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COURSE INTRODUCTION

Digital image processing plays a crucial role in various domains,
including medical imaging, remote sensing, computer vision, and
multimedia applications. This course provides a comprehensive
understanding of fundamental image processing techniques, image
enhancement methods, and advanced concepts such as thresholding
and morphological operations. Additionally, students will explore
servlet technology, which enables dynamic web applications and
image processing over the web. Through theoretical knowledge and
practical applications, learners will gain hands-on experience in
processing and analyzing digital images effectively.
Module 1: Introduction to Digital Image Processing
This Unit provides a foundational understanding of digital
image processing, including its significance, applications, and
key challenges. Students will learn about the basic concepts of
image representation, pixel operations, and different types of
digital images. The Unit also introduces image acquisition,
storage formats, and common image processing tools and
libraries.
Module 2: Image Enhancement
Image enhancement techniques improve the visual quality of
images by adjusting contrast, brightness, and sharpness. This
Unit covers spatial and frequency domain methods such as
histogram equalization, filtering techniques, and edge
enhancement. Students will learn how to enhance image
details for better interpretation and analysis.
Module 3: Servlet Technology
Servlets enable dynamic web applications by handling client
requests and server responses. This Unit introduces the
fundamentals of servlet programming, including request
handling, session management, and database connectivity.
Students will explore how servlets can be used in web-based
image processing applications, enabling real-time image

manipulation and retrieval.
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Module 4: Thresholding Techniques

Thresholding is a fundamental image segmentation technique
used to separate objects from the background. This Unit
explores different thresholding methods, including global,
adaptive, and Otsu’s thresholding. Students will learn how to
implement thresholding algorithms for object detection and
image binarization.

Module 5: Morphological Image Processing

Morphological image processing is a technique used to
analyze and manipulate the structure of objects in an image.
This Unit covers basic morphological operations such as
dilation, erosion, opening, and closing. Students will learn
how to apply these operations for tasks such as noise removal,

edge detection, and shape analysis.

2
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MODULE 1
INTRODUCTION TO DIGITAL IMAGE
PROCESSING

LEARNING OUTCOMES

1 To understand the fundamental concepts of Digital Image
Processing and its role in transforming visual data for various
applications.

2 To explore basic image operations such as filtering, enhancement,
and transformations used in digital image analysis.

3 To gain knowledge about different image file formats, their
characteristics, and their impact on image storage and processing.

4 To familiarize with various image processing tools like
MATLAB/Octave, Python (OpenCV, NumPy), and Imagel, and

their practical applications in digital image analysis.

3
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Unit 1.1: Overview of Digital Image Processing

1.1.1. Overview of Digital Image Processing
Digital image processing is such a deep-rooted mechanism that
changes radically the way we process, analyze and manipulate image
data in the digital world. In its essence, image processing is an
advanced technique used to apply computational operations on digital
images to get significant information or improve some of the images
to get them ready for further analysis. Reshaping your data can be a
daunting task; this particular field is found at the crossroad of many
aspects of mathematics, computer science, signal processing, and
perception, and with everything we face and predict it is a potent
weapon, able to help us draw action plans from even raw image data.
Before we can appreciate digital image processing, we first need to
appreciate the basic nature of a digital image. Unlike a printed image,
however, a digital image is not just a physical representation of a
picture; it is a sophisticated array of numbers, typically organized in a
two-dimensional grid so that each value, named a pixel, contains a
precise description of color and intensity. These pixels form the basic
units over which various digital image processing algorithms execute
their sorcery, enabling novel treatment and analysis of visual
information. Digitization is the first step in digital image processing,
which involves taking analog visual information and converting it into
a digital form. This time-consuming transformation processes
sequential incoming visual signals by sampling and transforming
them into discrete numbers. By transforming visual elements into
numerical representations, computer systems can vividly represent
visual information with incredible accuracy, deconstructing built
elements of visual scenes into a clear, computer-interpretable format
that can then be tailored, modified, and rebuilt with nonce and all over

again.

Figure 1.1.1: Overview of Digital Image Processing, Source:
https://www.linkedin.com/pulse/digital-image-processing-shreenevikha-n/

4
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1.1.2 Advent of Digital Image Processing:

It now stands alone and transformative, as a field of study, with
applications in virtually every area of human endeavor, from science
and medicine to entertainment and industry. Its flexibility and strength
have transformed the way we interpret, work with, and derive value

from visual information in all its forms across many fields.

The Role of Medical Imaging & Healthcare

THE ROLE OF MEDICAL IMAGING &
HEALTHCARE IN DIGITAL IMAGE PROCESSING

Figure 1.1.2: Requirements of Digital Image in Medical Domain

Digital image processing is nothing less than a technological
revolution in the medical field. Sophisticated image processing
algorithms are widely used in advanced imaging modalities, such as
Magnetic Resonance Imaging (MRI), Computed Tomography (CT),
and ultrasound to obtain detailed three-dimensional representations of
human anatomy. With these techniques, physicians are able to uncover
subtle physiological perturbations, design complex surgical
interventions, and track disease progression at unparalleled detail.
Advanced image enhancement algorithms sharpen medical images,
suppress noise, enhance contrast, and emphasize certain anatomical
structures. For example, the processing of mammography images is
used to detect early-stage breast cancer (microscopic calcifications
that do not appear to the naked eye). Neural network-based techniques
for image processing may be used by radiologists to automatically
identify possible tumor regions, exponentially improving diagnostic
accuracy and speed.

1.1.3 Satellite and Remote Sensing Images

With the digital image processing technologies in the earth
observation and environmental monitoring sectors, the field has been
greatly enhanced. The vast expanse of satellite imagery detected by
advanced orbital sensors is processed through complex circuits to

extract valuable environmental intelligence. Researchers are able to
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analyze land-use changes, monitor deforestation, track urban growth
and assess environmental damage with spectacular precision. By
using multispectral and hyperspectral image processing techniques,
scientists can analyse things across various wavelengths beyond
visible light to get more information has about the health of
vegetation, minerals in the composition and the condition of the
atmosphere. Climate scientists rely on these techniques to understand
global climate change trends, model hurricane development, and
observe ice cap retreats on an unprecedented scale and precision.

1.1.4 Security and Surveillance Systems

Advanced digital image processing technologies are heavily relied
upon in modern security infrastructures to improve public safety and
security. CCTVera wuses facial recognition algorithms, object
detection systems, and intelligent video analytics for automated threat
detection, crowd monitoring, and forensic investigations. Through
machine learning-enhanced image processing, suspicious behaviors
can be detected, individuals can be tracked across multiple camera
feeds, and potential security risks can be predicted potentially before
they materialize. All these technologies act as a complementary
foundation to human monitoring mechanisms, especially in airports,
border control, and other high-security places.

1.1.5 Automation and Quality Control in Industry

Digital image processing has also been adopted in the manufacturing
industries as an effective tool for execution, quality control and
process optimization. Visual inspection systems can identify
microscopic product surface defects, measure dimensions, and
confirm assembly, faster and more accurately than any human.
Leveraging state-of-the-art image processing algorithms, robotic
vision systems are able to identify and manipulate objects within
complex manufacturing environments with astonishing precision
while adapting to fluid production settings. This made automation
strategies more complicated and improved manufacturing efficiency
and reduced errors considerably due to these technologies.

1.1.6 Entertainment & Digital Media

Digital image processing technologies have revolutionized the
entertainment industry. CGI, visual effects, and digital animation
utilize advanced image processing techniques to produce lifelike

images that engage the audience by establishing believable

6
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environments. The film and video game industries take advantage of a
variety of cutting-edge rendering algorithms, texture mapping, and
image synthesis techniques in order to create complex visual
narratives that make it increasingly difficult to distinguish between the
real and the digital. Another fascinating use of image processing
techniques can be found in motion capture systems that translate
human movements into digital animations.

1.1.7 Technology Principles: Fundamental principles of computer
image processing

Digital image processing employs a complex set of algorithms and
techniques tailored for the specific characteristics of digital image
formats. The methods can be grouped broadly into various primitives
of processing that serve complementary computational purposes.
1.1.7.1 Image Enhancement Method

Image enhancement is an important aspect of digital image
processing that aims to improve the visual quality of the images from
which information can be extracted. These methods adjust properties
of images to improve their usability for human interpretation or
subsequent computational processing. For example, contrast
enhancement algorithms can stretch pixel intensity distributions to
make concealed elements more visible, and noise reduction filters can
remove artifacts that were produced during image acquisition. For
instance, sharpening filters can enhance edge details, and color
balance adjustments can address chromatic aberrations, resulting in
visually clearer and more informative representations.

1.1.7.2 Image Restoration Approaches

Image restoration is a method that is used for reconstructing the
degraded image by progressively removing or diminishing the
different forms of image corruption. These techniques use advanced
mathematical models to predict and correct imaging system
aberrations and sensor errors, as well as environmental effects.
Algorithms running in a computer can estimate and remove blur from
camera motion, correct geometrical distortions, and compensate for
optical aberrations. Further, state of the art restoration approaches
based on probabilistic models and machine learning techniques can
enable complex prediction and reconstruction of missing or corrupted
image content with increasing accuracy.

Accumulated Image Compression Strategy

7
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The avalanche of digital images is growing exponentially, with
actionable compression methods becoming more and more crucial.
Image compression algorithms help to reduce the size of an image
file, without much loss of quality. Compression techniques can be
divided into two main categories, lossless and lossy. Lossless
compression maintains all the image data, making it suitable for
medical and scientific uses. Lossy compression techniques on the
other hand, offer better compression ratios by removing less visually
important details of images, making them ideal for consumer
photography and web usage.

1.1.7.3 New Horizons: The Landscape of Imaging in the Near
Future

The digital image processing will continue to take into account the
development of computing power, machine learning technology, and
sensor technology. New frontiers are promising new classes of
algorithms and insights aligned with the emerging design implications
extending mixdata at the edges of computationally feasible analysis
and manipulation. With the growing complexity of any images taken,
integration of advanced image processing algorithms based on
artificial intelligence, deep learning techniques into image processing
workflow, which is capable of consistent and effective image
processing algorithm and its evolvement to serve as a more
sophisticated, adaptive, and intelligent analysis of visual information
is outlined. The neural networks architecture allows the network to
learn complex transformations for images, so, in some environments,
it allows to outperform traditional algorithmic transformations.
Another cutting-edge frontier of computing is quantum computing,
which has the potential to be even more revolutionary in terms of
processing complexity and image speed. Applications that could be
computationally impossible to perform today might be possible at
near instantaneously speed also with emerging quantum algorithms

leading to image transformations, gauges and analysis.

8
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Unit 1.2: Image Representation Notes

1.2.1 Image Representation
An image is made up of pixels, and pixels alone do not store any

information about the image.

[ Overview of Digital Image Processsing ]

. -
DIGITAL IMAGE IMAGE ACQUISITION IMAGE

ENHANCEMENT

PN (O] Sty

IMAGE RESTORATION COLOR IMAGE WAVELETS AND

PROCESSING MULTIRESOLUTION
® PROCESSING
(5 HIAY
m-mw
)

s ~
COMPRESSION MORPHOLOGICAL SEGMENTATION

JPEG PROCESSING !— —!
2 H~-1. > &

Figurel.2.1: Overview of Digital Image in Medical Domain

Image Representation — img2vec Introduction
Abstraction of image representation is an essentials notion of digital
imaging, computer graphics and visual computing, whatever you are
doing with visual information (capturing, processing, storing and
manipulating) in digital space. Image representation, in essence, is the
intricate process of converting visual life into mathematical and
computational structures that can be manipulated, analyzed, and
reconstructed through technological systems. Each step in the chain,
from the physical capture of light to the digital encoding of color and
spatial information, is an abstract process with more than one
outcome.
1.2.1.1 Pixels: The Basic Components of a Digital Picture
A pixel—short for picture element—is the smallest and most
fundamental unit in digital image representation. These tiny square or
rectangular blocks act like building bricks of a digital image. When
arranged in a grid, they collectively form the complete visual structure
of a digital photograph or display.

Each pixel holds specific information about color (usually in RGB:
Red, Green, Blue) and brightness. Alone, a pixel may seem
insignificant, but when millions are combined and displayed together,
they form a detailed and coherent visual scene. The human eye
perceives this arrangement as a continuous, smooth image—despite

the image being made up of countless tiny, individual elements.

9
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Pixels are not just passive components; they are active carriers of
image data. The resolution of an image—defined by the number of
pixels in width and height (e.g., 1920%1080)—determines the level of
detail and clarity. Higher resolution means more pixels and thus, finer
image quality.

In digital devices like cameras, monitors, and smartphones, pixel
density (measured as PPI—pixels per inch) plays a crucial role. A
higher PPI results in sharper, more vibrant displays, enhancing the
visual experience.

Furthermore, in advanced digital processing, pixels can carry
additional data such as depth, transparency (alpha channel), or
infrared readings—especially in medical imaging, remote sensing,
and scientific visualization.

In essence, pixels are the foundation of all digital images.
Understanding their role helps us appreciate how digital visuals are
constructed, manipulated, and displayed across a range of devices and
applications—from everyday photography to complex image analysis.
1.2.1.2 The Pixels Are Geometric in Nature

Pixels are essentially geometric entities that exist at a given spatial
location in the coordinate system of a digital image. While in the
analog representations the visual information is available on a
continuous spectrum, in digital images the visual data is converted
into a matrix of accurately determined elements. The coordinates give
a predictable representation of the information as every pixel has its
own planned position defined by x and y. Both the volume and
clustering of pixels underlies an image's resolution and quality of
visualisation. Larger pixel densities create more detailed and nuanced
representations, whereas lower densities produce more simplified,
and possibly pixelated, representations. Understanding this
relationship is important in understanding the construction and
perception of digital images.

1.2.1.3 Deep Pixel and Data Encoding

Pixel depth (also referred to as color depth or bit depth) defines how
much color and luminance information can be saved in each pixel.
This property is directly associated with the number of bits allocated
for each pixel in terms of color information. Common pixel depths
include:

e 1bit: Black and white (monochrome)

10
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e 8-bit: 256 color or grayscale values

e 16-bit: A few tens of thousands of different color variations

e 24-bit: millions of colors (standard RGB)

e 32-bit: More colors, more bits, adds an alpha channel for

transparency

This path of color representation moves from low to high between the
various bit depths and increases in complexity and color richness. The
significance of bit depth lies in the fact that with every incremental
increase in bit depth, the number of potential color variations
increases exponentially, allowing for greater subtlety and variety in
the Act of Representation.
1.2.2 Spatial and Spectral Properties
Rather than simply being visual primitives, pixels encode both spatial
(geometric) and spectral (radiometric) information. They provide
spatial information — the specific location of and geometric
relationships between a set of points within the image. What they
record is color and luminance information that forms the visual
experience. The twofold nature of pixels enables digital systems to
engage in complex image-processing operations. With the knowledge
of the exact spatial and spectral characteristics of each pixel,
sophisticated algorithms are capable of processing, improving,
reconstructing, and interpreting visual information with unparalleled
accuracy.
1.2.2.1 Pixel Density and Image Quality: Understanding Image
Resolution
Resolution is the number of pixels in an image, usually given as
width x height. This measure is a crucial piece of information about
the potential detail and visual fidelity of an image. More pixels ="'
higher resolution => better colour resolution => more colours on
screen => better visuals.
To understand image resolution, think of a grid of tiny squares called
pixels that make up a digital image. Resolution refers to the total
number of these pixels in an image, measured by its pixel dimensions
(e.g., 1920 pixels wide by 1080 pixels high). Pixel density (or Pixels
Per Inch, PPI) describes how densely these pixels are packed within a
physical inch, with higher PPI resulting in smoother, more detailed

images, and is crucial for print quality.
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Pixels and Pixel Dimensions

e Pixels: The smallest individual points of color in a digital
image.

o Pixel Dimensions: The total number of pixels an image
contains, expressed as width x height. For example, a
1920x1080 image has 1920 pixels horizontally and 1080
pixels vertically.

o Image Quality: Higher pixel dimensions mean more total
pixels, providing more information and detail, leading to better

image quality.

Pixel Density (PPI)

e Definition:
Pixels Per Inch (PPI) measures the number of pixels packed into a
one-inch square.

o Impact on Quality:
A higher PPI indicates a denser collection of pixels, resulting in a
smoother, crisper, and more detailed image. Conversely, a lower PPI
means larger, more spread-out pixels, which can appear "pixelated" or
blocky.

Resolution vs. Pixel Density
¢ Resolution (Pixel Dimensions):
This is the total number of pixels in the image file, which determines
the amount of information available.
e Pixel Density (PPI):
This is how the total pixels are spread out over a physical distance,

such as an inch.

1.2.3 Types of Resolution
There are different kinds of resolution, which address different
computational and appearance requirements:
e Spatial Resolution: Specifies the pixel count in the horizontal
and vertical directions
e Temporal Resolution: Relevant for video and animation, the

measure in frames per second

12
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e Spectral Resolution: Refers to the number of individual
wavelength bands in multispectral or hyperspectral imaging

1.2.3.1 Resolution and Perception
But this is all a complicated evolution of how our eyes perceive a
digital image and why resolution is important. Beyond a certain
density, individual pixels become indistinguishable to the human eye
(there are limitations to the human eye after all). This perception
threshold prescript tells us that very high resolution may not always
lead to perceivable improvements in image quality.
1.2.4 Color Models: In-depth Study of The Visual Color
Representation
Color models are complex mathematical systems used to define how a
color can be represented, displayed, and manipulated on different
types of equipment. Their standardized rules for encoding colors
allow them to be reproduced or processed consistently across various

devices and contexts.

COow

RGB Mode CMY Model

Ssaujy| n

Figure 1.2.4: Overview of Color Model

1.2.4.1 RGB Color Model: Additive Synthesis of Colors
RGB (Red, Green, Blue) — the RGB color model is the dominant
color representation method utilized in electric displays, digital
cameras, and computer monitors. At its core an additive color system,
RGB creates colors from the combination of different quantities of
red, green, and blue light.
1.2.4.2 Additive Color Mixing Principles
Each color channel in the RGB model can have a value from 0 to 255
(for 8 bits), giving a total of 16,777,216 different combinations of
colors. Color creation happens by the following mechanism:

e Primary colors are red, green, and blue

e Secondary and tertiary colors are the product of different

combinations of intensity

e All three channels at max intensity yield the color white
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e No color channels = black
The ubiquity of the RGB model results from both its alignment with
human visual perception and with the technical infrastructure of the
majority of digital display systems. This framework is primarily used
by computer monitors, smartphone screens and digital cameras.
1.2.43 CMYK color model: Representation of color via
subtraction
In contrast to the additive RGB system, CMYK (Cyan, Magenta,
Yellow, Key/Black) is a subtractive color model used in the printing
industries. This model models how pigments produce color by
absorbing and reflecting certain wavelengths of light.
Printing Color Dynamics
CMYK is predicated on the idea that when pigments are added
together, they substantively eliminate wavelengths of light, leading to
the progressive generation of color through subtraction. Each layer of
color filters light, leaving a more complex color in its wake. Separate
black (Key) channel compensates for practical limitations of color
mixing to create deep, rich blacks.
Grayscale: Luminance Representative
Instead, Grayscale is a much simplified color model that only cares
about variations of luminance. While grayscale images use only one
single channel, from pure black to pure white, to store details about

brightness and shadows without color information.

1.2.5 Applications of Grayscale
Grayscale is widely used in:

e Medical imaging

e Scientific visualization

e Edge detection algorithms

e Computational image processing

e Techniques used in art or photography

14
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Figurel.2. 5: Overview of Color Model

1.2.6 Advanced Color Models
Fresh from Bberumcienust or perception, advanced color models like

CIE LAB, HSV, and YUV expand beyond basic representations,
providing dedicated approaches to color encoding tailored to

particular computational or perceptual needs.
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Unit 1.3: Types of Images

1.3.1 Types of Images in Digital Imaging: A Comprehensive
Exploration

One of the most basic, yet also game-changing digital imaging
technologies is way of visual processing, including capturing, seabed
signal handling (virtually), module, storage and compact storage and
also recovery of information by math surround the data system. In the
age of this technology, there are different classes that represent how to
process images — each with its own properties, memory usage,
processing requirements, and applicable scenarios (e.g. medical

images, satellite images, graphics, etc.).

Binary Image

Figurel.3. 6: Overview of Binary Image

1.3.1.1 Grayscale Images: The Sole Color Settings of Visual Data

The basic image type that captures the visual information converting
it to varying intensity of gray, from pure black to pure white, with
many shades of gray in-between, Grayscale image provides a simple
representation of visual information. Whereas color images consist
of multiple color channels, a grayscale image uses only one channel
which measures light intensity, obscuring the complexity of color in
favor of a more elegant representation. Fundamentally, a grayscale
image abstracts visual detail into a single-channel representation of
intensity, where each pixel's value indicates the brightness from black
to white. Grayscale images are usually visualized as 8-bit depth, in
which case there are 256 different gray levels that can be expressed,
from O (pure black) to 255 (pure white). Grayscale images consist of
only two colours, enabling accurate analysis of the detail using digital
encoding, thus making it highly valuable in specific areas dependent

on intricacies of imagery.

16
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Greyscale Image

Colorimage

Figure 1.3.7: Overview of Greyscale and Color Image

Mathematically, grayscale images are represented as a 2D matrix
where each entry corresponds to a pixel intensity values. Grayscale
images have the advantage of being far more computationally
efficient since they contain far less data than RGB color images and
as such take much less space to store and compute. This efficiency
renders them great for a bunch of functions, corresponding to medical
imaging methods similar to X-rays and CT scans, during which
distinct tissue densities are equally essential for precise
differentiation. Numerous scientific and industrial fields employ
grayscale imaging for visual analysis requiring high contrast.
Grayscale images underlie many applications in microscopy,
astronomical observations, materials science, and quality control
processes to capture small details that remain elusive when analyzing
full-color representations. Removing the color distractions to focus
on intensity variations allows researchers and professionals to conduct
more nuanced visual inspections.

1.3.1.2 The Colorful Computation: RGB Images

RGB images are the most common and versatile image type and are
required for digital visual representation of the colored visual
information, depicting the most brilliant and complex representation
of color visual information through an additive color model. RB
channels in images work together to create a wide and detailed color
range that resembles what we see with our human eyes, which allows
us to produce complex visual experiences on screen. We will first talk
about the fundamental principle behind RGB images: every RGB
image is represented using 3 primary color channels, each 8-bit deep
(256 levels per channel). That's a mind-blowing 16,777,216 possible
combinations of colors, giving an impressively subtle palette for
visual representation. This RGB configuration is a pretty unique color

channel arrangement, where every pixel is articulated by its own
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distribution of R, G, and B intensities — a highly complex

computation for color representation.

RGB images are usually stored as a 3d matrix where three channels
represent each of the color. This data structure allows algorithms to
perform complex operations on the images, such as color filtering,
histogram  equalization, and machine learning-based object
recognition. RGB images are computationally more complex than
grayscale images and require more memory and computational time.
RGB images underlie a broad range of widely adopted applications
across fields like digital photography, graphic design, medical
imaging, and scientific visualization. The RGB color model has
become a universal method for displaying color information in
computer monitors, digital cameras, and mobile device screens,
providing a common standard for color presentation across all
technological devices and disciplines.

1.3.1.3 Binary Images: The Most Fundamental Class of Digital
Images

Binary images are the simplest form of digital image representation,
where each pixel in the 2D image is in one of just two possible states:
black or white. This radical reduction of visual information allows a
rich but concise approach to digital imaging across many key areas
such as document processing, pattern recognition and computer vision
activities. Binary image: In a binary image, the pixel value can take
only two discrete values, which represents one of two colors,
typically black or white (0, 1). Such binary encoding allows it to be
stored and processed extremely efficiently, needing only a fraction in
terms of computing resources relative to more complex image types.
Storage efficiency and fast computational manipulation result from
the fact that each pixel's state can be represented by a single bit.
Binary images are widely used in several domains, and document
scanning, OCR (optical character recognition), fingerprint
recognition, and industrial quality control are just a few examples.
The simplicity of binary images is harnessed to implement edge
detection, shape analysis, and pattern recognition algorithms — the
building blocks for the more advanced digital image-processing
techniques used today. Operations such as erosion, dilation, and

connected component analysis are most directly and efficiently
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implemented in binary images in mathematical morphology. Such
operations allow for a higher level of spatial reasoning and structural
distortion making these relatively mundane black and white images
into richer computational fields for discerning shapes, points and
signs that exist in space.

1.3.2 Multispectral Images: A Step Beyond Human Vision
Multispectral imaging is at the high end of visual data capturing
technology, extending far beyond the human visual spectrum by
simultaneously recording electromagnetic radiation at multiple
discrete bands on the spectrum. This advanced imaging modality
captures information beyond the visual spectrum — wavelengths
imperceptible to the human eye, thus uncovering latent properties and
complex characteristics not accessible with standard imaging.” In
contrast to standard RGB images, which record visual information
only in the visible light spectrum, multispectral images combine
information from an array of ranges of the electromagnetic radiation
spectrum, such as infrared, ultraviolet, and other non-visible
wavelength bands. Depending on the spectral band, different material
compositions, structural features, and environmental interactions are
captured, offering a rich, multi-faceted perspective on the imaged
subject. Compared to traditional images, multispectral images have
significantly higher computational complexity and requires specific
data processing methods and advanced computing infrastructure.
Since each image is in multiple independent channels representing
different wavelengths, they effectively build a hyperdimensional
dataset that needs dedicated analysis algorithms. As a result, machine
learning and artificial intelligence (AI) techniques have become
critical for extracting relevant information from such complex grapple
of images. Multispectral imaging has a truly impressive application
range across both scientific and practical domains. Multispectral
imaging has various agricultural and biological applications such as
crop health monitoring, disease detection, and agricultural
optimization. Environmental scientists use these techniques for
climate research, ecosystem mapping and geological surveys. Some
medical researchers adopt multispectral imaging as a superior
diagnostic technology, observing minute physiological changes that
are imperceptible with classical imaging techniques. The variety of

image types demonstrates the extraordinary computational
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sophistication of our contemporary visual technologies. Spanning
from simple binary images to complex multispectral representations
will each type of image present individual abilities, and
computational characteristics, exercise domains. The future certainly
holds evolving layers and generations of digitization that better
bridge the human machine-interface, squeezing out anything left
between abstraction and reality.

1.Basic Image Operations

It is the continued transformation of raw visual data into meaning
through the application of advanced mathematics and computer
science. These layers are critical to this process and include: image
sampling and quantization and the whiggish microcosm of image
representation in computer memory. It is the core processes that
underpin the ability of digital systems to acquire, retain, and process
visual information, translating the continuous representations of the
physical world into the discrete constructs of digital computation.
1.3.3.1 Image Sampling: From Continuous Reality to Discrete
Digital Numbers

This is more than just an algorithm; image sampling is an incredibly
deep philosophical and computational process of turning continuous
visual information into a discrete digital grid. This is akin to how an
infinite-body analog painting becomes a discrete mosaic of pre-
defined pieces stringing together a segment of the image. For
rendering, you take in those pixels, calculate their respective 3D
coordinates and colors, and then use those values to recreate an
approximation of what the original scene looked like, struck by the
light being captured by the ‘lens’, with an equal amount of accuracy
and computational tractability. The theory of image sampling dates
back to the Nyquist - Shannon sampling theorem, which is a
revolutionary theory establishing the mathematical relationship
connecting continuous representations of signals to their discrete
representations. This means that in order to perfectly reconstruct a
continuous signal, the signal needs to be sampled at a rate greater than
twice the highest frequency of the continuous signal. When it comes
to image sampling, this means capturing visual information at a
sampling density that preserves the most important aspects of the
source scene while balancing computational complexity. The process

of defining the pixel resolution and pixel grid of a digital image.
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When a camera or digital sensor takes a picture, it breaks the visual
field into a rectangular grid of discrete elements, or pixels. Every
pixel accounts for a boxing part of the first scene, and the pixel's
colours and intensity directly relate to the average amount of
incoming light of that region. The sampling process will determine
how coarse or fine this grid is built up; the finer the grid the greater
the detail in the final image with a larger computation cost.

The density of the sampling has a significant effect on both the quality
of the image and the amount of information retained. Higher sample
rates yield more detailed and higher fidelity images but come at
greater computational and storage costs. When sampling rates are
low, resulting images become increasingly compressed, but also begin
losing vital visual data. Achieving this delicate balance necessitates
sophisticated algorithms capable of determining optimal sampling
strategies across a wide range of imaging scenarios.

1.3.4 Conversion from Continous Intensity Values to
Computation-Feasible Moments - Image Quantization
Quantization is the normalisation stage where continuous intensity
values are transformed into finite values with respect to certain
levels, physically that means whole numbers (i.e.0 to n) so we can
represent the whole smooth gradation of the image as algo. Imagine
taking a smooth slider that could set your music to an infinitely
variable volume and instead replacing it with a series of numbered
volume settings that only worked at specific integer values, like a
series of notches; this is analogous to the sort of transformation we're
talking about here. Quantization in digital imaging is primarily about
manipulating each pixel point from the continuous amount of light at
those coordinates to the numbers that computers understand and that
can be stored in repeated memory cells. In the case of grayscale
images, this usually means assigning continuous light intensities to a
finite number of discrete levels, and most commonly this is done with
8 bits, allowing for 256 potential intensity levels from 0 (absolute
black) to 255 (pure white). Color images push this complexity further
by performing quantization on multiple color channels at once. The
quantization method imposes a basic trade-off between visual fidelity
and computational efficiency. Lower bit depths are thus advantageous
in terms of processing power and storage, while higher bit depths

preserve finely-grained visual detail by allowing for more shades of

21
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i



¢ o

{

}mn'r

N

UNIVERSITY

ready for life

Notes

)

i

intensity. For most applications an 8-bit grayscale image with 256
intensity levels strikes a balance between detail preservation and
processing complexity. For example, more advanced imaging
systems could use 10-bit or 12-bit quantization to capture intensity
with even greater granularity.

Quantization is a lossy operation, because it inherently compresses
information, which could lead to visible loss of quality known as
quantization error. This error is the difference between the original
continuous intensity value and the nearest discrete value. To counter
these artifacts, more advanced dithering and error diffusion methods
have been proposed, aiming to spread quantization errors in a way
that is perceptually smoother between neighboring pixels with regards
to image changes and thus perform less visible image quality
degradation.

1.3.4.1 Computational Architecture: The Representation of Image
in Computer Memory

The memory representation of digital images in a computer is a
complex multi-dimensional data structure that efficiently encodes
visual information for processing. Such representations convert 2D
visual scenes into structured numerical matrices which can be stored
and manipulated and deployed for analysis utilising sophisticated
computational methods. The most commonly applicable image
representation involves multi-dimensional arrays that lend their
respective array dimensions to specific image features. Grayscale
images only require a two-dimensional matrix, where each element in
the matrix represents the intensity value of a pixel. -- A color image is
a three-dimensional matrix (One dimension for red, another for green,
one for blue) This organization enables single mathematical
operations to be efficiently applied across all images in a dataset,
aiding in the implementation of complex algorithms in image
processing  applications. Different computation limits and
optimization methods are kept in mind when allocating memory for
images. The total memory needed for an image is determined by its
size and bit depth, and is computed by multiplying image width,
height, and bytes per pixel. Such a 1920x1080 pixel RGB image with
8 bits (1 byte) per channel would take roughly 0.00622 MBs, clearly
showing the significant computational cost when it comes to storing

high-resolution visual data.
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Different image file formats employ different strategies for
representing images in memory, trading off various factors such as
compression efficiency, color fidelity, and computational accessibility.
Uncompressed formats such as BMP store pixel data right away for
quick access but incurs larger storage requirements. For instance,
compressed formats (JPEG, PNG, etc.) use complex encoding
methods that minimize size with preservation of visual quality via
clever compression algorithms.

1.3.5 Image File Formats

The Evolutionary Landscape of Digital Image Storage

File Formats for Digital Images: An Introduction to Computational
Engineering, Visual Perception, and Data Compression Technologies.
These elaborate formats are assumed to be intermediates between the
rapid visual information entering the eyes and the complex
computational systems developed for capturing, storing, manipulating,
and transmitting visual information. Variations between image formats
manifest as highly developed solutions to precise problems that arise
in the realm of digital imaging, encapsulating the complex demands
of various technological landscapes and human visual language.
1.3.5.1 BMP (Bitmap Image File): The Unzipped Picture Vault
The Bitmap (BMP) file format represents the most rudimentary way
to store digital pictures, raw images of the plot on the display.
Originating from Microsoft in the early days of personal computing,
BMP embraces a philosophy of direct and uncompressed image
representation that values computational simplicity and instant
accessibility over storage efficiency. Unlike other formats, the BMP
format is essentially a matrix of raw pixel values, a crude and
unadulterated correspondence of counts of colors (each one a
corresponding number of bits in binary data) representing the image
stored directly in digital format. The writer's data comes from the two
best-known high-quality image formats: TIFF and RAW; each color
of each pixel at every intensity is recorded without compression; file
sizes can also be exceptionally large, and they accurately represent an
image photographed. It guarantees pristine visual experience, but with
the price of its computational complexity, therefore BMP files are not
suitable when optimal storage or data transfer must be achieved.

A BMP file has a very transparent format, consisting of a header

followed by pixel information. The header includes important
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metadata including the width and height of the picture, the color
depth, and the compression method used (but most BMPs use no
compression). In addition, the color representations can span from
simple 1-bit monochrome images to elaborate 32-bit color spaces with
alpha channel coverage, giving great versatility in terms of visual
coding. Although the BMP format is not computation-friendly, it
holds importance in certain fields that demand a lossless
representation of images. Legacy software systems, graphic design
workflows that require pixel-perfect fidelity, and select scientific and
medical imaging applications still use BMP as a kind of proven,
transparent image vault. Its simple encoding guarantees broad
accessibility on different computing systems.

1.3.5.2 JPEG (Joint Photographic Experts Group): Lossy
Compression Techniques

JPEG is an iconic of image compression used to store image into
small sized files at the expense of some image quality. Designed in
the late 1980s by the Joint Photographic Experts Group, this format
revolutionized digital imaging by allowing photographic quality
images to be efficiently stored and transferred over a diverse range of
computing and communication systems. JPEG compression is
incredibly sophisticated, mainly because it understands how we
humans perceive vision and modifies accordingly. Instead of simply
running one decision-making process based on the image data given,
JPEG algorithms strategically know what information the human eye
would not be able to even perceive and discards those data instead of
all equally. It uses several involved cosine transformation, which are
discrete cosines transformation, used to represent the spatial image
data in frequency domain and keeping information with perception
significance. JPEG compression ratios are a finely tuned balance
between visual fidelity and storage. Low compression preserves near-
photographic quality with minimal visual artifacts, and high
compression results in much smaller files at the expense of noticeable
image quality. Amateurs use compression settings that are not efficient
enough to minimize file size but provide adequate quality,
customarily including higher compression settings. And JPEG has the
kind of versatility that has made it ubiquitous across digital
ecosystems. Almost all digital cameras, smartphone imaging systems,

web platforms, and social media use JPEG as a conventional image
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exchange format. Its ability to generate small, high-quality images
makes it particularly well-suited for storage- or bandwidth-impaired
scenarios like web graphics or mobile photography.

1.3.5.3 PNG (Portable Network Graphics): Lossless Compression,
Transparency Support

PNG addresses the shortcomings of prior image file formats while
adding support for lossless compression and full transparency.
Originally conceived as a free replacement for exclusive formats,
PNG files can be considered the zenith of self-smart image storage
that harmonize high visual fidelity and computational throughput.
PNG's most significant advance is its use of a lossless compression
algorithm; it retains the exact original information from every pixel in
the image, while also maintaining the integrity of the file size. In
contrast to JPEG's lossy method, PNG uses advanced predictive
encoding that finds and removes repetitive visual information at the
cost of file size rather than visual quality. This makes PNG especially
useful for images that need precise reproduction at pixels, like logos,
technical illustrations, and screen captures.

Another PNG signature feature is alpha transparency representation,
which provides robust transparency encoding for parts of an image to
be transparent or opaque in an image. This ability transformed web
design and digital graphics, enabling complex layering and visual
composition techniques that were difficult (or impossible!) with
earlier image formats. PNG's product development builds on some
sort of text and it maintains transparency support to create multi-
layered image compositional art pieces. Another PNG strength is
color depth flexibility, supporting 1-bit monochrome up through 48-
bit color representations. Such a wide range of colors means so many
different coloring domains from a simple logo to a more polished
photo environment can use PNG. PNG's lossless nature is especially
valued in scientific and medical imaging sectors where accurate
visual information is critical.

1.3.5.4 TIFF (Tagged Image File Format): The Archivist

What is TIFF — TIFF is the ultimate among professional-grade
images, created specifically for cases where there is an absolute need
to preserve the image and its metadata in full. TIFF (Tagged Image
File Format) is a format created by Aldus Corporation that became

standardized by Adobe, and stored image data as well as description
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information for what that image frame contains, so TIFF grew from a
storage format to a full-featured imaging archival system designed to
accommodate high-end professional imaging needs. One such reason
is the architectural sophistication in TIFF's flexible, tag-based
metadata system which permits rich content to be embedded in the
image file. A TIFF image can include a wealth of metadata to describe
capture conditions, color profiles, geographic information, and
processing histories. This method converts TIFF from an image
storage format into a complete visual documentation system used
especially by pro photographers, archivists and scientists alike. TIFF
files can use data compression at both ends of the spectrum, from
completely uncompressed storage to sophisticated lossless and lossy
compression algorithms. This flexibility allows users to choose
exactly the right combination of file size, image quality, and compute
efficiency to meet their specific usage scenario. TIFF's extensive
imaging features are widely adopted in professional publishing,
scientific documentation, and archival preservation.

The other area where TIFF draws on its strengths is color
management, with good support for complex color spaces and
detailed color profile embedding. This allows TIFF to support color
management systems that guarantee uniformity in colors displayed,
printed, or converted, to satisfy the use in professional print
production, color-critical imaging, and long-term data preservation.
1.3.6 The deformable subspace for converting images into pixels,
an Article by Al

Filename extensions are more than fancy file suffixes; they are high-
level solutions to the fundamental problem of how to encode visual
reality. Thus, each format stands as a custom solution designed to
meet the unique demands of various imaging needs, showcasing the
sheer ingenuity of the computational engineers who endeavored to
connect the realm of human visual perception with that of digital
technology. This may pave way for a whole new level of
computational imaging technology with intelligent image storage that
breaks down the walls of hinted boundaries of physical experience
and non-material, digital copies. Image File Formats The story of
image file formats is a story of human imagination in the realm of

computational visual communication.
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1.3.7 Introduction to Image Processing Tools

From a niche scientific field of research a few decades ago, image
processing has grown into a widely used algorithmic capability that
has seeped into virtually every facet of our digital existence. And
overhead, image processing algorithms filter and enhance everything
from simple tweaks to the photos we post on social media to bleeding-
edge medical diagnostic tools that detect tumors in MRI scans. There
is now an enormous need to develop powerful image processing tools
that are flexible enough to be used in almost any domain and
accessible to non-experts since the number of digital images produced
by nearly every industry has exploded in the last few decades. A leap
in technology made image analysis tools that once existed only in
specialized research labs, accessible to scientists, engineers, artists
and amateurs. The three types of software-MATLAB/Octave, Python
(with its image processing libraries), and ImageJ—illustrate several
different flavors of this technology, with each bringing to the table
distinct features which have played a major role in enabling progress
in the field. What would have taken hundreds of thousands of dollars
and a handful of the smartest scientists a generation ago, these tools
have made simple. As we dive into each platform, we will not only
explore their technical capabilities, but also their unique philosophies
and ecosystems that have influenced how practitioners have
approached challenges in the image processing space. Exploring these
tools in greater detail offers a glimpse into the broader world of
computational image analysis, and the way it is radically changing the
game in just about any discipline that involves visual data, from

astrophysics to zoology and just about everything in between.

1.3.8 MATLAB/Octave — Juggernauts of technical computing

MATLAB (an abbreviation for matrix laboratory) is a high-
performance language for technical computing, and its origins trace
back to joint work at the University of New Mexico and Stanford
University in the late 1970s and commercially developed by
MathWorks from 1984 onwards. MATLAB was initially created as an
interactive interface to FORTRAN libraries of numerical computation,
but it has grown into a full technical computing environment, and
image processing is one of its strongest areas. GNU Octave is a high-

level programming language, primarily intended for numerical
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computations and developed as a free and open-source alternative to
the commercial MATLAB language while providing substantial
compatibility with the MATLAB syntax and many of its features,
while also following open software development principles. Both
platforms come from a common design philosophy in that they
fundamentally treat images as numerical arrays or matrices, making it
a perfect fit for their strengths in matrix-based mathsscience. Because
they have this mathematical underpinning, they are especially good at
image processing because it relies on heavy numerical calculations,
such as the Fourier transform (the image Fourier is important), the
eigenvalue decomposition, and other matrix methods that are at the
heart of most advanced image analysis algorithms. There is the
elegant simplicity from how an image can represented as a two-
dimensional matrix (or three-dimensional for color images) in
MATLAB/Octave, and how many mathematical operations allow the
user to see immediately the effects that the mathematical operation
has on their images. This ability to see both sides has caused these
platforms to become highly valued environments for learning because
students can explore complex mathematics through prototyping and
can quickly see the effect of their actions as they learn the principles
behind image processing.

The Mathematics and Image Processing Toolbox of MATLAB
contains one of the most extensive sets of image processing functions
of any platform. This toolbox is an application-specific toolbox that
expands on the core capabilities of MATLAB by adding hundreds of
functions for image analysis, including functions for filtering,
morphological processing, feature detection, segmentation, and
geometric transformations. Toolbox functions are highly optimized for
performance and heavily validated, making them highly reliable for
mission-critical applications such as medical imaging and aerospace.
Due to the depth and breadth of these specialized functions,
practitioners can concentrate on resolving domain-specific challenges
instead of programming fundamental algorithms in their fit from
ground up. For instance, a medical researcher working on retinal
images can easily use complex vessel segmentation algorithms
without needing to understand the mathematical details of the
underlying  techniques. This abstraction layer accelerates

development cycles and allows specialists to apply image processing
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techniques to their fields without becoming an image processing
specialists in their own right. Lastly, MATLAB's toolbox comes with
a wide range of documentation and example codes that act as teaching
aids, allowing the users to learn not only how to use the functions but
also the theoretical concepts behind them.

MATLAB also provides an integrated development environment
(IDE), which has contributed to its popularity for image processing
operations. The environment unifies the code editing, execution,
visualization and debugging tools in a single interface to simplify and
accelerate the denervation workflow. Moreover, the interactive nature
of the environment enables users to run the code step by step, see the
results step by step, and adjust their methods step by step — which is
extremely useful in the area of image processing, when you rely
heavily on visual feedback. The workspace browser provides users
with the ability to inspect image data at different stages of processing;
the variable editor permits direct manipulation of pixel values for
experimentation purposes; and the profiler identifies performance
bottlenecks in image-processing pipelines. These integrated tools
create a development experience that minimizes the chasm between
idea and realization of a concept, allowing rapid prototyping of image
processing algorithms. This tight intertwining of computation and
visualization enables the exploratory analysis that often forms the
basis of innovations in image processing techniques.
MATLAB/Octave scripting language was developed for compact
representation of mathematical algorithms and is therefore very
suitable for the implementation of image processing methods. This
interactive computing model allows the language perform the
operation on the whole image/regions without explicit looping,
yielding code that is easier to write, read and execute in terms of
performance. This mathematical expression of algorithms is what
makes MATLAB/Octave especially powerful when developing
custom Image Processing algorithms, since the code you write often
mirrors the Math notation used in the academic literature which
describes these algorithms. Convolution is one of the most basic
actions you could do on images (filtering), and the process of
convolution can be written in just simple few lines of code, which can
be thus understandable according to the mathematical definition of the

convolution! As theory and code are located close to each other, this
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allows for a better understanding of the algorithms and shortcuts a
researcher can take to move from theory to an implementation. The
language was designed for matrix manipulation, which easily
translates to handling multi-dimensional data, so it is simple to either
operate on multi-channel images, image time-series, or volume data,
like that that comes out of medical imaging devices.

While powerful, those who use MATLAB and Octave have their
limitations. However, since MATLAB is proprietary software, it can
come with some licensing costs, especially for commercial use,
which could be a challenge for smaller businesses or individual
developers. Octave is a free option, but certain functions for advanced
image processing (if present) may not be at the same level as
MATLAB or in some cases may need extra packages. Another aspect
is performance, especially in high-end or real-time image processing.
While both frameworks offer extensive performance optimization
tools, such as parallel processing and GPU support, they may not
always provide the same speed of execution one might expect from
lower-level implementations in languages such as C++ when it comes
to intense computational workloads. Additionally, deploying
MATLAB applications to production environments typically requires
the use of other tools, such as MATLAB Compiler, which complicates
the development pipeline. It is essential to review the requirements of
an image processing project before determining if MATLAB or
Octave should be a one-way street. MATLAB has gained a strong
foothold in academia and research-oriented environments where
extensive functionality and a math-oriented toolset suit the iterative
review of experimental work. This has led to a huge ecosystem of
shared knowledge about MATLAB in these environments as
researchers worldwide published MATLAB code and design of new
image processing algorithms in parallel with their research. The result
has been faster sharing of new techniques and better reproducibility
of image processing research. Notably, the platform's common use in
education leads many practitioners entering industry already skilled
in MATLAB's methods for visualizing images, and it is is used across
fields from automotive to biomedical engineering. By contrast,
Octave, while being less widely used in commercial situations, has the
advantage of being common in education and the open-source world,

where freedom from licensing restrictions is a priority. In both cases, a
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vibrant user community has created a huge range of readily available
information — forums, third-party toolboxes, tutorials, etc — to
backstop the official documentation and make the practical
applications of the tools much broader than simply their core

implementations.

1.3.9 Open-Source Image Processing With Python and Open
Source Libraries Open CV and Num Py

Python has taken a stronghold in the domain of image processing,
with a real paradigm shift in visual data analysis for developers and
researchers. This revolution really is thanks to Python's promise of
easy readable code allowing millions of people to start using image
analysis where previously such concepts were restricted to only a
small audience of programmers. Unlike the MATLAB/Octave
toolboxes with its own specialized syntax, Python is a general-
purpose programming language, and its intuitiveness and flexibility is
likely to be intuitive even for someone new to programming, but
providing enough depth for use with complex applications. Easily
learned modules would tend to hide the challenges of the image
processing problem in hand, while reducing cognitive overheads of
implementing  complex  algorithms. This availability has
revolutionized the processing of imagery, ushering analytical power
into various disciplines from biology to autonomous driving. This
modular design provides the flexibility to piece together the exact
functionality you need, much like building blocks. This modular
architecture represents a divergence of core philosophy from the more
monolithic approach of MATLAB—Python bristles with the
components users can load as needed for their specific tasks, making
for a more flexible and efficient usage of electricity. The wide range
of applicability of the language means that code written for image
processing cannot be standalone except for applications, but can be
integrated in larger working systems covering all fields of application
like web products, data bases or machine learning pipelines creating
integrated solutions where image recognition is only a subtask of a
larger workflow.

OpenCV (Open Source Computer Vision Library) is probably the
most considerable package regarding image processing in Python.

OpenCV (Open Source Computer Vision Library), initially created by
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Intel in 1999, is now a large, cross-platform library that includes
hundreds of algorithms from fundamental image processing to
advanced computer vision. The pivotal moment was a switch to a
Python interface, bridging over the performance-optimized C++
implementations offered by OpenCV with the widespread availability
and convenience of Python. This combination of efficiency and
usability allows OpenCV to be used for thousands of image
processing applications. The breadth of the library is truly impressive,
from basic operations such as filtering, morphology and geometric
transformations; through mid-level algorithms such as feature
detection, object recognition and tracking; all the way to advanced
functionality such as 3D reconstruction, machine learning capabilities
and computational photography. OpenCV architecture is designed to
be practically usable, and many algorithms are designed to be real
time, which is important for applications like video surveillance,
augmented reality, and robotics. The design/philosophy of the library
is not just correct in theory, but efficient in practice, therefore they
provide implementations which balance the accuracy vs computation
cost. This no-nonsense strategy has rendered OpenCV especially
useful and flexible in low-overhead environments, ranging from tiny
systems to cellular devices, in which computational and storage
capacities are restricted but real-time capabilities are critical.

This includes Python's image processing, which is built on top of
NumPy, the base layer for a great deal of Python's scientific
computing ecosystem. By efficiently implementing multi-dimensional
arrays and adding a rich set of mathematical functions to operate on
them, that Ilibrary changes Python from a general-purpose
programming language into an effective numerical computing
environment. More central to the use of NumPy for image processing,
is the ability to represent images in an array format (as numbers), and
use vectorized operations, which make them very concise and
computationally efficient. The contribution of NumPy to Python as an
image-processing language cannot be overestimated—it closes the
performance gap that would have existed between interpreted
languages like Python and compiled systems, making Python relevant
for all but the most computationally intensive image-processing
applications. NumPy’s array operations allow for elegant

implementation of many low-level image processing algorithms,

32
MATS Centre for Distance and Online Education, MATS University



from simple point operations such as brightness increases, to more
complicated neighborhood operations such as convolution-based
filtering. This broadcasting capability of the library comes handy in
processing the image, it makes it possible to carry out operations
between arrays with different dimensions, such as applying a single
mathematical operation to all the pixels of an image, without the need
of explicit loops. High-dimensional data representations in NumPy
enable a variety of mathematical image processing techniques,
coupled with the algorithmic efficiency of NumPy, and we are
privileged to see many of the more powerful higher-level Python
image processing libraries built upon NumPy arrays as their image
handling standard, including OpenCV.

There are much more in python ecosystem than opencv and numpy,
and there are specialized libraries for image processing that works
with opencv and numpy. SciPy is basically on top of NumPy and
contains extra scientific algorithms: among them, there are some for
image processing such as advanced filtering, morphology and
segmentation functions. Scikit-image - A collection of algorithms for
image processing in Python, specifically for scientific applications,
implementations with a focus on high-quality and educative
implementations with performance. Pillow is a fork of the Python
Imaging Library (PIL) and makes it very easy to perform a lot of basic
image manipulations; it also handles a variety of file formats, so it is
very useful for image I/O. If your application touches on deep
learning, sophisticated libraries such as TensorFlow and PyTorch
provide the tools for neural network-based image analysis, while
highly focused packages such as OpenFace and Dlib deliver pre-
trained models for jobs such as face recognition. This ecosystem is
built on interoperability—images can be exchanged freely between
libraries, using NumPy arrays as the common currency. This
interoperability  creates mix-and-match  capabilities = whereby
developers can leverage the strengths of different libraries all in one
application: maybe using Pillow for loading images, NumPy for basic
transformations, scikit-image for the segmentation, and OpenCV for
feature extraction. With such a rich ecosystem at its disposal, Python
can tackle just about any image manipulation task, from the simplest
of tasks to the bleeding edge of computer vision research. Python has

extensive libraries that help it prescribe to the image processing
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domain as well. There is a reason why most of the data science
framework resides on Python and this has helped the image
processing domain too. It enables powerful synergies where
processing for images is an integral part of our full-stack workflows
for data analysis. Libraries such as Pandas also allow for advanced
manipulation of the metadata linked with those images (i.e.,
categorical labels, timestamps, geocodes). Libraries like Matplotlib
have advanced functionality to provide images with other types of
data in consistent analytical dashboards. Statistical packages allow
you to perform quantitative assessment of the image processing
results, and machine learning libraries introduce more sophisticated
patterns detection over the image data. This cohesion across
ecosystems 1is particularly important in areas of medical imaging,
remote sensing, and scientific research, where images undergo
analysis with additional data modalities to provide a broader context
of knowledge. If a researcher is studying climate change, for example,
they might pull together satellite imagery along with temperature
readings, vegetation indices and historical climate data, all in one
Python environment. As the lingua franca of data science, the
language has given rise to a thriving community that contributes new
tools and techniques at the intersection of image processing and other
analytical domains, proliferating the possibilities for integrated
analysis of visual data with other sources of information.

In addition, the flexibility of Python for deployment is another big
benefit in the overall image processing applications. Python solutions
can be deployed in an astounding variety of environments — from
high-performance computing clusters analyzing satellite imagery, to
embedded systems deploying real-time computer vision algorithms,
to web applications providing image-analysis capabilities, to mobile
devices performing on-device recognition. Tools that support this
deployment versatility include Flask and Django for web integration,
Pylnstaller and cx Freeze for standalone applications, Numba and
Cython for performance optimization, and frameworks tailored to
specific platforms, such as TensorFlow Lite for mobile and edge
deployment. Using similar approaches such as Docker and
containerisation of applications allows for more flexible deployment
of Python applications (Kim et al.,2016), it also enables such

applications to run consistently within different environments or on
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different platforms, making it easier to manage complicated stacks of
dependencies commonly found on image-processing applications.
This deployment versatility has rendered Python a compelling option
for organizations that require to deploy image process features across
diverse computing environments while also keeping a common
codebase and growth approach. Decoupling the development of a
solution from the environment it runs in allows for significantly
reduced engineering overhead in needing to transfer solutions
between multiple platforms and settings.

Python Image Processing: Use Image Processing libraries available in
Python to Process Images. For many image processing tasks, Python
itself would be too slow if not for its ecosystem of optimized
libraries, since it is an interpreted language. OpenCV is composed of
C++ code under the hood with Python bindings, but NumPy performs
operations in handy C-code. This architecture leads to a dual-layer
design: high-level logic and program flow are written in readable
Python code, while computationally heavy operations are handled by
the compiled native code that sits behind the scenes. While this
method provides performance that is better than sufficient for almost
all intended use cases, extreme exceptions remain. Tasks like real-
time processing of high-resolution video streams, where you might
also have to process very large satellite images or to implement
computationally intensive algorithms such as deep neural networks
might be testing the performance limits of Python. The ecosystem
provides several approaches to help with these challenges: using GPU
acceleration through libraries like CUDA, taking advantage of parallel
processing capabilities, writing performance-critical sections of code
in Cython or C++, or running processing on multiple machines. Thus,
these methods can greatly lift the performance envelope of Python,
but practitioners should know that the most demanding applications
may need solutions that go beyond a pure Python implementation.

The largest strength of Python's image processing libraries is peace
and ecosystem around them. This vibrant, global community
constantly adds features, extensions, and novel techniques that keep
these tools at the forefront of the discipline. Libraries such as
OpenCV, NumPy, and scikit-image are open source: their
development is a worldwide collaboration involving contributors from

individual hobbyists to teams at large tech companies and research
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institutions. Because this model of collaborative development
facilitates the rapid detection and resolution of bugs, regular
deployment of new algorithms, and compatibility with evolving
hardware and software platforms. And beyond the code itself, the
community produces an amazing amount of educational material: full
documentation, in-depth tutorials, example apps, online courses, and
forums where everyone from absolute novice to master can get help.
Although we now have a plethora of learning materials, it
significantly flattens the learning curve for newcomers to image
processing, allowing them to quickly become productive with these
powerful tools. Regular conferences and workshops contribute to this
ecosystem, as do meetups where practitioners share knowledge and
techniques in a spirit of innovation and collaboration. From a
collection of algorithms, this community support helps Python's
image processing libraries to develop into a living and breathing
platform that continuously evolves to serve the unique needs of users

in the application space.

1.3.9.1 ImageJ: An Image Processing Tool for the Scientific
Community

This section reviews the unique approach that ImageJ has taken in the
design of a processing tool developed specifically for use cases in the
scientific research space, especially life science and clinical
applications. ImageJ, which was developed at the National Institutes
of Health (NIH) and released to the public domain, represents a
philosophy that is fundamentally different from both the MATLAB
and the Python-based alternatives. Although those platforms offer
general-purpose programming environments that can be used for
image processing purposes, ImageJ was designed from the ground up
as a domain-specific image processing tool specifically for scientific
applications. This specialization is reflected in every bit of its design:
its user interface is designed to edit, manipulate and analyze a
microscopy image; the data structures are designed to handle the
scientific image formats; the built-in measurement tools are calibrated
for scientific quantification. Images are a language all their own, and
the platform is designed by scientists working in the space every day,
which has led to a product that seamlessly integrates into scientific

workflows and the terminology that scientific teams already use. This
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domain-specific approach has enabled Image] to be remarkably
successful in its target applications, where it frequently provides a
more straightforward and accessible solution than most general-
purpose programming environments would provide. By concentrating
on such a clear area of application — scientific imaging — the
software has cultivated a user and developer community that speaks a
common language around common problems which leads to a
uniquely tight ecosystem of use and improvement driven by concrete
scientific needs rather than general software development concerns.
The image analysis tool ImagelJ has an exceptional graphical user
interface (GUI) that represents one of the most distinctive features of
the tool and has been the driving force behind its adoption among
many scientists with little programming experience. Ensuring that
frequent functions are readily available via menus or toolbars yet
putting more complex tools into intuitive hierarchies is the trade-off;
the interface excels at this balance of simplicity and might. This
design philosophy allows for immediate access to basic image
visualization and manipulation for newcomers, while leaving a
pathway for advanced functionality as the user grows into the
language. The main structure for the interface is a stack of images,
namely a 3D structure composed of related 2D images such as z-
stacks in confocal microscopy, series of time-lapse has a zoo time
series time or information for multi-channel fluorescence images, all
of which are the data structures you typically will find in biological
and medical imaging. The Image] GUI offers tailored navigational
and visualization tools for these more optical data-structures, such as
orthogonal views, hyper stack navigation, and synchronized windows
for spatial or temporal relationships between different visualization of
the same data (Fig. 3a). Fiji-ImageJ includes advanced coordinates
where users can overlay quantitative measurements on an image:
intensity profiles across an arbitrary line, statistics from a region of
interest, distance measurements in calibrated physical units, and input
data from images to define features. This close integration of
visualization and quantification demonstrates Imagel’s recognition
that the ultimate product of scientific imaging is rarely an image, but
rather the quantitative data that can be mined from it.

One of the biggest strengths of Imagel is its extensive plugin

architecture, turning a powerful but limited application into an
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infinitely extensible platform. As a result of this plug-in system,
thousands of domain-specific extensions have been created that
attend to the various needs of different scientific fields and
applications. The architecture also has such a low barrier to entry that
plugins can be written by anyone with even a tiny bit of Java (often by
modifying pre-existing examples), enabling numerous scientists to
develop tools attuned to their particular research questions without
having to become an expert at software development. They cover
everything from straightforward filters and enhancement methods to
complex analysis workflows that incorporate state-of-the-art
algorithms from the scientific literature. Prominent such plugins
comprise such facilities as TrackMate for particle tracking in
biological samples, Neurite Tracer for analysis of neuronal structures,
SIOX for high-end object segmentation, and a whole array of
machine learning integrations, which add advanced classification and
segmentation capabilities to the platform. The base package therefore
can serve as a standalone tool, but it comes with a plugin ecosystem
that encompasses not only pure image analysis tools, but also
specialized data visualization tools, result statistical analysis tools, or
even integration with external hardware such as microscopes or other
scientific instruments. This extensibility enables ImageJ to keep pace
with the rapidly-advancing field of scientific imaging, using new
techniques and addressing new research questions made possible by
community contributions, rather than centralized effort.

Another route to automation and customization comes from Imagel's
macro language, which has been particularly useful in scientific
contexts. Python is an easy-to-understand scripting language that
empowers users to generate, modify, and retrace descriptions of steps
which may be performed over multiple images or datasets, making it
a necessity in scientific studies where reproducibility is paramount.
This lightweight script language offers a compromise between
complexity and functionality; its syntax is purposely friendly for non-
programmers, yet it offers the conditional logic, loops, functions, and
other constructs necessary for powerful automation. This has allowed
many researchers to create standard analysis protocols that remove
the variability and drudgery of processing data by hand but record
every stage of the analysis pipeline for transparent reporting. One of

the major nodes in the ecological map of Katalon (up to the local one)
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is a macro recorder — a tool that saves users the trouble of having to
generate code manually, by recording actions made via the graphical
interface and turning them into test code. When that code is recorded,
it can be used as a basis for customization and extension, thus
bringing newcomers to automation in programming a gentle on-ramp.
Macro language is used mostly by more advanced users as a
prototyping environment to explore approaches to analysis, which
can be packaged into plugins for broader distribution or optimized for
performance. This multi-faceted approach to automation, combining
basic recorded macros with advanced custom plugins, provides
multiple entry points for users with varying levels of programming
knowledge, allowing automation to be used no matter what technical
background they have.

The development practices stemming from Datal are cooperative in
the spirit of scientists themselves, and this has led to a unique
development approach, which has its own pros regarding applications
in  research.opticascience.com  While commercial software
development is often driven by market-driven constraints, ImageJ has
evolved based solely on the needs of an active community of
practicing scientists. “Because it is embedded in its user community,
development efforts prioritize actual scientific problems rather than
generic technology trends or commercial interests. As a public domain
software, the application is free to modify and extend, and academic
groups have no legal barriers in building upon the application
platform or improving it. As with all open source things, this open
development has led to a virtuous circle where general developments
for one particular kind of research further ends up in the public
domain until everyone understands everything about all everything
much faster. The scientific emphasis is also evident in the platform’s
dedication to validation and reproducibility, which are urgent issues
in research settings. Numerous Image] plugins are direct
implementations of algorithms from peer-reviewed publications, and
their implementations are transparent and can be scrutinized and
verified by the end-user. This is in stark contrast to commercial "black
box" solutions where the inner workings of algorithms might be
proprietary and are not visible to the customer at all. The scientific
background also reflects on the documentation culture of Imagel

where several plugins have elaborate methodological details which
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could be used in the manuscript, instead of just feature or operating
instructions.

This scientific orientation permeates the various parts of the Image]
ecosystem, resulting in a research tool that feels native to research
workflows, as opposed to one that has been cobbled together from
general-purpose or commercial contexts. Fiji (Fiji Is Just ImageJ) is a
major evolution of the ImageJ concept, which bundles the core
application with a hand-picked set of plugins, and adds a consistent
update mechanism to mitigate the fragmentation issues common in a
vibrant plugin ecosystem. This distribution soon became many
researchers' preferred Image)J implementation, as it offers a richer,
more uniform experience than what is available by default through the
Image] application. Fiji comes bundled with dozens of hand-picked
plugins that realize frequently required functionality, ranging from the
basic (e.g. registration, segmentation) to the specialist (e.g. for
biological image analysis). Bundling helps ensure that configurations
work together and for providing an easier all-the-things-experience,
which is beneficial for new users that may not yet know the
environment and have to find and install the right specific plugins for
their work. It also provides a unified update system that makes it easy
to keep the app and its plugins up-to-date to use them in the actual
work, potentially a pain in the original ImageJ world when lots of
pestering for plugin update or numbing user by managing (some) of
the plugin manually. These practical improvements are complemented
by Fiji's facilitation of a broader cohesion within the development
community itself: many of those who contribute to Fiji do so with an
aim of enhancing the Fiji distribution as a whole rather than
developing self-contained plugins. This consolidation has enabled
more consistent user interfaces, tighter integration between
components, and more thorough end-to-end testing across the
platform. Fiji is an upwards step in ease of use and collaborative
development while maintaining complete backwards compatibility
with traditional ImageJ plugins and macros, representing the maturing
of the ImageJ concept into a more powerful and integrated scientific
tool for tackling the demands of modern research workflows.
Integrating with other software environments and file formats is
another key component of the utility of ImagelJ in diverse scientific

contexts. The software is able to support an astonishing variety of
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scientific image file formats, including specific formats from the main
microscope manufacturers, medical image standard formats such as
DICOM, as well as multipage TIFF files which are commonly used to
store an image sequence. The simplicity of the format support which
Imagel offers is only matched by the huge amount of data handling
capabilities, which are constantly being added through both core
development and community contributions, to ensure that ImageJ can
meet data from virtually any scientific imaging system. However,
even aside from file formats, ImageJ provides several avenues for
integration into other software environments. In Python, libraries such
as Pylmagel] enable access to Image] functionality from Python,
allowing hybrid workflows to capitalize on the strengths of each
environment. There are similar bridges for R, MATLAB, and other
scientific computing platforms, linking the specialized image analysis
functionality of Imagel] into the larger computational pipeline of
researchers. The software also offers support for a range of data
exchange formats that allow the transit of results to statistical analysis
tools or visualisation packages, or database systems. Such
interoperability is especially important in modern scientific practice,
in which image analysis is often only one part of a complex analytical
pipeline which can include multiple pieces of software tools and
computational approaches. Image] reduces barriers to integration not
by presenting a closed environment, but rather as flexible sub-
component within these larger ecosystems, allowing for researchers
to construct integrated analytical pipelines that match their specific
research questions and institutional resources.

As robust as Imagel is, however, it has some disadvantages that end-
users should take into account when deciding whether this is the right
tool for the job. In some cases, the software's Java implementation
and single-threaded architecture can be a performance bottleneck
when working with very large datasets, as it may not take advantage
of the power of modern multi-core processors. Although some
extensions optimize performance for certain operations, users with
extremely large microscopy datasets or in high-throughput screening
applications can experience scalability issues. The user experience is
intuitive, designed to feel comfortable for its target audience, but
implementations that will feel familiar for decades (and replicating

realm of old interaction design) will to experience the feeling of a
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legacy software environment. This legacy interface sometimes leads
to workflows that take more steps than would be necessary in a tool
built from scratch today. Core functions are generally well-
documented in the ecosystem, while many community-contributed
plugins have scant or non-existent instructions. Due to the distributed
nature of development as well, there are terminological, user interface
convention, and operational behavior inconsistencies between various
components that can lead to confusion for the users at times. And also
because D, the information processing reported performed by
computer vision, industrial inspection, multimedia processing
computers and other computer civilizations are difficult, no Medical
Imaging suitable for modification Imaging Language, a Imagel
Regardless, the shortcomings just presented illustrate the need to
tailor the selection of the tool to fulfill those needs, as well as the fact
that ImagelJ should really be used as part of a whole suite of tools
rather than as a magic wand for any and all image processing needs.

To this end, the future lines of development for ImagelJ will both
respond to the changing landscape of scientific imaging and an
evolving research computing environment. The ImageJ2 project is a
major architectural renovation, rebuilding the platform core according
to modern software design principles, while retaining compatibility
with the large ecosystem of existing plugins and macros. This
modernization also entails better support for n-dimensional data
(beyond 2D and 3D images), improved handling of scientific image-
associated metadata, and more powerful data structures to represent
complex relationships between image regions and measurements. It
also focuses on enhanced modularity via the SciJava Common
framework that promotes additional code reuse, more consistent
interfaces between components, and better separation of concerns in
the software architecture. Machine learning frameworks integration is
another active area of development with some ongoing projects
aiming to tap the power of deep learning approaches for scientific
image analysis while preserving Imagel's hallmark accessibility.
There are efforts in place to overcome the scalability limitations of
giant datasets by harnessing distributed computing resources for
additional capabilities at all times and allowing researchers to
perform interactive analysis. Improved visualization technologies,

such as 3D rendering, virtual reality, and multi-modal data
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visualization. These continual capabilities ensure Image] remains at
the forefront of a rapidly evolving scientific landscape and continue
its legacy of responding to the evolving needs of the research

community.

1.3.10 Comparison and Selection Process

Choosing between them requires developers to match the specific
needs of their project against those platforms' unique strengths and
weaknesses. MATLAB/Octave shine in scenarios where mathematics
iterations is most important and rapid development is more valued
than deployment. Their integrated environments facilitate the
development and fine-tuning of complex image processing
algorithms, especially those based on solid mathematical concepts
such as signal processing, numerical optimization, or statistical
methods. Within the domain of academic research, engineering
development departments, and professional fields including medical
image analysis and remote sensing, such platforms tend to be the
preferred system environment, expanding their scope from
fundamental testing of ideas to proficiencies over features and
detailed documentation with sub-libraries in making combinations to
solve complex problems. While MATLAB is a powerful tool used in
many high-tech industries, its licensing costs can be quite prohibitive
for smaller organizations or individual users, and deploying MATLAB
applications in production environments may have challenges that
need to be carefully weighed. With OpenCV and NumPy, Python
provides incredible flexibility and interoperability, making it a great
solution for projects that include image processing in larger
applications, or when deployment in varied environments is expected.
The rich ecosystem surrounding these tools serves nearly every
potential image processing-related chore, most often with multiple
alternative implementations available. The intersection of image
processing, data science and machine learning positions Python as
having distinct advantages for applications that cross these domain
boundaries such as content based image retrieval systems, automated
visual inspection or the computer vision component of artificial
intelligence systems. The tooling is open source, effectively removing
licensing constraints and promoting broad experimentation and

adaptation. Especially in the context of biological and medical
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research, ImagelJ is a strong contender for scientific applications that
require less code for more results with scientific tools immediate to
use without extensive code programming. Its graphical interface
allows sophisticated image analysis to be performed with little or no
background in computer science, and its extensibility via plugins and
macros provides means for increasing expertise and requirements over
time. In laboratory environments where the context of images shown
influences interpretation alongside experimental metadata and other
research data, the power of the platform is to deeply integrate into
scientific workflows, and instrumentation.

Another key consideration that impacts tool selection is the nature of
the project’s data. On the contrary, MATLAB/Octave supports a
variety of scientific data formats and serves as an excellent tool for
managing multidimensional datasets, such as hyperspectral images or
medical volumes. This well-motivated property makes them ideal for
applications in advanced signal processing or any mathematical
modeling based on image data as the input. * For image manipulation,
Python’s ecosystem gives us the flexibility to use any available
library for any image format or data structure, as we have libraries
available in Python itself. This flexibility is evident in integration with
heterogeneous data sources, from web APIs to database systems to
live video streams, so Python is also a superb choice for applications
that need to deal with images from disparate sources, or in formats
that are not commonly found. Big data contexts where image
processing must scale to massive datasets distributed across compute
clusters are a particular sweet spot for Python. ImageJ data types are
often domain-specific (for scientific imaging; shown edge case with
multichannel fluorescence images; supports time series, z-stacks, and
so on; even sophisticated formats generated by scientific instruments).
Its calibration tools and measurement capabilities are tailored to
extracting quantitative data from these kinds of scientific images, with
focus on units, scales, and experimental context that may be less well
articulated in more general-purpose tools. The exact nature of the
data—be it volume (or number of instances), intrinsic complexity (or
dimensionality), complexity of treatment (or the number of techniques
we need to apply to perform our analysis), method of acquisition (or
perhaps a difference in the type of method used to acquire images to

be analyzed), or the desired analysis (or actions to be taken on the
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data)— should play an important role in the determination of an
appropriate image processing platform.

Another important dimension for evaluation is the performance
requirements related to its computation. The default methods in
MATLAB take advantage of heavy performance optimization,
including multi-threading, GPU-acceleration, and smart algorithm
selection to yield the maximum performance. NumPy provides
standard Just-In-Time compilation support for very efficient matrix
operations, yielding excellent performance for many image processing
tasks, although the memory requirements may prove a limitation in
some cases. Octave is generally one step behind MATLAB in terms of
optimization, yet offers quite acceptable performance for many
applications. Python's performance is more variable, as it depends on
libraries and implementation strategies. Most OpenCV operations are
implemented in highly optimized C++ and can achieve performance
on par with or better than MATLAB for many operations, especially
when using CUDA integration for GPU acceleration. Naive Python
implementations using Python loops for vector operations can be
painfully slow, and performance-critical applications often require
paying special attention to implementation details. The Java
implementation of ImageJ has moderate performance sufficient for
interactive evaluation of common scientific images, but may fail on
very large datasets or computationally expensive operations. These
limitations for specialized use cases are partially alleviated by various
extensions and alternative implementations (such as CLIJ (GPU-
accelerated Imagel)). Apart from raw performance, and similar
external factors, memory efficiency, startup time, and interactive
responsiveness may also factor into platform choice depending on the
application’s operational context.

Other aspects which greatly influence productivity and should be
taken into account when choosing tools are the compatibility of the
development environment and workflow. MATLAB allows you to
edit, run, debug, and visualize your code in a very tightly integrated
development environment where everything happens in one UI. This
enables a productive workflow for algorithm development and tuning
that many researchers and engineers find very efficient since it's
interactive — good for exploratory analysis and iterative

development. Python allows for the development environment itself to
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be a more variable prospect (full IDEs such as PyCharm and Spyder,
or lightweight Jupyter notebooks and simple text editors). This
flexibility enables teams to choose tools that suit their methodologies
but may involve additional setup time to create productive workflows.
Moreover, Jupyter Notebooks have gained significant popularity when
developing image processing in python, with interactive documents
that allow for development and explanation of how methods and
techniques were employed in code, results and proper documentation.
Imagel offers a fundamentally different development model that floats
a graphical interface to the user, where programming (via macros or
plugins) is an extension and not the primary mode of interaction. This
lowers the technical barrier to using it productively, though it can
come into its own for highly deep or customized applications.
Approaches to development vary, and this is something others must
consider in terms of how these workflows mesh with established
team workflows as well as who has access to institutional dollars and
who has the expertise/skills to use that resource.

Yet another important dimension for evaluation involves integration
requirements with other systems and software. MATLAB provides
solid support for generating standalone applications using MATLAB
Compiler, and many ways to integrate enterprise systems and
hardware devices or other software environments. But these
integration abilities typically require extra licensing fees, and
deployment to production tends to be more complicated than its open-
source counterparts. Python shines in system-integrated scenarios, as
a general-purpose programming language that can be easily
implemented into 1image processing functionalities in web
applications, enterprise systems, embedded devices or cloud services.
The popularity of the language across the technology landscape means
that integration patterns, libraries, and examples to tie Python-based
image processing to just about any external system or service are
abundant. Imagel] provides specialized integration with scientific
instruments and data management systems prevalent in research
environments, and excels in microscopy workflows and biological
data pipelines. Because it is built on Java, there are also integration
options available using standard Java interoperability mechanisms,
although those approaches may require more development expertise

outside the core functionality of the platform. For projects where
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processing images is just one piece of a larger system, these types of
integration capabilities may be equally, if not more, important than the
core functionality available for image analysis when determining the
best tool for the task.

Community support and ecosystem vitality should not be disregarded
as considerations in platform selection, especially for projects
expected to mature over time. MathWorks has professional-grade
end-user support and comprehensive documentation that comes with
MATLAB, which is complimented with active user forums and a
large tape of educational resources. So long as the platform remains a
strong presence in both academic and industrial settings,
development will never cease and countless innovations will find their
way into official releases. The Python ecosystem enjoys amazing
community momentum, with thousands of contributors continually
improving core libraries and adding new capabilities. This
community-oriented development model gives rise to rapid
innovations and heterogenous approaches at solving image processing
tasks, at the cost of fragmentation or maintenance of less widely-used
packages. The Image] community is more niche but just as vibrant,
with special strength in biological and medical imaging applications,
in which researchers are aggressively contributing tools that tackle
specific research questions. The scientific character of the platform
builds a community where domain expertise meets computational
approaches in a productive way, yielding tools that are highly attuned
to needs of research. Ecosystem evaluation can also be an important
part of the selection process for long-term projects as the health and
direction of these communities can greatly affect the future
availability and capacity of the selected platform.

Summary

Digital Image Processing (DIP) is a field of computer science and
engineering that involves the manipulation of digital images using
algorithms. The main goal of DIP is to improve image quality for
human interpretation or to extract useful information for automated
systems. It has broad applications in areas such as medical imaging,
satellite imagery, computer vision, robotics, and forensic science.
Unlike analog image processing, which works with continuous
signals, digital image processing involves converting images into a

digital form using a matrix of pixels that can be processed by

47
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i



¢ o

{

}mn'r

\\\

UNIVERSITY

ready for life

Notes

)

i

computers. This makes it highly flexible, accurate, and suitable for
tasks like image enhancement, restoration, compression, and object
recognition.

Image representation in digital processing refers to the way an image
is stored and manipulated in a computer system. Each image is
represented as a two-dimensional matrix of intensity values (pixels),
where each pixel represents the brightness or color information at a
specific location. Depending on the type of image, pixel values may
be in grayscale (ranging from black to white) or color (with red,
green, and blue channels). There are various types of digital images,
including binary images (black and white), grayscale images (shades
of gray), color images (RGB or CMYK), and multispectral or
hyperspectral i1mages used in scientific and remote sensing
applications. Understanding these fundamentals is essential for
performing various operations like filtering, transformation,

segmentation, and feature extraction in digital image processing tasks.

Multiple Choice Questions (MCQs)

1. What is the main purpose of digital image processing?
a) Editing text documents
b) Enhancing and analyzing images
¢) Managing large databases
d) Compiling programming code

(Answer: b)

2. Which of the following is NOT a type of digital image?
a) Grayscale Image
b) Binary Image
c¢) Analog Image
d) Multispectral Image

(Answer: ¢)

3. What does a pixel represent in an image?
a) A group of colors
b) A single point in an image

c¢) A compressed file format

d) A 3D object

(Answer: b)

4. Which image format supports lossless compression?
a) JPEG
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b) PNG Notes
c¢) GIF
d) BMP
(Answer: b)
5. What is the primary advantage of using the OpenCV
library?
a) It is used only for grayscale images
b) It provides real-time image processing capabilities
c) It works only in MATLAB
d) It is only used for medical imagin
(Answer: b)

6. Which tool is commonly used for medical image analysis?
a) Photoshop
b) Imagel
c¢) Notepad++
d) PowerPoint
(Answer: b)
7. What does RGB stand for in color models?
a) Red, Green, Blue
b) Random, Gradient, Blur
c¢) Ratio, Gray, Black
d) Reflect, Gamma, Brightness
(Answer: a)
8. What does the term "quantization' refer to in image
processing?
a) Increasing image resolution
b) Reducing the number of colors in an image
c¢) Enhancing brightness
d) Converting an image to grayscale
(Answer: b)
9. Which of the following formats is best suited for storing
high-quality medical images?
a) JPEG
b) BMP
c) PNG
d) TIFF
(Answer: d)
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10. What is the main function of the NumPy library in image

processing?

a) Modifying text files

b) Handling large numerical data efficiently
c¢) Creating animations

d) Enhancing image sharpness

(Answer: b)

Short Answer Questions

1.

e

9.

What is digital image processing?

Name two real-world applications of image processing.

What is the difference between grayscale and binary images?
Define pixels and their role in an image.

What are the main characteristics of an RGB image?

Why is image sampling important in digital image processing?
What is the difference between lossy and lossless image
formats?

Name two programming tools used for digital image
processing.

What is the purpose of the OpenCV library in Python?

10. Explain the importance of Imagel in scientific research.

Long Answer Questions

l.
2.

Explain the different types of digital images with examples.
Discuss the role of pixels, resolution, and color models in
image representation.

What are the common image file formats, and how do they
differ?

Describe the process of image sampling and quantization.
Compare and contrast MATLAB and OpenCV for image
processing.

How is image processing used in real-world applications like
medical imaging and remote sensing?

Explain the significance of color models and how they are
used in image processing.

Discuss the advantages and disadvantages of different image
formats (JPEG, PNG, BMP, TIFF).

Describe the basic image operations performed in digital
image processing.
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MODULE 2

IMAGE ENHANCEMENT
LEARNING OUTCOMES
3 To analyze point processing techniques for image enhancement.
4 To evaluate spatial domain filters for smoothing and edge
detection.
5 To explore frequency domain filtering using Fourier Transform.
6 To compare lossless and lossy image compression methods.
7 To assess the efficiency of image processing techniques in real-

world applications.
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Unit 2.1: Point Processing Operations

2.1.1 Point Processing Operations

Point processing operations are among the most fundamental
techniques in digital image processing. In these operations, the value
of each output pixel depends solely on the intensity of the
corresponding input pixel—without considering the values of
neighboring pixels. This makes point processing a pixel-wise

transformation, where each pixel is treated independently.

At the core of point processing lies the application of a mapping
function or transformation function, which is applied to every pixel in
the source image. The function modifies the pixel’s intensity value to
achieve a specific visual or analytical effect. Mathematically, this can

be expressed as:

g(x, y) = T[f(x, y)]

Where:
f(x, y) is the original pixel intensity at location (X, y),
T is the transformation function, and

g(x, y) is the resulting pixel intensity after transformation.

Unlike neighborhood processing, which considers surrounding pixels
to compute a new value (e.g., in blurring or edge detection), point
processing does not rely on spatial context. This simplicity makes
point operations computationally efficient and ideal for real-time
applications.

Some commonly used point processing techniques include:

Contrast Adjustment:

Enhances the visibility of features by stretching or compressing the
range of pixel intensities.

Thresholding:

Converts a grayscale image into a binary image by assigning pixels
either 0 or 1 based on a threshold value. It's widely used in
segmentation tasks.

Negative Transformation:
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Converts an image to its photographic negative by inverting pixel
intensities.

Logarithmic and Power-Law (Gamma) Transformations:

Useful in expanding or compressing dynamic ranges, particularly in
dark or bright regions.

Intensity Level Slicing:

Highlights specific ranges of intensities while suppressing others—

useful in medical imaging.

Output brightness Output brightness
White - White
Black - T - Black - = -
Input brightness input brightness
Black White Black White
(A) Copy (B) Brightness inversion

Output brightness Output brightness

White - White

lack —= ia
B T input brightness | Black T Input brightness
Black White Black White

(C) Brightness addition (D) Brightness scaling by multiplication

Figure 2.1.1: Overview of Point Processing Operations

Thus we can say, Point processing operations modify the intensity of
an individual pixel independently of its neighbors, using the formula s
= T(r), where r is the input pixel value and s is the output pixel value
determined by the transformation function T. Common tutorials cover
basic transformations like negative transformation, contrast stretching,
histogram equalization, and thresholding, which adjust brightness,
expand the dynamic range, and segment images, respectively. These
operations are essential for image enhancement, making them more
suitable for human viewing or further analysis by altering pixel

intensities based on their original values.

2.1.2 Theoretical Foundations and Applications of Contrast
Adjustment

Contrast broad definition for digital images describes the degree of
difference between the lightest and darkest parts of the image.
Adequate contrast is crucial for visual perception and understanding

of image content. These contrast adjustment operations change the
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dynamic range of the pixel intensities to boost visual information at
possibly lower signal to noise ratios and suppress noise or irrelevant
details. These operations are especially useful in cases where images
are taken under poor illumination conditions, where sensors are
limited, or where transmission errors lead to inferior contrast
distributions. The very basic explanation of Contrast adjustment is it
maps some input intensity value that we defined by our function to a
output intensity value. Mathematically, if f(x,y) represents the
original image and g(x,y) represents the processed image, we can
describe the general point processing operation as follows:

g(x,y) = T[f(x,y)]
and T is the transformation function that maps input intensities to
output intensities. Depending upon the contrast enhancement
techniques, we can form linear or nonlinear transformation. The
quality of the final image is directly affected by the design of the
transformation function T; therefore, the model for T is very important
here.
2.1.2.1 Brightness Adjustment
The simplest technique to enhance the contrast is to apply brightness
adjustment, which adds or subtracts a constant value to the pixel
intensities of an image. This adds a constant to the intensity of all the
pixels in the image, which moves the whole histogram of the image to
the right (increasing the brightness) or to the left (decreasing). The
brightness adjustment mathematical representation is as follows for an
8-bit grayscale image with pixel values ranging from 0 to 255:

g(x,y) =f(x,y) + b
where b is the brightness coefficient. Where b a positive value
increase brightness and negative a decrease. The Input image is
evaluated for adjustment followed by checking for the Low and high
threshold conditions before updating the pixel intensity. This is
usually handled in the clamping operations that limit the output
values to a given range:
b = min(max(b, 0), b_max); b_max = max(b_max - min(b, 0), 0);

g(x,y) = max(0, min(255, f(x,y) + b))

Although relatively straightforward in concept, brightness adjustments
play key practical roles in image processing pipelines. It is able to
balance underexposed or overexposed parts of the captured images

and make details more visible for human observers or further
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processing algorithms. As an example, during the analysis of medical
images, radiologists may change the brightness of the X-ray images to
see particular anatomical structures more clearly. The same is true for
satellite imagery where brightness enhancement can bring out
features in shadowed parts as well as avoid washing out bright target
areas. While adjusting the brightness can help, this can often be
insufficient in cases where the image has low contrast and the pixel
intensity values are poorly distributed across the dynamic range. Such
limitations can be addressed with more advanced contrast stretching
techniques, which help to develop more visually appealing and
informative results.
2.1.3 Linear Contrast Stretching
Linear contrast stretching or normalization stretches the intensity
values of an image so they cover a specified range of values, normally
the entire dynamic range of the display medium. This method is
useful when the pixel intensities of an image are biased towards a
narrow range causing the image to have low contrast. Red T of the
intensity values applies a linear transformation with the original
minimum mapped to a new minimum value and the original
maximum mapped to a new value of maximum intensity, scaling all
other intensities proportionally.
The equation used for linear contrast stretching is:

g(x,y) = (f(x,y) — min) * (newMax — newMin) / (max — min) +

newMin

where min and max are the minimum and maximum intensity values
in the original image, and newMin and newMin are the arithmetic
minimum and maximum intensity values in the enhanced image
(which usually are 8 bits and have 0 and 255 as minimum and
maximum intensity values respectively). This process essentially
"stretches" the image histogram across the full available intensity
range in order to improve visual contrast by using the full dynamic
range. The transformation is linear, as all intensities keep their relation
with each other, and therefore, the original appearance of the image is
preserved but with improved contrast. Is a useful approach in remote
sensing applications as there can be issues with the atmospheric
conditions causing certain areas to lose contrast in an image and in
medical imaging, as different tissue types become more easily

differentiated with better contrast. But it is known to enhance the

56
MATS Centre for Distance and Online Education, MATS University



noise from the original image and may not always provide the best
result for images with bimodal or multimodal histogram, which have
different regions or object where the intensity distribution has
multiple peaks.
2.1.4 Gamma Correction
Gamma correction is a nonlinear contrast adjustment process used to
account for the nonlinear relationship between a pixel's intensity value
and the perceived brightness of the pixel in less than ideal
circumstances, e.g., human vision or a display device. The
transformation function obeys a power-law relationship as follows:
g(x,y) = ¢ * [f(x,y)] "y
where c is a scaling constant (typically set to 1) and y (gamma) is the
power coefficient that defines the form of the curve. For y 1 details in
bright areas are improved, and at the cost of those in dark area.
Gamma correction forms an important part of color reproduction
systems to accommodate the nonlinear response characteristics of the
display device and the human visual system. Computer monitors,
televisions, and other types of display technology commonly exhibit a
nonlinear association between input voltage and output luminance;
therefore, gamma correction is required to accurately reproduce color
and intensity.
In addition to display correction, adjustment helps enhance a
particular intensity range of an image. Gamma correction can also be
useful in other situations, such as astronomical imaging, where faint
celestial bodies share the same area with far brighter stars, and you
want to bring out detail in the darker areas without completely
obliterating the brighter (but less interesting) objects. But underwater,
low-light photography produces low-contrast images, where gamma
correction can restore perceptually meaningful visual information.
Gamma correction is a nonlinear operation that is very effective on
images with a significant portion of the image data concentrated in
specific intensity ranges. Inappropriate gamma values can cause
unnatural images, where contrast in some areas becomes pronounced
while suppressed in others—a clear indication of the critical need for
global and local discretion in parameter selection and/or tuning
depending on the input image properties and enhancement goals.
2.1.5 Histogram Equalization
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In computer vision, histogram equalization is one of the most proven
and widely applied contrast enhancement methods, which
automatically computes a transformation function that yields the
output image with a more uniform distribution of intensity values.
While the techniques discussed earlier required the specification of
parameters, histogram equalization utilizes the statistical character of
the input image to maximize contrast in the full intensity spectrum.
Histogram equalization is based on the idea of the cumulative
distribution function (CDF) of the image intensities. For a discrete
gray-level Y, level in the range [0, L-1], the transformation function is
given as:
g(x,y) = round((L-1) * CDF(f(x,y)))

where CDF(k) is the normalized cumulative histogram of [0,1]:

CDF(k) = (j=0—k) n_j / (width * height)
where n_j is the number of pixels with intensity value j, and width
and height are the image dimensions.
This changes the base of the mapping to "stretch" the intensities for
highly populated regions of the histogram and to compress sparsely
populated regions, which leads to an approximately uniform
distribution of intensities in output image. Global Contrast Stretching
— The reshuffling of intensity values improves contrast across the
entire image, and brings out details which were previously
imperceptible because of low contrast. Other significant use of
histogram equalization is in medical image analysis in terms of
enhanced visibility of structures in different modalities like X-ray and
MRI. Another use is in satellite images to help highlight features of
the terrain and geological formations that could be difficult to see
otherwise. Histogram equalization is also used in computer vision
algorithms for preprocessing to enhance the performance of tasks such
as feature detection, segmentation, and object recognition. Although
histogram equalization is powerful in many ways, it also has some
major drawbacks. The technique turns up the contrast too high in
areas with high pixel counts, which can make it a noise amplifier, and
lead to images that look unnatural and ugly. Additionally, it is a
global operation for the whole image, which is not necessarily valid if
most of the image are in different light conditions in other areas. Due
to the global nature of the enhancement, this can sometimes result in

over-enhancement in some parts of the image and still under-
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enhancing others, a common problem in image histograms which can
be bimodal or multimodal.

2.1.6 History and Preprocessing of Image Processing.

Adaptive histogram equalization (AHE) performs histogram
equalization on small regions independently of the entire image, thus
overcoming the drawbacks of global histogram equalization. Each tile
in the overlap, within each subsampling tile, histogram equalization.
Then the results are interpolated to remove boundary artifacts

between adjacent tiles.

Although AHE has an efficient way to enhance local contrast, it may
considerably increase the noise in fairly uniform fields of an image.
CLAHE (Contrast Limited Adaptive Histogram Equalization) tackles
this challenge by imposing a limit on the maximum slope that the
transformation function can have. This restriction is done by clipping
the histogram before computing the CDF with a fixed value, and
equalising it among all histogram bins.
The math goes like:

e Splitting the image into context regions (tiling)

e (alculating the histogram per tile

e Histograms clipped at a maximum threshold

e Redistribution of clipped pixels across histogram

e C(alculating each of the transformation function (CDF) for

each tile

e Using bilinear interpolation to prevent boundary artifacts
Compared to standard histogram equalisation, CLAHE has additional
advantages, such as emphasising local contrast in spatially different
images while not allowing smooth homogeneous areas to be over-
enhanced by a loud-speaker noise. It has been especially useful in
medical imaging tasks, like mammography, where it reveals subtle
tissue abnormalities without amplifying noise. Likewise, in
underwater imaging, when light attenuation causes non-uniform
illumination, CLAHE can better restore visibility in different depth
ranges than general enhancement methods. We can also mention that
the local histograms and the interpolation steps make the
computational complexity of CLAHE higher than that of the global
histogram equalization. Nonetheless, recent implementations take

advantage of parallel processing capabilities that often allow them to
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run on a near real-time basis, even with high-resolution images,
allowing for many practical use cases.
Histogram specification is one of the most important contrast
stretching methods.
Histogram specification (also known as histogram matching) takes the
idea advanced in histogram equalization a step further; specifically,
instead of equalizing an image to achieve a uniform distribution of
intensities, it is transformed to match a given target histogram. The
main advantage of this technique is that you can control the contrast
you want to enhance the image with (often based on the kind of
application) and tailor the transformation according to the
requirements of a particular application or perceptual preferences.
The procedure involves:

e C(Calculating the cumulative distribution function (CDF) of the

input image

e CDF of the target histogram will have to be determined
Distributing pixels based on the CDF levelFor every intensity level in
the input image, find the intensity level in the target image that has
the closest CDF value. Mathematically, where s=T(r), i.e., the
mapping from input intensity r to output intensity s based on input
image's CDF and G”(-1) to get the inverse of target image's CDF, the
histogram specification transformation will be:

z=G(-1)(T(r))

where z is the resulting output intensity.
History specification is a major advantage for specialized application.
In one example, medical imaging, radiologists may prefer a specific
shape of their histograms, allowing for highlights of specific tissue
densities. For example, matched the histogram of a questioned
document to well-known authentic document can sometimes expose
any distortion. Moreover, in aesthetic image enhancement, the
photographer may specify a histogram leading to a desirable tonal
quality or an artistic effect. Histogram specification is flexible but
needs careful choice of target histogram to make sense for
enhancement. Using inappropriately cut target histograms can produce
warped looking images with unnatural intensity relationships.
Additionally, the discrete nature of digital images, especially for low
bit depth images, limits the accuracy of this transformation because

of the limited amount of intensity values available.
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2.1.7 Image Thresholding and Binarization: Definitions and
Approaches
One of the simplest segmentation methods is thresholding which
segments an image into foreground-background regions based on
pixel intensity values. This process translates a grayscale image to a
binary image, where the pixels above some intensity threshold are
classified as foreground (which is usually given value 1) and those
below threshold are classified as background (which is usually given
value 0). Such a binary representation aids subsequent analysis and is
especially useful for applications dealing with shape analysis, object
counting, or feature extraction.
This thresholding operation can be described mathematically as:

g(x,y)={ L, if f(x,y)>T 0,if f(x,y) <T
where T is the threshold value. The thresholding is conceptually
simple but the main difficulty is always to find a suitable threshold to
separate the objects of interest from the background. Some of these
methods are simple global threshold methods while others are more
advanced including adaptive and multi-level methods.
Global Thresholding
Global thresholding takes a single threshold value for the entire
image, thus, making it computationally efficient and easy to
implement. For example, it can be used for images with bimodal
histograms, where pixel intensities cluster around two different values
corresponding to foreground regions and background regions. The
choice of finding the best threshold in global thresholding is to
minimize the classification errors.
There are some approaches available for estimating the global optimal
threshold automatically:
Basic Statistical Approaches
Simple statistical methods, such as using the mean or median
intensity value as the threshold. These methods allow for quick
approximations at the expense of accuracies achieving subpar results,
especially for images with harsh illumination or variations in intensity
distributions. The mean threshold is given by:

T =1 (width * height) XX f(x,y)

Mean immuned thresholding is computationally cheap but does not
work well on low contrast images and images where foreand

background regions have a very dissimilar ratio of area from the total.
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Otsu's Method
A special case of a global thresholding technique is Otsu's method,
one of the most used ones, which selects the threshold that maximizes
the between-class variance of foreground and background pixel
classes. It regards the image histogram as the probability distribution
of two classes (foreground and background) and attempts to
minimize the intra-class variance or, equivalently, maximize the inter-
class variance.
Given every possible threshold value T, Otsu’s method computes:

e The two class probabilities separated by T

e The means of the two classes

e The between-class variance
The optimal threshold is the one that maximizes the between-class
variance:

o>_between(T) = @o(T) * @1(T) * [po(T) — pu(T)]?
where 0 and ol are the class probabilities, and p0 and pl are the
mean intensity values for the two classes. Due to its outstanding
performance of images with bimodal histograms, Otsu's method has
become a classic method in many applications of image processing.
Thus, it does not need parameter tuning and it is robust across diverse
scenarios, simply because it “adaptively” (inherently) synchronizes to
the image characteristics. However, it does miss out on the images
with unimodal or multimodal histograms, and images with
considerable noise or non-uniform illumination.
Entropy-Based Methods
The optimal threshold is calculated based on information theory
principles in entropy-based thresholding methods. These methods
treat the image as an information source with the aim to maximize the
saturation of information (entropy) within the resultant thresholded
image. There are mainly two entropy-based methods that are used:
Kapur maximizes the sum of the entropies of the foreground and
background regions:
H(T) = H_foreground(T) + H_background(T);

Shannon represents entropy selection where it selects the widest
threshold by the difference of the original and thresholded images.
Statistical methods fail on complex images with entropy-based
methods often having good performance on it. It is especially useful

for textured images or for images that have gradual transitions
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between the foreground and background regions. But they are
typically computationally heavier than simpler statistical techniques
and might be sensitive to noise.
2.1.8 Minimum Error Thresholding
The minimum error thresholding approaches represent the image
histogram as a mixture of two Gaussian distributions characterized as
being foreground and background pixels. The means and variances of
each distribution are estimated and the threshold minimizing
classification error rate is selected. This method works well for
images where the foreground and background intensity distributions
are roughly Gaussian. However, this assumption may not hold at all
foreground objects, which can lead to performance loss when other
non-Gaussian noise appearances are described by the other object
classes (appearance model) due to different intensity characteristics.
Adaptive Thresholding
Global thresholding approaches fail in some cases, such as the
uneven lightening images and the variance of the background between
the regions. However, this method falls short under non-uniform
lighting or varying background conditions where not everything will
be perfectly illuminated or contrast with the foreground, making it
less efficient under such cases; adaptive thresholding caters to these
drawbacks as it computes multiple threshold values for local regions
of the image, making the threshold adapt to the lighting and
background conditions that can change in space.
Local Mean and Median Methods
Local mean or median thresholding: The threshold for each pixel is
computed based on the statistics of the pixel neighborhood. where
T(x,y) is the threshold for the pixel at location (x,y).

T(x,y) = n(xy) +C
where p(x, y) represents the average or median value of pixel
intensities within a local window around (X, y), and C is a constant
offset that can modulate the thresholding operation according to
distinct sensitivity requirements. Positive values of C make the
thresholding more selective (fewer foreground pixels), negative
values make it more inclusive. This method captures gradual
variations in illumination across the image, which is especially useful
for document image processing where shadowing or varying

illumination could interfere with the recognition of text. Problem is
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that—while computational cost increases with window size, the
corresponding problem of determining proper window size is also
existing—if too small, the threshold is sensitive to local noise, if too
large—the method loses its adaptability to local conditions.
Niblack's Method
Building on the local mean approach, Niblack's method also
introduces local standard deviation in order to tailor the threshold
sensitivity to the local contrast:

T(x,y) = m(x,y) + k * 6(x,y)
and k is a constant (usually negative) that defines how the standard
deviation affects the threshold. This performs well on the high
contrast regions, however on regions where it is homogenous and
standard deviation is low, it might produce noise.
Sauvola's Method
Sauvola’s approach is a refinement of Niblack’s method, intended to
mitigate Niblack’s shortcomings in uniform areas:
where k is a positive parameter (usually between 0.2 and 0.5) and R is
range of the standard deviation. This allows for a reduced threshold
in low-contrast areas, allowing noise to be suppressed while still
remaining sensitive to real edges and features. Sauvola's technique
has worked especially well for document image binarization,
surpassing most adaptive thresholding approaches in benchmark
comparisons. It can work with a lot of applications from document
processing to biomedical image analysis due to its capacity of coping
with textured regions and homogeneous backgrounds.
Multi-Level Thresholding
It divides the image into two classes; whereas multi-level
thresholding is used to segment an image into a number of classes
using multiple threshold values. The process is useful for images that
include several object classes with different intensity ranges.
Mathematically, multi-level thresholding can be expressed as:
g(x,y) = {v1, if f(x,y) < T1 {v2, if T1 < f(x,y) < T2 {v3, if T2=<1f(x,y) <

Ts {... {Vn, if f(xX,y) =T

where Ti, Tz, ..., Ty are threshold values and vi, vz, ..., v, is output
intensity values assigned to each region.
Global thresholding methods, like multi-level Otsu, generalize the
notion of optimal threshold values by maximizing pairwise between-

class variance for multiple classes. For instance, Multi-level
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Thresholding can be used in medical image segmentation, as various
tissues usually have different intensity ranges due to their differing
composition, or in the case of remote sensing, where land cover
classification requires determining different intensity categories. It
allows a more accurate advanced segmentation than binary threshold
but with less expense than the more complicated segmentation
techniques.
Hysteresis Thresholding
Hysteresis thresholding uses two threshold values—a high threshold
and a low threshold—to minimize the effect of noise and increase the
connectivity of segmented areas. The process involves:
e Pixels with intensities greater than the high threshold are
immediately assigned as foreground.
e First low threshold we classify accordingly the pixel as
background.
¢ Only the pixels with intensities falling in the interval between
the two thresholds which are connected (8-connect) to pixels
already classified as foreground are judged to be foreground.
This method, known from the work by the Canny edge detector,
ensures lower fragmentation in the segmented image and removes
isolated pixels in cases of noise. This proves to be especially useful in
edge detection and boundary tracking, where continuity of the
detected features is critical for further analysis. Choosing the correct
values of high and low threshold so that the atoms would closely
match the molecules is still a great challenge and usually requires
domain knowledge or a lot of testing in experiments. Determining
these thresholds using image statistics or using machine learning
approaches are still active research areas.
Dynamic Thresholding
Dynamic thresholding uses already processed regions to adaptively
update the threshold value throughout the segmentation process. Such
method is suitable for the case of varying intensities characteristics of
objects across the image and for the treatment of video sequences in
which the lighting conditions vary with time.
Sequential dynamic thresholding: in this case, the output of the
algorithm will appear row-by-row (the image will be processed row-
by-row), with updated thresholding operating based on pixels recently

processed. It allows the threshold to adjust to slight variations in the
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intensity of the object or background across the image. In the context
of video processing, temporal dynamic thresholding uses information
from preceding frame(s) to choose suitable thresholds for the current
frame, allowing for changes in lighting or composition across frames.
This method stabilizes segmentation in video analysis applications
(e.g. motion detection, object tracking).
Bradley-Roth Method
Bradley-Roth, which is another name for the integral image
thresholding method, is well-suited for adaptive thresholding as it is
computationally efficient. It uses integral images (summed area
tables) to calculate the local mean, which it can do in constant time,
independent of window size:

T(xy) = p(x,y) * (1 - 5)
where s is a sensitivity parameter (s around 0.15).
This representation allows for fast computation of local statistics,
making this method suitable for real-time applications or processing
of high resolution images. It is efficient in terms of computation and
it works well in cases with gradual illumination changes, so it is used
in document image processing, barcode reading and machine vision
systems.
2.1.9 Point Processing Operations Applications
Point processing operations such as contrast adjustment and
thresholding approaches are commonly used versatile tools in many
areas in image processing and computer vision. Having the potential
of being used in a standalone fashion or as preprocessing methods in
more complex image processing pipelines, they are computationally
efficient, improving certain image qualities, which make them
valuable.
Document Image Processing
Contrast Enhancement and Thresholding for Document Image
Processing These thresholds work remarkably well on images of
documents, which typically suffer from shadows and uneven
illumination, and segment the text from the background, irrespective
of local lighting conditions such as uneven illumination. After this
binarization process, OCR systems can effectively recognize and
extract texts with more precision, which reduces the recognition
errors. These methods can be especially useful for historical

document preservation projects, where documents age over time,
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causing degradation, fading, and staining that clouds legibility. Proper
contrast enhancement and strong thresholding can highlight text
invisible to the naked eye and can conserve valuable historical data
while allowing digital analysis.

Medical Image Analysis

Different medical imaging techniques like X-ray, MRI, CT, and
ultrasound imaging produce contrast limited images because of
multiple physical acquisition constraints (field of view, SNR and
others) as well as neighboring tissues of similar density. Contrast
enhancement methods, such as histogram equalization and its
adaptive variants, help to identify anatomical structures and potential
anomalies, thus aiding in diagnosis and treatment planning.
Thresholding operations enable volumetric measurements, 3D
reconstruction, and quantitative analysis by separating anatomical
structures. In particular, multi-level thresholding is important for the
separation of multiple types of tissues whereby each has a clearly
distinguishable property based on their intensity — among others,
bone, soft tissue and air spaces (common in CT images). In particular
applications such as mammography, small contrast differences can
imply the existence of cancerous tissues. Thresholding MREI
Segment Images — MREI combines several sequential steps to
enhance contrast in images, improving detection sensitivity during
MREI and allowing earlier diagnosis and improved patient outcomes.

In manufacturing environments, thresholding operations are crucial to
be able to detect defects, measure dimensions, verify the presence of
components in automated visual inspection systems. Contouring,
flaw feature extraction, and defect classification become easy with the
binary images using the proper thresholding. These contrast
enhancements are techniques employed to correct for less-than-
optimal lighting conditions in a production environment, providing a
consistent level of inspection performance regardless of ambient light
variations. Adaptive thresholding techniques are capable of
segmenting portions that have diverse surface reflectance properties
or are articulated across multiple planes into several components
without affecting the performance of segmentation over a range of
product types. For instance, in critical industries such as
semiconductor manufacturing, where even the smallest defect at a

micro level can affect how the products function, precise contrast
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adjustment and optimized thresholding helps in identifying anomalies
that may go unnoticed otherwise, leading to improvements in yield

rates and product reliability.

Advanced Point Operations

e Histogram Equalization:
A nonlinear technique that aims to produce an image with a flatter
histogram, meaning all intensity levels are equiprobable. This is
particularly effective at highlighting image brightness for human
visual analysis.

e Thresholding:
A fundamental technique for segmenting images. It involves setting a
specific threshold value. Pixels with values below the threshold are
mapped to one value (e.g., 0), while pixels above the threshold are
mapped to another (e.g., maximum value), often resulting in a binary
image.

o Image Negatives:
A type of negative transformation specifically used to enhance
images, as seen in the formulas=L-r.
Implementation with Python and OpenCV
You can implement point operations using libraries like Python with
OpenCV:

1. Load Image: Load the image into a NumPy array.

2. Perform Transformations: Apply the chosen transformation

(e.g., negative, thresholding) to the pixel values.

3. Save Output: Save the processed image.

2.1.10 Satellite Imagery and Remote Sensing

Atmospheric effects and haze, as well as variability in illumination,
often reduce contrast and obscure important features in satellite and
aerial imagery. While images acquired by spaceborne sensors can be
homogeneous in texture, contrast-enhancement techniques recover
and highlight the terrain features, urban areas, and vegetation patterns
that these images can contain to allow land-use study, environmental
monitoring, or change detection. Land cover classification, water
body delineation, and built-up area extraction from remotely sensed
imagery are supported by thresholding operations. Multi-level

thresholding is especially useful for separating multiple land cover
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classes with unique spectral signatures, and the resultant fast
preliminary classification acts as a guide for more complex analysis
techniques. Rapid  contrast enhancement and thresholding
(segmenting) of pixel values allow information to be extracted from
satellite images to assist in emergency response (e.g., flood mapping,
forest fire tracking).
2.1.11 Biometric Systems
Fingerprint recognition systems typically perform contrast
enhancement and thresholding to extract ridge patterns from sensor
input data that nonetheless may be affected by increased or
inconsistent pressure, skin or environmental conditions, or sensor
noise. Contrast enhancement allows ridge structures to be more
visible, while adequate thresholding separates ridges from the merges
in order to allow more accurate feature extraction and matching
operations. Similarly, contrast enhancement 1is applied to iris
recognition systems to bring out detailed iris patterns, succeeded by
thresholding to extract the iris from surrounding structures including
eyelids and eyelashes. This preprocessing is crucial for biometric
identification accuracy, making contrast adjustment and thresholding
essential techniques of secure authentication system.
Requirement of Image Processing in Biometrics
The image of users biometric is fed into the biometric system. The
system is programmed to manipulate the image using equations, and
then store the results of the computation for each pixel.
To selectively enhance certain fine features in the data and to remove
certain noise, the digital data is subjected to various image processing
operations.
Image processing methods can be grouped into three functional
categories —
Image Restoration
Image restoration mainly includes —

e Reducing noise introduced in the image at the time of

acquiring sample.
e Removing distortions appeared during enrollment of
biometric.

Image smoothing reduces noise in the image. Smoothing is carried out
by replacing each pixel by the average value with the neighboring

pixel. The biometric system uses various filtering algorithms and
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noise reduction techniques such as Median Filtering, Adaptive
Filtering, Statistical Histogram, Wavelet Transforms, etc.

Image Enhancement

Image enhancement techniques improve the visibility of any portion
or feature of the image and suppress the information in other parts. It
is done only after restoration is completed. It includes brightening,
sharpening, adjusting contrast, etc., so that the image is usable for
further processing.

Feature Extraction

Two types of features are extracted from image, namely —

e General features — The features such as shape, texture, color,
etc., which are used to describe content of the image.

e Domain-specific features — They are application dependent
features such as face, iris, fingerprint, etc. Gabor filters are
used to extract features.

Microcopy and Biological Image Analysis

The contrast in microscopy images of biological specimens is often
low, due to the use of stains being limited, due to variations in
specimen thickness, or due to optical constraints. Application of
contrast enhancement techniques enhances the visibility of cellular
structures, tissue organizations, or microbial colonies, and helps in
conducting morphological analysis and quantification. There are cell
counting, morphometric analysis, and feature extraction performed by
thresholding operations from microscopy images. Adaptive
thresholding approaches work with heterogeneous staining intensity
throughout a specimen, whereas multi-level thresholding provides
separation of multiple cellular components where light scattering
properties differ. For example in blood cells analysis or counting
colonies of bacteria, proper adjustments of contrast and thresholding
allow for a substantial increase in the accuracy of automated analysis
systems that assist medical diagnostics or biological research.

2.1.12 Challenges and Limitations

Point processing operations used for contrast enhancement and
thresholding are very useful and widely used, but they suffer from
several limitations and challenges:

Noise Amplification

Enhancement such as histogram equalization and linear contrast

stretching technique tends to increase noise from the original image.
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[These mapping functions cause the dynamic range to be wider than
the normal, meaning the difference between subsequent pixels is
accentuated from that of just image contents but also noise.] While
preprocessing with noise reduction filters to counter the associated
quality loss can help with this, it often tends to smear and jeopardise
the importance of structure in the closer image. CLAHE, and similar
techniques, tackle this limitation in part by restricting contrast
enhancement in regions with high uniformity, however the intrinsic
trade-off of contrast enhancement and noise amplification persists as a
challenge in most applications.

Parameter Selection

Numerous contrast adjustment and thresholding algorithms demand
the specification of numerous parameters, for example, gamma
values, contrast limits, window sizes or sensitivity constants.
Automated determination of parameter values in this case is
complicated since optimal values are dependent on the nature of the
image and the goals of the process. Some well-known examples, such
as Otsu's thresholding, which sets parameters automatically based on
the image statistics, still depend on some assumptions about the
intensity distribution that might not apply to all images. Despite many
advances, designing reliable, adaptable parameter selection strategies
continues to be an active line of inquiry, and recent work has
explored machine learning techniques to forecast effective tuning
parameters as a function of image characteristics.

Ilumination Variations

Research on segmenting printed text is hampered by a irregular
lighting. Stats adjust global contrast that may be optimized to some
region while over-enhancing other regions or under-enhancing
causing unnatural appearance or loss of information. Adaptive
methods overcome this limitation by treating different local areas
separately but have their own shortcomings, including selection of
appropriate window sizes used to gather local data and how to manage
the edge effects between different regions. Moreover, extreme
illumination gradients may surpass the adaptability of these
approaches, requiring illumination correction as an isolated
preprocessing step.

2.1.13 Real World Knowledge
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Both operations contrast adjustment and thresholding techniques are
point processing operations, treating each pixel as an independent
object without semantic context or spatial relationship (beyond very
local neighborhood statistics). They are limited to that narrow-time
window and thus cannot separate out important features of an object
from irrelevant background and foreground features that may have
overlapping intensity properties. In more complex scenes where
objects of interest and background elements overlap in the intensity
domain, pure intensity-based processing methods generally do not
provide satisfactory results. In these cases, integration with higher-
level information, i.e., texture features, edge information, or semantic
understanding, becomes crucial for robust segmentation.
Computational Considerations

Although basic point processing operations are computationally
efficient, adaptive variants incur a heavy computational burden due to
the need for local processing. This would make algorithms such as
adaptive histogram equalization or complex thresholding methods too
costly for many high-resolution images or for real-time applications
without significant optimization. Modern implementations take
advantage of parallel processing architectures, such as multi core
CPUs or GPUs, to speed up the computation. However, it is essential
to note that algorithmic optimizations (e.g., integral images, early-
terminate) effectively lower computational complexity, yet the trade-
off between processing quality and computation efficiency is still
significant in real-world utilization.

2.1.14 Future Directions and Recent Advances

The endless evolution of point processing operations takes into
consideration the idea of novel approaches and new application
needs. There are several recent advances and future directions that
merit consideration:

Learning-Based Approaches

Traditional contrast enhancement and thresholding methods are
increasingly complemented or replaced by machine learning
techniques. Convolutional neural networks (CNNs) are trained on
pairs of low and high-contrast images and, therefore, learn optimal
intensity transformations from these two types of images, and the
learned CNN parameters are adapted to the image content well

without needing explicit parameter tuning. Deep-learning based
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segmentation methods mitigate the traditional thresholds limitation
by embedding contextual information and features learned from data.
While more sophisticated methods will outperform where single-
intensity thresholding fails in complex scenes, this has the cost of
requiring more computation, and requiring training data. On the other
hand, hybrid approaches providing a class of point processing
operations that are augmented or refined with learning-based
algorithms, strike a balance as they inherit the speed, stability, and
interpretability of conventional techniques while addressing their
shortcomings through learning-based improvements.

Multi-Scale Processing

Multi-scale processing methods break the image into various
frequency bands and process contrast enhancement or thresholding
operations independently at each scale and then combine results. This
allows us to defeat the shortcomings of classic methods that fail to
manage fine details and large dynamic range (higher intensity level
variations) all at once. Wavelet-based contrast enhancement
techniques, like multi-scale adaptive thresholding, excel at preserving
fine structures while still improving global contrast; as a result, they
are frequently used in fields such as medical imaging, remote sensing,
and scientific visualization that require both detailed and contextual
information.

Content-Aware Processing

In addition, content-aware processing techniques adjust contrast
enhancement and thresholding operations according to the semantic
understanding of image content. Such approaches limit the use of
parameterized enhancements typical to a certain region (sky,
vegetation, buildings in a landscape photograph, etc.) by separating
them from the rest of the image. This adaptation to the context yields
better results in complex scenes where one parameter set cannot
effectively be used across all parts of the image. Interfacing with
object detection or semantic segmentation algorithms allows for ever
more advanced content-aware processing that merges low-level point
operations (that have been the traditional focus of most image
processing tasks) with high-level image understanding.
Human-centered perceptual optimization

Conventional contrast enhancement techniques typically employ

statistical or mathematical objectives (e.g., histogram equalization,
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entropy maximization) that do not explicitly capture human visual
perception. Plant growth models, combined with perceptual models
that reflect non-linear response of human vision to luminance,
contrast sensitivity functions, and contextual effects are among the
recent advances. Such perceptually motivated enhancement methods
optimize either for human observers instead of abstract mathematical
aspects, leading to better match to subjective quality assessments.
This perceptual placement is especially useful in applications of
medical visualization, entertainment, and human-computer interaction
applications.

The performance was real-time processing for high-resolution media.
Advancement of imaging technology means both the challenges and
opportunities of processing ever-higher-resolution images and video,
in real time. The state-of-the-art in point processing algorithms is
taking care of hardware acceleration, parallel computing
architectures, and addressing adaptation in algorithms to fine-tune
them for various conditions and constraints, making almost all the
algorithms capable of real-time performance in this new context. Such
architectures allow contrast enhancement via sophisticated algorithms
which are interfaced to embedded systems and mobile devices (i.e.
drones, autonomous vehicles, or mobile medical devices). The
democratization of such advanced image processing capabilities will
enable new applications and use cases that were previously limited by

computational constraints.
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Unit 2.2: Spatial Domain Filtering

2.2.1 Spatial Domain Filtering

There are a few basic opreations of image processing which act on the
pixel in the image directly called spatial domain filtering. Spatial
domain filters do not rely on transforming the image to a different
domain (like the Fourier, as frequency domain methods do), but
directly on altering pixel values by mathematical functions operating
on the pixels and their neighbors. Such operations usually involve
some predetermined matrix, commonly known as a filter, mask, or
kernel, which slides over an image in a sliding window fashion. The
filter slides over and interacts with the underlying image pixels to
create a new pixel value in the output image as per some structured
mathematical rules. Spatial domain filtering 1is expressed
mathematically as the convolution of an image with a spatial filter
which establishes a principled way to manipulate images for a wide
range of tasks including noise attenuation, edge detection, and feature
enhancement. It is especially useful because it can be understood
directly and has low computation complexity compared with
frequency domain based methods, in addition to having a direct
correlation to the image properties. Based on the general influence on
the image of High-pass filter and Low-pass filter, ordinary filters are
divided into two categories: Smoothing filters and sharpening filters.
The type of filter and the parameters of the filter depend on the image
processing problem at hand, the input image that we are dealing with
and the output characteristics that we want, making spatial filtering a
versatile approach for image processing that serves as the foundation
for numerous advanced image processing systems and computer

vision applications.
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Figure 2.2.1: Overview of Spatial
Filter
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Convolution — which is the mathematical operation that defines how
the shape of one function is modified by another — is the mathematical
underpinning of spatial domain filtering. Mathematically, in terms of
images, convolution operation can be expressed as:
g(x,y) = f(x,y) * h(x,y)

where g(x,y)is the filtered imagef(x,y)is the original imageh(x, y) is
the filter or kernel and the * is a convolution operation. In practical
terms, this operation means that for each pixel location in the input
image, the filter is centered, each filter coefficient is multiplied with
the corresponding pixel value in the neighborhood, the result is
summed, and this sum replaces the original pixel. This continues for
all of the pixels in the image, ending up with a whole new version of
that image based on the attributes of the filter. The filter is a relatively
small square matrix (3x3, 5x5, or more generally m X mn) that
defines the neighborhood around a pixel that will be taken into
account during the filtering operation: Larger filters will generally
produce stronger effects in the image but will also result in increased
computational cost. Moreover, the coefficients in the filter matrix
specify the type of transformation to apply to the image, and the
coefficients can be modified to accomplish a variety of
transformations such as smoothing, sharpening, edge detection, or
embossing. These coefficients have been calculated deliberately,
based on the demand for the desired outcome to be achieved
precisely and effectively. Spatial domain filtering in real-world
implementations  involves  various important factors and
considerations that define the productivity and correctness of the
filtration process. One such importnat aspect that make the handling
of image different is the border since pixels on the edges of an image
don't have full neighborhoods to apply the filter. Typical strategies for
this maintain zero padding (assuming zero for pixels that lay outside
the image boundary), replication (extending the edge), or wrapping
(using pixels on the other side). Also, due to its complexity when it
comes to very large images or nearly-preemptive applications, some
optimizing techniques (e.g. separable filters, integral images, or
parallel implementation) may be required. Furthermore, the selection
of filter size is a compromise between processing time and outcome
quality, with larger filters retaining additional context though

requiring more calculations. However in a lot of more advanced

76
MATS Centre for Distance and Online Education, MATS University



applications, adaptive filtering techniques are used where the filter
parameters are updated in real-time according to the characteristics of
the local neighbouring pixels so that intelligent processing can be
achieved that preserves the features of importance while performing
the necessary removal of the respective noise. In addition, the
successive application of different filters may produce complex
effects that are not easily obtained with a single filter leading to
advanced forms of image manipulation by use of relatively simple
building blocks, which specifically illustrate the flexibility of spatial
domain filtering in the image processing toolbox.

2.2.2 Smoothing filters (Mean, Gaussian filters)

Smoothing filters (also called low-pass filters in signal processing) are
meant to attenuate high frequencies in the image, from which: noise,
texture, sharp borders between areas. These filters change the value of
each pixel into the weighted or unweighted average of its neighbours,
thereby blurring the image and making transitions less sharp. This
aids in noise reduction because random fluctuations in pixel values
(noise) average out, leading to a cleaner image while preserving the
overall shape of the dominant structures. The smoothing filters can
also be quite useful within preprocessing blocks of image analysis
pipelines, where they allow for the removal of unwanted information
and noise that could degrade result qualityofmethods that follow in
the chain, such as feature extraction, segmentation, or object
detection. Therefore, it is worthwhile to clarify that while the
smoother filters easily decrease noise, they also tend to blur
legitimate ambiance and fine details of the image, the known process
in the applications where the preservation of ambiance and fine details
is essential. The inherent trade-off between noise reduction and detail
preservation lies at the heart of their design and application and this
has led to many specialized implementations tailored to best exploit
this balance for different categories of images and development
priorities.

Mean Filters

The mean filter, also called the box filter or averaging filter, is one of
the simplest and most intuitive of the spatial domain smoothing
filters. The average filter (traditionally called the mean filter) works
by taking the average of the pixel values in a fixed neighborhood, for

example, a fixed size square window around the pixel we are

77
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i



¢ o

{

}mn'r

N

UNIVERSITY

ready for life

Notes

)

i

processing. In mathematical notation, given a neighborhood of size
mxn at pixel (x,y), we can represent the output filtered value g(x,y)
as:
g(x,y) = (1/(mxn)) x X(i=—a a)X(j=—b b)f(x+i, y+j)
f (m+1,n+1) =3 {i=—a}"a) {j=—b}"b f(i,j) (5) The operation can also
be interpreted as the convolution between the image and a kernel that
has the same coefficients with a total equal to 1, such as a 3xX3 mean
filter kernel like so:
[1, 1, 1][1, 1, 17 [1, 1, 1]

The result of applying a mean filter is a smoothing effect on the image
— the degree of which depends on the size of the area where the mean
is calculated; larger filter sizes will have a more prominent blurring
effect. This uniform averaging method 1is very effective at
suppressing random noise, such as Gaussian noise which takes the
noise values from a distribution centered around 0. Unfortunately, by
averaging all pixels within the neighbourhood the mean filter can
cause large amounts of blurring, as it treats every pixel in the
neighbourhood equally, and is thus indiscriminate as to the relevance
of pixels with respect to the central pixel, or their relative position to
structural elements in the image, such as a corner or an edge.
However, the mean filter is commonly used in various image
processing scenarios due to its simplicity, computational efficiency,
and predictable behavior. When applying the mean filter, there are
some practical considerations that need to be taken into account that
will affect its effectiveness in different situations. Fundamentally, the
filter transforms to focus from low spatial frequencies, to
intermediate, to finally many high spatial frequency component image
details; this comes with tradeoffs, however, as smaller filter sizes
(e.g., 3x3) accomplish only slight blurring while larger (7%7 or 9x9)
filter sizes create dissection of spatial features in exchange for
improved noise elimination. It is also important to point out how to
deal with image borders, as the filter window may fall outside the
bounds of the image, and typical solutions are to ignore border pixels
(which gives you a smaller output image), pad with zero or constant
values, and mirror the image at the borders so as to create artificial
neighborhoods for border pixels. Moreover, in order to be
computationally efficient, especially for real time applications,

implementations use the mean's separability property, which allows
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the 2D convolution to be decomposed into two consecutive one
dimensional convolutions (horizontal followed by vertical one, or vice
versa), where the number of operations performed would be much
less. In addition, in some of the more sophisticated implementations,
such as in Adaptive Median Filter implementations, the filter size
varies from pixel to pixel in the image, depending on local properties,
such as estimated noise level or edge presence, to achieve a more
'intelligent' balance between noise reduction and detail preservation.
Though it is quite simple, these implementation details can unlock a
versatility for the mean filter that can be tuned to a specific
application requirement and algorithmic resource limits.

Although the mean filter has several benefits due to its simplicity, it
also comes with some serious restrictions, which make it not as
effective in more diverse picture-processing applications. The main
disadvantage arises from its sensitivity to outliers — any extreme pixel
value in the neighborhood (e.g. a pixel with "salt and pepper" noise)
can significantly influence the average being computed, leading to an
insufficient level of noise reduction. Consequently, this also renders
the mean filter very badly suited for impulse noise, whose distinctive
feature is sparsity of extreme values. Additionally, another limitation
of the mean filter is its consistent blurring effect across the entire
image, with no consideration for natural boundaries, causing
degradation of edges and fine textures that can often be significant for
human perception, as well as complex image processing tasks relying
on these features. Indeed, repeated application of a mean filter (or
using a significantly larger filter) results in a drastic loss of image
contrast and an overall "flattening" of the apparent image, as local
deviations are progressively averaged out. These joint work has
inspired a new generation of more complex smoothing techniques,
like the median filter (which is more robust against outliers than the
mean filter), bilateral filter (which smooths while preserving edges)
and many more adaptive filters that change their behavior depending
on image properties surrounding the pixel to be processed. The
designed mean filter is a particularly versatile first step, or baseline
method, upon which more complex filtering methods can build,
offering simplicity and computational efficiency that allow their use
across various areas of image processing, from simple denoising to

complex segmentation.

79
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i



¢ o

{

}mn'r

N

UNIVERSITY

ready for life

Notes

)

i

Gaussian Filters

One more advanced technique for smoothing images than the mean
filter is the Gaussian filter, which provides enhanced noise reduction
while ensuring stronger edges and additional features of the image
remain. The Gaussian filter gets its name from the Gaussian
distribution which is the bell shaped probability density function that
is the basis for the weighting scheme. Unlike mean filter which gives
equal weight to all pixels in the neighborhood, Gaussian filter gives
weights according to a Gaussian function of the distance from the
center pixel, where nearby pixels have the highest influence and
those further away have progressively less. For two dimensions, the
Gaussian function that defines the filter weights can be written as:

G(x,y) = (1/2n6?)b)e"—(x2+y2)/(2062)

where x and y are the distances from the center of the filter, o (sigma)
is the standard deviation of the Gaussian distribution, controlling how
much blurring occurs — larger values of ¢ yield a wider Gaussian
distribution and more blur. When used as a filter, this function is
discretized into a matrix of weights, whose sum is equal to 1. This
ensures that the overall brightness of the image is preserved. You are
the Filter kernel obtained from Gaussian is an approximation of the
original continuous kernel, where the size of the kernel needs to be
selected in such a way that the weights in the distributions contribute
and therefore it’s usually considered to be anywhere around three or
four standard deviations. The Gaussian filter uses a weighting scheme
to compute this process because it operates under the principle that
pixels which are spatially closer to the pixel being filtered are more
likely to be associated with that pixel. Gaussian Filter Theoretical
Advantages: The Gaussian filter has several theoretical advantages,
and is very commonly used in image processing. Since the Gaussian
function is separable, a two-dimensional Gaussian filter can actually
be implemented as two one-dimensional convolutions (horizontal +
vertical) applied one after the other which greatly decreases the
number of required operations in the bottleneck of the operation
realizing the filter, especially for larger filter sizes. Also, the Gaussian
filter is isotropic (rotation-invariant), meaning that it blurs the image
the same way in all the directions since an image looks natural when
the smoothed image keeps its appearance uniform. One more key

property is that the Gaussian function is the unique function which
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minimizes the product of the spreads in the spatial and frequency
domains (the uncertainty principle), thus being optimal in localizing
information in both domains at once. Moreover, the Gaussian filter
has a known frequency response in the Fourier domain, which
dampens high frequencies, while retaining low frequencies, and a
smooth transition frequency response that avoids ringing artifacts that
can happen with more sudden frequency cut offs. From the point of
view of scale-space theory, the Gaussian filter has a unique and
fundamental importance as the only linear filter that generates a well-
defined scale-space representation of an image, which allows for
systematic analysis of structures present in the image at different
scales. By these mathematical properties, along with its intuitive
meaning and relatively simple implementation, the Gaussian filter has
become a standard tool in the area of image processing, computer

vision, and signal analysis.

Figure 2.2.2: Shape of the impulse response of a typical Gaussian filter

Gaussian filters have several practical considerations for their
implementation in real-world applications that can impact their
performance and efficiency. A key one there is the sigma parameter,
o, which governs the amount of smoothing produced — small values
maintain detail at the expense of some noise reduction, and large
values give strong smoothing but may also mean blurring of important
structures. Additionally, there must be an appropriate trade-off
between ¢ and the size of the filter kernel; as a generalization, one
should at least use a kernel size of |6c]+1, where || is the floor
function, to harvest the most significant values of the Gaussian
function while ensuring that no calculation is wasted. In discrete
implementation, this Gaussian function needs to be sampled to
generate a kernel and also needs to be normalized so its coefficients
sum to 1, which allows the filter to not distort the average brightness

of the image. Many computational optimizations are available,
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especially making use of the separability property, whereby the 2D
convolution is broken down into two 1D convolutions, which lights
up a gain in complexity of order O(r?) to O(r) for the case of r radius
filter. The special implementation in the frequency domain, especially
for large filter size using Fast Fourier Transform (FFT) is also
considered, since the convolution in the spatial domain is equivalent
to multiplication in frequency domain, which inturn may takes a
centralized time in relatively even very huge data. Exceptions to this
design in regular Gaussian filtering may be such specialized
applications that will instead utilize recursive Gaussian filters,
however approximate the results they do generate, offering
algorithmic complexity independent of the size of the filter, allowing
reasonably sized o for real-time processing. If you are not aware, end-
users of image processing software do not see these implementation
details, but they determine how effective, efficient, or accurate your
Gaussian filtering operations will be in practice. While the Gaussian
filter has many benefits over the mean filter and other, simply blurring
out the structure, there are some downsides that we need to be aware
of in order to use them properly. A key benefit is the filter's capacity
to give a much more naturally looking blur due to its weighting
scheme corresponding to the common knowledge that nearer pixels
should have more impact on averaging thus making it much smoother
when moving between two areas as opposed to the more cubical
looking result achieved when using mean filtering. Gaussian filter is
better as it smooths the near the edges pixels, because instead of using
the equal weight as in mean filter, pixels far away from the edge can
not affect pixels crossing the edge as much because the weights of the
pixels at other side of the edge decrease, compared to the case of
mean filter. The Gaussian filter improves by a significant margin but
still blurs the edges slightly making it a bad choice for applications
where edge preservation is crucial. Similar to the mean filter, the
Gaussian filter is a local filter, operating uniformly over the whole
image, independent of local content, which might result in over-
smoothing of some areas while producing insufficient denoising in
other areas. Moreover, although the filter is effective against Gaussian
noise, it is less suitable for noise such as impulse noise ("salt and
pepper"), for which other filters (e.g. median filter) may be more

appropriate. Thus, more sophisticated methods have been created that
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extend or modify the Gaussian filter idea, for example bilateral filter
and anisotropic diffusion, which modify the filter properties according
to local image content to enable better preservation of edges and
significant features whilst still producing effective noise removal. But
despite these shortcomings, Gaussian filtering is a fundamental
operator in image processing because it has well understood behavior,
clear mathematical properties, and is a good balance between simple
and effective.

2.2.3 Laplacian, Sobel, and Prewitt Sharpening Filters

Whereas, sharpening filters are designed to enhance the high-
frequency components of the image (typically the edges, fine details,
and rapid changes in those regions), smoothing filters will
eliminate/lower them from the image. These are based in
enhancement of the difference between a pixel and its surroundings,
therefore producing a greater contrast at edges, leading to a more
prominent and crisp exhibition of the image features. In mathematical
terms, sharpening can be thought of as the act of adding a high-pass
filtered image (which extracts the high frequency components of the
image) to the original image, amplifying these components while
retaining the overall structure of the image. The characteristic of
emphasizing edges and small details makes sharpening filters
essential in tasks that rely on making features clearly visible and
distinct from the surroundings, such as in medical imaging (to
represent weak anatomical structures), document processing (to make
text more readable), satellite imagery with higher/stronger visibility of
geographical elements, and general photography (to increase
perceived sharpness and detail). Still, do not be fooled — while
sharpening filters are great to enhance edges, they also usually boost
the noise of the image, because noise usually appears as high-
frequency changes that are hard to discriminate from real fine details.
This is a recurring challenge in the design and application of
sharpening filters, and many specialized forms of sharpening filters
exist to seek what is often a balance that varies with image content
and computational goals.

Sharpening filters are often built on the conceptual basis of
derivatives, which "detect" an increase in pixel intensity, and hence
correspond to edges and details of the image. In spatial domain, this

derivative operations are normally approximated using discrete
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difference filters that measure the rate at which pixel values change in
various directions. First-order derivatives (for example, Sobel and
Prewitt filters) detect changes in the intensity that can use to locate the
edges, and second-order derivatives (for example, Laplacian) change
the first derivative, that can supply a significant insight to quick
changes containing both sides of an edge (positive and negative). The
generic mathematical expression for a simple sharpening operation is:
g(x,y) = f(x,y) + & % h(x,y)
where, g(x,y) = sharpened image, f(x,y) = original image, h(x,y) =
high-pass filtered image (by taking derivative operations) and A =
Positive constant which controls the amount of sharpening. Here, this
additive model preserves the original content of the image while
enhancing the high frequency components in a target manner. In
reality, the high-pass filtering filter, h(x,y), can either be in form of a
derivative of various kind, which leads to characteristics, sensitive to
the certain types of edges and noise. Both the choice of derivative
operator and the value of the sharpening strength parameter A can
have a significant effect on the final result of the sharpening process,
which can be tailored to the needs of the application and the input
image properties. Inspired by this, we develop a mathematical
framework for systematic detail enhancement while controlling the
trade-off between sharpening effect and artifacts. This includes many
practical aspects, which play an important role in the quality of the
result, and gives them utility in practice. One key element is the best
choice for the sharpening strength (the parameter A in the general
model), which signifies a balance between distinctive enhancement
and the addition of artifacts — weak sharpening leads to imperceptible
improvements, while too much sharpening results in unrealistic
"halos" around edges, heightens noise to untenable levels, or employs
quantization artifacts in images captured digitally. A specific
challenge is to apply sharpening in a content-aware way, since
sharpening uniformly over the image may not be desirable, i.e.
regions with lots of detail may benefit from sharpening while smooth
areas might actually become worse (due to amplification of noise).
Sharpness is most often measured in luminance (the brightness of a
color) rather than in color, so the RGB relation, where blue (or red)
will have more saturation, potentially leads to color artifacts when

directly sharpening the channels, although often performed with
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chrominance (for example Lab or YCbCr) first and then converting
back to the original color space. Moreover, it is also common for
smoothing and sharpening filters to be applied in sequence, as this
allows an initial smoothing step to remove noise that would otherwise
be amplified in a later sharpening step, thus enabling more aggressive
enhancement of true details without a corresponding amplification of
noise. These practical considerations reveal what is at stake when
sharpening images effectively and why, if you ever have used modern
image processing software, the programs tend to have a various set of
parameters and options to utilize during the sharpening process to
accommodate a wide range of images and use-cases.

Laplacian Filter

Among various image sharpening filters, the Laplacian filter is one of
the simplest and most theoretically important examples, which is
based on the Laplacian operator from calculus that expresses the sum

of second-order partial derivatives in all dimensions.

N 3

Figure 2.2.3: Sample of Laplacian sharpening

The Laplacian operator V2 in a two-dimensional image can be written
as:
VA(x,y) = 0*t/0x* + 0*1/0y>

where f(X,y) is the image intensity function. This operator detects the
rate of change of the first derivatives, making it very sensitive to areas
of an image where intensity changes abruptly, which correspond to
edges. In discrete form, to be applied in digital image processing, the
Laplacian filter is usually created as a small kernel that approximates
these second derivatives through finite differences. The most frequent
implementations involve a 4-neighborhood or 8-neighborhood
connectivity pattern, leading to kernels like:

e 4-neighborhood Laplacian0, 1, 0[0, 1, 0]

e 8-neighborhood Laplacian: 1, 1, 1[1, 1, 1]
Convolving these kernels with an image results a new image that
gives positive and negative values that highlight edges and fine details

of the signal, while regions with a constant or linearly varying
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intensity (where second derivative = 0) will be suppressed to 0. One
of the main reasons that the Laplacian filter works so well is due to its
isotropy, that is, it identifies the same amount of edges if they are
horizontal or vertical (it can also find diagonal edges). 4 Pure
Laplacian images are not commonly used as final images in the same
way as filters like Gaussian blur and sharpen, as it does not possess
the original image content, only indication of edge locations at signed
values; rather, it is generally an intermediary step in the sharpening
process or one of the components in dissections of more intentional
portions of a final image. The most common approach using the
Laplacian filter for image sharpening is based on the fact that the
Laplacian is an edge-detection filter. The most popular way (in fact,
the one called Laplacian sharpening or unsharp masking with a
Laplacian), will be to extract the Laplacian to the original image
(notice the subtract, no addition due to the sign convention for the
Laplacian kernel)
g(xy) = fxy) — ¢ * &f(xy)

g%,y (VR y)e(xy) = fixy) + c(V2f(x,y))where g(xy) is
the sharpened image, f(x,y) is the original image,V*f(x,y) is the
Laplacian of the image, and c is a positive constant that controls the
degree of sharpening. This subtraction corresponds to applying a
modified Laplacian kernel with an increased central coefficient of 1,
for instance:

[0,-1,0]-1,5,-1
or

-1-1-1[-1-1-1]
These "Laplacian of Gaussian" or "LoG" kernels attempt to perform
this sharpening directly in a single pass when convolving the image,
which is computationally efficient. This process serves to sharpen
edges where intensities change rapidly by increasing the contrast
around a pixel to its neighbors and leaving flat (uniform) regions
fairly constant. By manipulating the sharpening strength to highlight
sharper peaks, ¢ enables more noticeable enhancement, but this
increases the potential of introducing artifacts or superimposing noise
on the edges. This guiding principle makes an elegant case for much
of the mathematics behind the Laplacian filter and its interpretation as
a differential operator applied to a signal of grey level values that

diversify for this purpose. A major issue related to the use of the
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Laplacian filter is its extreme sensitivity to noise. The Laplacian filter
is a second-derivative operator and, as a consequence, it intensifies
any high-frequency component, regardless whether they imply a
proper edge or noise fluctuations. This sensitivity usually requires
smoothing the image with a filter (like Gaussian filter) before
applying the Laplacian, resulting in the Laplacian of Gaussian (LoG)
or Mexican Hat operator. Mathematically, the LoG formulation can be
presented as follows:
LoG(x,y) = -1/(no*)(1 - (x>+y?)/(26?))e(-(x*+y?)/(262))

where ¢ governs the width of the Gaussian and thereby the scale of
features that the operator responds to. Gaussian + Laplacian (DoG)
— This combined operator is more powerful as it reduces the noise
with the Gaussian filter and detects edges by the Laplacian filter in
different scales. An important practical aspect is the discretization of
this continuous Laplacian operator that can lead to different kernel
designs with distinctive characteristics; apart from the 3x3 kernels
mentioned above, larger kernels or different coefficient patterns can
also be employed to achieve a better approximation to the Laplacian
or to stress specific directional features. Moreover, the zero crossings
of the output of the Laplacian have a special meaning in image
analysis as they correspond closely to the position of edges in the
original image at which point the Laplacian is especially useful not
just because it is an enhancement operator but also because its zeros
are points of precise localization of an edge to detect in the source
image, which gives the Laplacian many applications such as image
segmentation and object detection. The hands-on nature of Laplacian
filter implementations also makes them a versatile node in any image
processing pipeline, both as a stand-alone utility as well as part of
more complex systems.

However, despite its theoretical beauty and popularity, the Laplacian
filter has some drawbacks when it comes to real-world-image
processing. One major drawback of the Laplacian filter is its non-
directional nature; while the isotropic property is useful to detect
edges in all edges orientations, the same applies for the behaviour that
the filter is unable to differentiate the edges of different orientations,
crucial information in several applications like feature extraction or
pattern recognition. A further limitation is that the Laplacian responds

to either side of the edge with a binary result, recording either a
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positive or negative value depending on the direction in which
intensity along the edge was altered, and such a response can
complicate subsequent processing stages, which may rely on a
positive response to all edges in either direction regardless of their
polarity. Moreover, the response of Laplacian filter on both the
leading and falling edges of a step eventually causes double edges in
output, which is problematic for the localization of edges, causing a
possible artifact within the resulting sharpened picture. Moreover, the
Laplacian emphasizes isolated pixels and very small details and may
create a "grainy" effect in the sharpened image, particularly in
smooth regions with finer textures or gradual transitions. To overcome
the above limitations, many modifications and alternative methods are
proposed to the basic Laplacian filter, including directional Laplacian
variants, multi-scale approaches that combine Laplacians from
different scales, and hybrid approaches that utilize the benefits of both
first order and second order derivatives to result in more controlled
and visually appealing sharpening results.

2.2.4 Sobel Filter

If the pixel values are monotonically increasing or decreasing, strong
derivatives lead to large image gradients. For example, the Laplacian
filter relies on second-order derivatives for edge detection in all
directions at once, while the Sobel operator computes two
components of gradients separately: horizontal (changes in x-
direction) and vertical (changes in y-direction). The polarization
components are calculated using 2 different convolution kernels of
size 3%3:

e Kernel Sobel x: [-1, 0, 1][-2, 0, 2] [-1, 0, 1]

e Sobel y-direction kernel (Gy): [-1, -2, -1] [0, 0, 0] [1, 2, 1]
These kernels are convolved with the image, producing two gradient
images, which highlight horizontal and vertical edges respectively.
Then, the gradient magnitude is calculated as:

G = sqrt(Gx?* + Gy?)
An approximation is sometimes made instead for computational
efficiency:
G =~ |Gx| + |Gy
Importantly, the orientation of the edge, is given as the direction of
the gradient:
0 = arctan(Gy/Gx)
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A closer look at the Sobel operator shows that it is a combination of
both the differentiation (detect changes) and smoothing (suppress
noise sensitivity), but the centre row/column has double the weight of
the others which contributes to its robustness to noise over the simpler
gradient operators. The combination of directional sensitivity and
noise resistance contributes to the Sobel filter's popularity and
effectiveness in various image processing tasks, especially when the
orientation or strength of the edges is a critical factor, such as in
feature extraction, object recognition, and advanced sharpening
algorithms that enhance edges based on their directionality and

intensity.

Figure 2.2.4: A color picture of an engine  Figure 2.2.5: The Sobel operator applied on
image
The Sobel filter is the result of a careful design that balances
differentiation with smoothing operations to estimate directional
derivatives of an image. In doing so, the filter takes advantage of a
decomposition that can be written as a product of a simple
differentiation kernel and a smoothing kernel. This decomposition can
be expressed as: for the x-direction filter

Gx=1[1,2,1]"x[-1,0, 1]
where X represents the outer product of the said vectors. This
decomposition shows that the Sobel operator does a weighted
average in one direction (the smoothing part) and computes
differences along the perpendicular direction (the differentiation part).
The smoothing component helps avoid the noise sensitivity common
to pure differentiation operations and the differentiation component
allows sensitivity to edges. The Sobel filter thus having this dual
nature, gives it an edge over simple operators such as Roberts cross or
Prewitt operator in having it relatively more robust to noise while
also being able to detect edges in a proper manner. Moreover, the
gradient magnitude output of the Sobel filter represents a strength of

the edge, which is quasi-invariant to rotation, so edges of the same
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contrast will be detected of similar strength regardless of their
orientations, once the two outputs corresponding to x and y
components are taken together. This trait, in combination with its
ability to extract edge direction are the reasons why the sobel operator
is widely used in computer vision applications where we need to
understand a geometrical structure of the image. The theoretical
attributes of the Sobel filter have also established it as a standard tool
in image processing literature and as a reference method when
comparing other edge detection algorithms, which showcases its
fundamental role in the field.

For the Sobel filter, the image sharpening process is less
straightforward than that of Laplacian filter. Because the images
produced by the Sobel operator return something similar to the
gradient magnitudes that highlight edges instead of enhancing the
original image, one common technique for sharpening is to add a
weighted version of the gradient magnitudes back to the original
image.

gxy) =f(x,y) + ¢ x G(x,y)

g(x,y) = f(x,y) + ¢ * G(x,y) where g(x,y) is the sharpened image,
f(x,y) is the original image, G(x,y) is the gradient magnitude image
obtained from the Sobel operator and c is a positive constant that
determines the level of sharpening. Using the above approach, only
some edges will be enhanced (those that are strong, as they would
undergo more enhancement than weak edges), leading to a sharpening
effect that can be more visually pleasing than simply enhancing all
high frequency components equally. Furthermore, the directionality
information incorporated by the Sobel filter provides opportunities for
more sophisticated sharpening operations, such as directional
sharpening, where the edge enhancement is performed differently
depending on the edges' direction, or adaptive sharpening, where the
strength of enhancements are adjusted according to regional image
properties. Some practical considerations during the implementation
phase would be to deal with pixel edges where a filter window
extends beyond the image's edges and the gradient magnitude
normalization factor so that the sharpening effect doesn't clip the
pixel values on some images, or even saturate them. Additionally, the

independent calculation allows focusing on certain edge directions
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more than others, which is useful in applications like text recognition
or structural analysis, where the prominent edge directions are known.
Although the Sobel filter is widely used and generally effective, it
does have its limitations that need to be considered in practical
applications. A major disadvantage lies in its ¢ set as a fixed 3%3
kernel size making it non-selective to find edges on all scales since
fine edges found properly but wider transitions might not be
completely captured or vice-versa. The challenge with this fixed scale
is in its application to images with features of varying sizes or to
images being analyzed at different resolutions. Another limitation is
that the Sobel filter is just an approximation of the real image
gradient, which is much more accurate in terms of direction as well
as magnitude but the approximation is good enough for other
applications except junctions or curved edges where you expect very
accurate gradient information. Moreover, the Sobel operator, as with
most gradient operators, suffers from the problem of yielding thicker
edges (in its output) than second-derivative operators such as the
Laplacian, potentially impacting accuracy in edge localization for
tasks that require precise identification of object boundaries. The filter
also has some degree of anisotropy, where it would respond slightly
differently to edges of the same strength at different orientations,
which can introduce biases in edge detection or sharpening. And
although less sensitive to noise than simpler gradient operators, the
Sobel filter can still produce amplified noise when used for media
sharpening, particularly in the flat regions of the image where even
weak noise can be considered weak edges and thus enhanced. Shifts
in filters like multi-scale Sobel variants, adaptive threshold methods,
and inclusion with different filtering techniques were developed to
work around these inherent limitations.

2.2.5 Prewitt Filter

The Prewitt filter is another classical method for gradient-based edge
detection and image enhancement, and is similar to the Sobel filter,
but has different properties that may make it better for a specific type
of image or application. Similar to the Sobel operator, the Prewitt
filter computes two distinct gradient elements by convolving the
image with two filters—one that quantifies horizontal changes and
one that assesses vertical changes. In terms of the Prewitt kernels,

they are defined as:
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e The Prewitt x-direction kernel (Gx) is shown below: [-1 01 0
01001]

e Gy: Prewitt y direction kernel: [-1-1-1] [000][11 1]
Unlike the Sobel kernels, these use only uniform weights (all 1s)
instead of weighting the central row (or column) higher (with weights
of 2), making the averaging component of the filter simpler to
compute. Performing convolution with these kernels on an image
creates the gradient images emphasizing horizontal and vertical
orientations of the image, which can be summed up to compute the
gradient magnitude and direction as it’s done with the Sobel operator,
using the same formulas:

G = sqrt(Gx? + Gy?)
0 = arctan(Gy/Gx)
The Prewitt operator uses a uniform weighting scheme which makes it
quite effective for detecting edges in images with relatively low noise
or with more uniform edge structures. The straightforwardness of the
Prewitt kernels makes them computationally efficient as well, which

could be helpful in resource-constrained situations.

Figure 2.2.6: The application Sample of Prewitt operator on image
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Unit 2.3: Frequency Domain Processing

2.3.1 Frequency Domain Processing

We can think of image as data in the spatial domain or in the
frequency domain when we process or analyze it. The spatial domain
refers to the domain with respect to the pixels of an image and the
value of those pixels. We visualize the image in the frequency domain
by considering the various frequency components that make up the
image, as opposed to the pixel values. This is a crucial operation as it
highlights certain patterns and structures that may not be immediately
perceptible in the spatial domain and we may facilitate operations that
are hard or impossible to achieve otherwise. Decision making is often
performed in the frequency domain, which has been a prominent pillar
for modern 1image processing, digital communication, and
compression techniques. Essentially, the frequency domain of an
image decomposes an image to the sum of sinusoidal components of
varying frequencies, amplitudes, and phases. Low-frequency
components refer to slowly varying features in an image (such as
smooth backgrounds), while high-frequency components represent
rapidly changing details (such as edges and textures). The
manipulation in frequency domain allows us to emphasize various
image features and attenuate the others. Such selective manipulation
becomes the foundation of wvarious applications, such as image
filtering, noise reduction, feature extraction, and data compression.
The analysis of an image in the frequency domain relies on some of
the mathematical foundations that can switch us back and forth
between the spatial domain and frequency domain with the help of the
Fourier Transform as the bridge between the two worlds. This part
begins by explaining the theory behind frequency domain processing,
discussing Fourier Transform and how it is being used to filter
images, followed by mention of different techniques used for
frequency filtering and how frequency domain representations are
being used for image compression.

We have deal with images in many domains. Now we are processing
signals (images) in frequency domain. Since this Fourier series and
frequency domain is purely mathematics, so we will try to minimize
that maths part and focus more on its use in DIP.

Frequency Domain Analysis
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Till now, all the domains in which we have analyzed a signal, we
analyze it with respect to time. But in frequency domain we dont
analyze signal with respect to time, but with respect of frequency.
Advertisement

Difference between Spatial Domain and Frequency Domain

In spatial domain, we deal with images as it is. The value of the pixels
of the image change with respect to scene. Whereas in frequency
domain, we deal with the rate at which the pixel values are changing

in spatial domain.

2.3.2 Fourier Transform and Spatial Domain Filters

Fourier Transform is the mathematical base that allows us to convert
signals (such as images) from the spatial domain to the frequency
domain. This transform has been named in honor of the French
mathematician Jean-Baptiste Joseph Fourier and is built on the idea
that any signal may be represented as a sum of sinusoidal functions at
various frequencies. In the context of images, the Fourier Transform
breaks down the image into its constituent frequency components,
which provides information about the frequency at which pixel values
vary across the image. However, since two-dimensional DFT is
mainly used for pixel processing where the image counts per pixel are
typically in discrete form and we operate with pixel intensity rather
than functions. The DFT is defined for a digital image f(x,y) of M x
N dimensions.

If we compute the Fourier Transform of an image we will obtain a
complex-valued function, with amplitude and phase components. The
magnitude corresponds to the strength of different frequency
components and the phase tells where things are in space. But
normally we want to visualize the magnitude spectrum (which is
usually plotted on a logarithmic scale to be able to show the high
dynamic range) to try to get some information about the frequency
content within an image. Here, the center of the spectrum corresponds
to the zero frequency (or DC) component (the average brightness in
the image), while items further away from its center correspond to
higher frequencies. It is known that most natural images have an
energy distribution concentrated around lower frequencies, due to the
tendency of natural scenes to have smoother structures compared to
sharp edges [43].
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The FFT (Fast Fourier Transform) is a set of algorithms which
respectively split the DFT into smaller ones reducing its time
complexity from O(N?) to O(N log N) making it usable even for
bigger pictures. This efficiency has been key for the acceptance of
frequency domain methods in on-line implementations. Another
powerful reason for working in the frequency domain is the
convolution theorem, which says that multiplication in the frequency
domain is equivalent to convolution in the spatial domain. In a
mathematical sense, if the convolution of an image f(x,y) with a filter
kernel h(x,y) 1s f(x,y) * h(x,y), then:
F{f(x,y) * h(xy)} = F{fxy)} % Fih(xy))

Where, F{} is the Fourier Transform. Which property renders some
filtering operations much more efficient to operate in the frequency
domain, particularly in cases where the filter kernel is very large. The
frequency domain filtering technique generally consists of these steps:
find the Fourier Transform of the image, multiply the result by a filter
function (also known as the transfer function) and finally find the
inverse Fourier Transform to get the filtered image. This is a repeating
process, which can be described in a few steps: step one: calculate the
DFT of the input image such as F(u,v). 01 - Your input image to the
algorithm is F(u,v), which gets multiplied by the filter transfer
function H(u,v) to output the filtered spectrum G(u,v) = F(u,v)*H(u,v)
Finally, you go ahead to apply the inverse DFT on G(u,v) to retrieve
the filtered image g(x,y). Using this transfer function H(u,v) relatably
design the effect of a filtering operation. Transfer functions can be
designed to achieve different effects: to smooth, sharpen, detect edges
or reduce noise. Consequently, frequency domain filtering becomes a
flexible way of obtaining the desired image enhancement and
restoration through these transfer functions. Additionally, the
frequency domain tells you how all kinds of filters would behave. For
instance, we can observe how the image is affected by upholding
frequency components, which can be useful for diagnosing or fine-
tuning filters parameters. It lets us create filters that have certain
frequency responses that would be difficult to implement directly in
the spatial domain.

On the other hand, it is important to mention that frequency domain
processing has its drawbacks too. Since Fourier transform works

globally, any frequency domain filter will affect the entire image
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uniformly, which may not always be ideal when specific noise
removal or a different type of processing is needed in potential
regions of interest (ROIs). Besides, the DFT's periodicity assumption,
can cause artifacts at the image boundaries, unless proper precautions
(padding, windowing, ...) are taken. Even though there are many
faults with it, the Fourier Transform, the frequency domain filtering is
still one of the important tools in the image processing and provides
some unique properties to that of the spatial domain techniques.
2.3.3 Fast Fourier Transform (FFT) (Frequency Domain
Analysis)
There are many kinds of versions in Fourier domain. Reflectance
separation is one of them, because they assuming that different
frequency is responsible for in the Fourier domain. We can control
which image features have to be preserved, enhanced, or suppressed
by attenuating or amplifying ranges of frequencies. The two basic
types of frequency filters are low-pass filters, that allow low
frequencies but attenuate high frequencies, and high-pass filters, that
do the reverse. These demarcation types are used as basic functions
in CONNECTTV filters to cut out the parts needed. Smoothing filters,
also known as low-pass filters, suppress high-frequency components
while allowing lower frequency components to pass. High frequencies
relate to rapid changes that appear in an image like edges, noise, and
fine details, and the low pass filter generates a smooth, less noisy
image with blurred edges. Ideal low-pass filter transfer function:
H(u,v)= {1, if D(u,v) < Do 0, if D(u,v) > Do }
D(u,v) is the distance the point (u,v) is to the origin of the frequency
plane and Do is the cutoff frequency. Recreating the signal can only
preserve all distance components smaller than or equal to Do, so
distortion occurs above this frequency value. The problem of course is
that ideal low pass filter has a problem due to Gibbs phenomenon or
ringing effect. This is also known as ringing when it appears in
filtered images - which is often marked by oscillations or ripples
around sharp transitions in images that the two-dimensional frequency
response of the filter experiences abrupt changes. In practical
implementation, to combat this ringing, filters with smoother
transition regions (like the Butterworth low-pass filter or the
Gaussian low-pass filter) are commonly used instead.

The Butterworth low-pass filter of order n is defined as follows:
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Basic concept on filtering in frequency domain:
As n increases, the Butterworth filter continues to approximate the
ideal filter but with reduced ringing. In contrast, the Gaussian low-
pass filter is defined by:
It is also worth mentioning that the Gaussian filter is given by the
following formula: H(u,v) = e(-D(u,v)*/(2D¢?))
where Do regulates the spread of the Gaussian function. The Gaussian
filter will smooth the most in the frequency domain, producing very
little ringing in the spatial domain. Low-pass filters are used in
purposes like noise filtering, blurring, and reducing an image.
Specifiy, they're very effective at removing high-frequency noise, like
the Gaussian or salted and-peppered noise, but they do a good job at
keeping the properties in the image. The drawback is that fine details
and sharpness in edges are lost in the conversion, which is not ideal
for some uses. A high-pass filter is a signal processing filter that
passes high frequency signals and attenuates low frequency signals.
High frequencies align with edges, textures, and intricate details, so
high-pass filtering accentuates these characteristics yet smooth areas
and background are subdued. The transfer function of the ideal high-
pass filter is given as:
Now, let the neighbourhood function H(u, v) be defined as: H(u, v) =
{01f D(u, v) < Do 1 if D(u, v) > Do }
The Ringing effect is also attributed to the ideal high pass filter just
like the ideal low pass filter. Hence, in practice smoother versions
such as Butterworth high-pass filter and Gaussian high-pass filter are
used. Where N stands for the order of the Butterworth high-pass
filter.
H(u,v)=1 /(1+[Do/D(u,v)]"(2n))

And the Gaussian high-pass filter is expressed:

H(u,v)=1—e—D(u,v)2/2D0RH(u,v)=1-e—D(u,v)2/2D0
Edge detection, sharpening and feature extraction are some
applications using high pass filters. They accentuate transitions and
edges across an image, therefore being particularly useful for tasks
that require contours of objects to be detected, or fine details to be
sharpened. This technique can be used for various effects, but an
interesting application is image sharpening through adding the high-
pass filtered image back to the original image. This technique, called

unsharp masking, emphasizes edges and details while keeping the
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overall structure of the image intact. In addition to these basic types,
you can also find band-pass and band-reject filters, which pass or
block a specific band of frequencies, respectively. Band-pass filters
can help pick out features that have a signature frequency in space,
like periodic textures or patterns. This allows for the elimination of
certain frequency components from the signal, for example, periodic
noise (or interference patterns) due to these components can be
rejected using band-reject filters (also called notch filters)
Homomorphic filtering is yet another advanced technique that also
works in the frequency domain, but from the point of view of a
different area of image processing. It requires taking the logarithm on
the image, applying a high-pass filter, and taking the exponent of the
result to separate the illumination and reflectance components of an
image. Instead, it can be useful to use this technique to work on
images that suffer from uneven illumination or high contrast.

For the input image and application, selecting the filter type and
parameters accordingly. Some considerations to take into account are
the level of smoothing/sharpening required, the type of noise or
artifacts to be removed, and the key features that should be preserved
or enhanced. A lot of trial and error when filtering to get ideal results
often requires visual assessment too. Last but not least, For shouldn't
be underestimated, While frequency domain filtering is a very
powerful tool in its own right, it requies two Fourier transforms to be
computed, and this might get expensive computationally. In small
kernels, it may be more efficient to perform the the filtering domain
wise. However, for high-order filters with large support or for
operations that are more naturally described in the frequency domain,
filtering in the frequency domain is still the preferred approach.

[Image Compression (Lossless, Lossy Methods)]

Advertisement Resize Image compression is the process of reducing
the size of image files while preserving as much information in the
file as possible. With ever-expanding resolution and volume of digital
images, reliable compression techniques are required for storage,
transmission, and real-time applications. Image compression
algorithms take advantage of redundancies in image data, including
spatial, temporal, statistical, or perceptual redundancy, to convey the
same visual information with fewer bits. Generally such algorithms in

terms of performance can be grouped into two broad classes: lossless
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compression that retains all original data and lossy compression that
yields better compression ratios by ignoring data. Depending on the
application, each of these approaches might fit better, making trade-
offs regarding compression efficiency vs. image quality vs.
computational complexity.

Lossless compression techniques ensure that the decompressed image
is exactly same as the original image preserving all information.
These methods are critical for applications where the slightest change
to the pixel values in the image constitutes an unacceptable difference,
for example in medical or scientific imaging, or other data where
images have archiving purposes. Lossless compression achieves data
reduction by removing statistical redundancy, but compression ratios
are generally small, typically between 2:1 and 4:1 for natural images.
Run-Length Encoding (RLE) is one of the easiest lossless methods,
where a series of similar pixels are substituted by a count of the pixel
value and the pixel. A string like "AAAAAABBBBCCC", for
instance, will be represented as "6A4B3C." RLE typically has good
compression on images that have large areas of the same color, e.g.
binary images or simple graphics, but less so on complex natural
images that would have gradual transitions. Another widely used
lossless compression algorithm is Huffman coding which assigns
variable-length codes to different pixel values based on how
frequently they are used. Frequent values gets short codes, less
frequent values gets long codes. This variable-length code is designed
to reduce average code length, which may lead to compression. Pixel
values can be used directly with Huffman coding, or the differences
between adjacent pixels may be used (this is referred to as predictive
coding, or DPCM — Differential Pulse Code Modulation). Arithmetic
Coding: A sophisticated form of entropy coding that can get closer to
the theoretical limits of compression defined by information theory.
Arithmetic coding works by assigning a code to the whole message
rather than individual symbols, making the code a fractional number
in a certain range. The advantage of this method is that it is more
suitable for coding symbols that are not powers of two when it comes
to probabilities, and this is one of the deficiencies of Huffman coding.
Lempel-Ziv-Welch (LZW) As a dictionary-based lossless algorithm,
LZW constructs a dictionary of common patterns while the data

stream passes through it. Rather than encode individual symbols,
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LZW encodes these sequences, and compression is achieved when
patterns repeat. LZW is also the basis for the TIFF format, in addition
to the GIF image format. PNG (Portable Network Graphics) is a
lossless replacement for GIF that combines predictive filtering and
deflate compression (a variation of LZ77 followed by Huffman
coding). PNG is well-suited for images with large areas of the same
color or simple patterns, such as diagrams and illustrations, making it
ideal for screenshots. PNG achieves the best compression rates for
natural photographs — albeit only to a certain degree. On the other
hand, lossy compression methods have greater compression ratios by
removing information that is considered non-essential or less
perceptually relevant. These approaches take advantage of the
limitations of human vision, discarding details less likely to be
noticed by viewers. Lossy compression does introduce some form of
distortion or artefacts to the media but given that an efficient
algorithm is used, it can lead to a high percentage compression with
only negligible perceptual loss of quality. JPEG (Joint Photographic
Experts Group), which combines the Discrete Cosine Transform
(DCT), Quantization, and Entropy Coding, is the most prevalent lossy
compression technique. DCT takes pixel blocks of size 8x8 and
converts their representation from the spatial domain to the frequency
domain, representing pixel blocks as a sum of cosine functions with
different spatial frequencies. This re-arrangement concentrates most
of the image energy contained in the low frequency coefficients,
which are perceptually significant to the human visual system.

Until the DCT there is no loss of information, after DCT there is a
quantization of coefficients which is the step where the information is
lost. Quantization scales down each coefficient by a quantization
factor and rounds to the nearest integer. Higher quantization factors
produce more aggressive compression but also increased artifacts.
Usually, the quantization factors are called the quantization table, with
larger factors for the high frequencies (and therefore, less perceptually
relevant) coefficients and smaller factors for the low frequency
coefficients. The human visual system is much less sensitive to high-
frequency variations in color than to variations in brightness, which is
why JPEG employs a trick to dump more of the color information, a
process called chroma subsampling. The DCT coefficients as

quantized above are encoded using run-length encoding followed by
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Huffman or arithmetic coding to provide further compression. JPEG
compression allows for storage of an image in as little as 10:1 to 20:1
values without much loss perceptually, and if the applications have
acceptable quality, still higher values. One downside with JPEG is
that at high compression ratios, it produces characteristic artifacts,
namely blocking (the visible boundaries of the 8x8 blocks that are
used by the encoding process) and ringing (that is, oscillations in the
picture near sharp edges). These artifacts can become more
prominent in regions with sharp edges or finer details. JPEG 2000 was
created to be a better version of JPEG, substituting the DCT with the
Discrete Wavelet Transform (DWT). Wavelet transform has many
advantages such as better energy compaction, multi-resolution
analysis, no blocking artifacts. JPEG 2000 supports lossless
compression, region of interest coding, better error resilience, and is
the only common image code that is suitable for use in very high
bitdepth applications. Despite its advantages, JPEG 2000 has not
gained the same level of adoption as its predecessor due in part to
complexity in terms of compute requirements and patenting concerns.

Also, a significant lossy compression codec is fractal compression
which takes advantage of self-similarity within images. Fractal
compression encodes an image as the mathematical transformations
of a number of copies of itself. Fractal compression can obtain very
high compression ratios, and it is especially very beneficial with
natural images, rich in self-similarity, but it is highly computationally
intensive for encoding; it has not been successful or widespread in its
use. Another lossy compression method is developed by vector
quantization, which splits the image into small blocks and encodes
each block by finding the closest matching entry in a codebook of
representative blocks. It is compressed by putting the entries in a
codebook and only storing/transmitting the indices of the
codebook entries, where the codebook is trained to minimize the
overall distortion. More recently, deep learning-based methods have
surfaced as reasonable options, based on the strong representational
ability of neural networks. These methods usually feature the training
of an autoencoder network after the selection of a latent representation
that encodes the images in a compact form and a subsequent decoder
that reconstructs the image with minimal loss. Compression methods

based on neural networks can learn to adapt to the specific statistics of
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certain types of images and may beat traditional methods, particularly
at low bit rates. Nevertheless, these methods have not yet moved
beyond being prototypes and proofs-of-concept.
You can choose between lossless (better quality) or lossy (files are
smaller) image compression, and you can also choose which
algorithm and parameters to use. Lossless compression is preferable
in some use cases, such as archival purposes, medical imaging, or
other scientific data, where data integrity must be guaranteed. For
Example, image, digital photography, or video lossy compression is
usually the preferred way due to high compression ratio and
acceptable visual quality. (You end up with a.squashfs file that is a
read-only compression format as well a cross-platform binary
compression format -- but being supported by what, can also be an
issue once the image is deployed in practice.) Such components may
be used in combination for a given architecture, especially since real-
world image compression systems often integrate numerous and
diverse techniques, depending on the image or application type. The
WebP format developed by Google, for example, applies different
compression techniques depending on whether the image is
photographic or has sharp edges and text. The study of how images
can be compressed still evolves, as advancements in algorithm design
and computation, as well as human visual perception, pave the way
for more efficient image coding.
2.3.4 Overview of Frequency Domain Processing Theory
Fourier Analysis and Linear System Theory Why at the end of the
day, all we care about is: This is quite sophisticated but quite simple,
if you have any idea about the Fourier transform. Grasping these
underpinnings helps us both to appreciate why methods in the
frequency domain excel at specific classes of image processing
problems, and how they relate to operations in the spatial domain.
Fourier analysis relies on the basic idea that any function is a sum of
sine functions of various frequencies, amplitudes, and phases. This
principle was originally suggested by Jean-Baptiste Joseph Fourier
and applied to heat transfer, although it generally has been generalized
to many other disciplines, including signal and image processing. For
smooth functions, the Fourier Transform is defined as an integral
transformation:

F(u) =] f(x) e—j2mux dx co—o0
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And the inverse transform is:
Generalizing in two dimensions for image processing, the transforms
become:

F(u,v) =[{-00}* {0} [{-00}* {0} f(x,y) e {-2n(uxtvy)} dx dy
f(x,y)=H{-0} oo} [{-o0 }Mo } F (u,v)er{j2m (ux+vy)} du
dv
For digital images which are not continuous but a finite one we use
DFT (Discrete Fourier Transform) and its inverse (IDFT) as
discussed above. Several properties of the Fourier Transform provides
the theoretical basis for frequency domain processing. The linearity
property states that the Fourier Transform of a sum of functions is the
same sum of their Fourier Transforms. This property makes sure that
operations such as addition and scalar multiplication work the same
way in all domains. The most important of these theorems is the
convolution theorem that establishes the relation between convolution
in the spatial domain and product in the frequency domain which is
essential for filtering operations. This theorem serves the theoretical
foundation for frequency domain filtering and shows why some

operations are more efficient in frequency domains.

The Fourier Transform has properties that relate to the operation of
shifting, while still in the concept of spatial domain, the shifting
property states that a shift in the spatial domain represents a phase
change in frequency domain and it is a convolution operation. These
give us insight into how transformations in the spatial domain alter
the frequency domain. This condition, known as the energy
conservation property (or Parseval's theorem), states that the spatial
total energy of the signal is equal to its frequency domain distillation.
This feature allows an analogous calculation of the energy in either
domain. In many image processing applications, the separability
property of the two-dimensional Fourier Transform can be exploited
to compute it as a sequence of one-dimensional transforms by
swapping for first rows and then columns, reducing the computational
complexity. This theoretical background is useful for conceiving
appropriate frequency domain processing methods and predicting
what these transformations will do in the case of particular images
and applications. In addition, this community enables comparison and
evaluation of filtering techniques in terms of their frequency

responses and impact on image quality, noise mitigation, and feature
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preservation. The underlying theoretical relationships bridging these
two domains enrich the field by allowing hybridized methods to
emerge combining the advantages from both realms thus result in
more versatile and robust image filtering architectures.

2.3.5 Advanced Advantages of Frequency Domain Techniques
However, there are also advanced techniques that use frequency
domain to solve complex image processing tasks on top of the simple
frequency filtering operations we have seen. Many of these techniques
use frequency domain methods or basic principles but further extend
these concepts in different ways to create some effects or
improvements. An example of such a method is the Wiener filter,
which is an optimal filter used for restoring images corrupted by
Gaussian noise and blur when the spectral characteristics of the
original image and the noise are known. Nevertheless, the Wiener
filter does differ from basic low-pass or high-pass filters in that it
adaptively matches its response to the local image statistics in order
to maximise noise suppression whilst also attempting to minimize
detail loss. In the frequency domain, Wiener filter can be defined in
the following equation:

F(u,v) =[F*(wv)/ ([F(u,v)? + S _n(u,v)/S_f(u,v))] x G(u,v)
where G(u,v) are the degraded image in the frequency domain,
H(u,v) is the degradation function (e.g., the point spread function of
the blur), H*(u,v) is its complex conjugate, S n(u,v) is the power
spectrum of the noise, and S f(u,v) is the power spectrum of the
original image. When the noise-to-signal ratio is high, the Wiener
filter acts more like a low-pass filter to suppress noise; when the ratio
1s low, it acts more like an inverse filter to recover details.
Homomorphic filtering is a more advanced technique that can help
with the problem of non-uniform illumination in images. Image
formation is multiplicative with respect to illumination and
reflectance, which renders simple filtering unhelpful. Homomorphic
filtering solves this problem by converting the original multiplicative
defocusing domain into an additive domain through log
transformation, filtering in the frequency domain and finally with the
exponential transformation getting back to the sensor domain. Since
illumination usually changes slowly across an image (low-frequency
components) whereas reflectance changes rapidly (high-frequency

components), a high-pass filter could remove the illumination part but
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boost the reflectance part, helping to increase the contrast and
visibility of details.

Phase-only filtering is an intriguing method that takes advantage of
the significance of a phase component in the Fourier representation of
images. Further, research has demonstrated that the phase component
of the Fourier Transform possesses more perceptually relevant
information relative to that provided by the magnitude component.
When applying phase-only filtering, the phase of the input image is
preserved while its magnitude is set to a uniform value, and this
greatly enhances structural features of the input image. This technique
can be used in edge detection, feature extraction, and image
registration. Transformer models, trained on time-series data, can also
estimate the common spectrum of tasks, where the order of sequences
is irrelevant, if we are interested in observing only the magnitude part
from the fast Fourier transform or this loss of information could be a
good candidate, where specific applications are related to wave-type
graphs or objects (i.e., afferent gates). Cepstral analysis is a type of
Fourier analysis applied on the logarithm of the magnitude of the
Fourier Transform. This “spectrum of a spectrum” is especially useful
for identifying periodic patterns in a signal or image, such as those
produced by regular structures or motion blur. In an image processing
cepstral techniques can be used to solve problems such as
homomorphic deconvolution, echo detection and pitch detection in the
speech processing. The cepstrum allows to separate the convolved
components of a waveform, regardless of the overlapping nature of
the two components, making it possible to analyze and filter them
separately.

An advanced frequency domain technique, wavelet transforms differ
from spectral based ones other than Fourier and related methods in
that they have both frequency and spatial locality. Unlike Fourier
Transform, which is based on infinite sinusoidal basis functions,
wavelets are localized in space and frequency, enabling multi-
resolution analysis. This characteristic allows wavelets to be
particularly good at describing slowly- and quickly-varying features
and localized phenomena at multiple scales. These include but are not
limited to: image compression (e.g. JPEG 2000), denoising, and
feature extraction and texture analysis. This allows them to represent

an image more adaptively by breaking it down into frequency bands
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and spatial regions. The last contribution will be to make the case for
the fusion of frequency domain processing with deep learning
techniques to address some difficult problems in image processing.
Neural networks can be trained to work in frequency domain directly,
or by including frequency domain knowledge via specialized layers
or loss functions. These kind of hybrid approaches seek to leverage
the interpretability and theory-based foundations of frequency
domain methods while still inhereting the flexibility and
representation power of neural networks. These advanced techniques
shift attention to the frequency domain, enabling solutions to a
plethora of problems in image processing.

Frequency domain processing touches on innumerable domains, from
general consumer products to niche scientific and industrial
applications. Therefore, these applications utilize the wunique
advantages afforded by frequency domain methods to attain results
not easily achievable or impossible using spatial domain methods
alone. A significantly popular use case is in image processing in
digital photography and image editing software. Noise reduction,
sharpening, blur reduction, special effects, etc., use frequency domain
techniques behind the scenes. As an example, image editing software
have a "smart sharpen" or "unsharp mask" filters that work in the
frequency domain to sharpen the edges while avoiding noise
amplification. For instance, noise filtering algorithms could filter out
high-pass portions of the signal that represent noise components while
preserving crucial image features. Frequency domain processing is
also important in many medical imaging modalities such as magnetic
resonance imaging (MRI), computed tomography (CT), and
ultrasound. These imaging systems record the raw data in the
frequency domain (e.g. the MRI raw data is in k-space) which is then
transformed to the spatial domain for visualization. Advanced
reconstruction techniques, artifact reduction, and image enhancement
methods exploit frequency domain properties to optimize diagnostic
quality. In the case of MRI, k-space filtering may reduce motion or
flow artifacts, while in CT frequency domain approaches may reduce
noise levels while maintaining edge information that is vital to detect
small pathologies.

Image enhancement, feature extraction, and data compression

techniques in the frequency domain are widely used in remote

106
MATS Centre for Distance and Online Education, MATS University



sensing and satellite imaging. Earth Observation Satellites produce
massive amounts of image data that are to be processed in an efficient
way. Atmospheric effects can be removed using frequency domain
methods, which can also be used to enhance certain geographical
features and compress data for transmission to ground stations.
Frequency domain techniques such as spectral analysis could classify
materials or types of vegetation according to spectral signatures that
are unique to each material or vegetation type. Frequency domain
techniques are used in forensic image analysis to uncover hidden
patterns, discover unique manipulations, or detect minute details that
are not easily noticeable. As an instance, periodic patterns in
frequency domain may suggest digital tampering or image
resampling and homomorphic filtering can reveal latent fingerprints
or enhance non-uniformly illuminated documents. Industrial machine
vision uses frequency domain processing in quality control, defect
detection, and pattern recognition. In high-speed inspection systems
the fast frequency domain based operations are utilized to detect the
defects in the manufactured products, its dimension measurements or
to check for the patterns. Working in the frequency domain can make
some types of defects or patterns more visible and thus facilitate the
identification process. At its core frequency domain techniques are
pervasive in telecommunications and data storage including many
encoding, modulation and error correction schemes. Signals can be
represented more efficiently in the frequency domain which enables
data rates more than one order of magnitude higher than in the time
domain, aside from more robust communication over noisy channels.
And frequency domain multiplexing enables separated different
signals to be sent concurrently over the same communication channel
by allocating distinct frequency ranges for different signals.

Frequency domain techniques are also extensively used in processing
and compressing video. Standards such as MPEG take advantage of
inter-frame temporal redundancy using a variant of DCT-based
compression similar to that used by JPEG. In video codecs, motion
estimation and compensation is a process that is heavily frequent,
often in a frequency domain. In scientific research, frequency domain
analysis assists in comprehending physical occurrences, ranging from
vibrations and acoustics to electromagnetics and quantum mechanics.

Because the frequency components of signals often have direct
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physical interpretations, frequency domain analysis is a powerful
method to understand complicated systems. For instance, in
spectroscopy, the frequency spectrum correlates directly with
molecular structures and interactions. Continue to read more about the
topics introduced in the post. Even more complex frequency domain
approaches are also becoming feasible for it with the progression of
computational power, increasing its range of use and influence. This
combination of a solid theoretical foundation and many practical
implementations in bountiful technologies make frequency domain
processing an essential aspect of the modern digital imaging
ecosystem.

2.3.6 Trends in frequency domain processing

A notable trend worth mentioning is the inclusion of frequency
domain methods in deep learning methods. In this way, neural
networks can be designed to work natively in the frequency domain or
assimilate knowledge about the frequency domain from their layers or
loss functions. Researchers have, for example, developed neural
network architectures that conduct convolutions in the frequency
domain, as well as those that learn optimal frequency domain filters
for particular tasks. These approaches are hybrid attempts to capture
the interpretability and theoretical guarantee provided by frequency
domain methods along with the flexibility and representation power of
neural networks. A further promising path involves creating
increasingly advanced adaptive filtering schemes that can
dynamically adjust their parameters according to local image features.
More sophisticated than a fixed filter, these methods apply optimized
filtering operations by analyzing the frequency content of various
regions inside an image. This may lead to improvement in the
performance of images with different features like both smoother
areas and finer texture or images processing in a real-time setting has
changed conditions. Recent advances in computational hardware have
made it feasible to perform increasingly more complex frequency
domain operations in near real-time, opening up new application
space such as augmented reality, computational photography, and real-
time video processing.

Third, there is multi-dimensional and multi-resolution frequency
analysis, which is another frontier of frequency domain processing.

Conventional Fourier analysis is performed in two dimensions for

108
MATS Centre for Distance and Online Education, MATS University



images, and its higher-dimensional extensions can be useful for
volumetric imaging, time-varying images, or multi-spectral data, for
instance. Approaches such as wavelet packets, contourlets, and
curvelets provide enhanced frameworks for representing directional
and anisotropic structures across multiple scales, which can facilitate
the development of more powerful filtering, compression, and
analysis techniques for complex image content. Specialized hardware
like GPUs and TPUs to facilitate computations have helped in
accelerating the adoption of frequency domain techniques since
computations are expensive on frequency domain. Availability of
highly optimized implementations of the Fast Fourier Transform and
related algorithms for these platforms is making frequency domain
processing more accessible and efficient across a wider range of
applications. In addition, perceptually optimized frequency domain
processing is gaining interest as well, where human visual perception
model is used to be more directly considered. Some methods use
models of the human visual system to guide the design of frequency
domain filters and transforms, in the hope of achieving better
perceptual quality (fewer artifacts) at high compression ratios, or with
aggressive filtering. This passive-fixation approach is particularly
pertinent for applications such as compression, enhancement, and
rendering where the ultimate arbiter of quality is typically the human
viewer.

Summary

Point processing operations, spatial domain filtering, and frequency
domain processing are foundational techniques in digital image
processing, each playing a crucial role in enhancing or analyzing
image content. Point processing involves manipulating the intensity
value of each pixel independently, based solely on its original value.
Common operations include image contrast adjustment, thresholding,
and histogram equalization. These methods are computationally
simple and effective for improving the visual appearance of images or
isolating important features.

Spatial domain filtering extends this by considering not only a single
pixel but also its neighboring pixels. This type of processing uses a
filter or kernel that slides over the image to perform operations such
as blurring, sharpening, and edge detection. Techniques like

smoothing filters (mean, Gaussian) help reduce noise, while high-pass
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filters (like the Laplacian) emphasize edges and fine details. Since
spatial domain filtering directly modifies pixel values based on their
surroundings, it allows localized enhancements that are not possible
with point-based operations alone.
In contrast, frequency domain processing involves transforming the
image into the frequency domain using tools like the Fourier
Transform. This method analyzes and modifies the periodic
components of the image rather than individual pixel values. Low-
frequency components represent smooth areas, while high-frequency
components indicate edges and fine details. By filtering in the
frequency domain, one can suppress noise, compress data, or perform
global enhancements with greater control and efficiency. Together,
these three approaches provide powerful tools for image analysis and
transformation in both theoretical and practical applications.
Multiple Choice Questions (MCQs)
1. What is the main purpose of image enhancement?
a) To reduce image resolution
b) To improve image quality for better interpretation
¢) To convert images into grayscale
d) To delete unnecessary pixels
(Answer: b)
2. Which technique is used to improve the contrast of an
image?
a) Low-pass filtering
b) Histogram Equalization
c¢) Edge Detection
d) Image Compression
(Answer: b)
3. What does thresholding do in image processing?
a) Reduces the size of an image
b) Converts an image into binary format based on intensity
levels
¢) Increases the brightness of an image
d) Enhances high-frequency components
(Answer: b)
4. Which filter is commonly used for smoothing an image?
a) Sobel Filter

b) Gaussian Filter
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¢) Laplacian Filter Notes
d) Prewitt Filter
(Answer: b)
5. What is the primary function of the Laplacian filter?
a) Smoothing
b) Edge detection
c¢) Compression
d) Thresholding
(Answer: b)
6. What is the purpose of the Fourier Transform in image
processing?
a) To convert an image into the frequency domain
b) To reduce the size of an image
c¢) To increase the resolution
d) To enhance colors
(Answer: a)
7. Low-pass filters are mainly used for:
a) Edge detection
b) Noise removal and smoothing
¢) Enhancing high-frequency details
d) Increasing brightness
(Answer: b)
8. Lossy image compression reduces:
a) Image quality permanently
b) Image resolution without affecting quality
c¢) Noise only
d) The file size while maintaining 100% original quality
(Answer: a)
9. Which of the following is an example of lossless image
compression?
a) JPEG
b) PNG
c) GIF
d) MP4
(Answer: b)
10. Which filter detects edges by calculating intensity changes
in multiple directions?
a) Mean Filter
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b) Sobel Filter
c¢) Gaussian Filter
d) Low-pass Filter

(Answer: b)

Short Answer Questions

1. What is the purpose of image enhancement?

2. Define histogram equalization and its role in contrast
adjustment.

3. What is image binarization, and why is it used?
Name two smoothing filters used in spatial domain filtering.

5. Explain the difference between high-pass and low-pass
frequency filters.

6. What is the advantage of using the Fourier Transform in image

processing?

How does the Sobel filter help in edge detection?

Differentiate between lossless and lossy image compression.
What are some common applications of image enhancement

techniques?

10. How does Gaussian filtering improve image quality?

Long Answer Questions

l.

Explain the concept of point processing operations and their
role in image enhancement.

Discuss the different types of spatial domain filtering
techniques with examples.

How does histogram equalization improve image contrast?
[llustrate with an example.

Compare and contrast smoothing filters and sharpening filters
in image processing.

Explain the working principle of Fourier Transform in
frequency domain processing.

Describe the role of frequency filtering in image processing
with examples.

What are the different types of edge detection techniques?
Explain the Sobel and Prewitt filters.

Discuss the advantages and disadvantages of lossless and lossy
image compression techniques.

How does thresholding work, and what are its applications in
image processing?

112
MATS Centre for Distance and Online Education, MATS University



MODULE 3
IMAGE RESTORATION

LEARNING OUTCOMES

To classify and analyze different noise models in digital
images.

To evaluate the effectiveness of noise removal techniques such
as median and Wiener filtering.

To study various image degradation types, including blur and
motion blur.

To explore image restoration techniques like inverse filtering
and Wiener deconvolution.

To assess the role of blind deconvolution and regularization in

image enhancement.
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Unit 3.1: Noise Models and Types

3.1.1 Noise Models and Types: A Comprehensive Exploration

Noise is an invariant phenomenon that exists in almost all of our
natural and technological surroundings. From the crackling of a radio
transmission to the haphazard undulations of stock market prices,
from the quantum flutterings at subatomic scales to the static clinging
to an old television set, noise saturates our world in a multitude of
forms. This venture into the depths of noise explores theoretical
roots, mathematical descriptions, physical origins, practical
consequences and future paths, cutting across multiple disciplines.
Noise should not be regarded only as unwanted interference, but
rather as a generic aspect of physical systems and information
channels, solidifying various insights on randomness, uncertainty, and

complexity.

it

<
+ ]
2 7

l Degradation | Restoration |

Figure 3.1.1: Noise Models and Types

3.1.2 Essential Elements of Noise Theory

At its core definition, noise refers to unwanted random variations or
anomalies that corrupt a signal or measurement. Noise, as opposed to
deterministic distortions, has no predictable instantaneous value (that
is, it is not deterministic and will not usually have the same value at
time T + 1 as it did at time T, for example), but its statistical properties
can often be estimated with high precision. The scientific study of
noise began in earnest in the early 20th century, parallel with
advances in electrical engineering, telecommunications and statistical
physics. Engineers such as Johnson, Nyquist and Shannon set the
stage for recognizing noise as something more than an inconvenience
— a phenomenon that had measurable properties and could be
analyzed or modeled and, in some cases, even exploited for good.
Noise is a mathematical object that can be quantified with

probability, and this is because noise is a statistical physics problem
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that cannot be derived through determinate mathematics. At its
simplest level, the mean (average value), variance (spread of values),
and power spectral density (distribution of power across frequency
components) are all statistical descriptors. Higher-order moments,
correlation functions, and probability distribution functions are more
sophisticated metrics. These mathematical tools help scientists and
engineers to quantify noise, predict its consequences, and strategize
on how to minimize its effects when needed or take advantage of its
properties when it is helpful.

There is a very important conceptual difference between signal and
noise, although the border is not always well defined. Typically, the
signal itself would be understood as any intentional transmission or
measurement of signal such as energy or information and noise would
be unwanted random deviations from a signal that would mask the
signal. But this categorical difference becomes philosophically and
practically murky in many contexts. What is noise in one application
might contain important information in another; background radiation
that clogs up radio astronomy, for example, offers cosmologists
critical data about the early universe. Likewise, thermal fluctuations
that induce noise in electronic circuits also expose fundamental
characteristics regarding the quantum nature of electrons. This
relativity of signal-noise distinction underlines an important principle:
noise is contextual, defined not just by its own intrinsic properties but
by its relation to the observer's intentions and the system's purpose.
Noise has implications not just for technical aspects of any given
system, but rather for deepest questions in information theory,
thermodynamics, and also quantum mechanics. The work of Claude
Shannon laid the groundwork for the limits on transmission of
information as a result of noise, and he developed channel capacity
theorems which dictated the maximum possible information rate for
reliable communication over noisy channels. Ludwig Boltzmann had
a similar epiphany: he found a statistical interpretation of
thermodynamics that related microscopic randomness (noise) to
macroscopic properties like temperature and entropy. In the past few
years, quantum information theory has revealed that quantum noise
processes are fundamental to the nature of reality itself, governing
everything from the stability of matter to the limits of quantum
computing.
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3.1.3 The Statistical Foundations of the Noise Model

Although there is no way to predict what any single audio noise
sample will sound like, noise as a collective behaves according to
statistical laws that are well defined and can be characterized
mathematically. The central limit theorem, a foundational concept in
probability theory, explains the reason that many noise processes
converge on Gaussian (normal) distributions, no matter the particulars
of their mechanism: The sum of many independent random variables
tends towards a normal distribution. This key equation explains the
widespread use of Gaussian noise models in various disciplines,
ranging from electronics to finance. Probability density functions
(PDFs) provide a key tool for specifying noise distributions. PDF
gives the relative probability that a random variable assumes a certain
value, covering the entire statistical characterization of the noise
process. For Gaussian noise, the shape of the bell curve given by the
normal distribution applies, and is entirely characterized by only two
parameters: mean and variance. Other common distributions are the
Poisson distribution, for discrete event noise (like arriving photons),
the Cauchy distribution, for noise with notably heavy tails, and the
uniform distribution, for noise with equal probability across a finite
range of values. Different physical processes underlying the noise
correspond to different PDF's of the fluctuations, hence choosing an
appropriate PDF is a key step in analysing noise.

Noise is rarely static and often switches or changes much more
dynamically in time or space, requiring a more complex stochastic
process model than is especially common in this literature. Markov
processes, in which the future state is determined only by the present
state, not the past history, offer a tractable yet powerful framework for
modeling many kinds of noise. Markov processes are exemplified by
random walks, which consist of a random change in position at each
step, and random walks serve as foundations for modeling Brownian
motion and related phenomena. Autoregressive and moving average
models are more sophisticated representations which describe
dependencies between successive noise sample values and can be
used to obtain a representation of colored noise, where the noise can
be dependent on frequency. These temporal models have applications
in various domains, including audio processing and econometrics,

where noise is rarely treated as entirely uncorrelated samples. An
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equally essential perspective on noise can be obtained via spectral
analysis, which shifts attention away from the time domain and into
the frequency domain. The PSD function explains the distribution of
the noise power over the frequency giving formats which are
otherwise not visible in the time domain. The specific white noise
(equal power across all relevant frequencies) serves as a theoretical
reference. In reality, dominant natural and technological noise
processes have non-uniform spectral distributions. Pink noise (1/f
noise), for instance, exhibits power inversely proportional to
frequency and is found in contexts as varied as electronic devices,
heart rate variability, and stock market fluctuations. Brown noise (1/f*
noise), with more power in the lower frequency range, models
random walk processes such as Brownian motion. Specifically, the
spectral characterizations help identify noise sources as well as filter
design and signal processing strategies.

Correlation functions are another way to mathematically analyze
noise, revealing correlations between noise values at different spaces
and time. The autocorrelation function captures the similarity of a
signal with a time-shifted version of itself, and extracts temporal
structures and periodicities in what is otherwise random noise (Wu et
al., 2009). In contrast, the autocorrelation function for white noise is
a delta function, indicating that there is no correlation between
samples taken at different times. On the other hand, the colored noise
is a time series with non-zero autocorrelation for non-zero time lags,
where the exact form of the autocorrelation function is related with
the power spectral density by a direct application of the Wiener-
Khinchin theorem. Cross-correlation functions generalize this concept
to correlations between different noise processes, allowing us to
analyze complex problems of noise in multiple dimensions and
develop techniques such as noise cancellation and source separation.
The principal source of noise in digital images arises during image
acquisition and transmission. The performance of imaging sensors is
affected by a variety of environmental and mechanical factors of the
instrument, resulting in the addition of undesirable noise in the image.
Images are also corrupted during the transmission process due to non-

ideal channel characteristics.
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Generally, a mathematical model of image degradation and its
restoration is used for processing. The figure below shows the
presence of a degradation function h(x,y) and an external noise n(x,y)
component coming into the original image signal f(x,y) thereby
producing a final degraded image g(x,y).

3.1.4 Physical Origins of Noise

Thermal noise, or Johnson-Nyquist noise, is caused by thermal motion
of charge carriers in electrical conductors. This intrinsic source of
noise arises in every electronic system with a temperature exceeding
absolute zero, and constitutes one of the most pervasive types of noise
in both natural and engineered systems. The physical origin of shot
noise has its origin in thermal agitation of the electrons which leads
to random fluctuations (current) in the absence of any applied voltage.
The relationship was formalized in 1928 by Harry Nyquist and John
B. Johnson, who showed that the power spectral density of thermal
noise 1is proportional to temperature and nearly flat basin on
frequencies all the way up to quite high values, thus it is one of the
better examples of white noise. The relation P = 4kTB, with k being
the Boltzmann constant, T the absolute temperature, and B the
bandwidth, is a simple but deep quantification of this noise source
that links macroscopic noise power to microscopic thermal energy.
This thermal noise sets intrinsic limits on the sensitivity of electronic
sensors, communication systems and measurement devices, forming
an inescapable background from which signals must be detected.

Shot noise arises from the quantized nature of electric charge and
other quantized phenomena. An exception is shot noise that appears
only when there is a current flow through a barrier (semiconductor
junction, vacuum tubes), while thermal noise exists even at
equilibrium. Because electrons behave quantum mechanically, they
cross barriers not in a continuous flow, but as individual particles,
leading to statistical fluctuations in current. This effect was first
described by Walter Schottky in 1918, who demonstrated that when
independent, discrete charges arrive randomly, the resulting statistics
obey Poisson statistics, yielding a noise power which is proportional
to the average current. This randomness due to quantization is not
limited to electronics, but is also observed in optical systems (photon
shot noise), particle detectors (radiation counting statistics) as even

biological systems (molecular counting noise in small volumes). Shot
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noise is a significant source of uncertainty in low-current applications
and quantum-limited measurements, and can establish fundamental
detection limits in precision instrumentation. The connection between
shot noise and quantum mechanics serves to illustrate how deep
physical laws ultimately turn into practical engineering limits.

Flicker noise, also known as 1/f noise or pink noise, is one of the
most mysterious and omnipresent noise phenomena observed in
nature. In contrast to thermal and shot noise, which arise from well-
understood physical processes, flicker noise is observed across an
extraordinarily wide range of systems — from electronic devices to
biological systems; from music to fluctuations in the stock market —
but does not have a single unifying description. (9) This process is
repeated for all initial conditions, generating a curve with a power
spectral density that decreases according to (2) (i.e. 1/f-noise), which
is a hallmark of these signals (Johnson et al., 2020). At low
frequencies, flicker noise is a common observation in electronic
devices, and has been ascribed to a multitude of possible mechanisms
such as carrier trapping-detrapping processes, mobility fluctuations
and surfaces effects. This curious scale-invariance feature of 1/f
noise, where statistically similar patterns emerge over different time
scales, has led to theories linking the phenomenon to ideas such as
self-organized criticality and fractals. Most stunningly, 1/f noise
appears to arise spontaneously in complex systems resting on a
knife’s edge between order and chaos, suggesting that it could be a
universal property of systems with many elements interacting across
multiple scales.

Quantum noise is the ultimate low-level noise floor, resulting from
fundamental quantum mechanical principles. The uncertainty
principle of Heisenberg states that certain pairs of physical properties,
such as position and momentum or energy and time, cannot be
simultaneously measured to arbitrary precision. These built-in
uncertainties take the form of unavoidable fluctuations or noise in
quantum systems. Vacuum fluctuations — random fluctuations in
electromagnetic fields that take place even in absolutely empty space
— are a form of quantum noise that produces a “zero-point energy”
that influences everything from the stability of atoms to the properties
of materials. The wave-particle duality of light gives rise to both shot

noise (due to the particle nature) and wave noise (due to the wave
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nature) in quantum optics, together leading to the standard quantum
limit of measurement precision. With thrusts in technology pushing
towards increasingly sensitive measurements and quantum
information processing, these quantum noise effects shift from being
theoretical curiosities to practical engineering concerns. Indeed, newly
emerging areas such as quantum metrology and quantum error
correction (Click here) are specifically focused on developing
approaches for operating at or past (beyond) these quantum noise
limits. In real-world systems, it is even more complex due to noise
sources such as environmental and ambient noises. Power lines, radio
transmitters, lightning, and other electrical equipment generate
electromagnetic interference that induces currents and voltages in
susceptible circuits. Mechanical vibrations couple into sensitive
instruments, leading to microphonic effects where physical
movement manifests as electrical noise. Atmospheric conditions
produces acoustic noise can couple such as microphones and pressure
sensors. High energy cosmic rays—particles from outer space—can
cause single-event upsets (SEUs) in semiconductor devices, especially
in high-altitude ground-based, flight environments or space. Human
activities make a significant contribution to ambient noise
backgrounds: noise from traffic and industry; congestion of the radio
frequency spectrum in urban areas. Even seemingly common
contributors such as air ventilation around temperature sensors or dust
particles on optics can create random fluctuations in measurements
known as measurement noise. This challenge is compounded:
Environmental factors are often difficult to characterize precisely:
they depend on contextual conditions as well as have complicated
temporal patterns, spatial dependencies, and frequency characteristics.
3.1.5 Noise Models in Signal Processing and Communications

AWGN (additive white Gaussian noise) model is a core model of the
modern communication theory and signal processing. This nicely
simple but incredibly powerful model assumes that noise is added
linearly to the signal, and can be described by independent and
identically-distributed (i.i.d.) samples from a normal (Gaussian)
distribution with zero mean and constant power spectral density in all
frequencies. The AWGN model is useful due to its mathematical
tractability, allowing for closed-form solutions in performance metrics

like bit error rates, detection probabilities, and channel capacities.
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Claude Shannon's seminal work in information theory used the
AWGN model extensively to derive fundamental limits on
communication over noisy channels. Although the complexities of
physical reality rarely produce true pure-white, pure-Gaussian noise,
the theoretical elegance of the model and the central limit theorem's
propensity to engender approximately Gaussian behavior in many
classes of real-world systems has effectively fixed AWGN as the
default first approximation for scores of applications. In this
framework, performance is usually expressed in terms of the signal-
to-noise ratio (SNR), a measure of the ratio between signal and noise
power, and determines the information rate that can be achieved
using AWGN assumption. Impulse noise models describe the effect of
short, high-amplitude noise events that appear over time sporadically
rather than continuous.

Unlike Gaussian noise, which has a symmetric, predictable bell curve,
impulse noise creates outliers and extreme values that can corrupt data
far more seriously than their short-lived nature might indicate.
Impulse noise from electrical switching events, lightning, ignition
systems, or other transient sources is often present in communications
systems such as power line communications, digital subscriber lines,
and wireless networks operating in industrial environments.
Mathematically, impulse noise necessitates heavy-tailed distributions
like the Cauchy distribution or mixed Gaussian models where
sporadic high-variance samples contaminate a more neutral low-noise
background. A Bernoulli-Gaussian model based on the combination
of Gaussian amplitudes with a Bernoulli process (which establishes
the impulse triggering times) provides a tractable modeling means of
impulsive environments. The especially destructive nature of impulse
noise on digital communications/has inspired specialized approaches
to mitigate such errors, including robust error correction codes,
median filtering, and adaptive threshold methods that can locate and
remove outlier samples prior to conventional signal processing.
Multiplicative noise models are used when noise interacts with the
signal via multiplication rather than addition. This might appear as a
subtle difference, yet results in radically different behavior, as the
noise scale is multiplied by the signal scale instead of being
independent of it. In wireless transmissions fading is an example of

multiplicative noise, insofar as environmental conditions affect the
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strength of the signal transmitted and the strength of the received
signal varies randomly. Rayleigh fading describes the case when there
is no line-of-sight path from transmitter to receiver, such that the in-
phase and quadrature components are normally-distributed and
combine to yield a Rayleigh-distributed envelope. This model is
extended to situations with a major line-of-sight component and
scattered paths with Rician fading. Multiplicative noise is also
common in imaging systems, as a speckle noise, most often in
coherent imaging modalities such as synthetic aperture radar, medical
ultrasound, and laser illumination systems. This work is a
fundamental contribution considering that multiplicative noise
behaves differently from additive noise, which is a common
assumption for many filtering techniques; however, specific filtering
techniques (e.g., homomorphic filtering, Bayesian methods) that
exploit the statistical properties of multiplicative noise, like
homomorphic filtering, are required, as they can be transformed into
additive noise by a logarithm.

Phase noise is a type of signal degradation that manifests as random
variations in the timing or phase of signals, particularly impacting
systems that require high accuracy in frequency or phase details.
Phase noise manifests as jitter in clock systems, unstable frequency
oscillators, as well as phase uncertainty in coherent detection systems
in communication systems. Phase noise, unlike amplitude noise which
is mostly sensitive to the magnitude, directly impacts the timing and
can severely degrade its performance while the power is still high.
For the mathematical characterization, Wiener process models for
phase errors accumulation or different power-law spectra for
frequency stability are often used. Phase noise particularly affects
high-order modulation schemes, including quadra-ture amplitude
modulation (QAM), where constellation points are closely packed in a
limited spectrum; in such cases, phase errors may cause symbol
misidentification. And phase noise poses fundamental limits for many
systems, including synchronization systems, phase-locked loops, and
coherent optical communications. These effects can be mitigated by
advanced digital signal processing techniques such as pilot-assisted
estimation, decision-directed tracking, and phase noise compensation

algorithms, so that even the modern communication systems find it
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feasible to reach the theoretical performance limits, provided that the
performance can be practical to obtain with real oscillators.

This is due to the fact that when any continuous signal that is analog
is transformed in a discrete fashion, quantization noise will be
generated, which is an inescapable process within the domain of every
digital system. Every time an analog signal is converted to digital, the
infinite precision of continuous values must be approximated by a
finite number of discrete levels, leading to small but systematic errors.
We’ll show that, under certain conditions, these quantization errors
behave statistically akin to additive noise with uniform distribution
over half the quantization step size on either side. The noise power
from this quantization relates to the resolution of our conversion,
decreasing by ~6 dB for every bit of precision added. Cream, the
previously shown analysis assumes quantization errors are essentially
uncorrelated with respect to the input signal (the white noise
approximation) which is valid only for certain signal types,
specifically periodic signals including frequencies that are integer
multiples of the sampling rate, where quantization produces
correlations and tones in quantized signals. Dithering—the
intentional, random-seeming addition of low-level noise before
quantization—paradoxically improves overall quality as it
decorrelates quantization errors from the input: if quantization errors
are decorrelated from the input, they will not add up to form
disturbing patterns, and will preserve the statistical properties that
make it possible for us to treat quantization effects not as structured
distortion, but rather as benign background noise.

These cross-talk and interference models are used in cases where the
noise source is other information-bearing signals rather than random
processes. Cross-talk in wired communications is a phenomenon in
which signals in neighboring channels couple electromagnetically and
interfere with each other. In wireless channels, co-channel
interference due to other transmitters working on the same frequency
leads to similar results. Unlike natural sources of noise, these
interference patterns are structured, containing information; as such
they are more likely to disrupt communication systems that are tuned
to extract patterns from background randomness. Mathematical
models progress from simplified Gaussian approaches (where the total

interference is treated as added noise) to detailed deterministic

123
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i




3

N

‘(\—/¥/\
(mar

UNIVERSITY

ready for life

Notes

i
s%

models that capture specific characteristics, spatial coordinates, and
transmission patterns. Mitigation approaches involve spatial
separation with directional antennas or multiple-input-multiple-output
schemes, frequency-domain techniques via spectral spreading or
orthogonal frequency division, and adaptive interference cancellation
that assumes and removes interfering signals. However, the limited
amount of spectral resources and the increasing density of wireless
devices have made interference modeling and management essential
for modern communication system design, resulting in advanced
cognitive radio techniques that can dynamically adjust
communication parameters with regard to the interference settings.
Instrumentation and Measurement Noise

Sensor noise involves multiple random variations which affect
measuring devices over nearly all scientific and engineering
disciplines. No matter how sophisticated, every sensor brings with it a
certain amount of uncertainty in its measurement process.
Thermistors designed for measuring temperature generate Johnson
noise from their resistance and 1/f noise from the semiconductor
effects. Accelerometers and gyroscopes are subject to both electrical
noise in their readout circuits and mechanical noise due to molecular
motion in their sensing elements. Photodetectors face shot noise due
to the quantum nature of light, dark current noise due to thermally
generated carriers, and readout noise due to their electronics.
Knowledge of these sources of noise spans multiple disciplines
including device physics, circuit theory and the physics of the
particular sensing mechanism used. Noise performance is specified by
sensor manufacturers using terms such as noise-equivalent power
(radiation detectors), noise-equivalent temperature difference (thermal
imagers), or input-referred noise voltage (electrical sensors). Modern
precision instrumentation compounds two or more sensing modalities,
exhibiting complementary noise characteristics, through sensor
fusion algorithms that extract optimal estimates from the aggregate of
data. From scientific research, to industrial process control, medical
diagnostics and environmental monitoring, the fundamental noise
limits of sensors directly affect countless applications.

As scientists venture into realms of never before imagined
measurement, noise in scientific instrumentation becomes a matter of

paramount importance. Gravitational wave detectors such as LIGO
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perhaps serve as the greatest example of noise limited measurement,
where one needs sensitivity to measure dimension changes smaller
than the diameter of a proton across interferometers that can be
kilometer scales large. To reach such remarkable accuracy requires a
deep understanding and reduction of various noise sources like
seismic vibrations, thermal noise in mirror coatings, photon shot
noise, quantum radiation pressure, and gravity gradients due to bodies
in motion nearby the detector. Similar challenges in other frontier
instruments: scanning tunneling microscopes face thermal drift and
vibration, particle accelerators need to suppress beam instabilities and
detector noise, radio telescopes must tightly control receiver noise and
radio frequency interference. In such advanced scientific contexts,
noise analysis is not just something which needs to be accounted for
from an engineering standpoint, but is central to experimental design
and even data analysis. Methods such as lock-in amplification,
cryogenic cooling, vibration isolation and advanced digital signal
processing help push measurement capabilities past what the levels of
raw noise would permit, allowing scientific breakthroughs at the very
edge of what physical law allows.

The calibration and measurement uncertainty analysis form the
background how noise and other sources of error impact the
trustworthiness of measurements. Random noise produces
unpredictable variations in individual measurements, but its
contribution to uncertainty can be quantified through repeated
observations using statistical methods. The Guide to the Expression
of Uncertainty in Measurement (GUM), established by organizations
in the International System of Units, provides a common framework
for propagating uncertainties through measurement systems and for
reporting results with relevant confidence intervals. Calibration
processes provide the relationship between measurements and the
relevant reference standards, but also add calibration uncertainties to
be considered in the overall error budget. One form of modern
metrology categorizes the uncertainty of the measurements into Type
A (derived from statistical analysis of repeated observations) and Type
B (evaluated by other means, usually some degree of scientific
judgement, manufacturer specifications, or prior knowledge). For a
full characterization of measurement uncertainty, we must consider

not only random noise, but also systematic errors, environmental
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effects, and interaction terms between the various quantities
influencing the measurement. In sensitive applications — such as
pharmaceutical manufacturing, aerospace engineering or medical
diagnostics — detailed uncertainty analysis is essential for risk
assessment and decision making in the presence of inherently noisy
measurement data.

Environmental influence compensation techniques focus on how
external factors create what seems like noise in measurement
systems. Temperature variations lead to thermal expansion of
mechanical components and drifts in electronic parameters, pressure
changes affect fluids-based sensors, humidity changes affect the
material properties as well as electrical insulation, mechanical
vibrations couple into sensitive instruments while electromagnetic
fields induce spurious signals in conductors. The environmental
influences produce measurement variations which themselves are not
strictly random in their source but often appear as noise-like
uncertainties in the ultimate data. Compensation methods are divided
into passive methods, such as thermal insulation, vibration isolation,
and electromagnetic shielding, and active methods, which work on
measuring environmental parameters and applying mathematical
corrections to the primary measurements. Bridge circuits cancel
common-mode  effects;  differential —measurements  mitigate
interference that is coupled equally to both signal paths; chopper
stabilization techniques shift the signal to frequencies at which 1/f
noise is low. In precision instruments, environmental compensation is
frequently simultaneous and creates measurement systems where the
remaining noise limits performance approaches the theoretical limits
from fundamental physical processes and not practical
implementation imperfections.

Data-acquisition noise includes the complete signal path from sensor
to digital output, including amplifiers, filters, analog-to-digital
converters (ADC), and a well as transmission systems. Each of these
elements has its own noise implications: amplifiers add thermal and
1/f noise, generally described with equivalent input voltage and
current noise specifications; filters alter the noise spectrum while also
adding their own noise sources; sample-and-hold circuits introduce
aperture uncertainty; the analog-to-digital converter adds a

quantization noise component, as well as errors due to nonlinearity.
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With tape based systems, much like digital based systems, the noise
sources are competing with each other and the design must take into
consideration one of the following: Gain distribution, bandwidth
limiting, and the selection of components. The noise figure
specification, which relates output SNR to input SNR, is a convenient
metric for how much signal quality is lost in a circuit. The modern
data acquisition system utilizes all the advanced architectures
available to mitigate noise effects: high common-mode rejection
instrumentation amplifiers isolate the signals from interference; anti-
aliasing filters protect the sampling from folding high frequency
noise into the measurement band; oversampling spreads quantization
noise over a wider bandwidth than the signal occupies; and digital
signal processing techniques allow for adaptive filtering based solely
on the noise characteristics. In ultra-low-noise applications, correlated
double sampling, lock-in detection and synchronous averaging extract
signals from otherwise tremendous noise backgrounds, allowing
measurements that would otherwise be impossible.

Recovering signal from noise is the ultimate challenge of
measurement systems: in other words, being able to extract
meaningful information from data contaminated by multiple sources
of noise. The best approach will depend on what we know a priori
about both the signal and noise. In cases where the signal and the
noise reside in different frequency bands, linear filtering offers the
least complex treatment, simply reducing the strength of those
frequency components that are dominated by noise while retaining the
ones rich in the signal. Median filtering and other nonlinear methods
are better than simple averaging in the presence of impulsive noise
that seriously corrupts several samples. Wiener filtering is a
generalization to the statistical optimization, making filters to
minimize mean-squared error given known signal and noise spectra.
Adaptive filtering continuously updates filter parameters based on
observed signal statistics in cases with time-varying noise
characteristics. More sophisticated approaches take advantage of more
information: matched filtering enhances SNR when the precise shape
of the signal is known; lock-in amplification allows extraction of
signals with specific frequencies from backgrounds of loud stochastic
noise; wavelet denoising adapts to both time and frequency properties

of non-stationary signals. For very difficult problems quantitatively
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tracing other effects, tools from estimation theory such as Kalman
filtering yield a near-optimal sequential estimate by combining
predictions given by physical models with noisy observations, in a
way that dynamically weights each as a function of their relative
energetic uncertainties. The signal recovery methods you developed
apply in almost all fields of science and engineering — from
astronomical image enhancement, to biomedical signals, geological
exploration, and speech recognition.

In this device, a plate or a tiny piece of a specially conductive material
reacts the noise in the system — Semiconductor noise.

However, a concern where everything seems to fall into a binary
system which theoretically should be immune to small perturbations is
digital noise and signal integrity. Conceptually, digital systems only
ever need to discriminate two states (0 or 1), implying that they
should be resistant to large amounts of noise before errors happen.
However, physical realizations of digital logic actually work with
finite noise margins, firing speeds and analog interfaces to the outside
world. In high-speed digital transmission lines, intersymbol
interference distorts the signal as the energy from one bit affects
subsequent ones; crosstalk between multiple parallel signal paths
introduces pattern-sequence noise, and simultaneous switching of
multiple outputs causes power supply fluctuations that couple into
signal paths. In integrated circuits, these effects become very
pronounced for two reasons: they make scarce the noise margins that
must be overcome in the presence of ever-higher clock frequencies
and lower supply voltages, while, on the other hand, they force faster
and faster transitions. Signal integrity engineering uses specialized
techniques to keep digital signals working reliably: controlled-
impedance transmission lines minimize reflections; differential
signaling rejects common-mode noise; pre-emphasis and equalization
balance the channel frequency response; and eye diagrams visualize
the combined effect of noise, jitter and intersymbol interference on the
quality of the signal. As data rates approach and exceed gigabits per
second, the line representing digital design and analog high-frequency
techniques becomes increasingly blurred; integrated techniques that
address both sides of the equation are needed.

In other words, timing jitter means there is uncertainty about time in

the digital world, which causes signals to randomly change between 0
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and 1. Clock jitter directly impacts synchronous systems producing
uncertainty on when sampling occurs; data jitter affects the signal
under sampling shifting times at transitions. The net effect dictates
whether bits are valid for the given transitional states or not. Jitter can
come from such sources as thermal noise in oscillator components,
power supply variations, electromagnetic interference, and integrated
phase noise through clock distribution networks. Characterization
generally has a distinction between Random jitter (typically Gaussian
statistics) and deterministic jitter (bounded and often pattern
dependent behavior). Cycle-to-cycle jitter refers to the differences
between adjacent periods, and period jitter measures variations in
individual clock cycles. This accumulation of jitter over time becomes
especially pertinent in applications such as serializer-deserializer
(SERDES) circuits, in which the transmitter and receiver must remain
synchronized over billions of bit periods with no direct transmission
of the clock itself. Negative feedback that removes jitter at
frequencies outside a loop’s bandwidth also applies to phase-locked
loops; power supplies that suppress noise outside their operating range
are essential; circuit layout that minimizes interference coupling is
critical; and clock distribution techniques that redistribute clock tree
phases, as well as reduce jitter accumulation across wide digital
systems, are also essential.

Noise in memory systems is a phenomena that occurs in both volatile
and non-volatile storage leading to challenges in data integrity. In
DRAM, charge leaks out of the capacitor-based storage cells over
time, and DRAM cells must be refreshed every so often to keep up the
bits. Thermal noise is relevant to charge storage and sense amplifiers,
where as alpha particles and cosmic radiation can excite single-event
upsets by depositing charge on sensitive regions. Static RAM also
has similar radiation issues along with metastability problems when
the read/write operations conflict. Flash memory (and various other
non-volatile technologies) are subject to noise not only during
programming (where the precise placement of charge ultimately
determines the value stored) but also during read-out (where sense
amplifiers need to differentiate closely spaced threshold levels in
multi-level cell architectures). As the density of memory increases,
storage elements are miniaturized with increased variability in random

directions and inferactions from neighboring cells. Error detection
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and correction codes are the first line of defence against memory
noise, appending enough redundant information to enable the
recovery from common error patterns. Low-density parity-check
(LDPC) codes and other advanced coding schemes are getting closer
to theoretical limits on their error-correction capability, allowing
reliable storage even as the physical cells become increasing
susceptible to noise. Memory systems should be designed up to the
application requirements, where a trade-off between noise mitigation,
overhead for error correction, power consumption, and performance is
required for applications from consumer electronics to mission critical
systems where corruption of data could lead to catastrophic
consequences.

As computation approaches physical limits, computation in the
presence of noise has become a fundamental research area rather than
an engineering concern. Conventional digital design uses noise
margins and other synchronous logic techniques to create
deterministic behavior most often in the face of inherently noisy
components, effectively suppressing the analog nature of physical
mechanisms. As device dimensions approach atomic scales and
energy efficiency requirements push practical operating voltages
lower, however, the distinction between signal and noise becomes
harder and harder to guarantee. Probabilistic computing embraces this
fact, propagating uncertainty through their algorithms, innovating
their algorithms to tolerate randomness (or leverage uncertainty) into
their model. Instead of representing values as fixed binary bits,
stochastic computing represents them as probabilities encoded in bit
streams, resulting in built-in robustness to single-bit flip errors.
Approximate computing uses intentional reduction of precision in
certain operations in cases where absolute accuracy is not essential,
thus saving energy. These strategies acknowledge that many actual
problems — from predicting the weather to processing language —
include embedded uncertainties in which spending energy to achieve
perfect precision is not cost-effective. Research on noise-tolerant
computing seeks inspiration from biological systems that enable
sophisticated computational capabilities using inherently noisy and
low power components. These alternative paradigms may become

increasingly important for achieving further advancements in
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computational  efficiency and capability as conventional
semiconductor scaling reaches physical limits.

Effects of quantum noise dominate in quantum computing systems, in
which computational states exist in delicate superpositions that can be
rapidly destroyed by decoherence caused by the environment. Unlike
classical bits that can only be 0 or 1, quantum bits (qubits) can be in
superpositions of both states at the same time, allowing particular
algorithms to find solutions to problems impossible for classical
computers to compute. For example, this quantum advantage is
critically dependent on retaining coherence across large numbers of
qubits long enough to perform calculations. These include
inaccuracies in quantum states caused by decoherence processes due
to thermal fluctuations, electromagnetic radiation, material defects,
and imperfections in control signals. Because these quantum noise
sources cannot be completely removed, they need to be controlled via
quantum error correction codes, which encode the logical qubits on
multiple physical qubits and enable the detection and correction of
errors so that they do not corrupt the computation. The fault-tolerance
threshold theorem implies that for any given quantum algorithm there
exists a certain error rate below which it can be reliably executed in
presence of continuous noise processes. Today’s experimental
quantum computers work in what is known as the ‘“noisy
intermediate-scale quantum” (NISQ) regime, where qubit counts are
large enough for interesting demonstrations but noise levels do not
allow them to reliably execute complex algorithms without error
correction. There is intense research into reducing the fundamental
noise sources in such systems by better materials and designs, and
also for approaches for error correction that requires low overhead in
resources for fault tolerance — these topics are among the strongest
hurdles to overcome on the way to quantum computing.

3.1.6 Imaging and Vision Systems Noise

Noise in image deals as random variation in pixel values which affect
visual quality is the content of information. Digital cameras and other
electronic imaging systems are subject to many noise sources through
the imaging pipeline. The quantum nature of light gives rise to photon
shot noise, characterized by Poisson-distributed fluctuations that
become prominent under low-light conditions. Even in total darkness,

thermally generated electrons in the image sensor contribute to dark
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current noise, which increases exponentially with temperature. Read
noise is induced when the collected charge in the sensor is converted
to a voltage and then digitized. Fixed-pattern noise causes consistent
spatial variations over the image because of differential manufacturing
between individual pixels or readout circuits. These noise sources
aggregate to restrict the dynamic range and sensitivity of imaging
systems, which limits performance in applications ranging from
consumer photography to scientific imaging and machine vision.
Digital image processing uses a number of denoising methods to
recover from these effects: spatial filtering averages pixel values in
local neighborhoods; temporal filtering takes advantage of the
sequential capture of multiple frames; non-local means methods look
the entire image to average patterns to find similar patterns, and
finally, transform-domain methods (such as wavelet denoising) that
exploit the different statistical behavior of noise versus signal in
different domains. Some modern computational photography takes
this further by using burst photography, where they align and combine
multiple exposures to cut down noise while maintaining detail that
cannot be matched with single-frame processing.

Because of this, the noise environment in medical imaging systems is
one of the most challenging that exists as they are limited in their
ability to increase the radiation dose, shorten the scan time or gain
physical access. X-ray imaging systems compromise between noise
reduction and patient radiation dose, using methods such as adaptive
filtering in which gain is given for noise reduction in uniform areas
but edges and fine detail are preserved. CT reconstruction algorithms
must cope with Chiffon-starved projections taking into account
statistical fluctuations of the X-ray de-attention measurements as a
consequence wherefore specific iterative reconstruction methods were
implemented which included a noise model directly in the image
formation process. Magnetic resonance imaging (MRI) needs to
overcome thermal noise from receiver coils and physiological motion
that generates structured artifacts, achieved via strategies such as
parallel imaging with multiple coils and motion compensation
algorithms. Ultrasound systems are subject to speckle noise due to
constructive and destructive interference of scattered sound waves,
necessitating specialized filtering techniques that differ from those

applied to additive noise. Nuclear medicine modalities such as
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positron emission tomography (PET) are performed in very low
photon regimes, where each detected event has high information value
but also noise. The ultimate goal, of course, is the same across all
these modalities: get as much diagnostic information as possible while
posing the least risk and discomfort to the patient. Maintaining this
balance drives both continuous innovation in hardware design to
improve signal acquisition and software algorithms to extract
information from inherently noisy measurements.

Such noise in computer vision systems impacts the way machines
understand visual data — from autonomous vehicles and facial
recognition to industrial inspection. While humans can naturally
adjust to changing light conditions, occlusions, and viewpoints,
computer vision algorithms can be exceptionally sensitive to standard
image degradations such as noise. Both feature extraction algorithms,
such as edge detection and corner finding, can result in false
responses to noise or miss crucial features hidden by random
fluctuations. Object recognition systems learned on clean images do
not generalize well when deployed in un-controlled environments
with different noise characteristics. Motion estimation algorithms
usually fail to identify real movement from random intensity
fluctuations in low-contrast or poorly illuminated scenes. These
challenges have inspired noise-oriented solutions in computer vision:
Robust feature descriptors that remain consistent in the presence of
image degradation and deep learning models explicitly trained on
augmented datasets reflecting specific noise types; and algorithms that
utilize uncertainty estimation to adjust confidence based on local
noise conditions. As components of computer vision systems more
frequently direct high-stakes decision-making regarding processes
such as medical diagnosis, industrial manufacturing, and transport
safety, their ability to cope with realistic imaging noise becomes not
just a technical consideration, but an indispensable safety requirement
with deep ethical ramifications.

Image noise manifests as visual artifacts in display systems,
degrading the perceived image quality even when the source material
is perfect. Digital displays are subject to both temporal noise
generated when the levels driving the pixels change and spatial noise
from both manufacturing variances in how the pixels are implemented

as well as quantization noise from its inability to track gradients at
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Notes the limited bit depths available. Projection systems face lamp flicker,
dust contamination, and optical degradation effects, all of which lead
to noise-like degradation. Even fully functional displays operate in
noisy viewing environments with room lighting variation, reflections,
and observer movement that degrade perceived image quality. Human
visual perception is not equally sensitive to all types of noise, as our
visual system is good at detecting structured patterns but is more
tolerant to random variations; we perceive noise in different manners
in textured regions versus smooth ones; and temporal perception leads
to different responses to static versus dynamic noise. Display
manufacturers take advantage of these human psychophysical
characteristics with techniques like dithering, which replaces banding
artifacts in smooth gradients with less objectionable patterns that
appear more random, and temporal modulation, which uses
persistence of vision to give perceived intensity levels outside the
native capabilities of the display hardware. And for critical
applications such as medical diagnosis, specialized high-speed
displays are periodically calibrated and subject to quality-assurance
testing to keep noise levels within specs that won’t interfere with

detection.

There are different types of image noise. They can typically be

divided into 3 types.

Photoelectronic Impulse Structured

Thermal Salt Noise Pepper Moise

Figure.3.1.2 classification of noise
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3.1.7 Sources of Noise in Imaging Pipelines Notes
Real world signals usually contain departures from the
ideal signal that would be produced by our model of the
signal production process. Such departures are referred to
as noise. Noise arises as a result of unmodelled or
unmodellable processes going on in the production and
capture of the real signal. It is not part of the ideal signal
and may be caused by a wide range of sources, e.g.
variations 1in the detector sensitivity, environmental
variations, the discrete nature of radiation, transmission or
quantization errors, etc. It is also possible to treat irrelevant
scene details as if they are image noise (e.g. surface
reflectance textures). The characteristics of noise depend
on its source, as does the operator which best reduces its
effects.

Many image processing packages contain operators to
artificially add noise to an image. Deliberately corrupting
an image with noise allows us to test the resistance of an
image processing operator to noise and assess the
performance of various noise filters.

How It Works

Noise can generally be grouped into two classes:
independent noise.

noise which is dependent on the image data.

Image independent noise can often be described by an
additive noise model, where the recorded image f{(i,j) is the
sum of the true image s(i,j) and the noise n(i,j):

Modern digital cameras and imaging sensors experience
multiple types of noise throughout the image acquisition
and processing pipeline. These include:

Photon Shot Noise:

Arising from the quantum nature of light, shot noise is
Poisson-distributed and becomes especially prominent in
low-light conditions, where fewer photons are captured
and statistical variation is more pronounced.

Dark Current Noise:

Even in total darkness, thermal agitation in image sensors

generates electrons, contributing to background signal.

135
MATS Centre for Distance and Online Education, MATS University



¢ o

{

}mn'r

N

UNIVERSITY

ready for life

Notes

)

i

This type of noise increases exponentially with
temperature, affecting long-exposure imaging.
Read Noise:
Introduced during the readout process, when analog charge is
converted to digital values, this noise sets a baseline below which
weak signals become indistinguishable.
Fixed-Pattern Noise (FPN):
Caused by manufacturing imperfections, FPN results in consistent
spatial variations from pixel to pixel, often visible in long exposures

or low-light images.

3.1.8 Biotic and Natural Noise Systems

Sensory noise, as a general phenomenon, affects the way living
beings perceive their environment, thus establishing fundamental
limits to their detection capabilities, but also giving them evolutionary
advantages under some circumstances. In human vision, thermal noise
in photoreceptors mixes together with noise in neural transmission
operating downstream, causing absolute thresholds for light detection
to occur—in ideal circumstances, dark-adapted eyes can detect single
photons, but viewing remains stable only at the presence of multiple
photons. Similar thermodynamic and quantum limits impinge on all
sensory modalities: auditory hair cells must deal with Brownian
motion of fluid in the cochlea; olfactory receptors have to
discriminate molecular binding events from random thermal
fluctuations; and mechanoreceptors have to discriminate meaningful
changes in pressure from background vibrations. These sources of
noise produce a probabilistic, rather than deterministic, relation
between stimulus and perception, and therefore detection becomes
statistical rather than absolute. In a counter-intuitive manner,
biological systems can actually make use of noise through a
phenomenon called stochastic resonance, wherein noise is added to a
weak signal and results in a better detection of it, since without noise
the signal lies below the detection threshold. Others have developed
specialized sensory systems with extraordinarily high levels of noise

rejection—barn owls find their prey by hearing minuscule.
3.1.9 Implications and Applications
Understanding biotic and natural noise systems has vast implications:
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Neuroscience: Helps explain sensory thresholds, attention
mechanisms, and perceptual illusions.

Artificial Intelligence and Robotics: Informs the design of noise-
resilient algorithms and bio-inspired sensors.

Medical Diagnostics: Guides the development of devices that detect
subtle physiological signals amidst biological noise.

Evolutionary Biology: Sheds light on how sensory organs evolved to

optimize function under physical constraints.
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Unit 3.2: Types of Noise

3.2.1 Types of Noise and Noise Removal Techniques

Gaussian Noise

Gaussian noise, also referred to as normal noise or electronic noise, is
among the most commonly observed noise types in digital image
processing. That specific model of noise can be defined in such a way
that its statistical properties obey a Gaussian, or normal, probability
distribution function. Mathematically, Gaussian noise is defined as
adding random numbers to each pixel of the image, where the added
number for each pixel is sampled from a Gaussian distribution with
zero mean and standard deviation(data-point noise intensity). So, the
probability density function of a Gaussian random variable has the
familiar well-known bell curve shape, mathematically written as P(x)
= (1NQ2ro?) x e(-(x-p)*/20?), where p refers to the mean value
(average), and o refers to the standard deviation of the distribution.
This statistical behavior means that small deviations from the mean
value will happen with high probability, while much larger deviations
will happen with decreasing probability, resulting in a type of

symmetrical noise distribution.

Figure 3.2.1: Gaussian noise

Various physical phenomena give rise to Gaussian noise in a digital
image. One major source of noise is due to the thermal agitation of the
electrons in the devices used for image acquisition (known also as
thermal noise or Johnson-Nyquist noise). This is a naturally occurring
phenomenon that affects all electronic components and has the most
visible effect in low-light conditions, or when one increases the ISO
sensitivity of a camera to compensate for low-lighting conditions.
The second significant source of Gaussian noise is due to the
electronic fluctuations that occur in the image sensors themselves (in
the amplifying circuits) and correspond to the initial weak electrical

charge produced by the photon-oct let when striking the
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photodetectors. The analog-to-digital conversion also adds
quantization errors that appear as noise with Gaussian characteristic.
Due to the additive nature and contribution of both sensor and
electronic noise sources (there may be more than one of these
sources), Gaussian noise tends to be almost all-prevailing modality of
noise in various types of imaging systems, therefore it is an
inescapable consideration in image processing applications.

In terms of its visual appearance, Gaussian noise can be described as a
fine texture that spreads evenly across the image. Such noise type
create phonomenon as noise patches, but in Gaussain, both bright and
dark portions of images get affected equally. Gaussian noise is treated
as if it is a very thin veil obstructing the image, thus creating a drop
in the image clarity and sharpness. Numerically analyzing pixel
values shows that Gaussian noise produces additive small but constant
offset from the original pixel values across the image. These
differences can mask small details, decrease the visual separation
between the adjacent areas of slightly different brightness, or color,
and generally make the picture worse. For color images, Gaussian
noise normally has an independent impact on all color channels, albeit
with equivalent statistical features which ends in a random variance in
the hue, saturation in addition to the brightness of all large parts of the
picture. The fact that Gaussian noise is so widespread makes it very
difficult to solve it for image processing applications. Well known
about its statistical properties, simple thresholding techniques are not
sufficient for an effective noise removal. More sophisticated
techniques that are based on the statistical properties of the noise and
the image content are needed instead. This is made even more tricky
by the nature of Gaussian noise, which touches every pixel in the
image (albeit to varying degrees), meaning that targeted noise removal
strategies (i.e. only removing noise within particular regions) found in
models for other types of noise will tend to not be effective.
Moreover, Since Gaussian noise is a kind of low-frequency noise, it
is what makes it so difficult to remove, as it affects not only the high-
frequency components of an image (fine details, edges, and textures)
but also the low-frequency components (smooth regions and gradual
transitions), so noise removal techniques need to be carefully
designed by preserving useful information in the image while

eliminating the noise component.

139
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i



¢ o

{

}mn'r

N

UNIVERSITY

ready for life

Notes

)

i

Where accurate understanding of raw image content is necessary, such
as in medical imaging, scientific visualization and machine vision
systems, this is especially problematic. Gaussian noise in the medical
context can hinder visibility of small yet significant characteristics
(specifying pathological conditions) when analyzing images such as
X-ray, MRI or ultrasound. Likewise, in astronomical imaging, high-
sensitivity sensors are routinely employed to capture the faint light of
celestial objects, which can be obscured by Gaussian noise in the
images, preventing detection of the celestial phenomena being
measured. For example, in machine vision applications like
autonomous navigation or quality control systems, Gaussian noise
can distort edge detection, feature recognition, and pattern matching
algorithms, resulting in incorrect interpretations and decisions. The
potential applications of Gaussian noise removal are indeed high-
stakes, illustrating the significance of efficient techniques in
contemporary image processing workflows.

3.2.2 Salt and Pepper Noise

Figure 16: Gaussian noise Salt and pepper noise, sometimes known as
impulse noise or spike noise, is a specific type of image degradation
that involves random, static distortions appearing as dark or bright
spots throughout the image. Salt and pepper noise is a type of noise
that presents as a random noise type with salt appearing as white spots
and dirt or pepper appearing as black spots. The nature of this noise is
responsible for the name it is known with. Salt and pepper noise is
mathematically unlike Gaussian noise, as it does not use a continuous
probability distribution. In other examples, it is not usually modeled
as a systemic deformation and is instead considered a random process,
where each pixel has small probability p where it can become
corrupted (set either to min or max value), and probability (1-p) it
remains unchanged. Every example in the same Sentinel appears to be
an individual representation of individual blobs within the Memristor
circuitry, what emerges is not just a hexadecimal sequence of binary
corruption, it leaves behind a signature that is characteristic of visual
patterns that can even be spotted by the naked eye without formal
training.

Salt and pepper noise originates from various distinct phenomena
within digital imaging systems. One main culprit is misbehaving

pixels in a camera sensor, in which specific photosensitive elements
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become stuck in either an “always on” (white) or “always off” (black)

state.

Figure 3.2.2: Salt and pepper noise

Another major reason is error in transmission of image data i.e., in the
pipeline, either for physical connections or wireless transmission.
When a binary data file gets corrupted, the pixel value used in that file
may change dramatically, shifting to the most extreme ends of its
possible values. etc. others are timing errors during digitization, bit
errors during analog to digital conversion, and physical damage to
storage media containing image data. Salt & Pepper Noise:
Traditional Gaussian additive noise has exceptions from being present
in extreme intensity values, full black or white corresponding pixels in
the image, called salt and pepper noise, has extreme intensity pixels
and results in various errors during imaging, transmission and
storage.

Salt and pepper noise has a sales pitiful on different noise
ameliorations shown in the figure. They appear as black and white
dots are scattered randomly in the photo, giving that "starry night" or
"static" look. Since these extreme pixels and their neighbors can often
have a large difference (i.e. noise), the presence of salt and pepper
noise can greatly hinder the visual understanding of image contents.
Within highly corrupted images, bands of salt and pepper noise can
cover important areas, causing the image to become unrecognizable.
Salt and pepper noise is said to exhibit extremely high corruption
density, but even at lower densities, it can be very detrimental for the
perceptive quality of fine structures and textures, because randomly
distributed peeks and troughs result in false brightness patterns that
malfunction the brain in interpreting the original image content. It is

worth noting that colored images would mean per pixel color channel
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information, leading to salt and pepper noise being distributed over
each color channel and thus having more granular noise in the image;
hence it may not be only black or white pixels but colored pixels
having maximum values in one or two color channels leading to thus
appearance of spurious colored pixels randomly around the image.
Such localized and extreme characteristics of salt and pepper noise
prove to be a challenge as well as an opportunity for noise removal.
As corrupted pixels deviate significantly compared to their
neighborhood, detecting this type of noise is relatively easy when
compared to other types of noise. In contrast, since the original
information at the corrupted pixel locations is entirely lost, restoration
can only depend on the information from the surrounding
uncorrupted pixels. This differentiates salt and pepper noise removal
from Gaussian, where the pixel still has a partial value of the original
pixel with random + — + or — + additions. Moreover, because salt
and pepper noise is binary in nature, the average or blurred ltered
data will generally produce suboptimal results as noise will not
disappear but rather be distributed into surrounding regions as
extreme data points. Instead, these points should be replaced with
more suitable values derived from the context of the image
neighborhood.

In real-world applications, salt and pepper noise can have serious
consequences. Salt and pepper noise can be mistaken for a defect or
blemish in products under inspection in automated visual inspection
systems used in quality control in manufacturing, resulting in false
rejection and thus, economic loss. Salt and pepper noise can disrupt
text ran continuity, or produced false marks in document imaging and
optical character recognition (OCR) systems, thereby complicating
text extraction. In the context of medical imaging, salt and pepper
noise can simulate or obscure small but clinically relevant objects like
microcalcifications in a mammogram or small lesions in brain
imaging. In remote sensing and satellite imagery, transmission errors
leading to salt and pepper noise can corrupt important geographical
features or introduce false indicators that may cause
misinterpretations of land use, vegetation coverage, or urban
development patterns. Bluetooth, which employs salt and pepper
noise in data transmission, is another example; in many different

human endeavors, the digital photo is used in such a way that the
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image can be affected by salt and pepper noise, which shows the
importance of detecting and removing salt and pepper noise.

3.2.3 Speckle Noise

Speckle noise is so, as compared to Gaussian and salt and pepper
noise with completely different fundamentals and causes. This noise,
however, is a bit unusual, instead of being additive, it is
multiplicative based on the original pixel intensity values. Speckle
noise can be mathematically expressed in terms of the true pixel
value, the x value of the observed noisy pixel (y), and a random
variable describing the scattered intensity (n) y = x + x*n (where n
generally follows a zero-mean Gaussian distribution). This
multiplicative relationship results in a signal-dependent noise pattern,
whereby brighter areas of the image will have higher noise variance
than darker areas. Such noise has been characterized statistically,
resulting in a complex noise structure, described as a non-Gaussian
distribution that in fully developed speckle patterns can be
approximated to follow a Rayleigh distribution. Due to their
statistical nature, speckle noise is highly complex to model as well as
to eliminate via standard noise reduction algorithms intended for
additive noise types, which impose a requirement for dedicated
techniques that recognize its multiplicative nature and also
dependency on the established signal. Speckle noise originates
naturally from coherent imaging systems relying on coherent waves
for image formation. Notable examples of such systems are synthetic
aperture radar (SAR), medical ultrasound imaging, optical coherence
tomography (OCT) and laser imaging systems. In these modalities,
the images are formed as a result of the constructive and destructive
phase interference of coherently reflected waves arising from many
microscope scatterers distributed throughout a single resolution cell of
the imaging system. Since the waves that made this return trip will
have different paths, they come back to the receiver and interfere
with each other depending on their relative phases. In regions where
the waves arrive mostly in phase, constructive interference generates
bright spots; where they arrive out of phase, destructive interference
creates dark regions. Random phase relations among the returned
waves are a direct consequence of random spatial distribution of
scatterers in the imaged medium, giving rise to the characteristic

granular structure of speckle. Contrary to other noise types that
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embody unwanted variances from the true signal, speckle is, instead, a
crucial part of the image formation process in coherent imaging
systems and therefore something intrinsic to the acquired data, and
not exclusively an external contaminant.

Speckle noise is visually characterized as a specific grainy or spotty
pattern added to the image. This pattern has a specific spatial
correlation that differentiates it from the low spatial frequency
correlated random patterns created by Gaussian or salt and pepper
noise. Speckle in ultrasound images manifests as a granular pattern of
dots leading to the loss of fine anatomical information and the
generation of artificial boundaries which can be wrongly perceived as
real interfaces between tissues25. The speckle effect creates a
speckled appearance in synthetic aperture radar imagery, which makes
identifying terrain features and land cover types more complicated.
Paradoxically, the speckle effect is an image quality degradation as it
can hide real details and at the same time returns indirect information
on the micro-structure of the medium being imaged. One of the
challenges is speckle that provides not only noise but it can also
contain signal, it means that drastic speckle reduction techniques can
remove the characteristic fine linear detail, that although undesirable
in motion images (producing the grainy texture, which appears in the
image), that would otherwise be preferred subtle textural information
could be diagnostically or analytically valuable. Moreover, due to its
coherent nature, speckle noise produces distracting interferences that
are sensed as meaningful structures by the human vision system,
which can inevitably lead to misinterpretations and omissions during
the assessment of the image content.

Speckle noise has potential implications in various areas of
application that could have an overall bearing on the diagnostic and
analytical accuracy. In medical ultrasound imaging, speckle noise can
hide small lesions, blur the so-called transition areas between two
different tissue types and cause issues when measuring organ size or
blood flow velocities. In echocardiography, for example, speckle can
hinder the accurate representation of chamber and valve margins,
ultimately influencing key measurements in the diagnosis of heart
diseases. In obstetric ultrasound, speckle may obscure subtle fetal
pathology or induce spurious impressions of structural abnormality.

Within these applications, particularly remote sensing with synthetic
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aperture radar (SAR), the spurious textures produced by the speckle
noise via radar signal processing complicate surface type
classification (land use and cover type) (Li & Zhang, 2015), flood
mapping (Xu, Chen, & WTC, 2008), forest type monitoring (Mason,
Kearsey, & Potter, 2011), and urban change detection (Sinha, Bhatia,,
Ganguli, & Kumar, 2010). Speckle can hide small cracks or defects in
materials used in a variety of applications in industrial non-
destructive testing with ultrasonic techniques, which can lead to
overlooking material that may be a critical structural flaw. At the same
time, speckle patterns contain important information as well; in
speckle tracking echocardiography, the persistency of speckle patterns
is purposefully tracked over time to evaluate myocardial deformation
and contractility, taking advantage of the noise as tissue natural
marker.

Specifically, because of the unique attributes of speckle noise, its
reduction requires advanced methods that are distinct from strategies
used to suppress other kinds of noise. The classical linear filtering
techniques effective for additive Gaussian noise usually become
ineffective with speckle because of its multiplicative nature and
correlated spatially. There are adaptive filtering techniques which can
be a more effective approach involving adjusting the filter parameters
based on the local statistics of the image, wavelet-based methods
which can help to separate the speckle from the meaningful signal
components at different scales, as well as anisotropic diffusion filters
that can smooth the homogeneous regions while preserving important
edges and boundaries in the images. Another major class of
techniques employed for speckle reduction includes multi-look
processing, which is based on the averaging of multiple independent
observations of the same scene to reduce the speckle variance whilst
retaining the underlying image structure. Research into these
specialized techniques continues today due to the widespread use of
coherent imaging systems in medicine, remote sensing, industrial
inspection, and scientific visualization. Thus the ongoing development
of speckle reduction algorithms exemplifies the dichotomous balance
between the desire for noise minimization and the need to maintain
diagnostically or analytically relevant information encoded in the
speckle patterns themselves.

Noise Removal Techniques
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3.2.4 Median Filtering

For instance, median filtering is one of the most efficient and
commonly used non-linear filters with high performance against salt
and pepper noise that also maintains important edge data. Median
filtering rests on an underlying principle that is surprisingly simple
and yet very powerful: For each pixel in the image, a neighborhood
(or "window") of defined size (usually 3x3, 55, or more, depending
on noise density and how much smoothing is required) is defined

around the pixel in question.

e

1px median filter

3px median filter 10px median filter

Figure 3.2.3: Median Filtering

This window contains all the pixel values, and those pixel values of
the window are sorted in increasing order, and we replace the value
of the central pixel with the median from this sorted window. Every
pixel in the image undergoes this process repeatedly and
systematically, converting the noisy image into a filtered output where
even the outlier values—indicative of impulse noise—are properly
subdued without the introduction of the blurring artifacts that certain
linear filtering techniques (like mean filtering, or Gaussian
smoothing) Introduce. The median filter can also be expressed
mathematically as:

y(i,j) = median {x(i+k, j+1) | (k,]) € W}

where: y(i,j) = output pixel (ij) x(itk, j+1) = input pixels in the
neighbourhood or window W = defines the neighbourhood or window
region (it is generally square and centered in the origin). Whereas
linear filters calculate weighted sums of pixel values, the median

operation is a rank-ordering process that yields a fundamentally non-
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linear filter. It is also this non-linearity that gives the median filter its
incredible edge preservation character for noise removal. If the filter
window overlaps an edge in the image, in the majority of the pixels
(in the sorted array of pixel values) will be on one side or the other of
the edge, and so the value returned as the median will be
representative of only one side (the side with more pixels), rather than
an average value that would blur the edge. This behavior is
significantly different from linear filters that must yield intermediate
values at edge locations, resulting in edge fuzzying and loss of high-
frequency detail.

Before that, let us explore some key properties of the median filtering
that come to play in understanding how its operational mechanics
works. For example, when a median filter comes across a single pixel
of noise, it acts as either an isolated salt pixel or an isolated pepper
pixel, and as a result, this outlier would be located at either end of the
sorted array of values surrounding the pixel of interest. So, in most
practical cases, with an acceptable level of noise, the median-
determination will filter-out the influence of the outlier in the window
out from the output. This strong statistical property allows the median
to be resistant to in-band interference such as impulse noise, where a
small percentage of pixels is fractionally skewed with a high enough
value to alter the mean. The other important property of median filter
is that it is edge preserving. If the filter window partially overlaps an
edge between two regions of different intensity, then the sorted array
contains pixels from both regions. The result of these three choices
will, because of the median selection, be fully within a region or
another, so there is no artificial mixing or washing out of the
boundary. The edge-preserving capability is essential for noise
suppression while ensuring that subtle details in the image are
preserved.

While median filtering has many advantages, it is not without its
limitations, which must be considered carefully when applying it in
practice. A major limitation for the median calculation is the time
complexity of sorting to find the median value. Algoritma needs to
sort every pixel values from window for each pixel in the image,
which is more and more expensive as the window size increases.
While this problem has been somewhat alleviated by more efficient

sorting algorithms and hardware implementations, the computational
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overhead is still significantly larger compared to simple, one-pass
linear filtering operations such as mean filtering. The other limitation
comes from larger window sizes, which are more effective in
removing high-density noise but also remove fine details and thin
lines from the image. Here, this provides a useful trade-off between
measure for noise removal and also effectively preserving the fine
structures of the image. A further problem is the occurance of patterns
in the filtered image in the case that median filtering is applied to
images with certain textures or regular patterns, because of the rank-
ordering process being likely to systematically affect the statistical
properties of these textures or patterns, resulting in visually distracting
regularities in the filtered output.

Median filtering has practical applications in many fields where noise
can significantly impact the quality of the image. In medical imaging,
for example, median filters are commonly used to denoise noisy
ultrasound, X-ray, and MRI images, while keeping sharp boundaries
between regions corresponding to different types of tissue, which are
important for diagnosis. In the field of astronomical imaging, cosmic-
ray hits on telescope images can create isolated bright pixels, and
median filtering can eliminate these artifacts without affecting the
detection of real sky objects. Median filtering can work as a
processing step in document image processing and optical character
recognition systems where scanning noise and imperfections on paper
are removed thereby retaining the accentuated text characters. In
industrial machine vision applications, median filtering removes
sensor noise that degrades the appearance of the manufactured
components being evaluated that is essential for automated inspection
systems to become more robust while still leaving sharp component
edges intact. Median filtering is an essential image processing tool,
widely used as a noise-removal technique or as a preprocessing step in
more complex pipelines, thanks to its non-linear and robust nature.
Since then, several extensions and adaptations of the basic median
filtering concept have emerged to tackle particular problems and
improve performance in specific application scenarios. In the case of a
weighted median filter, each pixel within the window has a given
importance, which helps the filter to better preserve certain features of
the image while at the same time maintaining the robustness in noise

removal of the median operation. Before we jump to the details. The
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edge-directed median filters include edge detection mechanisms that
allow the sampling window to be oriented in the direction of the
detected edges to further improve the filter edge-preserving
properties. In practice, recursive median filters apply the median
operation in a cascade fashion, treating each previously filtered value
the same as all other candidates in a following window calculation,
allowing for increased convergence speed, especially in noise
removing. More importantly, unlike standard median filter, the center-
weighted median filter gives more weight to the center pixel in the
window, so the fine details are retained which otherwise is removed
in the standard median operation.

3.2.5 Wiener Filtering

The keen adaptive method of image restoration and noise reduction is
the Wiener filtering, based on statistics and optimal performance
criteria. In contrast to the use of fixed parameters for the entire image
in simpler spatial domain filters, the Wiener filter considers local
image statistics, thus enabling an optimal compromise between noise
suppression and detail preservation. The Wiener filter is based on the
idea of statistical estimation and is specifically defined to minimize
the mean square error (MSE) between the clean image and the output
image. This optimization criterion is what leads to the alternative
name for the Wiener filter as a minimum mean square error (MMSE)
filter. H(u,v) = [H(u,v)S(u,v)] / [|H(u,v)|*S(u,v) + N(u,v)] where
\u2060H(u,v) is the degradation function (which is often the point
spread function of the imaging system), H(u,v) is its complex
conjugate, S(u,v) is the power spectrum of the original image, and
N(u,v) is the power spectrum of noise This defines the mathematical
basis of the filter, not only in terms of the parameters relative to the
imaging system, but also in terms of the impedance of noise and the
signal itself, allowing it to adapt optimally to various degradation
realities.

At its core, the Wiener filter uses multiple unique steps to adaptively
filter noise out from signals. The filter first needs estimates of the
power spectra of the source, or signal, and the noise in the process,
which can be based either on prior information regarding the imaging
system and the noise, or estimated directly in relation to the degraded
image itself. The filter analyzes these statistical estimates to generate

an optimal frequency response, which differs for various frequency
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components of the image. In areas where signal-to-noise ratios are
relatively high (strong, dependable picture data), then the filter won't
cease these components in passing through and therefore retains data
about the image. In frequency areas where noise prevails (low signal-
to-noise ratio), the filter induces higher attenuation, consequently
suppressing the noise input. By adjusting to the varying frequency
content in the input, the Wiener filter can simultaneously retain
necessary image structures and suppress noise. In its spatial domain
implementation, the Wiener filter computes estimates of local image
mean and variance within systems of sliding windows across the
image and automatically fits its image parameters to those estimates,
applying stronger smoothing in homogeneous areas of the image
(where high variance is primarily caused by noise) and so less
aggressive filtering in textured or edge areas of the image (where high
variance corresponds into significant ((for the extracted representation
) image functions).

To further highlight Wiener filtering's unique performance traits, its
performance is compared against other noise-removal methods.
While median filtering is especially effective in eliminating impulse
noise, it may not work so well with Gaussian noise, and the Wiener
filter is designed to be specifically the best choice for additive noise
with Gaussian distribution. Simple linear filters (e.g., moving average,
Gaussian smoothing) tend to blur edges and sharp features along with
noise, but the adaptive nature of the Wiener filter allows it to retain
more detail in high-contrast regions while still achieving effective
smoothing of noise in homogeneous regions. This adaptable technique
makes the Wiener filter advantageous in use cases that require noise
reduction alongside preservation of detail. And the next reason is the
Wiener filter is based on statistical estimation theory that starts losing
optimal performance when it finds the assumptions of noise and
signal characteristics are not exactly satisfied. But this theoretical
optimality also reveals a limitation of the approach, as the
performance of the filter relies heavily on the accuracy of the signal
and noise power spectra estimates, something that can be difficult to
obtain accurately in practice, especially since in many practical
applications the original clean image will not be available to

reference.
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Various extensions and modifications of the classical Wiener filter
have been proposed to handle specific issues and to improve its
usefulness in a wider range of image processing settings. The
parametric Wiener filter provides a set of extra control parameters that
give the user the ability to balance noise removal and detail
preservation according to particular application needs, as opposed to
constraint to the strictly optimal MMSE criterion. In fact, the
multiresolution Wiener filter extends the concept of Wiener filtering
to a multiresolution decomposition environment (e.g., wavelet
decomposition), resulting in the filtering process exploiting not only
local image statistics, but also multiscale image-based texture
information that can lead to better performance on images with
features that exist across scales. In many applications, the recursive
Wiener filter utilizes previous filtered results when performing new
filtering operations, which may improve performance at a higher
computational cost. The homomorphic Wiener filter generalizes the
Wiener filter for multiplicative noise models (eg. speckle noise) by
performing a logarithmic scaling of the image which transforms the
multiplicative noise into additive noise, performing the Wiener filter
in the log domain, and applying an exponential scaling on the
resulting image to transform back to the original domain. Such
differences show that the concept behind Wiener filtering can also be
applied to other noise models that may not be Gaussian as well as
other image degradation mechanisms.

Wiener filtering has widespread applications in fields where high-
quality restoration of images is vital. For example, Wiener filters are
used to improve noise qualities in medical X-ray, CT, and MRI
images, making images clearer for better diagnosis. In the context of
astronomical imaging — where both atmospheric distortion and
sensor noise can limit actual observations — Wiener filtering can
recover faint celestial objects and structures that would otherwise be
masked by noise. In remote sensing applications, satellite and aerial
imagery processed using Wiener filters to suppress sensor noise and
atmospheric interference effects are significantly clearer in revealing
ground features. In digital photography and consumer imaging
applications, Wiener filtering principles are the basis for many
commercial noise reduction algorithms during low-lighting conditions

to improve image quality. Section 2: Wiener Filtering in Forensic

151
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i



¢ o

{

}mn'r

N

UNIVERSITY

ready for life

Notes

)

i

Settings Forensic imaging refers to the process of capturing,
preserving, and analyzing images to create admissible evidence in
legal cases. Wiener filtering is used in scientific microscopy (e.g.
biology and materials science) to improve the visibility of fine
structures (e.g. cells, but also materials) by reducing noise in high
magnification imaging systems. Its widespread adoption for diverse
usages attests to its effectiveness and versatility as an image
restoration technique.

Wiener filtering, while theoretically attractive and practically sound,
comes with a range of problems and limitations of which
practitioners need to be cognizant. A major problem is the estimation
of the power spectrum of the signal and noise where the noise is
typically modelled as Gaussian but it is rarely possible to estimate
their exact values based on the blurry image without apriori
information about the image. The inaccuracies on power spectra
estimations can result in poorer filtering performance by adding
artifacts or not being able to adequately remove noise. A further
limitation comes from the Wiener filter’s assumption of wide-sense
stationarity; that is, the statistical properties of signal and noise are
constant from pixel to pixel across the whole image. As a result, in
most cases, real-world images are not stationary, statistics can vary
greatly in different regions. However, the Wiener filter assumes an
uncorrelated image model, which restricts its adaptability to only
limited patterns, even though its locally adaptive implementation will
reduce this problem to an extent. Moreover, Wiener filter perfromance
violates when the noise is not Gaussian distributed or the degrading
function cannot be simplified to a convolution and additive noise
which is not true in many practical applications. Nevertheless, the
Wiener filter is a very essential and strong filter in square word, and
it is very useful, especially in the applications where its fundamental
premise is not violated greatly and delivers the best trade-off between
noise removal and preserving details.

3.2.6 Approaches for Comparison of Noise Types and Removal
Methods

In digital image processing, the relationship between types of noise
and their removal methods is a complex landscape of challenges and
solutions. We note that Gaussian, salt and pepper, and speckle noise

exhibit essential disparities in their statistical characteristics, sources
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of origin, and visual representations that impact the choice and
efficacy of noise reduction methods. Because Gaussian noise adds to
all pixels of an image with a normal distribution, the noise appears
more consistently and uniformly granular across the image. Inversely,
salt and pepper noise shows a binary corruption superset where a
subset of pixels is affected, but the magnitude of intensity values in
corrupted pixels is dramatically reduced to an extreme minimum or
extreme maximum value. Contrary to both, speckle noise is
multiplicative rather than additive and has a spatially correlated form
with signal-dependent properties with respect to the underlying image
content. These distinctions are more than just academic, they play a
vital role in how different noise removal or ‘denoising’ techniques
perform and ultimately require different approaches for successful
removal in different noise scenarios.

Median filtering works as a high-pass filter, and different noise types
exhibit varying degrees of attenuation, both benefits and drawbacks.
In the case of salt and pepper noise median filtering provides excellent
performance, by completely removing the extreme value outliers but
preserving valuable edge information, which makes it the preferred
model for this noise type. Due to the median operation's inherent
immunity to outliers, the representative value from each pixel's
uncorrupted neighbors can be used to replace the corrupted pixels,
leaving the edges localized without significantly increasing blurring
artifacts. However, when they are used for Gaussian noise, its
performance decreases, especially at lower noise levels, where its
edge-preserving benefits can be overshadowed by its effects on
altering minute texture. In speckle noise case, the traditional median
filtering brings only limited enhancement as it can neither handle the
multiplicative property of the speckle noise nor seems to well prevent
excessive smoothing of critical texture information combined with
the speckle influence. These performance differentials highlight that
one can not deploy a single agnostic denoising mechanism for all use
cases, but one should attempt to engineer the denoising technique as
closely as possible to the noise statistics present in any imaging
context.

Aside from the SNR, Wiener filtering, being optimal in the statistical
sense, exhibits very different performance in different noise situations.

As its criterion—minimum mean square error—is intended only for
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additive noise with normal distribution, Wiener filtering frequently
impresses median filtering in terms of performance for Gaussian
noise; Filters that do adapt to local image statistics, such as Gaussian
noise, will achieve stronger smoothing in homogeneous regions,
while edges and fine details are still preserved. Yet the widely used
Wiener filter breaks down when faced with salt and pepper noise,
performing poorly, relative to the median filter, when the underlying
statistical assumptions are violated by the extreme, non-Gaussian
nature of the impulse noise. Conventional Wiener filtering has to be
modified—most often, by employing homomorphic processing that
uses a logarithm transformation to switch multiplicative noise into
additive noise—to achieve acceptable results for speckle noise. The
better performance of the combination technique under varying
Gaussian noise levels indicates that combining multiple filtering
techniques can be beneficial for comprehensive noise reduction
strategies when specific information is not already known from the
noisy data or for non-optimal filter parameter settings depending on
the local noise characteristics.

So, the choice of the suitable noise removal technique depends on
multiple factors and cannot be defined only as to match the filter with
the dominant noise. There are also characteristics of the image content
that are important; an image with large smooth areas may lend itself
to more aggressive noise removal strategies than one where much of
the image is textured and where such strong filtering would remove
valid texture along with noise. The purpose for which the processed
image will be used also has a strong impact on filter choice: when the
processed image will be used in a medical diagnostic context, it may
be much better to be over-influenced by noise than to lose potentially
important small details, in contrast —for aesthetic image
applications— one might prefer smoothness instead of some
reasonably minor details. Running time constraints are another crucial
factor, especially in real-time applications where the theoretically
better performance figures of interdisciplinary (more complex)
filtering techniques may be overshadowed by physical processing
time limits. The presence of mixed noise types is a common scenario
in real-world applications that further complicates this choice as it
often forces the use of cascaded filtering approaches and/or hybrid

techniques that simultaneously handle multiple noise features.
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In recent years, strong new approaches to removing noise have
augmented longstanding filtering toolbox (median filtering, Wiener
filtering, etc.) limiting classical methods. Examples include, but are
not limited to, non-local means filtering, which exploits the intrinsic
self-similarity of natural images such that it averages similar patches
globally across the whole image rather than just locally around the
pixel under consideration, considerably boosting noise reduction but
maintaining high-frequency details and textures near edges. Total
variation denoising treats the noise removal problem as an
optimization problem that minimizes an energy function that
combines a fidelity term against the data (i.e., how close the solution
is to the original noisy image), and a smoothness term (i.e., how
smooth the recovered image is), which can retain sharp edges while
removing noise in smoother regions. The multi-resolution properties
of wavelet transforms are harnessed for noise reduction (denoising)
purposes where noise is separated from signal components at different
scales and thus noise can be selectively reduced according to feature
scales. In recent years, deep learning-based methods with
convolutional neural networks achieved state-of-the-art noise
reduction results due to the existence of large-scale datasets of noisy
and clean image pairs, which enable them to learn optimal mappings
from noisy image to noise-free image, accomplishing better outcomes
for various types and levels of noise than classical approaches. These
algorithms push the envelope in image denoising, enabling new
possibilities in scenarios with mixed or very high noise levels, or
specialized image content.

This evolution of noise removal techniques is part of a larger trend in
digital image processing, which has been moving towards more
adaptive, content-aware, and computationally intensive methods.
Despite the importance of classical techniques such as median and
Wiener filtering, particularly from a computational efficiency,
theoretical groundedness, and interpretability perspective, the
forefront of noise reduction research has shifted in the direction of
strategies capable of handling real-world applications where complex,
mixed-noise settings are prevalent. Future directions include hybrid
methods that merge advantages of distinct filtering paradigms,
adaptive methods that select optimal filtering methods in a more

automatic manner, based on local image and noise characteristics,
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and learning-based techniques exploring large datasets to learn
optimal mappings for denoising. The growing performance demands
on images due to the advent of deep learning and new application
areas continue to make this domain essential, and new types of noise
are expected to come with the integration of images into places
previously thought disconnected from imaging technologies like
medical imaging, robotics, and environmental monitoring, keeping
noise removal technologies in strong demand. The goal has been
unchanged: to draw the clearest signal possible from noisy
observations to provide the better means to interpret, analyze, and act

on content in digital images in every area of human effort.
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Unit 3.3: Image Deconvolution

3.3.1 Image Deconvolution and Degradation Models

This is one of the most basic problems in image processing and
computer vision called Image deconvolution, which is the essential
process of recovering original image content after it has undergone
degradation through any variety of physical processes. True to its
theoretical roots, image deconvolution seeks to undo the
convolutional effect that naturally takes place when imaging systems
record the physical world. This is a mathematically involved process,
one that falls at the crossroads of signal processing theory, linear
algebra and optimization techniques, which is inherently
computationally expensive and complex. Over the past few decades,
it has progressed from niche applications such as astronomical
imaging to widespread use in smartphone camera technology, medical
imaging, and satellite remote sensing. As those imperfections mask
detail and reduce clarity, the problem at hand is discovering how to
retrieve useful, good quality visual data from degraded observations.
This problem is especially critical because the vast majority of
imaging systems, absolutely any device, from the simplest consumer
cameras to the most sophisticated scientific instruments reduce the
quality of their output in some unavoidable way as images are formed.
Modeling these degradation processes mathematically and then
deriving algorithmic strategies to reverse this degradation is the crux
of image deconvolution research and implementation. Image
deconvolution is useful for anything from improving high-quality
images to generating models based on low-quality ones, and so
successful software tools are valuable tools in many areas, including

the biomedical industry.

Deconvolution is a computationally intensive image processing
technique that is being increasingly utilized for improving the contrast
and resolution of digital images captured in the microscope. The
foundations are based upon a suite of methods that are designed to
remove or reverse the blurring present in microscope images induced

by the limited aperture of the objective.

Acquisition of optical sections for deconvolution
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Nearly any image acquired on a digital fluorescence microscope can
be deconvolved, and several new applications are being developed
that apply deconvolution techniques to transmitted light images
collected under a variety of contrast enhancing strategies. Among the
most suitable subjects for improvement by deconvolution are three-

dimensional montages constructed from a series of optical sections.

The basic concepts surrounding acquisition of z-series images for
deconvolution analysis are presented with a schematic diagram in in
the given Figure . A series of images are recorded of the sample, each
shifted slightly from one another along the z-axis. This change in
focal plane results in a slightly different image, with subtle changes
caused by out of focus light coming from above and below the current
z-plane. During deconvolution analysis, the entire z-series is analyzed
to create a clearer, higher resolution data set that is not convoluted by

out of focus fluorescence.

Deconvolution is often suggested as a good alternative to the confocal
microscope, as both techniques seek to minimize the effect of out of
focus fluorescence on your final image.. This is not strictly true
because images acquired using a pinhole aperture in a confocal
microscope benefit from deconvolution processing. Confocal
microscopy prevents out of focus light from being detected by placing
a pinhole aperture between the objective and the detector, through
which only in focus light rays can pass. In contrast, widefield
microscopes allow out of focus light to pass directly to the detector.
Deconvolution is then applied to the resulting images to either
subtract the out of focus light or reassign it back to its source.
Confocal microscopy is especially well suited for examining thick
specimens such as embryos or tussues, while widefield deconvolution
processing has proven to be a powerful tool for imaging specimens
requiring extremely low light levels. These tools can even be
combined to reduce the noise in images acquired on a confocal
microscope. However, a majority of the deconvolution experiments
reported in the literature apply to images recorded on a standard
widefield fluorescence microscope.

The math behind image deconvolution is based on the convolution

model, in which a perfect pristine image is degraded into an
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observed, distorted image due to interactions with the imaging system
and environmental conditions. This model can be simplified to
Formula 1 in its elementary form, where g is the observed degraded
image and h is the point spread function (PSF) used to describe the
imaging system's point-spread light behavior of a point light source,
denotes the convolution operation, and n is the additive noise that
further degrades the image. The above seemingly simple equation
hides the complexity involved in image deconvolution. First, the
convolution operator itself is ill-posed in the Hadamard sense, to say
small perturbations in the observed data can yield drastically different
solutions and hence sophisticated regularization techniques are needed
to obtain stable solutions. Second, for many practical applications,
the PSF is not completely known (or only partially known), and thus
the blind deconvolution problem, where the original image and
degradation function is to be estimated simultaneously, becomes an
intriguing line of research. 2., making the deconvolution process even
more complex due to the presence of statistical uncertainties
introduced by noise coming from different sources: sensor
limitations, quantization, transmission, etc. These difficulties have
motivated a wealth of deconvolution algorithms, each based on a
range of assumptions regarding the properties of images, the
degradation process and the nature of the corrupting noise, and
making use of a wide variety of mathematical tools from Fourier
analysis to Bayesian inference and machine learning techniques.

Image deconvolution is important in many practical applications
where the quality of an image impacts decisions, well beyond
academic interest. Deconvolution is often used in medical imaging for
this reason; deconvolution can provide significant improvement to the
diagnostic quality of MRI, CT, ultrasound, and microscopy images by
elucidating small features that are typically hidden by the limited
resolution of imaging hardware (e.g. the optical limit of resolution). In
the world of astronomical imaging, where telescopes have to deal with
atmospheric turbulence and optical defects, applications of
deconvolution approaches have enabled incredible discoveries by
allowing astronomers tomerely use the observed images to compute
the apparent increase of the resolving power of the instruments.
Likewise, in the field of satellite remote sensing, deconvolution

algorithms serve to overcome the physical limitations imposed by the
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act of capturing images from orbit, allow for a higher spatial
resolution to be determined, and make Earth observation data used
for environmental monitoring, urban planning, and disaster response
more interpretable. And in forensic analysis, deconvolution can turn
hazy surveillance video into evidence clear enough to identify people
or read license plates. In addition, with ubiquitous smartphone
cameras, deconvolution methods have made their way into
mainstream consumer applications — computational photography
utilizes these methods to help overcome the physical constraints of
small lenses and sensors, creating useful features like portrait mode,
night photography and super-resolution. This will lead to a promising
future in the field as imaging technology advances and permeates
other applications requiring ever more sophisticated deconvolution
methods to collate images, and as such there would be continuing
work for better, faster and more adaptive methods for accurate image
restoration.

3.3.2 Types of Images Degradation (Blur, Motion Blur)

The appearance of image degradation can vary greatly, in origin as
well as in type, and while various forms of degradation are
encountered in practice, blur must be among the most common, if not
one of the most potent, forms of degradation that deconvolution
algorithms are required to account for. More generally we can think
about blur as an air machine, it will dispersed the image intensity
from its true position, to the pixels on its neighboring (may be one
pixel distance), now smartly enough, as an artifact, it will lose some
sharpness, detail, and edge definition which absolutely decreases the
content of the information in the captured image. Mathematically, blur
is implemented as a convolution operation, because each pixel in the
original scene feeds intensity to many pixels in the rendered image,

based on patterns governed by the type of blur.




Figure 3.3.1: Sample of Images Degradation

Source: https://www.researchgate.net/

Recognizing the different sources, attributes, and classes of various
types of blur aids in crafting successful algorithms for deconvolution,
since each class of blur presents its own challenges and there may be
specific methods advantageous for restoring that class. Blur is caused
by numerous physical processes, from the fundamental wave nature
of light that establishes theoretical limits on optical resolution, known
as diffraction-limited blur, to imperfections in lens design and
manufacturing known as optical aberrations, and atmospheric
distortions resulting from refraction and turbulence that dynamically
modify light paths. The different mechanisms will lead to different
patterns of blurring, which has been quantified through point spread
functions, or PSFs—the two-dimensional distributions of intensity
that result when imaging an ideal point source. The shape, size, and
spatial distribution properties of these PSFs impart valuable
information about the nature of the blur and influence the choice and
parameterization of suitable deconvolution algorithms. Many
specialized blur types exist for specific imaging scenarios, but some
underlying categories occur across different imaging domains, and so
have been widely discussed in the deconvolution literature.

Optical blur is one of the most fundamental and unavoidable types of
image degradation, which occurs due to physical principles
underlying light propagation through imaging systems. At its most
basic level, optical blur is the result of diffraction — the natural
tendency of light waves to spread as they traverse through apertures or
around obstructions — which creates a theoretical limit of resolution
even for perfectly designed and manufactured lenses. The diffraction-
limited blur usually appears as an Airy disk pattern— a core bright
region as well as concentric rings of relatively diminishing intensities
surrounding the central core. In other words, in practice, optical blur
is also caused by lens aberrations, or the deviation from ideal optical
performance as a result of design compromises and manufacturing

limitations. Some of these aberrations are spherical aberration (light
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rays passing through various zones of the lens focus at different
distances), coma (off-axis point sourcest produce asymmetric, comet-
like blur patterns), astigmatism (perpendicular rays focus at different
distances), field curvature (the focal surface is curved instead of
planar), and chromatic aberration (different wavelengths focus at
different distances due to the dependence between the refractive index
of the optical material and the wavelength). All of these aberrations
manifest in the form of spatially variant blur across a given image
frame and differ based on where on the frame the blur is measured,
the distance from the optical axis, and the wavelength(s) being
imaged. To make matters worse, optical blur is also depth dependent
since objects at variable distance from the focal plane will have a
different amount of defocus blur forming a circular or polygonal
shape that increases in size with distance to the focal plane. This
blurring is dependent on the depth, posing unique challenges for
deconvolution, since the effective PSF varies spatially across the
image as a function of scene geometry. Modern computational
strategies for overcoming optical blur can rely on detailed physical
models of these processes, enabling spatially-adaptive deconvolution
tuned to both the imager and scene geometry.

Another ubiquitous variety of image degradation is due to motion
blur, which takes place if there is relative motionbetween the camera
and the scene during exposure. While optical blur typically stems
from the intrinsic characteristics of the imaging hardware, motion
blur is inherently a consequence of the temporal aspect of image
capture, as it embodies the changes of scene content during the
limited exposure utilized to gather enough light to form an image.
However, how tools like these are adapted depends strongly on the
particular types of motion blur involved, which produce unique PSF
structures and therefore rely on specific deconvolution strategies. The
most basic and widely modeled type of PSF corresponds to linear
uniform motion blur, in which constant velocity motion along a
straight line produces a PSF that appears as a line segment aligned
with the motion direction, with length proportional to the amount of
motion that occurred during exposure. This is a suitable representation
for phenomena such as cameral shake constrained to a single axis or
the movement of objects at constant velocity through the scene. But in

the real world, motion is usually much more complex, with

162
MATS Centre for Distance and Online Education, MATS University



acceleration and rotation and multiple direction components leading
to more complex blur patterns. Rotational motion blur, for example,
creates unique curved point spread functions (PSFs) whose geometry
depends on the center of rotation and its angular velocity. Likewise,
camera shake usually consists of several types of movement and
produces point spread functions (PSFs) with complex geometric
shapes that vary spatially in the image frame. Worse, when there are
multiple independently moving objects in a scene, different regions of
the image will be affected by different motion blur patterns, requiring
locally adaptive deconvolution procedures. The inherent difficulty of
motion blur deconvolution spurred a considerable body of work on
not just accurate PSF estimation where accelerometer data, multi-
image capture, or machine learned approaches can be harnessed, but
also specialized deconvolution that exploits the specific mathematical
structure of motion blur. These progressions have brought about
amazing enhancements in computational photography applications,
for example, hand-held low-light imaging and action photography (in
which motion blur could otherwise significantly reduce image
quality).

Atmospheric blur is one of the most challenging types of image
degradation mainly in long-distance imaging applications such as
astronomy, aerial photography, and long-range surveillance. This
degradation stems from interaction of light with an inhomogeneous
stochastically fluctuating environment that perturbs the refractive
index of a medium in space and time, namely, the atmosphere of the
Earth, which features persistent, random variations in scale of
temperature, pressure and humidity in accordance with the
distribution of scales of refractive index along the path of light
between an object in the scene and the observer. These variations in
the index of refraction behave like many weak, constantly moving
lenses that refract light rays on their continuing journey towards the
imaging system; they thus accumulate dynamic distortions that cause
blurring and distortion of the image being captured. The statistical
characteristics of atmospheric blur are generally described by the
theory of atmospheric turbulence, which defines the severity of
degradation in terms of parameters, such as the Fried parameter (o),
which measures the spatial coherence length of wavefront distortions,

and the isoplanatic angle, which captures the angular distance where
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turbulence efforts are approximately homogeneous. Atmospheric blur
has more complex spatial and temporal characteristics than simpler
forms of blur, which present unique challenges for deconvolution.
Atmospheric dynamics are fast, on millisecond timescales typically;
as a result the patterns of blur undergo evolution during the process
of image acquisition. Spatially, the degradations are inhomogeneous
across the image field, in that certain areas of the image field will
experience different distortions than other areas, especially in the case
of wide-field imaging scenarios that breakdown the isoplanatic
assumption. Examples: Adaptive optics (deformable mirrors - real
time correction using wavefront sensors) and speckle imaging
techniques (recording a number of short-exposure frames
inteferometer) assist to suppress the effects of turbulence. On a purely
deconvolution basis, atmospheric blur is usually handled with
statistical models in order to characterize the turbulence-induced PSF,
and with regularization schemes that regularize the restoration process
and stabilize the recovery of information rendered uncorrectable due
to the high ill-posedness associated with information degraded via
such a complex, stochastic process. These techniques when applied
successfully have resulted in breakthroughs in areas such as ground
based astronomy, where deconvolution techniques largely mitigate the
adverse effects of atmosphere on resolutions achievable with very
large telescopes coming close to the theoretical diffraction limit.

Out-of-focus blur is an all-pervasive form of image distortion which
occurs when an object is located away from the focus plane of the
imaging system; in that case, light rays originating from each object
point do not focus into sharp images onto the sensor, but are
projected onto some blurring region instead. This type of blur is
especially notable because it goes directly to the heart of the
underlying trade-off between depth of field and light-gathering
efficiency in optical systems, where a larger aperture collects more
light but results in a shallower depth of field, with fewer elements of
the scene simultaneously in focus. Defocus blur is also
mathematically characterized which is more accessible than other
types of degradation, being presented as a convolution with a pill-box
or disk-shaped PSF with radius proportional to the defocus amount
and projector aperture. However, this seeming simplicity belies

multiple difficulties of defocus deconvolution. First, whereas the blur
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radius continuously varies with object distance, this leads to scene
structure-dependent, spatially varying degradation. Second, the sharp
edge of the theoretical defocus PSF is frequently corrupted by optical
aberrations and diffraction effects resulting in more complex patterns
that need to be modeled more complexly. Finally, essentially the main
reason, the binary disposition of the pill-box function, switching from
constant intensity to zero, introduces great mathematical difficulties
because of the zeros that appear in the Fourier transform of the pill-
box function, this causes serious ill-conditioning when performing
inversion. These concerns have led to many specialized solutions to
defocus deconvolution, including depth-adaptive solutions that
estimate and compensate for spatially varying blur, edge-preserving
solutions that eliminate the ringing artifacts often introduced by
deconvolving hard-edged PSFs, and multi-image methods that exploit
information from several captures taken with varying settings on the
focus setting. Even traditional deconvolution is often not enough;
computational imaging techniques such as coded aperture
photography purposefully change the defocus PSF by changing the
shape of the aperture (of the camera), which enables creating blurring
patterns that are easier to deconvolute in post-processing. These
advances have allowed for dramatic improvements in areas from
consumer photography, in which extended depth of field algorithms
can yield uniformly sharp images from limited physical depth of field,
to microscopy, for which deconvolution approaches can dramatically
improve the resolving power and contrast of three-dimensional
biological specimen imaging.

Blurring is one effect that can be simulated via convolution, but
noise-induced degradation, also a convolution model effect, is another
important factor that complicates the image deconvolution process
that must be accounted for in any practical restoration method. While
blur redistributes intensity over the resulting image via convolution,
noise adds to the image false variations of intensity that were not
present in the original scene, due to several physical and electronic
phenomena that occur within the imaging chain. Photon shot noise
(based on light's quantum nature and follows Poisson statistics),
thermal noise (due to random electron movement with temperature,
usually Gaussian), readout noise (during conversion of electronic

charge into a voltage), quantization noise (due to discretization of
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continuous intensity values) and compression artifacts (due to lossy
encoding formats) are the most common types of noise. Each type of
noise has its own statistical characteristics that determine how it
interacts with the deconvolution process. Shot noise is notably signal-
dependent, i.e. the variance of the noise at each pixel is linked to the
intensity of the underlying image signal, imposing spatially varying
statistical characteristics that need to be properly articulated if we aim
at best restoration quality. The noise component inherently makes the
deconvolution problem ill-posed and any attempts of direct inversion
to obtain a solution will lead to a catastrophic amplification of the
noise components especially in the high frequency content that
represents the region of signal that usually faces significant
attenuation due to blurring. These amplification effects require
regularization strategies that enforce a trade-off between fidelity to the
observed data and prior information about image properties and noise
characteristics. Today, new deconvolution techniques are used which
apply complex noise models that consider the exact statistical
character of noise sources—detailed physical models of sensor and
readout electronics have even been used for this. Such methods allow
for better separation of noise from signal in the restoration, especially
tent these methods tend to work poorly in low-light conditions, where
background noise can drown out the intended image [9]. How well a
deconvolution algorithm can balance the effective use of noise while
reversing blur effects is a hallmark of modern deconvolution, directly
influencing the practical utility of any proposed deconvolution in real-
world imaging applications, from astronomy to medical imaging to
consumer photography.

Specifically, inverse filtering can arguably be considered the most
straightforward approach to image deconvolution: in its simplest
form, inverse filtering directly attempts to reverse the convolution
operation by dividing the Fourier transform of the degraded image by
that of the point spread function. This technique is a direct corollary
of the convolution theorem, as convolution in the spatial domain is
multiplication in the frequency domain and vice versa, so dividing in
the frequency domain should undo convolution. In the frequency
domain, if the degraded image is noted G(u,v) = H(u,v)F(u,v) +
N(u,v), where H(u,v) is the optical transfer function (the Fourier

transform of the point spread function), F(u,v) is the Fourier transform

166
MATS Centre for Distance and Online Education, MATS University



of the undiscovered image, and N(u,v) represents noise, the estimate
of the inverse filter is equal to F(u,v) = G(u,v)/H(u,v). This method
appeals as a first approximation to deconvolution based on the
elegance and computational efficiency as it only requires forward and
inverse Fourier transforms together with complex divisions. But this
seeming simplicity hides crucial limitations that seriously limit the
usefulness of pure inverse filtering in applications. More critically,
the inverse filter catastrophically amplifies noise at frequencies where
H(u,v) approaches zero; this is a naturally-occurring phenomenon at
increasing frequencies for most blur kernels. This amplification of
noise usually overshadows the restoration, resulting in high-frequency
artifacts that makes the resulting image unusable for any practical
applications. Also, an opposite lens has no way to factor in prior
knowledge about the properties of an image or the characteristics of
noise, resulting in meaningful restorations only in relatively easy
cases. Despite its obvious limitations for space-invariant functions,
inverse filtering has been widely studied both as a theoretical basis for
the deconvolution problem and as a part of more complicated
restoration methods that include extra constraints to stabilize it.
Moreover, in specific contexts with high signal to noise ratio PSFs
that are well-behaved, inverse filtering methods with frequency
domain truncation or thresholding can be limitedly useful, although
only for coarse analysis or where compute cost is critical.

The pseudoinverse filter would be a natural extension of the pure
inverse filtering concepts described before, since it tries to avoid the
horrible amplification of noise behavior typical of inverse filtering by
imposing some restrictions on the inversion process in the frequency
domain. The central insight here is that deconvolution does not have
to pursue the recovery of frequency components which have been
significantly attenuated disproportionately to the blur process to the
extent that they are completely overwhelmed by noise, since to do so
will insure that the introduced distortion outweighs the information
obtained. This pseudoinverse filter can be mathematically defined as
F(u,v) = H(u,v)G(u,v)/(H(u,v)? + &), where H(u,v) is the complex
conjugate of H(u,v) and ¢ is a small positive number to avoid dividing
something near to zero. In this way it behaves like a regularized
inverse, yielding stable inversion over the frequencies for which the

signal dominates noise (|H(u,v)? >> ¢) and gradually fading to
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suppression in the region where noise dominates (|[H(u,v)|* > Sn(u,v)),
the filter operates as an inverse filter, restoring detail, when in the
other direction (Sn(u,v) >> Sf(u,v)), it acts only to suppress that
frequency component thus avoiding noise amplification. Wiener
deconvolution can outperform far simpler approaches because it
adapts to signal content throughout the frequency spectrum, especially
when noise levels are moderate and there is much of the image still
recoverable in the midst of degradation. The practical realization of
Wiener filtering faces several obstacles, most significantly, the
requirement to estimate the power density spectra of both the image
and the noise — quantities that are typically unknown a priori. Several
methods have been devised to tackle this problem, with parametric
models specifying typical image statistics (and usually power laws for
natural images), noise estimation based on image patches or multiple
images, and adaptive procedures refining spectrums iteratively
throughout the restoration process. However, continued Wiener
deconvolution remains highly effective, across several applications
from consumer photography to medical imaging to remote sensing,
offering implementability that balances theoretical optimality under
certain statistical assumptions. Its lasting impact goes deeper than
mere algorithmic applications, and indeed, the fundamental
underlying principles of statistical optimization and noise-dependent
processing can be found idiosyncratically at the heart of nearly every
current deconvolution technique, including wavelet transforms, sparse
representations, and deep-learning methods.

Another important example of regularized image restoration is
constrained least squares deconvolution, in which the deconvolution
problem is cast as the minimization of the squared difference between
the convolved estimate of the image and the observed, degraded
image, subject to additional constraints that encourage desired
features in the solution. In contrast to Wiener filtering, which makes
use of a statistical model of both the image and the noise, constrained
least squares methods tend to impose constraints based on general
characteristics (e.g. smoothness, edge sparsity, bounded variation)
believed to hold for most (natural) images. The most mainstream one
minimizes ||g — hf]|2 + A||Cf]|2, where g is the degraded image, h is the
PSF, f is the restored image we want to get, C is usually a high-pass

operator such as Laplacian measuring local smoothness, and A is the
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regularization parameter that balances the importance of data fidelity
to the smooth constraint. This yields the frequency-domain solution
F(u,v) = H(u,v)G(u,v)/[[Hu,v)? + AC(u,v)]?], which has the same
form as the Wiener filter, except that the signal and noise spectra are
replaced by a regularization term that incorporates the specific
constraint operator chosen. Choosing suitable constraint operators is a
crucial design decision, directly impacting the resultingse of
restoration. The Laplacian operator favours general smoothness and
is efficient in suppressing noise but it also means blurring edges and
texture information. Some alternatives are gradient-based operators
that better maintain edges while reducing noise in homogeneous
areas, anisotropic diffusion operators that adapt to the local image
structure, and sparsity-promoting operators that preserve salient
structures while they heavily suppress small variations. The parameter
A governing regularization also needs to be a little tuned, and the
methods range from heuristic selection based on visual inspection to
automated techniques like generalized cross-validation and L-curve
analysis that aim to derive optimal values objectively. The constrained
least squares framework, while quite general, provides a lot of
flexibility in terms of the choice of constraint operators and
regularization strategies that may be tailored towards specific
application needs and image properties. The flexibility of the
technique, along with rigorous theoretical underpinnings and
computationally tractable methodologies have positioned constrained
least squares deconvolution as a truly cornerstone methodology in
"real world" image restoration, applied in multiple scientific, medical
and consumer imaging settings.

Iterative deconvolution techniques are a powerful family of
restoration algorithms that mount image recovery as an iterative
refinement rather than the direct inversion problem. These methods
generally begin with an initial guess of the target image (most
commonly the damaged image itself or a naively filtered version of
the damaged image) and then refine this guess iteratively by
repeatedly applying updates based on analysis so many basic
optimization or statistical model. These methods provide many key
benefits that cannot be matched by direct frequency-domain methods
such as inverse filtering or Wiener deconvolution, due to their

iterative nature. Most importantly, iterative methods are naturally
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capable of supporting sophisticated constraints and priors that would
be challenging or infeasible to express analytically and use for direct
inversion, including non-negativity constraints (which ensure that
pixel values cannot be negative), flux conservation, spatial adaptivity
based on local image properties, and even complex statistical priors.
Additionally, iterative methods can easily adapt to spatially-varying
PSFs by applying the respective local blur kernel for each update step,
which is beneficial, for example, when the degradation is not
homogeneous in the image field, such as when depth varies across the
field or in the presence of optical aberrations. One of the most popular
iterative methods is the Richardson-Lucy algorithm, which derives
from a probabilistic formulation that assumes Poisson noise (typical
when imaging photon-limited systems like astronomical telescopes
and fluorescence microscopes) and whose multiplicative update
structure inherently incorporates constraints of non-negativity and
flux conservation. At pick and mix intervals, it refines the current
estimate by multiplying it by the ratio between the observed image
and the re-blurred current estimate, backprojecting this ratio through
the PSF to properly distribute the correction.

The Landweber iteration is another famous iterative method, with
which one applies a gradient descent method in an attempt to
minimize the least squares error, while the conjugate gradient method
improves convergence by selecting the descent direction based on
previous iterations. Although iterative methods provide effective
tools for addressing intricate restoration tasks, they also introduce
difficulties concerning the convergence behavior, stopping criteria,
and computational demands. These approaches are prone to semi-
convergence without proper regularization or early stopping, such that
visual quality can initially improve but ultimately reduces during
iteration as noise components are progressively amplified. Thus in
practical implementations termination conditions, regularization
strategies, and acceleration techniques that ensure restoration quality
while avoiding the computational cost of multiple iterations must be
carefully considered. Nonetheless, iterative deconvolution approaches
have proven to be highly effective on a wide range of applications,
particularly in sciences such as astronomy, microscopy and medical

imaging, where the ability to include physical constraints as well as to
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model complex degradation forms leads directly to improvements on
the quantitative accuracy of the recovered data.

In the frequency domain, such as the inverse and Wiener filtering or a
constrained least squares methods, the spatial-domain convolution
becomes a multiplication in the frequency-domain through the
convolution theorem, thereby allowing for fast implementation and
interpretation of the restoration. The core insight guiding both
approaches is that convolution in the spatial domain becomes
multiplication in the frequency domain, and so the deconvolution
problem goes from a complex spatially distributed operation to a
much more tractable frequency-by-frequency division or filtering
operation. This transformation from the original punctual basis has
many important practical implementation advantages. Moreover, they
reduce the computational complexity from O(N?) for direct
convolution in spatial domain to O(N log N), where N is the number
of pixels, which allows to process large images using Fast Fourier
Transform (FFT) algorithm. The nature of different transfer functions
in the frequency domain provides a conceptual framework to easily
assess the tradeoffs between recovering detail and the amplification of
noise in various restoration techniques. For example, the frequency
response of the Wiener filter makes it explicit how the transition
happens from an inverse filtering behavior where the signal-to-noise
ratio is high to an attenuation behavior where noise dominates. But
frequency domain methods have some limits, which limit their
application in some situations.

First, standard FFT-based implementations are based on circular
boundary conditions, which can yield edge artifacts unless the image
is properly padded or windowed. Second, these methods generally
assume shift-invariant degradation, i.e. the same PSF is present
across the whole image, an assumption that is broken in many
applicable settings such as depth-dependent blur or optical aberration
that changes across the field of view. Third, constructing advanced
spatial priors or structure-aware models is nontrivial in the frequency
domain since they do not lend themselves to properly capture
sophisticated constraints or priors, other than to be regularization
terms. Fourth, these methods usually offer only weak control on local
adaptation to image content, applying the same filtering operation

irrespective  of whether a region contains significant edges,
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homogeneous regions or some textured patterns. These limitations
notwithstanding, frequency domain filtering techniques are still
fundamental tools in the image restoration toolbox, and are often
optimal in terms of computational complexity, theoretical
understanding, and applied effectiveness for a range of use cases,
especially in cases of nearly shift-invariant degradation that can be
characterized well using a known or estimated PSF.

3.3.3 Blind Deconvolution and Regularization Techniques

In this challenging case where neither the original nor the degradation
function 1s known (known as blind deconvolution), we estimate both
interdependent quantities from the observed degraded image only.
This problem occurs often in real-world situations where the point
spread function cannot be directly obtained or calibrated, such as
astronomical imaging through turbulent atmosphere, consumer
photography with unknown camera motions, historical imagery
restoration, and medical imaging in varying biological environments.
The subfield of blind deconvolution suffers from an intrinsically hard
mathematical problem: deconvolving an image from an observed
image is an ill-posed inverse problem, even if the PSF were known,
and releasing this constraint introduces a large new set of degrees of
freedom that could contribute to having a large number of potential
solutions that can explain the observed image. The blind
deconvolution problem, naively cast, admits trivial and useless
solutions, like estimating the original image as the degraded
observation and estimating the PSF as a delta function, or vice versa.
However, solving these challenges needs for advanced methods that
will use extra constraints, previous assumptions and properly designed
optimization techniques to lead the solution to physically accurate and
visually valid restorations. Blind deconvolution methods usually rely
on alternating minimization schemes which iteratively estimate the
image while keeping the PSF fixed, and vice versa, to refine both
estimates through multiple iterations.

To regularize this process and avoid degenerate solutions, these
methods use different regularization strategies, including constraints
on PSF properties (e.g., non-negativity, energy conservation, limited
support), image priors (e.g., smoothness, sparsity in transform
domains, statistical models of natural images), and physical

constraints derived from the specific imaging modality. Though
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considerable advancements have been made with respect to
development of algorithms and theoretical analysis, blind
deconvolution is, due to this intrinsic ill-posedness, among the most
difficult of image processing tasks, and results can vary widely,
depending significantly on the nature of the degradation, the noise
level, and the formulation of constraints and prior models appropriate
to the context of the application. However, when success is achieved,
blind deconvolution can restore incredible detail and clarity in very
degraded images, allowing applications that would not be feasible if
PSF measurement or calibration was an absolute requirement.

Blind deconvolution under maximum likelihood estimation offers a
structured statistical approach to the problem, in which the image and
PSF estimates are obtained that maximize the likelihood of observing
the corrupted image, given an appropriate noise model. The first part
of this approach entails the formulation of the likelihood function of
the candidate image p(g|f,h), where g is the degraded image we've
observed, f is the candidate original image and h is its PSF; the details
of p are determined by the noise model—Gaussian noise leads to a
least-squares objective, while Poisson noise (which is common in
photon-limited imaging) results in the Richardson-Lucy objective
function. Maximum likelihood estimation involves maximizing this
likelihood function in terms of f and h, determining the image-PSF
pair that best explains the observed data according to the noise
model. Direct maximum likelthood estimation is usually very
ineffective at blind deconvolution, as the problem is severely ill-
posed: many pairs of image and PSF can yield similar total
likelihoods, while being very diverse in their physical implausibility.
To manage this inherent shortcoming, practical implementations
supplement the pure likelihood with further terms that encode a priori
knowledge on image and PSF features, making the problem a
maximum a posteriori (MAP) estimation problem.

Thus, the overall objective function is proportional to p(g|f,h)p(f)p(h),
where p(f) and p(h) are prior probability distribution over images and
PSFs, respectively. These priors can include however assumptions
like: non-negativity, spatial smoothness, statistical properties of
natural images, or application-specific constraints like PSF symmetry
or the basic principle of energy conservation. Maximizing this

objective function can be done using alternating minimization
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approaches that iteratively update image and PSF estimates one after
another via gradient-based methods, expectation—maximization
algorithms, or specialized solvers adapted to particular formulations.
From a statistical point of view, blind deconvolution tends to be
formulated within the maximum likelihood or more Bayesian-inspired
MAP framework, and although these formulations lend themselves to
rigorous statistical approaches, they depend heavily on there being a
well-founded noise model and prior distributions that reflect the
particular application context, together with an optimization strategy
capable of navigating a non-convex, and therefore difficult, objective
function in a way that generates solutions that can be regarded as
high-quality rather than arbitrarily good-and lost in one of many local
optima. The result has been that, with proper tuning, sharing often
domain knowledge and other constraints, likelihood-based approaches
have performed remarkably well across a range of applications, from
astronomy to microscopy to consumer photography.

Alternating minimization is one of the most popular, and most used
algorithmic frameworks for doing blind deconvolution, decomposing
the difficult joint optimization over the image and PSF into a set of
easier-to-solve subproblems, which are solved iteratively in a
sequence. This involves entering rough estimates of the image or PSF
(presumably both), based on simple processing of the corrupted image
or previous knowledge of the imaging system. It iterates between two
of the most central choices: fixing the current PSF estimates and
optimizing over the image estimates, and fixing the image estimates
and optimizing over the PSF estimates. All steps of these
optimizations is a standard non-blind deconvolution problem, which
allows for the use of standard methods such as Wiener filtering,
constrained least squares, or iterative procedures, depending on the
specific formulation and noise conditions. The two-phase alternating
structure has multiple significant advantages for blind deconvolution.
Advantages at a computational level are that it turns an intractable
joint optimization into a sequence of tractable sub-problems, which
have known solution methods. It is conceptually similar in the sense
that different constraints and regularization approaches can also be
used independently on the image and PSF, reflecting the differences
between them and the types of prior knowledge that can be more

relevant to each type of object.
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However, alternating minimization also has a number of theoretical
and practical challenges. Model training optimization landscape is
non-convex in nature with several local optima, leading local search
algorithms to be sensitive to initialization and prone to get trapped in
suboptimal solutions. Unless appropriately constrained, the process
can also converge to trivial or degenerate solutions—for example, in
the absence of regularization, the algorithm could end up estimating
either a very sharp image and a very wide PSF, or a very wide image
and a very sharp PSF, both of which do not correspond to the true
solution. Many modifications to this fundamental alternating method,
including multi-scale techniques that incrementally introduced finer
details, adaptive regularization strategies that adjusted penalties based
on current estimates, and specialized initialization methods that
offered improved initial guesses based on image statistics or edge
information, arose to address these difficulties. Nonetheless, with the
proper formulations, encoding of constraints, and regularization,
alternating minimization has shown to be quite effective in practice
from a wide range of application domains for blind deconvolution,
balancing between allowing visually meaningful restorations within
physically plausible constraints and avoiding excessive computational
costs that arise from making the prior model overly complex.

As a coarser representation of both the image and point spread
function (PSF) allows utilizing broader knowledge to solve some of
the fundamental difficulties of the problem, this leads multi-scale
blind deconvolution to solve the problem in a coarse-to-fine manner
progressively adding finer image information and PSF knowledge.
Working at a very large scale, the first step in the hierarchical
framework exploits the fact that heavily downsampled or blurred
versions of the degraded image are significantly lower dimensional
than the original (the range of sampling possible when the number of
pixels typically differs by several orders of magnitude) and have a
simpler structure (less overlap, less sharpness); thus, the basis of the
first estimation, where the influences of noise and local optima are
minimized, can be made (16). This basic algorithm runs blind
deconvolution — usually via alternating minimization or related
methods — to estimate the image and point spread function (PSF) at
each scale level. These estimates are then used as initializations for

the next finer scale, which are upsam.
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Summary
Noise in digital images refers to the unwanted or random variations in
pixel intensity that obscure useful information and degrade image
quality. Different noise models are used to simulate or understand
how noise behaves in image data. These models include Gaussian
noise, salt-and-pepper noise, speckle noise, and Poisson noise, each
with unique characteristics. For instance, Gaussian noise follows a
normal distribution and is often introduced by sensors during image
acquisition. Salt-and-pepper noise appears as random black and white
pixels and is typically caused by faulty memory locations or
transmission errors.
Understanding the types of noise is critical for effective noise
reduction. Gaussian noise affects all pixels with varying intensity and
1s common in low-light imaging. Salt-and-pepper noise, in contrast, is
sparse and often easier to filter out using median filters. Speckle noise
i1s multiplicative and commonly appears in coherent imaging systems
such as radar and ultrasound. Poisson noise arises from photon
detection and is dominant in low-light environments or photon-limited
imaging systems. Each type of noise requires specific filtering
techniques tailored to its properties for optimal image restoration.
Image deconvolution is a mathematical technique used to reverse the
effects of blurring and noise in an image. It aims to recover the
original image by using knowledge about the point spread function
(PSF) of the system that caused the degradation. Deconvolution
algorithms, such as Wiener filtering or blind deconvolution, are
especially useful in medical imaging, astronomy, and microscopy
where precision is crucial. While effective, these methods can be
computationally intensive and sensitive to errors in the noise model or
PSF estimation. Overall, managing noise and applying appropriate
deconvolution techniques is essential for producing clearer, more
accurate digital images.
Multiple Choice Questions (MCQs)
1. What is the main goal of image restoration?

a) To compress an image

b) To improve image quality by removing distortions

c¢) To change the color model of an image

d) To create artistic effects

(Answer: b)
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2. Which type of noise is characterized by random bright and Notes
dark spots in an image?
a) Gaussian Noise
b) Salt and Pepper Noise
c¢) Speckle Noise
d) Poisson Noise
(Answer: b)
3. Which filter is most effective for removing Salt and Pepper
noise?
a) Gaussian Filter
b) Median Filter
c¢) Sobel Filter
d) Laplacian Filter
(Answer: b)
4. Wiener filtering is used primarily for:
a) Edge detection
b) Noise reduction in degraded images
c¢) Color correction
d) Image segmentation
(Answer: b)
5. Motion blur in an image is caused by:
a) High brightness levels
b) Camera movement during exposure
c¢) Low contrast
d) Poor color balance
(Answer: b)
6. What is the main function of inverse filtering?
a) To increase noise in an image
b) To enhance the edges of an image
c) To restore a degraded image by reversing the distortion
d) To convert an image into grayscale
(Answer: ¢)
7. Which deconvolution technique does NOT require prior
knowledge of the distortion function?
a) Wiener Deconvolution
b) Blind Deconvolution
¢) Inverse Filtering
d) Low-pass Filtering
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(Answer: b)

8.

What kind of noise is commonly found in synthetic
aperture radar (SAR) images?

a) Gaussian Noise

b) Salt and Pepper Noise

c¢) Speckle Noise

d) Thermal Noise

(Answer: ¢)

9.

The Wiener filter works best when:

a) The noise characteristics are unknown
b) The noise characteristics are known
c¢) The image is already enhanced

d) The image is compressed

(Answer: b)

10.

Which regularization technique helps in improving the
stability of deconvolution?

a) Histogram Equalization

b) Tikhonov Regularization

¢) Median Filtering

d) Fourier Transform

(Answer: b)

Short Answer Questions

l.

Ao

=W

10.

What is image restoration, and how does it differ from image
enhancement?

Define Gaussian noise and its effect on an image.

How does a median filter help in noise reduction?

Explain the difference between Salt and Pepper noise and
Speckle noise.

What causes motion blur in digital images?

What is the main purpose of inverse filtering?

How does Wiener filtering improve image quality?

What is the significance of blind deconvolution in image
restoration?

Define degradation models in image processing.

What are regularization techniques, and why are they used in

image deconvolution?

Long Answer Questions
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10.

Explain different types of noise commonly found in digital
images.

Discuss various noise removal techniques and their
applications.

Compare and contrast Gaussian noise and Salt and Pepper
noise.

Describe the process of image deconvolution and its role in
image restoration.

Explain motion blur and the methods used to correct it.
Discuss inverse filtering and Wiener deconvolution with
examples.

What is blind deconvolution, and how does it work in image
restoration?

Explain the importance of regularization techniques in image
processing.

How does Wiener filtering improve image restoration
compared to inverse filtering?

Discuss real-world applications of 1image restoration

techniques in medical imaging and remote sensing.
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MODULE 4
THRESHOLDING TECHNIQUES

LEARNING OUTCOMES

1 To analyze edge-based segmentation techniques, including Canny
edge detection and watershed segmentation.

2 To evaluate the effectiveness of clustering-based segmentation
methods such as k-Means and mean-shift.

3 To explore region-based and active contour (snakes) segmentation
approaches for image processing.

4 To investigate graph-based segmentation techniques and their

applications in digital image analysis.
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Unit 4.1: Edge-based Segmentation

4.1.1 Edge-based Segmentation

Edge-based segmentation is an advanced technique in image
processing and computer vision that works by detecting and utilizing
edges in an image to identify and partition objects. It will cover edge
detection methods like Canny Edge Detection, and experimental
segmentation techniques such as Region Growing as well as
Watershed Segmentation. So, the basic idea behind edge-based
segmentation is to detect and use the edges or transitions in an image.
Therefore, edges of the image refer to pixels with pixel intensities and
pixel vectors displaced significantly from neighboring pixels
intensities or neighboring pixels vectors, which often indicates the
existence of object boundaries, texture gradients or fundamental
structure changes. With careful identification and analysis of these
edge regions, computational systems can decompose complex visual

scenes into meaningful components.

Figure 4.1.1: Sample of Edge Based Segmentation

Source: https://medium.com/

4.1.2 Use of Canny Edge Detection: An Advanced Mathematical
Approach

Canny Edge Detection (John F. Canny, 1986) So far Canny Edge
Detection is considered to be the best edge detection algorithm
because it detects edges with high precision and low noise. The
elegance of the algorithm lies in the fact that it is a multi-stage process
combining sophisticated mathematics with basic signal processing
concepts. The Canny method consists of several different stages, each
designed to help refine the edges in the input image incrementally.
The first important step is noise-reduction, because raw data usually

include high-frequency disturbances that may significantly perturb

181
MATS Centre for Distance and Online Education, MATS University

[

\

=2

W

UNIVERSITY

ready for lfe......

Notes

aTs)

i


https://medium.com/

¢ o

{

}mn'r

N

UNIVERSITY

ready for life

Notes

)

i

the accuracy of edge detectors. The best noise suppression
mechanism utilized is Gaussian smoothing, which is enabled with a
low-pass filter, delicately suppressing high-frequency elements of the
image yet allowing it to preserve its core structure and integrity. That
noise reduction therefore heavily relies on mathematical convolution.
The blurring is performed through convolution of the image with a
Gaussian kernel, so it seals which pixels to suppress as a function of
their relationship with the others, removing noise, but keeping the
force of gradients that delineate the edges present in the picture. The
standard deviation of the Gaussian kernel serves as a powerful
parameter, enabling fine-tuning of the smoothing extent. A lower
standard deviation maintains finer details, whereas a larger standard
deviation results in more aggressive smoothing.

After denoising, the algorithm then moves into the stage of
computing gradients, which dictates both the size and direction of
brightness changes throughout the photograph. The algorithm uses the
directional derivative, Sobel or Prewitt operator to compute the
horizontal and vertical gradient components. The locations and
intensities of intensity transitions are well exposed by performing
such a gradient computation and as such reflect the structural
boundaries present in an image. The gradient magnitude measures the
rate of intensity change, while the gradient orientation encodes the
directional information of these transitions. From this gradient
information, the Canny can compute the magnitude and orientation of
the gradient for each pixel to produce a density map that indicates
potential edge locations. In general, high values of the gradient
magnitude indicate whether there is a good intensity transition
between pixels, and thus candidates for an edge. The next level of
sophistication comes with non-maximum suppression, which serves
to thin the gradient map and remove any false positive edge
responses. This is done by checking for local maxima in a certain
neighborhood of every pixel, and keeping only the local maxima in
the direction of the gradient's dominant orientation. Comparing a
pixel's gradient magnitude to its immediate neighbors along the
gradient direction allows the algorithm to produce a one-pixel-wide
edge response, known as non-maxima suppression. The objective is to

get rid of spurious edge responses which do not help in accuracy.
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Instead this method is the last stage in refining the algorithm where
they are few controls for sensitivity in edge detection. Canny differs
from naive binary thresaholding techniques, however, in that it uses
two threshold values (a high threshold and low threshold). Pixels
higher than the high threshold are unconditionally declared as strong
edges, and those lower than the low threshold are unequivocally
rejected. Unchanged pixels between these thresholds are then
analyzed separately to check the connectivity to confirmed strong
edges and retained if the pixels are connected to the edges. This
hysteresis mechanism readily solves the problem of edge detection in
complex visual context. With the help of contextual connectivity, the
algorithm can monitor and maintain meaningful edge structures that
may be disjointed or partially hidden. Weak edge segments in the
vicinity of strong edge segments are retained in the final edge map
while isolated edge candidates (in themselves potential noise) are
eliminated in a systematic fashion.

The design of the Canny algorithm incorporates computational
efficiency considerations. A two-stage strategy makes it amenable to
parallel processing and modular implementation, allowing for quick
edge detection across a range of image categories. The computational
complexity of the algorithm can then be substantially accelerated
utilizing modern hardware architectures (e.g. GPU based parallel
computing platforms).

4.1.3 Contextual Segmentation Paradigm: Region Growing
Continuing with image segmentation from edge detection, Region
Growing is a simple yet powerful technique to segment image based
on pixel adjacency and similar intensity values. In contrast to edge-
based approaches that center around boundary detection, Region
Growing takes a more comprehensive view, incrementally growing
uniform regions starting from carefully chosen seed points. Region
Growing is based on the idea that pixels with similar characteristics
(e.g. intensity/color/textural properties) can be detected and grouped
together. Because meaningful image segments tend to be internally
coherent, with pixels representing the same object or region
statistically similar to one another, this approach. The selection of
seed points is an important preliminary step in the Region Growing
process. These birth points act as nucleation centers, and then region

growth follows. Different strategies exist for the determination of seed
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points, such as manual selection, cluster automated algorithms, or
spatial sampling techniques. Seed point selection is crucially
important for the following segmentation results. After identifying
seed points, the algorithm enters an iterative process to expand the
region. It serves as the starting point for a throwback to the image
segment from which it grows, including neighboring pixels that meet
given homogeneity criteria. Depending on the classification task,
these could include intensity thresholds, color similarity metrics, or
more advanced statistical metrics such as variance or entropy.

With the region expansion method you usually look at the
neighbourhood of each pixel to see whether they are compatible to the
characteristics of the existing region. Pixels satisfying the similarity
constraints are iteratively appended to the region, while pixels not
satisfying the constraints are skipped. The defining characteristics of
the region are dynamically updated as the algorithm continues
recursively with this new figure in a loop. In Region Growing,
connectivity is important and algorithms typically use different
approaches to explore the neighbors. Two common methods of
connectivity are four- and eight-connectivity, which control which
pixel locations are considered adjacent during region growth. Four-
connectivity limits neighbor exploration to immediately adjacent
horizontal and vertical pixels, while eight-connectivity expands to
include diagonal neighbors as well. The conditions for terminating
region growth are defined as stopping criteria. Such criteria may
include surpassing established size thresholds, triggering boundary
conditions of the region, or manifesting significant deviations from
the region's initial profile of characteristic values. Improvements
might also include adaptive stopping criteria, adjusting the growth
conditions based on local statistics of the image. Region Growing
excels when the image anatomy exhibits internal consistency with
homogeneous regions. This applies to areas like medical imaging,
satellite imagery analysis, and industrial quality control with proven
segmentation abilities for each of them. This implies that the table
appearance can be customized for different application contexts.

4.1.3 Watershed Segmentation: Transforming the Topography
Another metaphorical approach to image segmentation is the
watershed segmentation, inspired by geographical topographical

concepts. This approach treats image intensity as a three-dimensional
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topographical surface, with the intensity of pixels representing height,
allowing segmented returns to be formed by watershed
impositionality. But the topographical metaphor is tremendously
powerful for understanding the dynamics of image segmentation. For
instance, consider an image as a landscape where pixel induction
determines height, such that bright places mean mountain summits
while dark ones mean crater-like pits. Water slowly filling this terrain
would settle in local minima, and streams would develop at watershed
lines, the lines at which water from separate catchment basins would
flow towards each other. Gradient magnitude images are hence often
used as a middle representation permeating watershed algorithms.
These algorithms produce a full topographical mapping of an image,
based on the steepness and directionality of transitions in intensity,
revealing the essential structural features of the input. The gradient
magnitude, which represents the gradient direction, acts as the
elevation function, with rapid transitions representing steep parts of
the landscape and smooth transitions correspond to smoother, flatter
areas.

Flooding Simulation In flooding simulation step, local minima are
identified as flood simulation begins in the gradient landscape. These
marked points are where the first catchment basins are and where the
water will eventually start to get higher. As virtual water rises, these
basins combine one by one, and their watershed lines emerge when
water from different basins would meet. Marker-controlled watershed
segmentation adds an extra level of sophistication, with the ability to
explicitly specify the region seeds or markers. These labels offer
computational cues to the algorithm, allowing it to steer the
segmentation in a more controlled manner. With predetermined seeds
for specific regions, users can steer the algorithm's segmentation
direction, allowing for domain knowledge and addressing challenging
challenges in parsing images. Modern-day approaches for watershed
segmentation focus on advanced computational techniques and
implementation strategies. Hierarchical watershed algorithms can
achieve multi-scale segmentation with multi-resolution analyses. We
present immersion simulation methods that capture the advantages of
traditional flooding techniques with lower computational complexity
and a similar segmentation performance.

4.1.4 Practical Considerations and Algorithmic Diffusion
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Although Canny Edge Detection, Region Growing, and Watershed
Segmentation provide distinctive strengths, real-world scenarios
frequently require the use of combined, hybrid techniques.
Developments in the area of image processing (the 4th frontier of
computer vision which has been integrated into contemporary
computer vision) and discussion in the area of edge detection area led
to concurrent and complementary algorithmic methods which
improves systematic understanding. Segmentation is immediately
preceded by a stage of processing known as preprocessing. Examples
are noise filtering, contrast enhancement and colour space
transformations leading to greatly improved segmentation
performance. Common preprocessing methods are median filters,
gaussian filters, or interpolation. Parameter tuning is another key
aspect of segmentation algorithm deployment. To facilitate this
process, each technique is associated with one or more parameters
which can be tuned, based on an image's individual characteristics to
find the right values for the analysis. When models can be more of a
black box, empirical validation, cross-validation techniques, and
domain-specific expertise become essential to verifying segmentation
outputs as reliable.

Metrics for assessing segmentation quality provide quantitative
frameworks for evaluating performance. Systematic comparisons over
diverse algorithmic approaches can be supported by overlap
coefficients, boundary accuracy measurements, and region-based
similarity indices. These metrics serve to systematically assess and
improve upon segmentation strategies by researchers and
practitioners. With deep learning and neural network architectures
continuing to emerge, new segmentation paradigms are a constant
across the ever-evolving computational landscape. Input image - Fully
convolutional networks - One-shot at syntactic segmentation - Data
driven over components on motif - Traditional edge and region-based
segmentation methods.

4.1.5 Knots and a High Dimensional Space of Variables

It constitutes a complex computational paradigm for rendering
meaningful interpretation during photographic image analysis and
characterizes an extensive range of mathematical principles for
extraction information algorithm. Whether it's the sharpness of Canny

Edge Detection, the local knowledge from Region Growing, or the
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spatial logic of Watershed Segmentation, these methods combine to
offer a cutting edge toolkit for image decomposition and
interpretation. Even the journey through these segmentation
methodologies exposes the deeper complexity behind what appears to
be a straightforward task of visual parsing. Each algorithm is a mixed
inheritance of philosophers, mathematicians and mathematicians
created to add processing to turn raw pixel data into structured data.
As technology advances, precision in segmentation will likely
continue growing more refined, encompassing machine learning and
artificial intelligence as well as optimization schemes specified to
particular problem domains. The basic principles examined here —
detecting edges, computing contextual similarity, and recognizing
structural transitions — will continue to be cornerstones of our
computational interpretation of visual information.

This sophisticated interplay between mathematical conceptualization
and real-world utility remains a key theme at the cutting edge of the

image segmentation field today.
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Unit 4.2: Clustering-based Segmentation

4.2.1 Clustering-based Segmentation: Advanced Image Processing
Techniques
Clustering-based Segmentation
Image segmentation is an important aspect of computer vision and
image processing, the primary underlying aim which is to separate a
digital image into several segments, or sets of pixels. Clustering-based
segmentation techniques provide advanced methods to accomplish
this task through mathematical algorithms that cluster similar image
pixels according to a defined computational criterion. Such
approaches convert raw image data into meaningful information by
learning linear structures (or combinations thereof) from the image
data. Clustering-based segmentation rests on the simple idea of
aggregating image pixels or sections with similar attributes — for
example, color intensity, texture, spatial closeness, or statistical
features. Using different types of clustering algorithms, researchers
and practitioners can create an effective segmentation plan using
images in a range of different fields such as medical imaging, satellite
images, identifying objects, and graphics.
Clustering-based segmentation in digital image processing involves
grouping similar pixels together based on their features, such as color,
texture, or spatial location. Here's a tutorial outline using K-Means
clustering as a common example:
Understanding the Concept:

o Pixel Features:
Each pixel in an image can be represented by a feature vector. For
color images, this often includes RGB values. Spatial coordinates (X,
y) can also be included to consider proximity.

¢ Clustering Goal:
The objective is to group pixels with similar feature vectors into
distinct clusters, where each cluster represents a segment of the
image.

o K-Means Algorithm:
K-Means is an iterative algorithm that aims to partition 'n' data points
into 'k' clusters, where each data point belongs to the cluster with the

nearest mean (centroid).
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4.2.2 Popular Clustering Algorithms in Image Segmentation
Several well-established clustering methods are used in image
segmentation tasks:

K-Means Clustering:

Partitions image pixels into K clusters by minimizing intra-cluster
variance. Simple and efficient but requires prior knowledge of K and
may produce disconnected segments.

Fuzzy C-Means (FCM):

Assigns pixels to clusters with degrees of membership, allowing for
soft segmentation, which is useful in medical imaging and uncertain
environments.

Mean Shift Clustering:

A non-parametric method that does not require specifying the number
of clusters in advance. It identifies dense areas in the feature space
and is effective in handling arbitrary-shaped clusters.

Gaussian Mixture Models (GMMs):

Models pixel distributions as a mixture of Gaussians, offering
probabilistic segmentation and better handling of noise compared to
hard assignment methods.

Spectral Clustering:

Utilizes the eigenstructure of similarity matrices to partition data,

often yielding better results for non-linearly separable image regions.

4.2.3 Applications Across Domains

Clustering-based segmentation has broad utility across many
industries and research fields:

Medical Imaging:

Used to isolate tumors, organs, or tissue types in modalities like MRI,
CT, and ultrasound.

Remote Sensing and Satellite Imaging:

Enables classification of land cover, vegetation, and urban zones in
multispectral or hyperspectral images.

Object Detection and Recognition:

Helps in separating foreground objects from complex backgrounds,
facilitating downstream tasks like tracking and classification.
Document Image Analysis:

Segments handwritten or printed text from backgrounds for better

OCR (Optical Character Recognition) performance.
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Graphic and Visual Effects:
Assists in stylizing images, background replacement, or content-aware

editing in digital art and design tools.

4.2.4 Emerging Trends and Hybrid Approaches
Modern approaches often combine clustering with deep learning to
overcome traditional limitations. For example:
e Deep clustering frameworks use convolutional neural
networks to extract high-level features before clustering.
e (Graph-based clustering incorporates both pixel similarity and
spatial relationships for improved coherence.
e Unsupervised learning models, like autoencoders, can embed
image features in latent space where clustering is more

effective.

4.2.5 Theoretical Framework and Algorithmic Principles
One of the most common and simplest clustering algorithm used in
image segmentation is k-Means clustering. This method divides
image pixels into k different clusters, and each cluster can be
represented and identified by its centroid, which is the point that is
most typical of the cluster pixels. The algorithm is based on a simple
iterative procedure which alternates between assigning each pixel to
its closest centroid and updating the centroid locations until it
converges. There are some important steps in the computation of k-
Means clustering. First, k cluster centroids are randomly initialized in
the feature space of the image. Then, each pixel is clusters to the
closest centroid using a distance metric (usually the Euclidean
distance). After each pixel has been assigned to a cluster, the centroids
of the clusters are computed by taking the mean of all pixels assigned
to the cluster in question. This assignment and reassignment process
proceeds iteratively until the memberships of the clusters stabilise or
a predefined convergence criterion is achieved.
Characters and Themes from the Book of Life
From a mathematical perspective, k-Means clustering minimize the
within-cluster sum of square distances, a kind of Form of Squared
Error minimization. The following form produced for function of
objective:

J= (=1 to k)e) (x€Ci) ||x —pi|]2

190
MATS Centre for Distance and Online Education, MATS University



Where:

e Kk is the number of clusters

e = (i refers to separate clusters

e X represents pixel vectors

e ui define cluster centroids

e |x - pil* gives the squared Euclidean distance measure

between pixels and cluster centers

Yet while k-Means has advantages of computational efficiency and
conceptual simplicity, practitioners need to make the very careful
choice of what the initial number of clusters should be. But an
inappropriate cluster can provide not good segmentation consistency
so we require some methods like elbow method or silhouette analysis

for optimizing the parameter.

4.2.6 Limitations and Practical Challenges

Even though it is widely used, k-Means clustering faces a number of
fundamental challenges. In general, k-means clustering is highly
sensitive to the initial placement of the centroids which can lead to
convergence on local optima instead of a global optimum. Also, the
algorithm k-Means infers spherical clusters and equal cluster
variances, which might not be true for all images. To overcome these
limitations, researchers have proposed several variants of k-Means as
k-Means++ which uses a better initialization of centroids and fuzzy c-
means that assigns point to all the clusters with a similarity score.
Such adaptations make the algorithm more resilient and generalizable
to various image segmentation tasks.

4.2.7 Mean-Shift Segmentation: A Non-Parametric Clustering
Technique

Mean-shift segmentation is not only a very rich non-parametric
clustering technique but it is also different as a whole from a
traditional/parametric  clustering perspective. Unlike k-Means
algorithm, it does not require a predefined number of clusters, that is,
it can find cluster structure in a multidimensional feature space using
adaptive approach. Mean-shift is all about sliding window algorithms
shifting a certain distance towards the region of most pixel density
ideal for grouping points together. This process kind of converts the

segmentation process into a mode-seeking algorithm where cluster
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centers are actual density maxima in the feature space. A kernel
function is used in multi-dimensional space to analyze the
neighbourhood of each pixel, taking into consideration both spatial
proximity and feature-space distance.
Details on the Algorithmic Workflow and Implementation
The computational workflow for mean-shift encompasses several
complex steps:

e Clear a sliding window on every data point

e cach pixel in the window's neighborhood is averaged

e Re-center the window around its mean

e Steps 2-3 Repeat until convergence or negligible movement
Neighborhood characteristics are defined by the kernel function.
Gaussian, Epanechnikov, and uniform kernels have are common
kernels used with the kernel weighted mean, and they enable different
pixel weighting for contributions to the overall calculation.
Key Benefits in Image Segmentation
As a result, mean-shift segmentation can achieve extraordinary
achievements on elaborate image architecture. But it is particularly
effective for images with complex texture and color variations, due to
its capacity to identify clusters without needing to define their number
in advance. This algorithm naturally handles non-linear shapes of
clusters and is also capable of overlapping regions.
Performance Implications and Computational Complexity
Mean-shift provides sophisticated segmentation features but suffers
from serious computational costs. In addition, the algorithm is
iterative and requires traversing the neighborhood, leading to
significant computational overhead, especially on high-dimensional
images or large datasets.
Basic Foundations and Approach
In this Unit, region-based segmentation techniques only deal with
those that aim to identify and extract advertisement of coherent image
regions that share certain characteristics. These methods focus on
structural relations and spatial constraints in image decomposition
unlike pixel-level clustering methods. Region-based image segment
methods focus on dividing the images into semantically meaningful
parts based on local and global properties of the image. This type of
algorithms make use of multiple feature descriptors like color

uniformity, texture uniformity, and edge descriptors.

192
MATS Centre for Distance and Online Education, MATS University



4.2.8 Strategies for Growth and Merger
As such, there exist two main approaches of region-based
segmentation, namely region growing and region merging. A seed
point is chosen for growth, followed by any neighboring points being
added to the region. In contrast, region merging starts from an over-
segmented image regions and incrementally merges neighboring
segments preferentially to minimize the overall cost of the image
based on certain homogeneity criteria.
Advanced Tactics{#advanced-implementation-techniques}
State-of-the-art region-based segmentation algorithms include
advanced methods like:

e Watershed transformation

e Normalized cuts

e Hierarchical clustering

e Statistical region-merging
For example, these techniques provide a more nuanced decomposition
of the image using multiscale representations and nontrivial similarity
measures.
4.2.9 Parametric Deformable Models: Active Contours (Snakes)
Theory Background and Computational Paradigm
Active contours, commonly referred to as “snakes,” are an advanced
image segmentation method that combines concepts of mathematical
optimization with geometric modeling. Dynamic templates, or
deformable models, adjust in shape to the edges of the image by
minimizing an energy functional that incorporates internal contour
properties and external image characteristics. The basic idea is to
model the segmentation boundaries as parametric curves that move
and evolve under the influence of internal energy and external forces.
Active contours are powerful because they can define the boundaries
of an object very accurately in different imaging modalities by
treating segmentation as an energy minimization problem.
Mathematical Formulation + Energy Minimization
Energy functional of active contour consists of generally two major
parts:

e Internal energy: Bounding smoothness and continuity of

contours
e Expanding contours towards salient image features

The full energy equation can be summarized as:
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It is enough to show that: E (v ) =] ( E internal (v (s ) ) + E external
(v(s)))ds
Where:

e v(s) the parametric contour

e s: arc-length parameter

e FEinternal provides measures of geometric properties

e External captures image specific boundary characteristics
Level Set: Algorithm Implementation and Advanced Twists
Present-day implementations of active contours commonly use level
set methods, where contours themselves are viewed as zero-level sets
of higher-dimensional functions. This technique offers even greater
topological flexibility while allowing contours to split, merge, and
deform in complex ways.
Notable variants of level set are:

e Geodesic active contours

e (Chan-Vese segmentation

e Mumford-Shah segmentation
4.2.10 Graph-based Segmentatoin Methods: Network
Representation Methods
Graph-based segmentation frames image segmentation as the problem
of partitioning a network, where the pixels represent graph vertices
and pixel similarities are represented as weighted edges. These
methods allow to perform advanced image separation using graph-
theoretical optimization approaches. The core method is building a
weighted graph in which vertices represent the image pixels and the
edge weights represent pixel similarity or dissimilarity. Graph
partitions are subsequently identified where the difference within each
segment is minimized, and the difference between segment is
maximized.
The End = Significance of Graph-based Algorithms in Data
Solutions
Some recent graph-based segmentation algorithms are noteworthy as
follows:

e Normalized cuts

e Spectral clustering

e Random walk segmentation

e MST-based approaches
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These techniques have specific advantages when dealing with
structured image densities and multiscale image information.
Optimization Strategies and Computational Complexity
Graph-based approaches face substantial computational obstacles,
especially for higher-resolution images. More sophisticated
implementations  tap approximation algorithms, hierarchical
representations, and parallel computing techniques to reduce
computational burden.

Integrative Perspectives in Clustering-based Segmentation
Additionally, segmentation techniques, such as clustering-based ones,
have the potential to serve as the basis for wide-ranging and evolving
image processing strategies, as they play a crucial role in converting
raw pixel information into meaningful structural information. The
algorithms we have discussed (k-Means, mean-shift, region-based,
active contours, graph-based, etc.) show the computation and theory
in the field. Upcoming research in the field will expand to hybrid
models merging different segmentation algorithms, betterment in
machine-learning  assisted  adaptive  parameterization,  and
environment-friendly models with less computational power for
accelerated real-time image analysis. Also, the ever-growing
improvement of clustering-based image segmentation models ensures
for better functioning, stronger, and more adaptable image
decomposition approaches in various scientific and industrial fields.
Summary

Edge-based and clustering-based segmentation are two foundational
techniques in digital image segmentation, each with its own strengths
and suitable applications. Edge-based segmentation focuses on
identifying boundaries or edges within an image by detecting
significant changes in intensity or color. These changes often indicate
transitions between different objects or regions. This technique relies
on edge detection operators like Sobel, Prewitt, or Canny, which
highlight areas with high gradient values. It is particularly effective
for images with clear, well-defined boundaries, making it a good
choice for applications such as medical imaging, object recognition,
and scene analysis. However, it can struggle in noisy environments or
where object boundaries are weak or unclear.

Clustering-based segmentation, in contrast, groups pixels with similar

characteristics—such as intensity, color, or texture—into clusters,
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regardless of their location in the image. This method views
segmentation as a classification problem, often employing algorithms
like K-means, Mean Shift, or Fuzzy C-Means to form coherent
regions. It is well-suited for images with gradual transitions or less
distinct boundaries. Clustering approaches are advantageous in
scenarios where the image contains varied textures or when a region-
based understanding is more important than exact boundary
delineation. They can, however, be computationally intensive and may
require prior knowledge such as the number of clusters.
Both methods serve as powerful tools in computer vision and image
processing. While edge-based segmentation offers precision in
detecting borders, clustering-based segmentation provides flexibility
in identifying homogeneous regions. Their effectiveness often
depends on the nature of the image and the specific application
requirements.
Multiple Choice Questions (MCQs)
1. What is the purpose of thresholding in image processing?
a) To remove noise from an image
b) To segment an image into foreground and background
¢) To enhance color balance
d) To apply smoothing filters
(Answer: b)
2. Which thresholding method dynamically adjusts the
threshold for different regions of an image?
a) Global Thresholding
b) Adaptive Thresholding
¢) Mean Filtering
d) Median Filtering
(Answer: b)
3. Otsu’s method is used for:
a) Adaptive Thresholding
b) Global Thresholding
c) Edge Detection
d) Image Enhancement
(Answer: b)
4. Which edge detection method is widely used for detecting
strong edges in an image?
a) Sobel Edge Detection
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b) Prewitt Edge Detection Notes
c¢) Canny Edge Detection
d) Laplacian Edge Detection

(Answer: ¢)

5.

The Watershed Algorithm is used for:
a) Edge Detection

b) Segmentation based on region growing
c¢) Noise Removal

d) Image Compression

(Answer: b)

6.

k-Means Clustering is a technique used for:
a) Edge detection

b) Image segmentation

c¢) Image filtering

d) Image compression

(Answer: b)

7.

Which segmentation technique is based on estimating local
density in feature space?

a) k-Means Clustering

b) Mean-Shift Segmentation

¢) Region Growing

d) Active Contours

(Answer: b)

8.

Active Contours (Snakes) are used for:
a) Edge-based segmentation

b) Region-based segmentation

¢) Object boundary detection

d) Color enhancement

(Answer: ¢)

9.

Graph-based segmentation techniques are commonly used
for:

a) Clustering images into categories

b) Finding minimal edge cuts to separate regions

c¢) Enhancing brightness

d) Smoothing edges

(Answer: b)
10. Which segmentation method works by iteratively merging

regions with similar characteristics?
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a) Watershed Segmentation
b) k-Means Clustering

¢) Region Growing

d) Adaptive Thresholding

(Answer: ¢)

Short Answer Questions

1.

10.

What is the main difference between global and adaptive
thresholding?

How does Otsu’s method determine the optimal threshold for
segmentation?

Explain the process of adaptive thresholding in image
processing.

What is the significance of the Canny edge detection method?
How does the Watershed algorithm perform image
segmentation?

What are the advantages of k-Means clustering in image
segmentation?

Explain the concept of mean-shift segmentation and its
advantages.

What is the purpose of Active Contours (Snakes) in image
segmentation?

How do graph-based segmentation techniques work?

What is the role of region-based segmentation in image

processing?

Long Answer Questions

1.

Explain the concept of thresholding and its applications in
image processing.

Describe Otsu’s method for global thresholding with an
example.

Compare and contrast global and adaptive thresholding
techniques.

How does the Canny edge detection algorithm work? Explain
its different stages.

Describe the Watershed segmentation algorithm and its real-
world applications.

Explain the principles of k-Means clustering and how it is

used for image segmentation.
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7. Discuss the mean-shift segmentation technique and compare it
with k-Means clustering.

8. What are Active Contours (Snakes), and how do they help in
object boundary detection?

9. Explain how graph-based segmentation techniques function
and their advantages.

10. Compare and contrast edge-based, region-based, and

clustering-based segmentation techniques.
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MODULE 5
MORPHOLOGICAL IMAGE PROCESSING

LEARNING OUTCOMES

To analyze fundamental morphological operations such as
dilation, erosion, opening, and closing in image processing.

To explore the hit-or-miss transform and its role in shape
detection and feature extraction.

To investigate advanced morphological techniques for
enhancing computer vision applications.

To evaluate the effectiveness of morphological methods in
noise removal and object recognition.

To study the applications of morphology in object detection

and shape analysis.
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Unit 5.1: Basic Morphological Operations

5.1.1 Basic Morphological Operations in Image Processing
Morphological operations are basic operations in digital image
processing that operate on image regions and extract image
components. Working with binary and grayscale images, these
operations are one of the cornerstones of feature extraction, noise
reduction and image enhancement.

Morphological operations are image processing techniques based on
shape that use a structuring element (a small kernel) to probe an
image, modifying its shape and size. Key operations include Erosion,
which shrinks objects, and Dilation, which expands them. Combining
these leads to Opening (erosion followed by dilation) for removing
small white noise, and Closing (dilation followed by erosion) for
filling small holes.

Structuring Element: A small kernel (matrix) of a specific shape and
size that is used to interact with the input image.

Input Image: The image being processed, which can be binary or
grayscale.

We this section we will also discuss some basic operations

Erosion

Purpose: To remove small objects and thin boundaries.

How it Works: For each pixel in the image, if the structuring element
completely fits within the image's foreground at that position, the
pixel is set to 1 (foreground); otherwise, it's set to 0 (background).
Result: Shrinks foreground objects.

Dilation

Purpose: To grow or expand objects in an image.

How it Works: If the structuring element "hits" (overlaps) with any
foreground pixel in the image, the pixel at the structuring element's
origin is set to 1.

Result: Expands foreground objects.

Combined Operations

Opening

Purpose: To remove small white noises (like tiny bright spots) without
significantly changing the shape of larger objects.

How it Works: A two-step process: first, the image is eroded, and then
it's dilated.
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Example: Opening = Dilation(Erosion(Image)).

Closing

Purpose: To fill small holes or gaps within objects and smooth out
small indentations.

How it Works: A two-step process: first, the image is dilated, and then
it's eroded.

Example: Closing = Erosion(Dilation(Image)).

Key Concepts:

Structuring Element (SE):

A small matrix or kernel used to interact with the image. It defines the
neighborhood over which the morphological operation is applied.
Common shapes include squares, disks, and crosses.

Set Theory Foundation:

Morphological operations treat image objects as sets of pixels and use
set operations such as union, intersection, and translation to transform
them.

5.1.2 Basic Morphological Operations

Erosion (©)

Purpose: Shrinks the foreground objects by removing boundary
pixels.

Effect: Thins objects and eliminates small noise or narrow
protrusions.

Use Case: Remove small white noise from binary images or detach

connected objects.

Dilation (D)

Purpose: Expands foreground objects by adding pixels to the object
boundaries.

Effect: Fills small holes and connects disjoint objects.

Use Case: Enhance white regions or reconnect broken parts of an

object.

Opening (o)
Purpose: Smoothens object contours, removes small objects/noise.
Effect: Erosion followed by dilation.
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Use Case: Useful in background cleaning or separating objects that
are close together.

Closing (*)

Purpose: Fills small holes, gaps, and connects nearby objects.

Effect: Dilation followed by erosion.

Use Case: Useful in connecting broken parts or filling gaps.

5.1.3 Advanced Morphological Operations
Boundary Extraction
Extracts the outline of objects by subtracting the eroded image from
the original.
Hole Filling
e Identifies and fills holes (background surrounded by
foreground).
e Involves iterative dilation until the boundary condition is met.
Skeletonization
e Reduces objects to their skeletal structure, preserving
connectivity and topology.
e Useful for shape analysis and pattern recognition.
e Hit-or-Miss Transform
e Used to detect specific configurations of pixels.

e [t is a morphological template matching operation.

5.1.4 Applications of Morphological Operations

Medical Imaging: Extracting blood vessels, bones, and tumors from
X-rays, MRIs, and CT scans.

Document Image Analysis: Enhancing character boundaries,
removing background noise in scanned texts.

Industrial Inspection: Identifying defects, cracks, or missing parts in
manufactured goods.

Remote Sensing: Processing satellite images to detect roads, rivers,
or urban structures.

Biometric Systems: Enhancing and thinning fingerprints for better

matching accuracy.

5.1.5 Basic Principles in Morphemic Processing
Morphological operations are fundamentally based on the concept of

structuring elements, which are small matrices typically referred to as
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a probe or a mask, that probe over the regions of an image and alter
the image based on the structuring element selected. These structuring
elements traverse the image, interacting with neighbourhoods of
pixels to create transformational effects. = Morphological
transformations are greatly affected by the shape, size and orientation

of the structuring element.

Morphological
Image Processing

Dilation I Erosion ?

Figure 5.1.1: of Morphological Operation

Sample Source: https://medium.com/

Understanding of structure and mathematics.

Morphological operation is mathematically based on the principle of
the set theory and Ilattice algebra. But with images, they are
effectively defined as individual sets of pixel coordinates. This
structural element acts as a probe to these spatial relationships
facilitating advanced geometric operations.

5.1.6 Dilation: Growing Areas of an Image

Dilation is a defining process that enlarges or dilates the object
boundary. When a structuring element "moves" through an image, it
"adds" pixels where the object boundary is located, allowing it to
occupy a larger area. This is especially helpful in situations where
object outlines require improvement to fill small gaps.

Mechanism of Dilation

The origin of the structuring element shifts around the the image
during dilation. It adds pixels based on the detail of the structuring
element wherever the structuring element fits over the image object's
pixel area. This adds further detail to it, making the object bigger and
more understood, which might lead to a connected object. Imagine a
binary image has a small object that contains two separated areas.

Through the dilation process, combining these areas can lead to a
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more uniform structure of the object. The degree of expansion is
bounded by the size and shape of the structuring element.
Dilation in Practice (Some Examples)
Dilation is used extensively in several areas:

e Medial imaging for improvement in lesion/destruction

boundaries

e Satellite images for highlighting geological aspects

e Doc processing to fix broken characters

e Industry investigation for detecting possible defects
Erosion: Reducing and The Image Area
Erosion is the dual operation to dilation, where it contracts the objects
while removing pixels on the periphery. During its use, when a
structuring element passes over an image, it removes the outer pixels,
gradually reducing the size of all objects within an image, and thus
dividing them if they stuck together.
Operational principles for erosion
The origin of the structuring element moves through the image during
erosion. Only those pixels are retained where the whole structuring
element lies within the object. This tight constraint causes the objects
to shrink down, and may even lead to fragmentation. Conceptually,
this process is akin to "wear away," as it resembles the biological
rhythm of physical erosion that gradually makes objects lose their
volume and/ or become smaller. This transformation can lead to the
removal of small protrusions and narrow connections, making them
especially susceptible.
Importance in Graphical Interrogation
There are plenty of cases where erosion is invaluable:

e Eliminating small, spurious objects to reduce noise

e Shape analysis via skeleton extraction

e Medical and scientific imaging: Refining boundaries

e An intermediate step for more complex pattern recognition

tasks

Opening: Erosion and Dilation Combined
Opening is a binary morphological operation which is a combination
of an erosion operation followed by a dilation operation using the
same structuring element. This sequence creates a unique effect which
blurs object contours while eliminating tiny, separated areas.
Operational Sequence of Openingen place.
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During the opening process, first erosion occurs, which shrinks
objects and removes artifacts. Then it uses dilation to bring the still-
remaining objects to their approximate original size, but with
smoother edges. Ultimately, the end result is a cleaner frame with
decreased noise and more defined shape for the object of interest.
These techniques work well in scenarios where gentle shape retention
is necessary and additional artifacts are highly peripheral. The order
of operations (erosion before dilation) is what makes opening
different from some other morphological transformations.
Practical Implementations
Through Opening takes on broader utility in:

e Removing Maalumi Noises in the Background

e Separating touching objects

e Smoothing object boundaries

e [Initial feature extraction from complex image terrain
5.1.7 Closing — Dilation then Erosion
The inverse of opening is called closing where we first dilate and
then erode the image by the same structuring element. This operation
is powerful enough to successfully close small holes inside the object
and link the nearby object regions.
Closing Mechanism
In closing, the initial dilation makes everything larger, but it may also
connect small openings and fill internal holes. Then the erosion
process tries to recreate the original size of the object while keeping
the recently connected areas. This results in a more coherent and
unified representation of the object. The closing operation can be
thought of as a filling on discontinuities in object boundaries. Unlike
opening, closing leads to the preservation and enhancement of object
connectivity.
5.1.8 Strategic Applications

e Closing small gaps in the edges of an object

e Joining adjacent object areas

e Smoothing object exteriors

e Pre-processing images for more complex segmentation

methods

Hit-or-Miss Transform: Precise Structural Detection
What the hit-or-miss transform is a very advanced type of

morphological transform designed to find a specific geometric
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configuration in an image. This approach allows the reader to
correctly identify a specific pattern of pixels or shapes in an image.
Complex Pattern Matching
Pseudocode for hit-or-miss transform using two complementary
structuring elements that must match foreground and background
pixel configuration at the same time. Delineates the required
foreground pattern, the other specifies the background conditions
needed. Thus, only regions that satisfy both sets of constraints are
kept. The operations act as a strong pattern identification mechanism
that can identify highly complex geometric structures with incredible
accuracy. The transform provides sensitivity to particular orientations
of objects, corners arrangements, or more complex spatial relations.
5.1.9 Implementation and Complexity
Hit-or-miss transformations seem to need some smart structuring
element design and a little algorithmic trickiness. It requires a more
thorough analysis of pixel neighborhood (computationally more
effective than its simpler morphological counterparts).
Advanced Use Cases
Hit-or-miss transforms are helpful in:

e Skeleton extraction

e Precise feature detection

e Complex pattern recognition

e (Geometric structure analysis in medical and scientific

imaging

An integrated morphological strategy
Now, while each morphological operation provides its own unique set
of capabilities, that is where the real power is, when we combine
them strategically. These transformations can be serialized by
designers and researchers to reach complex image processing goals.
Choosing Suitable Structuring Elements
The morphology operation is highly dependent on the structuring
element used. Considerations include:

e FElement shape (circle, square, cross)

e Dimensionality

e Size

¢ Orientation

Computational Considerations
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Newer morphological processing techniques are built upon some
advanced computational approaches such as:

e Parallel processing

e GPU acceleration

e Algorithm implementations optimized

e Integrate machine learning
5.1.10 Poised to Perform: The Transformative Power of
Morphological Operations
Morphological operations represent a basic paradigm in digital image
processing, offering subtle tools in the field of geometric
transformation. Thus, through understanding and wisely utilizing the
dilation, erosion, opening, closing, and hit-or-miss transforms,
researchers and practitioners would be able to draw relevant
conclusions from visual data. These techniques are useful in medical
imaging, satellite reconnaissance, industrial inspection, and more.
The advances in computational possibilities will further augment the
roles of these sophisticated morphological operations in visual data
analysis and interpretation.
5.1.11 Advanced Morphological Techniques
Advanced Morphological Image Processing and Computer Vision
Techniques
Morphological techniques are an advanced class of image processing
techniques dealing with the geometric structure of digital pictures.
Such techniques go beyond image conversion, providing fundamental
insight about the shapes, structures, and geometric relationships
contained within a picture that can be extracted and manipulated
separately. Individual processes of the various advanced
morphological techniques can only be applied after you have a strong
conceptual grasp as to which mathematical morphology techniques
can be applied to either tearing apart or reconstructing visual
information. By utilizing advanced mathematical processes that
interpret images as spatial arrangements of geometrical constructs,
these techniques enable practitioners including scientists and
engineers to carry out complex analytic and transformative procedures
that are far more sophisticated than the pixel-level processes used in

traditional image processing.
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Unit 5.2: Foundational Theoretical Considerations

5.2.1 Foundational Theoretical Considerations

Set theory, topology, and mathematical logic provide the theoretical
framework for advanced morphological techniques. These techniques
allow for extremely precise manipulations of visual structures by
conceptualizing images as collections of points in either a discrete or
continuous spatial domain. In contrast to pixel intensity-based
treatment in classical image processing, morphological approaches
inspect the elementary geometric features of image components. Set
theory gives the core mathematics language where these
transformations are conceptualized. In general, images are regarded
as an element of a 2D Euclidean space, allowing us to explore
interesting areas due to their geometric characteristics. Such
viewpoints enable a remarkably advanced methodology to diving
deep into the interpretation of images well beyond basic instinct-
based one-color or one-intensity comparisons.

Interference Against Structural Element

The most difficult Parts of advanced morphological techniques
concerns the using Structural components or kernels or structuring
elements. These geometric entities act as probes interacting with
image structures, unveiling rich information about spatial
arrangement, connectivity, and geometric configuration. The
complexity of structural elements ranges from polygons (ex. squares
and circles) and speck cells to complex custom designs and geometric
configurations. Through careful selection and manipulation of these
components, researchers can derive accurate geometric insights from
images, isolating intricate structures, edges, and spatial connections
that may remain undetected with traditional image processing
methods.

Design of Multipart Structural Element

Structural elements design is one of the highest art forms of advanced
morphological methods. Instead, contemporary methods use local
image characteristics to determine a set of context-aware, dynamic
structural components. We can dynamically vary their shape, size and
interaction parameters to achieve image analysis with greater
semantic content and context. For example, in the context of medical

imaging, structural components could be tailored to the distinct
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geometrical properties of the given biological entities to support
accurate segmentation of intricate anatomical parts. Similarly, in
satellite imaging, the elements of this architecture could be tuned to
identify and characterize geological formations with novel
geometrical fidelity.

5.2.2 Morphological Operations Inside AWS Kinesis Data
Streams

Apart from basic morphological operations like erosion and dilation,
more advanced techniques can present highly advanced operations to
allow more complex analysis and processing of images.
Morphological Transformations and Their Recursive Nature
Recursive morphological techniques are a major breakthrough in
image processing techniques. The key to using morphological
operators is that they are applied repeatedly and develop feedback
mechanisms to form transformation cascades. This recursive type of
functioning enables analysis at differing scales, focusing on the
structure of the image on increasingly derailed levels. Going beyond
folklore understanding of mere image processing, where edge
detection is performed in a single (upper layer only) pass, stacked
layers enables provision of a hierarchical view from a prosaic
recursion-based approach to recursive image processing.
Morphological Approaches Based on Probabilities

If you want to introduce sophistication, you could combine
probabilistic models with (morphology etc.). Statistical techniques
reduce the complexities required in morphological processes.
Probabilistic morphological methods provide a powerful approach to
quantify and characterize complex structures and processes based on
their spatial properties, facilitating improved image analysis and
understanding of morphological variability. Such methods are
especially powerful in settings such as medical imaging, satellite
reconnaissance and industrial quality control, where strict geometric
interpretation must accommodate embodied variability and
measurement errors.

5.2.3 Optimization and Computational Complexity

That's enfolding significant computational challenges that advanced
morphological techniques needs to address at the same time. As the

inherent complexity of one or more structural elements and
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transformation algorithms increases, computational efficiency
becomes essential factor.

Strategies for Parallel Processing

Just as modern adaptations of morphology make use of parallel
processing architectures. This step exploits Graphics Processing Units
(GPUs) or customized parallel computing frameworks that allow for
the parallelization of complex morphological transformations on
multiple computational units. These complementary strategies provide
up to 2 orders of magnitude decrease in processing time compared
with conventional methods enabling near-real-time analytic of high-
resolution image data sets. Through distributing at computation load
across many processing cores, researchers are able to adopt more
complex morphological methods with only limited performance
penalties.

5.2.4 Machine Learning Integration

Although morphological techniques with machine learning forms a
colourful facet still unexplored! For example, deep learning
architectures could be designed to learn how to learn — adapting
strategies for morphological transformation, leading to intelligent
systems capable of evolving context-dependent geometric analysis
strategies. By configuring Convolutional Neural Networks (CNNs)
and other advanced neural architectures to incorporate the principles
of morphological operations, these would allow for more advanced
and adaptive image understanding capabilities. With these hybrid
approaches we offer a combination of the geometric accuracy of
mathematical morphology with the adaptive learning powers of
modern machine learning frameworks.

Advanced Morphology Utilization on Domain-Specific Tasks
State-of-the-art morphological approaches are extremely versatile and
can be employed in many specialized fields, each with its own

specific challenges for geometric image analysis.

5.2.5 Medical Imaging Innovations

Advanced morphological techniques have drastically changed the
capabilities of diagnostics. These complex algorithms are now capable
of segmenting biological structures, detecting anomalies and
providing quantitative analyses of anatomical geometries, with

unparalleled accuracy. For example, tools such as adaptive structural
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element configuration enable the analysis of medical images on a
subject-specific basis, responding to individual variations in anatomy.
Morphologies combined with machine learning can identify subtle
structural changes that may be among the earliest signs of
pathologically relevant processes.

Satellite and Remote Sensing

Remote sensing applications utilize advanced morphological methods
for the extraction of spatial features in big geographical data.
Through advanced structural elements capable of recognizing and
categorizing geological formations, researchers may derive detailed
topographical data from satellite images. The changes in relations
with geometry accuracy have detected a complex terrain, vegetation
patterns and environmental change. Probabilistic morphological
techniques help compensate for differences in image quality and
atmospheric effects as well as sensor properties.

Industrial Quality Control

Advanced morphological analysis plays a crucial role in
manufacturing and quality control domains. Advanced geometric
inspection algorithms can identify microscopic defects, analyze
geometries of the components, and monitor exact tolerances for
manufacture. Adaptive morphological techniques enables dynamic
inspection capabilities within production processes whilst delivering
instantaneous feedback about both product quality and geometric
conformity. These systems refine their detection powers over time
through the power of machine learning models.

5.2.6 Quantum Computing Integration

There is in fact great promise for advanced morphological techniques
across quantum computing architectures. Quantum systems naturally
support parallel processing, suggesting possible attempts towards
extreme casualization of geometric image description, particularly for
current computational strategies rooted in morphology transformation
approaches.

Methods of Neuromorphic Computing

Neuromorphic computing paradigms, which base their algorithms on
processing strategies employed in biological networks, have opened
exciting new possibilities for creating more adaptive and intelligent

morphological analysis systems. They may result in computational
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system closer to human perception of visual phenomena and

geometric reasoning capabilities.
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Unit 5.3: Applications of Morphology

5.3.1 Applications of Morphology: Advanced Computational and
Image Processing Techniques
Morphological image processing is an advanced area of
computational analysis that has transformed our approach to
interpreting, manipulating, and deriving significant insights from
visual data. Morphological techniques, at an elemental level, represent
advanced mathematical solutions to the analysis and manipulation of
geometric shapes in the context of grayscale or binary images, and
have allowed both researchers and engineers alike to tackle
challenging problems across a broad range of scientific fields.
Morphological operations are fundamental techniques in image
processing that manipulate the shape and structure of objects within
images. These operations, based on set theory principles, are crucial
for tasks like image segmentation, feature extraction, and noise
reduction in computer vision applications.
Dilation and erosion form the foundation of morphological operations,
with dilation expanding objects and erosion shrinking them. More
complex operations like opening and closing combine these basics to
smooth contours, remove artifacts, and enhance specific image
features. Advanced techniques build on these principles for
sophisticated image analysis.
Fundamentals of morphological operations

e Morphological operations form a cornerstone of image

processing techniques in computer vision
e These operations manipulate the shape and structure of objects
within images based on set theory principles
e Understanding morphological operations enhances capabilities

in image segmentation, feature extraction, and noise reduction

Basic Principles of Morphological Processing

Morphological processing all stemmed from principles of
mathematical set theory and discrete topology and traditionally aimed
at examining or modifying the structure of images according to shape
and spatial relationships. Morphological methods, in contrast to

conventional pixel-based image processing, focus on the geometry of
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objects, leading to more refined and complex object analysis. These
methods are mostly based on applying structuring elements — small
geometric shapes such as squares, circles, or user-defined patterns —
to systematically edit image areas. The other image conditioning and
enhancement functions proposed based on these two basic operations,
namely, erosion and dilation. Erosion decreases the external pixels of
an object so less pixels are taken into account, while dilation would
include more pixels by adding peripheral pixels. Although these
operators appear trivial, they'll lead to complex transformations that
can highlight critical structural information, remove noise, enhance
features, and support sophisticated object recognition routines.

Shape Analysis and Object Recognition: A Great Attempt

One of the most important and challenging applications of
morphological processing is shape analysis. Here, computational
methodologies utilize advanced algorithms to disassemble, interpret,
and classify geometric forms in visual data sets. It goes beyond just
checking pixels and uses global geometric properties that constitute
the identities of objects.

Methods to Extract Geometric Features

Morphological techniques are advanced methods for extracting
geometric features from contours, boundaries, and structural patterns.
These algorithms break down learnt shapes into basic geometric
primitives in a systematic manner enabling computer systems to
identify and categorize objects with incredible accuracy. Researcher
have multiple approaches to obtain a complete shape analysis:

e Contour analysis: Systems can characterize geometric
complexity, smoothness, and topological characteristics by
observing object boundaries. Morphological operations such
as border tracing and boundary tracking show fine details of a
shape that may be lost when using traditional methods.

e Skeleton Representation: With mathematical morphology, we
can also create the skeleton of an object, which is a minimal
geometric representation highlighting the structural features of
an object. These skeletal structures maintain topological
relations while simplifying complex geometrical shapes.

e Advanced Algorithms for Shape Descriptor Generation:
Multidimensional ~ shape  descriptors that quantitatively

encapsulate geometric characteristics are produced using
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sophisticated algorithms. These descriptors can have many
parameters such as compactness, circularity, elongation, or
convexity, allowing for detailed descriptions of shapes.
5.3.2 Machine Learning Integration
Shape analysis in the modern day increasingly merges machine-
learning approaches with morphological processing methods. The
feature extraction power can be further enhanced through the use of
morphological preprocessed images in deep learning architectures,
such as convolutional neural networks. These systems enhance object
detection and classification performance thanks to using sophisticated
morphological transformations in preprocessing steps.
Learn the operations Morphological operations can be used to
normalizing of image variations, removing background noise, and
standardizing image object representations prior to the training of a
machine learning model. This preprocessing method provides more
solid and generalizable recognition models over different visual
datasets.
Shape analysis is widely used in many domains:
e Medical Imaging : Tumor geometries detection and
characterization
e Satellite Imagery: Recognizing geological formations and
land use patterns
e Manufacturing: Inspect component shape for quality control
e Robotics: Object detection and manipulation strategies
e Astrophysics: Observing the configurations of celestial bodies
e Denoising: Fine-tuning Signals with Precision
Morphological signal processing for noise removal is addressed as
well, a crucial side-effect being the long standing issue of signal
degradation from acquisition digital imaging period. Morphological
techniques provide powerful methods to identify relevant signal
structures among irrelevant or disruptive noise.
Noise classification and method of elimination
Morphological noise removal methods are based on a systematic
analysis of image structures which allow this method to recognize
and remove noise from images in a selective manner. Morphological
processing techniques, unlike traditional filtering methods, focus on

capturing relevant structural information in images, effectively

216
MATS Centre for Distance and Online Education, MATS University



reducing noise without altering important features throughout the
entire image regions uniformly.
Some key strategies to remove noise include:

e Introductory and terminating changes: Over these primary
morphological operations which can soften areas of the
picture, by squeezing the different little level abnormalities of
region without losing the fundamental shapes.

e Dynamic morphological algorithms that adapt noise removal
parameters according to local image characteristics lead to
more intelligent and context-aware signal refinement.

e Filtering Based on Structural Elements: Using structuring
elements that fit the expected noise shapes, very specific
filtering methods can be developed.

5.3.3 Advanced Noise Modeling

Advanced morphological noise removal methods utilize probabilistic
and statistical modeling to model noise distributions. These
techniques look at variations in signal over multiple areas, allowing
for finer and more exact removal of interference. Techniques from
machine learning provide even greater power for canceling noise by
training models that learn to differentiate between the signal of
interest and intervening contributions from unwanted noise. In
various imaging domains, refined signal(s) containing desired
information such as noise can be learned using deep learning
architectures that can achieve greater complexity when learning noise
signatures across multiple imaging schemes which provides a more
intelligent strategy for refining signals.

Applications Across Disciplines

Noise removal is of crucial importance in many scientific and
technological fields, including

e Medical Diagnostics: Improving the clarity of medical images

e Telecommunications: Expanding the Quality of Signal
Transmission

e Geological Surveys: Seismics and remote sensing data
refinement

e Industry Monitoring: Enhancing the accuracy of sensor
measurements

5.3.4 Object Detection: An Improved Computational Recognition
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Object detection is a very advanced computational task that employs
morphological morphological processing to identify and localize
particular geometric forms in the complex visual environment. This
field integrates advanced statistical modeling, machine learning, and
geometric study to create intelligent classification systems.

Strategies for Morphological detection

Morphological object detection methods explore visual information
using multiple complementary strategies in a systematic manner:

e Structural pattern matching: Algorithms compare input images
to large shape databases, finding geometric arrangements that
fit predefined models well enough for particular objects.

e Through taking a look at visual data at multiple geometric
scales, detection systems allow for reliable recognition under
different environmental circumstances.

e (Contextual Feature Incorporation: The use of advanced
algorithms allows to include contextual information and
evaluate relationships between detected objects to enhance
recognition performance.

Machine Learning Enhancement

Current day object detection algorithms are progressively combining
machine learning approaches with morphological processing. These
morphologically pre-processed images are then used by convolutional
neural networks and other advanced deep learning architectures to
progressively build more complex recognition capabilities.

These integrated approaches allow:

e Robust feature extraction

e Adaptively handle diverse and complex visual surroundings

e Broader recognition across various categories of objects

5.3.5 Practical Considerations for Implementing

Object detection is inherently a problem for which one must design a
computational framework that appropriately manages between
computational efficiency and recognition accuracy. Researchers must
consider:

e Computational complexity

e Memory requirements

e Ability to process in real-time

e Inference in dynamic visual settings

Real-World Areas of Application
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Object detection technologies are transforming many fields:

e Automated Navigation of Autonomous Vehicles

e CCTYV for Surveillance and Security

e Medical Diagnostic Imaging

e Robotics and Automation

e Augmented Reality Platforms
Summary
Morphological operations are fundamental techniques in image
processing used primarily for analyzing and manipulating the
structure or shape of objects within binary or grayscale images. These
operations are based on set theory and involve probing an image with
a small shape or template known as a structuring element. The two
most basic morphological operations are dilation and erosion. Dilation
adds pixels to the boundaries of objects, making them grow, while
erosion removes pixels from the edges, causing objects to shrink.
Combining these operations allows for more complex transformations
like opening (erosion followed by dilation) and closing (dilation
followed by erosion), which are used to remove small objects or fill
small holes in images, respectively.
From a theoretical standpoint, morphological operations are grounded
in lattice theory and algebraic structures, enabling precise
mathematical treatment of image structures. They help define
relationships between image objects and spatial configurations,
supporting operations such as hit-or-miss transforms for shape
detection. Morphology also preserves the topological characteristics
of images, making it useful in applications that require structural
consistency. This theoretical foundation makes morphology especially
powerful for pre- and post-processing tasks in image segmentation,
such as edge smoothing and object separation.
In practical applications, morphological operations play a significant
role in fields like medical imaging, document analysis, and industrial
inspection. For instance, in medical imaging, they assist in identifying
tumors or abnormalities by refining boundaries. In character
recognition systems, morphology helps clean scanned documents by
removing noise and connecting broken characters. In quality control
processes, it is used to detect flaws or irregularities in manufactured

goods. Thus, morphological techniques are not only mathematically
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image analysis tasks.
Multiple Choice Questions (MCQs)

1. Which of the following is a basic morphological operation?
a) Fourier Transform
b) Dilation
c¢) Histogram Equalization
d) Edge Detection

(Answer: b)

2. What happens when an image undergoes dilation?
a) Small holes and gaps are filled
b) Objects become thinner
c¢) Noise is added to the image
d) Contrast is enhanced

(Answer: a)

3. Erosion is mainly used to:
a) Expand object boundaries
b) Shrink object boundaries
¢) Enhance image contrast
d) Apply a color filter

(Answer: b)

4. What is the purpose of the Opening operation in
morphological processing?
a) Removing small objects and noise
b) Enhancing contrast
¢) Increasing the size of objects
d) Detecting edges

(Answer: a)

5. The Closing operation in morphology is used to:
a) Remove small holes in objects
b) Reduce noise
¢) Increase image brightness
d) Convert an image to grayscale

(Answer: a)

6. The Hit-or-Miss Transform is used for:
a) Noise removal
b) Shape detection
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¢) Image segmentation Notes
d) Color transformation

(Answer: b)

7. Which structuring element is commonly used in
morphological operations?

a) Circular

b) Square

c¢) Diamond

d) All of the above

(Answer: d)

8. Morphological operations are mainly applied to:
a) Grayscale images
b) Binary images
¢) RGB images
d) CMYK images

(Answer: b)

9. How does morphological opening differ from closing?
a) Opening removes small objects, while closing fills small
holes
b) Closing removes small objects, while opening fills small
holes
c¢) Both perform the same operation
d) Closing enhances contrast more than opening

(Answer: a)

10. One of the main applications of morphological processing
is:

a) Noise reduction

b) Histogram Equalization
c¢) Color enhancement

d) Image compression

(Answer: a)

Short Answer Questions

1. What is the main purpose of morphological image processing?

2. Define the process of dilation in morphological operations.

3. Explain how erosion affects the shape of objects in an image.

4. What is the difference between opening and closing in
morphology?

5. How is the Hit-or-Miss Transform used in image processing?
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10.

What is a structuring element, and how is it used in
morphological operations?

How do morphological techniques help in object recognition?
What is the role of morphology in noise removal?

Explain how shape analysis is performed using morphological
operations.

Why are binary images commonly used in morphological

processing?

Long Answer Questions

1.

10.

Explain the basic morphological operations: dilation, erosion,
opening, and closing.

Compare and contrast dilation and erosion with suitable
examples.

Discuss the importance of structuring elements in
morphological image processing.

Explain the Hit-or-Miss Transform and its applications in
shape detection.

How do morphological operations help in noise removal?
Explain with examples.

Describe the role of morphology in object recognition.

What are the key differences between opening and closing in
morphological processing?

How can morphological techniques be used for edge
detection?

Explain the advanced morphological techniques used in
modern image processing.

Discuss real-world applications of morphological image

processing in medical imaging and industrial automation.
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Glossary

Digital Image Processing: A technique that uses algorithms to
perform operations on images to enhance or extract information.

Image Representation: Method of storing image data using pixel
values (e.g., grayscale, RGB).

Pixel: The smallest unit of a digital image that holds a value
representing intensity or color.

Binary Image: An image with only two pixel values: 0 (black) and
1 (white).

Grayscale Image: An image with shades of gray ranging from
black to white.

Color Image: Image represented using color models like RGB or
HSV.

Multispectral Image: Images captured using multiple wavelengths
across the electromagnetic spectrum.

Spatial Resolution: The detail an image holds based on pixel
density.

Bit Depth: Number of bits used to represent each pixel;
determines the number of gray levels.

Point Processing: Enhancement techniques applied to individual
pixels without considering neighbors.

Spatial Domain Filtering: Image processing using convolution
masks applied directly to pixels.

Histogram Equalization: Technique used to improve contrast by
redistributing pixel intensity values.

Low-Pass Filter: A filter that smoothens images and reduces noise.

High-Pass Filter: Enhances edges and fine details by emphasizing
high-frequency components.

Fourier Transform: Converts spatial image data into the frequency
domain for analysis or filtering.

Thresholding: Technique to segment images by converting
grayscale to binary based on intensity.

Adaptive Thresholding: Varies threshold values for different
image regions based on local properties.

Noise: Unwanted variation in image intensity due to hardware or
environmental interference.
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Gaussian Noise: Noise with a normal distribution; common in
electronic systems.

Salt-and-Pepper Noise: Random occurrences of black and white
pixels.

Speckle Noise: Granular noise typically found in radar and
ultrasound images.

Wiener Filter: An optimal filter for removing noise based on
statistical estimation.

Median Filter: Non-linear filter effective in removing salt-and-
pepper noise.

Image Deconvolution: Process to reverse image distortion caused
by blur or motion.

Inverse Filtering: A technique to restore blurred images by
applying the inverse of the degradation function.

Blind Deconvolution: Image restoration without prior knowledge
of the distortion model.

Edge Detection: Identifies object boundaries by detecting intensity
changes.

Sobel/Canny Operators: Edge detection filters that compute
gradients in image intensity.

Clustering: Grouping pixels based on similarities (color, texture,
intensity).

k-Means Clustering: Segmentation technique that assigns pixels to
the nearest mean cluster.

Watershed Algorithm: Treats the image as a topographic surface
and segments regions by flooding basins.

Mean-Shift Segmentation: Density-based clustering technique
used for object detection.

Region Growing: Segments an image by expanding from seed
points based on similarity.

Active Contours (Snakes): Curves that evolve to find object
boundaries based on energy minimization.

Morphology: A set of operations for extracting image components
that are useful in shape analysis.

Dilation: Expands object boundaries by adding pixels to object
edges.
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Erosion: Shrinks objects by removing pixels from their
boundaries.

Opening: Erosion followed by dilation; removes small noise.
Closing: Dilation followed by erosion; fills small holes and gaps.

Structuring Element: A small matrix used to probe and modify the
image during morphological operations.

Hit-or-Miss Transform: Morphological operation used to detect
specific patterns or shapes.

Binary Morphology: Morphological processing applied to binary
images.

Grayscale Morphology: Extends binary morphological operations
to grayscale images.

Morphological Filtering: Noise reduction and shape manipulation
using erosion, dilation, opening, and closing.
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