mms MATS L:A.Dt

* UNIVERSITY

MATS CENTRE FOR
DISTANCE & ONLINE EDUCATION

Database Technologies

Master of Computer Applications (MCA)
Semester-1

~
) N N'
' oy

i'*e .
' g
) |
Sy W

)
N

SELF LEARNING MATERIAL

\

UNIVERSITY

MATS UNIVERSITY

www.matsuniversity.ac.in

Master of Computer Applications

MCA-103
Database Technologies

NAAC N
GRADEA

ACCREDITED UNIVERSITY

Course Introduction 1
Module 1 3
Introduction to Database Management System

Unit 1.1: Purpose of Database Systems 4

Unit 1.2: Data Models 9

Unit 1.3: Database Architecture, Storage, and Administration 18
Module 2 31
Relational Data Modeling and Database Design

Unit 2.1: Relational Model and Constraints 32

Unit 2.2: Theoretical Foundations of Relational Databases 41

Unit 2.3: Decomposition and Normalization 50
Module 3 62
SQL and Procedural SQL

Unit 3.1: Control Flow in SQL 63

Unit 3.2: User-Defined Functions and Stored Procedures 70

Unit 3.3: Triggers 79
Module 4 91
Transaction Management and Concurrency

Unit 4.1: Transactions 71

Unit 4.2: Serializability 106

Unit 4.3: Concurrency Control & Deadlock Handling 111
Module 5

148

Object-Oriented Database

Unit 5.1: Limitations of RDBMS and Introduction to Advanced 149

Databases

Unit 5.2: Object-Oriented Features in Relational Databases 154

Unit 5.3: Object-Oriented Data Models 165
Glossary 200
References 204

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS
University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,
Chhattisgarh

Prof. (Dr.) Jatinder kumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies
and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSE COORDINATOR

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS
University, Raipur, Chhattisgarh

COURSE PREPARATION

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS
University, Raipur, Chhattisgarh

March, 2025

ISBN: 978-93-49916-20-3

@MATS Centre for Distance and Online Education, MATS University, Village- Gullu, Aarang, Raipur-
(Chhattisgarh)

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in any
form, by mimeograph or any other means, without permission in writing from MATS University,
Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed & Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.
Meghanadhudu Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)
Disclaimer-Publisher of this printing material is not responsible for any error or dispute from
contents of this course material, this is completely depend on AUTHOR’S MANUSCRIPT.

Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

Acknowledgement

The material (pictures and passages) we have used is purely for educational
purposes. Every effort has been made to trace the copyright holders of material
reproduced in this book. Should any infringement have occurred, the publishers and
editors apologize and will be pleased to make the necessary corrections in future

editions of this book.

COURSE INTRODUCTION

Databases play a crucial role in managing, storing, and retrieving
structured information efficiently. This course provides a
comprehensive understanding of database management systems
(DBMS), covering fundamental concepts, relational modeling, SQL,
transaction management, and object-oriented databases.
Modulel: Introduction to Database Management System
This Module lays the foundation by introducing database
management systems, their evolution, key characteristics,
advantages, and real-world applications. It explores different
types of DBMS and their significance in modern computing
environments.
Module2: Relational Data Modeling and Database Design
A well-structured database starts with a robust design. This
Module covers relational data modeling, entity-relationship
(ER) diagrams, normalization techniques, and schema design
principles to ensure data consistency and integrity.
Module 3: SQL and Procedural SQL
Structured Query Language (SQL) is the backbone of
database interaction. This Module introduces fundamental
SQL commands and extends into procedural SQL, covering
stored procedures, triggers, and functions to enhance database
operations.
Module 4: Transaction Management and Concurrency
Data consistency and reliability are essential in multi-user
environments. This Module discusses ACID properties,
transaction processing, concurrency control techniques, and
recovery mechanisms to ensure data integrity in database
systems.
Module 5: Object-Oriented Database
The evolution of data storage has led to object-oriented
databases (OODB), which integrate object-oriented principles
with database management. This Module explores OODB
concepts, advantages, and their application in complex data
structures.

¢M
UNIVERSITY

ready for life......

Notes

By the end of this course, learners will have a strong grasp of database
concepts, design methodologies, and practical SQL skills to manage and

optimize databases efficiently.

2
MATS Centre for Distance and Online Education, MATS University

MODULE 1

INTRODUCTION TO DATABASE MANAGEMENT

SYSTEM

LEARNING OUTCOMES
By the end of this Unit, students will be able to:

Understand the purpose of database systems, including data
management, integrity, and security.

Explain data abstraction, data models (relational, E-R, object-
based, semi-structured), and database languages.

Describe database architecture, data storage, indexing, and
query processing for efficient retrieval.

Identify the roles of database users and administrators, focusing

on database security, maintenance, and management.

¢M
UNIVERSITY

ready for life......

Notes Unit 1.1: Purpose of Database Systems

1.1.1 Purpose of Database Systems
It is software used to manage the efficient storage, retrieval, and
manipulation of data. Its A2F architecture guarantees data integrity,

security, and accessibility for all users and applications.

Efficient Data
S Retrieval .
Data Organization i] Data Integrity &
&Management oy dulch =eatening Consistency
sorting, and querying
Storesdataina using SOL Ensures ACID prop-
structured format erties valtomicity,
(tables, relations) Consistency (golation.
for easy access. and Durability)
Scalability & Concurrency
Performance P Control
fornay urpose of
Optimization p Manages multiple
Supports large data- Sy users accessing
sefspwith indgexing Database Stems data simultaneously
caching, distributed
databases
Data Backup &
Independence Recovery
Separates data storag- Elimination of Provides autornatic
from applications. Data Redundancy backup and disaster
allowing scalability . recovery to prevent
Reduces duplicate data loss
data through

normalization

Fig.1.1.1: Purpose of Database Systems
Purpose of Database Systems

Purpose Description
Data Organization & Stores data in a structured format
Management (tables, relations) for easy access.
Efficient Data Retrieval Allows quick searching, sorting, and

querying using SQL.

Data Integrity & Ensures ACID properties (Atomicity,

Consistency Consistency, Isolation, and Durability).
Data Security & Access Restricts access using authentication &
Control authorization (user roles, permissions).
Concurrency Control Manages multiple users accessing data

simultaneously.

4
MATS Centre for Distance and Online Education, MATS University

Backup & Recovery Provides automatic backup and disaster|
recovery to prevent data loss.

7. Data Independence Separates data storage from
applications, allowing scalability.

8. Elimination of Data Reduces duplicate data through
Redundancy normalization.
9. Scalability & Supports large datasets with indexing,

Performance Optimization | caching, and distributed databases.

3. Example: Database Management System (DBMS)
A DBMS (e.g., MySQL, PostgreSQL, and MongoDB) helps in:

e Storing customer records in an e-commerce site.

e Managing bank transactions securely.

¢ Handling real-time analytics in businesses.
Modern applications such as banking, healthcare, e-commerce, and
cloud computing demand efficient, secure, and scalable data
management and that is where Database Systems comes into the
picture.
1.1.2 View of Data: Data Abstraction, Instances and Schemas
A DBMS (database management system) is a software used for
storing, retrieving and managing data. Databases utilize data
abstraction, instances, and schemas to efficiently manage complex data
and to organize and present data in the most effective way.
Data Abstraction

View Level (Highest Level)
Provides user-specific views of data

!

Logical Level
(Conceptual Level)

Describes what data is stored and
relationships among data

|

Fig.1.1.2: Levels of Data Abstraction

Data Abstraction means displaying only the relevant data while hiding

the background details about how the data is stored and maintained. It

5
MATS Centre for Distance and Online Education, MATS University

UNIVERSITY
ready for life.......

Notes

(\—/\—/\

\ \\\' il

[

ready for life......

Notes

contributes in handling large data bases effectively by dividing the data

representation into three levels.

1.1.1 Levels of Data Abstraction

Level Description Example

1. Physical Level | Describes how data is | Data stored as B-trees,
(Lowest Level) | stored in memory Hash Tables, Blocks on
(files, indexes, Disk.

pointers).

2. Logical Level | Describes what data is| Tables: Students (ID,

(Conceptual stored and Name, Course, Age)
Level) relationships among

data.
3. View Level Provides user-specific | A university student can

(Highest Level) | views of the data. see only his/her records,
while an admin can

access all student details.

Data Abstraction Levels

User-specific data views
and access

Logical Level \

Data relationships and
conceptual schema

Data storage methods and
structures

Fig.1.1.3: Levels of Data Abstraction

Example: In a banking system:
o Physical Level: Data is stored as indexed files on a disk.
o Logical Level: Tables store account details like Account No,
Name, Balance.
e View Level: A customer sees only their transactions, but the

manager sees all accounts.

6
MATS Centre for Distance and Online Education, MATS University

y ﬁ o
mATS
ooy

3. Instances and Schemas Notes

Instance:

* Eg: The current state of the database at a specific point in time.
* Database keeps updating the instances as the data keeps changing.
Example:
A Students table contains:
» ID Name Age Course
> 101 Alex 21 CS
» 102 Emma 22 IT
* The Students table above is a snapshot of the Students table at this
time.
* The instance changes when a new student joins.
Schema (Structure of the Database)
* Schema is the architecture of the database is stable.

* Describes tables, attributes, relationships, constraints.

For example: A schema for Students table:

CREATE TABLE Students (

ID INT PRIMARY KEY,

Name VARCHAR(50),

Age INT,

Course VARCHAR(50)

)i

* All records share the same schema, even though we can add/delete
records

Types of Schemas:

Schema Type Description

Physical Schema | Defines storage details (indexes, partitioning).

Logical Schema Defines tables, relationships, constraints.

4. Difference between Instance and Schema

Feature | Instance Schema

Definition | Snapshot of data at a given Blueprint or structure of
moment the database

7
MATS Centre for Distance and Online Education, MATS University

ey

il

[

ready for life......

Notes Changes | Frequently changes Fixed unless modified by
DBA
Example | Current rows in Students Table design (ID, Name,
table Age, Course)

» Data Abstraction facilitates easier management of database,
separates data storage, structure and how user view.

* Instances contain the most current data, which changes
continuously.

* Schemas dictate the architecture of a database, ownership and

accessibility

8
MATS Centre for Distance and Online Education, MATS University

UNIVERSITY
ready for life.......

Unit 1.2: Data Models Notes

1.2.1 Data Models: Relational Model, Entity-Relationship Model,
Object-Based Data Model, semi structured Data Model, Database
Languages

Data models are abstract models that organize the elements of data and
how they relate to one another and to the properties of real-world
entities. Here’s a snapshot of the data models and database languages
you listed:

Data Models

1. Relational Model:

e Description: In contrast, the relational model stores data in one
or more tables (or ‘relations’) that consist of rows and columns,
where each row is uniquely identified by a key. Rows are
referred to as records or tuples, and columns as attributes or
fields.

Tables, Rows (Tuples), Columns (Attributes)
* Primary Keys and Foreign Keys

Relationships between tables
* Normalization (removing redundancy and ensuring
consistency)
e Pros:
« Easy to use — simple table structure.
* Reliable — strong data integrity with keys and
constraints.
» Flexible — supports a wide variety of queries.
* Powerful — can handle complex joins and operations.
e Examples: MySQL, PostgreSQL, Oracle.

Student ID Name | Age |Course
1 Alice 20 101
2 Bob 22 102
3 Charlie 23 101
| Courses
Course ID Course Name
101 Database Systems
102 Algorithms

Fig.1.2.1.: Relational Model Example

9
MATS Centre for Distance and Online Education, MATS University

(mes)

Notes 2. Entity-Relationship Model (ER Model):
e Definition: The ER model is a high-level data model that

provides a conceptual representation of the data structure of a
database. This use ER diagrams for representation of your
entities (tables), attributes (columns), and associations.

e Keywords: Entities, attributes, relationships, cardinality and

participation constraints.

o Entities

Meaning: Entities are the real-world objects, concepts, or
things about which data is stored in a database. They can be
tangible (like a student) or intangible (like a course).
Example:

Student: A student in a university database.

Course: A course offered by the university (e.g.,
"Database Systems").

Scenario: In a college database, both Student and Course are
entities.

o Attributes

Meaning: Attributes describe the properties, characteristics, or
fields of an entity. Each attribute stores a specific piece of data
about the entity.
Example (for Student entity):
StudentID (unique identifier)
StudentName (e.g., "Anita Sharma")
Age (e.g., 21)
City (e.g., Raipur)
Example (for Course entity):
o CourselD (e.g., C101)

o CourseName (e.g., "Database Systems")
Credits (e.g., 4)

¢ Relationships

10
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

cady for life......

Meaning: A relationship represents how two or more entities Notes
are connected to each other.

Example:
"Enrolled In": A student can enroll in many courses.
o If Anita Sharma (Student) takes "Database Systems"

(Course), then the relationship between Student and
Course is "Enrolled In."

Cardinality

Meaning: Cardinality specifies the number of instances of one
entity that can or must be associated with the number of
instances of another entity.

Types of cardinality with examples:

One-to-One (1:1): One student has one ID card.

One-to-Many (1:N): One course can have many
students enrolled.

Many-to-Many (M:N): A student can enroll in many
courses, and each course can have many students.

Participation Constraints

Meaning: These define whether all or only some instances of
an entity participate in a relationship.

Types with examples:

Total Participation: Every instance of the entity must
participate in the relationship.

Example: Every student must have a StudentID
card — Student <> ID Card.

Partial Participation: Some instances of the entity
may not participate in the relationship.

Example: Not every student enrolls in a hostel
— Student < Hostel.

Strengths: Simple to comprehend and picture, benefits

database design.

11
MATS Centre for Distance and Online Education, MATS University

(RS

By
gmms%
=i
Notes * Easy to visualize — Simple diagrams for complex
systems.
* Great for design — Helps in planning before
implementation.
* Improves communication — Everyone (even

non-technical users) can understand the database
structure.

e Example(s)-- Usually you will use this during the design phase
before creating a relational database, you might design an ER
diagram:

« Entity: student with attributes (StudentID, Name,
Age)

« Entity: course with attributes (CourselD,
CourseName)

» Relationship: Enrol1edin (Student <> Course) with
cardinality (many students can enroll in many courses).

Entity-Relationship Diagram for a University Database

X% <o,

Views

Student Lectures
'/. [T Q ’
Lecturer
Views

o
2 ®| 0\79 Cob

I.* 1

Timetabie Coordinator

Email

Fig.1.2.2.: Relational Model Example

3. Object-Based Data Model:

e Description:
The Object-Based Data Model is an extension of the relational
model that incorporates object-oriented concepts.
It supports complex data types, encapsulation, inheritance, and
polymorphism—making it ideal for representing real-world
objects in a database.

12
MATS Centre for Distance and Online Education, MATS University

=

bW
maTs |
i e

e Key Concepts: Notes

Objects — Real-world entities represented as objects
with state and behaviours.

» Classes — Blueprints that define the structure and
behaviours of objects.

* Inheritance — Classes can inherit attributes and
methods from parent classes.

» Encapsulation — Data and methods are bundled
together.

» Polymorphism — Same method or operation can behave
differently based on the object.

Benefits:

» Handles complex data schemas easily (multimedia,
spatial, or hierarchical data).

» Better compatibility with object-oriented
programming languages like Java, C++, or Python.

» Reusability and modularity thanks to inheritance and
encapsulation.

Examples:

» PostgreSQL (supports object-relational features like
custom types and inheritance)

» Oracle Database (supports object types and methods)

OBJECT-BASED DATA MODEL

Polymorphism

OBJECT

Encapsulation

Fig.1.2.3: Objecct Based Data Model

4. Semi-Structured Data Model:

Definition:

The semi-structured data model is used when data cannot be
arranged into rigid tables like in relational databases.
It has no fixed schema and supports nesting of data elements,
making it highly flexible for representing irregular or evolving
data structures.

Keywords:

13
MATS Centre for Distance and Online Education, MATS University

ey

\ \\\' il

[

ready for life......

Notes » Tags — Markers (like in XML or JSON) to identify
elements.
» Elements — Data items within tags or keys.
« Nesting — Data structures can contain other data
structures.
» Flexible — Schema-Iless or self-describing data.

» Flexible management of heterogeneous (mixed) data.

« Easy integration with web-based or semi-structured
sources (APIs, documents).

« ldeal for rapidly changing requirements (no need to
redesign schemas).

e Examples:

« MongoDB (stores data as JSON-like documents)

» Couchbase

« Any NoSQL database

+ XML and JSON files commonly used in web services.

Semi-Structured Data

“name" : "John Doe"

"age": 20

"courses": {
"title":Database Systems"
"credits": 4

}

Fig.1.2.4 Semi-Structured Data
Database Languages
Overview of Database Languages
Data Definition

Language

(DDL)

Defines and Manages
modifies database Manages and Ccontrols access and transactions and Retrieves and fihers
structure interacts with data permissions changes data

Fig.1.2.5 Types of Database Languages

1. Data Definition Language (DDL):
e Description:
DDL (Data Definition Language) is used to define, modify, or
remove the structure of database objects. It deals with the
schema and structural changes in a database rather than the data
itself. You can use DDL commands to create new tables or other

objects, alter their definitions, or remove them entirely.

14
MATS Centre for Distance and Online Education, MATS University

=

bW
maTs |
i e

e Main operations: Notes

Create database objects (tables, indexes, schemas,
views, etc.)

Alter existing database objects (add/remove columns,
change data types)

Drop or delete objects

Truncate tables (remove all rows quickly while keeping

structure)

e Examples of DDL commands:

CREATE - Creates new objects (e.g., CREATE
TABLE students (...);)

ALTER — Modifies an existing object’s structure (e.g.,
ALTER TABLE students ADD age INT;)

DROP - Deletes an object completely (e.g., DROP
TABLE students;)

TRUNCATE — Removes all data from a table but keeps
its structure (e.g., TRUNCATE TABLE students;)

2. Data Manipulation Language (DML):

e Description:

DML (Data Manipulation Language) is used to manage and

interact with the data stored in database objects (like tables).

It allows you to insert new data, update existing data, delete

unwanted data, and retrieve data as needed. Unlike DDL, which

affects the structure, DML works on the actual records inside

the structure.

e Main operations:

Insert new records into a table
Update existing records in a table
Delete records from a table

Select (retrieve) records from one or more tables

e Examples of DML commands:

SELECT - Retrieves data (e.g., SELECT * FROM
employees;)

INSERT - Adds new rows (e.g., INSERT INTO
employees (id, name) VALUES (1, 'John');)

UPDATE - Modifies existing rows (e.g., UPDATE
employees SET name = 'John Doe' WHERE id = 1;)

15

MATS Centre for Distance and Online Education, MATS University

(e

Notes « DELETE - Removes rows (e.g., DELETE FROM
employees WHERE id = 1;)
3. Data Control Language (DCL):

e Definition: DCL is a language used to control accessibility of

the data in the database. It has commands to add and remove
permissions
e Definition:
DCL (Data Control Language) is used to control access to data
stored in the database. It allows database administrators to grant
or revoke permissions on database objects, ensuring only
authorized users can perform certain actions.
e Main operations:
* Grant permissions to users or roles
* Revoke permissions from users or roles
e Examples of DCL commands:
* GRANT - Gives specific privileges to a user or role
(e.g., GRANT SELECT, INSERT ON employees TO
userl;)
« REVOKE - Removes previously granted privileges
(e.g., REVOKE INSERT ON employees FROM userl,)
4. Transaction Control Language (TCL):
e Description:
TCL (Transaction Control Language) is used to manage
transactions in a database. It works closely with DML
operations to control how changes are saved or undone,
ensuring data integrity and consistency. TCL commands help
you confirm, cancel, or temporarily mark points within a
transaction.
e Main operations:
« Commit a transaction (save changes permanently)
* Rollback a transaction (undo changes since the last
commit)
* Savepoint within a transaction (set a point to which you
can roll back later)
e Examples of TCL commands:
« COMMIT - Makes all changes in the current
transaction permanent
(e.g., COMMIT;)

16
MATS Centre for Distance and Online Education, MATS University

ROLLBACK - Undoes changes made in the current
transaction

(e.g., ROLLBACK;)

SAVEPOINT - Creates a named savepoint to roll back
to if needed

(e.g., SAVEPOINT sp1; then later ROLLBACK TO sp1;)

5. Query Language:

e Aquery language is a data access language used to make queries

in

databases and information systems.

It enables users to retrieve, filter, and organize data according

to specific conditions. SQL (Structured Query Language) is the

most widely used query language in relational database

systems.

e Examples of SQL Clauses (used in queries):

SELECT — Specify the columns to retrieve
FROM - Specify the table(s) to query
WHERE — Apply conditions to filter records
GROUP BY — Group rows sharing a property
HAVING - Filter groups based on conditions
ORDER BY — Sort the result set

e Data Models supported by Query Languages:

Relational Model: Data is organized in tables with
rows and columns, and relationships between them.

Object-Based Data Model: Incorporates
object-oriented features (objects, classes, inheritance).
Semi-Structured Data Model: Supports flexible,

schema-less representation, such as JSON or XML.

e Database Languages include:

Data Definition Language (DDL) — Define and modify
structure

Data Manipulation Language (DML) — Manage data
in tables

Data Control Language (DCL) — Control access and
permissions

Transaction Control Language (TCL) — Manage

transactions and changes

17

MATS Centre for Distance and Online Education, MATS University

y ﬁ N/
moTs)
ooy

Notes

} \\\

UNIVERSITY
ready for life......

Notes

(Al

aTs)

i

Unit 1.3: Database Architecture, Storage, and
Administration

1.3.1 Data Storage and Querying, Database Architecture

1. Data Storage and Querying

Data Storage

In order to access and obtain data quickly, data is stored efficiently on
various storage structures in a database. The two most commons types
of storage are:

Storage Type Description Examples

Primary Storage Stores frequently accessed | Cache memory,

(Main Memory) data in RAM for quick Buffer pool
access.

Secondary Storage | Stores large amounts of data | Hard Disk
(Disk Storage) persistently. (HDD), SSD

Tertiary Storage Used for long-term backups | Magnetic tapes,
and archival data. Cloud storage

How Databases Store Data?
e Heap Storage — Stores unordered records (slow for searches).
o Indexed Storage — Uses B-Trees, Hash Indexes for fast lookup.
o Clustered Storage — Groups related data together for efficiency.
Querying in Databases
A query is a request to retrieve, insert, update, or delete data. Queries
are written using SQL (Structured Query Language).
Example SQL Queries:
-- Retrieve all students older than 20
SELECT * FROM Students WHERE Age > 20;
-- Insert a new student record
INSERT INTO Students (ID, Name, Age, Course) VALUES (103,
'John', 21, 'CS");
-- Update a student's course
UPDATE Students SET Course ='AI' WHERE ID = 103;
-- Delete a student record
DELETE FROM Students WHERE ID = 103;
Query Optimization:

e Query optimization is the process of improving the performance
of database queries so they run faster and use fewer resources.

18
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

cady for life......

e Key Techniques in Query Optimization: Notes

» Use of Indexes:

« Speeds up data retrieval by avoiding full table scans.
(e.g., creating B-Tree or Hash indexes on frequently
searched columns)

* Query Rewriting:

Rewriting a query into an equivalent but more efficient
form.

(e.g., replacing subqueries with joins, simplifying
conditions)

» Execution Plans:

The database’s query optimizer evaluates multiple
plans and chooses the most efficient one.

2. Database Architecture
Databases are designed based on different architectures, which define

how users, applications, and database systems interact.

1-Tier 2-Tier 3-Tier
Architecture Architecture Architecture
Application Application Application

API/Server

B
s T

Database Database
Database

Fig.1.3.1: 3-Tier Architecture

Architecture | Description Examples

Type

1-Tier The database is directly Local file databases

Architecture | accessed by the (MS Access)
application.

2-Tier Application connectstoa | MySQL, PostgreSQL

Architecture | central database (client-
server model).

3-Tier Uses an intermediate layer | Web applications
Architecture | (API/Server) between user | (MySQL +
and database. Django/Node.js)
19

MATS Centre for Distance and Online Education, MATS University

(Al

bW
Notes 1.3.2 Components of Database Architecture
Component Function
Database Stores data in structured format.
DBMS (Database Manages data, queries, and transactions.

Management System)

Query Processor Converts SQL queries into execution
plans.

Storage Manager Handles data retrieval, indexing, and
optimization.

Transaction Manager Ensures ACID properties (Atomicity,

Consistency, Isolation, Durability).

Example: 3-Tier Web Application Architecture

1. Presentation Layer — Web UI (HTML, React)

2. Application Layer — Backend (Python, Java, Node.js)

3. Database Layer — DBMS (MySQL, MongoDB)

e Data Storage:
» Databases are designed with indexing, sharding, replication,
and caching strategies to handle large-scale data efficiently.

* Proper storage design ensures:
* High performance (faster queries)
* Scalability (handles growth in users/data)

* Security (controlled access, encrypted storage)

e For querying, we use SQL (statement for retrieving the data in
SQL)

e Database Architecture that is highly secure, scalable, and efficient.
Designing a high performance application require a proper
understanding of these concepts

1.5 Database Users and Administrators

In line with the database system, there are two kinds of roles, Users,
and Administrators. On that note, here are five types of database users

and administrators along with their responsibilities:

1. Database Administrators (DBAs)

20
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

ready for life......

» Responsibilities: Database Administrators (DBAs) oversee the Notes
database system's administration, upkeep, and performance.

Changing Data
in the Database Managing Databases

Database Users Database DBM Qperators

System
Administrator

Query Tools

Fig.1.3.2: Database Administrator
(Source: https://maxdb.sap.com)

Responsibilities of a Database Administrator (DBA)
1. Installation and Upgrades of Database Software

o The DBA is responsible for installing database software
(such as Oracle, MySQL, SQL Server, or PostgreSQL)
on servers.

o They also ensure that patches, service packs, and major
upgrades are applied in a timely manner to keep the
database environment secure and up to date.

o During upgrades, the DBA must carefully plan and test
the migration to avoid downtime and data loss.

2. Database Configuration and Optimization (Tuning)

o Once installed, the DBA configures the database to suit
organizational requirements.

o Configuration includes setting up parameters, memory
allocation, storage options, and connection limits.

o Optimization or tuning involves adjusting query
execution plans, indexing, and caching strategies to
improve database performance and ensure efficient
utilization of resources.

3. User Access and Security Management

o DBAs control who can access the database and what
actions they can perform.

o They manage user accounts, roles, and privileges,
granting or revoking permissions as necessary.

21
MATS Centre for Distance and Online Education, MATS University

(mes)

Notes o Security measures may also include encrypting sensitive

data, enforcing password policies, and monitoring
suspicious activities to prevent unauthorized access.
4. Backup and Recovery of Data

o One of the most critical DBA responsibilities is ensuring
that data is backed up regularly.

o DBAs design backup strategies such as full,
incremental, and differential backups.

o They also test recovery procedures to ensure that data
can be restored quickly in case of system failure,
corruption, or disaster.

o For example, in Oracle, RMAN (Recovery Manager)
may be used for backups, while SQL Server provides
native backup utilities.

5. Performance Monitoring and Issue Resolution

o DBAs continuously monitor the database for
performance issues such as slow queries, locking,
blocking, or resource bottlenecks.

o They use monitoring tools to identify problems early
and take corrective actions, such as adding indexes,
tuning queries, or reallocating resources.

o Regular health checks help in ensuring smooth database
operations.

6. Providing Appropriate Access Controls

o The DBA ensures that users only have access to the data
and functions necessary for their role (principle of least
privilege).

o This prevents accidental or intentional misuse of data
and enhances compliance with organizational and
regulatory requirements (e.g., GDPR, HIPAA).

o Access control may be implemented through roles,

schemas, and permissions management.

Example: Tools Used by a Database Administrator (DBA)

A DBA not only relies on skills and knowledge but also on
specialized tools to manage databases effectively. Two commonly
used tools are Oracle Enterprise Manager (OEM) and SQL Server

Management Studio (SSMS).

22
MATS Centre for Distance and Online Education, MATS University

=

bW
maTs |
i e

Oracle Enterprise Manager (OEM) Notes

o OEM is a centralized management console provided

by Oracle.
o Itallows DBAS to:

Monitor database health (CPU usage, memory
utilization, query performance, sessions, and
wait events).

Configure and schedule automated backups.
Apply patches and upgrades across multiple
Oracle databases from a single dashboard.
Manage user security, including creating users,
granting roles, and auditing activities.

Set alerts and notifications to proactively

respond to performance or security issues.

o Example: A DBA can use OEM to identify a slow-

running query, check its execution plan, and tune it by

adding an index.
SQL Server Management Studio (SSMS)
o SSMS is a graphical interface provided by Microsoft

for SQL Server databases.

o It provides features such as:

Writing, testing, and executing T-SQL queries.
Configuring database security (creating
logins, assigning roles, and controlling access).
Designing and modifying schemas, tables, and
indexes.

Monitoring real-time performance through
Activity Monitor.

Scheduling jobs and maintenance plans
(backups, index rebuilds, and consistency

checks).

o Example: A DBA can use SSMS Activity Monitor to

see which queries are consuming the most CPU time

and then optimize them.

23

MATS Centre for Distance and Online Education, MATS University

s

ready for life......

Notes 2. Database Designers
* Role: Also referred to as the database architect, the database designer
is responsible for designing the database structure and schema.
* Responsibilities:

¢ Identifying user needs and converting them into a database
schema.

e Develop ER diagrams and their corresponding relational
schemas.

e Normalizing the database to avoid redundancy and make it
more efficient.

e [Establishing tables, links, conditions and indexes.

e Example: ER Diagrams and DB Schema Sophia (damn every
time I use Sophia feels so real to me) is a database designer, she
can use ERwin or Lucidchart to create ER Diagram and Design
DB Schema

3. End Users
Role: The End users are system users who enter into the database using

different applications to retrieve, insert, update, or delete data.

NAIVE OR

CASUAL ADVANCED
END USERS PQSS“L",EE:;C END USERS
Fig.1.3.3: End User
* Types of End Users:

e Casual End Users: Use query languages (for example, SQL) to
access the database on an occasional basis.

e Naive or Parametric End Users: Use existing applications or
forms to access the database (e.g. ATMs, online shopping
carts).

e Advanced End Users: Use specialized tools such as data
analysis software or craft sophisticated queries.

* Responsibilities:
e Platforms that utilize the database for their work (e.g.,

interrogating data,c producing reports).

24
MATS Centre for Distance and Online Education, MATS University

§ \\\

UNIVERSITY
eady for life......

e Ensuring that data the data inputted into the system is accurate Notes
and complete.
* BOT: AN EXAMPLE We have a sales manager querying the database
to generate a sales report.

4. Application Programmers

APPLICATION
PROGRAMMERS

DATA
ACCESS
APIs / ORM

APPLICATION
SOFTWARE DATABASE
Connect

Fig.1.3.4: Application Programmer
* Role: Application programmers design and create software
applications that will communicate with the database.
* Responsibilities:

¢ Coding into applications to enable the database.

e Connect to the database using Data Access APIs (e.g., JDBC,
ODBC, etcSimple API) or ORM (Object-Relational Mapping)
tools

e Application logic ensuring data consistency and security.

e {Debugging and optimizing database queries in application.

* For instance, a programmer could use SQLAlchemy within a Python
script to pull data from a PostgreSQL database

5. System Analysts

Role: Systems analysts are the link between end users and the database
system. They understand what the user needs and optimize the

database accordingly.

User Design
@ Requirements Spec:flcanons @

End System Database
Users Analyst Designer

Fig.1.3.5: System Analysts
* Responsibilities:

25
MATS Centre for Distance and Online Education, MATS University

s |

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

e Collecting and Evaluating User Requirements
e Collaborating with database designers to confirm that the
design aligns with user applications.
e Audit of the DB system to validate the functional &
performance requirements.
e Preparing system specifications and user manuals.
» example: A system analyst helps a healthcare provider design a

database for patient records.

Role Primary Responsibility

Database Manages and maintains the database system (e.g.,
Administrator | performance, security, backups).

Database Designs the database schema and structure (e.g., ER
Designer diagrams, normalization).
End Users Interact with the database to perform tasks (e.g.,

querying, updating data).

Application Develop applications that interact with the database
Programmers | (e.g., APIs, ORM tools).

System Analyze user requirements and ensure the database
Analysts meets those needs.

Summary of Roles

All the above roles together provide an efficient and secure way of
storing, accessing and managing data in a database system.

Summary

Database systems serve as vital tools for organizing, storing, retrieving,
and managing data efficiently in modern applications. Their primary
purpose is to reduce data redundancy, maintain consistency, and
support multi-user environments with controlled access and
concurrency. They provide secure and reliable data management by
offering features such as transaction control, data integrity
enforcement, and backup and recovery mechanisms. By abstracting
complex storage details and offering simplified user views, database
systems help streamline operations and facilitate informed decision-
making across organizations.

To structure and interpret data meaningfully, database systems rely on
various data models. The relational model is the most widely used,
representing data in tables with rows and columns. Other models like

26
MATS Centre for Distance and Online Education, MATS University

hierarchical, network, object-oriented, and NoSQL cater to specific
needs such as complex relationships, multimedia storage, or
unstructured data. Underlying these systems is a layered architecture
that ensures separation of concerns—typically including client,
application, and data tiers. Database storage involves managing data
physically on disk with efficient indexing, buffering, and logging
mechanisms for speed and reliability. Database administration ensures
optimal performance and security, involving tasks like user access
control, system monitoring, and query optimization. Altogether,
database systems form the backbone of digital data ecosystems,
supporting everything from daily operations to advanced analytics.

27
MATS Centre for Distance and Online Education, MATS University

=

} W

ars)

UNIVERSITY

cady for life......

mms%
il

Notes

Multiple-Choice Questions (MCQs)

1. Which of the following best describes a database?

a) A collection of files stored on a hard drive
b) A systematic collection of data that allows easy access
and management
C) A set of interconnected spreadsheets
d) A software program used for designing web pages
(Answer: b)

. What is the purpose of data abstraction in databases?

a) To provide a physical representation of data
b) To hide complex details from users and provide a
simplified view
c) To store data in encrypted format only
d) To ensure data is always in a graphical format
(Answer: b)

. Which of the following is NOT a type of database schema?

a) Logical schema
b) Conceptual schema
c) Flat schema

d) Physical schema

(Answer: ¢)

. What is DDL in databases?

a) Data Derivation Language
b) Data Definition Language
c) Database Deployment Language
d) Dynamic Data Language
(Answer: b)
The three-tier database architecture consists of:
a) Client, Application Server, Database Server
b) Front-end, Back-end, Middleware
c) Data Layer, Business Logic Layer, Presentation Layer
d) All of the above
(Answer: d)

. Which of the following database users is responsible for

managing access control?
a) End users
b) Database Administrator (DBA)

28
MATS Centre for Distance and Online Education, MATS University

7.

8.

9.

=

§ \\\ i
c) System Analyst Notes
d) Data Scientist

(Answer: b)

Data mining is used for:
a) Discovering patterns and relationships in large datasets
b) Cleaning redundant data from a database
c) Encrypting sensitive information in a database
d) Physically storing data in warehouses
(Answer: a)
What is the primary function of a data warehouse?
a) To store current transactional data
b) To process online transactions in real-time
c) To store historical data for analysis and decision-
making
d) To replace traditional relational databases
(Answer: ¢)
Big Data typically involves: Notes
a) Small-scale structured datasets
b) Large volumes of unstructured or semi-structured data
c) Only relational databases
d) Only cloud-based data storage
(Answer: b)

10. Which of the following is a key feature of Data Analytics?

a) Predicting future trends based on historical data
b) Encrypting databases for security

c) Deleting unnecessary data from databases

d) Creating web pages for data visualization

(Answer: a)

Short Questions

1.

oUW

Define a database and its primary purpose.

What is data abstraction in a database system?

Differentiate between schema and instance in databases.

What are the two main types of database languages?

Define DML and provide one example.

What is the difference between two-tier and three-tier database
architecture?

Name two key responsibilities of a Database Administrator
(DBA).

29
MATS Centre for Distance and Online Education, MATS University

mms%
il

Notes 8.
9.

10.

What is data mining and how is it useful?
Explain the concept of a data warehouse.

What are the four key characteristics of Big Data?

Long Questions

1.

10.

Explain the purpose of a database and its advantages over
traditional file systems.

Discuss the three levels of data abstraction with examples.
Differentiate between different types of database schemas with
proper explanations.

Explain the differences between DDL and DML with
appropriate SQL examples.

Describe the components of a three-tier database architecture
and how they interact.

Discuss the different types of database users and their roles in
a database system.

What is data mining? Explain the various techniques used in
data mining.

Define data warehousing and discuss its architecture and
benefits.

Explain the concept of Big Data, its challenges, and how it
differs from traditional databases.

What is Data Analytics? Discuss its types, importance, and

applications in real-world scenarios.

30
MATS Centre for Distance and Online Education, MATS University

MODULE 2

RELATIONAL DATA MODELING AND DATABASE

DESIGN

LEARNING OUTCOMES
By the end of this Unit, students will be able to:

Understand relational model concepts and different types of
keys (Super Key, Candidate Key, Primary Key).

Explain integrity constraints, E.F. Codd’s rules, and functional
dependencies in relational databases.

Learn decomposition techniques ensuring lossless join and
dependency preservation.

Apply normalization (INF, 2NF, 3NF, BCNF, PJNF) to

eliminate redundancy and enhance database efficiency.

31

(mes)

Notes

Unit 2.1: Relational Model and Constraints

2.1.1 Relational Model Concepts, Super Key, Candidate Key and
In the Relational Model, data is organized in tables (relations)
consisting of tuples (rows) and attributes (columns).
Each table represents an entity, and relationships among entities are
established through keys.
Primary Key
A Primary Key is an attribute (or a combination of attributes) that
uniquely identifies each tuple (row) in a table.
e No two rows can have the same primary key value.
e A primary key cannot contain NULL values.
Role in the Relational Model:
 Ensures data integrity: Each row is uniquely
identifiable.
* Reduces redundancy: Prevents duplicate records.
» Enables relationships: Used as a reference by foreign
keys in other tables.
* Supports efficient storage & retrieval: SQL queries
rely on keys for quick lookups and joins.

Example:

StudentID (PK) Name |Course

101 Sophia |[DBMS

102 Alex |[Networks

Here, StudentID is the Primary Key, ensuring each student record is
unique.
Super Key
A Super Key is any set of one or more attributes (columns) that can
uniquely identify a tuple (row) in a relation (table).
* It may consist of a single attribute or a combination of
attributes.
* Every table must have at least one super key.
* Aprimary key is always a super key, but not every super key is
a primary key (some may contain extra attributes that are not
necessary for uniqueness).

Key points about Super Keys:

32
MATS Centre for Distance and Online Education, MATS University

=

By
tMATS |
UNIVEI]!?ITY
» Uniqueness: No two rows can have the same values for a super Notes
key.

* Minimality not required: Unlike a candidate key or primary
key, a super key can have redundant attributes and still be
unique.

Example:

Consider a Student table with attributes:

{StudentID, Email, Name, Phone}

Possible Super Keys:

{StudentID} (uniquely identifies each student)

{Email} (assuming each email is unique)

{StudentID, Name} (still unique, but not minimal)
{StudentID, Phone} (also unique, but includes extra attribute)
Candidate Key

A Candidate Key is a minimal set of one or more attributes that
uniquely identifies each tuple (row) in a table.

* Minimality: A candidate key has no redundant attributes—if
you remove any attribute from it, it will no longer uniquely
identify rows.

* Uniqueness: No two rows can share the same values for a
candidate key.

* Multiple Candidate Keys: A table can have more than one
candidate key.

Among all candidate keys, one is chosen as the Primary Key, while
others remain as alternate keys.

Example:

Consider a Student table with attributes:

{StudentID, Email, Name, Phone}

Possible Candidate Keys (assuming uniqueness):

{StudentID} (unique and minimal)

{Email} (unique and minimal)

Non-Candidate Example:

{StudentID, Email} (still unique but not minimal, because StudentID
alone is enough)

Foreign Key

A Foreign Key is an attribute (or a set of attributes) in one table that

refers to the Primary Key (or a unique key) in another table.

33
MATS Centre for Distance and Online Education, MATS University

(Al

W
gmms%
g S
Notes It is used to establish and enforce a link between the data in the two
tables.

Key Characteristics:

* Maintains referential integrity: Every value in the foreign key
column must either match a value in the referenced primary key
column or be NULL.

* Defines relationships between tables: One-to-many or
many-to-one relationships are often implemented using foreign
keys.

* Restricts invalid data: The database will prevent inserting or
updating a foreign key value that doesn’t exist in the referenced
table.

Example:

Suppose you have two tables:

Students Table

StudentID (PK) Name
101 Sophia
102 Alex

Enrollments Table

EnrollmentID (PK) StudentID (FK) Course

1 101 DBMS

2 102 Networks

Here, StudentID in Enrollments is a Foreign Key that references
StudentID in Students.

It ensures every enrollment record belongs to a valid student.

2.1.2 Constraints: Domain, Key, Entity and Referential Integrity

constraints

34
MATS Centre for Distance and Online Education, MATS University

Types of Integrity Constraints in RDBMS: Entity, Referential,

Relational ~ Domain
Constaints JH Constaints &

Key
Constraint

Integrity
Constraint

Figure 2.1.1: Relational Model and Constraints

(Source: https://medium.com)

Domain, and Key Integrity Constraints This include basically rules that
are used by tables in relational databases in order to verify if the data
inserted to these tables have a sense, when they are updated, deleted,
etc. They limit the values that can be placed within tables and disallow
bad values being entered. The main types of Constraints in a relational
model are Domain Constraints Key Constraints Entity Integrity
Constraints Referential Integrity Constraints

1. Domain Constraints

Domain Constraints restrict the values that a column (attribute) can
take in a table. It validates that it stores only valid data types and
values in the database.

Example: Assuming you have "Student" table with the following
schema (Student ID, Name, Age, and Email).

e Age is an example of a domain constraint, suppose Age is
integer and Age is allowed only from 18 to 60 that is Age =17
or Age = 65 would violate the domain constraint.

e As another example, if Email is defined as a string that matches
the format "@domain. i.e., student email.@school. com"
would be rejected

2. Key Constraints
Table: Key Constraint Ensures Each Row is Unique This implies that
two rows cannot possess the same value in a key attribute. Super Keys

Candidate Keys Primary Keys

35
MATS Centre for Distance and Online Education, MATS University

UNIVERSITY

ready for life......

Notes

ars)

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

Example: Consider an "Employee" table having attributes
(Employee ID, Name, Email) and it is having Employee ID as the
Primary Key.

o If we attempt to add duplicate Employee ID (like two
employees with Employee ID = 101), the Therewould be no
insertion due to key constraint.

3. Entity Integrity Constraint

The Entity Integrity constraint ensures that the primary key of a table
will never have NULL values. This Rule keeps each row in the table
unique and into its own entity.

Example: In a “Product” table with attributes (Product ID, Name,
Price), the Product ID is the Primary Key.

e The new product cannot be inserted with NULL as
Product_ID, the entry will be rejected by database system, as
primary key can be NULL.

4. Referential Integrity Constraint

A Referential Integrity Constraint is a set of rules that ensures that
relationships between tables remain consistent. Foreign keys in one
table must reference an existing primary key in another table or be
NULL.

* Definition: A foreign key is a column whose data must match a
primary key in another table Example: Two Tables, Orders,
Customers.

Primary-foreign key relationship constraints (also known as referential
integrity constraint) maintain the consistency between the two tables.
It either has to refer to an existing primary key or NULL.

For example, imagine two tables, "Orders" and '"Customers'.

o "Customers' Table:

Customer_ID|Name Email

C101 Alice jalice@email.com
C102 Bob |bob@email.com

o "Orders" Table:

Order_ID |Customer_ID |Product
0201 C101 Laptop
0202 C102 Phone
0203 C105 Tablet

36

MATS Centre for Distance and Online Education, MATS University

e Ny

ready for life......

o The Customer ID column in the "Orders" table is a Foreign Key
referencing the Customer ID in the "Customers" table. If an order
is placed with Customer ID = C105, but no such customer exists
in the "Customers" table, the database system will prevent the
insertion to maintain referential integrity.

Constraints ensure data consistency and reliability within a relational
database.

Domain Entity Integrity
Constraint Constraint

Department must be Employees EmployeelD and Name

one of “Marketing,” cannot be NULL
“Sales,” Other® | EmployeelD |Name | Department
|—> PK | Sophia |Sophia| Marketing |«
102| Ryan Sales
103| NULL [NULL NULL
EmployeelD Referential Integrity
must be unique Constraint
9 Manager|D
must exist in
EmployeelD

Key Referential
Constraint Integrity Constain

Fig.2.1.2: Constraints in Database
Domain Constraints — Maintain Proper Data Types & Values

o Explanation:
Domain constraints ensure that the values entered into a column
(attribute) of a table are valid, consistent, and within the
acceptable range. Each attribute in a table is defined with a
specific data type (e.g., INT, VARCHAR, DATE), and only
values matching that type can be stored. Additionally,
constraints like CHECK can restrict values further (e.g., age
should be greater than 18).

o Example:
If a column Age is defined as INT CHECK (Age >= 18), then
only integer values greater than or equal to 18 are allowed.
Inserting a string value like "Twenty' or a number less than 18

would violate the domain constraint.
2. Key Constraints — Uniquely Identify Records

37
MATS Centre for Distance and Online Education, MATS University

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

Explanation:

Key constraints are rules applied to attributes (or a set of
attributes) that help uniquely identify records in a table. Without
key constraints, duplicate or ambiguous records could exist,
making it difficult to distinguish one record from another.
Common key constraints include Primary Key, Unique Key,
and Candidate Key.

Example:

In a Student table, the column RollNo can be a key constraint.
No two students should have the same RollNo, ensuring that

each record is unique and identifiable.

3. Primary Keys & Entity Integrity Constraints — No NULL Values

Explanation:

A Primary Key is a special key constraint that uniquely
identifies each record in a table. The Entity Integrity
Constraint ensures that a primary key attribute cannot contain
NULL values, because if it were NULL, the record could not be
uniquely identified.

Example:

In a Customer table, the CustomerID is set as the primary key.
Every customer must have a valid, non-null CustomerID. If a
record were inserted with a NULL value for CustomerID, it

would violate the entity integrity constraint.

4. Referential Integrity Constraints — Enforce Valid Relationships

Between Tables

Explanation:
Referential integrity ensures that relationships between tables
remain consistent. It is implemented using Foreign Keys. A
foreign key in one table refers to the primary key in another
table. This constraint ensures that a record in the child table
cannot reference a non-existent record in the parent table.
Example:
Consider two tables:

o Orders(OrderID, CustomerID, OrderDate)

o Customers(CustomerlD, Name, City)

Here, CustomerID in Orders is a foreign key referencing

38
MATS Centre for Distance and Online Education, MATS University

CustomerID in Customers. Referential integrity ensures

that an order cannot be placed by a customer who does

not exist in the Customers table. If you try to insert an

Order with CustomerID = 999 (and no such customer

exists), the database will reject it.

Database Constraints Summary

Constraint |Definition Rule Enforced [Example
Attribute
Restrict the values must
values stored in |match the Age INT CHECK (Age >= 18) >
Domain a column to defined data & ge >=

Constraints

valid data types
and acceptable
ranges.

type and any
specified
condition (e.g.,
CHECK).

Only integer values = 18
allowed.

Ensure that one

ormore No two rows

attributes In Student(RollINo, Name),
Key . can have the .

] uniquely RolINo must be unique for

Constraints |, . same key

identify a each student.

. value.

record in a

table.

Primary key
Entity uniquely Primary key |In Customer(CustomerlD,
Integrity identifies each |columns Name), CustomerID as
(Primary record and cannot contain|Primary Key - cannot be
Key) must not be NULL values. |NULL.

NULL.

A foreign ke
Maintains & y
) . value must In Orders(CustomerlID)
Referential |consistency)
Inteerit between match a referencing
g. i primary key |Customers(CustomerID) = an
(Foreign related tables . .
. . value inthe |order cannot exist for a non-

Key) using foreign .

Kevs parent table or|existing customer.

ye. be NULL.

These constraints play a crucial role in preventing data anomalies such

as duplication, inconsistency, and invalid entries. By enforcing rules on

data types, uniqueness, primary keys, and relationships between tables,

they ensure that the stored data remains accurate, reliable, and

39

MATS Centre for Distance and Online Education, MATS University

ars)

UNIVERSITY

ready for lfe......

(\—/\—/\

\ “ il

[

ready for life......

Notes

meaningful. As a result, the database maintains data integrity, supports
consistent query results, and provides a dependable foundation for

decision-making and application development.

40
MATS Centre for Distance and Online Education, MATS University

Unit 2.2: Theoretical Foundations of Relational
Databases

2.2.1 E.F. Codd’s Rule

In the context of relational databases, Dr. Edgar F. Codd, the father of
the relational database model, defined 12 rules (actually 13, including
Rule 0) to qualify a system as a true relational database management
system (RDBMS) of 1985. In relational databases these rules help keep

data integrity, data consistency and help organize data for better

management.
g Fragmentation Replication
No Reliance on a Central Site Location P
Independence o i Independence
Local - & Distributed Hardware Network
Autonomy Query Independence Independence
_ Processing s
HE
-
Continuous @ i Database Oge;;g&ng
i y:
Operation Independence | Y ance

@

Fig.2.2.1: Codd’s 12 Rule

Rule 0: Foundation Rule

Else, an application can be called RDBMS if it manages data
completely based on relational capabilities. It is actually support for
relational structures (tables, rows and columns), and agree with all
other rules.

Rule 1: Information Rule

Every data in a relational database can only be stored in tables as rows
and columns.

For Example: A "Student" table storing data in structured rows and
columns.

Violation: Unstructured file-based data storage (e.g., text documents
and spreadsheets)..

Rule 2: Guaranteed Access Rule

All data (value) needs to be retrievable by a combination of the table
name, primary key, and the column name.

For instance in order to get a student email, you can do:

SQL

41
MATS Centre for Distance and Online Education, MATS University

UNIVERSITY

ready for life......

Notes

ars)

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

SQL Query: SELECT Email FROM Students WHERE Student ID =
101;

Violation: When we have access to some data using physical
addresses or pointers but not using SQL queries.

Rule 3: Systematic Treatment of NULL Values

NULL values should be handled consistently across the database as to
indicate missing, unknown, or inapplicable data.

For instance: Suppose a student’s phone number is not known, then
the database must permit NULL in the “Phone” column.

Violation: Replacing NULL with arbitrary negativity (i.e. -1 or 99999).
Rule 4: Dynamic Online Catalog (Metadata Rule)

A relational database must use tables (SQL) to access metadata
(schema, constraints, data types).

Sample: Fetching table structure with Inserting/fetching Create table:
SQL

PARSE NO_STD_ERRORS 074001=095BD4291.2+045C06%BQ+
018F+0B6=2 SELECT * FROM INFORMATION SCHEMA.
TABLES;

Incorrect: When metadata is part of external files or system logs rather
than tables..

Rule 5: Comprehensive Data Sub-language Rule

At least one complete language (SQL, for example) for data access,
manipulation, and control must be provided by the system.

e.g.: SQL can insert, delete, update, and retrieve data.

Not even a devil (Can database that have different languages for
different operation, one for query other for updates, etc.)

Rule 6: View Updating Rule

In case a view (virtual table) is constructed from base tables it should
be updatable.

Example:

SQL

CREATE VIEW StudentEmails AS

-- 2. Retrieving specific columns (SELECT): SELECT Student ID,
Email FROM Students;

The underlying table must change if we change the StudentEmails
view.

Violation: When views are read only and don't provide updates.

Rule 7: High-Level Insert, Update, Delete

42
MATS Centre for Distance and Online Education, MATS University

Since inserts, updates, and deletes are performed on RDBMS using
set-based operations and not row-based operations.

Example Updating Multiple Rows in One Query

SQL

Break: The update will excessive looping through each row

Rule 8: Physical Data Independence

We should be able to change our physical storage (where on disk, the
way we handle indexing, etc.) but this should not affect our ability to
access our data with an SQL query.

e.g Moving data from a disk to another disk should not break SQL
queries

Violation: Moving data means re-writing application code.

Rule 9: Logical Data Independence

Logical structure change (adding/removing columns) should not affect
the exist applications

Adding a column like Date of Birth — should not break existing
queries that do not use it.

Violation: When applications break due to schema changes.

Have you watched “The Fall of the House of Usher™?

Rule 10: Integrity Independence

The integrity constraints (e.g., the primary key, the foreign key, NOT
NULL) must be stored directly in the database and not in application
code.

Example: Primary key constraint in SQL:

SQL

ALTER TABLE Employees ADD CONSTRAINT pk emp
PRIMARY KEY (Emp_ID);

Violation: When you enforce uniqueness in your application logic
instead of letting the DB do it.

Rule 11: Distribution Independence

A characteristic requirement of RDBMS is support for distributed
databases without changing of SQL statements.

For example, a query should be functional regardless if your data lives
in one server or is sharded across multiple servers.

Violation: If you need to rewrite queries every time you move data
between different locations.

Rule 12: Non-Subversion Rule

43
MATS Centre for Distance and Online Education, MATS University

=

g \\\

ars)

UNIVERSITY
ready for lif......

Notes

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

No mechanism to access the data (e.g., system-level commands) is
allowed that bypasses relational security and integrity constraints.

For example: Direct database access through scripts must still respect
constraints (such as NOT NULL, FOREIGN KEY)

Violation: When backend scripts allow a user to enter invalid data.
E.F. Codd’s 12 rules guarantee a database adheres to the relational
model. Most modern relational databases (e.g., MySQL, PostgreSQL,
SQL Server, Oracle) follow most of these rules, though some systems
(e.g., NoSQL databases) do not abide by all of them. With these very
rules the relational databases became reliable and efficient for
structured data management, as they allow the database management
system (DBMS) to maintain the well-defined integrity rules that
guarantees the correctness of data as well as independent from all

applications and usable format of data.

2..2.2 Functional dependency, Armstrong’s Inference rules

1. Functional Dependency (FD) in Relational Databases

What is Functional Dependency? Functional Dependency (FD) in a
relational database design is an important concept as it describes the
relationship between attributes in a relation. 3NF (TEACHER,
HEAD DEPARTMENT, HEAD DEPARTMENT) or 3NF: A
functional dependency from attributes X to attributes Y in a relation R
is a possibility that X can functionally determine Y. Understanding this
model is essential for maintaining data integrity to prevent redundancy
as well as database normalization.

What Functional Dependency means

Functional Dependency is denoted as:

X—YX \rightarrow YX—Y

where:

* X (determinant): one or more set of attributes.

* Y (dependent) would be another (or group of) attribute.

* There is exactly one Y for every unique value of X.Example of
Functional Dependency

Consider a "Student" table:

Student_ID |Name |Course|Department

101 Alice |DBMS |CS
102 Bob |OS CS
44

MATS Centre for Distance and Online Education, MATS University

=

y \\\ i

IMATS !

ot Bl
103 Charlie|DBMS |IT Notes
104 David |OS CS

Functional Dependencies in this relation:
1. Student ID — Name, Course, Department
o If we know the Student ID, we can determine Name,
Course, and Department.
2. Course — Department
o If we know the Course, we can determine the
Department.
Types of Functional Dependencies
1. Trivial Functional Dependency
o IfX—>YX \rightarrow YX—Y, and YEXY \subseteq
XYCEX, it is called trivial.
o Example: {Student ID, Name} — Name (Here, Name
is already part of the left-hand side).
2. Non-Trivial Functional Dependency
o IfX—>YX \rightarrow YX—Y,and YYY isnot a
subset of XXX, it is non-trivial.
o Example: Student ID — Name (Name is not part of
Student ID).
3. Completely Non-Trivial Dependency
o IfX—YX \rightarrow YX—Y, and X and Y do not
overlap, it is completely non-trivial.
o Example: Course — Department.
Importance of Functional Dependency in Normalization
o Used to identify candidate keys.
o Helps in decomposing tables while preserving dependencies.
o Essential for eliminating anomalies in database design.
Functional Dependencies in this relation:
Student ID — Name | Course | Department
o We can find out Name, Course & Department if we know the
Student ID.
Course — Department
o We can even find out the Department if we have the Course
Functional Dependencies Types
Trivial Functional Dependency

45
MATS Centre for Distance and Online Education, MATS University

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

If X—>YX \rightarrow YX—Y, and YEXY \subseteq XYCEX, it is
trivial.

o For instance: {Student ID, Name} — Name (Where Name is
already included in the LEFT SIDE).

Non-Trivial Functional Dependency

o That is, if X—YX \rightarrow YX—Y is non-trivial, and Y is not (a
subset of) X (here: YXYXYXYYCSXXX)

o Example: Student ID — Name (Name does not lie in Student ID).
Non-Trivial Dependency You ban the initial k elements.

o If X—YX \rightarrow YX—Y and not-overlapping X and Y then
it’s completely non-trivial.
o E.g., Course — Department.
Role of Functional Dependency in Normalization
* It is used to identify the candidate keys.
* Assists decomposition of tables such that dependencies are
preserved.
* Crucial for removing anomalies from the design of the database.
2. Armstrong’s Axioms (Inference Rules for Functional
Dependencies)
Armstrong’s Axioms (proposed by William W. Armstrong in 1974) are
a set of inference rules used to derive all functional dependencies in a
relational schema. These axioms form the basis for closure computation
and normalization in relational databases.
Armstrong’s Inference Rules
1. Reflexivity (Trivial Dependency Rule)
o IfYisasubset of X, then X — Y holds.
o Example: {Student ID, Name} — Name (since Name is
part of {Student ID, Name}).
2. Augmentation Rule
o IfX —Y,then XZ — YZ (Adding more attributes does
not affect dependency).
o Example: If Student ID — Name, then (Student ID,
Course) — (Name, Course).
3. Transitivity Rule
o IfX—>YandY — Z, then X — Z.
o Example: If Student ID — Course and Course —
Department, then Student ID — Department.
Additional Derived Rules (Based on Armstrong’s Axioms)

46
MATS Centre for Distance and Online Education, MATS University

y ﬁ N/
moTs)
ooy

4. Union Rule Notes
o IfX—>Yand X —Z, then X —> YZ.
o Example: If Student ID — Name and Student ID —
Course, then Student ID — (Name, Course).

5. Decomposition Rule
o IfX—YZ, then X — Y and X — Z separately.
o Example: If Employee ID — (Employee Name, Salary),
then:
= Employee ID — Employee Name
= Employee ID — Salary.
6. Pseudotransitivity Rule
o IfX—>Yand WY — Z, then WX — Z.
o Example: If Student ID — Course and (Course,
Department) — Professor, then (Student ID, Department)
— Professor.
Closure of Functional Dependencies (F+)
The closure of a set of functional dependencies is the complete set of
dependencies that can be derived using Armstrong’s Axioms.
e Given F={A — B, B — C}, the closure F+ includes:
1. A— B(Given)
2. B — C (Given)
3. A — C (By Transitivity)
Example of Computing Closure of an Attribute Set
Given: F= {A — B, B — C, C — D}, find A+ (Closure of A).
1. Start with A+= {A}.
2. Since A — B,add B — A+= {A, B}.
3. Since B — C,add C —» A+={A, B, C}.
4. Since C —» D, add D —» A+={A, B, C, D}.
5. Final result: A+ = {A, B, C, D}.
Finding Candidate Keys Using Closure
o [If A+=All Attributes in Relation, then A is a candidate key.
Example: In R(Student_ID, Name, Course, Department) with FDs:
Student ID — Name, Course — Department,
e Closure of Student ID: {Student ID, Name, Course,
Department} — Student ID is a Candidate Key.
* Functional Dependency It specifies how attributes relate to maintain
the integrity of the database.

47
MATS Centre for Distance and Online Education, MATS University

(mes)

Notes » Using Armstrong’s Axioms, one can derive all the dependencies and

use this for schema normalization.

* \Database design\ : FD Closures and Candidate Key identification
Let’s understand the concept of functional dependency using another
real world example. Consider the following table:

EMPLOYEE Table

EmpID EmpName DeptID DeptName
E101 Anjali DO1 HR

E102 Ramesh D02 Finance
E103 Sohan DO1 HR

E104 Meena D03 IT

Functional Dependencies in this Table
1. EmpID — EmpName, DeptID, DeptName
o EmpID uniquely identifies the employee’s name and
their department.
o Iftwo rows have the same EmpID, they must also have
the same EmpName, DeptID, and DeptName.
2. DeptID — DeptName
o Every department ID corresponds to only one
department name.
o Example: DO1 always means HR.
o This prevents anomalies like assigning two different
names (HR and Human Resources) to the same
department ID.
Not a Functional Dependency
e EmpName — EmpID X
This is invalid because two employees might share the same
name (e.g., two employees named “Ramesh”). So EmpName
cannot uniquely determine EmplID.
Why it Matters

48
MATS Centre for Distance and Online Education, MATS University

o Functional Dependencies like DeptID — DeptName help us
understand how to organize data.

e If DeptName depends only on DeptlD, we should separate
Department details into another table — this leads to

Normalization.

In this chapter, we present the basic ideas, examples, and application

for Functional Dependencies and Armstrong’s Rules.

49
MATS Centre for Distance and Online Education, MATS University

=

} \\\

ars)

UNIVERSITY

ready for lfe......

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

Unit 2.3: Decomposition and Normalization

2.3.1 Decomposition of Relations: Lossless Join and Dependency
Preservation property
1. Decomposition of Relations
Decomposition is necessary in database design to address issues such
as:
» Data Redundancy(duplicating the same data several times).
* Anomalies of Insertion, Deletion and Update (inconsistencies when
we modify data).
* Integrity of Data (avoid the inconsistency in data).
Normalization is the process of organizing the columns (attributes) and
tables (relations) of a database to minimize data redundancy and
improve data integrity, and 1NF, 2NF, 3NF, and BCNF normalization
techniques involve decomposing a relation into smaller relations so that
functional dependencies are preserved, and joins are lossless..
Example:
Let us assume the relation R(Student ID, Name, Course, Instructor,
Department) with the following functional dependencies:
* Student ID — Name, Course
* Course — Instructor, Department
Here Course — Instructor,Department is BCNF violating, so we
decompose R into:

1. RI(Student ID, Name, Course)

2. R2(Cours e, In structor, De part ment)
2. Lossless Join Property
Also, when relations decomposed, they can be combined back to the
original collection of tuples without any loss of information: A Lossless
Join Decomposition.
Definition:
A decomposition of a relation RRR into R1,R2,...RnR1, R2,..,
RnR1,R2,...,Rn is lossless join if:
RRI1 \bowtie R2 \bowtie... \bowtie Rn=RRR 1 xR2x. xRn=
R.Strings are based on the way they are built or arranged.
So it had to not introduce any false (additional) tuples, and not lose any
source data either.

Lossless Join Condition:

50
MATS Centre for Distance and Online Education, MATS University

A lossless decomposition RIR1R1 and R2R2R2 of relation RRR is
said to be lossless if:
More formally, the common attributes need to be a key for at least one
of the newly generated relations.
Example of Lossless Join Decomposition
Let us consider a relation R(Employee ID, Name, Department,
Manager) with the following functional dependencies:

e Employee ID | Name | Department

e Department — Manager
In order to comply with BCNF we break it into:

e RI1(Employee ID, Name, Department))

e R2(Department, Manager)
Note that the common attribute Department in RI1IMNR2R1 \cap
R2R1NR?2 is a key in R2, so this gives us lossless join.
R1xR2=R(No information is lost)R1 \bowtie R2 = R \quad \text{(No
information is lost)} R1R2=R(No information is lost)
But what if our decomposition is wrong and we write, for example:
* R1(Employee ID, Name)
* R2(Employee 1D, Department, Manager)
The join between Department and Manager becomes lossy as we lose
the mapping between them.
3. Dependency Preservation Property
We say a decomposition is dependency preserving, if all functional
dependencies of the original relation are enforceable in the decomposed
relations (without doing joins).
Definition:
A decomposition R1,R2,...,RnR1, R2,..., RnR1,R2,....Rn of RRR is
said to be dependency preserving if:
(FIUF2U...UFn)+=F+(F1UF2U...UFn)+
=(F1UF2U...UFn)+=F+(F1UF2U...UFn)+=F+
where:

e FFF is the initial set of functional dependencies.

e FI1,F2,..FnF1,F2,..FnF1,F2,...Fn are functional dependencies

in decomposing relation
e F+FM+}F+ 1s the closure of FFF, that is, all derived
dependencies.

51
MATS Centre for Distance and Online Education, MATS University

=

} W

ars)

UNIVERSITY

cady for life......

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

Why is Dependency Preservation Important?
* It provides a way to enforce integrity constraints (functional
dependencies) in specific tables without the need for potentially
expensive joins.
* If a decomposition loses dependencies, we may have to enforce some
constraints by joins, resulting in loss of efficiency.
Checking for Dependency Preservation
To determine whether decomposition is dependency preserving, we
find the closure of the union of the dependencies in decomposed
relations and check if it is equal to the original closure.
Example of Dependency Preservation
Let's assume you have the relation R(A, B, C) and with the
dependencies
1. A—-B
2. B—>C
Decomposing into:
*R1(A, B)
* R2(B, C)
Checking closures:
*F1={A— B}
*F2={B—C}
* Closure (F1 U F2) + (F1 U F2)*{+}(F1 U F2) + contains A > B —
C, hence all dependencies preserved.
Dependency preserved
Non-Dependency Preservation Example
Assuming we decompose R(A, B, C) into:
*R1(A, B)
*R2(A, 0)
Since B — C is lost here, we need to perform joins to uphold this.
Not dependency preserving
4. Combining Lossless Join and Dependency Preservation
Ideal Decomposition
A good decomposition should satisty both properties:
1. No Loss — Should not lose any data or add extra tuples.
2. Dependency Preservation — The functional dependencies must

enforceable without costly joins.

52
MATS Centre for Distance and Online Education, MATS University

=

By
tMATS |
UNIVEI]!?ITY
However, in some cases, achieving both simultaneously may not be Notes
possible.

Trade-off Example

Suppose we have a relation R(A, B, C, D, E) Functional
Dependencies:

*A—B

*B—-C

*C—D,E

The BCNF decomposition would yield:

*R1(A, B)

*R2(B, C)

*R3(C, D, E)

The first option is lossless but not dependency preserving (because C
— D, E spans multiple tables).

* Normalizations of database and removal of duplicate is only possible
by means of decomposition.

* Lossless Join means no information is lost if relations are rejoined.

* Dependency Preservation assumes that the functional dependencies
can be enforced without computing joins.

* The ideal decomposition preserves both properties, but compromises
are sometimes necessary.

These tools serve as important checks for not only the viability of the
proposed database schema but also for its performance: by ensuring
that a schema maintains lossless join and dependency preservation,
database designers are able to implement an optimal, normalized, high-
performing database schema.

2.3.2 Normalization: First, Second, Third, BCNF, PJNF
Normalization is a systematic design process used in Relational
Database Management Systems (RDBMS) to organize data into well-

structured tables (relations) and columns (attributes).

The main objectives of normalization are:

1. To eliminate data redundancy (repeated storage of the same
data).
2. To avoid update, insertion, and deletion anomalies.

3. To ensure data integrity and consistency.

53
MATS Centre for Distance and Online Education, MATS University

mms%
il

Notes Normalization is carried out in stages called Normal Forms (NF). Each

stage applies a set of rules to improve the structure of the database.®
Query performance (decreases data redundancy and anomalies)
1. First Normal Form (1NF)
A relation is in 1NF(First Normal Form) if:
1. They all contain atomic (or indivisible) values for each
attribute.
2. No multi valued attributes: Each column holds a single value
for each row.

3. This is a primary key requirement as each row must be

uniquely identifiable.
Example of a Non-1NF Table:
Student_ID | Name Courses Phone Numbers
101 Alice DBMS, OS 9876543210, 1234
102 Bob OS, Networks 5556677889

Issues in Non-1NF Table:
» Multi-valued attributes: “Courses” and “Phone Numbers” have
multiple values in a single column.

* Repeating groups: Some students have multiple phone numbers in a

single field

Converting to 1NF (Atomic Values & Unique Rows):
Student _ID Name |Course Phone Number
101 Alice DBMS 9876543210
101 Alice OS 1234
102 Bob oS 5556677889
102 Bob Networks 5556677889

Now:

Each column contains atomic values.

No multi-valued attributes.

e Every single row can be uniquely identified.
2. Second Normal Form (2NF)

Definition:

Second Normal Form (2NF) if — A relation is in
1. Itisalready in INF.

54
MATS Centre for Distance and Online Education, MATS University

y ﬁ N/
moTs)
ooy

2. partial dependencies). All non-primary attributes are fully Notes

functionally dependent on the primary key (no
Example of a Non-2NF Table:

Order_ID [Product ID| Product Name | Quantity |Order_ Date

0101 P01 Laptop 2 2024-01-01

0102 P02 Mouse 5 2024-01-02

Issues in Non-2NF Table:
e Primary Key = (Order_ID, Product ID) (Composite Key).
e Partial Dependency:
o Product Name functionally depends on Product ID, but
not on Order_ID
Converting to 2NF (Eliminating Partial Dependencies):

Order Table:
Order_ID Order_Date
0101 2024-01-01
0102 2024-01-02
Product Table:
Product_ID Product Name
P01 Laptop
P02 Mouse
Order_Details Table:
Order ID Product 1D Quantity
0101 P01 2
0102 P02 5
Now:

No partial dependency (all non-key attributes depend on its primary
key, fully).
Data is form correctly into lower tables.
3. Third Normal Form (3NF)
Definition:
A relation is in Third Normal Form(3NF) if:
1. Ttis already in 2NF.

55
MATS Centre for Distance and Online Education, MATS University

mms?;
il

Notes 2. No transitive dependency (a non-key attribute must not

dependent on other non-key attributes).
Example of a Non-3NF Table:

Student ID | Name | Course | Instructor Instructor Phone

101 Alice | DBMS Dr. John 9876543210

102 Bob oS Dr. Smith 5556677889

Issues in Non-3NF Table:
o Transitive Dependency:

o Instructor Phone depends on Instructor, not on

Student ID.
Converting to 3NF (Eliminating Transitive Dependency):
Student Table:
Student_ID Name Course Instructor
101 Alice DBMS Dr. John
102 Bob (ON) Dr. Smith
Instructor Table:
Instructor Instructor Phone
Dr. John 9876543210
Dr. Smith 5556677889
Now:

No transitive dependency.
colspan="2" Attributes are directly dependent on the primary key.
4. Boyce-Codd Normal Form (BCNF)
Definition:
A relation is in BCNF if:
1. TItis already in 3NF.
2. All determinants would be candidate key (We have no partial
or transitive dependency now
Example of a Non-BCNF Table:

Employee ID Department Manager
101 IT John
102 HR Sarah
103 IT John
56

MATS Centre for Distance and Online Education, MATS University

e

bW
maTs |
i e

Issues in Non-BCNF Table: Notes
e Manager depends on Department, not on Employee ID
(violating BCNF).
Converting to BCNF:
Department Table:
Department Manager
IT John
HR Sarah
Employee Table:
Employee ID Department
101 IT
102 HR

None of the functional dependencies violates BCNF..
5. Projection-Join Normal Form (PJNF or SNF)
Definition:
A relation is in SNF (PJNF) if and only if:
1. Ttisalready in BCNF.
2. There is no join dependency that cannot be enforced by
decomposition of the relation
Example:

Consider a Supplier-Parts-Project relation:

Supplier ID Part ID Project ID
S1 P1 J1
S1 P2 2
S2 P1 1

If we decompose into:

e Supplier-Part

e Part-Project

e Supplier-Project
We must ensure that recombining these tables retains all original data.
PJNF eliminates join dependencies and guarantees that there's no
more lossless decomposition to be had.
* INF — No multivalues attributes.

* 2NF — No partial dependency.

57
MATS Centre for Distance and Online Education, MATS University

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

* 3NF — No transitive dependency.

* BCNF — Each determinant is a candidate key.

* PINF (5NF) — All join dependencies.

The process of normalization adheres to a set of specific criteria,
resulting in efficient databases that are scalable and free from logical

conflicts.
Summary

The relational model forms the core of modern database systems by
representing data in structured tables known as relations, where each
row corresponds to a record and each column represents an attribute. It
uses keys—such as primary keys and foreign keys—to uniquely
identify records and establish relationships between tables. Constraints
like entity integrity, referential integrity, and domain constraints help
maintain data accuracy, consistency, and validity across relational
databases. These rules ensure that the data remains meaningful and
reliable, preventing anomalies and enforcing structured relationships.

The theoretical foundations of relational databases are grounded in
formal logic and set theory, particularly in relational algebra and
relational calculus. These mathematical models enable precise
querying, optimization, and manipulation of data. To enhance database
design and eliminate redundancy, techniques like decomposition and
normalization are employed. Decomposition involves breaking down
complex tables into simpler ones without losing data integrity, while
normalization restructures data into well-formed tables through various
normal forms (INF, 2NF, 3NF, BCNF). This minimizes duplication,
improves data integrity, and ensures scalability. Together, the relational
model, its theoretical underpinnings, and normalization principles
provide a solid framework for designing efficient, reliable, and
logically sound database systems.

58
MATS Centre for Distance and Online Education, MATS University

y \\\' N/
moTs)
ooy

Multiple Choice Questions: Notes

1. What is the first step in database design?

a) Creating tables

b) Identifying requirements and data modeling

c¢) Writing SQL queries

d) Normalization

(Answer: b)

2. What does an E-R model primarily represent?

a) Data processing speed

b) Database structure using entities and relationships
¢) SQL Queries

d) File management

(Answer: b)

3. Which symbol is used to represent an entity in an E-R diagram?
a) Circle

b) Rectangle

¢) Diamond

d) Triangle

(Answer: b)

4. Which of the following is a type of constraint in databases?
a) Logical Constraint

b) Primary Key Constraint

¢) Software Constraint

d) Physical Constraint

(Answer: b)

5. In an E-R diagram, relationships are represented using:
a) Ovals

b) Rectangles

c¢) Diamonds

d) Lines

(Answer: ¢)

6. A weak entity set is an entity that:

a) Does not have any attributes

b) Depends on a strong entity and lacks a primary key
c) Has multiple primary keys

d) Cannot participate in a relationship

(Answer: b)

59
MATS Centre for Distance and Online Education, MATS University

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

7. Which of the following is NOT a type of relationship in an E-R
model?

a) One-to-One

b) One-to-Many

¢) Many-to-Many

d) Fixed-to-Variable

(Answer: d)

8. Which constraint ensures that all values in a column are unique?
a) Primary Key

b) Foreign Key

¢) NOT NULL

d) DEFAULT

(Answer: a)

9. A strong entity set is an entity that:

a) Requires a foreign key

b) Does not have sufficient attributes

c¢) Has a primary key and can exist independently

d) Cannot store any data

(Answer: c)

10. Which of the following helps in improving database efficiency?
a) Adding redundant data

b) Proper database design using E-R models

¢) Using only one large table for all data

d) Avoiding constraints

(Answer: b)

Short Questions:

. What is the database design process?

. Define E-R Model and its purpose.

. What are the key components of an E-R diagram?

. Explain the difference between a strong entity and a weak entity.
. What are cardinalities in an E-R model?

. Define constraints in a database and provide examples.

. What is the role of primary and foreign keys in database design?

0 N N L AW N =

. How do one-to-one, one-to-many, and many-to-many relationships
differ?

9. Explain the significance of entity sets in a relational database.

10. What is referential integrity, and why is it important?

60
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

ready for life......

Long Questions:

1. Explain the database design process in detail with steps.

2. What is an E-R Model, and how is it used in database design?

3. Describe the different types of relationships in an E-R model with
examples.

4. Discuss the importance of constraints in a relational database.

5. How does an E-R diagram help in designing a database structure?
6. Compare weak entity sets and strong entity sets with examples.

7. Explain the importance of cardinality and participation constraints.
8. Discuss different types of constraints (Primary Key, Foreign Key,
NOT NULL, UNIQUE).

9. Describe the steps involved in converting an E-R model into a
relational model.

10. How does a well-designed E-R model improve database

performance?

61
MATS Centre for Distance and Online Education, MATS University

MODULE 3
SQL AND PROCEDURAL SQL

LEARNING OUTCOMES

e By the end of this Unit, students will be able to:

e Use conditional and iterative statements to control the flow of
SQL execution.

e (Create and implement user-defined functions for modular and
reusable SQL code.

e Develop stored procedures with different parameter types (IN,
OUT, INOUT) for efficient database operations.

e Understand and apply triggers, including before and after

triggers, to enforce business rules and maintain data integrity.

62

Unit 3.1: Control Flow in SQL

Overview of SQL and Procedural SQL in MySQL

Structured Query Language (SQL) is the standard language used to
interact with relational databases such as MySQL. SQL is primarily a
declarative language, meaning the user specifies what needs to be
done, and the database engine determines how to execute the query.
Typical SQL operations include retrieving data using SELECT,
inserting new records with INSERT, updating records using UPDATE,
and deleting records with DELETE. SQL also includes commands for
creating and altering database objects like tables, views, and indexes.
While SQL is powerful for data manipulation and definition, it is
limited in terms of control flow and procedural logic. This is where
Procedural SQL comes into play. In MySQL, Procedural SQL is
implemented through stored routines such as Stored Procedures,
Functions, Triggers, and Events. These allow programmers to embed
procedural constructs like variables, loops, conditional statements, and
error handling within SQL. With Procedural SQL, developers can write
complex business logic directly inside the database, reducing reliance
on external application code.

Merits of SQL (Declarative SQL)

1. Simplicity and Readability: SQL syntax is simple and closer
to natural language, making it easy for beginners to learn and
use.

2. Data Independence: SQL queries focus on what data is
needed, not how it is fetched. The database optimizer decides
the most efficient execution plan.

3. Standardization: SQL is an ANSI/ISO standard, and although
implementations vary across platforms, the core features remain
consistent.

4. Powerful Data Manipulation: SQL provides powerful
operations such as joins, aggregations, grouping, and

subqueries that simplify complex data retrieval tasks.

63
MATS Centre for Distance and Online Education, MATS University

=

} W

ars)

UNIVERSITY
ready for lif......

Notes

(Al

By
gmms%
il

Notes S.

Portability: SQL code can often be migrated across different

relational database systems with minimal changes.

Demerits of SQL

1.

Limited Procedural Capabilities: SQL lacks constructs like
loops and conditional branching, which restricts its ability to
handle complex logic.

Vendor Differences: Although standardized, different
databases (MySQL, Oracle, PostgreSQL) implement SQL with
variations, leading to portability issues.

Performance Concerns: Poorly written queries can result in
significant performance issues, as developers rely on the
database engine for optimization.

Steep Learning Curve for Complex Queries: While basic
SQL is easy, advanced queries involving multiple joins or

nested subqgueries can be difficult to understand and maintain.

Merits of Procedural SQL (MySQL Stored Routines)

1.

Enhanced Functionality: Procedural SQL adds control
structures like IF, CASE, WHILE, and LOOP, making it
possible to write sophisticated logic inside the database.
Performance Gains: Business logic executed at the database
layer often reduces network traffic and increases efficiency, as
fewer calls are made between the application and the database.
Reusability: Stored procedures and functions can be reused
across multiple applications, reducing redundancy and
improving consistency.

Security: Access to sensitive operations can be controlled by
granting permissions on procedures rather than directly on
tables.

Maintainability: Changes in business logic can be managed at
the database level without modifying multiple application

programs.

Demerits of Procedural SQL

64
MATS Centre for Distance and Online Education, MATS University

1. Portability Issues: Procedural SQL is not standardized across
databases; MySQL’s implementation may differ from Oracle
PL/SQL or SQL Server T-SQL.

2. Complexity: Writing and debugging procedural code inside the
database can be more difficult compared to application-level
programming.

3. Performance Bottlenecks: Overuse of procedural SQL for
tasks better suited to applications can overload the database
server.

4. Limited Tool Support: Compared to general-purpose
programming languages, Procedural SQL lacks advanced
debugging, testing, and IDE support.

5. Scalability Concerns: Heavy reliance on stored routines can
create scalability challenges in distributed systems where
application servers are better suited for business logic.

SQL and Procedural SQL complement each other in MySQL. SQL
excels at handling data-oriented tasks, while Procedural SQL adds
programming logic to enhance functionality. While Procedural SQL
provides performance, reusability, and security advantages, it also
introduces complexity and portability issues. An effective database
design balances both approaches: use SQL for straightforward data
operations and Procedural SQL for encapsulating business rules where
it improves efficiency and consistency.
3.1.1 Conditional statements and Iterative statements
Conditional statements
Conditional statements in PL/SQL allow your block to make decisions
and execute different code paths depending on conditions.
Types of Conditional Statements:

« JF...THEN
Executes a block only if a condition is true.
IF <condition> THEN
-- statements
END IF;

 [IF...THEN...ELSE
Chooses between two paths.

65
MATS Centre for Distance and Online Education, MATS University

=

} W

ars)

UNIVERSITY
ready for lif......

Notes

mms%
il

Notes IF <condition> THEN

-- statements if true
ELSE
-- statements if false
END IF;

« [IF...THEN...ELSIF...ELSE
Chooses among multiple conditions.
IF condition] THEN
-- statements
ELSIF condition2 THEN
-- statements
ELSE
-- statements if none are true
END IF;

* CASE Statement
Used to evaluate expressions and choose one path:
CASE v_grade
WHEN 'A' THEN DBMS OUTPUT.PUT_LINE('Excellent);
WHEN 'B' THEN DBMS_OUTPUT.PUT LINE('Good");
ELSE DBMS OUTPUT.PUT LINE('Needs Improvement');
END CASE;
Example:
DECLARE
salary NUMBER := 60000;
BEGIN
IF salary > 50000 THEN
DBMS OUTPUT.PUT LINE('High Salary'");
ELSE
DBMS OUTPUT.PUT LINE('Normal Salary');
END IF;
END;

Example:

DELIMITER //

CREATE PROCEDURE check marks(IN student marks INT, OUT
result VARCHAR(20))

66
MATS Centre for Distance and Online Education, MATS University

BEGIN
IF student marks >= 75 THEN
SET result = Distinction';
ELSEIF student marks >= 50 THEN
SET result = 'Pass';
ELSE
SET result = 'Fail';
END IF;
END $$

DELIMITER ;
How to Call the Procedure

-- Declare a variable for the output
SET @status =";

-- Call the procedure with input marks
CALL check marks(82, @status);

-- Display the result

SELECT @status AS 'Result';
Expected Output

If input marks = 82 —

Result

Distinction

If input marks = 55 —

Result

Pass

If input marks =35 —

Result
Fail

2. Iterative Statements (Loops for Repetition)
Iterative Statements in PL/SQL

67
MATS Centre for Distance and Online Education, MATS University

=

} W

ars)

UNIVERSITY
ready for life......

Notes

mms%
il

Notes Iterative statements (loops) are used to repeat execution of a block of

statements as long as a condition holds or for a fixed number of
iterations.
Types of Loops:
 LOOP...EXIT
A basic loop that repeats until you explicitly EXIT.
LOOP
-- statements
EXIT WHEN condition;
END LOOP;
* WHILE Loop
Repeats while a condition remains true
WHILE condition LOOP
-- statements
END LOOP;
* WHILE Loop
Repeats while a condition remains true.
WHILE condition LOOP
-- statements
END LOOP;
* FOR Loop
Repeats for a known range
FOR counter IN start..end LOOP
-- statements
END LOOP;
Example:
DECLARE
i NUMBER = 1;
BEGIN
WHILE i <=5 LOOP
IF MOD(1,2)=0 THEN
DBMS OUTPUT.PUT LINE('Even Number: ' || 1);
ELSE
DBMS OUTPUT.PUT LINE('Odd Number: ' || 1);
END IF;
1:=1+1;
END LOOP;
END;

68
MATS Centre for Distance and Online Education, MATS University

UNIVERSITY

ready for lfe......

Notes

Output:

Odd Number: 1
Even Number: 2
Odd Number: 3
Even Number: 4
Odd Number: 5

IF-ELSE LOOP

END IF

WHILE LOOP

WHILE FOR counter
condition IN start...end

FOR LOOP

END LOOP END LOOP

Fig.3.1.1: Conditional statements and Iterative statements

69
MATS Centre for Distance and Online Education, MATS University

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

Unit 3.2: User-Defined Functions and Stored Procedures

3.2.1 User-defined functions
A function in PL/SQL is a named block of code that performs a task
and returns a single value. It can be called in SQL queries, PL/SQL
blocks, or other functions/procedures.
Key Features:
* Must return exactly one value using RETURN.
» Can have parameters.
e Canbeused in SELECT, WHERE, or HAVING clauses.
Syntax:
CREATE OR REPLACE FUNCTION function name (paraml
datatype, param2 datatype)
RETURN return_datatype
IS
-- variable declarations
BEGIN
-- function body
RETURN value; -- must return a value
END;

Example:
CREATE OR REPLACE FUNCTION get_bonus(salary NUMBER)
RETURN NUMBER
IS
BEGIN
RETURN salary * 0.1;
END;
/
-- Calling the function
DECLARE
bonus NUMBER;
BEGIN
bonus := get bonus(50000);
DBMS OUTPUT.PUT_LINE('Bonus: ' || bonus);
END;
/

70
MATS Centre for Distance and Online Education, MATS University

\ \\\' i
mATS
i i

Output: Notes
Bonus: 5000

Types of User-Defined Functions in PL/SQL
In PL/SQL, user-defined functions are generally categorized based on
how they are used in SQL statements.

Types of User-Defined
Functions in PL/SQL

Inline
Scalar Table-Valued Aggregate
Functions Functions Functions

Fig.3.2.1: statements and Iterative statements
According to the SQL/PLSQL standards, there are three main types:
1. Scalar Functions
Return a single value for each call.
Typically used in SELECT, WHERE, HAVING, or in calculations.
Example:

DELIMITER //

CREATE FUNCTION get bonus(salary DECIMAL(10,2))
RETURNS DECIMAL(10,2)
DETERMINISTIC
BEGIN
RETURN salary * 0.1;
END //

DELIMITER ;
Explanation
DECIMAL(10,2) is used instead of NUMBER (Oracle type).

DETERMINISTIC means the function always returns the same result

for the same input.

71
MATS Centre for Distance and Online Education, MATS University

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

MySQL doesn’t support CREATE OR REPLACE FUNCTION, so
you must DROP first if it already exists.

DROP FUNCTION IF EXISTS get bonus;
-- Example usage:

SELECT get_bonus(50000) AS Bonus;
Output:

Bonus
5000.00

When to use:
e To compute and return a single value (like bonus, tax,

percentage, etc.).

3.2.2 Stored Procedures, Parameter types: IN, OUT and INOUT

Introduction to Stored Procedures
A Stored Procedure is a compiled SQL statement collection stored in
the database that can be reused. Adan also helps in performing
complex queries and operation efficiently and enhances performance,
security and code reusability.
Why Use Stored Procedures?
Better performance — The SQL statements are compiled once and then
executed multiple times.
Code Reusability — Means no need to write SQL queries again and
again.
Security — Enforcement of access control can restrict changes to
underlying tables.
Less Network Traffic — You send a procedure call instead of multiple
SQL queries.
2. Creating a Stored Procedure
Basic Syntax (MySQL Example):

DELIMITER //

CREATE PROCEDURE procedure name(

BEGIN

-- SQL Statements

END //

72
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

ready for life......

DELIMITER; Notes
* DELIMITER // sets a new statement terminator (because the
procedure contains;).
* CREATE PROCEDURE defines (creates) the procedure.
* SQL logic is within BEGIN... END
* DELIMITER; resets the default terminator

3. Calling a Stored Procedure

Syntax:

CALL procedure name();

Example:

DELIMITER //

CREATE PROCEDURE GetEmployees()

BEGIN

SELECT * FROM Employees;

END //

DELIMITER;

CALL GetEmployees();

Explanation:

* When you execute this procedure, it retrieves all the records from

the Employees table.

* Call GetEmployees(); statement runs the procedure.

4. Parameter Types in Stored Procedures

We can also pass parameters to the stored routines.

[Parameter Types]

h 4 WV h 4

[Stored Procedure]

h 4 A 4 h 4
' ™ @ oY d B
IN ouT IN OUT
Passes a Returns a Passes an
value to the value to updated value
procedure the caller to the caller
\

Fig.3.2.2: Parameter Types in Stored Procedures
Types of parameters are 3 types.

1. IN - For passing input values to the procedure.

73
MATS Centre for Distance and Online Education, MATS University

(mes)

Notes 2. OUT — Used for returning values from the procedure.
3. INOUT - Input and Output.

IN Parameter (Passing Input to Procedure)

* An IN parameter passes a value into the stored procedure.
* An IN parameter cannot be modified by the procedure.
Syntax:
DELIMITER //
CREATE PROCEDURE GetEmployeeByID(IN emp_id INT)
BEGIN
Roughly, if you were to be running SQL commands, your prompt
input would be something like:
END //
DELIMITER;
Calling the Procedure:
CALL GetEmployeeByID(101);
Explanation:
* IN emp _id INT — Takes in an integer (Employee ID) as input.
* Fetches employee information for a specific employee ID.
OUT Parameter (Returning a Value)
e OUT parameter returns a value.
e THE PROCEDURE CHANGES THE VALUE OF OUT

PARAMETER
For Example: Number Of Employees Rehired
DELIMITER //
DELIMITER $$ CREATE PROCEDURE GetEmployeeCount(OUT
total INT)$$ DELIMITER;
BEGIN
SELECT COUNT(*) INTO total FROM Employees;
END //
DELIMITER;
Calling the Procedure:
CALL GetEmployeeCount(@count);
SELECT @count; -- Show the value returned
Explanation:
* OUT total INT stores total employees.
* SELECT COUNT(*) INTO total saves the result to total.
* The CALL GetEmployeeCount(@count); saves the result to
@count.

74
MATS Centre for Distance and Online Education, MATS University

y ﬁ o
mATS
ooy

3.3.3 INOUT Parameter (Both Input and Output) Notes
e The INOUT modifier is for directly changing value and

returning.

Example: Modify Salary and Retrun updated Value
DELIMITER //
CREATE PROCEDURE UpdateSalary(INOUT emp_salary
DECIMAL(10,2), IN emp _id int)
BEGIN
UPDATE Employees SET Salary = emp_salary WHERE
Employee ID =emp id,
SELECT Salary INTO emp_salary FROM Employees WHERE
Employee ID=emp id
END //
DELIMITER;
Calling the Procedure:
SET @salary = 50000;
CALL UpdateSalary(101, @salary);
SELECT (@salary; -- Updated salary
Explanation:
* INOUT emp_salary — input and output salary value
* Modifies the salary, and then reads back the new value.
* SET @salary = 50000; initializes the value
* The new salary is returned and stored in (@salary.
5. Dropping a Stored Procedure

e To remove a procedure you are no longer interested in, use:
DROP PROCEDURE procedure name IF EXISTS;
Example:
DROP PROCEDURE IF EXISTS GetEmployeeBylID;
They optimized database operations by efficiency, security, and
reusability.

e [N Parameters — Get input but cannot be changed.

e OUT Parameters = Return from procedures

e INOUT Parameters — Re-route values by modifying and

returning.

Stored procedures help manage the database more quickly and
securely in an effective and structural way, thus making them one of
the key functions of all modern RDBMS systems.

75
MATS Centre for Distance and Online Education, MATS University

(mes)

Notes Scenario based Problem Statement demonstrating IN, OUT,
INOUT

Here is one scenario based problem statement and its solution that

demonstrate the usage of IN, OUT, and INOUT parameter in real
world.
A university maintains a student table containing student details. The
administration often needs to:
1. Search students by city (IN parameter use case).
o They want to input a city name and see how many
students are from that city.
2. Fetch student’s name using their ID (OUT parameter use
case).
o They provide the student’s ID, and the procedure
should return the student’s name.
3. Update a student’s marks (INOUT parameter use case).
o They provide the student’s ID and current marks as
input.
o The system adds 10 bonus marks and returns the

updated marks back to the user.

Database Setup

-- Create table

CREATE TABLE student (
id INT PRIMARY KEY,
name VARCHAR(50),
city VARCHAR(50),
marks INT

);

-- Insert sample data

INSERT INTO student (id, name, city, marks) VALUES
(1, 'Amit', 'Raipur’, 75),

(2, 'Sneha’, 'Bhilai’, 82),

(3, 'Rohan', 'Raipur’, 68),

(4, 'Priya', 'Durg', 90);

Stored Procedure with IN, OUT, and INOUT
DELIMITER $$

76
MATS Centre for Distance and Online Education, MATS University

=

bW
maTs |
i e

Notes

CREATE PROCEDURE manage student data(

IN in_city VARCHAR(50), -- IN parameter

IN in_id INT, -- IN parameter

OUT out name VARCHAR(50), -- OUT parameter

INOUT inout_marks INT -- INOUT parameter
)
BEGIN

-- 1. Using IN parameter: Count students from a given city
SELECT COUNT(*) AS total students

FROM student

WHERE city = in_city;

-- 2. Using OUT parameter: Fetch student name by ID
SELECT name INTO out name

FROM student

WHERE id =in_id;

-- 3. Using INOUT parameter: Update marks with bonus

SET inout marks = inout_marks + 10;

UPDATE student

SET marks = inout_marks

WHERE id = in_id;
ENDSS

DELIMITER ;
Execution & Testing

Step 1: Declare variables to hold OUT and INOUT values
SET @city = 'Raipur’;

SET @sid = 1; -- Student ID
SET @sname ="; -- OUT variable
SET @smarks = 75; -- INOUT variable (initial marks)

Step 2: Call the procedure
CALL manage student data(@city, @sid, @sname, (@smarks);
Step 3: Check results

-- OUT parameter result

77
MATS Centre for Distance and Online Education, MATS University

ey

§ \\\

UNIVERSITY
ready for life......

Notes

aTs)

il

SELECT @sname AS StudentName;

-- INOUT parameter result
SELECT @smarks AS UpdatedMarks;

Expected Output

1.

© o N o gD

From IN parameter (city = 'Raipur’)

total students

2

From OUT parameter (student with id = 1)
StudentName
Amit

From INOUT parameter (original marks = 75, bonus = 10)

UpdatedMarks

85

And in the table, Amit’s marks will be updated to 85.

78
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

cady for life......

Unit 3.3: Triggers Notes

3.3.1 Triggers: Introduction, Needs, Before trigger and After
trigger

1. Introduction to Triggers

Triggers are special types of stored procedures in a database that are
automatically executed when an event occurs on a table. The events
can be INSERT, UPDATE, or DELETE operations.

Business rules, data integrity, automation, and security controls are all
uses of triggers. Triggers are similar to stored procedures in that you
cannot call them manually; they run automatically in response to the
event with which they are associated.

Features of Triggers:

Automatic Execution — Automatically fires on occurrence of
referenced Event.

Event-Driven — Triggers on INSERT, UPDATE, or DELETE.
Validates Business Rules — Prevents Invalid Data Churn

Data Integrity — Ensures consistent data across tables.

Makes Unauthorized Changes Impossible — Data Access and
Validation

2. Need for Triggers

We will use triggers in the database. Triggers are very important in
removing data constraints, audit log creation, or enforce a business
rule automatically. Some key use cases include:

Enforcing Business Rules

Example: Ensuring employees don’t pay salaries under minimum
wage.

Maintaining Data Integrity

Example: automatically updating child records if any parent record is
updated to maintain a foreign key constraint.

Auditing and Logging Changes

Example: Audit trail for changes to sensitive tables like financial
transactions.

Preventing Invalid Transactions

Example: Not allowing account balance updates for negative amounts.
Automating Actions

Example: Send an email notification every time a new user is added to

the system.

79
MATS Centre for Distance and Online Education, MATS University

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

3. Types of Triggers
Triggers are classified based on when they execute relative to the
event:
Applies to INSERT,
Executes UPDATE,
Type Before/After DELETE Use Case
BEFORE Validation &

Trigger |Before the event YES Prevention

AFTER Logging &Post-

Trigger | After the event YES processing
4. BEFORE Triggers
Definition:

A BEFORE Trigger runs before an INSERT, UPDATE, or DELETE
operation. Its common on use is to verify data and prevent incorrect
alterations.
Example 1: BEFORE INSERT Trigger (Preventing Invalid Salary
Entry)
DELIMITER //
The order of the two is the subject of this post. CREATE TRIGGER
Before Insert Employee
BEFORE INSERT ON Employees
FOR EACH ROW
BEGIN
IF NEW. Salary=30000) THEN SET MESSAGE TEXT = 'Salary
should be atleast 30000";
END IF;
END //
DELIMITER;
Explanation:
o BEFORE INSERT — Executes before inserting data into the
Employees table.
o NEW.Salary — Refers to the salary value being inserted.
e SIGNAL SQLSTATE '45000"' — Throws an error if salary is
less than 30,000.
Calling the Trigger:
INSERT INTO Employees (Employee ID, Name, Salary)VALUES
(101, 'Alice', 25000);

80
MATS Centre for Distance and Online Education, MATS University

y ﬁ o
mATS
ooy

Output: Notes
ERROR Salary Must be Greater Than 30,000

To ensure no invalid salary can be inserted the trigger can be used.
Example 2: BEFORE UPDATE Trigger (Restricting Price Reduction
by More Than 50%)

DELIMITER //

< CREATE TRIGGER Before Update Product

BEFORE UPDATE ON Products

FOR EACH ROW

BEGIN

IF NEW. Price< (OLD. Price * 0.5) THEN

SIGNAL SQLSTATE '45000'

SET MESSAGE_TEXT = 'Reduced price can't be more than 50%";
END IF;

END //

DELIMITER;

Explanation:

* BEFORE UPDATE — Executes before product prices are updated.

* OLD. Price — Refers to the current price.

* NEW. Price — The new price that is being updated

* The trigger throws an error if the new price is less than 50% of the
old price.

Calling the Trigger:

UPDATE Products SET Price = 20 WHERE Product ID = 1; --
Previous price 100

Output:

vbnet

The trigger saves us from having to make a drastic price cut.

5. AFTER Triggers

Definition:

An AFTER Trigger runs after INSERT, UPDATE, or DELETE
statement. It is often used to log, audit, and update reference tables.
Example 1: AFTER INSERT Trigger (Logging New Employee
Addition)

DELIMITER //

SQL -- CREATE TRIGGER After Insert Employee

AFTER INSERT ON Employees

FOR EACH ROW

81
MATS Centre for Distance and Online Education, MATS University

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

BEGIN

"INSERT INTO Employee Log (Employee ID, Action, Timestamp)
VALUES (NEW. Insert into Table (Employee ID, 'Inserted’,
NOW());

END //

DELIMITER;

Explanation:

* AFTER INSERT — Trigger works after inserting an employee.

* NEW. Employee ID — Gets the new employee’s Identification.

* NOW() — Saves the current date and time.

* Outputs log entry into Employee Log table

Calling the Trigger:

INSERT INTO Employees VALUES (102, 'Bob', 50000);
Employee Log Table (Post Trigger Execution):

Log ID Employee ID Action Timestamp

Row Status | ID | Data | Date/Time | 1 Inserted | 2024-03-09 12:30:00
|

The trigger logs the new joins automatically.

Example 2: AFTER DELETE Trigger (Archiving Deleted Orders)
DELIMITER //

CREATE TRIGGER After Delete Order

AFTER DELETE ON Orders

FOR EACH ROW

BEGIN

INSERT INTO Order_Archive (Order ID, Customer ID,

Order Date) VALUES

VALUES (OLD. Order ID, OLD. Customer ID, OLD. Order Date);
END //

DELIMITER;

Explanation:

* AFTER DELETE — Triggered post deletion of the order.

* OLD. Order_ID — The Order which has been deleted.

* Deletes orders into an archive table (Order Archive).

Calling the Trigger:

The trigger also keeps deleted orders in the archive table.

6. Dropping a Trigger

To drop a trigger, which may be, no longer needed:

DROP TRIGGER IF EXISTS trigger name;

82
MATS Centre for Distance and Online Education, MATS University

Example:

DROP TRIGGER IF EXISTS Before Insert Employee;

Triggers increase database automation, security, and integrity by
enforcing business rules at the database level.

* Triggers BEFORE — Validate on execution (BEFORE
INSERT/UPDATE/DELETE).

» AFTER Triggers — Execute after the execution of actions (AFTER
INSERT/UPDATE/DELETE).

Triggers are a major component of data management in relational
databases, allowing automated checks on data, logging, fraud

prevention, and ensuring data consistency.

Scenario-Based Problems with Solutions

Let’s take some scenario-based problems with solutions to
demonstrate MySQL Procedure, Function, and Trigger. Each
example will include a problem statement, the MySQL solution, and

explanation.

1. MySQL Procedure Example
Scenario-Based Problem Statement:
A company maintains an Employee table. The HR department wants to
update the salary of an employee by a given percentage whenever
there is a performance appraisal. The operation should be done using a
stored procedure.
Employee Table:
CREATE TABLE Employee (
EmpID INT PRIMARY KEY,
EmpName VARCHAR(50),
Salary DECIMAL(10,2)
)i
Solution — Procedure
DELIMITER //

CREATE PROCEDURE UpdateSalary(
IN p_ EmpID INT,
IN p_Percent DECIMAL(5,2)

)
BEGIN

83
MATS Centre for Distance and Online Education, MATS University

=

g \\\

ars)

UNIVERSITY
ready for lif......

Notes

mms%
il

Notes UPDATE Employee
SET Salary = Salary + (Salary * p_Percent / 100)
WHERE EmpID =p EmplD;
END //

DELIMITER ;
Usage:
CALL UpdateSalary(101, 10); -- Increases salary of EmpID 101 by
10%
Explanation:
e IN parameters are used to pass employee ID and percentage.
e Procedure encapsulates logic for reusability.
e Avoids writing update statements repeatedly in application
code.

2. MySQL Function Example
Scenario-Based Problem Statement:
A school maintains a Student table. The school wants to calculate grade
points based on marks for each student. Marks to grade points mapping
is:
e Marks >90 — 10
e Marks>80—9
e Marks>70 — 8
e Marks>60 — 7
e Marks <60 — 6
The calculation should be implemented as a function.
Student Table:
CREATE TABLE Student (
StudentID INT PRIMARY KEY,
Name VARCHAR(50),
Marks INT
)i
Solution — Function
DELIMITER //

CREATE FUNCTION GetGrade(Marks INT) RETURNS INT
BEGIN
DECLARE grade INT;

84
MATS Centre for Distance and Online Education, MATS University

y ﬁ N/
moTs)
ooy

Notes

IF Marks >= 90 THEN
SET grade = 10;
ELSEIF Marks >= 80 THEN

SET grade = 9;
ELSEIF Marks >= 70 THEN
SET grade = 8;
ELSEIF Marks >= 60 THEN
SET grade = 7;
ELSE
SET grade = 6;
END IF;
RETURN grade;
END //
DELIMITER ;
Usage:
SELECT Name, Marks, GetGrade(Marks) AS Grade FROM Student;
Explanation:

o Function takes Marks as input and returns grade points.
e Can be used in SELECT statements to calculate grades on-the-
fly.

o Ensures consistency in grading logic.

3. MySQL Trigger Example
Scenario-Based Problem Statement:
A bank maintains an Accounts table. Whenever a new transaction is
mnserted in the Transactions table, the account balance should
automatically update. This should be achieved using a trigger.
Accounts Table:
CREATE TABLE Accounts (

AccountID INT PRIMARY KEY,

AccountHolder VARCHAR(50),

Balance DECIMAL(10,2)

);
CREATE TABLE Transactions (

85
MATS Centre for Distance and Online Education, MATS University

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

TransactionID INT PRIMARY KEY,
AccountID INT,
Amount DECIMAL(10,2),
TransactionType ENUM('Credit','Debit"),
FOREIGN KEY (AccountID) REFERENCES
Accounts(AccountID)
);
Solution — Trigger
DELIMITER //

CREATE TRIGGER UpdateBalance
AFTER INSERT ON Transactions
FOR EACH ROW
BEGIN
IF NEW.TransactionType = 'Credit' THEN
UPDATE Accounts
SET Balance = Balance + NEW.Amount
WHERE AccountID = NEW.AccountID;
ELSEIF NEW.TransactionType = 'Debit' THEN
UPDATE Accounts
SET Balance = Balance - NEW.Amount
WHERE AccountID = NEW.AccountID;
END IF;
END //

DELIMITER ;
Usage:
INSERT INTO Transactions (TransactionID, AccountID, Amount,
TransactionType)
VALUES (1, 101, 5000, 'Credit');
Explanation:
e Trigger automatically updates Accounts.Balance whenever a
new transaction is inserted.
o Ensures data integrity between Accounts and Transactions.

e No need for manual balance updates from application code.

86
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

ready for life......

Summary of Use Cases:

Feature |Use Case

ProcedurePerform repetitive operations like updating salaries

Function [Return computed values like grade points in queries

Tri Automatically enforce rules like updating account balance on
rigger
&8 transaction

Summary

Control flow in SQL enables decision-making and repetition within
procedural extensions of SQL, such as PL/SQL or T-SQL. Using
constructs like IF-THEN-ELSE, CASE statements, and loops (WHILE,
FOR), SQL scripts can perform complex logic and automate processes
within the database. These structures allow SQL to not only query data
but also to react dynamically based on conditions, improving the ability
to handle business logic directly within the database environment.

User-defined functions and stored procedures further enhance SQL's
capabilities. A stored procedure is a precompiled block of SQL code
that performs specific tasks and can be reused across applications,
while user-defined functions return values and are often used in queries
for calculations or formatting. These programmable components
reduce redundancy, improve maintainability, and enhance performance
by encapsulating logic at the database level. Triggers are special
procedures that automatically execute in response to specific database
events such as INSERT, UPDATE, or DELETE. They enforce rules,
audit changes, and automate responses, ensuring data integrity and
consistency without manual intervention. Together, control flow
mechanisms, functions, procedures, and triggers offer a powerful
toolkit for managing logic and automation directly within the database.

87
MATS Centre for Distance and Online Education, MATS University

mms?;
il

Notes Multiple Choice Questions:

1. Generalization in a database is the process of:
a) Combining multiple entities into a higher-level entity
b) Splitting one entity into multiple sub-entities
c¢) Creating foreign keys

d) Deleting redundant data

(Answer: a)

2. Specialization in an E-R model refers to:

a) Merging two entities into one

b) Creating sub-entities from a higher-level entity
¢) Removing attributes from a table

d) Encrypting a database

(Answer: b)

3. A Super Key is:

a) A key that uniquely identifies a tuple but may have extra attributes
b) A key used for indexing

c¢) A key with duplicate values

d) A key used only for foreign relations

(Answer: a)

4. Which of the following is a Candidate Key?

a) A key that can be used as a Primary Key

b) A key that contains duplicate values

c) A foreign key

d) A key that cannot be unique

(Answer: a)

5. The Primary Key in a relational database:

a) Uniquely identifies each record

b) Can have NULL values

c) Is always a foreign key

d) Must contain duplicate values

(Answer: a)

6. A Foreign Key is used to:

a) Uniquely identify a record in a table

b) Enforce referential integrity between two tables
c) Store encrypted data

d) Improve query performance

(Answer: b)

88
MATS Centre for Distance and Online Education, MATS University

7. Which diagram is used to represent the structure of a relational
database?

a) Flowchart

b) Schema Diagram

c¢) E-R Diagram

d) UML Diagram

(Answer: b)

8. What does E-R to Relational Model Conversion involve?
a) Mapping entities and relationships to tables

b) Writing SQL queries

c¢) Creating indexes for tables

d) Deleting duplicate records

(Answer: a)

9. Which of the following constraints ensures referential integrity in a

database?

a) Primary Key

b) Foreign Key

c) NOT NULL

d) CHECK

(Answer: b)

10. The Relational Model consists of:
a) Tables with rows and columns
b) Images and videos

c) Hierarchical data storage

d) Graph-based relationships

(Answer: a)

Short Questions:

. Define Super Key, Candidate Key, and Primary Key.

. Explain the Relational Model Structure in databases.

. What are the different types of keys in a relational database?

. How does a Foreign Key maintain referential integrity?

. What are the constraints on Specialization in E-R models?

. Explain how an E-R model is converted into a relational model.

. What is the role of a Schema Diagram in database design?

O 0 3 N U K~ W N~

. Define Database Schema and its types.

10. What is the importance of constraints in relational databases?

89
MATS Centre for Distance and Online Education, MATS University

. What is the difference between Generalization and Specialization?

y ﬁ N/
moTs)
ooy

Notes

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

Long Questions:
1. Explain Generalization and Specialization in the E-R model with
examples.
2. Discuss the role of constraints on Specialization in database design.
3. What is a Relational Model? Explain its structure with examples.
4. Describe the different types of keys and their importance in a
relational database.
5. Explain the concept of Foreign Keys and how they enforce
referential integrity.
6. What is a Schema Diagram, and how does it help in database
design?
7. Describe the process of converting an E-R model into a relational
model.
8. Explain the importance of normalization in relational databases.
9. Compare and contrast Primary Key and Foreign Key.
10. How does a well-designed relational model improve
database efficiency?
e To understand the fundamental concepts of Data Warehousing.
e To explore the architecture of Data Warehouses, including the
three-tier architecture.
e To analyze multidimensional data models such as Data Cubes.
e To examine different schemas used in Data Warehousing.

e To learn about Concept Hierarchies and OLAP operations.

90
MATS Centre for Distance and Online Education, MATS University

MODULE 4
TRANSACTION MANAGEMENT AND CONCURRENCY

LEARNING OUTCOMES

e Understand transactions, their properties, and different
transaction models in database systems.

e Analyze transaction isolation and scheduling techniques (serial
and non-serial schedules) to ensure consistency.

e Learn serializability concepts (conflict serializability) and their
role in maintaining correctness.

e Implement concurrency control protocols (lock-based and
timestamp-based) and deadlock handling techniques for

efficient database performance.

91

§ \\\

UNIVERSITY
ready for life.......

Notes

ey

aTs)

i

Unit 4.1: Transactions

4.1.1 Transaction: Introduction, Transaction Model
A transaction is a series of one or more SQL operation from a database
that is executed as one logical unit of work. Transactions help maintain
database consistency and reliability in the case of system crashes or
power failures, as well as concurrent user operations. In multi-user
database environments, when several users at the same time perform
operations, data integrity has to be maintained. If transactions were not
handled correctly, partial operations could corrupt or render data
inconsistent. In banking systems, if a customer transfers money from
one account to another, both the debit and the credit operation has to
be successful. If the debit is successful but the credit fails the money
will be lost. Transactions allow you to group both operations so they
either both complete or both fail to prevent this from happening.
1.Real-Life Example of a Transaction
For instance let's say a bank customer transfers $500 from Account A
to Account B. The transaction involves two operations:

1. Update Accounts Set Balance = Balance - 500 Where

Account_ID = 1; Deduct $500 from Account A.
2. Update Accounts: Add $500 in Account B (UPDATE Accounts
SET Balance = Balance + 500 WHERE Account ID = 2;).

For consistency, the rollback should be performed in case the second
operation fails, so that no operation will have to revert back
2. Understanding the ACID Properties of Transactions

A transaction must follow four key properties, known as the ACID

properties:
Atomicity Consistency
Transaction is Transaction takes
“all or nothing” the database from
one valid state to
another valid state
Isolation Durability
Transaction does Committed data
not interfere remains even in
with other case of a failure

transactions

Fig. 4.1.1-ACID Properties

92
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

cady for lfe......

Atomicity (All or Nothing Rule) Notes

e A transaction is either successfully completed or aborted.

e + All changes made in a transaction must either be completed
successfully or rolled back if an error occurs.

e For example, if a payment fails after taking money out from an
account, the amount has to be refunded.

Consistency (Maintaining Database Validity)

e Every transaction should transform the database from one
valid state to another.

e Any changes made need to comply with the database
constraints, rules, and integrity checks

e For example, if an order is placed in an e-commerce system,
then the stock count must be decreased accordingly.

Isolation (Preventing Concurrent Transaction Interference)

e Concurrent transactions must not interfere with one another’s
execution.

e All transactions are executed sequentially and the final
outcome must look like transactions were executed
sequentially.

e [llustration: When two users book the last ticket to a movie,
both should fail, but one should succeed.

Durability (Permanent Storage of Committed Data)

e Once a transaction commits, its changes have to be persisted
even in case of a system crash.

e Example: After conducting an online banking transaction,
new balance should not be lost after server crash

3. Transaction Lifecycle and States

A transaction progresses through multiple states during its execution:

Partially
Committed

Fig. 4.1.2- Transaction Lifecycle and States

93
MATS Centre for Distance and Online Education, MATS University

§ \\\

UNIVERSITY
ready for life.......

Notes

ey

aTs)

i

Transaction State Description
The transaction has started and is currently
Active executing.
Partially All SQL operations are completed, but not yet
Committed permanently saved.
Committed Changes are successfully stored in the database.
Failed An error occurred, causing the transaction to fail.
Aborted The transaction is undone, restoring the database to
(Rollback) its previous state.

State Transitions in a Transaction

1. Execution of a transaction starts in the ACTIVE state.

2. [If all operations succeed, changes to PARTIALLY
COMMITTED.

3. Once the COMMIT statement is executed, the transaction is
CONVERTED to COMMITTED, which saves the changes
permanently.

If any step fails, the transaction will enter into FAILED state.

5. In the event of a failure, a ROLLBACK command restores the

database, transitioning it to the ABORTED state.
Example of Transaction Lifecycle in SQL

ROLLBACK; -- Undo all changes
START TRANSACTION;
UPDATE Accounts Set Balance = Balance-500 WHERE Account ID
= 1; -- Decrease money
UPDATE Accounts SET Balance = Balance - 500 WHERE
Account ID = 1; -- Withdraw money
COMMIT; # Make changes permanent
If any error occurs before the COMMIT, we can roll it back
4. Transaction Models in Database Management Systems (DBMS)
A transaction model specifies the functioning of transactions in a
database system with guarantee of ACID properties. They assist in
managing transactions, concurrency, and failure recovery efficiently.
Flat Transactions (Simple Transactions)

e An abstract model for the simplest transaction in which a

series of operations are performed as a single unit.

94
MATS Centre for Distance and Online Education, MATS University

} W

e Strictly follows ACID properties: Thus if there is a failure in a
part of transaction, the complete transaction will be rolled
back.

e for instance: Moving currency between bank accounts.

Nested Transactions (Transactions Inside Transactions)

* Sub-transactions which are executed independently within the main
transaction.

* Supports rolling back a single part of a compound transaction if it is
a sub-transaction and the parent transaction can still succeed.

» Example: In case of an online shopping system placing an order is:

1. Minusing money from the customer account (Sub-transaction
1y

2. Stock levels update (Sub-transaction 2)

3. Sending a confirmation mail (Sub-Transaction 3)

Whether Sub-transaction 3 fails or succeeds, the payment and update
of stock will still be valid.

Long-Duration Transactions (Used in Batch Processing & Cloud
Systems)

e Long-running transactions (hours or days)

e Used extensively in scientific computing, cloud applications,
and batch data processing.

e Sample: Month-end for payroll processing for thousands of
employees

5. Concurrency Control in Transactions

Data inconsistencies arise when two or more transactions access the
same data and try to change it at the same time. Concurrency control
mechanisms must be implemented in database systems to avoid
conflicts.

Problems Caused by Concurrent Transactions

e Jlost update — two transactions updating the same data; one
update gets lost.

e Dirty Read — This occurs in case if one transaction reads data
that another transaction has not yet committed.

e Non-Repeatable Read — A transaction is read multiple times
but value change from another transaction.

Techniques for Concurrency Control
e Locking Mechanisms (Shared & Exclusive Locks) — Avoid

two transactions modifying the same data at the same time.

95
MATS Centre for Distance and Online Education, MATS University

=

ey

¢M
UNIVERSITY

ready for life-.....

§ \\\

Notes

aTs)

i

e Timestamp Ordering— Guarantees the correct sequence of
executing transactions.
e Optimistic Concurrency Control —Freely allows transactions
to execute, checks for conflicts before committing.
6. Handling Failures and Recovery in Transactions
Transaction Failures can be attributed to:
System Crashes — Power failures, OS crashes.
Deadlock — Transaction(s) waiting infinitely for each other.
Concurrency Issues — when multiple transactions conflict with one
another.
Recovery Mechanisms:
1. Undo (Rollback) — Reverts uncommitted changes to ensure
data consistency
2. Redo (Reapply Changes) — it guarantees that committed
transactions are recovered after a system crash.
3. Transaction ambiguity rules — Ensures only valid transactions
are considered, managing rollback overhead.
* Transactions are guaranteed to execute reliably because of ACID
properties.
* Transaction — states and models define the way transactions work.
* Concurrency control provides protection against concurrency
conflicts (e.g., in a multi-user environment).
* Ensure atomicity of transactions even in case of system failures
through failure recovery mechanisms.
Transaction handling is a critical aspect of any modern Database
Management System (DBMS), ensuring that operations within a
database are secure, efficient, and free from errors.
4.1.2 Properties of Transactions
A transaction, in a database, is a series of operations executed as one
work unit. Transactions executed must adhere to ACID properties to
ensure that they have data integrity, consistency, and reliability. These
Properties guarantee that, even during power failures, crashes and
concurrent transactions, the database could be returned to some
previous valid state. The four fundamental properties of a transaction
are:
1. Atomicity — Ensures that all operations in a transaction are

executed completely or not at all.

96
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

eady for life.......

2. Consistency — Ensures a transaction takes the database from Notes
one valid state to another.
3. Isolation — Guarantees that transactions do not disturb one
another.
4. Durability — Guarantees that once a transaction has been
committed, it will remain so, regardless of what may happen.
These properties together make the ACID model, which is the basis
of a reliable Database Management System (DBMS).
1. Atomicity (All or Nothing Rule)
Atomicity guarantees that a transaction is treated as a single,
indivisible unit. So, either all the operations of the transaction are
performed successfully or none of them are performed at all. Any
failure of any of these operations must trigger a rollback of the entire
transaction to avoid partial updates.
Why is Atomicity Important?
In the absence of atomicity, a transaction may leave data half-
completed in the database, creating corrupted and inconsistent data.
Example of Atomicity
Consider a bank transfer where Alice transfers $500 to Bob. The
transaction consists of:
1. Deduct $500 from Alice’s account
2. Add $500 to Bob’s account
SQL Example:
START TRANSACTION;
UPDATE Accounts SET Balance = Balance + 500 WHERE
Account_ID = 1; -- Add money
UPDATE Accounts SET Balance = Balance - 50 WHERE
Account_ID = 1; -- Withdraw money
COMMIT; -- Commit changes
If the second operation fails (say due to a database crash), atomicity
guarantees the first operation will be undone by rolling back the
transaction:
ROLLBACK; -- undo everything
Effect: It is either fully committed or fully rolled back so no partial
transfer.

2. Consistency (Maintaining Database Validity)

97
MATS Centre for Distance and Online Education, MATS University

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

Consistency means that a transaction is valid with respect to any
database constraint before and after running. The database must meet
all conditions, rules, and relationships.
Why is Consistency Important?
To prevent creating corrupt or invalid data that breaks business rules
and constraints through transactions, consistency is important.
Example of Consistency
Consider an e-commerce system where a customer places an order:
1. Deduct stock quantity from inventory
2. Generate an invoice for the order
The order should not be processed if the stock is not available, so the
database should be consistent.
SQL Example (Consistency in Order Placing):
START TRANSACTION;
This SQL query deducts one stock for a product with Product ID of
101, if there is stock available, Sequelize would be Genetrating a
query similar to the one below.
INSERT INTO Orders (Order ID, Product ID, Customer ID)
VALUES (5001, 101, 2001);
COMMIT;
If the stock quantity is zero, the transaction fails and does not place
the order, maintaining consistency.
The consequence is that the database is always in a valid state during
and after the transaction.
3. Isolation (Ensuring Independent Execution of Transactions)
Definition:
Isolation is what makes sure that when transactions are being
processed, they do so without stepping on one another. Changes made
by a transaction may not be visible to other transactions until the
transaction is committed.
Why is Isolation Important?
Without isolation, concurrent transactions can lead to issues such as:
e Lost updates — One transaction overwrites changes made by
another.
e Dirty reads — A transaction reads uncommitted data from
another transaction.
e Non-repeatable reads — A transaction sees different results for

the same query due to another transaction's modifications.

98
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

cady for life......

Example of Isolation Notes
Consider two customers trying to book the last available flight seat at
the same time:
1. Customer A initiates booking.
2. Customer B initiates booking at the same time.
If the database does not implement isolation, both customers can be
assigned to the same seat, which will cause a conflic.
SQL Example (Using Isolation to Prevent Booking Conflicts):
SQL Example (Utilising Isolation to Avoid Overbooking)---
START TRANSACTION;
SELECT Seats_Available FROM Flights WHERE Flight ID =301
FOR UPDATE; // Locks the row
UPDATE Flights SET Seats Available = Seats Available - 1
WHERE Flight ID = 301
COMMIT:
e The seat availability is locked due to the FOR UPDATE
statement until that transaction is done.
e Then no other user will be able to access the seat until the
transaction is committed.

Outcome: A single customer gets the seat, no conflicts.
4. Durability (Permanent Data Storage After Transaction
Completion)

Definition:

Durability: Once some transaction has been committed, the updates

made by that transaction should be permanent.

Why is Durability Important?

In the absence of durability, there could be a potential loss of

committed transactions in the event of a power outage or a system

crash/abrupt shutdown, resulting in data loss.

How is Durability Ensured?

* Write-Ahead Logging (WAL): This mechanism ensures that the

database can recover after a crash by writing transaction logs before

applying any changes.

» Commit Operation: Changes are available in persistent storage

(disk, SSD, or cloud storage) after they are committed.

Example of Durability

Let us consider a customer who placed an order online, for instance:
1. Fill stock inventory by reducing stock quantity

99
MATS Centre for Distance and Online Education, MATS University

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

2. An order with 'Confirmed' status
Persist the order once it is confirmed, the order should be stored
permanently, even if the system crashes.
SQL Example (Ensuring Durability in Order Confirmation):
START TRANSACTION;
UPDATE Products SET Stock = Stock - | WHERE Product ID =
102;
INSERT INTO Orders (Order ID, Product ID, Customer ID, Status)
VALUES (6001, 102, 3001, 'Confirmed")INSERT INTO Orders
(Order_ID, Product ID, Customer ID, Status) VALUES (6001, 102,
3001, 'Confirmed');
COMMIT:
* If the system fails after the COMMIT statement, the order will still
be confirmed (when the system restarts).
* Committed changes are sustainable, even after failures, through
database logging.
OUTPUT: the order is stored permanently (Durability).
These four properties, Atomicity the A, Consistency the C, Isolation
the I, and Durability the D, ensure the reliability, integrity, and

consistency of the database.

ACID
Property Ensures That... Example
A transaction is fully |Money transfer: Debit and
completed or fully rolled |credit both succeed or both
Atomicity back fail
The database remains
valid before and after | Preventing orders if stock
Consistency transactions is unavailable
Preventing two customers
Transactions do not from booking the same
Isolation interfere with each other flight seat
Committed transactions Orders stay confirmed
Durability remain permanent even after a system crash

Databases ensure that applications like business applications, financial
systems, e-commerce platforms, etc., work correctly without errors or
inconsistencies.

100
MATS Centre for Distance and Online Education, MATS University

4.1.3 Transaction isolation, Schedules: Serial, Non-Serial
Schedules
1. Transaction Isolation in Databases
Transaction isolation prevents interference from concurrent
transactions, preserving the database's consistency and integrity.
Multiple versions of a row is a core concept in concurrency control,
which avoids issues like dirty reads, lost updates, and inconsistent
reading. A multi-user database allows multiple transactions to overlap
in time. Promiscuous interaction may lead to corrupt, out-of-sync, or
missing data. Isolation guarantees the correct outcome of each
transaction as if it executed in isolation.
Example of Transaction Isolation
Consider two customers booking the last available train ticket
simultaneously:

1. Transaction A queries availability and sees 1 seat available.

2. Transaction B, which checks availability at the same time, also

sees 1 seat left.
3. Both the transactions book the seat.
4. Now they have two customers with the same seat and, hence, a
conflict.

Transaction isolation mechanisms prevent both incorrect updates and
ensure the consistency of data to avoid this situation.
2. Isolation Levels in Database Systems
The level of isolation between one transaction and other concurrent
transactions is defined by different isolation levels. The more isolation
you have, the more accurate (but slower) you will be, the less isolation,
the faster (but potentially inaccurate) you will be.

Transaction T1 Transaction T2

N Update Update and
Dirty Read Update.row row commit row

______ ’ ldl

Non-Repeatable uncommitted

Read row,
Read value

Insert new

Read row, A
row matching

Phantom Read .o hew value

condition

Read rows Insert new row
matching condition matching
condition

Fig. 4.1.3: Diagram illustrating transaction anomalies

101
MATS Centre for Distance and Online Education, MATS University

UNIVERSITY

ready for life......

Notes

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

Non-
Dirty Repeatable |Phantom
Isolation Level |Read Read Read Use Case
Read Fastest, but
Uncommitted | Allowed | Allowed Allowed [least safe
Standard for
Read many
Committed Prevented | Allowed Allowed |[databases
Ensures
Repeatable consistent
Read Prevented | Prevented Allowed [reads
Highest safety,
Serializable Prevented | Prevented Prevented |but slowest

Common Problems in Isolation Levels
1. Dirty Read (Reading Uncommitted Data)

This happens when a transaction reads data that has been modified by

yet another transaction but has not yet been committed

Example:

e Transaction A: Increase salary, not yet committed.

e Transaction B: Fetches the new salary.

e Transaction A: Rollback, reverting change.

e Transaction B: Is now corrupt and has the wrong data.

2. Non-Repeatable Read (Different Results in the Same Transaction)

When transaction reads the same row twice but gets different values

due to another transaction updating it in between.

Example:

e Transaction A: Reads a product price to be $100.

e Transaction B: Changes the price to $120 and commits.

e Transaction A: Reads the price again: $120 instead of $100.

3. Phantom Read (New Rows Appearing in Subsequent Reads)

This happens when an inserted/deleted row is returned in a new read

through the same transaction.

Example:

Transaction A : Get All Orders for Customer 101(5 records)

 Transaction B: Create new ORD for Customer 101 and commit.

» Transaction A: Reads again, there are 6 records now.

102

MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

cady for life......

3. Transaction Schedules: Serial and Non-Serial Schedules Notes
Scheduler is a way of executing multiple transaction in a database in a
serial manner. This order of execution affects the consistency and
correctness of the data.

Serial Schedule (Fully Isolated Transactions)

A serial schedule is one where transactions are executed one after
another, with no overlaps.

Slow but certain — every transaction must wait for the previous one
to complete.

Example:

Let us consider two transactions, T1 and T2:

* T1: Account balance update.

* T2: Reads account balance.

Serial Execution:

T1: Read Balance

T1: Update Balance

T1: Commit

T2: Read Updated Balance

T2: Commit

Pro: Guarantees consistency and free from concurrency issues.

X Drawback: Slow, because transactions do not overlap
Non-Serial Schedule (Concurrent Transactions)

In contrast, a non-serial schedule permits transactions to run
concurrently, interleaving their operations.

Works great and boost performance but might create inconsistency.
Example:

T1: Read Balance

T2: Read Balance

T1: Update Balance

T2: Update Balance

T1: Commit

T2: Commit

Problem: Lost updates—T?2 reading before T1 commits will
overwrite T1’s changes.

4. Types of Non-Serial Schedules

However, not all non-serial schedules are of concern. Others are
accurate but perform worse.

Conflict Serializable Schedule

103
MATS Centre for Distance and Online Education, MATS University

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

» Concurrent execution of transactions but final result matches a
serial execution.

* Correctness is preserved and permits parallel execution.

» Utilized for optimistic concurrency control.

Example:

T1: Read Balance

T1: Update Balance

T2: Read Balance

T2: Update Balance

T1: Commit

T2: Commit

Since T1 finishes before the effects of T2’s changes are seen, the
outcome is the same as that of a serial schedule.

View Serializable Schedule

e Transaction produces a final result as in serial execution,
although operations may differ.

e Much more permissive than conflict serializability.

Example:

For example, two transactions update a price list, but their final effect
is correct: the operations are reordered.

5. Ensuring Correct Schedules: Concurrency Control

Databases use the following concurrency control techniques to avoid
errors in non-serial schedules:

1. Two-Phase Locking (2PL) — Set locks earlier than accessing
resources and eventuates in serializability.

2. Timestamp Ordering — Each transaction is assigned a
timestamp, and according to their timestamp, transactions are
executed.

3. Optimistic Concurrency Control (OCC) — No lock
mechanism, transactions run freely then checked before
committing. Transaction isolation means transactions execute
properly without interfering with each other.

e READ COMMITTED is Isolation levels (Read Uncommitted,
Read Committed, Repeatable Read, Serializable) (if we want
to allow how much concurrency?)

e A schedule is the order of execution of transactions, which

has an impact on consistency.

104
MATS Centre for Distance and Online Education, MATS University

e Serial schedules are always accurate, but slow, and non-serial
schedules optimize the speed, but expect for conflicts.

e Concurrency control methods maintain data integrity in non-

serialized schedules.

With a sound grasp of isolation levels and transaction schedules,
database administrators can achieve a good balance of performance

and consistency, enabling reliable database operations in multi-user

settings.

105
MATS Centre for Distance and Online Education, MATS University

UNIVERSITY

ready for life......

Notes

} \\\

UNIVERSITY
ready for life......

Notes

(Al

aTs)

i

Unit 4.2: Serializability

4.2.1 Serializability, Conflict Serializability
1. Introduction to Serializability
Millions of transaction attempts are submitted to the database
concurrently every second, and a vital concept you need to be aware
of is something called serializability. If the effect of a schedule (the
order in which transactions operations are carried out) is equivalent to
the effect of some serial schedule then it is called as serializable
schedule.
Why is Serializability Important?
e In multi-user databases, several transactions may be working
concurrently to enhance performance.
e Inconsistent data, lost updates, or incorrect results may happen
when transactions are not adequately controlled.
e Sequentializability guarantees correctness under concurrency
and prevents execution at the same time conflicting
Example: Serial vs. Non-Serial Execution
Consider two transactions, T1 and T2:
e T1: Withdraws $100 from a bank account.
e T2: Checks the balance.
Serial Execution (Correct & Safe)
T1: Read Balance ($1000)
T1: Update Balance ($900)
T1: Commit
T2: Read Balance ($900)
T2: Commit
T2 sees the correct updated balance of $900.
Non-Serial Execution (Unsafe)
T1: Read Balance ($1000)
T2: Read Balance ($1000)
T1: Update Balance ($900)
T1: Commit
T2: Commit
T2 reads an incorrect balance of $1000 instead of $900!
Serializability defines a contract to ensure that, despite running
concurrently, transactions will execute such that they are equivalent to

a serial execution order, preventing this type of inconsistency.

106
MATS Centre for Distance and Online Education, MATS University

e

\ \\\ i

ready for life......

2. Types of Serializability Notes
. Conflict Serializability
o Ensures that transactions can be reordered into a serial
schedule by checking for conflicts.
o Conlflict serializability is verified using a precedence graph (or
dependency graph).
View Serializability
o Ensures that final results of transactions match those of a serial
execution, even if operations are reordered.
e More relaxed than conflict serializability.
3. Conflict Serializability
What is Conflict Serializability?
What is conflict serializable: A schedule is conflict serializable if it is
possible to convert it into a serial one by exchanging non-conflicting

operations without modifying the final outcome.

Conflict-Serializability Test

[Start]
l

[Create a node for each transaction]

!

For each pair of conflicting operations,
draw an edge

Does the graph
have a cycle?

[Conflict serializable]

ey | J

Fig. 4.2.1 : flowchart illustrating the conflict-serializability test
What Causes a Conflict?
Two operations conflict if they:

1. Belong to different transactions (T1 and T2).

2. Operate on the same data item (e.g., X).
3. At least one of them is a WRITE operation.

107
MATS Centre for Distance and Online Education, MATS University

ey

By
gmms%
il

Notes Types of Conflicting Operations
Same | At Least
Operation | Operation Same Data One
1 2 Transaction? | Item? | WRITE? |Conflict?
Read(X) | Read(X) No Yes No No
Read(X) | Write(X) No Yes Yes Yes
Write(X) | Read(X) No Yes Yes Yes
Write(X) | Write(X) No Yes Yes Yes

Checking Conflict Serializability Using a Precedence Graph
A Precedence Graph (or Dependency Graph) is used to show if a
schedule is conflict serializable.

Steps to Check Conflict Serializability:

1. Create a directed graph with transactions as nodes.
2. Add a directed edge from Ti to Tj if Ti performs an operation
before Tj that conflicts.
3. Check for cycles in the graph:
o If'the graph has NO cycles, the schedule is conflict
serializable.
o If'the graph has a cycle, the schedule is not conflict
serializable.

4. Example of Conflict Serializability

Example 1: Conflict Serializable Schedule

Consider the following schedule:

Time Transaction Operation
1 Tl Read(X)
2 T2 Read(X)
3 Tl Write(X)
4 T2 Write(X)

Step 1: Identify Conflicts
e TI: Read(X) vs. T2: Read(X) — No conflict
e TI1: Write(X) vs. T2: Read(X) — Conflict (T1 — T2)
e TI1: Write(X) vs. T2: Write(X) — Conflict (T1 — T2)
Step 2: Build Precedence Graph
T1 - T2

108
MATS Centre for Distance and Online Education, MATS University

e No cycle exists — The schedule is conflict serializable.

Step 3: Equivalent Serial Schedule

The transactions can be executed in the order T1 — T2.

The schedule is conflict serializable (and equivalent to the serial
execution of T1 followed by T2).
Example 2: Non-Conflict Serializable Schedule

Consider this schedule:

Time Transaction Operation
1 T1 Read(X)
2 T2 Write(X)
3 Tl Write(X)

Step 1: Identify Conflicts
e TI1: Read(X) vs. T2: Write(X) — Conflict (T1 — T2)
o T2: Write(X) vs. T1: Write(X) — Conflict (T2 — T1)
Step 2: Build Precedence Graph

Tl —» T2

T2 — T1 (Cycle detected)
e Acycle exists — The schedule is not conflict serializable.

The schedule is not conflict serializable because T1 and T2 cannot be

reordered into a serial sequence.
5. Conflict Serializability vs. View Serializability

Feature

Conflict Serializability

View Serializability

Definition

Transactions can be
reordered into a serial
schedule using conflict

rules

Transactions produce the
same final result as a

serial execution

Check
Method

Precedence Graph (Check

for cycles)

Compare final results

More

Restrictive?

Yes (Stronger condition)

No (More relaxed)

Practical Use

Most databases enforce

conflict serializability

View serializability is

rarely used

109

MATS Centre for Distance and Online Education, MATS University

e

} \\\

ars)

UNIVERSITY
ready for life......

Notes

ey

\ \\\' il

[

ready for life......

Notes * Serializability verifies correct result of concurrent transaction is
equivalent to that of serial execution.
* The conflict serializability is the most popular method that is used
to ensure the safe concurrent executions.
* Conflict serializability of a schedule can be tested through
Precedence Graphs.
* If a schedule has a cycle, it is NOT conflict serializable.
* Conflict serializability is stricter than view serializability, but
simpler to implement.
Conflict serializability is a key concept in database management
systems that ensures transactions are executed in a manner that

preserves the desired properties of the database.

110
MATS Centre for Distance and Online Education, MATS University

y ﬁ o
mATS
ooy

Unit 4.3: Concurrency Control & Deadlock Handling Notes

4.3.1 Concurrency Control

1. Introduction to Concurrency Control

Concurrency control refers to the methods used by a DBMS to ensure
the correct operation of simultaneous transactions. It handles dirty
read, lost update, and inconsistency problems when multiple users are
trying to access the database at the same time.

Why is Concurrency Control Important?

In a multi-user database system, multiple transactions may execute
concurrently, leading to potential conflicts. Concurrency control
ensures that:

Data integrity is maintained despite concurrent operations.

ACID properties (Atomicity, Consistency, Isolation, Durability) are
preserved.

Correct execution order of transactions is maintained.

Performance and throughput are optimized without sacrificing
correctness.

Example Without Concurrency Control (Lost Update Problem)
Consider two transactions, T1 and T2, updating the same data item
(bank balance = $1000):

Without Concurrency Control:

T1: Read Balance ($1000)

T2: Read Balance ($1000)

T1: Update Balance to ($900)

T2: Update Balance to ($950)

T1: Commit

T2: Commit

Final Balance = $950 instead of $900 (T1’s update is lost).

With Concurrency Control:

T1: Read Balance ($1000)

T1: Update Balance ($900)

T1: Commit

T2: Read Balance ($900)

T2: Update Balance ($950)

T2: Commit

Final Balance = $950 (Correct result achieved).

111
MATS Centre for Distance and Online Education, MATS University

mms%
il

Notes

2. Problems Due to Lack of Concurrency Control

Problem

Description

Example

Dirty Read

A transaction reads
uncommitted changes made

by another transaction.

T1 updates salary, T2
reads new salary before
T1 commits, but T1 rolls
back. T2 now has

incorrect data.

Lost Update

One transaction overwrites
another transaction’s

changes.

T1 and T2 read the same
balance, T1 updates it,
then T2 updates it,

ignoring T1’s change.

Non-
Repeatable
Read

A transaction reads the
same row twice but gets
different values due to
another transaction’s

update.

T1 reads product price, T2
updates the price, T1 reads
again and gets a different

value.

Phantom
Read

A transaction reads a set of
rows, but another
transaction inserts/deletes

rows in between.

T1 counts total
employees, T2 inserts a
new employee, T1 re-
executes and gets a

different count.

3. Concurrency Control Techniques

To prevent the above problems, DBMSs implement concurrency

control mechanisms that ensure correct transaction execution. The

most widely used techniques are:

1. Lock-Based Protocols (Pessimistic Concurrency Control)

2. Timestamp-Based Protocols

3. Optimistic Concurrency Control (OCC)

4. Multiversion Concurrency Control (MVCC)
4. Lock-Based Concurrency Control (Using Locks)
What are Locks?

Locks mechanisms that prevent concurrent access to the same data by

multiple transactions. Locks guarantee that a transaction has to

relinquish a lock before another transaction can use the data item.

112

MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

ready for life......

Types of Locks Notes

Lock Type Purpose Example

Allows multiple T1 and T2 both read the
Shared Lock |transactions to read but not| same row at the same

(S-Lock) write. time.
Allows only one T1 updates a row,

Exclusive transaction to read and preventing T2 from

Lock (X-Lock) write at a time. accessing it.

Two-Phase Locking (2PL) Protocol
The Two-Phase Locking (2PL) protocol ensures conflict serializability

by dividing transactions into two phases:

[Two-Phase Locking (2PL)]

[Begin Transaction]

Perform Operation
~ + R
== Release Locks
Commit / Rollback

Fig.4.3.1: Flowchart of the Two-Phase Locking (2PL) protocol
1. Growing Phase:
o A transaction acquires locks but does not release any
locks.
2. Shrinking Phase:
o A transaction releases locks but does not acquire any

new locks.

113
MATS Centre for Distance and Online Education, MATS University

(\—/\—/\

\ “ il

[

ready for life......

Notes Advantage: Ensures serializability.

Disadvantage: Can lead to deadlocks (two transactions waiting

indefinitely for each other’s locks).

Example of Two-Phase Locking

T1: Lock(X)

T1: Read(X)

T1: Lock(Y)

T1: Read(Y)

T1: Unlock(X)

T1: Update(Y)

T1: Unlock(Y)

Ensures correct execution by preventing lost updates and dirty reads.

5. Timestamp-Based Concurrency Control

What is Timestamp Ordering?
o Every transaction is assigned a unique timestamp when it starts.
o Transactions execute in order of their timestamps.

Fig.4.3.2: flowchart for the read/write rules in Timestamp-Based Fig.4.3.1:

Read/Write Rules

Transaction T issues
Read(Q)

Abort T
Read(Q)
+ R-timestampQ) =
max(R-timestamp(Q)),
TS(T)
Abort T

Transaction Tissues
Write(Q)

.

Fig.4.3.2: Concurrency Control

114
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

ready for life......

How Timestamp-Based Concurrency Control Works Notes
Each data item has:
1. Read Timestamp (RTS): The largest timestamp of any
transaction that has read the item.
2. Write Timestamp (WTS): The largest timestamp of any
transaction that has written the item.
If a newer transaction tries to access an older version of data, it is
aborted and restarted.
Advantage: Prevents deadlocks.
Disadvantage: Transactions may be aborted frequently, reducing
performance.
6. Optimistic Concurrency Control (OCC)
What is OCC?
e OCC assumes transactions rarely conflict and allows them to
execute freely.
e Before commit, the system checks if conflicts occurred.

e Ifa conflict is found, the transaction is aborted and restarted.

Read Phase

A 4

Execute Transaction

!

Validation Phase —No

Write Phase

A

Commit Transaction

Fig.4.3.3: Flowchart of Optimistic Concurrency Control process

115
MATS Centre for Distance and Online Education, MATS University

ey

\ “ il

ready for life......

Notes

Phases in OCC
1. Read Phase: Transaction reads data without locking.
2. Validation Phase: Before committing, checks if another
transaction modified the data.
3. Write Phase: If no conflict, changes are written to the
database.
Advantage: Faster in systems with low conflicts.
Disadvantage: Rollback may happen frequently in high-concurrency
environments.
7. Multiversion Concurrency Control (MVCC)
What is MVCC?
e MVCC stores multiple versions of data instead of locking it.
o Each transaction gets a consistent snapshot of the database at
the time it starts.
o Readers don’t block writers, and writers don’t block readers.
How MVCC Works:
1. Read transactions get a snapshot of old data (ensuring
consistent reads).
2. Write transactions create a new version of the data instead of
modifying the old one.
3. Older versions are removed when no transactions need them.
Advantage: Eliminates locking overhead and increases performance.
Disadvantage: Uses more storage because multiple versions of data are

kept.

READ OR WRITE
OPERATION?

READ THE LATEST
COMMITTED VERSION
AS OF THE TRANS-
ACTION START TIME

A4

CREATE A NEW
VERSION OF THE
DATA

I

USE THE NEW

VERSION FOR

SUBSEQUENT
TRANSACTIONS

Fig.4.3.4: flowchart showing how MVCC handles reads and writes

116
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

cady for life......

8. Deadlock Handling in Concurrency Control Notes
Deadlock happens when two or more transactions are keeping each
other waiting indefinitely for each other to release locks The two
most common ones are.
Deadlock Prevention Strategies:
1. Timeout: If a transaction waits too long, it is aborted.
2. Wait-Die Scheme: Older transactions wait; younger
transactions restart.
3. Wound-Wait Scheme: Older transactions force younger ones to
restart.
Deadlock handling ensures transactions do not block indefinitely.
Concurrency control is necessary to ensure the correct, consistent,

and efficient execution of transactions in a multi-user database.

Technique Advantage Disadvantage
Lock-Based Prevents lost updates | Can cause deadlocks
Protocols (2PL) & dirty reads
Timestamp Ensures transactions | May abort transactions
Ordering execute in correct frequently
order
Optimistic Best for low-conflict Rollbacks may be
Concurrency environments frequent in high
Control (OCC) concurrency
MVCC Improves performance| Uses more storage
(no blocking)

Features of databases:[/heading]Through effective concurrency
control, databases maintain a balance between consistency, isolation
and performance, ensuring that multiple users can work on them
simultaneously, without corrupting data.

4.3.2 Concurrency Control Protocols: Lock based and Timestamp
based

Concurrency Control Protocols: Lock-Based and Timestamp-Based

1. Introduction to Concurrency Control Protocols

In Database Management Systems (DBMS), concurrency control is

the process of managing simultaneous operations without conflicting

117
MATS Centre for Distance and Online Education, MATS University

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

with each other. They guarantee that the operations execute correctly
and comply with isolation, consistency, and serializability.
Why Are Concurrency Control Protocols Needed?
In multi-user databases, several transactions execute simultaneously to
enhance performance. Without adequate concurrency management,
read anomalies return, which include dirty reads, lost updates, and
inconsistent data reads.
Concurrency control protocols prevent conflicts by ensuring that
transactions execute in a controlled manner.
Types of Concurrency Control Protocols
The two most commonly used concurrency control protocols are:

1. Lock-Based Protocols — Transactions acquire locks to control

data access.
2. Timestamp-Based Protocols — Transactions are ordered using
timestamps to ensure serial execution.

2. Lock-Based Concurrency Control Protocols
. What Are Lock-Based Protocols?
Lock-based protocols use locks to restrict multiple transactions from
accessing the same data simultaneously.
2.2. Types of Locks

Lock Type Description Example

Allows multiple
transactions to read the | Multiple users can view a
Shared Lock | same data but prevents | bank balance at the same

(S-Lock) writes. time.

A user transferring money

Exclusive Allows only one should prevent others from
Lock (X- transaction to read and modifying the same
Lock) write the data. account.

Shared Locks allow reading but prevent writing.

Exclusive Locks prevent all access except for the locking transaction.
4.3.3. Two-Phase Locking (2PL) Protocol

What is 2PL?

118
MATS Centre for Distance and Online Education, MATS University

The Two Phase Locking (2PL) protocol is one of the most common
methods to achieve serializability; it does so by separating the

transaction into two distinct phases:

[Two-Phase Locking (2PL) J

!

[Begin Transaction]

Perform Operation
" l)
= Release Locks
. A
e l)
Commit / Rollback
L S

Fig.4.3.5: Flowchart of the Two-Phase Locking (2PL) protocol

1. Growing Phase: A transaction acquires locks but does not
release any.
2. Shrinking Phase: A transaction releases locks but does not
acquire any new ones.
Guarantees serializability.
Can lead to deadlocks if transactions wait indefinitely for each
other’s locks.
Example of Two-Phase Locking (2PL)
T1: Lock(A)
T1: Read(A)
T1: Lock(B)
T1: Read(B)
T1: Unlock(A)
T1: Write(B)
T1: Unlock(B)
Correct execution: Ensures consistent transaction execution.
Strict Two-Phase Locking (Strict 2PL)

119
MATS Centre for Distance and Online Education, MATS University

UNIVERSITY

ready for life......

Notes

ars)

(mes)

Notes e Locks are held until the transaction commits or aborts.

o Prevents cascading rollbacks (when an aborted transaction
forces multiple rollbacks).
Safer than basic 2PL because transactions only release locks
after committing.

Deadlock and Starvation in Lock-Based Protocols

Problem Description Solution

Two or more transactions wait Timeouts, Wait-Die,

Deadlock | indefinitely for each other’s locks. |Wound-Wait schemes

A transaction never gets a lock

because other transactions always Fair scheduling

Starvation get priority. policies

Deadlocks occur when transactions form a circular wait.
Starvation happens when low-priority transactions never execute.
3. Timestamp-Based Concurrency Control Protocols
What Are Timestamp-Based Protocols?

Timestamp-based protocols order transactions based on their

timestamps to ensure serializability.

How It Works
o Each transaction T is assigned a unique timestamp (TS) when
it starts.

o Each data item has:
1. Read Timestamp (RTS): Latest timestamp of a
transaction that read the data.
2. Write Timestamp (WTS): Latest timestamp of a
transaction that wrote to the data.
Ensures that older transactions execute before newer ones.
4.3.4. Basic Timestamp Ordering Protocol
e If atransaction T wants to read X:
o IfTS(T) <WTS(X) — T is aborted (because a newer
transaction already updated X).
o Else, T reads X, and RTS(X) is updated.
e Ifatransaction T wants to write X:
o IfTS(T) <RTS(X) or WTS(X) — T is aborted
(because older reads or writes exist).
o Else, T writes X, and WTS(X) is updated.

120
MATS Centre for Distance and Online Education, MATS University

Prevents dirty reads and lost updates.

Transactions may be aborted frequently, reducing performance.

4.3.5. Thomas’s Write Rule (Optimized Timestamp Protocol)
e If TS(T) < WTS(X), ignore the write instead of aborting T.

Reduces unnecessary transaction rollbacks.

4. Comparison: Lock-Based vs. Timestamp-Based Protocols

Feature Lock-Based Protocols Timestamp-Based
Protocols
How It Works | Uses locks to control | Uses timestamps to order
access transactions
Handling Prevents conflicts by Allows transactions to
Concurrency locking resources execute but aborts if
conflicts occur
Risk of Yes No
Deadlock?
Risk of Yes Yes (Frequent rollbacks)
Starvation?
Performance Slower due to locks Faster but can lead to
frequent restarts
Best Used For Systems with high | Systems with high read-to-
contention (e.g., write ratio (e.g., analytics,
banking, ticketing) reporting)

Lock-based protocols prevent conflicts but can cause deadlocks.

Timestamp-based protocols avoid deadlocks but may require frequent

transaction rollbacks.

Concurrency control protocols are used for the correct execution of

transactions in multi-user databases.
e Lock-based methods (2PL, Strict 2PL) avoid conflict and
deadlock issues.

e Timestamp-based protocols (Basic Timestamp Ordering,

Thomas’s Write Rule) make serializability guarantee without

deadlocks but may result in frequent rollbacks.

e Selecting appropriate protocols will be aligned with specific

performance requirements as per transaction type.

121

MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

ready for life......

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

Database systems are then able to efficiently leverage efficient
concurrency control protocols to strike a balance between isolation,
consistency, and performance, as multiple transactions are able to
execute concurrently and safely.

4.3.6 Deadlock Handling: Detection and Prevention

This leads to a situation of circular dependency, in which processes
cannot continue execution, and thus, parts of the system come to a halt.
Deadlocks are one of the hardest problems in operating systems,
database = management systems, and distributed computing
environments. Therefore, it is critical to understand, identify and
resolve deadlocks because they may cause a noticeable drop in system
performance, useless resource consumption or even system deadlocks
that require manual restart of the system. This guide will explore the
key principles behind deadlocks, the conditions that result in them, how
they can be detected, prevented, avoided, and recovered from. We will
also link to practical implementations in different contexts of
computing, analyze the trade-offs of proposed solutions, and explore
research directions for the evolution of deadlock avoidance/avoidance
in modern paradigms of computing.

Fundamental Concepts of Deadlocks

Deadlock is a particular state in concurrent programming in which
processes are forever blocked in their wait for resources, so it is a
condition where, without outside intervention, the system enters a state
it cannot recover from. The resource allocation systems where
deadlocks happen need to be understood to fully comprehend this
phenomenon. In these systems, processes request resources, use them
to calculate and then release them to other processes. Resources can
either be preemptable (can be taken away from a process) or non-
preemptable (the holding process must explicitly release it). Deadlocks
are mainly because of non-preemptable resources because pre-
emptable resources can hardly lead to deadlock conditions. Resource
Allocation Graphs The Resource allocation graph is another data
structure that visually depicts resource allocation and requests in a
system. In this directed graph, we have processes and resources as
nodes, and the edges are allocated resources or requests. Haven’t heard
of deadlock detection? This description should give a better idea about
the format of resource allocation graph and how swill be interpreted.

Fig.12.6:diagram illustrating the Four Necessary Conditions for Deadlock

122
MATS Centre for Distance and Online Education, MATS University

The Four Necessary Conditions for Deadlock

The Coffman conditionsE. G. Coffman: A look at Deadlock are four
conditions that must hold for a deadlock to occur, they form the basis
of understanding a deadlock situation and E. G. Coffman formalized

this concept. The first condition for mutual exclusion states that at least

Mutual
Exclusion

A 4

- The Four
Wait Conditions for | | and Wait
Deadlock

A

No
Preemption

Fig.4.3.6: Deadlock Conditions
one resource should be held in a non-sharable mode such that only one
process can be using it at any specific interval. Deadlocks could never
occur if every resource in the system could be shared among all
processes at the same time. The other condition, hold and wait (or
resource holding) arises when a process that is holding at least one
resource is waiting to attain additional resources that are held by other
processes. This provides a scenario where processes will wait for other
processes to release resources while already holding resources, thereby
potentially paving the way for circular dependencies. The third
condition, no preemption, says that resources cannot be forcibly
removed from a process; the process that has the resource must
explicitly give it up. The system could preempt resources to prevent
deadlocks by reallocating them from a waiting process. The fourth
condition, circular wait, occurs when there is a set of processes such
that every process is waiting for a resource held by another process in
the set, forming a circle of processes. A deadlock can occur when all
four of the following conditions hold simultaneously. Alternatively, if
all of these conditions are precluded the system can avoid deadlock
completely. These insights lay the groundwork for a class of deadlock

prevention schemes all of which attempt to eliminate one of the four

123
MATS Centre for Distance and Online Education, MATS University

e

} W

ars)

UNIVERSITY

ready for life......

ey

§ \\\

UNIVERSITY

ready for life......

Notes

aTs)

il

conditions that are needed to allow deadlocks to occur within the
system.

Resource Allocation Graphs and Deadlock Representation

A visual model to explain optimal resource allocation in based on
resource allocation graphs (RAG) in a powerful way. A representational
element of a resource allocation graph contains two kinds of nodes (
circles, process nodes and squares or rectangles, resource nodes).
Directed edges link these nodes, indicating resource requests or
allocations. The edge from a process to a resource indicates that the
process has requested that resource, but not yet been granted it. An edge
from a resource to a process means that the resource has been allocated
to that process. Abstract resources(0): In systems where there are
several instances of a single resource type, the representation is
complex, for example it may to have to be notated the number of
instances requested or allocated. Resource allocation graphs are not so
much useful for detecting deadlock: a cycle in a resource allocation
graph with only one instance of each resource type means a deadlock
has occurred. But cycles are an essential yet not sufficient condition

for deadlocks in most resource arrangement models.

Resource Allocation Graphs
and Deadlock Representation

(—{r:

()1

Resource Deadlock
Allocation Graf

Fig.4.3.7: Diagram showing Resource Allocation Graphs
In such systems, special algorithms must be applied to determine
whether a cycle actually represents a deadlock. Additionally, these
resource allocation graphs can be dynamic since processes are able to
request new allocations and release resources as needed. By tracking
these changes and examining the structure of the resulting graph,
systems can detect impending deadlocks before they completely

manifest or can discover full deadlocks for resolution. Resource

124
MATS Centre for Distance and Online Education, MATS University

allocation graphs are especially helpful in visualizing and explaining
deadlock states, making them a tool for understanding as well as
education in concurrent systems.

Deadlock Detection Mechanisms

Deadlock detection describes algorithms and techniques allowing
systems to detect when a deadlock has occurred. These will be required
in systems where deadlock prevention or avoidance strategies are not
implemented, or as a backup to fallback strategies that fail. Detection
algorithms commonly check resource allocation state and process
requests to search for circular wait states. If we consider a single-
instance resource type, detection can be simple — it is equivalent to
searching for cycles within the resource allocation graph. (N) To avoid
deadlock in multi-instance resource systems, more complex methods
needed, such as the banker's algorithm or derivatives thereof, exploring
possible resource allocation paths to determine if safe sequences exist.
Deadlock detection is done periodically or when certain events occur
such as a resource is requested or allocation failed. Detections happen
relatively infrequently; there is always a trade-off: with more frequent
detections you get more overhead but an earlier detection and
response, whereas with less frequent detections you get less overhead
but potentially longer deadlocks.

As soon as a deadlock is detected, the system needs to follow recovery
procedures that it has in place to break the deadlock and allow those
processes involved in the deadlock to continue. Approaches such as
those used by operating systems and database systems involve
advanced detection methods that minimize false positives and
negatives while providing timely responses that do not unduly degrade
system performance.

Algorithms for Single-Instance Resource Deadlock Detection
Detecting deadlocks can be done with graph-based algorithms,
comparatively easy, in systems in which every resource has a single
instance. The typical method is to create and examine what is called a
wait-for graph which is a simplified version of the resource allocation
graph where the process nodes are connected directly by edges denoting
wait relationships. This graph edge from process P1 to process P2
means that process P1 is waiting for a resource that is currently held by
process P2. Detecting deadlocks subsequently boils down to cycle

detection in this directed graph which can be done using classical

125
MATS Centre for Distance and Online Education, MATS University

e

} W

ars)

UNIVERSITY

eady for life......

ey

§ \\\

UNIVERSITY

ready for life......

Notes

aTs)

il

graph algorithms e.g., depth-first search (DFS) or breadth-first search
(BFS).The detection algorithm usually works in three steps: First,
build the wait-for graph from the current resource allocation and
request; Second, check if the graph has cycle either with DFS or BFS;
And thirdly, if any cycle has found, Then declare a dead-lock involving

Detection Algorithms for
Single-Instance Resources

Construct

wait-for graph

Is there a cycle in
the wait-for graph?

Dedaadlock

L
A 4 Deadlock
No detected
deadloc

Fig.4.3.8: Diagram illustrating Detection Algorithms for Single-Instance Resources

the processes in the cycle. The time complexity is generally O(n?)
(where n is the number of processes that need to be executed) making
this approach computational efficient and suitable for normal
execution, for instance in a small system with no more than 60
processes. A single-instance detection algorithm can also be applied at
the resource type level instead of the add instance level, grouping
similar resources together. Further optimization: we can do so less
frequently, based on system activity patterns (e.g. detecting when two
processes cycle back on holding resources), and further focus detection
on when deadlocks are more likely, e.g. within the periods after
sequences of resource requests and when processes claim to be waiting
past a threshold period of time.

Detection Algorithms for Multiple-Instance Resources

We have already said that deadlocks in systems where multiple
instances of resources exist are more complex than with systems with
a single instance. So from what it follows: Not having cycles in a
resource allocation graph no longer implies that there are no deadlocks,
because it may be the case that there are other types of instances of a

126
MATS Centre for Distance and Online Education, MATS University

resource that have not yet been allocated, making at least one process
to finish and freeing some resources. There are multiple algorithms
developed for this purpose, of which, the most notable ones are - the

banker's algorithm and deadlock detection algorithm. The multiple-

Detection Algorithms for
Multiple-Instance Resources

(Work « Available)

Is there an / such that
Finish[/] = false and
Request; < Work?

No | Work « Work
+ Allocation;

Y Y

Deadlock Finish[/] «
detected true

Fig.4.3.9: Diagram illustrating Detection Algorithms for Multiple Instance Resources

instance resources deadlock detection algorithm generally checks for
the possibility of some sequence of resource acquisitions enabling all
the processes to execute. This means keeping data structures that keep
track of: available resources (ones that are not currently allocated to any
process), allocated resources (ones that are currently held by each
process), and requested resources (ones that each process is waiting to
get). The algorithm then tries to find a hypothetical execution
sequence, repeatedly finding processes whose resource requests can be
satisfied with the current available resources. If such processes are
discovered, the algorithm simulates such processes starting and
releasing the resources they had, putting their allocated resources back
into the pool. This is repeated until we are either out of processes (no
deadlock) or we run out of eligible processes (indicating a deadlock
involving the remaining processes). Since m is the number of resource
types and n is the number of processes, this algorithm has O(m x n?)
time complexity which is usually more computationally intensive than
single-instance detection. Such overhead can be minimized using

several optimizations like incremental detection with processes and

127
MATS Centre for Distance and Online Education, MATS University

=

} W

ars)

UNIVERSITY

ready for life......

Notes

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

resources their state has changed since last detection cycle or priority-
based approaches that considers process that are more likely to cause

deadlocks before others.
Distributed Deadlock Detection

The problem of deadlock detection in distributed systems has its own
complexity that doesn’t appear in centralized systems. A distributed
system is one in which resources and processes are spread across
multiple nodes or sites, and no single entity has complete knowledge of
the global state of the system. This distributed nature makes it
challenging to build an overall resource allocation graph and requires
specific algorithms for effective deadlock detection. Three general
types of methods have been proposed for the distributed detection of
deadlocks: path-pushing, edge-chasing, and global state detection
methods. Similarly, path-pushing algorithms propagate the
dependencies between the processes along the paths in the wait-for
graph, with the eventual goal of being able to tolerate cycles that span
multiple nodes. Edge chasing algorithms employ special “probe”
messages that move along the edges of the wait-for graph, which return
to their originators to signal a cycle. Global state detection methods try
to make a global view of the system state at all nodes and analyze the
global state for deadlocks with the help of centralized algorithms. Such
distributed detection algorithms face additional complexities like
message delays, partial failures, false positives or false negatives owing
to dynamic nature of system. Additionally, they should incur little
communication overhead; even small amounts of message passing to
perform deadlock detection can be detrimental to system performance.
Indeed, many distributed systems operate with hierarchical strategies
that integrate local detection among nodes with global coordination
across nodes, thereby balancing detection accuracy and communication
efficiency.

Deadlock Prevention Strategies

Deadlock prevention involves designing a system with resource

allocation policies that prevent at least one of the four necessary

conditions for deadlock. These strategies ensure that deadlocks are

128
MATS Centre for Distance and Online Education, MATS University

structurally impossible in the system by guaranteeing at least one
condition cannot occur. Prevention strategies are conservative by nature
and involve placing restrictions on the ways processes are allowed to
request and hold onto resources. In most resources question of mutual
exclusion prevention is very rare, however minimum number of
resources should be made non-shareable by the system designers.
Preventing hold and wait generally leads processes to either have to
request for all resources required by them before they can proceed, or
to release all of the resources they hold before they can request more.
This means that these systems may need to take away resources from a
process when it runs out of other options, in what is called forced
reclaiming. Circular wait can typically be prevented by defining a total
ordering for resource types and forcing processes to request resources
in that order. Although prevention strategies offer the strongest
guarantee against deadlocks, they often incur a significant cost in
terms of resource utilization, system performance, and programming
complexity. This composite of trade-offs is what makes prevention
strategies well-suited for critical systems in which deadlocks are simply
unacceptable under any conditions, but less so for the general-purpose
computing environments where more well-rounded approaches may be
preferred.

Eliminating Mutual Exclusion

One of the base yet difficult methods for deadlock prevention is to
remove the mutual exclusion condition. This strategy is designed from
the perspective of systems approach, and aims to design systems where
resources can be simultaneously shared among two or more processes,
hence breaking the contention that creates the basis of deadlocks. In
practice, completely avoiding mutual exclusion is not possible for
many types of resources that are inherently non-shareable (e.g.
printers, tape drives, database locks). Yet, some strategies can mitigate
this impact by designing systems such as spooling where resource-
executing processes interact with processes running on virtual
resources instead of the actual resources themselves. Print spooling, for
instance, enables multiple processes to send data to a print job queue as
opposed to needing direct access to the printer hardware. In much the
same way, virtualization technologies allow multiple virtual machines
to share the same physical hardware, de-stabilizing exclusive resources

for shared ones at a higher level of abstraction. Another response is to

129
MATS Centre for Distance and Online Education, MATS University

e Ny

gmm

\\\

UNIVERSITY

ready for Iife......

i,
s%;

ey

¢M
UNIVERSITY

ready for life-.....

§ \\\

Notes

aTs)

i

redesign resources or the patterns in which they are accessed to allow
concurrent usage, for instance through reader-writer locks in which
multiple processes can read the data concurrently whilst still allowing
exclusive access for writing. Asynchronous data structure, lock-free
and wait-free -- Among the ways to decrease mutual exclusion is the
development of lock-free and wait-free data structures. Although it is
impossible to eliminate mutual exclusion for every type of resource, it
is possible to look at some resources and determine if they can be made
into shareable resources and reduce the potential deadlocks in a system.
Preventing Hold and Wait

Hold and Wait — In this condition, a process holds a resource while
waiting to acquire additional ones. To prevent this condition, we need
to design resource allocation policies that guarantee that processes will
never concurrently possess some resources while it is waiting for
others. There are two common methodologies in pursuing this end.
This way all resources required by each process should be requested at
the beginning of execution. This means that when a process requests
resources, the system will give either all resources or nothing, in this
way, it does not allow a process to hold some resources while in wait
for others. Although conceptually simple, this strategy requires
processes to specify all of their resource needs ahead of time, something
that may not always be realistic for practical applications that can
develop dynamic resource requirements. It can further cause the waste
of resources since resources that are reserved at a very early point in a
process lifecycle can go unused for a long time. The second approach
allows processes to request resources incrementally but forces them to
relinquish all currently held resources upon a denied request. Then, the
process tries to grab all necessary resources at once in a next request.
This is more flexible, but leads to complexities including the potential
for starvation (if a process repeatedly fails to acquire all the resources
it needs) and the extra cost of repeatedly releasing & reacquiring
resources. Both strategies can be improved upon, such as using
resource reservation in which processes inform the system in advance
of their expected future demands for resources without actually
requesting the resources, allowing the system to plan allocations and
reduce waiting whenever possible. Furthermore, pooling of resources

together can be used where similar resources are grouped, and

130
MATS Centre for Distance and Online Education, MATS University

operations are less, again reducing the chances of hold and wait
condition occurring.

Allowing Resource Preemption

No-preemption: The system should be designed in such a way that
resources cannot be forcibly taken away from the processes holding
them, which is one of the necessary conditions for deadlocks. In the
context of preemption, if a process requests a resource that it cannot yet
access, the system checks whether preempting resources from other
processes might help to avoid a potential deadlock. If we identify any
of our resources on which a suitable candidate for preemption would
be found, we can release it and grant the requesting process the
resource, breaking the formation of a deadlock before it can even
materialize. There are a number of approaches to making preemption
work. These include process priority schemes, where higher-priority
processes can preempt one or more resources from lower-priority
processes. A second approach uses resource age or holding time as its
criteria and preempts resources holding for a while. This is not a bad
description of a one-shot preemption/cancel paradigm, checkpoint-
based preemption is a better fit because a process periodically saves its
execution check pointed state, allowing it to be rolled back to a sort of
consistent state after preemption of its resources. This makes
preemption a complex topic that requires careful design of the system
implementing it. Such a system must ensure the safe aspects of the
process context saving, the performance costs of saving process state
when preempting processes, and starvation policies to stop processes
from being repeatedly preempted in to sensibly afford a system which
ensures progress in userspace. The system also needs some policies on
how to choose which resources to preempt, where there are multiple
candidates, e.g. the system should try to minimize the disruption to the
processes, should provide fairness and let the processes make progress.)
Indeed, many modern operating systems employ some forms of
resource preemption, and for some resource types—especially memory,
CPU time, and some I/O resources—there are practical ways to
implement this process, even if it is not easy.

Avoiding Circular Wait

Out of the deadlock prevention strategies, preventing circular wait is
one of the most commonly used strategies since it is easier to

implement than removing other necessary conditions. The basic

131
MATS Centre for Distance and Online Education, MATS University

e Ny

gmm

W

UNIVERSITY

ready for lif......

il
s%;

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

method is to develop a total ordering of all classes of resources and
require processes to request resources in this order. This phone work
eliminating circular dependencies between processes at the level
structure. By never requesting resources except in order. To implement
this strategy, however, the following steps are required: (1) assign a
unique numerical identifier to each resource type; (2) require that
processes request resources strictly in increasing (or decreasing) order
of identifiers; (3) enforce this ordering in system calls or middleware
that validates resource request sequences. For instance, if there are
resource R1, R2, and R3 with identifiers 1, 2, and 3, a process must ask
for them in the order R1, R2, R3 This avoids creating cycles within the
resource allocation graph ensuring that processes can only wait on
resources than have identifiers greater than those that they currently
possess. While simple in principle, this technique can be difficult in
practice. The processes in the system must be designed or modified to
acquire the resources in the specified sequence, which may conflict
with their actual operational order. It also needs to find a logical
ordering of resources such that processes do not have to request
resources out-of-order. By deciding hierarchies of related resources to
work with can ease some of these problems, where stabilization can be
at a classification level rather than a direct resource. There are dynamic
resource hierarchies of resources that dynamically adjust the ordering
of resource accesses based on observed usage patterns, hopefully
matching the application requirements better while still avoiding
circular wait conditions.

Deadlock Avoidance Algorithms

Deadlock avoidance is a halfway house between the very restrictive
prevention and the more reactive detection and recovery. These
algorithms adopt an approach where processes can make incremental
resource requests, without taking the system to an unsafe state that
might independently bring about deadlock. They work based on extra
information about the resources needed for processes, usually
expressed as predetermined maximum resource demands. Based on this
information, the system can decide on each resource request whether it
can grant it or might place the system in a potential deadlock state in
the future. The banker's algorithm, one of the most popular deadlock
avoidance algorithms, designed by Edsger Dijkstra, simulates a

tentative allocation of resources to find out if, there is a sequence of

132
MATS Centre for Distance and Online Education, MATS University

processes that can be executed without deadlock. This solution is safe
because all processes can finish even if they request their maximum
remaining resources right away. A request is denied if after the
allocation there is no safe sequence and the requesting process blocks
until resources can be granted. The main contribution of this paper is
an alternative model to the banker's algorithm, called the resource-
trajectory approach, in which the sequence of resource allocations and
deallocations is modeled as a trajectory through a multidimensional
space, that is, the resource space, and a safe resource allocation is one
that never allows the trajectory to enter unsafe regions. Avoidance
algorithms offer stronger correctness guarantees than detection and
recovery with much less severe restrictions than prevention strategies,
but present their own challenges such as the overhead of safety
checking to ensure avoidance, the need to know beforehand how much
of a resource is needed, and, potentially, less than optimal use of
resources due to conservative allocation policies.

The Banker's Algorithm and its Variants

Deadlock avoidance: The single most important approach to deadlock
avoidance is the banker’s algorithm that was originally formulated by
Edsger Dijkstra and is so named because of its analogy to banking
systems. This algorithm uses a few data structures to maintain the state
of resources that are allocated: the maximum resources still needed by
each process — the resources currently allocated to each process —
and the missing resources needed by each process. The algorithm
simulates the allocation of processes' requests and looks for a "safe

sequence" of process executions that would allow all processes to finish

The Banker’s Algorithm
and Its Variants

Is Request;
< Need; ?

Is Request,; <
Available?

Pretend
that Request;
has been

No

Yes
Is system in
a safe state?

——1 Request; can
be granted

Fig.4.3.10: Diagram The Banker’s Algorithm and its Variants.

133
MATS Centre for Distance and Online Education, MATS University

e Ny

gmm

W

UNIVERSITY

ready for life......

il
s%

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

running without a deadlock. If such a sequence, does exist the state is
said to be safe and the request is granted; otherwise the request is denied
and the process that made the request has to wait. The banker's
algorithm forms the basis of several extended and optimized variants
tailored to specific system needs. We can simplify the original Handle
Algorithm into its single-resource version for the case of only one
resource type, which reduces the computational complexity. Instead
posing the bankers algorithm to hierarchal resources system, as in tree
(parent-child) hierarchy. The distributed banker algorithm works
similar in nature as the banker's algorithm but it does not work with
the centralized method, instead it uses a distributed matter to prevent
deadlock, The process of allocation takes place in a distributed manner.
There are also variants of the banker's algorithm that are dynamic,
meaning they take resource requests that come up during execution of
a process into consideration, thus avoiding one of the main problems of
the original algorithm. Therefore, with a theoretically sound approach
proposed with the banker's algorithm, the practical implementation can
be difficult due to the safety need to be checked for every resource
request, processes should declare their maximum needs in advance
(which in many cases may be difficult to evaluate), resources may
remain underutilized due to conservative allocation policies. These
constraints have driven many general-purpose operating systems to
prefer different strategies for deadlock management, but it provides a
useful way in very specific contexts, where resource requests are
measurable ahead of time and a high reliability is fundamental.
Resource Trajectory Methods

An alternative to deadlock avoidance are resource trajectory methods,
which model resource allocation as a path through a multi-dimensional
resource space. The axes in this model represent different types of
resources, while a point in space reflects how many of those resources
are currently dedicated to a process. The system moves through this
space along a trajectory as processes request and release resources.
Some areas of the space correspond to unsafe allocations that can cause
deadlocks, and others represent safe allocations. For resource trajectory
methods, the key ideas are to keep the state trajectory in a safe region.
A key aspect of this approach is identifying the critical boundaries that
delineate the safe from the unsafe regions in resource space. This is

when a process requests resources and the system assesses whether

134
MATS Centre for Distance and Online Education, MATS University

granting the request would cross a dangerous threshold into an unsafe
space. If so the request is denied, if not the request is granted. There
have been various mathematical formulations proposed for defining
such critical boundaries, as well as for more efficient identifications of
these boundaries. The first-run single-resource trajectory approach
streamlines the analysis, applying to systems with a single resource
type. The claim-and-release trajectory method utilizes knowledge of
future resource releases to model a tighter safe region. The process-
interaction trajectory approach focuses directly on interactions between
specific processes, as opposed to the global system state, which could
enable more concurrency for resource allocation. In some cases,
resource trajectory approaches can be more advantageous for certain
situations than the banker's algorithm, particularly potentially
displaying a more accurate representation of safe and unsafe
conditions, lower computational complexity = for specific
configurations of the system, and more intuitive visualization of safety
of the system. Nonetheless, they suffer from similar limitations to other
avoidance strategies (Table 2): They require prior knowledge of
resource needs, and conservative allocation will underutilize resources
(catch recovery too late).

Deadlock Recovery Techniques

In cases where deadlock prevention, avoidance, and detection
mechanisms fail or are not applied, systems must instead rely on
recovery strategies to address deadlocks once they have manifested.
Deadlock recovery is where the system detects the deadlock and takes

action to break it, e.g. by killing a process. Process termination

s a

Deadlock
Recovery
Techniques

!

s N

Deadlock occurs

\. J

v v
Process Resource
termination preemption

I I

Select process(s) Select victim
to terminate Resource

Fig.4.3.11: Deadlock Recovery Techniques

135
MATS Centre for Distance and Online Education, MATS University

e Ny

gmm

W

UNIVERSITY

ready for life......

il
s%

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

techniques choose one or more competing processes in a deadlock to
abort, freeing them of their held resources, and allowing potential
continuation with other processes. For mustering process termination
candidates, priority (w/0) process execution time, resources held and
Fig.4.3.11: Diagram for Deadlock Recovery Techniques
remaining work, may provide selection criteria. Resource preemption
typically requires saving the state of the processes being preempted,
identifying which resources to preempt, and dealing with the possible
cascading effect. Since partial execution is an issue, both approaches
need to cater for recovery, since aborted or preempted processes might
have been state-changing and therefore need to be undone or
compensated. Transaction rollback mechanisms in database systems
offer a systematic way to reverse the effects of partially completed
operations in the event of deadlock recovery. Current systems use
hybrid recovery strategies that involve a combination of process
termination and resource preemption, which chooses the appropriate
strategy given a certain deadlock condition. Recovering from the
deadlock allows systems to continue, but these techniques tend to have
high penalties of lost work, degraded performance, and the prospect of
data inconsistency, making recovery techniques sometimes a preferred
strategy, but more often a strategy of last resort.
Process Termination Strategies
One of the most straightforward strategies for deadlock recovery is the
termination of processes, in which one or more processes in the
deadlock is/are chosen and aborted. These processes once terminated
release all the resources they have if they were not previously finished,
thus eliminating the circular wait condition and enabling other
processes to make progress. There are several strategies for deciding
which processes to kill when a deadlock is detected. Selection of
victims tends to balance several elements so as to minimize the impact
on the overall system. This strategy -known as the minimum disruption
strategy- consists of terminate the minimum number of processes that
is necessary to break the deadlock and generally reports a set of
processes that, by terminating them, will release the resources needed
to satisfy the needs of the remaining processes involved in the deadlock.
In a cost-based approach, processes are assigned a termination cost
based on dispatching priority, the amount of computation they have

performed to date, resources they hold, and even the amount of work

136
MATS Centre for Distance and Online Education, MATS University

left to do. It then picks the processes that are cheapest to terminate. The
resource utilization method aims at processes that hold many resources,
specifically the ones that are used by several other processes, because
killing them anyway unblocks more processes. Clearly, this kind of
framework is quite conservative, as it terminates only the victims one-
by-one and checks if the deadlock has been cleared before going after
more victims: Incremental termination. For a system to achieve clean
termination, things can get complex, since it needs to make sure to free
up all previously allocated resources, correctly handle any shared data
structures between the affected processes, inform dependent software,
and potentially even hang onto some data to support restart. In systems
that have transactional semantics, like databases, the termination of
processes relies on the transaction undo mechanism to recover the
system from operations that only partially execute, preventing the
system from becoming inconsistent. Though terminating processes will
resolve deadlock, this results in substantial loss of computation and the
potential of user created frustration especially if the process in question
is interactive. As such, its cost means it is most appropriate as a last
resort in systems where other deadlock management mechanisms have
been unsuccessful or are not feasible.

Resource Preemption Methods

One technique of deadlock recovery that would fall under this method
is resource preemption. This provides a more fine-grained way to
intervene than terminating processes (which may lose more work and
be more disruptive). There are several key challenges that need to be
addressed for effective resource preemption. First, it must decide which
resources to preempt, most often choosing those that will end the
deadlock without a significant cost. The importance of the resource, the
length of time it has been retained, progress in the holding process, and
how many processes could be enabled by releasing it are among
possible criteria. Second, the system must have means of saving the
state of processes that have their resources preempted, so that they can
resume execution later when the resources are available again. Third,
the system has to deal with the complications of rolling back any
partially executed operations that relied on the preempted resources in
order to keep the data consistent. Different types of resource
preemption strategies have been developed for different computing

environment. Checkpoint-based preemption utilizes process

137
MATS Centre for Distance and Online Education, MATS University

=

} W

ars)

UNIVERSITY

cady for life......

ey

&

ready for life......

Notes

aTs)

il

checkpointing protocols to capture the execution state before
preempting resources, enabling a clean restoration when the resources
are reallocated. In priority-based preemption, processes with higher
importance are preferred, and each resource is preempted from lower-
priority processes to meet the demands of higher-priority ones. Cost-
minimization preemption aims to characterize the cost of preempting
various resources and chooses those with the lowest aggregate system
cost. Preemption is a practical construct that can be applied for some
types of resources such as memory pages, CPU time slices and some
locks which are eligible for a clean preemption and being less
applicable for resources that cannot be restored easily like open
network connections or exclusive device controls. Resource
preemption is effective mainly in systems capable of adequately
capturing, and restoring process state, which makes it a more feasible
solution in systems that provide rich facilities for checkpoint-restore.
Handling Partial Execution and Rollback

In many systems in which deadlocks are solved by killing processes,
or by preempting their resources, the system faces the problem of
partially executed operations. In scenarios of deadlocks, processes
involved might have previously finished some parts of their work,
modifying state of system, data structures or external systems in ways
which need to be handled in the process of recovery. Transaction

Rollback Mechanisms Some systems, especially database systems and

s

HANDLE
PARTIAL
EXECUTION

IDENTIFY
A FAILURE

UNDO PARTIAL
CHANGES

ROLL BACK

(. J

systems with transactional semantics, implement transaction rollback

Fig.4.3.12: Diagram for Handling Partial Execution and Rollback

138
MATS Centre for Distance and Online Education, MATS University

mechanisms that logically associate a series of operations with a
transaction. These systems log enough information about commands
to be able to cancel them, usually using write-ahead logging, shadow
paging or journaling techniques. Since, during a deadlock recovery
action, when a process is terminated or preempted, the transaction
associated with it would need to be rolled back and thus restoring the
system to a consistent state, as if the transaction had not started at all.
In systems not supporting a fully-fledged transaction interface,
compensating actions can be needed to cancel the effects of partial
operations. These might be application-specific cleanup procedures,
restoring modified data to their original values, releasing resources
consumed and notifying dependent services of the failed operation.
Checkpointing is another solution to the partial-execution problem, and
involves processes periodically storing their state such that it is possible
to return to that point (but note that checkpointing solutions often only
deal with the data space of the processes). It can shrink the amount of
work lost during deadlock recovery as well as improve deadlock
recovery cleanliness relative to a crash/restart of the whole process.
Some systems use speculative execution in systems where they allow
an operation to proceed on an optimistic basis, but preserve enough
information so they can back out the changes if there is contention for
those changes, or a dead-lock occurs. The overall cost of deadlock
recovery is heavily affected by the handling of partially executed
actions. Rollback capabilities: Well extolled systems can roll back more
gracefully from deadlocks, and poorly—designed ones may create data
inconsistency, resource leakes or other side effects that must be cleaned
up manually — which itself may lead to cascading failures.

Practical Implementations in Operating Systems

Deadlocks can be handled in many different ways by many different
operating systems (OS), and some OS don't even bother trying to
prevent a deadlock. Unix-like systems like Linux tend to be minimalist
in nature, relying on timeouts and human rescues instead of robust
deadlock prevention or detection tools. Most of these systems use closet
timeout-based resolution for some resource types and provide
administrative tooling to help identify and resolve deadlocks manually.
In Windows operating systems, deadlocks are handled in a more
structured approach, especially for synchronization objects like

mutexes or semaphores, including wait chains traversal to detect cycles

139
MATS Centre for Distance and Online Education, MATS University

=

} W

ars)

UNIVERSITY

cady for life......

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

il

of dependency. Strict deadlock prevention is commonly introduced in
real-time operating systems as they are time critical and this is typically
done using priority inheritance protocols and resource reservation to
eliminate priority inversion/deadlock conditions. Custom deadlock
handling strategies tailored to specific hardware and application
domains may be implemented by specialized embedded operating
systems. Internal deadlock prevention mechanisms for services that are
critical to operating system kernels typically use hierarchical locking,
lock-free algorithms or careful ordering of resource acquisition. There
are some specific problems for deadlock handling at the file system
level, where contemporary designs employ things like delayed
allocation, intent logging and non-blocking algorithms to limit
deadlock risk. It is the responsibility of low-level memory management
subsystems — via paging, virtual memory and the like — to prevent
deadlock by treating physical memory as a preemptable resource. As
you learn the approaches to implement this rather theoretical topic, you
get to understand what happens at system design perspective when you
are forced to go with a solution that constructs a trade-off between
theory and logistics.

Unix and Linux Approaches

As for Linux and other Unix-like operating systems, historically they
use a relatively minimalist policy when it comes to deadlock detection
and resolution compared to more elaborate policies explored in theory.
They provide a time out and other features from careful system design
and user level intervention, rather than avoiding, detecting or
recovering from deadlock through complex system level mechanisms.
Another way of saying this, and one that is very Unix systems-like, is
to “give me a lever and a place to stand” — offer hooks and ways to do
things instead of trying to synthesize the thing you want right out of the
core of the OS; this also fits with other Unix design principles: offer
mechanisms, not policies, minimize overhead for common we-do-an-
operating-and-a-some users operations, and — where it is at all
possible — push complexity out into user space. Unix systems
generally implement prevention strategies for specific classes of
internal resources at the kernel level through careful lock ordering and
acquisition protocols. Kernel synchronization primitives such as
mutexes, semaphores and reader-writer locks are generally designed for

deadlock prevention, using hierarchical locking schemas or lock

140
MATS Centre for Distance and Online Education, MATS University

dependency checkers to ensure consistent acquisition order. Unix
systems also provide timeouts on many resource acquisition operations
for user-level processes, allowing processes to detect when they are
waiting too long for resources and to initiate appropriate recovery.
Signal mechanisms allow blocked system calls to be interrupted,
enabling applications to perform their own timeout-based recovery
strategies. Resource limits and quotas ensure no single process can
monopolise the system resources in such a way as to create a
widespread deadlock. Linux itself has also built on top of this,
introducing additional deadlock features including pthread mutexes
that detect deadlocks, a kernel lock validator called "lockdep" that
seeks to guarantee that no deadlocks can occur, and process monitors
to determine which processes might be competing for shared resources.
The watchdog facility in systemd is a promising feature since modern
Linux distributions ship with it, and if it detects that an application is
hung, it tries to restart it which can also bring the system out of
deadlock by terminating and restarting affected processes. The practical
concurrency model of Unix, with its ad-hoc approach to deadlock,
captures both the challenge of implementing full deadlock detection
and recovery in a general-purpose operating system and the Unix ethos
to give application developers freedom — and responsibility — to
design suitable deadlock strategies for their own use cases

Windows Operating System Deadlock Management

Differences in deadlock handling — The Windows OS uses a slightly
more structured approach to deadlock management than any of the
Unix-like OS systems, particularly with regards to synchronization
objects and system resources. Similar to e.g. POSIX, Windows has a
rich set of synchronization primitives (all with built-in timeout-based
acquisition support), so that applications do not have to block
indefinitely waiting for resources. Operating systems include timeout
parameters as part of their wait functions, allowing processes to
specify how long they will wait for a resource and thus provide a
mechanism to detect and recover from potential deadlock situations.
Fig.4.3.11: Diagram for Windows Operating System Deadlock Management
Windows has a sophisticated wait chain transverser, capable of
detecting circular dependencies in threads waiting on synchronization
objects. This functionality is also exposed through programmatic

interfaces and administrative tool such as Resource Monitor, allowing

141
MATS Centre for Distance and Online Education, MATS University

=

} W

ars)

UNIVERSITY

cady for life......

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

il

developers and system administrators to identify deadlocks involving
Windows synchronization primitives. Windows applies internal
deadlock prevention mechanisms for critical system resources: Kernel
code is written to acquire locks in a consistent order and to follow
hierarchical access patterns. The Windows memory management and
process scheduling subsystems use resource reservation and
preemption techniques to decisively limit the potential for system-wide
resource deadlocks and to ensure that deadlocks can never take the
entire system down. They offer a complementary technique to the
timeout-based resource acquisition within an application, making the
application capable of achieving graceful degradation thanks to
structured exception handling implemented by the OS. Deadlock
detection and resolution capabilities for distributed transactions across
multiple resource managers are built into Windows via the Microsoft
Distributed Transaction Coordinator (MS DTC), which integrates with
database applications. With features like fair share CPU scheduling and
resource metering, Windows Server editions provide additional
resource governance to prevent resource monopolization that could
cause deadlocks. Windows does not enforce global deadlock avoidance
algorithms like banker's algorithm but its strategy of limiting resource
access to short time frames, traversing wait chains, and providing
administrative tools offer the system a practical approach to deadlock
management that balances performance overhead with system
reliability requirements.

Real-Time Operating Systems (RTOS)

The subject of this article is deadlock handling in real-time operating
systems. Contrarily, in an RTOS environment, deadlocks can severely
disrupt system functionality and directly encroach upon time
constraints, causing disaster scenarios in critical applications
(aerospace systems, medical devices, automotive control units, etc.).
Thus, RTOS implementations tend to use stricter deadlock prevention
techniques compared to general-purpose operating systems. One of the
fundamental deadlock prevention mechanisms implemented in many
RTOS is priority inheritance protocols that prevent priority inversion
problems. The dynamic priority of a process holding a resource,
therefore it would be adjusted to be equal to the highest priority of any
process waiting for a resource. The priority ceiling protocol generalizes

this idea by associating with every resource its priority ceiling (the

142
MATS Centre for Distance and Online Education, MATS University

highest priority of any process that may request the resource), and
temporarily raising the priority of the process that successfully acquires
the resource to its ceiling. Another common feature in RTOS
environments is deterministic resource allocation policies where
resources are allocated in fixed predictable patterns as opposed to
dynamic decisions that could potentially lead to deadlock. No dynamic
resource allocation means that the system is more rigid, with all
resources being assigned to processes when the system is created, and
thus many forms of deadlock are avoided at the expense of flexibility.
Another RTOS paradigm is time-bounded resource acquisition; that is,
every resource acquisition must finish within a fixed time limit, and
timeout-based failure recovery mechanisms ensure that processes do
not stall indefinitely. Commercial implementations such as VxWorks,
QNX and FreeRTOS have these mechanisms as well as other
specialized features such as deterministic scheduling, memory
protection, and fault isolation to preserve system integrity in the event
that part of the system fails. Due to the influence of time constraints on
real-time systems, the potential consequence of uncontrolled deadlock
may justify the overhead and increased complexity incurred by more
extensive deadlock prevention, making them an interesting avenue for

practical deadlock prevention and handling evaluation.

Summary

Transactions in a database system are sequences of operations
performed as a single logical unit of work. They follow the ACID
properties—Atomicity, Consistency, Isolation, and Durability—which
ensure that either all operations within a transaction are completed
successfully or none are, thus maintaining data integrity. A transaction
guarantees that the database remains in a valid state before and after the
execution, even in the event of system failures or concurrent access by
multiple users.

Serializability is a key concept in ensuring the correctness of concurrent
transactions. It ensures that the final outcome of concurrently executed
transactions is the same as if they were executed one after the other in
some order. This forms the theoretical foundation for concurrency
control mechanisms. To manage multiple transactions simultaneously
without conflicts, the database uses concurrency control techniques

such as locking, timestamp ordering, and multiversion control.

143
MATS Centre for Distance and Online Education, MATS University

e Ny

gmm

W

UNIVERSITY

ready for lfe......

il
s%;

¢M
UNIVERSITY

ready for life......

Notes

However, concurrency can lead to issues like deadlocks, where two or
more transactions wait indefinitely for each other to release resources.
Deadlock handling involves detection, prevention, or resolution
strategies to maintain smooth operation and data consistency. Together,
these mechanisms allow modern databases to support high levels of

concurrent user activity while ensuring reliable, predictable outcomes.

144
MATS Centre for Distance and Online Education, MATS University

y ﬁ N/
moTs)
ooy

Multiple Choice Questions: Notes
1. Which SQL command is used to create a new database?

a) MAKE DATABASE

b) CREATE DATABASE

¢) NEW DATABASE

d) ADD DATABASE

(Answer: b)

2. Which command is used to delete an entire database permanently?
a) DROP DATABASE

b) DELETE DATABASE

c¢) REMOVE DATABASE

d) TRUNCATE DATABASE

(Answer: a)

3. Which SQL command is used to remove all records from a table but
keep the

structure?

a) DELETE

b) DROP

c) TRUNCATE

d) ALTER

(Answer: ¢)

4. Which of the following is a valid SQL data type?

a) STRING

b) TEXT

c) CHAR

d) NUMERIC

(Answer: ¢)

5. Which command is used to change the structure of an existing table?
a) MODIFY TABLE

b) CHANGE TABLE

¢) ALTER TABLE

d) EDIT TABLE

(Answer: ¢)

6. What does the NOT NULL constraint do?

a) Ensures that a column does not contain duplicate values
b) Prevents a column from having NULL values

¢) Sets a default value for the column

d) Creates a new table

145
MATS Centre for Distance and Online Education, MATS University

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

(Answer: b)

7. Which of the following statements about PRIMARY KEY is true?
a) A table can have multiple primary keys

b) A primary key column can contain duplicate values

c¢) A primary key ensures uniqueness and cannot be NULL

d) A primary key can be removed using DELETE

(Answer: ¢)

8. Which SQL command is used to modify existing records in a table?
a) MODIFY

b) CHANGE

¢) UPDATE

d) ALTER

(Answer: c)

9. What does the CHECK constraint do?

a) Ensures values in a column meet a specific condition

b) Automatically fills a column with a default value

c¢) Allows NULL values in a column

d) Creates a new table

(Answer: a)

10. Which command is used to remove a table completely, including its
structure?

a) DROP TABLE

b) DELETE TABLE

¢) REMOVE TABLE

d) TRUNCATE TABLE

(Answer: a)

Short Questions:

. What is the purpose of the CREATE DATABASE command?

. How does the DROP DATABASE command work?

. What is the difference between DELETE, DROP, and TRUNCATE?
. What are the different data types available in SQL?

. Explain the difference between CHAR and VARCHAR.

. How does the ALTER TABLE command work?

. What is the function of NOT NULL and UNIQUE constraints?
. How can we update records in a table using SQL?

. What is the purpose of the CHECK constraint?

10. How does the DEFAULT constraint work in SQL?

O 0 3 N U K~ W N —

146
MATS Centre for Distance and Online Education, MATS University

Long Questions:

1. Explain the process of creating and deleting a database in SQL.

2. Discuss the different SQL commands used to manage tables.

3. What are SQL data types, and how are they used in table creation?
4. Explain the differences between DELETE, DROP, and TRUNCATE
with examples.

5. How does the ALTER TABLE command modify table structures?

6. Describe the different types of constraints used in database design.
7. Explain how the PRIMARY KEY and FOREIGN KEY constraints
enforce data integrity.

8. What is the purpose of the CHECK constraint, and how is it
implemented?

9. Write SQL queries to insert, update, and delete records from a table.
10. Discuss the importance of constraints in database security and
integrity.

147
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

ready for life......

MODULE 5§
OBJECT-ORIENTED DATABASE

LEARNING OUTCOMES

e Identify the limitations of RDBMS and the need for Object-
Oriented Database Management Systems (OODBMS).

¢ Differentiate between OODBMS and ORDBMS and their
applications in modern databases.

e Understand techniques for storing and accessing objects in
relational databases.

e Learn the principles of Object-Oriented Database Design and
how they enhance data modeling.

e Explore Object-Oriented Data Models and their advantages in

handling complex data structures.

148

Unit 5.1: Limitations of RDBMS and Introduction to
Advanced Databases

5.1.1 Limitations of RDBMS

For several decades, structured data storage and retrieval have relied on
Relational Database Management Systems (RDBMS). They provide
many advantages like ACID (Atomicity, Consistency, Isolation,
Durability) compatibility, SQL Sizes, and data integrity properties.
However, despite widespread adoption and capability, there are a few
downsides to RDBMSS. With advances in technology, new problems
have arisen that highlight the limitations of traditional relational
databases. Some of these constraints affect the performance, scalability,
flexibility, and usability especially in the modern applications where
massive data. These limitations are important for database architects,
developers, and organizations to consider when making data
management strategies. Scalability is one of the major limitations of
RDBMS. Traditional relational databases were built for vertical
scaling, which refers to increasing the strength of a single server by
provisioning additional CPU, memory, or storage. This technique
works great for moderate workloads but becomes very expensive and
illogical as data volume starts to increase exponentially. Since RDBMS
relies on strict table structure and complex joins to access data
organized into related tables, horizontal scaling—i.e. spreading data
over many machines—is fundamentally difficult. As a result,
distributed systems and NoSQL databases gained notoriety as an
alternative, since they can scale out well across clusters of low-cost
hardware. RDBMS solutions, on the other hand, need extensive
architectural changes like sharding and partitioning to scale to this
level, leading to added complexity and maintenance costs. Another
critical problem of RDBMS that pinpoints its ineffectiveness
especially in high-throughput environments is performance. Since the
Regular databases query execution involves joins, indexes,
transactions, etc. Although indexes can enhance read performance,
they can also increase the time taken for write operations because of the
overhead of maintaining multiple indexes. Query performance over a
growing dataset can degrade considerably, giving longer response times
and less effective operation. Furthermore, real-time data processing

requirements are challenging for RDBMSs, which are designed for

149
MATS Centre for Distance and Online Education, MATS University

=

g \\\

ars)

UNIVERSITY

eady for life.......

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

transactional consistency instead of speed and live analytics. RDBMS
usually are not able to provide the low-latency requirements of
applications like recommendation engines, financial trading engines,
and IoT applications. On the other hand, NoSQL is focused on
optimizing performance for certain use cases like key-value stores for
fast lookups, or columnar databases for analytical workloads. This is
another place where RDBMS is lacking, flexibility. RDBMSs enforce
strict schema, which means that you need to define the structure of
tables (columns and their types) before you store any data. While this
rigidity guarantees well-defined measures of data consistency and
integrity, it can be a massive limitation in the use case of changing data
requirements. Changing an existing schema may be a painful process
and need downtime and long data migrations. Another very important
aspect is being able to adapt to changing business requirements.
Designed to cater to the needs of big data and cloud storage, NoSQL
databases are schema-less, which provides developers with the ability
to store unstructured or semi-structured content without needing to
define a schema beforehand.

RDBMS have another biggest disadvantage that it cannot store
unstructured data in enough wide scale. Common applications in
modern systems generate a variety of data types: text, images, videos,
logs, sensors. RDBMSs are optimized for structured data with well-
defined relationships, making storing and processing such data
inefficient in a relational database. Although some relational databases
offer a special field type called Binary Large Objects (or BLOBs) to
store unstructured data, querying and accessing them can be slow and
resource-consuming. Key features: NoSQL databases, including
document stores and graph databases, are structured to handle
unstructured and semi-structured information more rapidly, ideal for
applications such as content management systems (CMS), big data
analytics, or a machine learning workload. One more major drawback
of RDBMS is the difficulty in managing relationships, and keeping
data consistent. Though the performance is good, maintaining data
integrity which is very important in transactional applications is
achieved with relational databases utilizing foreign keys and
normalization techniques. As the database grows and the behind-the-
scenes maintenance of these relationships can become complex, which

can cause performance bottlenecks. Joins are a necessary part of why

150
MATS Centre for Distance and Online Education, MATS University

relational databases are so powerful, but they can be computationally
heavy, especially at scale. As a result, queries that perform multiple
joins can become slow and inefficient, affecting application
performance. On the other hand, graph databases and NoSQL databses
are able to accommodate highly connected data, making them useful in
scenarios like social networks, recommendation engines, and fraud
detection systems. One more major limitation of RDBMS is its high
maintenance and admin cost. Maintaining a relational database
effectively takes an understanding of database design, indexing
techniques, query optimization, and performance mitigation — and,
honestly, this is a full-time job in itself. This increases operational costs
and SQL database administrators (DBAs) have a vital role in keeping
the database performing smoothly. Database management systems, or
RDBMS, require thoughtful planning and execution of backup and
recovery, replication, and security management. Scaling an RDBMS

solution across many nodes multiplies these administrative challenges

Limitations of RDBMS
4 B A)
% Scalability @ Performance
A\ Y & J
(. N (Complexity of\
% Flexibility Relationships
- J J
P N A)
Maintenance Cost
> &
- y & J

Fig. 5.1.1- Limitation of RDBMS

and necessitates Replication / Sharding, challenges that have their own
complexity. On the other hand, spherical NoSQL databases listen to
availability and scalability by automating the process of scaling with
auto-scaling, automated replication and replication recovery
mechanisms.

RDBMS also has challenges with concurrency control and transaction
management. Although the ACID properties guarantee the integrity of
the data, they can also come with performance overhead, especially in
situations involving high transaction concurrency. By using locking
mechanisms to maintain consistency, contention issues can occur since

several transactions try to grab the same resources, resulting in

151
MATS Centre for Distance and Online Education, MATS University

e

} W

ars)

UNIVERSITY

ready for life......

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

bottlenecks and reduced throughput. This is especially problematic in
distributed systems where one may have multiple nodes, maintaining
strong consistency can lead to higher latency. NoSQL databases
typically follow an eventual consistency model, trading off full ACID
compliance for better performance and scalability. Not all applications
are suited for this, but it certainly provides many benefits for anything
with high availability and fault tolerance requirements. Another
important aspect that needs to be taken care of by organizations is the
cost of implementing and maintaining an RDBMS. Commercial
relational database solutions like Oracle, Microsoft SQL Server, and
IBM Db2 are costly due to hefty licensing fees; this proves to be too
expensive for small and medium-sized businesses. Even open-source
alternatives come with a hefty investment in infrastructure, expertise,
and ongoing maintenance, with potential pitfalls similar to those of
DynamoDB for scaling products. Moreover, scaling an RDBMS
solution becomes more and more costly, as data volume increases, as it
requires a high-performance hardware, storage, and networking
resources in the most sense. On the other hand NoSQL databases are
generally more economical because of their distributed architectures
which let organizations take advantage of commodity hardware and
cloud-based resources to scale effectivelyy RDBMSs also have
limitations in terms of security and compliance. However, relational
databases offer solid security features, such as authentication,
authorization, and encryption, but configuring and managing them is
not a trivial task. Ensuring compliance with industry regulations like
GDPR, HIPAA, and PCI-DSS is necessitating stringent access controls,
audit logging, and data encryption mechanisms. In an RDBMS
environment, enforcing compliance can be difficult because
distributed architectures are increasingly common. And for big data
analysis, traditional relational databases are more prone to SQL
injection, which is an attack when attackers can manipulate poorly
designed queries. NoSQL databases are not without their own security
risks, but can offer alternative security models to address specific
threats. To sum up, even though RDBMSs are an initial basic part of
big data management, their scopes have revealed themselves due to the
new data paradigms. All the issues mentioned in terms of scalability,
performance, flexibility, unstructured data handling, administrative

complexity, concurrency control, cost, and security have created more

152
MATS Centre for Distance and Online Education, MATS University

need for alternative database solutions. As a result, NoSQL databases,
cloud-based storage solutions, and distributed data architectures have
developed as valid options and provide more scalability, performance,
and flexibility for modern applications. So, you know you must
consider their particular use cases and needs when deciding whether an
RDBMS has the best fit, or some of alternative database technologies
offers the best solution for the organization. Knowing these constraints
allows businesses to make informed decisions to streamline their data
management strategies, helping them cope better with their evolving

data requirements.

153
MATS Centre for Distance and Online Education, MATS University

e Ny

gmm

W

UNIVERSITY

ready for life......

il
s%

)

3 \\\

UNIVERSITY

ready for life.......

Notes

ars)

Unit 5.2: Object-Oriented Features in Relational
Databases

5.2.1 Introduction: OODBMS and ORDBMS
OODBMS and ORDBMS

Database management systems have made great strides in recent years
and two of the most notable evolutions beyond RDBMS are Object-
Oriented Database Management Systems and Object-relational
Database Management Systems. The RDBMS was not without its
limitations, particularly when it came to dealing with complex data
structures, multimedia applications, and systems that required a tight
coupling between the object-oriented programming language used for
application development and the underlying database technology.

Object-Oriented Database Management System (OODBMS)

OBJECT - ORIENTED DATABASE

Object-Oriented Relational
Programming Database

Polymorphism Integrity

Encapsulation Query Processing

Fig. 5.2.1: Object Oriented Database

An Object-Oriented Database Management System (OODBMSY) is a
database management system that supports the modeling and creation
of data as objects. This is in contrast to RDBMS architecture where data
is structured in the form of rows and columns in tables, OODBMS
stores data in the form of objects in a similar way just like data is
represented in object-oriented programming languages like Java, C++,
and Python. It provides a better way of dealing with complex data like
images, audio-visual data, and nested structures, as they support object-
oriented features. Suitable for CAD, multimedia database, real-time
system, and Al applications. OODBMS supports inheritance,
encapsulation and polymorphism, allowing developers to directly

work with objects without being forced to convert them to relational

154
MATS Centre for Distance and Online Education, MATS University

tables. This eliminates the O/R Mapping (which is needed when using
RDBMS over any OO language). Yet OODBMS is not as widely used
as RDBMS because of compatibility issues, a lack of standards, and a
steep learning curve for many developers who are used to working in
traditional relational models.

Object-Relational Database Management System (ORDBMS)
ORDBMS (Object Relational Database Management System): It is a
combination of RDBMS and OODBMS. It preserves the traditional
SQL and ACID (Atomicity, Consistency, Isolation, Durability) aspects
of relational databases, while also allowing for the use of object-
oriented techniques, such as user-defined types (UDTs), inheritance,
and complex data types.

ORDBMS provides the ability to store and manipulate complex
objects such as array, multimedia, geographical data, and application-
defined data types without having to convert these into normal
relational types. This makes well suited for applications such as
geographic information systems (GIS), data warehousing, and
scientific computing. Widely used ORDBMS systems include
PostgreSQL, Oracle and IBM Db2 that provide object-oriented
features while maintaining the performance and familiarity of SQL-like
relational databases.

While both OODBMS and which are O/R DBMS exist to handle for all
those complex data that the regular RDBMS simply do not work for.
OODBMS would be best suited where there is a need to integrate a lot
with an object-oriented programming environment, while ORDBMS
can be used as a middle ground between the relational and object-
oriented paradigms, which is useful for enterprises looking to extend
their existing relational databases. Organizations can determine the best
database system for their needs by examining the complexity and
scalability of their data and the purpose of their application through
these database models.

5.2.2 Storing and Accessing Objects in a Relational Database
Relational database management systems (RDBMS) follow the table
structure, making it look difficult to store and access objects since
generally the objects are directly used in object-oriented programming.
Nonetheless, as object-oriented programming languages like Java,
Python and C++ became more widely used, the definition of an
RDBMS changed, as most modern RDBMSs now support object

155
MATS Centre for Distance and Online Education, MATS University

=

g \\\

ars)

UNIVERSITY
ready for lif......

Notes

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

storage and retrieval in one way or the other. Object-Relational
Mapping (ORM), serialization, and structured storage techniques are

commonly used for storing and accessing objects in a relational

Your Other Your
Application Applications Application

Encapsulation Strategy Encapsulation Strategy

Your
Database

Your O_the!'
Database Applications

"Best Case" "Worst Case"
Copyright 20022006 Scott W. Ambler

Fig. 5.2.2: Storing and Accessing Objects in a Relational Database

database.

1. Object-Relational Mapping (ORM)

Object-Relational Mapping (ORM) is a common technique that maps
objects to their corresponding records in relational databases. ORM
tools (Object Relational Mapping tools) are used to create mapping
between objects in programming languages and relational database
tables.

 In ORM-based approaches, each class of the object-oriented language
corresponds to a table in the database, and each instance of that class
corresponds to a row in that table.

* ORM Libraries: Hibernate (java), SQLAlchemy (python), Entity
Framework (. In.NET, Hibernate (Java), and Django ORM (Python),
the conversion between objects and database records is handled
automatically.

* By avoiding manual SQL query writing, this method increases
productivity and lowers the risk of SQL injection attacks.

+ While ORMs provide significant development benefits, they also

come with a performance trade-off related to the necessity for query

156
MATS Centre for Distance and Online Education, MATS University

0O/R Mapping

=
W
o
|
[
=
a
a
]
=

Objects in Memory Relational Database
Fig. 5.2.3 O/R Mapping

translation, affecting the efficiency of complex queries and large scale
data operations.

2. Storing Objects as Serialized Data

Alternative ways of persisting objects in a relational database can be
achieved through serialization, which involves transforming the objects
into a format that can be persisted in a database column and
reconstructed when pulled from the database.

e Serialization format: JSON, XML, YAML, or binary
formats (e.g., Protocol Buffers, Avro)

e Usually the serialized object is stored in a BLOB (Binary
Large Object) or TEXT field in the database.

e JSON and XML formats enable semi-structured storage and
simplify retrieval using built-in database functions like
PostgreSQL’s JSONB type or MySQL’s JSON functions.

e Even though serialization provides flexible storage, the
serialized data is not efficient to query since relational
databases are optimized for structured tabular data not

embedded hierarchical structures.

To store object
into file

Stream of .
Bytes To store object

into database
Database

To store object
into memory

>

Fig. 5.2.4: Storing Objects as Serialized Data

157
MATS Centre for Distance and Online Education, MATS University

(Al

By
fmms?p
il

Notes 3. Storing Objects in Relational Tables

Objects can be persisted through a normalized relational structure for

performance, storage or data integrity. In this method:

Normalized — these are complex objects that are broken into
2+ relational tables and result in foreign key relationships.
Objects are kept associated through primary or foreign keys,
ensuring referential integrity.

For example, an embedded Address object in an object Person
will have a separate Address table with a foreign key reference
from Address to Person.

Using this approach allows for fast querying and consistency,
though retrieving the object will require JOIN operations to

restore it.

4. Using Object-Relational Features in ORDBMS
Some Object-Relational Database Management Systems (ORDBMYS),
such as PostgreSQL, Oracle, and IBM Db2, offer built-in support for

storing objects with object-oriented features like:

User-Defined Data Types (UDTs): Allow defining custom data
structures in the database.

Nested Tables and Arrays: Support for multi-valued attributes
within relational tables.

Inheritance: Enables table hierarchies similar to object-oriented
class inheritance.

Table Functions: Allow querying objects as structured entities
instead of flat tables.

These features allow for more natural object storage while maintaining

the advantages of relational databases, such as data consistency and

ACID compliance.

Accessing Stored Objects in a Relational Database

Once objects are stored, they must be accessed efficiently for retrieval

and manipulation. Common methods include:
1. Using SQL Queries:

o Standard SQL queries (SELECT, JOIN, WHERE) are used
to retrieve object-related data from multiple tables.
o Indexed queries improve performance when retrieving

objects with complex relationships.

2. ORM Query Methods:

158
MATS Centre for Distance and Online Education, MATS University

o ORM frameworks provide high-level query abstractions
such as find(), filter(), or get() methods to fetch objects
without writing SQL manually.

o Example using SQLAlchemy in Python:

person = session.query(Person).filter by(id=1).first()
print(person.name)
3. Deserialization for Stored Objects:

o Serialized objects stored as JSON/XML/BLOB need to be
deserialized before being used in the application.

o Example of JSON deserialization in Python:

import json

data = json.loads(json_string)

print(data["name"])

4. Querying JSON/XML Fields in Modern RDBMS:

o Databases like PostgreSQL and MySQL allow direct
querying within JSON fields using SQL functions:

SELECT data->>'name' FROM person_table WHERE id = 1;

Storing and accessing objects in relational databases requires a
combination of ORM techniques, serialization, relational structuring,
or object-relational extensions. While relational databases are
optimized for structured data, modern enhancements like JSON support
and ORM frameworks have made it easier to handle objects efficiently.
The choice of method depends on application requirements,
performance considerations, and scalability needs.

5.2.3 Object-Oriented Database Design

Object-Oriented Database Design (OODD) is a methodology for
designing databases that align with the principles of Object-Oriented
Programming (OOP). Unlike traditional relational database design,
which relies on tables, rows, and columns, object-oriented database
design structures data as objects, encapsulating both attributes (data)
and behaviors (methods). This approach is particularly beneficial for
applications that handle complex data types, multimedia content, real-
time processing, and hierarchical relationships.

Object-Oriented Database Management Systems (OODBMS) such as
ObjectDB, db, Versant, and GemStone/S support this design paradigm,
enabling direct storage and retrieval of objects without the need for
Object-Relational Mapping (ORM). Additionally, Object-Relational
Database Management Systems (ORDBMS) like PostgreSQL and

159
MATS Centre for Distance and Online Education, MATS University

=

} W

ars)

UNIVERSITY
ready for lif......

Notes

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

Oracle provide hybrid solutions that integrate object-oriented features
into relational models.

Key Concepts of Object-Oriented Database Design

1. Objects and Classes

In OODD, data is modeled as objects, which are instances of classes.

e Objects store both data (attributes) and methods (behavior) in
a single entity.

o Classes define a blueprint for objects, specifying attributes and
behaviors.

e Objects persist in the database in the same way they exist in
object-oriented programming, reducing the need for
transformation.

Example of an Object in OODBMS
class Employee {
String name;
int employeelD;
Address address; // Reference to another object
void calculateSalary() {
/I Method logic

}

Here, the Employee object contains attributes (name, employeelD)
and a method (calculateSalary). It also contains a reference to another
object (Address), demonstrating object composition.

2. Encapsulation

Encapsulation ensures that data is bundled with methods that operate
on it, preventing unauthorized access.

e Inan OODBMS, objects maintain their own states and
behaviors, allowing operations to be performed directly on
them rather than using SQL queries.

e This reduces complexity by allowing direct object
manipulation instead of translating objects into relational data
structures.

3. Inheritance
Inheritance allows new classes to derive properties and behaviors
from existing classes, promoting code reusability.

e OODD supports hierarchical data modeling, where subclasses

inherit attributes and methods from a parent class.

160
MATS Centre for Distance and Online Education, MATS University

y ﬁ N/
moTs)
ooy

e This eliminates data redundancy and enables efficient data Notes

organization in the database.

Example of Inheritance in OODD
class Person {

String name;

int age;
}
class Employee extends Person {

int employeelD;

double salary;
}
Here, Employee inherits properties (name, age) from Person, reducing
redundancy.
4. Polymorphism
Polymorphism allows objects of different types to be treated
uniformly through method overriding or overloading.

e In an OODBMS, polymorphism ensures that queries and
operations can be applied to objects of different subclasses
seamlessly.

o This makes applications more adaptable to changing
requirements.

Example of Polymorphism in OODD
class Shape {

void draw() {
System.out.println("Drawing a shape");

}

class Circle extends Shape {
void draw() {
System.out.println("Drawing a circle");

h
h

A draw() method can be called on any Shape object, whether it is a
Circle or another shape, demonstrating polymorphism.

5. Object Identity (OID) and Relationships

Each object in an OODBMS has a unique Object Identifier (OID),

which is independent of the object’s data.

161
MATS Centre for Distance and Online Education, MATS University

mms%
il

Notes

e OID is used instead of primary keys (as in relational
databases) to maintain object uniqueness.

e Objects can be related using one-to-one, one-to-many, or
many-to-many relationships.

Example of Object Relationships

e An Order object may contain multiple Product objects,
forming a one-to-many relationship.

o Unlike relational databases, these relationships are maintained
via direct object references rather than foreign keys, improving
retrieval efficiency.

Steps in Object-Oriented Database Design
Step 1: Requirement Analysis

o Identify the entities (objects) that need to be stored in the
database.

e Define the behaviors associated with each entity.

e Understand data relationships and constraints.

Step 2: Identify Classes and Attributes

e Define classes corresponding to real-world objects.

o Identify attributes and categorize them as simple types
(integers, strings) or complex types (nested objects).

o Specify methods that belong to each class.

Step 3: Define Inheritance Hierarchies

e Identify common properties among classes and define
superclasses.

o Establish subclass relationships to minimize redundancy.

Step 4: Establish Associations and Aggregations

o Define relationships between objects.

o Use aggregation (whole-part relationships) and composition
(strong association) where necessary.

Step 5: Assign Object Identifiers (OIDs)

o Ensure each object has a unique identifier.

e OIDs remain constant even if object attributes change, unlike
primary keys in relational databases.

Step 6: Normalize the Object Schema

e Avoid redundant attributes by following object normalization
techniques similar to database normalization.

e Convert redundant objects into reusable components.

Step 7: Implement Methods and Constraints

162
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

cady for life......

o Define object methods that enforce business logic. Notes
o Implement constraints (e.g., salary cannot be negative) at the
object level.
Step 8: Optimize for Performance
o Use indexing techniques for efficient retrieval.
e Apply caching to store frequently accessed objects in memory.
o Consider partitioning large object collections.

Advantages of Object-Oriented Database Design

Better Handling of Complex Data

OODBMS efficiently stores multimedia, CAD models, XML, and
hierarchical data, which is difficult in relational databases.

No Impedance Mismatch

Since objects are stored directly, there is no need for Object-
Relational Mapping (ORM), reducing overhead.

Encapsulation and Reusability

Encapsulation keeps data and behavior together, while inheritance
promotes code reuse.

Efficient Query Performance

Objects are retrieved using direct references (OIDs) rather than
expensive JOIN operations in relational databases.

Scalability and Flexibility

OODBMS allows schema evolution, making it easier to accommodate
changes without restructuring entire tables.

Challenges of Object-Oriented Database Design

Lack of Standardization

Unlike SQL-based relational databases, OODBMS lacks a universally
accepted query language.

Steep Learning Curve

OODD requires familiarity with object-oriented programming
concepts, making it difficult for traditional database administrators.
Limited Adoption

Due to wide enterprise reliance on RDBMS, many applications still
require Object-Relational Mapping (ORM) rather than a full switch to
OODBMS.

Object-Oriented Database Design (OODD) provides an efficient,
flexible, and scalable approach to managing complex data structures by

aligning with object-oriented programming principles. It overcomes

163
MATS Centre for Distance and Online Education, MATS University

ey

¢M
UNIVERSITY

ready for life......

§ \\\

Notes

aTs)

il

limitations of relational databases, such as impedance mismatch and
rigid schema structures, making it ideal for applications involving
multimedia, CAD, IoT, and real-time systems. However, challenges
such as lack of standardization, steep learning curve, and limited
industry adoption must be considered before choosing an OODBMS
over traditional RDBMS or ORDBMS solutions. As software
development continues to embrace object-oriented paradigms, the
demand for integrated object-oriented database systems is expected to

grow.

164
MATS Centre for Distance and Online Education, MATS University

Unit 5.3: Object-Oriented Data Models

5.3.1 Introduction to Object-Oriented Data Models

The Object-Oriented Data Model (OODM) represents a significant
evolution in database management systems, integrating the principles
of object-oriented programming (OOP) with data storage and retrieval.
Unlike traditional Relational Database Management Systems
(RDBMS), which organize data into structured tables of rows and
columns, the object-oriented model structures data as objects, similar
to those used in programming languages such as Java, C++, and
Python. These objects encapsulate both data attributes and behavioral
methods, facilitating a more natural representation of real-world
entities. The Object-Oriented Database Management System
(OODBMS) extends this model by enabling direct storage and retrieval
of objects without requiring conversion into relational tables. This
approach eliminates the need for Object-Relational Mapping (ORM),
which is necessary when using an RDBMS with object-oriented
programming. As a result, OODM offers a more seamless integration
between applications and databases, making it particularly suitable for
complex data structures, multimedia applications, hierarchical data,
and real-time systems.

Key Features of the Object-Oriented Data Model

Objects

Combines data
(attributes) and

Classes behavior (methods) Encapsulation
Blueprint Hides internal
for objects details, access
via methods

Key Features of
the Object-Oriented

Complex Objects Inheritance

Data Model

Supports Reuse and extend
nested and class definitions
composite data

Relationships Polymorphism
Models complex Same operation
associations behaves differently

on subclasses

Fig. 5.3.1; Key Features of the Object-Oriented Data Model

165
MATS Centre for Distance and Online Education, MATS University

=

} W

ars)

UNIVERSITY

ready for life......

Notes

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

1. Objects as Fundamental Data Units
In an Object-Oriented Data Model, data is represented as objects, which
are instances of classes. These objects store both attributes (data) and
methods (functions), encapsulating behavior alongside data storage.
This design facilitates a more intuitive and flexible representation of
entities within a system. For example, an Employee object may contain
attributes such as name, employeelD, and salary, along with methods
such as calculateBonus(). Unlike relational databases, where attributes
and behavior are separated, OODM allows objects to self-manage their
behavior and state, enhancing modularity and reusability.
2. Classes and Object Instances
The class serves as a blueprint for creating objects, defining their
attributes and behaviors. Each instance of a class represents an
individual object containing specific data values. For instance, a Car
class may define attributes such as model, color, and speed. An instance
of this class could be a Tesla Model S, characterized by a red color and
a top speed of 200 km/h.
3. Encapsulation and Data Integrity
Encapsulation is a key principle of the object-oriented model, ensuring
that data is bundled with its associated methods and protected from
unauthorized access. Objects expose data through controlled interfaces,
typically via getter and setter methods.
For example, in Java:
class Student {

private String name;

public String getName() { return name; }

public void setName(String n) { name = n; }
b
Here, the name attribute is private, ensuring that it can only be
accessed or modified through controlled methods. This design
enhances data security, integrity, and modularity.
4. Inheritance and Code Reusability
The Object-Oriented Data Model supports inheritance, a mechanism
that enables new classes to derive attributes and methods from existing
classes. This feature promotes code reusability and hierarchical
organization, reducing redundancy and improving maintainability. For
example, a Manager class may inherit common properties from an

Employee class, eliminating the need for redundant definitions.

166
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

ready for life......

class Employee { Notes
String name;
int employeelD;
}
class Manager extends Employee {
double bonus;
}
Here, the Manager class automatically inherits attributes from
Employee, extending functionality without redefining common
properties.
5. Polymorphism and Dynamic Behavior
Polymorphism allows different objects to respond to the same function
call in multiple ways, enhancing flexibility and adaptability. This is
particularly useful in object-oriented queries and dynamic data
processing.
For instance, a draw() method can be applied to different shapes
(Circle, Rectangle), each implementing its own version of the method:
class Shape {
void draw() { System.out.println("Drawing a shape"); }

class Circle extends Shape {

void draw() { System.out.println("Drawing a circle"); }
}
Here, invoking draw() on a Shape object may execute different
behaviors based on the actual object type, demonstrating method
overriding in polymorphism.
6. Object Identity (OID) and Unique Identification
Every object in an OODBMS is assigned a unique Object Identifier
(OID), which remains constant throughout the object's lifecycle, even
if attribute values change. Unlike primary keys in relational databases,
OIDs provide efficient object retrieval and referencing without relying
on external keys. For instance, a Customer object with OID C123 may
reference an Order object with OID 0456, creating a direct object
relationship without foreign keys.
7. Relationships and Data Associations
Objects in an object-oriented database can be related through various

associations:

167
MATS Centre for Distance and Online Education, MATS University

(Al

\ \\\' il
§ mms?y
il
Notes e One-to-One: A Student object is linked to a LibraryCard
object.

e One-to-Many: A Department contains multiple Employees.
e Many-to-Many: A Student can enroll in multiple Courses, and
a Course can have multiple students.

Unlike relational databases, where relationships require foreign key
constraints, OODBMS maintains direct references between objects,
improving data retrieval efficiency.
Advantages of Object-Oriented Data Models

1. Enhanced Representation of Complex Data:

o Supports multimedia, CAD models, hierarchical data,
and real-world relationships.

2. Seamless Integration with Object-Oriented Programming:

o Eliminates the need for Object-Relational Mapping
(ORM), reducing conversion overhead.

3. Reusability and Maintainability:

o Inheritance, encapsulation, and polymorphism

facilitate efficient system design.
4. Efficient Data Retrieval:

o Direct object references and OID-based indexing
improve query performance compared to relational
joins.

5. Flexibility and Scalability:

o Objects can evolve dynamically, supporting schema

evolution without requiring major restructuring.
Challenges and Limitations
1. Lack of Standard Query Language:

o Unlike SQL, there is no universally accepted query

language for OODBMS, making it less standardized.
2. Steeper Learning Curve:

o Requires expertise in object-oriented programming and

database management.
3. Limited Enterprise Adoption:

o Many businesses rely on RDBMS solutions due to

their mature ecosystem and widespread support.
4. Complex Implementation:

168
MATS Centre for Distance and Online Education, MATS University

o Object-oriented databases require efficient indexing
and caching strategies to handle large datasets
effectively.

The Object-Oriented Data Model (OODM) represents a paradigm shift
in database management, offering a natural and intuitive approach to
data storage by aligning with object-oriented programming principles.
By encapsulating data and behavior within objects, it provides a
flexible, scalable, and efficient solution for applications that require
complex data modeling and hierarchical relationships. However,
despite its advantages, the lack of standardization and the dominance
of relational databases have limited its widespread adoption.
Nonetheless, as modern applications increasingly demand dynamic and
flexible data storage, OODBMS and hybrid Object-Relational
Database Systems (ORDBMS) continue to gain traction, paving the
way for next-generation data management solutions.

Summary

Relational Database Management Systems (RDBMS) have long been
foundational in structured data management, offering reliable ACID-
compliant transactions and strong integrity. However, they face
significant limitations in the context of modern, large-scale, and
dynamic applications. Their rigidity in schema design, challenges with
horizontal scalability, inefficiency in handling unstructured or semi-
structured data, and the high cost of maintenance and performance
tuning make them less ideal for rapidly evolving use cases like big data
analytics, IoT, and real-time applications. These shortcomings have led
to the emergence of advanced database technologies, including NoSQL
and object-oriented databases, which offer greater flexibility,
scalability, and performance for modern workloads.

To bridge the gap between object-oriented programming and traditional
relational storage, object-oriented features have been incorporated into
relational systems, resulting 1in Object-Relational Database
Management Systems (ORDBMS). These systems support user-
defined types, inheritance, and complex data structures, while retaining
relational features and SQL compatibility. Meanwhile, Object-Oriented
Database Management Systems (OODBMS) offer a more natural and
seamless integration with object-oriented applications by storing data
as persistent objects. The object-oriented data model encapsulates both

data and behavior, supporting concepts like inheritance, encapsulation,

169
MATS Centre for Distance and Online Education, MATS University

=

} W

ars)

UNIVERSITY

cady for lfe......

[

g \\\

UNIVERSITY

ready for life......

Notes

ey

il

aTs)

polymorphism, and object identity. This model enables the
representation of complex, hierarchical, and multimedia data, and is
particularly well-suited for applications in scientific computing, CAD,
and multimedia systems. Though challenges like lack of
standardization and limited adoption persist, the object-oriented
approach addresses key limitations of RDBMS and supports evolving

data management needs.

170
MATS Centre for Distance and Online Education, MATS University

y \\\' N/
moTs)
ooy

Multiple Choice Questions: Notes

1. Which SQL statement is used to retrieve data from a database?
a) FETCH

b) GET

c) SELECT

d) RETRIEVE

(Answer: ¢)

2. Which SQL clause is used to sort records in ascending or
descending order?

a) SORT

b) ORDER BY

c) ARRANGE

d) GROUP BY

(Answer: b)

3. Which SQL operator is used to filter results based on a range of
values?

a) IN

b) BETWEEN

c¢) LIKE

d) OR

(Answer: b)

4. Which function is used to find the highest value in a column?
a) COUNT()

b) MAX()

c) SUM()

d) AVG()

(Answer: b)

5. What type of JOIN returns only matching records from both tables?
a) LEFT JOIN

b) RIGHT JOIN

c) INNER JOIN

d) FULL JOIN

(Answer: ¢)

6. Which SQL function is used to count the number of records in a
table?

a) COUNT()

b) TOTAL()

c) NUMBER()

171
MATS Centre for Distance and Online Education, MATS University

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

d) RECORDS()

(Answer: a)

7. What does the WHERE clause do in SQL?
a) Sorts data

b) Filters records based on a condition

c) Deletes records

d) Modifies table structure

(Answer: b)

8. Which SQL operator is used to search for a pattern in a column?
a) LIKE

b) IN

¢) IS NULL

d) AND

(Answer: a)

9. A subquery is:

a) A query inside another query

b) A duplicate query

¢) A function call

d) A SQL join

(Answer: a)

10. Which clause is used to filter records after grouping them?
a) GROUP BY

b) WHERE

c) HAVING

d) ORDER BY

(Answer: ¢)

Short Questions:

. What is the purpose of the SELECT statement in SQL?

. Explain the ORDER BY clause and how it works.

. What is the difference between WHERE and HAVING clauses?
. How do you filter records using BETWEEN and IN operators?
. Define numeric functions in SQL with examples.

. What are string functions? Give examples.

. How do joins work in SQL? Explain different types.

. What are aggregate functions, and how are they used?

. Explain the difference between INNER JOIN and LEFT JOIN.
10. What is a subquery, and when is it used?

O 0 3 N U K~ W N —

172
MATS Centre for Distance and Online Education, MATS University

y ﬁ N/
moTs)
ooy

Notes

Long Questions:

1. Explain the SELECT statement with multiple examples.

2. Discuss the different SQL operators and their uses.

3. How do numeric, string, and date functions work in SQL? Provide
examples.

4. Explain different types of joins with real-world examples.

5. How do aggregate functions work? Explain GROUP BY, HAVING,
MIN(), MAX(), AVG(),

SUM(), COUNTY().

6. What is the difference between WHERE and HAVING clauses?

7. Explain ORDER BY and LIMIT in SQL.

8. Discuss subqueries and how they can be used to filter data.

9. Write SQL queries to demonstrate different JOIN operations.

10. Explain how data manipulation queries improve database

performance.

173
MATS Centre for Distance and Online Education, MATS University

SCENARIO BASED PRACTICAL PEOBLEM

Exp. | Objective Remarks

Unitl

1. To demonstrate a simple conditional IF | Book availability in

statement in MySQL stored procedure. | library

2. To demonstrate how to use conditional | Customer’s
statements in MySQL stored | categorization on
procedure. (If then else structure) their payment

history

3. Demonstrates the use of IN, OUT, and | Bank account

INOUT parameters in MySQL stored | transactions
procedure. (Balance, Deposit,

Withdraw)

q, To demonstrate how to use conditional | Student Grading
statements in MySQL stored | System

procedure. (Searched CASE structure)

5. To demonstrate how to use conditional | Department
statements in MySQL stored | Management
procedure. (Simple CASE structure) System

6. To demonstrate how to use iterative | Salary Increment
statements in MySQL stored | System

procedure. (WHILE loop)

7. To demonstrate how to use iterative | Online Store
statements in MySQL stored | Management
procedure. (WHILE loop) System

Experiment 1
Objective: To demonstrate a simple conditional IF statement in

MySQL stored procedure.

174

Scenario:

You are managing a small library system where users can borrow
books. To ensure that the borrowing process is efficient, the library
wants to implement a stored procedure that checks if a book is available
before a user can borrow it. If the book is available (i.e., not already
borrowed), the procedure should mark the book as borrowed. If the
book is unavailable, it should return a message indicating the
unavailability.

Your task is to create a stored procedure that uses a conditional
statement to check the availability of a book before allowing it to be

borrowed.

Problem Statement:
Write a MySQL stored procedure named BorrowBook that uses a
conditional (IF) statement to check if a book is available. The procedure
should:
1. Acceptp_book idandp user id as input parameters to identify
the book and the user.
2. Check whether the book is available (i.e., its is_borrowed flag
is set to 0 in the Books table).
3. Ifthe book is available, update the is_borrowed flag to 1 to mark
it as borrowed and insert a record into the Borrowings table.
4. If the book is unavailable, return a message indicating that the

book is already borrowed.

Table Structure:
Assume you have the following Books and Borrowings tables:
CREATE TABLE Books (
book id INT PRIMARY KEY,
title VARCHAR(100),
is_borrowed BOOLEAN DEFAULT 0
);
INSERT INTO Books (book id, title, is_borrowed) VALUES (101,

"Transforming India', 0);

175
MATS Centre for Distance and Online Education, MATS University

=

} \\\

ars)

UNIVERSITY
ready for life......

Notes

ey

§ \\\

UNIVERSITY
ready for life......

Notes

aTs)

il

INSERT INTO Books (book id, title, is borrowed) VALUES (102,
"Vision 2047', 1);

CREATE TABLE Borrowings (
borrowing_id INT AUTO_INCREMENT PRIMARY KEY,

user id INT,

book id INT,
borrow_date DATE,
FOREIGN KEY (book id) REFERENCES Books(book id)

);
Steps:

1. Create a stored procedure named BorrowBook that:

@)

Takes p book id (INT) and p user id (INT) as IN
parameters.

Uses a conditional IF statement to check if the book is
available by checking the is_borrowed column in the
Books table.

If the book is available, updates the is_borrowed column
and inserts a record into the Borrowings table.

If the book is unavailable, returns a message indicating

that the book is already borrowed.

Sample SQL Stored Procedure:
DELIMITER //

CREATE PR

OCEDURE BorrowBook(IN p book id INT, IN

p_user_id INT)

BEGIN

DECLARE book_status BOOLEAN;

-- Check if the book is available
SELECT is_borrowed INTO book_status
FROM Books

WHERE book _id =p_ book id;

176

MATS Centre for Distance and Online Education, MATS University

y \\\' N/
moTs)
ooy

Notes

-- Conditional logic to check book availability
IF book_status = 0 THEN
-- If the book is available, mark it as borrowed
UPDATE Books
SET is_borrowed = 1
WHERE book id =p book id;

-- Insert a record into the Borrowings table
INSERT INTO Borrowings (user_id, book id, borrow_date)
VALUES (p_user_id, p_book id, CURDATE());

SELECT CONCAT('Book ID ', p_book 1id, ' has been successfully
borrowed by User ID ', p_user id) AS message;
ELSE
-- If the book is already borrowed, return a message
SELECT CONCAT('Book ID ', p_book id,"'is already borrowed.")
AS message;

END IF;

END//

DELIMITER ;

Test Cases:

1. For a book that is available:

Assume book 101 is available for borrowing.

CALL BorrowBook(101, 1);

Expected Output:

Book ID 101 has been successfully borrowed by User ID 1
2. For a book that is already borrowed:

Assume book 102 is already borrowed.

CALL BorrowBook(102, 2);

Expected Output:

177
MATS Centre for Distance and Online Education, MATS University

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

Book ID 102 is already borrowed.

Experiment 2

Objective: To demonstrates how to use conditional statements in
MySQL stored procedure.

Scenario:

You are working as a database administrator for a company that offers
subscription-based services. The company wants a system to
automatically categorize customers based on their payment history. A
stored procedure needs to be created that categorizes customers as
Active, Inactive, or Delinquent based on the number of days since
their last payment. The categorization will help customer service and
marketing teams manage customer relationships more effectively.

The conditions for categorization are as follows:

e Active: Last payment was made within the last 30 days.

o Inactive: Last payment was made between 31 and 60 days ago.

e Delinquent: Last payment was made more than 60 days ago.

Your task is to create a stored procedure in MySQL that categorizes a
customer based on their payment history using conditional statements.
Problem Statement:

Write a MySQL stored procedure named CategorizeCustomer that uses
conditional statements (IF) to categorize a customer based on the
number of days since their last payment. The procedure should:

1. Accept p customer id as an input parameter to identify the
customer.

2. Retrieve the number of days since the customer’s last payment
from the Payments table.

3. Use conditional logic to categorize the customer as Active,
Inactive, or Delinquent based on the number of days since the
last payment.

4. Return the customer's category as output.

Table Structure:
Assume you have the following Customers and Payments tables:

CREATE TABLE Customers (

178
MATS Centre for Distance and Online Education, MATS University

y \\\' N/
moTs)
ooy

customer id INT PRIMARY KEY, Notes
customer name VARCHAR(100)

);

CREATE TABLE Payments (
payment_id INT PRIMARY KEY,
customer_id INT,
payment date DATE,
FOREIGN KEY (customer _id) REFERENCES
Customers(customer _id)
)i
insert into customers values(101, 'Ajay");
insert into payments values(1, 101, '2024/01/01");
insert into customers values(102, 'Vijay');
insert into payments values(4, 102, '2024/10/01");
insert into customers values(103, 'Vijay');

insert into payments values(5, 103, '2024/09/01");

Steps:
1. Create a stored procedure named CategorizeCustomer that:

o Takes p_customer id as an IN parameter.

o Retrieves the number of days since the customer’s last
payment using the DATEDIFF function.

o Uses an IF statement to categorize the customer as
Active, Inactive, or Delinquent based on the number of
days.

o Returns the category as an output.

Sample SQL Stored Procedure:
DELIMITER //

CREATE PROCEDURE CategorizeCustomer(IN p_customer id INT,
OUT p_category VARCHAR(20))

BEGIN

179
MATS Centre for Distance and Online Education, MATS University

mms?;
il

Notes DECLARE days since last payment INT;

-- Retrieve the number of days since the last payment for the
customer

SELECT DATEDIFF(CURDATE(), MAX(payment date)) INTO
days_since last payment

FROM Payments

WHERE customer id =p_customer id;

-- Check if any payments are found
IF days_since last payment [S NULL THEN
SET p_category = 'No Payment History";
ELSE
-- Conditional logic to categorize the customer
IF days since last payment <= 30 THEN
SET p_category = 'Active',
ELSEIF days_since last payment BETWEEN 31 AND 60 THEN
SET p_category = 'Inactive";
ELSEIF days_since last payment > 60 THEN
SET p_category = 'Delinquent';
END IF;
END IF;

END//

DELIMITER ;

Explanation of Conditional Statements:

e The IF and ELSEIF statements are used to apply conditional
logic for categorizing the customer based on the value of
days_since last payment.

e The IF checks if the customer is Active, Inactive, or
Delinquent, and assigns the appropriate value to the p_category

output parameter.

180
MATS Centre for Distance and Online Education, MATS University

e An additional condition checks if there is no payment history
for the customer (NULL value), categorizing them as "No
Payment History."

Test Cases:

1. For a customer with recent payments (Active):
Assume customer 101 made a payment 10 days ago.
SET (@category :=";

CALL CategorizeCustomer(101, @category);

SELECT @category AS Customer Category;

Expected Output:

Customer Category: Active
2. For a customer with older payments (Inactive):
Assume customer 102 made a payment 45 days ago.
SET (@category :=";
CALL CategorizeCustomer(102, @category);

SELECT @category AS Customer Category;

Expected Output:

Customer Category: Inactive

3. For a customer with long overdue payments (Delinquent):

Assume customer 103 made a payment 75 days ago.

SET @category :=";

CALL CategorizeCustomer(103, @category);

181
MATS Centre for Distance and Online Education, MATS University

=

} W

ars)

UNIVERSITY
ready for life......

Notes

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

SELECT @category AS Customer Category;
Expected Output:
Customer Category: Delinquent

4. For a customer with no payment history:
Assume customer 104 has no payment history.

SET @category :=";

CALL CategorizeCustomer(104, @category);

SELECT @category AS Customer Category;
Expected Output:
Customer Category: No Payment History

Experiment 3
Objective: Demonstrates the use of IN, OUT, and INOUT parameters
in MySQL stored procedure.
Scenario:
You are working for a banking system, and you need to implement a
stored procedure that performs multiple tasks related to a customer's
bank account. The stored procedure should be able to:

1. Accept the account number as input (IN parameter).

2. Return the current balance of the account (OUT parameter).

3. Adjust the balance by adding or deducting a specified amount

(INOUT parameter).

This will allow the bank staff to easily view the current balance of an
account, adjust the balance for transactions like deposits or

withdrawals, and return the updated balance all in one step.

182
MATS Centre for Distance and Online Education, MATS University

Problem Statement:
Write a MySQL stored procedure named ManageAccountBalance that
demonstrates the use of IN, OUT, and INOUT parameters. The
procedure should:
1. Take an IN parameter p account number to identify the
customer’s account.
2. Use an OUT parameter p_current_balance to return the current
balance of the account.
3. Usean INOUT parameter p_adjustment to adjust the balance by
adding (for deposits) or deducting (for withdrawals) a specified

amount, and then return the updated balance.

Table Structure:

CREATE TABLE Accounts (
account number INT PRIMARY KEY,
account_holder VARCHAR(100),
balance DECIMAL(10, 2)

);

Steps:
1. Create a stored procedure named ManageAccountBalance that:
o Takes p_account number (INT) as an IN parameter to
identify the account.
o Takes p current balance (DECIMAL) as an OUT
parameter to return the current balance of the account.
o Takes p_adjustment (DECIMAL) as an INOUT
parameter to adjust the balance by the specified amount
and then return the updated balance.
2. Inside the procedure:
o Check if the account no p_account number exists.
o Retrieve the current balance based on

p_account_number.

183
MATS Centre for Distance and Online Education, MATS University

=

} W

ars)

UNIVERSITY

ready for life......

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

o Ifthe account exists, return the current balance using the
OUT parameter and apply the adjustment (either deposit
or withdrawal) using the INOUT parameter.

o If the account does not exist, return an appropriate

message.

Sample SQL Stored Procedure:
DELIMITER //

CREATE PROCEDURE ManageA ccountBalance(
IN p_account number INT,
OUT p_current_balance DECIMAL(10, 2),
INOUT p_adjustment DECIMAL(10, 2)

)
BEGIN
DECLARE account_exists INT;
-- Check if the account exists
SELECT COUNT(*) INTO account_exists
FROM Accounts
WHERE account_number = p_account_number;
-- If the account exists, retrieve the balance and apply the adjustment
IF account exists > 0 THEN
-- Get the current balance
SELECT balance INTO p_current_balance
FROM Accounts
WHERE account number = p_account number;
-- Adjust the balance by the given p adjustment (deposit or
withdrawal)

SET p_current_balance =p_current balance + p_adjustment;

-- Update the balance in the Accounts table

184
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

ready for life......

UPDATE Accounts Notes
SET balance =p_current balance

WHERE account number = p_account number;

-- Return the updated balance through the INOUT parameter
SET p_adjustment = p current balance;
ELSE

-- If account does not exist, set the current balance to NULL and
return an error message

SET p_current balance = NULL;

SET p_adjustment = NULL;

SELECT CONCAT('Account with number ', p_account_number, '
does not exist.") AS message;

END IF;

END//

DELIMITER ;

Explanation of Parameters:

e IN p_account number: Used to input the account number to
identify which account's balance needs to be checked and
updated.

e OUT p_current balance: Used to output the current balance of
the specified account.

e INOUT p_adjustment: Used to input the amount to be added or
subtracted from the current balance and then return the updated

balance after the adjustment.

Test Cases:

1. For an account that exists (deposit example):
Assume there is an account with account number = 101 and balance =
1000.00.

SET @balance := 0;

185
MATS Centre for Distance and Online Education, MATS University

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

SET @adjustment :=200.00; -- Deposit amount

CALL ManageAccountBalance(101, @balance, @adjustment);
SELECT (@balance AS Current Balance, @adjustment AS
Updated Balance;

Expected Output:

Current_Balance: 1000.00

Updated_Balance: 1200.00

2. For an account that exists (withdrawal example):
Assume there is an account with account_number = 101 and balance =
1000.00.
SET @balance := 0;
SET @adjustment := -300.00; -- Withdrawal amount
CALL ManageAccountBalance(101, @balance, (@adjustment);
SELECT (@balance AS Current Balance, @adjustment AS
Updated Balance;
Expected Output:
Current_Balance: 1000.00
Updated_Balance: 700.00
3. For an account that does not exist:
SET @balance := 0;
SET @adjustment := 100.00;
CALL ManageAccountBalance(999, @balance, (@adjustment);
SELECT (@balance AS Current Balance, (@adjustment AS
Updated Balance;
Expected Output:
Account with number 999 does not exist.
Current_Balance: NULL
Updated_Balance: NULL

Experiment 4
Objective: To demonstrate how to use conditional statements in
MySQL stored procedure. (Searched CASE structure)

Scenario:

186
MATS Centre for Distance and Online Education, MATS University

You are developing a Student Grading System for a university. The
system needs to categorize students' performance based on their marks
using a stored procedure. The grades should be assigned according to
the following criteria:

e Grade 'A': Marks >= 85

e Grade 'B': Marks between 70 and 84

e Grade 'C': Marks between 50 and 69

e Grade 'F': Marks below 50
To efficiently assign grades, you will use the CASE statement inside a
MySQL stored procedure to determine the grade based on the student's

marks.

Problem Statement:
Write a MySQL stored procedure that accepts a student's marks as an
input parameter and returns the corresponding grade using a CASE
conditional statement. The procedure should perform the following
tasks:
1. Accept the student's marks as an input parameter.
2. Use a CASE statement to evaluate the marks and assign a
grade:
o A for marks 85 and above.
o B for marks between 70 and 84.
o C for marks between 50 and 69.
o F for marks below 50.

3. Return the calculated grade as the output.

Example Operation:
1. Input Marks: The student’s marks will be provided as input
to the stored procedure.
2. Grade Assignment: Based on the marks, the appropriate
grade is assigned using the CASE statement.

3. Return Grade: The grade is returned to the user.

187
MATS Centre for Distance and Online Education, MATS University

=

} \\\

ars)

UNIVERSITY

ready for lfe......

mms?;
il

Notes SQL Code:
Step 1: Creating the Stored Procedure

DELIMITER //

CREATE PROCEDURE CalculateGrade(IN student marks INT,
OUT student grade CHAR(1))
BEGIN
CASE
WHEN student marks >= 85 THEN
SET student grade ='A'";
WHEN student _marks >= 70 AND student marks < 85 THEN
SET student grade ='B";
WHEN student_marks >= 50 AND student _marks <70 THEN
SET student grade ='C';
ELSE
SET student grade ='F';
END CASE;
END //

DELIMITER ;

Step 2: Calling the Stored Procedure

To call the procedure and get the grade for a specific student, use the
following SQL code:

-- Declare a variable to store the grade

SET @grade =";

-- Call the stored procedure with 92 marks
CALL CalculateGrade(92, @grade);

-- Output the grade
SELECT @grade AS Grade;

188
MATS Centre for Distance and Online Education, MATS University

Example Outputs:

1.

3.

4.

For marks = 92:

CALL CalculateGrade(92, @grade);
SELECT @grade AS Grade;
Output:

Grade

For marks =75:

CALL CalculateGrade(75, @grade);
SELECT @grade AS Grade;
Output:

For marks = 58:

CALL CalculateGrade(58, @grade);
SELECT @grade AS Grade;
Output:

Grade

For marks = 40:

CALL CalculateGrade(40, @grade);
SELECT @grade AS Grade;
Output:

Grade

Experiment 5

Objective: To demonstrate how to use conditional statements in

MySQL stored procedure. (Simple CASE structure))

189

MATS Centre for Distance and Online Education, MATS University

y \\\' N/
moTs)
ooy

Notes

(Al

} \\\

UNIVERSITY
ready for life......

Notes

aTs)

i

Scenario:

You are tasked with developing a Department Management System

for a university. Each department is identified by a unique department

code, and based on the code, you need to display the corresponding

department name.

Here are the department codes and names:

1: Computer Science

2: Electrical Engineering
3: Mechanical Engineering
4: Civil Engineering

5: Mathematics

You will use a SIMPLE CASE statement in MySQL to match these

codes with the department names.

Problem Statement:

Write a MySQL stored procedure that accepts a department code as an

input parameter and returns the corresponding department name

using a SIMPLE CASE statement. The procedure should perform the

following tasks:

1.
2.

Accept the department code as an input parameter.

Use a SIMPLE CASE statement to return the corresponding
department name based on the department code.

If the department code does not match any of the predefined

values, return "Unknown Department".

Example Operations:

1.

Input Department Code: The department code will be
provided as input to the stored procedure.

Return Department Name: The corresponding department
name is returned based on the input department code using a

SIMPLE CASE statement.

190
MATS Centre for Distance and Online Education, MATS University

y \\\' N/
moTs)
ooy

SQL Code: Notes
Step 1: Creating the Stored Procedure
DELIMITER //

CREATE PROCEDURE GetDepartmentName(IN dept code INT,
OUT dept name VARCHAR(50))
BEGIN
CASE dept code
WHEN 1 THEN
SET dept name = 'Computer Science';
WHEN 2 THEN
SET dept_name = 'Electrical Engineering';
WHEN 3 THEN
SET dept name = 'Mechanical Engineering';
WHEN 4 THEN
SET dept_name = 'Civil Engineering';
WHEN 5 THEN
SET dept_name = 'Mathematics';
ELSE
SET dept name = 'Unknown Department';
END CASE;
END //

DELIMITER ;

Step 2: Calling the Stored Procedure

To call the procedure and get the department name for a specific
department code, use the following SQL code:

-- Declare a variable to store the department name

SET @dept_name =";

-- Call the stored procedure with department code 1

CALL GetDepartmentName(1, @dept name);

191
MATS Centre for Distance and Online Education, MATS University

-- Output the department name

SELECT @dept name AS Department;

Example Outputs:

1. For department code = 1:

CALL GetDepartmentName(1, @dept name);
SELECT @dept name AS Department;
Output:

Department

Computer Science

. For department code = 3:

CALL GetDepartmentName(3, (@dept_name);
SELECT @dept name AS Department;
Output:

Department

Mechanical Engineering

. For department code = 5:

CALL GetDepartmentName(5, (@dept_name);
SELECT @dept name AS Department;
Output:

Department

Mathematics

. For an invalid department code = 10:

CALL GetDepartmentName(10, @dept_name)
SELECT @dept name AS Department;
Output:

Department

Unknown Department

192

MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

ready for life......

Experiment 6 Notes
Objective: To demonstrate how to use iterative statements in MySQL

stored procedure. (WHILE loop)

Scenario:

You are developing a Salary Increment System for a company's HR

department. The company offers a yearly salary increment to

employees. The system needs to simulate the process of incrementing

the salary by 5% each year until the employee's salary reaches or

exceeds a specified target salary.

Problem Statement:
Write a MySQL stored procedure that accepts an employee's current
salary and a target salary as input parameters and returns:
1. The final salary (which will be equal to or greater than the
target).
2. The number of years it takes to reach or exceed the target salary
by incrementing the salary by 5% each year.
The procedure should perform the following tasks:
1. Accept the employee's current salary and the target salary as
input parameters.
2. Use a WHILE loop to increase the salary by 5% each year.
3. Count the number of years it takes for the salary to reach or
exceed the target.

4. Return the final salary and the number of years required.

Example Operation:
1. Input:
o Current Salary: 50,000
o Target Salary: 60,000
2. Output:
o Final Salary: 60,000 (or more)

o Years Taken: 4 years

193
MATS Centre for Distance and Online Education, MATS University

mms?;
il

Notes SQL Code:
Step 1: Creating the Stored Procedure

DELIMITER //

CREATE PROCEDURE CalculateSalaryIncrement(IN current salary
DECIMAL(10,2), IN target salary DECIMAL(10,2), OUT
final salary DECIMAL(10,2), OUT years_taken INT)
BEGIN
-- Declare a variable to keep track of the number of years

DECLARE years INT DEFAULT 0;

-- Initialize the final salary with the current salary

SET final salary = current_salary;

-- Use a WHILE loop to keep incrementing the salary by 5% until
the target is reached
WHILE final salary < target salary DO
-- Increment the salary by 5%

SET final salary = final salary * 1.05;

-- Increment the year counter
SET years = years + 1;
END WHILE;

-- Set the output variable for the number of years taken
SET years_taken = years;
END //

DELIMITER ;

Step 2: Calling the Stored Procedure
To call the procedure and calculate how many years it will take to
reach the target salary, use the following SQL code:

-- Declare variables to store the final salary and years taken

194
MATS Centre for Distance and Online Education, MATS University

y ﬁ N/
moTs)
ooy

SET @final salary = 0.00; Notes
SET @years_taken = 0;

-- Call the stored procedure with a current salary of 50,000 and a
target salary of 60,000

CALL CalculateSalaryIncrement(50000, 60000, @final salary,
(@years_taken);

-- Output the final salary and years taken
SELECT @final salary AS FinalSalary, @years_taken AS

YearsTaken;

Example Outputs:

1. For current salary = 50,000 and target salary = 60,000:
CALL CalculateSalaryIncrement(50000, 60000,
@final_salary, @years_taken);

SELECT @final salary AS FinalSalary, @years_taken AS
YearsTaken;

Output:

FinalSalary | YearsTaken

60,775.31 |4
2. For current salary = 70,000 and target salary = 100,000:
CALL CalculateSalaryIncrement(70000, 100000,
@final salary, @years_taken);
SELECT @final salary AS FinalSalary, @years_taken AS
YearsTaken;
Output:
FinalSalary | YearsTaken

100,579.96 |7

195
MATS Centre for Distance and Online Education, MATS University

mms%
il

Notes Experiment 7

Objective: To demonstrate the working of loop.
Scenario:

You are managing an online store, and you want to create a stored
procedure that counts how many times a product has been ordered in a
given month. The Orders table keeps track of all orders, and your goal
is to loop through each day of the month and count how many orders

were made for a specific product.

Problem Statement:

Write a MySQL stored procedure named CountProductOrders that

demonstrates the use of a simple loop. The procedure should:

1. Accept p product id, p_start date, and p_end date as input
parameters to identify the product and the date range.

2. Use a loop to iterate through each day in the range from
p_start date to p_end date.

3. For each day, check whether there were orders for the specified
product in the Orders table and count them.

4. Return the total number of orders for the product within the

given date range.

Table Structure:
Assume you have the following Orders table:

CREATE TABLE Orders (
order id INT PRIMARY KEY,
product id INT,

196
MATS Centre for Distance and Online Education, MATS University

y ﬁ N/
moTs)
ooy

order date DATE Notes
);

Steps:

1. Create a stored procedure named CountProductOrders that:

o Takes p_product id (INT), p_start date (DATE), and
p_end date (DATE) as IN parameters.

o Initializes a counter to track the total number of orders
for the product.

o Uses aloop to iterate through each day in the date range,
checking for each day if an order was placed for the
product.

o Returns the total number of orders.

Sample SQL Stored Procedure:

DELIMITER //

CREATE PROCEDURE CountProductOrders(

IN p_product id INT, -- Input parameter for product ID

IN p_start date DATE, -- Input parameter for the start date of
the range

IN p_end date DATE, -- Input parameter for the end date of
the range

OUT total orders INT -- Output parameter to return the total

number of orders

)
BEGIN
-- Declare variables
DECLARE current date DATE; -- To store the current date in
the loop
197

MATS Centre for Distance and Online Education, MATS University

ey

§ \\\

UNIVERSITY
ready for life......

Notes

aTs)

il

DECLARE order count INT DEFAULT 0; -- To keep track of the

number of orders for each day

-- Initialize the total orders variable

SET total orders = 0;

-- Initialize the current date to the start date

SET current_date = p_start_date;

-- Loop through each day in the date range
WHILE current date <=p_end date DO

-- Count the number of orders for the given product on the
current date

SELECT COUNT(*)

INTO order count

FROM Orders

WHERE product_id =p_product id

AND order date = current_date;

-- Add the count to the total number of orders

SET total orders = total orders + order count;

-- Move to the next day
SET current_date = DATE _ADD(current date, INTERVAL 1
DAY);

END WHILE;
END //

DELIMITER ;

-- Declare a variable to store the total number of orders

SET @total orders = 0;

198
MATS Centre for Distance and Online Education, MATS University

-- Call the stored procedure
CALL CountProductOrders(101, '2024-10-01", '2024-10-04",
@total orders);

-- Output the total number of orders

SELECT @total orders AS TotalOrders;

199
MATS Centre for Distance and Online Education, MATS University

=

\ \\\ i

ready for life......

Notes

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

Glossary

ACID Properties: Set of principles (Atomicity, Consistency,
Isolation, Durability) ensuring reliable transactions in a
database.

Application Layer: The middle tier in 3-tier architecture where
application logic runs (e.g., Java, Python).

Backup & Recovery: Mechanisms to restore data in case of
failure or corruption.

Big Data: Large and complex datasets characterized by Volume,
Velocity, Variety, and Veracity.

Clustered Storage: Storage method that groups related data
physically close to improve performance.

Concurrency Control: Ensures correct execution of transactions
by multiple users at the same time.

CREATE (DDL): SQL command to create a new object such as
a table.

Data Abstraction: Hiding complex storage details while
presenting a user-friendly view of data.

Data Definition Language (DDL): SQL language subset used to
define or alter database schema (e.g., CREATE, ALTER).

Data Independence: Ability to change storage structure without
affecting applications.

Data Manipulation Language (DML): SQL commands used to
manage data in tables (e.g., SELECT, INSERT).

Data Mining: Process of discovering patterns and knowledge
from large datasets.

Data Model: Framework for organizing data and defining
relationships (e.g., Relational, ER, Object-Based).

Data Warehouse: A central repository that stores historical data
for analytical purposes.

Database Administrator (DBA): Person responsible for
database installation, security, tuning, and backups.

Database Designer: Professional who defines the structure and
schema of a database.

Database Management System (DBMS): Software used to
store, retrieve, and manage data in databases.

200
MATS Centre for Distance and Online Education, MATS University

Entity: An object or thing in the real world that is
distinguishable from other objects (e.g., Student, Course).

Entity-Relationship (ER) Model: Conceptual model used for
database design showing entities, attributes, and relationships.

Execution Plan: Optimized sequence of operations for
executing a database query.

Foreign Key: A key in one table that refers to the primary key
in another table to establish relationships.

FROM (SQL): Clause used to specify the table in a SQL query.

GRANT (DCL): SQL command to give privileges to a user or
role.

GROUP BY: SQL clause used to group rows with the same
values in specified columns.

HAVING: Clause used to filter groups created by GROUP BY.
Index: Database object that speeds up data retrieval operations.

Instance: The current state or snapshot of the data in a database
at a specific moment.

INSERT (DML): SQL command used to add new records to a
table.

JOIN: SQL operation used to combine rows from two or more
tables based on a related column.

Logical Level: Middle level of data abstraction showing what
data is stored and how it relates.

LIKE: SQL operator used for pattern matching.

MongoDB: A NoSQL database that stores data in JSON-like
documents.

MySQL: Popular open-source relational database management
system.

Normalization: Process of organizing data to reduce
redundancy and improve integrity.

NoSQL: Type of database that handles semi-structured or
unstructured data (e.g., MongoDB, Couchbase).

Object-Based Model: A data model that represents real-world
entities as objects with attributes and methods.

201
MATS Centre for Distance and Online Education, MATS University

=

} W

ars)

UNIVERSITY

cady for life......

ey

§ \\\

UNIVERSITY
ready for life.......

Notes

aTs)

i

ORDER BY: SQL clause used to sort query results in ascending
or descending order.

Physical Level: The lowest level of data abstraction detailing
how data is physically stored.

Primary Key: A field (or combination of fields) that uniquely
identifies each record in a table.

PostgreSQL: Open-source object-relational database system.

Query: A command used to retrieve or manipulate data from a
database.

Query Optimization: Process to enhance SQL query
performance using indexes, execution plans, and rewriting.

Relational Model: Data model that organizes data into tables
with rows and columns.

REVOKE (DCL): Removes access privileges from users or
roles.

ROLLBACK (TCL): Reverses changes made in a transaction
since the last COMMIT.

Schema: The overall design or blueprint of a database, including
tables, attributes, and constraints.

SELECT (DML): SQL command to retrieve data from a table.

Semi-Structured Model: Data model used for loosely organized
data like JSON or XML.

System Analyst: User who connects system requirements with
database implementation.

TCL (Transaction Control Language): SQL subset to control
transactions (e.g., COMMIT, ROLLBACK).

TRUNCATE (DDL): Removes all records from a table while
preserving its structure.

Transaction: A sequence of database operations treated as a
single logical unit.

UPDATE (DML): SQL command to modify existing records in
a table.

User Roles: Defined set of permissions assigned to users to
control database access.

View Level: Highest level of abstraction, showing user-specific

perspectives of data.

202
MATS Centre for Distance and Online Education, MATS University

WHERE Clause: SQL condition to filter query results.

Weak Entity: An entity that cannot exist without a related strong
entity and does not have a primary key.

203
MATS Centre for Distance and Online Education, MATS University

e Ny

ready for life......

(mes)

Notes References

Chapter 1: Introduction to Database Management System

1. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2020). Database
System Concepts (7th ed.). McGraw-Hill Education.

2. Ramakrishnan, R., & Gehrke, J. (2003). Database Management
Systems (3rd ed.). McGraw-Hill Higher Education.

3. Date, C. J. (2019). An Introduction to Database Systems (8th
ed.). Pearson.

4. Connolly, T. M., & Begg, C. E. (2014). Database Systems: A
Practical Approach to Design, Implementation, and
Management (6th ed.). Pearson.

5. Elmasri, R., & Navathe, S. B. (2016). Fundamentals of
Database Systems (7th ed.). Pearson.

Chapter 2: Relational Data Modeling and Database Design

1. Kent, W. (2012). Data and Reality: A Timeless Perspective on
Perceiving and Managing Information in Our Imprecise World
(3rd ed.). Technics Publications.

2. Teorey, T. J., Lightstone, S. S., Nadeau, T., & Jagadish, H. V.
(2011). Database Modeling and Design: Logical Design (5th
ed.). Morgan Kaufmann.

3. Blaha, M. (2010). Patterns of Data Modeling (Emerging
Directions in Database Systems and Applications). CRC Press.

4. Fleming, C. C., & Von Halle, B. (2003). Handbook of
Relational Database Design. Addison-Wesley Professional.

5. Harrington, J. L. (2016). Relational Database Design and
Implementation (4th ed.). Morgan Kaufmann.

Chapter 3: SQL and Procedural SQL

1. Beaulieu, A. (2020). Learning SQL: Generate, Manipulate, and
Retrieve Data (3rd ed.). O'Reilly Media.

2. Viescas, J. L. (2018). SQL Queries for Mere Mortals: A Hands-
On Guide to Data Manipulation in SQL (4th ed.). Addison-
Wesley Professional.

3. Celko, J. (2014). SQL for Smarties: Advanced SQL
Programming (5th ed.). Morgan Kaufmann.

204
MATS Centre for Distance and Online Education, MATS University

Feuerstein, S., & Pribyl, B. (2014). Oracle PL/SQL
Programming (6th ed.). O'Reilly Media.

Faroult, S., & Robson, P. (2006). The Art of SQL. O'Reilly
Media.

Chapter 4: Transaction Management and Concurrency

1.

Bernstein, P. A., Hadzilacos, V., & Goodman, N. (1987).
Concurrency Control and Recovery in Database Systems.
Addison-Wesley.

Gray, J., & Reuter, A. (1992). Transaction Processing: Concepts
and Techniques. Morgan Kaufmann.

Weikum, G., & Vossen, G. (2001). Transactional Information
Systems: Theory, Algorithms, and the Practice of Concurrency
Control and Recovery. Morgan Kaufmann.

Kumar, V. (1996). Performance of Concurrency Control
Mechanisms in Centralized Database Systems. Prentice Hall.

Ozsu, M. T., & Valduriez, P. (2020). Principles of Distributed
Database Systems (4th ed.). Springer.

Chapter 5: Object-Oriented Database

1.

Loomis, M. E. S. (1995). Object Databases: The Essentials.
Addison-Wesley.

Cattell, R. G. G., & Barry, D. K. (2000). The Object Data
Standard: ODMG 3.0. Morgan Kaufmann.

Kim, W. (1995). Modern Database Systems: The Object Model,
Interoperability, and Beyond. ACM Press/Addison-Wesley.

Stonebraker, M., & Moore, D. (1996). Object-Relational
DBMSs: The Next Great Wave. Morgan Kaufmann.

Blaha, M., & Premerlani, W. (1997). Object-Oriented Modeling
and Design for Database Applications. Prentice Hall.

205
MATS Centre for Distance and Online Education, MATS University

y ﬁ N/
moTs)
ooy

Notes

MATS UNIVERSITY

MATS CENTRE FOR DISTANCE AND ONLINE EDUCATION

UNIVERSITY CAMPUS: Aarang Kharora Highway, Aarang, Raipur, CG, 493 441
RAIPUR CAMPUS: MATS Tower, Pandri, Raipur, CG, 492 002

T:07714078994, 95, 96, 98 Toll Free ODL MODE : 81520 79999, 81520 29999

Website: www.matsodl.com

B R i
RPN W
ol L

=R R

T

-

