

• To analyze file systems, access methods, and their

implementations.

• To explore free space management in file systems.

172
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3.1: Contiguous Memory Allocation

3.3.1 Contiguous Memory Allocation

One key aspect of operating system function is memory management,

which begins with the simplest option, contiguous memory allocation.

Though deceptively simple, this technique sets the stage for

understanding more complex ones. Contiguous memory allocation =

All the data of a process is allocated in a single block. A process that is

executed must also have a memory laid out for its code and data. In

some ways it simplifies memory management for the operating system

because it only needs to track one starting address and a size for each

process's memory section. While this leads to benefits, it also presents

some major challenges; especially as far as memory fragmentation

goes. Consider a system with a fixed partition scheme (with pre-defined

number of fixed partition sizes). When a process arrives, it is assigned

to the smallest available partition that is large enough to hold it. Hence

proved external fragmentation while allocating memory using this

algorithm; where allocation takes little time and hits on memory.

External fragmentation when total free memory is enough for a

process's request but is not contiguous; So for example, after many

processes have been loaded and exited, free memory may hold many

small isolated blocks. Large process cannot get loaded even though the

total free memory is large enough, as no single free chunk is big

enough. & Variable partition schemes (try to address this by allowing

partitions to be created dynamically as per process size. When a process

loads, a current partition of the exact size is assigned. This is because

it minimizes internal fragmentation, which is created when the

allocated partition for a process is larger than the actual size, thereby

wasting space that belongs to that partition. But variable partitions add

to external fragmentation. When processes are loaded and ended,

memory gradually becomes more fragmented and memory usage is

less efficient. This compaction is a solution for external fragmentation;

it moves various processes in memory, to make the free space in

memory become a continuous block. Although effective, compaction

is neither cheap operation as it involves relocating processes and

updating their memory addresses. The cost of compaction could greatly

affect the throughput of the system, although it potentially only occurs

at large objects in systems where processes arrive and leave frequently

173
MATS Centre for Distance and Online Education, MATS University

Notes as described in thin provisioning. Although mathematically

straightforward, successive contiguity is burdened with issues of

fragmentation that more pliant

and effective strategies for memory management would tackle.

Key Concepts and Challenges

• Fixed Partition Scheme: Memory is divided into a set number

of fixed-size partitions. A process is placed in the smallest

partition that can fit it. This can lead to internal fragmentation,

where the allocated partition is larger than the process, wasting

space within the partition. More importantly, it can also cause

external fragmentation because the total free space might be

large enough for a process, but it's scattered in small, non-

contiguous blocks.

• Variable Partition Scheme: This approach tries to reduce

internal fragmentation by dynamically creating partitions that

are exactly the size of the process. However, this method

worsens external fragmentation. As processes are loaded and

unloaded, the free memory becomes broken into many small,

unusable chunks.

• External Fragmentation: This occurs when there is enough

total free memory to satisfy a request, but it's not in one

contiguous block. This problem is a major drawback of

contiguous allocation schemes.

Figure 3.1.13:Contiguous Memory Allocation

[Source - https://www.scaler.com]

174
MATS Centre for Distance and Online Education, MATS University

Notes • Compaction: This is a solution to external fragmentation. It

involves moving all allocated processes in memory to

consolidate the free space into a single, large, continuous block.

While effective, compaction is a resource-intensive operation

that can impact system performance and throughput.

175
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3.2: Paging Techniques

3.2.1 Paging Techniques: Swapping, Paging, Segmentation,

Fragmentation

In order to improve when it comes to contiguous memory allocation,

operating systems started to use more complex methods, such as

swapping, paging, and segmentation. Swapping refers to memory

management process in which a process is moved from main memory

(RAM) to secondary storage (disk) and vice versa. When the principles

of working are full then one of the inactive processes or processes with

a low priority are transferred to the disk using Operating System and it

will free memory for other processes. When it is again needed, the

swapped-out process is brought back into main memory. Swapping is

when the memory used by a running process is written to the disk, to

free up RAM and reduce overall memory consumption, if the total

memory requirements of the running processes exceed the available

memory in RAM. This, however, incurs considerable overhead, as

moving processes back and forth from memory to disk takes a non-

negligible amount of time when compared with switching between

processes that are in memory. Paging, a more complex technique,

solves the problems of fragmentation that contiguous allocation has

many. The paging mechanism divides physical memory (Ram) as well

as logical memory (process address space) into fixed-size blocks,

namely frames (for physical memory) and pages (for logical memory).

The size of a frame is called the page size, which is usually from 4-

8KB. The pages of a process are placed into the free frames in memory

when the process is loaded. More specifically, the OS maintains a page

table for every process, which translates the logical pages used by the

process to the physical frames in which those logical pages are stored.

This enables a process's pages to be not consecutive in physical

memory, thus avoiding the issue of external fragmentation. Yet, paging

complicates internal fragmentation because the last page of a process

may not be fully used. Again, segmentation is another memory

management technique by which the logical address space of a process

is divided into a number of segments. Paging divides memory into

fixed-size pages, while segmentation allows variable-length segments.

Each process has a segment table maintained by the OS that maps base

address and limit (size) of the segment. Segmentation has the benefit of

176
MATS Centre for Distance and Online Education, MATS University

Notes storing memory in a logical structure since the segments are related to

logical units of the program. They do suffer from external

fragmentation though, as segments can be of different length, leading

to gaps in physical memory. Fragmentation is the general term for

wasting memory, and it is a common problem in managing memory.

Paging has another drawback named as Internal Fragmentation since

allocated memory is greater than the required memory. In contiguous

allocation and segmentation, external fragmentation refers to the

condition of having enough total free memory, but it is spread

throughout the system in small blocks. Solving fragmentation is an

important aspect of memory management optimization and

advancement of the system performance. Many contemporary

operating systems implement a combination of paging and

segmentation in order to gain the benefits of both techniques while

minimizing their disadvantages. And, for instance, segmented paging

combines logical segmentation with fixed-size allocation (which of

course gives the best of both worlds).

1. Swapping

Swapping is a memory management technique that temporarily moves

a process from main memory to secondary storage (like a hard disk)

and then brings it back into memory later. This is done to free up RAM

for other processes when the main memory is full.

How it Works:

1. The OS identifies a process to be "swapped out." This is typically

an inactive or low-priority process.

Figure 3.2.1: Paging
[Source - https://www.scaler.com]

177
MATS Centre for Distance and Online Education, MATS University

Notes 2. The entire process's memory image is written to the disk.

3. The freed memory can now be used by another process.

4. When the swapped-out process needs to run again, its memory

image is read back from the disk and loaded into a free block of

RAM.

Drawback: This method can be slow due to the high latency of disk

I/O, which is much slower than RAM access.

2. Paging

Paging is a non-contiguous memory allocation technique that solves the

problem of external fragmentation. It divides a process's logical address

space into fixed-size blocks called pages, and the physical memory into

equally sized blocks called frames.

How it Works:

1. When a process is loaded into memory, its pages can be placed into

any available frames in physical memory.

2. The pages do not need to be contiguous (next to each other) in

RAM.

3. The operating system maintains a page table for each process,

which maps its logical pages to their corresponding physical

frames.

Benefit: This eliminates external fragmentation, as a process's memory

can be spread across multiple free frames.

Drawback: It can lead to internal fragmentation, where the last page of

a process may not be completely filled, leaving some wasted space

within the allocated frame.

3. Segmentation

Segmentation is a memory management technique that divides a

process's logical address space into variable-sized blocks called

segments. Unlike paging, segments are not fixed in size and are often

used to represent logical units of a program, such as the code segment,

data segment, or stack.

How it Works:

1. The OS maintains a segment table for each process. This table

stores the base address and the length of each segment in physical

memory.

2. When a program is executed, its segments are loaded into non-

contiguous blocks of physical memory.

178
MATS Centre for Distance and Online Education, MATS University

Notes Benefit: It provides a more logical view of memory from a

programmer's perspective.

Drawback: Because segments are of variable sizes, this technique can

lead to external fragmentation, as free memory can become broken into

small, unusable chunks.

4. Fragmentation is a general term for the inefficient use or waste of

memory. There are two main types:

• Internal Fragmentation: This occurs when an allocated block of

memory is larger than the size of the data or process that needs to

be stored. The unused space within the allocated block is wasted.

Paging is a technique that can lead to internal fragmentation.

• External Fragmentation: This happens when the total available

free memory is sufficient to satisfy a memory request, but it is not

in a single, contiguous block. Instead, it is scattered in many small,

non-contiguous chunks. Contiguous memory allocation and

segmentation are techniques that can suffer from external

fragmentation.

179
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3.3: Demand Paging

3.3.1 Demand Paging

It is a virtual memory management concept that allows a page to be

loaded into a virtual memory only when the page is needed. In classical

paging, all the pages of a process are brought into memory

immediately after the process is first invoked, even if some of these

pages were not used. Demand paging, however, loads pages on

demand, i.e., a page is loaded only when the process tries to access it.

In this way, the memory that the process only actively uses is in RAM,

thus drastically cutting down the required memory for a process to run.

A page fault happens when a process tries to access a page that is not

currently in memory. The operating system responds to the page fault

by bringing in the missing page from secondary storage (disk) and

placing it into a free frame in physical memory. The operating system

keeps track of which pages are valid (in memory) and which are invalid

(not in memory) by using a valid/invalid bit for each page in the page

table. When a page is loaded, valid bit is set to 1 else its set to 0. The

operating system will select one page currently in memory and evict it

in order to bring in the page that caused the page fault. In this case,

whichever page replacement algorithm decides to replace a certain

page. Page replacement algorithms include Common Page

Replacement Algorithms (First In, First Out · Least Recently Used ·

Optimal). FIFO: Replace the oldest page in memory; LRU: Replace

the page not used for the longest time. Optimal replaces the page not

going to be used for the farthest future time, but it is not practical to

implement because it requires future knowledge. The performance of

demand paging is greatly influenced by the page replacement

algorithm used. A good algorithm should try to minimize page faults,

so as to reduce the overhead involved with disk I/O. Thrashing

happens when a process is executing so fast that it spends more time

paging than running. A page fault occurs when the number of pages

that are kept in memory at a time is less than the working set for a

process (i.e. the set of pages that a process is actively using). This poses

a serious problem, though; when thrashing occurs, the system is busy

thrashing pages and the CPU is waiting for page loads from disk more

time than it is spending in user space. The only solution left to avoid

thrashing is for the operating system to provide each process with

180
MATS Centre for Distance and Online Education, MATS University

Notes enough frames to hold its working set. That was where working set

models come in handy to figure out the working set of a process and

the correct amount of frames to assign. In summary, demand paging is

an efficient memory management technique that allows for greater

flexibility in program execution and optimal memory usage. It is a key

feature of contemporary virtual memory architectures, allowing

optimal utilization of hardware resources and improving overall system

efficiency.

Advanced Demand Paging Considerations

There are a few more advanced topics concerning demand paging

beyond the scope of basic implementation. A key element of this is

managing changed pages, so-called dirty pages. If an operation

modifies a page in memory, the OS must write back the changes to

disk before replacing the page. This is generally done by keeping a

dirty bit in the page table, which is set when a page is modified. When

it is determined that a page needs to be replaced, the operating system

checks the dirty bit. If the bit is set, the page will be written back to

disk, if not, it gets discarded. However, keeping consistency across the

data has an implication that adds an overhead to the paging

replacement process which is an impact of the write-back operation.

Another factor is the use of shared pages. This reduces memory usage

Figure 3.3.1: Demand Paging

[Source - https://www.naukri.com]

181
MATS Centre for Distance and Online Education, MATS University

Notes and can lead to performance improvements because shared pages allow

the same physical page to be used by multiple processes in-memory.

There are system-wide caches as well, for example, if there are

multiple processes running the same program, these processes can

share the code pages of the program. The pages are usually sharing

implemented with a reference count, which counts the how many

processes are sharing the page right now. If a process doesn’t need the

shared page anymore, the reference count is decremented. The page

can be reclaimed once the reference count drops to zero. In fact, you

are trained on shared pages although, copy-on-write (COW) pages are

given higher efficiency. The fork system call creates a new process, and

initially the pages are shared between the parent and the child. On the

other hand, as soon as one of the processes tries to modify a shared

page, a copy of the page gets created and the modification is applied to

the copy. Such system call results Page Fault on page level; So very

minimal pages are copied on process creation. You can also do things

like page buffering, which works to improve the performance of

demand paging by keeping a pool of free frames. When a page fault

happens, the operating system can easily take a free frame from the

pool, thus improving the latency of retrieving a page. So, before they

are really used, they put it in a memory page buffer, that is called page

buffering.

3.3.2 Page Replacement Algorithms and Virtual Memory

With the shift to modern OS, virtual memory is the backbone that

allows processes to run without needing to load their entire memory

into physical RAM. The trick is enabled by a subtle combination of

hardware and software working behind the scenes: pages — the discrete

units of virtual memory are transferred between the limited main

memory and more commodious secondary storage as needed. The

process of swapping pages in and out of memory is allowed, but

requires implementations of effective algorithms to practice a certain

strategy for when to evict a page to load in a new one to make it more

efficient. This approach is complicated, however, because the behavior

of a process is difficult to predict, and it is not easy to say which pages

are the least likely to be needed immediately. The earliest and one of

the conceptually simplest algorithms is called the First-In, First-Out

(FIFO) algorithm. It works on the principle of replacing the oldest page

182
MATS Centre for Distance and Online Education, MATS University

Notes in memory. Although simple to implement, FIFO is subject to Belady's

anomaly, in which increasing the number of page frames may

sometimes result in an increase in the number of page faults, which is

counterintuitive and undesirable. In contrast, the Least Recently Used

(LRU) algorithm looks to evict a page that has not been accessed for

the longest time. The hint behind this algorithm is localization which

explains that recently accessed memory addresses are likely to be

accessed again in the near future. LRU is often more efficient than

FIFO, but it requires keeping track of a history of page usage, which

can have a non-negligible cost. Access time journals (aka workless

access time journal devices) (or seemingly all-in-ones (with pagetable

cache ontop of workless ram) computelemens or what have you) back

ends usually rely on hardware (counters getting set to zero (max delay)

on page access) to track access times. Page Replacement Algorithms

Belady's optimal (OPT) algorithm is a theoretical but unattainable

optimum for page replacement.

 The Optimal (OPT) algorithm. The page replacing Algorithm is the

best theoretical optimum scope for page replacement. It replaces the

page that will not be used for the longest period of time in the future.

Please note: OPT offers the optimal page fault rate; this is how it is

defined; however, in practice, it requires knowledge of future memory

accesses, which are impossible to have in real life, and hence,

impractical. Nevertheless, OPT is a good baseline to use for estimating

the performance of other page replacement algorithms. The clock

replacement algorithm, also called the Second Chance algorithm,

Figure 3.3.2: Page Replacement Concept

183
MATS Centre for Distance and Online Education, MATS University

Notes provides a compromise between the simplicity of FIFO and the

efficiency of LRU. It has a circular queue of pages, and a use bit for

each page. When it’s time to replace a page, the algorithm walks down

the queue, resetting the use bit for every page it sees. If a page with a

cleared use bit is found, it is replaced. When all pages have their use

bits set, the algorithm resets use bits and keeps traversing the queue

until a page with a cleared use bit is encountered. Because it is efficient

and does not suffer from Belady's anomaly, the Clock algorithm is

widely used in many operating systems. The Clock algorithm and its

variants (e.g. Not Recently Used algorithm) refine the algorithm by

taking the use bit and modified bit (whether or not the page has been

modified since loading into memory) into account. This allows the

algorithm to focus on replacing clean pages before dirty pages, which

can save on the cost of writing existing modified values back to

secondary storage. Working Sets Working sets also help us understand

page replacement. A working set is the collection of pages being

actively used by a process over a time interval. Working set model: The

working set model tries to keep the working set of the process in the

memory to reduce page faults and improve performance. The model

requires estimating the size of the working set, which is difficult to do.

Thus, it does not give the complete image but it serves its purpose by

being a useful guide to prevent the memory from being shredded into

million pieces in a Virtual memory system. Another algorithm is called

the page fault frequency (PFF), which dynamically allocates page

frames to a process depending on its page fault rate. In performing this

algorithm, if the rate of page fault is high, the number of page frames

gets increased by the algorithm, and if the page fault rate is low, the

number of page frames gets decreased. By adapting in this manner,

memory usage is kept optimized, and the system's performance

benefits. One of the major concerns in the context of virtual memory is

the idea of thrashing, which is when a process spends more time

swapping pages in and out than executing instructions. These working

sets are what's stored in the system memory, including RAM, which is

why thrashing happens. Operating systems, to successfully eliminate

thrashing, can use load control, which is the adjustment of the level of

multiprogramming (the number of processes that can be in execution at

a given time), and working set. A study of an interface between

hardware and software is essential for understanding the

184
MATS Centre for Distance and Online Education, MATS University

Notes implementation aspects of virtual memory. MMU (Memory

Management Unit) is a hardware unit that translates a virtual address

to a physical address from the physical address to a page table mapping

virtual memory to physical memory In contrast, the operating system is

responsible for maintaining the page table--the data structure that keeps

track of the mapping between virtual and physical pages--and executing

the page replacement algorithm. The performance of virtual memory

relies on how well this teamwork works. Though for the simplest sense,

the modern operating systems are still reliant on the base concepts of

page replacement but they also have integrated the concepts of demand

paging where the pages are loaded from disk into physical memory only

when they are needed and page clustering where similar pages are

clustered together in such a way that the number of page faults could

be less. The use of these approaches, in combination with smart page

replacement algorithms, allows virtual memory to operate smoothly

and effectively, facilitating the proper performance of processes,

regardless of the limited number of physical memory resources that the

system possesses.

3.3.3 File Concepts

Files are fundamental abstractions in operating systems, providing a

structured and persistent mechanism for storing and retrieving data.

They serve as the primary means for users and applications to interact

with data, whether it be documents, images, executables, or system

configuration files. A file, at its core, is a named collection of related

information that is recorded on secondary storage, such as hard disks,

solid-state drives, or optical media. The concept of a file encompasses

not only the data itself but also metadata, which includes information

about the file's attributes, such as its name, size, creation date, and

access permissions. The file system, a crucial component of the

operating system, is responsible for organizing and managing files and

directories. It provides a hierarchical structure that allows users to

organize files into directories, creating a logical and intuitive file

organization. Directories, also known as folders, can contain both files

and other directories, forming a tree-like structure that facilitates

efficient file management. The file system also manages the allocation

of storage space, ensuring that files are stored and retrieved efficiently.

Different file systems employ various data structures and algorithms to

185
MATS Centre for Distance and Online Education, MATS University

Notes manage storage space, such as linked lists, bitmaps, and inodes. The

choice of file system can significantly impact performance, reliability,

and security. File naming conventions vary across operating systems,

but they generally adhere to certain rules and guidelines. File names

typically consist of a base name and an optional extension, separated

by a period. The extension indicates the file type, such as .txt for text

files, .jpg for image files, and .exe for executable files. Operating

systems impose restrictions on the length and characters allowed in file

names to ensure compatibility and avoid conflicts. File types are

essential for identifying the format and structure of a file. Operating

systems recognize various file types and associate them with specific

applications. This allows users to open and manipulate files using the

appropriate software. File types can be classified into several

categories, such as text files, binary files, executable files, and directory

files. Text files contain human-readable characters and are typically

used for storing documents, source code, and configuration files.

Binary files contain non-text data, such as images, audio, and video,

and are typically processed by specialized applications. Executable

files contain machine code that can be executed by the operating

system. Directory files contain information about other files and

directories, forming the hierarchical structure of the file system. File

access methods determine how data is accessed and manipulated within

a file. Sequential access is the simplest access method, where data is

accessed in a linear order, from the beginning to the end of the file. This

method is efficient for processing large files that are accessed

sequentially, such as log files and backup files. Direct access, also

known as random access, allows data to be accessed in any order,

regardless of its position in the file. This method is efficient for

accessing specific records or data elements within a file, such as

database files and index files. Indexed sequential access combines the

advantages of sequential and direct access. It uses an index to locate

specific records within a file, allowing for both sequential and direct

access. This method is commonly used in database management

systems and file systems that require efficient access to large amounts

of data. File attributes provide information about the characteristics of

a file, such as its name, size, creation date, modification date, and

access permissions. File attributes are stored in the file's metadata and

can be accessed and modified by users and applications. Access

186
MATS Centre for Distance and Online Education, MATS University

Notes permissions control who can access and manipulate a file. They

typically include read, write, and execute permissions, which determine

whether a user can read, modify, or execute a file. Access permissions

can be set for different user groups, such as the file owner, group

members, and other users, ensuring that files are protected from

unauthorized access. File operations are the actions that can be

performed on files, such as creating, deleting, opening, closing,

reading, writing, and renaming. These operations are typically provided

by the operating system through system calls, which allow applications

to interact with the file system. File systems employ various techniques

to ensure file integrity and reliability, such as journaling, which logs

file system changes before they are applied, and checksums, which

detect data corruption. These techniques help to prevent data loss and

ensure that files are stored and retrieved correctly. File caching is

another technique used to improve file system performance. It involves

storing frequently accessed file data in memory, reducing the need to

access secondary storage. File caching can significantly improve

performance, especially for applications

3.3.4 File System Structures and Implementation

The file system structures and implementation is what underlines any

operating system's capability to manage persistent data. Why is there a

file system? At the most basic level, a file system is a natural way of

organizing data when stored, enabling users and applications to access,

modify and share data. It abstracts away the intricacies of physical

storage devices, providing a straightforward interface for data

management. From raw storage blocks to a coherent file system is a

long and complex journey involving a myriad of design decisions and

Figure 3.3.3: File System in OS

187
MATS Centre for Distance and Online Education, MATS University

Notes implementation details, each of which greatly impact the end product's

performance, reliability, and security. At the core, file system is built

upon a hierarchical structure usually represented as a tree, where

directories (or folders) act as containers for files and other directories.

Such a hierarchical structure encourages a logical organization of

related files, making it more navigable and manageable. At the very

top of the hierarchy is the root directory, which serves as the entry

point for the entire file system. In this arrangement, files are located by

their pathnames lists of directories to navigate through until the desired

file is located. Must also store metadata (e.g. names, size, timestamps,

permissions, owner, etc.) in addition to the actual data content. This

metadata is important in regards to file management operations and is

often stored in data structures such as inodes or file allocation tables.

A file system must manage both data and metadata, and the efficient

organizing and accessing of this information is key to performance.

Different allocation policies are used by file systems, which have

effects from fragmentation to access speed to storage utilization. Here

are some of the most commonly used methods of allocation: contiguous

allocation, linked allocation, and indexed allocation. Discontinuously,

on the other hand, is efficient with access but may leave behind

external fragmentation. In linked allocation, the blocks are connected

using pointers, which can reduce fragmentation but uses more memory

for random access. In contrast, indexed allocation creates an index

block that points to data blocks, allowing random access but also

requiring more storage for the index. The allocation strategies are

chosen based on the expected usage patterns and performance

requirements for the file system. Beyond merely managing data and

metadata, file systems must grapple with concurrency control, crash

recovery, and security. Concurrency control mechanisms, including

locks and transactions, provide the ability for multiple processes in a

system to read and write files without corrupting data. Crash recovery

mechanisms such as journaling, logging, etc., allow the file system to

restore its consistency post a system crash. Such as access control lists

(ACLs) and encryption help to secure sensitive data by preventing

unauthorized access. How these features are designed and

implemented have a major effect on the file system's reliability and

robustness.

188
MATS Centre for Distance and Online Education, MATS University

Notes The implementation of a file system involves a complex interplay of

data structures, algorithms, and system calls. The operating system

kernel plays a central role in managing the file system, providing an

interface between user applications and the underlying storage devices.

The kernel maintains data structures that represent the file system

hierarchy, metadata, and allocation information. These structures are

often stored in memory to facilitate fast access and manipulation. When

a user application requests a file operation, such as opening, reading,

writing, or deleting a file, the kernel translates the request into a series

of operations on the storage device. This involves locating the file's data

and metadata, allocating or deal locating storage blocks, and updating

the relevant data structures. The kernel provides system calls, such as

open(), read(), write(), close(), mkdir(), and rmdir(), which serve as the

interface between user applications and the file system. These system

calls encapsulate the low-level details of file operations, allowing

applications to interact with the file system in a standardized and

platform-independent manner. The implementation of these system

calls involves intricate algorithms for navigating the file system

hierarchy, managing metadata, and accessing storage devices. For

instance, the open() system call typically involves searching the

directory structure for the specified file, verifying access permissions,

and allocating a file descriptor to represent the opened file. The read()

and write() system calls involve locating the file's data blocks,

transferring data between the storage device and the application's

memory, and updating the file's metadata. The close() system call

releases the file descriptor and updates the file's metadata, such as the

last access time. The kernel also manages the buffer cache, a region of

memory used to cache frequently accessed file data and metadata. The

buffer cache improves file system performance by reducing the number

of disk accesses, which are significantly slower than memory accesses.

When an application requests data from a file, the kernel first checks

the buffer cache. If the data is present in the cache, it is retrieved

directly from memory, avoiding a disk access. If the data is not in the

cache, the kernel reads it from the disk and stores it in the cache for

future use. The buffer cache employs various replacement algorithms,

such as least recently used (LRU), to manage the cached data and

ensure that frequently accessed data remains in the cache. The

implementation of the buffer cache is critical for file system

189
MATS Centre for Distance and Online Education, MATS University

Notes performance, as it directly impacts the speed at which applications can

access and manipulate files.

The choice of file system implementation significantly impacts the

overall performance and reliability of the operating system. Different

file systems employ varying data structures, algorithms, and techniques

to manage data and metadata, each with its own set of trade-offs. For

example, the FAT (File Allocation Table) file system, commonly used

in older versions of Windows, uses a simple linked allocation scheme

and a flat directory structure. While FAT is relatively simple to

implement and understand, it suffers from performance limitations,

especially with large files and fragmented disks. The NTFS (New

Technology File System), used in modern versions of Windows,

employs a more sophisticated B-tree structure for managing metadata

and supports advanced features such as journaling, access control lists,

and encryption.NTFS offers better performance and reliability than

FAT, but it is more complex to implement and manage. The ext4

(Fourth Extended File system), commonly used in Linux distributions,

also employs a B-tree structure for metadata management and supports

features such as extents, which improve performance for large files, and

delayed allocation, which reduces fragmentation.Ext4 is known for its

performance and scalability, making it suitable for a wide range of

applications. The implementation of a file system also involves

considerations for portability and interoperability. Operating systems

may support multiple file systems, allowing users to access data stored

on different devices or partitions. The kernel must provide a common

interface for accessing these file systems, abstracting the differences in

their underlying implementations. This involves the use of virtual file

system (VFS) layers, which provide a uniform interface for file system

operations, regardless of the specific file system being used. The VFS

layer translates generic file system operations into specific operations

for the underlying file system, enabling applications to interact with

different file systems in a consistent manner. The implementation of

the VFS layer is crucial for supporting multiple file systems and

ensuring interoperability between different operating systems.

Furthermore, the implementation of distributed file systems, such as

NFS (Network File System) and AFS (Andrew File System), involves

additional complexities related to network communication, data

consistency, and fault tolerance. Distributed file systems allow multiple

190
MATS Centre for Distance and Online Education, MATS University

Notes computers to access and share files over a network, enabling

collaborative work and resource sharing. The implementation of these

file systems requires careful consideration of network protocols,

caching strategies, and security mechanisms to ensure efficient and

reliable data access. The design and implementation of file systems

continue to evolve, driven by advancements in storage technology,

changing user requirements, and the need for improved performance,

reliability, and security. In essence, the file system implementation

constitutes a critical component of the operating system, bridging the

gap between user applications and physical storage devices. It involves

intricate algorithms, data structures, and system calls to manage data

and metadata effectively. The kernel plays a pivotal role in

orchestrating file system operations, providing an interface for user

applications and managing the buffer cache to enhance performance.

The choice of file system implementation significantly impacts the

overall performance, reliability, and security of the operating system.

Different file systems offer varying trade-offs, and the selection

depends on the specific requirements of the system and its intended

usage. The implementation of the VFS layer enables interoperability

between different file systems, while distributed file systems facilitate

network-based file sharing. As storage technology advances and user

demands evolve, file system implementations continue to adapt and

innovate, ensuring efficient and reliable data management. The

efficiency of a file system is judged by its speed of access, its reliability

in the face of system failures, and its ability to manage storage space

effectively. The speed of access is determined by factors such as the

allocation strategy, the buffer cache size, and the disk access time. The

reliability is ensured through mechanisms such as journaling, logging,

and redundant storage. The ability to manage storage space is

influenced by the file system's ability to minimize fragmentation and

utilize available space efficiently. Modern file systems also incorporate

features such as data compression and encryption to enhance

performance and security. Data compression reduces the amount of

storage space required for files, while encryption protects sensitive data

from unauthorized access. The implementation of these features

requires careful consideration of performance trade-offs and security

implications. The future of file system implementation lies in

addressing the challenges of managing increasingly large and complex

191
MATS Centre for Distance and Online Education, MATS University

Notes data sets, supporting diverse storage technologies, and ensuring

security and reliability in distributed and cloud-based environments. As

data continues to grow exponentially, file systems must evolve to

handle the demands of modern computing and data management.

Finally, the intricacies of file system implementation extend beyond the

core functionalities of data storage and retrieval. The modern

computing landscape demands sophisticated features that cater to

diverse user needs and evolving technological paradigms. Features

such as snapshots, which allow for point-in-time recovery of file system

states, are increasingly vital for data protection and disaster recovery.

Similarly, copy-on-write (COW) techniques optimize storage usage

and enhance performance by delaying physical data copying until

modifications are made. These advancements underscore the

continuous innovation within file system design, driven by the need for

efficiency and resilience. Furthermore, the rise of cloud computing has

necessitated the development of scalable and distributed

3.3.5 Free Space Management: Principles, Techniques, and

Implementation

It is the core of a congruous operating system to expose persistent data

which lives inside its own file system structures and implementation.

Essentially, file system is a computing method known as the logical

organization of data being stored, so the user and any application can

read, edit or share information easily. It abstracts the chaff of physical

devices into a form that is much more useful, which allows you to deal

with data, rather than devices. Creating a complex file system on top

of ordinary storage blocks requires careful thought and systematic

execution: every decision at the design and implementation stages of

the project can have a tremendous impact on speed, dependability, or

even safety of data. Essentially, a file system is based on a hierarchy

one that is normally represented as a tree in which directory (folder)

nodes are used to contain files and other directory nodes. This Top-

Down Organization Makes for Naturally Related Files That Are More

Effortlessly Navigable and Manageable. The highest node in the

hierarchy is called the root directory, which provides the entry point to

the whole file system. Under this structure, files are referenced by their

pathnames, which define the path through the directory hierarchy to

the file. The file system has to keep track of metadata that describes file

192
MATS Centre for Distance and Online Education, MATS University

Notes names, sizes, creation and modification timestamps, permissions, and

ownership data in addition to the actual data itself. This metadata is

essential for file management operations and is usually stored in data

structures such as inodes or file allocation tables. Efficient organization

and retrieval of data and metdata is paramount to the performance of

the file system. There are a number of different allocation strategies

that a file system can use to allocate the real physical space, which has

implications for fragmentation, speed of access, and overall utilization

of storage space. The most common methods include contiguous

allocation, linked allocation, and indexed allocation. In contiguous

allocation a file gets a sequence of blocks, providing faster sequential

access but causing external fragmentation. Linked allocation links

blocks using pointers which avoids fragmentation but adds random

access cost. Reloading of pointers from data block example in Indexed

allocation Indexed allocation uses index block that contains pointers to

data blocks which allows random access, but comes at the price of using

more space to store the index. Which allocation strategy to chose

depends on the access patterns and performance of the file system. File

systems also deal with concurrency control, crash recovery, and

security, among other things, in addition to data and metadata

management. Mechanisms for concurrency control, such as locks and

transactions, help ensure that multiple processes can simultaneously

access and modify files without corrupting the contents. Crash recovery

procedures (such as journaling and logging) allow the file system to

return to a consistent state after a system crash. Sensitive data is

safeguarded by security measures like access control lists (ACLs) and

encryption. What and how these features are designed and

implemented has a great influence on the reliability and robustness of

file system.

Theoretical Foundations and Fundamental Algorithms

The figure (left) shows how the operating system kernel manages the

file system, acting as an interface between the user applications and the

underlying storage devices. Data structures that represent the file

system hierarchy, metadata and allocation information are maintained

by the kernel. These are usually kept in the memory to enable them to

be accessed and modified quickly. When a user application needs to

perform a file operation like opening, reading, writing, and deleting a

file, the kernel converts that request to a series of operations on the

193
MATS Centre for Distance and Online Education, MATS University

Notes storage device. This includes finding the file's data and metadata,

allocating or deal locating storage blocks, and updating the

corresponding data structures. User applications interact with the

system calls provided by the kernel, including open, read, write, close,

mkdir, and rmdir; these function calls act as the interface to the file

system. These system calls abstract the underlying complexities of file

manipulation, enabling applications to communicate with the file

system in a uniform and OS-agnostic approach. Basic file system

functionality: File systems provide a set of system calls for operations

like opening, reading, writing, and closing files. The open system call

usually requires traversing the directory structure to find the requested

file, checking access rights, and allocating a file descriptor to represent

the opened file. The read and write system calls go through finding the

file's data blocks, moving blocks of data around from the storage

device to the memory of the application and updating the file's

metadata, etc. assert close fd The close system call closes a file

descriptor and updates the file's metadata (e.g. last access update). The

kernel also controls a method called a buffer cache, which is a portion

of memory that is used to store file and metadata that is frequently

accessed. The post cache improves file system performance by

reducing the number of necessary accesses to disk, which are orders of

magnitude slower than memory accesses. It works by checking a cache

that sits between the application and the file itself. When there are a

huge number of records, this greatly speeds up data retrieval since the

data is only fetched from the memory, not from the disk. If the data is

no longer on the cache, the kernel fetches it from the disk and places it

in the cache for subsequent access. It uses various replacement

algorithms, including least recently used (LRU) as examples, to

efficiently manage the cached data (more frequently accessed data

should remain in the cache). The buffer cache is responsible for file

system performance, which is what makes every application read and

write files faster.

3.3.6 Memory Allocation Strategies and Fragmentation

Management

In other words, memory allocation strategies are tactical

implementations of free space management principles, moving us from

theoretical constructs to systems that balance competing objectives.

194
MATS Centre for Distance and Online Education, MATS University

Notes Choosing the right allocation strategy is largely influenced by workload

characteristics, hardware architecture, and application needs. The

consecutive-fit strategies first-fit, next-fit, best-fit, and worst-fit

strategies only differ in the search policy for free lists. Unlike first-fit,

which always starts from the beginning of the free list, next-fit

continues from the last allocated location, which likely improves

locality but may fragment hot sections in memory over time. The best-

fit and the worst-fit strategies optimize for different goals by the former

minimizing the short-term waste of memory at the cost of creating

completely unallocatable small fragments while the latter preserves the

large continuous regions of memory at the cost of short-term wastage.

One example of a power-of-two strategy is the buddy system, which

only allows for allocations to power-of-two sizes, making bookkeeping

easier; the drawback is internal fragmentation. If a block is freed in this

system, it can be combined with its buddy (the adjacent block of the

same size) to make a bigger block, which may make it possible to

mitigate external fragmentation.

Slab allocation, introduced in solaris, is a technique where memory

blocks are pre allocated (called slabs) for certain types of objects,

making it because each allocated object knows its size and freeing the

memory blocks for more easy insertion of allocated objects. Segregated

free lists keep a separate pool for each size class, allowing for fast

allocation of common sizes and improved locality, but at the cost of

increased overall memory consumption due to potential fragmentation,

since a smaller allocation won’t fit into the pool of a larger allocation.

These kinds of allocators are typically bitmap-based, meaning that they

store the state of each byte of memory in a bit vector very compact but

slightly slower allocation than with list-based allocators. The main

Figure3.3.4: Memory Allocation strategies

195
MATS Centre for Distance and Online Education, MATS University

Notes problem with free space management is fragmentation, which occurs

when the free memory is broken into non-contiguous nodes so blocks

cannot be fully utilized, which has two kinds external fragmentation

(inaccessible gaps between allocated blocks) and internal

fragmentation (the space allocated but not actually used). Many

different techniques used in the implementation of allocation strategies

to avoid fragmentation such as split (to break down the larger blocks

to satisfy smaller requests), coalescing (the merger of two adjacent free

blocks), compaction (the process of moving allocated objects to give

larger spaces of free in a contiguous manner), and size rounding (the

practice of standardizing the size of allocations, therefore, avoiding

very small ones) These techniques hit different performance notes

depending on the allocation profile of the application: programs that

allocate lots of short-lived objects benefit from allocation-time

optimizations like generational schemes, whereas long-running

systems are characterized by their small but more unpredictable

lifetimes and require balanced techniques that avoid the accumulation

of fragmentation over extended periods of time. Adaptive allocation

strategies monitor their workload and adapt their behavior according to

observed workload properties, changing policies when needed, for

example, depending on memory pressure or allocation patterns.

Adapting request optimization strategies dynamically based on data

regarding allocation requests, memory usage over time, and

fragmentation statistics. How freed memory is retained (or not) also

affects fragmentation and performance through memory reservation

policies, which dictate how memory is provisioned for use beyond

immediate needs: over-reserving memory decreases fragmentation but

wastes memory resources, while under-reserving memory (to keep it

less fragmented) means that you have to do increasingly frequent

resizing operations that involve costly system calls or reorganization of

memory.

Operating System Memory Management and Virtual Memory

Integration

The most obvious and important implementation of free space

management principles is in operating system memory management,

which gets instrumental as the bridge between hardware resources and

application needs. Most modern operating systems implement a layered

architecture on the topic of memory management, utilizing a virtual

196
MATS Centre for Distance and Online Education, MATS University

Notes memory space that provides an additional layer of abstraction

separating the viewpoint of the application from the physical structure

of the storage devices. Giving this sort of abstraction allows advanced

free space management techniques that would simply not be possible

in systems with only physical memory. The virtual memory I/O sub-

system will divide the address space to fixed size pages (usually 4KB

up to 64KB) which will be mapped to physical frame when using page

tables, and use Translation Lookaside Buffers (TLBs) to reduce the

address translation process. This paging mechanism adds a distinct type

of free space management at several levels: free virtual address ranges

within each process's address space, free physical memory frames, and

pages moving between main memory and secondary storage via page

replacement algorithms. During such periods the operating system free

space manager needs to balance conflicting requests from different

processes and ensure that the system remains responsive and stable at

different load levels. Demand paging, which is bringing pages into

memory and still keeping them on disk until they are accessed stands

as a more specialized version of the lazy allocation and seeks to

Figure3.3.5: Operating System Memory Management and Virtual Memory Integration

197
MATS Centre for Distance and Online Education, MATS University

Notes improve memory resource utilization as it postpones the physical

resource commitment to pages until the very moment where such pages

are required. Low-level page replacement policies like LRU, Clock,

Working Set, and ARC carry out advanced free space management

techniques that follow past fault experiences to anticipate future access

patterns. Many operating systems have a mechanism called memory

over commit that adds a level of abstraction to memory management

the total of all virtual memory allocated can exceed the amount of

physical memory available; it allows the free space manager to act as if

it had all the resources it doesn't currently have at its disposal, based on

statistical multiplexing, keeping in mind that requesting all allocated

memory in the same time is rare. Operating systems provide multi-level

free space management at diverse granularities with distinct strategies:

coarse-grained management of large contiguous regions needed for

memory-mapped files or shared memory segments, medium-grained

management for process heap allocations and fine-grained management

for kernel-internal data structures. Most kernel physical frame

allocators use the buddy system, zones, or some hybrid which tries to

optimize performance and memory used by balancing the requirements

of both. Memory compaction methods are used to periodically

defragment physical memory into larger contiguous ranges, resulting

in larger contiguous physical memory to service enormous pages

(megabytes to gigabytes sized pages) on with less TLB pressure on

applications with sizable working collections. Operating system free

space manager and processor Memory Management Unit (MMU)

integration, in particular under NUMA (Non-Uniform Memory

Architecture), where memory access time varies as a function of the

distance between processor and memory location, adds more

complexity. Modern OS uses page migration and allocation policies to

favor local memory allocation while balancing the load amongst the

memory nodes. Free space management is furthermore complicated

when the kernel needs to deal with hardware prefacers, cache

hierarchies, and memory controllers, as decisions about where to place

memory affect not only how well you are packing the boxes but also

the latency of access to boxes and the use of bandwidth. Specialized

memory types such as persistent memory (PMEM) or high-bandwidth

memory (HBM) add even more complexity to free space management

by creating heterogeneous memory pools with varying performance

198
MATS Centre for Distance and Online Education, MATS University

Notes characteristics, cost profiles and persistence guarantees, necessitating

sophisticated tiring and placement algorithms.

User-space Allocators: Design, Implementation, and Optimization

As the primary interface from applications to the operating system

memory management facilities—with each user-space memory

allocator utilizing their own sophisticated free space management

techniques tuned to application-specific workloads while abstracting

away system calls and virtual memory operations. Some allocators

allocate memory in bulk from the OS using sbrk or mmap or some other

syscall, and implement free space management through return stacks

and per-thread caches as optimizations on top of the more granular

allocations. General-purpose allocators like malloc/free

implementations must strike a balance between performance across a

variety of workloads with unpredictable allocation patterns, object

lifetimes and size distributions. These allocators are designed with

attention to thread safety, cache locality, fragmentation, and allocation

speed. There are a variety of production-quality implementations such

as ptmalloc (the allocator used by GNU libc), jemalloc, tcmalloc, and

mimalloc which in combination cover many points in the design space

each with a different focus on different aspects of the allocation

problem. Ptmalloc uses per-thread arenas to avoid contention, where

each of these arenas implements a hybrid best-fit and segregated fit

algorithm. Jemalloc, on the other hand, focuses on reducing

fragmentation by using a carefully chosen set of size classes and

regularly purging unused memory, making it especially well-suited for

long-lived applications. The primary focus of tcmalloc is scalability in

multi-threaded environments using thread-local caches and a central

heap for pages, while mimalloc emphasizes security and performance

by techniques like eager coalescing and secure free lists. Specialized

allocators are optimized for certain workload characteristics: pool

allocators preallocate memory for objects of a single size, which allows

for very rapid allocation and deal location in returns for absolute

flexibility; region-based allocators (aka arena allocators) allow only

bulk deal location, simplifying memory management for phases of a

computation with well-defined lifetimes; and object-specific allocators

will implement custom strategies that suit particular data structures or

usage patterns. In garbage-collected environments, free space

management encompasses memory reclamation by means of automated

199
MATS Centre for Distance and Online Education, MATS University

Notes compaction, and allocators that are tailored to work with collector

algorithms. These allocators commonly reflected fast paths for

allocation, object contiguity to allow efficient collection, and

management of metadata for efficient reference tracking. Mark-sweep

collectors want allocators that can effectively reuse variably-sized free

blocks, and copying collectors capitalize on bump-pointer allocation

strategies over if contiguous memory regions. Thread-safe memory

management functions provide behavioral guarantees that help ensure

safe usage in multi-threaded environments. Modern allocators utilize

strategies to reduce contention, such as thread-local caches, lock-free

data structures for common operations, and fine-grained locking

approaches that improve parallelism at the cost of more complex

memory handling. Optimizing the performance of user-space allocators

requires clever engineering set of practices like size classes where the

sizes of various classes were designed to find the trade-off between

internal fragmentation and management overhead, hot/cold splitting,

perfecting, and alignment of each slab on the heap to help utilization of

the hardware. State-of-the-art allocators utilize hardware features, e.g.,

transparent huge pages, non-temporal instructions, and cache control

primitives, to achieve high performance. Security has become an

important consideration in the design of allocators, and many modern

allocations have incorporated additional features such as guard pages,

canaries, randomization of object addresses, and even separation of the

metadata of objects from the objects themselves, to mitigate issues

such as buffer overflows, use-after-free vulnerabilities, and double-free

attacks. Production allocators are common with cross-system memory

management tricks like madvise calls, decommitting of unused pages,

memory compaction and so on, which reduce physical pages and

vastly enhance overall performance. Another important aspect of

modern allocators is their debug ability and introspection capabilities,

with support leak detection, heap validation, allocation tracking,

detailed statistics gathering, etc. to aid development and debugging

efforts.

3.3.7 Specialized Free Space Management Systems

Most memory allocators deal with general-purpose usage, but requires

for more specialized free space management systems that can fit the

needs of specific domains also are common an impressive

demonstration of how the core ideas of memory management can be

200
MATS Centre for Distance and Online Education, MATS University

Notes customized to specific restrictions and optimization possibilities. While

database management systems (DBMS) employ a buffer pool manager

responsible for many optimizations triggered by the integration of a

specialized free space manager and the in-memory database page

cache, the forced-page-layering policies can go beyond simple regency

used within memory even to page dirtyness, and I/O scheduling

opportunities, and query execution plans. It is common for these

systems to include their own application-level memory allocators that

are attuned to database workloads, with features such as block-oriented

allocation, specialized structures for index nodes, and separate pools

for different object types. Another area is they can record information

about free space availability, which file systems usually do with a

bitmap, extent trees, free lists, etc. Copy-on-write file systems such as

ZFS and Btrfs use novel strategies for file space that is free but that also

adheres to transactional semantics, while log-structured file systems

like F2FS organize free space around sequential writes. Free space

management techniques for real-time systems trade off memory

utilization efficiency for bounded allocation and deal location times,

which is often more critical than memory utilization efficiency in these

systems. These systems often seldom use variable latency techniques

like global coalescing or complex search algorithms where the time

complexity can rapidly increase, in favor of a combination of pre-

allocated pools, static partitioning, or scope-based memory allocation.

High-performance computing (HPC) environments use specialized

allocators that are tuned for extreme levels of parallelism, NUMA

awareness, and dedicated computation patterns. This includes

topology-aware allocators, custom alignment for vectorized access,

and integration with job scheduling systems for whole-node memory

usage. Graphics Pipelines use domain-specific memory management

for resources such as textures, frame buffers, and geometry data, with

custom allocators that understand the 2D or 3D nature of the resources

and hardware-specific alignment and padding requirements. Modern

GPU compute frameworks offer unified memory models with

sophisticated free space management that crosses host and device

memory and automatically migrates data based on access patterns,

hiding the complexity of explicit transfers. However, embedded

systems have limited memory resources and rely on specialized free

space management techniques that are applied based on specialized

201
MATS Centre for Distance and Online Education, MATS University

Notes constraints such as statically allocated objects that require determinism,

or objects of fixed size requiring a pool-based allocation as well as

custom fragmentation mitigation techniques that exploit application-

specific information about allocation patterns and lifetimes. High-

throughput, low-latency network stacks employ zero-copy buffer

management and must use specialized memory pools for common

packet sizes, present in systems such as packet processing systems.

Garbage collection systems are perhaps the most specialized type of

free space management, containing techniques such as generational

collection, concurrent marking, incremental compaction, and region-

based collection that take advantage of specific properties and

information from the managed languages and runtime environments.

Just-in-time (JIT) compilers manage code memory according to their

unique needs such as executable memory, alignment requirements in

addition to constant caches to invalidate instructions. For example,

hypervisors and virtual machine monitors maintain multi-level free

space management that must account for physical memory allocation

to virtual machines and be able to support features such as memory

ballooning, page sharing by using deduplication, and live migration

between physical hosts. Container runtimes use specialized memory

management techniques that work with cgroup limits, accelerate page

cache pressure and enable efficient copy-on-write for container images.

Big data frameworks also have custom memory management systems

understanding the lifecycle of distributed computations, with

specialized techniques for spilling to disk, managing data from shuffles,

or leveraging the memory of heterogeneous nodes. When it comes to

in-memory databases and caching systems, free space management is

typically optimized for key-value storage using techniques such as log-

structured memory allocation or slab allocation to minimize

fragmentation and maximize throughput.

Future Directions and Emerging Research in Free Space

Management

The state of device-free space management is constantly equipped to

navigate these shifts driven by technologies, workload characteristics,

and computing paradigms that are also evolving. Non-volatile memory

technologies (NVM) like Intel Optane, Samsung Z-NAND, and

multiple flavors of resistance RAM are obfuscating the classic

boundary dividing memory and storage, prompting novel Layers of

202
MATS Centre for Distance and Online Education, MATS University

Notes Indirection for managing free space that take into consideration

persistence, wear-leveling, and hybrid memory hierarchies. The

existence of these technologies brings new floors for multi-tenant read

/ writes performance, write endurance, and failure atomicity that lead

to research into special-purpose allocators minimizing writes, batching

updates, and recovering from power failures to keep metadata

consistent. This heterogeneous memory architectures interoperability

of DRAM, HBM, NVM, and traditional storage introduces intricate

memory hierarchies, necessitating sophisticated tiering algorithms,

placement policies, and migration strategies to cost-efficiently

accommodate diverse access patterns and performance characteristics.

Increasing popularity of multi-tenant environments in cloud computing

has motivated research into isolation-minded free space management

techniques that avoid performance interference while maximizing

resource utilization through techniques such as page coloring, NUMA-

aware allocation, and quality-of-service guarantees for memory

bandwidth. As free space management research has turned to security

considerations, new techniques such as address space layout

randomization (ASLR), fine-grained object protection, guard regions,

and memory tagging have emerged to help mitigate vulnerabilities that

spring from mistakes in memory management. By combining machine

learning and systems programming, new horizons emerge learning-

based free space management with allocation strategies adapting to

seen distributions, predicting future memory usage patterns with

predictive models, and employing reinforcement learning to optimize

long-term memory usage on varied workloads. These allocations of

resources are made under the influence of energy efficiency, which has

become a key design constraint in contemporary computing systems

and motivates research on power-aware memory management

techniques that factor in the energy cost of allocation decisions,

placement decisions and data movement operations. To keep up with

the never-ending memory size race, ignoring the properties of the

order-of-magnitude difference in the size of memory addressed and the

used datasets, research of techniques that keep optimal memory

behavior at extreme scales such as hierarchical metadata, probabilistic

(and shrinking) data structures for free space management or

approximate allocation techniques that absolutely do trade perfect

allocation size for allocation algorithm range - have popped up as points

203
MATS Centre for Distance and Online Education, MATS University

Notes of interest. Rust, Web Assembly, and other memory-safe models are

inspiring research works on ownership-based memory systems that use

compile-time knowledge about the lifetimes and access patterns of

objects to make smarter allocation choices and eradicate entire

categories of memory errors. With the increasing significance of

domain-specific workloads such as machine learning, genomics, and

cryptography — there is a rising interest in domain-specific memory

allocation strategies that go beyond the traditional abstraction of a

memory page to capture the access patterns/characteristics/life-

times/performance requirements of such workloads. New concurrency

models beyond classical threading (e.g., asynchronous programming,

actor-based and dataflow models) are challenging traditional

assumptions of free space management regarding thread-local caching,

allocation ordering and synchronization strategies. Although the field

of quantum computing is in its early days, it presents many new free

space management challenges that are opportunities for terrestrial

systems, stemming from the probabilistic nature of quantum states,

finite coherence time of qubits, and different demands of quantum

algorithms. Besides driving technology, methodological innovations in

research on free space management include enhanced analysis and

modeling techniques, systematic benchmarking approaches, and

formal verification techniques that yield stronger guarantees regarding

correctness, performance characteristics and security properties of

allocators. Going forward, we will see free space management become

even more specialization and adaptive, with systems dynamically

choosing between many different strategies based on workload

characteristics and the utilization of hardware resources, as well as

application-specific needs.

Summary

Contiguous memory allocation is a traditional memory management

method in which each process is allocated a single, continuous block of

memory. This approach is simple and allows for quick access since

memory blocks are adjacent, but it leads to problems such as external

fragmentation. As processes are created and terminated, free memory

gets scattered in small chunks, which may not be usable even if the total

free memory is sufficient, thereby reducing the efficiency of memory

usage. To overcome these issues, non-contiguous memory allocation

204
MATS Centre for Distance and Online Education, MATS University

Notes techniques like paging were introduced, allowing more flexible and

efficient memory management.

Paging eliminates the need for contiguous blocks by dividing the

process’s memory into equal-sized pages and physical memory into

frames of the same size. Pages from a process can be loaded into any

available memory frames, which removes the problem of external

fragmentation and makes better use of available memory. The

operating system keeps track of page-to-frame mappings using a page

table. Building on this, demand paging is a more advanced concept

where pages are loaded into memory only when they are needed during

program execution, rather than all at once. This reduces the amount of

memory used and speeds up the process load time. However, it

introduces the possibility of page faults—when a requested page is not

in memory—requiring data to be fetched from secondary storage,

which can slow down execution if not optimized properly. Demand

paging is a crucial feature in virtual memory systems, helping modern

operating systems manage memory more efficiently.

Multiple-Choice Questions (MCQs)

1. Which memory allocation method assigns a single contiguous

block to a process?

a) Paging

b) Segmentation

c) Contiguous Memory Allocation

d) Virtual Memory

(Answer: c)

2. What is the main drawback of contiguous memory allocation?

a) High efficiency

b) Internal fragmentation

c) Increased system security

d) Low overhead

(Answer: b)

3. Which memory management technique allows processes to be

swapped in and out of memory?

a) Paging

b) Swapping

c) Segmentation

d) Virtual Memory

205
MATS Centre for Distance and Online Education, MATS University

Notes (Answer: b)

4. In paging, what is a page?

a) A fixed-size block of data stored in main memory

b) A dynamic memory allocation technique

c) A method for organizing files

d) A replacement algorithm

(Answer: a)

5. Which type of fragmentation occurs in paging?

a) External fragmentation

b) Internal fragmentation

c) Logical fragmentation

d) No fragmentation

(Answer: b)

6. Which page replacement algorithm replaces the page that has

not been used for the longest time?

a) FIFO (First In First Out)

b) LRU (Least Recently Used)

c) Optimal Page Replacement

d) MRU (Most Recently Used)

(Answer: b)

7. Virtual memory allows:

a) More processes to be executed than the available

physical memory

b) Only real-time execution of processes

c) Immediate swapping of processes without demand

paging

d) Elimination of the need for secondary storage

(Answer: a)

8. Which file access method reads data in the same order in which

it is stored?

a) Sequential access

b) Direct access

c) Indexed access

d) Random access

(Answer: a)

9. What is the purpose of free space management in file systems?

a) To increase file security

b) To track unused storage blocks

206
MATS Centre for Distance and Online Education, MATS University

Notes c) To reduce file sizes

d) To prevent user access to certain files

(Answer: b)

10. Which of the following is NOT a common file system structure?

a) Single-level directory

b) Two-level directory

c) Hierarchical directory

d) Random directory

(Answer: d)

Short Questions

1. What is contiguous memory allocation, and what are its

limitations?

2. Explain the difference between paging and segmentation.

3. What is swapping, and how does it work in memory

management?

4. Define internal and external fragmentation.

5. What is demand paging, and how does it improve memory

utilization?

6. Name and briefly describe two page replacement algorithms.

7. Define virtual memory, and why is it important in modern

operating systems?

8. What are the different file access methods?

9. Describe the structure of a file system in an operating system.

10. What are the different techniques used for free space

management in file systems?

Long Questions

1. Explain contiguous memory allocation, its advantages, and its

disadvantages.

2. Compare and contrast paging and segmentation, highlighting

their advantages and disadvantages.

3. Discuss the concept of demand paging, including the steps

involved and its advantages.

4. Explain the different page replacement algorithms (FIFO, LRU,

Optimal) and compare their efficiency.

5. What is virtual memory? Discuss its role in memory

management and how it is implemented.

6. Describe file system structures and explain the different types

of file organizations.

207
MATS Centre for Distance and Online Education, MATS University

Notes 7. How are file systems implemented in an operating system?

Discuss various implementation techniques.

8. Explain different file access methods, with examples of where

they are used.

9. Discuss the challenges of free space management and describe

the various strategies used to manage free space in file systems.

10. How does file system security impact file management, and

what are the methods used to ensure data protection?

208
MATS Centre for Distance and Online Education, MATS University

MODULE 4

DISK SCHEDULING AND DISTRIBUTED

SYSTEMS

LEARNING OUTCOMES

• To explore disk structures and scheduling techniques.

• To understand RAID structures and disk management.

• To study distributed system structures and file systems.

• To analyze remote file access, naming, and transparency.

209
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4.1: Disk Scheduling and Distributed Systems

4.1.1 Disk Scheduling and Distributed Systems

Data management in modern computing systems is a complex dance

between data requests, commonly controlled by disk scheduling, and

distributed systems, necessitating effective coordination between

distributed systems. This article would cover Disk scheduling part part

of Operating system which is a huge topic and addresses an important

challenge of minimizing the seek time and maximizing the disk

throughput. The order in which requests are serviced has a major

impact on performance, especially when there are multiple processes

simultaneously requesting access to disk blocks. Many disk scheduling

algorithms have been designed to solve this optimization problem,

including First-Come, First-Served, Shortest Seek Time First (SSTF),

SCAN, C-SCAN, and LOOK. FCFS is a straightforward but inefficient

disk scheduling algorithm that services requests in the order of their

arrival; it results in excessive head movement. SSTF (Shortest Seek

Time First) selects the request with minimum seek time from the

current head position, optimizing seek time in total but may cause

starvation to other requests if far from the current head position. The

elevator algorithm, also known as SCAN, moves the disk head either

way and services the requests along the way until it reaches one end of

the disk, at which point it reverses direction. To counteract this uneven

distribution of service, C-SCAN (Circular SCAN) is an option, which

moves the head in one direction and begins serving requests back at the

beginning of the disk instead of servicing requests on the back trip.

LOOK and C-LOOK are optimized versions of SCAN and C-SCAN

algorithms, respectively, which do not go to the end of the disk if there

are no requests in that direction. This is single-disk, but distributed

systems add even more complexity. At first sight, distributed storage

and network storage do not sound like the same thing. Distributed file

systems, like Hadoop Distributed File System (HDFS) and Google File

System (GFS), use data replication and distributed caching to increase

fault tolerance and approach high performance. These systems also

have to manage network latency, data partitioning and consistency

models (e.g., eventual consistency versus strong consistency). In such

distributed databases, two-phase commit and Paxos are examples of

methods to ensure the atomicity of transactions and consensus in

210
MATS Centre for Distance and Online Education, MATS University

Notes execution among the nodes. Additionally, incorporating derivative

models through cloud computing and edge computing has

revolutionized both disk scheduling and distributed systems, leading to

virtualized storage and widespread distributed data processing. To

address these challenges, organizations increasingly leverage cloud

storage services, such as Amazon S3 or Azure Blob Storage for scalable

and durable storage, and edge computing platforms that allow for

distributed data processing closer to end-users to minimize latency and

bandwidth usage. From these past trends, newer storage technologies

such as SSDs and NVMe have begun entering the market, with SSDs

containing orders of magnitude faster access times followed by no seek

time at all. For such situations, scheduling algorithms usually target

load balancing/ wear leveling for SSD lifetime support. The interaction

between disk scheduling and distributed systems remains dynamic, as

emerging trends in big data analytics, machine learning, and latency-

sensitive workloads push the boundaries of existing architectures,

Figure 4.1.1: Disk Scheduling and Distributed Systems

211
MATS Centre for Distance and Online Education, MATS University

Notes highlighting the need for dedicated research on the intersection of

storage and distributed domain.

Architectures of Distributed Systems

• Client-Server: Clients request services or resources from a

central server. While a simple model, it can become a bottleneck

if the server is not redundant.

• Peer-to-Peer (P2P): Each node acts as both a client and a

server, sharing resources directly with other nodes. This offers

high redundancy and no single point of failure.

• Three-Tier / Multi-Tier: This expands on the client-server

model by adding separate layers for presentation, application

logic, and data management. It's common in web applications.

• Microservices: An application is broken down into small,

independent services that communicate over a network. This

provides flexibility and scalability.

Key Characteristics:

Figure 4.1.2: Architectures of Distributed Systems

212
MATS Centre for Distance and Online Education, MATS University

Notes • Resource Sharing: Nodes can share hardware, software, and

data.

• Scalability: The system's capacity can be increased by simply

adding more nodes.

• Fault Tolerance: If one node fails, the rest of the system can

continue to operate, ensuring high availability.

• Concurrency: Multiple components can operate

simultaneously.

• Transparency: The user is not aware of the underlying

architecture and interacts with the system as a single unit.

Common Algorithms

• First-Come, First-Served (FCFS): The simplest algorithm, it

processes requests in the order they arrive. It's easy to

implement and fair, but can be very inefficient due to long

seek times if requests are scattered across the disk.

• Shortest Seek Time First (SSTF): This algorithm services the

request that is closest to the current position of the disk arm. It

significantly reduces total seek time but can lead to starvation,

where requests far from the head may never be serviced.

• SCAN (Elevator Algorithm): The disk arm moves in a single

direction, servicing all requests in its path. When it reaches the

end of the disk, it reverses direction and services the remaining

requests. This provides a good balance between performance

and fairness.

• C-SCAN (Circular SCAN): Similar to SCAN, but the disk arm

only services requests in one direction. When it reaches the

end, it quickly returns to the beginning of the disk without

servicing any requests on the return trip. This provides a more

uniform waiting time.

• LOOK and C-LOOK: These are optimized versions of SCAN

and C-SCAN. The disk arm only moves as far as the last

request in a given direction, instead of going all the way to the

end of the disk.

213
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4.2: I/O Hardware

4.2.1 I/O Hardware

The I/O hardware is the glue that allows seamless interaction between

a computer and its external environment and is a key component of any

computing system. Wide variety of I/O hardware, including keyboard,

mouse, monitor, printer, scanner, network interface, storage devices.

Each of these devices are communicating through physical hardware

interfaces and protocols to send and receive data and control state.

Introduction The fundamental operation of I/O hardware is the

communication between the CPU and peripheral devices. These

communications are usually controlled by I/O controllers, dedicated

pieces of hardware that manage data transfers and interactions with

external devices. I/O controllers serve as bridges, converting high-level

instructions given by the CPU into low-level signals that the peripheral

devices can interpret. One such device might be a disk controller, which

will handle the positioning of the disk head, along with actually

transferring the data between the disk and the system memory. Just like

a network interface controller (NIC) is responsible for sending and

receiving data packets on a network. Further training on I/O hardware

I/O hardware's continued advancement in speed, key, and connectivity

older interfaces have been superseded by high-speed variants, such as

PCI Express (PCIe) or Thunderbolt, which provide vastly improved

throughput rates compared to their predecessors (PCI & ISA). PCIe

Domination One notable aspect of the evolution of the computer

motherboard is the widespread adoption of the PCIe standard. The

evolution of USB (Universal Serial Bus) has transformed the way we

connect peripheral devices, offering a standardized plug-and-play

interface for everything from keyboards and mice when was this

difference of devices to external hard drives and cameras. USB has

gone through many generations, and USB 3.0 and USB 3.1 deliver far

greater data transfer speeds than previous iterations. These I/O

operations can be leveraged as Shared Network resources or shared

disk network, while the development of wireless technology, includes

Wi-Fi, Bluetooth that enhance the connection of I/O devices and also

allows wireless data transfer. The industry standard for wireless

network connection is Wi-Fi, and Bluetooth is used for connecting

devices like headsets, speakers, and mobile devices for short-range

214
MATS Centre for Distance and Online Education, MATS University

Notes wireless connectivity. As a result, there has been a growing need for

multimedia applications, and therefore the design of specialized I/O

hardware, like a graphics processing unit (GPU), a digital signal

processor (DSP). For instance, GPUs are specialized in accelerating

graphics rendering and parallel processing and DSPs are designed

explicitly to process audio and video. As I/O hardware gets integrated

into embedded systems and the Internet of Things (IoT), specialized

interfaces and protocols have been developed. IoT devices commonly

use low-power wireless technologies (such as Zigbee and LoRaWAN)

to connect to the network. All in all, the future of I/O hardware is

expected to be influenced by ongoing developments in high-speed

connectivity, wireless technologies, and dedicated processors, leading

to more immersive and interactive computing experiences.

4.2.2 Application of I/O Interface

Due to the versatility of I/O interfaces, they have been utilized in a

wide range of fields to facilitate communication between computing

systems and the rest of the world. One key component in the

architecture of a personal computer is the I/O subsystem that handles

input and output interactions between the user and multimedia. They

interact with software applications through the use of input devices

such as keyboards, mice, and touch screens. Visual output comes from

monitors and projectors, whereas audio output comes from speakers

and headphones. Which printers and scanners for digitizing/uploading

documents and printing output? Multimedia applications have spawned

Figure 4.2.1 I/O Hardware
[Source - https://www.tutorialspoint.com]

215
MATS Centre for Distance and Online Education, MATS University

Notes specialized I/O interfaces like HDMI and Display Port that render

high-definition video (HDMI) and audio (HDMI, Display Port) output.

USB also comes with a variant of formats various from regular A/B

shaped USB plug and cable connection for mobility or as compact as

for on the motion like portable solid-state driver, USB interface is

anyhow most widely interfaced connector amongst all peripheral

devises from external storage devices to cameras has now also become

for connectivity in mobiles and tablet. Networking I/O interfaces

connect computers and devices to both local area networks (LANs)

and wide area networks (WANs). Ethernet interface to translate the

packet on a local area network (LAN) and modems and/or routers to

bridge between the user and the internet. Examples of network

applications especially web browsing, email, and video conferencing

depend heavily on the I/O interfaces to transmit and receive data. You

are specialized in IoT and embedded systems ·Complete Input/ Output

interfaces Typically, however, serial interfaces like UART and SPI are

used for communication between embedded devices. Wireless

interfaces, including Bluetooth and Wi-Fi, provide wireless

communication capabilities for IoT devices, empowering them to

connect to the Internet. I/O interfaces play a critical role in industrial

automation systems to control and monitor machinery and processes.

I/O interfaces are used for data acquisition and control in PLCs and

DCS. I/O Interfaces: I/O interfaces play a vital role in the

communication between storage devices and computers/servers.

Common interfaces for hard drives and SSDs include SATA and

NVMe, while Fibre Channel and iSCSI are used for SANs. Storage: A

bottleneck at scale in Cloud Computing and Data Centers, which use

I/O interfaces for data transfer and storage management Cloud apps

generate enormous amounts of data, making high-speed network

interfaces and storage interfaces critical. I/O interfaces are also used in

specialized areas, including medical imaging, scientific research, and

virtual reality. I/O Interfaces are Required in Medical Imaging Devices

Instrument and scientific devices, famous are Spectrometers,

Microscopes, etc. Motion tracking and haptic feedback in virtual

reality systems is managed through I/O interfaces. The automobile and

the smarting of everything are modes of I/O interfaces that have piqued

my interest beyond abstraction in a display or monitor.

216
MATS Centre for Distance and Online Education, MATS University

Notes Security and Virtualization in I/O Operations

Such developments, alongside the traditionally more complicated

computing systems and the growing pervasiveness of virtualization

technologies, have created an environment of critical concerns of

security in I/O. The importance of securing input, output, and other I/O

operations cannot be overstated—from data breaches to system

compromises and even denial-of-service attacks, vulnerabilities found

in such interfaces could lead to disastrous consequences. Such

unauthorized access can lead to theft/corruption of sensitive data from

I/O devices. I/O drivers and firmware vulnerabilities can be exploited

by malware to control the system or attack. Secure I/O operations: the

procedures for protecting I/O devices and data from unauthorized

access and attacks This entails the use of robust authentication and

authorization mechanisms, encryption of all data in transit and at rest,

regular updating of I/O drivers and firmware to rectify security

vulnerabilities, etc. Implementing additional hardware-based security

elements, including Trusted Platform Modules (TPMs) and secure

boot, to further secure I/Os, the field of virtualization is already well

established, particularly for running multiple often disparate operating

systems on a single physical machine to maximize utilization.

217
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4.3: Disk Structures

4.3.1 Fundamentals of Disk Structures

Secondary storage, namely hard disk drives (HDDs) and solid-state

drives (SSDs), is the bedrock of virtually all computer systems today,

providing permanent data storage. Now, understanding the structure of

these disks becomes fundamental to comprehend how data is

organized, accessed and managed. Data organization HDD

Hierarchical structure Traditional HDDs use magnetic platters to store

data. Each platter is divided into concentric circles called tracks and

tracks are further divided into sectors. Sectors, which are usually 512

bytes or 4 kilobytes long, are the smallest amounts of data that can

easily be read or written. The read/write head is mounted on top of the

actuator arm and on the surface of the platters to access certain tracks

and sectors. A several platters stacked on an spindle, creating a

cylinder, which contains tracks at an equal radial distance on all

platters. The next method of addressing data is by means of cylinder,

head, and sector (CHS), though this has now been mostly replaced by

logical block addressing (LBA). LBA abstracts away these physical

details and presents the operating system with a linear sequence of

blocks. It abstracts over the disk management and enables faster data

access. In terms of components, HDD performance is impacted by the

seek time (the time it takes to move the read/write head to the correct

track), rotational latency (the time it takes for the target sector to come

into position by rotating under the head), and data transfer rate (the rate

at which data can be read or recorded to and from the disk). HDDs use

spinning disks to write data; SSDs use flash memory which removes

HDD mechanical components. Every solid-state drive (SSD) stores

data in the form of blocks and pages, where a page is the smallest unit

of a read/write operation and a block is a collection of such pages. This

is because SSDs don't suffer from seek time or rotate latency like HDDs

do, resulting in much faster access times. But SSDs can write only a

certain number of times (limited write cycles), which is why wear-

leveling techniques are used to ensure write operations are spread

across the memory cells evenly. On the disk, the file system handles

how files and directories are stored and retrieved. It stores metadata

with file names, sizes and timestamps, and allocates disk space to files.

The file system, including boot sector and file allocation table (FAT),

218
MATS Centre for Distance and Online Education, MATS University

Notes and directory structure, can be defined differently based on the

operating system and file system type (e.g. FAT32, NTFS, ext4). The

file system and the layout of various files and directories on disk, for

example.

Figure 4.3.1: Disk Structure

[Source - https://www.computersciencejunction.in]

219
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4.4: Disk Scheduling Algorithms

4.4.1 The Importance and Nuances of Disk Scheduling Algorithms

In a multitasking environment, typically multiple processes request

access to the disk at the same time, resulting in a queue of pending I/O

requests. Various disk scheduling algorithms are used to manage the

serving sequence of these requests, with the goal of reducing seek time

and thus enhancing overall disk performance. The floating-point

purposes of these algorithms have a significant impact on system

responsiveness and throughput. There are different algorithms to

detect and decrypt a given cipher text, with their own merits and

demerits. The first in, first out (FIFO) algorithm is the simplest it

services requests in the order they arrive. FCFS is fair, but seek times

can be large if requests are scattered all over the disk. Shortest Seek

Time First: For each incoming request, SSTF finds the one that has the

shortest distance from the current head position and fulfills that. One

drawback of SSTF is starvation, where requests too far from the head

get stalled indefinitely. Another simple method is the SCAN algorithm

(for "elevator"), in which the head moves in one direction, servicing

requests as it finds them, until it reaches the end of the disk and then

reverses direction. However, while SCAN is favorable for fairness, it

may still become detrimental to requests at the far side of the disk,

resulting in these requests having very long waiting times. C-SCAN

(Circular SCAN); A variant of SCAN where the disk arm services

requests in one direction only. C-SCAN offers more consistent wait

times than SCAN. Continued algorithm of SCAN and C-SCAN are

LOOK and C-LOOK respectively. They do not move to the end of the

disk but instead only the farthest request in the current direction.

Decreasing unnecessary head movement all the while enhances

performance. Depending on the workload and performance

requirement, different disk scheduling algorithms can be chosen. The

SSTF or LOOK algorithms may be used for applications with large

amounts of random workload. Instead, SCAN or C-SCAN algorithms

may be better for workloads that have sequential requests. One such

advanced disk scheduling algorithm is the Deadline algorithm, which

supports real-time guarantees based on the request deadlines. In some

cases, the OS may also employ hybrid strategies, blending various

algorithms to achieve the best performance over a range of scenarios.

220
MATS Centre for Distance and Online Education, MATS University

Notes Knowledge of the trade-offs between these algorithms is critical in

devising optimal disk management strategies.

Figure 4.4.1: Disk Scheduling Algorithm

 Source - https://www.scaler.com/topics/disk-scheduling

4.4.2 Comprehensive Disk Management Techniques

Proper disk management is essential for keeping systems functioning

efficiently, ensuring that data remains intact, and that resources are

used in an optimal manner. It involves various methods such as disk

formatting, partitioning, file system management, and disk

defragmentation. Formatting a disk sets up a file system structure that's

required to use the disk. This relies on writing metadata to the disk,

like the boot sector, the file allocation table and the directory structure.

Disk partitioning is a technique by which we divide the physical disk

into logical partitions and use these partitions to run multiple operating

systems or file systems on a single disk. Partitions are like separate

disk drives and they help keep everything organized and flexible. File

systems manage how files are stored and retrieved in storage systems.

The file system maintains data structures (such as inodes and file

allocation tables) to track the location and metadata of files. In this

article, we will learn about disk cleanup, disk defragmentation, how to

disk defragmentation and why we need to perform disk

defragmentation? How fragmentation happens over time, files can get

fragmented. Defragmentation restacks these fragments into cluster

blocks minimizing seek time and thus file retrieval. In GNU/Linux,

Disk quotas are used to limits, or restrict the amount of disk space that

221
MATS Centre for Distance and Online Education, MATS University

Notes users or groups can consume, preventing disk space exhaustion, and

thus ensuring fair resource distribution. RAID 1; Disk Mirroring RAID

1, or Disk Mirroring, creates a mirror copy of the data across multiple

disks for redundancy and flock tolerance. In the event of failure of one

disk, the system can still run with the mirrored copy. With disk striping

(RAID 0), data is spread across many disks to accelerate read/write

speeds. But RAID 0 does not offer redundancy. RAID 5 and RAID 10,

for instance, offer both striping and mirroring to provide a balance

between performance and redundancy. Disk caching can save the data

that is used very frequently in the memory and avoids the excess work

over the disk. When the cache is full, you use some cache replacement

algorithm like LRU (least recently used) or LFU (least frequently used)

to decide which data to remove from the cache. Disk scheduling

algorithms are also an important aspect of disk management and they

are discussed before where a step is taken for how to optimize the order

of I/O requests. When merged, all of them form a potent and

operational disk management system.

Figure 4.4.2: Disk Management Techniques

Source - https: //www.scaler.com/topics/operating-system/disk-management

222
MATS Centre for Distance and Online Education, MATS University

Notes Advanced Disk Management and Optimization

Also, advanced disk management encompasses more technical

strategies that enhance performance, reliability, and security. The

introduction of SSDs has brought both challenges and opportunities

for disk management. Wear leveling, garbage collection, and TRIM

commands are all functions designed to improve the performance and

longevity of the SSD. In order to avoid this premature wear the flash

controller needs to implement what is called wear leveling which

distributes the write operations among the memory cells. When blocks

are no longer needed, they will be freed up through garbage collection,

with this process helping to make writes faster. TRIM Command

Which Helps SSD to Recover Deleted Data It is accomplished through

disk encryption which secures sensitive data by encrypting it prior to

writing it to a disk. While full-disk encryption (FDE) encrypts the

entire disk, file-level encryption encrypts individual files. When files

get compressed, the amount of disk space required to store data storage

gets lessened. So that means you turn in the no compression, -- no

bzip2, -- and you run through the lossless compression algorithms

(gzip, zip). Disk snapshots → create point-in-time versions of the disk.

They are implemented using copy-on-write and redirect-on-write and

other techniques. Centralized storage solutions, such as storage area

networks (SANs) and network-attached storage (NAS), support large

environments. SANs use high-speed fiber channel or iSCSI

connections for block-level access to storage, and NAS uses Ethernet

connections for file-level access. Logical Units (LUNs) for storage are

created by these storage virtualization solutions, which abstract their

resources. and can create virtual pools of storage to efficiently resize

dynamically. Thin provisioned - storage allocated on demand to avoid

wasting space. Using storage tiering, commonly used data is

automatically placed to faster tiers, like SSDs, while data that is

accessed less frequently can remain in slower tiers, like HDDs. AI/ML

together is becoming as a powerful method to focus on performance,

reliability, and cost of storage infrastructure in organizations.

223
MATS Centre for Distance and Online Education, MATS University

Notes Emerging Trends and Future Directions in Disk Storage and

Management

Constantly innovating itself and evolving with technologies and the

data storage needs. New paradigms, such as the adoption of NVMe

(Non-Volatile Memory Express) and NVMe-oF (NVMe over Fabrics),

persistent memory technology, and the increasing use of cloud-based

storage systems, represent the future of storage, Branham added. What

is NVMe: NVMe is an interface protocol focused on high-performance

SSDs and can achieve much higher data transfer rates than other

interfaces such as SATA and SAS. NVMe-oF adds a layer of

abstraction to NVMe, allowing NVMe traffic to be sent over network

fabrics like Ethernet and Fiber Channel, facilitating high-speed remote

storage access.

4.4.3 RAID Structure

RAID (Redundant Array of Independent Disks) is a technology that

uses multiple hard disk drives to achieve redundancy and/or

performance improvements. Essentially, RAID is designed to increase

the reliability and speed of data storage by spreading the data across

multiple disks in such a manner that the impact of a single disk failure

is minimized. It was first introduced during the late 1980s in an effort

to satisfy the demand for both fault-tolerant and high-performance

storage in increasingly complex computing environments. RAID levels

differ in terms of data distribution and protection. At its most basic

level, RAID 0 (striping) splits evenly or by segments of data across two

or more disks, allowing simultaneous access that maximizes read and

write speeds. That said, RAID 0 provides no redundancy, so the failure

of a single disk results in loss of all data. RAID 1 (mirroring): Data is

stored on two (or more) disks as a copy for 100% redundancy. Whether

you lose one disk, data is still accessible from the other. RAID 1 is

known for great fault tolerance, but it halves the available storage

capacity because every piece of data is written twice. RAID 5, known

as striping with distributed parity, is a balance between RAID 0's speed

and the redundancy of having parity information spread across all of

the disks. The parity information can be used to reconstruct data in the

event of failure of any one disk, which gives a compromise between

performance and fault tolerance. RAID 6 (striping with double parity)

is like RAID 5, but includes two sets of parity data, meaning it can

224
MATS Centre for Distance and Online Education, MATS University

Notes recover from two simultaneous disk failures. RAID 10 (also known as

RAID 1+0) takes the mirroring and striping approach to combine both

high performance and high redundancy. Requires at least four disks,

with data mirrored across each of pairs of (2) disks and then striped

across the mirrored pairs. RAID 01 (or RAID 0+1) combines striping

and mirroring by striping data across disks and mirroring it to another

group of striped disks. The one significant difference between RAID

10 and RAID 01 is the order of operations: RAID 10 mirrors then

stripes, but RAID 01 stripes then mirrors. Different RAID levels cater

to varying applications based on the requirements of performance,

redundancy, and the cost. For instance, where database servers use

RAID 10 or RAID 5 for best performance and data protection, video

editing workstations may use RAID 0 for speed. Along with these

conventional RAID levels, there are also some proprietary RAID

implementations that provide additional features and capabilities.

These approaches might have different flavors of the standard levels,

or they might have completely new ways of distributing and protecting

data. There are primarily two types of RAID implementations, software

RAID, which is based on an implementation from the operating

system, and hardware RAID which is based on dedicated, physical

RAID controller. Hardware RAID provides a higher level of

performance and reliability because the RAID processing is offloaded

from the CPU, whereas software RAID is more cost-effective and

more flexible. Choosing a RAID level is a decision that balances

performance and cost from the perspective of redundancy. Making the

most appropriate selection operates based on having a crystal clean

insight of the particular non-IT related demands of the usage, in

addition to all of the high-level attributes of the RAID amounts on offer.

Moreover, new RAID formulations and optimization methods have

emerged, due to ongoing changes in storage technology like with solid-

state drives (SSDs) and NVMe. They provide far superior performance

to legacy hard disk drives (HDDs) and they need different techniques

in order to implement RAID. It is also leading to more and more RAID-

animal hybrids with SSD and HDD storage as writing in storage can be

more costly but would require only a fraction of the speed needed for

a read. RAID technology has been sold on many fronts, and the future

of RAID will most certainly lead to more seamless integration with new

storage methods and technologies and to more advanced data protection

225
MATS Centre for Distance and Online Education, MATS University

Notes solutions. This will encompass improvements on error correction,

prediction of possible failures and automated data recovery systems. It

aims at building intelligent storage systems which are self-managed,

fault free and performant.

Figure 4.4.3: Raid Controller

Source: RAID (Redundant Arrays of Independent Disks) - GeeksforGeeks

4.4.4 Distributed System Structure

A distributed system is a system whose components are located on

different networked computers, which communicate and coordinate

their actions by passing messages to one another. Such computers (or

nodes) exchange messages over a network and coordinate their

actions. Distributed system’s main purpose is to share resources and it

achieves scalability, fault tolerance, and improved availability.

Distributed systems, in contrast to centralized systems (where a single

server processes and stores data), reduce the risk of failure and increase

system performance by distributing processing and storage over

multiple nodes. While they offer numerous benefits, distributed

systems can be challenging to implement and require careful design

and management to ensure reliability and efficiency. Distributed

systems and their architecture play a vital role in promoting

performance, scalability and fault-tolerance. A very common

architecture pattern is a client-server where there are clients sending

requests to the server in orders to get some services. This is a very

common model in web applications where web browsers (clients) serve

requests for web pages from web servers. Another architectural pattern

you can choose is P2P (peer-to-peer), where all nodes are equal and

https://www.geeksforgeeks.org/dbms/raid-redundant-arrays-of-independent-disks/

226
MATS Centre for Distance and Online Education, MATS University

Notes have the same role and responsibility. Typically, P2P networks are

utilized for file sharing and distributed computing. Another one is

Layered Architecture, where the system is organized into layers, where

each layer provides a particular range of services. As a result, it

encourages modularity and results in a simpler system design.

Microkernel architecture, where the operating system kernel provides

the fewest number of services necessary and other services run in user

space. This architecture expands both flexibility and fault tolerance. In

this approach, the operating system itself is distributed among multiple

nodes, that is, a more integrated distributed operating system. This

alternative offers users a more transparent and seamless experience. Of

course, there are things to consider when designing a distributed

system, such as communication, synchronization, fault tolerance, and

security. Nodes communicate with each other by means of message

passing, that can be either synchronous or asynchronous. The former

involves synchronous communication; the sender must be willing to

wait for a response from the receiver, whereas with the latter, the

sender can keep on doing their processing without waiting for a

response. Synchronization is vital to managing the functionality of

different nodes, so that they act in a coherent and consistent way. This

can be done using different mechanisms like distributed locks and

consensus algorithms. The tolerance of faults of the system is the ability

of the given system to keep working with the failure of the nodes.

Redundancy and replication are how this is accomplished. As

distributed systems are vulnerable to multiple types of attacks, such as

denial-of-service attacks and data breaches, security is also a crucial

issue in these systems. Protecting the system and its data requires

security measures such as encryption and authentication. The

scalability of a distributed system refers to its capacity to manage

higher workloads with the addition of nodes. Horizontal scaling adding

nodes to the system, or vertical scaling upgrading the nodes' hardware,

will allow those storage systems to scale out and handle more traffic.

The decision tree for whether to scale horizontally vs. vertically is app-

specific. And how do we define the reliability of a distributed system?

They do this by the use of techniques such as redundancy, full copies

of data, and error correction and detection. Its ability to perform tasks

efficiently and effectively is the performance of a distributed system.

227
MATS Centre for Distance and Online Education, MATS University

Notes Load balancing, caching, and parallel processing are a few techniques

that will help- Distributed systems are set to witness advancements in

 Figure 4.4.5: A Distributed System

Source: https://image2.slideserve.com/3941643/a-distributed-system-l.jpg

the realm of cloud computing, edge computing, and the Internet of

Things (IoT) in ongoing future. With data being the operative word, fall

of data sizes means the systems need to be adequately sophisticated to

manage such data internally or over the network only.

4.4.5 Distributed File Systems (Approx. 1900 words)

A distributed file system (DFS), is a file system that enables clients to

access and share files stored on multiple servers over a network as if

they are stored on a single, local file system. DFSs are critical for

supporting collaboration and sharing in distributed settings. They offer

a single namespace so that users can access files without understanding

the underlying location of the file. We can find very interesting features

of DFS which make it scalable, available, fault tolerance and cover the

performance maximally. Scalability The file system's capacity to

manage growing volumes of data and user requests. This is done in two

ways either adding more servers to the system. Availability: It allows

the file system to be still available in the failure of the servers. This is

done with replication and redundancy. Fault tolerance refers to the

ability of the file system to tolerate errors or failures and continue

operating correctly. Data redundancy and error detection and correction

https://image2.slideserve.com/3941643/a-distributed-system-l.jpg

228
MATS Centre for Distance and Online Education, MATS University

Notes mechanisms are employed to achieve this. Performance defines how

fast and efficiently the file system can grant access to the files. It can

be performed with caching, load balancing, and parallel processing. A

common architecture of a DFS is a client/server model where the client

accesses files from the server. The metadata about the files, including

things like their names, permissions, and locations, are stored on one or

more metadata servers. This is where the actual file data is stored

which is on data servers. The metadata servers maintain the namespace

and information about where the file is contained, while data servers

store and access file data. Network File System (NFS), Andrew File

System (AFS) and Hadoop Distributed File System (HDFS) are

common DFS architectures. One of the most popular examples of DFS

is NFS (Network File System), which enables clients to access files

located on remote servers on the network. It uses client-server

architecture and provides an easy and efficient way to share a file. AFS

is a more advanced version of DFS with added strength, security,

scalability, and so forth. It employs a distributed caching mechanism

to boost performance. HDFS is a DFS for large-scale data processing.

It enhances the performance of the Hadoop Framework and gives a

high throughput as well as fault tolerance. With that said, designing a

DFS comes with many challenges such as naming, caching, replication,

and consistency.

4.4.6 Naming and Transparency Remote File Accesses

Naming and transparency are paramount themes in distributed systems,

especially for remote file accesses. These principles provide a way for

users and applications to behave as if they were working with files on

local disk, to speak with data located on remote servers. At core,

naming is about establishing a logical, human-friendly way to identify

and locate files in a distributed setting. This includes creating a naming

scheme which adds a layer of abstraction between the physical location

of the data and the logic used to access it, permitting users to specify a

file with a symbolic name, rather than a complex network address.

Transparency, in contrast, is the extent to which a distributed nature of

the system is hidden from users. A distributed file system should

fundamentally attempt to be as transparent as possible, where accessing

remote files should seem no different from accessing a local file. This

includes location transparency (the user doesn't know where the file

https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Hard_disk_drive

229
MATS Centre for Distance and Online Education, MATS University

Notes actually resides), access transparency (the same access methods are

employed for local and remote files), and concurrency transparency

(simultaneous access to a shared file is together without interference

from users). The difficulties in working to implement these

transparencies are profound: they involve coordinating operations

across a collection of machines, isolating the impact of network

latencies, and so on, including reintegrating which nodes may fail. The

nomenclature schemes used have to be robust, scalable and be able to

adapt to the dynamic nature of a distributed environment. These higher-

level abstractions are often implemented using techniques such as

hierarchical naming (where names to files are organized into logical

structures through directories and subdirectories, and through physical

access paths) and attribute-based naming (where files are referenced

based on their attributes). Moreover, name resolution must also be

performed by the system, as symbolic names must translate to physical

addresses efficiently.

If you have to implement remote file access systems, I suggest you

think about the different design choices you make and the overall

performance, scalability, and reliability of the system that you end up

with. The right file access protocols is one key factor. They establish

the methods of communication between clients and servers, outlining

the process of file requests and data retrieval. In file sharing, protocols

like Network File System (NFS) and Server Message Block (SMB) are

prevalent, each with its unique benefits and trade-offs. For example,

NFSis known for its simplicity and platform independence; SMBis

frequently used in home windows environments and has strong

support for file sharing and printing. Caching strategy is another

important design consideration. Caching refers to holding repeatedly

accessed information on the machines of the client, eliminating the

need to resubmit requests over a network. This can often improve

performance markedly, but also brings cache consistency challenges.

When the same file is coached by multiple clients, it must ensure that

all clients have the latest version. To solve this problem there are some

techniques such as cache invalidation, write through cache and others.

And, the system needs to deal with fault tolerance. In a distributed

system, failures are not a bug; they are a feature. Servers can crash, and

networks can be disconnected, and data can be corrupted. The files

system needs to be built to endure such failures and should guarantee

230
MATS Centre for Distance and Online Education, MATS University

Notes that services are available and data is not lost. This can include

techniques such as data replication to multiple servers, error detection

and recovery mechanisms, and using distributed consensus algorithms

to ensure consistency in the presence of failures. Another vital

component of accessing files remotely is security. The system will only

allow authorized users to expose sensitive data, and must implement

access control mechanisms for this purpose. For instance, you might

implement authentication protocols to confirm the identity of users,

apply encryption to keep data secure while it's being transmitted, and

create access control lists that limit what specific users and groups are

allowed to do.

The rise of the internet and distributed computing has left an imprint

on the development of remote file access. The initial systems

emphasized simple file sharing in localized networks. With the

increasing prevalence of networks, there was demand for more

advanced systems able to operate in large-scale distributed settings.

Evolution in remote file access: From e-mails to cloud computing In

the 1990s, the use of e-mail grew exponentially. The level of scaling

and availability of these services is like never before with the ability to

access your data from virtually anywhere on the planet. But they also

bring mew risks concerning data security, privacy, and compliance.

With the rising data generation and storage, works on efficient ways of

data storage and retrieval have also increased. Today’s distributed file

systems are designed to store petabytes and even exabytes of data,

employing techniques such as data striping, erasure coding and

distributed hash tables. There are also file access systems for mobile

devices that are more adapted to low-bandwidth and intermittent

network connections. Offline caching and data synchronization

techniques are often employed to ensure that the data served by the

application is available even if the user is not connected to the network.

This trend toward edge computing, in which data processing and

storage are pushed closer to the edge of the network, is also affecting

how remote file access systems are designed. Edge computing can help

reduce network latency and improve performance by processing data

locally. These trends are expected to shape the future of remote file

access, which will determine how we seamlessly, securely, and

efficiently access data in increasingly complex and distributed

environments.

231
MATS Centre for Distance and Online Education, MATS University

Notes There are numerous, difficult trade-offs to make when you strive for

transparency in remote file access. Network latency Fixed by:

Implementing zero-trust principles One of the key obstacles is network

latency. Data network round trip latency degrades both the network

file access response time and the remote file system performance. Many

systems approach this through techniques like caching and prefetching

that try to predict your data and pull data on your behalf before you

actually ask for it. Yet, these techniques also add additional complexity

regarding cache consistency and data staleness. The second issue is

partial failure. In a distributed environment, you can have failures in

some components while the rest are running. If this is not controlled

properly it can lead to data inconsistencies and corruption. To do this

we use distributed consensus algorithms (like Paxos and Raft) to make

sure that all replicas in the system of a file are in sync, even in the

presence of failures. These algorithms enable a set of machines to

reach consensus on a value, even if some fail. Yet, their

implementation may also be rather complex and can incur a

performance overhead. Another major concern is security. The remote

file access systems must protect the data from unauthorized access,

modification, and disclosure. This calls for strong authentication and

authorization mechanisms, together with encryption to secure data at

rest and in transit. This has led to a great focus towards security in

distributed file systems due to the rising frequency of cyber-attacks.

Scalability is another important factor to consider. File systems need

to scale as they scale to continue to feast on more users and more data.

This necessitates thoughtful design of data structures, algorithms and

protocols. Sharding (partitioning data across multiple machines) and

load balancing (distributing requests among servers) are applied to

achieve scalability. Another challenge is the variety of operating

systems and devices each client has. Client support: File systems need

to interact with a diverse set of clients, which may have varying levels

of capabilities and limitations. This may include platform-independent

protocols and data formats. the principles of naming and transparency

are central to the design and implementation of remote file access

systems. High levels of transparency in using Reveal require

overcoming many performances, consistency, fault tolerance, security,

and scalability challenges. The need for better remote file access has

emerged with the rise of distributed computing and the internet and

232
MATS Centre for Distance and Online Education, MATS University

Notes later cloud computing, which led to the development of solutions for

accessing data in new, massive and distributed environments, given the

necessary emphasis on access without intervening systems on the data

access process, while maintaining security and efficiency in data

transfer. It is probable that some of the trends that will either directly

or indirectly define the future of remote file access will include edge

computing, mobile computing, and the growing volume of data, as

there will be a need to build even more intelligent and adaptive systems.

The continued evolution of new technologies and protocols will further

enhance the performance, reliability, and security of remote file

access, allowing users to access their data from anywhere and at any

time.

Summary

Disk scheduling and distributed systems are vital components in the

operation of modern computing environments. Disk scheduling refers

to the method by which operating systems decide the order in which

read and write requests to the disk are processed. Since multiple

processes may request access to a disk simultaneously, an efficient

scheduling algorithm ensures optimal disk utilization and reduced seek

time. Common algorithms include FCFS (First Come First Serve),

SSTF (Shortest Seek Time First), SCAN, C-SCAN, and LOOK, each

offering different trade-offs in terms of fairness, speed, and complexity.

These algorithms aim to reduce the movement of the disk’s read/write

head and improve the response time for processes.

I/O hardware forms the interface between the system and external

devices. It consists of components such as device controllers, buses,

and ports that facilitate communication and data transfer. The operating

system interacts with I/O hardware using device drivers and I/O control

methods like polling, interrupts, and Direct Memory Access (DMA).

Efficient I/O handling is essential for system performance, as it

minimizes the time the CPU waits for data input or output operations.

Disk structures define how data is organized and accessed on the

physical storage medium. This includes sectors, tracks, cylinders, and

platters. Understanding the physical structure of disks helps in

designing better disk scheduling algorithms and optimizing file

systems. In distributed systems, where resources and data are spread

across multiple networked computers, coordination and consistency are

crucial. Distributed systems aim to provide users with a seamless

233
MATS Centre for Distance and Online Education, MATS University

Notes experience of a unified system while handling complexities like data

replication, synchronization, and fault tolerance in the background.

Together, disk scheduling and distributed system principles ensure that

storage and data access are managed efficiently in both local and

networked environments.

Multiple-Choice Questions (MCQs)

1. Which of the following is NOT a disk scheduling algorithm?

a) First-Come, First-Served (FCFS)

b) Shortest Seek Time First (SSTF)

c) Round Robin (RR)

d) SCAN

(Answer: c)

2. Which component is responsible for managing input and output

operations in a computer?

a) CPU

b) I/O Controller

c) Cache Memory

d) Registers

(Answer: b)

3. What is the purpose of an I/O interface?

a) To facilitate communication between the CPU and

storage devices

b) To execute user programs

c) To process high-priority interrupts

d) To store temporary data

(Answer: a)

4. Which of the following is a primary function of disk

management?

a) Process scheduling

b) Memory fragmentation

c) Formatting and partitioning disks

d) Program execution

(Answer: c)

5. Which RAID level uses striping without redundancy?

a) RAID 0

b) RAID 1

c) RAID 5

234
MATS Centre for Distance and Online Education, MATS University

Notes d) RAID 10

(Answer: a)

6. What is the key characteristic of a distributed system?

a) Centralized control over all processes

b) Multiple independent processors working together

c) Use of a single file system for all devices

d) Only local execution of processes

(Answer: b)

7. Which of the following is NOT an advantage of a distributed

file system?

a) Scalability

b) Data redundancy

c) Single point of failure

d) Remote file access

(Answer: c)

8. What is transparency in a distributed system?

a) The ability to hide implementation details from users

b) A mechanism for encrypting data

c) The process of data fragmentation

d) A technique for improving network latency

(Answer: a)

9. Remote file access allows users to:

a) Access files stored on a local disk only

b) Retrieve and modify files stored on another system over

a network

c) Use physical hard drives instead of cloud storage

d) Remove files permanently from all servers

(Answer: b)

10. Which disk scheduling algorithm favors the request closest to

the current head position?

a) FCFS

b) SSTF

c) LOOK

d) C-SCAN

(Answer: b)

Short Questions

1. What is the purpose of disk scheduling in an operating system?

235
MATS Centre for Distance and Online Education, MATS University

Notes 2. List two common disk scheduling algorithms and briefly

explain them.

3. What is an I/O interface, and why is it important?

4. Explain the basic structure of a hard disk.

5. What is the function of a RAID system, and why is it used?

6. Differentiate between RAID 0 and RAID 1.

7. What are distributed systems, and how do they improve

computing efficiency?

8. Define naming transparency in a distributed file system.

9. What is remote file access, and how does it benefit users?

10. How does a distributed file system differ from a traditional file

system?

Long Questions

1. Explain the need for disk scheduling and discuss different disk

scheduling algorithms.

2. What are the key components of I/O hardware, and how do they

function?

3. Discuss the applications of an I/O interface in operating

systems.

4. Explain the structure of a hard disk and its role in data storage.

5. Compare different RAID levels and their advantages and

disadvantages.

6. What is a distributed system, and how does it improve resource

utilization?

7. Discuss the features and architecture of a distributed file

system.

8. Explain the concept of naming transparency and its importance

in distributed systems.

9. How does remote file access work, and what are the security

concerns associated with it?

10. Analyze the challenges in implementing distributed systems

and how they can be overcome.

236
MATS Centre for Distance and Online Education, MATS University

MODULE 5

STATEFUL VERSUS STATELESS SERVICE AND

SHELL PROGRAMMING

LEARNING OUTCOMES

• To understand stateful and stateless services in OS.

• To explore different shell programming techniques.

• To study command execution processes and shell scripting.

• To analyze decision-making selections and function parameter

passing in shell scripts.

237
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5.1: Shell Programming & Introduction to Shell

Programming

5.1.1 Shell Programming & Introduction to Shell Programming

In the realm of operating systems, particularly Linux and Unix, the shell

is a crucial command-line interpreter, bridging the gap between the user

and the kernel, the core of the operating system. It allows users to

interact with the computer by executing commands, managing files,

and controlling system processes via a text-based interface. Shell

programming is simply writing the shell command language scripts for

repeating the tasks and is used to create powerful utilities. Essentially,

the shell is a command line interpreter which takes commands from

the user and translates them into instructions that the kernel can

comprehend and execute. This feature is not limited just to running a

single command; all in one and you can write complex scripts to

automate repetitive tasks, manage the system configuration, and

process data in a complex structure. By combining, controlling

execution, and calling various available commands or built-in

functionality, the shell is very powerful and flexible. The basics of

shell programming using various shells are taught as an essential aspect

of the concepts of operating system development by undergraduate

students, highlighting their significance in system administration as

well as automation. The shell environment gives students a direct view

into the inner workings of the operating system: they can experiment

with system commands and see their effects firsthand, gaining a hands-

on understanding of how the operating system works. Students

pursuing careers in computer programming, software development, and

systems administration gain important hands-on experience. Users

write shell scripts that are a single file combining multiple commands,

automating complex workflows and eliminating manual steps. Tools

and Utilities: You can write shell scripts to create custom utilities and

tools that extend the OS's capabilities, enabling users to customize their

environment according to their specific requirements. Additionally,

shell scripting offers a programming environment with access to

variables, control flow (loops and if statements), and functions, making

it a powerful medium for writing complex programs. With the help of

variables, users can store and manipulate data within scripts, and with

control structures the flow of execution can be controlled based on

238
MATS Centre for Distance and Online Education, MATS University

Notes specific conditions. With functions, a user can encapsulate reusable

code blocks, promote modularity and facilitate code reuse. Shell also

has a rich set of built-in commands and utilities like file manipulation,

references, and system administration commands which you can use

inside the scripts. All these built-in functions, along with the shell's

ability to use scripts, make it a powerful platform for building all sorts

of applications. Shell programming is a skill set that is fundamental

and a necessary basic building skill for more advanced aspects of

programming. Learning to write shell scripts teaches students critical

skills such as the ability to solve problems, think through their logic,

and break complex tasks into smaller, more readable actions. Students

aiming to be proficient programmers and system administrators

require this hands-on learning.

Shell programming is the foundation of understanding how to use

commands. The command language of the shell is made to be

predictable and simple to Joomla, its key strengths being simplicity

and versatility. Commands are usually specified as a command name,

its options, and its arguments. If options customize how a command

runs, arguments define what data or files the command manipulates.

The -l option lists the contents in a long format; so, for one example,

ls lists the contents of a directory. Structured... Shell scripts are usually

written in some text editor and saved with a. sh extension. The first

line of a shell script contains a command that indicates which shell

interpreter to use to execute the script, usually #! /bin/bash for the Bash

shell. This is called the shebang, it informs the operating system that

239
MATS Centre for Distance and Online Education, MATS University

Notes the script uses the interpreter that follows it. The shell script you can

call with a simple command like shellscriptname, and it will execute

commands sequentially, and any command can take the output of

another command using pipes and redirection. Pipes enable the output

of one command to be passed as input for another, while redirection

enables you to redirect the input and output of a command to files or

other devices. Shell programming variables: Variables are used to

store data in a shell programming script. Values are assigned to

variables using the = operator, while values can be accessed using the

$ symbol. Built-in Shell Variables: The shell also has a set of built-in

variables that provide information about the shell environment, such as

the current working directory, and the user's login name. Control

structures, (if statements, for loops, etc.) these are used by users to

execute flow control in scripts. If statements are used to execute

different commands based on specific conditions, and for loops that

enable users to iterate over a set of values or files. Functions allow users

to wrap reusable code sections, fostering modularity and code reuse.

Undergraduate students, within their learning and understanding of

these basic concepts can also start building their own shell scripts to

automate some of their tasks and processes. The big power of shell

programming being able to connect all other programming languages

and tools together. Some of the programs could be written in other

languages, such as C, Python, and Perl, and shell scripts could invoke

these programs and also pass data from one program to the other. Since

shell can integrate other utilities, it is suitable for building complicated

applications/systems. A shell script, for example, can be used to

compile and run a C program, or to manipulate data produced by a

Python script. Shell scripts can mix in with other UNIX and Linux

commands to carry out basic tasks or perform more complex actions.

Shell Environment for Debugging and Troubleshooting

(ShellNamespaces.com) The set command will enable debugging

options such as command execution tracing and variable value output.

Here at SCRIPT execution the value of the messages and the value of

the variables get displayed with the help of echo command, these are

very helpful to understand errors and find the bugs. Command-line

debuggers, like bashdb, are also supported with shell programming and

offer advanced debugging capabilities, including but not limited to

breakpoints, stepping, and variable inspection. These debugging tools

240
MATS Centre for Distance and Online Education, MATS University

Notes help undergraduate students to learn how to write solid and dependable

shell scripts. System administrators also benefit from shell

programming since they use shell scripts to automate routine tasks such

as system maintenance, managing user accounts, and monitoring

system performance. Shell scripts also enable administrators to build

custom tools and utilities that can be used for system administration

tasks, making it easier for them to work efficiently. As I mentioned

earlier, a shell script can be used to automate some tasks such as

creating user accounts, installing software packages, or copying

system files. Finally, the study of shell programming is important for

undergraduate students aspiring to build careers in computer science

and its allied fields. It is a command line shell that serves as a powerful

and flexible environment to automate tasks, to customize the operating

system and to integrate with other programming languages and tools.

Students learn the command line and write their first shell program,

without any knowledge, become the groundwork for learning about

operating systems and basic building blocks of sysadmin and

automation. If you don’t know how shell scripting sessions work, that’s

fine but you should, because writing scripts isn’t enough to be a good

shell programmer. The shell is a command line interpreter which

allows the user to input command to manage the processes, files and

configurations on the system. Shell programming is an important tool

for both system administrators and developers as it has a close link

with the operating system. Moreover, the shell provides advanced

scripting features that allow you to combine multiple commands into

a sequence of actions. The versatility of the shell comes from its ability

to compose existing commands, control the flow of the program, and

to leverage its rich set of built-in capabilities to manipulate data. Shell

programming also exposes students (primarily in their undergraduate

curriculum) to a programming paradigm which they can extend into

other languages as they learn them. These types of programming

quizzes can help students practice their problem-solving skills, as shell

scripting requires not only knowledge and skills IT but they know how

to put it to use. This hands-on experience is critical for students who

want to become competent programmers and system administrators.

The Shell Shells are essential because they enter every organization

with X applications. Shell programming allows for building complex

systems, from automating software product development workflows

241
MATS Centre for Distance and Online Education, MATS University

Notes via web servers and databases. With the advancement of technology,

the need for skilled shell programmers will only rise; it is an essential

skill for students to learn.

5.1.2 Various Types of Shells and Their Comparisons

Many more shell implementations were developed over the years, each

featuring different syntax and capabilities, targeting various user bases

and needs. These different types of shells play a significant role in

system administration and software development. Purely repercussive

shells including the Bourne shell (sh) were the very early shells whilst

targeting simplicity and efficiency, looking only towards basic

command execution and scripting functionality. The syntax of the

Bourne shell, while perhaps not as powerful as its successors, served

as the blueprint for the development of future shells. With

advancements in computing, users began to have different needs, and

thus, more advanced shells were created that had better features and

functionalities. You might also implement a more interactive feature

such as command history, job control, and aliases with csh, etc. Its C-

like syntax attracted C users, though the C shell's scripting capabilities

had received complaints as inconsistent and limited. David Korn wrote

the Korn shell (ksh), which attempted to merge the best features of the

Bourne and C shells in an interactive and scripting environment. It also

added command-line editing, job control improvements and many

other features that made it popular among system administrators. The

Bourne-Again shell (bash) is an improved version of the original

Bourne shell that adds many features from the Korn shell and C shell

and is the default shell for most Linux distributions. Bash has numerous

more advantages and options for the interactive user and the script

writer, together with command-line completion, history growth, and

plenty of scraping choices. This popularity is due to its ability to run

Bourne shell scripts, as well as its extensive feature set and

availability. In addition, yet another popular shell is the Z shell (zsh),

which is built on top of bash to provide advanced features like

advanced command-line completion, spell correction, and plugin

support. Make Zsh Your Own (and Others Again) Zsh is highly

customizable and extensible, which is why it is loved by power users

and developers. Now when it comes to comparing these shells, things

like syntax, scripting capabilities, interactive features, and

242
MATS Centre for Distance and Online Education, MATS University

Notes customization options come into play. With simplicity and efficiency,

the Bourne shell didn't offer many user-friendly features introduced in

later shells. While the C shell is interactive, it isn't that great for

scripting. The Korn shell strikes a good balance between interactive and

scripting features, while bash and zsh have plenty of features aimed

more at interactive use with the script features there too. The normal

shell to use is a matter of preference this leads to bash and zsh being

the most popular and recommended for use due to the large set of

features.

5.1.3 Command Execution

Here are the steps of command execution in a shell: parsing the

command line, executing the corresponding command, collecting the

result. The shell is the command-line interface that is responsible for

processing user input. It expands. The shell makes lots of expansions

variable expansion, tilde expansion, wildcard expansion, and so on to

fix any special characters or variables in the command line. Variable

expansion will put the value of variables instead of the variables in

command, which allows us to build a command dynamically. Tilde

expansion refers to the opening of a user account in this directory using

the tilde character (~) for ease of use, so that users do not have to write

out the full path to the user's home directory when the file or directory

is in the home directory. Using Wildcard expansion means expanding

the patterns using Wildcards like and?, thus allowing a user to perform

operations and actions on multiple files with a single command. Then,

after the parsing and argument expansion the shell checks whether the

command executed is a built-in command or an external command

Built-in commands include the commands that are implemented in

shell itself, eg commands like cd, echo, exit etc. The commands here

are run in the shell itself without invoking a new sub process. External

commands refer to program residing on a file system like ls, grep, and

gcc. When an external command is executed, the shell forks a new

process calling fork system call and the image of the new process is

then replaced with the specified program using the exec system call.

Creating a child process through the fork system call including a new

process replacing its memory through the exec system call The shell

also waits for the process to terminate by using the wait system call

once the program executes. Next, the shell collects the exit status of

243
MATS Centre for Distance and Online Education, MATS University

Notes the process, which tells it if the command successfully executed or if

an error occurred. Input Output Redirection (Using and) Shell uses

special characters like and to redirect input and output. The input is read

from a file using input redirection Used to send the output from one

command to another command as input, which gives the user the

ability to elaborate commands and create complex operations. Another

topic which is essential to command execution is job control, allowing

users to run multiple processes at one time. The shell has commands

like bg, fg, and jobs to manage the transitions between foreground and

background processes, and to list background jobs that are currently

running. In addition to handling separate processes, the shell also

handles signals, which are messages sent to any process to notify it of

asynchronous actions like interrupts, termination requests, and errors.

The shell includes commands such as kill that are used to send signals

to processes, enabling the user to kill or otherwise control their

behavior. The understanding of these steps and functionalities is

required to work with command line in an efficient manner as well as

scripting.

The shell, as the command-line interface (CLI), is the fundamental

program responsible for processing user input and orchestrating the

execution of commands. It acts as an interpreter, translating human-

readable instructions into actions the operating system can understand.

Understanding the steps involved in command execution is crucial for

efficient command-line usage and effective shell scripting.

Step 1: Parsing the Command Line and Expansions

When a user types a command and presses Enter, the shell doesn't

immediately execute it. Instead, it first parses the command line,

breaking it down into individual components (command and

arguments) and then performs various expansions. These expansions

replace special characters and variables with their actual values,

constructing the final command string that the system will interpret.

1. Variable Expansion: This is one of the most common expansions.

When the shell encounters a variable (e.g., $HOME, $PATH, or

user-defined variables like $my_var), it replaces the variable name

with its stored value. This allows for dynamic command

construction, where parts of a command can change based on the

environment or user input.

244
MATS Centre for Distance and Online Education, MATS University

Notes Example: echo "My home directory is $HOME" will replace $HOME

with /home/username (or /Users/username on macOS).

2. Tilde Expansion: The tilde character (~) is a convenient shortcut

for a user's home directory. When the shell sees a ~ at the beginning

of a path, it expands it to the full path of the current user's home

directory (e.g., /home/username). This saves typing and makes

commands more portable.

Example: ls ~/documents is expanded to ls

/home/username/documents.

3. Wildcard Expansion (Globbing): Wildcards are special

characters that allow users to specify patterns for multiple files or

directories. The shell expands these patterns into a list of matching

file names before the command is executed.

o * (asterisk): Matches any sequence of zero or more characters.

Example: ls *.txt expands to ls file1.txt report.txt data.txt

o ? (question mark): Matches any single character.

Example: mv file?.log expands to mv fileA.log fileB.log

o [] (brackets): Matches any one of the characters enclosed within

the brackets, or a range of characters.

Example: rm [abc]*.tmp expands to rm afile.tmp bdata.tmp cdoc.tmp

After these expansions, the shell has a fully resolved command and a

list of arguments ready for execution.

Step 2: Determining Command Type and Execution

Once the command line is parsed and expanded, the shell determines

whether the command is a built-in command or an external

command. This distinction is critical because it dictates how the

command is executed.

1. Built-in Commands: These are commands that are an integral part

of the shell itself. They are implemented directly within the shell's

executable code and do not require a separate program to be

launched.

Examples: cd (change directory), echo (print text), exit (terminate

shell), pwd (print working directory), source (read and execute

commands from a file in the current shell context).

Execution: When a built-in command is encountered, the shell

executes it directly within its own process. This makes built-ins very

fast as they avoid the overhead of creating a new process.

245
MATS Centre for Distance and Online Education, MATS University

Notes 2. External Commands: These are executable programs or scripts

that reside as separate files on the file system. They are not part of

the shell's internal code.

Examples: ls (list directory contents), grep (search text), cat

(concatenate files), gcc (GNU C Compiler), python (Python

interpreter).

Location: For the shell to find an external command, its location must

be specified in the PATH environment variable. The shell searches

through the directories listed in PATH (e.g., /usr/local/bin, /usr/bin,

/bin) to find the executable file.

Execution Process (Fork and Exec):

Fork: When an external command is to be executed, the shell makes a

system call named fork(). This fork() system call creates a new, exact

copy of the current shell process, known as a child process. This

child process inherits most of the parent shell's environment, including

open file descriptors, environment variables, and current working

directory.

Exec: Immediately after the fork(), the child process makes an exec()

system call (e.g., execve()). The exec() system call replaces the entire

memory image of the child process with the program specified by the

external command. This means the child process stops being a copy of

the shell and becomes the new program (e.g., ls). The exec() call does

not create a new process ID; it replaces the current process with a new

program.

Wait: Meanwhile, the original parent shell process (which created the

child) typically makes a wait() system call. This wait() call causes the

parent shell to pause its own execution and wait for the child process

(the executed command) to complete.

Termination: Once the child process (the external command) finishes

its execution, it exits. The parent shell, which was waiting, then

resumes its own execution.

Step 3: Collecting the Result (Exit Status)

Upon the termination of a command (whether built-in or external), the

shell collects its exit status. The exit status is an integer value that

communicates the success or failure of the command.

• By convention, an exit status of 0 (zero) indicates successful

execution.

246
MATS Centre for Distance and Online Education, MATS University

Notes • Any non-zero exit status (e.g., 1, 2, 127) indicates that an error

occurred or the command terminated abnormally. Different non-

zero values often correspond to specific types of errors. The exit

status is stored in a special shell variable, $?, which can be checked

by scripts to control their flow based on the outcome of previous

commands.

Advanced Functionalities: Redirection, Pipelines, Job Control, and

Signals

The shell offers powerful features that extend simple command

execution to enable complex operations and process management.

1. Input/Output Redirection: The shell uses special characters to

alter where a command reads its input from or sends its output to.

Output Redirection (>, >>):

▪ >: Redirects a command's standard output to a file, overwriting the

file if it already exists.

▪ >>: Redirects a command's standard output to a file, appending to

the file if it already exists.

▪ Example: ls -l > file_list.txt (sends the ls output to file_list.txt)

Input Redirection (<): Redirects a command's standard input to read

from a file instead of the keyboard.

▪ Example: grep "pattern" < input.txt (reads input for grep from

input.txt)

Error Redirection (2>): Redirects standard error (stderr) to a file.

▪ Example: command_that_might_fail 2> error.log

2. Pipes (|): The pipe operator allows the output of one command to

be directly fed as the input to another command. This enables

chaining commands to perform sophisticated operations.

Example: ls -l | grep ".txt" | sort (lists files, filters for .txt files, then

sorts the result)

3. Job Control: This functionality allows users to manage multiple

processes concurrently, moving them between the foreground and

background.

• Foreground Process: A process actively interacting with the user,

receiving input from the terminal.

• Background Process: A process running independently in the

background, not requiring immediate interaction, freeing up the

terminal for other commands.

• Commands:

247
MATS Centre for Distance and Online Education, MATS University

Notes ▪ &: Runs a command in the background immediately.

▪ Ctrl+Z: Suspends the current foreground process.

▪ bg: Resumes a suspended process in the background.

▪ fg: Brings a background or suspended process to the foreground.

▪ jobs: Lists all currently running or suspended background jobs.

4. Signals: Signals are software interrupts or asynchronous

notifications sent to processes to inform them of events. The shell

allows users to send signals to manage process behavior.

• Common Signals:

▪ SIGINT (Interrupt - Ctrl+C): Typically terminates a process.

▪ SIGTERM (Terminate): Requests a process to terminate gracefully.

▪ SIGKILL (Kill): Forcibly terminates a process (cannot be caught or

ignored by the process).

▪ SIGHUP (Hangup): Often used to signal a process to reload its

configuration.

• kill Command: The kill command is used to send specific signals

to processes, identified by their Process ID (PID).

▪ Example: kill 9 12345 (sends SIGKILL to process with PID 12345)

Mastering these steps and functionalities provides a robust foundation

for effective command-line interaction and advanced shell scripting,

transforming the shell from a simple command runner into a powerful

environment for system administration and automation.

5.1.4 Detailed Breakdown of Command Execution Processes

In order to do more details about command execution, we need discuss

what happens behind the scene. The shell’s parser goes to work as soon

as a command is typed; breaking down the input into its parts: the

command name, any arguments, and options. Parsing is a critical stage

for the shell to know the user's intention. After parsing, the shell begins

a sequence of expansions to convert the command line to its equivalent

executable form. The heart of Bash, variable expansion replaces

variables with their assigned values, enabling the flexible crafting of

commands. Variable DIR is set to /home/user/documents so when

command cd $DIR runs it is substituted into of cd

/home/user/documents before executing. Tilde expansion is a shortcut

for navigating and designating files, converting ~ to the user's home

directory. Another powerful feature of the shell is wildcard expansion,

which lets you apply operations to multiple files based on a pattern.

For instance, ls. Txt will show the output of all files with. in the

248
MATS Centre for Distance and Online Education, MATS University

Notes current directory. Hash table or after expansions, the shell determines

whether the command is built-in Unix like operating system command

execution is an essential concept that enables all user interactions and

system activities. Once a user provides a command to the shell, it goes

through a complex sequence of processes that converts the command

to actions that can be executed. First, the shell parses the command line,

splitting it into separate tokens, like the command name and its

arguments. This parsing includes anything from interpreting special

characters, to quote-handling to wildcard expansion. The shell also

aliases, allowing users to define custom command line shortcuts to

possible forward to common command lines. After that, the shell looks

for built-ins, commands that are built into the shell itself, like cd, echo,

or exit. In case the command is built-in, the shell executes the command

itself, so no new process needs to be created. Then if the command is

not a built-in, the shell searches the directories in the PATH

environment variable for an executable file of this name. PATH is a

colon-separated list of directories that the shell looks through, in turns.

The shell forks a new process using the fork system call when it has

located the executable file. The child process subsequently invokes the

exec set of system calls to overlay its image with the executable file of

its command. The parent shell process, on the other hand, invokes the

wait() system call to block whilst the child process executes. The input

and output streams are controlled via file descriptors when the

command is executed. Standard input (stdin), standard

output(stouts)and standard error(stderr) are usually attached to the

terminal, but they can be redirected to files or passed to other

commands. The shell also handles environment variables (key-value

pairs that hold relevant information to processes). These variables can

affect the way commands execute and are passed through to sub

processes. After executing the command, the child process exits,

providing an exit status reflecting success with zero or an error with a

positive integer. The parent then displays its prompt, awaiting the next

command. From parsing the command line to managing input/output

and environment variables, the shell orchestrates this entire process,

and acts as the main interface between the user and the kernel of the

operating system. Therefore, for the effective fulfillment of tasks of a

system administrator and shell programmer, it is important to have

knowledge of this process to understand the very process of command

249
MATS Centre for Distance and Online Education, MATS University

Notes execution and control over it. In this context, shell programming, the

act of developing scripts that automate and enhance the capabilities of

the command-line interface, is an incredibly powerful tool for both

system administrators and developers. Different shells, like Bash, Zsh,

and Ksh, offer different levels of features and syntax, with their

respective strengths and weaknesses. Bash (Bourne Again SHell) is a

widely used Linux shell that is the default shell in many distributions,

and it is also the most commonly used shell for writing scripts. You

can use variables, conditional statements, loops, and functions within

Bash scripts to create complex automation routines. Bash variables are

dynamically typed and can hold strings, numbers, or arrays. Flow

Control; Uses conditional statements for decision making (if, elif, else)

Sequence, selection, and repetition: The sequence section specifies a

list of commands to execute one after the other, while conditional

execution (via an if statement) allows for decisions to be made in the

flow of code, and for loops, such as for and while, permit commands to

be executed in repeat for a number of times, automating tasks that

would otherwise require manual intervention. Bash functions help in

making the scripts modular, organized, and reusable. Another popular

shell is Zsh (Z Shell), which extends many of the features found in Bash

and also offers better tab completion, spell checking, and theming. Zsh

is highly customizable and configurable, making it great for users that

want to make their shell environment suited to their specific freedoms.

Enter Ksh (Korn Shell) a shell that merges the best of Bourne shell and

C shell, providing an efficient and powerful scripting environment.

These two features make ksh widely used in terms of performance

while retaining compatibility for older shell scripts. Another thing to

keep into consideration when writing shell scripts is that there are best

practices—using comments to explain what the code is doing, using

proper variable names, error handling, and so on. Error handling is done

by conditional statements and the trap command, which enables the

execution of certain commands on receiving certain signals. Shell also

communicates with the operating system by making system calls or

executing any external commands.

250
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5.2: Shell Programming in Different Shells

5.2.1 Shell Programming in Different Shells

The script uses grep to search for pattern(s) in files, or use sed to

perform basic text transformations. Automation alone is just a small

part of writing shell scripts, but to add more utilities that help within

the command-line interface. Learning shell programming can help

users automate tasks, understand the inner workings of the shell, and

improve their productivity. Now a further look into shell programming

in one of the most popular shell, Bash shows a lot of rich functionality

for automating complex tasks. A bash script starts with a shebang line,

Already, the first line starts with /bin/bash, which refers to the

interpreter that is used to run the script. Bash does not require explicit

types when declaring variables, which are referenced using the prefix.

syntax is used for arithmetic operations, and various built-in commands

or parameter expansions are used for string manipulations. Conditional

statements including if, elif, and else are used to make decisions based

on whether an expression evaluates true or false in Bash. These may

be comparisons of strings, numbers, or file properties. Bash loops: for,

while and until loop in Bash allow you to run the same command

multiple times. The for loop is especially handy to iterate over

collections of items; whereas while and until loops are used to iterate

conditionally. In Bash, you define a function by writing the keyword

function, or by writing the function name followed by parentheses.

Makes up the arched arguments and return values that enable modular

and reusable code. One of the core parts of bash scripting is the input

and output redirection. The operator writes standard output to a file, and

the operator appends standard output to a file. Pipes Let’s us link

commands together so that the output from one command is the input

to the next command. Bash error handling can be done using

conditional statements and trap command. The command trap enables

us to execute some specific commands whenever we receive some

signals such as, SIGINT (interrupt), SIGTERM (terminate) etc. It

offers several built-in commands like grep, sed, awk, and cut for text

processing and data manipulation. Together with its scripting

capabilities, Bash can easily be one of the most powerful tools in

automating work and managing systems. Learning what Bash scripts

are and why they matter are key for any Linux or Unix-like operating

251
MATS Centre for Distance and Online Education, MATS University

Notes systems user looking to write automation that is as efficient and

effective as possible.

While Bash has wide availability, features unique to Zsh and Ksh

showcase the variety of shell programming. Zsh provides more

powerful interactive features like improved tab-completion, spelling

correction and a powerful theming system. That is not all, the tab

completion in Zsh is context-sensitive, suggesting commands

depending upon the type of command and the arguments being passed

against them. Say goodbye to typing long command names and file

paths, this feature improves our productivity considerably. So, user's

after most time are looking for more spelling verification, Zsh

automatic corrects typos for command names and file paths, making

the interactive experience better. Zsh theming feature provides

customizing functionality to alter the look and feel of the shell prompt

and surrounding components. In addition to this, Zsh offers advanced

scripting features like arrays and associative arrays alongside regular

expressions, which makes it an excellent tool for automating complex

tasks. Another powerful shell that combines features of a Bourne shell

and a C shell is Ksh, the Korn Shell. Ksh does, however, have great

performance and compatibility with older shell scripts. Ksh supports

functions, arrays, arithmetic operations and all the other bells and

whistles a programming language would have. Ksh also supports

powerful features like co-processes, enabling commands to run

simultaneously. This is Ksh as it plays along with legacy Bourne shell

scripts popular with many system admin type users. Shell is broadly

categorized into two different ways, which is, one is Zsh and Ksh that

have some syntax and file features. Hope this answers your question

while most of the fundamental features and syntax (for example:

variables, conditional branching statements, looping constructs) are

similar albeit with minor variations in all of these shells, the differences

can be subtle enough to mess up the behaviour of your scripts. For

instance, Bash's syntax for arithmetic operations, or array

manipulations, is different from Ksh and Zsh. The aim of this article

is to explore these differences and ultimately to write portable and

compatible shell scripts, Zsh has many interactive features that make it

a better choice for interactive work, while Ksh may perform better for

system administration tasks. This can help users to expand their shell

programming toolkit and pick the individual shell that may serve them

252
MATS Centre for Distance and Online Education, MATS University

Notes best. To summarize, command execution process and shell

programming are the integral concepts of Unix and Unix-like operating

systems. The shell remains the primary interface between the user and

the kernel, handling the actual execution of commands and overseeing

input/output and environment variables. Shell programming, the art of

writing scripts that automate tasks and extend the utility of the

command-line interface, is a powerful weapon in the arsenal of any

system administrator or developer. There are different shells like Bash,

Zsh, and Ksh with different levels of both features and syntax. Here we

will focus on "Bash" the popular default shell used on many Linux

distributions. The parameter passing is the mechanism in which the

values are sent from a function to its caller. When a function is

invoked, its caller has to provide the values that will be passed as

arguments to the function to perform its operation. The two main

forms of parameter passing are pass-by-value and pass-by-reference.

Pass by value is when you pass a copy of the value of the argument to

the function. The parameter is a local variable within the function that

refers to the same object in memory as the argument passed when the

function is called. This approach is used when the function needs a

copy of the data to work with and is not going to modify the original.

This gives the caller more control over their data, providing a degree of

safety by preventing unplanned side effects, since the callee never has

access to the original data. Instead, pass-by-reference passes the

address in memory of the argument being passed to the function. Any

modification to the parameter inside the body of the function modifies

the argument in the caller. This is required when the function may need

to update the data inside caller or typically used for large data

structures where copying it would be costly. Pass-by-reference enables

functions to alter multiple values and to produce results via their

parameters. But it also has the potential for unintended side effects: If

the function changes the caller’s data in an unexpected way. Pass-by-

constant-reference is a similar variation some programming languages

do offer this is when the function can access the caller's data, but there

is no ability to modify it. This gives the performance of pass-by-

reference, but the data protection of pass-by-value. Many times, you

need to decide if you want to pass-by-value or pass-by-reference. If

you want a function to be able to change the data from the caller, then

pass-by-reference is the way to go. If the function only needs to work

253
MATS Centre for Distance and Online Education, MATS University

Notes with a copy of the data (for example, if it is going to mutate it), then

you should use pass-by-value as it is a lot to pass the data structure as

a reference. It is really important to know how args are passed because

it matters for writing efficient and correct code passing a parameter

incorrectly causes obfuscated bugs which are hard to find and correct.

For instance, passing a complex data structure by value incurs an

overhead in performance because of the copying process. Just as we

can accidentally modify the caller's data by passing the variable by

reference manually, we can do this just as easily by passing it by a

default value. Parameter passing is not confined to primitive data types;

it is also relevant for complex data structures, including arrays, objects,

and pointers. Similar rules apply for when passing arrays or objects,

however may differ from language to language. Some programming

languages may pass arrays by reference, while others may use

relinquish via value by default. Details of our parameter passing are

also important in function interface designs Developers can write

flexible and robust functions by carefully selecting the correct

parameter passing strategy. They are able to design reusable

components that can be easily integrated into different parts of a

program. Long story short, parameter passing is a fundamental concept

in programming that enables functions to communicate with their

callers.

Shell programming, or scripting, is the process of writing commands in

a shell to automate tasks, perform administrative functions, and create

powerful command-line tools. While all shells serve as an interface to

the operating system, different shells offer unique features and syntax,

catering to different user needs. The choice of shell often depends on

whether the primary goal is robust scripting, interactive use, or a

balance of both.

Bash (Bourne-Again Shell)

Bash is the most widely used shell on Linux and macOS, serving as the

default shell for many distributions. It's an enhanced version of the

original Bourne Shell and is POSIX-compliant, which means scripts

written for it are highly portable across different Unix-like systems.

This makes Bash the de facto standard for general-purpose shell

scripting.

• Key Features: Bash excels at robust scripting. It supports a

comprehensive range of control flow statements (if-else, for

254
MATS Centre for Distance and Online Education, MATS University

Notes loops, while loops), functions, arrays, and associative arrays. It

also includes useful interactive features like command history

and command-line editing.

• Syntax: Its syntax is well-established and powerful. Variables

are declared without special characters (e.g., my_var="hello")

and accessed with a dollar sign ($my_var). Conditional

expressions often use [] or [[]].

Example Bash Script:

Bash

#!/bin/bash

echo "Hello, what is your name?"

read name

if ["$name" == "Bash"]; then

 echo "Welcome, mighty shell!"

else

 echo "Hello, $name."

fi

Zsh (Z Shell)

Zsh is a modern and highly customizable shell that builds on the

features of Bash. While it is largely Bash-compatible, it introduces

significant improvements that make it a favorite for interactive use.

Zsh's powerful features have led it to become the default shell on

macOS since Catalina.

• Key Features: Zsh's primary appeal lies in its interactive

enhancements, such as intelligent and extensive tab

completion for commands and file paths, built-in spell

correction, and advanced globbing (wildcard expansion). It also

has a more powerful history command. The most notable

feature is its vibrant ecosystem of plugins and themes,

particularly through frameworks like Oh My Zsh.

• Syntax: Zsh's scripting syntax is very similar to Bash, making

it easy for Bash users to transition. However, it offers some

255
MATS Centre for Distance and Online Education, MATS University

Notes advanced features, such as for loops over C-style syntax and an

improved way to handle arrays.

Example Zsh Script:

Bash

#!/bin/zsh

files=(*.log)

if ((${#files} > 0)); then

 echo "Found log files: ${files[@]}"

else

 echo "No log files found."

Fish (Friendly Interactive Shell)

Fish is a unique shell designed from the ground up to be user-friendly

and interactive. Unlike Bash and Zsh, it is not POSIX-compliant,

which means its syntax is different and scripts written for it won't run

in other shells. This non-compliance allows for a simpler, more

intuitive syntax.

• Key Features: Fish provides out-of-the-box features that

require plugins in other shells. These include syntax

highlighting, intelligent auto-suggestions as you type based on

command history and man pages, and a simple configuration

process.

• Syntax: Fish's syntax is much more like a high-level

programming language. It uses end to close blocks (if, for,

function), and variables are scoped by default (set for local, set

-g for global). It avoids the complex quoting and special

characters common in other shells.

Example Fish Script:

Code snippet

#!/usr/bin/env fish

echo "Hello, what is your favorite color?"

read color

256
MATS Centre for Distance and Online Education, MATS University

Notes if test "$color" = "blue"

 echo "Blue is a great color!"

else

 echo "That's a nice color too."

end

5.2.2 Comparison of Shell Features in Detail

Building on the above shell comparisons, the unique set of features of

each opens them up for specific use cases and a dedicated user base.

The Bourne shell is the most basic (the original) and most portable. Its

syntax, although bleak compared to shells in widespread use today, is

extremely consistent, meaning it’s great for writing scripts that need to

work on a huge number of systems. Its main purpose is to execute

commands and handle simple scripting tasks. But it does not implement

any of the interactive features like command history, job control,

aliases or things that modern interactive usage relies upon. The C shell

(csh), aimed at a more casual user base, brought many virtual machine-

like features that fundamentally changed how users interacted with

commands and their arguments. It was much more convenient for

interactive use due to its command history, aliases, and job control. Yet,

the scripting functionalities were often mocked for their inconsistencies

and non-standard syntax. Things like its handling of control structures

and variables were seen as clunky and error-prone. To overcome the

limitations of both Bourne and C shell, the Korn shell (ksh) was

introduced which provided a powerful versatile environment for

interactive use as well as scripting. It combined features from shells,

including command-line editing, improved job control, and better

scripting features. Its scripting syntax, for instance, was bolder and

more consistent than that of the C shell, which made it a favorite of

systems administrators and developers alike. The Bourne-Again shell

(bash) is one of the most popular it is compatible with Bourne shell

scripts, comes with many powerful features, and is very commonly

available. Bash is as customizable as it gets and has tons of features

under the hood for interactive use as well as for scripting. Its powerful

command-line completion, history expansion, and rich scripting

capabilities make it popular with both casual users and advanced

developers. Bash is an acronym for the Bourne Again Shell, signaling

257
MATS Centre for Distance and Online Education, MATS University

Notes that its scripting syntax is from the Bourne shell, but with many

improvements and extensions that deliver much more power and

flexibility. Fast forward to zsh, which adds even more advanced

features on top of bash. Power users and developers love it for its

enhanced command-line completion, spelling correction, and its

support for plugins. Zsh is customizable and extensible, enabling users

to customize their shell environment according to their needs. Oh My

Zsh, its plugin system, offers a large library of plugins and themes, so

you can easily extend the shell's functionality and appearance. All

shells have their own unique strengths and weaknesses, so users should

evaluate based on individual requirements. The Bourne shell might be

enough for some simple scripting tasks. The C shell or Korn shell

might be good for writing the shell scripts interactively. For a robust

and flexible shell that works great interactively and can be scriptable

faster than you can say "reverse-timestamp-auto complete", bash or zsh

is the way to go. If you prefer a command-line shell that is compatible

with most Unix systems, Bash would be a good option, whereas if you

want extensive customizability, zsh would be preferable.

Summary

Shell programming is a powerful method for automating tasks in Unix-

like operating systems by writing scripts composed of shell commands.

It serves as a user interface between the user and the operating system,

allowing command execution, file manipulation, program execution,

and text output in a programmable format. Shell scripts can include

loops, conditionals, and variables, making them useful for automating

repetitive tasks such as backups, software installation, and log analysis.

Shell programming supports logic control structures similar to those

found in high-level programming languages, allowing complex

workflows to be expressed concisely in a script.

Different types of shells are available, each offering unique features and

syntax. Common shells include the Bourne Shell (sh), Bourne Again

Shell (bash), C Shell (csh), Korn Shell (ksh), and Z Shell (zsh). Bash is

the most widely used, particularly in Linux environments, and provides

extensive scripting capabilities, compatibility with the original Bourne

shell, and advanced features such as command history, job control, and

tab completion. C Shell, on the other hand, uses a syntax resembling

the C programming language, making it preferable for users with a

background in C. Korn Shell combines features of both the Bourne and

258
MATS Centre for Distance and Online Education, MATS University

Notes C shells, offering advanced scripting functionality and performance

improvements.

Writing shell programs involves understanding shell-specific syntax

and conventions. A script typically begins with a "shebang" (#!) line

that indicates the interpreter to be used, followed by a series of

commands or logic structures. Shell programming is particularly

valuable in system administration, as it allows administrators to write

scripts to monitor systems, manage user accounts, and perform routine

maintenance tasks. It simplifies the execution of batch commands and

helps users to create customized workflows tailored to their system

needs.

Multiple-Choice Questions (MCQs)

1. Which of the following is NOT a type of shell in Unix/Linux?

a) Bourne Shell (sh)

b) Korn Shell (ksh)

c) Python Shell (pysh)

d) C Shell (csh)

(Answer: c)

2. Which shell is the default for most Linux distributions?

a) C Shell (csh)

b) Korn Shell (ksh)

c) Bash (Bourne Again Shell)

d) Z Shell (zsh)

(Answer: c)

3. In a shell script, which symbol is used for comments?

a) //

b) #

c) /* */

d) $

(Answer: b)

4. Which command is used to make a shell script executable?

a) chmod +x script.sh

b) execute script.sh

c) run script.sh

d) compile script.sh

(Answer: a)

5. What is the correct syntax for an if statement in a shell script?

a) if (condition) then ... fi

259
MATS Centre for Distance and Online Education, MATS University

Notes b) if [condition]; then ... fi

c) if condition { ... }

d) if: condition -> ... fi

(Answer: b)

6. Which command is used to display the currently running

processes in Linux?

a) ps

b) ls

c) pwd

d) kill

(Answer: a)

7. What is the purpose of the read command in shell scripting?

a) To print text on the screen

b) To read input from the user

c) To delete a file

d) To execute another script

(Answer: b)

8. Which loop structure is used in shell scripting to repeat

commands?

a) while

b) do-while

c) until

d) Both a and c

(Answer: d)

9. Which symbol is used for passing parameters to a shell script?

a) &

b) %

c) $

d) #

(Answer: c)

10. What is the function of the grep command in shell scripting?

a) To search for a pattern in a file

b) To copy a file

c) To move files

d) To delete files

(Answer: a)

Short Questions

1. What is shell programming, and why is it used?

260
MATS Centre for Distance and Online Education, MATS University

Notes 2. List and explain three types of shells in Unix/Linux.

3. What is the difference between interactive and non-interactive

shells?

4. How does command execution work in a shell?

5. What is the purpose of the shebang (#!) line in shell scripts?

6. How does decision-making work in shell programming?

Provide an example.

7. What is a function in shell scripting, and why is it useful?

8. How can parameters be passed to a shell script? Provide an

example.

9. Explain the use of filters like grep, awk, and sed in shell

programming.

10. What is the difference between $1, $2, and $@ in shell

scripting?

Long Questions

1. Explain the concept of shell programming, its importance, and

common applications.

2. Compare various types of shells (sh, bash, csh, ksh, zsh) and

their differences.

3. Discuss the command execution process in Linux, from user

input to execution.

4. Write a shell script to check if a given number is even or odd.

Explain the script.

5. What is decision-making in shell scripting? Provide examples

of if, case, and for loops.

6. Explain functions in shell scripting, how they work, and their

advantages.

7. How does parameter pass and argument handling work in shell

scripting? Provide examples.

8. Describe how filtering commands like grep, sed, and awk are

used in shell programming.

9. Explain error handling and debugging techniques in shell

scripting.

10. Write a shell script that accepts a filename as an argument and

checks whether it exists and is readable. Explain the script.

261
MATS Centre for Distance and Online Education, MATS University

Notes Glossary

Operating System (OS): A system software that manages hardware and

software resources, providing services for computer programs.

Process: A program in execution, which includes the current activity,

program counter, registers, and variables.

Kernel: The core component of the operating system that controls all

system operations and hardware communication.

System Call: A request made by a program to the OS for performing

tasks like file manipulation or process control.

Multitasking: An OS feature that allows multiple processes to run

concurrently by time-sharing CPU resources.

Process State: The current status of a process, typically categorized as

new, ready, running, waiting, or terminated.

Process Control Block (PCB): A data structure maintained by the OS

for each process, containing process ID, state, program counter, CPU

registers, and memory management info.

Contiguous Memory Allocation: Memory allocation method where

each process gets a single, continuous memory block. Prone to

fragmentation.

Paging: A memory management technique that breaks physical and

logical memory into fixed-size blocks to enable non-contiguous

allocation.

Demand Paging: A strategy where pages are loaded into memory only

when they are required during execution, reducing memory usage.

Page Table: A data structure used to map logical pages to physical

frames in paging systems.

Page Fault: An interrupt triggered when a process tries to access a page

not currently in memory.

Thrashing: A condition where excessive paging operations hinder

system performance due to insufficient memory.

Disk Scheduling: The method used by OS to determine the order in

which disk I/O requests are processed to optimize performance.

FCFS (First-Come, First-Served): A disk scheduling algorithm that

serves I/O requests in the order they arrive.

SSTF (Shortest Seek Time First): Disk scheduling algorithm that serves

the request closest to the current disk head position.

262
MATS Centre for Distance and Online Education, MATS University

Notes SCAN and LOOK: Disk scheduling algorithms where the disk arm

moves in one direction to service requests, then reverses.

Distributed System: A model where processing is distributed across

multiple networked computers, working as a single system.

I/O Hardware: Physical devices used for input/output operations, such

as keyboards, printers, disk drives, and controllers.

Disk Structure: The layout of data on a hard disk, including platters,

tracks, sectors, and cylinders.

Stateless Service: A service that does not retain client information

between sessions. Each request is treated independently.

Stateful Service: A service that maintains state information across

multiple requests from the same client.

Shell: A command-line interface between the user and the OS for

executing commands and running programs.

Shell Script: A file containing a sequence of shell commands for

automated execution.

Bash (Bourne Again Shell): A widely used Unix shell that supports

scripting, command history, job control, and more.

sh, csh, ksh, zsh: Different Unix shell types with varying syntax and

capabilities for scripting and user interaction.

Echo: A shell command that prints text to the terminal.

Variables (in Shell): Used to store data values in a script, defined using

var=value syntax.

Conditional Statements (Shell): Used to make decisions in scripts,

using if, else, elif, and case.

Looping (Shell): Shell constructs like for, while, and until used to repeat

code blocks.

Command Substitution: Allows the output of a command to replace the

command itself using backticks (`) or $(...).

Redirection: Used to direct input/output from/to files instead of the

default terminal using >, <, >>.

Pipelines (|): A feature that passes the output of one command as input

to another.

263
MATS Centre for Distance and Online Education, MATS University

Notes References

Chapter 1: Introduction to Operating System

1. Silberschatz, A., Galvin, P. B., & Gagne, G. (2021). Operating

System Concepts (10th ed.). Wiley.

2. Tanenbaum, A. S., & Bos, H. (2022). Modern Operating

Systems (5th ed.). Pearson.

3. Stallings, W. (2023). Operating Systems: Internals and Design

Principles (10th ed.). Pearson.

4. Arpaci-Dusseau, R. H., & Arpaci-Dusseau, A. C. (2018).

Operating Systems: Three Easy Pieces. Arpaci-Dusseau

Books. (Available online at:

https://pages.cs.wisc.edu/~remzi/OSTEP/)

5. Anderson, T., & Dahlin, M. (2014). Operating Systems:

Principles and Practice (2nd ed.). Recursive Books.

Chapter 2: Process Management and Synchronization

1. Tanenbaum, A. S., & Bos, H. (2022). Modern Operating

Systems (5th ed.). Pearson. (Chapters on Process

Management)

2. Silberschatz, A., Galvin, P. B., & Gagne, G. (2021). Operating

System Concepts (10th ed.). Wiley. (Chapters on Process

Synchronization)

3. Dijkstra, E. W. (1968). Cooperating Sequential Processes. In F.

Genuys (Ed.), Programming Languages (pp. 43-112).

Academic Press.

4. Deitel, H. M., Deitel, P. J., & Choffnes, D. R. (2015).

Operating Systems (3rd ed.). Pearson.

5. Liu, J. W. S. (2000). Real-Time Systems. Prentice Hall.

(Sections on Process Scheduling)

Chapter 3: Storage Management

1. Silberschatz, A., Galvin, P. B., & Gagne, G. (2021). Operating

System Concepts (10th ed.). Wiley. (Chapters on Memory

Management)

2. Denning, P. J. (1970). Virtual Memory. ACM Computing

Surveys, 2(3), 153-189.

264
MATS Centre for Distance and Online Education, MATS University

Notes 3. McKusick, M. K., Neville-Neil, G. V., & Watson, R. N. M.

(2014). The Design and Implementation of the FreeBSD

Operating System (2nd ed.). Addison-Wesley Professional.

4. Love, R. (2010). Linux Kernel Development (3rd ed.).

Addison-Wesley Professional. (Chapters on Memory

Management)

5. Gorman, M. (2004). Understanding the Linux Virtual Memory

Manager. Prentice Hall.

Chapter 4: Disk Scheduling and Distributed Systems

1. Tanenbaum, A. S., & Van Steen, M. (2016). Distributed

Systems: Principles and Paradigms (3rd ed.). Pearson.

2. Silberschatz, A., Galvin, P. B., & Gagne, G. (2021). Operating

System Concepts (10th ed.). Wiley. (Chapters on I/O Systems)

3. Chen, P. M., Lee, E. K., Gibson, G. A., Katz, R. H., &

Patterson, D. A. (1994). RAID: High-Performance, Reliable

Secondary Storage. ACM Computing Surveys, 26(2), 145-185.

4. Coulouris, G., Dollimore, J., Kindberg, T., & Blair, G. (2022).

Distributed Systems: Concepts and Design (6th ed.). Pearson.

5. Hennessy, J. L., & Patterson, D. A. (2017). Computer

Architecture: A Quantitative Approach (6th ed.). Morgan

Kaufmann. (Chapters on Storage Systems)

Chapter 5: Stateful Versus Stateless Service and Shell

Programming

1. Robbins, A., & Beebe, N. H. F. (2005). Classic Shell Scripting.

O'Reilly Media.

2. Blum, R., & Bresnahan, C. (2021). Linux Command Line and

Shell Scripting Bible (4th ed.). Wiley.

3. Cooper, M. (2021). Advanced Bash Scripting Guide. Linux

Documentation Project. (Available online at:

https://tldp.org/LDP/abs/html/)

4. Powers, S., Peek, J., O'Reilly, T., & Loukides, M. (2002). Unix

Power Tools (3rd ed.). O'Reilly Media.

5. Sobell, M. G., & Helmke, C. (2018). A Practical Guide to

Linux Commands, Editors, and Shell Programming (4th ed.).

Addison-Wesley Professional

265
MATS Centre for Distance and Online Education, MATS University

