

Master of Computer Applications

MCA 103

Data Structure Concepts

Course Introduction 1

Module 1
Linear data structures

3

Unit 1.1: Data structure concepts And Linear data structures 4

Unit 1.2: Linear Array 31

Unit 1.3: Searching And Sorting Algorithm 55

Module 2

Stack, queue and recursion
69

Unit 2.1: Stack 70

Unit 2.2: Recursion 74

Unit 2.3: Queue 80

Module 3

Linked list
94

Unit 3.1: Linked list 95

Unit 3.2: Operations on Linked list 99

Unit 3.3 Memory Allocation 107

Module 4

Association rule mining
116

Unit 4.1: Tree concepts And Binary Tree 117

Unit 4.2: Algorithms: Binary Search Tree and AVL 127

Unit 4.3: Graph 133

Module 5

Classification and cluster analysis
145

Unit 5.1: The Role of Algorithm in Computing 146

Unit 5.2: Analyzing algorithms: Time and space complexity 150

Unit 5.3: Algorithm design techniques: Greedy, Divide and conquer,
Dynamic programming 155

Glossary 153

References 155

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,

Chhattisgarh

Prof. (Dr.) Jatinderkumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies

and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSE COORDINATOR

Dr. Poonam Singh, Associate Professor, MATS University, Raipur, Chhattisgarh

COURSE PREPARATION

Dr. Poonam Singh, Associate Professor and Mr. Sanjay Behara, Assistant Professor, MATS

University, Raipur, Chhattisgarh

March, 2025

ISBN: 978-93-49916-15-9

@MATS Centre for Distance and Online Education, MATS University, Village- Gullu, Aarang, Raipur-

(Chhattisgarh)

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in any

form, by mimeograph or any other means, without permission in writing from MATS University,

Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed & Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.

Meghanadhudu Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Disclaimer-Publisher of this printing material is not responsible for any error or dispute from

contents of this course material, this is completely depends on AUTHOR’S MANUSCRIPT.

Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

Acknowledgement

The material (pictures and passages) we have used is purely for educational

purposes. Every effort has been made to trace the copyright holders of material

reproduced in this book. Should any infringement have occurred, the publishers and

editors apologize and will be pleased to make the necessary corrections in future

editions of this book.

1
MATS Centre for Distance and Online Education, MATS University

COURSE INTRODUCTION

Data Structures is a fundamental subject in computer science that

focuses on organizing, storing, and managing data efficiently. It plays

a crucial role in algorithm development and problem-solving.

Understanding data structures enables efficient memory usage, quick

data retrieval, and optimized computational performance. This course

covers various types of data structures, including linear and nonlinear

structures, along with their applications in real-world scenarios.

Module 1: Linear Data Structures

This Unit introduces the basic concept of linear data structures,

where data elements are arranged sequentially. It covers arrays and

linked lists, their operations (insertion, deletion, traversal,

searching, and sorting), and their applications. The comparison

between static and dynamic memory allocation is also discussed.

Module 2: Stack, Queue, and Recursion

In this Unit, we explore stack and queue, two important linear data

structures with different access methods.

• Stack follows the LIFO (Last In, First Out) principle,

supporting operations like push, pop, and peek.

• Queue follows the FIFO (First In, First Out) principle, with

operations like enqueue and dequeue. Variants such as

circular queue, priority queue, and deque are also discussed.

• Recursion, a method where a function calls itself, is

introduced along with its applications and differences from

iteration.

2
MATS Centre for Distance and Online Education, MATS University

Notes Module 3: Linked Lists

This Unit focuses on linked lists, a dynamic data structure where

elements (nodes) are connected through pointers. Different types of

linked lists—singly linked list, doubly linked list, and circular

linked list—are discussed in detail, along with operations like

insertion, deletion, searching, and traversal. Their advantages over

arrays and real-world applications are also covered.

Module 4: Trees and Graphs

This Unit introduces hierarchical and non-linear data structures:

• Trees, including binary trees, binary search trees (BST), and

tree traversals (preorder, inorder, postorder). Applications in

hierarchical data representation are explored.

• Graphs, including representations (adjacency matrix and

adjacency list), traversal techniques (BFS and DFS), and

applications in networking and pathfinding.

Module 5: Algorithm Analysis and Design

This Unit focuses on the efficiency of algorithms using asymptotic

notations (Big O, Theta, and Omega). Different algorithm design

techniques such as divide and conquer, greedy algorithms, dynamic

programming, and backtracking are introduced. The importance of

selecting appropriate data structures for optimizing algorithm

performance is also discussed.

3
MATS Centre for Distance and Online Education, MATS University

MODULE 1

LINEAR DATA STRUCTURES

LEARNING OUTCOMES

By the end of this Unit, students will be able to:

• Understand data structure concepts, data types, and abstract

data types (ADTs) and their role in programming.

• Explain linear data structures using sequential organization,

including their operations and applications.

• Learn about arrays, their classification, properties,

representation, and memory allocation.

• Implement searching algorithms (Linear Search, Binary

Search) for efficient data retrieval.

• Apply sorting algorithms (Insertion Sort, Selection Sort, and

Merge Sort) to organize data effectively.

4
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1.1: Data structure concepts And Linear data

structures

1.1.1 Data structure concepts, Data type, and Abstract data type

Data structures are essential elements of computer science that facilitate

the efficient storage, organization, and management of data. They

provide representation of data in memory as well as insertion, deletion,

and searching in-memory operations. A data structure defines an

algorithm’s efficiency, making it the essential concept for optimizing

performance. Prevalent data structures encompass arrays, linked lists,

stacks, queues, trees, graphs, and hash tables. Each of these

architectures has unique advantages and disadvantages depending on

particular application.

1.1.2 Data Type

But in a way, it lists resources that a variable can store in a

programming language. It delineates the permissible values for a

variable and the procedures applicable to those values. Data types can

be categorized into primitive kinds and non-primitive types. Primitive

data types are types such as integers, floating-point numbers,

characters, and Booleans that encapsulate a singular value. Non-

primitive data types, including arrays, structures, and classes, hold

multiple values or complicated data. Also choose the correct data type

to make sure of memory and logic correctness in the program.

Figure 1.1.1(data Structure)

5
MATS Centre for Distance and Online Education, MATS University

Notes

1.1.3 Abstract Data Type (ADT)

An abstract data type (ADT) is conceptual model for a data structure

characterized by its behavior rather than its implementation. It

describes what operations are supported by the data and what result

they should produce and how it would be implemented. Lists, stacks,

queues and dictionaries are commonly used ADTS. A stack ADT, for

example, can utilize operations like push, pop, and peek, irrespective

of whether the stack is implemented using an array or linked list. But

these classes combined to form ADTs allow you to arrive at a better

design that generates modular and reusable code, allowing for more

efficient software development.

1.1.4 Linear data structures using sequential organization,

Operations

Key points: Linear data structures are essential elements of computer

science and are crucial in the development of algorithms and software.

Data elements are maintained in a sequential arrangement, with each

element linked to its neighboring element. However, the sequential

arrangement of the data renders these structures very natural, and hence

easy to implement, manipulate and read. In this investigation we'll

cover linear data structures that use the sequential layout, looking more

closely at their operations, implementation techniques, performance

characteristics, and where each would be applied in practice. An

ordered structure indicates the orientation of data components in

neighboring memory spots or with specific references to ensure logical

proximity. Such an arrangement allows direct access to the elements

and performs these operations are insertion, deletion, traversal, search,

and modification. Query, Insert, and Delete operations However, these

operations may have performance implications based on their

respective implementations of linear data structures and memory

management techniques. A linear data structure is a structure that has

only one dimension. This characteristic makes them a good fit for

representing data that has a built-in sequential order which can be

natural such as lists, queues, and stacks. The sequential organization

can be maintained either by array-based implementations or linked

implementations (array based is less flexible while linked can have

more complex time requirements).

6
MATS Centre for Distance and Online Education, MATS University

Notes

 Figure 1.1.2 Arrays

Arrays: The Fundamental Sequential Structure

Arrays represent the most basic type of linear data structure, as they are

organized in a sequential format. An array is data structure comprising

a group of elements of same data type, stored in contiguous memory

regions. This makes it possible to jump to any element in constant time

(as long as you know the index), so arrays are efficient to use if you do

a lot of random access.

1.1.5 Memory Allocation in Arrays

Arrays can be allocated memory in two ways:

1. Static Allocation: Static allocation refers to the process of

reserving memory for variables or data structures at compile

time, meaning the size and type of memory blocks are fixed

before the program runs. In the case of arrays, once the size is

declared, it cannot be changed during execution. This approach

is simple and efficient in terms of memory access because the

compiler knows exactly where each element will be stored.

However, it lacks flexibility, as the memory cannot be resized

dynamically based on changing requirements at runtime. Static

allocation of an array with 100 integer elements

2. Dynamic Allocation: Memory is allocated at runtime,

permitting flexibility in array dimensions. This approach is

more adaptable to varying data sizes but requires explicit

memory management.

int* numbers = (int*) malloc(100 * sizeof(int)); // Dynamic

allocation in C

int* numbers = new int[100]; // Dynamic allocation in C++

7
MATS Centre for Distance and Online Education, MATS University

Notes Basic Operations on Arrays

1.1.6 Arrays support several fundamental operations:

1. Accessing Elements

Accessing an element at a specific index is a constant-time operation

(O(1)) because arrays provide direct access to elements through

indices.

int value = numbers[5]; // Accessing the element at index 5

2. Insertion Operations

Insertion in arrays depends on the position:

• Insertion at the End: If the array has space, inserting at the end

is an O(1) operation.

if (currentSize < maxSize) {

 array[currentSize] = newElement;

 currentSize++;

}

• Insertion at the Beginning or Middle: Requires shifting

elements to make space, resulting in an O(n) time complexity.

// Insertion at index 'position'

for (int i = currentSize; i > position; i--) {

 array[i] = array[i-1];

}

array[position] = newElement;

currentSize++;

3. Deletion Operations

Similar to insertion, deletion efficiency depends on the position:

• Deletion from the End: O(1) time complexity.

if (currentSize > 0) {

 currentSize--;

}

• Deletion from the Beginning or Middle: O(n) time complexity

due to element shifting.

// Deletion at index 'position'

for (int i = position; i < currentSize - 1; i++) {

 array[i] = array[i+1];

}

currentSize--;

4. Searching Operations

Arrays support two main search approaches:

8
MATS Centre for Distance and Online Education, MATS University

Notes • Linear Search: Examines each element sequentially until

finding the target or reaching the end, with O(n) time

complexity.

int linearSearch(int array[], int size, int target) {

 for (int i = 0; i < size; i++) {

 if (array[i] == target) {

 return i; // Return index of found element

 }

 }

 return -1; // Element not found

}

• Binary Search: For sorted arrays, offers O(log n) time

complexity by repeatedly dividing search space in half.

int binarySearch(int array[], int left, int right, int target) {

 while (left <= right) {

 int mid = left + (right - left) / 2;

 if (array[mid] == target)

 return mid;

 if (array[mid] < target)

 left = mid + 1;

 else

 right = mid - 1;

 }

 return -1; // Element not found

}

5. Traversal Operations

Traversing an array involves visiting each element sequentially,

typically using loops:

void traverse(int array[], int size) {

 for (int i = 0; i < size; i++) {

 // Process array[i]

 printf("%d ", array[i]);

 }

}

1.1.7Advantages and Limitations of Arrays

Advantages:

• Constant-time random access (O(1))

9
MATS Centre for Distance and Online Education, MATS University

Notes • Memory efficiency due to lack of overhead for storing

relationships

• Cache-friendly due to contiguous memory storage

• Simple implementation

• Limitations:

• Fixed size in static implementations

• Inefficient insertion and deletion operations at arbitrary

positions

• Memory wastage when allocated size exceeds actual data size

• Homogeneous data type requirement

1.1.7 Multi-dimensional Arrays

Arrays can be extended to multiple dimensions to represent more

complex data relationships:

int matrix[3][4]; // 2D array with 3 rows and 4 columns

// Accessing elements in a 2D array

int value = matrix[1][2]; // Accessing element at row 1, column 2

// Traversing a 2D array

for (int i = 0; i < 3; i++) {

 for (int j = 0; j < 4; j++) {

 // Process matrix[i][j]

 }

}

Multi-dimensional arrays are stored in memory using either row-major

order (C/C++) or column-major order (Fortran), impacting how data is

accessed and cached.

1.1.8 Dynamic Arrays: Extending the Basic Array

Unlike static arrays that have a fixed size, dynamic arrays resize

themselves when they run out of space. They still have O(1) access

time and however they can grow in size.

Implementation of Dynamic Arrays

A typical implementation involves:

1. Initializing with a default capacity

2. Keeping track of the current size

3. Resizing when necessary

class DynamicArray {

10
MATS Centre for Distance and Online Education, MATS University

Notes private:

 int* array;

 int size;

 int capacity;

 void resize() {

 capacity *= 2;

 int* newArray = new int[capacity];

 for (int i = 0; i < size; i++) {

 newArray[i] = array[i];

 }

 delete[] array;

 array = newArray;

 }

public:

 DynamicArray() {

 capacity = 10;

 size = 0;

 array = new int[capacity];

 }

 void add(int element) {

 if (size == capacity) {

 resize();

 }

 array[size++] = element;

 }

 // Other operations...

};

Operations on Dynamic Arrays

Dynamic arrays support the same operations as static arrays but with

added resizing capability:

1. Amortized Analysis of Insert Operation

Insertion at the end has an amortized O(1) time complexity. Though

individual resize operations are O(n), they are rare enough that the

11
MATS Centre for Distance and Online Education, MATS University

Notes amortized cost of each operation is constantapplied to the underlying

array.

void add(int element) {

 if (size == capacity) {

 resize(); // O(n) operation but happens rarely

 }

 array[size++] = element; // O(1) operation

}

2. Performance Considerations

• Growth Factor: Typically set to 2, meaning the array doubles in

size when full

• Shrinking: Some implementations also decrease capacity when

utilization falls below a certain threshold

• Dynamic Arrays in Standard Libraries

• Various programming languages provide dynamic array

implementations:

• std::vector in C++

• ArrayList in Java

• List in C#

• list in Python (with additional functionality)

// Using std::vector in C++

#include <vector>

vector<int> numbers;

numbers.push_back(10); // Add element to the end

Stacks: LIFO Sequential Structures

A stack is a linear data structure that exhibits a Last-In-First-Out (LIFO)

order: in a stack, the last added element is the first removed one. Like

a stack of plates, you can only add and remove plates at the top (Last

In First Out).

1.1.8 Operations on Stacks

Stacks support two primary operations:

1. Push Operation

Push adds an element to the top of the stack:

void push(Stack* stack, int value) {

 if (stack->top == stack->capacity - 1) {

 // Stack overflow

 return;

 }

12
MATS Centre for Distance and Online Education, MATS University

Notes stack->array[++stack->top] = value;

}

2. Pop Operation

Pop removes and returns the element from the top of the stack:

int pop(Stack* stack) {

 if (stack->top == -1) {

 // Stack underflow

 return -1;

 }

 return stack->array[stack->top--];

}

3. Additional Stack Operations

• Peek/Top: Returns the top element without removing it

• isEmpty: Checks if the stack is empty

• isFull: Checks if the stack is full (for array implementations)

• Size: Returns the number of elements in the stack

int peek(Stack* stack) {

 if (stack->top == -1) {

 // Stack is empty

 return -1;

 }

 return stack->array[stack->top];

}

bool isEmpty(Stack* stack) {

 return stack->top == -1;

}

bool isFull(Stack* stack) {

 return stack->top == stack->capacity - 1;

}

int size(Stack* stack) {

 return stack->top + 1;

}

1.1.9 Stack Implementations

Stacks can be implemented using:

1. Array-based Implementation

13
MATS Centre for Distance and Online Education, MATS University

Notes typedef struct {

 int* array;

 int top;

 int capacity;

} Stack;

Stack* createStack(int capacity) {

 Stack* stack = (Stack*)malloc(sizeof(Stack));

 stack->capacity = capacity;

 stack->top = -1;

 stack->array = (int*)malloc(stack->capacity * sizeof(int));

 return stack;

}

2. Linked List-based Implementation

typedef struct Node {

 int data;

 struct Node* next;

} Node;

typedef struct {

 Node* top;

 int size;

} Stack;

Stack* createStack() {

 Stack* stack = (Stack*)malloc(sizeof(Stack));

 stack->top = NULL;

 stack->size = 0;

 return stack;

}

void push(Stack* stack, int value) {

 Node* newNode = (Node*)malloc(sizeof(Node));

 newNode->data = value;

 newNode->next = stack->top;

 stack->top = newNode;

 stack->size++;

}

14
MATS Centre for Distance and Online Education, MATS University

Notes

int pop(Stack* stack) {

 if (stack->top == NULL) {

 // Stack underflow

 return -1;

 }

 Node* temp = stack->top;

 int value = temp->data;

 stack->top = stack->top->next;

 free(temp);

 stack->size--;

 return value;

}

1.1.10 Applications of Stacks

1.Function Call Management (Call Stack)

When a program calls a function, information like local variables and

the return address is stored in a stack.

Example:

In C/C++ or Java, when a function calls another function, the call stack

keeps track of where to return after finishing.

2. Expression Evaluation and Conversion

Stacks help in converting infix expressions (like A + B) into postfix or

prefix forms, which are easier for computers to evaluate. Stacks are also

used to evaluate postfix expressions.

Example:

In calculators or interpreters, when you type (3 + 5) * 2, the system uses

a stack internally to get the result.

3. Syntax Parsing in Compilers

While compiling a program, the compiler needs to check matching

parentheses, braces, or tags.A stack is used to keep track of opening and

closing symbols.

Example:

15
MATS Centre for Distance and Online Education, MATS University

Notes In a compiler, if you forget a closing bracket }, the stack helps detect

that error.

4. Undo Mechanism in Text Editors

Many applications (like Microsoft Word) keep a stack of previous

actions.

When you press Undo, the last action is popped from the stack and

reversed.

Example:

Typing something and then pressing Ctrl+Z.

 5. Backtracking Algorithms

Stacks help to remember previous steps so you can go back.

Example:

Solving a maze — you move forward, and if you hit a dead end, you

backtrack using the stack.

 6. Browser Back Button

Web browsers keep track of the pages you visit in a stack.When you

click Back, the last page is popped from the stack and loaded again.

Example:

Clicking back in Chrome takes you to the previous page you visited.

Checking for Balanced Parentheses

bool areParenthesesBalanced(char* expr) {

 Stack* stack = createStack(strlen(expr));

 for (int i = 0; expr[i]; i++) {

 if (expr[i] == '(' || expr[i] == '[' || expr[i] == '{') {

 push(stack, expr[i]);

 } else if (expr[i] == ')' || expr[i] == ']' || expr[i] == '}') {

 if (isEmpty(stack)) {

 return false;

 }

 char top = pop(stack);

16
MATS Centre for Distance and Online Education, MATS University

Notes if ((expr[i] == ')' && top != '(') ||

 (expr[i] == ']' && top != '[') ||

 (expr[i] == '}' && top != '{')) {

 return false;

 }

 }

 }

 return isEmpty(stack);

}

Queues: FIFO Sequential Structures

A queue is a linear data structure with a First-In-First-Out (FIFO)

order, like people in line. First In, First Out (FIFO) — The first element

added is the first one to be removed.

Operations on Queues

Queues support two primary operations:

1. Enqueue Operation

Adds an element to the rear of the queue:

void enqueue(Queue* queue, int value) {

 if ((queue->rear + 1) % queue->capacity == queue->front) {

 // Queue is full

 return;

 }

 if (queue->front == -1) {

 queue->front = 0;

 }

 queue->rear = (queue->rear + 1) % queue->capacity;

 queue->array[queue->rear] = value;

}

2. Dequeue Operation

Removes and returns the element from the front of the queue:

int dequeue(Queue* queue) {

 if (queue->front == -1) {

 // Queue is empty

 return -1;

 }

17
MATS Centre for Distance and Online Education, MATS University

Notes int value = queue->array[queue->front];

 if (queue->front == queue->rear) {

 // Last element being dequeued

 queue->front = queue->rear = -1;

 } else {

 queue->front = (queue->front + 1) % queue->capacity;

 }

 return value;

}

3. Additional Queue Operations

• Front: Returns the front element without removing it

• isEmpty: Checks if the queue is empty

• isFull: Checks if the queue is full

• Size: Returns the number of elements in the queue

int front(Queue* queue) {

 if (queue->front == -1) {

 // Queue is empty

 return -1;

 }

 return queue->array[queue->front];

}

bool isEmpty(Queue* queue) {

 return queue->front == -1;

}

bool isFull(Queue* queue) {

 return (queue->rear + 1) % queue->capacity == queue->front;

}

int size(Queue* queue) {

 if (queue->front == -1) {

 return 0;

 }

 return (queue->rear - queue->front + queue->capacity) % queue-

>capacity + 1;

}

Queue Implementations

Queues can be implemented using:

1. Array-based Implementation (Circular Queue)

18
MATS Centre for Distance and Online Education, MATS University

Notes A circular queue efficiently uses array space by wrapping around when

reaching the end:

typedef struct {

 int* array;

 int front;

 int rear;

 int capacity;

} Queue;

Queue* createQueue(int capacity) {

 Queue* queue = (Queue*)malloc(sizeof(Queue));

 queue->capacity = capacity;

 queue->front = queue->rear = -1;

 queue->array = (int*)malloc(queue->capacity * sizeof(int));

 return queue;

}

2. Linked List-based Implementation

typedef struct Node {

 int data;

 struct Node* next;

} Node;

typedef struct {

 Node* front;

 Node* rear;

 int size;

} Queue;

Queue* createQueue() {

 Queue* queue = (Queue*)malloc(sizeof(Queue));

 queue->front = queue->rear = NULL;

 queue->size = 0;

 return queue;

}

void enqueue(Queue* queue, int value) {

 Node* newNode = (Node*)malloc(sizeof(Node));

 newNode->data = value;

 newNode->next = NULL;

 if (queue->rear == NULL) {

 queue->front = queue->rear = newNode;

 } else {

19
MATS Centre for Distance and Online Education, MATS University

Notes queue->rear->next = newNode;

 queue->rear = newNode;

 }

 queue->size++;

}

int dequeue(Queue* queue) {

 if (queue->front == NULL) {

 // Queue is empty

 return -1;

 }

 Node* temp = queue->front;

 int value = temp->data;

 queue->front = queue->front->next;

 if (queue->front == NULL) {

 queue->rear = NULL;

 }

 free(temp);

 queue->size--;

 return value;

}

Variations of Queues

Several specialized queue variations exist:

1. Double-ended Queue (Deque)

A deque allows insertion and deletion at both ends:

typedef struct {

 int* array;

 int front;

 int rear;

 int capacity;

} Deque;

void insertFront(Deque* deque, int value) {

 if (isFull(deque)) {

 return;

 }

 if (deque->front == -1) {

 deque->front = deque->rear = 0;

 } else {

20
MATS Centre for Distance and Online Education, MATS University

Notes deque->front = (deque->front - 1 + deque->capacity) % deque-

>capacity;

 }

 deque->array[deque->front] = value;

}

void insertRear(Deque* deque, int value) {

 if (isFull(deque)) {

 return;

 }

 if (deque->front == -1) {

 deque->front = deque->rear = 0;

 } else {

 deque->rear = (deque->rear + 1) % deque->capacity;

 }

 deque->array[deque->rear] = value;

}

int deleteFront(Deque* deque) {

 if (isEmpty(deque)) {

 return -1;

 }

 int value = deque->array[deque->front];

 if (deque->front == deque->rear) {

 deque->front = deque->rear = -1;

 } else {

 deque->front = (deque->front + 1) % deque->capacity;

 }

 return value;

}

int deleteRear(Deque* deque) {

 if (isEmpty(deque)) {

 return -1;

 }

 int value = deque->array[deque->rear];

 if (deque->front == deque->rear) {

 deque->front = deque->rear = -1;

 } else {

21
MATS Centre for Distance and Online Education, MATS University

Notes deque->rear = (deque->rear - 1 + deque->capacity) % deque-

>capacity;

 }

 return value;

}

2. Priority Queue

A priority queue serves elements based on their priority rather than

insertion order.

3. Circular Queue

A circular queue optimizes array space usage by connecting the end to

the beginning:

// Circular queue was covered in the basic queue implementation

Applications of Queues

Queues are used in various applications:

• Process scheduling in operating systems

• Breadth-first search in graphs

• Print job spooling

• Handling of interrupts in real-time systems

• Buffering in various applications (keyboard buffer, web servers)

• Message queues in distributed systems

Example: Level Order Traversal of a Binary Tree

void levelOrderTraversal(TreeNode* root) {

 if (root == NULL) {

 return;

 }

 Queue* queue = createQueue();

 enqueue(queue, root);

 while (!isEmpty(queue)) {

 TreeNode* current = dequeue(queue);

 printf("%d ", current->data);

 if (current->left) {

 enqueue(queue, current->left);

 }

 if (current->right) {

 enqueue(queue, current->right);

 }

 }

}

22
MATS Centre for Distance and Online Education, MATS University

Notes 1.1.11 Linked Lists: Dynamic Sequential Structures

A linked list is a collection with a linear structure where each element

is stored in a node that consists of a value and a reference to the next

element. They do not need to allocate memory contiguously, unlike

arrays, which allows them to grow dynamically and have efficient

insertions/deletions in between.

1.1.12 Types of Linked Lists

Linked lists come in several variations:

1. Singly Linked List

Each node contains data and a pointer to the next node:

typedef struct Node {

 int data;

 struct Node* next;

} Node;

2. Doubly Linked List

Each node contains data and pointers to both the next and previous

nodes:

typedef struct Node {

 int data;

 struct Node* next;

 struct Node* prev;

} Node;

3. Circular Linked List

The last node points back to the first node, creating a circle:

// For a circular singly linked list

// The last node's next points to the head

Operations on Linked Lists

Linked lists support various operations:

1. Insertion Operations

• Insertion at the Beginning:

void insertAtBeginning(Node** head, int value) {

 Node* newNode = (Node*)malloc(sizeof(Node));

 newNode->data = value;

 newNode->next = *head;

 *head = newNode;

}

• Insertion at the End:

void insertAtEnd(Node** head, int value) {

23
MATS Centre for Distance and Online Education, MATS University

Notes Node* newNode = (Node*)malloc(sizeof(Node));

 newNode->data = value;

 newNode->next = NULL;

 if (*head == NULL) {

 *head = newNode;

 return;

 }

 Node* current = *head;

 while (current->next != NULL) {

 current = current->next;

 }

 current->next = newNode;

}

• Insertion at a Specific Position:

void insertAtPosition(Node** head, int value, int position) {

 if (position < 0) {

 return;

 }

 if (position == 0 || *head == NULL) {

 insertAtBeginning(head, value);

 return;

 }

 Node* newNode = (Node*)malloc(sizeof(Node));

 newNode->data = value;

 Node* current = *head;

 for (int i = 0; i < position - 1 && current->next != NULL; i++) {

 current = current->next;

 }

 newNode->next = current->next;

 current->next = newNode;

}

2. Deletion Operations

• Deletion from the Beginning:

void deleteFromBeginning(Node** head) {

 if (*head == NULL) {

 return;

24
MATS Centre for Distance and Online Education, MATS University

Notes }

 Node* temp = *head;

 *head = (*head)->next;

 free(temp);

}

• Deletion from the End:

void deleteFromEnd(Node** head) {

 if (*head == NULL) {

 return;

 }

 if ((*head)->next == NULL) {

 free(*head);

 *head = NULL;

 return;

 }

 Node* current = *head;

 while (current->next->next != NULL) {

 current = current->next;

 }

 free(current->next);

 current->next = NULL;

}

• Deletion at a Specific Position:

void deleteAtPosition(Node** head, int position) {

 if (*head == NULL || position < 0) {

 return;

 }

 if (position == 0) {

 deleteFromBeginning(head);

 return;

 }

 Node* current = *head;

 for (int i = 0; i < position - 1 && current->next != NULL; i++) {

 current = current->next;

 }

 if (current->next == NULL) {

 return;

 }

25
MATS Centre for Distance and Online Education, MATS University

Notes Node* temp = current->next;

 current->next = current->next->next;

 free(temp);

}

3. Search Operation

Node* search(Node* head, int value) {

 Node* current = head;

 while (current != NULL) {

 if (current->data == value) {

 return current;

 }

 current = current->next;

 }

 return NULL;

}

4. Traversal Operation

void traverse(Node* head) {

 Node* current = head;

 while (current != NULL) {

 printf("%d ", current->data);

 current = current->next;

 }

 printf("\n");

}

Doubly Linked List Operations

Doubly linked lists offer bidirectional traversal but require more

complex operations:

1. Insertion in a Doubly Linked List

void insertAtBeginning(Node** head, int value) {

 Node* newNode = (Node*)malloc(sizeof(Node));

 newNode->data = value;

 newNode->next = *head;

 newNode->prev = NULL;

 if (*head != NULL) {

 (*head)->prev = newNode;

 }

 *head = newNode;

}

26
MATS Centre for Distance and Online Education, MATS University

Notes void insertAtEnd(Node** head, int value) {

 Node* newNode = (Node*)malloc(sizeof(Node));

 newNode->data = value;

 newNode->next = NULL;

 if (*head == NULL) {

 newNode->prev = NULL;

 *head = newNode;

 return;

 }

 Node* current = *head;

 while (current->next != NULL) {

 current = current->next;

 }

 current->next = newNode;

 newNode->prev = current;

}

2. Deletion in a Doubly Linked List

void deleteNode(Node** head, Node* toDelete) {

 if (*head == NULL || toDelete == NULL) {

 return;

 }

 if (*head == toDelete) {

 *head = toDelete->next;

 }

 if (toDelete->next != NULL) {

 toDelete->next->prev = toDelete->prev;

 }

 if (toDelete->prev != NULL) {

 toDelete->prev->next = toDelete->next;

 }

 free(toDelete);

}

Circular Linked List Operations

Circular linked lists require special handling of the last node:

void insertIntoEmpty(Node** head, int value) {

 Node* newNode = (Node*)malloc(sizeof(Node));

 newNode->data = value;

 *head = newNode;

27
MATS Centre for Distance and Online Education, MATS University

Notes newNode->next = *head;

}

void insertAtBeginning(Node** head, int value) {

 if (*head == NULL) {

 insertIntoEmpty(head, value);

 return;

 }

 Node* newNode = (Node*)malloc(sizeof(Node));

 newNode->data = value;

 Node* current = *head;

 while (current->next != *head) {

 current = current->next;

 }

 newNode->next = *head;

 current->next = newNode;

 *head = newNode;

}

1.1.13 Advantages and Limitations of Linked Lists

Advantages:

• Dynamic size

• Efficient insertions and deletions

• No memory wastage

• Flexible memory management

Limitations:

• Random access is not supported (O(n) time complexity)

• Extra memory required for pointers

• Not cache-friendly due to non-contiguous memory

• Reverse traversal is difficult in singly linked lists

• Applications of Linked Lists

• Linked lists are used in various applications:

• Implementation of stacks and queues

• Dynamic memory allocation

• Representation of sparse matrices

• Polynomial manipulation

• Hash tables (chaining)

• Adjacency lists for graphs

Example: Reversing a Linked List

Node* reverseList(Node* head) {

28
MATS Centre for Distance and Online Education, MATS University

Notes Node* prev = NULL;

 Node* current = head;

 Node* next = NULL;

 while (current != NULL) {

 next = current->next;

 current->next = prev;

 prev = current;

 current = next;

 }

 return prev;

}

Specialized Linear Data Structures

Sparse Arrays

Sparse arrays efficiently store arrays with many default values by only

storing non-default entries.

typedef struct {

 int row;

 int col;

 int value;

} Element;

typedef struct {

 int rows;

 int cols;

 int numElements;

 Element* elements;

} SparseArray;

Skip Lists

Skip lists provide probabilistic alternatives to balanced trees with O(log

n) average search time.

typedef struct SkipListNode {

 int value;

 int level;

 struct SkipListNode** forward;

} SkipListNode;

typedef struct {

 int level;

 int size;

 SkipListNode* header;

29
MATS Centre for Distance and Online Education, MATS University

Notes } SkipList;

Memory-Efficient Linked Lists (XOR Linked Lists)

XOR linked lists combine both addressing (previous and next) with

bitwise XOR operation to compress Memory.

typedef struct Node {

 int data;

 struct Node* npx; // XOR of next and previous node addresses

} Node;

// Helper functions to get next and previous nodes

Node* XOR(Node* a, Node* b) {

 return (Node*)((uintptr_t)a ^ (uintptr_t)b);

}

Performance Comparison and Selection Criteria

Time Complexity Comparison

Operation Array
Dynamic

Array

Linked

List
Stack Queue

Access O(1) O(1) O(n) O(1)* O(1)*

Insert

(Start)
O(n) O(n) O(1) N/A N/A

Insert

(End)
O(1)**

Amortized

O(1)

O(n)/O(1

)***
O(1) O(1)

Insert

(Middle)
O(n) O(n) O(n) N/A N/A

Delete

(Start)
O(n) O(n) O(1) N/A O(1)

Delete

(End)
O(1)** O(1)

O(n)/O(1

)***
O(1) N/A

Delete

(Middle)
O(n) O(n) O(n) N/A N/A

Search
O(n)/O(log

n)****

O(n)/O(log

n)****
O(n) N/A N/A

* For top/front elements only ** If size is tracked *** O(1) if tail

pointer is maintained **** O(log n) with binary search if sorted

30
MATS Centre for Distance and Online Education, MATS University

Notes Space Complexity Comparison

Data Structure Space Complexity

Array (Static) O(n)

Selection Criteria

Choosing the appropriate data structure depends on:

Data Structure Space Complexity

Array (Static) O(n)

Dynamic Array O(n)

Linked List O(n)

Stack O(n)

Queue O(n)

1. Access Pattern: Random access vs. sequential access

2. Modification Frequency: Frequent insertions/deletions vs. static

data

3. Size Constraints: Fixed size vs. dynamic growth

4. Memory Constraints: Overhead acceptability

5. Operation Types: LIFO, FIFO, or random operations

31
MATS Centre for Distance and Online Education, MATS University

Notes 1.2 Linear Array

 Linear Array in data structure and its classification, Properties

Linear array is one of the basic data structures of computer science. It

is a group of information saved in the successive memory location and

can be accessed conveniently by indexing.

Classification of Linear Arrays

Linear arrays can be classified in several ways:

Based on dimension:

• One-dimensional arrays (vectors)

• Multi-dimensional arrays (matrices, tensors)

Based on size flexibility:

• Static arrays (fixed size, determined at compile time)

• Dynamic arrays (variable size, can grow or shrink at runtime)

Based on the type of elements:

• Homogeneous arrays (all elements have the same data type)

• Heterogeneous arrays (elements can have different data types,

like structs or objects)

1.2.1 Properties of Linear Arrays

Linear arrays have several important properties:

1. Random Access

• Elements can be accessed directly using their index in O(1) time

• Formula: address = base_address + (index *

size_of_each_element)

2. Memory Allocation

• Elements are stored in contiguous memory locations

• Static arrays have a fixed size allocation

• Dynamic arrays may reallocate memory when resizing

3. Time Complexity

• Access: O(1)

• Search: O(n) for unsorted arrays, O(log n) for sorted arrays

using binary search

• Insertion/Deletion:

• At the end: O(1) amortized for dynamic arrays

• At arbitrary positions: O(n) due to shifting elements

4. Space Complexity

• O(n) where n is the number of elements

• Requires extra space for potential growth in dynamic arrays

5. Cache Friendly

32
MATS Centre for Distance and Online Education, MATS University

Notes • Due to contiguous memory allocation, arrays benefit from

spatial locality

• This makes them efficient for CPU cache utilization

6. Limitations

• Static arrays cannot change size once allocated

• Dynamic arrays have overhead for resizing operations

• Insertion/deletion in the middle is inefficient due to shifting

1.2.2 representations of an array, Operation and Memory location

Wherein arrays are one of the most basic and common data structures

in computer science. From their elegant simplicity stems their

immense utility across almost all domains of programming. Like at

heart, an array is a collection of elements, all of which are specified by

an index or a key. These elements are stored sequentially in memory,

which enables fast access and manipulation. Arrays are not only useful

for storing elements, but they are also the basic building blocks for

many algorithms and higher-level data structures. Arrays serve as the

backbone of many operations, from sorting and searching algorithms to

image processing and numerical calculations. Join us as we take a

deep dive into the workings of arrays, from how they're structured in

memory to the various operations are supported and what makes them

so efficient. We’ll explore everything from abstract fundamentals to

programming distinctions and low-level details of different

implementations of arrays.

Basic Array Representation

An array can be thought of as an enumerated list of cells, each of which

can contain a single data type. In this sequence, every cell is assigned

an integer index, each one unique, with a typical base value (0 or 1

depending on language) that acts as the first index.

For a one-dimensional array A with n elements, we can represent it as:

A = [A[0], A[1], A[2], ..., A[n-1]] (for 0-indexed arrays) A = [A[1],

A[2], A[3], ..., A[n]] (for 1-indexed arrays)

This indexed access pattern defines arrays in contrast to other

collection data types, including linked lists or sets. This sort of direct

mapping means that you can access any element in constant-time.

1.2.3 Mathematical Representation

Mathematically, an array can be viewed as a mapping function from

indices to values:

A: I → V

33
MATS Centre for Distance and Online Education, MATS University

Notes Where:

• I is the set of valid indices (typically a contiguous range of

integers)

• V is the set of possible values the array can store

For a one-dimensional array of size n, the index set I = {0, 1, 2, ..., n-

1} for 0-indexed arrays, or I = {1, 2, 3, ..., n} for 1-indexed arrays.

1.2.4 Physical Representation in Memory

The physical representation of an array in memory directly influences

its performance and efficiency in computation. Arrays are stored in a

contiguous block of memory, meaning that all elements are placed

sequentially without gaps. Each element occupies a fixed amount of

space determined by its data type—for instance, an integer may take 4

bytes, while a character may take 1 byte. Because of this arrangement,

the location of any element in the array can be quickly calculated using

its index, allowing for constant-time access O(1)O(1)O(1). For

example, if the base address of the array is known, the address of the

iii-th element can be computed as:

Address of A[i]=Base Address+(i×Size of each element)\text{Address

of A[i]} = \text{Base Address} + (i \times \text{Size of each

element})Address of A[i]=Base Address+(i×Size of each element)

This direct addressing makes array access extremely fast compared to

other data structures like linked lists, where traversal is required to

reach a specific element. However, the contiguous allocation also

imposes certain limitations. Since the size of an array is fixed at the

time of allocation, resizing requires creating a new block of memory

and copying elements, which can be time-consuming. Additionally,

inserting or deleting elements within an array often requires shifting

subsequent elements, leading to inefficiencies in dynamic scenarios.

Despite these limitations, arrays remain one of the most efficient

structures for tasks requiring fast indexing and predictable memory

access, making them a cornerstone in both low-level programming and

algorithm implementation.

1.2.5 Memory Addressing and Location Calculation

Linear Addressing for One-Dimensional Arrays

34
MATS Centre for Distance and Online Education, MATS University

Notes The memory address of an element in a one-dimensional array can be

calculated using a simple formula:

Address of A[i] = Base_Address + (i - Lower_Bound) ×

Size_of_Each_Element

Where:

• Base_Address is the memory address of the first element of the

array

• Lower_Bound is the starting index of the array (typically 0 or

1)

• Size_of_Each_Element is the number of bytes each element

occupies

For example, in a 0-indexed array of integers (assuming 4 bytes per

integer), the address of the element at index 5 would be: Address of

A[5] = Base_Address + (5 - 0) × 4 = Base_Address + 20

This direct calculation is what enables O(1) time complexity for

array element access.

1.2.6 Row-Major vs. Column-Major Ordering

For multi-dimensional arrays, two primary memory layout strategies

exist:

• Row-Major Ordered: Same Row Elements are Stored Together

Used in C, C++, Python and other languages.

• Elements in the same column are stored contiguously. This is

prevalent in Fortran, R, MATLAB, etc.

Depending on how ordering is done, it can affect address calculation

for reading elements and its impact on performance on some

operations especially with respect to cache efficiency.

Memory Location Calculation for Multi-Dimensional Arrays

Row-Major Ordering

For a two-dimensional array A[m][n] in row-major ordering, the

address of element A[i][j] is calculated as:

Address of A[i][j] = Base_Address + ((i - Row_Lower_Bound) × n + (j

- Column_Lower_Bound)) × Size_of_Each_Element

For a three-dimensional array A[m][n][p], the formula extends to:

Address of A[i][j][k] = Base_Address + (((i - Row_Lower_Bound) × n

+ (j - Column_Lower_Bound)) × p + (k - Depth_Lower_Bound)) ×

Size_of_Each_Element

Column-Major Ordering

For a two-dimensional array A[m][n] in column-major ordering:

35
MATS Centre for Distance and Online Education, MATS University

Notes Address of A[i][j] = Base_Address + ((j - Column_Lower_Bound) × m

+ (i - Row_Lower_Bound)) × Size_of_Each_Element

The patterns don't stop in single dimension, higher dimensions are

basically adding the coordinates for the different dimensions into the

address calculation.

1.2.7 Memory Allocation Mechanisms

Static Allocation

Static arrays are arrays with a size determined at compile time.

Generally, the memory is allocated in the stack segment of the program

memory space. It once set the size which can never be changed during

program execution.

In languages like C, static allocation looks like:

int array[100]; // Allocates 400 bytes (assuming 4 bytes per int)

Therefore, the compiler knows exactly how much memory to allocate,

and the memory is automatically deal located when the variable gets

out of scope.

1.2.8 Dynamic Allocation

Dynamic arrays are created during runtime and stored in the heap

memory segment. This means you can determine the size more flexibly

based on the conditions at runtime.

In C, dynamic allocation can be done using:

int* array = (int*)malloc(n * sizeof(int)); // Allocates n*4 bytes

In C++, the equivalent would be:

int* array = new int[n]; // Allocates n*4 bytes

Dynamic allocation requires explicit deallocation to prevent memory

leaks:

free(array); // C

delete[] array; // C++

1.2.9 Automatic Resizing and Growth Strategies

Many modern programming languages include a dynamically

resizable array implementation, like C++'s std::vector, Java's ArrayList,

or built-in lists in Python. Such implementations often employ the

following growth strategies:

1. Amortized Doubling Once the capacity is reached, we allocate

a new array with double capacity, copy over all elements, then

deal locate the old array.

2. Doubling——basically doubling the unit scale when buffer

reaches certain thresholds or Growth Factor similar to doubling

36
MATS Centre for Distance and Online Education, MATS University

Notes but different multiplication factor e.g. 1.5x in some

implementations

3. Add Constant Space: Add a fixed amount at a time.

Dynamic Array Performance Characteristics Dynamic arrays can

achieve performance characteristics similar to classical arrays, except

for the cost of an occasional copying operation. The benefit of Jochen

Hoenicke’s trick prevents exponentially growing memory

consumption. The perfect hash entailed exponential growth, which

K&R prevented, but Jochen Hoenicke’s trick made dynamic arrays

possible for performance in real code..

1.2.10 Basic Array Operations

Access Operation

Accessing an array element is performed by using its index:

value = array[index]

Time Complexity: O(1) - Constant time, as it involves a direct memory

address calculation.

Traversal Operation

Traversal involves visiting each element of the array exactly once:

for i = 0 to length(array) - 1

 process array[i]

Time Complexity: O(n) - Linear time, where n is the number of

elements.

1.2.11 Search Operation

Linear Search

Linear search scans elements one by one:

function linearSearch(array, target)

 for i = 0 to length(array) - 1

 if array[i] equals target

 return i

 return -1 // Not found

Time Complexity: O(n) - Linear time, where n is the number of

elements.

Binary Search (for sorted arrays)

Binary search divides the search interval in half repeatedly:

function binarySearch(array, target)

 left = 0

 right = length(array) - 1

 while left <= right

37
MATS Centre for Distance and Online Education, MATS University

Notes mid = (left + right) / 2

 if array[mid] equals target

 return mid

 else if array[mid] < target

 left = mid + 1

 else

 right = mid - 1

 return -1 // Not found

Time complexity: O(log n) - Logarithmic time and its much better than

linear search for large array.

1.2.12 Insertion Operation

Insertion at the End

For arrays with available space at the end:

function insertAtEnd(array, value)

 array[size] = value

 size = size + 1

Time Complexity: O(1) - Constant time, assuming space is available.

For dynamic arrays that might need resizing: O(1) amortized time.

Insertion at a Specific Position

To insert an element at position pos:

function insertAt(array, pos, value)

 for i = size downto pos + 1

 array[i] = array[i-1]

 array[pos] = value

 size = size + 1

Time Complexity: O(n) - Linear time, since elements need to be shifted.

Deletion Operation

Deletion from the End

function deleteFromEnd(array)

 size = size - 1

Time Complexity: O(1) - Constant time.

Deletion from a Specific Position

To delete an element at position pos:

function deleteAt(array, pos)

 for i = pos to size - 2

 array[i] = array[i+1]

 size = size - 1

Time Complexity: O(n) - Linear time, since elements need to be shifted.

38
MATS Centre for Distance and Online Education, MATS University

Notes Update Operation

Updating an element at a specific index:

function update(array, index, newValue)

 array[index] = newValue

Time Complexity: O(1) - Constant time.

Advanced Array Operations

Sorting Operations

Arrays are commonly used with various sorting algorithms, each with

different performance characteristics:

Bubble Sort

function bubbleSort(array)

 for i = 0 to length(array) - 1

 for j = 0 to length(array) - i - 2

 if array[j] > array[j+1]

 swap(array[j], array[j+1])

Time Complexity: O(n²) - Quadratic time.

1.2.13 Selection Sort

function selectionSort(array)

 for i = 0 to length(array) - 2

 minIndex = i

 for j = i + 1 to length(array) - 1

 if array[j] < array[minIndex]

 minIndex = j

 swap(array[i], array[minIndex])

Time Complexity: O(n²) - Quadratic time.

1.2.14 Insertion Sort

function insertionSort(array)

 for i = 1 to length(array) - 1

 key = array[i]

 j = i - 1

 while j >= 0 and array[j] > key

 array[j+1] = array[j]

 j = j - 1

 array[j+1] = key

Time Complexity: O(n²) - Quadratic time, but performs well on almost-

sorted arrays.

1.2.15 Merge Sort

function mergeSort(array, left, right)

39
MATS Centre for Distance and Online Education, MATS University

Notes if left < right

 mid = (left + right) / 2

 mergeSort(array, left, mid)

 mergeSort(array, mid + 1, right)

 merge(array, left, mid, right)

Time Complexity: O(n log n) - Linearithmic time.

1.2.16 Quick Sort

function quickSort(array, low, high)

 if low < high

 pivotIndex = partition(array, low, high)

 quickSort(array, low, pivotIndex - 1)

 quickSort(array, pivotIndex + 1, high)

Time Complexity: O(n log n) average case, O(n²) worst case.

1.2.17 Heap Sort

function heapSort(array)

 buildMaxHeap(array)

 for i = length(array) - 1 downto 1

 swap(array[0], array[i])

 heapify(array, 0, i)

Time Complexity: O(n log n) - Linearithmic time.

Mathematical Operations

Array Sum

function arraySum(array)

 sum = 0

 for i = 0 to length(array) - 1

 sum = sum + array[i]

 return sum

Time Complexity: O(n) - Linear time.

Array Product

function arrayProduct(array)

 product = 1

 for i = 0 to length(array) - 1

 product = product * array[i]

 return product

Time Complexity: O(n) - Linear time.

Array Mean (Average)

function arrayMean(array)

 sum = arraySum(array)

40
MATS Centre for Distance and Online Education, MATS University

Notes return sum / length(array)

Time Complexity: O(n) - Linear time.

Finding Maximum and Minimum

function findMax(array)

 max = array[0]

 for i = 1 to length(array) - 1

 if array[i] > max

 max = array[i]

 return max

function findMin(array)

 min = array[0]

 for i = 1 to length(array) - 1

 if array[i] < min

 min = array[i]

 return min

Time Complexity: O(n) - Linear time.

Array Transformation Operations

Mapping

Applying a function to each element:

function map(array, func)

 result = new array of same size

 for i = 0 to length(array) - 1

 result[i] = func(array[i])

 return result

Time Complexity: O(n) - Linear time.

Filtering

Creating a new array with elements that pass a test:

function filter(array, predicate)

 result = new empty array

 for i = 0 to length(array) - 1

 if predicate(array[i]) is true

 append array[i] to result

 return result

Time Complexity: O(n) - Linear time.

1.2.18 Reducing

Combining array elements into a single value:

function reduce(array, callback, initialValue)

 accumulator = initialValue

41
MATS Centre for Distance and Online Education, MATS University

Notes for i = 0 to length(array) - 1

 accumulator = callback(accumulator, array[i])

 return accumulator

Time Complexity: O(n) - Linear time.

1.2.19 Multi-Dimensional Arrays

Two-Dimensional Array Representation

In fact, a two-dimensional array would look just like a table with rows

and columns. An m×n array has m rows and n columns.

Mathematically, a 2D array A can be represented as:

A = [[A[0,0], A[0,1], ..., A[0,n-1]], [A[1,0], A[1,1], ..., A[1,n-1]], ...

[A[m-1,0], A[m-1,1], ..., A[m-1,n-1]]]

Memory Representation of Multi-Dimensional Arrays

Contiguous Allocation

In such languages as C and C++, multidimensional arrays are laid out

in contiguous segments of memory in row-major order or column-

major order (depending on the language, as detailed in a previous

section).

For example, a 3×4 array in row-major ordering would have elements

stored in the following sequence: A[0,0], A[0,1], A[0,2], A[0,3], A[1,0],

A[1,1], A[1,2], A[1,3], A[2,0], A[2,1], A[2,2], A[2,3]

Array of Arrays

For example in some languages and implementations, multi-

dimensional arrays are implemented as arrays of arrays. Pretty

common in languages such as JavaScript and some implementations in

Java:

javascript

let matrix = [

 [1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]

];

Here, each element of the outer array is an array, that may or may not

be contiguous in memory.

Operations on Multi-Dimensional Arrays

Accessing Elements

value = array[row][column]

Time Complexity: O(1) - Constant time.

Row and Column Traversal

42
MATS Centre for Distance and Online Education, MATS University

Notes Row traversal:

for i = 0 to rows - 1

 for j = 0 to columns - 1

 process array[i][j]

Column traversal:

for j = 0 to columns - 1

 for i = 0 to rows - 1

 process array[i][j]

Time Complexity: O(m×n) - Where m is the number of rows and n is

the number of columns.

Matrix Addition

function matrixAdd(A, B)

 if A.rows != B.rows or A.columns != B.columns

 return error

 C = new matrix of size A.rows × A.columns

 for i = 0 to A.rows - 1

 for j = 0 to A.columns - 1

 C[i][j] = A[i][j] + B[i][j]

 return C

Time Complexity: O(m×n) - Where m is the number of rows and n is

the number of columns.

Matrix Multiplication

function matrixMultiply(A, B)

 if A.columns != B.rows

 return error

 C = new matrix of size A.rows × B.columns

 for i = 0 to A.rows - 1

 for j = 0 to B.columns - 1

 C[i][j] = 0

 for k = 0 to A.columns - 1

 C[i][j] += A[i][k] * B[k][j]

 return C

Time Complexity: O(m×n×p) - Where A is an m×n matrix and B is an

n×p matrix.

Matrix Transpose

function matrixTranspose(A)

 B = new matrix of size A.columns × A.rows

 for i = 0 to A.rows - 1

43
MATS Centre for Distance and Online Education, MATS University

Notes for j = 0 to A.columns - 1

 B[j][i] = A[i][j]

return B

Time Complexity: O(m×n) - Where m is the number of rows and n is

the number of columns.

Jagged Arrays

Definition and Representation

Jagged array: An array of arrays in which each array can have a

different length. Unlike in the case of multi-dimensional arrays where

each dimension has a fixed size.

For example, in C#:

int[][] jaggedArray = new int[3][];

jaggedArray[0] = new int[4];

jaggedArray[1] = new int[2];

jaggedArray[2] = new int[5];

This would result in a jagged array with 3 rows, the first row contains

4 elements, the second row contains 2 elements, the third row contains

5 elements.

Memory Representation

In a typical implementation of jagged arrays, the first array is an array

of pointers to separate array. This is unlike the multi dimensional

arrays that have a single block of memory allocation.

The memory structure would look like:

jaggedArray -> [ptr1, ptr2, ptr3]

ptr1 -> [element1, element2, element3, element4]

ptr2 -> [element5, element6]

ptr3 -> [element7, element8, element9, element10, element11]

Operations on Jagged Arrays

Jagged arrays are similar to regular arrays regarding operations

performed on them — however, you must keep in mind the lengths of

the arrays:

// Accessing elements

value = jaggedArray[row][column]

// Traversal

for i = 0 to length(jaggedArray) - 1

 for j = 0 to length(jaggedArray[i]) - 1

 process jaggedArray[i][j]

44
MATS Centre for Distance and Online Education, MATS University

Notes Time complexity for access is still O(1), and traversal is O(total number

of elements).

Array Implementation in Different Programming Languages

C/C++ Arrays

“An array is a fixed-size sequence of elements of the same type, stored

in contiguous memory” in C and C++ They are zero-indexed and have

no bounds checking.

c

int array[5] = {1, 2, 3, 4, 5}; // Static array

int* dynamicArray = (int*)malloc(5 * sizeof(int)); // Dynamic array in

C

int* dynamicArray = new int[5]; // Dynamic array in C++

C++ also provides the std::array and std::vector container classes:

std::array<int, 5> arr = {1, 2, 3, 4, 5}; // Fixed-size array

std::vector<int> vec = {1, 2, 3, 4, 5}; // Dynamic array

Java Arrays

Arrays are objects in Java that store one type of element. They are zero-

indexed and have automatic bounds checking.

int[] array = new int[5]; // Declaration and allocation

int[] array = {1, 2, 3, 4, 5}; // Initialization with values

Java also provides the ArrayList class for dynamic arrays:

ArrayList<Integer> list = new ArrayList<>();

list.add(1);

list.add(2);

1.1.27 Python Lists

Python's lists are dynamic arrays that can contain elements of different

types:

my_list = [1, "string", 3.14, True] # Mixed types

my_list.append(5) # Dynamic resizing

JavaScript Arrays

JavaScript arrays are also dynamic and heterogeneous:

let array = [1, "string", 3.14, true];

array.push(5); // Dynamic resizing

C# Arrays

C# arrays are similar to those in Java, being reference types with

automatic bounds checking:

int[] array = new int[5]; // Declaration and allocation

int[] array = {1, 2, 3, 4, 5}; // Initialization with values

45
MATS Centre for Distance and Online Education, MATS University

Notes C# also provides the List<T> class for dynamic arrays:

List<int> list = new List<int>();

list.Add(1);

list.Add(2);

1.1.28 Memory Management Considerations

Memory Alignment

Memory alignment is the way data is arranged in memory (as per the

data type). Modern architectures often benefit from, or require, data to

be aligned at specific boundaries.

For instance, a 4-byte integer may need to be stored at an address that

is a multiple of 4 bytes. The alignment requirement has implications in

the way arrays are arranged into memory and will sometimes cause

some padding in structures that hold arrays.

Cache Considerations

Arrays take advantage of spatial locality, which means when elements

are stored close together in memory, they will tend to be accessed

temporally close as well. This property gives arrays very high cache

friendliness:

1. Cache Lines: When accessing some element, you also fetch the

neighboring elements, all of which load up into cache resulting

in faster accesses.

2. Cache Misses: Linear scans of an array tend to have fewer

cache misses vs. random access patterns.

3. Row-major vs. Column-major: Row-major and column-

major storage order can have a big effect on cache

performance, based on the access order

Memory Fragmentation

Dynamic arrays that expand and contract can lead to memory

fragmentation especially if they need to change their size often:

1. External Fragmentation: Happens when free memory is

technically available but can not be allocated due to

fragmentation and inability to get contigous large arrays of

memory.

2. Internal Fragmentation: This occurs when more memory is

allocated than is requested to satisfy alignment requirements or

growth strategies

Memory Leaks in Dynamic Arrays

Dynamic arrays require careful management to prevent memory leaks:

46
MATS Centre for Distance and Online Education, MATS University

Notes 1. Memory Management: Array created dynamically needs to be

properly deallocated when not in use.

2. Python: The winner must learn both the basics of Python

syntax (where every machine learning program, model, etc.

3. Garbage Collection: Languages like Java, Python, and

JavaScript utilize garbage collection to automatically free up

memory occupied by arrays that are no longer referenced

Performance Analysis of Array Operations

Time Complexity Analysis

Operation Average Case Worst Case

Access O(1) O(1)

Search (Unsorted) O(n) O(n)

Search (Sorted) O(log n) O(log n)

Insertion (End) O(1)* O(n)*

Insertion (Middle) O(n) O(n)

Deletion (End) O(1) O(1)

Deletion (Middle) O(n) O(n)

Traversal O(n) O(n)

Sort O(n log n) O(n²)

*Amortized time complexity for dynamic arrays

Space Complexity Analysis

Space complexity analysis of arrays focuses on understanding how

much memory is consumed based on their implementation and usage.

For a simple static array, the space complexity is O(n), where n

represents the number of elements, since each element is stored in a

contiguous memory block, and the size remains fixed throughout

execution. This predictable allocation makes static arrays memory-

efficient but limits their flexibility when resizing is required.

Dynamic arrays, on the other hand, introduce additional considerations.

To accommodate future growth, they often allocate more memory than

is immediately required. A common approach is the doubling strategy,

where the capacity of the array is doubled each time the current capacity

is exceeded. While this ensures that insertions remain efficient on

average, it can lead to situations where a significant portion of the

allocated memory remains unused. In the worst case, a dynamic array

47
MATS Centre for Distance and Online Education, MATS University

Notes may temporarily use O(2n) space, since it might hold n actual elements

along with nearly n unused slots after a resizing operation.

This trade-off between time efficiency and memory utilization

highlights the balance dynamic arrays achieve: they provide amortized

constant-time insertions at the cost of potentially higher space usage. In

practice, this overhead is often acceptable, as the performance benefits

of resizing strategies outweigh the temporary extra memory

consumption, making dynamic arrays a powerful compromise between

flexibility and efficiency.

Performance Comparison with Other Data Structures:

Arrays vs. Linked Lists

Feature Arrays Linked Lists

Random Access O(1) O(n)

Insertion/Deletion at Beginning O(n) O(1)

Insertion/Deletion at End O(1)* O(1)**

Insertion/Deletion in Middle O(n) O(n)***

Memory Usage

Contiguous

block

Non-contiguous

nodes

Cache Performance Excellent Poor

*Amortized for dynamic arrays **Assuming tail pointer ***O(1) after

finding the position, but finding takes O(n)

Arrays vs. Hash Tables

Feature Arrays Hash Tables

Access by Index O(1) N/A

Access by Key O(n) O(1) average

Insertion O(n) O(1) average

Deletion O(n) O(1) average

Ordered Data Yes No

Memory Usage Low Moderate to high

48
MATS Centre for Distance and Online Education, MATS University

Notes

Arrays vs. Trees

Feature Arrays Binary Search Trees

Access O(1) O(log n)

Search O(n) or O(log n) O(log n)

Insertion O(n) O(log n)

Deletion O(n) O(log n)

Ordered Operations No Yes

Memory Usage Low Moderate

Specialized Array Types

Sparse Arrays

A sparse array is a specialized representation of an array in which most

of the elements share the same default value, usually zero, and only a

relatively small number of positions hold meaningful data. Instead of

storing every element explicitly in memory, a sparse array stores only

the non-zero values along with their corresponding indices, which

greatly reduces memory usage when dealing with large datasets

dominated by repeated default values. For example, consider an array

of size 1,000,000 where only 100 elements are non-zero; storing all

elements would waste significant space, but representing only the non-

zero elements with their positions allows the structure to remain

efficient. This approach is particularly useful in fields such as scientific

computing, machine learning, and information retrieval, where large

matrices with many empty or zero entries are common. Sparse arrays

are often implemented using auxiliary data structures like hash tables,

dictionaries, or linked lists, which allow quick access to the stored non-

zero elements. While they save memory, they may sometimes require

extra computational overhead for lookups compared to dense arrays,

since the direct indexing advantage of contiguous memory is lost.

Nonetheless, sparse arrays strike a balance by making large-scale

problems computationally feasible, especially when memory resources

are limited or when handling high-dimensional datasets with only a few

active values.

49
MATS Centre for Distance and Online Education, MATS University

Notes Representation Methods

1. Dictionary/Map Representation: Store only non-zero values with

their indices as keys.

sparse_array = {1: 5, 10: 3, 100: 8} # Elements at indices 1, 10, and

100

2. Coordinate List (COO): Store pairs of (index, value) for non-zero

elements.

[(1, 5), (10, 3), (100, 8)]

3. Compressed Sparse Row (CSR): Used primarily for sparse

matrices, storing row pointers, column indices, and values.

Operations on Sparse Arrays

Operations on sparse arrays are modified to work efficiently with the

sparse representation:

// Access

function access(sparseArray, index)

 if index exists in sparseArray

 return sparseArray[index]

 else

 return defaultValue

One big reason why sparse arrays are so powerful is that they help save

storage in a data structure designed for sparse matrices in scientific

computing, graph algorithms, and large-scale data processing where

data is naturally sparse.

Circular Arrays

This means we can treat each element of an array like we are in space

where the end of the array becomes part of the start of the array (called

circular arrays (or ring buffers)).

Implementation

Circular arrays are typically implemented using modular arithmetic to

wrap around the array indices:

function get(circularArray, index)

 return array[index % length(array)]

For a fixed-size circular array used as a queue:

front = 0

rear = 0

function enqueue(value)

 if isFull()

 return error

50
MATS Centre for Distance and Online Education, MATS University

Notes array[rear] = value

 rear = (rear + 1) % capacity

function dequeue()

 if isEmpty()

 return error

 value = array[front]

 front = (front + 1) % capacity

 return value

Applications of Circular Arrays

1. Circular Buffers: Used in producer-consumer scenarios,

streaming data processing, and I/O operations.

2. Real-time Systems: Used in scheduling algorithms and event

handling.

3. Memory-efficient Queues: Implementing queues without the

need to shift elements.

Dynamic Arrays with Custom Growth Strategies

Different applications may benefit from different growth strategies for

dynamic arrays:

1. Geometric Growth (e.g., doubling): Provides good amortized

performance but may waste memory.

2. Arithmetic Growth (e.g., adding fixed chunks): More memory-

efficient but with higher frequency of resizing operations.

3. Custom Predictive Growth: Adjusting growth based on usage

patterns and application-specific knowledge.

Advanced Memory Management Techniques

Memory Pools for Array Allocation

Memory pools preallocate a big chunk of memory upfront, then

distributes it for array allocations. This helps with fragmentation and

allocation overhead:

function initializeMemoryPool(poolSize)

 pool = allocate(poolSize)

 freeList = initialize linked list of all blocks

function allocateFromPool(size)

 block = find suitable block in freeList

 if block is found

 remove block from freeList

 return block

 else

51
MATS Centre for Distance and Online Education, MATS University

Notes return null // Out of memory

Custom Allocators

Custom allocators provide application-specific memory management

for arrays:

1. Stack Allocators: Fast allocation/deallocation in LIFO order.

2. Buddy Allocators: Efficient handling of varying-sized

allocations with minimal fragmentation.

3. Slab Allocators: Optimized for fixed-size allocations, common

in operating system kernels.

Memory-Mapped Arrays

Memory-mapped arrays leverage the virtual memory capabilities of

the operating system and map the content of an array to a disk file:

array = mmap(fileDescriptor, length, protectionFlags, flags, offset)

Benefits include:

1. Arrays larger than physical memory

2. Persistence between program executions

3. Efficient sharing between processes

Optimizing Array Operations

SIMD Vectorization

SIMD (Single Instruction, Multiple Data) instructions let you (in one

go) perform the same operation over multiple array elements:

// Scalar addition

for (int i = 0; i < n; i++)

 c[i] = a[i] + b[i];

// SIMD addition (abstract pseudocode)

for (int i = 0; i < n; i += 4)

 c[i:i+3] = a[i:i+3] + b[i:i+3]; // Process 4 elements at once

Most modern compilers will automatically vectorize array operations,

though for peak performance you may still need to manually optimize.

Loop Unrolling

Loop unrolling reduces loop overhead by processing multiple elements

in each iteration:

// Original loop

for (int i = 0; i < n; i++)

 array[i] = process(array[i]);

// Unrolled loop

for (int i = 0; i < n; i += 4) {

 array[i] = process(array[i]);

52
MATS Centre for Distance and Online Education, MATS University

Notes array[i+1] = process(array[i+1]);

 array[i+2] = process(array[i+2]);

 array[i+3] = process(array[i+3]);

}

Cache-Aware Algorithms

Optimizing array algorithms for cache performance:

1. Blocking/Tiling: Processing data in chunks that fit in cache.

// Matrix multiplication with blocking

for (int i = 0; i < n; i += blockSize)

 for (int j = 0; j < n; j += blockSize)

 for (int k = 0; k < n; k += blockSize)

 // Process block

2. Cache-Oblivious Algorithms: Algorithms that inherently

perform well on any cache hierarchy without explicit tuning.

3. Array of Structures vs. Structure of Arrays: Choosing the right

layout based on access patterns.

// Array of Structures

struct Point { float x, y, z; };

Point points[1000];

// Structure of Arrays

struct Points {

 float x[1000];

 float y[1000];

 float z[1000];

};

1.1.29 Array Applications and Use Cases

Arrays play a central role in computer science and data-driven fields

because of their ability to store and manage sequential data efficiently.

In time series analysis, arrays are used to represent ordered data points

collected over time, such as stock prices, weather readings, or sensor

measurements, enabling researchers and analysts to identify patterns

and trends. In statistical computations, arrays provide a convenient

structure for storing large datasets that can be processed to calculate

measures like mean, median, variance, and standard deviation, which

are essential for understanding the distribution and characteristics of

53
MATS Centre for Distance and Online Education, MATS University

Notes data. In the field of signal processing, arrays are indispensable for

representing and manipulating signals in digital form, supporting

operations such as filtering, convolution, and transformations like the

Fast Fourier Transform (FFT), which is crucial for frequency analysis.

Beyond these examples, arrays are also widely applied in image

processing, where pixel values are stored as multi-dimensional arrays,

in scientific simulations, where large numerical datasets need efficient

storage, and in machine learning, where arrays (or tensors) form the

backbone of data representation for training algorithms. Their

combination of simplicity, speed, and versatility makes arrays one of

the most fundamental and widely applied data structures across

domains ranging from everyday computing to advanced scientific

research.

Advantages of Arrays

Arrays offer several important advantages that make them one of the

most widely used data structures in computing. One of the key benefits

is efficient random access, since each element is stored in a contiguous

memory block and can be directly accessed by its index in constant time

O(1)O(1)O(1). This makes arrays particularly powerful when frequent

lookups are required. They also provide memory efficiency, as the

continuous allocation of memory minimizes overhead and enhances

cache performance, making array operations faster due to better locality

of reference. Another strength of arrays is their ease of iteration, since

elements can be traversed sequentially with simple loops or built-in

functions, which makes processing large datasets straightforward.

Finally, arrays are known for their simplicity in implementation; they

are a fundamental data structure supported by virtually every

programming language, making them easy to learn, implement, and

integrate into algorithms.

1.Efficient Random Access

Elements can be accessed directly by their index in constant time O (1)

2.Memory Efficiency

54
MATS Centre for Distance and Online Education, MATS University

Notes Continuous memory allocation reduces overhead and improves locality

of reference (cache‑friendly).

3.Ease of Iteration

Simple and fast traversal using loops or built‑in functions.

4.Simplicity in Implementation

Arrays are a fundamental data structure; easy to use and supported in

almost every programming language.

5.Static and Predictable Size (in static arrays)

Fixed size allows the compiler or runtime to optimize memory layout.

55
MATS Centre for Distance and Online Education, MATS University

Notes 1.3. Searching And Sorting Algorithm

1.3.1 Searching Algorithms: Linear, Binary

Searching is a fundamental operation in computer science, as it allows

us to locate a specific element within a data structure such as an array,

list, or database. Among the various techniques, Linear Search and

Binary Search are two of the most commonly applied methods, each

with its own strengths, weaknesses, and use cases. Linear Search is the

simplest form, where elements are scanned one by one until the target

element is found or the list ends. It works for both sorted and unsorted

data but is less efficient for large datasets since its time complexity is

O(n)O(n)O(n). Binary Search, on the other hand, is much faster but

requires the dataset to be sorted beforehand. It repeatedly divides the

search interval in half, checking whether the middle element is the

target, and discarding the half in which the element cannot lie. This

reduces the search time significantly to O(log⁡n)O(\log n)O(logn),

making it highly efficient for large, sorted collections. Choosing

between these algorithms depends largely on the size and nature of the

dataset: Linear Search is preferred for small or unsorted data where

sorting overhead is unnecessary, while Binary Search is ideal for large,

sorted datasets where efficiency is critical. Ultimately, understanding

when to apply each method ensures optimal performance and resource

utilization in software applications.

1.3.2 Linear Search

It is the simplest searching algorithm. In this algorithm checks for the

target element sequentially in the list until the target element is found

or traversed the whole list. This algorithm can be applied to sorted as

well as unsorted data sets. It begins at the first element and progresses

towards the last element, comparing each value with the target. If the

element is found, return the index of the element otherwise the failure

indication (like -1 or Not Found). Working of Linear Search

1. Start from the first element of the array.

2. Compare the current element with the target element.

3. If they match, return the index (position) of the element.

4. If they don’t match, move to the next element.

56
MATS Centre for Distance and Online Education, MATS University

Notes 5. Repeat the process until the element is found or the entire list is

traversed.

6. If the end of the list is reached without finding the element,

return "Not Found".

Time Complexity of Linear Search

Case

Time

Complexity Explanation

Best Case O(1)

The target element is found at the

first position.

Average Case O(n)

The target element is somewhere in

the middle.

Worst Case O(n)

The target element is at the last

position or not present.

Example of Linear Search (Array Implementation in Python)

python

CopyEdit

def linear_search(arr, target):

 for i in range(len(arr)):

 if arr[i] == target:

 return i # Return index if found

 return -1 # Return -1 if not found

arr = [10, 20, 30, 40, 50]

target = 30

result = linear_search(arr, target)

print(f"Element found at index {result}" if result != -1 else "Element

not found")

Advantages of Linear Search

• Works on both sorted and unsorted lists.

• Simple and easy to implement.

• Requires no additional memory.

Disadvantages of Linear Search

• Slow for large datasets.

• Inefficient compared to other search algorithms.

Binary Search

Binary Search is a faster searching algorithm that applies only on

sorted data. Returning to the algorithm tracking how many elements to

57
MATS Centre for Distance and Online Education, MATS University

Notes check, it does not check half of the elements every step, so it divides

the dataset by two and removes half elements. A divide and conquer

approach, which means its much faster than Linear Search for larger

datasets.

Working of Binary Search

1. Sort the array (if not already sorted).

2. Find the middle element of the array.

3. Compare the middle element with the target element.

• If it matches, return the index.

• If the target is less than the middle element, repeat the search

in the left half.

• If the target is greater than the middle element, repeat the

search in the right half.

4. Continue until the target element is found or the search space

reduces to zero.

Time Complexity of Binary Search

Case

Time

Complexity Explanation

Best Case O(1) The middle element is the target.

Average

Case O(log n)

The search space is divided in each

step.

Worst Case O(log n)

The target element is at the last level of

recursion.

Example of Binary Search (Array Implementation in Python)

def binary_search(arr, target):

 left, right = 0, len(arr) - 1

 while left <= right:

 mid = left + (right - left) // 2

 if arr[mid] == target:

 return mid

 elif arr[mid] < target:

 left = mid + 1

 else:

 right = mid - 1

 return -1

arr = [10, 20, 30, 40, 50]

target = 30

58
MATS Centre for Distance and Online Education, MATS University

Notes result = binary_search(arr, target)

print(f"Element found at index {result}" if result != -1 else "Element

not found")

Advantages of Binary Search

• Much faster than Linear Search for large datasets.

• Reduces the number of comparisons by dividing the dataset.

Disadvantages of Binary Search

• Works only on sorted data.

• More complex than Linear Search to implement.

• Comparison of Linear Search vs. Binary Search

Feature Linear Search Binary Search

Efficiency O(n) (slower) O(log n) (faster)

Data

Requirement Works on any data

Works only on sorted

data

Implementation Simple and easy More complex

Use Case

Small datasets, unordered

lists

Large datasets, ordered

lists

Memory Usage No extra space needed No extra space needed

Linear Search and Binary Search are important searching techniques,

having their own pros and cons. Hence Linear Search is easy but time-

consuming for large numbers of data; Binary Search, on the other hand,

is complex but fast, and you need to have the data sorted. Linear Search

is preferable if you search through an unordered dataset, meanwhile

Binary Search is best if the dataset is already sorted as it has a

logarithmic time complexity. To solve a problem, you need to know

which algorithm works best for your problem constraints and the

dataset type.

1.3.3 Sorting Algorithm—Insertion, Selection, Merge sort

Sorting is a basic operation in computer science that arranges elements

in a required order (usually ascending or descending). Since searching,

retrieving, and organizing data is a need in many applications, from

databases to files, sorting is one of the fundamental things in computer

science. There are numerous sorting algorithms, some which are more

efficient than others depending on things like time complexity, space

complexity, and stability. There are various sorting Algorithms like

Insertion Sort, Selection Sort, Merge Sort, etc.

59
MATS Centre for Distance and Online Education, MATS University

Notes 1. Insertion Sort

The simple, comparison-based Insertion Sort algorithm builds the end

sorted sequence one element at a time. It works a bit like sorting playing

cards in a hand — every new card gets added to where it belongs in

relation to cards that are already in order.

Working Mechanism

1. Start with the second element (since a single element is already

sorted).

2. Compare the element with the previous elements and shift them

if necessary.

3. Insert the element in its correct position.

4. Repeat the process for all elements until the list is sorted.

Example

Unsorted Array: [7, 3, 5, 2]

Pass Array State

1st [3, 7, 5, 2]

2nd [3, 5, 7, 2]

3rd [2, 3, 5, 7]

Time Complexity

Case Complexity Explanation

Best Case O(n)

Already sorted array, only one comparison

per element.

Average

Case O(n²)

Elements inserted at different positions with

shifting required.

Worst Case O(n²)

Reverse sorted array, maximum shifting

required.

Python Implementation

def insertion_sort(arr):

 for i in range(1, len(arr)):

 key = arr[i]

 j = i - 1

 while j >= 0 and key < arr[j]:

 arr[j + 1] = arr[j]

60
MATS Centre for Distance and Online Education, MATS University

Notes j -= 1

 arr[j + 1] = key

 return arr

arr = [7, 3, 5, 2]

print("Sorted Array:", insertion_sort(arr))

Advantages & Disadvantages

 Efficient for small datasets

 Stable sorting algorithm (preserves order of duplicate elements)

 Inefficient for large datasets

 Slower compared to advanced sorting techniques

2. Selection Sort

Selection Sort algorithm: algorithm explains Selection Sort : Sort by

repeatedly selecting the smallest element in the unsorted array and

swapping it with the first unsorted element. It keeps two subarrays in

a single array: the subarray which is sorted is left and the remaining is

unsorted, and is kept reducing the unsorted subarray.

Working Mechanism

1. Find the smallest element in the unsorted part.

2. Swap it with the first unsorted element.

3. Move to the next element and repeat the process.

Example

Unsorted Array: [29, 10, 14, 37, 13]

Pass Array State

1st [10, 29, 14, 37, 13]

2nd [10, 13, 14, 37, 29]

3rd [10, 13, 14, 37, 29]

4th [10, 13, 14, 29, 37]

Time Complexity

Case Complexity Explanation

Best Case O(n²) Comparisons are always required.

Average

Case O(n²)

Nested loops make it inefficient for large

datasets.

Worst Case O(n²)

Even in the worst case, the number of

comparisons remains O(n²).

61
MATS Centre for Distance and Online Education, MATS University

Notes Python Implementation

def selection_sort(arr):

 for i in range(len(arr)):

 min_idx = i

 for j in range(i + 1, len(arr)):

 if arr[j] < arr[min_idx]:

 min_idx = j

 arr[i], arr[min_idx] = arr[min_idx], arr[i]

 return arr

arr = [29, 10, 14, 37, 13]

print("Sorted Array:", selection_sort(arr))

Advantages & Disadvantages

 Simple and easy to implement

 Performs well with small lists

 Inefficient for large datasets

 Not a stable sorting algorithm

 Merge Sort

Merge Sort Merge Sort is a divide and conquer algorithm. It is very

efficient and is used in applications where stability and efficiency are

important.

Working Mechanism

1. Divide the array into two halves.

2. Recursively sort each half.

3. Merge the sorted halves to form the final sorted array.

Example

Unsorted Array: [38, 27, 43, 3, 9, 82, 10]

4. Divide into [38, 27, 43] and [3, 9, 82, 10]

5. Further divide: [38, 27], [43], [3, 9], [82, 10]

6. Merge step-by-step until sorted: [3, 9, 10, 27, 38, 43, 82]

Time Complexity

Case Complexity Explanation

Best Case O(n log n)

Always divides the array into two equal

halves.

Average

Case O(n log n) Consistently efficient for large datasets.

Worst Case O(n log n)

Even in the worst case, maintains O(n log

n).

62
MATS Centre for Distance and Online Education, MATS University

Notes

Python Implementation

def merge_sort(arr):

 if len(arr) > 1:

 mid = len(arr) // 2

 left_half = arr[:mid]

 right_half = arr[mid:]

 merge_sort(left_half)

 merge_sort(right_half)

 i = j = k = 0

 while i < len(left_half) and j < len(right_half):

 if left_half[i] < right_half[j]:

 arr[k] = left_half[i]

 i += 1

 else:

 arr[k] = right_half[j]

 j += 1

 k += 1

 while i < len(left_half):

 arr[k] = left_half[i]

 i += 1

 k += 1

 while j < len(right_half):

 arr[k] = right_half[j]

 j += 1

 k += 1

arr = [38, 27, 43, 3, 9, 82, 10]

merge_sort(arr)

print("Sorted Array:", arr)

Advantages & Disadvantages

Merge Sort is one of the most important and widely used sorting

algorithms in computer science. It follows the Divide and Conquer

strategy, where a large problem is broken down into smaller sub-

problems, solved individually, and then combined to produce the final

result. Unlike simple algorithms such as Insertion Sort or Selection

Sort, Merge Sort guarantees a consistent performance of O(n log n) in

all cases—best, average, and worst. However, this efficiency comes at

63
MATS Centre for Distance and Online Education, MATS University

Notes a cost, especially in terms of memory usage and practical performance

on smaller datasets.

Advantages of Merge Sort

1. Efficient for Large Datasets

Merge Sort is highly efficient when working with very large collections

of data. Because it divides the input into smaller subproblems, it

handles sorting systematically and ensures that no single step becomes

computationally overwhelming. Even when the number of elements

grows into millions, Merge Sort maintains its logarithmic efficiency.

This makes it a good choice for applications like external sorting, where

data is stored on hard drives rather than in main memory.

2. Stable Sorting Algorithm

Stability in sorting means that if two elements have the same value,

their original order in the input will be preserved in the output. Merge

Sort is naturally stable, unlike Quick Sort or Heap Sort (unless

specifically modified). This property is especially valuable when

sorting complex objects based on one key, but requiring that the original

sequence of equal-keyed objects be maintained.

3. Consistent O(n log n) Performance

Many sorting algorithms show fluctuating performance depending on

the type of input. For example, Quick Sort is very fast on random data

but can degrade to O(n²) in the worst case if the pivot selection is poor.

Merge Sort avoids this issue entirely because it always divides the

dataset into halves and merges them in a predictable manner. Therefore,

whether the input is already sorted, reverse sorted, or randomly ordered,

the time complexity remains O(n log n).

4. Useful for Linked Lists and External Sorting

Merge Sort does not rely on random access to data. This makes it

especially useful for sorting linked lists, where accessing the middle

element and rearranging pointers is relatively efficient. Additionally,

Merge Sort is well-suited for external sorting (sorting data that does not

fit entirely in main memory, such as large files on disk). Because it

works by dividing and merging chunks, it can efficiently process data

in segments without requiring all of it to be in RAM simultaneously.

Disadvantages of Merge Sort

1. Requires Extra Memory (O(n) Space Complexity)

The major drawback of Merge Sort is its additional memory

requirement. Unlike Insertion Sort or Quick Sort, which can sort in

64
MATS Centre for Distance and Online Education, MATS University

Notes place with minimal extra space, Merge Sort requires temporary arrays

to hold the divided parts during merging. This means that if you are

sorting an array of size n, you also need approximately n extra space.

For large datasets, especially when memory is limited, this can become

a serious problem.

2. Slower for Small Datasets Compared to Quick Sort

While Merge Sort guarantees O(n log n) performance, the constant

factors involved in splitting and merging can make it slower than

simpler algorithms on smaller datasets. For example, Insertion Sort or

Quick Sort can often outperform Merge Sort when sorting arrays of just

a few hundred elements.

3. Not an In-place Sorting Algorithm

Merge Sort does not sort the elements within the original array alone;

instead, it requires additional structures to perform merging. As a result,

it is not considered an in-place sorting algorithm, which can be a

disadvantage when memory optimization is necessary.

4. Complex Implementation Compared to Simpler Sorts

Compared to straightforward algorithms like Bubble Sort or Selection

Sort, Merge Sort is more complicated to implement correctly.

Beginners may find the recursive nature of its divide-and-conquer

approach challenging to understand. Errors in base case handling or

merging logic can lead to incorrect outputs. Merge Sort is an algorithm

that balances efficiency and stability, making it highly reliable for large

datasets and cases where stability is required. Its predictable O(n log n)

performance sets it apart from other algorithms that may degrade with

certain inputs. However, the extra memory usage and relatively slower

performance on smaller inputs make it less suitable in memory-

constrained or small-scale scenarios. In practice, Merge Sort is often

used in hybrid algorithms such as Timsort (used in Python and Java)

where Merge Sort is combined with simpler sorting algorithms to get

the best of both worlds.

Comparison of Sorting Algorithms

Algorithm

Best

Case

Average

Case

Worst

Case

Space

Complexity Stable?

Insertion

Sort O(n) O(n²) O(n²) O(1) Yes

65
MATS Centre for Distance and Online Education, MATS University

Notes Selection

Sort O(n²) O(n²) O(n²) O(1) No

Merge Sort

O(n log

n) O(n log n)

O(n log

n) O(n) Yes

Out of these sorting algorithms, Insertion sort is best for small datasets,

Selection sort is simple but inefficient, and Merge sort is quite efficient

on large datasets. Different sorting algorithms have different time and

space complexities depending on the size of the dataset and if you need

a sort that preserves the order of elements with equal values.

Summary:

Linear data structures are fundamental structures in computer science

where data elements are arranged sequentially, allowing traversal in a

single level and linear order. Common linear data structures include

arrays, linked lists, stacks, and queues. Arrays are fixed-size structures

storing elements in contiguous memory, enabling fast access via

indices, while linked lists are dynamic structures consisting of nodes

linked via pointers, allowing flexible memory use and efficient

insertion/deletion. Stacks operate on a Last-In-First-Out (LIFO) basis

and are used in function call management, expression evaluation, and

undo operations. Queues follow the First-In-First-Out (FIFO) principle,

widely used in process scheduling, buffering, and resource

management. These structures support essential operations like

insertion, deletion, traversal, searching, and updating, with time and

space efficiency varying by implementation. Understanding linear data

structures is critical for algorithm development and forms the basis for

more complex data handling in software systems.

Multiple-Choice Questions (MCQs)

1. Which of the following best defines an Abstract Data Type

(ADT)?

a) A data type defined by its implementation details

b) A data type defined by its behavior and operations

c) A data type with no defined operations

66
MATS Centre for Distance and Online Education, MATS University

Notes d) A data type only used in object-oriented programming

(Answer: b)

2. Which of the following is a linear data structure?

a) Tree

b) Graph

c) Queue

d) Hash Table

(Answer: c)

3. Which of the following is a characteristic of an array?

a) Elements can be inserted dynamically anywhere

b) Elements are stored in contiguous memory locations

c) Elements are always sorted

d) The size of the array increases automatically

(Answer: b)

4. Which searching algorithm works efficiently with sorted arrays?

a) Linear Search

b) Binary Search

c) Breadth-First Search

d) Depth-First Search

(Answer: b)

5. What is the worst-case time complexity of Linear Search?

a) O(1)

b) O(log n)

c) O(n)

d) O(n²)

(Answer: c)

6. Which sorting algorithm repeatedly finds the smallest element

and moves it to the front?

a) Merge Sort

b) Insertion Sort

c) Selection Sort

d) Quick Sort

(Answer: c)

7. Which sorting algorithm has a worst-case time complexity of O(n

log n)?

a) Bubble Sort

b) Merge Sort

c) Selection Sort

67
MATS Centre for Distance and Online Education, MATS University

Notes d) Insertion Sort

(Answer: b)

8. What is the primary advantage of Merge Sort over Insertion

Sort?

a) It is easier to implement

b) It performs better for large datasets

c) It requires no extra space

d) It works best on nearly sorted arrays

(Answer: b)

9. In Binary Search, what happens if the middle element is

smaller than the target value?

a) The left half of the array is searched

b) The right half of the array is searched

c) The algorithm terminates immediately

d) The entire array is searched again

(Answer: b)

10. Which data structure is best suited for implementing a queue?

a) Stack

b) Array

c) Linked List

d) Graph

(Answer: c)

Short Questions

1. What is the difference between data types and abstract data types

(ADTs)?

2. List two advantages and disadvantages of using arrays.

3. How does Linear Search work, and when is it useful?

4. What is the difference between Linear Search and Binary Search?

5. Explain the basic concept of sorting and why it is important in

data structures.

6. What is the main difference between Selection Sort and Insertion

Sort?

7. Why is Merge Sort considered more efficient than Selection Sort?

8. Define the worst-case time complexity of Binary Search.

9. What is the primary difference between static and dynamic arrays?

10. How does memory allocation work in sequential data structures?

Long Questions

68
MATS Centre for Distance and Online Education, MATS University

Notes 1. Explain the concept of Abstract Data Types (ADTs) and their

importance in programming.

2. Discuss arrays in detail, including their properties, classification,

and memory allocation.

3. Explain the working of Linear Search and Binary Search, and

compare their time complexities.

4. Describe Insertion Sort, Selection Sort, and Merge Sort,

comparing their advantages and disadvantages.

5. Write a C or Python program to implement Binary Search and

explain how it works.

6. Analyze the time complexity of different sorting algorithms and

compare their performances.

7. Explain the significance of data structures in programming and

how they improve efficiency.

8. How does the divide-and-conquer strategy apply to sorting

algorithms like Merge Sort?

9. Discuss real-world applications of searching and sorting

algorithms in software development.

10. Implement Selection Sort in Python/C, and provide a step-by-step

explanation of its working.

69
MATS Centre for Distance and Online Education, MATS University

MODULE 2

STACK, QUEUE AND RECURSION

LEARNING OUTCOMES

By the end of this Unit, students will be able to:

• Understand the sequential representation of stacks, their

operations, and applications such as expression evaluation and

function calls.

• Explain recursion, its working mechanism, and its applications

in algorithm design.

• Learn about queues, their sequential representation, and

different variations such as Dequeue (Double-ended Queue)

and Priority Queue.

• Implement and analyze stack, queue, and recursion-based

algorithms for efficient problem-solving.

70
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2.1: Stack

2.1.1 Representation of Stacks using sequential organization,

Applications

Stack is a linear data structure which follows Last In First Out order

(LIFO). That is, the last element added (the top of the stack) is the first

element to be removed. The knowledge of stacks is widely used in

programming, memory management and real application such as undo-

redo, function calls, etc.

1. Representation of Stacks Using Sequential Organization

And we can implement stacks using arrays, which mean that elements

are in adjacent memory locations (sequential memory). This method

offers quick access but has a defined size in that the stack can't expand

beyond the size allocated for it..

Structure of Stack Using an Array

A stack consists of the following:

1. An array to store elements.

2. A variable top, which indicates the index of the top element in

the stack.

3. Stack operations such as push, pop, peek, and isEmpty.

Stack Operations Using Sequential Organization (Array)

Figure 2.1.1: Stack Data Structure

71
MATS Centre for Distance and Online Education, MATS University

Notes

Operation Description

Time

Complexity

Push (Insertion)

Adds an element to the top of the

stack. O(1)

Pop (Deletion)

Removes the top element from the

stack. O(1)

Peek (Top

Element)

Retrieves the top element without

removing it. O(1)

isEmpty Checks if the stack is empty. O(1)

Stack Representation Using an Array

Example (Stack of Size 5)

Index Stack Content

0 10

1 20

2 30

3 40

4 (Top) 50

2. Implementation of Stack Using an Array in Python

class Stack:

 def __init__(self, size):

 self.size = size

 self.stack = [None] * size # Fixed-size array

 self.top = -1 # Stack is empty initially

 def push(self, value):

 if self.top == self.size - 1:

 print("Stack Overflow! Cannot push", value)

 else:

 self.top += 1

 self.stack[self.top] = value

 print(value, "pushed to stack")

 def pop(self):

72
MATS Centre for Distance and Online Education, MATS University

Notes if self.top == -1:

 print("Stack Underflow! Cannot pop")

 else:

 popped_value = self.stack[self.top]

 self.top -= 1

 print(popped_value, "popped from stack")

 return popped_value

 def peek(self):

 if self.top == -1:

 print("Stack is empty")

 else:

 return self.stack[self.top]

 def is_empty(self):

 return self.top == -1

Example Usage

s = Stack(5)

s.push(10)

s.push(20)

s.push(30)

print("Top Element:", s.peek()) # Output: 30

s.pop()

print("Stack Empty?", s.is_empty()) # Output: False

Advantages & Disadvantages of Sequential Stack Representation

 Fast operations (O(1) time complexity for push/pop).

 Simple to implement using an array.

 Fixed size (cannot grow dynamically).

 Wasted memory if the stack is not fully utilized.

3. Applications of Stacks

Real-Life Applications of Stacks in Programming, OS, and Daily)).

1. Function Call Management in Programming

• Function calls in programming follow a stack structure.

• When a function is called, it is pushed onto the call stack.

• When the function completes execution, it is popped from the

stack.

• This is used for recursive function calls.

2. Undo & Redo Functionality

• In text editors, the undo feature works using a stack.

• When an action is performed, it is pushed onto the stack.

73
MATS Centre for Distance and Online Education, MATS University

Notes • Undoing an action pops the last operation and restores the

previous state.

3. Expression Evaluation (Infix to Postfix/Prefix Conversion)

• Mathematical expressions like (A + B) * C are evaluated using

stacks.

• Operators and operands are pushed and popped from the stack

during conversion.

4. Backtracking (Maze Solving, Pathfinding, Game Moves)

• Stacks help in solving mazes by storing visited paths.

• In chess, moves are stored in a stack, allowing undoing moves.

5. Parentheses Matching in Compilers

• Stacks are used in syntax checking of expressions like {[()()]}.

• Each opening bracket is pushed onto the stack.

• When a closing bracket is found, the stack is popped to match

them.

6. Browser Back & Forward Navigation

• Browsers use two stacks for navigation.

• When moving back, the current page is pushed onto a forward

stack.

• When moving forward, the page is popped from the forward

stack.

Stack Abstract Data Type Stack abstract data type are typically used

using sequential organization (arrays). Simple to implement and offer

fast operations, but they are limited by their fixed size. Stacks are an

important data structure in computing, used extensively for

programming, undo-redo features, function calls, compiler and browser

navigation, and much more.

74
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2.2 Recursion

2.2.1 Recursion and its applications

Recursion is a method of trying to solve a problem by calling a

function that calls itself. Recursion uses sub-sub problems until a base

condition is met instead of using loops. Its main use is in various

algorithms such as divide and conquer, backtracking or tree traversal

(including depth-first search).

Key Components of Recursion

1. Base Case – The stopping condition that ends the recursion.

2. Recursive Case – The function calls itself with a modified

parameter to approach the base case.

Example: Factorial Calculation Using Recursion

Factorial of n (n!) is defined as:

n!=n×(n−1)×(n−2)×...×1n! = n \times (n-1) \times (n-2) \times ...

\times 1n!=n×(n−1)×(n−2)×...×1

Using recursion:

factorial(n)=n×factorial(n−1)factorial(n) = n \times factorial(n-

1)factorial(n)=n×factorial(n−1)

def factorial(n):

 if n == 0: # Base case

 return 1

 return n * factorial(n - 1) # Recursive case

print(factorial(5)) # Output: 120

Types of Recursion

Figure 2.2.1: Recursion

75
MATS Centre for Distance and Online Education, MATS University

Notes 1. Direct Recursion

• A function directly calls itself.

• Example: Factorial calculation.

2. Indirect Recursion

• A function calls another function, which in turn calls the first

function.

def functionA(n):

 if n > 0:

 print(n, end=" ")

 functionB(n - 1)

def functionB(n):

 if n > 0:

 print(n, end=" ")

 functionA(n - 1)

functionA(5) # Output: 5 4 3 2 1 1 2 3 4

3. Tail Recursion

• The recursive call is the last statement in the function.

• Optimized by compilers to avoid excessive function calls.

def tail_recursive_factorial(n, result=1):

 if n == 0:

 return result

 return tail_recursive_factorial(n - 1, result * n)

print(tail_recursive_factorial(5)) # Output: 120

4. Non-Tail Recursion

• The function performs operations after the recursive call.

def non_tail_recursive_factorial(n):

 if n == 0:

 return 1

 return n * non_tail_recursive_factorial(n - 1)

print(non_tail_recursive_factorial(5)) # Output: 120

 Applications of Recursion

1. Mathematical Computations

Factorial Calculation

Recursion is commonly used to compute factorials, as shown above.

Fibonacci Sequence

76
MATS Centre for Distance and Online Education, MATS University

Notes The Fibonacci sequence follows a recursive pattern:

F(n)=F(n−1)+F(n−2)F(n) = F(n-1) + F(n-2)F(n)=F(n−1)+F(n−2)

def fibonacci(n):

 if n <= 1:

 return n

 return fibonacci(n - 1) + fibonacci(n - 2)

print(fibonacci(6)) # Output: 8

2. Data Structure Traversals

Tree Traversal

Recursion is used to traverse trees efficiently.

• Preorder Traversal (Root → Left → Right)

• Inorder Traversal (Left → Root → Right)

• Postorder Traversal (Left → Right → Root)

class Node:

 def __init__(self, data):

 self.data = data

 self.left = None

 self.right = None

def inorder_traversal(root):

 if root:

 inorder_traversal(root.left)

 print(root.data, end=" ")

 inorder_traversal(root.right)

root = Node(1)

root.left = Node(2)

root.right = Node(3)

inorder_traversal(root) # Output: 2 1 3

Graph Traversal (DFS - Depth First Search)

Recursion helps in graph traversal using Depth First Search (DFS).

def dfs(graph, node, visited=set()):

 if node not in visited:

 print(node, end=" ")

 visited.add(node)

 for neighbor in graph[node]:

 dfs(graph, neighbor, visited)

graph = {

 'A': ['B', 'C'],

 'B': ['D', 'E'],

77
MATS Centre for Distance and Online Education, MATS University

Notes 'C': ['F'],

 'D': [],

 'E': [],

 'F': []

}

dfs(graph, 'A') # Output: A B D E C F

3. Divide and Conquer Algorithms

Recursion is one of the methods that fall in the category of divide and

conquer algorithms, where a larger problem is [divided into smaller

subproblems..

Merge Sort

• Divide the array into two halves.

• Recursively sort each half.

• Merge the sorted halves.

def merge_sort(arr):

 if len(arr) > 1:

 mid = len(arr) // 2

 left_half = arr[:mid]

 right_half = arr[mid:]

 merge_sort(left_half)

 merge_sort(right_half)

 i = j = k = 0

 while i < len(left_half) and j < len(right_half):

 if left_half[i] < right_half[j]:

 arr[k] = left_half[i]

 i += 1

 else:

 arr[k] = right_half[j]

 j += 1

 k += 1

 while i < len(left_half):

 arr[k] = left_half[i]

 i += 1

 k += 1

 while j < len(right_half):

 arr[k] = right_half[j]

 j += 1

 k += 1

78
MATS Centre for Distance and Online Education, MATS University

Notes arr = [38, 27, 43, 3, 9, 82, 10]

merge_sort(arr)

print(arr) # Output: [3, 9, 10, 27, 38, 43, 82]

Backtracking Algorithms

Backtracking is a technique for solving problems.

Solving the N-Queens Problem

def print_solution(board):

 for row in board:

 print(" ".join(row))

 print()

def is_safe(board, row, col, n):

 for i in range(col):

 if board[row][i] == 'Q':

 return False

 for i, j in zip(range(row, -1, -1), range(col, -1, -1)):

 if board[i][j] == 'Q':

 return False

 for i, j in zip(range(row, n, 1), range(col, -1, -1)):

 if board[i][j] == 'Q':

 return False

 return True

def solve_n_queens(board, col, n):

 if col >= n:

 print_solution(board)

 return True

 res = False

 for i in range(n):

 if is_safe(board, i, col, n):

 board[i][col] = 'Q'

 res = solve_n_queens(board, col + 1, n) or res

 board[i][col] = '.'

 return res

n = 4

board = [['.' for _ in range(n)] for _ in range(n)]

solve_n_queens(board, 0, n)

 Advantages & Disadvantages of Recursion

• Simplifies complex problems like tree traversal, graphs, and

backtracking.

79
MATS Centre for Distance and Online Education, MATS University

Notes • Reduces code complexity, making it easier to read.

• Useful for divide and conquer problems like sorting.

Disadvantages

• High memory consumption due to function call stack.

• Slower execution due to repeated function calls.

• May cause stack overflow if the base case is not defined

properly.

Recursion is an elegant way of solving problems used in mathematic

problems, traversing data structures, divide-and-conquer techniques,

and backtracking techniques. Its benefits notwithstanding, it has to be

used judiciously to prevent performance problems.

80
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2.3: Queue

2.3.1 Queue, Representation of Queues using sequential

organization, Dequeue

A queue is a linear data structure that follows the First In, First Out

(FIFO) principle, meaning the first element inserted into the queue is

the first one to be removed. It can be visualized like a line of people

waiting for service: the person who joins first gets served first.

Operations on a queue are performed from two ends:- Enqueue

(Insertion): Adding an element at the rear (back) of the queue.-

Dequeue (Deletion): Removing an element from the front of the queue.

queue maintains order and ensures fairness by serving elements in the

order they arrived.

Types of Queues:

1. Simple Queue: Elements are inserted at the rear and deleted from

the front.

2. Circular Queue: Connects the last position back to the first, making

efficient use of memory.

3. Priority Queue: Each element has a priority, and the element with

the highest priority is served first (not strictly FIFO).

4. Double-Ended Queue (Deque): Insertion and deletion can occur

from both ends.

Figure 2.3.1: Queue

81
MATS Centre for Distance and Online Education, MATS University

Notes Applications of Queues:

1. Operating Systems (Process Scheduling):

a. Used in CPU scheduling, job scheduling, and

managing processes in multitasking systems.

b. The ready queue stores processes waiting for CPU

time, and the waiting queue holds processes waiting for

I/O.

2. Printer Spooling and Job Scheduling:

a. When multiple print requests are made, they are

queued up.

b. The printer executes them one by one in arrival order.

3. Customer Service Systems:

a. In banks, railway counters, call centers, and hospitals,

queues ensure first-come, first-served service.

b. Models real-world waiting lines.

4. Data Buffers (IO Buffers, Keyboard Buffering):

a. Keystrokes typed on a keyboard are stored in a queue

before being processed.

b. Input/output buffering in devices and communication

systems uses queues to manage data flow smoothly.

5. Graph Traversals (Breadth-First Search):

a. Queues are used in BFS algorithms to traverse graphs

level by level.

b. Ensures nodes are visited in the correct order.

6. Simulation of Real-World Systems:

a. Traffic systems, supermarket checkout counters, airport

check-ins, and call centers are modeled using queues.

b. Helps study waiting times and optimize service

efficiency.

7. Resource Management in Distributed Systems:

a. Tasks and resource requests are managed using queues

to balance workloads across systems.

82
MATS Centre for Distance and Online Education, MATS University

Notes b. Common in cloud computing and message queues.

8. Networking and Communication:

a. Routers and switches use queues to store data packets

temporarily before transmission.

b. Maintains order and prevents congestion.

9. Operating in Concurrent Programming (Producer-

Consumer Problem):

a. A producer generates data and puts it in a queue.

b. A consumer retrieves data from the queue for

processing.

Advantages of Queues:

1. Fairness in Processing:

a. Queues follow the First In, First Out (FIFO) principle,

ensuring that requests are handled in the same order

they arrive.

b. This is crucial in systems like process scheduling,

customer service, and printer spooling.

2. Asynchronous Data Handling:

a. Queues are ideal for handling producer-consumer

problems where data is generated and consumed at

different speeds.

b. Buffers and pipelines use queues to manage

asynchronous data transfer smoothly.

3. Efficient in Scheduling:

a. Widely used in operating systems for task scheduling,

CPU job queues, and managing I/O requests.

b. Helps ensure resources are allocated efficiently.

4. Natural Representation of Real-World Scenarios:

Queues model many real-life situations such as ticket

counters, traffic signals, and service desks, making them

easy to understand and appl

83
MATS Centre for Distance and Online Education, MATS University

Notes Basic Queue Operations

Operation Description

Time

Complexity

Enqueue

(Insertion)

Adds an element at the rear of the

queue. O(1)

Dequeue

(Deletion)

Removes an element from the

front of the queue. O(1)

Peek (Front

Element)

Retrieves the front element

without removing it. O(1)

isEmpty Checks if the queue is empty. O(1)

1. Representation of Queues Using Sequential Organization

(Arrays)

Another example of abstract data types: Queues, which are

implemented on arrays, which is a collection of an area of memory.

This is called sequential organization; that is, elements are in hard,

physical order, and the memory is allocated in such a way that they are

in contiguously located memory.

Structure of a Queue Using an Array

A queue contains:

• An array to store elements.

• Two pointers:

• front – Indicates the first element of the queue.

• rear – Indicates the last inserted element.

Example: Queue Representation Using an Array (Size = 5)

Index 0 1 2 3 4

Queue Content 10 20 30 40 50

Front yes

Rear yes

Implementation of Queue Using an Array in Python

class Queue:

 def __init__(self, size):

 self.size = size

 self.queue = [None] * size # Fixed-size array

 self.front = -1 # Indicates the front element

84
MATS Centre for Distance and Online Education, MATS University

Notes self.rear = -1 # Indicates the rear element

 def enqueue(self, value):

 if self.rear == self.size - 1:

 print("Queue Overflow! Cannot enqueue", value)

 else:

 if self.front == -1: # First element inserted

 self.front = 0

 self.rear += 1

 self.queue[self.rear] = value

 print(value, "added to queue")

 def dequeue(self):

 if self.front == -1 or self.front > self.rear:

 print("Queue Underflow! Cannot dequeue")

 else:

 print(self.queue[self.front], "removed from queue")

 self.front += 1 # Move front pointer

 def peek(self):

 if self.front == -1 or self.front > self.rear:

 print("Queue is empty")

 else:

 return self.queue[self.front]

 def is_empty(self):

 return self.front == -1 or self.front > self.rear

Example Usage

q = Queue(5)

q.enqueue(10)

q.enqueue(20)

q.enqueue(30)

print("Front Element:", q.peek()) # Output: 10

q.dequeue()

print("Queue Empty?", q.is_empty()) # Output: False

Advantages & Disadvantages of Sequential Queue Representation

• Fast operations (O(1) time complexity for enqueue and

dequeue).

• Simple to implement using arrays.

• Fixed size (cannot dynamically grow).

• Wasted memory due to unused spaces after deletion.

2. Circular Queue (Optimized Sequential Queue Representation)

85
MATS Centre for Distance and Online Education, MATS University

Notes In a simple queue, after several dequeues, the unused spaces cannot be

reused. Circular queues consider this problem and make the queue

circular such that the rear reaches the end, it wraps to the front In a

straightforward queue, unused spaces cannot be reused after multiple

dequeues. To solve this problem, circular queues make the queue

circular, so, whenever the rear reaches the end of the queue, it is

circularly wrapped around to the front end of the queue.

Implementation of Circular Queue Using an Array in Python

class Circular Queue:

 def __init__(self, size):

 self.size = size

 self.queue = [None] * size

 self.front = -1

 self.rear = -1

 def enqueue(self, value):

 if (self.rear + 1) % self.size == self.front:

 print("Queue Overflow!")

 else:

 if self.front == -1:

 self.front = 0

 self.rear = (self.rear + 1) % self.size

 self.queue[self.rear] = value

 print(value, "added to circular queue")

 def dequeue(self):

 if self.front == -1:

 print("Queue Underflow!")

 else:

 print(self.queue[self.front], "removed from circular queue")

Figure 2.3.2: Circular Queue

86
MATS Centre for Distance and Online Education, MATS University

Notes if self.front == self.rear: # Only one element left

 self.front = self.rear = -1

 else:

 self.front = (self.front + 1) % self.size

cq = CircularQueue(5)

cq.enqueue(10)

cq.enqueue(20)

cq.enqueue(30)

cq.dequeue()

cq.enqueue(40)

cq.enqueue(50)

cq.enqueue(60) # Wraps around

3. Dequeue (Double-Ended Queue)

A Dequeue (Double-Ended Queue) is a linear queue where we can add

and delete the elements from both ends, front and the rear. It supports

two types:

1. Input-Restricted Dequeue – Insertion is not allowed at one end

only, but deletion goes at both ends.

2. String Parse from String-to-String queue dequeue deque d Queue

Stack Q Stack S Stack parse Stack S S Table S dequeue D Stack

parse Stack S Table S Stack parse Stack S

Operations in a Dequeue

Operation Description

Time

Complexity

Insert at Front Adds an element at the front. O(1)

Insert at Rear Adds an element at the rear. O(1)

Delete from

Front

Removes an element from the

front. O(1)

Delete from

Rear

Removes an element from the

rear. O(1)

Implementation of Dequeue Using an Array in Python

from collections import deque

dq = deque()

Insert at rear

dq.append(10)

dq.append(20)

87
MATS Centre for Distance and Online Education, MATS University

Notes print("Dequeue:", dq)

Insert at front

dq.appendleft(5)

print("Dequeue after front insertion:", dq)

Delete from front

dq.popleft()

print("Dequeue after front deletion:", dq)

Delete from rear

dq.pop()

print("Dequeue after rear deletion:", dq)

Applications of Dequeue

 Sliding Window Problems – Used in maximum/minimum sliding

window calculations.

 Job Scheduling – Tasks are processed from both ends based on priority.

 Palindrome Checking – Characters can be compared from both ends.

4. Applications of Queues

1. Scheduling in Operating Systems

• CPU process scheduling follows FIFO queues.

• Disk scheduling algorithms use priority queues.

2. Print Queue in Printers

• Print jobs are handled using FIFO queues, ensuring first-

come, first-served.

3. Network & Data Buffering

• Packets are queued before transmission in routers and

switches.

• Video streaming buffers use queues for smooth playback.

4. Call Center and Customer Service

• Customer support calls follow FIFO queues for fair handling.

• Queues and deques are one of the important data structures

used in scheduling, buffering and in many other real world

applications. They are sequential with arrays that provide

faster operation time but circular queues and deques allow

more flexibility in insertion and deletion. They are used to

solve efficient algorithmic problems such as process

scheduling, buffering in computing, and task management,

which makes understanding these structures important

6.1.2 Priority Queue

88
MATS Centre for Distance and Online Education, MATS University

Notes A Priority Queue is a special type of queue where each element has

some priority associated with it. A priority queue is a special type of

queue that is different from a normal queue where elements are

processed in a FIFO (First In, First Out) order.

Key Features of a Priority Queue

Each element has a priority value.

Higher-priority elements are dequeued before lower-priority elements.

If two elements have the same priority, they follow FIFO order.

Example of a Priority Queue

Think of a hospital emergency room that treats patients according to

how serious their condition is, not the order they arrived.

Patient Name Condition Priority Level

Alice Mild fever 3 (Low)

Bob Fracture 2 (Medium)

Charlie Heart Attack 1 (High)

Types of Priority Queues

1. Min-Priority Queue

• The lowest-priority element is dequeued first.

• Example: Dijkstra’s Algorithm (finding shortest paths).

2. Max-Priority Queue

• The highest-priority element is dequeued first.

• Example: Task scheduling, emergency services.

Implementation of Priority Queue

1. Using a List (Naïve Approach)

The elements are stored in an unordered list and the element with the

highest/lowest priority is found by the time of deletion (O(n) time

complexity).

class PriorityQueue:

 def __init__(self):

 self.queue = []

 def enqueue(self, item, priority):

 self.queue.append((item, priority))

 def dequeue(self):

 if not self.queue:

 return "Queue is empty"

 self.queue.sort(key=lambda x: x[1]) # Sort by priority (min first)

89
MATS Centre for Distance and Online Education, MATS University

Notes return self.queue.pop(0)[0] # Remove the highest priority element

pq = PriorityQueue()

pq.enqueue("Alice", 3)

pq.enqueue("Bob", 2)

pq.enqueue("Charlie", 1)

print(pq.dequeue()) # Output: Charlie (highest priority)

2. Using a Heap (Efficient Approach)

A binary heap (Min-Heap or Max-Heap) is used to insert and delete in

O(log n) time complexity.

import heapq

class PriorityQueue:

 def __init__(self):

 self.queue = []

 def enqueue(self, item, priority):

 heapq.heappush(self.queue, (priority, item)) # Min-Heap (lowest

priority first)

 def dequeue(self):

 if not self.queue:

 return "Queue is empty"

 return heapq.heappop(self.queue)[1] # Remove highest priority

item

pq = PriorityQueue()

pq.enqueue("Alice", 3)

pq.enqueue("Bob", 2)

pq.enqueue("Charlie", 1)

print(pq.dequeue()) # Output: Charlie

4. Applications of Priority Queue

CPU Scheduling – Processes with higher priority execute first.

Graph Algorithms – Used in Dijkstra’s and A Algorithm* for shortest

path.

Data Compression (Huffman Coding) – Nodes with lower frequency

get higher priority.

Network Packet Scheduling – Important packets (like VoIP) are sent

first.

Event-Driven Simulations – Events with higher importance are

processed first.

5. Comparison of Priority Queue Implementations

90
MATS Centre for Distance and Online Education, MATS University

Notes Implementation

Method

Enqueue Time

Complexity

Dequeue Time

Complexity

Space

Complexity

Unsorted List O(1) O(n) O(n)

Sorted List O(n) O(1) O(n)

Binary Heap

(Min/Max-Heap) O(log n) O(log n) O(n)

A priority queue is a data structure that enables retrieval of highest

priority elements first, rather than insertion order. It has its applications

in CPU scheduling, graph algorithms, network routing, and

simulations. A heap-based implementation has the added benefit of

decent performance for real-world applications.

Summary:

In Module 2 focuses on the core linear structures—stack and queue

along with the concept of recursion, all of which are essential for

problem-solving in computer science. A stack is a Last-In-First-Out

(LIFO) data structure where the last inserted element is the first to be

removed, supporting operations like push, pop, and peek, and is

commonly used in function call management, undo-redo mechanisms,

and expression evaluation. A queue, on the other hand, follows the

First-In-First-Out (FIFO) principle, with enqueue and dequeue

operations, and is applied in process scheduling, buffering, and

resource allocation. Variants like circular queues, deques, and priority

queues provide enhanced control over insertion and deletion at both

ends or based on priority. Recursion is a programming technique where

a function calls itself to solve smaller subproblems until reaching a base

case. It is widely used in mathematical computations, tree and graph

traversals, and divide-and-conquer algorithms such as merge sort and

backtracking problems like the N-Queens puzzle. Together, stack,

queue, and recursion form the backbone of many algorithmic strategies

and are crucial for efficient programming and data structure

manipulation.

Multiple-Choice Questions (MCQs)

1. Which data structure follows the Last-In, First-Out (LIFO) principle?

a) Queue

b) Stack

91
MATS Centre for Distance and Online Education, MATS University

Notes c) Linked List

d) Priority Queue

(Answer: b)

2. Which operation removes the top element from a stack?

a) Enqueue

b) Pop

c) Push

d) Peek

(Answer: b)

3. What is a common application of stacks in programming?

a) Managing function calls

b) Scheduling processes

c) Searching in an unordered list

d) Sorting data

(Answer: a)

4. Which of the following problems is best solved using recursion?

a) Fibonacci sequence

b) Tower of Hanoi

c) Tree traversal

d) All of the above

(Answer: d)

5. What differentiates a queue from a stack?

a) A queue follows LIFO, while a stack follows FIFO

b) A stack follows FIFO, while a queue follows LIFO

c) A queue follows FIFO, while a stack follows LIFO

d) Both follow the LIFO principle

(Answer: c)

6. Which of the following is NOT a type of queue?

a) Circular Queue

b) Dequeue

c) Priority Queue

d) Hash Queue

(Answer: d)

7. What happens when a recursive function lacks a base case?

a) It executes once and terminates

b) It results in an infinite recursion, causing a stack overflow

c) It returns a NULL value

92
MATS Centre for Distance and Online Education, MATS University

Notes d) The compiler automatically adds a base case

(Answer: b)

8. Which of the following operations is performed at both ends in a

dequeue?

a) Insert

b) Delete

c) Both Insert and Delete

d) None of the above

(Answer: c)

9. Which queue variation assigns priorities to elements for processing?

a) Circular Queue

b) Dequeue

c) Priority Queue

d) Stack Queue

(Answer: c)

10. Which data structure is commonly used for backtracking problems?

a) Queue

b) Stack

c) Hash Table

d) Tree

(Answer: b)

Short Questions

1. Define stack and list its primary operations.

2. Explain recursion with an example.

3. What is the difference between iteration and recursion?

4. Describe the FIFO principle in queues.

5. What is a priority queue, and how is it different from a normal

queue?

6. Explain how stacks are used for function calls in programming.

7. What is a circular queue, and why is it useful?

8. List two real-world applications of recursion.

9. What is the difference between push and pop operations in a

stack?

10. How can recursion be converted into iteration?

Long Questions

93
MATS Centre for Distance and Online Education, MATS University

Notes 1. Explain stack operations with a detailed example, including push,

pop, and peek operations.

2. Discuss recursion in-depth, including base cases and recursive

function execution flow.

3. Write a program to implement stack operations using an array.

4. Describe queues and their variations, such as circular queues,

deques, and priority queues.

5. Compare and contrast stacks and queues, highlighting their use

cases.

6. Implement a recursive algorithm to compute the Fibonacci

sequence and explain its execution.

7. Explain how recursion works in the Tower of Hanoi problem and

provide a solution.

8. Describe expression evaluation using stacks, including infix,

prefix, and postfix notations.

9. Write a program to implement a queue using an array, including

enqueue and dequeue operations.

10. Discuss how recursion can be optimized using memorization or

iterative approaches.

94
MATS Centre for Distance and Online Education, MATS University

MODULE 3

LINKED LIST

3.0 LEARNING OUTCOMES

By the end of this chapter, students will be able to:

• Understand the concept of linked lists, their representation, and

advantages over arrays.

• Perform operations on linked lists, including traversing,

searching, insertion, and deletion.

• Learn about memory allocation in linked lists and how dynamic

memory is managed using pointers.

95
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3.1: Linked list

3.1.1 Linked list and its representation

The linked list is a linear data structure in which the elements are not

stored at contiguous memory locations but are linked using pointers. A

linked list node consists of:

1. Data – The actual value stored in the node.

2. Pointer (Next) – A reference to the next node in the list.

Figure 3.1.1: Linked List

Comparison of Linked List vs. Array

Feature Linked List Array

Memory

Allocation Dynamic Fixed Size

Insertion/Deletion

O(1) (at beginning), O(n) (at

middle/end)

O(n) (requires

shifting)

Access Time O(n) (sequential access)

O(1) (direct

access)

96
MATS Centre for Distance and Online Education, MATS University

Notes

Extra Space

Requires extra space for

pointers

No extra space

needed

2. Types of Linked Lists

1. Singly Linked List – Each node points to the next node.

2. Doubly Linked List – Each node has two pointers (next and

previous).

3. Circular Linked List – The last node points back to the first

node.

3. Representation of Linked List

Structure of a Node (Singly Linked List)

python

CopyEdit

class Node:

 def __init__(self, data):

 self.data = data # Store the data

 self.next = None # Pointer to the next node

Basic Operations in Linked List

Operation Description

Insertion Add a new node at the beginning, end, or middle.

Deletion Remove a node from the list.

Traversal Move through the list to access elements.

Linked List Implementation in Python

python

97
MATS Centre for Distance and Online Education, MATS University

Notes class Node:

 def __init__(self, data):

 self.data = data

 self.next = None

class LinkedList:

 def __init__(self):

 self.head = None

 def insert_at_end(self, data):

 new_node = Node(data)

 if not self.head:

 self.head = new_node

 return

 temp = self.head

 while temp.next:

 temp = temp.next

 temp.next = new_node

 def display(self):

 temp = self.head

 while temp:

 print(temp.data, end=" -> ")

 temp = temp.next

 print("None")

Example Usage

ll = LinkedList()

98
MATS Centre for Distance and Online Education, MATS University

Notes ll.insert_at_end(10)

ll.insert_at_end(20)

ll.insert_at_end(30)

ll.display() # Output: 10 -> 20 -> 30 -> None

4. Advantages & Disadvantages of Linked List

• Dynamic size allocation (efficient memory utilization).

• Efficient insertions and deletions compared to arrays.

• Extra memory required for pointers.

• Slower access time (O(n) vs. O(1) for arrays).

5. Applications of Linked Lists

• Memory management (Dynamic Allocation).

• Implementation of stacks and queues.

• Undo-Redo functionality in text editors.

Graph representation (Adjacency List).

Linked List: It is a mutable and useful data structure for dynamic

memory allocation and efficient insertions and deletions. It is often

used in data structures (stack, queue, graph), although it needs

additional memory for pointers.

99
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3.2: Operations on Linked list

3.2.1 Operations on Linked list: Traversing, Searching, Insertion,

Deletion

A linked list is a data structure made up of nodes wherein each node is

linked through pointers. Linked lists are often used because of the

relatively high number of operations that can be performed on them,

such as traversing, searching, inserting and deleting. Operations are

helpful to optimize the linked list elements operation.

3.2.2 Traversing a Linked List

Traversing the Linked List means going through the linked list one by

one and getting its data. And since linked lists does not contain arrays

with contiguous memory, following next pointer of each node make it

necessary to traverse them one by one.

3.2.2 Algorithm for Traversing

1.Start from index 0.

2.Repeat until the last index:

3.Access the element at the current index.

4.Perform any required operation (print, add, etc.).

5.Move to the next index (index = index + 1).

3.2.3 Implementation in Python

class Node:

 def __init__(self, data):

 self.data = data

 self.next = None

class LinkedList:

 def __init__(self):

100
MATS Centre for Distance and Online Education, MATS University

Notes self.head = None

 def insert_at_end(self, data):

 new_node = Node(data)

 if not self.head:

 self.head = new_node

 return

 temp = self.head

 while temp.next:

 temp = temp.next

 temp.next = new_node

 def traverse(self):

 temp = self.head

 while temp:

 print(temp.data, end=" -> ")

 temp = temp.next

 print("None")

Example Usage

ll = LinkedList()

ll.insert_at_end(10)

ll.insert_at_end(20)

ll.insert_at_end(30)

ll.traverse() # Output: 10 -> 20 -> 30 -> None

Time Complexity:

O(n) – Each node is visited once.

101
MATS Centre for Distance and Online Education, MATS University

Notes 3.3.3 Searching in a Linked List

It involves getting whether a specific value exists in the linked list and

retracing steps to the position (index) if it does. Because linked lists do

not allow direct indexing, a search is performed by traversing through

each of the nodes sequentially.

3.3.4 Algorithm for Searching

1. Start from the head node.

2. Compare the data of the current node with the target value.

3. If found, return the position of the node.

4. If not found, move to the next node.

5. Repeat until the end of the list is reached.

3.3.5 Implementation in Python

class LinkedList:

 def __init__(self):

 self.head = None

 def insert_at_end(self, data):

 new_node = Node(data)

 if not self.head:

 self.head = new_node

 return

 temp = self.head

 while temp.next:

 temp = temp.next

 temp.next = new_node

 def search(self, key):

102
MATS Centre for Distance and Online Education, MATS University

Notes temp = self.head

 position = 0

 while temp:

 if temp.data == key:

 return f"Element found at index {position}"

 temp = temp.next

 position += 1

 return "Element not found"

Example Usage

ll = LinkedList()

ll.insert_at_end(10)

ll.insert_at_end(20)

ll.insert_at_end(30)

print(ll.search(20)) # Output: Element found at index 1

print(ll.search(40)) # Output: Element not found

Time Complexity:

O(n) – Each node is checked once.

3.3.6 Insertion in a Linked List

Insertion is the process of adding a new node at a specific position.

There are three common cases:

1. At the beginning (Head Insertion)

2. At the end (Tail Insertion)

3. In the middle (Between two nodes)

Algorithm for Insertion

1. Create a new node with the given data.

103
MATS Centre for Distance and Online Education, MATS University

Notes 2. Adjust pointers based on insertion position.

3. Update the next reference of the previous node.

3.3.7 Implementation in Python

class LinkedList:

 def __init__(self):

 self.head = None

 def insert_at_beginning(self, data):

 new_node = Node(data)

 new_node.next = self.head

 self.head = new_node

 def insert_at_end(self, data):

 new_node = Node(data)

 if not self.head:

 self.head = new_node

 return

 temp = self.head

 while temp.next:

 temp = temp.next

 temp.next = new_node

 def insert_at_position(self, data, position):

 new_node = Node(data)

 if position == 0: # Insert at the beginning

 new_node.next = self.head

 self.head = new_node

104
MATS Centre for Distance and Online Education, MATS University

Notes return

 temp = self.head

 for _ in range(position - 1):

 if not temp:

 return "Position out of bounds"

 temp = temp.next

 new_node.next = temp.next

 temp.next = new_node

Example Usage

ll = LinkedList()

ll.insert_at_end(10)

ll.insert_at_end(30)

ll.insert_at_position(20, 1) # Insert 20 at index 1

ll.traverse() # Output: 10 -> 20 -> 30 -> None

Time Complexity:

O(1) for beginning insertion

O(n) for middle/end insertion

3.3.8 Deletion in a Linked List

Deletion involves removing a node from the list. Common cases

include:

1. Deleting the first node (Head deletion).

2. Deleting a node in the middle.

3. Deleting the last node (Tail deletion).

Algorithm for Deletion

1. If list is empty, return "Underflow."

105
MATS Centre for Distance and Online Education, MATS University

Notes 2. If deleting the first node, update head.

3. If deleting a middle node, adjust the next pointer of previous

node.

4. If deleting last node, set previous node’s next to None.

3.3.9 Implementation in Python

class LinkedList:

 def __init__(self):

 self.head = None

 def insert_at_end(self, data):

 new_node = Node(data)

 if not self.head:

 self.head = new_node

 return

 temp = self.head

 while temp.next:

 temp = temp.next

 temp.next = new_node

 def delete_node(self, key):

 temp = self.head

 # Deleting first node

 if temp and temp.data == key:

 self.head = temp.next

 temp = None

 return

 # Deleting middle or last node

106
MATS Centre for Distance and Online Education, MATS University

Notes prev = None

 while temp and temp.data != key:

 prev = temp

 temp = temp.next

 if temp is None:

 return "Element not found"

 prev.next = temp.next

 temp = None

Example Usage

ll = LinkedList()

ll.insert_at_end(10)

ll.insert_at_end(20)

ll.insert_at_end(30)

ll.delete_node(20) # Delete node with value 20

ll.traverse() # Output: 10 -> 30 -> None

Time Complexity:

O(1) for deleting first node

O(n) for deleting middle/last node

Insertion/deletion in linked lists is more efficient, and memory can be

allocated dynamically while in arrays it cannot, as they have static

memory allocation. But, they need to be traversed sequentially for

search and access. The methods utilized in basic operations (traversal,

searching, insertion, deletion) constitute the basis for complex data

structures like stacks, queues, and graphs.

107
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3.3: Memory Allocation

3.3.1 Memory Allocation

This action is typically taken at run time when the program is executed.

It protects the overall performance, reduces extra usage of memory, and

avoids situations where insufficient memory leads to crashes.

Types of Memory in a Computer System

Memory Type Description

Primary Memory (RAM)

Temporary, volatile storage used by the

CPU for fast access.

Secondary Memory

(HDD/SSD)

Non-volatile, used for long-term data

storage.

Cache Memory

High-speed memory for frequently accessed

data.

Register Memory

Small, fastest memory directly inside the

CPU.

1. Types of Memory Allocation

Memory allocation is classified into two main types:

1. Static Memory Allocation

2. Dynamic Memory Allocation

Static Memory Allocation

• Memory is assigned before program execution (at compile

time).

• The memory size is immutable and cannot be altered during

runtime.

• Faster execution since memory is pre-allocated.

108
MATS Centre for Distance and Online Education, MATS University

Notes • Uses stack memory for storage.

Example (Static Memory Allocation in C)

int arr[5]; // Fixed size array (allocated at compile time)

Advantages:

 Faster execution

 No memory fragmentation

 Disadvantages:

 Wastage of memory if unused

 Cannot allocate memory dynamically

2. Dynamic Memory Allocation

• Memory is allocated during program execution (at runtime).

• Size is flexible, and memory can be allocated or deallocated as

needed.

• Uses heap memory for storage.

Example (Dynamic Memory Allocation in C)

int *ptr = (int*) malloc(5 * sizeof(int)); // Allocating memory

dynamically

Advantages:

 Efficient memory usage

 Can allocate or free memory as needed

 Disadvantages:

 Slower execution due to runtime allocation

 Memory leaks if not properly deallocated

109
MATS Centre for Distance and Online Education, MATS University

Notes 3. Methods of Dynamic Memory Allocation in C/C++

Function Description

Header

File

malloc(size)

Allocates a block of memory but does not

initialize it. <stdlib.h>

calloc(n, size)

Allocates multiple blocks and initializes

them to zero. <stdlib.h>

realloc(ptr,

size)

Resizes a previously allocated memory

block. <stdlib.h>

free(ptr)

Deallocates memory to prevent memory

leaks. <stdlib.h>

Example (Dynamic Memory Allocation Using malloc in C)

#include <stdio.h>

#include <stdlib.h>

int main() {

 int *ptr = (int*) malloc(5 * sizeof(int)); // Allocating memory for 5

integers

 if (ptr == NULL) {

 printf("Memory allocation failed!");

 return 1;

 }

 for (int i = 0; i < 5; i++)

 ptr[i] = i * 10; // Assigning values

110
MATS Centre for Distance and Online Education, MATS University

Notes for (int i = 0; i < 5; i++)

 printf("%d ", ptr[i]); // Output: 0 10 20 30 40

 free(ptr); // Deallocating memory

 return 0;

}

4. Memory Allocation in Data Structures

1. Stack Memory Allocation (Static)

• Stores function calls, local variables, and recursion data.

• Memory is automatically allocated and deallocated.

• Limited size (stack overflow can occur).

2. Heap Memory Allocation (Dynamic)

• Stores dynamically allocated memory (e.g., linked lists, trees).

• Memory must be manually managed (malloc/free).

• Larger than stack memory but slower access.

5. Common Memory Allocation Issues

Issue Description

Memory Leak Forgetting to free dynamically allocated memory.

Dangling

Pointer Accessing memory after it has been freed.

Fragmentation

Memory is divided into small unused blocks,

reducing efficiency.

Buffer

Overflow Writing more data than allocated, leading to crashes.

111
MATS Centre for Distance and Online Education, MATS University

Notes Example of a Memory Leak (C)

void memory_leak() {

 int *ptr = (int*) malloc(5 * sizeof(int)); // Allocated memory

 // Forgot to free memory -> Memory leak!

}

Solution: Always use free(ptr) after allocation.

It is a very crucial concept in programming as memory allocation helps

to manage resources efficiently. Static allocation is easy but rigid, and

dynamic allocation gives you flexibility but requires properly

managing the memory. The correct management of memory will guard

against leaks, fragmentation and buffer overflows, which would

otherwise make your program less efficient.

Summary:

 The linked list is a dynamic linear data structure in which elements,

called nodes, are connected using pointers rather than stored in

contiguous memory like arrays. Each node typically contains two

fields: the data and a reference (or pointer) to the next node in the

sequence. Types of linked lists include singly linked lists, where each

node points to the next node; doubly linked lists, where nodes point to

both their previous and next nodes, allowing bidirectional traversal; and

circular linked lists, where the last node links back to the first. Linked

lists support efficient insertion and deletion at any position without the

need for shifting elements, making them more flexible than arrays for

dynamic memory allocation. Common operations include insertion at

the beginning, end, or a specific position; deletion from any location;

traversal; searching; and reversing. Linked lists are used in various

applications such as implementing stacks, queues, graphs, dynamic

memory management, and representing polynomial expressions. Their

non-contiguous memory allocation enables better use of memory,

although they require extra space for pointer storage and are less

efficient for random access compared to arrays.

112
MATS Centre for Distance and Online Education, MATS University

Notes

Multiple-Choice Questions (MCQs)

1. Which of the following is an advantage of linked lists over

arrays?

a) Faster access to elements using indexing

b) Dynamic memory allocation

c) Fixed size allocation

d) Requires less memory per node

(Answer: b)

2. Which type of linked list allows traversal in both

directions?

a) Singly Linked List

b) Doubly Linked List

c) Circular Linked List

d) None of the above

(Answer: b)

3. What is the time complexity of inserting an element at the

beginning of a linked list?

a) O(1)

b) O(n)

c) O(log n)

d) O(n²)

(Answer: a)

4. Which operation is most efficient in a linked list compared

to an array?

a) Accessing an element at a specific index

b) Deleting an element from the middle

113
MATS Centre for Distance and Online Education, MATS University

Notes c) Sorting elements

d) Merging two lists

(Answer: b)

5. What does the ‘head’ pointer in a linked list represent?

a) The last node in the list

b) The middle node in the list

c) The first node in the list

d) A temporary pointer for traversal

(Answer: c)

6. Which type of linked list has its last node pointing to the

first node?

a) Singly Linked List

b) Doubly Linked List

c) Circular Linked List

d) Multi-Level Linked List

(Answer: c)

7. What happens when a node is deleted from a singly linked

list?

a) The previous node's next pointer is updated

b) The entire list is deleted

c) Memory for all nodes is freed

d) The previous node becomes the last node

(Answer: a)

8. Which of the following statements is true about linked

lists?

a) They have a fixed size

b) They allow efficient random access

c) They use dynamic memory allocation

d) They are always slower than arrays

(Answer: c)

9. What is the primary disadvantage of linked lists?

a) Fixed memory allocation

114
MATS Centre for Distance and Online Education, MATS University

Notes b) Higher memory overhead due to pointers

c) Inefficient insertion and deletion

d) Cannot store data dynamically

(Answer: b)

10. Which function is used to allocate memory dynamically in

a linked list in C?

a) malloc()

b) calloc()

c) free()

d) Both a and b

(Answer: d)

Short Questions

1. What is a linked list, and how does it differ from an array?

2. List the advantages of linked lists over arrays.

3. What are the different types of linked lists, and how do they

differ?

4. How is memory allocated dynamically for linked lists?

5. What is a circular linked list, and where is it used?

6. Explain the difference between singly and doubly linked lists.

7. What are the main operations performed on a linked list?

8. How is traversal performed in a linked list?

9. Explain the memory overhead issue in linked lists.

10. How do you delete a node from a singly linked list?

115
MATS Centre for Distance and Online Education, MATS University

Notes Long Questions

1. Explain the structure of a linked list and how it is represented in

memory.

2. Discuss the advantages and disadvantages of linked lists

compared to arrays.

3. Write a C program to implement a singly linked list with

insertion and deletion operations.

4. Describe the traversal, searching, and insertion operations in

linked lists with examples.

5. Explain the concept of dynamic memory allocation in linked

lists and how malloc() and free() are used.

6. Compare singly, doubly, and circular linked lists, discussing

their applications.

7. Write a C program to implement a doubly linked list with

insertion and deletion at different positions.

8. What are the applications of linked lists in real-world

computing?

9. Describe how deletion works in a linked list, including edge

cases such as deleting the first and last nodes.

10. Implement a circular linked list in C, including insertion,

deletion, and traversal operations.

116
MATS Centre for Distance and Online Education, MATS University

MODULE 4

TREE AND GRAPH

LEARNING OUTCOMES

By the end of this Unit, students will be able to:

• Understand tree concepts, including their structure and

applications.

• Learn the representation of binary trees and perform operations

such as searching, insertion, and deletion.

• Implement and analyze Binary Search Tree (BST) and AVL tree

algorithms for optimized searching and balancing.

• Explore graph representations (adjacency matrix, adjacency

list), operations (searching, insertion, deletion), and traversal

techniques (BFS, DFS) for efficient graph processing.

117
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4.1: Tree concepts And Binary Tree

4.1.1 Tree concepts

A tree is a type of data structure that is used to represent relationships

between elements in a hierarchical manner. It is made up of nodes

linked through edges, where each node contains data and pointers to

its children nodes. Trees are non-linear data structures (unlike linear

data structures like arrays, linked lists) used for efficient searching,

sorting, and hierarchical data organization.

Basic Terminology of Trees

Term Description

Node A single element in a tree (stores data and references).

Root The topmost node (starting point of the tree).

Parent A node that has child nodes.

Child A node derived from another node (parent).

Sibling Nodes that share the same parent.

Leaf Node A node without children (terminal node).

Edge Connection between two nodes.

Depth Distance from the root to a node.

Height Maximum depth of the tree.

Subtree A section of a tree rooted at a particular node.

1. Properties of a Tree

1. A tree consists of N nodes and (N-1) edges.

2. There is only one root node.

3. A tree is a connected and acyclic structure (no cycles).

4. Each node can have any number of children.

2. Types of Trees

General Tree

• A tree where each node can have any number of children.

Binary Tree

• A tree where each node has at most two children (left and right).

Binary Search Tree (BST)

• A binary tree where:

• Left subtree contains smaller values.

• Right subtree contains larger values.

118
MATS Centre for Distance and Online Education, MATS University

Notes • Efficient for searching, insertion, and deletion (O(log n)

complexity).

Balanced Tree

• A tree where the height difference between left and right

subtrees is minimal.

• Example: AVL Tree, Red-Black Tree.

Heap Tree

• A complete binary tree used for priority queues.

• Min Heap: The parent is smaller than its children.

• Max Heap: The parent is greater than its children.

Trie (Prefix Tree)

• Used for searching words in dictionaries and autocomplete

suggestions.

3. Representation of Trees

Trees can be represented using:

Linked List Representation

Each node contains data, left child, and right child pointers.

class Node:

 def __init__(self, data):

 self.data = data

 self.left = None

 self.right = None

root = Node(10) # Root node

root.left = Node(5) # Left child

root.right = Node(15) # Right child

Array Representation

Trees can be stored in an array (for complete binary trees).

For a node at index i:

• Left Child → 2*i + 1

• Right Child → 2*i + 2

• Parent → (i - 1) // 2

Example for [10, 5, 15, 3, 7]:

Index Value Left Child Right Child Parent

0 10 5 (1) 15 (2) -

1 5 3 (3) 7 (4) 10 (0)

119
MATS Centre for Distance and Online Education, MATS University

Notes 4. Tree Traversal

Traversal is the process of visiting nodes in a tree.

Depth-First Search (DFS)

Type Order

Preorder (NLR) Root → Left → Right

Inorder (LNR) Left → Root → Right

Postorder (LRN) Left → Right → Root

def inorder_traversal(root):

 if root:

 inorder_traversal(root.left)

 print(root.data, end=" ")

 inorder_traversal(root.right)

Breadth-First Search (BFS) (Level Order Traversal)

• Visits nodes level by level (top to bottom).

• Implemented using a queue.

python

CopyEdit

from collections import deque

def level_order_traversal(root):

 if not root:

 return

 queue = deque([root])

 while queue:

 node = queue.popleft()

 print(node.data, end=" ")

 if node.left:

 queue.append(node.left)

 if node.right:

 queue.append(node.right)

5. Applications of Trees

Database Indexing (B-Trees, B+ Trees)

File System Hierarchies

Network Routing Algorithms

Expression Evaluation (Syntax Trees)

120
MATS Centre for Distance and Online Education, MATS University

Notes Artificial Intelligence (Decision Trees)

Compiler Design (Abstract Syntax Trees)

Trees are essential hierarchical data structures used for searching,

sorting, and managing data. The concept of trees is an important aspect

of computer science, it is data structures that sort the data into tree

forms.

4.1.2 Binary Tree-Representation

A Binary Tree is a hierarchical data structure in which each node

possesses a maximum of two offspring.

• Left Offspring

• Right Offspring

Binary trees are widely used in searching, sorting, expression

evaluation, and hierarchical data representation.

Representation of Binary Tree

1. Linked List Representation (Node-Based Representation)

In this representation, each node has:

• Data (value of node).

• Pointer to left child.

• Pointer to right child.

Python Implementation (Binary Tree Node Structure)

class Node:

 def __init__(self, data):

 self.data = data

 self.left = None

 self.right = None

Creating a simple binary tree

root = Node(1)

root.left = Node(2)

root.right = Node(3)

root.left.left = Node(4)

root.left.right = Node(5)

Tree Structure:

1

/ \

2 3

/ \

4 5

121
MATS Centre for Distance and Online Education, MATS University

Notes Advantages:

 Dynamic size (grows as needed)

 Efficient insertions and deletions

Disadvantages: Uses extra memory for pointers

2. Array Representation (Sequential Representation)

A binary tree can also be stored in an array where:

• Root node is at index 0.

• Left child of node at index i is at 2*i + 1.

• Right child of node at index i is at 2*i + 2.

• Parent of node at index i is at (i-1) // 2.

Example: Storing a Binary Tree in an Array

For a binary tree:

markdown

 1

 / \

 2 3

 / \

 4 5

Array representation: [1, 2, 3, 4, 5]

Index Node Left Child Index Right Child Index

0 1 1 2

1 2 3 4

2 3 - -

3 4 - -

4 5 - -

Python Implementation (Binary Tree using an Array)

class BinaryTree:

 def __init__(self):

 self.tree = []

 def insert(self, data):

 self.tree.append(data) # Insert node at the next available position

 def get_left_child(self, index):

 left_index = 2 * index + 1

 return self.tree[left_index] if left_index < len(self.tree) else None

 def get_right_child(self, index):

 right_index = 2 * index + 2

122
MATS Centre for Distance and Online Education, MATS University

Notes return self.tree[right_index] if right_index < len(self.tree) else

None

Example Usage

bt = BinaryTree()

bt.insert(1)

bt.insert(2)

bt.insert(3)

bt.insert(4)

bt.insert(5)

print("Left Child of 1:", bt.get_left_child(0)) # Output: 2

print("Right Child of 1:", bt.get_right_child(0)) # Output: 3

Advantages:

 Efficient for complete binary trees

 Direct access using index

Disadvantages:

 Wasted memory if the tree is sparse

 Difficult insertions/deletions in the middle

3. Choosing the Right Representation

Feature

Linked List

Representation Array Representation

Memory Usage Extra space for pointers

Wastes space in sparse

trees

Insertion/Deletion Efficient (O(1) at root)

Inefficient (O(n)

shifting)

Traversal

Requires

recursion/iteration

Direct access using

index

Best Use Case General trees (BST, AVL) Complete Binary Trees

Binary trees are implemented by linked list (pointers) or array

(indexing). Linked list approche is flexible solution for a dynamic tree,

while array solution would be good for complete binary trees.

Efficiency in memory and faster operations in applications like

searching, parsing, and sorting are provided through the knowledge of

both methods.

4.3.2 Operations: Searching, Insertion, Deletion

A Binary Tree provides fundamental capabilities such as search, insert,

and delete. These operations are very prevalent in Binary Search

Trees(BSTs), where elements follow sorted order:

• left subtree has values that are inferior to root.

123
MATS Centre for Distance and Online Education, MATS University

Notes • right subtree contains values that surpass those of root.

4.1.3 Searching in a Binary Tree

Searching: Finding one specific value from the tree. searching is also

efficient in BST as it is of O(log n) complexity in balanced trees.

Algorithm for Searching in BST

1. Commence with root node.

2. If key matches root, return the node.

3. If key is smaller, perform a search in left subtree.

4. If the key is bigger, perform a search in the right subtree.

5. Continue iterating until the key is located or the tree is depleted.

Python Implementation

class Node:

 def __init__(self, data):

 self.data = data

 self.left = None

 self.right = None

def search(root, key):

 if root is None or root.data == key:

 return root # Found the key or reached a leaf node

 if key < root.data:

 return search(root.left, key)

 return search(root.right, key)

Example Tree

root = Node(10)

root.left = Node(5)

root.right = Node(20)

root.left.left = Node(3)

root.left.right = Node(7)

Search for a node

result = search(root, 7)

print("Found" if result else "Not Found") # Output: Found

Time Complexity:

Best Case (Balanced Tree): O(log n)

 Worst Case (Skewed Tree): O(n)

2. Insertion in a Binary Search Tree (BST)

Insertion adds a new node while maintaining the BST property.

Algorithm for Insertion

124
MATS Centre for Distance and Online Education, MATS University

Notes 1. If tree is empty, create a new node as the root.

2. Compare value with current node:

• If smaller, insert into the left subtree.

• If greater, insert into the right subtree.

1. Repeat until an empty position is found.

4.1.4 Python Implementation

def insert(root, key):

 if root is None:

 return Node(key) # Insert new node if tree is empty

 if key < root.data:

 root.left = insert(root.left, key) # Recur for left subtree

 else:

 root.right = insert(root.right, key) # Recur for right subtree

 return root

Example Usage

root = Node(10)

root = insert(root, 5)

root = insert(root, 15)

root = insert(root, 3)

root = insert(root, 7)

Time Complexity:

Best Case (Balanced Tree): O(log n)

 Worst Case (Skewed Tree): O(n)

3. Deletion in a Binary Search Tree (BST)

Deletion removes a node while maintaining the BST property.

Cases for Deletion:

1. A node devoid of descendants (Leaf Node) - Simply remove it.

2. A node possessing a solitary kid - Remove the node and connect

its child to its parent.

3. A node possessing two children necessitates identifying the

inorder successor (the smallest node within the right subtree),

replacing the node's value with that of inorder successor, and

subsequently eliminating the inorder successor.

Algorithm for Deletion

1. Search for the node to delete.

2. If it is terminal node, remove it straight.

125
MATS Centre for Distance and Online Education, MATS University

Notes 3. If it possesses a single offspring, substitute it with that

offspring.

4. If it has two children, find the inorder successor, replace the

node’s value, and delete the successor.

4.Python Implementation

def find_min(node):

 while node.left:

 node = node.left

 return node

def delete(root, key):

 if root is None:

 return root

 # Search for the node to delete

 if key < root.data:

 root.left = delete(root.left, key)

 elif key > root.data:

 root.right = delete(root.right, key)

 else:

 # Case 1: No child (leaf node)

 if root.left is None and root.right is None:

 return None

 # Case 2: One child

 if root.left is None:

 return root.right

 elif root.right is None:

 return root.left

 # Case 3: Two children

 temp = find_min(root.right) # Find inorder successor

 root.data = temp.data # Replace node value

 root.right = delete(root.right, temp.data) # Delete successor

 return root

Example Usage

root = Node(10)

root = insert(root, 5)

root = insert(root, 15)

root = insert(root, 3)

root = insert(root, 7)

root = delete(root, 5) # Delete node with value 5

126
MATS Centre for Distance and Online Education, MATS University

Notes Time Complexity:

Best Case (Balanced Tree): O(log n)

 Worst Case (Skewed Tree): O(n)

4. Summary of BST Operations

Operation Best Case Complexity Worst Case Complexity

Search O(log n) O(n)

Insertion O(log n) O(n)

Deletion O(log n) O(n)

BST is efficient for searching, inserting, and deleting in balanced trees.

 In worst-case (skewed trees), performance degrades to O(n).

Binary trees also support important operations such as searching,

insertion, and removal, which are the basis for search engines,

databases, and file systems. The Binary Search Tree (BST) exhibits

logarithmic time complexity for many operations and is an essential

data structure in computer science.

127
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4.2: Algorithms: Binary Search Tree and AVL

4.2.1 Algorithms: Binary Search Tree and AVL

Binary Search Tree (BST)

A Binary Search Tree (BST) is binary tree in which each node adheres

to the principle that :

• The left subtree holds values lesser than root.

• The right subtree comprises values that exceed those of the root.

• Duplicate values are prohibited.

 Binary Search Trees facilitate efficient search, insertion, and deletion

operations, achieving an average complexity of O(log n) for balanced

structures.

4.2.2 BST Operations and Algorithms

Insertion in BST

Algorithm:

1. If tree is empty, create a new node as the root.

2. Compare the key with root:

• If smaller, insert it into the left subtree.

• If greater, insert it into right subtree.

3. Recursively find the correct position for new node.

Python Implementation:

class Node:

 def __init__(self, data):

 self.data = data

 self.left = None

 self.right = None

def insert(root, key):

 if root is None:

 return Node(key)

 if key < root.data:

 root.left = insert(root.left, key)

 else:

 root.right = insert(root.right, key)

 return root

Example Usage

root = Node(10)

root = insert(root, 5)

root = insert(root, 15)

128
MATS Centre for Distance and Online Education, MATS University

Notes root = insert(root, 3)

root = insert(root, 7)

Time Complexity:

• Best Case: O(log n) (Balanced Tree)

• Worst Case: O(n) (Skewed Tree)

Searching in BST

Algorithm:

1. Commence at the root node.

2. If key corresponds to root, return the node.

3. If the key is lesser, search in left subtree.

4. If key is larger, conduct a search in right subtree.

5. Continue iterating until the key is located or the tree is

depleted.Python Implementation:

def search(root, key):

 if root is None or root.data == key:

 return root

 if key < root.data:

 return search(root.left, key)

 return search(root.right, key)

Example Usage

found = search(root, 7)

print("Found" if found else "Not Found") # Output: Found

Time Complexity:

• Best Case: O(1)

• Worst Case: O(n) (Skewed Tree)

Deletion in BST

Algorithm:

4.2.3 Identify the node designated for deletion.

Instances of deletion:

• Remove the leaf node with no children.

• In the case of a single child: Substitute the node with its

offspring.

• For a node with two children: Identify the inorder successor (the

smallest node in right subtree), substitute the node with

successor, and subsequently remove the successor.

Python Implementation:

def find_min(node):

 while node.left:

129
MATS Centre for Distance and Online Education, MATS University

Notes node = node.left

 return node

def delete(root, key):

 if root is None:

 return root

 if key < root.data:

 root.left = delete(root.left, key)

 elif key > root.data:

 root.right = delete(root.right, key)

 else:

 if root.left is None:

 return root.right

 elif root.right is None:

 return root.left

 temp = find_min(root.right)

 root.data = temp.data

 root.right = delete(root.right, temp.data)

 return root

Example Usage

root = delete(root, 5)

Time Complexity:

• Best Case: O(log n) (Balanced Tree)

• Worst Case: O(n) (Skewed Tree)

4.2.4 Limitations of BST

 Unbalanced BST leads to O(n) operations in the worst case.

 Degenerates into a linked list if values are inserted in sorted order.

Solution: Use AVL trees to maintain balance.

AVL Tree (Self-Balancing BST)

An AVL Tree is a self-balancing binary search tree in which the height

disparity (balance factor) between the left and right subtrees does not

exceed 1.

 Balance Factor (BF) = Height of Left Subtree - Height of Right Subtree

 If the absolute value of the Balance Factor exceeds 1, the tree

undergoes rotation to reestablish equilibrium.

Rotation Type When it Occurs Action

Right Rotation (LL

Rotation)

Insert in left subtree of

left child Rotate right

130
MATS Centre for Distance and Online Education, MATS University

Notes

Insertion in AVL Tree

1. Insert the node as in BST.

2. Update balance factors of all affected nodes.

3. If |Balance Factor| > 1, perform the appropriate rotation.

Python Implementation:

class AVLNode:

 def __init__(self, data):

 self.data = data

 self.left = None

 self.right = None

 self.height = 1 # Height of the node

def get_height(node):

 return node.height if node else 0

def get_balance(node):

 return get_height(node.left) - get_height(node.right) if node else 0

def right_rotate(y):

 x = y.left

 T2 = x.right

 x.right = y

 y.left = T2

 y.height = 1 + max(get_height(y.left), get_height(y.right))

Left Rotation (RR

Rotation)

Insert in right subtree

of right child Rotate left

Left-Right Rotation

(LR Rotation)

Insert in right subtree

of left child

Left Rotate first, then

Right Rotate

Right-Left Rotation

(RL Rotation)

Insert in left subtree of

right child

Right Rotate first,

then Left Rotate

131
MATS Centre for Distance and Online Education, MATS University

Notes x.height = 1 + max(get_height(x.left), get_height(x.right))

 return x

def left_rotate(x):

 y = x.right

 T2 = y.left

 y.left = x

 x.right = T2

 x.height = 1 + max(get_height(x.left), get_height(x.right))

 y.height = 1 + max(get_height(y.left), get_height(y.right))

 return y

def insert_avl(root, key):

 if root is None:

 return AVLNode(key)

 if key < root.data:

 root.left = insert_avl(root.left, key)

 else:

 root.right = insert_avl(root.right, key)

 root.height = 1 + max(get_height(root.left), get_height(root.right))

 balance = get_balance(root)

 # Perform rotations if unbalanced

 if balance > 1 and key < root.left.data:

 return right_rotate(root)

 if balance < -1 and key > root.right.data:

 return left_rotate(root)

 if balance > 1 and key > root.left.data:

 root.left = left_rotate(root.left)

 return right_rotate(root)

 if balance < -1 and key < root.right.data:

 root.right = right_rotate(root.right)

 return left_rotate(root)

 return root

Time Complexity:

• Insertion & Deletion: O(log n) (Always balanced)

• • BST offers fast running time for search and insert, but tends

to be unbalanced.

• • After insertion/deletion, AVL Tree gets re-balanced

automatically in order to keep O(log n) time take for all cases.

132
MATS Centre for Distance and Online Education, MATS University

Notes • • AVL trees is used in databases, search engines, and memory

indexing when fast looking needed

133
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4.3: Graph

4.3.1 Graph, Graph Representation, Operations: Searching,

Insertion, Deletion,

Graph and Its Operations

A graph is a non-linear data structure that consists of:

• Vertices (Nodes) – Represent objects.

• Edges (Connections) – Represent relationships between objects.

Graphs are widely used in networking, social media, shortest path

algorithms, and AI.

2. Types of Graphs

Graph Type Description

Directed Graph (Digraph) Edges have direction (A → B).

Undirected Graph Edges do not have direction (A — B).

Weighted Graph Edges have weights (cost, distance, time).

Unweighted Graph Edges do not have weights.

Cyclic Graph Graph contains cycles (A → B → C → A).

Acyclic Graph (DAG) No cycles, used in scheduling tasks.

3. Graph Representation

Graphs can be represented using:

1. Adjacency Matrix

A 2D array where matrix[i][j] = 1 if there is an edge from i to j.

Example:

 A B C

A [0 1 0]

B [1 0 1]

C [0 1 0]

Python Implementation:

python

CopyEdit

class GraphMatrix:

 def __init__(self, vertices):

 self.vertices = vertices

 self.graph = [[0] * vertices for _ in range(vertices)]

 def add_edge(self, u, v):

 self.graph[u][v] = 1

134
MATS Centre for Distance and Online Education, MATS University

Notes self.graph[v][u] = 1 # Undirected Graph

 def display(self):

 for row in self.graph:

 print(row)

Example Usage

g = GraphMatrix(3)

g.add_edge(0, 1)

g.add_edge(1, 2)

g.display()

Pros: Fast edge lookup O(1).

 Cons: Uses O(V²) space even for sparse graphs.

2. Adjacency List (Efficient Representation)

A list of lists where each node stores its neighbors.

Example:

A → B

B → A, C

C → B

Python Implementation:

python

CopyEdit

from collections import defaultdict

class GraphList:

 def __init__(self):

 self.graph = defaultdict(list)

 def add_edge(self, u, v):

 self.graph[u].append(v)

 self.graph[v].append(u) # Undirected Graph

 def display(self):

 for key, values in self.graph.items():

 print(key, "->", values)

Example Usage

g = GraphList()

g.add_edge("A", "B")

g.add_edge("B", "C")

g.display()

Pros: Uses O(V + E) space, efficient for sparse graphs.

 Cons: Edge lookup is O(V) in the worst case.

4. Graph Operations

135
MATS Centre for Distance and Online Education, MATS University

Notes 4.3.2 Searching (Graph Traversal)

1. Depth-First Search (DFS)

• Recursive traversal that explores as far as possible before

backtracking.

• Used in: Pathfinding, cycle detection, topological sorting.

Python Implementation:

python

CopyEdit

def dfs(graph, node, visited=set()):

 if node not in visited:

 print(node, end=" ")

 visited.add(node)

 for neighbor in graph[node]:

 dfs(graph, neighbor, visited)

Example Usage

graph = {"A": ["B", "C"], "B": ["D"], "C": ["E"], "D": [], "E": []}

dfs(graph, "A") # Output: A B D C E

Time Complexity: O(V + E)

2. Breadth-First Search (BFS)

• Uses queue to explore neighbors level by level.

• Used in: Shortest path (Dijkstra’s Algorithm), AI search

algorithms.

Python Implementation:

from collections import deque

def bfs(graph, start):

 queue = deque([start])

 visited = set([start])

 while queue:

 node = queue.popleft()

 print(node, end=" ")

 for neighbor in graph[node]:

 if neighbor not in visited:

 visited.add(neighbor)

 queue.append(neighbor)

Example Usage

graph = {"A": ["B", "C"], "B": ["D"], "C": ["E"], "D": [], "E": []}

bfs(graph, "A") # Output: A B C D E

136
MATS Centre for Distance and Online Education, MATS University

Notes Time Complexity: O(V + E)

4.3.3 Insertion (Adding Nodes and Edges)

• Adding a vertex: Simply add a new key in adjacency list.

• Adding an edge: Update adjacency list/matrix.

Python Implementation (Adding a Node & Edge in Adjacency List):

def add_vertex(graph, vertex):

 if vertex not in graph:

 graph[vertex] = []

def add_edge(graph, u, v):

 graph[u].append(v)

 graph[v].append(u)

Example Usage

graph = {}

add_vertex(graph, "A")

add_vertex(graph, "B")

add_edge(graph, "A", "B")

print(graph) # Output: {'A': ['B'], 'B': ['A']}

Time Complexity: O(1) for adjacency list, O(V²) for adjacency matrix

Deletion (Removing Nodes and Edges)

• Eliminating an edge: Remove from the adjacency list.

• Eliminate a vertex by first detaching all its edges.

Python Implementation (Deleting a Node & Edge):

def remove_edge(graph, u, v):

 graph[u].remove(v)

 graph[v].remove(u)

def remove_vertex(graph, vertex):

 graph.pop(vertex, None)

 for neighbors in graph.values():

 if vertex in neighbors:

 neighbors.remove(vertex)

Example Usage

graph = {"A": ["B"], "B": ["A", "C"], "C": ["B"]}

remove_edge(graph, "A", "B")

remove_vertex(graph, "C")

print(graph) # Output: {'B': []}

Time Complexity: O(1) for adjacency list, O(V) for adjacency matrix

137
MATS Centre for Distance and Online Education, MATS University

Notes 4.3.4 Applications of Graphs

Graphs are one of the most versatile data structures in computer

science and are widely used to model relationships and solve

complex real-world problems. Beyond simple storage of nodes

and edges, graphs allow efficient computation and visualization

of interconnected systems. Key applications include:

1. Shortest Path Algorithms

a. GPS Navigation Systems: Algorithms like Dijkstra’s

Algorithm and Bellman-Ford Algorithm calculate the

shortest route from a source to a destination. Modern

GPS systems use weighted graphs where node represent

intersections and edges represent roads with travel times

or distances.

b. Logistics & Delivery Services: Companies like FedEx,

Amazon, and Uber use graph-based pathfinding to

optimize delivery routes and minimize travel costs.

2. Social Networks

a. Friend Recommendations: Platforms like Facebook or

LinkedIn model users as nodes and friendships as edges.

Graph traversal techniques, such as Breadth-First

Search (BFS), are used to suggest friends-of-friends.

b. Community Detection & Influencer Analysis:

Algorithms like PageRank or Graph Clustering identify

influential users and social communities.

3. Computer Networks

a. Routing Protocols: The Internet, LANs, and WANs use

graphs to model nodes (routers, switches) and links.

Algorithms such as BFS, DFS, and Shortest Path

algorithms determine optimal packet delivery paths.

b. Network Reliability: Graph theory helps analyze

network redundancy and fault tolerance, identifying

critical nodes and edges whose failure would disrupt

connectivity.

4. Artificial Intelligence & Game Development

a. Pathfinding in Games: Games use A Algorithm* or

Dijkstra’s Algorithm for AI-controlled characters to

navigate maps efficiently.

138
MATS Centre for Distance and Online Education, MATS University

Notes b. Decision-Making & Knowledge Representation:

Graphs model state spaces in AI for problems like

puzzle solving, robot navigation, and planning.

5. Scheduling & Project Management

a. Task Dependencies: Directed Acyclic Graphs (DAGs)

model tasks with dependencies. Topological Sorting

determines the order in which tasks should be executed.

b. Software Build Systems: Tools like Make, Maven, or

Gradle use DAGs to manage compilation dependencies

efficiently.

6. Other Notable Applications

a. Biology & Bioinformatics: Graphs represent protein-

protein interactions, gene regulatory networks, and

metabolic pathways.

b. Recommendation Systems: E-commerce platforms

model products and users as graphs to suggest products

based on purchase patterns.

c. Electrical Circuits & Transport Systems: Graphs help

analyze connectivity, flow, and optimization in circuits

and traffic systems.

7. Graph Representations

a. Adjacency List: Efficient for sparse graphs where the number

of edges is much smaller than the total possible. Saves

memory by storing only existing edges.

b. Adjacency Matrix: Useful for dense graphs with many edges,

providing constant-time edge lookup at the cost of higher

space.

8. Graph Operations

a. Traversal: Depth-First Search (DFS) and Breadth-First Search

(BFS) are fundamental for exploring graphs.

b. Insertion & Deletion: Adding/removing nodes and edges

allows dynamic updates to networks or relationships.

c. Weight Updates: In weighted graphs, edge weights can

change, requiring algorithms that efficiently recalculate

shortest paths.

4.3.5 Traversing

139
MATS Centre for Distance and Online Education, MATS University

Notes Graph traversal refers to the systematic visitation of all nodes (vertices)

and edges within a graph.

It helps in:

Searching for elements

Finding shortest paths

Detecting cycles

Solving AI and network-related problems

2. Types of Graph Traversal

Traversal Type Description

Data Structure

Used

Depth-First Search

(DFS)

Explores as far as possible

before backtracking Stack (Recursion)

Breadth-First

Search (BFS)

Explores neighbors level by

level Queue

3. Depth-First Search (DFS)

Concept

• Initiates at node and delves as deeply as feasible prior to retracing

steps.

• Uses recursion (stack) to keep track of visited nodes.

• Used in maze solving, cycle detection, and topological sorting.

Algorithm

1. Start from a node.

2. Mark it as visited.

3. Visit adjacent unvisited nodes recursively.

4. Backtrack when no unvisited neighbors remain.

Python Implementation

def dfs(graph, node, visited=set()):

 if node not in visited:

 print(node, end=" ")

 visited.add(node)

 for neighbor in graph[node]:

 dfs(graph, neighbor, visited)

Example Usage

graph = {

 'A': ['B', 'C'],

 'B': ['D', 'E'],

 'C': ['F'],

140
MATS Centre for Distance and Online Education, MATS University

Notes 'D': [],

 'E': ['F'],

 'F': []

}

dfs(graph, 'A') # Output: A B D E F C

Time Complexity: O(V + E) (Vertices + Edges)

Space Complexity: O(V) (For recursive stack in worst case)

4. Breadth-First Search (BFS)

Concept

• Starts at a node and explores all its neighbors before moving

deeper.

• Uses a queue to store visited nodes.

• Used in shortest path algorithms (Dijkstra’s, A), network

broadcasting, and AI*.

Algorithm

1. Start from a node.

2. Mark it as visited and enqueue it.

3. Dequeue a node, process it, and enqueue its unvisited

neighbors.

4. Repeat until all nodes are visited.

Python Implementation

from collections import deque

def bfs(graph, start):

 queue = deque([start])

 visited = set([start])

 while queue:

 node = queue.popleft()

 print(node, end=" ")

 for neighbor in graph[node]:

 if neighbor not in visited:

 visited.add(neighbor)

 queue.append(neighbor)

Example Usage

graph = {

 'A': ['B', 'C'],

 'B': ['D', 'E'],

 'C': ['F'],

 'D': [],

141
MATS Centre for Distance and Online Education, MATS University

Notes 'E': ['F'],

 'F': []

}

bfs(graph, 'A') # Output: A B C D E F

Time Complexity: O(V + E)

Space Complexity: O(V)

5. DFS vs. BFS Comparison

Feature DFS BFS

Data Structure Stack (Recursion) Queue

Exploration Deep before wide Level-wise

Memory

Usage Less for sparse graphs

More for dense

graphs

Best for

Cycle detection, Topological

sorting

Shortest path, AI

search

6. Applications of Graph Traversal

DFS: Maze solving, Cycle detection, Web crawling

BFS: Shortest path (Google Maps), Social media friend suggestions

both: Network routing, AI decision trees

DFS and BFS are fundamental graph traversal techniques for solving

complex problems from networking, AI, and path finding. The

selection of the approach is contingent upon the graph structure and the

specific use case.

Summary:

Association rule mining is a data mining technique used to discover

interesting relationships, patterns, and correlations among items in

large datasets, particularly in transactional databases. It is widely

applied in market basket analysis to identify product associations, such

as customers who buy item A also tend to buy item B. The process

involves generating and deriving association rules that meet specific

thresholds of support (frequency of itemset in the dataset) and

confidence (likelihood of item B being purchased given item A). Other

important metrics include lift, which evaluates the strength of the rule

beyond random chance. Popular algorithms for association rule mining,

which uses a bottom-up approach to generate candidate and FP-

Growth, which uses a compact tree structure to avoid candidate

generation. Association rule mining is extensively used in retail,

recommendation systems, web usage mining, and bioinformatics to

142
MATS Centre for Distance and Online Education, MATS University

Notes uncover hidden patterns and improve decision-making through

actionable insights.

Multiple-Choice Questions (MCQs)

1. What is a tree in data structures?

a) A linear data structure

b) A hierarchical data structure

c) A random-access data structure

d) A sequential data structure

(Answer: b)

2. In a binary tree, each node can have at most:

a) One child

b) Two children

c) Three children

d) Unlimited children

(Answer: b)

3. Which of the following is a self-balancing binary search tree?

a) AVL Tree

b) Binary Search Tree (BST)

c) Heap

d) Hash

e) Tree

(Answer: a)

4. What is the worst-case time complexity of searching in a Binary Search

Tree (BST)?

a) O(1)

b) O(log n)

c) O(n)

d) O(n log n)

(Answer: c)

5. Which rotation is NOT used in balancing an AVL tree?

a) Left Rotation

b) Right Rotation

c) Top Rotation

d) Left-Right Rotation

(Answer: c)

6. Which of the following is NOT a tree traversal technique?

a) Inorder

b) Preorder

143
MATS Centre for Distance and Online Education, MATS University

Notes c) Breadth-First Search (BFS)

d) Depth-First Search (DFS)

(Answer: c)

7. Which of the following graph representations uses a 2D matrix to store

connections?

a) Adjacency Matrix

b) Adjacency List

c) Incidence List

d) Edge List

(Answer: a)

8. In which traversal method do we visit the left subtree, then the root, and

finally the right subtree?

a) Preorder

b) Inorder

c) Postorder

d) Level Order

(Answer: b)

9. Which graph traversal algorithm uses a queue data structure?

a) Depth-First Search (DFS)

b) Breadth-First Search (BFS)

c) Prim’s Algorithm

d) Kruskal’s Algorithm

(Answer: b)

10. Which of the following is NOT a graph traversal algorithm?

a) BFS

b) DFS

c) Dijkstra’s Algorithm

d) Bubble Sort

(Answer: d)

Short Questions

1. What is a binary tree, and how does it differ from a general tree?

2. Explain the inorder, preorder, and postorder tree traversal methods.

3. What is a Binary Search Tree (BST), and how is it different from a

normal binary tree?

4. What are AVL trees, and why are they used?

5. What is tree balancing, and why is it important?

6. What is the difference between BFS and DFS in graph traversal?

144
MATS Centre for Distance and Online Education, MATS University

Notes 7. Describe the adjacency matrix and adjacency list representations of

graphs.

8. How does insertion work in a BST?

9. What is the primary advantage of using an AVL tree over a normal

BST?

10. What are the real-world applications of graphs in computing?

Long Questions

1. Explain the concept of trees, their structure, and their applications

in computing.

2. Discuss the different types of binary tree traversals with examples.

3. Describe the Binary Search Tree (BST), its insertion, deletion, and

searching operations.

4. Implement a Binary Search Tree (BST) in C or Python and explain

its working.

5. Explain AVL tree rotations (LL, RR, LR, RL) and how they help

maintain balance.

6. Write an algorithm to perform insertion in an AVL tree and explain

it with an example.

7. Compare Adjacency Matrix and Adjacency List representations in

graphs.

8. Explain Depth-First Search (DFS) and Breadth-First Search (BFS)

with examples.

9. Implement a graph using an adjacency list and perform DFS

traversal.

10. Discuss real-world applications of trees and graphs in computer

science.

145
MATS Centre for Distance and Online Education, MATS University

MODULE 5

ALGORITHM ANALYSIS AND DESIGN

LEARNING OUTCOMES

By the end of this Unit, students will be able to:

• Understand the role of algorithms in computing, their

characteristics, and the classification of problems into P and NP

categories.

• Analyze algorithms based on time complexity, space

complexity, and execution time to measure efficiency.

• Learn about asymptotic notations (Big-O, Omega, Theta) and

their significance in evaluating algorithm performance.

• Examine algorithm design methodologies, such as Greedy,

Divide and Conquer, and Dynamic Programming, accompanied

by practical examples for each methodology.

146
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5.1: The Role of Algorithm in Computing

5.1.1 The Role of Algorithm in Computing, Characteristics of

algorithm, P and NP

The Role of Algorithm in Computing

An algorithm is essentially a sequence of precise, well-defined

instructions that takes input data, processes it systematically according

to logical rules, and produces a desired output or solution. It forms the

core of all computing processes, enabling computers to solve problems,

perform calculations, and make decisions in an organized and efficient

manner. Beyond simple data processing, algorithms are the driving

force behind complex systems such as search engines, social media

recommendation systems, GPS navigation, and artificial intelligence

applications. They ensure tasks are performed consistently, accurately,

and with optimal use of time and resources, allowing software to

operate reliably even under diverse conditions. Moreover, algorithms

provide a framework for automation, reducing the need for human

intervention and allowing machines to handle repetitive, large-scale, or

computationally intensive tasks. By defining the logical flow of

operations, algorithms not only solve existing problems but also enable

innovation, as new and improved algorithms can lead to faster, smarter,

and more efficient technological solutions. In essence, every aspect of

modern computing, from simple calculations to advanced AI-driven

insights, relies on the careful design and implementation of algorithms,

highlighting their indispensable role in the digital world.

5.1.2 Importance of Algorithms in Computing

Efficiency – Optimizes computation time and resources.

Automation – Used in AI, automation, and machine learning.

Data Processing – Essential for sorting, searching, and managing large

datasets.

Security – Used in encryption, hashing, and cybersecurity.

Artificial Intelligence – Powers decision-making in AI models.

147
MATS Centre for Distance and Online Education, MATS University

Notes 5.1.3 Characteristics of a Good Algorithm:

An algorithm must possess the following characteristics:

Characteristic Description

Input Takes zero or more inputs.

Output Produces at least one output.

Definiteness Each step must be well-defined.

Finiteness Must terminate after a finite number of steps.

Correctness Should produce the correct result for all inputs.

Effectiveness Each step must be simple and computable.

Generality Should be applicable to a broad class of problems.

5.1.4 P and NP Problems

Definition: Problems that can be solved in polynomial time (O(n^k))

using a deterministic algorithm.

Example: Sorting (Merge Sort – O(n log n)), Shortest Path (Dijkstra’s

Algorithm – O(V²)).

Key Concept: If a problem belongs to P, it means it can be solved

efficiently.

5.1.5 NP (Nondeterministic Polynomial Time) Problems

Definition: Problems where a solution can be verified in polynomial

time, but finding the solution may take exponential time.

Example: Traveling Salesman Problem (TSP), Integer Factorization,

Graph Coloring.

Key Concept: If a problem belongs to NP, it means it is hard to solve

but easy to verify.

P vs. NP Complexity Classes

Complexity

Class Definition Example Problems

P Solvable in polynomial time.

Sorting, Matrix

Multiplication

NP

Verifiable in polynomial time but

may take exponential time to

solve.

Sudoku,

Hamiltonian Path

NP-Hard

As hard as NP problems but not

necessarily verifiable in P time. Halting Problem

148
MATS Centre for Distance and Online Education, MATS University

Notes

NP-Complete

Problems that are both NP and

NP-Hard.

Traveling

Salesman, 3-SAT

The P vs. NP Problem

The biggest open question in computer science:

Is P = NP?

• If P = NP, then all problems in NP can be solved in polynomial

time.

• If P ≠ NP, then some problems remain unsolvable in polynomial

time.

Impact:

• Cryptography depends on P ≠ NP (e.g., RSA encryption).

• Optimization & AI would advance if P = NP.

Algorithms are the building blocks of computing, guaranteeing that

problems can be solved efficiently. P and NP classification of problems

helps in analysis of problems. The P vs. The NP problem is one of the

most significant unresolved issues in computer science.

5.1.6 problems

In computer science, problems are classified to their complexity,

solvability, and computational efficiency. The classification of

problems aids in understanding if a given problem can be solved in a

reasonably efficient way or if we have to resort to heuristics and

approximation methods.

Classification of Problems

Problem Type Description Example Problems

Decision

Problems

Problems with a "Yes" or

"No" answer.

Is a number prime?

Does a path exist in a

graph?

Optimization

Problems

Finding the best solution

among many possible

ones.

Shortest path, Traveling

Salesman Problem

(TSP)

Search

Problems

Finding a specific solution

within a large dataset.

Finding an element in a

list, Graph search

Counting

Problems

Counting the number of

valid solutions.

Counting the number of

possible paths in a grid

149
MATS Centre for Distance and Online Education, MATS University

Notes 5.1.7 Computational Complexity Classes

Complexity Class Definition Example Problems

P (Polynomial Time)

Problems solvable in

polynomial time.

Sorting, Shortest

Path (Dijkstra’s

Algorithm)

NP (Nondeterministic

Polynomial Time)

Problems verifiable in

polynomial time but hard

to solve.

Sudoku, Traveling

Salesman Problem

NP-Hard

As hard as NP problems,

but not necessarily

verifiable in polynomial

time.

Halting Problem,

Chess Problem

NP-Complete (NPC)

Problems that are both

NP and NP-Hard.

3-SAT, Hamiltonian

Cycle

Key Question: Does P = NP? This remains an open problem in

computer science.

Example: The Traveling Salesman Problem (TSP)

• Given: A set of cities and distances between them.

• Goal: Find shortest possible route that visits each city exactly

once and returns to start.

• Complexity: NP-Hard (No known polynomial-time solution).

• Real-world Use Cases: Logistics, Circuit Design, Delivery

Optimization.

Knowledge of how to classify problems is essential for designing

efficient algorithms and selecting an appropriate method. All problems

in P have efficient solutions, while NP problems only have

heuristics/approximations for larger inputs. P vs. NP is still among the

most important unsolved problems in computing.

150
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5.2: Analyzing algorithms: Time and space

complexity

5.2.1 Analyzing algorithms: Time and space complexity, Execution

time

Analyzing Algorithms: Time Complexity, Space Complexity, and

Execution Time

This, in turn, helps understand time and space complexity of respective

algorithm with help of algorithm analysis. It enables us to assess

various algorithms and select the optimal for a specific issue.

Why Analyze Algorithms?

• To measure performance and scalability.

• To compare different approaches to solve a problem.

• To optimize resource usage (memory, CPU).

Time Complexity

Time complexity is the amount of time an algorithm takes to run

based on the input size (n). With Big-O notation it can be expressed.

Common Time Complexities

Complexity Name Example Algorithms

O(1) Constant Time Accessing an array element

O(log n) Logarithmic Time Binary Search

O(n) Linear Time Linear Search

O(n log n) Linearithmic Time Merge Sort, Quick Sort

O(n²) Quadratic Time Bubble Sort, Selection Sort

O(2ⁿ) Exponential Time Recursive Fibonacci

O(n!) Factorial Time Traveling Salesman Problem (TSP)

Example: Comparing Linear and Binary Search

Linear Search (O(n)) – Scans all elements one by one.

python

CopyEdit

def linear_search(arr, target):

 for i in range(len(arr)):

 if arr[i] == target:

 return i # Found

 return -1 # Not found

Binary Search (O(log n)) – Divides the list in half at each step.

151
MATS Centre for Distance and Online Education, MATS University

Notes def binary_search(arr, target):

 left, right = 0, len(arr) - 1

 while left <= right:

 mid = (left + right) // 2

 if arr[mid] == target:

 return mid

 elif arr[mid] < target:

 left = mid + 1

 else:

 right = mid - 1

 return -1

Binary Search is much faster than Linear Search for large datasets.

Space Complexity

The space complexity is a measure of the amount of memory your

algorithm will take with respect to the input size. It includes:

• Fixed part (code, constants).

• Variable part (dynamic memory allocation, recursion stack).

Common Space Complexities

Complexity Description Example

O(1) Constant space Swapping two variables

O(n) Linear space Storing an array of size n

O(n²) Quadratic space Adjacency matrix for graphs

O(n log n) Recursive algorithms Merge Sort

Example: Iterative vs. Recursive Fibonacci

Iterative Fibonacci (O(1) Space)

def fibonacci_iter(n):

 a, b = 0, 1

 for _ in range(n):

 a, b = b, a + b

 return a

Recursive Fibonacci (O(n) Space - Due to Call Stack)

python

CopyEdit

def fibonacci_rec(n):

 if n <= 1:

 return n

152
MATS Centre for Distance and Online Education, MATS University

Notes return fibonacci_rec(n - 1) + fibonacci_rec(n - 2)

Iteration is more space-efficient than recursion.

5.2.2 Execution Time Measurement

Execution time measurement refers to the process of determining how

long a program or a specific piece of code takes to run on a computer

system. It is an essential aspect of performance analysis, as it helps

programmers evaluate the efficiency of their algorithms and identify

bottlenecks in their code. Execution time is generally influenced by

several factors, including the algorithm’s design, the programming

language used, the efficiency of the compiler or interpreter, the input

size, and the underlying hardware such as CPU speed, memory, and

disk access. There are different ways to measure execution time. One

common method is to record the start time before the execution of the

code and the end time after its completion, then calculate the difference

between them. This can be done using built-in functions in most

programming languages, such as time () in Python or

System.nanoTime() in Java. Execution time can be expressed in units

like milliseconds, microseconds, or nanoseconds depending on the

precision required. Measuring execution time is particularly important

in algorithm analysis, where we want to compare how different

algorithms perform for the same task. For instance, sorting a list of

numbers using Bubble Sort will generally take more time than using

Merge Sort, especially for large datasets. In such cases, execution time

provides practical validation of theoretical time complexity. Beyond

raw measurement, execution profiling tools are often used to provide

detailed insights into which parts of a program consume the most time,

helping developers optimize performance. Ultimately, execution time

measurement is not just about speed, but also about ensuring scalability,

responsiveness, and efficiency in real-world computing applications.

5.2.3 Using Python’s time Module

import time

def sample_function(n):

 return sum(range(n))

start_time = time.time()

sample_function(1000000)

end_time = time.time()

print("Execution Time:", end_time - start_time, "seconds")

Factors Affecting Execution Time:

153
MATS Centre for Distance and Online Education, MATS University

Notes • Hardware (CPU, RAM).

• Programming language and compiler optimizations.

• Input size and distribution.

• It analyzes the speed with which operations are performed

using time complexity.

• We use space complexity for memory usage analysis.

• Execution time for real-time performance feedback.

So, depending on the requirements of the problem, how the algorithms

are optimized are different in terms of time and space.

5.2.4 Asymptotic notations

When we say the performance(time complexity to be precise) of

algorithm is expressed with n(n being input size) then we mean

asymptotic notation. It is used to compare algorithms and to estimate

scalability.

Why Use Asymptotic Notations?

• Ignore constant factors and lower-order terms.

• Focus on growth rate as input size increases.

• Helps in comparing algorithms efficiently.

Types of Asymptotic Notations

Notation Meaning Definition Example

O (Big-O)

Upper Bound

(Worst Case)

f(n) ≤ c * g(n) for

large n

O(n²) for Bubble

Sort

Ω (Big-

Omega)

Lower Bound

(Best Case)

f(n) ≥ c * g(n) for

large n

Ω(n) for Linear

Search

Θ (Theta)

Tight Bound

(Average Case)

c₁ * g(n) ≤ f(n) ≤

c₂ * g(n)

Θ(n log n) for

Merge Sort

5.2.5 Big-O Notation (Upper Bound, Worst Case)

• Defines the maximum time taken by an algorithm.

• Example: Worst-case Linear Search takes O(n) comparisons.

Example Code: Linear Search (O(n))

def linear_search(arr, target):

 for i in range(len(arr)):

 if arr[i] == target:

 return i # Found

 return -1 # Not found

Best for predicting the worst-case scenario.

154
MATS Centre for Distance and Online Education, MATS University

Notes Omega (Ω) Notation (Lower Bound, Best Case)

• Defines minimum time an algorithm will take.

• Example: Best-case Linear Search finds the element at Ω(1)

(first position).

Example Code: Best Case for Linear Search (Ω(1))

def best_case_search(arr, target):

 if arr[0] == target:

 return 0 # Found in first position

 return -1

Useful for theoretical analysis but not always practical.

Theta (Θ) Notation (Tight Bound, Average Case)

• Defines the exact time complexity (both upper and lower

bounds).

• Example: Merge Sort runs in Θ(n log n) in all cases.

Best notation for accurate complexity analysis.

Asymptotic Complexity Comparison

Complexity Name Example Algorithms

O(1) Constant Time Array Access

O(log n) Logarithmic Time Binary Search

O(n) Linear Time Linear Search

O(n log n) Linearithmic Time Merge Sort, Quick Sort

O(n²) Quadratic Time Bubble Sort

O(2ⁿ) Exponential Time Fibonacci (Recursive)

O(n!) Factorial Time Traveling Salesman Problem (TSP)

• Big-O is used for worst case analysis.

• Omega (Ω) denotes the optimal scenario.

• Theta (Θ) tightly determines execution time.

Asymptotic notations are one of the fundamental concepts in

computers, Understanding that is very important for algorithms and

optimizing the performance.

155
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5.3: Algorithm design techniques: Greedy, Divide

and conquer, Dynamic programming

5.3.1 Algorithm design techniques: Greedy, Divide and conquer,

Dynamic

1. Greedy Algorithm

A Greedy Algorithm is a problem-solving approach that makes

decisions incrementally, choosing the best apparent option at each step,

known as the local optimum, with the expectation that these choices

will collectively lead to the best overall solution, or global optimum. It

relies on immediate benefit rather than considering all possible future

consequences, making it simpler and faster than other exhaustive

methods. Greedy algorithms are widely used in optimization problems

such as finding the shortest path in networks, constructing minimum

spanning trees, and solving coin change or scheduling problems. While

they are efficient and often effective, they do not always guarantee the

optimal solution for every problem, as the locally best choices can

sometimes prevent reaching the true global optimum. Despite this

limitation, their straightforward logic and efficiency make greedy

algorithms a powerful tool in both theoretical and practical computing

applications Key Features:

• No backtracking or re-evaluation.

• Works best for optimization problems.

• Fast and simple but does not guarantee the best solution always.

Example: Fractional Knapsack Problem

• Problem: Given n items with weights and values, maximize the

total value in knapsack of capacity W, where fractions of items

can be taken.

• Greedy Strategy: Pick items with highest value/weight ratio

first.

• Python Implementation:

def fractional_knapsack(items, capacity):

 items.sort(key=lambda x: x[1] / x[0], reverse=True) # Sort by

value/weight ratio

 total_value = 0

 for weight, value in items:

 if capacity >= weight:

 capacity -= weight

156
MATS Centre for Distance and Online Education, MATS University

Notes total_value += value

 else:

 total_value += value * (capacity / weight)

 break

 return total_value

Example usage: (weight, value) pairs

items = [(10, 60), (20, 100), (30, 120)]

capacity = 50

print("Maximum value:", fractional_knapsack(items, capacity)) #

Output: 240.0

Time Complexity: O(n log n) (Sorting dominates).

5.3.2 Other Greedy Algorithm Examples:

• Huffman Coding (Data Compression)

• Prim’s & Kruskal’s Algorithm (Minimum Spanning Tree)

• Dijkstra’s Algorithm (Shortest Path for Weighted Graphs)

 Limitations: May fail to find the global optimum (e.g., 0/1 Knapsack).

2. Divide and Conquer Algorithm

The Divide and Conquer Algorithm is a fundamental strategy in

computer science that works by breaking down a large, complex

problem into smaller and more manageable subproblems. Each of these

subproblems is then solved, often using the same recursive approach,

until they become simple enough to be handled directly. Once the

solutions to the subproblems are obtained, they are combined to form

the solution to the original larger problem. This method is highly

efficient because it reduces difficult tasks into smaller, easier ones and

then merges their outcomes in a structured way. Classic examples of

this approach include Merge Sort and Quick Sort for efficient sorting,

Binary Search for fast data lookup, and Strassen’s Algorithm for matrix

multiplication. The strength of Divide and Conquer lies in its ability to

improve performance by reducing time complexity, particularly for

problems that naturally fit into smaller independent parts. However, its

recursive nature sometimes requires additional memory for function

calls and intermediate storage. Despite this trade-off, the Divide and

Conquer paradigm remains a powerful technique, widely applied in

algorithms, data structures, and problem-solving across areas such as

sorting, searching, computational geometry, and parallel computing.

Key Features:

• Recursive approach

157
MATS Centre for Distance and Online Education, MATS University

Notes • Used in sorting, searching, and computational geometry

• Efficient for large problems

Example: Merge Sort

Problem: Sort an array using Divide and Conquer.

Steps:

1. Divide: Split the array into two halves.

2. Conquer: Recursively sort each half.

3. Combine: Merge two sorted halves.

Python Implementation:

def merge_sort(arr):

 if len(arr) > 1:

 mid = len(arr) // 2

 left_half = arr[:mid]

 right_half = arr[mid:]

 merge_sort(left_half)

 merge_sort(right_half)

 i = j = k = 0 # Merging process

 while i < len(left_half) and j < len(right_half):

 if left_half[i] < right_half[j]:

 arr[k] = left_half[i]

 i += 1

 else:

 arr[k] = right_half[j]

 j += 1

 k += 1

 while i < len(left_half):

 arr[k] = left_half[i]

 i += 1

 k += 1

 while j < len(right_half):

 arr[k] = right_half[j]

 j += 1

 k += 1

arr = [38, 27, 43, 3, 9, 82, 10]

merge_sort(arr)

print(arr) # Output: [3, 9, 10, 27, 38, 43, 82]

Time Complexity: O(n log n)

158
MATS Centre for Distance and Online Education, MATS University

Notes Other Divide and Conquer Examples:

• Quick Sort (Pivot-based sorting, O(n log n))

• Binary Search (O(log n) Search Algorithm)

• Closest Pair of Points (Computational Geometry)

 Limitations: May use extra space (Merge Sort needs O(n) extra space).

3. Dynamic Programming (DP)

Dynamic Programming (DP) is an advanced problem-solving

technique that deals with complex problems by breaking them into

smaller, overlapping subproblems and storing the results of these

subproblems to avoid redundant computations. Unlike the Divide and

Conquer approach, where subproblems are independent, DP is

particularly effective when the same subproblems occur repeatedly, as

it reuses previously computed results to enhance efficiency. This

strategy can be implemented in two main ways: the top-down approach

(memorization), where problems are solved recursively and results are

cached for reuse, and the bottom-up approach (tabulation), where

solutions to smaller subproblems are built iteratively to solve larger

problems. Dynamic Programming significantly reduces time

complexity in cases where naive recursive solutions would otherwise

lead to exponential growth. Classic applications include the Fibonacci

sequence, shortest path algorithms like Floyd-War shall and Bellman-

Ford, the Knapsack problem, matrix chain multiplication, and optimal

binary search tree construction. Its strength lies in transforming

computationally expensive tasks into polynomial-time solutions by

exploiting the principles of optimal substructure and overlapping

subproblems. Consequently, DP is a cornerstone in algorithm design,

widely used in optimization, artificial intelligence, operations research,

and computer science theory.

Key Features:

• Optimal substructure (Problem can be broken into

subproblems).

• Overlapping subproblems (Results are reused).

• Uses extra space for memoization or tables.

Example: Fibonacci Series (Using Memoization)

• Problem: Compute Fibonacci numbers efficiently.

159
MATS Centre for Distance and Online Education, MATS University

Notes • DP Strategy: Store already computed results.

• Python Implementation (Memoization - Top Down)

def fibonacci(n, memo={}):

 if n in memo:

 return memo[n]

 if n <= 1:

 return n

 memo[n] = fibonacci(n - 1, memo) + fibonacci(n - 2, memo)

 return memo[n]

print(fibonacci(10)) # Output: 55

5.3.3 Python Implementation (Tabulation - Bottom Up)

def fibonacci_tabulation(n):

 dp = [0, 1]

 for i in range(2, n + 1):

 dp.append(dp[i - 1] + dp[i - 2])

 return dp[n]

print(fibonacci_tabulation(10)) # Output: 55

Time Complexity:

• Naïve Recursion: O(2ⁿ)

• Memoization: O(n)

• Tabulation: O(n)

Other Dynamic Programming Examples:

• 0/1 Knapsack Problem (Maximize profit in limited capacity)

• Longest Common Subsequence (DNA sequencing, text

similarity)

• Matrix Chain Multiplication (Optimization problems)

• Limitations: Requires extra memory, slower for small inputs.

4. Comparison of Greedy, Divide and Conquer, and Dynamic

Programming

Feature Greedy

Divide &

Conquer

Dynamic

Programming

Approach

Step-by-step

choice

Recursion +

Merging

Memoization or

Tabulation

Optimal

Solution

Not always

guaranteed

Always for

problems with

optimal

substructure

Always for

overlapping

subproblems

160
MATS Centre for Distance and Online Education, MATS University

Notes

Efficiency Fast but may fail

Recursive, efficient

for large data

Efficient but uses

extra memory

Example

Kruskal’s

Algorithm,

Huffman Coding

Merge Sort, Quick

Sort

Fibonacci,

Knapsack

• Greedy approaches are fast, but may not yield the optimal

solution.

• Divide and Conquer splits problems into independent

subproblems and merges results.

• Dynamic programming works the best for problems involving

overlapping subproblems and optimal substructure.

Algorithm Design Techniques These are the types of techniques that

one can use depending on the type of the problem & goodness of the

required optimization.

5.6 programming (one example of each)

Greedy Algorithm Example: Activity Selection Problem

Problem: Given n activities with start and end times, select the

maximum number of activities that do not overlap.

Greedy Strategy:

• Sort activities by finish time.

• Select activities that start after the previous selected activity

ends.

Python Implementation:

def activity_selection(activities):

 activities.sort(key=lambda x: x[1]) # Sort by finish time

 selected = [activities[0]] # Select first activity

 for i in range(1, len(activities)):

 if activities[i][0] >= selected[-1][1]: # Non-overlapping condition

 selected.append(activities[i])

 return selected

Example Usage

activities = [(1, 3), (2, 5), (4, 6), (6, 8), (5, 9)]

print("Selected Activities:", activity_selection(activities))

Time Complexity: O(n log n) (Sorting dominates).

2. Divide and Conquer Example: Quick Sort

Problem: Sort an array using Quick Sort (Divide and Conquer).

Steps:

161
MATS Centre for Distance and Online Education, MATS University

Notes 1. Choose a pivot element.

2. Partition the array into two halves:

• Left: Elements smaller than the pivot.

• Right: Elements greater than the pivot.

3. Recursively sort both halves.

Python Implementation:

def quick_sort(arr):

 if len(arr) <= 1:

 return arr

 pivot = arr[len(arr) // 2] # Choose pivot

 left = [x for x in arr if x < pivot]

 middle = [x for x in arr if x == pivot]

 right = [x for x in arr if x > pivot]

 return quick_sort(left) + middle + quick_sort(right)

Example Usage

arr = [10, 7, 8, 9, 1, 5]

print("Sorted Array:", quick_sort(arr))

Time Complexity: O(n log n) (Average case).

Dynamic Programming Example: 0/1 Knapsack Problem

Problem: Given n items with weights and values, find the maximum

value that can be obtained in a knapsack of capacity W, where items

cannot be divided.

DP Strategy:

• Use a 2D table to store maximum values for each weight limit.

Python Implementation:

def knapsack(weights, values, capacity):

 n = len(values)

 dp = [[0] * (capacity + 1) for _ in range(n + 1)]

 for i in range(1, n + 1):

 for w in range(capacity + 1):

 if weights[i - 1] <= w:

 dp[i][w] = max(values[i - 1] + dp[i - 1][w - weights[i - 1]],

dp[i - 1][w])

 else:

 dp[i][w] = dp[i - 1][w]

 return dp[n][capacity]

Example Usage

weights = [2, 3, 4, 5]

162
MATS Centre for Distance and Online Education, MATS University

Notes values = [3, 4, 5, 6]

capacity = 5

print("Maximum Value:", knapsack(weights, values, capacity)) #

Output: 7

Time Complexity: O(n × W) (Efficient DP solution).

Greedy Algorithm (Activity Selection) – Fast but doesn't always

guarantee optimality.

 Divide and Conquer (Quick Sort) – Efficient and widely used in

sorting.

 Dynamic Programming (0/1 Knapsack) – Optimal but uses extra

space.

Summary:

An algorithm is a finite sequence of well-defined instructions used to

solve a specific problem or perform a task efficiently. Its performance

is measured through time complexity, which refers to how long an

algorithm takes to execute based on input size (using notations like Big

O, Omega, and Theta), and space complexity, which refers to the

memory consumed during execution. Common complexities range

from O(1) for constant time to O(n), O(n log n), O(n²), and O(2ⁿ) for

more intensive operations. Several algorithm design techniques exist,

including Divide and Conquer (e.g., Merge Sort), Greedy methods

(e.g., Prim’s algorithm), Dynamic Programming (e.g., Fibonacci

calculation), Backtracking (e.g., N-Queens), and Brute Force

approaches. These techniques help create optimized and scalable

solutions to various computational problems. Algorithms can be

expressed using pseudocode or flowcharts for better understanding and

planning. In computational theory, problems are classified into P, NP,

and NP-Complete based on their solvability and verification

complexity. Efficient algorithms are essential in domains like data

processing, graph theory, AI, encryption, and scheduling, making

algorithm analysis and design a critical foundation of computer science

and software development.

Multiple-Choice Questions (MCQs)

1. Which of the following statements about algorithms is true?

a) An algorithm must always have an infinite number of steps

b) An algorithm must be unambiguous and well-defined

c) An algorithm must be implemented in a specific programming

language

163
MATS Centre for Distance and Online Education, MATS University

Notes d) An algorithm does not require an input

(Answer: b)

2. Which of the following asymptotic notations describes the worst-

case time complexity of an algorithm?

a) Big-O (O)

b) Omega (Ω)

c) Theta (Θ)

d) Small-O (o)

(Answer: a)

3. What is the time complexity of a linear search algorithm?

a) O(1)

b) O(n)

c) O(log n)

d) O(n²)

(Answer: b)

4. Which of the following problems belongs to the P category?

a) Traveling Salesman Problem

b) Sorting an array using Merge Sort

c) Boolean Satisfiability Problem (SAT)

d) Hamiltonian Cycle Problem

(Answer: b)

5. Which of the following statements best describes NP-complete

problems?

a) They are solvable in polynomial time

b) Their solutions can be verified in polynomial time, but solving

them may require exponential time

c) They are always unsolvable

d) They require logarithmic space complexity

(Answer: b)

6. Which algorithm design paradigm follows a "divide and conquer"

approach?

a) Greedy

b) Dynamic Programming

c) Merge Sort

d) Backtracking

(Answer: c)

7. Which of the following is an example of a greedy algorithm?

a) Quick Sort

164
MATS Centre for Distance and Online Education, MATS University

Notes b) Prim’s Algorithm

c) Merge Sort

d) Binary Search

(Answer: b)

8. Which algorithm design approach solves subproblems first and then

builds up the final solution?

a) Divide and Conquer

b) Greedy Algorithm

c) Dynamic Programming

d) Brute Force

(Answer: c)

9. What is the time complexity of the Merge Sort algorithm in the

worst case?

a) O(n)

b) O(n log n)

c) O(n²)

d) O(log n)

(Answer: b)

10. Which of the following is NOT an example of a dynamic

programming problem?

a) Fibonacci sequence

b) Knapsack problem

c) Dijkstra’s shortest path

d) Longest common subsequence

(Answer: c)

Short Questions

1. Define an algorithm and explain its importance in computing.

2. What is the difference between time complexity and space

complexity?

3. Explain the significance of Big-O notation in algorithm analysis.

4. What is the difference between P and NP problems?

5. What is NP-complete problems, and why are they difficult to solve?

6. Compare Greedy algorithms and Dynamic Programming

approaches.

7. Describe Divide and Conquer methodology and give an example.

8. Explain why Merge Sort is better than Bubble Sort in terms of

complexity.

165
MATS Centre for Distance and Online Education, MATS University

Notes 9. What is memorization, and how is it used in Dynamic

Programming?

10. How does the Knapsack Problem utilize dynamic programming?

Long Questions

1. Explain the role of algorithms in computing, their characteristics,

and provide real-world examples of their applications.

2. Discuss asymptotic notations (Big-O, Omega, and Theta) with

examples.

3. Compare P, NP, and NP-complete problems, and explain their

computational significance.

4. Describe and implement Merge Sort using the Divide and Conquer

approach.

5. Explain Greedy Algorithm methodology with an example such as

Kruskal’s Algorithm.

6. Write a C or Python program to compute the Fibonacci sequence

using recursion and dynamic programming, and compare their

performance.

7. Explain Dynamic Programming, its working principle, and solve a

Longest Common Subsequence (LCS) problem.

8. Compare Greedy algorithms vs. Dynamic Programming vs. Divide

and Conquer, highlighting their advantages and limitations.

9. Discuss the Traveling Salesman Problem (TSP) and its

classification in NP-complete problems.

10. Implement a graph algorithm using BFS (Breadth-First Search) or

DFS (Depth-First Search) in Python or C.

Glossary:

Data Structure: A method of organizing, managing, and

storing data for efficient access and modification.

• Linear Data Structure: A structure where elements are

arranged sequentially (e.g., arrays, stacks, queues).

• Array: A fixed-size sequential collection of elements of the

same type.

• Searching Algorithm: A method to find the position of a target

element in a data structure (e.g., Linear Search, Binary Search).

• Sorting Algorithm: A technique to arrange elements in a

particular order (e.g., Bubble Sort, Insertion Sort, Quick Sort).

166
MATS Centre for Distance and Online Education, MATS University

Notes • Stack: A linear data structure following the Last In First Out

(LIFO) principle.

• Push and Pop: Operations in a stack to insert and remove

elements respectively.

• Recursion: A technique where a function calls itself to solve a

problem.

• Queue: A linear structure following the First In First Out

(FIFO) principle.

• Enqueue and Dequeue: Operations in a queue to insert and

remove elements respectively.

• Linked List: A linear data structure where each element (node)

contains a data part and a pointer to the next node.

• Singly Linked List: A list where each node points only to the

next node.

• Doubly Linked List: Each node contains two pointers: one to

the next node and one to the previous.

• Circular Linked List: The last node points back to the first

node.

• Dynamic Memory Allocation: Allocating memory during

runtime, typically used in linked lists.

• Tree: A hierarchical data structure with nodes connected in

parent-child relationships.

• Binary Tree: A tree where each node has at most two children.

• Binary Search Tree (BST): A binary tree where left child <

parent < right child.

• AVL Tree: A self-balancing binary search tree where the height

difference between left and right subtrees is at most one.

• Graph: A non-linear structure consisting of nodes (vertices)

connected by edges, useful for modeling networks.

• Algorithm: A step-by-step procedure or formula for solving a

problem.

• Time Complexity: A measure of the amount of time an

algorithm takes to complete as a function of the input size.

• Space Complexity: A measure of the memory used by an

algorithm.

• Greedy Algorithm: A strategy that makes the locally optimal

choice at each step.

167
MATS Centre for Distance and Online Education, MATS University

Notes • Divide and Conquer: A technique that divides a problem into

smaller subproblems, solves them recursively, and combines

results.

• Dynamic Programming: A method for solving complex

problems by breaking them into simpler overlapping

subproblems and storing the results.

References

Linear Data Structure (Chapter 1)

1. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C.

(2022). Introduction to Algorithms (4th ed.). MIT Press.

2. Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.).

Addison-Wesley Professional.

3. McDowell, G. L. (2016). Cracking the Coding Interview: 189

Programming Questions and Solutions (6th ed.). CareerCup.

4. Knuth, D. E. (1997). The Art of Computer Programming,

Volume 1: Fundamental Algorithms (3rd ed.). Addison-

Wesley.

5. Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2014).

Data Structures and Algorithms in Java (6th ed.). Wiley.

Stack, Queue and Recursion (Chapter 2)

1. Weiss, M. A. (2011). Data Structures and Algorithm Analysis

in C++ (4th ed.). Pearson.

2. Karplus, W. J. (1985). The Practical Guide to Structured

System Design (2nd ed.). Yourdon Press.

3. Backhouse, R. C. (1986). Program Construction and

Verification. Prentice Hall.

4. Horowitz, E., & Sahni, S. (2007). Fundamentals of Data

Structures in C++ (2nd ed.). W. H. Freeman.

5. Lafore, R. (1998). Data Structures and Algorithms in Java.

Sams Publishing.

Linked List (Chapter 3)

168
MATS Centre for Distance and Online Education, MATS University

Notes 1. Wirth, N. (1976). Algorithms + Data Structures = Programs.

Prentice-Hall.

2. Tanenbaum, A. S., Langsam, Y., & Augenstein, M. J. (1996).

Data Structures Using C. Prentice Hall.

3. Malik, D. S. (2010). C++ Programming: From Problem

Analysis to Program Design (5th ed.). Course Technology.

4. Drozdek, A. (2012). Data Structures and Algorithms in C++

(4th ed.). Cengage Learning.

5. Shaffer, C. A. (2011). Data Structures and Algorithm Analysis

in C++ (3rd ed.). Dover Publications.

Tree and Graph (Chapter 4)

1. Skiena, S. S. (2020). The Algorithm Design Manual (3rd ed.).

Springer.

2. Tarjan, R. E. (1983). Data Structures and Network Algorithms.

Society for Industrial and Applied Mathematics.

3. Kleinberg, J., & Tardos, E. (2005). Algorithm Design. Pearson

Education.

4. Even, S. (2011). Graph Algorithms (2nd ed.). Cambridge

University Press.

5. Nisan, N., & Schocken, S. (2005). The Elements of

Computing Systems: Building a Modern Computer from First

Principles. MIT Press.

Algorithm Analysis and Design (Chapter 5)

1. Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. (2006).

Algorithms. McGraw-Hill.

2. Manber, U. (1989). Introduction to Algorithms: A Creative

Approach. Addison-Wesley.

3. Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1983). Data

Structures and Algorithms. Addison-Wesley.

4. Sipser, M. (2012). Introduction to the Theory of Computation

(3rd ed.). Cengage Learning.

5. Savage, J. E. (1998). Models of Computation: Exploring the

Power of Computing. Addison-Wesley.

169
MATS Centre for Distance and Online Education, MATS University

