¢ MATS wcp
meTs GRADE =\

UNIVERSITY oc

UNIVERSITY

MATS CENTRE FOR
DISTANCE & ONLINE EDUCATION

Data Structure Concepts

Master of Computer Applications (MCA)
Semester -1

SELF LEARNING MATERIAL

\ MATS UNIVERSITY NAAC p{

marTs GRADE

UNIVERSITY www.matsuniversity.ac.in
ACCREDITED UNIVERSITY

Master of Computer Applications
MCA 103
Data Structure Concepts

Course Introduction 1
Module 1
. 3
Linear data structures
Unit 1.1: Data structure concepts And Linear data structures a4
Unit 1.2: Linear Array 31
Unit 1.3: Searching And Sorting Algorithm 55
Module 2
69
Stack, queue and recursion
Unit 2.1: Stack 70
Unit 2.2: Recursion 74
Unit 2.3: Queue 80
Module 3
94
Linked list
Unit 3.1: Linked list 95
Unit 3.2: Operations on Linked list 99
Unit 3.3 Memory Allocation 107
Module 4
116
Association rule mining
Unit 4.1: Tree concepts And Binary Tree 117
Unit 4.2: Algorithms: Binary Search Tree and AVL 127
Unit 4.3: Graph 133
Module 5
145
Classification and cluster analysis
Unit 5.1: The Role of Algorithm in Computing 146
Unit 5.2: Analyzing algorithms: Time and space complexity 150
Unit 5.3: Algorithm design techniques: Greedy, Divide and conquer,
Dynamic programming 155
Glossary 153
References 155

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS
University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,
Chhattisgarh

Prof. (Dr.) Jatinderkumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies
and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSE COORDINATOR

Dr. Poonam Singh, Associate Professor, MATS University, Raipur, Chhattisgarh

COURSE PREPARATION

Dr. Poonam Singh, Associate Professor and Mr. Sanjay Behara, Assistant Professor, MATS

University, Raipur, Chhattisgarh

March, 2025

ISBN: 978-93-49916-15-9

@MATS Centre for Distance and Online Education, MATS University, Village- Gullu, Aarang, Raipur-
(Chhattisgarh)

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in any
form, by mimeograph or any other means, without permission in writing from MATS University,
Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed & Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.
Meghanadhudu Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)
Disclaimer-Publisher of this printing material is not responsible for any error or dispute from
contents of this course material, this is completely depends on AUTHOR’S MANUSCRIPT.

Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

Acknowledgement

The material (pictures and passages) we have used is purely for educational
purposes. Every effort has been made to trace the copyright holders of material
reproduced in this book. Should any infringement have occurred, the publishers and
editors apologize and will be pleased to make the necessary corrections in future

editions of this book.

COURSE INTRODUCTION

Data Structures is a fundamental subject in computer science that
focuses on organizing, storing, and managing data efficiently. It plays
a crucial role in algorithm development and problem-solving.
Understanding data structures enables efficient memory usage, quick
data retrieval, and optimized computational performance. This course
covers various types of data structures, including linear and nonlinear
structures, along with their applications in real-world scenarios.
Module 1: Linear Data Structures
This Unit introduces the basic concept of linear data structures,
where data elements are arranged sequentially. It covers arrays and
linked lists, their operations (insertion, deletion, traversal,
searching, and sorting), and their applications. The comparison
between static and dynamic memory allocation is also discussed.
Module 2: Stack, Queue, and Recursion
In this Unit, we explore stack and queue, two important linear data
structures with different access methods.
e Stack follows the LIFO (Last In, First Out) principle,
supporting operations like push, pop, and peek.
¢ Queue follows the FIFO (First In, First Out) principle, with
operations like enqueue and dequeue. Variants such as
circular queue, priority queue, and deque are also discussed.
e Recursion, a method where a function calls itself, is
introduced along with its applications and differences from

iteration.

1
MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

Module 3: Linked Lists

This Unit focuses on linked lists, a dynamic data structure where
elements (nodes) are connected through pointers. Different types of
linked lists—singly linked list, doubly linked list, and circular
linked list—are discussed in detail, along with operations like
insertion, deletion, searching, and traversal. Their advantages over
arrays and real-world applications are also covered.

Module 4: Trees and Graphs

This Unit introduces hierarchical and non-linear data structures:

e Trees, including binary trees, binary search trees (BST), and
tree traversals (preorder, inorder, postorder). Applications in
hierarchical data representation are explored.

e Graphs, including representations (adjacency matrix and
adjacency list), traversal techniques (BFS and DFS), and
applications in networking and pathfinding.

Module 5: Algorithm Analysis and Design

This Unit focuses on the efficiency of algorithms using asymptotic
notations (Big O, Theta, and Omega). Different algorithm design
techniques such as divide and conquer, greedy algorithms, dynamic
programming, and backtracking are introduced. The importance of
selecting appropriate data structures for optimizing algorithm

performance is also discussed.

2
MATS Centre for Distance and Online Education, MATS University

MODULE 1
LINEAR DATA STRUCTURES

LEARNING OUTCOMES
By the end of this Unit, students will be able to:

Understand data structure concepts, data types, and abstract
data types (ADTs) and their role in programming.

Explain linear data structures using sequential organization,
including their operations and applications.

Learn about arrays, their classification, properties,
representation, and memory allocation.

Implement searching algorithms (Linear Search, Binary
Search) for efficient data retrieval.

Apply sorting algorithms (Insertion Sort, Selection Sort, and
Merge Sort) to organize data effectively.

3
MATS Centre for Distance and Online Education, MATS University

v 4

g \\\

UNIVERSITY

veady for life......

Notes

ars)

|

Unit 1.1: Data structure concepts And Linear data
structures

1.1.1 Data structure concepts, Data type, and Abstract data type

Data structures are essential elements of computer science that facilitate
the efficient storage, organization, and management of data. They
provide representation of data in memory as well as insertion, deletion,
and searching in-memory operations. A data structure defines an
algorithm’s efficiency, making it the essential concept for optimizing
performance. Prevalent data structures encompass arrays, linked lists,
stacks, queues, trees, graphs, and hash tables. Each of these
architectures has unique advantages and disadvantages depending on

particular application.

Data Structure

Non-Linear Data Structure

Linear Data Structure

my=mencs e e

Figure 1.1.1(data Structure)

1.1.2 Data Type

But in a way, it lists resources that a variable can store in a
programming language. It delineates the permissible values for a
variable and the procedures applicable to those values. Data types can
be categorized into primitive kinds and non-primitive types. Primitive
data types are types such as integers, floating-point numbers,
characters, and Booleans that encapsulate a singular value. Non-
primitive data types, including arrays, structures, and classes, hold
multiple values or complicated data. Also choose the correct data type

to make sure of memory and logic correctness in the program.

4
MATS Centre for Distance and Online Education, MATS University

1.1.3 Abstract Data Type (ADT)

An abstract data type (ADT) is conceptual model for a data structure
characterized by its behavior rather than its implementation. It
describes what operations are supported by the data and what result
they should produce and how it would be implemented. Lists, stacks,
queues and dictionaries are commonly used ADTS. A stack ADT, for
example, can utilize operations like push, pop, and peek, irrespective
of whether the stack is implemented using an array or linked list. But
these classes combined to form ADTs allow you to arrive at a better
design that generates modular and reusable code, allowing for more
efficient software development.

1.1.4 Linear data structures using sequential organization,
Operations

Key points: Linear data structures are essential elements of computer
science and are crucial in the development of algorithms and software.
Data elements are maintained in a sequential arrangement, with each
element linked to its neighboring element. However, the sequential
arrangement of the data renders these structures very natural, and hence
easy to implement, manipulate and read. In this investigation we'll
cover linear data structures that use the sequential layout, looking more
closely at their operations, implementation techniques, performance
characteristics, and where each would be applied in practice. An
ordered structure indicates the orientation of data components in
neighboring memory spots or with specific references to ensure logical
proximity. Such an arrangement allows direct access to the elements
and performs these operations are insertion, deletion, traversal, search,
and modification. Query, Insert, and Delete operations However, these
operations may have performance implications based on their
respective implementations of linear data structures and memory
management techniques. A linear data structure is a structure that has
only one dimension. This characteristic makes them a good fit for
representing data that has a built-in sequential order which can be
natural such as lists, queues, and stacks. The sequential organization
can be maintained either by array-based implementations or linked
implementations (array based is less flexible while linked can have

more complex time requirements).

5
MATS Centre for Distance and Online Education, MATS University

==

§ W
[

ars)

UNIVERSITY

ready for life.

Notes

v

ready for lfe......

Notes Arrays: The Fundamental Sequential Structure

Array

Index 0 1 2 3 4 5

num[0] num[1] num[2] num[3] num[4] numb5]

Figure 1.1.2 Arrays

Arrays represent the most basic type of linear data structure, as they are
organized in a sequential format. An array is data structure comprising
a group of elements of same data type, stored in contiguous memory
regions. This makes it possible to jump to any element in constant time
(as long as you know the index), so arrays are efficient to use if you do
a lot of random access.

1.1.5 Memory Allocation in Arrays

Arrays can be allocated memory in two ways:

1. Static Allocation: Static allocation refers to the process of
reserving memory for variables or data structures at compile
time, meaning the size and type of memory blocks are fixed
before the program runs. In the case of arrays, once the size is
declared, it cannot be changed during execution. This approach
is simple and efficient in terms of memory access because the
compiler knows exactly where each element will be stored.
However, it lacks flexibility, as the memory cannot be resized
dynamically based on changing requirements at runtime. Static
allocation of an array with 100 integer elements

2. Dynamic Allocation: Memory is allocated at runtime,
permitting flexibility in array dimensions. This approach is
more adaptable to varying data sizes but requires explicit
memory management.
int* numbers = (int*) malloc(100 * sizeof(int)); // Dynamic
allocation in C

int* numbers = new int[100]; // Dynamic allocation in C++

6
MATS Centre for Distance and Online Education, MATS University

Basic Operations on Arrays
1.1.6 Arrays support several fundamental operations:
1. Accessing Elements
Accessing an element at a specific index is a constant-time operation
(O(1)) because arrays provide direct access to elements through
indices.
int value = numbers[5]; / Accessing the element at index 5
2. Insertion Operations
Insertion in arrays depends on the position:
o Insertion at the End: If the array has space, inserting at the end
is an O(1) operation.
if (currentSize < maxSize) {
array[currentSize] = newElement;
currentSize++;
}
e Insertion at the Beginning or Middle: Requires shifting
elements to make space, resulting in an O(n) time complexity.
// Insertion at index 'position’
for (int i = currentSize; i > position; i--) {
array[i] = array[i-1];
}
array[position] = newElement;
currentSize++;
3. Deletion Operations
Similar to insertion, deletion efficiency depends on the position:
e Deletion from the End: O(1) time complexity.
if (currentSize > 0) {
currentSize--;
}
e Deletion from the Beginning or Middle: O(n) time complexity
due to element shifting.
/I Deletion at index 'position'
for (int 1 = position; 1 < currentSize - 1; i++) {
array[i] = array[i+1];
b
currentSize--;
4. Searching Operations

Arrays support two main search approaches:

7
MATS Centre for Distance and Online Education, MATS University

¢ e

W \\\ f

|

ready for life.

Notes

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

e Linear Search: Examines each element sequentially until
finding the target or reaching the end, with O(n) time
complexity.
int linearSearch(int array[], int size, int target) {

for (int 1 = 0; 1 < size; i++) {
if (array[i] == target) {
return 1; // Return index of found element

b

return -1; // Element not found
}
e Binary Search: For sorted arrays, offers O(log n) time
complexity by repeatedly dividing search space in half.
int binarySearch(int array[], int left, int right, int target) {
while (left <= right) {
int mid = left + (right - left) / 2;
if (array[mid] == target)
return mid;
if (array[mid] < target)
left=mid + 1;
else
right=mid - 1;
}
return -1; // Element not found
}
5. Traversal Operations
Traversing an array involves visiting each element sequentially,
typically using loops:
void traverse(int array[], int size) {
for (int1=0; 1 < size; i++) {
// Process array[i]
printf("%d ", array[i]);

b
1.1.7Advantages and Limitations of Arrays

Advantages:

¢ Constant-time random access (O(1))

8
MATS Centre for Distance and Online Education, MATS University

e Memory efficiency due to lack of overhead for storing
relationships

e Cache-friendly due to contiguous memory storage

e Simple implementation

e Limitations:

e Fixed size in static implementations

o [Inefficient insertion and deletion operations at arbitrary
positions

e Memory wastage when allocated size exceeds actual data size

e Homogeneous data type requirement

1.1.7 Multi-dimensional Arrays

Arrays can be extended to multiple dimensions to represent more
complex data relationships:

int matrix[3][4]; // 2D array with 3 rows and 4 columns

/I Accessing elements in a 2D array

int value = matrix[1][2]; // Accessing element at row 1, column 2

// Traversing a 2D array
for (int1=0;1<3;1++) {
for (int j = 0; j <4; j++) {

// Process matrix[i][j]

}

Multi-dimensional arrays are stored in memory using either row-major
order (C/C++) or column-major order (Fortran), impacting how data is
accessed and cached.

1.1.8 Dynamic Arrays: Extending the Basic Array

Unlike static arrays that have a fixed size, dynamic arrays resize
themselves when they run out of space. They still have O(1) access
time and however they can grow in size.

Implementation of Dynamic Arrays

A typical implementation involves:

1. Initializing with a default capacity

2. Keeping track of the current size

3. Resizing when necessary

class DynamicArray {

9
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

W

UNIVERSITY

ready for life.

Notes

4

|

o=

ready for life.......

Notes private:
int* array;
int size;

int capacity;

void resize() {
capacity *= 2;
int* newArray = new int[capacity];
for (int 1 = 0; 1 < size; i++) {
newArray[i] = array[i];
}
delete[] array;

array = newArray;

public:
DynamicArray() {
capacity = 10;
size = 0;

array = new int[capacity];

void add(int element) {
if (size == capacity) {
resize();

}

array[size++] = element;

/I Other operations...
s
Operations on Dynamic Arrays
Dynamic arrays support the same operations as static arrays but with
added resizing capability:
1. Amortized Analysis of Insert Operation
Insertion at the end has an amortized O(1) time complexity. Though

individual resize operations are O(n), they are rare enough that the

10
MATS Centre for Distance and Online Education, MATS University

amortized cost of each operation is constantapplied to the underlying
array.
void add(int element) {
if (size == capacity) {
resize(); / O(n) operation but happens rarely

}

array[size++] = element; // O(1) operation
}
2. Performance Considerations
e Growth Factor: Typically set to 2, meaning the array doubles in
size when full
e Shrinking: Some implementations also decrease capacity when
utilization falls below a certain threshold
e Dynamic Arrays in Standard Libraries
e Various programming languages provide dynamic array
implementations:
e std::vector in C++
e ArrayList in Java
e Listin C#
e list in Python (with additional functionality)
// ' Using std::vector in C++
#include <vector>
vector<int> numbers;
numbers.push_back(10); // Add element to the end
Stacks: LIFO Sequential Structures
A stack is a linear data structure that exhibits a Last-In-First-Out (LIFO)
order: in a stack, the last added element is the first removed one. Like
a stack of plates, you can only add and remove plates at the top (Last
In First Out).
1.1.8 Operations on Stacks
Stacks support two primary operations:
1. Push Operation
Push adds an element to the top of the stack:
void push(Stack* stack, int value) {
if (stack->top == stack->capacity - 1) {
/I Stack overflow

return;

11
MATS Centre for Distance and Online Education, MATS University

==

§ W
[

ars)

UNIVERSITY

ready for life.

Notes

|

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

stack->array[++stack->top] = value;
}
2. Pop Operation
Pop removes and returns the element from the top of the stack:
int pop(Stack™* stack) {
if (stack->top == -1) {
// Stack underflow
return -1;
}
return stack->array[stack->top--];
}
3. Additional Stack Operations
e Peek/Top: Returns the top element without removing it
e isEmpty: Checks if the stack is empty
e isFull: Checks if the stack is full (for array implementations)
e Size: Returns the number of elements in the stack
int peek(Stack* stack) {
if (stack->top == -1) {
// Stack is empty
return -1;

}

return stack->array[stack->top];

bool isEmpty(Stack* stack) {

return stack->top == -1;

bool isFull(Stack™ stack) {

return stack->top == stack->capacity - 1;

int size(Stack™ stack) {
return stack->top + 1;
b
1.1.9 Stack Implementations
Stacks can be implemented using:

1. Array-based Implementation

12
MATS Centre for Distance and Online Education, MATS University

¢ e

\ \\\ i
'f mmss;
UNIYﬁI:?lTY
typedef struct { Notes
int* array;
int top;

int capacity;
} Stack;

Stack™* createStack(int capacity) {
Stack™* stack = (Stack*)malloc(sizeof(Stack));
stack->capacity = capacity;
stack->top = -1;
stack->array = (int*)malloc(stack->capacity * sizeof(int));
return stack;
}
2. Linked List-based Implementation
typedef struct Node {
int data;
struct Node* next;
} Node;

typedef struct {
Node* top;
int size;

} Stack;

Stack™ createStack() {
Stack™ stack = (Stack™)malloc(sizeof(Stack));
stack->top = NULL;
stack->size = 0;

return stack;

void push(Stack* stack, int value) {
Node* newNode = (Node*)malloc(sizeof(Node));
newNode->data = value;
newNode->next = stack->top;
stack->top = newNode;

stack->size++;

13
MATS Centre for Distance and Online Education, MATS University

int pop(Stack™* stack) {
if (stack->top == NULL) {
// Stack underflow

return -1;

Node* temp = stack->top;

int value = temp->data;
stack->top = stack->top->next;
free(temp);

stack->size--;

return value;
}
1.1.10 Applications of Stacks
1.Function Call Management (Call Stack)
When a program calls a function, information like local variables and
the return address is stored in a stack.
Example:
In C/C++ or Java, when a function calls another function, the call stack

keeps track of where to return after finishing.

2. Expression Evaluation and Conversion
Stacks help in converting infix expressions (like A + B) into postfix or
prefix forms, which are easier for computers to evaluate. Stacks are also

used to evaluate postfix expressions.

Example:
In calculators or interpreters, when you type (3 + 5) * 2, the system uses

a stack internally to get the result.

3. Syntax Parsing in Compilers
While compiling a program, the compiler needs to check matching
parentheses, braces, or tags.A stack is used to keep track of opening and

closing symbols.

Example:

14
MATS Centre for Distance and Online Education, MATS University

¢ e

\ \\\ i
'f mmss;
i e s,
In a compiler, if you forget a closing bracket }, the stack helps detect Notes
that error.

4. Undo Mechanism in Text Editors
Many applications (like Microsoft Word) keep a stack of previous

actions.

When you press Undo, the last action is popped from the stack and

reversed.

Example:

Typing something and then pressing Ctrl+Z.

5. Backtracking Algorithms

Stacks help to remember previous steps so you can go back.

Example:
Solving a maze — you move forward, and if you hit a dead end, you
backtrack using the stack.

6. Browser Back Button
Web browsers keep track of the pages you visit in a stack. When you
click Back, the last page 1s popped from the stack and loaded again.

Example:

Clicking back in Chrome takes you to the previous page you visited.

Checking for Balanced Parentheses
bool areParenthesesBalanced(char* expr) {
Stack™ stack = createStack(strlen(expr));
for (int 1 = 0; exprl[i]; i++) {
if (expr[i] =" || expri] == T' | expr[i] ="{" {
push(stack, expr[i]);
b else if (exprli] =) || expr{i] =T || expr{i] ="}") {
if (isEmpty(stack)) {
return false;

h
char top = pop(stack);

15
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes if ((expr[i] ==")' && top !="(") ||
(expr[i] =="]' && top !="T) ||
(expr[i] =="}' && top !="{")) {
return false;

}

return isEmpty(stack);
}
Queues: FIFO Sequential Structures
A queue is a linear data structure with a First-In-First-Out (FIFO)
order, like people in line. First In, First Out (FIFO) — The first element
added is the first one to be removed.
Operations on Queues
Queues support two primary operations:
1. Enqueue Operation
Adds an element to the rear of the queue:
void enqueue(Queue* queue, int value) {

if ((queue->rear + 1) % queue->capacity == queue->front) {

// Queue is full

return;

if (queue->front == -1) {
queue->front = 0;

queue->rear = (queue->rear + 1) % queue->capacity;
queue->array[queue->rear]| = value;
}
2. Dequeue Operation
Removes and returns the element from the front of the queue:
int dequeue(Queue* queue) {
if (queue->front == -1) {
// Queue is empty

return -1;

16
MATS Centre for Distance and Online Education, MATS University

¢ e

W \\\ f

|

ready for life.

int value = queue->array[queue->front]; Notes
if (queue->front == queue->rear) {

// Last element being dequeued

queue->front = queue->rear = -1;
} else {

queue->front = (queue->front + 1) % queue->capacity;

return value;

}
3. Additional Queue Operations

e Front: Returns the front element without removing it

isEmpty: Checks if the queue is empty
isFull: Checks if the queue is full

e Size: Returns the number of elements in the queue

int front(Queue* queue) {
if (queue->front == -1) {
/I Queue is empty
return -1;

}

return queue->array[queue->front];
}
bool isEmpty(Queue* queue) {

return queue->front == -1;
}
bool isFull(Queue* queue) {

return (queue->rear + 1) % queue->capacity == queue->front;
}
int size(Queue* queue) {

if (queue->front == -1) {

return O;

b

return (queue->rear - queue->front + queue->capacity) % queue-
>capacity + 1;
b
Queue Implementations
Queues can be implemented using:

1. Array-based Implementation (Circular Queue)

17
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes A circular queue efficiently uses array space by wrapping around when
reaching the end:
typedef struct {
int* array;
int front;
int rear;
int capacity;
} Queue;
Queue* createQueue(int capacity) {
Queue* queue = (Queue*)malloc(sizeof(Queue));
queue->capacity = capacity;
queue->front = queue->rear = -1;
queue->array = (int*)malloc(queue->capacity * sizeof(int));
return queue;
}
2. Linked List-based Implementation
typedef struct Node {
int data;
struct Node* next;
} Node;
typedef struct {
Node* front;
Node* rear;
nt size;
} Queue;
Queue* createQueue() {
Queue* queue = (Queue™)malloc(sizeof(Queue));
queue->front = queue->rear = NULL;
queue->size = 0;
return queue;
b
void enqueue(Queue* queue, int value) {
Node* newNode = (Node*)malloc(sizeof(Node));
newNode->data = value;
newNode->next = NULL;
if (queue->rear == NULL) {
queue->front = queue->rear = newNode;
} else {

18
MATS Centre for Distance and Online Education, MATS University

queue->rear->next = newNode;
queue->rear = newNode;
}
queue->sizet+;
}
int dequeue(Queue* queue) {
if (queue->front == NULL) {
/I Queue is empty
return -1;
}
Node* temp = queue->front;
int value = temp->data;
queue->front = queue->front->next;
if (queue->front == NULL) {
queue->rear = NULL;
}
free(temp);
queue->size--;
return value;
}
Variations of Queues
Several specialized queue variations exist:
1. Double-ended Queue (Deque)
A deque allows insertion and deletion at both ends:
typedef struct {
int* array;
int front;
int rear;
int capacity;
} Deque;
void insertFront(Deque* deque, int value) {
if (isFull(deque)) {
return;
b
if (deque->front == -1) {
deque->front = deque->rear = 0;
} else {

19
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

W

UNIVERSITY

ready for life.

Notes

4

|

o=

bW
Notes deque->front = (deque->front - 1 + deque->capacity) % deque-
>capacity;
}
deque->array[deque->front] = value;
}

void insertRear(Deque* deque, int value) {
if (isFull(deque)) {
return;
}
if (deque->front ==-1) {
deque->front = deque->rear = 0;

} else {

deque->rear = (deque->rear + 1) % deque->capacity;
}
deque->array[deque->rear] = value;

int deleteFront(Deque* deque) {
if (isEmpty(deque)) {
return -1;
}
int value = deque->array[deque->front];
if (deque->front == deque->rear) {
deque->front = deque->rear = -1;
} else {
deque->front = (deque->front + 1) % deque->capacity;

}

return value;
J
int deleteRear(Deque™* deque) {
if (isEmpty(deque)) {
return -1;
h
int value = deque->array[deque->rear];
if (deque->front == deque->rear) {
deque->front = deque->rear = -1;
} else {

20
MATS Centre for Distance and Online Education, MATS University

>cap

}

deque->rear = (deque->rear - 1 + deque->capacity) % deque-

acity;

return value;

}

2. Priority Queue

A priority queue serves elements based on their priority rather than

insertion order.

3. Circular Queue

A circular queue optimizes array space usage by connecting the end to

the beginning:

// Circular queue was covered in the basic queue implementation

Applications of Queues

Queues are used in various applications:

Process scheduling in operating systems

Breadth-first search in graphs

Print job spooling

Handling of interrupts in real-time systems

Buffering in various applications (keyboard buffer, web servers)

Message queues in distributed systems

Example: Level Order Traversal of a Binary Tree

void

levelOrderTraversal(TreeNode™* root) {

if (root == NULL) {

}

return;

Queue™ queue = createQueue();

enqueue(queue, root);

while (lisEmpty(queue)) {

TreeNode* current = dequeue(queue);
printf("%d ", current->data);
if (current->left) {
enqueue(queue, current->left);
b
if (current->right) {

enqueue(queue, current->right);

21
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

W

UNIVERSITY

ready for life.

Notes

4

|

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

1.1.11 Linked Lists: Dynamic Sequential Structures
A linked list is a collection with a linear structure where each element
is stored in a node that consists of a value and a reference to the next
element. They do not need to allocate memory contiguously, unlike
arrays, which allows them to grow dynamically and have efficient
insertions/deletions in between.
1.1.12 Types of Linked Lists
Linked lists come in several variations:
1. Singly Linked List
Each node contains data and a pointer to the next node:
typedef struct Node {

int data;

struct Node* next;
} Node;
2. Doubly Linked List
Each node contains data and pointers to both the next and previous
nodes:
typedef struct Node {

int data;

struct Node* next;

struct Node* prev;
} Node;
3. Circular Linked List
The last node points back to the first node, creating a circle:
// For a circular singly linked list
// ' The last node's next points to the head
Operations on Linked Lists
Linked lists support various operations:
1. Insertion Operations

e Insertion at the Beginning:

void insertAtBeginning(Node** head, int value) {

Node* newNode = (Node*)malloc(sizeof(Node));

newNode->data = value;

newNode->next = *head;

*head = newNode;

e Insertion at the End:
void insertAtEnd(Node** head, int value) {

22
MATS Centre for Distance and Online Education, MATS University

¢ e

W \\\ f

|

ready for life.

Node* newNode = (Node*)malloc(sizeof(Node)); Notes
newNode->data = value;
newNode->next = NULL;

if (*head == NULL) {
*head = newNode;
return;

j

Node* current = *head;

while (current->next != NULL) {
current = current->next;

}

current->next = newNode;

e Insertion at a Specific Position:
void insertAtPosition(Node** head, int value, int position) {

if (position < 0) {
return;

}

if (position == 0 || *head == NULL) {
insertAtBeginning(head, value);
return;

}

Node* newNode = (Node*)malloc(sizeof(Node));

newNode->data = value;

Node* current = *head;
for (int 1= 0; 1 < position - 1 && current->next != NULL; i++) {
current = current->next;
}
newNode->next = current->next;
current->next = newNode;
b
2. Deletion Operations
e Deletion from the Beginning:
void deleteFromBeginning(Node** head) {
if (*head == NULL) {

return;

23
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes

}

Node* temp = *head;

*head = (*head)->next;

free(temp);

e Deletion from the End:
void deleteFromEnd(Node** head) {
if (*head == NULL) {

if ((*head)->next == NULL) {

return;

J
free(*head);
*head = NULL;
return;

}

Node* current = *head;
while (current->next->next != NULL) {

current = current->next;

}

free(current->next);

current->next = NULL;

e Deletion at a Specific Position:
void deleteAtPosition(Node** head, int position) {
if (*head == NULL || position < 0) {

return;

}

if (position == 0) {
deleteFromBeginning(head);

return;

}

Node* current = *head;
for (int 1= 0; 1 < position - 1 && current->next !=NULL; i++) {

current = current->next;

}

if (current->next == NULL) {

return;

MATS Centre for Distance and Online Education, MATS University

¢ e

W \\\ f

|

ready for life.

Node* temp = current->next; Notes
current->next = current->next->next;
free(temp);
}
3. Search Operation
Node* search(Node* head, int value) {
Node* current = head;
while (current != NULL) {
if (current->data == value) {

return current;

j

current = current->next;
j
return NULL;

}

4. Traversal Operation
void traverse(Node* head) {
Node* current = head;
while (current != NULL) {
printf("%d ", current->data);
current = current->next;
}
printf("\n");
}
Doubly Linked List Operations
Doubly linked lists offer bidirectional traversal but require more
complex operations:
1. Insertion in a Doubly Linked List
void insertAtBeginning(Node** head, int value) {
Node* newNode = (Node*)malloc(sizeof(Node));
newNode->data = value;
newNode->next = *head;
newNode->prev = NULL;
if (*head != NULL) {
(*head)->prev = newNode;

}

*head = newNode;

25
MATS Centre for Distance and Online Education, MATS University

o=

§ \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

void insertAtEnd(Node** head, int value) {

Node* newNode = (Node*)malloc(sizeof(Node))

newNode->data = value;

newNode->next = NULL;

if (*head == NULL) {
newNode->prev = NULL;
*head = newNode;
return;

j

Node* current = *head;

while (current->next != NULL) {
current = current->next;

j

current->next = newNode;

newNode->prev = current;

}
2. Deletion in a Doubly Linked List

void deleteNode(Node** head, Node* toDelete) {

if (*head == NULL || toDelete == NULL) {
return;

}

if (*head == toDelete) {
*head = toDelete->next;

}

if (toDelete->next != NULL) {
toDelete->next->prev = toDelete->prev;

}

if (toDelete->prev != NULL) {
toDelete->prev->next = toDelete->next;

}
free(toDelete);

}

Circular Linked List Operations

Circular linked lists require special handling of the last node:

void insertIntoEmpty(Node** head, int value) {

Node* newNode = (Node*)malloc(sizeof(Node));

newNode->data = value;

*head = newNode;

26

MATS Centre for Distance and Online Education, MATS University

b

¢ e

W \\\ f

|

ready for life.

newNode->next = *head; Notes

}

void insertAtBeginning(Node** head, int value) {
if (*head == NULL) {

}

insertintoEmpty(head, value);

return;

Node* newNode = (Node*)malloc(sizeof(Node));

newNode->data = value;

Node* current = *head;

while (current->next != *head) {

}

current = current->next;

newNode->next = *head;

current->next = newNode;

*head = newNode;

}

1.1.13 Advantages and Limitations of Linked Lists
Advantages:

Dynamic size
Efficient insertions and deletions
No memory wastage

Flexible memory management

Limitations:

Random access is not supported (O(n) time complexity)
Extra memory required for pointers

Not cache-friendly due to non-contiguous memory
Reverse traversal is difficult in singly linked lists
Applications of Linked Lists

Linked lists are used in various applications:
Implementation of stacks and queues

Dynamic memory allocation

Representation of sparse matrices

Polynomial manipulation

Hash tables (chaining)

Adjacency lists for graphs

Example: Reversing a Linked List
Node* reverseList(Node* head) {

27
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.

Notes Node* prev = NULL;
Node* current = head;
Node* next = NULL;
while (current != NULL) {
next = current->next;
current->next = prev;
prev = current;
current = next;

}

return prev,
}
Specialized Linear Data Structures
Sparse Arrays
Sparse arrays efficiently store arrays with many default values by only
storing non-default entries.
typedef struct {
int row;
int col;
int value;
} Element;
typedef struct {
Int rows;
int cols;
int numElements;
Element* elements;
} SparseArray;
Skip Lists
Skip lists provide probabilistic alternatives to balanced trees with O(log
n) average search time.
typedef struct SkipListNode {
int value;
int level,
struct SkipListNode** forward;
}+ SkipListNode;
typedef struct {
int level,
nt size;
SkipListNode* header;

28
MATS Centre for Distance and Online Education, MATS University

{% \\\
[

UNIVERSITY

}+ SkipList;
Memory-Efficient Linked Lists (XOR Linked Lists)
XOR linked lists combine both addressing (previous and next) with

bitwise XOR operation to compress Memory.

typedef struct Node {

int data;

struct Node™* npx; // XOR of next and previous node addresses

} Node;

// Helper functions to get next and previous nodes
Node* XOR(Node* a, Node* b) {
return (Node*)((uintptr_t)a * (uintptr_t)b);

}

Performance Comparison and Selection Criteria

Time Complexity Comparison

. Dynamic | Linked
Operation Array) Stack | Queue
Array List
Access o(1) Oo(1) O(n) Oo()* | O(1)*
Insert O(n) O(n) o)y | NA | NA
n n
(Start)
Insert Amortized | O(n)/O(1
O(1)** o) | O()
(End) o))EEE
Insert O(n) O(n) om | NA | NA
n n n
(Middle)
Delete O(n) O(n) o)y | NA | o)
n n
(Start)
Delete O(n)/O(1
O(1)** o(1) o(l) | N/A
(End))EEE
Delete O(n) O(n) om | NA | NA
n n n
(Middle)
O(n)/O(log | O(n)/O(1
Search (/Oclog | Om)Ollog O(n) N/A N/A
n)**** n)****

* For top/front elements only ** If size is tracked *** O(1) if tail

pointer is maintained **** O(log n) with binary search if sorted

29

MATS Centre for Distance and Online Education, MATS University

¢ e

|

ars)

o=

\ \\\ S
(maTs}
Notes Space Complexity Comparison
Data Structure Space Complexity
Array (Static) O(n)

Selection Criteria

Choosing the appropriate data structure depends on:

Data Structure Space Complexity
Array (Static) O(n)
Dynamic Array O(n)
Linked List O(n)
Stack O(n)
Queue O(n)

1. Access Pattern: Random access vs. sequential access

2. Modification Frequency: Frequent insertions/deletions vs. static
data

3. Size Constraints: Fixed size vs. dynamic growth

4. Memory Constraints: Overhead acceptability

5. Operation Types: LIFO, FIFO, or random operations

30
MATS Centre for Distance and Online Education, MATS University

==

W \\\ f

ready for life.

1.2 Linear Array Notes
Linear Array in data structure and its classification, Properties
Linear array is one of the basic data structures of computer science. It
is a group of information saved in the successive memory location and
can be accessed conveniently by indexing.
Classification of Linear Arrays
Linear arrays can be classified in several ways:
Based on dimension:
e One-dimensional arrays (vectors)
e Multi-dimensional arrays (matrices, tensors)
Based on size flexibility:
e Static arrays (fixed size, determined at compile time)
e Dynamic arrays (variable size, can grow or shrink at runtime)
Based on the type of elements:
e Homogeneous arrays (all elements have the same data type)
e Heterogeneous arrays (elements can have different data types,
like structs or objects)
1.2.1 Properties of Linear Arrays
Linear arrays have several important properties:
1. Random Access
e Elements can be accessed directly using their index in O(1) time
e Formula: address = base address + (index *
size_of each element)
2. Memory Allocation
e Elements are stored in contiguous memory locations
e Static arrays have a fixed size allocation
e Dynamic arrays may reallocate memory when resizing
3. Time Complexity
e Access: O(1)
e Search: O(n) for unsorted arrays, O(log n) for sorted arrays
using binary search
e Insertion/Deletion:
e At the end: O(1) amortized for dynamic arrays
e At arbitrary positions: O(n) due to shifting elements
4. Space Complexity
e O(n) where n is the number of elements
e Requires extra space for potential growth in dynamic arrays
5. Cache Friendly

31
MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.

Notes

ars)

)

e Due to contiguous memory allocation, arrays benefit from
spatial locality

e This makes them efficient for CPU cache utilization
6. Limitations

e Static arrays cannot change size once allocated

e Dynamic arrays have overhead for resizing operations

e Insertion/deletion in the middle is inefficient due to shifting
1.2.2 representations of an array, Operation and Memory location
Wherein arrays are one of the most basic and common data structures
in computer science. From their elegant simplicity stems their
immense utility across almost all domains of programming. Like at
heart, an array is a collection of elements, all of which are specified by
an index or a key. These elements are stored sequentially in memory,
which enables fast access and manipulation. Arrays are not only useful
for storing elements, but they are also the basic building blocks for
many algorithms and higher-level data structures. Arrays serve as the
backbone of many operations, from sorting and searching algorithms to
image processing and numerical calculations. Join us as we take a
deep dive into the workings of arrays, from how they're structured in
memory to the various operations are supported and what makes them
so efficient. We’ll explore everything from abstract fundamentals to
programming distinctions and low-level details of different
implementations of arrays.
Basic Array Representation
An array can be thought of as an enumerated list of cells, each of which
can contain a single data type. In this sequence, every cell is assigned
an integer index, each one unique, with a typical base value (0 or 1
depending on language) that acts as the first index.
For a one-dimensional array A with n elements, we can represent it as:
A = [A[0], A[1], A[2], ..., A[n-1]] (for 0-indexed arrays) A = [A[1],
A[2], A[3], ..., A[n]] (for 1-indexed arrays)
This indexed access pattern defines arrays in contrast to other
collection data types, including linked lists or sets. This sort of direct
mapping means that you can access any element in constant-time.
1.2.3 Mathematical Representation
Mathematically, an array can be viewed as a mapping function from
indices to values:
A: 1>V

32
MATS Centre for Distance and Online Education, MATS University

Where:
o [is the set of valid indices (typically a contiguous range of
integers)
e Vs the set of possible values the array can store
For a one-dimensional array of size n, the index set [= {0, 1, 2, ..., n-
1} for O-indexed arrays, or [= {1, 2, 3, ..., n} for 1-indexed arrays.

1.2.4 Physical Representation in Memory
The physical representation of an array in memory directly influences

its performance and efficiency in computation. Arrays are stored in a
contiguous block of memory, meaning that all elements are placed
sequentially without gaps. Each element occupies a fixed amount of
space determined by its data type—for instance, an integer may take 4
bytes, while a character may take 1 byte. Because of this arrangement,
the location of any element in the array can be quickly calculated using
its index, allowing for constant-time access O(1)O(1)O(1). For
example, if the base address of the array is known, the address of the
iii-th element can be computed as:

Address of A[i]=Base Address+(ixSize of each element)\text{Address
of A[i]} = \text{Base Address} + (i \times \text{Size of each
element})Address of A[i]=Base Address+(ixSize of each element)
This direct addressing makes array access extremely fast compared to
other data structures like linked lists, where traversal is required to
reach a specific element. However, the contiguous allocation also
imposes certain limitations. Since the size of an array is fixed at the
time of allocation, resizing requires creating a new block of memory
and copying elements, which can be time-consuming. Additionally,
inserting or deleting elements within an array often requires shifting
subsequent elements, leading to inefficiencies in dynamic scenarios.
Despite these limitations, arrays remain one of the most efficient
structures for tasks requiring fast indexing and predictable memory
access, making them a cornerstone in both low-level programming and
algorithm implementation.

1.2.5 Memory Addressing and Location Calculation

Linear Addressing for One-Dimensional Arrays

33
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

W

UNIVERSITY

ready for life.

Notes

4

|

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

The memory address of an element in a one-dimensional array can be
calculated using a simple formula:
Address of A[i] = Base Address + (i - Lower Bound) x
Size of Each FElement
Where:
o Base Address is the memory address of the first element of the
array
e Lower Bound is the starting index of the array (typically 0 or
1)
e Size of Each Element is the number of bytes each element
occupies
For example, in a 0-indexed array of integers (assuming 4 bytes per
integer), the address of the element at index 5 would be: Address of
A[5] =Base_Address + (5 - 0) x 4 = Base Address + 20
This direct calculation is what enables O(1) time complexity for
array element access.
1.2.6 Row-Major vs. Column-Major Ordering
For multi-dimensional arrays, two primary memory layout strategies
exist:
e Row-Major Ordered: Same Row Elements are Stored Together
Used in C, C++, Python and other languages.
e FElements in the same column are stored contiguously. This is
prevalent in Fortran, R, MATLAB, etc.
Depending on how ordering is done, it can affect address calculation
for reading elements and its impact on performance on some
operations especially with respect to cache efficiency.
Memory Location Calculation for Multi-Dimensional Arrays
Row-Major Ordering
For a two-dimensional array A[m][n] in row-major ordering, the
address of element A[1][j] is calculated as:
Address of A[1][j] = Base Address + ((i - Row_Lower Bound) X n + (j
- Column_Lower Bound)) x Size of Each Element
For a three-dimensional array A[m][n][p], the formula extends to:
Address of A[i][j][k] = Base Address + (((i - Row_Lower Bound) X n
+ (j - Column_Lower Bound)) x p + (k - Depth_Lower Bound)) x
Size of Each Element
Column-Major Ordering

For a two-dimensional array A[m][n] in column-major ordering:

34
MATS Centre for Distance and Online Education, MATS University

Address of A[i][j] = Base_Address + ((j - Column Lower Bound) x m
+ (1- Row_Lower Bound)) x Size of Each Element
The patterns don't stop in single dimension, higher dimensions are
basically adding the coordinates for the different dimensions into the
address calculation.
1.2.7 Memory Allocation Mechanisms
Static Allocation
Static arrays are arrays with a size determined at compile time.
Generally, the memory is allocated in the stack segment of the program
memory space. It once set the size which can never be changed during
program execution.
In languages like C, static allocation looks like:
int array[100]; // Allocates 400 bytes (assuming 4 bytes per int)
Therefore, the compiler knows exactly how much memory to allocate,
and the memory is automatically deal located when the variable gets
out of scope.
1.2.8 Dynamic Allocation
Dynamic arrays are created during runtime and stored in the heap
memory segment. This means you can determine the size more flexibly
based on the conditions at runtime.
In C, dynamic allocation can be done using:
int* array = (int*)malloc(n * sizeof(int)); // Allocates n*4 bytes
In C++, the equivalent would be:
int* array = new int[n]; // Allocates n*4 bytes
Dynamic allocation requires explicit deallocation to prevent memory
leaks:
free(array); // C
delete[] array; // C++
1.2.9 Automatic Resizing and Growth Strategies
Many modern programming languages include a dynamically
resizable array implementation, like C++'s std::vector, Java's ArrayList,
or built-in lists in Python. Such implementations often employ the
following growth strategies:

1. Amortized Doubling Once the capacity is reached, we allocate

a new array with double capacity, copy over all elements, then
deal locate the old array.
2. Doubling

reaches certain thresholds or Growth Factor similar to doubling

basically doubling the unit scale when buffer

35
MATS Centre for Distance and Online Education, MATS University

e

§ \\\
4

ars)

UNIVERSITY

ready for life.

Notes

|

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

o=

)

but different multiplication factor e.g. 1.5x in some
implementations
3. Add Constant Space: Add a fixed amount at a time.
Dynamic Array Performance Characteristics Dynamic arrays can
achieve performance characteristics similar to classical arrays, except
for the cost of an occasional copying operation. The benefit of Jochen
Hoenicke’s trick prevents exponentially growing memory
consumption. The perfect hash entailed exponential growth, which
K&R prevented, but Jochen Hoenicke’s trick made dynamic arrays
possible for performance in real code..
1.2.10 Basic Array Operations
Access Operation
Accessing an array element is performed by using its index:
value = array[index]
Time Complexity: O(1) - Constant time, as it involves a direct memory
address calculation.
Traversal Operation
Traversal involves visiting each element of the array exactly once:
for i = 0 to length(array) - 1
process array[i]
Time Complexity: O(n) - Linear time, where n is the number of
elements.
1.2.11 Search Operation
Linear Search
Linear search scans elements one by one:
function linearSearch(array, target)
for 1= 0 to length(array) - 1
if array[i] equals target
return 1
return -1 // Not found
Time Complexity: O(n) - Linear time, where n is the number of
elements.
Binary Search (for sorted arrays)
Binary search divides the search interval in half repeatedly:
function binarySearch(array, target)
left=0
right = length(array) - 1
while left <= right

36
MATS Centre for Distance and Online Education, MATS University

¢ e

W \\\ f

|

ready for life.

mid = (left + right) / 2 Notes
if array[mid] equals target
return mid

else if array[mid] < target

left=mid + 1
else
right =mid - 1

return -1 // Not found
Time complexity: O(log n) - Logarithmic time and its much better than
linear search for large array.
1.2.12 Insertion Operation
Insertion at the End
For arrays with available space at the end:
function insertAtEnd(array, value)

array[size] = value

size = size + 1
Time Complexity: O(1) - Constant time, assuming space is available.
For dynamic arrays that might need resizing: O(1) amortized time.
Insertion at a Specific Position
To insert an element at position pos:
function insertAt(array, pos, value)

for 1 = size downto pos + 1

array[i] = array[i-1]

array[pos] = value

size = size + 1
Time Complexity: O(n) - Linear time, since elements need to be shifted.
Deletion Operation
Deletion from the End
function deleteFromEnd(array)

size = size - 1
Time Complexity: O(1) - Constant time.
Deletion from a Specific Position
To delete an element at position pos:
function deleteAt(array, pos)

for 1 = pos to size - 2

array[i] = array[i+1]
size = size - 1

Time Complexity: O(n) - Linear time, since elements need to be shifted.

37
MATS Centre for Distance and Online Education, MATS University

Y W

ready for life.......

Notes Update Operation
Updating an element at a specific index:
function update(array, index, newValue)
array[index] = newValue
Time Complexity: O(1) - Constant time.
Advanced Array Operations
Sorting Operations
Arrays are commonly used with various sorting algorithms, each with
different performance characteristics:
Bubble Sort
function bubbleSort(array)
for i = 0 to length(array) - 1
for j = 0 to length(array) - i - 2
if array[j] > array[j+1]
swap(array[j], array[j+1])
Time Complexity: O(n?) - Quadratic time.
1.2.13 Selection Sort
function selectionSort(array)
for i = 0 to length(array) - 2
minlndex =1
forj=1+1 to length(array) - 1
if array[j] < array[minIndex]
minlndex =
swap(array|[i], array[minIndex])
Time Complexity: O(n?) - Quadratic time.
1.2.14 Insertion Sort
function insertionSort(array)
fori=1 to length(array) - 1
key = array][i]
j=i-1
while j >= 0 and array[j] > key
array[j+1] = array[j]
j=i-1
array[j+1] = key
Time Complexity: O(n?) - Quadratic time, but performs well on almost-
sorted arrays.
1.2.15 Merge Sort
function mergeSort(array, left, right)

38
MATS Centre for Distance and Online Education, MATS University

¢ e

\y \\\ 1
g{mmss,
UNIVERSITY
ready for life.

|

if left <right Notes
mid = (left + right) / 2
mergeSort(array, left, mid)
mergeSort(array, mid + 1, right)
merge(array, left, mid, right)
Time Complexity: O(n log n) - Linearithmic time.
1.2.16 Quick Sort
function quickSort(array, low, high)
if low < high
pivotIndex = partition(array, low, high)
quickSort(array, low, pivotIndex - 1)
quickSort(array, pivotIndex + 1, high)
Time Complexity: O(n log n) average case, O(n?) worst case.
1.2.17 Heap Sort
function heapSort(array)
buildMaxHeap(array)
for i = length(array) - 1 downto 1
swap(array[0], array[i])
heapify(array, 0, 1)
Time Complexity: O(n log n) - Linearithmic time.
Mathematical Operations
Array Sum
function arraySum(array)
sum =0
for 1= 0 to length(array) - 1
sum = sum + array[i]
return sum
Time Complexity: O(n) - Linear time.
Array Product
function arrayProduct(array)
product = 1
for 1= 0 to length(array) - 1
product = product * array[i]
return product
Time Complexity: O(n) - Linear time.
Array Mean (Average)
function arrayMean(array)

sum = arraySum(array)

39
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes

return sum / length(array)
Time Complexity: O(n) - Linear time.
Finding Maximum and Minimum
function findMax(array)
max = array[0]
fori=1 to length(array) - 1
if array[i] > max
max = array|[i]
return max
function findMin(array)
min = array[0]
fori=1 to length(array) - 1
if array[i] < min
min = array|[i]
return min
Time Complexity: O(n) - Linear time.
Array Transformation Operations
Mapping
Applying a function to each element:
function map(array, func)
result = new array of same size
for 1= 0 to length(array) - 1
result[i] = func(array[i])
return result
Time Complexity: O(n) - Linear time.
Filtering
Creating a new array with elements that pass a test:
function filter(array, predicate)
result = new empty array
for 1= 0 to length(array) - 1
if predicate(array([i]) is true
append array[i] to result
return result
Time Complexity: O(n) - Linear time.
1.2.18 Reducing
Combining array elements into a single value:
function reduce(array, callback, initial Value)

accumulator = initial Value

40
MATS Centre for Distance and Online Education, MATS University

¢ e

\y \\\ 1
g{mmss,
UNIVERSITY
ready for life.

|

for i = 0 to length(array) - 1 Notes
accumulator = callback(accumulator, array/[i])

return accumulator
Time Complexity: O(n) - Linear time.
1.2.19 Multi-Dimensional Arrays
Two-Dimensional Array Representation
In fact, a two-dimensional array would look just like a table with rows
and columns. An mxn array has m rows and n columns.
Mathematically, a 2D array A can be represented as:
A = [[A[0,0], A[O,1], ..., A[O,n-1]], [A[L,0], A[1,1], ..., A[1,n-1]], ...
[A[m-1,0], A[m-1,1], ..., A[m-1,n-1]]]
Memory Representation of Multi-Dimensional Arrays
Contiguous Allocation
In such languages as C and C++, multidimensional arrays are laid out
in contiguous segments of memory in row-major order or column-
major order (depending on the language, as detailed in a previous
section).
For example, a 3%4 array in row-major ordering would have elements
stored in the following sequence: A[0,0], A[0,1], A[0,2], A[0,3], A[1,0],
A[1,1], A[1,2], A[1,3], A[2,0], A[2,1], A[2,2], A[2,3]
Array of Arrays
For example in some languages and implementations, multi-
dimensional arrays are implemented as arrays of arrays. Pretty
common in languages such as JavaScript and some implementations in
Java:
javascript
let matrix = [

[1,2,3],

[4, 5, 6],

[7,8,9]
I;
Here, each element of the outer array is an array, that may or may not
be contiguous in memory.
Operations on Multi-Dimensional Arrays
Accessing Elements
value = array[row][column]
Time Complexity: O(1) - Constant time.

Row and Column Traversal

41
MATS Centre for Distance and Online Education, MATS University

)

ready for life.......

Notes

Row traversal:
fori=0 to rows - 1
for j =0 to columns - 1
process array[i][j]
Column traversal:
for j =0 to columns - 1
fori=0 to rows - 1
process array[i][j]
Time Complexity: O(mxn) - Where m is the number of rows and n is
the number of columns.
Matrix Addition
function matrixAdd(A, B)
if A.rows !=B.rows or A.columns != B.columns
return error
C = new matrix of size A.rows x A.columns
fori=0to A.rows - 1
for j=0to A.columns - 1
Clil[j] = ALl[j] + BIil[j]
return C
Time Complexity: O(mxn) - Where m is the number of rows and n is
the number of columns.
Matrix Multiplication
function matrixMultiply(A, B)
if A.columns != B.rows
return error
C = new matrix of size A.rows x B.columns
fori=0to A.rows - 1
for j =0 to B.columns - 1
Cli][j]1=0
for k=0 to A.columns - 1
Cli][5] +=Ali][k] * B[k][j]
return C
Time Complexity: O(mxnxp) - Where A is an mxn matrix and B is an
nxp matrix.
Matrix Transpose
function matrixTranspose(A)
B = new matrix of size A.columns X A.rows

fori=0to A.rows - 1

42
MATS Centre for Distance and Online Education, MATS University

¢ e

\ \\\ i
't{mm'é ‘
for j =0 to A.columns - 1 Notes
B[j]li] = A[][]
return B

Time Complexity: O(mxn) - Where m is the number of rows and n is
the number of columns.
Jagged Arrays
Definition and Representation
Jagged array: An array of arrays in which each array can have a
different length. Unlike in the case of multi-dimensional arrays where
each dimension has a fixed size.
For example, in C#:
int[][] jaggedArray = new int[3][];
jaggedArray[0] = new int[4];
jaggedArray[1] = new int[2];
jaggedArray[2] = new int[5];
This would result in a jagged array with 3 rows, the first row contains
4 elements, the second row contains 2 elements, the third row contains
5 elements.
Memory Representation
In a typical implementation of jagged arrays, the first array is an array
of pointers to separate array. This is unlike the multi dimensional
arrays that have a single block of memory allocation.
The memory structure would look like:
jaggedArray -> [ptrl, ptr2, ptr3]
ptrl -> [element], element2, element3, element4]
ptr2 -> [element$5, element6]
ptr3 -> [element7, element8, element9, element10, element11]
Operations on Jagged Arrays
Jagged arrays are similar to regular arrays regarding operations
performed on them — however, you must keep in mind the lengths of
the arrays:
/I Accessing elements
value = jaggedArray[row][column]
/l Traversal
for 1 =0 to length(jaggedArray) - 1

for j = 0 to length(jaggedArray[i]) - 1

process jaggedArray[i][j]

43
MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

Time complexity for access is still O(1), and traversal is O(total number
of elements).

Array Implementation in Different Programming Languages

C/C++ Arrays

“An array is a fixed-size sequence of elements of the same type, stored
in contiguous memory” in C and C++ They are zero-indexed and have
no bounds checking.

C

int array[5] = {1, 2, 3, 4, 5}; // Static array

int* dynamicArray = (int*)malloc(5 * sizeof(int)); // Dynamic array in
C

int* dynamicArray = new int[5]; // Dynamic array in C++

C++ also provides the std::array and std::vector container classes:
std::array<int, 5> arr = {1, 2, 3, 4, 5}; // Fixed-size array
std::vector<int> vec = {1, 2, 3, 4, 5}; // Dynamic array

Java Arrays

Arrays are objects in Java that store one type of element. They are zero-
indexed and have automatic bounds checking.

int[] array = new int[5]; // Declaration and allocation

int[] array = {1, 2, 3, 4, 5}; // Initialization with values

Java also provides the ArrayList class for dynamic arrays:
ArrayList<Integer> list = new ArrayList<>();

list.add(1);

list.add(2);

1.1.27 Python Lists

Python's lists are dynamic arrays that can contain elements of different
types:

my list =[1, "string", 3.14, True] # Mixed types

my _list.append(5) # Dynamic resizing

JavaScript Arrays

JavaScript arrays are also dynamic and heterogeneous:

let array = [1, "string", 3.14, true];

array.push(5); // Dynamic resizing

C# Arrays

C# arrays are similar to those in Java, being reference types with
automatic bounds checking:

int[] array = new int[5]; // Declaration and allocation

int[] array = {1, 2, 3, 4, 5}; // Initialization with values

44
MATS Centre for Distance and Online Education, MATS University

==

W \\\ f

ready for life.

C# also provides the List<T> class for dynamic arrays: Notes
List<int> list = new List<int>();

list. Add(1);

list. Add(2);

1.1.28 Memory Management Considerations

Memory Alignment

Memory alignment is the way data is arranged in memory (as per the
data type). Modern architectures often benefit from, or require, data to
be aligned at specific boundaries.

For instance, a 4-byte integer may need to be stored at an address that
is a multiple of 4 bytes. The alignment requirement has implications in
the way arrays are arranged into memory and will sometimes cause
some padding in structures that hold arrays.

Cache Considerations

Arrays take advantage of spatial locality, which means when elements
are stored close together in memory, they will tend to be accessed
temporally close as well. This property gives arrays very high cache
friendliness:

1. Cache Lines: When accessing some element, you also fetch the
neighboring elements, all of which load up into cache resulting
in faster accesses.

2. Cache Misses: Linear scans of an array tend to have fewer
cache misses vs. random access patterns.

3. Row-major vs. Column-major: Row-major and column-
major storage order can have a big effect on cache
performance, based on the access order

Memory Fragmentation
Dynamic arrays that expand and contract can lead to memory
fragmentation especially if they need to change their size often:

1. External Fragmentation: Happens when free memory is
technically available but can not be allocated due to
fragmentation and inability to get contigous large arrays of
memory.

2. Internal Fragmentation: This occurs when more memory is
allocated than is requested to satisfy alignment requirements or
growth strategies

Memory Leaks in Dynamic Arrays

Dynamic arrays require careful management to prevent memory leaks:

45
MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

1. Memory Management: Array created dynamically needs to be
properly deallocated when not in use.

2. Python: The winner must learn both the basics of Python
syntax (where every machine learning program, model, etc.

3. Garbage Collection: Languages like Java, Python, and
JavaScript utilize garbage collection to automatically free up
memory occupied by arrays that are no longer referenced

Performance Analysis of Array Operations

Time Complexity Analysis

Operation Average Case Worst Case
Access o(1) o(1)
Search (Unsorted) O(n) O(n)

Search (Sorted) O(log n) O(log n)

Insertion (End) O(1)* O(n)*
Insertion (Middle) O(n) O(n)
Deletion (End) O(1) o(1)
Deletion (Middle) O(n) O(n)
Traversal O(n) O(n)
Sort O(n log n) O(n?)

* Amortized time complexity for dynamic arrays

Space Complexity Analysis
Space complexity analysis of arrays focuses on understanding how

much memory is consumed based on their implementation and usage.
For a simple static array, the space complexity is O(n), where n
represents the number of elements, since each element is stored in a
contiguous memory block, and the size remains fixed throughout
execution. This predictable allocation makes static arrays memory-
efficient but limits their flexibility when resizing is required.

Dynamic arrays, on the other hand, introduce additional considerations.
To accommodate future growth, they often allocate more memory than
is immediately required. A common approach is the doubling strategy,
where the capacity of the array is doubled each time the current capacity
is exceeded. While this ensures that insertions remain efficient on
average, it can lead to situations where a significant portion of the

allocated memory remains unused. In the worst case, a dynamic array

46
MATS Centre for Distance and Online Education, MATS University

¢ e

W \\\ f

|

ready for life.

may temporarily use O(2n) space, since it might hold # actual elements Notes
along with nearly » unused slots after a resizing operation.

This trade-off between time efficiency and memory utilization

highlights the balance dynamic arrays achieve: they provide amortized

constant-time insertions at the cost of potentially higher space usage. In

practice, this overhead is often acceptable, as the performance benefits

of resizing strategies outweigh the temporary extra memory

consumption, making dynamic arrays a powerful compromise between

flexibility and efficiency.

Performance Comparison with Other Data Structures:

Arrays vs. Linked Lists

Feature Arrays Linked Lists
Random Access o(1) O(n)
Insertion/Deletion at Beginning O(n) 0(1)
Insertion/Deletion at End Oo(1)* O(1)**
Insertion/Deletion in Middle O(n) O(n)***
Contiguous Non-contiguous
Memory Usage block nodes
Cache Performance Excellent Poor

* Amortized for dynamic arrays **Assuming tail pointer ***O(1) after
finding the position, but finding takes O(n)
Arrays vs. Hash Tables

Feature Arrays Hash Tables
Access by Index o(l) N/A
Access by Key O(n) O(1) average
Insertion O(n) O(1) average
Deletion O(n) O(1) average
Ordered Data Yes No
Memory Usage Low Moderate to high
47

MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.

Notes

ars)

)

Arrays vs. Trees

Feature Arrays Binary Search Trees
Access o(1) O(log n)
Search O(n) or O(log n) O(log n)
Insertion O(n) O(log n)
Deletion O(n) O(log n)
Ordered Operations No Yes
Memory Usage Low Moderate

Specialized Array Types

Sparse Arrays
A sparse array is a specialized representation of an array in which most

of the elements share the same default value, usually zero, and only a
relatively small number of positions hold meaningful data. Instead of
storing every element explicitly in memory, a sparse array stores only
the non-zero values along with their corresponding indices, which
greatly reduces memory usage when dealing with large datasets
dominated by repeated default values. For example, consider an array
of size 1,000,000 where only 100 elements are non-zero; storing all
elements would waste significant space, but representing only the non-
zero elements with their positions allows the structure to remain
efficient. This approach is particularly useful in fields such as scientific
computing, machine learning, and information retrieval, where large
matrices with many empty or zero entries are common. Sparse arrays
are often implemented using auxiliary data structures like hash tables,
dictionaries, or linked lists, which allow quick access to the stored non-
zero elements. While they save memory, they may sometimes require
extra computational overhead for lookups compared to dense arrays,
since the direct indexing advantage of contiguous memory is lost.
Nonetheless, sparse arrays strike a balance by making large-scale
problems computationally feasible, especially when memory resources
are limited or when handling high-dimensional datasets with only a few

active values.

48
MATS Centre for Distance and Online Education, MATS University

Representation Methods
1. Dictionary/Map Representation: Store only non-zero values with
their indices as keys.
sparse_array = {1: 5, 10: 3, 100: 8} # Elements at indices 1, 10, and
100
2. Coordinate List (COQ): Store pairs of (index, value) for non-zero
elements.
[(1,5), (10, 3), (100, 8)]
3. Compressed Sparse Row (CSR): Used primarily for sparse
matrices, storing row pointers, column indices, and values.
Operations on Sparse Arrays
Operations on sparse arrays are modified to work efficiently with the
sparse representation:
/] Access
function access(sparseArray, index)
if index exists in sparseArray
return sparseArray[index|
else
return defaultValue
One big reason why sparse arrays are so powerful is that they help save
storage in a data structure designed for sparse matrices in scientific
computing, graph algorithms, and large-scale data processing where
data is naturally sparse.
Circular Arrays
This means we can treat each element of an array like we are in space
where the end of the array becomes part of the start of the array (called
circular arrays (or ring bufters)).
Implementation
Circular arrays are typically implemented using modular arithmetic to
wrap around the array indices:
function get(circularArray, index)
return array[index % length(array)]
For a fixed-size circular array used as a queue:
front=0
rear =0
function enqueue(value)
if isFull()

return error

49
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

W

UNIVERSITY

ready for life.

Notes

4

|

o=

ready for life.......

Notes array[rear] = value
rear = (rear + 1) % capacity
function dequeue()
if isEmpty()
return error
value = array|[front]
front = (front + 1) % capacity
return value
Applications of Circular Arrays
1. Circular Buffers: Used in producer-consumer scenarios,
streaming data processing, and I/O operations.
2. Real-time Systems: Used in scheduling algorithms and event
handling.
3. Memory-efficient Queues: Implementing queues without the
need to shift elements.
Dynamic Arrays with Custom Growth Strategies
Different applications may benefit from different growth strategies for
dynamic arrays:
1. Geometric Growth (e.g., doubling): Provides good amortized
performance but may waste memory.
2. Arithmetic Growth (e.g., adding fixed chunks): More memory-
efficient but with higher frequency of resizing operations.
3. Custom Predictive Growth: Adjusting growth based on usage
patterns and application-specific knowledge.
Advanced Memory Management Techniques
Memory Pools for Array Allocation
Memory pools preallocate a big chunk of memory upfront, then
distributes it for array allocations. This helps with fragmentation and
allocation overhead:
function initializeMemoryPool(poolSize)
pool = allocate(poolSize)
freeList = initialize linked list of all blocks
function allocateFromPool(size)
block = find suitable block in freeList
if block is found
remove block from freeList
return block

else

50
MATS Centre for Distance and Online Education, MATS University

¢ e

\ \\\ i
'f mmss;
bt
return null // Out of memory Notes
Custom Allocators

Custom allocators provide application-specific memory management
for arrays:
1. Stack Allocators: Fast allocation/deallocation in LIFO order.
2. Buddy Allocators: Efficient handling of varying-sized
allocations with minimal fragmentation.
3. Slab Allocators: Optimized for fixed-size allocations, common
in operating system kernels.
Memory-Mapped Arrays
Memory-mapped arrays leverage the virtual memory capabilities of
the operating system and map the content of an array to a disk file:
array = mmap(fileDescriptor, length, protectionFlags, flags, offset)
Benefits include:
1. Arrays larger than physical memory
2. Persistence between program executions
3. Efficient sharing between processes
Optimizing Array Operations
SIMD Vectorization
SIMD (Single Instruction, Multiple Data) instructions let you (in one
go) perform the same operation over multiple array elements:
/I 'Scalar addition
for (int1=0; 1 <n; 1++)
cl[i] = a[i] + b[i];
// SIMD addition (abstract pseudocode)
for(inti=0;1<n;1+=4)
c[i:1i+3] = a[i:1+3] + b[i:1+3]; // Process 4 elements at once
Most modern compilers will automatically vectorize array operations,
though for peak performance you may still need to manually optimize.
Loop Unrolling
Loop unrolling reduces loop overhead by processing multiple elements
in each iteration:
// Original loop
for (int1=0; 1 <n; 1++)
array[i] = process(array[i]);
// Unrolled loop
for(inti=0;1<n;1+=4) {
array[i] = process(array[i]);

51
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes array[i+1] = process(array[i+1]);
array[i+2] = process(array[i+2]);
array[i+3] = process(array[i+3]);
}
Cache-Aware Algorithms
Optimizing array algorithms for cache performance:
1. Blocking/Tiling: Processing data in chunks that fit in cache.
// Matrix multiplication with blocking
for (int 1 = 0; i < n; 1 += blockSize)
for (int j = 0; j <n; j += blockSize)
for (int k = 0; k < n; k += blockSize)
// Process block
2. Cache-Oblivious Algorithms: Algorithms that inherently
perform well on any cache hierarchy without explicit tuning.
3. Array of Structures vs. Structure of Arrays: Choosing the right
layout based on access patterns.
// Array of Structures
struct Point { float x, y, z; };
Point points[1000];

// Structure of Arrays
struct Points {
float x[1000];
float y[1000];
float z[1000];

55

1.1.29 Array Applications and Use Cases
Arrays play a central role in computer science and data-driven fields

because of their ability to store and manage sequential data efficiently.
In time series analysis, arrays are used to represent ordered data points
collected over time, such as stock prices, weather readings, or sensor
measurements, enabling researchers and analysts to identify patterns
and trends. In statistical computations, arrays provide a convenient
structure for storing large datasets that can be processed to calculate
measures like mean, median, variance, and standard deviation, which

are essential for understanding the distribution and characteristics of

52
MATS Centre for Distance and Online Education, MATS University

data. In the field of signal processing, arrays are indispensable for
representing and manipulating signals in digital form, supporting
operations such as filtering, convolution, and transformations like the
Fast Fourier Transform (FFT), which is crucial for frequency analysis.
Beyond these examples, arrays are also widely applied in image
processing, where pixel values are stored as multi-dimensional arrays,
in scientific simulations, where large numerical datasets need efficient
storage, and in machine learning, where arrays (or tensors) form the
backbone of data representation for training algorithms. Their
combination of simplicity, speed, and versatility makes arrays one of
the most fundamental and widely applied data structures across
domains ranging from everyday computing to advanced scientific

research.

Advantages of Arrays
Arrays offer several important advantages that make them one of the

most widely used data structures in computing. One of the key benefits
is efficient random access, since each element is stored in a contiguous
memory block and can be directly accessed by its index in constant time
O(1)O(1)O(1). This makes arrays particularly powerful when frequent
lookups are required. They also provide memory efficiency, as the
continuous allocation of memory minimizes overhead and enhances
cache performance, making array operations faster due to better locality
of reference. Another strength of arrays is their ease of iteration, since
elements can be traversed sequentially with simple loops or built-in
functions, which makes processing large datasets straightforward.
Finally, arrays are known for their simplicity in implementation; they
are a fundamental data structure supported by virtually every
programming language, making them easy to learn, implement, and

integrate into algorithms.

1.Efficient Random Access

Elements can be accessed directly by their index in constant time O (1)

2.Memory Efficiency

53
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

W

UNIVERSITY

ready for life.

Notes

4

|

o=

§ \\\

UNIVERSITY
ready for life.

Notes

ars)

)

Continuous memory allocation reduces overhead and improves locality

of reference (cache-friendly).

3.Ease of Iteration

Simple and fast traversal using loops or built-in functions.

4.Simplicity in Implementation
Arrays are a fundamental data structure; easy to use and supported in

almost every programming language.

5.Static and Predictable Size (in static arrays)

Fixed size allows the compiler or runtime to optimize memory layout.

54
MATS Centre for Distance and Online Education, MATS University

1.3. Searching And Sorting Algorithm

1.3.1 Searching Algorithms: Linear, Binary
Searching is a fundamental operation in computer science, as it allows

us to locate a specific element within a data structure such as an array,
list, or database. Among the various techniques, Linear Search and
Binary Search are two of the most commonly applied methods, each
with its own strengths, weaknesses, and use cases. Linear Search is the
simplest form, where elements are scanned one by one until the target
element is found or the list ends. It works for both sorted and unsorted
data but is less efficient for large datasets since its time complexity is
O(n)O(n)O(n). Binary Search, on the other hand, is much faster but
requires the dataset to be sorted beforehand. It repeatedly divides the
search interval in half, checking whether the middle element is the
target, and discarding the half in which the element cannot lie. This
reduces the search time significantly to O(logi/on)O(\log n)O(logn),
making it highly efficient for large, sorted collections. Choosing
between these algorithms depends largely on the size and nature of the
dataset: Linear Search is preferred for small or unsorted data where
sorting overhead is unnecessary, while Binary Search is ideal for large,
sorted datasets where efficiency is critical. Ultimately, understanding
when to apply each method ensures optimal performance and resource

utilization in software applications.

1.3.2 Linear Search
It is the simplest searching algorithm. In this algorithm checks for the
target element sequentially in the list until the target element is found
or traversed the whole list. This algorithm can be applied to sorted as
well as unsorted data sets. It begins at the first element and progresses
towards the last element, comparing each value with the target. If the
element is found, return the index of the element otherwise the failure
indication (like -1 or Not Found). Working of Linear Search

1. Start from the first element of the array.

2. Compare the current element with the target element.
3. If they match, return the index (position) of the element.
4

If they don’t match, move to the next element.

55
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

W

UNIVERSITY

ready for life.

Notes

4

|

o=

ready for life.......

Notes

5. Repeat the process until the element is found or the entire list is
traversed.

6. If the end of the list is reached without finding the element,
return "Not Found".

Time Complexity of Linear Search

Time
Case Complexity Explanation
The target element is found at the
Best Case o(l) first position.
The target element is somewhere in
Average Case O(n) the middle.
The target element is at the last
Worst Case O(n) position or not present.

Example of Linear Search (Array Implementation in Python)
python
CopyEdit
def linear _search(arr, target):
for 1 in range(len(arr)):
if arr[i] == target:
return i # Return index if found
return -1 # Return -1 if not found

arr =[10, 20, 30, 40, 50]
target = 30
result = linear_search(arr, target)
print(f"Element found at index {result}" if result != -1 else "Element
not found")
Advantages of Linear Search

e Works on both sorted and unsorted lists.

e Simple and easy to implement.

e Requires no additional memory.
Disadvantages of Linear Search

e Slow for large datasets.

e Inefficient compared to other search algorithms.
Binary Search
Binary Search is a faster searching algorithm that applies only on

sorted data. Returning to the algorithm tracking how many elements to

56
MATS Centre for Distance and Online Education, MATS University

check, it does not check half of the elements every step, so it divides
the dataset by two and removes half elements. A divide and conquer
approach, which means its much faster than Linear Search for larger
datasets.
Working of Binary Search
1. Sort the array (if not already sorted).
2. Find the middle element of the array.
3. Compare the middle element with the target element.
e Ifit matches, return the index.
e [fthe target is less than the middle element, repeat the search
in the left half.
o [f the target is greater than the middle element, repeat the
search in the right half.
4. Continue until the target element is found or the search space
reduces to zero.

Time Complexity of Binary Search

Time
Case Complexity Explanation
Best Case O(1) The middle element is the target.
Average The search space is divided in each
Case O(log n) step.
The target element is at the last level of|
Worst Case O(log n) recursion.

Example of Binary Search (Array Implementation in Python)
def binary search(arr, target):
left, right = 0, len(arr) - 1
while left <= right:
mid = left + (right - left) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
left =mid + 1
else:
right =mid - 1
return -1
arr = [10, 20, 30, 40, 50]
target = 30

57
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

W

UNIVERSITY

4

|

o=

g \\\

UNIVERSITY
ready for life.

Notes

ars)

)

result = binary _search(arr, target)
print(f"Element found at index {result}" if result != -1 else "Element
not found")
Advantages of Binary Search

e Much faster than Linear Search for large datasets.

e Reduces the number of comparisons by dividing the dataset.
Disadvantages of Binary Search

e Works only on sorted data.

e More complex than Linear Search to implement.

e Comparison of Linear Search vs. Binary Search

Feature Linear Search Binary Search
Efficiency O(n) (slower) O(log n) (faster)
Data Works only on sorted
Requirement Works on any data data
Implementation Simple and easy More complex

Small datasets, unordered | Large datasets, ordered

Use Case lists lists

Memory Usage | No extra space needed | No extra space needed

Linear Search and Binary Search are important searching techniques,
having their own pros and cons. Hence Linear Search is easy but time-
consuming for large numbers of data; Binary Search, on the other hand,
is complex but fast, and you need to have the data sorted. Linear Search
is preferable if you search through an unordered dataset, meanwhile
Binary Search is best if the dataset is already sorted as it has a
logarithmic time complexity. To solve a problem, you need to know
which algorithm works best for your problem constraints and the

dataset type.

1.3.3 Sorting Algorithm—Insertion, Selection, Merge sort

Sorting is a basic operation in computer science that arranges elements
in a required order (usually ascending or descending). Since searching,
retrieving, and organizing data is a need in many applications, from
databases to files, sorting is one of the fundamental things in computer
science. There are numerous sorting algorithms, some which are more
efficient than others depending on things like time complexity, space
complexity, and stability. There are various sorting Algorithms like

Insertion Sort, Selection Sort, Merge Sort, etc.

58
MATS Centre for Distance and Online Education, MATS University

1. Insertion Sort
The simple, comparison-based Insertion Sort algorithm builds the end
sorted sequence one element at a time. It works a bit like sorting playing
cards in a hand — every new card gets added to where it belongs in
relation to cards that are already in order.
Working Mechanism
1. Start with the second element (since a single element is already
sorted).
2. Compare the element with the previous elements and shift them
if necessary.
3. Insert the element in its correct position.
4. Repeat the process for all elements until the list is sorted.
Example
Unsorted Array: [7, 3, 5, 2]

Pass Array State
Ist [3,7,5,2]
2nd [3,5,7,2]
3rd [2,3,5,7]

Time Complexity

Case |Complexity Explanation

Already sorted array, only one comparison

Best Case O(n) per element.
Average Elements inserted at different positions with
Case O(n?) shifting required.

Reverse sorted array, maximum shifting

Worst Case O(n?) required.

Python Implementation
def insertion_sort(arr):
for 1 in range(1, len(arr)):
key = arr][i]
j=i-1
while j >= 0 and key < arr[j]:
arr[j + 1] = arr[j]

59
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

\\\

UNIVERSITY

ready for life.

Notes

4

|

o=

ready for life.......

Notes ji=1
arr[j + 1] =key
return arr
arr=17,3, 5, 2]
print("Sorted Array:", insertion_sort(arr))
Advantages & Disadvantages
Efficient for small datasets
Stable sorting algorithm (preserves order of duplicate elements)
Inefficient for large datasets
Slower compared to advanced sorting techniques
2. Selection Sort
Selection Sort algorithm: algorithm explains Selection Sort : Sort by
repeatedly selecting the smallest element in the unsorted array and
swapping it with the first unsorted element. It keeps two subarrays in
a single array: the subarray which is sorted is left and the remaining is
unsorted, and is kept reducing the unsorted subarray.
Working Mechanism
1. Find the smallest element in the unsorted part.
2. Swap it with the first unsorted element.

3. Move to the next element and repeat the process.

Example
Unsorted Array: [29, 10, 14, 37, 13]
Pass Array State
Ist [10, 29, 14, 37, 13]
2nd [10, 13, 14, 37, 29]
3rd [10, 13, 14, 37, 29]
4th [10, 13, 14, 29, 37]

Time Complexity

Case |Complexity Explanation
Best Case O(n?) Comparisons are always required.
Average Nested loops make it inefficient for large
Case O(n?) datasets.
Even in the worst case, the number of
Worst Case| O(n?) comparisons remains O(n?).
60

MATS Centre for Distance and Online Education, MATS University

¢ e

\y \\\ 1
g{mmss,
UNIVERSITY
ready for life.

|

Python Implementation Notes
def selection_sort(arr):
for i in range(len(arr)):
min_idx =1
for j in range(i + 1, len(arr)):
if arr[j] < arr[min_idx]:
min_idx =
arr[i], arr[min_idx] = arr[min_idx], arr[i]
return arr
arr =[29, 10, 14, 37, 13]
print("Sorted Array:", selection_sort(arr))
Advantages & Disadvantages
Simple and easy to implement
Performs well with small lists
Inefficient for large datasets
Not a stable sorting algorithm
Merge Sort
Merge Sort Merge Sort is a divide and conquer algorithm. It is very
efficient and is used in applications where stability and efficiency are
important.
Working Mechanism
1. Divide the array into two halves.
2. Recursively sort each half.
3. Merge the sorted halves to form the final sorted array.
Example
Unsorted Array: [38, 27, 43, 3, 9, 82, 10]
4. Divide into [38, 27, 43] and [3, 9, 82, 10]
5. Further divide: [38, 27], [43], [3, 9], [82, 10]
6. Merge step-by-step until sorted: [3, 9, 10, 27, 38, 43, 82]
Time Complexity

Case Complexity Explanation

Always divides the array into two equal

Best Case | O(n log n) halves.
Average
Case O(n logn) | Consistently efficient for large datasets.
Even in the worst case, maintains O(n log
Worst Case | O(n log n) n).
61

MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes

Python Implementation
def merge sort(arr):
if len(arr) > 1:
mid = len(arr) // 2
left half = arr[:mid]
right_half = arr[mid:]
merge_sort(left half)
merge_sort(right half)
i=j=k=0
while i <len(left half) and j < len(right_half):
if left_halfi] <right half]j]:
arr[k] = left_half[i]
i+=1
else:
arr[k] = right_half]j]
jt=1
k+=1
while i1 < len(left half):
arr[k] = left_half]i]
i+=1
k+=1
while j <len(right_half):
arr[k] = right_half[j]
jt=1
k+=1
arr = [38, 27,43, 3,9, 82, 10]
merge_sort(arr)
print("Sorted Array:", arr)
Advantages & Disadvantages
Merge Sort is one of the most important and widely used sorting
algorithms in computer science. It follows the Divide and Conquer
strategy, where a large problem is broken down into smaller sub-
problems, solved individually, and then combined to produce the final
result. Unlike simple algorithms such as Insertion Sort or Selection
Sort, Merge Sort guarantees a consistent performance of O(n log n) in

all cases—best, average, and worst. However, this efficiency comes at

62
MATS Centre for Distance and Online Education, MATS University

a cost, especially in terms of memory usage and practical performance
on smaller datasets.

Advantages of Merge Sort

1. Efficient for Large Datasets

Merge Sort is highly efficient when working with very large collections
of data. Because it divides the input into smaller subproblems, it
handles sorting systematically and ensures that no single step becomes
computationally overwhelming. Even when the number of elements
grows into millions, Merge Sort maintains its logarithmic efficiency.
This makes it a good choice for applications like external sorting, where
data is stored on hard drives rather than in main memory.

2. Stable Sorting Algorithm

Stability in sorting means that if two elements have the same value,
their original order in the input will be preserved in the output. Merge
Sort is naturally stable, unlike Quick Sort or Heap Sort (unless
specifically modified). This property is especially valuable when
sorting complex objects based on one key, but requiring that the original
sequence of equal-keyed objects be maintained.

3. Consistent O(n log n) Performance

Many sorting algorithms show fluctuating performance depending on
the type of input. For example, Quick Sort is very fast on random data
but can degrade to O(n?) in the worst case if the pivot selection is poor.
Merge Sort avoids this issue entirely because it always divides the
dataset into halves and merges them in a predictable manner. Therefore,
whether the input is already sorted, reverse sorted, or randomly ordered,
the time complexity remains O(n log n).

4. Useful for Linked Lists and External Sorting

Merge Sort does not rely on random access to data. This makes it
especially useful for sorting linked lists, where accessing the middle
element and rearranging pointers is relatively efficient. Additionally,
Merge Sort is well-suited for external sorting (sorting data that does not
fit entirely in main memory, such as large files on disk). Because it
works by dividing and merging chunks, it can efficiently process data
in segments without requiring all of it to be in RAM simultaneously.
Disadvantages of Merge Sort

1. Requires Extra Memory (O(n) Space Complexity)

The major drawback of Merge Sort is its additional memory

requirement. Unlike Insertion Sort or Quick Sort, which can sort in

63
MATS Centre for Distance and Online Education, MATS University

==

§ W
[

ars)

UNIVERSITY

ready for life.

Notes

|

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

place with minimal extra space, Merge Sort requires temporary arrays
to hold the divided parts during merging. This means that if you are
sorting an array of size n, you also need approximately n extra space.
For large datasets, especially when memory is limited, this can become
a serious problem.

2. Slower for Small Datasets Compared to Quick Sort

While Merge Sort guarantees O(n log n) performance, the constant
factors involved in splitting and merging can make it slower than
simpler algorithms on smaller datasets. For example, Insertion Sort or
Quick Sort can often outperform Merge Sort when sorting arrays of just
a few hundred elements.

3. Not an In-place Sorting Algorithm

Merge Sort does not sort the elements within the original array alone;
instead, it requires additional structures to perform merging. As a result,
it is not considered an in-place sorting algorithm, which can be a
disadvantage when memory optimization is necessary.

4. Complex Implementation Compared to Simpler Sorts
Compared to straightforward algorithms like Bubble Sort or Selection
Sort, Merge Sort is more complicated to implement correctly.
Beginners may find the recursive nature of its divide-and-conquer
approach challenging to understand. Errors in base case handling or
merging logic can lead to incorrect outputs. Merge Sort is an algorithm
that balances efficiency and stability, making it highly reliable for large
datasets and cases where stability is required. Its predictable O(n log n)
performance sets it apart from other algorithms that may degrade with
certain inputs. However, the extra memory usage and relatively slower
performance on smaller inputs make it less suitable in memory-
constrained or small-scale scenarios. In practice, Merge Sort is often
used in hybrid algorithms such as Timsort (used in Python and Java)
where Merge Sort is combined with simpler sorting algorithms to get
the best of both worlds.

Comparison of Sorting Algorithms

Best Average | Worst Space
Algorithm | Case Case Case Complexity |Stable?
Insertion
Sort O(n) O(n?) O(n?) O(1) Yes

64
MATS Centre for Distance and Online Education, MATS University

¢ e

W \\\ f

|

ready for life.

Selection Notes
Sort O(n?) O(n?) O(n?) o(1) No
O(n log O(n log
Merge Sort n) O(n log n) n) O(n) Yes

Out of these sorting algorithms, Insertion sort is best for small datasets,
Selection sort is simple but inefficient, and Merge sort is quite efficient
on large datasets. Different sorting algorithms have different time and
space complexities depending on the size of the dataset and if you need
a sort that preserves the order of elements with equal values.
Summary:

Linear data structures are fundamental structures in computer science
where data elements are arranged sequentially, allowing traversal in a
single level and linear order. Common linear data structures include
arrays, linked lists, stacks, and queues. Arrays are fixed-size structures
storing elements in contiguous memory, enabling fast access via
indices, while linked lists are dynamic structures consisting of nodes
linked via pointers, allowing flexible memory use and efficient
insertion/deletion. Stacks operate on a Last-In-First-Out (LIFO) basis
and are used in function call management, expression evaluation, and
undo operations. Queues follow the First-In-First-Out (FIFO) principle,
widely used in process scheduling, buffering, and resource
management. These structures support essential operations like
insertion, deletion, traversal, searching, and updating, with time and
space efficiency varying by implementation. Understanding linear data
structures is critical for algorithm development and forms the basis for

more complex data handling in software systems.

Multiple-Choice Questions (MCQs)
1. Which of the following best defines an Abstract Data Type
(ADT)?
a) A data type defined by its implementation details
b) A data type defined by its behavior and operations
¢) A data type with no defined operations

65
MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.

Notes

ars)

)

d) A data type only used in object-oriented programming
(Answer: b)

2. Which of the following is a linear data structure?
a) Tree
b) Graph
¢) Queue
d) Hash Table
(Answer: ¢)

3. Which of the following is a characteristic of an array?
a) Elements can be inserted dynamically anywhere
b) Elements are stored in contiguous memory locations
c) Elements are always sorted
d) The size of the array increases automatically
(Answer: b)

. Which searching algorithm works efficiently with sorted arrays?

a) Linear Search

b) Binary Search

c¢) Breadth-First Search
d) Depth-First Search
(Answer: b)

. What is the worst-case time complexity of Linear Search?

a) O(1)

b) O(log n)
¢) O(n)

d) O(n*)
(Answer: ¢)

. Which sorting algorithm repeatedly finds the smallest element

and moves it to the front?
a) Merge Sort

b) Insertion Sort

¢) Selection Sort

d) Quick Sort

(Answer: ¢)

. Which sorting algorithm has a worst-case time complexity of O(n

log n)?

a) Bubble Sort
b) Merge Sort

¢) Selection Sort

66
MATS Centre for Distance and Online Education, MATS University

==

W \\\ f

|

ready for life.

d) Insertion Sort Notes
(Answer: b)
What is the primary advantage of Merge Sort over Insertion
Sort?
a) It is easier to implement
b) It performs better for large datasets
c) It requires no extra space
d) It works best on nearly sorted arrays
(Answer: b)
9. In Binary Search, what happens if the middle element is
smaller than the target value?
a) The left half of the array is searched
b) The right half of the array is searched
c) The algorithm terminates immediately
d) The entire array is searched again
(Answer: b)
10. Which data structure is best suited for implementing a queue?
a) Stack
b) Array
c) Linked List
d) Graph
(Answer: ¢)

Short Questions

1. What is the difference between data types and abstract data types
(ADTs)?

List two advantages and disadvantages of using arrays.

How does Linear Search work, and when is it useful?

What is the difference between Linear Search and Binary Search?

wok B

Explain the basic concept of sorting and why it is important in

data structures.

6. What is the main difference between Selection Sort and Insertion
Sort?

7. Why is Merge Sort considered more efficient than Selection Sort?

8. Define the worst-case time complexity of Binary Search.

9. What is the primary difference between static and dynamic arrays?

10. How does memory allocation work in sequential data structures?

Long Questions

67
MATS Centre for Distance and Online Education, MATS University

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

o=

)

10.

Explain the concept of Abstract Data Types (ADTs) and their
importance in programming.

Discuss arrays in detail, including their properties, classification,
and memory allocation.

Explain the working of Linear Search and Binary Search, and
compare their time complexities.

Describe Insertion Sort, Selection Sort, and Merge Sort,
comparing their advantages and disadvantages.

Write a C or Python program to implement Binary Search and
explain how it works.

Analyze the time complexity of different sorting algorithms and
compare their performances.

Explain the significance of data structures in programming and
how they improve efficiency.

How does the divide-and-conquer strategy apply to sorting
algorithms like Merge Sort?

Discuss real-world applications of searching and sorting
algorithms in software development.

Implement Selection Sort in Python/C, and provide a step-by-step

explanation of its working.

68
MATS Centre for Distance and Online Education, MATS University

MODULE 2
STACK, QUEUE AND RECURSION

LEARNING OUTCOMES
By the end of this Unit, students will be able to:

e Understand the sequential representation of stacks, their
operations, and applications such as expression evaluation and
function calls.

e Explain recursion, its working mechanism, and its applications
in algorithm design.

e Learn about queues, their sequential representation, and
different variations such as Dequeue (Double-ended Queue)
and Priority Queue.

e Implement and analyze stack, queue, and recursion-based

algorithms for efficient problem-solving.

69
MATS Centre for Distance and Online Education, MATS University

§ \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

)

Unit 2.1: Stack

2.1.1 Representation of Stacks using sequential organization,
Applications

Stack is a linear data structure which follows Last In First Out order
(LIFO). That is, the last element added (the top of the stack) is the first
element to be removed. The knowledge of stacks is widely used in
programming, memory management and real application such as undo-

redo, function calls, etc.

PUSH » POP

< Stack TOP

Stack Data Structure

(Clamants are adced and removed

bom T 0

Figure 2.1.1: Stack Data Structure

1. Representation of Stacks Using Sequential Organization
And we can implement stacks using arrays, which mean that elements
are in adjacent memory locations (sequential memory). This method
offers quick access but has a defined size in that the stack can't expand
beyond the size allocated for it..
Structure of Stack Using an Array
A stack consists of the following:

1. An array to store elements.

2. A variable top, which indicates the index of the top element in

the stack.
3. Stack operations such as push, pop, peek, and isEmpty.

Stack Operations Using Sequential Organization (Array)

70
MATS Centre for Distance and Online Education, MATS University

¢ e

\y \\\ S
Time Notes
Operation Description Complexity

Adds an element to the top of the

Push (Insertion) stack. O(1)
Removes the top element from the

Pop (Deletion) stack. o(1)
Peek (Top Retrieves the top element without

Element) removing it. O(1)

isEmpty Checks if the stack is empty. o(1)

Stack Representation Using an Array
Example (Stack of Size 5)

Index Stack Content
0 10
1 20
2 30
3 40
4 (Top) 50

2. Implementation of Stack Using an Array in Python
class Stack:
def init (self, size):
self.size = size
self.stack = [None] * size # Fixed-size array

self.top =-1 # Stack is empty initially

def push(self, value):
if self.top == self.size - 1:
print("Stack Overflow! Cannot push", value)
else:
self.top +=1
self.stack[self.top] = value
print(value, "pushed to stack")
def pop(self):

71
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes if self.top == -1:
print("Stack Underflow! Cannot pop")
else:
popped value = self.stack[self.top]
self.top -= 1
print(popped_value, "popped from stack")
return popped_value
def peek(self):
if self.top == -1:
print("Stack is empty")
else:
return self.stack[self.top]
defis_empty(self):
return self.top == -1
Example Usage
s = Stack(5)
s.push(10)
s.push(20)
s.push(30)
print("Top Element:", s.peek()) # Output: 30
s.pop()
print("Stack Empty?", s.is_empty()) # Output: False
Advantages & Disadvantages of Sequential Stack Representation
Fast operations (O(1) time complexity for push/pop).
Simple to implement using an array.
Fixed size (cannot grow dynamically).
Wasted memory if the stack is not fully utilized.
3. Applications of Stacks
Real-Life Applications of Stacks in Programming, OS, and Daily)).
1. Function Call Management in Programming
e Function calls in programming follow a stack structure.
e When a function is called, it is pushed onto the call stack.
e When the function completes execution, it is popped from the
stack.
e This is used for recursive function calls.
2. Undo & Redo Functionality
e In text editors, the undo feature works using a stack.

e When an action is performed, it is pushed onto the stack.

72
MATS Centre for Distance and Online Education, MATS University

==

N \\\ i

ready for life.

e Undoing an action pops the last operation and restores the Notes
previous state.
3. Expression Evaluation (Infix to Postfix/Prefix Conversion)
e Mathematical expressions like (A + B) * C are evaluated using
stacks.
e Operators and operands are pushed and popped from the stack
during conversion.
4. Backtracking (Maze Solving, Pathfinding, Game Moves)
e Stacks help in solving mazes by storing visited paths.
e In chess, moves are stored in a stack, allowing undoing moves.
5. Parentheses Matching in Compilers
e Stacks are used in syntax checking of expressions like {[()()]}.
e Each opening bracket is pushed onto the stack.
e When a closing bracket is found, the stack is popped to match
them.
6. Browser Back & Forward Navigation
e Browsers use two stacks for navigation.
e When moving back, the current page is pushed onto a forward
stack.
e When moving forward, the page is popped from the forward
stack.
Stack Abstract Data Type Stack abstract data type are typically used
using sequential organization (arrays). Simple to implement and offer
fast operations, but they are limited by their fixed size. Stacks are an
important data structure in computing, used extensively for
programming, undo-redo features, function calls, compiler and browser

navigation, and much more.

73
MATS Centre for Distance and Online Education, MATS University

Y W

§ \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

Unit 2.2 Recursion

2.2.1 Recursion and its applications

Recursion is a method of trying to solve a problem by calling a
function that calls itself. Recursion uses sub-sub problems until a base
condition is met instead of using loops. Its main use is in various
algorithms such as divide and conquer, backtracking or tree traversal

(including depth-first search).

fib(5)
v | ¥
fib(4) fib(3)
|
v v .L—‘—.L
fib(3) fib(2) fib(2) fib(1)
fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)

fib(1) fib(0)

Figure 2.2.1: Recursion

Key Components of Recursion
1. Base Case — The stopping condition that ends the recursion.
2. Recursive Case — The function calls itself with a modified
parameter to approach the base case.
Example: Factorial Calculation Using Recursion
Factorial of n (n!) is defined as:
n!=nx(n—1)%X(n—2)x...xIn! = n \times (n-1) \times (n-2) \times ...
\times In!=nx(n—1)x(n-2)x...x1
Using recursion:
factorial(n)=nxfactorial(n—1)factorial(n) = n \times factorial(n-
1)factorial(n)=nxfactorial(n—1)
def factorial(n):
if n==0: # Base case
return 1

return n * factorial(n - 1) # Recursive case

print(factorial(5)) # Output: 120

Types of Recursion

74
MATS Centre for Distance and Online Education, MATS University

{% \\\
[

UNIVERSITY

ready for life.

1. Direct Recursion Notes
e A function directly calls itself.
e Example: Factorial calculation.
2. Indirect Recursion
e A function calls another function, which in turn calls the first
function.
def functionA(n):
ifn>0:
print(n, end="")
functionB(n - 1)

def functionB(n):
ifn>0:
print(n, end=" ")
functionA(n - 1)
functionA(5) #Output: 543211234
3. Tail Recursion
e The recursive call is the last statement in the function.
e Optimized by compilers to avoid excessive function calls.
def tail recursive factorial(n, result=1):
ifn==0:
return result

return tail_recursive factorial(n - 1, result * n)

print(tail recursive factorial(5)) # Output: 120

4. Non-Tail Recursion

e The function performs operations after the recursive call.

def non _tail recursive factorial(n):

ifn==0:

return 1

return n * non_tail recursive factorial(n - 1)
print(non_tail recursive factorial(5)) # Output: 120
Applications of Recursion
1. Mathematical Computations
Factorial Calculation
Recursion is commonly used to compute factorials, as shown above.

Fibonacci Sequence

75
MATS Centre for Distance and Online Education, MATS University

¢ e

ars)

|

o=

ready for life.......

Notes The Fibonacci sequence follows a recursive pattern:
F(n)=F(n—1)+F(n—2)F(n) = F(n-1) + F(n-2)F(n)=F(n—1)+F(n—2)
def fibonacci(n):

ifn<=1:
return n

return fibonacci(n - 1) + fibonacci(n - 2)
print(fibonacci(6)) # Output: 8
2. Data Structure Traversals
Tree Traversal
Recursion is used to traverse trees efficiently.
e Preorder Traversal (Root — Left — Right)
e Inorder Traversal (Left — Root — Right)
e Postorder Traversal (Left — Right — Root)
class Node:
def init_ (self, data):
self.data = data
self.left = None
self.right = None
def inorder_traversal(root):
if root:
inorder_traversal(root.left)
print(root.data, end="")
inorder_traversal(root.right)
root = Node(1)
root.left = Node(2)
root.right = Node(3)
inorder_traversal(root) # Output: 2 1 3
Graph Traversal (DFS - Depth First Search)
Recursion helps in graph traversal using Depth First Search (DFS).
def dfs(graph, node, visited=set()):
if node not in visited:
print(node, end="")
visited.add(node)
for neighbor in graph[node]:
dfs(graph, neighbor, visited)
graph = {
‘A" ['B', 'C"],
'B": ['D', 'E'],

76
MATS Centre for Distance and Online Education, MATS University

¢ e

y \\\ i
'C: ['F1, Notes
D[],
'E" (1,
F: (]

}
dfs(graph, 'A") # Output: ABDECF

3. Divide and Conquer Algorithms
Recursion is one of the methods that fall in the category of divide and
conquer algorithms, where a larger problem is [divided into smaller
subproblems..
Merge Sort
e Divide the array into two halves.
e Recursively sort each half.
e Merge the sorted halves.
def merge sort(arr):
if len(arr) > 1:
mid = len(arr) // 2
left half = arr[:mid]
right_half = arr[mid:]
merge_sort(left half)
merge_sort(right_half)
i=j=k=0
while 1 <len(left_half) and j <len(right half):
if left_half]i] <right half]j]:
arr[k] = left_half]i]
i+=1
else:
arr[k] = right_half[j]
jt=1
k+=1
while 1 < len(left half):
arr[k] = left_half]i]
i+=1
k+=1
while j <len(right_half):
arr[k] = right_half[j]
j+=1
k+=1

77
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes arr = [38, 27,43, 3,9, 82, 10]
merge_sort(arr)
print(arr) # Output: [3, 9, 10, 27, 38, 43, 82]
Backtracking Algorithms
Backtracking is a technique for solving problems.
Solving the N-Queens Problem
def print_solution(board):
for row in board:
print(" ".join(row))
print()
defis_safe(board, row, col, n):
for 1 in range(col):
if board[row][i] =='Q":
return False
for 1, j in zip(range(row, -1, -1), range(col, -1, -1)):
if board[i][j] =="'Q":
return False
for 1, j in zip(range(row, n, 1), range(col, -1, -1)):
if board[i][j] =="'Q":
return False
return True
def solve n_queens(board, col, n):
if col >=n:
print_solution(board)
return True
res = False
for 1 in range(n):
if is_safe(board, 1, col, n):
board[i][col] ='Q'
res = solve n_queens(board, col + 1, n) or res
board[i][col] ="
return res
n=4
board =[['.' for _inrange(n)] for _in range(n)]
solve_n_queens(board, 0, n)
Advantages & Disadvantages of Recursion
e Simplifies complex problems like tree traversal, graphs, and
backtracking.

78
MATS Centre for Distance and Online Education, MATS University

¢ e

W \\\ f

|

ready for life.

e Reduces code complexity, making it easier to read. Notes
e Useful for divide and conquer problems like sorting.
Disadvantages
e High memory consumption due to function call stack.
e Slower execution due to repeated function calls.
e May cause stack overflow if the base case is not defined
properly.
Recursion is an elegant way of solving problems used in mathematic
problems, traversing data structures, divide-and-conquer techniques,
and backtracking techniques. Its benefits notwithstanding, it has to be

used judiciously to prevent performance problems.

79
MATS Centre for Distance and Online Education, MATS University

v 4

UNIVERSITY

veady for life......

g \\\

Notes

ars)

Unit 2.3: Queue

2.3.1 Queue, Representation of Queues using sequential

organization, Dequeue

Queue

Take
here

Insert
here

Head Talil

Figure 2.3.1: Queue

A queue is a linear data structure that follows the First In, First Out
(FIFO) principle, meaning the first element inserted into the queue is
the first one to be removed. It can be visualized like a line of people
waiting for service: the person who joins first gets served first.
Operations on a queue are performed from two ends:- Enqueue
(Insertion): Adding an element at the rear (back) of the queue.-
Dequeue (Deletion): Removing an element from the front of the queue.
queue maintains order and ensures fairness by serving elements in the

order they arrived.

Types of Queues:

1. Simple Queue: Elements are inserted at the rear and deleted from
the front.

2. Circular Queue: Connects the last position back to the first, making
efficient use of memory.

3. Priority Queue: Each element has a priority, and the element with
the highest priority is served first (not strictly FIFO).

4. Double-Ended Queue (Deque): Insertion and deletion can occur

from both ends.

80
MATS Centre for Distance and Online Education, MATS University

==

W \\\ f

|

ready for life.

Applications of Queues: Notes

1. Operating Systems (Process Scheduling):

a. Used in CPU scheduling, job scheduling, and
managing processes in multitasking systems.

b. The ready queue stores processes waiting for CPU

time, and the waiting queue holds processes waiting for
I/O.

2. Printer Spooling and Job Scheduling:

a. When multiple print requests are made, they are
queued up.

b. The printer executes them one by one in arrival order.
3. Customer Service Systems:

a. In banks, railway counters, call centers, and hospitals,
queues ensure first-come, first-served service.

b. Models real-world waiting lines.
4. Data Buffers (10 Buffers, Keyboard Buffering):

a. Keystrokes typed on a keyboard are stored in a queue
before being processed.

b. Input/output buffering in devices and communication
systems uses queues to manage data flow smoothly.

5. Graph Traversals (Breadth-First Search):

a. Queues are used in BFS algorithms to traverse graphs
level by level.

b. Ensures nodes are visited in the correct order.
6. Simulation of Real-World Systems:

a. Traffic systems, supermarket checkout counters, airport
check-ins, and call centers are modeled using queues.

b. Helps study waiting times and optimize service
efficiency.

7. Resource Management in Distributed Systems:

a. Tasks and resource requests are managed using queues
to balance workloads across systems.

81
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.

Notes b. Common in cloud computing and message queues.
8. Networking and Communication:

a. Routers and switches use queues to store data packets
temporarily before transmission.

b. Maintains order and prevents congestion.

9. Operating in Concurrent Programming (Producer-
Consumer Problem):

a. A producer generates data and puts it in a queue.

b. A consumer retrieves data from the queue for
processing.

Advantages of Queues:
1. Fairness in Processing:

a. Queues follow the First In, First Out (FIFO) principle,
ensuring that requests are handled in the same order
they arrive.

b. This is crucial in systems like process scheduling,
customer service, and printer spooling.

2. Asynchronous Data Handling:

a. Queues are ideal for handling producer-consumer
problems where data is generated and consumed at
different speeds.

b. Buffers and pipelines use queues to manage
asynchronous data transfer smoothly.

3. Efficient in Scheduling:

a. Widely used in operating systems for task scheduling,
CPU job queues, and managing I/O requests.

b. Helps ensure resources are allocated efficiently.

4. Natural Representation of Real-World Scenarios:
Queues model many real-life situations such as ticket

counters, traffic signals, and service desks, making them

easy to understand and appl

82
MATS Centre for Distance and Online Education, MATS University

¢ e

\y :\\\: 1
Basic Queue Operations Notes
Time
Operation Description Complexity
Enqueue Adds an element at the rear of the
(Insertion) queue. Oo(1)
Dequeue Removes an element from the
(Deletion) front of the queue. o(1)
Peek (Front Retrieves the front element
Element) without removing it. O(1)
isEmpty Checks if the queue is empty. o(1)

1. Representation of Queues Using Sequential Organization
(Arrays)
Another example of abstract data types: Queues, which are
implemented on arrays, which is a collection of an area of memory.
This is called sequential organization; that is, elements are in hard,
physical order, and the memory is allocated in such a way that they are
in contiguously located memory.
Structure of a Queue Using an Array
A queue contains:

e An array to store elements.

e Two pointers:

front — Indicates the first element of the queue.
e rear — Indicates the last inserted element.

Example: Queue Representation Using an Array (Size = 5)

Index 0 1 2 3 4
Queue Content 10 20 30 40 50
Front yes

Rear yes

Implementation of Queue Using an Array in Python
class Queue:
def init (self, size):
self.size = size
self.queue = [None] * size # Fixed-size array
self.front = -1 # Indicates the front element

83
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes

self.rear = -1 # Indicates the rear element
def enqueue(self, value):
if self.rear == self.size - 1:
print("Queue Overflow! Cannot enqueue", value)
else:
if self.front == -1: # First element inserted
self.front =0
self.rear += 1
self.queue[self.rear] = value
print(value, "added to queue")
def dequeue(self):
if self.front == -1 or self.front > self.rear:
print("Queue Underflow! Cannot dequeue")
else:
print(self.queue[self.front], "removed from queue")
self.front += 1 # Move front pointer
def peek(self):
if self.front == -1 or self.front > self.rear:
print("Queue is empty")
else:
return self.queue[self.front]
def'is_empty(self):
return self.front == -1 or self.front > self.rear
Example Usage
q = Queue(5)
g.enqueue(10)
g.enqueue(20)
g.enqueue(30)
print("Front Element:", q.peek()) # Output: 10
g.dequeue()
print("Queue Empty?", q.is_empty()) # Output: False
Advantages & Disadvantages of Sequential Queue Representation
e Fast operations (O(1) time complexity for enqueue and
dequeue).
e Simple to implement using arrays.
e Fixed size (cannot dynamically grow).
e Wasted memory due to unused spaces after deletion.

2. Circular Queue (Optimized Sequential Queue Representation)

84
MATS Centre for Distance and Online Education, MATS University

¢ e

W \\\ f

|

ready for life.

In a simple queue, after several dequeues, the unused spaces cannot be Notes
reused. Circular queues consider this problem and make the queue
circular such that the rear reaches the end, it wraps to the front In a
straightforward queue, unused spaces cannot be reused after multiple
dequeues. To solve this problem, circular queues make the queue
circular, so, whenever the rear reaches the end of the queue, it is

circularly wrapped around to the front end of the queue.

7 0 Front
10 .
6
1
20
30
5 _ /2
50 40
T
Rear

Figure 2.3.2: Circular Queue

Implementation of Circular Queue Using an Array in Python
class Circular Queue:
def _init (self, size):
self.size = size
self.queue = [None] * size
self.front = -1
self.rear = -1
def enqueue(self, value):
if (self.rear + 1) % self.size == self.front:
print("Queue Overflow!")
else:
if self.front == -1:
self.front =0
self.rear = (self.rear + 1) % self.size
self.queue[self.rear] = value
print(value, "added to circular queue")
def dequeue(self):
if self.front == -1:
print("Queue Underflow!")
else:
print(self.queue[self.front], "removed from circular queue")

85
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes if self.front == self.rear: # Only one element left
self.front = self.rear = -1
else:
self.front = (self.front + 1) % self.size
cq = CircularQueue(5)
cq.enqueue(10)
cq.enqueue(20)
cq.enqueue(30)
cq.dequeue()
cq.enqueue(40)
cq.enqueue(50)
cq.enqueue(60) # Wraps around
3. Dequeue (Double-Ended Queue)
A Dequeue (Double-Ended Queue) is a linear queue where we can add
and delete the elements from both ends, front and the rear. It supports
two types:
1. Input-Restricted Dequeue — Insertion is not allowed at one end
only, but deletion goes at both ends.
2. String Parse from String-to-String queue dequeue deque d Queue
Stack Q Stack S Stack parse Stack S S Table S dequeue D Stack
parse Stack S Table S Stack parse Stack S

Operations in a Dequeue

Time
Operation Description Complexity

Insert at Front Adds an element at the front. o(1)

Insert at Rear Adds an element at the rear. o(1)
Delete from Removes an element from the

Front front. o(1)
Delete from Removes an element from the

Rear rear. O(1)

Implementation of Dequeue Using an Array in Python
from collections import deque

dq = deque()

Insert at rear

dq.append(10)

dq.append(20)

86
MATS Centre for Distance and Online Education, MATS University

¢ e

\ \\\ N/
‘i mars)
print("Dequeue:", dq) Notes
Insert at front
dq.appendleft(5)

print("Dequeue after front insertion:", dq)
Delete from front
dq.popleft()
print("Dequeue after front deletion:", dq)
Delete from rear
dq.pop()
print("Dequeue after rear deletion:", dq)
Applications of Dequeue
Sliding Window Problems — Used in maximum/minimum sliding
window calculations.
Job Scheduling — Tasks are processed from both ends based on priority.
Palindrome Checking — Characters can be compared from both ends.
4. Applications of Queues
1. Scheduling in Operating Systems
e CPU process scheduling follows FIFO queues.
e Disk scheduling algorithms use priority queues.
2. Print Queue in Printers
e Print jobs are handled using FIFO queues, ensuring first-
come, first-served.
3. Network & Data Buffering
e Packets are queued before transmission in routers and
switches.
e Video streaming buffers use queues for smooth playback.
4. Call Center and Customer Service
e Customer support calls follow FIFO queues for fair handling.
e Queues and deques are one of the important data structures
used in scheduling, buffering and in many other real world
applications. They are sequential with arrays that provide
faster operation time but circular queues and deques allow
more flexibility in insertion and deletion. They are used to
solve efficient algorithmic problems such as process
scheduling, buffering in computing, and task management,
which makes understanding these structures important
6.1.2 Priority Queue

87
MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

A Priority Queue is a special type of queue where each element has
some priority associated with it. A priority queue is a special type of
queue that is different from a normal queue where elements are
processed in a FIFO (First In, First Out) order.

Key Features of a Priority Queue

Each element has a priority value.

Higher-priority elements are dequeued before lower-priority elements.
If two elements have the same priority, they follow FIFO order.
Example of a Priority Queue

Think of a hospital emergency room that treats patients according to

how serious their condition is, not the order they arrived.

Patient Name Condition Priority Level
Alice Mild fever 3 (Low)
Bob Fracture 2 (Medium)
Charlie Heart Attack 1 (High)

Types of Priority Queues
1. Min-Priority Queue
e The lowest-priority element is dequeued first.
e Example: Dijkstra’s Algorithm (finding shortest paths).
2. Max-Priority Queue
e The highest-priority element is dequeued first.
e Example: Task scheduling, emergency services.
Implementation of Priority Queue
1. Using a List (Naive Approach)
The elements are stored in an unordered list and the element with the
highest/lowest priority is found by the time of deletion (O(n) time
complexity).
class PriorityQueue:
def init (self):
self.queue = []
def enqueue(self, item, priority):
self.queue.append((item, priority))
def dequeue(self):
if not self.queue:
return "Queue is empty"
self.queue.sort(key=lambda x: x[1]) # Sort by priority (min first)

88
MATS Centre for Distance and Online Education, MATS University

==

b, * -)
By
(mAaTs
UNIVERSITY
ready for life.

|

return self.queue.pop(0)[0] # Remove the highest priority element Notes
pq = PriorityQueue()
pg.enqueue("Alice", 3)
pg.enqueue("Bob", 2)
pg.enqueue("Charlie", 1)
print(pq.dequeue()) # Output: Charlie (highest priority)
2. Using a Heap (Efficient Approach)
A binary heap (Min-Heap or Max-Heap) is used to insert and delete in
O(log n) time complexity.
import heapq
class PriorityQueue:
def init (self):
self.queue =[]
def enqueue(self, item, priority):
heapq.heappush(self.queue, (priority, item)) # Min-Heap (lowest
priority first)
def dequeue(self):
if not self.queue:
return "Queue is empty"
return heapq.heappop(self.queue)[1] # Remove highest priority
item
pq = PriorityQueue()
pg.enqueue("Alice", 3)
pg.enqueue("Bob", 2)
pg.enqueue("Charlie", 1)
print(pg.dequeue()) # Output: Charlie
4. Applications of Priority Queue
CPU Scheduling — Processes with higher priority execute first.
Graph Algorithms — Used in Dijkstra’s and 4 Algorithm* for shortest
path.
Data Compression (Huffman Coding) — Nodes with lower frequency
get higher priority.
Network Packet Scheduling — Important packets (like VoIP) are sent
first.
Event-Driven Simulations — Events with higher importance are
processed first.

5. Comparison of Priority Queue Implementations

89
MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

Implementation | Enqueue Time | Dequeue Time Space
Method Complexity Complexity | Complexity
Unsorted List O(1) O(n) O(n)
Sorted List O(n) o(1) O(n)
Binary Heap
(Min/Max-Heap) O(log n) O(log n) O(n)

A priority queue is a data structure that enables retrieval of highest
priority elements first, rather than insertion order. It has its applications
in CPU scheduling, graph algorithms, network routing, and
simulations. A heap-based implementation has the added benefit of
decent performance for real-world applications.
Summary:

In Module 2 focuses on the core linear structures—stack and queue
along with the concept of recursion, all of which are essential for
problem-solving in computer science. A stack is a Last-In-First-Out
(LIFO) data structure where the last inserted element is the first to be
removed, supporting operations like push, pop, and peek, and is
commonly used in function call management, undo-redo mechanisms,
and expression evaluation. A queue, on the other hand, follows the
First-In-First-Out (FIFO) principle, with enqueue and dequeue
operations, and is applied in process scheduling, buffering, and
resource allocation. Variants like circular queues, deques, and priority
queues provide enhanced control over insertion and deletion at both
ends or based on priority. Recursion is a programming technique where
a function calls itself to solve smaller subproblems until reaching a base
case. It is widely used in mathematical computations, tree and graph
traversals, and divide-and-conquer algorithms such as merge sort and
backtracking problems like the N-Queens puzzle. Together, stack,
queue, and recursion form the backbone of many algorithmic strategies
and are crucial for efficient programming and data structure

manipulation.

Multiple-Choice Questions (MCQs)

Which data structure follows the Last-In, First-Out (LIFO) principle?
a) Queue

b) Stack

90
MATS Centre for Distance and Online Education, MATS University

¢ e

\y \\\ 1
g{mmss,
UNIVERSITY
ready for life.

|

¢) Linked List Notes
d) Priority Queue

(Answer: b)

. Which operation removes the top element from a stack?
a) Enqueue

b) Pop

c) Push

d) Peek

(Answer: b)

. What is a common application of stacks in programming?
a) Managing function calls

b) Scheduling processes

¢) Searching in an unordered list

d) Sorting data

(Answer: a)

. Which of the following problems is best solved using recursion?
a) Fibonacci sequence

b) Tower of Hanoi

c) Tree traversal

d) All of the above

(Answer: d)

. What differentiates a queue from a stack?

a) A queue follows LIFO, while a stack follows FIFO

b) A stack follows FIFO, while a queue follows LIFO

c) A queue follows FIFO, while a stack follows LIFO

d) Both follow the LIFO principle

(Answer: ¢)

. Which of the following is NOT a type of queue?

a) Circular Queue

b) Dequeue

c¢) Priority Queue

d) Hash Queue

(Answer: d)

. What happens when a recursive function lacks a base case?
a) It executes once and terminates

b) It results in an infinite recursion, causing a stack overflow
c) Itreturns a NULL value

91
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes d) The compiler automatically adds a base case

(Answer: b)

8. Which of the following operations is performed at both ends in a
dequeue?
a) Insert
b) Delete
c) Both Insert and Delete
d) None of the above
(Answer: ¢)

9. Which queue variation assigns priorities to elements for processing?
a) Circular Queue
b) Dequeue
c¢) Priority Queue
d) Stack Queue
(Answer: ¢)

10. Which data structure is commonly used for backtracking problems?
a) Queue
b) Stack
c) Hash Table
d) Tree
(Answer: b)

Short Questions

1. Define stack and list its primary operations.

2. Explain recursion with an example.

3. What is the difference between iteration and recursion?

4. Describe the FIFO principle in queues.

5. What is a priority queue, and how is it different from a normal
queue?

Explain how stacks are used for function calls in programming.
What is a circular queue, and why is it useful?

List two real-world applications of recursion.

RS I

What is the difference between push and pop operations in a
stack?

10. How can recursion be converted into iteration?

Long Questions

92
MATS Centre for Distance and Online Education, MATS University

10.

'i aTs)

UNIVERSITY

ready for life.

Explain stack operations with a detailed example, including push, Notes
pop, and peek operations.
Discuss recursion in-depth, including base cases and recursive
function execution flow.
Write a program to implement stack operations using an array.
Describe queues and their variations, such as circular queues,
deques, and priority queues.
Compare and contrast stacks and queues, highlighting their use
cases.
Implement a recursive algorithm to compute the Fibonacci
sequence and explain its execution.
Explain how recursion works in the Tower of Hanoi problem and
provide a solution.
Describe expression evaluation using stacks, including infix,
prefix, and postfix notations.
Write a program to implement a queue using an array, including
enqueue and dequeue operations.
Discuss how recursion can be optimized using memorization or

iterative approaches.

93
MATS Centre for Distance and Online Education, MATS University

MODULE 3
LINKED LIST

3.0 LEARNING OUTCOMES
By the end of this chapter, students will be able to:

e Understand the concept of linked lists, their representation, and

advantages over arrays.

e Perform operations on linked lists, including traversing,

searching, insertion, and deletion.

e Learn about memory allocation in linked lists and how dynamic

memory is managed using pointers.

94
MATS Centre for Distance and Online Education, MATS University

Unit 3.1: Linked list

3.1.1 Linked list and its representation

The linked list is a linear data structure in which the elements are not

stored at contiguous memory locations but are linked using pointers. A

linked list node consists of:

1. Data — The actual value stored in the node.

2. Pointer (Next) — A reference to the next node in the list.

— Head
Node Tail
l | l
—> 1 —> 40 —> 34 Null
Data Address
Figure 3.1.1: Linked List
Comparison of Linked List vs. Array
Feature Linked List Array
Memory
Allocation Dynamic Fixed Size
O(1) (at beginning), O(n) (at | O(n) (requires
Insertion/Deletion middle/end) shifting)
O(1) (direct
Access Time O(n) (sequential access) access)

95

MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes

Extra Space

Requires extra space for

pointers

No extra space

needed

2.

2. Types of Linked Lists

1. Singly Linked List — Each node points to the next node.

previous).

node.

python
CopyEdit

class Node:

3. Representation of Linked List

Structure of a Node (Singly Linked List)

def init_ (self, data):

self.data = data # Store the data

self.next = None # Pointer to the next node

Basic Operations in Linked List

Doubly Linked List — Each node has two pointers (next and

Circular Linked List — The last node points back to the first

Operation

Description

Insertion

Add a new node at the beginning, end, or middle.

Deletion

Remove a node from the list.

Traversal

Move through the list to access elements.

python

Linked List Implementation in Python

96

MATS Centre for Distance and Online Education, MATS University

¢ e

\y \\\ 1

'fmrrrss,
UNIVERSITY
ready for life.

|

class Node: Notes
def init (self, data):
self.data = data
self.next = None
class LinkedList:
def init (self):
self.head = None
def insert_at end(self, data):
new_node = Node(data)
if not self.head:
self.head = new node
return
temp = self.head
while temp.next:
temp = temp.next
temp.next = new_node
def display(self):
temp = self.head
while temp:
print(temp.data, end="->")
temp = temp.next
print("None")
Example Usage

1 = LinkedList()

97
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes

IL.insert_at end(10)

Il.insert_at end(20)

IL.insert at end(30)

1l.display() # Output: 10 -> 20 -> 30 -> None

4. Advantages & Disadvantages of Linked List

e Dynamic size allocation (efficient memory utilization).
e Efficient insertions and deletions compared to arrays.
e Extra memory required for pointers.

e Slower access time (O(n) vs. O(1) for arrays).

5. Applications of Linked Lists

e Memory management (Dynamic Allocation).
e Implementation of stacks and queues.

e Undo-Redo functionality in text editors.
Graph representation (Adjacency List).

Linked List: It is a mutable and useful data structure for dynamic
memory allocation and efficient insertions and deletions. It is often
used in data structures (stack, queue, graph), although it needs

additional memory for pointers.

98
MATS Centre for Distance and Online Education, MATS University

¢ e

W \\\ f

|

ready for life.

Unit 3.2: Operations on Linked list Notes

3.2.1 Operations on Linked list: Traversing, Searching, Insertion,

Deletion

A linked list is a data structure made up of nodes wherein each node is
linked through pointers. Linked lists are often used because of the
relatively high number of operations that can be performed on them,
such as traversing, searching, inserting and deleting. Operations are

helpful to optimize the linked list elements operation.
3.2.2 Traversing a Linked List

Traversing the Linked List means going through the linked list one by
one and getting its data. And since linked lists does not contain arrays
with contiguous memory, following next pointer of each node make it

necessary to traverse them one by one.
3.2.2 Algorithm for Traversing
1.Start from index O.
2.Repeat until the last index:
3.Access the element at the current index.
4.Perform any required operation (print, add, etc.).
5.Move to the next index (index = index + 1).
3.2.3 Implementation in Python
class Node:
def init_ (self, data):
self.data = data
self.next = None
class LinkedList:

def init (self):

99
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes self.head = None
def insert_at end(self, data):
new_ node = Node(data)
if not self.head:
self.head = new_node
return
temp = self.head
while temp.next:
temp = temp.next
temp.next = new_node
def traverse(self):
temp = self.head
while temp:
print(temp.data, end=" ->")
temp = temp.next
print("None")
Example Usage
11 = LinkedList()
IL.insert at end(10)
ILinsert_at end(20)
IL.insert_at end(30)
Il.traverse() # Output: 10 -> 20 -> 30 -> None
Time Complexity:

O(n) — Each node is visited once.

100
MATS Centre for Distance and Online Education, MATS University

¢ e

\y \\\ 1

g{mmss,
UNIVERSITY
ready for life.

|

3.3.3 Searching in a Linked List Notes

It involves getting whether a specific value exists in the linked list and
retracing steps to the position (index) if it does. Because linked lists do
not allow direct indexing, a search is performed by traversing through

each of the nodes sequentially.
3.3.4 Algorithm for Searching
1. Start from the head node.
2. Compare the data of the current node with the target value.
3. If found, return the position of the node.
4. If not found, move to the next node.
5. Repeat until the end of the list is reached.
3.3.5 Implementation in Python
class LinkedList:
def init (self):
self.head = None
def insert_at end(self, data):
new_node = Node(data)
if not self.head:
self.head = new node
return
temp = self.head
while temp.next:
temp = temp.next
temp.next = new_node

def search(self, key):

101
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes

temp = self.head
position =0
while temp:
if temp.data == key:
return f"Element found at index {position}"
temp = temp.next
position += 1
return "Element not found"
Example Usage
11 = LinkedList()
Il.insert_at _end(10)
Il.insert_at end(20)
Ilinsert_at end(30)
print(ll.search(20)) # Output: Element found at index 1
print(ll.search(40)) # Output: Element not found
Time Complexity:
O(n) — Each node is checked once.
3.3.6 Insertion in a Linked List

Insertion is the process of adding a new node at a specific position.

There are three common cases:
1. At the beginning (Head Insertion)
2. Atthe end (Tail Insertion)
3. In the middle (Between two nodes)
Algorithm for Insertion

1. Create a new node with the given data.

102
MATS Centre for Distance and Online Education, MATS University

2. Adjust pointers based on insertion position.
3. Update the next reference of the previous node.
3.3.7 Implementation in Python
class LinkedList:
def init (self):
self.head = None
def insert_at beginning(self, data):
new_node = Node(data)
new_node.next = self.head
self.head = new node
def insert_at end(self, data):
new_node = Node(data)
if not self.head:
self.head = new node
return
temp = self.head
while temp.next:
temp = temp.next
temp.next = new_node
def insert_at position(self, data, position):
new_node = Node(data)
if position == 0: # Insert at the beginning
new_node.next = self.head

self.head = new node

103
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

W

UNIVERSITY

4

|

o=

i

ready for life.......

Notes

return

temp = self.head

for in range(position - 1):

if not temp:

return "Position out of bounds"
temp = temp.next
new_node.next = temp.next
temp.next = new_node
Example Usage
11 = LinkedList()
Il.insert_at _end(10)
Il.insert_at end(30)
Il.insert_at position(20, 1) # Insert 20 at index 1
Il.traverse() # Output: 10 -> 20 -> 30 -> None
Time Complexity:

O(1) for beginning insertion

O(n) for middle/end insertion
3.3.8 Deletion in a Linked List

Deletion involves removing a node from the list. Common cases

include:
. Deleting the first node (Head deletion).
2. Deleting a node in the middle.
3. Deleting the last node (Tail deletion).
Algorithm for Deletion

. If list is empty, return "Underflow."

MATS Centre for Distance and Online Education, MATS University

¢ e

\y \\\ 1

g{mmss,
UNIVERSITY
ready for life.

|

2. If deleting the first node, update head. Notes

3. If deleting a middle node, adjust the next pointer of previous

node.

4. 1If deleting last node, set previous node’s next to None.
3.3.9 Implementation in Python
class LinkedList:

def init (self):
self.head = None
def insert_at end(self, data):
new_node = Node(data)
if not self.head:
self.head = new_node
return
temp = self.head
while temp.next:
temp = temp.next
temp.next = new_node
def delete node(self, key):
temp = self.head
Deleting first node
if temp and temp.data == key:
self.head = temp.next
temp = None
return

Deleting middle or last node

105
MATS Centre for Distance and Online Education, MATS University

o=

§ \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

prev = None
while temp and temp.data != key:
prev = temp
temp = temp.next
if temp is None:
return "Element not found"
prev.next = temp.next
temp = None
Example Usage
11 = LinkedList()
Il.insert_at _end(10)
Il.insert_at end(20)
Ilinsert_at end(30)
1l.delete node(20) # Delete node with value 20
ll.traverse() # Output: 10 -> 30 -> None
Time Complexity:

O(1) for deleting first node
O(n) for deleting middle/last node

Insertion/deletion in linked lists is more efficient, and memory can be
allocated dynamically while in arrays it cannot, as they have static
memory allocation. But, they need to be traversed sequentially for
search and access. The methods utilized in basic operations (traversal,
searching, insertion, deletion) constitute the basis for complex data

structures like stacks, queues, and graphs.

106
MATS Centre for Distance and Online Education, MATS University

Unit 3.3: Memory Allocation

3.3.1 Memory Allocation

This action is typically taken at run time when the program is executed.
It protects the overall performance, reduces extra usage of memory, and

avoids situations where insufficient memory leads to crashes.

Types of Memory in a Computer System

Memory Type Description

Temporary, volatile storage used by the

Primary Memory (RAM) |CPU for fast access.

Secondary Memory [Non-volatile, used for long-term data

(HDD/SSD) storage.

High-speed memory for frequently accessed|

Cache Memory data.

Small, fastest memory directly inside the]

Register Memory CPU.

1. Types of Memory Allocation
Memory allocation is classified into two main types:

1. Static Memory Allocation
2. Dynamic Memory Allocation

Static Memory Allocation

e Memory is assigned before program execution (at compile

time).

e The memory size is immutable and cannot be altered during

runtime.

o Faster execution since memory is pre-allocated.

107
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

W

UNIVERSITY

ready for life.

Notes

4

|

e Uses stack memory for storage.
Example (Static Memory Allocation in C)
int arr[5]; // Fixed size array (allocated at compile time)

Advantages:

Faster execution

No memory fragmentation
Disadvantages:

Wastage of memory if unused

Cannot allocate memory dynamically
2. Dynamic Memory Allocation
e Memory is allocated during program execution (at runtime).

e Size is flexible, and memory can be allocated or deallocated as

needed.
e Uses heap memory for storage.
Example (Dynamic Memory Allocation in C)

int *ptr = (int*) malloc(5 * sizeof(int)); // Allocating memory

dynamically

Advantages:

Efficient memory usage

Can allocate or free memory as needed
Disadvantages:

Slower execution due to runtime allocation

Memory leaks if not properly deallocated

108
MATS Centre for Distance and Online Education, MATS University

¢ e

\ \\\ N/
‘im"l%)
3. Methods of Dynamic Memory Allocation in C/C++ Notes
Header
Function Description File

Allocates a block of memory but does not

malloc(size) |initialize it. <stdlib.h>

Allocates multiple blocks and initializes

calloc(n, size) |them to zero. <stdlib.h>
realloc(ptr, Resizes a previously allocated memory
size) block. <stdlib.h>

Deallocates memory to prevent memory

free(ptr) leaks. <stdlib.h>

Example (Dynamic Memory Allocation Using malloc in C)
#include <stdio.h>

#include <stdlib.h>

int main() {

int *ptr = (int*) malloc(5 * sizeof(int)); // Allocating memory for 5

integers
if (ptr == NULL) {
printf("Memory allocation failed!");
return 1;
}
for (int1i=0; 1 <5; i++)

ptr[i] =1 * 10; // Assigning values

109
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes

for (inti=0; 1 <5; i++)
printf("%d ", ptr[i]); // Output: 0 10 20 30 40
free(ptr); // Deallocating memory

return 0;

. Memory Allocation in Data Structures

. Stack Memory Allocation (Static)

e Stores function calls, local variables, and recursion data.
e Memory is automatically allocated and deallocated.

o Limited size (stack overflow can occur).

. Heap Memory Allocation (Dynamic)

e Stores dynamically allocated memory (e.g., linked lists, trees).
e Memory must be manually managed (malloc/free).

o Larger than stack memory but slower access.

. Common Memory Allocation Issues

Issue Description

Memory Leak | Forgetting to free dynamically allocated memory.

Dangling
Pointer Accessing memory after it has been freed.
Memory is divided into small unused blocks,
Fragmentation reducing efficiency.
Buffer

Overflow |Writing more data than allocated, leading to crashes.

110
MATS Centre for Distance and Online Education, MATS University

¢ e

W \\\ f

|

ready for life.

Example of a Memory Leak (C) Notes
void memory_leak() {
int *ptr = (int*) malloc(5 * sizeof(int)); // Allocated memory

// Forgot to free memory -> Memory leak!

}

Solution: Always use free(ptr) after allocation.

Itisa very crucial concept in programming as memory allocation helps
to manage resources efficiently. Static allocation is easy but rigid, and
dynamic allocation gives you flexibility but requires properly
managing the memory. The correct management of memory will guard
against leaks, fragmentation and buffer overflows, which would

otherwise make your program less efficient.

Summary:

The linked list is a dynamic linear data structure in which elements,
called nodes, are connected using pointers rather than stored in
contiguous memory like arrays. Each node typically contains two
fields: the data and a reference (or pointer) to the next node in the
sequence. Types of linked lists include singly linked lists, where each
node points to the next node; doubly linked lists, where nodes point to
both their previous and next nodes, allowing bidirectional traversal; and
circular linked lists, where the last node links back to the first. Linked
lists support efficient insertion and deletion at any position without the
need for shifting elements, making them more flexible than arrays for
dynamic memory allocation. Common operations include insertion at
the beginning, end, or a specific position; deletion from any location;
traversal; searching; and reversing. Linked lists are used in various
applications such as implementing stacks, queues, graphs, dynamic
memory management, and representing polynomial expressions. Their
non-contiguous memory allocation enables better use of memory,
although they require extra space for pointer storage and are less

efficient for random access compared to arrays.

111
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes

Multiple-Choice Questions (MCQs)

1.

Which of the following is an advantage of linked lists over
arrays?

a) Faster access to elements using indexing

b) Dynamic memory allocation

¢) Fixed size allocation

d) Requires less memory per node

(Answer: b)

Which type of linked list allows traversal in both
directions?

a) Singly Linked List

b) Doubly Linked List

¢) Circular Linked List

d) None of the above

(Answer: b)

What is the time complexity of inserting an element at the
beginning of a linked list?

a) O(1)

b) O(n)

¢) O(log n)

d) O(n?)

(Answer: a)

Which operation is most efficient in a linked list compared
to an array?
a) Accessing an element at a specific index

b) Deleting an element from the middle

112
MATS Centre for Distance and Online Education, MATS University

==

b, * -)
By
(mAaTs
UNIVERSITY
ready for life.

|

¢) Sorting elements Notes
d) Merging two lists
(Answer: b)

. What does the ‘head’ pointer in a linked list represent?
a) The last node in the list

b) The middle node in the list

¢) The first node in the list

d) A temporary pointer for traversal

(Answer: ¢)

. 'Which type of linked list has its last node pointing to the
first node?

a) Singly Linked List

b) Doubly Linked List

¢) Circular Linked List

d) Multi-Level Linked List

(Answer: ¢)

. What happens when a node is deleted from a singly linked
list?

a) The previous node's next pointer is updated

b) The entire list is deleted

¢) Memory for all nodes is freed

d) The previous node becomes the last node

(Answer: a)

. 'Which of the following statements is true about linked
lists?

a) They have a fixed size

b) They allow efficient random access

c¢) They use dynamic memory allocation

d) They are always slower than arrays

(Answer: ¢)

. What is the primary disadvantage of linked lists?

a) Fixed memory allocation

113
MATS Centre for Distance and Online Education, MATS University

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

Y W

)

10.

b) Higher memory overhead due to pointers
c¢) Inefficient insertion and deletion
d) Cannot store data dynamically

(Answer: b)

Which function is used to allocate memory dynamically in
a linked list in C?

a) malloc()

b) calloc()

c) free()

d) Botha and b

(Answer: d)

Short Questions

1.

2.

9.

10.

What is a linked list, and how does it differ from an array?

List the advantages of linked lists over arrays.

. What are the different types of linked lists, and how do they

differ?

How is memory allocated dynamically for linked lists?

What is a circular linked list, and where 1s it used?

Explain the difference between singly and doubly linked lists.
What are the main operations performed on a linked list?
How is traversal performed in a linked list?

Explain the memory overhead issue in linked lists.

How do you delete a node from a singly linked list?

114
MATS Centre for Distance and Online Education, MATS University

Long Questions

1.

10.

Explain the structure of a linked list and how it is represented in

memory.

Discuss the advantages and disadvantages of linked lists

compared to arrays.

Write a C program to implement a singly linked list with

insertion and deletion operations.

Describe the traversal, searching, and insertion operations in

linked lists with examples.

Explain the concept of dynamic memory allocation in linked

lists and how malloc() and free() are used.

Compare singly, doubly, and circular linked lists, discussing

their applications.

Write a C program to implement a doubly linked list with

insertion and deletion at different positions.

What are the applications of linked lists in real-world

computing?

Describe how deletion works in a linked list, including edge

cases such as deleting the first and last nodes.

Implement a circular linked list in C, including insertion,

deletion, and traversal operations.

115
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

W

UNIVERSITY

ready for life.

Notes

4

|

MODULE 4
TREE AND GRAPH

LEARNING OUTCOMES
By the end of this Unit, students will be able to:
e Understand tree concepts, including their structure and
applications.
e Learn the representation of binary trees and perform operations
such as searching, insertion, and deletion.
e Implement and analyze Binary Search Tree (BST) and AVL tree
algorithms for optimized searching and balancing.
o Explore graph representations (adjacency matrix, adjacency
list), operations (searching, insertion, deletion), and traversal

techniques (BFS, DFS) for efficient graph processing.

116
MATS Centre for Distance and Online Education, MATS University

Unit 4.1: Tree concepts And Binary Tree

4.1.1 Tree concepts

A tree is a type of data structure that is used to represent relationships
between elements in a hierarchical manner. It is made up of nodes
linked through edges, where each node contains data and pointers to
its children nodes. Trees are non-linear data structures (unlike linear
data structures like arrays, linked lists) used for efficient searching,
sorting, and hierarchical data organization.

Basic Terminology of Trees

Term Description
Node A single element in a tree (stores data and references).
Root The topmost node (starting point of the tree).

Parent A node that has child nodes.

Child A node derived from another node (parent).

Sibling | Nodes that share the same parent.

Leaf Node | A node without children (terminal node).

Edge Connection between two nodes.

Depth Distance from the root to a node.

Height Maximum depth of the tree.

Subtree | A section of a tree rooted at a particular node.

1. Properties of a Tree

1. A tree consists of N nodes and (N-1) edges.

2. There is only one root node.

3. Atree is a connected and acyclic structure (no cycles).

4. Each node can have any number of children.
2. Types of Trees
General Tree

e A tree where each node can have any number of children.
Binary Tree

e Atree where each node has at most two children (left and right).
Binary Search Tree (BST)

e A binary tree where:

e Left subtree contains smaller values.

e Right subtree contains larger values.

117
MATS Centre for Distance and Online Education, MATS University

==

{mer

W
. s%}

ready for life.

Notes

o=

ready for life.......

Notes

e Efficient for searching, insertion, and deletion (O(log n)
complexity).
Balanced Tree
e A tree where the height difference between left and right
subtrees is minimal.
e Example: AVL Tree, Red-Black Tree.
Heap Tree
e A complete binary tree used for priority queues.
e Min Heap: The parent is smaller than its children.
e Max Heap: The parent is greater than its children.
Trie (Prefix Tree)
e Used for searching words in dictionaries and autocomplete
suggestions.
3. Representation of Trees
Trees can be represented using:
Linked List Representation
Each node contains data, left child, and right child pointers.
class Node:
def init_ (self, data):
self.data = data
self.left = None
self.right = None
root = Node(10) # Root node
root.left = Node(5) # Left child
root.right = Node(15) # Right child
Array Representation
Trees can be stored in an array (for complete binary trees).
For a node at index 1:
e Left Child — 2*1+ 1
e Right Child — 2*i + 2
e Parent— (1-1)//2
Example for [10, 5, 15, 3, 7]:

Index | Value | Left Child | Right Child | Parent

0 10 5(1) 15 (2) ;

1 5 3(3) 7(4) 10 (0)

118
MATS Centre for Distance and Online Education, MATS University

4. Tree Traversal
Traversal is the process of visiting nodes in a tree.
Depth-First Search (DFS)

Type Order
Preorder (NLR) Root — Left — Right
Inorder (LNR) Left — Root — Right
Postorder (LRN) Left — Right — Root

def inorder traversal(root):
if root:
inorder_traversal(root.left)
print(root.data, end="")
inorder_traversal(root.right)
Breadth-First Search (BFS) (Level Order Traversal)
e Visits nodes level by level (top to bottom).
e Implemented using a queue.
python
CopyEdit
from collections import deque
def level order traversal(root):
if not root:
return
queue = deque([root])
while queue:
node = queue.popleft()
print(node.data, end="")
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
5. Applications of Trees
Database Indexing (B-Trees, B+ Trees)
File System Hierarchies
Network Routing Algorithms
Expression Evaluation (Syntax Trees)

119
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

W

UNIVERSITY

4

|

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

Artificial Intelligence (Decision Trees)
Compiler Design (Abstract Syntax Trees)
Trees are essential hierarchical data structures used for searching,
sorting, and managing data. The concept of trees is an important aspect
of computer science, it is data structures that sort the data into tree
forms.
4.1.2 Binary Tree-Representation
A Binary Tree is a hierarchical data structure in which each node
possesses a maximum of two offspring.
e Left Offspring
e Right Offspring
Binary trees are widely used in searching, sorting, expression
evaluation, and hierarchical data representation.
Representation of Binary Tree
1. Linked List Representation (Node-Based Representation)
In this representation, each node has:
e Data (value of node).
e Pointer to left child.
¢ Pointer to right child.
Python Implementation (Binary Tree Node Structure)
class Node:
def init_ (self, data):
self.data = data
self.left = None
self.right = None
Creating a simple binary tree
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)

Tree Structure:

1
/N
23
#/\
45

120
MATS Centre for Distance and Online Education, MATS University

¢ e

\y \\\ 1
g{mmss,
UNIVERSITY
ready for life.

|

Advantages: Notes
Dynamic size (grows as needed)
Efficient insertions and deletions
Disadvantages: Uses extra memory for pointers
2. Array Representation (Sequential Representation)
A binary tree can also be stored in an array where:
e Root node is at index 0.
o Left child of node at index 1 is at 2*i + 1.
e Right child of node at index i is at 2*i + 2.
e Parent of node at index i is at (i-1) // 2.
Example: Storing a Binary Tree in an Array
For a binary tree:
markdown
1
/\
23
/\
45
Array representation: [1, 2, 3, 4, 5]
Index | Node | Left Child Index | Right Child Index
0 1 1 2

1 3 4

2
2 3 - -
3 4
4 5

Python Implementation (Binary Tree using an Array)
class BinaryTree:
def init (self):
self.tree =[]
def insert(self, data):
self.tree.append(data) # Insert node at the next available position
def get left child(self, index):
left index =2 * index + 1
return self.tree[left index] if left index < len(self.tree) else None
def get right child(self, index):
right_index =2 * index + 2

121
MATS Centre for Distance and Online Education, MATS University

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

o=

)

return self.tree[right_index] if right index < len(self.tree) else
None
Example Usage
bt = BinaryTree()
bt.insert(1)
bt.insert(2)
bt.insert(3)
bt.insert(4)
bt.insert(5)
print("Left Child of 1:", bt.get left child(0)) # Output: 2
print("Right Child of 1:", bt.get _right child(0)) # Output: 3
Advantages:
Efficient for complete binary trees
Direct access using index
Disadvantages:
Wasted memory if the tree is sparse
Difficult insertions/deletions in the middle

3. Choosing the Right Representation

Linked List

Feature Representation Array Representation
Wastes space in sparse

Memory Usage | Extra space for pointers trees

Inefficient (O(n)
Insertion/Deletion| Efficient (O(1) at root) shifting)
Requires Direct access using

Traversal recursion/iteration index

Best Use Case |General trees (BST, AVL)| Complete Binary Trees

Binary trees are implemented by linked list (pointers) or array
(indexing). Linked list approche is flexible solution for a dynamic tree,
while array solution would be good for complete binary trees.
Efficiency in memory and faster operations in applications like
searching, parsing, and sorting are provided through the knowledge of
both methods.

4.3.2 Operations: Searching, Insertion, Deletion

A Binary Tree provides fundamental capabilities such as search, insert,
and delete. These operations are very prevalent in Binary Search
Trees(BSTs), where elements follow sorted order:

e left subtree has values that are inferior to root.

122
MATS Centre for Distance and Online Education, MATS University

==

3 . * v
By
(mAaTs
UNIVERSITY
ready for life.

|

e right subtree contains values that surpass those of root. Notes

4.1.3 Searching in a Binary Tree
Searching: Finding one specific value from the tree. searching is also
efficient in BST as it is of O(log n) complexity in balanced trees.
Algorithm for Searching in BST
1. Commence with root node.
2. If key matches root, return the node.
3. Ifkey is smaller, perform a search in left subtree.
4. If the key is bigger, perform a search in the right subtree.
5. Continue iterating until the key is located or the tree is depleted.
Python Implementation
class Node:
def init (self, data):
self.data = data
self.left = None
self.right = None
def search(root, key):
if root is None or root.data == key:
return root # Found the key or reached a leaf node
if key <root.data:
return search(root.left, key)
return search(root.right, key)
Example Tree
root = Node(10)
root.left = Node(5)
root.right = Node(20)
root.left.left = Node(3)
root.left.right = Node(7)
Search for a node
result = search(root, 7)
print("Found" if result else "Not Found") # Output: Found
Time Complexity:
Best Case (Balanced Tree): O(log n)
Worst Case (Skewed Tree): O(n)
2. Insertion in a Binary Search Tree (BST)
Insertion adds a new node while maintaining the BST property.

Algorithm for Insertion

123
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes 1. If tree is empty, create a new node as the root.
2. Compare value with current node:
e Ifsmaller, insert into the left subtree.
e [f greater, insert into the right subtree.
1. Repeat until an empty position is found.
4.1.4 Python Implementation
def insert(root, key):
if root is None:
return Node(key) # Insert new node if tree is empty
if key <root.data:
root.left = insert(root.left, key) # Recur for left subtree
else:
root.right = insert(root.right, key) # Recur for right subtree
return root
Example Usage
root = Node(10)
root = insert(root, 5)
root = insert(root, 15)
root = insert(root, 3)
root = insert(root, 7)
Time Complexity:
Best Case (Balanced Tree): O(log n)
Worst Case (Skewed Tree): O(n)
3. Deletion in a Binary Search Tree (BST)

Deletion removes a node while maintaining the BST property.

Cases for Deletion:

A node devoid of descendants (Leaf Node) - Simply remove it.

2. Anode possessing a solitary kid - Remove the node and connect
its child to its parent.

3. A node possessing two children necessitates identifying the
inorder successor (the smallest node within the right subtree),
replacing the node's value with that of inorder successor, and
subsequently eliminating the inorder successor.

Algorithm for Deletion
1. Search for the node to delete.

2. Ifitis terminal node, remove it straight.

124
MATS Centre for Distance and Online Education, MATS University

¢ e

\ \\\ i
imnoTs)
iumxgt!’rgs’
3. Ifit possesses a single offspring, substitute it with that Notes
offspring.

4. 1If it has two children, find the inorder successor, replace the
node’s value, and delete the successor.
4.Python Implementation
def find min(node):
while node.left:
node = node.left
return node
def delete(root, key):
if root is None:
return root
Search for the node to delete
if key < root.data:
root.left = delete(root.left, key)
elif key > root.data:
root.right = delete(root.right, key)
else:
Case 1: No child (leaf node)
if root.left is None and root.right is None:
return None
Case 2: One child
if root.left is None:
return root.right
elif root.right is None:
return root.left
Case 3: Two children
temp = find min(root.right) # Find inorder successor
root.data = temp.data # Replace node value
root.right = delete(root.right, temp.data) # Delete successor
return root
Example Usage
root = Node(10)
root = insert(root, 5)
root = insert(root, 15)
root = insert(root, 3)
root = insert(root, 7)

root = delete(root, 5) # Delete node with value 5

125
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes

Time Complexity:

Best Case (Balanced Tree): O(log n)
Worst Case (Skewed Tree): O(n)

4. Summary of BST Operations

Operation | Best Case Complexity | Worst Case Complexity
Search O(log n) O(n)

Insertion O(log n) O(n)

Deletion O(log n) O(n)

BST is efficient for searching, inserting, and deleting in balanced trees.

In worst-case (skewed trees), performance degrades to O(n).

Binary trees also support important operations such as searching,
insertion, and removal, which are the basis for search engines,
databases, and file systems. The Binary Search Tree (BST) exhibits

logarithmic time complexity for many operations and is an essential

data structure in computer science.

126

MATS Centre for Distance and Online Education, MATS University

==

W \\\ f

|

ready for life.

Unit 4.2: Algorithms: Binary Search Tree and AVL Notes

4.2.1 Algorithms: Binary Search Tree and AVL
Binary Search Tree (BST)
A Binary Search Tree (BST) is binary tree in which each node adheres
to the principle that :
e The left subtree holds values lesser than root.
e The right subtree comprises values that exceed those of the root.
e Duplicate values are prohibited.
Binary Search Trees facilitate efficient search, insertion, and deletion
operations, achieving an average complexity of O(log n) for balanced
structures.
4.2.2 BST Operations and Algorithms
Insertion in BST
Algorithm:
1. Iftree is empty, create a new node as the root.
2. Compare the key with root:
e Ifsmaller, insert it into the left subtree.
e [f greater, insert it into right subtree.
3. Recursively find the correct position for new node.
Python Implementation:
class Node:
def init_ (self, data):
self.data = data
self.left = None
self.right = None
def insert(root, key):
if root is None:
return Node(key)
if key <root.data:
root.left = insert(root.left, key)
else:
root.right = insert(root.right, key)
return root
Example Usage
root = Node(10)
root = insert(root, 5)
root = insert(root, 15)

127
MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

root = insert(root, 3)

root = insert(root, 7)

Time Complexity:

e Best Case: O(log n) (Balanced Tree)
e Worst Case: O(n) (Skewed Tree)

Searching in BST
Algorithm:

1.

Commence at the root node.

2. If key corresponds to root, return the node.
3. Ifthe key is lesser, search in left subtree.

4.
5

If key is larger, conduct a search in right subtree.
Continue iterating until the key is located or the tree is

depleted.Python Implementation:

def search(root, key):

if root is None or root.data == key:
return root

if key < root.data:
return search(root.left, key)

return search(root.right, key)

Example Usage

found = search(root, 7)
print("Found" if found else "Not Found") # Output: Found

Time Complexity:

e Best Case: O(1)
e Worst Case: O(n) (Skewed Tree)

Deletion in BST
Algorithm:
4.2.3 Identify the node designated for deletion.

Instances of deletion:

e Remove the leaf node with no children.

e In the case of a single child: Substitute the node with its
offspring.

e For anode with two children: Identify the inorder successor (the
smallest node in right subtree), substitute the node with

successor, and subsequently remove the successor.

Python Implementation:
def find_min(node):

while node.left:

128
MATS Centre for Distance and Online Education, MATS University

¢ e

\ \\\ i
'f mmss;
UNIVERSITY
node = node.left Notes
return node

def delete(root, key):
if root is None:
return root
if key <root.data:
root.left = delete(root.left, key)
elif key > root.data:
root.right = delete(root.right, key)
else:
if root.left is None:
return root.right
elif root.right is None:
return root.left
temp = find_min(root.right)
root.data = temp.data
root.right = delete(root.right, temp.data)
return root
Example Usage
root = delete(root, 5)
Time Complexity:
e Best Case: O(log n) (Balanced Tree)
e Worst Case: O(n) (Skewed Tree)
4.2.4 Limitations of BST
Unbalanced BST leads to O(n) operations in the worst case.
Degenerates into a linked list if values are inserted in sorted order.
Solution: Use AVL trees to maintain balance.
AVL Tree (Self-Balancing BST)
An AVL Tree is a self-balancing binary search tree in which the height
disparity (balance factor) between the left and right subtrees does not
exceed 1.
Balance Factor (BF) = Height of Left Subtree - Height of Right Subtree
If the absolute value of the Balance Factor exceeds 1, the tree

undergoes rotation to reestablish equilibrium.

Rotation Type When it Occurs Action
Right Rotation (LL |Insert in left subtree of
Rotation) left child Rotate right
129

MATS Centre for Distance and Online Education, MATS University

g \\\

UNIVERSITY
ready for life.......

Notes

o=

Left Rotation (RR | Insert in right subtree
Rotation) of right child Rotate left

Left-Right Rotation | Insert in right subtree | Left Rotate first, then
(LR Rotation) of left child Right Rotate

Right-Left Rotation |Insert in left subtree of| Right Rotate first,
(RL Rotation) right child then Left Rotate

Insertion in AVL Tree
1. Insert the node as in BST.
2. Update balance factors of all affected nodes.
3. 1If |Balance Factor| > 1, perform the appropriate rotation.
Python Implementation:
class AVLNode:
def init_ (self, data):
self.data = data
self.left = None
self.right = None
self.height =1 # Height of the node
def get height(node):
return node.height if node else 0
def get balance(node):
return get height(node.left) - get height(node.right) if node else 0
def right_rotate(y):
x =y.left
T2 = x.right
x.right=y
y.left=T2
y.height = 1 + max(get height(y.left), get height(y.right))

130
MATS Centre for Distance and Online Education, MATS University

¢ e

W \\\ S
x.height = 1 + max(get height(x.left), get height(x.right)) Notes
return X

def left rotate(x):
y = x.right
T2 =y.left
yleft=x
x.right = T2

x.height = 1 + max(get height(x.left), get height(x.right))
y.height = 1 + max(get height(y.left), get height(y.right))
return y
def insert_avl(root, key):
if root is None:
return AVLNode(key)
if key < root.data:
root.left = insert _avl(root.left, key)
else:
root.right = insert_avl(root.right, key)
root.height = 1 + max(get_height(root.left), get height(root.right))
balance = get_balance(root)
Perform rotations if unbalanced
if balance > 1 and key < root.left.data:
return right rotate(root)
if balance < -1 and key > root.right.data:
return left rotate(root)
if balance > 1 and key > root.left.data:
root.left = left_rotate(root.left)
return right rotate(root)
if balance < -1 and key < root.right.data:
root.right = right_rotate(root.right)
return left rotate(root)
return root
Time Complexity:
e Insertion & Deletion: O(log n) (Always balanced)
e < BST offers fast running time for search and insert, but tends
to be unbalanced.
e « After insertion/deletion, AVL Tree gets re-balanced

automatically in order to keep O(log n) time take for all cases.

131
MATS Centre for Distance and Online Education, MATS University

UNIVERSITY

ready for lfe......

Notes e < AVL trees is used in databases, search engines, and memory

indexing when fast looking needed

132
MATS Centre for Distance and Online Education, MATS University

¢ e

\y \\\ 1
g{mmss,
UNIVERSITY
ready for life.

|

Unit 4.3: Graph Notes

4.3.1 Graph, Graph Representation, Operations: Searching,
Insertion, Deletion,

Graph and Its Operations

A graph is a non-linear data structure that consists of:

e Vertices (Nodes) — Represent objects.

e Edges (Connections) — Represent relationships between objects.
Graphs are widely used in networking, social media, shortest path
algorithms, and Al
2. Types of Graphs

Graph Type Description
Directed Graph (Digraph) Edges have direction (A — B).

Undirected Graph Edges do not have direction (A — B).
Weighted Graph Edges have weights (cost, distance, time).
Unweighted Graph Edges do not have weights.
Cyclic Graph Graph contains cycles (A — B — C — A).

Acyclic Graph (DAG) No cycles, used in scheduling tasks.

3. Graph Representation
Graphs can be represented using:
1. Adjacency Matrix
A 2D array where matrix[i][j] = 1 if there is an edge from 1 to j.
Example:
ABC
A0 10]
B[101]
C[010]
Python Implementation:
python
CopyEdit
class GraphMatrix:
def init_ (self, vertices):
self.vertices = vertices
self.graph = [[0] * vertices for _ in range(vertices)]
def add_edge(self, u, v):
self.graph[u][v] =1

133
MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

self.graph[v][u] =1 # Undirected Graph
def display(self):
for row in self.graph:
print(row)

Example Usage
g = GraphMatrix(3)
g.add edge(0, 1)
g.add edge(1, 2)
g.display()

Pros: Fast edge lookup O(1).

Cons: Uses O(V?) space even for sparse graphs.
2. Adjacency List (Efficient Representation)
A list of lists where each node stores its neighbors.
Example:

A—B
B—A,C
C—B
Python Implementation:
python
CopyEdit
from collections import defaultdict
class GraphList:
def init_ (self):
self.graph = defaultdict(list)
def add_edge(self, u, v):
self.graph[u].append(v)
self.graph[v].append(u) # Undirected Graph
def display(self):
for key, values in self.graph.items():
print(key, "->", values)
Example Usage
g = GraphList()
g.add _edge("A", "B")
g.add_edge("B", "C")
g.display()
Pros: Uses O(V + E) space, efficient for sparse graphs.
Cons: Edge lookup is O(V) in the worst case.
4. Graph Operations

134
MATS Centre for Distance and Online Education, MATS University

¢ e

\y \\\ 1
g{mmss,
UNIVERSITY
ready for life.

|

4.3.2 Searching (Graph Traversal) Notes
1. Depth-First Search (DFS)
e Recursive traversal that explores as far as possible before
backtracking.
e Used in: Pathfinding, cycle detection, topological sorting.
Python Implementation:
python
CopyEdit
def dfs(graph, node, visited=set()):
if node not in visited:
print(node, end="")
visited.add(node)
for neighbor in graph[node]:
dfs(graph, neighbor, visited)
Example Usage
graph = {"A": ["B", "C"], "B": ["D"], "C": ["E"], "D": [1, "E": [}
dfs(graph, "A") # Output: ABDCE
Time Complexity: O(V + E)

2. Breadth-First Search (BFS)

e Uses queue to explore neighbors level by level.
e Used in: Shortest path (Dijkstra’s Algorithm), Al search
algorithms.
Python Implementation:
from collections import deque
def bfs(graph, start):
queue = deque([start])
visited = set([start])
while queue:
node = queue.popleft()
print(node, end="")
for neighbor in graph[node]:
if neighbor not in visited:
visited.add(neighbor)
queue.append(neighbor)
Example Usage
graph = {"A": ["B", "C"], "B": ["D"], "C": ["E"], "D": [1, "E": [}
bfs(graph, "A") # Output: ABCDE

135
MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.......

Notes

)

ars)

Time Complexity: O(V + E)
4.3.3 Insertion (Adding Nodes and Edges)
e Adding a vertex: Simply add a new key in adjacency list.
e Adding an edge: Update adjacency list/matrix.
Python Implementation (Adding a Node & Edge in Adjacency List):
defadd vertex(graph, vertex):
if vertex not in graph:
graph[vertex] =[]
defadd edge(graph, u, v):
graph[u].append(v)
graph[v].append(u)
Example Usage
graph = {}
add_vertex(graph, "A")
add vertex(graph, "B")
add_edge(graph, "A", "B")
print(graph) # Output: {'A": ['B'], 'B": ['A"]}
Time Complexity: O(1) for adjacency list, O(V?) for adjacency matrix

Deletion (Removing Nodes and Edges)

e FEliminating an edge: Remove from the adjacency list.
e FEliminate a vertex by first detaching all its edges.

Python Implementation (Deleting a Node & Edge):

def remove edge(graph, u, v):
graph[u].remove(Vv)
graph[v].remove(u)
def remove vertex(graph, vertex):
graph.pop(vertex, None)
for neighbors in graph.values():
if vertex in neighbors:
neighbors.remove(vertex)
Example Usage
graph = {"A": ["B"], "B": ["A", "C"], "C": ["B"]}
remove_edge(graph, "A", "B")
remove_vertex(graph, "C")
print(graph) # Output: {'B": []}
Time Complexity: O(1) for adjacency list, O(V) for adjacency matrix

136
MATS Centre for Distance and Online Education, MATS University

==

W \\\ f

|

ready for life.

4.3.4 Applications of Graphs Notes
Graphs are one of the most versatile data structures in computer
science and are widely used to model relationships and solve
complex real-world problems. Beyond simple storage of nodes
and edges, graphs allow efficient computation and visualization

of interconnected systems. Key applications include:
1. Shortest Path Algorithms

a. GPS Navigation Systems: Algorithms like Dijkstra’s
Algorithm and Bellman-Ford Algorithm calculate the
shortest route from a source to a destination. Modern
GPS systems use weighted graphs where node represent
intersections and edges represent roads with travel times
or distances.

b. Logistics & Delivery Services: Companies like FedEx,
Amazon, and Uber use graph-based pathfinding to
optimize delivery routes and minimize travel costs.

2. Social Networks

a. Friend Recommendations: Platforms like Facebook or
LinkedIn model users as nodes and friendships as edges.
Graph traversal techniques, such as Breadth-First
Search (BFS), are used to suggest friends-of-friends.

b. Community Detection & Influencer Analysis:
Algorithms like PageRank or Graph Clustering identify
influential users and social communities.

3. Computer Networks

a. Routing Protocols: The Internet, LANs, and WANSs use
graphs to model nodes (routers, switches) and links.
Algorithms such as BFS, DFS, and Shortest Path
algorithms determine optimal packet delivery paths.

b. Network Reliability: Graph theory helps analyze
network redundancy and fault tolerance, identifying
critical nodes and edges whose failure would disrupt
connectivity.

4. Artificial Intelligence & Game Development

a. Pathfinding in Games: Games use A Algorithm* or
Dijkstra’s Algorithm for Al-controlled characters to
navigate maps efficiently.

137
MATS Centre for Distance and Online Education, MATS University

b. Decision-Making & Knowledge Representation:
Graphs model state spaces in Al for problems like
puzzle solving, robot navigation, and planning.

5. Scheduling & Project Management

a. Task Dependencies: Directed Acyclic Graphs (DAGs)
model tasks with dependencies. Topological Sorting
determines the order in which tasks should be executed.

b. Software Build Systems: Tools like Make, Maven, or
Gradle use DAGs to manage compilation dependencies
efficiently.

6. Other Notable Applications

a. Biology & Bioinformatics: Graphs represent protein-
protein interactions, gene regulatory networks, and
metabolic pathways.

b. Recommendation Systems: E-commerce platforms
model products and users as graphs to suggest products
based on purchase patterns.

c. Electrical Circuits & Transport Systems: Graphs help
analyze connectivity, flow, and optimization in circuits
and traffic systems.

. Graph Representations

Adjacency List: Efficient for sparse graphs where the number
of edges is much smaller than the total possible. Saves
memory by storing only existing edges.

. Adjacency Matrix: Useful for dense graphs with many edges,
providing constant-time edge lookup at the cost of higher
space.

. Graph Operations

Traversal: Depth-First Search (DFS) and Breadth-First Search
(BFS) are fundamental for exploring graphs.

Insertion & Deletion: Adding/removing nodes and edges
allows dynamic updates to networks or relationships.

Weight Updates: In weighted graphs, edge weights can
change, requiring algorithms that efficiently recalculate
shortest paths.

4.3.5 Traversing

138
MATS Centre for Distance and Online Education, MATS University

Graph traversal refers to the systematic visitation of all nodes (vertices)
and edges within a graph.

It helps in:

Searching for elements

Finding shortest paths

Detecting cycles

Solving Al and network-related problems

2. Types of Graph Traversal

Data Structure

Traversal Type Description Used

Depth-First Search| Explores as far as possible
(DES) before backtracking Stack (Recursion)

Breadth-First | Explores neighbors level by
Search (BFS) level Queue

3. Depth-First Search (DFS)
Concept
* Initiates at node and delves as deeply as feasible prior to retracing
steps.
e Uses recursion (stack) to keep track of visited nodes.
e Used in maze solving, cycle detection, and topological sorting.
Algorithm
1. Start from a node.
2. Mark it as visited.
3. Visit adjacent unvisited nodes recursively.
4. Backtrack when no unvisited neighbors remain.
Python Implementation
def dfs(graph, node, visited=set()):
if node not in visited:
print(node, end="")
visited.add(node)
for neighbor in graph[node]:
dfs(graph, neighbor, visited)
Example Usage
graph = {
'A": ['B', 'C"],
'B": ['D', 'E'],
C: [F,

139
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

W

UNIVERSITY

4

|

o=

ready for life.......

Notes

‘D (1,
B ['F'],
'F': []
}
dfs(graph, 'A") # Output: ABDEFC
Time Complexity: OV + E) (Vertices + Edges)
Space Complexity: O(V) (For recursive stack in worst case)
4. Breadth-First Search (BFS)
Concept
e Starts at a node and explores all its neighbors before moving
deeper.
e Uses a queue to store visited nodes.
e Used in shortest path algorithms (Dijkstra’s, A), network
broadcasting, and AT*.
Algorithm
1. Start from a node.
2. Mark it as visited and enqueue it.
3. Dequeue a node, process it, and enqueue its unvisited
neighbors.
4. Repeat until all nodes are visited.
Python Implementation
from collections import deque
def bfs(graph, start):
queue = deque([start])
visited = set([start])
while queue:
node = queue.popleft()
print(node, end="")
for neighbor in graph[node]:
if neighbor not in visited:
visited.add(neighbor)
queue.append(neighbor)
Example Usage
graph = {
‘A" ['B','C"],
'B": ['D', 'E'],
C: [F,
D'],

140
MATS Centre for Distance and Online Education, MATS University

'E:['F1,
'F': []
}
bfs(graph, 'A") # Output: ABCDEF
Time Complexity: O(V + E)
Space Complexity: O(V)
5. DFS vs. BFS Comparison

Feature DFS BFS
Data Structure Stack (Recursion) Queue
Exploration Deep before wide Level-wise
Memory More for dense
Usage Less for sparse graphs graphs
Cycle detection, Topological Shortest path, Al
Best for sorting search

6. Applications of Graph Traversal
DFS: Maze solving, Cycle detection, Web crawling
BFS: Shortest path (Google Maps), Social media friend suggestions
both: Network routing, Al decision trees
DFS and BFS are fundamental graph traversal techniques for solving
complex problems from networking, AI, and path finding. The
selection of the approach is contingent upon the graph structure and the
specific use case.

Summary:
Association rule mining is a data mining technique used to discover
interesting relationships, patterns, and correlations among items in
large datasets, particularly in transactional databases. It is widely
applied in market basket analysis to identify product associations, such
as customers who buy item A also tend to buy item B. The process
involves generating and deriving association rules that meet specific
thresholds of support (frequency of itemset in the dataset) and
confidence (likelihood of item B being purchased given item A). Other
important metrics include lift, which evaluates the strength of the rule
beyond random chance. Popular algorithms for association rule mining,
which uses a bottom-up approach to generate candidate and FP-
Growth, which uses a compact tree structure to avoid candidate
generation. Association rule mining is extensively used in retail,

recommendation systems, web usage mining, and bioinformatics to

141
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

W

UNIVERSITY

ready for life.

Notes

4

|

o=

ready for life.......

Notes uncover hidden patterns and improve decision-making through
actionable insights.
Multiple-Choice Questions (MCQs)
1. What is a tree in data structures?
a) A linear data structure
b) A hierarchical data structure
c) A random-access data structure
d) A sequential data structure
(Answer: b)
2. In abinary tree, each node can have at most:
a) One child
b) Two children
c) Three children
d) Unlimited children
(Answer: b)
3. Which of the following is a self-balancing binary search tree?
a) AVL Tree
b) Binary Search Tree (BST)
c) Heap
d) Hash
e) Tree
(Answer: a)
4. What is the worst-case time complexity of searching in a Binary Search
Tree (BST)?
a) O(1)
b) O(logn)
c) O(n)
d) O(nlogn)
(Answer: c)
5. Which rotation is NOT used in balancing an AVL tree?
a) Left Rotation
b) Right Rotation
¢) Top Rotation
d) Left-Right Rotation
(Answer: c)
6. Which of the following is NOT a tree traversal technique?
a) Inorder
b) Preorder

142
MATS Centre for Distance and Online Education, MATS University

10.

¢ e

\ \\\ N/
‘imm'é ‘
¢) Breadth-First Search (BFS) Notes
d) Depth-First Search (DFS)
(Answer: ¢)

Which of the following graph representations uses a 2D matrix to store
connections?

a) Adjacency Matrix

b) Adjacency List

c¢) Incidence List

d) Edge List

(Answer: a)

In which traversal method do we visit the left subtree, then the root, and
finally the right subtree?

a) Preorder

b) Inorder

c) Postorder

d) Level Order

(Answer: b)

Which graph traversal algorithm uses a queue data structure?
a) Depth-First Search (DFS)

b) Breadth-First Search (BFS)

¢) Prim’s Algorithm

d) Kruskal’s Algorithm

(Answer: b)

Which of the following is NOT a graph traversal algorithm?
a) BFS

b) DFS

c) Dijkstra’s Algorithm

d) Bubble Sort

(Answer: d)

Short Questions

1. What is a binary tree, and how does it differ from a general tree?

2. Explain the inorder, preorder, and postorder tree traversal methods.

3. What is a Binary Search Tree (BST), and how is it different from a
normal binary tree?

4. What are AVL trees, and why are they used?

5. What is tree balancing, and why is it important?

6. What is the difference between BFS and DFS in graph traversal?

143
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes 7. Describe the adjacency matrix and adjacency list representations of
graphs.
8. How does insertion work in a BST?
What is the primary advantage of using an AVL tree over a normal
BST?
10. What are the real-world applications of graphs in computing?

Long Questions

1. Explain the concept of trees, their structure, and their applications
in computing.

2. Discuss the different types of binary tree traversals with examples.

3. Describe the Binary Search Tree (BST), its insertion, deletion, and
searching operations.

4. Implement a Binary Search Tree (BST) in C or Python and explain
its working.

5. Explain AVL tree rotations (LL, RR, LR, RL) and how they help
maintain balance.

6. Write an algorithm to perform insertion in an AVL tree and explain
it with an example.

7. Compare Adjacency Matrix and Adjacency List representations in
graphs.

8. Explain Depth-First Search (DFS) and Breadth-First Search (BFS)
with examples.

9. Implement a graph using an adjacency list and perform DFS
traversal.

10. Discuss real-world applications of trees and graphs in computer

science.

144
MATS Centre for Distance and Online Education, MATS University

MODULE 5§
ALGORITHM ANALYSIS AND DESIGN

LEARNING OUTCOMES
By the end of this Unit, students will be able to:

e Understand the role of algorithms in computing, their
characteristics, and the classification of problems into P and NP
categories.

e Analyze algorithms based on time complexity, space
complexity, and execution time to measure efficiency.

e Learn about asymptotic notations (Big-O, Omega, Theta) and
their significance in evaluating algorithm performance.

e Examine algorithm design methodologies, such as Greedy,
Divide and Conquer, and Dynamic Programming, accompanied

by practical examples for each methodology.

145
MATS Centre for Distance and Online Education, MATS University

)

g \\\

UNIVERSITY
ready for life.

Notes

ars)

)

Unit 5.1: The Role of Algorithm in Computing

5.1.1 The Role of Algorithm in Computing, Characteristics of
algorithm, P and NP

The Role of Algorithm in Computing
An algorithm is essentially a sequence of precise, well-defined

instructions that takes input data, processes it systematically according
to logical rules, and produces a desired output or solution. It forms the
core of all computing processes, enabling computers to solve problems,
perform calculations, and make decisions in an organized and efficient
manner. Beyond simple data processing, algorithms are the driving
force behind complex systems such as search engines, social media
recommendation systems, GPS navigation, and artificial intelligence
applications. They ensure tasks are performed consistently, accurately,
and with optimal use of time and resources, allowing software to
operate reliably even under diverse conditions. Moreover, algorithms
provide a framework for automation, reducing the need for human
intervention and allowing machines to handle repetitive, large-scale, or
computationally intensive tasks. By defining the logical flow of
operations, algorithms not only solve existing problems but also enable
innovation, as new and improved algorithms can lead to faster, smarter,
and more efficient technological solutions. In essence, every aspect of
modern computing, from simple calculations to advanced Al-driven
insights, relies on the careful design and implementation of algorithms,

highlighting their indispensable role in the digital world.

5.1.2 Importance of Algorithms in Computing

Efficiency — Optimizes computation time and resources.
Automation — Used in Al, automation, and machine learning.
Data Processing — Essential for sorting, searching, and managing large
datasets.

Security — Used in encryption, hashing, and cybersecurity.

Artificial Intelligence — Powers decision-making in Al models.

146
MATS Centre for Distance and Online Education, MATS University

==

W \\\ f

|

ready for life.

5.1.3 Characteristics of a Good Algorithm: Notes
An algorithm must possess the following characteristics:
Characteristic Description
Input Takes zero or more inputs.
Output Produces at least one output.
Definiteness Each step must be well-defined.
Finiteness Must terminate after a finite number of steps.
Correctness Should produce the correct result for all inputs.
Effectiveness Each step must be simple and computable.
Generality Should be applicable to a broad class of problems.

5.1.4 P and NP Problems

Definition: Problems that can be solved in polynomial time (O(n"k))
using a deterministic algorithm.
Example: Sorting (Merge Sort — O(n log n)), Shortest Path (Dijkstra’s
Algorithm - O(V?)).

Key Concept: If a problem belongs to P, it means it can be solved
efficiently.

5.1.5 NP (Nondeterministic Polynomial Time) Problems
Definition: Problems where a solution can be verified in polynomial
time, but finding the solution may take exponential time.

Example: Traveling Salesman Problem (TSP), Integer Factorization,

Graph Coloring.
Key Concept: If a problem belongs to NP, it means it is hard to solve
but easy to verify.
P vs. NP Complexity Classes
Complexity
Class Definition Example Problems
Sorting, Matrix
P Solvable in polynomial time. Multiplication
Verifiable in polynomial time but
may take exponential time to Sudoku,
NP solve. Hamiltonian Path
As hard as NP problems but not
NP-Hard necessarily verifiable in P time. | Halting Problem

147
MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

Problems that are both NP and Traveling
NP-Complete NP-Hard. Salesman, 3-SAT

The P vs. NP Problem
The biggest open question in computer science:
Is P=NP?
e [fP=NP, then all problems in NP can be solved in polynomial
time.
e [fP+#NP, then some problems remain unsolvable in polynomial

time.
Impact:

e Cryptography depends on P # NP (e.g., RSA encryption).

e Optimization & Al would advance if P = NP.
Algorithms are the building blocks of computing, guaranteeing that
problems can be solved efficiently. P and NP classification of problems
helps in analysis of problems. The P vs. The NP problem is one of the
most significant unresolved issues in computer science.
5.1.6 problems
In computer science, problems are classified to their complexity,
solvability, and computational efficiency. The classification of
problems aids in understanding if a given problem can be solved in a
reasonably efficient way or if we have to resort to heuristics and
approximation methods.
Classification of Problems

Problem Type Description Example Problems

Is a number prime?
Decision Problems with a "Yes" or | Does a path exist in a

Problems "No" answer. graph?

Finding the best solution [Shortest path, Traveling

Optimization among many possible Salesman Problem
Problems ones. (TSP)

Search Finding a specific solution |Finding an element in a
Problems within a large dataset. list, Graph search
Counting Counting the number of |Counting the number of]
Problems valid solutions. possible paths in a grid

148

MATS Centre for Distance and Online Education, MATS University

5.1.7 Computational Complexity Classes

Complexity Class Definition Example Problems

Sorting, Shortest
Problems solvable in Path (Dijkstra’s
P (Polynomial Time) polynomial time. Algorithm)

Problems verifiable in
NP (Nondeterministic |polynomial time but hard | Sudoku, Traveling

Polynomial Time) to solve. Salesman Problem

As hard as NP problems,
but not necessarily
verifiable in polynomial | Halting Problem,
NP-Hard time. Chess Problem

Problems that are both |[3-SAT, Hamiltonian|

NP-Complete (NPC) NP and NP-Hard. Cycle

Key Question: Does P = NP? This remains an open problem in
computer science.
Example: The Traveling Salesman Problem (TSP)
e Given: A set of cities and distances between them.
e (Goal: Find shortest possible route that visits each city exactly
once and returns to start.
e Complexity: NP-Hard (No known polynomial-time solution).
e Real-world Use Cases: Logistics, Circuit Design, Delivery
Optimization.
Knowledge of how to classify problems is essential for designing
efficient algorithms and selecting an appropriate method. All problems
in P have efficient solutions, while NP problems only have
heuristics/approximations for larger inputs. P vs. NP is still among the

most important unsolved problems in computing.

149
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

W

UNIVERSITY

4

|

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

Unit 5.2: Analyzing algorithms: Time and space
complexity

5.2.1 Analyzing algorithms: Time and space complexity, Execution
time
Analyzing Algorithms: Time Complexity, Space Complexity, and
Execution Time
This, in turn, helps understand time and space complexity of respective
algorithm with help of algorithm analysis. It enables us to assess
various algorithms and select the optimal for a specific issue.
Why Analyze Algorithms?

e To measure performance and scalability.

e To compare different approaches to solve a problem.

e To optimize resource usage (memory, CPU).
Time Complexity
Time complexity is the amount of time an algorithm takes to run
based on the input size (n). With Big-O notation it can be expressed.

Common Time Complexities

Complexity Name Example Algorithms
o(1) Constant Time Accessing an array element
O(logn) | Logarithmic Time Binary Search
O(n) Linear Time Linear Search
O(n log n) |Linearithmic Time Merge Sort, Quick Sort
O(n?) Quadratic Time Bubble Sort, Selection Sort
O(2») Exponential Time Recursive Fibonacci
O(n!) Factorial Time |Traveling Salesman Problem (TSP)

Example: Comparing Linear and Binary Search
Linear Search (O(n)) — Scans all elements one by one.
python
CopyEdit
def linear search(arr, target):

for 1 in range(len(arr)):

if arr[1] == target:
return i # Found

return -1 # Not found

Binary Search (O(log n)) — Divides the list in half at each step.

150
MATS Centre for Distance and Online Education, MATS University

¢ e

\y \\\ 1
g{mmss,
UNIVERSITY
ready for life.

|

def binary search(arr, target): Notes
left, right = 0, len(arr) - 1
while left <= right:
mid = (left + right) // 2
if arr[mid] == target:
return mid

elif arr[mid] < target:

left=mid + 1
else:
right =mid - 1
return -1

Binary Search is much faster than Linear Search for large datasets.
Space Complexity
The space complexity is a measure of the amount of memory your
algorithm will take with respect to the input size. It includes:

e Fixed part (code, constants).

e Variable part (dynamic memory allocation, recursion stack).

Common Space Complexities

Complexity Description Example
o) Constant space Swapping two variables
O(n) Linear space Storing an array of size n
O(n?) Quadratic space Adjacency matrix for graphs
O(n logn) | Recursive algorithms Merge Sort

Example: Iterative vs. Recursive Fibonacci
Iterative Fibonacci (O(1) Space)
def fibonacci_iter(n):
a,b=0,1
for _in range(n):
a,b=b,atb
return a
Recursive Fibonacci (O(n) Space - Due to Call Stack)
python
CopyEdit
def fibonacci_rec(n):
ifn<=1:
return n

151
MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.

Notes

ars)

)

return fibonacci_rec(n - 1) + fibonacci_rec(n - 2)
Iteration is more space-efficient than recursion.
5.2.2 Execution Time Measurement
Execution time measurement refers to the process of determining how
long a program or a specific piece of code takes to run on a computer
system. It is an essential aspect of performance analysis, as it helps
programmers evaluate the efficiency of their algorithms and identify
bottlenecks in their code. Execution time is generally influenced by
several factors, including the algorithm’s design, the programming
language used, the efficiency of the compiler or interpreter, the input
size, and the underlying hardware such as CPU speed, memory, and
disk access. There are different ways to measure execution time. One
common method is to record the start time before the execution of the
code and the end time after its completion, then calculate the difference
between them. This can be done using built-in functions in most
programming languages, such as time () in Python or
System.nanoTime() in Java. Execution time can be expressed in units
like milliseconds, microseconds, or nanoseconds depending on the
precision required. Measuring execution time is particularly important
in algorithm analysis, where we want to compare how different
algorithms perform for the same task. For instance, sorting a list of
numbers using Bubble Sort will generally take more time than using
Merge Sort, especially for large datasets. In such cases, execution time
provides practical validation of theoretical time complexity. Beyond
raw measurement, execution profiling tools are often used to provide
detailed insights into which parts of a program consume the most time,
helping developers optimize performance. Ultimately, execution time
measurement is not just about speed, but also about ensuring scalability,
responsiveness, and efficiency in real-world computing applications.
5.2.3 Using Python’s time Module
import time
def sample function(n):

return sum(range(n))
start time = time.time()
sample_function(1000000)
end_time = time.time()
print("Execution Time:", end time - start_time, "seconds")

Factors Affecting Execution Time:

152
MATS Centre for Distance and Online Education, MATS University

==

b, * -)
By
(mAaTs
UNIVERSITY
ready for life.

|

e Hardware (CPU, RAM). Notes

e Programming language and compiler optimizations.

e Input size and distribution.

e [t analyzes the speed with which operations are performed

using time complexity.

e We use space complexity for memory usage analysis.

e Execution time for real-time performance feedback.
So, depending on the requirements of the problem, how the algorithms
are optimized are different in terms of time and space.
5.2.4 Asymptotic notations
When we say the performance(time complexity to be precise) of
algorithm is expressed with n(n being input size) then we mean
asymptotic notation. It is used to compare algorithms and to estimate
scalability.
Why Use Asymptotic Notations?

e Ignore constant factors and lower-order terms.

e Focus on growth rate as input size increases.

e Helps in comparing algorithms efficiently.

Types of Asymptotic Notations

Notation Meaning Definition Example
Upper Bound | f(n) < ¢ * g(n) for | O(n?) for Bubble
O (Big-0O) (Worst Case) large n Sort
Q (Big- Lower Bound | f(n)>c * g(n) for| Q(n) for Linear
Omega) (Best Case) large n Search
Tight Bound ¢t *gn)<f(n)<| O(nlogn) for
® (Theta) | (Average Case) c2 * g(n) Merge Sort

5.2.5 Big-O Notation (Upper Bound, Worst Case)
e Defines the maximum time taken by an algorithm.
e Example: Worst-case Linear Search takes O(n) comparisons.
Example Code: Linear Search (O(n))
def linear search(arr, target):
for 1 in range(len(arr)):
if arr[i] == target:
return i # Found
return -1 # Not found

Best for predicting the worst-case scenario.

153
MATS Centre for Distance and Online Education, MATS University

o=

ready for life.......

Notes

Omega (Q2) Notation (Lower Bound, Best Case)
e Defines minimum time an algorithm will take.
e Example: Best-case Linear Search finds the element at Q(1)
(first position).
Example Code: Best Case for Linear Search ((1))
def best case search(arr, target):
if arr[0] == target:
return 0 # Found in first position
return -1
Useful for theoretical analysis but not always practical.
Theta (®) Notation (Tight Bound, Average Case)
e Defines the exact time complexity (both upper and lower
bounds).
e Example: Merge Sort runs in ®(n log n) in all cases.
Best notation for accurate complexity analysis.

Asymptotic Complexity Comparison

Complexity Name Example Algorithms
o(1) Constant Time Array Access
O(logn) |Logarithmic Time Binary Search

O(n) Linear Time Linear Search

O(n log n) |Linearithmic Time

O(n?) Quadratic Time

Merge Sort, Quick Sort
Bubble Sort

O(2) Exponential Time Fibonacci (Recursive)

O(n!) Factorial Time [Traveling Salesman Problem (TSP)

e Big-O is used for worst case analysis.

e Omega (Q2) denotes the optimal scenario.

e Theta (0O) tightly determines execution time.
Asymptotic notations are one of the fundamental concepts in
computers, Understanding that is very important for algorithms and

optimizing the performance.

154
MATS Centre for Distance and Online Education, MATS University

Unit 5.3: Algorithm design techniques: Greedy, Divide
and conquer, Dynamic programming

5.3.1 Algorithm design techniques: Greedy, Divide and conquer,
Dynamic
1. Greedy Algorithm
A Greedy Algorithm is a problem-solving approach that makes
decisions incrementally, choosing the best apparent option at each step,
known as the local optimum, with the expectation that these choices
will collectively lead to the best overall solution, or global optimum. It
relies on immediate benefit rather than considering all possible future
consequences, making it simpler and faster than other exhaustive
methods. Greedy algorithms are widely used in optimization problems
such as finding the shortest path in networks, constructing minimum
spanning trees, and solving coin change or scheduling problems. While
they are efficient and often effective, they do not always guarantee the
optimal solution for every problem, as the locally best choices can
sometimes prevent reaching the true global optimum. Despite this
limitation, their straightforward logic and efficiency make greedy
algorithms a powerful tool in both theoretical and practical computing
applications Key Features:
e No backtracking or re-evaluation.
e Works best for optimization problems.
e Fast and simple but does not guarantee the best solution always.
Example: Fractional Knapsack Problem
e Problem: Given n items with weights and values, maximize the
total value in knapsack of capacity W, where fractions of items
can be taken.
e Greedy Strategy: Pick items with highest value/weight ratio
first.
e Python Implementation:
def fractional knapsack(items, capacity):
items.sort(key=lambda x: x[1] / x[0], reverse=True) # Sort by
value/weight ratio
total value =0
for weight, value in items:
if capacity >= weight:
capacity -= weight

155
MATS Centre for Distance and Online Education, MATS University

==

§ W
[

ars)

UNIVERSITY

ready for life.

Notes

|

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

total value += value
else:
total value += value * (capacity / weight)
break
return total value
Example usage: (weight, value) pairs
items = [(10, 60), (20, 100), (30, 120)]
capacity = 50
print("Maximum value:", fractional knapsack(items, capacity)) #
Output: 240.0
Time Complexity: O(n log n) (Sorting dominates).
5.3.2 Other Greedy Algorithm Examples:
e Huffman Coding (Data Compression)
e Prim’s & Kruskal’s Algorithm (Minimum Spanning Tree)
e Dijkstra’s Algorithm (Shortest Path for Weighted Graphs)
Limitations: May fail to find the global optimum (e.g., 0/1 Knapsack).
2. Divide and Conquer Algorithm
The Divide and Conquer Algorithm is a fundamental strategy in
computer science that works by breaking down a large, complex
problem into smaller and more manageable subproblems. Each of these
subproblems is then solved, often using the same recursive approach,
until they become simple enough to be handled directly. Once the
solutions to the subproblems are obtained, they are combined to form
the solution to the original larger problem. This method is highly
efficient because it reduces difficult tasks into smaller, easier ones and
then merges their outcomes in a structured way. Classic examples of
this approach include Merge Sort and Quick Sort for efficient sorting,
Binary Search for fast data lookup, and Strassen’s Algorithm for matrix
multiplication. The strength of Divide and Conquer lies in its ability to
improve performance by reducing time complexity, particularly for
problems that naturally fit into smaller independent parts. However, its
recursive nature sometimes requires additional memory for function
calls and intermediate storage. Despite this trade-off, the Divide and
Conquer paradigm remains a powerful technique, widely applied in
algorithms, data structures, and problem-solving across areas such as
sorting, searching, computational geometry, and parallel computing.
Key Features:

e Recursive approach

156
MATS Centre for Distance and Online Education, MATS University

e Used in sorting, searching, and computational geometry
e Efficient for large problems
Example: Merge Sort
Problem: Sort an array using Divide and Conquer.
Steps:
1. Divide: Split the array into two halves.
2. Conquer: Recursively sort each half.
3. Combine: Merge two sorted halves.
Python Implementation:
def merge sort(arr):
if len(arr) > 1:
mid = len(arr) // 2
left half = arr[:mid]
right_half = arr[mid:]
merge_sort(left half)
merge_sort(right_half)
i=j=k=0 # Merging process
while i <len(left half) and j < len(right_half):
if left halfi] <right half]j]:
arr[k] = left _half[i]
i+=1
else:
arr[k] = right_half[j]
jt=1
k+=1
while 1 <len(left half):
arr[k] = left half]i]
i+=1
k+=1
while j <len(right_half):
arr[k] = right_half[j]
j+=1
k+=1
arr = [38, 27,43, 3,9, 82, 10]
merge_sort(arr)
print(arr) # Output: [3, 9, 10, 27, 38, 43, 82]
Time Complexity: O(n log n)

157
MATS Centre for Distance and Online Education, MATS University

¢ e

{mer

W

UNIVERSITY

4

|

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

Other Divide and Conquer Examples:
¢ Quick Sort (Pivot-based sorting, O(n log n))
e Binary Search (O(log n) Search Algorithm)
e Closest Pair of Points (Computational Geometry)
Limitations: May use extra space (Merge Sort needs O(n) extra space).

3. Dynamic Programming (DP)
Dynamic Programming (DP) is an advanced problem-solving

technique that deals with complex problems by breaking them into
smaller, overlapping subproblems and storing the results of these
subproblems to avoid redundant computations. Unlike the Divide and
Conquer approach, where subproblems are independent, DP is
particularly effective when the same subproblems occur repeatedly, as
it reuses previously computed results to enhance efficiency. This
strategy can be implemented in two main ways: the top-down approach
(memorization), where problems are solved recursively and results are
cached for reuse, and the bottom-up approach (tabulation), where
solutions to smaller subproblems are built iteratively to solve larger
problems. Dynamic Programming significantly reduces time
complexity in cases where naive recursive solutions would otherwise
lead to exponential growth. Classic applications include the Fibonacci
sequence, shortest path algorithms like Floyd-War shall and Bellman-
Ford, the Knapsack problem, matrix chain multiplication, and optimal
binary search tree construction. Its strength lies in transforming
computationally expensive tasks into polynomial-time solutions by
exploiting the principles of optimal substructure and overlapping
subproblems. Consequently, DP is a cornerstone in algorithm design,
widely used in optimization, artificial intelligence, operations research,

and computer science theory.

Key Features:
e Optimal substructure (Problem can be broken into
subproblems).
e Overlapping subproblems (Results are reused).
e Uses extra space for memoization or tables.
Example: Fibonacci Series (Using Memoization)

e Problem: Compute Fibonacci numbers efficiently.

158
MATS Centre for Distance and Online Education, MATS University

¢ e

\y \\\ 1
g{mmss,
UNIVERSITY
ready for life.

|

e DP Strategy: Store already computed results.
e Python Implementation (Memoization - Top Down)
def fibonacci(n, memo={}):
if n in memo:
return memo[n]
ifn<=1:
return n
memo|[n] = fibonacci(n - 1, memo) + fibonacci(n - 2, memo)
return memo[n]
print(fibonacci(10)) # Output: 55
5.3.3 Python Implementation (Tabulation - Bottom Up)
def fibonacci_tabulation(n):
dp =10, 1]
for i in range(2, n + 1):
dp.append(dp[i - 1] + dpl[i - 2])
return dp[n]
print(fibonacci_tabulation(10)) # Output: 55
Time Complexity:
e Naive Recursion: O(2")
e Memoization: O(n)
e Tabulation: O(n)
Other Dynamic Programming Examples:
e (/1 Knapsack Problem (Maximize profit in limited capacity)
e Longest Common Subsequence (DNA sequencing, text
similarity)
e Matrix Chain Multiplication (Optimization problems)
e Limitations: Requires extra memory, slower for small inputs.

4. Comparison of Greedy, Divide and Conquer, and Dynamic

Programming
Divide & Dynamic
Feature Greedy Conquer Programming
Step-by-step Recursion + Memoization or
Approach choice Merging Tabulation
Always for
problems with Always for
Optimal Not always optimal overlapping
Solution guaranteed substructure subproblems
159

MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

Recursive, efficient| Efficient but uses
Efficiency | Fast but may fail for large data extra memory
Kruskal’s
Algorithm, Merge Sort, Quick Fibonacci,
Example | Huffman Coding Sort Knapsack

e Greedy approaches are fast, but may not yield the optimal
solution.
e Divide and Conquer splits problems into independent
subproblems and merges results.
e Dynamic programming works the best for problems involving
overlapping subproblems and optimal substructure.
Algorithm Design Techniques These are the types of techniques that
one can use depending on the type of the problem & goodness of the
required optimization.
5.6 programming (one example of each)
Greedy Algorithm Example: Activity Selection Problem
Problem: Given n activities with start and end times, seclect the
maximum number of activities that do not overlap.
Greedy Strategy:
e Sort activities by finish time.
e Select activities that start after the previous selected activity
ends.

Python Implementation:

def activity selection(activities):
activities.sort(key=lambda x: x[1]) # Sort by finish time
selected = [activities[0]] # Select first activity
for i in range(1, len(activities)):
if activities[1][0] >= selected[-1][1]: # Non-overlapping condition
selected.append(activities[i])
return selected
Example Usage
activities = [(1, 3), (2, 5), (4, 6), (6, 8), (5, 9)]
print("Selected Activities:", activity selection(activities))
Time Complexity: O(n log n) (Sorting dominates).
2. Divide and Conquer Example: Quick Sort
Problem: Sort an array using Quick Sort (Divide and Conquer).

Steps:

160
MATS Centre for Distance and Online Education, MATS University

¢ e

\y \\\ 1
g{mmss,
UNIVERSITY
ready for life.

|

1. Choose a pivot element. Notes
2. Partition the array into two halves:
e Left: Elements smaller than the pivot.
e Right: Elements greater than the pivot.
3. Recursively sort both halves.
Python Implementation:
def quick_sort(arr):
if len(arr) <=1:
return arr
pivot = arr[len(arr) // 2] # Choose pivot
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if X > pivot]
return quick sort(left) + middle + quick sort(right)
Example Usage
arr =[10,7,8,9, 1, 5]
print("Sorted Array:", quick sort(arr))
Time Complexity: O(n log n) (Average case).
Dynamic Programming Example: 0/1 Knapsack Problem
Problem: Given n items with weights and values, find the maximum
value that can be obtained in a knapsack of capacity W, where items

cannot be divided.
DP Strategy:

e Use a 2D table to store maximum values for each weight limit.
Python Implementation:
def knapsack(weights, values, capacity):
n = len(values)
dp = [[0] * (capacity + 1) for _in range(n + 1)]
foriin range(l,n + 1):
for w in range(capacity + 1):
if weights[i- 1] <=w:
dp[i][w] = max(values[i - 1] + dp[i - 1][w - weights[i - 1]],
dpli - 1][w)

else:
dp[i][w] = dpli - 1][w]
return dp[n][capacity]
Example Usage

weights = [2, 3, 4, 5]

161
MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

values =[3, 4, 5, 6]
capacity =5
print("Maximum Value:", knapsack(weights, values, capacity)) #
Output: 7
Time Complexity: O(n x W) (Efficient DP solution).
Greedy Algorithm (Activity Selection) — Fast but doesn't always
guarantee optimality.
Divide and Conquer (Quick Sort) — Efficient and widely used in
sorting.
Dynamic Programming (0/1 Knapsack) — Optimal but uses extra
space.
Summary:

An algorithm is a finite sequence of well-defined instructions used to
solve a specific problem or perform a task efficiently. Its performance
is measured through time complexity, which refers to how long an
algorithm takes to execute based on input size (using notations like Big
O, Omega, and Theta), and space complexity, which refers to the
memory consumed during execution. Common complexities range
from O(1) for constant time to O(n), O(n log n), O(n?), and O(2") for
more intensive operations. Several algorithm design techniques exist,
including Divide and Conquer (e.g., Merge Sort), Greedy methods
(e.g., Prim’s algorithm), Dynamic Programming (e.g., Fibonacci
calculation), Backtracking (e.g., N-Queens), and Brute Force
approaches. These techniques help create optimized and scalable
solutions to various computational problems. Algorithms can be
expressed using pseudocode or flowcharts for better understanding and
planning. In computational theory, problems are classified into P, NP,
and NP-Complete based on their solvability and verification
complexity. Efficient algorithms are essential in domains like data
processing, graph theory, Al, encryption, and scheduling, making
algorithm analysis and design a critical foundation of computer science
and software development.
Multiple-Choice Questions (MCQs)
1. Which of the following statements about algorithms is true?

a) An algorithm must always have an infinite number of steps

b) An algorithm must be unambiguous and well-defined

¢) An algorithm must be implemented in a specific programming

language

162
MATS Centre for Distance and Online Education, MATS University

¢ e

\ \\\ N/
‘i mars;
d) An algorithm does not require an input Notes
(Answer: b)

. Which of the following asymptotic notations describes the worst-
case time complexity of an algorithm?
a) Big-0 (0)
b) Omega (Q)
¢) Theta (®)
d) Small-O (o)
(Answer: a)

. What is the time complexity of a linear search algorithm?

a) 0O(1)

b) O(n)

¢) O(logn)

d) Om)
(Answer: b)

. Which of the following problems belongs to the P category?
a) Traveling Salesman Problem
b) Sorting an array using Merge Sort
c) Boolean Satisfiability Problem (SAT)
d) Hamiltonian Cycle Problem
(Answer: b)
. Which of the following statements best describes NP-complete
problems?
a) They are solvable in polynomial time
b) Their solutions can be verified in polynomial time, but solving
them may require exponential time
c) They are always unsolvable
d) They require logarithmic space complexity
(Answer: b)
. Which algorithm design paradigm follows a "divide and conquer"
approach?
a) Greedy
b) Dynamic Programming
¢) Merge Sort
d) Backtracking
(Answer: ¢)
. Which of the following is an example of a greedy algorithm?
a) Quick Sort

163
MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

10.

b) Prim’s Algorithm
c) Merge Sort
d) Binary Search
(Answer: b)
Which algorithm design approach solves subproblems first and then
builds up the final solution?
a) Divide and Conquer
b) Greedy Algorithm
¢) Dynamic Programming
d) Brute Force
(Answer: ¢)
What is the time complexity of the Merge Sort algorithm in the
worst case?
a) O(n)
b) O(nlogn)
c) O(m?)
d) O(logn)
(Answer: b)
Which of the following is NOT an example of a dynamic
programming problem?
a) Fibonacci sequence
b) Knapsack problem
c) Dijkstra’s shortest path
d) Longest common subsequence

(Answer: ¢)

Short Questions

1.
2.

AN

0 =

Define an algorithm and explain its importance in computing.
What is the difference between time complexity and space
complexity?

Explain the significance of Big-O notation in algorithm analysis.
What is the difference between P and NP problems?

What is NP-complete problems, and why are they difficult to solve?
Compare Greedy algorithms and Dynamic Programming
approaches.

Describe Divide and Conquer methodology and give an example.

. Explain why Merge Sort is better than Bubble Sort in terms of

complexity.

164
MATS Centre for Distance and Online Education, MATS University

¢ e

W \\\ f
g{mmss;
UNIVERSITY
ready for life.
9. What is memorization, and how 1is it used in Dynamic Notes
Programming?

10. How does the Knapsack Problem utilize dynamic programming?

Long Questions

1. Explain the role of algorithms in computing, their characteristics,
and provide real-world examples of their applications.

2. Discuss asymptotic notations (Big-O, Omega, and Theta) with
examples.

3. Compare P, NP, and NP-complete problems, and explain their
computational significance.

4. Describe and implement Merge Sort using the Divide and Conquer
approach.

5. Explain Greedy Algorithm methodology with an example such as
Kruskal’s Algorithm.

6. Write a C or Python program to compute the Fibonacci sequence
using recursion and dynamic programming, and compare their
performance.

7. Explain Dynamic Programming, its working principle, and solve a
Longest Common Subsequence (LCS) problem.

8. Compare Greedy algorithms vs. Dynamic Programming vs. Divide
and Conquer, highlighting their advantages and limitations.

9. Discuss the Traveling Salesman Problem (TSP) and its
classification in NP-complete problems.

10. Implement a graph algorithm using BFS (Breadth-First Search) or
DFS (Depth-First Search) in Python or C.

Glossary:
Data Structure: A method of organizing, managing, and
storing data for efficient access and modification.

e Linear Data Structure: A structure where elements are
arranged sequentially (e.g., arrays, stacks, queues).

e Array: A fixed-size sequential collection of elements of the
same type.

e Searching Algorithm: A method to find the position of a target
element in a data structure (e.g., Linear Search, Binary Search).

e Sorting Algorithm: A technique to arrange elements in a

particular order (e.g., Bubble Sort, Insertion Sort, Quick Sort).

165
MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.......

Notes

ars)

)

Stack: A linear data structure following the Last In First Out
(LIFO) principle.

Push and Pop: Operations in a stack to insert and remove
elements respectively.

Recursion: A technique where a function calls itself to solve a
problem.

Queue: A linear structure following the First In First Out
(FIFO) principle.

Enqueue and Dequeue: Operations in a queue to insert and
remove elements respectively.

Linked List: A linear data structure where each element (node)
contains a data part and a pointer to the next node.

Singly Linked List: A list where each node points only to the
next node.

Doubly Linked List: Each node contains two pointers: one to
the next node and one to the previous.

Circular Linked List: The last node points back to the first
node.

Dynamic Memory Allocation: Allocating memory during
runtime, typically used in linked lists.

Tree: A hierarchical data structure with nodes connected in
parent-child relationships.

Binary Tree: A tree where each node has at most two children.
Binary Search Tree (BST): A binary tree where left child <
parent < right child.

AVL Tree: A self-balancing binary search tree where the height
difference between left and right subtrees is at most one.
Graph: A non-linear structure consisting of nodes (vertices)
connected by edges, useful for modeling networks.

Algorithm: A step-by-step procedure or formula for solving a
problem.

Time Complexity: A measure of the amount of time an
algorithm takes to complete as a function of the input size.
Space Complexity: A measure of the memory used by an
algorithm.

Greedy Algorithm: A strategy that makes the locally optimal

choice at each step.

166
MATS Centre for Distance and Online Education, MATS University

==

b, * -)
By
(mAaTs
UNIVERSITY
ready for life.

|

Divide and Conquer: A technique that divides a problem into Notes
smaller subproblems, solves them recursively, and combines

results.

Dynamic Programming: A method for solving complex

problems by breaking them into simpler overlapping

subproblems and storing the results.

References

Linear Data Structure (Chapter 1)

1.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C.
(2022). Introduction to Algorithms (4th ed.). MIT Press.

Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.).
Addison-Wesley Professional.

. McDowell, G. L. (2016). Cracking the Coding Interview: 189

Programming Questions and Solutions (6th ed.). CareerCup.

Knuth, D. E. (1997). The Art of Computer Programming,
Volume 1: Fundamental Algorithms (3rd ed.). Addison-
Wesley.

Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2014).
Data Structures and Algorithms in Java (6th ed.). Wiley.

Stack, Queue and Recursion (Chapter 2)

1.

Weiss, M. A. (2011). Data Structures and Algorithm Analysis
in C++ (4th ed.). Pearson.

Karplus, W. J. (1985). The Practical Guide to Structured
System Design (2nd ed.). Yourdon Press.

. Backhouse, R. C. (1986). Program Construction and

Verification. Prentice Hall.

Horowitz, E., & Sahni, S. (2007). Fundamentals of Data
Structures in C++ (2nd ed.). W. H. Freeman.

Lafore, R. (1998). Data Structures and Algorithms in Java.
Sams Publishing.

Linked List (Chapter 3)

167
MATS Centre for Distance and Online Education, MATS University

o=

g \\\

UNIVERSITY
ready for life.......

Notes

)

ars)

. Wirth, N. (1976). Algorithms + Data Structures = Programs.

Prentice-Hall.

Tanenbaum, A. S., Langsam, Y., & Augenstein, M. J. (1996).
Data Structures Using C. Prentice Hall.

. Malik, D. S. (2010). C++ Programming: From Problem

Analysis to Program Design (5th ed.). Course Technology.

Drozdek, A. (2012). Data Structures and Algorithms in C++
(4th ed.). Cengage Learning.

Shaffer, C. A. (2011). Data Structures and Algorithm Analysis
in C++ (3rd ed.). Dover Publications.

Tree and Graph (Chapter 4)

1.

Skiena, S. S. (2020). The Algorithm Design Manual (3rd ed.).
Springer.

Tarjan, R. E. (1983). Data Structures and Network Algorithms.
Society for Industrial and Applied Mathematics.

Kleinberg, J., & Tardos, E. (2005). Algorithm Design. Pearson
Education.

Even, S. (2011). Graph Algorithms (2nd ed.). Cambridge
University Press.

Nisan, N., & Schocken, S. (2005). The Elements of
Computing Systems: Building a Modern Computer from First
Principles. MIT Press.

Algorithm Analysis and Design (Chapter 5)

1.

Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. (2006).
Algorithms. McGraw-Hill.

Manber, U. (1989). Introduction to Algorithms: A Creative
Approach. Addison-Wesley.

. Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1983). Data

Structures and Algorithms. Addison-Wesley.

Sipser, M. (2012). Introduction to the Theory of Computation
(3rd ed.). Cengage Learning.

Savage, J. E. (1998). Models of Computation: Exploring the
Power of Computing. Addison-Wesley.

168
MATS Centre for Distance and Online Education, MATS University

MATS UNIVERSITY

MATS CENTRE FOR DISTANCE AND ONLINE EDUCATION

UNIVERSITY CAMPUS: Aarang Kharora Highway, Aarang, Raipur, CG, 493 441
RAIPUR CAMPUS: MATS Tower, Pandri, Raipur, CG, 492 002

T:07714078994, 95, 96, 98 Toll Free ODL MODE : 81520 79999, 81520 29999

Website: www.matsodl.com

