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COURSE INTRODUCTION 

 

Data Structures is a fundamental subject in computer science that 

focuses on organizing, storing, and managing data efficiently. It plays 

a crucial role in algorithm development and problem-solving. 

Understanding data structures enables efficient memory usage, quick 

data retrieval, and optimized computational performance. This course 

covers various types of data structures, including linear and nonlinear 

structures, along with their applications in real-world scenarios. 

Module 1: Linear Data Structures 

This Unit introduces the basic concept of linear data structures, 

where data elements are arranged sequentially. It covers arrays and 

linked lists, their operations (insertion, deletion, traversal, 

searching, and sorting), and their applications. The comparison 

between static and dynamic memory allocation is also discussed. 

Module 2: Stack, Queue, and Recursion 

In this Unit, we explore stack and queue, two important linear data 

structures with different access methods. 

• Stack follows the LIFO (Last In, First Out) principle, 

supporting operations like push, pop, and peek. 

• Queue follows the FIFO (First In, First Out) principle, with 

operations like enqueue and dequeue. Variants such as 

circular queue, priority queue, and deque are also discussed. 

• Recursion, a method where a function calls itself, is 

introduced along with its applications and differences from 

iteration. 
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Notes Module 3: Linked Lists 

This Unit focuses on linked lists, a dynamic data structure where 

elements (nodes) are connected through pointers. Different types of 

linked lists—singly linked list, doubly linked list, and circular 

linked list—are discussed in detail, along with operations like 

insertion, deletion, searching, and traversal. Their advantages over 

arrays and real-world applications are also covered. 

Module 4: Trees and Graphs 

This Unit introduces hierarchical and non-linear data structures: 

• Trees, including binary trees, binary search trees (BST), and 

tree traversals (preorder, inorder, postorder). Applications in 

hierarchical data representation are explored. 

• Graphs, including representations (adjacency matrix and 

adjacency list), traversal techniques (BFS and DFS), and 

applications in networking and pathfinding. 

Module 5: Algorithm Analysis and Design 

This Unit focuses on the efficiency of algorithms using asymptotic 

notations (Big O, Theta, and Omega). Different algorithm design 

techniques such as divide and conquer, greedy algorithms, dynamic 

programming, and backtracking are introduced. The importance of 

selecting appropriate data structures for optimizing algorithm 

performance is also discussed. 
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MODULE 1 

LINEAR DATA STRUCTURES 

 

LEARNING OUTCOMES 

By the end of this Unit, students will be able to: 

• Understand data structure concepts, data types, and abstract 

data types (ADTs) and their role in programming. 

• Explain linear data structures using sequential organization, 

including their operations and applications. 

• Learn about arrays, their classification, properties, 

representation, and memory allocation. 

• Implement searching algorithms (Linear Search, Binary 

Search) for efficient data retrieval. 

• Apply sorting algorithms (Insertion Sort, Selection Sort, and 

Merge Sort) to organize data effectively. 
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Notes Unit 1.1: Data structure concepts And Linear data 

structures 

 

1.1.1 Data structure concepts, Data type, and Abstract data type 

Data structures are essential elements of computer science that facilitate 

the efficient storage, organization, and management of data. They 

provide representation of data in memory as well as insertion, deletion, 

and searching in-memory operations. A data structure defines an 

algorithm’s efficiency, making it the essential concept for optimizing 

performance. Prevalent data structures encompass arrays, linked lists, 

stacks, queues, trees, graphs, and hash tables.   Each of these 

architectures has unique advantages and disadvantages depending on 

particular application. 

 

1.1.2 Data Type 

But in a way, it lists resources that a variable can store in a 

programming language. It delineates the permissible values for a 

variable and the procedures applicable to those values.  Data types can 

be categorized into primitive kinds and non-primitive types.  Primitive 

data types are types such as integers, floating-point numbers, 

characters, and Booleans that encapsulate a singular value. Non-

primitive data types, including arrays, structures, and classes, hold 

multiple values or complicated data. Also choose the correct data type 

to make sure of memory and logic correctness in the program. 

 

 

Figure 1.1.1(data Structure) 
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Notes  

1.1.3 Abstract Data Type (ADT) 

An abstract data type (ADT) is conceptual model for a data structure 

characterized by its behavior rather than its implementation. It 

describes what operations are supported by the data and what result 

they should produce and how it would be implemented. Lists, stacks, 

queues and dictionaries are commonly used ADTS. A stack ADT, for 

example, can utilize operations like push, pop, and peek, irrespective 

of whether the stack is implemented using an array or linked list. But 

these classes combined to form ADTs allow you to arrive at a better 

design that generates modular and reusable code, allowing for more 

efficient software development. 

1.1.4 Linear data structures using sequential organization, 

Operations 

Key points: Linear data structures are essential elements of computer 

science and are crucial in the development of algorithms and software.  

Data elements are maintained in a sequential arrangement, with each 

element linked to its neighboring element. However, the sequential 

arrangement of the data renders these structures very natural, and hence 

easy to implement, manipulate and read. In this investigation we'll 

cover linear data structures that use the sequential layout, looking more 

closely at their operations, implementation techniques, performance 

characteristics, and where each would be applied in practice. An 

ordered structure indicates the orientation of data components in 

neighboring memory spots or with specific references to ensure logical 

proximity. Such an arrangement allows direct access to the elements 

and performs these operations are insertion, deletion, traversal, search, 

and modification. Query, Insert, and Delete operations However, these 

operations may have performance implications based on their 

respective implementations of linear data structures and memory 

management techniques. A linear data structure is a structure that has 

only one dimension. This characteristic makes them a good fit for 

representing data that has a built-in sequential order which can be 

natural such as lists, queues, and stacks. The sequential organization 

can be maintained either by array-based implementations or linked 

implementations (array based is less flexible while linked can have 

more complex time requirements). 
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Notes 

                             Figure 1.1.2 Arrays 

Arrays: The Fundamental Sequential Structure 

 

 

 

 

 

 

 

 

 

 

 

 

Arrays represent the most basic type of linear data structure, as they are 

organized in a sequential format.  An array is data structure comprising 

a group of elements of same data type, stored in contiguous memory 

regions. This makes it possible to jump to any element in constant time 

(as long as you know the index), so arrays are efficient to use if you do 

a lot of random access. 

1.1.5 Memory Allocation in Arrays 

Arrays can be allocated memory in two ways: 

1. Static Allocation: Static allocation refers to the process of 

reserving memory for variables or data structures at compile 

time, meaning the size and type of memory blocks are fixed 

before the program runs. In the case of arrays, once the size is 

declared, it cannot be changed during execution. This approach 

is simple and efficient in terms of memory access because the 

compiler knows exactly where each element will be stored. 

However, it lacks flexibility, as the memory cannot be resized 

dynamically based on changing requirements at runtime. Static 

allocation of an array with 100 integer elements 

2. Dynamic Allocation: Memory is allocated at runtime, 

permitting flexibility in array dimensions. This approach is 

more adaptable to varying data sizes but requires explicit 

memory management. 

int* numbers = (int*) malloc(100 * sizeof(int)); // Dynamic 

allocation in C 

int* numbers = new int[100]; // Dynamic allocation in C++ 
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Notes Basic Operations on Arrays 

1.1.6 Arrays support several fundamental operations: 

1. Accessing Elements 

Accessing an element at a specific index is a constant-time operation 

(O(1)) because arrays provide direct access to elements through 

indices. 

int value = numbers[5]; // Accessing the element at index 5 

2. Insertion Operations 

Insertion in arrays depends on the position: 

• Insertion at the End: If the array has space, inserting at the end 

is an O(1) operation. 

if (currentSize < maxSize) { 

    array[currentSize] = newElement; 

    currentSize++; 

} 

• Insertion at the Beginning or Middle: Requires shifting 

elements to make space, resulting in an O(n) time complexity. 

// Insertion at index 'position' 

for (int i = currentSize; i > position; i--) { 

    array[i] = array[i-1]; 

} 

array[position] = newElement; 

currentSize++; 

3. Deletion Operations 

Similar to insertion, deletion efficiency depends on the position: 

• Deletion from the End: O(1) time complexity. 

if (currentSize > 0) { 

    currentSize--; 

} 

• Deletion from the Beginning or Middle: O(n) time complexity 

due to element shifting. 

// Deletion at index 'position' 

for (int i = position; i < currentSize - 1; i++) { 

    array[i] = array[i+1]; 

} 

currentSize--; 

4. Searching Operations 

Arrays support two main search approaches: 
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Notes • Linear Search: Examines each element sequentially until 

finding the target or reaching the end, with O(n) time 

complexity. 

int linearSearch(int array[], int size, int target) { 

    for (int i = 0; i < size; i++) { 

        if (array[i] == target) { 

            return i; // Return index of found element 

        } 

    } 

    return -1; // Element not found 

} 

• Binary Search: For sorted arrays, offers O(log n) time 

complexity by repeatedly dividing search space in half. 

int binarySearch(int array[], int left, int right, int target) { 

    while (left <= right) { 

        int mid = left + (right - left) / 2; 

        if (array[mid] == target) 

            return mid; 

        if (array[mid] < target) 

            left = mid + 1; 

        else 

            right = mid - 1; 

    } 

    return -1; // Element not found 

} 

5. Traversal Operations 

Traversing an array involves visiting each element sequentially, 

typically using loops: 

void traverse(int array[], int size) { 

    for (int i = 0; i < size; i++) { 

        // Process array[i] 

        printf("%d ", array[i]); 

    } 

} 

1.1.7Advantages and Limitations of Arrays 

Advantages: 

• Constant-time random access (O(1)) 
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Notes • Memory efficiency due to lack of overhead for storing 

relationships 

• Cache-friendly due to contiguous memory storage 

• Simple implementation 

• Limitations: 

• Fixed size in static implementations 

• Inefficient insertion and deletion operations at arbitrary 

positions 

• Memory wastage when allocated size exceeds actual data size 

• Homogeneous data type requirement 

 

 

1.1.7 Multi-dimensional Arrays 

Arrays can be extended to multiple dimensions to represent more 

complex data relationships: 

int matrix[3][4]; // 2D array with 3 rows and 4 columns 

// Accessing elements in a 2D array 

int value = matrix[1][2]; // Accessing element at row 1, column 2 

 

// Traversing a 2D array 

for (int i = 0; i < 3; i++) { 

    for (int j = 0; j < 4; j++) { 

        // Process matrix[i][j] 

    } 

} 

Multi-dimensional arrays are stored in memory using either row-major 

order (C/C++) or column-major order (Fortran), impacting how data is 

accessed and cached. 

1.1.8 Dynamic Arrays: Extending the Basic Array 

Unlike static arrays that have a fixed size, dynamic arrays resize 

themselves when they run out of space. They still have O(1) access 

time and however they can grow in size. 

Implementation of Dynamic Arrays 

A typical implementation involves: 

1. Initializing with a default capacity 

2. Keeping track of the current size 

3. Resizing when necessary 

class DynamicArray { 
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Notes private: 

    int* array; 

    int size; 

    int capacity; 

 

    void resize() { 

        capacity *= 2; 

        int* newArray = new int[capacity]; 

        for (int i = 0; i < size; i++) { 

            newArray[i] = array[i]; 

        } 

        delete[] array; 

        array = newArray; 

    } 

 

public: 

    DynamicArray() { 

        capacity = 10; 

        size = 0; 

        array = new int[capacity]; 

    } 

 

    void add(int element) { 

        if (size == capacity) { 

            resize(); 

        } 

        array[size++] = element; 

    } 

 

    // Other operations... 

}; 

Operations on Dynamic Arrays 

Dynamic arrays support the same operations as static arrays but with 

added resizing capability: 

1. Amortized Analysis of Insert Operation 

Insertion at the end has an amortized O(1) time complexity. Though 

individual resize operations are O(n), they are rare enough that the 
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Notes amortized cost of each operation is constantapplied to the underlying 

array. 

void add(int element) { 

    if (size == capacity) { 

        resize(); // O(n) operation but happens rarely 

    } 

    array[size++] = element; // O(1) operation 

} 

2. Performance Considerations 

• Growth Factor: Typically set to 2, meaning the array doubles in 

size when full 

• Shrinking: Some implementations also decrease capacity when 

utilization falls below a certain threshold 

• Dynamic Arrays in Standard Libraries 

• Various programming languages provide dynamic array 

implementations: 

• std::vector in C++ 

• ArrayList in Java 

• List in C# 

• list in Python (with additional functionality) 

// Using std::vector in C++ 

#include <vector> 

vector<int> numbers; 

numbers.push_back(10); // Add element to the end 

Stacks: LIFO Sequential Structures 

A stack is a linear data structure that exhibits a Last-In-First-Out (LIFO) 

order: in a stack, the last added element is the first removed one. Like 

a stack of plates, you can only add and remove plates at the top (Last 

In First Out). 

1.1.8 Operations on Stacks 

Stacks support two primary operations: 

1. Push Operation 

Push adds an element to the top of the stack: 

void push(Stack* stack, int value) { 

    if (stack->top == stack->capacity - 1) { 

        // Stack overflow 

        return; 

    } 
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Notes     stack->array[++stack->top] = value; 

} 

2. Pop Operation 

Pop removes and returns the element from the top of the stack: 

int pop(Stack* stack) { 

    if (stack->top == -1) { 

        // Stack underflow 

        return -1; 

    } 

    return stack->array[stack->top--]; 

} 

3. Additional Stack Operations 

• Peek/Top: Returns the top element without removing it 

• isEmpty: Checks if the stack is empty 

• isFull: Checks if the stack is full (for array implementations) 

• Size: Returns the number of elements in the stack 

int peek(Stack* stack) { 

    if (stack->top == -1) { 

        // Stack is empty 

        return -1; 

    } 

    return stack->array[stack->top]; 

} 

 

bool isEmpty(Stack* stack) { 

    return stack->top == -1; 

} 

 

bool isFull(Stack* stack) { 

    return stack->top == stack->capacity - 1; 

} 

 

int size(Stack* stack) { 

    return stack->top + 1; 

} 

1.1.9 Stack Implementations 

Stacks can be implemented using: 

1. Array-based Implementation 
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Notes typedef struct { 

    int* array; 

    int top; 

    int capacity; 

} Stack; 

 

Stack* createStack(int capacity) { 

    Stack* stack = (Stack*)malloc(sizeof(Stack)); 

    stack->capacity = capacity; 

    stack->top = -1; 

    stack->array = (int*)malloc(stack->capacity * sizeof(int)); 

    return stack; 

} 

2. Linked List-based Implementation 

typedef struct Node { 

    int data; 

    struct Node* next; 

} Node; 

 

typedef struct { 

    Node* top; 

    int size; 

} Stack; 

 

Stack* createStack() { 

    Stack* stack = (Stack*)malloc(sizeof(Stack)); 

    stack->top = NULL; 

    stack->size = 0; 

    return stack; 

} 

 

void push(Stack* stack, int value) { 

    Node* newNode = (Node*)malloc(sizeof(Node)); 

    newNode->data = value; 

    newNode->next = stack->top; 

    stack->top = newNode; 

    stack->size++; 

} 
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Notes  

int pop(Stack* stack) { 

    if (stack->top == NULL) { 

        // Stack underflow 

        return -1; 

    } 

 

    Node* temp = stack->top; 

    int value = temp->data; 

    stack->top = stack->top->next; 

    free(temp); 

    stack->size--; 

 

    return value; 

} 

1.1.10 Applications of Stacks 

1.Function Call Management (Call Stack) 

When a program calls a function, information like local variables and 

the return address is stored in a stack. 

Example: 

In C/C++ or Java, when a function calls another function, the call stack 

keeps track of where to return after finishing. 

 

2. Expression Evaluation and Conversion 

Stacks help in converting infix expressions (like A + B) into postfix or 

prefix forms, which are easier for computers to evaluate. Stacks are also 

used to evaluate postfix expressions. 

 

Example: 

In calculators or interpreters, when you type (3 + 5) * 2, the system uses 

a stack internally to get the result. 

 

3. Syntax Parsing in Compilers 

While compiling a program, the compiler needs to check matching 

parentheses, braces, or tags.A stack is used to keep track of opening and 

closing symbols. 

 

Example: 
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Notes In a compiler, if you forget a closing bracket }, the stack helps detect 

that error. 

 

4. Undo Mechanism in Text Editors 

Many applications (like Microsoft Word) keep a stack of previous 

actions. 

 

When you press Undo, the last action is popped from the stack and 

reversed. 

 

Example: 

Typing something and then pressing Ctrl+Z. 

 

 5. Backtracking Algorithms 

Stacks help to remember previous steps so you can go back. 

 

Example: 

Solving a maze — you move forward, and if you hit a dead end, you 

backtrack using the stack. 

 

 6. Browser Back Button 

Web browsers keep track of the pages you visit in a stack.When you 

click Back, the last page is popped from the stack and loaded again. 

 

Example: 

Clicking back in Chrome takes you to the previous page you visited. 

 

Checking for Balanced Parentheses 

bool areParenthesesBalanced(char* expr) { 

    Stack* stack = createStack(strlen(expr)); 

    for (int i = 0; expr[i]; i++) { 

        if (expr[i] == '(' || expr[i] == '[' || expr[i] == '{') { 

            push(stack, expr[i]); 

        } else if (expr[i] == ')' || expr[i] == ']' || expr[i] == '}') { 

            if (isEmpty(stack)) { 

                return false; 

            } 

            char top = pop(stack); 
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Notes             if ((expr[i] == ')' && top != '(') ||  

                (expr[i] == ']' && top != '[') ||  

                (expr[i] == '}' && top != '{')) { 

                return false; 

            } 

        } 

    } 

    return isEmpty(stack); 

} 

Queues: FIFO Sequential Structures 

A queue is a linear data structure with a First-In-First-Out (FIFO) 

order, like people in line. First In, First Out (FIFO) — The first element 

added is the first one to be removed. 

Operations on Queues 

Queues support two primary operations: 

1. Enqueue Operation 

Adds an element to the rear of the queue: 

void enqueue(Queue* queue, int value) { 

    if ((queue->rear + 1) % queue->capacity == queue->front) { 

        // Queue is full 

        return; 

    } 

 

    if (queue->front == -1) { 

        queue->front = 0; 

    } 

 

    queue->rear = (queue->rear + 1) % queue->capacity; 

    queue->array[queue->rear] = value; 

} 

2. Dequeue Operation 

Removes and returns the element from the front of the queue: 

int dequeue(Queue* queue) { 

    if (queue->front == -1) { 

        // Queue is empty 

        return -1; 

    } 
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Notes     int value = queue->array[queue->front]; 

    if (queue->front == queue->rear) { 

        // Last element being dequeued 

        queue->front = queue->rear = -1; 

    } else { 

        queue->front = (queue->front + 1) % queue->capacity; 

    } 

 

    return value; 

} 

3. Additional Queue Operations 

• Front: Returns the front element without removing it 

• isEmpty: Checks if the queue is empty 

• isFull: Checks if the queue is full 

• Size: Returns the number of elements in the queue 

int front(Queue* queue) { 

    if (queue->front == -1) { 

        // Queue is empty 

        return -1; 

    } 

    return queue->array[queue->front]; 

} 

bool isEmpty(Queue* queue) { 

    return queue->front == -1; 

} 

bool isFull(Queue* queue) { 

    return (queue->rear + 1) % queue->capacity == queue->front; 

} 

int size(Queue* queue) { 

    if (queue->front == -1) { 

        return 0; 

    } 

    return (queue->rear - queue->front + queue->capacity) % queue-

>capacity + 1; 

} 

Queue Implementations 

Queues can be implemented using: 

1. Array-based Implementation (Circular Queue) 
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Notes A circular queue efficiently uses array space by wrapping around when 

reaching the end: 

typedef struct { 

    int* array; 

    int front; 

    int rear; 

    int capacity; 

} Queue; 

Queue* createQueue(int capacity) { 

    Queue* queue = (Queue*)malloc(sizeof(Queue)); 

    queue->capacity = capacity; 

    queue->front = queue->rear = -1; 

    queue->array = (int*)malloc(queue->capacity * sizeof(int)); 

    return queue; 

} 

2. Linked List-based Implementation 

typedef struct Node { 

    int data; 

    struct Node* next; 

} Node; 

typedef struct { 

    Node* front; 

    Node* rear; 

    int size; 

} Queue; 

Queue* createQueue() { 

    Queue* queue = (Queue*)malloc(sizeof(Queue)); 

    queue->front = queue->rear = NULL; 

    queue->size = 0; 

    return queue; 

} 

void enqueue(Queue* queue, int value) { 

    Node* newNode = (Node*)malloc(sizeof(Node)); 

    newNode->data = value; 

    newNode->next = NULL; 

    if (queue->rear == NULL) { 

        queue->front = queue->rear = newNode; 

    } else { 
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Notes         queue->rear->next = newNode; 

        queue->rear = newNode; 

    } 

    queue->size++; 

} 

int dequeue(Queue* queue) { 

    if (queue->front == NULL) { 

        // Queue is empty 

        return -1; 

    } 

    Node* temp = queue->front; 

    int value = temp->data; 

    queue->front = queue->front->next; 

    if (queue->front == NULL) { 

        queue->rear = NULL; 

    } 

    free(temp); 

    queue->size--; 

    return value; 

} 

Variations of Queues 

Several specialized queue variations exist: 

1. Double-ended Queue (Deque) 

A deque allows insertion and deletion at both ends: 

typedef struct { 

    int* array; 

    int front; 

    int rear; 

    int capacity; 

} Deque; 

void insertFront(Deque* deque, int value) { 

    if (isFull(deque)) { 

        return; 

    } 

    if (deque->front == -1) { 

        deque->front = deque->rear = 0; 

    } else { 
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Notes         deque->front = (deque->front - 1 + deque->capacity) % deque-

>capacity; 

    } 

    deque->array[deque->front] = value; 

} 

void insertRear(Deque* deque, int value) { 

    if (isFull(deque)) { 

        return; 

    } 

    if (deque->front == -1) { 

        deque->front = deque->rear = 0; 

    } else { 

        deque->rear = (deque->rear + 1) % deque->capacity; 

    } 

    deque->array[deque->rear] = value; 

} 

 

int deleteFront(Deque* deque) { 

    if (isEmpty(deque)) { 

        return -1; 

    } 

    int value = deque->array[deque->front]; 

    if (deque->front == deque->rear) { 

        deque->front = deque->rear = -1; 

    } else { 

        deque->front = (deque->front + 1) % deque->capacity; 

    } 

    return value; 

} 

int deleteRear(Deque* deque) { 

    if (isEmpty(deque)) { 

        return -1; 

    } 

    int value = deque->array[deque->rear]; 

    if (deque->front == deque->rear) { 

        deque->front = deque->rear = -1; 

    } else { 
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Notes         deque->rear = (deque->rear - 1 + deque->capacity) % deque-

>capacity; 

    } 

    return value; 

} 

2. Priority Queue 

A priority queue serves elements based on their priority rather than 

insertion order. 

3. Circular Queue 

A circular queue optimizes array space usage by connecting the end to 

the beginning: 

// Circular queue was covered in the basic queue implementation 

Applications of Queues 

Queues are used in various applications: 

• Process scheduling in operating systems 

• Breadth-first search in graphs 

• Print job spooling 

• Handling of interrupts in real-time systems 

• Buffering in various applications (keyboard buffer, web servers) 

• Message queues in distributed systems 

Example: Level Order Traversal of a Binary Tree 

void levelOrderTraversal(TreeNode* root) { 

    if (root == NULL) { 

        return; 

    } 

    Queue* queue = createQueue(); 

    enqueue(queue, root); 

    while (!isEmpty(queue)) { 

        TreeNode* current = dequeue(queue); 

        printf("%d ", current->data); 

        if (current->left) { 

            enqueue(queue, current->left); 

        } 

        if (current->right) { 

            enqueue(queue, current->right); 

        } 

    } 

} 
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Notes 1.1.11 Linked Lists: Dynamic Sequential Structures 

A linked list is a collection with a linear structure where each element 

is stored in a node that consists of a value and a reference to the next 

element. They do not need to allocate memory contiguously, unlike 

arrays, which allows them to grow dynamically and have efficient 

insertions/deletions in between. 

1.1.12 Types of Linked Lists 

Linked lists come in several variations: 

1. Singly Linked List 

Each node contains data and a pointer to the next node: 

typedef struct Node { 

    int data; 

    struct Node* next; 

} Node; 

2. Doubly Linked List 

Each node contains data and pointers to both the next and previous 

nodes: 

typedef struct Node { 

    int data; 

    struct Node* next; 

    struct Node* prev; 

} Node; 

3. Circular Linked List 

The last node points back to the first node, creating a circle: 

// For a circular singly linked list 

// The last node's next points to the head 

Operations on Linked Lists 

Linked lists support various operations: 

1. Insertion Operations 

• Insertion at the Beginning: 

void insertAtBeginning(Node** head, int value) { 

    Node* newNode = (Node*)malloc(sizeof(Node)); 

    newNode->data = value; 

    newNode->next = *head; 

    *head = newNode; 

} 

• Insertion at the End: 

void insertAtEnd(Node** head, int value) { 
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Notes     Node* newNode = (Node*)malloc(sizeof(Node)); 

    newNode->data = value; 

    newNode->next = NULL; 

 

    if (*head == NULL) { 

        *head = newNode; 

        return; 

    } 

    Node* current = *head; 

    while (current->next != NULL) { 

        current = current->next; 

    } 

    current->next = newNode; 

} 

• Insertion at a Specific Position: 

void insertAtPosition(Node** head, int value, int position) { 

    if (position < 0) { 

        return; 

    } 

    if (position == 0 || *head == NULL) { 

        insertAtBeginning(head, value); 

        return; 

    } 

    Node* newNode = (Node*)malloc(sizeof(Node)); 

    newNode->data = value; 

 

    Node* current = *head; 

    for (int i = 0; i < position - 1 && current->next != NULL; i++) { 

        current = current->next; 

    } 

    newNode->next = current->next; 

    current->next = newNode; 

} 

2. Deletion Operations 

• Deletion from the Beginning: 

void deleteFromBeginning(Node** head) { 

    if (*head == NULL) { 

        return; 
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Notes     } 

    Node* temp = *head; 

    *head = (*head)->next; 

    free(temp); 

} 

• Deletion from the End: 

void deleteFromEnd(Node** head) { 

    if (*head == NULL) { 

        return; 

    } 

    if ((*head)->next == NULL) { 

        free(*head); 

        *head = NULL; 

        return; 

    } 

    Node* current = *head; 

    while (current->next->next != NULL) { 

        current = current->next; 

    } 

    free(current->next); 

    current->next = NULL; 

} 

• Deletion at a Specific Position: 

void deleteAtPosition(Node** head, int position) { 

    if (*head == NULL || position < 0) { 

        return; 

    } 

    if (position == 0) { 

        deleteFromBeginning(head); 

        return; 

    } 

    Node* current = *head; 

    for (int i = 0; i < position - 1 && current->next != NULL; i++) { 

        current = current->next; 

    } 

    if (current->next == NULL) { 

        return; 

    } 
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Notes     Node* temp = current->next; 

    current->next = current->next->next; 

    free(temp); 

} 

3. Search Operation 

Node* search(Node* head, int value) { 

    Node* current = head; 

    while (current != NULL) { 

        if (current->data == value) { 

            return current; 

        } 

        current = current->next; 

    } 

    return NULL; 

} 

4. Traversal Operation 

void traverse(Node* head) { 

    Node* current = head; 

    while (current != NULL) { 

        printf("%d ", current->data); 

        current = current->next; 

    } 

    printf("\n"); 

} 

Doubly Linked List Operations 

Doubly linked lists offer bidirectional traversal but require more 

complex operations: 

1. Insertion in a Doubly Linked List 

void insertAtBeginning(Node** head, int value) { 

    Node* newNode = (Node*)malloc(sizeof(Node)); 

    newNode->data = value; 

    newNode->next = *head; 

    newNode->prev = NULL; 

    if (*head != NULL) { 

        (*head)->prev = newNode; 

    } 

    *head = newNode; 

} 
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Notes void insertAtEnd(Node** head, int value) { 

    Node* newNode = (Node*)malloc(sizeof(Node)); 

    newNode->data = value; 

    newNode->next = NULL; 

    if (*head == NULL) { 

        newNode->prev = NULL; 

        *head = newNode; 

        return; 

    } 

    Node* current = *head; 

    while (current->next != NULL) { 

        current = current->next; 

    } 

    current->next = newNode; 

    newNode->prev = current; 

} 

2. Deletion in a Doubly Linked List 

void deleteNode(Node** head, Node* toDelete) { 

    if (*head == NULL || toDelete == NULL) { 

        return; 

    } 

    if (*head == toDelete) { 

        *head = toDelete->next; 

    } 

    if (toDelete->next != NULL) { 

        toDelete->next->prev = toDelete->prev; 

    } 

    if (toDelete->prev != NULL) { 

        toDelete->prev->next = toDelete->next; 

    } 

    free(toDelete); 

} 

Circular Linked List Operations 

Circular linked lists require special handling of the last node: 

void insertIntoEmpty(Node** head, int value) { 

    Node* newNode = (Node*)malloc(sizeof(Node)); 

    newNode->data = value; 

    *head = newNode; 
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Notes     newNode->next = *head; 

} 

void insertAtBeginning(Node** head, int value) { 

    if (*head == NULL) { 

        insertIntoEmpty(head, value); 

        return; 

    } 

    Node* newNode = (Node*)malloc(sizeof(Node)); 

    newNode->data = value; 

    Node* current = *head; 

    while (current->next != *head) { 

        current = current->next; 

    } 

    newNode->next = *head; 

    current->next = newNode; 

    *head = newNode; 

} 

1.1.13 Advantages and Limitations of Linked Lists 

Advantages: 

• Dynamic size 

• Efficient insertions and deletions 

• No memory wastage 

• Flexible memory management 

Limitations: 

• Random access is not supported (O(n) time complexity) 

• Extra memory required for pointers 

• Not cache-friendly due to non-contiguous memory 

• Reverse traversal is difficult in singly linked lists 

• Applications of Linked Lists 

• Linked lists are used in various applications: 

• Implementation of stacks and queues 

• Dynamic memory allocation 

• Representation of sparse matrices 

• Polynomial manipulation 

• Hash tables (chaining) 

• Adjacency lists for graphs 

Example: Reversing a Linked List 

Node* reverseList(Node* head) { 
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Notes     Node* prev = NULL; 

    Node* current = head; 

    Node* next = NULL; 

    while (current != NULL) { 

        next = current->next; 

        current->next = prev; 

        prev = current; 

        current = next; 

    } 

    return prev; 

} 

Specialized Linear Data Structures 

Sparse Arrays 

Sparse arrays efficiently store arrays with many default values by only 

storing non-default entries. 

typedef struct { 

    int row; 

    int col; 

    int value; 

} Element; 

typedef struct { 

    int rows; 

    int cols; 

    int numElements; 

    Element* elements; 

} SparseArray; 

Skip Lists 

Skip lists provide probabilistic alternatives to balanced trees with O(log 

n) average search time. 

typedef struct SkipListNode { 

    int value; 

    int level; 

    struct SkipListNode** forward; 

} SkipListNode; 

typedef struct { 

    int level; 

    int size; 

    SkipListNode* header; 
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Notes } SkipList; 

Memory-Efficient Linked Lists (XOR Linked Lists) 

XOR linked lists combine both addressing (previous and next) with 

bitwise XOR operation to compress Memory. 

typedef struct Node { 

    int data; 

    struct Node* npx; // XOR of next and previous node addresses 

} Node; 

// Helper functions to get next and previous nodes 

Node* XOR(Node* a, Node* b) { 

    return (Node*)((uintptr_t)a ^ (uintptr_t)b); 

} 

Performance Comparison and Selection Criteria 

 

Time Complexity Comparison 

 

Operation Array 
Dynamic 

Array 

Linked 

List 
Stack Queue 

Access O(1) O(1) O(n) O(1)* O(1)* 

Insert 

(Start) 
O(n) O(n) O(1) N/A N/A 

Insert 

(End) 
O(1)** 

Amortized 

O(1) 

O(n)/O(1

)*** 
O(1) O(1) 

Insert 

(Middle) 
O(n) O(n) O(n) N/A N/A 

Delete 

(Start) 
O(n) O(n) O(1) N/A O(1) 

Delete 

(End) 
O(1)** O(1) 

O(n)/O(1

)*** 
O(1) N/A 

Delete 

(Middle) 
O(n) O(n) O(n) N/A N/A 

Search 
O(n)/O(log 

n)**** 

O(n)/O(log 

n)**** 
O(n) N/A N/A 

* For top/front elements only ** If size is tracked *** O(1) if tail 

pointer is maintained **** O(log n) with binary search if sorted 

 

 

 



  

30 
MATS Centre for Distance and Online Education, MATS University 

 

Notes Space Complexity Comparison 

Data Structure Space Complexity 

Array (Static) O(n) 

 

Selection Criteria 

Choosing the appropriate data structure depends on: 

Data Structure Space Complexity 

Array (Static) O(n) 

Dynamic Array O(n) 

Linked List O(n) 

Stack O(n) 

Queue O(n) 

 

1. Access Pattern: Random access vs. sequential access 

2. Modification Frequency: Frequent insertions/deletions vs. static 

data 

3. Size Constraints: Fixed size vs. dynamic growth 

4. Memory Constraints: Overhead acceptability 

5. Operation Types: LIFO, FIFO, or random operations 
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Notes 1.2 Linear Array  

 Linear Array in data structure and its classification, Properties  

Linear array is one of the basic data structures of computer science. It 

is a group of information saved in the successive memory location and 

can be accessed conveniently by indexing. 

Classification of Linear Arrays 

Linear arrays can be classified in several ways: 

Based on dimension: 

• One-dimensional arrays (vectors) 

• Multi-dimensional arrays (matrices, tensors) 

Based on size flexibility: 

• Static arrays (fixed size, determined at compile time) 

• Dynamic arrays (variable size, can grow or shrink at runtime) 

Based on the type of elements: 

• Homogeneous arrays (all elements have the same data type) 

• Heterogeneous arrays (elements can have different data types, 

like structs or objects) 

1.2.1 Properties of Linear Arrays 

Linear arrays have several important properties: 

1. Random Access 

• Elements can be accessed directly using their index in O(1) time 

• Formula: address = base_address + (index * 

size_of_each_element) 

2. Memory Allocation 

• Elements are stored in contiguous memory locations 

• Static arrays have a fixed size allocation 

• Dynamic arrays may reallocate memory when resizing 

3. Time Complexity 

• Access: O(1) 

• Search: O(n) for unsorted arrays, O(log n) for sorted arrays 

using binary search 

• Insertion/Deletion: 

• At the end: O(1) amortized for dynamic arrays 

• At arbitrary positions: O(n) due to shifting elements 

4. Space Complexity 

• O(n) where n is the number of elements 

• Requires extra space for potential growth in dynamic arrays 

5. Cache Friendly 
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Notes • Due to contiguous memory allocation, arrays benefit from 

spatial locality 

• This makes them efficient for CPU cache utilization 

6. Limitations 

• Static arrays cannot change size once allocated 

• Dynamic arrays have overhead for resizing operations 

• Insertion/deletion in the middle is inefficient due to shifting 

1.2.2 representations of an array, Operation and Memory location 

Wherein arrays are one of the most basic and common data structures 

in computer science. From their elegant simplicity stems their 

immense utility across almost all domains of programming. Like at 

heart, an array is a collection of elements, all of which are specified by 

an index or a key. These elements are stored sequentially in memory, 

which enables fast access and manipulation. Arrays are not only useful 

for storing elements, but they are also the basic building blocks for 

many algorithms and higher-level data structures. Arrays serve as the 

backbone of many operations, from sorting and searching algorithms to 

image processing and numerical calculations. Join us as we take a 

deep dive into the workings of arrays, from how they're structured in 

memory to the various operations are supported and what makes them 

so efficient. We’ll explore everything from abstract fundamentals to 

programming distinctions and low-level details of different 

implementations of arrays. 

Basic Array Representation 

An array can be thought of as an enumerated list of cells, each of which 

can contain a single data type. In this sequence, every cell is assigned 

an integer index, each one unique, with a typical base value (0 or 1 

depending on language) that acts as the first index. 

For a one-dimensional array A with n elements, we can represent it as: 

A = [A[0], A[1], A[2], ..., A[n-1]] (for 0-indexed arrays) A = [A[1], 

A[2], A[3], ..., A[n]] (for 1-indexed arrays) 

This indexed access pattern defines arrays in contrast to other 

collection data types, including linked lists or sets. This sort of direct 

mapping means that you can access any element in constant-time. 

1.2.3 Mathematical Representation 

Mathematically, an array can be viewed as a mapping function from 

indices to values: 

A: I → V 
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Notes Where: 

• I is the set of valid indices (typically a contiguous range of 

integers) 

• V is the set of possible values the array can store 

For a one-dimensional array of size n, the index set I = {0, 1, 2, ..., n-

1} for 0-indexed arrays, or I = {1, 2, 3, ..., n} for 1-indexed arrays. 

1.2.4 Physical Representation in Memory 

The physical representation of an array in memory directly influences 

its performance and efficiency in computation. Arrays are stored in a 

contiguous block of memory, meaning that all elements are placed 

sequentially without gaps. Each element occupies a fixed amount of 

space determined by its data type—for instance, an integer may take 4 

bytes, while a character may take 1 byte. Because of this arrangement, 

the location of any element in the array can be quickly calculated using 

its index, allowing for constant-time access O(1)O(1)O(1). For 

example, if the base address of the array is known, the address of the 

iii-th element can be computed as: 

Address of A[i]=Base Address+(i×Size of each element)\text{Address 

of A[i]} = \text{Base Address} + (i \times \text{Size of each 

element})Address of A[i]=Base Address+(i×Size of each element)  

This direct addressing makes array access extremely fast compared to 

other data structures like linked lists, where traversal is required to 

reach a specific element. However, the contiguous allocation also 

imposes certain limitations. Since the size of an array is fixed at the 

time of allocation, resizing requires creating a new block of memory 

and copying elements, which can be time-consuming. Additionally, 

inserting or deleting elements within an array often requires shifting 

subsequent elements, leading to inefficiencies in dynamic scenarios. 

Despite these limitations, arrays remain one of the most efficient 

structures for tasks requiring fast indexing and predictable memory 

access, making them a cornerstone in both low-level programming and 

algorithm implementation. 

1.2.5  Memory Addressing and Location Calculation 

Linear Addressing for One-Dimensional Arrays 
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Notes The memory address of an element in a one-dimensional array can be 

calculated using a simple formula: 

Address of A[i] = Base_Address + (i - Lower_Bound) × 

Size_of_Each_Element 

Where: 

• Base_Address is the memory address of the first element of the 

array 

• Lower_Bound is the starting index of the array (typically 0 or 

1) 

• Size_of_Each_Element is the number of bytes each element 

occupies 

For example, in a 0-indexed array of integers (assuming 4 bytes per 

integer), the address of the element at index 5 would be: Address of 

A[5] = Base_Address + (5 - 0) × 4 = Base_Address + 20 

This direct calculation is what enables O(1) time complexity for 

array element access. 

1.2.6 Row-Major vs. Column-Major Ordering 

For multi-dimensional arrays, two primary memory layout strategies 

exist: 

• Row-Major Ordered: Same Row Elements are Stored Together 

Used in C, C++, Python and other languages. 

• Elements in the same column are stored contiguously. This is 

prevalent in Fortran, R, MATLAB, etc. 

Depending on how ordering is done, it can affect address calculation 

for reading elements and its impact on performance on some 

operations especially with respect to cache efficiency. 

Memory Location Calculation for Multi-Dimensional Arrays 

Row-Major Ordering 

For a two-dimensional array A[m][n] in row-major ordering, the 

address of element A[i][j] is calculated as: 

Address of A[i][j] = Base_Address + ((i - Row_Lower_Bound) × n + (j 

- Column_Lower_Bound)) × Size_of_Each_Element 

For a three-dimensional array A[m][n][p], the formula extends to: 

Address of A[i][j][k] = Base_Address + (((i - Row_Lower_Bound) × n 

+ (j - Column_Lower_Bound)) × p + (k - Depth_Lower_Bound)) × 

Size_of_Each_Element 

Column-Major Ordering 

For a two-dimensional array A[m][n] in column-major ordering: 
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Notes Address of A[i][j] = Base_Address + ((j - Column_Lower_Bound) × m 

+ (i - Row_Lower_Bound)) × Size_of_Each_Element 

The patterns don't stop in single dimension, higher dimensions are 

basically adding the coordinates for the different dimensions into the 

address calculation. 

1.2.7 Memory Allocation Mechanisms 

Static Allocation 

Static arrays are arrays with a size determined at compile time. 

Generally, the memory is allocated in the stack segment of the program 

memory space. It once set the size which can never be changed during 

program execution. 

In languages like C, static allocation looks like: 

int array[100]; // Allocates 400 bytes (assuming 4 bytes per int) 

Therefore, the compiler knows exactly how much memory to allocate, 

and the memory is automatically deal located when the variable gets 

out of scope. 

1.2.8 Dynamic Allocation 

Dynamic arrays are created during runtime and stored in the heap 

memory segment. This means you can determine the size more flexibly 

based on the conditions at runtime. 

In C, dynamic allocation can be done using: 

int* array = (int*)malloc(n * sizeof(int)); // Allocates n*4 bytes 

In C++, the equivalent would be: 

int* array = new int[n]; // Allocates n*4 bytes 

Dynamic allocation requires explicit deallocation to prevent memory 

leaks: 

free(array); // C 

delete[] array; // C++ 

1.2.9 Automatic Resizing and Growth Strategies 

Many modern programming languages include a dynamically 

resizable array implementation, like C++'s std::vector, Java's ArrayList, 

or built-in lists in Python. Such implementations often employ the 

following growth strategies: 

1. Amortized Doubling Once the capacity is reached, we allocate 

a new array with double capacity, copy over all elements, then 

deal locate the old array. 

2. Doubling——basically doubling the unit scale when buffer 

reaches certain thresholds or Growth Factor similar to doubling 
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Notes but different multiplication factor e.g. 1.5x in some 

implementations 

3. Add Constant Space: Add a fixed amount at a time. 

Dynamic Array Performance Characteristics Dynamic arrays can 

achieve performance characteristics similar to classical arrays, except 

for the cost of an occasional copying operation. The benefit of Jochen 

Hoenicke’s trick prevents exponentially growing memory 

consumption. The perfect hash entailed exponential growth, which 

K&R prevented, but Jochen Hoenicke’s trick made dynamic arrays 

possible for performance in real code.. 

1.2.10 Basic Array Operations 

Access Operation 

Accessing an array element is performed by using its index: 

value = array[index] 

Time Complexity: O(1) - Constant time, as it involves a direct memory 

address calculation. 

Traversal Operation 

Traversal involves visiting each element of the array exactly once: 

for i = 0 to length(array) - 1 

    process array[i] 

Time Complexity: O(n) - Linear time, where n is the number of 

elements. 

1.2.11 Search Operation 

Linear Search 

Linear search scans elements one by one: 

function linearSearch(array, target) 

    for i = 0 to length(array) - 1 

        if array[i] equals target 

            return i 

    return -1 // Not found 

Time Complexity: O(n) - Linear time, where n is the number of 

elements. 

Binary Search (for sorted arrays) 

Binary search divides the search interval in half repeatedly: 

function binarySearch(array, target) 

    left = 0 

    right = length(array) - 1 

    while left <= right 
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Notes         mid = (left + right) / 2 

        if array[mid] equals target 

            return mid 

        else if array[mid] < target 

            left = mid + 1 

        else 

            right = mid - 1 

    return -1 // Not found 

Time complexity: O(log n) - Logarithmic time and its much better than 

linear search for large array. 

1.2.12 Insertion Operation 

Insertion at the End 

For arrays with available space at the end: 

function insertAtEnd(array, value) 

    array[size] = value 

    size = size + 1 

Time Complexity: O(1) - Constant time, assuming space is available. 

For dynamic arrays that might need resizing: O(1) amortized time. 

Insertion at a Specific Position 

To insert an element at position pos: 

function insertAt(array, pos, value) 

    for i = size downto pos + 1 

        array[i] = array[i-1] 

    array[pos] = value 

    size = size + 1 

Time Complexity: O(n) - Linear time, since elements need to be shifted. 

Deletion Operation 

Deletion from the End 

function deleteFromEnd(array) 

    size = size - 1 

Time Complexity: O(1) - Constant time. 

Deletion from a Specific Position 

To delete an element at position pos: 

function deleteAt(array, pos) 

    for i = pos to size - 2 

        array[i] = array[i+1] 

    size = size - 1 

Time Complexity: O(n) - Linear time, since elements need to be shifted. 
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Notes Update Operation 

Updating an element at a specific index: 

function update(array, index, newValue) 

    array[index] = newValue 

Time Complexity: O(1) - Constant time. 

Advanced Array Operations 

Sorting Operations 

Arrays are commonly used with various sorting algorithms, each with 

different performance characteristics: 

Bubble Sort 

function bubbleSort(array) 

    for i = 0 to length(array) - 1 

        for j = 0 to length(array) - i - 2 

            if array[j] > array[j+1] 

                swap(array[j], array[j+1]) 

Time Complexity: O(n²) - Quadratic time. 

1.2.13 Selection Sort 

function selectionSort(array) 

    for i = 0 to length(array) - 2 

        minIndex = i 

        for j = i + 1 to length(array) - 1 

            if array[j] < array[minIndex] 

                minIndex = j 

        swap(array[i], array[minIndex]) 

Time Complexity: O(n²) - Quadratic time. 

1.2.14 Insertion Sort 

function insertionSort(array) 

    for i = 1 to length(array) - 1 

        key = array[i] 

        j = i - 1 

        while j >= 0 and array[j] > key 

            array[j+1] = array[j] 

            j = j - 1 

        array[j+1] = key 

Time Complexity: O(n²) - Quadratic time, but performs well on almost-

sorted arrays. 

1.2.15   Merge Sort 

function mergeSort(array, left, right) 
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Notes     if left < right 

        mid = (left + right) / 2 

        mergeSort(array, left, mid) 

        mergeSort(array, mid + 1, right) 

        merge(array, left, mid, right) 

Time Complexity: O(n log n) - Linearithmic time. 

1.2.16 Quick Sort 

function quickSort(array, low, high) 

    if low < high 

        pivotIndex = partition(array, low, high) 

        quickSort(array, low, pivotIndex - 1) 

        quickSort(array, pivotIndex + 1, high) 

Time Complexity: O(n log n) average case, O(n²) worst case. 

1.2.17 Heap Sort 

function heapSort(array) 

    buildMaxHeap(array) 

    for i = length(array) - 1 downto 1 

        swap(array[0], array[i]) 

        heapify(array, 0, i) 

Time Complexity: O(n log n) - Linearithmic time. 

Mathematical Operations 

Array Sum 

function arraySum(array) 

    sum = 0 

    for i = 0 to length(array) - 1 

        sum = sum + array[i] 

    return sum 

Time Complexity: O(n) - Linear time. 

Array Product 

function arrayProduct(array) 

    product = 1 

    for i = 0 to length(array) - 1 

        product = product * array[i] 

    return product 

Time Complexity: O(n) - Linear time. 

Array Mean (Average) 

function arrayMean(array) 

    sum = arraySum(array) 
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Notes     return sum / length(array) 

Time Complexity: O(n) - Linear time. 

Finding Maximum and Minimum 

function findMax(array) 

    max = array[0] 

    for i = 1 to length(array) - 1 

        if array[i] > max 

            max = array[i] 

    return max 

function findMin(array) 

    min = array[0] 

    for i = 1 to length(array) - 1 

        if array[i] < min 

            min = array[i] 

    return min 

Time Complexity: O(n) - Linear time. 

Array Transformation Operations 

Mapping 

Applying a function to each element: 

function map(array, func) 

    result = new array of same size 

    for i = 0 to length(array) - 1 

        result[i] = func(array[i]) 

    return result 

Time Complexity: O(n) - Linear time. 

Filtering 

Creating a new array with elements that pass a test: 

function filter(array, predicate) 

    result = new empty array 

    for i = 0 to length(array) - 1 

        if predicate(array[i]) is true 

            append array[i] to result 

    return result 

Time Complexity: O(n) - Linear time. 

1.2.18 Reducing 

Combining array elements into a single value: 

function reduce(array, callback, initialValue) 

    accumulator = initialValue 
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Notes     for i = 0 to length(array) - 1 

        accumulator = callback(accumulator, array[i]) 

 return accumulator 

Time Complexity: O(n) - Linear time. 

1.2.19 Multi-Dimensional Arrays 

Two-Dimensional Array Representation 

In fact, a two-dimensional array would look just like a table with rows 

and columns. An m×n array has m rows and n columns. 

Mathematically, a 2D array A can be represented as: 

A = [ [A[0,0], A[0,1], ..., A[0,n-1]], [A[1,0], A[1,1], ..., A[1,n-1]], ... 

[A[m-1,0], A[m-1,1], ..., A[m-1,n-1]] ] 

Memory Representation of Multi-Dimensional Arrays 

Contiguous Allocation 

In such languages as C and C++, multidimensional arrays are laid out 

in contiguous segments of memory in row-major order or column-

major order (depending on the language, as detailed in a previous 

section). 

For example, a 3×4 array in row-major ordering would have elements 

stored in the following sequence: A[0,0], A[0,1], A[0,2], A[0,3], A[1,0], 

A[1,1], A[1,2], A[1,3], A[2,0], A[2,1], A[2,2], A[2,3] 

Array of Arrays 

For example in some languages and implementations, multi-

dimensional arrays are implemented as arrays of arrays. Pretty 

common in languages such as JavaScript and some implementations in 

Java: 

javascript 

let matrix = [ 

    [1, 2, 3], 

    [4, 5, 6], 

    [7, 8, 9] 

]; 

Here, each element of the outer array is an array, that may or may not 

be contiguous in memory. 

Operations on Multi-Dimensional Arrays 

Accessing Elements 

value = array[row][column] 

Time Complexity: O(1) - Constant time. 

Row and Column Traversal 
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Notes Row traversal: 

for i = 0 to rows - 1 

    for j = 0 to columns - 1 

        process array[i][j] 

Column traversal: 

for j = 0 to columns - 1 

    for i = 0 to rows - 1 

        process array[i][j] 

Time Complexity: O(m×n) - Where m is the number of rows and n is 

the number of columns. 

Matrix Addition 

function matrixAdd(A, B) 

    if A.rows != B.rows or A.columns != B.columns 

        return error 

    C = new matrix of size A.rows × A.columns 

    for i = 0 to A.rows - 1 

        for j = 0 to A.columns - 1 

            C[i][j] = A[i][j] + B[i][j] 

    return C 

Time Complexity: O(m×n) - Where m is the number of rows and n is 

the number of columns. 

Matrix Multiplication 

function matrixMultiply(A, B) 

    if A.columns != B.rows 

        return error 

    C = new matrix of size A.rows × B.columns 

    for i = 0 to A.rows - 1 

        for j = 0 to B.columns - 1 

            C[i][j] = 0 

            for k = 0 to A.columns - 1 

                C[i][j] += A[i][k] * B[k][j] 

    return C 

Time Complexity: O(m×n×p) - Where A is an m×n matrix and B is an 

n×p matrix. 

Matrix Transpose 

function matrixTranspose(A) 

    B = new matrix of size A.columns × A.rows 

    for i = 0 to A.rows - 1 
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Notes         for j = 0 to A.columns - 1 

            B[j][i] = A[i][j] 

return B 

Time Complexity: O(m×n) - Where m is the number of rows and n is 

the number of columns. 

Jagged Arrays 

Definition and Representation 

Jagged array: An array of arrays in which each array can have a 

different length. Unlike in the case of multi-dimensional arrays where 

each dimension has a fixed size. 

For example, in C#: 

int[][] jaggedArray = new int[3][]; 

jaggedArray[0] = new int[4]; 

jaggedArray[1] = new int[2]; 

jaggedArray[2] = new int[5]; 

This would result in a jagged array with 3 rows, the first row contains 

4 elements, the second row contains 2 elements, the third row contains 

5 elements. 

Memory Representation 

In a typical implementation of jagged arrays, the first array is an array 

of pointers to separate array. This is unlike the multi dimensional 

arrays that have a single block of memory allocation. 

The memory structure would look like: 

jaggedArray -> [ptr1, ptr2, ptr3] 

ptr1 -> [element1, element2, element3, element4] 

ptr2 -> [element5, element6] 

ptr3 -> [element7, element8, element9, element10, element11] 

Operations on Jagged Arrays 

Jagged arrays are similar to regular arrays regarding operations 

performed on them — however, you must keep in mind the lengths of 

the arrays: 

// Accessing elements 

value = jaggedArray[row][column] 

// Traversal 

for i = 0 to length(jaggedArray) - 1 

    for j = 0 to length(jaggedArray[i]) - 1 

        process jaggedArray[i][j] 
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Notes Time complexity for access is still O(1), and traversal is O(total number 

of elements). 

Array Implementation in Different Programming Languages 

C/C++ Arrays 

“An array is a fixed-size sequence of elements of the same type, stored 

in contiguous memory” in C and C++ They are zero-indexed and have 

no bounds checking. 

c 

int array[5] = {1, 2, 3, 4, 5}; // Static array 

int* dynamicArray = (int*)malloc(5 * sizeof(int)); // Dynamic array in 

C 

int* dynamicArray = new int[5]; // Dynamic array in C++ 

C++ also provides the std::array and std::vector container classes: 

std::array<int, 5> arr = {1, 2, 3, 4, 5}; // Fixed-size array 

std::vector<int> vec = {1, 2, 3, 4, 5}; // Dynamic array 

Java Arrays 

Arrays are objects in Java that store one type of element. They are zero-

indexed and have automatic bounds checking. 

int[] array = new int[5]; // Declaration and allocation 

int[] array = {1, 2, 3, 4, 5}; // Initialization with values 

Java also provides the ArrayList class for dynamic arrays: 

ArrayList<Integer> list = new ArrayList<>(); 

list.add(1); 

list.add(2); 

1.1.27 Python Lists 

Python's lists are dynamic arrays that can contain elements of different 

types: 

my_list = [1, "string", 3.14, True] # Mixed types 

my_list.append(5) # Dynamic resizing 

JavaScript Arrays 

JavaScript arrays are also dynamic and heterogeneous: 

let array = [1, "string", 3.14, true]; 

array.push(5); // Dynamic resizing 

C# Arrays 

C# arrays are similar to those in Java, being reference types with 

automatic bounds checking: 

int[] array = new int[5]; // Declaration and allocation 

int[] array = {1, 2, 3, 4, 5}; // Initialization with values 
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Notes C# also provides the List<T> class for dynamic arrays: 

List<int> list = new List<int>(); 

list.Add(1); 

list.Add(2); 

1.1.28 Memory Management Considerations 

Memory Alignment 

Memory alignment is the way data is arranged in memory (as per the 

data type). Modern architectures often benefit from, or require, data to 

be aligned at specific boundaries. 

For instance, a 4-byte integer may need to be stored at an address that 

is a multiple of 4 bytes. The alignment requirement has implications in 

the way arrays are arranged into memory and will sometimes cause 

some padding in structures that hold arrays. 

Cache Considerations 

Arrays take advantage of spatial locality, which means when elements 

are stored close together in memory, they will tend to be accessed 

temporally close as well. This property gives arrays very high cache 

friendliness: 

1. Cache Lines: When accessing some element, you also fetch the 

neighboring elements, all of which load up into cache resulting 

in faster accesses. 

2. Cache Misses: Linear scans of an array tend to have fewer 

cache misses vs. random access patterns. 

3. Row-major vs. Column-major: Row-major and column-

major storage order can have a big effect on cache 

performance, based on the access order 

Memory Fragmentation 

Dynamic arrays that expand and contract can lead to memory 

fragmentation especially if they need to change their size often: 

1. External Fragmentation: Happens when free memory is 

technically available but can not be allocated due to 

fragmentation and inability to get contigous large arrays of 

memory. 

2. Internal Fragmentation: This occurs when more memory is 

allocated than is requested to satisfy alignment requirements or 

growth strategies 

Memory Leaks in Dynamic Arrays 

Dynamic arrays require careful management to prevent memory leaks: 
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Notes 1. Memory Management: Array created dynamically needs to be 

properly deallocated when not in use. 

2. Python: The winner must learn both the basics of Python 

syntax (where every machine learning program, model, etc. 

3. Garbage Collection: Languages like Java, Python, and 

JavaScript utilize garbage collection to automatically free up 

memory occupied by arrays that are no longer referenced 

Performance Analysis of Array Operations 

Time Complexity Analysis 

Operation Average Case Worst Case 

Access O(1) O(1) 

Search (Unsorted) O(n) O(n) 

Search (Sorted) O(log n) O(log n) 

Insertion (End) O(1)* O(n)* 

Insertion (Middle) O(n) O(n) 

Deletion (End) O(1) O(1) 

Deletion (Middle) O(n) O(n) 

Traversal O(n) O(n) 

Sort O(n log n) O(n²) 

*Amortized time complexity for dynamic arrays 

Space Complexity Analysis 

Space complexity analysis of arrays focuses on understanding how 

much memory is consumed based on their implementation and usage. 

For a simple static array, the space complexity is O(n), where n 

represents the number of elements, since each element is stored in a 

contiguous memory block, and the size remains fixed throughout 

execution. This predictable allocation makes static arrays memory-

efficient but limits their flexibility when resizing is required. 

Dynamic arrays, on the other hand, introduce additional considerations. 

To accommodate future growth, they often allocate more memory than 

is immediately required. A common approach is the doubling strategy, 

where the capacity of the array is doubled each time the current capacity 

is exceeded. While this ensures that insertions remain efficient on 

average, it can lead to situations where a significant portion of the 

allocated memory remains unused. In the worst case, a dynamic array 
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Notes may temporarily use O(2n) space, since it might hold n actual elements 

along with nearly n unused slots after a resizing operation. 

This trade-off between time efficiency and memory utilization 

highlights the balance dynamic arrays achieve: they provide amortized 

constant-time insertions at the cost of potentially higher space usage. In 

practice, this overhead is often acceptable, as the performance benefits 

of resizing strategies outweigh the temporary extra memory 

consumption, making dynamic arrays a powerful compromise between 

flexibility and efficiency. 

Performance Comparison with Other Data Structures: 

 

 

 

 

Arrays vs. Linked Lists 

Feature Arrays Linked Lists 

Random Access O(1) O(n) 

Insertion/Deletion at Beginning O(n) O(1) 

Insertion/Deletion at End O(1)* O(1)** 

Insertion/Deletion in Middle O(n) O(n)*** 

Memory Usage 

Contiguous 

block 

Non-contiguous 

nodes 

Cache Performance Excellent Poor 

 

*Amortized for dynamic arrays **Assuming tail pointer ***O(1) after 

finding the position, but finding takes O(n) 

Arrays vs. Hash Tables 

Feature Arrays Hash Tables 

Access by Index O(1) N/A 

Access by Key O(n) O(1) average 

Insertion O(n) O(1) average 

Deletion O(n) O(1) average 

Ordered Data Yes No 

Memory Usage Low Moderate to high 
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Notes  

Arrays vs. Trees 

Feature Arrays Binary Search Trees 

Access O(1) O(log n) 

Search O(n) or O(log n) O(log n) 

Insertion O(n) O(log n) 

Deletion O(n) O(log n) 

Ordered Operations No Yes 

Memory Usage Low Moderate 

 

Specialized Array Types 

Sparse Arrays 

A sparse array is a specialized representation of an array in which most 

of the elements share the same default value, usually zero, and only a 

relatively small number of positions hold meaningful data. Instead of 

storing every element explicitly in memory, a sparse array stores only 

the non-zero values along with their corresponding indices, which 

greatly reduces memory usage when dealing with large datasets 

dominated by repeated default values. For example, consider an array 

of size 1,000,000 where only 100 elements are non-zero; storing all 

elements would waste significant space, but representing only the non-

zero elements with their positions allows the structure to remain 

efficient. This approach is particularly useful in fields such as scientific 

computing, machine learning, and information retrieval, where large 

matrices with many empty or zero entries are common. Sparse arrays 

are often implemented using auxiliary data structures like hash tables, 

dictionaries, or linked lists, which allow quick access to the stored non-

zero elements. While they save memory, they may sometimes require 

extra computational overhead for lookups compared to dense arrays, 

since the direct indexing advantage of contiguous memory is lost. 

Nonetheless, sparse arrays strike a balance by making large-scale 

problems computationally feasible, especially when memory resources 

are limited or when handling high-dimensional datasets with only a few 

active values. 
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Notes Representation Methods 

1. Dictionary/Map Representation: Store only non-zero values with 

their indices as keys.  

sparse_array = {1: 5, 10: 3, 100: 8}  # Elements at indices 1, 10, and 

100 

2. Coordinate List (COO): Store pairs of (index, value) for non-zero 

elements.  

[(1, 5), (10, 3), (100, 8)] 

3. Compressed Sparse Row (CSR): Used primarily for sparse 

matrices, storing row pointers, column indices, and values. 

Operations on Sparse Arrays 

Operations on sparse arrays are modified to work efficiently with the 

sparse representation: 

// Access 

function access(sparseArray, index) 

    if index exists in sparseArray 

        return sparseArray[index] 

    else 

        return defaultValue 

One big reason why sparse arrays are so powerful is that they help save 

storage in a data structure designed for sparse matrices in scientific 

computing, graph algorithms, and large-scale data processing where 

data is naturally sparse. 

Circular Arrays 

This means we can treat each element of an array like we are in space 

where the end of the array becomes part of the start of the array (called 

circular arrays (or ring buffers)). 

Implementation 

Circular arrays are typically implemented using modular arithmetic to 

wrap around the array indices: 

function get(circularArray, index) 

    return array[index % length(array)] 

For a fixed-size circular array used as a queue: 

front = 0 

rear = 0 

function enqueue(value) 

    if isFull() 

        return error 
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Notes     array[rear] = value 

    rear = (rear + 1) % capacity 

function dequeue() 

    if isEmpty() 

        return error 

    value = array[front] 

    front = (front + 1) % capacity 

    return value 

Applications of Circular Arrays 

1. Circular Buffers: Used in producer-consumer scenarios, 

streaming data processing, and I/O operations. 

2. Real-time Systems: Used in scheduling algorithms and event 

handling. 

3. Memory-efficient Queues: Implementing queues without the 

need to shift elements. 

Dynamic Arrays with Custom Growth Strategies 

Different applications may benefit from different growth strategies for 

dynamic arrays: 

1. Geometric Growth (e.g., doubling): Provides good amortized 

performance but may waste memory. 

2. Arithmetic Growth (e.g., adding fixed chunks): More memory-

efficient but with higher frequency of resizing operations. 

3. Custom Predictive Growth: Adjusting growth based on usage 

patterns and application-specific knowledge. 

Advanced Memory Management Techniques 

Memory Pools for Array Allocation 

Memory pools preallocate a big chunk of memory upfront, then 

distributes it for array allocations. This helps with fragmentation and 

allocation overhead: 

function initializeMemoryPool(poolSize) 

    pool = allocate(poolSize) 

    freeList = initialize linked list of all blocks 

function allocateFromPool(size) 

    block = find suitable block in freeList 

    if block is found 

        remove block from freeList 

        return block 

    else 
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Notes         return null // Out of memory 

Custom Allocators 

Custom allocators provide application-specific memory management 

for arrays: 

1. Stack Allocators: Fast allocation/deallocation in LIFO order. 

2. Buddy Allocators: Efficient handling of varying-sized 

allocations with minimal fragmentation. 

3. Slab Allocators: Optimized for fixed-size allocations, common 

in operating system kernels. 

Memory-Mapped Arrays 

Memory-mapped arrays leverage the virtual memory capabilities of 

the operating system and map the content of an array to a disk file: 

array = mmap(fileDescriptor, length, protectionFlags, flags, offset) 

Benefits include: 

1. Arrays larger than physical memory 

2. Persistence between program executions 

3. Efficient sharing between processes 

Optimizing Array Operations 

SIMD Vectorization 

SIMD (Single Instruction, Multiple Data) instructions let you (in one 

go) perform the same operation over multiple array elements: 

// Scalar addition 

for (int i = 0; i < n; i++) 

    c[i] = a[i] + b[i]; 

// SIMD addition (abstract pseudocode) 

for (int i = 0; i < n; i += 4) 

    c[i:i+3] = a[i:i+3] + b[i:i+3];  // Process 4 elements at once 

Most modern compilers will automatically vectorize array operations, 

though for peak performance you may still need to manually optimize. 

Loop Unrolling 

Loop unrolling reduces loop overhead by processing multiple elements 

in each iteration: 

// Original loop 

for (int i = 0; i < n; i++) 

    array[i] = process(array[i]); 

// Unrolled loop 

for (int i = 0; i < n; i += 4) { 

    array[i] = process(array[i]); 
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Notes     array[i+1] = process(array[i+1]); 

    array[i+2] = process(array[i+2]); 

    array[i+3] = process(array[i+3]); 

} 

Cache-Aware Algorithms 

Optimizing array algorithms for cache performance: 

1. Blocking/Tiling: Processing data in chunks that fit in cache.  

// Matrix multiplication with blocking 

for (int i = 0; i < n; i += blockSize) 

    for (int j = 0; j < n; j += blockSize) 

        for (int k = 0; k < n; k += blockSize) 

            // Process block 

2. Cache-Oblivious Algorithms: Algorithms that inherently 

perform well on any cache hierarchy without explicit tuning. 

3. Array of Structures vs. Structure of Arrays: Choosing the right 

layout based on access patterns.  

// Array of Structures 

struct Point { float x, y, z; }; 

Point points[1000]; 

 

// Structure of Arrays 

struct Points { 

    float x[1000]; 

    float y[1000]; 

    float z[1000]; 

}; 

 

1.1.29 Array Applications and Use Cases 

Arrays play a central role in computer science and data-driven fields 

because of their ability to store and manage sequential data efficiently. 

In time series analysis, arrays are used to represent ordered data points 

collected over time, such as stock prices, weather readings, or sensor 

measurements, enabling researchers and analysts to identify patterns 

and trends. In statistical computations, arrays provide a convenient 

structure for storing large datasets that can be processed to calculate 

measures like mean, median, variance, and standard deviation, which 

are essential for understanding the distribution and characteristics of 
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Notes data. In the field of signal processing, arrays are indispensable for 

representing and manipulating signals in digital form, supporting 

operations such as filtering, convolution, and transformations like the 

Fast Fourier Transform (FFT), which is crucial for frequency analysis. 

Beyond these examples, arrays are also widely applied in image 

processing, where pixel values are stored as multi-dimensional arrays, 

in scientific simulations, where large numerical datasets need efficient 

storage, and in machine learning, where arrays (or tensors) form the 

backbone of data representation for training algorithms. Their 

combination of simplicity, speed, and versatility makes arrays one of 

the most fundamental and widely applied data structures across 

domains ranging from everyday computing to advanced scientific 

research. 

Advantages of Arrays 

Arrays offer several important advantages that make them one of the 

most widely used data structures in computing. One of the key benefits 

is efficient random access, since each element is stored in a contiguous 

memory block and can be directly accessed by its index in constant time 

O(1)O(1)O(1). This makes arrays particularly powerful when frequent 

lookups are required. They also provide memory efficiency, as the 

continuous allocation of memory minimizes overhead and enhances 

cache performance, making array operations faster due to better locality 

of reference. Another strength of arrays is their ease of iteration, since 

elements can be traversed sequentially with simple loops or built-in 

functions, which makes processing large datasets straightforward. 

Finally, arrays are known for their simplicity in implementation; they 

are a fundamental data structure supported by virtually every 

programming language, making them easy to learn, implement, and 

integrate into algorithms.  

1.Efficient Random Access 

Elements can be accessed directly by their index in constant time O (1) 

 

2.Memory Efficiency 
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Notes Continuous memory allocation reduces overhead and improves locality 

of reference (cache‑friendly). 

 

3.Ease of Iteration 

Simple and fast traversal using loops or built‑in functions. 

 

4.Simplicity in Implementation 

Arrays are a fundamental data structure; easy to use and supported in 

almost every programming language. 

 

5.Static and Predictable Size (in static arrays) 

Fixed size allows the compiler or runtime to optimize memory layout. 
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Notes 1.3. Searching And Sorting Algorithm  

1.3.1 Searching Algorithms: Linear, Binary 

Searching is a fundamental operation in computer science, as it allows 

us to locate a specific element within a data structure such as an array, 

list, or database. Among the various techniques, Linear Search and 

Binary Search are two of the most commonly applied methods, each 

with its own strengths, weaknesses, and use cases. Linear Search is the 

simplest form, where elements are scanned one by one until the target 

element is found or the list ends. It works for both sorted and unsorted 

data but is less efficient for large datasets since its time complexity is 

O(n)O(n)O(n). Binary Search, on the other hand, is much faster but 

requires the dataset to be sorted beforehand. It repeatedly divides the 

search interval in half, checking whether the middle element is the 

target, and discarding the half in which the element cannot lie. This 

reduces the search time significantly to O(log⁡n)O(\log n)O(logn), 

making it highly efficient for large, sorted collections. Choosing 

between these algorithms depends largely on the size and nature of the 

dataset: Linear Search is preferred for small or unsorted data where 

sorting overhead is unnecessary, while Binary Search is ideal for large, 

sorted datasets where efficiency is critical. Ultimately, understanding 

when to apply each method ensures optimal performance and resource 

utilization in software applications. 

 

1.3.2 Linear Search 

It is the simplest searching algorithm. In this algorithm checks for the 

target element sequentially in the list until the target element is found 

or traversed the whole list. This algorithm can be applied to sorted as 

well as unsorted data sets. It begins at the first element and progresses 

towards the last element, comparing each value with the target. If the 

element is found, return the index of the element otherwise the failure 

indication (like -1 or Not Found). Working of Linear Search 

1. Start from the first element of the array. 

2. Compare the current element with the target element. 

3. If they match, return the index (position) of the element. 

4. If they don’t match, move to the next element. 
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Notes 5. Repeat the process until the element is found or the entire list is 

traversed. 

6. If the end of the list is reached without finding the element, 

return "Not Found". 

Time Complexity of Linear Search 

Case 

Time 

Complexity Explanation 

Best Case O(1) 

The target element is found at the 

first position. 

Average Case O(n) 

The target element is somewhere in 

the middle. 

Worst Case O(n) 

The target element is at the last 

position or not present. 

 

Example of Linear Search (Array Implementation in Python) 

python 

CopyEdit 

def linear_search(arr, target): 

    for i in range(len(arr)):   

        if arr[i] == target:   

            return i  # Return index if found 

    return -1  # Return -1 if not found 

arr = [10, 20, 30, 40, 50] 

target = 30 

result = linear_search(arr, target) 

print(f"Element found at index {result}" if result != -1 else "Element 

not found") 

Advantages of Linear Search 

• Works on both sorted and unsorted lists. 

• Simple and easy to implement. 

• Requires no additional memory. 

Disadvantages of Linear Search 

• Slow for large datasets. 

• Inefficient compared to other search algorithms. 

Binary Search 

Binary Search is a faster searching algorithm that applies only on 

sorted data. Returning to the algorithm tracking how many elements to 
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Notes check, it does not check half of the elements every step, so it divides 

the dataset by two and removes half elements. A divide and conquer 

approach, which means its much faster than Linear Search for larger 

datasets. 

Working of Binary Search 

1. Sort the array (if not already sorted). 

2. Find the middle element of the array. 

3. Compare the middle element with the target element.  

• If it matches, return the index. 

• If the target is less than the middle element, repeat the search 

in the left half. 

• If the target is greater than the middle element, repeat the 

search in the right half. 

4. Continue until the target element is found or the search space 

reduces to zero. 

Time Complexity of Binary Search 

Case 

Time 

Complexity Explanation 

Best Case O(1) The middle element is the target. 

Average 

Case O(log n) 

The search space is divided in each 

step. 

Worst Case O(log n) 

The target element is at the last level of 

recursion. 

Example of Binary Search (Array Implementation in Python) 

def binary_search(arr, target): 

    left, right = 0, len(arr) - 1   

    while left <= right:   

        mid = left + (right - left) // 2   

        if arr[mid] == target:   

            return mid   

        elif arr[mid] < target:   

            left = mid + 1   

        else:   

            right = mid - 1   

    return -1   

arr = [10, 20, 30, 40, 50] 

target = 30 
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Notes result = binary_search(arr, target) 

print(f"Element found at index {result}" if result != -1 else "Element 

not found") 

Advantages of Binary Search 

• Much faster than Linear Search for large datasets. 

• Reduces the number of comparisons by dividing the dataset. 

Disadvantages of Binary Search 

• Works only on sorted data. 

• More complex than Linear Search to implement. 

• Comparison of Linear Search vs. Binary Search 

Feature Linear Search Binary Search 

Efficiency O(n) (slower) O(log n) (faster) 

Data 

Requirement Works on any data 

Works only on sorted 

data 

Implementation Simple and easy More complex 

Use Case 

Small datasets, unordered 

lists 

Large datasets, ordered 

lists 

Memory Usage No extra space needed No extra space needed 

Linear Search and Binary Search are important searching techniques, 

having their own pros and cons. Hence Linear Search is easy but time-

consuming for large numbers of data; Binary Search, on the other hand, 

is complex but fast, and you need to have the data sorted. Linear Search 

is preferable if you search through an unordered dataset, meanwhile 

Binary Search is best if the dataset is already sorted as it has a 

logarithmic time complexity. To solve a problem, you need to know 

which algorithm works best for your problem constraints and the 

dataset type. 

 

1.3.3 Sorting Algorithm—Insertion, Selection, Merge sort 

Sorting is a basic operation in computer science that arranges elements 

in a required order (usually ascending or descending). Since searching, 

retrieving, and organizing data is a need in many applications, from 

databases to files, sorting is one of the fundamental things in computer 

science. There are numerous sorting algorithms, some which are more 

efficient than others depending on things like time complexity, space 

complexity, and stability. There are various sorting Algorithms like 

Insertion Sort, Selection Sort, Merge Sort, etc. 
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Notes 1. Insertion Sort 

The simple, comparison-based Insertion Sort algorithm builds the end 

sorted sequence one element at a time. It works a bit like sorting playing 

cards in a hand — every new card gets added to where it belongs in 

relation to cards that are already in order. 

Working Mechanism 

1. Start with the second element (since a single element is already 

sorted). 

2. Compare the element with the previous elements and shift them 

if necessary. 

3. Insert the element in its correct position. 

4. Repeat the process for all elements until the list is sorted. 

Example 

Unsorted Array: [7, 3, 5, 2] 

 

 

Pass Array State 

1st [3, 7, 5, 2] 

2nd [3, 5, 7, 2] 

3rd [2, 3, 5, 7] 

 

Time Complexity 

Case Complexity Explanation 

Best Case O(n) 

Already sorted array, only one comparison 

per element. 

Average 

Case O(n²) 

Elements inserted at different positions with 

shifting required. 

Worst Case O(n²) 

Reverse sorted array, maximum shifting 

required. 

Python Implementation 

def insertion_sort(arr): 

    for i in range(1, len(arr)):   

        key = arr[i]   

        j = i - 1   

        while j >= 0 and key < arr[j]:   

            arr[j + 1] = arr[j]   
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Notes             j -= 1   

        arr[j + 1] = key   

    return arr 

arr = [7, 3, 5, 2] 

print("Sorted Array:", insertion_sort(arr)) 

Advantages & Disadvantages 

 Efficient for small datasets 

 Stable sorting algorithm (preserves order of duplicate elements) 

 Inefficient for large datasets 

 Slower compared to advanced sorting techniques 

2. Selection Sort 

Selection Sort algorithm: algorithm explains Selection Sort : Sort by 

repeatedly selecting the smallest element in the unsorted array and 

swapping it with the first unsorted element. It keeps two subarrays in 

a single array: the subarray which is sorted is left and the remaining is 

unsorted, and is kept reducing the unsorted subarray. 

Working Mechanism 

1. Find the smallest element in the unsorted part. 

2. Swap it with the first unsorted element. 

3. Move to the next element and repeat the process. 

Example 

Unsorted Array: [29, 10, 14, 37, 13] 

Pass Array State 

1st [10, 29, 14, 37, 13] 

2nd [10, 13, 14, 37, 29] 

3rd [10, 13, 14, 37, 29] 

4th [10, 13, 14, 29, 37] 

 

Time Complexity 

Case Complexity Explanation 

Best Case O(n²) Comparisons are always required. 

Average 

Case O(n²) 

Nested loops make it inefficient for large 

datasets. 

Worst Case O(n²) 

Even in the worst case, the number of 

comparisons remains O(n²). 
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Notes Python Implementation 

def selection_sort(arr): 

    for i in range(len(arr)):   

        min_idx = i   

        for j in range(i + 1, len(arr)):   

            if arr[j] < arr[min_idx]:   

                min_idx = j   

        arr[i], arr[min_idx] = arr[min_idx], arr[i]   

    return arr 

arr = [29, 10, 14, 37, 13] 

print("Sorted Array:", selection_sort(arr)) 

Advantages & Disadvantages 

 Simple and easy to implement 

 Performs well with small lists 

 Inefficient for large datasets 

 Not a stable sorting algorithm 

 Merge Sort 

Merge Sort Merge Sort is a divide and conquer algorithm. It is very 

efficient and is used in applications where stability and efficiency are 

important. 

Working Mechanism 

1. Divide the array into two halves. 

2. Recursively sort each half. 

3. Merge the sorted halves to form the final sorted array. 

Example 

Unsorted Array: [38, 27, 43, 3, 9, 82, 10] 

4. Divide into [38, 27, 43] and [3, 9, 82, 10] 

5. Further divide: [38, 27], [43], [3, 9], [82, 10] 

6. Merge step-by-step until sorted: [3, 9, 10, 27, 38, 43, 82] 

Time Complexity 

Case Complexity Explanation 

Best Case O(n log n) 

Always divides the array into two equal 

halves. 

Average 

Case O(n log n) Consistently efficient for large datasets. 

Worst Case O(n log n) 

Even in the worst case, maintains O(n log 

n). 
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Notes  

Python Implementation 

def merge_sort(arr): 

    if len(arr) > 1:   

        mid = len(arr) // 2   

        left_half = arr[:mid]   

        right_half = arr[mid:]   

        merge_sort(left_half)   

        merge_sort(right_half)   

        i = j = k = 0   

        while i < len(left_half) and j < len(right_half):   

            if left_half[i] < right_half[j]:   

                arr[k] = left_half[i]   

                i += 1   

            else:   

                arr[k] = right_half[j]   

                j += 1   

            k += 1   

        while i < len(left_half):   

            arr[k] = left_half[i]   

            i += 1   

            k += 1   

        while j < len(right_half):   

            arr[k] = right_half[j]   

            j += 1   

            k += 1   

arr = [38, 27, 43, 3, 9, 82, 10] 

merge_sort(arr) 

print("Sorted Array:", arr) 

Advantages & Disadvantages 

Merge Sort is one of the most important and widely used sorting 

algorithms in computer science. It follows the Divide and Conquer 

strategy, where a large problem is broken down into smaller sub-

problems, solved individually, and then combined to produce the final 

result. Unlike simple algorithms such as Insertion Sort or Selection 

Sort, Merge Sort guarantees a consistent performance of O(n log n) in 

all cases—best, average, and worst. However, this efficiency comes at 
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Notes a cost, especially in terms of memory usage and practical performance 

on smaller datasets. 

Advantages of Merge Sort 

1. Efficient for Large Datasets 

Merge Sort is highly efficient when working with very large collections 

of data. Because it divides the input into smaller subproblems, it 

handles sorting systematically and ensures that no single step becomes 

computationally overwhelming. Even when the number of elements 

grows into millions, Merge Sort maintains its logarithmic efficiency. 

This makes it a good choice for applications like external sorting, where 

data is stored on hard drives rather than in main memory. 

2. Stable Sorting Algorithm 

Stability in sorting means that if two elements have the same value, 

their original order in the input will be preserved in the output. Merge 

Sort is naturally stable, unlike Quick Sort or Heap Sort (unless 

specifically modified). This property is especially valuable when 

sorting complex objects based on one key, but requiring that the original 

sequence of equal-keyed objects be maintained. 

3. Consistent O(n log n) Performance 

Many sorting algorithms show fluctuating performance depending on 

the type of input. For example, Quick Sort is very fast on random data 

but can degrade to O(n²) in the worst case if the pivot selection is poor. 

Merge Sort avoids this issue entirely because it always divides the 

dataset into halves and merges them in a predictable manner. Therefore, 

whether the input is already sorted, reverse sorted, or randomly ordered, 

the time complexity remains O(n log n). 

4. Useful for Linked Lists and External Sorting 

Merge Sort does not rely on random access to data. This makes it 

especially useful for sorting linked lists, where accessing the middle 

element and rearranging pointers is relatively efficient. Additionally, 

Merge Sort is well-suited for external sorting (sorting data that does not 

fit entirely in main memory, such as large files on disk). Because it 

works by dividing and merging chunks, it can efficiently process data 

in segments without requiring all of it to be in RAM simultaneously. 

Disadvantages of Merge Sort 

1. Requires Extra Memory (O(n) Space Complexity) 

The major drawback of Merge Sort is its additional memory 

requirement. Unlike Insertion Sort or Quick Sort, which can sort in 
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Notes place with minimal extra space, Merge Sort requires temporary arrays 

to hold the divided parts during merging. This means that if you are 

sorting an array of size n, you also need approximately n extra space. 

For large datasets, especially when memory is limited, this can become 

a serious problem. 

2. Slower for Small Datasets Compared to Quick Sort 

While Merge Sort guarantees O(n log n) performance, the constant 

factors involved in splitting and merging can make it slower than 

simpler algorithms on smaller datasets. For example, Insertion Sort or 

Quick Sort can often outperform Merge Sort when sorting arrays of just 

a few hundred elements. 

3. Not an In-place Sorting Algorithm 

Merge Sort does not sort the elements within the original array alone; 

instead, it requires additional structures to perform merging. As a result, 

it is not considered an in-place sorting algorithm, which can be a 

disadvantage when memory optimization is necessary. 

4. Complex Implementation Compared to Simpler Sorts 

Compared to straightforward algorithms like Bubble Sort or Selection 

Sort, Merge Sort is more complicated to implement correctly. 

Beginners may find the recursive nature of its divide-and-conquer 

approach challenging to understand. Errors in base case handling or 

merging logic can lead to incorrect outputs. Merge Sort is an algorithm 

that balances efficiency and stability, making it highly reliable for large 

datasets and cases where stability is required. Its predictable O(n log n) 

performance sets it apart from other algorithms that may degrade with 

certain inputs. However, the extra memory usage and relatively slower 

performance on smaller inputs make it less suitable in memory-

constrained or small-scale scenarios. In practice, Merge Sort is often 

used in hybrid algorithms such as Timsort (used in Python and Java) 

where Merge Sort is combined with simpler sorting algorithms to get 

the best of both worlds. 

 

Comparison of Sorting Algorithms 

Algorithm 

Best 

Case 

Average 

Case 

Worst 

Case 

Space 

Complexity Stable? 

Insertion 

Sort O(n) O(n²) O(n²) O(1) Yes 
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Notes Selection 

Sort O(n²) O(n²) O(n²) O(1) No 

Merge Sort 

O(n log 

n) O(n log n) 

O(n log 

n) O(n) Yes 

 

Out of these sorting algorithms, Insertion sort is best for small datasets, 

Selection sort is simple but inefficient, and Merge sort is quite efficient 

on large datasets. Different sorting algorithms have different time and 

space complexities depending on the size of the dataset and if you need 

a sort that preserves the order of elements with equal values. 

Summary: 

Linear data structures are fundamental structures in computer science 

where data elements are arranged sequentially, allowing traversal in a 

single level and linear order. Common linear data structures include 

arrays, linked lists, stacks, and queues. Arrays are fixed-size structures 

storing elements in contiguous memory, enabling fast access via 

indices, while linked lists are dynamic structures consisting of nodes 

linked via pointers, allowing flexible memory use and efficient 

insertion/deletion. Stacks operate on a Last-In-First-Out (LIFO) basis 

and are used in function call management, expression evaluation, and 

undo operations. Queues follow the First-In-First-Out (FIFO) principle, 

widely used in process scheduling, buffering, and resource 

management. These structures support essential operations like 

insertion, deletion, traversal, searching, and updating, with time and 

space efficiency varying by implementation. Understanding linear data 

structures is critical for algorithm development and forms the basis for 

more complex data handling in software systems. 

 

Multiple-Choice Questions (MCQs) 

1. Which of the following best defines an Abstract Data Type 

(ADT)? 

a) A data type defined by its implementation details 

b) A data type defined by its behavior and operations 

c) A data type with no defined operations 
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Notes d) A data type only used in object-oriented programming 

(Answer: b) 

2. Which of the following is a linear data structure? 

a) Tree 

b) Graph 

c) Queue 

d) Hash Table 

(Answer: c) 

3. Which of the following is a characteristic of an array? 

a) Elements can be inserted dynamically anywhere 

b) Elements are stored in contiguous memory locations 

c) Elements are always sorted 

d) The size of the array increases automatically 

(Answer: b) 

4. Which searching algorithm works efficiently with sorted arrays? 

a) Linear Search 

b) Binary Search 

c) Breadth-First Search 

d) Depth-First Search 

(Answer: b) 

5. What is the worst-case time complexity of Linear Search? 

a) O(1) 

b) O(log n) 

c) O(n) 

d) O(n²) 

(Answer: c) 

6. Which sorting algorithm repeatedly finds the smallest element 

and moves it to the front? 

a) Merge Sort 

b) Insertion Sort 

c) Selection Sort 

d) Quick Sort 

(Answer: c) 

7. Which sorting algorithm has a worst-case time complexity of O(n 

log n)? 

a) Bubble Sort 

b) Merge Sort 

c) Selection Sort 
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Notes d) Insertion Sort 

(Answer: b) 

8. What is the primary advantage of Merge Sort over Insertion 

Sort? 

a) It is easier to implement 

b) It performs better for large datasets 

c) It requires no extra space 

d) It works best on nearly sorted arrays 

(Answer: b) 

9. In Binary Search, what happens if the middle element is 

smaller than the target value? 

a) The left half of the array is searched 

b) The right half of the array is searched 

c) The algorithm terminates immediately 

d) The entire array is searched again 

(Answer: b) 

10. Which data structure is best suited for implementing a queue? 

a) Stack 

b) Array 

c) Linked List 

d) Graph 

(Answer: c) 

 

Short Questions 

1. What is the difference between data types and abstract data types 

(ADTs)? 

2. List two advantages and disadvantages of using arrays. 

3. How does Linear Search work, and when is it useful? 

4. What is the difference between Linear Search and Binary Search? 

5. Explain the basic concept of sorting and why it is important in 

data structures. 

6. What is the main difference between Selection Sort and Insertion 

Sort? 

7. Why is Merge Sort considered more efficient than Selection Sort? 

8. Define the worst-case time complexity of Binary Search. 

9. What is the primary difference between static and dynamic arrays? 

10. How does memory allocation work in sequential data structures? 

 

Long Questions 
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Notes 1. Explain the concept of Abstract Data Types (ADTs) and their 

importance in programming. 

2. Discuss arrays in detail, including their properties, classification, 

and memory allocation. 

3. Explain the working of Linear Search and Binary Search, and 

compare their time complexities. 

4. Describe Insertion Sort, Selection Sort, and Merge Sort, 

comparing their advantages and disadvantages. 

5. Write a C or Python program to implement Binary Search and 

explain how it works. 

6. Analyze the time complexity of different sorting algorithms and 

compare their performances. 

7. Explain the significance of data structures in programming and 

how they improve efficiency. 

8. How does the divide-and-conquer strategy apply to sorting 

algorithms like Merge Sort? 

9. Discuss real-world applications of searching and sorting 

algorithms in software development. 

10. Implement Selection Sort in Python/C, and provide a step-by-step 

explanation of its working. 
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MODULE 2 

STACK, QUEUE AND RECURSION 

 

LEARNING OUTCOMES 

By the end of this Unit, students will be able to: 

• Understand the sequential representation of stacks, their 

operations, and applications such as expression evaluation and 

function calls. 

• Explain recursion, its working mechanism, and its applications 

in algorithm design. 

• Learn about queues, their sequential representation, and 

different variations such as Dequeue (Double-ended Queue) 

and Priority Queue. 

• Implement and analyze stack, queue, and recursion-based 

algorithms for efficient problem-solving. 
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Notes Unit 2.1: Stack 

 

2.1.1 Representation of Stacks using sequential organization, 

Applications 

Stack is a linear data structure which follows Last In First Out order 

(LIFO). That is, the last element added (the top of the stack) is the first 

element to be removed. The knowledge of stacks is widely used in 

programming, memory management and real application such as undo-

redo, function calls, etc. 

 

 

1. Representation of Stacks Using Sequential Organization 

And we can implement stacks using arrays, which mean that elements 

are in adjacent memory locations (sequential memory). This method 

offers quick access but has a defined size in that the stack can't expand 

beyond the size allocated for it.. 

Structure of Stack Using an Array 

A stack consists of the following: 

1. An array to store elements. 

2. A variable top, which indicates the index of the top element in 

the stack. 

3. Stack operations such as push, pop, peek, and isEmpty. 

 

Stack Operations Using Sequential Organization (Array) 

Figure 2.1.1: Stack Data Structure 
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Notes 

Operation Description 

Time 

Complexity 

Push (Insertion) 

Adds an element to the top of the 

stack. O(1) 

Pop (Deletion) 

Removes the top element from the 

stack. O(1) 

Peek (Top 

Element) 

Retrieves the top element without 

removing it. O(1) 

isEmpty Checks if the stack is empty. O(1) 

 

Stack Representation Using an Array 

Example (Stack of Size 5) 

 

 

 

Index Stack Content 

0 10 

1 20 

2 30 

3 40 

4 (Top) 50 

2. Implementation of Stack Using an Array in Python 

class Stack: 

    def __init__(self, size): 

        self.size = size 

        self.stack = [None] * size  # Fixed-size array 

        self.top = -1  # Stack is empty initially 

 

    def push(self, value): 

        if self.top == self.size - 1: 

            print("Stack Overflow! Cannot push", value) 

        else: 

            self.top += 1 

            self.stack[self.top] = value 

            print(value, "pushed to stack") 

    def pop(self): 
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Notes         if self.top == -1: 

            print("Stack Underflow! Cannot pop") 

        else: 

            popped_value = self.stack[self.top] 

            self.top -= 1 

            print(popped_value, "popped from stack") 

            return popped_value 

    def peek(self): 

        if self.top == -1: 

            print("Stack is empty") 

        else: 

            return self.stack[self.top] 

    def is_empty(self): 

        return self.top == -1 

# Example Usage 

s = Stack(5) 

s.push(10) 

s.push(20) 

s.push(30) 

print("Top Element:", s.peek())  # Output: 30 

s.pop() 

print("Stack Empty?", s.is_empty())  # Output: False 

Advantages & Disadvantages of Sequential Stack Representation 

 Fast operations (O(1) time complexity for push/pop). 

 Simple to implement using an array. 

 Fixed size (cannot grow dynamically). 

 Wasted memory if the stack is not fully utilized. 

3. Applications of Stacks 

Real-Life Applications of Stacks in Programming, OS, and Daily)). 

1. Function Call Management in Programming 

• Function calls in programming follow a stack structure. 

• When a function is called, it is pushed onto the call stack. 

• When the function completes execution, it is popped from the 

stack. 

• This is used for recursive function calls. 

2. Undo & Redo Functionality 

• In text editors, the undo feature works using a stack. 

• When an action is performed, it is pushed onto the stack. 
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Notes • Undoing an action pops the last operation and restores the 

previous state. 

3. Expression Evaluation (Infix to Postfix/Prefix Conversion) 

• Mathematical expressions like (A + B) * C are evaluated using 

stacks. 

• Operators and operands are pushed and popped from the stack 

during conversion. 

4. Backtracking (Maze Solving, Pathfinding, Game Moves) 

• Stacks help in solving mazes by storing visited paths. 

• In chess, moves are stored in a stack, allowing undoing moves. 

5. Parentheses Matching in Compilers 

• Stacks are used in syntax checking of expressions like {[()()]}. 

• Each opening bracket is pushed onto the stack. 

• When a closing bracket is found, the stack is popped to match 

them. 

6. Browser Back & Forward Navigation 

• Browsers use two stacks for navigation. 

• When moving back, the current page is pushed onto a forward 

stack. 

• When moving forward, the page is popped from the forward 

stack. 

Stack Abstract Data Type Stack abstract data type are typically used 

using sequential organization (arrays). Simple to implement and offer 

fast operations, but they are limited by their fixed size. Stacks are an 

important data structure in computing, used extensively for 

programming, undo-redo features, function calls, compiler and browser 

navigation, and much more. 
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Notes Unit 2.2 Recursion 

2.2.1 Recursion and its applications 

Recursion is a method of trying to solve a problem by calling a 

function that calls itself. Recursion uses sub-sub problems until a base 

condition is met instead of using loops. Its main use is in various 

algorithms such as divide and conquer, backtracking or tree traversal 

(including depth-first search). 

 

 

Key Components of Recursion 

1. Base Case – The stopping condition that ends the recursion. 

2. Recursive Case – The function calls itself with a modified 

parameter to approach the base case. 

Example: Factorial Calculation Using Recursion 

Factorial of n (n!) is defined as: 

n!=n×(n−1)×(n−2)×...×1n! = n \times (n-1) \times (n-2) \times ... 

\times 1n!=n×(n−1)×(n−2)×...×1  

Using recursion: 

factorial(n)=n×factorial(n−1)factorial(n) = n \times factorial(n-

1)factorial(n)=n×factorial(n−1)  

def factorial(n): 

    if n == 0:  # Base case 

        return 1 

    return n * factorial(n - 1)  # Recursive case 

 

print(factorial(5))  # Output: 120 

Types of Recursion 

Figure 2.2.1: Recursion 
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Notes 1. Direct Recursion 

• A function directly calls itself. 

• Example: Factorial calculation. 

2. Indirect Recursion 

• A function calls another function, which in turn calls the first 

function. 

def functionA(n): 

    if n > 0: 

        print(n, end=" ") 

        functionB(n - 1) 

 

def functionB(n): 

    if n > 0: 

        print(n, end=" ") 

        functionA(n - 1) 

functionA(5)  # Output: 5 4 3 2 1 1 2 3 4 

3. Tail Recursion 

• The recursive call is the last statement in the function. 

• Optimized by compilers to avoid excessive function calls. 

def tail_recursive_factorial(n, result=1): 

    if n == 0: 

        return result 

    return tail_recursive_factorial(n - 1, result * n) 

 

print(tail_recursive_factorial(5))  # Output: 120 

 

4. Non-Tail Recursion 

• The function performs operations after the recursive call. 

def non_tail_recursive_factorial(n): 

    if n == 0: 

        return 1 

    return n * non_tail_recursive_factorial(n - 1) 

print(non_tail_recursive_factorial(5))  # Output: 120 

 Applications of Recursion 

1. Mathematical Computations 

Factorial Calculation 

Recursion is commonly used to compute factorials, as shown above. 

Fibonacci Sequence 
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Notes The Fibonacci sequence follows a recursive pattern: 

F(n)=F(n−1)+F(n−2)F(n) = F(n-1) + F(n-2)F(n)=F(n−1)+F(n−2)  

def fibonacci(n): 

    if n <= 1: 

        return n 

    return fibonacci(n - 1) + fibonacci(n - 2) 

print(fibonacci(6))  # Output: 8 

2. Data Structure Traversals 

Tree Traversal 

Recursion is used to traverse trees efficiently. 

• Preorder Traversal (Root → Left → Right) 

• Inorder Traversal (Left → Root → Right) 

• Postorder Traversal (Left → Right → Root) 

class Node: 

    def __init__(self, data): 

        self.data = data 

        self.left = None 

        self.right = None 

def inorder_traversal(root): 

    if root: 

        inorder_traversal(root.left) 

        print(root.data, end=" ") 

        inorder_traversal(root.right) 

root = Node(1) 

root.left = Node(2) 

root.right = Node(3) 

inorder_traversal(root)  # Output: 2 1 3 

Graph Traversal (DFS - Depth First Search) 

Recursion helps in graph traversal using Depth First Search (DFS). 

def dfs(graph, node, visited=set()): 

    if node not in visited: 

        print(node, end=" ") 

        visited.add(node) 

        for neighbor in graph[node]: 

            dfs(graph, neighbor, visited) 

graph = { 

    'A': ['B', 'C'], 

    'B': ['D', 'E'], 
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Notes     'C': ['F'], 

    'D': [], 

    'E': [], 

    'F': [] 

} 

dfs(graph, 'A')  # Output: A B D E C F 

3. Divide and Conquer Algorithms 

Recursion is one of the methods that fall in the category of divide and 

conquer algorithms, where a larger problem is [divided into smaller 

subproblems.. 

Merge Sort 

• Divide the array into two halves. 

• Recursively sort each half. 

• Merge the sorted halves. 

def merge_sort(arr): 

    if len(arr) > 1: 

        mid = len(arr) // 2 

        left_half = arr[:mid] 

        right_half = arr[mid:] 

        merge_sort(left_half) 

        merge_sort(right_half) 

        i = j = k = 0 

        while i < len(left_half) and j < len(right_half): 

            if left_half[i] < right_half[j]: 

                arr[k] = left_half[i] 

                i += 1 

            else: 

                arr[k] = right_half[j] 

                j += 1 

            k += 1 

        while i < len(left_half): 

            arr[k] = left_half[i] 

            i += 1 

            k += 1 

        while j < len(right_half): 

            arr[k] = right_half[j] 

            j += 1 

            k += 1 
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Notes arr = [38, 27, 43, 3, 9, 82, 10] 

merge_sort(arr) 

print(arr)  # Output: [3, 9, 10, 27, 38, 43, 82] 

Backtracking Algorithms 

Backtracking is a technique for solving problems. 

Solving the N-Queens Problem 

def print_solution(board): 

    for row in board: 

        print(" ".join(row)) 

    print() 

def is_safe(board, row, col, n): 

    for i in range(col): 

        if board[row][i] == 'Q': 

            return False 

    for i, j in zip(range(row, -1, -1), range(col, -1, -1)): 

        if board[i][j] == 'Q': 

            return False 

    for i, j in zip(range(row, n, 1), range(col, -1, -1)): 

        if board[i][j] == 'Q': 

            return False 

    return True 

def solve_n_queens(board, col, n): 

    if col >= n: 

        print_solution(board) 

        return True 

    res = False 

    for i in range(n): 

        if is_safe(board, i, col, n): 

            board[i][col] = 'Q' 

            res = solve_n_queens(board, col + 1, n) or res 

            board[i][col] = '.' 

    return res 

n = 4 

board = [['.' for _ in range(n)] for _ in range(n)] 

solve_n_queens(board, 0, n) 

 Advantages & Disadvantages of Recursion 

• Simplifies complex problems like tree traversal, graphs, and 

backtracking. 
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Notes • Reduces code complexity, making it easier to read. 

• Useful for divide and conquer problems like sorting. 

Disadvantages 

• High memory consumption due to function call stack. 

• Slower execution due to repeated function calls. 

• May cause stack overflow if the base case is not defined 

properly. 

Recursion is an elegant way of solving problems used in mathematic 

problems, traversing data structures, divide-and-conquer techniques, 

and backtracking techniques. Its benefits notwithstanding, it has to be 

used judiciously to prevent performance problems. 
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Notes Unit 2.3: Queue 

 

2.3.1 Queue, Representation of Queues using sequential 

organization, Dequeue 

 

 

A queue is a linear data structure that follows the First In, First Out 

(FIFO) principle, meaning the first element inserted into the queue is 

the first one to be removed. It can be visualized like a line of people 

waiting for service: the person who joins first gets served first. 

Operations on a queue are performed from two ends:- Enqueue 

(Insertion): Adding an element at the rear (back) of the queue.- 

Dequeue (Deletion): Removing an element from the front of the queue. 

queue maintains order and ensures fairness by serving elements in the 

order they arrived. 

 

Types of Queues: 

1. Simple Queue: Elements are inserted at the rear and deleted from 

the front. 

2. Circular Queue: Connects the last position back to the first, making 

efficient use of memory. 

3. Priority Queue: Each element has a priority, and the element with 

the highest priority is served first (not strictly FIFO). 

4. Double-Ended Queue (Deque): Insertion and deletion can occur 

from both ends. 

 

 

 

 

Figure 2.3.1: Queue 
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Notes Applications of Queues: 

 

1. Operating Systems (Process Scheduling): 

a. Used in CPU scheduling, job scheduling, and 

managing processes in multitasking systems. 

b. The ready queue stores processes waiting for CPU 

time, and the waiting queue holds processes waiting for 

I/O. 

2. Printer Spooling and Job Scheduling: 

a. When multiple print requests are made, they are 

queued up. 

b. The printer executes them one by one in arrival order. 

3. Customer Service Systems: 

a. In banks, railway counters, call centers, and hospitals, 

queues ensure first-come, first-served service. 

b. Models real-world waiting lines. 

4. Data Buffers (IO Buffers, Keyboard Buffering): 

a. Keystrokes typed on a keyboard are stored in a queue 

before being processed. 

b. Input/output buffering in devices and communication 

systems uses queues to manage data flow smoothly. 

5. Graph Traversals (Breadth-First Search): 

a. Queues are used in BFS algorithms to traverse graphs 

level by level. 

b. Ensures nodes are visited in the correct order. 

6. Simulation of Real-World Systems: 

a. Traffic systems, supermarket checkout counters, airport 

check-ins, and call centers are modeled using queues. 

b. Helps study waiting times and optimize service 

efficiency. 

7. Resource Management in Distributed Systems: 

a. Tasks and resource requests are managed using queues 

to balance workloads across systems. 
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Notes b. Common in cloud computing and message queues. 

8. Networking and Communication: 

a. Routers and switches use queues to store data packets 

temporarily before transmission. 

b. Maintains order and prevents congestion. 

9. Operating in Concurrent Programming (Producer-

Consumer Problem): 

a. A producer generates data and puts it in a queue. 

b. A consumer retrieves data from the queue for 

processing. 

Advantages of Queues: 

1. Fairness in Processing: 

a. Queues follow the First In, First Out (FIFO) principle, 

ensuring that requests are handled in the same order 

they arrive. 

b. This is crucial in systems like process scheduling, 

customer service, and printer spooling. 

2. Asynchronous Data Handling: 

a. Queues are ideal for handling producer-consumer 

problems where data is generated and consumed at 

different speeds. 

b. Buffers and pipelines use queues to manage 

asynchronous data transfer smoothly. 

3. Efficient in Scheduling: 

a. Widely used in operating systems for task scheduling, 

CPU job queues, and managing I/O requests. 

b. Helps ensure resources are allocated efficiently. 

4. Natural Representation of Real-World Scenarios: 

Queues model many real-life situations such as ticket 

counters, traffic signals, and service desks, making them 

easy to understand and appl 
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Notes Basic Queue Operations 

Operation Description 

Time 

Complexity 

Enqueue 

(Insertion) 

Adds an element at the rear of the 

queue. O(1) 

Dequeue 

(Deletion) 

Removes an element from the 

front of the queue. O(1) 

Peek (Front 

Element) 

Retrieves the front element 

without removing it. O(1) 

isEmpty Checks if the queue is empty. O(1) 

 

1. Representation of Queues Using Sequential Organization 

(Arrays) 

Another example of abstract data types: Queues, which are 

implemented on arrays, which is a collection of an area of memory. 

This is called sequential organization; that is, elements are in hard, 

physical order, and the memory is allocated in such a way that they are 

in contiguously located memory. 

Structure of a Queue Using an Array 

A queue contains: 

• An array to store elements. 

• Two pointers:  

• front – Indicates the first element of the queue. 

• rear – Indicates the last inserted element. 

Example: Queue Representation Using an Array (Size = 5) 

Index 0 1 2 3 4 

Queue Content 10 20 30 40 50 

Front yes     

Rear     yes 

 

Implementation of Queue Using an Array in Python 

class Queue: 

    def __init__(self, size): 

        self.size = size 

        self.queue = [None] * size  # Fixed-size array 

        self.front = -1  # Indicates the front element 
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Notes         self.rear = -1  # Indicates the rear element 

    def enqueue(self, value): 

        if self.rear == self.size - 1: 

            print("Queue Overflow! Cannot enqueue", value) 

        else: 

            if self.front == -1:  # First element inserted 

                self.front = 0 

            self.rear += 1 

            self.queue[self.rear] = value 

            print(value, "added to queue") 

    def dequeue(self): 

        if self.front == -1 or self.front > self.rear: 

            print("Queue Underflow! Cannot dequeue") 

        else: 

            print(self.queue[self.front], "removed from queue") 

            self.front += 1  # Move front pointer 

    def peek(self): 

        if self.front == -1 or self.front > self.rear: 

            print("Queue is empty") 

        else: 

            return self.queue[self.front] 

    def is_empty(self): 

        return self.front == -1 or self.front > self.rear 

# Example Usage 

q = Queue(5) 

q.enqueue(10) 

q.enqueue(20) 

q.enqueue(30) 

print("Front Element:", q.peek())  # Output: 10 

q.dequeue() 

print("Queue Empty?", q.is_empty())  # Output: False 

Advantages & Disadvantages of Sequential Queue Representation 

• Fast operations (O(1) time complexity for enqueue and 

dequeue). 

• Simple to implement using arrays. 

• Fixed size (cannot dynamically grow). 

• Wasted memory due to unused spaces after deletion. 

2. Circular Queue (Optimized Sequential Queue Representation) 
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Notes In a simple queue, after several dequeues, the unused spaces cannot be 

reused. Circular queues consider this problem and make the queue 

circular such that the rear reaches the end, it wraps to the front In a 

straightforward queue, unused spaces cannot be reused after multiple 

dequeues. To solve this problem, circular queues make the queue 

circular, so, whenever the rear reaches the end of the queue, it is 

circularly wrapped around to the front end of the queue. 

 

Implementation of Circular Queue Using an Array in Python 

class Circular Queue: 

    def __init__(self, size): 

        self.size = size 

        self.queue = [None] * size 

        self.front = -1 

        self.rear = -1 

    def enqueue(self, value): 

        if (self.rear + 1) % self.size == self.front: 

            print("Queue Overflow!") 

        else: 

            if self.front == -1: 

                self.front = 0 

            self.rear = (self.rear + 1) % self.size 

            self.queue[self.rear] = value 

            print(value, "added to circular queue") 

    def dequeue(self): 

        if self.front == -1: 

            print("Queue Underflow!") 

        else: 

            print(self.queue[self.front], "removed from circular queue") 

Figure 2.3.2: Circular Queue  
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Notes             if self.front == self.rear:  # Only one element left 

                self.front = self.rear = -1 

            else: 

                self.front = (self.front + 1) % self.size 

cq = CircularQueue(5) 

cq.enqueue(10) 

cq.enqueue(20) 

cq.enqueue(30) 

cq.dequeue() 

cq.enqueue(40) 

cq.enqueue(50) 

cq.enqueue(60)  # Wraps around 

3. Dequeue (Double-Ended Queue) 

A Dequeue (Double-Ended Queue) is a linear queue where we can add 

and delete the elements from both ends, front and the rear. It supports 

two types: 

1. Input-Restricted Dequeue – Insertion is not allowed at one end 

only, but deletion goes at both ends. 

2. String Parse from String-to-String queue dequeue deque d Queue 

Stack Q Stack S Stack parse Stack S S Table S dequeue D Stack 

parse Stack S Table S Stack parse Stack S 

Operations in a Dequeue 

Operation Description 

Time 

Complexity 

Insert at Front Adds an element at the front. O(1) 

Insert at Rear Adds an element at the rear. O(1) 

Delete from 

Front 

Removes an element from the 

front. O(1) 

Delete from 

Rear 

Removes an element from the 

rear. O(1) 

 

Implementation of Dequeue Using an Array in Python 

from collections import deque 

dq = deque() 

# Insert at rear 

dq.append(10) 

dq.append(20) 
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Notes print("Dequeue:", dq) 

# Insert at front 

dq.appendleft(5) 

print("Dequeue after front insertion:", dq) 

# Delete from front 

dq.popleft() 

print("Dequeue after front deletion:", dq) 

# Delete from rear 

dq.pop() 

print("Dequeue after rear deletion:", dq) 

Applications of Dequeue 

 Sliding Window Problems – Used in maximum/minimum sliding 

window calculations. 

 Job Scheduling – Tasks are processed from both ends based on priority. 

 Palindrome Checking – Characters can be compared from both ends. 

4. Applications of Queues 

1. Scheduling in Operating Systems 

• CPU process scheduling follows FIFO queues. 

• Disk scheduling algorithms use priority queues. 

2. Print Queue in Printers 

• Print jobs are handled using FIFO queues, ensuring first-

come, first-served. 

3. Network & Data Buffering 

• Packets are queued before transmission in routers and 

switches. 

• Video streaming buffers use queues for smooth playback. 

4. Call Center and Customer Service 

• Customer support calls follow FIFO queues for fair handling. 

• Queues and deques are one of the important data structures 

used in scheduling, buffering and in many other real world 

applications. They are sequential with arrays that provide 

faster operation time but circular queues and deques allow 

more flexibility in insertion and deletion. They are used to 

solve efficient algorithmic problems such as process 

scheduling, buffering in computing, and task management, 

which makes understanding these structures important 

6.1.2 Priority Queue 
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Notes A Priority Queue is a special type of queue where each element has 

some priority associated with it. A priority queue is a special type of 

queue that is different from a normal queue where elements are 

processed in a FIFO (First In, First Out) order. 

Key Features of a Priority Queue 

Each element has a priority value. 

Higher-priority elements are dequeued before lower-priority elements. 

If two elements have the same priority, they follow FIFO order. 

Example of a Priority Queue 

Think of a hospital emergency room that treats patients according to 

how serious their condition is, not the order they arrived. 

Patient Name Condition Priority Level 

Alice Mild fever 3 (Low) 

Bob Fracture 2 (Medium) 

Charlie Heart Attack 1 (High) 

 

Types of Priority Queues 

1. Min-Priority Queue 

• The lowest-priority element is dequeued first. 

• Example: Dijkstra’s Algorithm (finding shortest paths). 

2. Max-Priority Queue 

• The highest-priority element is dequeued first. 

• Example: Task scheduling, emergency services. 

Implementation of Priority Queue 

1. Using a List (Naïve Approach) 

The elements are stored in an unordered list and the element with the 

highest/lowest priority is found by the time of deletion (O(n) time 

complexity). 

class PriorityQueue: 

    def __init__(self): 

        self.queue = [] 

    def enqueue(self, item, priority): 

        self.queue.append((item, priority)) 

    def dequeue(self): 

        if not self.queue: 

            return "Queue is empty" 

        self.queue.sort(key=lambda x: x[1])  # Sort by priority (min first) 
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Notes         return self.queue.pop(0)[0]  # Remove the highest priority element 

pq = PriorityQueue() 

pq.enqueue("Alice", 3) 

pq.enqueue("Bob", 2) 

pq.enqueue("Charlie", 1) 

print(pq.dequeue())  # Output: Charlie (highest priority) 

2. Using a Heap (Efficient Approach) 

A binary heap (Min-Heap or Max-Heap) is used to insert and delete in 

O(log n) time complexity. 

import heapq 

class PriorityQueue: 

    def __init__(self): 

        self.queue = [] 

    def enqueue(self, item, priority): 

        heapq.heappush(self.queue, (priority, item))  # Min-Heap (lowest 

priority first) 

    def dequeue(self): 

        if not self.queue: 

            return "Queue is empty" 

        return heapq.heappop(self.queue)[1]  # Remove highest priority 

item 

pq = PriorityQueue() 

pq.enqueue("Alice", 3) 

pq.enqueue("Bob", 2) 

pq.enqueue("Charlie", 1) 

print(pq.dequeue())  # Output: Charlie 

4. Applications of Priority Queue 

CPU Scheduling – Processes with higher priority execute first. 

Graph Algorithms – Used in Dijkstra’s and A Algorithm* for shortest 

path. 

Data Compression (Huffman Coding) – Nodes with lower frequency 

get higher priority. 

Network Packet Scheduling – Important packets (like VoIP) are sent 

first. 

Event-Driven Simulations – Events with higher importance are 

processed first. 

5. Comparison of Priority Queue Implementations 
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Notes Implementation 

Method 

Enqueue Time 

Complexity 

Dequeue Time 

Complexity 

Space 

Complexity 

Unsorted List O(1) O(n) O(n) 

Sorted List O(n) O(1) O(n) 

Binary Heap 

(Min/Max-Heap) O(log n) O(log n) O(n) 

 

A priority queue is a data structure that enables retrieval of highest 

priority elements first, rather than insertion order. It has its applications 

in CPU scheduling, graph algorithms, network routing, and 

simulations. A heap-based implementation has the added benefit of 

decent performance for real-world applications. 

Summary: 

In Module 2 focuses on the core linear structures—stack and queue 

along with the concept of recursion, all of which are essential for 

problem-solving in computer science. A stack is a Last-In-First-Out 

(LIFO) data structure where the last inserted element is the first to be 

removed, supporting operations like push, pop, and peek, and is 

commonly used in function call management, undo-redo mechanisms, 

and expression evaluation. A queue, on the other hand, follows the 

First-In-First-Out (FIFO) principle, with enqueue and dequeue 

operations, and is applied in process scheduling, buffering, and 

resource allocation. Variants like circular queues, deques, and priority 

queues provide enhanced control over insertion and deletion at both 

ends or based on priority. Recursion is a programming technique where 

a function calls itself to solve smaller subproblems until reaching a base 

case. It is widely used in mathematical computations, tree and graph 

traversals, and divide-and-conquer algorithms such as merge sort and 

backtracking problems like the N-Queens puzzle. Together, stack, 

queue, and recursion form the backbone of many algorithmic strategies 

and are crucial for efficient programming and data structure 

manipulation. 

 

Multiple-Choice Questions (MCQs) 

1. Which data structure follows the Last-In, First-Out (LIFO) principle? 

a) Queue 

b) Stack 
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Notes c) Linked List 

d) Priority Queue 

(Answer: b) 

2. Which operation removes the top element from a stack? 

a) Enqueue 

b) Pop 

c) Push 

d) Peek 

(Answer: b) 

3. What is a common application of stacks in programming? 

a) Managing function calls 

b) Scheduling processes 

c) Searching in an unordered list 

d) Sorting data 

(Answer: a) 

 

4. Which of the following problems is best solved using recursion? 

a) Fibonacci sequence 

b) Tower of Hanoi 

c) Tree traversal 

d) All of the above 

(Answer: d) 

5. What differentiates a queue from a stack? 

a) A queue follows LIFO, while a stack follows FIFO 

b) A stack follows FIFO, while a queue follows LIFO 

c) A queue follows FIFO, while a stack follows LIFO 

d) Both follow the LIFO principle 

(Answer: c) 

6. Which of the following is NOT a type of queue? 

a) Circular Queue 

b) Dequeue 

c) Priority Queue 

d) Hash Queue 

(Answer: d) 

7. What happens when a recursive function lacks a base case? 

a) It executes once and terminates 

b) It results in an infinite recursion, causing a stack overflow 

c) It returns a NULL value 
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Notes d) The compiler automatically adds a base case 

(Answer: b) 

8. Which of the following operations is performed at both ends in a 

dequeue? 

a) Insert 

b) Delete 

c) Both Insert and Delete 

d) None of the above 

(Answer: c) 

9. Which queue variation assigns priorities to elements for processing? 

a) Circular Queue 

b) Dequeue 

c) Priority Queue 

d) Stack Queue 

(Answer: c) 

10. Which data structure is commonly used for backtracking problems? 

a) Queue 

b) Stack 

c) Hash Table 

d) Tree 

(Answer: b) 

 

Short Questions 

1. Define stack and list its primary operations. 

2. Explain recursion with an example. 

3. What is the difference between iteration and recursion? 

4. Describe the FIFO principle in queues. 

5. What is a priority queue, and how is it different from a normal 

queue? 

6. Explain how stacks are used for function calls in programming. 

7. What is a circular queue, and why is it useful? 

8. List two real-world applications of recursion. 

9. What is the difference between push and pop operations in a 

stack? 

10. How can recursion be converted into iteration? 

 

Long Questions 
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Notes 1. Explain stack operations with a detailed example, including push, 

pop, and peek operations. 

2. Discuss recursion in-depth, including base cases and recursive 

function execution flow. 

3. Write a program to implement stack operations using an array. 

4. Describe queues and their variations, such as circular queues, 

deques, and priority queues. 

5. Compare and contrast stacks and queues, highlighting their use 

cases. 

6. Implement a recursive algorithm to compute the Fibonacci 

sequence and explain its execution. 

7. Explain how recursion works in the Tower of Hanoi problem and 

provide a solution. 

8. Describe expression evaluation using stacks, including infix, 

prefix, and postfix notations. 

9. Write a program to implement a queue using an array, including 

enqueue and dequeue operations. 

10. Discuss how recursion can be optimized using memorization or 

iterative approaches.
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MODULE 3 

LINKED LIST 

 

3.0 LEARNING OUTCOMES 

By the end of this chapter, students will be able to: 

• Understand the concept of linked lists, their representation, and 

advantages over arrays. 

• Perform operations on linked lists, including traversing, 

searching, insertion, and deletion. 

• Learn about memory allocation in linked lists and how dynamic 

memory is managed using pointers. 
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Notes Unit 3.1: Linked list 

3.1.1 Linked list and its representation 

The linked list is a linear data structure in which the elements are not 

stored at contiguous memory locations but are linked using pointers. A 

linked list node consists of: 

1. Data – The actual value stored in the node. 

2. Pointer (Next) – A reference to the next node in the list. 

 

Figure 3.1.1: Linked List 
 

 

Comparison of Linked List vs. Array 

Feature Linked List Array 

Memory 

Allocation Dynamic Fixed Size 

Insertion/Deletion 

O(1) (at beginning), O(n) (at 

middle/end) 

O(n) (requires 

shifting) 

Access Time O(n) (sequential access) 

O(1) (direct 

access) 
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Notes 

Extra Space 

Requires extra space for 

pointers 

No extra space 

needed 

 

2. Types of Linked Lists 

1. Singly Linked List – Each node points to the next node. 

2. Doubly Linked List – Each node has two pointers (next and 

previous). 

3. Circular Linked List – The last node points back to the first 

node. 

3. Representation of Linked List 

Structure of a Node (Singly Linked List) 

python 

CopyEdit 

class Node: 

    def __init__(self, data): 

        self.data = data  # Store the data 

        self.next = None  # Pointer to the next node 

Basic Operations in Linked List 

Operation Description 

Insertion Add a new node at the beginning, end, or middle. 

Deletion Remove a node from the list. 

Traversal Move through the list to access elements. 

 

Linked List Implementation in Python 

python 
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Notes class Node: 

    def __init__(self, data): 

        self.data = data 

        self.next = None 

class LinkedList: 

    def __init__(self): 

        self.head = None 

    def insert_at_end(self, data): 

        new_node = Node(data) 

        if not self.head: 

            self.head = new_node 

            return 

        temp = self.head 

        while temp.next: 

            temp = temp.next 

        temp.next = new_node 

    def display(self): 

        temp = self.head 

        while temp: 

            print(temp.data, end=" -> ") 

            temp = temp.next 

        print("None") 

# Example Usage 

ll = LinkedList() 
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Notes ll.insert_at_end(10) 

ll.insert_at_end(20) 

ll.insert_at_end(30) 

ll.display()  # Output: 10 -> 20 -> 30 -> None 

4. Advantages & Disadvantages of Linked List 

• Dynamic size allocation (efficient memory utilization). 

• Efficient insertions and deletions compared to arrays. 

• Extra memory required for pointers. 

• Slower access time (O(n) vs. O(1) for arrays). 

5. Applications of Linked Lists 

• Memory management (Dynamic Allocation). 

• Implementation of stacks and queues. 

• Undo-Redo functionality in text editors. 

Graph representation (Adjacency List). 

Linked List:  It is a mutable and useful data structure for dynamic 

memory allocation and efficient insertions and deletions. It is often 

used in data structures (stack, queue, graph), although it needs 

additional memory for pointers. 
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Notes Unit 3.2: Operations on Linked list 

3.2.1 Operations on Linked list: Traversing, Searching, Insertion, 

Deletion 

A linked list is a data structure made up of nodes wherein each node is 

linked through pointers. Linked lists are often used because of the 

relatively high number of operations that can be performed on them, 

such as traversing, searching, inserting and deleting. Operations are 

helpful to optimize the linked list elements operation. 

3.2.2 Traversing a Linked List 

Traversing the Linked List means going through the linked list one by 

one and getting its data. And since linked lists does not contain arrays 

with contiguous memory, following next pointer of each node make it 

necessary to traverse them one by one. 

3.2.2 Algorithm for Traversing 

1.Start from index 0. 

2.Repeat until the last index: 

3.Access the element at the current index. 

4.Perform any required operation (print, add, etc.). 

5.Move to the next index (index = index + 1). 

3.2.3 Implementation in Python 

class Node: 

    def __init__(self, data): 

        self.data = data 

        self.next = None 

class LinkedList: 

    def __init__(self): 
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Notes         self.head = None 

    def insert_at_end(self, data): 

        new_node = Node(data) 

        if not self.head: 

            self.head = new_node 

            return 

        temp = self.head 

        while temp.next: 

            temp = temp.next 

        temp.next = new_node 

    def traverse(self): 

        temp = self.head 

        while temp: 

            print(temp.data, end=" -> ") 

            temp = temp.next 

        print("None") 

# Example Usage 

ll = LinkedList() 

ll.insert_at_end(10) 

ll.insert_at_end(20) 

ll.insert_at_end(30) 

ll.traverse()  # Output: 10 -> 20 -> 30 -> None 

Time Complexity: 

O(n) – Each node is visited once. 
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Notes 3.3.3 Searching in a Linked List 

It involves getting whether a specific value exists in the linked list and 

retracing steps to the position (index) if it does. Because linked lists do 

not allow direct indexing, a search is performed by traversing through 

each of the nodes sequentially. 

3.3.4 Algorithm for Searching 

1. Start from the head node. 

2. Compare the data of the current node with the target value. 

3. If found, return the position of the node. 

4. If not found, move to the next node. 

5. Repeat until the end of the list is reached. 

3.3.5 Implementation in Python 

class LinkedList: 

    def __init__(self): 

        self.head = None 

    def insert_at_end(self, data): 

        new_node = Node(data) 

        if not self.head: 

            self.head = new_node 

            return 

        temp = self.head 

        while temp.next: 

            temp = temp.next 

        temp.next = new_node 

    def search(self, key): 



  

102 
MATS Centre for Distance and Online Education, MATS University 

 

Notes         temp = self.head 

        position = 0 

        while temp: 

            if temp.data == key: 

                return f"Element found at index {position}" 

            temp = temp.next 

            position += 1 

        return "Element not found" 

# Example Usage 

ll = LinkedList() 

ll.insert_at_end(10) 

ll.insert_at_end(20) 

ll.insert_at_end(30) 

print(ll.search(20))  # Output: Element found at index 1 

print(ll.search(40))  # Output: Element not found 

Time Complexity: 

O(n) – Each node is checked once. 

3.3.6  Insertion in a Linked List 

Insertion is the process of adding a new node at a specific position. 

There are three common cases: 

1. At the beginning (Head Insertion) 

2. At the end (Tail Insertion) 

3. In the middle (Between two nodes) 

Algorithm for Insertion 

1. Create a new node with the given data. 
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Notes 2. Adjust pointers based on insertion position. 

3. Update the next reference of the previous node. 

3.3.7 Implementation in Python 

class LinkedList: 

    def __init__(self): 

        self.head = None 

    def insert_at_beginning(self, data): 

        new_node = Node(data) 

        new_node.next = self.head 

        self.head = new_node 

    def insert_at_end(self, data): 

        new_node = Node(data) 

        if not self.head: 

            self.head = new_node 

            return 

        temp = self.head 

        while temp.next: 

            temp = temp.next 

        temp.next = new_node 

    def insert_at_position(self, data, position): 

        new_node = Node(data) 

        if position == 0:  # Insert at the beginning 

            new_node.next = self.head 

            self.head = new_node 
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Notes             return 

        temp = self.head 

        for _ in range(position - 1): 

            if not temp: 

                return "Position out of bounds" 

            temp = temp.next 

        new_node.next = temp.next 

        temp.next = new_node 

# Example Usage 

ll = LinkedList() 

ll.insert_at_end(10) 

ll.insert_at_end(30) 

ll.insert_at_position(20, 1)  # Insert 20 at index 1 

ll.traverse()  # Output: 10 -> 20 -> 30 -> None 

Time Complexity: 

O(1) for beginning insertion 

O(n) for middle/end insertion 

3.3.8 Deletion in a Linked List 

Deletion involves removing a node from the list. Common cases 

include: 

1. Deleting the first node (Head deletion). 

2. Deleting a node in the middle. 

3. Deleting the last node (Tail deletion). 

Algorithm for Deletion 

1. If list is empty, return "Underflow." 
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Notes 2. If deleting the first node, update head. 

3. If deleting a middle node, adjust the next pointer of previous 

node. 

4. If deleting last node, set previous node’s next to None. 

3.3.9 Implementation in Python 

class LinkedList: 

    def __init__(self): 

        self.head = None 

    def insert_at_end(self, data): 

        new_node = Node(data) 

        if not self.head: 

            self.head = new_node 

            return 

        temp = self.head 

        while temp.next: 

            temp = temp.next 

        temp.next = new_node 

    def delete_node(self, key): 

        temp = self.head 

        # Deleting first node 

        if temp and temp.data == key: 

            self.head = temp.next 

            temp = None 

            return 

        # Deleting middle or last node 
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Notes         prev = None 

        while temp and temp.data != key: 

            prev = temp 

            temp = temp.next 

        if temp is None: 

            return "Element not found" 

        prev.next = temp.next 

        temp = None 

# Example Usage 

ll = LinkedList() 

ll.insert_at_end(10) 

ll.insert_at_end(20) 

ll.insert_at_end(30) 

ll.delete_node(20)  # Delete node with value 20 

ll.traverse()  # Output: 10 -> 30 -> None 

Time Complexity: 

O(1) for deleting first node 

O(n) for deleting middle/last node 

Insertion/deletion in linked lists is more efficient, and memory can be 

allocated dynamically while in arrays it cannot, as they have static 

memory allocation. But, they need to be traversed sequentially for 

search and access. The methods utilized in basic operations (traversal, 

searching, insertion, deletion) constitute the basis for complex data 

structures like stacks, queues, and graphs. 
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Notes Unit 3.3: Memory Allocation 

3.3.1 Memory Allocation 

This action is typically taken at run time when the program is executed. 

It protects the overall performance, reduces extra usage of memory, and 

avoids situations where insufficient memory leads to crashes. 

Types of Memory in a Computer System 

Memory Type Description 

Primary Memory (RAM) 

Temporary, volatile storage used by the 

CPU for fast access. 

Secondary Memory 

(HDD/SSD) 

Non-volatile, used for long-term data 

storage. 

Cache Memory 

High-speed memory for frequently accessed 

data. 

Register Memory 

Small, fastest memory directly inside the 

CPU. 

 

1. Types of Memory Allocation 

Memory allocation is classified into two main types: 

1. Static Memory Allocation 

2. Dynamic Memory Allocation 

Static Memory Allocation 

• Memory is assigned before program execution (at compile 

time). 

• The memory size is immutable and cannot be altered during 

runtime. 

 

• Faster execution since memory is pre-allocated. 
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Notes • Uses stack memory for storage. 

Example (Static Memory Allocation in C) 

int arr[5];  // Fixed size array (allocated at compile time) 

Advantages: 

 Faster execution 

 No memory fragmentation 

 Disadvantages: 

 Wastage of memory if unused 

 Cannot allocate memory dynamically 

2. Dynamic Memory Allocation 

• Memory is allocated during program execution (at runtime). 

• Size is flexible, and memory can be allocated or deallocated as 

needed. 

• Uses heap memory for storage. 

Example (Dynamic Memory Allocation in C) 

int *ptr = (int*) malloc(5 * sizeof(int));  // Allocating memory 

dynamically 

Advantages: 

 Efficient memory usage 

 Can allocate or free memory as needed 

 Disadvantages: 

 Slower execution due to runtime allocation 

 Memory leaks if not properly deallocated 
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Notes 3. Methods of Dynamic Memory Allocation in C/C++ 

Function Description 

Header 

File 

malloc(size) 

Allocates a block of memory but does not 

initialize it. <stdlib.h> 

calloc(n, size) 

Allocates multiple blocks and initializes 

them to zero. <stdlib.h> 

realloc(ptr, 

size) 

Resizes a previously allocated memory 

block. <stdlib.h> 

free(ptr) 

Deallocates memory to prevent memory 

leaks. <stdlib.h> 

 

Example (Dynamic Memory Allocation Using malloc in C) 

#include <stdio.h> 

#include <stdlib.h> 

int main() { 

    int *ptr = (int*) malloc(5 * sizeof(int));  // Allocating memory for 5 

integers 

    if (ptr == NULL) { 

        printf("Memory allocation failed!"); 

        return 1; 

    } 

    for (int i = 0; i < 5; i++)  

        ptr[i] = i * 10;  // Assigning values 
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Notes     for (int i = 0; i < 5; i++)  

        printf("%d ", ptr[i]);  // Output: 0 10 20 30 40 

    free(ptr);  // Deallocating memory 

    return 0; 

} 

4. Memory Allocation in Data Structures 

1. Stack Memory Allocation (Static) 

• Stores function calls, local variables, and recursion data. 

• Memory is automatically allocated and deallocated. 

• Limited size (stack overflow can occur). 

2. Heap Memory Allocation (Dynamic) 

• Stores dynamically allocated memory (e.g., linked lists, trees). 

• Memory must be manually managed (malloc/free). 

• Larger than stack memory but slower access. 

5. Common Memory Allocation Issues 

Issue Description 

Memory Leak Forgetting to free dynamically allocated memory. 

Dangling 

Pointer Accessing memory after it has been freed. 

Fragmentation 

Memory is divided into small unused blocks, 

reducing efficiency. 

Buffer 

Overflow Writing more data than allocated, leading to crashes. 
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Notes Example of a Memory Leak (C) 

void memory_leak() { 

    int *ptr = (int*) malloc(5 * sizeof(int));  // Allocated memory 

    // Forgot to free memory -> Memory leak! 

} 

Solution: Always use free(ptr) after allocation. 

It is a very crucial concept in programming as memory allocation helps 

to manage resources efficiently. Static allocation is easy but rigid, and 

dynamic allocation gives you flexibility but requires properly 

managing the memory. The correct management of memory will guard 

against leaks, fragmentation and buffer overflows, which would 

otherwise make your program less efficient.  

Summary: 

 The linked list is a dynamic linear data structure in which elements, 

called nodes, are connected using pointers rather than stored in 

contiguous memory like arrays. Each node typically contains two 

fields: the data and a reference (or pointer) to the next node in the 

sequence. Types of linked lists include singly linked lists, where each 

node points to the next node; doubly linked lists, where nodes point to 

both their previous and next nodes, allowing bidirectional traversal; and 

circular linked lists, where the last node links back to the first. Linked 

lists support efficient insertion and deletion at any position without the 

need for shifting elements, making them more flexible than arrays for 

dynamic memory allocation. Common operations include insertion at 

the beginning, end, or a specific position; deletion from any location; 

traversal; searching; and reversing. Linked lists are used in various 

applications such as implementing stacks, queues, graphs, dynamic 

memory management, and representing polynomial expressions. Their 

non-contiguous memory allocation enables better use of memory, 

although they require extra space for pointer storage and are less 

efficient for random access compared to arrays. 
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Notes  

 

 

 

Multiple-Choice Questions (MCQs) 

1. Which of the following is an advantage of linked lists over 

arrays? 

a) Faster access to elements using indexing 

b) Dynamic memory allocation 

c) Fixed size allocation 

d) Requires less memory per node 

(Answer: b) 

2. Which type of linked list allows traversal in both 

directions? 

a) Singly Linked List 

b) Doubly Linked List 

c) Circular Linked List 

d) None of the above 

(Answer: b) 

3. What is the time complexity of inserting an element at the 

beginning of a linked list? 

a) O(1) 

b) O(n) 

c) O(log n) 

d) O(n²) 

(Answer: a) 

4. Which operation is most efficient in a linked list compared 

to an array? 

a) Accessing an element at a specific index 

b) Deleting an element from the middle 
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Notes c) Sorting elements 

d) Merging two lists 

(Answer: b) 

5. What does the ‘head’ pointer in a linked list represent? 

a) The last node in the list 

b) The middle node in the list 

c) The first node in the list 

d) A temporary pointer for traversal 

(Answer: c) 

6. Which type of linked list has its last node pointing to the 

first node? 

a) Singly Linked List 

b) Doubly Linked List 

c) Circular Linked List 

d) Multi-Level Linked List 

(Answer: c) 

7. What happens when a node is deleted from a singly linked 

list? 

a) The previous node's next pointer is updated 

b) The entire list is deleted 

c) Memory for all nodes is freed 

d) The previous node becomes the last node 

(Answer: a) 

8. Which of the following statements is true about linked 

lists? 

a) They have a fixed size 

b) They allow efficient random access 

c) They use dynamic memory allocation 

d) They are always slower than arrays 

(Answer: c) 

9. What is the primary disadvantage of linked lists? 

a) Fixed memory allocation 
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Notes b) Higher memory overhead due to pointers 

c) Inefficient insertion and deletion 

d) Cannot store data dynamically 

(Answer: b) 

10. Which function is used to allocate memory dynamically in 

a linked list in C? 

a) malloc() 

b) calloc() 

c) free() 

d) Both a and b 

(Answer: d) 

Short Questions 

1. What is a linked list, and how does it differ from an array? 

2. List the advantages of linked lists over arrays. 

3. What are the different types of linked lists, and how do they 

differ? 

4. How is memory allocated dynamically for linked lists? 

5. What is a circular linked list, and where is it used? 

6. Explain the difference between singly and doubly linked lists. 

7. What are the main operations performed on a linked list? 

8. How is traversal performed in a linked list? 

9. Explain the memory overhead issue in linked lists. 

10. How do you delete a node from a singly linked list? 
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Notes Long Questions 

1. Explain the structure of a linked list and how it is represented in 

memory. 

2. Discuss the advantages and disadvantages of linked lists 

compared to arrays. 

3. Write a C program to implement a singly linked list with 

insertion and deletion operations. 

4. Describe the traversal, searching, and insertion operations in 

linked lists with examples. 

5. Explain the concept of dynamic memory allocation in linked 

lists and how malloc() and free() are used. 

6. Compare singly, doubly, and circular linked lists, discussing 

their applications. 

7. Write a C program to implement a doubly linked list with 

insertion and deletion at different positions. 

8. What are the applications of linked lists in real-world 

computing? 

9. Describe how deletion works in a linked list, including edge 

cases such as deleting the first and last nodes. 

10. Implement a circular linked list in C, including insertion, 

deletion, and traversal operations. 
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MODULE 4 

TREE AND GRAPH 

LEARNING OUTCOMES 

By the end of this Unit, students will be able to: 

• Understand tree concepts, including their structure and 

applications. 

• Learn the representation of binary trees and perform operations 

such as searching, insertion, and deletion. 

• Implement and analyze Binary Search Tree (BST) and AVL tree 

algorithms for optimized searching and balancing. 

• Explore graph representations (adjacency matrix, adjacency 

list), operations (searching, insertion, deletion), and traversal 

techniques (BFS, DFS) for efficient graph processing. 
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Notes Unit 4.1: Tree concepts And Binary Tree 

 

4.1.1 Tree concepts 

A tree is a type of data structure that is used to represent relationships 

between elements in a hierarchical manner. It is made up of nodes 

linked through edges, where each node contains data and pointers to 

its children nodes. Trees are non-linear data structures (unlike linear 

data structures like arrays, linked lists) used for efficient searching, 

sorting, and hierarchical data organization. 

Basic Terminology of Trees 

Term Description 

Node A single element in a tree (stores data and references). 

Root The topmost node (starting point of the tree). 

Parent A node that has child nodes. 

Child A node derived from another node (parent). 

Sibling Nodes that share the same parent. 

Leaf Node A node without children (terminal node). 

Edge Connection between two nodes. 

Depth Distance from the root to a node. 

Height Maximum depth of the tree. 

Subtree A section of a tree rooted at a particular node. 

 

1. Properties of a Tree 

1. A tree consists of N nodes and (N-1) edges. 

2. There is only one root node. 

3. A tree is a connected and acyclic structure (no cycles). 

4. Each node can have any number of children. 

2. Types of Trees 

General Tree 

• A tree where each node can have any number of children. 

Binary Tree 

• A tree where each node has at most two children (left and right). 

Binary Search Tree (BST) 

• A binary tree where:  

• Left subtree contains smaller values. 

• Right subtree contains larger values. 
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Notes • Efficient for searching, insertion, and deletion (O(log n) 

complexity). 

Balanced Tree 

• A tree where the height difference between left and right 

subtrees is minimal. 

• Example: AVL Tree, Red-Black Tree. 

Heap Tree 

• A complete binary tree used for priority queues. 

• Min Heap: The parent is smaller than its children. 

• Max Heap: The parent is greater than its children. 

Trie (Prefix Tree) 

• Used for searching words in dictionaries and autocomplete 

suggestions. 

3. Representation of Trees 

Trees can be represented using: 

Linked List Representation 

Each node contains data, left child, and right child pointers. 

class Node: 

    def __init__(self, data): 

        self.data = data 

        self.left = None 

        self.right = None 

root = Node(10)  # Root node 

root.left = Node(5)  # Left child 

root.right = Node(15)  # Right child 

Array Representation 

Trees can be stored in an array (for complete binary trees). 

For a node at index i: 

• Left Child → 2*i + 1 

• Right Child → 2*i + 2 

• Parent → (i - 1) // 2 

Example for [10, 5, 15, 3, 7]: 

Index Value Left Child Right Child Parent 

0 10 5 (1) 15 (2) - 

1 5 3 (3) 7 (4) 10 (0) 
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Notes 4. Tree Traversal 

Traversal is the process of visiting nodes in a tree. 

Depth-First Search (DFS) 

Type Order 

Preorder (NLR) Root → Left → Right 

Inorder (LNR) Left → Root → Right 

Postorder (LRN) Left → Right → Root 

 

def inorder_traversal(root): 

    if root: 

        inorder_traversal(root.left) 

        print(root.data, end=" ") 

        inorder_traversal(root.right) 

Breadth-First Search (BFS) (Level Order Traversal) 

• Visits nodes level by level (top to bottom). 

• Implemented using a queue. 

python 

CopyEdit 

from collections import deque 

def level_order_traversal(root): 

    if not root: 

        return 

    queue = deque([root]) 

    while queue: 

        node = queue.popleft() 

        print(node.data, end=" ") 

        if node.left: 

            queue.append(node.left) 

        if node.right: 

            queue.append(node.right) 

5. Applications of Trees 

Database Indexing (B-Trees, B+ Trees) 

File System Hierarchies 

Network Routing Algorithms 

Expression Evaluation (Syntax Trees) 
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Notes Artificial Intelligence (Decision Trees) 

Compiler Design (Abstract Syntax Trees) 

Trees are essential hierarchical data structures used for searching, 

sorting, and managing data. The concept of trees is an important aspect 

of computer science, it is data structures that sort the data into tree 

forms. 

4.1.2 Binary Tree-Representation 

A Binary Tree is a hierarchical data structure in which each node 

possesses a maximum of two offspring. 

• Left Offspring  

• Right Offspring 

Binary trees are widely used in searching, sorting, expression 

evaluation, and hierarchical data representation. 

Representation of Binary Tree 

1. Linked List Representation (Node-Based Representation) 

In this representation, each node has: 

• Data (value of node). 

• Pointer to left child. 

• Pointer to right child. 

Python Implementation (Binary Tree Node Structure) 

class Node: 

    def __init__(self, data): 

        self.data = data 

        self.left = None 

        self.right = None 

# Creating a simple binary tree 

root = Node(1)   

root.left = Node(2)   

root.right = Node(3)   

root.left.left = Node(4)   

root.left.right = Node(5)   

# Tree Structure: 

#        1 

#       / \ 

#      2   3 

#     / \ 

#    4   5 
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Notes Advantages: 

 Dynamic size (grows as needed) 

 Efficient insertions and deletions 

Disadvantages: Uses extra memory for pointers 

2. Array Representation (Sequential Representation) 

A binary tree can also be stored in an array where: 

• Root node is at index 0. 

• Left child of node at index i is at 2*i + 1. 

• Right child of node at index i is at 2*i + 2. 

• Parent of node at index i is at (i-1) // 2. 

Example: Storing a Binary Tree in an Array 

For a binary tree: 

markdown 

        1 

       / \ 

      2   3 

     / \ 

    4   5 

Array representation: [1, 2, 3, 4, 5] 

Index Node Left Child Index Right Child Index 

0 1 1 2 

1 2 3 4 

2 3 - - 

3 4 - - 

4 5 - - 

 

Python Implementation (Binary Tree using an Array) 

class BinaryTree: 

    def __init__(self): 

        self.tree = [] 

    def insert(self, data): 

        self.tree.append(data)  # Insert node at the next available position 

    def get_left_child(self, index): 

        left_index = 2 * index + 1 

        return self.tree[left_index] if left_index < len(self.tree) else None 

    def get_right_child(self, index): 

        right_index = 2 * index + 2 



  

122 
MATS Centre for Distance and Online Education, MATS University 

 

Notes         return self.tree[right_index] if right_index < len(self.tree) else 

None 

# Example Usage 

bt = BinaryTree() 

bt.insert(1) 

bt.insert(2) 

bt.insert(3) 

bt.insert(4) 

bt.insert(5) 

print("Left Child of 1:", bt.get_left_child(0))  # Output: 2 

print("Right Child of 1:", bt.get_right_child(0))  # Output: 3 

Advantages: 

 Efficient for complete binary trees 

 Direct access using index 

Disadvantages: 

 Wasted memory if the tree is sparse 

 Difficult insertions/deletions in the middle 

3. Choosing the Right Representation 

Feature 

Linked List 

Representation Array Representation 

Memory Usage Extra space for pointers 

Wastes space in sparse 

trees 

Insertion/Deletion Efficient (O(1) at root) 

Inefficient (O(n) 

shifting) 

Traversal 

Requires 

recursion/iteration 

Direct access using 

index 

Best Use Case General trees (BST, AVL) Complete Binary Trees 

 

Binary trees are implemented by linked list (pointers) or array 

(indexing). Linked list approche is flexible solution for a dynamic tree, 

while array solution would be good for complete binary trees. 

Efficiency in memory and faster operations in applications like 

searching, parsing, and sorting are provided through the knowledge of 

both methods.  

4.3.2 Operations: Searching, Insertion, Deletion 

A Binary Tree provides fundamental capabilities such as search, insert, 

and delete. These operations are very prevalent in Binary Search 

Trees(BSTs), where elements follow sorted order: 

• left subtree has values that are inferior to root. 
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Notes • right subtree contains values that surpass those of root.  

 

4.1.3 Searching in a Binary Tree 

Searching: Finding one specific value from the tree. searching is also 

efficient in BST as it is of O(log n) complexity in balanced trees. 

Algorithm for Searching in BST 

1. Commence with root node.  

2. If  key matches root, return the node. 

3. If key is smaller, perform a search in left subtree.  

4. If the key is bigger, perform a search in the right subtree.  

5. Continue iterating until the key is located or the tree is depleted. 

Python Implementation 

class Node: 

    def __init__(self, data): 

        self.data = data 

        self.left = None 

        self.right = None 

def search(root, key): 

    if root is None or root.data == key: 

        return root  # Found the key or reached a leaf node 

    if key < root.data: 

        return search(root.left, key) 

    return search(root.right, key) 

# Example Tree 

root = Node(10) 

root.left = Node(5) 

root.right = Node(20) 

root.left.left = Node(3) 

root.left.right = Node(7) 

# Search for a node 

result = search(root, 7) 

print("Found" if result else "Not Found")  # Output: Found 

Time Complexity: 

Best Case (Balanced Tree): O(log n) 

 Worst Case (Skewed Tree): O(n) 

2. Insertion in a Binary Search Tree (BST) 

Insertion adds a new node while maintaining the BST property. 

Algorithm for Insertion 
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Notes 1. If tree is empty, create a new node as the root. 

2. Compare value with current node:  

• If smaller, insert into the left subtree. 

• If greater, insert into the right subtree. 

1. Repeat until an empty position is found. 

4.1.4 Python Implementation 

def insert(root, key): 

    if root is None: 

        return Node(key)  # Insert new node if tree is empty 

    if key < root.data: 

        root.left = insert(root.left, key)  # Recur for left subtree 

    else: 

        root.right = insert(root.right, key)  # Recur for right subtree 

    return root 

# Example Usage 

root = Node(10) 

root = insert(root, 5) 

root = insert(root, 15) 

root = insert(root, 3) 

root = insert(root, 7) 

Time Complexity: 

Best Case (Balanced Tree): O(log n) 

 Worst Case (Skewed Tree): O(n) 

3. Deletion in a Binary Search Tree (BST) 

Deletion removes a node while maintaining the BST property. 

 

Cases for Deletion: 

1. A node devoid of descendants (Leaf Node) - Simply remove it. 

2. A node possessing a solitary kid - Remove the node and connect 

its child to its parent. 

3. A node possessing two children necessitates identifying the 

inorder successor (the smallest node within the right subtree), 

replacing the node's value with that of inorder successor, and 

subsequently eliminating the inorder successor. 

Algorithm for Deletion 

1. Search for the node to delete. 

2. If it is terminal node, remove it straight.  
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Notes 3. If it possesses a single offspring, substitute it with that 

offspring.  

4. If it has two children, find the inorder successor, replace the 

node’s value, and delete the successor. 

4.Python Implementation 

def find_min(node): 

    while node.left: 

        node = node.left 

    return node 

def delete(root, key): 

    if root is None: 

        return root 

    # Search for the node to delete 

    if key < root.data: 

        root.left = delete(root.left, key) 

    elif key > root.data: 

        root.right = delete(root.right, key) 

    else: 

        # Case 1: No child (leaf node) 

        if root.left is None and root.right is None: 

            return None 

        # Case 2: One child 

        if root.left is None: 

            return root.right 

        elif root.right is None: 

            return root.left 

        # Case 3: Two children 

        temp = find_min(root.right)  # Find inorder successor 

        root.data = temp.data  # Replace node value 

        root.right = delete(root.right, temp.data)  # Delete successor 

    return root 

# Example Usage 

root = Node(10) 

root = insert(root, 5) 

root = insert(root, 15) 

root = insert(root, 3) 

root = insert(root, 7) 

root = delete(root, 5)  # Delete node with value 5 
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Notes Time Complexity: 

Best Case (Balanced Tree): O(log n) 

 Worst Case (Skewed Tree): O(n) 

4. Summary of BST Operations 

Operation Best Case Complexity Worst Case Complexity 

Search O(log n) O(n) 

Insertion O(log n) O(n) 

Deletion O(log n) O(n) 

 

BST is efficient for searching, inserting, and deleting in balanced trees. 

 In worst-case (skewed trees), performance degrades to O(n). 

Binary trees also support important operations such as searching, 

insertion, and removal, which are the basis for search engines, 

databases, and file systems. The Binary Search Tree (BST) exhibits 

logarithmic time complexity for many operations and is an essential 

data structure in computer science. 
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Notes Unit 4.2: Algorithms: Binary Search Tree and AVL 

 

4.2.1 Algorithms: Binary Search Tree and AVL 

Binary Search Tree (BST) 

A Binary Search Tree (BST) is  binary tree in which each node adheres 

to the principle that : 

• The left subtree holds values lesser than root. 

• The right subtree comprises values that exceed those of the root. 

• Duplicate values are prohibited. 

 Binary Search Trees facilitate efficient search, insertion, and deletion 

operations, achieving an average complexity of O(log n) for balanced 

structures. 

4.2.2 BST Operations and Algorithms 

Insertion in BST 

Algorithm: 

1. If tree is empty, create a new node as the root. 

2. Compare the key with root:  

• If smaller, insert it into the left subtree. 

• If greater, insert it into right subtree. 

3. Recursively find the correct position for new node. 

Python Implementation: 

class Node: 

    def __init__(self, data): 

        self.data = data 

        self.left = None 

        self.right = None 

def insert(root, key): 

    if root is None: 

        return Node(key) 

    if key < root.data: 

        root.left = insert(root.left, key) 

    else: 

        root.right = insert(root.right, key) 

    return root 

# Example Usage 

root = Node(10) 

root = insert(root, 5) 

root = insert(root, 15) 
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Notes root = insert(root, 3) 

root = insert(root, 7) 

Time Complexity: 

• Best Case: O(log n) (Balanced Tree) 

• Worst Case: O(n) (Skewed Tree) 

Searching in BST 

Algorithm: 

1. Commence at the root node. 

2. If  key corresponds to root, return the node. 

3. If the key is lesser, search in left subtree. 

4. If key is larger, conduct a search in right subtree. 

5. Continue iterating until the key is located or the tree is 

depleted.Python Implementation: 

def search(root, key): 

    if root is None or root.data == key: 

        return root 

    if key < root.data: 

        return search(root.left, key) 

    return search(root.right, key) 

# Example Usage 

found = search(root, 7) 

print("Found" if found else "Not Found")  # Output: Found 

Time Complexity: 

• Best Case: O(1) 

• Worst Case: O(n) (Skewed Tree) 

Deletion in BST 

Algorithm: 

4.2.3 Identify the node designated for deletion. 

Instances of deletion:  

• Remove the leaf node with no children. 

• In the case of a single child: Substitute the node with its 

offspring. 

• For a node with two children: Identify the inorder successor (the 

smallest node in right subtree), substitute the node with 

successor, and subsequently remove the successor. 

Python Implementation: 

def find_min(node): 

    while node.left: 
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Notes         node = node.left 

    return node 

def delete(root, key): 

    if root is None: 

        return root 

    if key < root.data: 

        root.left = delete(root.left, key) 

    elif key > root.data: 

        root.right = delete(root.right, key) 

    else: 

        if root.left is None: 

            return root.right 

        elif root.right is None: 

            return root.left 

        temp = find_min(root.right) 

        root.data = temp.data 

        root.right = delete(root.right, temp.data) 

    return root 

# Example Usage 

root = delete(root, 5) 

Time Complexity: 

• Best Case: O(log n) (Balanced Tree) 

• Worst Case: O(n) (Skewed Tree) 

4.2.4 Limitations of BST 

 Unbalanced BST leads to O(n) operations in the worst case. 

 Degenerates into a linked list if values are inserted in sorted order. 

Solution: Use AVL trees to maintain balance. 

AVL Tree (Self-Balancing BST) 

An AVL Tree is a self-balancing binary search tree in which the height 

disparity (balance factor) between the left and right subtrees does not 

exceed 1. 

 Balance Factor (BF) = Height of Left Subtree - Height of Right Subtree 

 If the absolute value of the Balance Factor exceeds 1, the tree 

undergoes rotation to reestablish equilibrium. 

 

Rotation Type When it Occurs Action 

Right Rotation (LL 

Rotation) 

Insert in left subtree of 

left child Rotate right 
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Notes 

 

 

 

 

 

 

 

 

 

 

 

Insertion in AVL Tree 

1. Insert the node as in BST. 

2. Update balance factors of all affected nodes. 

3. If |Balance Factor| > 1, perform the appropriate rotation. 

Python Implementation: 

class AVLNode: 

    def __init__(self, data): 

        self.data = data 

        self.left = None 

        self.right = None 

        self.height = 1  # Height of the node 

def get_height(node): 

    return node.height if node else 0 

def get_balance(node): 

    return get_height(node.left) - get_height(node.right) if node else 0 

def right_rotate(y): 

    x = y.left 

    T2 = x.right 

    x.right = y 

    y.left = T2 

    y.height = 1 + max(get_height(y.left), get_height(y.right)) 

Left Rotation (RR 

Rotation) 

Insert in right subtree 

of right child Rotate left 

Left-Right Rotation 

(LR Rotation) 

Insert in right subtree 

of left child 

Left Rotate first, then 

Right Rotate 

Right-Left Rotation 

(RL Rotation) 

Insert in left subtree of 

right child 

Right Rotate first, 

then Left Rotate 
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Notes     x.height = 1 + max(get_height(x.left), get_height(x.right)) 

    return x 

def left_rotate(x): 

    y = x.right 

    T2 = y.left 

    y.left = x 

    x.right = T2 

    x.height = 1 + max(get_height(x.left), get_height(x.right)) 

    y.height = 1 + max(get_height(y.left), get_height(y.right)) 

    return y 

def insert_avl(root, key): 

    if root is None: 

        return AVLNode(key) 

    if key < root.data: 

        root.left = insert_avl(root.left, key) 

    else: 

        root.right = insert_avl(root.right, key) 

    root.height = 1 + max(get_height(root.left), get_height(root.right)) 

    balance = get_balance(root) 

    # Perform rotations if unbalanced 

    if balance > 1 and key < root.left.data: 

        return right_rotate(root) 

    if balance < -1 and key > root.right.data: 

        return left_rotate(root) 

    if balance > 1 and key > root.left.data: 

        root.left = left_rotate(root.left) 

        return right_rotate(root) 

    if balance < -1 and key < root.right.data: 

        root.right = right_rotate(root.right) 

        return left_rotate(root) 

    return root 

Time Complexity: 

• Insertion & Deletion: O(log n) (Always balanced) 

• • BST offers fast running time for search and insert, but tends 

to be unbalanced. 

• • After insertion/deletion, AVL Tree gets re-balanced 

automatically in order to keep O(log n) time take for all cases. 
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Notes • • AVL trees is used in databases, search engines, and memory 

indexing when fast looking needed 
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Notes Unit 4.3: Graph 

 

4.3.1 Graph, Graph Representation, Operations: Searching, 

Insertion, Deletion, 

Graph and Its Operations 

A graph is a non-linear data structure that consists of: 

• Vertices (Nodes) – Represent objects. 

• Edges (Connections) – Represent relationships between objects. 

Graphs are widely used in networking, social media, shortest path 

algorithms, and AI. 

2. Types of Graphs 

Graph Type Description 

Directed Graph (Digraph) Edges have direction (A → B). 

Undirected Graph Edges do not have direction (A — B). 

Weighted Graph Edges have weights (cost, distance, time). 

Unweighted Graph Edges do not have weights. 

Cyclic Graph Graph contains cycles (A → B → C → A). 

Acyclic Graph (DAG) No cycles, used in scheduling tasks. 

 

3. Graph Representation 

Graphs can be represented using: 

1. Adjacency Matrix 

A 2D array where matrix[i][j] = 1 if there is an edge from i to j. 

Example: 

   A B C 

A [0 1 0] 

B [1 0 1] 

C [0 1 0] 

Python Implementation: 

python 

CopyEdit 

class GraphMatrix: 

    def __init__(self, vertices): 

        self.vertices = vertices 

        self.graph = [[0] * vertices for _ in range(vertices)] 

    def add_edge(self, u, v): 

        self.graph[u][v] = 1 
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Notes         self.graph[v][u] = 1  # Undirected Graph 

    def display(self): 

        for row in self.graph: 

            print(row) 

# Example Usage 

g = GraphMatrix(3) 

g.add_edge(0, 1) 

g.add_edge(1, 2) 

g.display() 

Pros: Fast edge lookup O(1). 

 Cons: Uses O(V²) space even for sparse graphs. 

2. Adjacency List (Efficient Representation) 

A list of lists where each node stores its neighbors. 

Example: 

A → B 

B → A, C 

C → B 

Python Implementation: 

python 

CopyEdit 

from collections import defaultdict 

class GraphList: 

    def __init__(self): 

        self.graph = defaultdict(list) 

    def add_edge(self, u, v): 

        self.graph[u].append(v) 

        self.graph[v].append(u)  # Undirected Graph 

    def display(self): 

        for key, values in self.graph.items(): 

            print(key, "->", values) 

# Example Usage 

g = GraphList() 

g.add_edge("A", "B") 

g.add_edge("B", "C") 

g.display() 

Pros: Uses O(V + E) space, efficient for sparse graphs. 

 Cons: Edge lookup is O(V) in the worst case. 

4. Graph Operations 
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Notes 4.3.2 Searching (Graph Traversal) 

1. Depth-First Search (DFS) 

• Recursive traversal that explores as far as possible before 

backtracking. 

• Used in: Pathfinding, cycle detection, topological sorting. 

Python Implementation: 

python 

CopyEdit 

def dfs(graph, node, visited=set()): 

    if node not in visited: 

        print(node, end=" ") 

        visited.add(node) 

        for neighbor in graph[node]: 

            dfs(graph, neighbor, visited) 

# Example Usage 

graph = {"A": ["B", "C"], "B": ["D"], "C": ["E"], "D": [], "E": []} 

dfs(graph, "A")  # Output: A B D C E 

Time Complexity: O(V + E) 

 

2. Breadth-First Search (BFS) 

• Uses  queue to explore neighbors level by level. 

• Used in: Shortest path (Dijkstra’s Algorithm), AI search 

algorithms. 

Python Implementation: 

from collections import deque 

def bfs(graph, start): 

    queue = deque([start]) 

    visited = set([start]) 

    while queue: 

        node = queue.popleft() 

        print(node, end=" ") 

        for neighbor in graph[node]: 

            if neighbor not in visited: 

                visited.add(neighbor) 

                queue.append(neighbor) 

# Example Usage 

graph = {"A": ["B", "C"], "B": ["D"], "C": ["E"], "D": [], "E": []} 

bfs(graph, "A")  # Output: A B C D E 
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Notes Time Complexity: O(V + E) 

4.3.3 Insertion (Adding Nodes and Edges) 

• Adding a vertex: Simply add a new key in adjacency list. 

• Adding an edge: Update adjacency list/matrix. 

Python Implementation (Adding a Node & Edge in Adjacency List): 

def add_vertex(graph, vertex): 

    if vertex not in graph: 

        graph[vertex] = [] 

def add_edge(graph, u, v): 

    graph[u].append(v) 

    graph[v].append(u) 

# Example Usage 

graph = {} 

add_vertex(graph, "A") 

add_vertex(graph, "B") 

add_edge(graph, "A", "B") 

print(graph)  # Output: {'A': ['B'], 'B': ['A']} 

Time Complexity: O(1) for adjacency list, O(V²) for adjacency matrix 

 

Deletion (Removing Nodes and Edges) 

• Eliminating an edge: Remove from the adjacency list. 

• Eliminate a vertex by first detaching all its edges. 

Python Implementation (Deleting a Node & Edge): 

 

def remove_edge(graph, u, v): 

    graph[u].remove(v) 

    graph[v].remove(u) 

def remove_vertex(graph, vertex): 

    graph.pop(vertex, None) 

    for neighbors in graph.values(): 

        if vertex in neighbors: 

            neighbors.remove(vertex) 

# Example Usage 

graph = {"A": ["B"], "B": ["A", "C"], "C": ["B"]} 

remove_edge(graph, "A", "B") 

remove_vertex(graph, "C") 

print(graph)  # Output: {'B': []} 

Time Complexity: O(1) for adjacency list, O(V) for adjacency matrix 
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Notes 4.3.4 Applications of Graphs 

Graphs are one of the most versatile data structures in computer 

science and are widely used to model relationships and solve 

complex real-world problems. Beyond simple storage of nodes 

and edges, graphs allow efficient computation and visualization 

of interconnected systems. Key applications include: 

1. Shortest Path Algorithms 

a. GPS Navigation Systems: Algorithms like Dijkstra’s 

Algorithm and Bellman-Ford Algorithm calculate the 

shortest route from a source to a destination. Modern 

GPS systems use weighted graphs where node represent 

intersections and edges represent roads with travel times 

or distances. 

b. Logistics & Delivery Services: Companies like FedEx, 

Amazon, and Uber use graph-based pathfinding to 

optimize delivery routes and minimize travel costs. 

2. Social Networks 

a. Friend Recommendations: Platforms like Facebook or 

LinkedIn model users as nodes and friendships as edges. 

Graph traversal techniques, such as Breadth-First 

Search (BFS), are used to suggest friends-of-friends. 

b. Community Detection & Influencer Analysis: 

Algorithms like PageRank or Graph Clustering identify 

influential users and social communities. 

3. Computer Networks 

a. Routing Protocols: The Internet, LANs, and WANs use 

graphs to model nodes (routers, switches) and links. 

Algorithms such as BFS, DFS, and Shortest Path 

algorithms determine optimal packet delivery paths. 

b. Network Reliability: Graph theory helps analyze 

network redundancy and fault tolerance, identifying 

critical nodes and edges whose failure would disrupt 

connectivity. 

4. Artificial Intelligence & Game Development 

a. Pathfinding in Games: Games use A Algorithm* or 

Dijkstra’s Algorithm for AI-controlled characters to 

navigate maps efficiently. 
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Notes b. Decision-Making & Knowledge Representation: 

Graphs model state spaces in AI for problems like 

puzzle solving, robot navigation, and planning. 

5. Scheduling & Project Management 

a. Task Dependencies: Directed Acyclic Graphs (DAGs) 

model tasks with dependencies. Topological Sorting 

determines the order in which tasks should be executed. 

b. Software Build Systems: Tools like Make, Maven, or 

Gradle use DAGs to manage compilation dependencies 

efficiently. 

6. Other Notable Applications 

a. Biology & Bioinformatics: Graphs represent protein-

protein interactions, gene regulatory networks, and 

metabolic pathways. 

b. Recommendation Systems: E-commerce platforms 

model products and users as graphs to suggest products 

based on purchase patterns. 

c. Electrical Circuits & Transport Systems: Graphs help 

analyze connectivity, flow, and optimization in circuits 

and traffic systems. 

7. Graph Representations 

a. Adjacency List: Efficient for sparse graphs where the number 

of edges is much smaller than the total possible. Saves 

memory by storing only existing edges. 

b. Adjacency Matrix: Useful for dense graphs with many edges, 

providing constant-time edge lookup at the cost of higher 

space. 

8. Graph Operations 

a. Traversal: Depth-First Search (DFS) and Breadth-First Search 

(BFS) are fundamental for exploring graphs. 

b. Insertion & Deletion: Adding/removing nodes and edges 

allows dynamic updates to networks or relationships. 

c. Weight Updates: In weighted graphs, edge weights can 

change, requiring algorithms that efficiently recalculate 

shortest paths. 

4.3.5 Traversing 
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Notes Graph traversal refers to the systematic visitation of all nodes (vertices) 

and edges within a graph. 

It helps in: 

Searching for elements 

Finding shortest paths 

Detecting cycles 

Solving AI and network-related problems 

2. Types of Graph Traversal 

Traversal Type Description 

Data Structure 

Used 

Depth-First Search 

(DFS) 

Explores as far as possible 

before backtracking Stack (Recursion) 

Breadth-First 

Search (BFS) 

Explores neighbors level by 

level Queue 

 

3. Depth-First Search (DFS) 

Concept 

• Initiates at  node and delves as deeply as feasible prior to retracing 

steps. 

• Uses recursion (stack) to keep track of visited nodes. 

• Used in maze solving, cycle detection, and topological sorting. 

Algorithm 

1. Start from a node. 

2. Mark it as visited. 

3. Visit adjacent unvisited nodes recursively. 

4. Backtrack when no unvisited neighbors remain. 

Python Implementation 

def dfs(graph, node, visited=set()): 

    if node not in visited: 

        print(node, end=" ") 

        visited.add(node) 

        for neighbor in graph[node]: 

            dfs(graph, neighbor, visited) 

# Example Usage 

graph = { 

    'A': ['B', 'C'], 

    'B': ['D', 'E'], 

    'C': ['F'], 
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Notes     'D': [], 

    'E': ['F'], 

    'F': [] 

} 

dfs(graph, 'A')  # Output: A B D E F C 

Time Complexity: O(V + E) (Vertices + Edges) 

Space Complexity: O(V) (For recursive stack in worst case) 

4. Breadth-First Search (BFS) 

Concept 

• Starts at a node and explores all its neighbors before moving 

deeper. 

• Uses a queue to store visited nodes. 

• Used in shortest path algorithms (Dijkstra’s, A), network 

broadcasting, and AI*. 

Algorithm 

1. Start from a node. 

2. Mark it as visited and enqueue it. 

3. Dequeue a node, process it, and enqueue its unvisited 

neighbors. 

4. Repeat until all nodes are visited. 

Python Implementation 

from collections import deque 

def bfs(graph, start): 

    queue = deque([start]) 

    visited = set([start]) 

    while queue: 

        node = queue.popleft() 

        print(node, end=" ") 

        for neighbor in graph[node]: 

            if neighbor not in visited: 

                visited.add(neighbor) 

                queue.append(neighbor) 

# Example Usage 

graph = { 

    'A': ['B', 'C'], 

    'B': ['D', 'E'], 

    'C': ['F'], 

    'D': [], 
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Notes     'E': ['F'], 

    'F': [] 

} 

bfs(graph, 'A')  # Output: A B C D E F 

Time Complexity: O(V + E) 

Space Complexity: O(V) 

5. DFS vs. BFS Comparison 

Feature DFS BFS 

Data Structure Stack (Recursion) Queue 

Exploration Deep before wide Level-wise 

Memory 

Usage Less for sparse graphs 

More for dense 

graphs 

Best for 

Cycle detection, Topological 

sorting 

Shortest path, AI 

search 

6. Applications of Graph Traversal 

DFS: Maze solving, Cycle detection, Web crawling 

BFS: Shortest path (Google Maps), Social media friend suggestions 

both: Network routing, AI decision trees 

DFS and BFS are fundamental graph traversal techniques for solving 

complex problems from networking, AI, and path finding. The 

selection of the approach is contingent upon the graph structure and the 

specific use case.  

Summary: 

Association rule mining is a data mining technique used to discover 

interesting relationships, patterns, and correlations among items in 

large datasets, particularly in transactional databases. It is widely 

applied in market basket analysis to identify product associations, such 

as customers who buy item A also tend to buy item B. The process 

involves generating and deriving association rules that meet specific 

thresholds of support (frequency of itemset in the dataset) and 

confidence (likelihood of item B being purchased given item A). Other 

important metrics include lift, which evaluates the strength of the rule 

beyond random chance. Popular algorithms for association rule mining, 

which uses a bottom-up approach to generate candidate and FP-

Growth, which uses a compact tree structure to avoid candidate 

generation. Association rule mining is extensively used in retail, 

recommendation systems, web usage mining, and bioinformatics to 
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Notes uncover hidden patterns and improve decision-making through 

actionable insights. 

Multiple-Choice Questions (MCQs) 

1. What is a tree in data structures? 

a) A linear data structure 

b) A hierarchical data structure 

c) A random-access data structure 

d) A sequential data structure 

(Answer: b) 

2. In a binary tree, each node can have at most: 

a) One child 

b) Two children 

c) Three children 

d) Unlimited children 

(Answer: b) 

3. Which of the following is a self-balancing binary search tree? 

a) AVL Tree 

b) Binary Search Tree (BST) 

c) Heap 

d) Hash  

e) Tree 

(Answer: a) 

4. What is the worst-case time complexity of searching in a Binary Search 

Tree (BST)? 

a) O(1) 

b) O(log n) 

c) O(n) 

d) O(n log n) 

(Answer: c) 

5. Which rotation is NOT used in balancing an AVL tree? 

a) Left Rotation 

b) Right Rotation 

c) Top Rotation 

d) Left-Right Rotation 

(Answer: c) 

6. Which of the following is NOT a tree traversal technique? 

a) Inorder 

b) Preorder 
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Notes c) Breadth-First Search (BFS) 

d) Depth-First Search (DFS) 

(Answer: c) 

7. Which of the following graph representations uses a 2D matrix to store 

connections? 

a) Adjacency Matrix 

b) Adjacency List 

c) Incidence List 

d) Edge List 

(Answer: a) 

8. In which traversal method do we visit the left subtree, then the root, and 

finally the right subtree? 

a) Preorder 

b) Inorder 

c) Postorder 

d) Level Order 

(Answer: b) 

9. Which graph traversal algorithm uses a queue data structure? 

a) Depth-First Search (DFS) 

b) Breadth-First Search (BFS) 

c) Prim’s Algorithm 

d) Kruskal’s Algorithm 

(Answer: b) 

10. Which of the following is NOT a graph traversal algorithm? 

a) BFS 

b) DFS 

c) Dijkstra’s Algorithm 

d) Bubble Sort 

(Answer: d) 

 

Short Questions 

1. What is a binary tree, and how does it differ from a general tree? 

2. Explain the inorder, preorder, and postorder tree traversal methods. 

3. What is a Binary Search Tree (BST), and how is it different from a 

normal binary tree? 

4. What are AVL trees, and why are they used? 

5. What is tree balancing, and why is it important? 

6. What is the difference between BFS and DFS in graph traversal? 
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Notes 7. Describe the adjacency matrix and adjacency list representations of 

graphs. 

8. How does insertion work in a BST? 

9. What is the primary advantage of using an AVL tree over a normal 

BST? 

10. What are the real-world applications of graphs in computing? 

 

Long Questions 

1. Explain the concept of trees, their structure, and their applications 

in computing. 

2. Discuss the different types of binary tree traversals with examples. 

3. Describe the Binary Search Tree (BST), its insertion, deletion, and 

searching operations. 

4. Implement a Binary Search Tree (BST) in C or Python and explain 

its working. 

5. Explain AVL tree rotations (LL, RR, LR, RL) and how they help 

maintain balance. 

6. Write an algorithm to perform insertion in an AVL tree and explain 

it with an example. 

7. Compare Adjacency Matrix and Adjacency List representations in 

graphs. 

8. Explain Depth-First Search (DFS) and Breadth-First Search (BFS) 

with examples. 

9. Implement a graph using an adjacency list and perform DFS 

traversal. 

10. Discuss real-world applications of trees and graphs in computer 

science. 
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MODULE 5 

ALGORITHM ANALYSIS AND DESIGN 

LEARNING OUTCOMES 

By the end of this Unit, students will be able to: 

• Understand the role of algorithms in computing, their 

characteristics, and the classification of problems into P and NP 

categories. 

• Analyze algorithms based on time complexity, space 

complexity, and execution time to measure efficiency. 

• Learn about asymptotic notations (Big-O, Omega, Theta) and 

their significance in evaluating algorithm performance. 

• Examine algorithm design methodologies, such as Greedy, 

Divide and Conquer, and Dynamic Programming, accompanied 

by practical examples for each methodology. 
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Notes Unit 5.1: The Role of Algorithm in Computing 

 

5.1.1 The Role of Algorithm in Computing, Characteristics of 

algorithm, P and NP 

The Role of Algorithm in Computing 

An algorithm is essentially a sequence of precise, well-defined 

instructions that takes input data, processes it systematically according 

to logical rules, and produces a desired output or solution. It forms the 

core of all computing processes, enabling computers to solve problems, 

perform calculations, and make decisions in an organized and efficient 

manner. Beyond simple data processing, algorithms are the driving 

force behind complex systems such as search engines, social media 

recommendation systems, GPS navigation, and artificial intelligence 

applications. They ensure tasks are performed consistently, accurately, 

and with optimal use of time and resources, allowing software to 

operate reliably even under diverse conditions. Moreover, algorithms 

provide a framework for automation, reducing the need for human 

intervention and allowing machines to handle repetitive, large-scale, or 

computationally intensive tasks. By defining the logical flow of 

operations, algorithms not only solve existing problems but also enable 

innovation, as new and improved algorithms can lead to faster, smarter, 

and more efficient technological solutions. In essence, every aspect of 

modern computing, from simple calculations to advanced AI-driven 

insights, relies on the careful design and implementation of algorithms, 

highlighting their indispensable role in the digital world. 

5.1.2 Importance of Algorithms in Computing 

Efficiency – Optimizes computation time and resources. 

Automation – Used in AI, automation, and machine learning. 

Data Processing – Essential for sorting, searching, and managing large 

datasets. 

Security – Used in encryption, hashing, and cybersecurity. 

Artificial Intelligence – Powers decision-making in AI models. 
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Notes 5.1.3 Characteristics of a Good Algorithm: 

An algorithm must possess the following characteristics: 

Characteristic Description 

Input Takes zero or more inputs. 

Output Produces at least one output. 

Definiteness Each step must be well-defined. 

Finiteness Must terminate after a finite number of steps. 

Correctness Should produce the correct result for all inputs. 

Effectiveness Each step must be simple and computable. 

Generality Should be applicable to a broad class of problems. 

 

5.1.4 P and NP Problems 

Definition: Problems that can be solved in polynomial time (O(n^k)) 

using a deterministic algorithm. 

Example: Sorting (Merge Sort – O(n log n)), Shortest Path (Dijkstra’s 

Algorithm – O(V²)). 

Key Concept: If a problem belongs to P, it means it can be solved 

efficiently. 

5.1.5 NP (Nondeterministic Polynomial Time) Problems 

Definition: Problems where a solution can be verified in polynomial 

time, but finding the solution may take exponential time. 

Example: Traveling Salesman Problem (TSP), Integer Factorization, 

Graph Coloring. 

Key Concept: If a problem belongs to NP, it means it is hard to solve 

but easy to verify. 

P vs. NP Complexity Classes 

Complexity 

Class Definition Example Problems 

P Solvable in polynomial time. 

Sorting, Matrix 

Multiplication 

NP 

Verifiable in polynomial time but 

may take exponential time to 

solve. 

Sudoku, 

Hamiltonian Path 

NP-Hard 

As hard as NP problems but not 

necessarily verifiable in P time. Halting Problem 
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Notes 

NP-Complete 

Problems that are both NP and 

NP-Hard. 

Traveling 

Salesman, 3-SAT 

 

The P vs. NP Problem 

The biggest open question in computer science: 

Is P = NP? 

• If P = NP, then all problems in NP can be solved in polynomial 

time. 

• If P ≠ NP, then some problems remain unsolvable in polynomial 

time. 

Impact: 

• Cryptography depends on P ≠ NP (e.g., RSA encryption). 

• Optimization & AI would advance if P = NP. 

Algorithms are the building blocks of computing, guaranteeing that 

problems can be solved efficiently. P and NP classification of problems 

helps in analysis of problems. The P vs. The NP problem is one of the 

most significant unresolved issues in computer science. 

5.1.6 problems 

In computer science, problems are classified to their complexity, 

solvability, and computational efficiency. The classification of 

problems aids in understanding if a given problem can be solved in a 

reasonably efficient way or if we have to resort to heuristics and 

approximation methods. 

Classification of Problems 

Problem Type Description Example Problems 

Decision 

Problems 

Problems with a "Yes" or 

"No" answer. 

Is a number prime? 

Does a path exist in a 

graph? 

Optimization 

Problems 

Finding the best solution 

among many possible 

ones. 

Shortest path, Traveling 

Salesman Problem 

(TSP) 

Search 

Problems 

Finding a specific solution 

within a large dataset. 

Finding an element in a 

list, Graph search 

Counting 

Problems 

Counting the number of 

valid solutions. 

Counting the number of 

possible paths in a grid 
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Notes 5.1.7 Computational Complexity Classes 

Complexity Class Definition Example Problems 

P (Polynomial Time) 

Problems solvable in 

polynomial time. 

Sorting, Shortest 

Path (Dijkstra’s 

Algorithm) 

NP (Nondeterministic 

Polynomial Time) 

Problems verifiable in 

polynomial time but hard 

to solve. 

Sudoku, Traveling 

Salesman Problem 

NP-Hard 

As hard as NP problems, 

but not necessarily 

verifiable in polynomial 

time. 

Halting Problem, 

Chess Problem 

NP-Complete (NPC) 

Problems that are both 

NP and NP-Hard. 

3-SAT, Hamiltonian 

Cycle 

 

Key Question: Does P = NP? This remains an open problem in 

computer science. 

Example: The Traveling Salesman Problem (TSP) 

• Given: A set of cities and distances between them. 

• Goal: Find shortest possible route that visits each city exactly 

once and returns to start. 

• Complexity: NP-Hard (No known polynomial-time solution). 

• Real-world Use Cases: Logistics, Circuit Design, Delivery 

Optimization. 

Knowledge of how to classify problems is essential for designing 

efficient algorithms and selecting an appropriate method. All problems 

in P have efficient solutions, while NP problems only have 

heuristics/approximations for larger inputs. P vs. NP is still among the 

most important unsolved problems in computing.  
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Notes Unit 5.2: Analyzing algorithms: Time and space 

complexity 

 

5.2.1 Analyzing algorithms: Time and space complexity, Execution 

time 

Analyzing Algorithms: Time Complexity, Space Complexity, and 

Execution Time 

This, in turn, helps understand time and space complexity of respective 

algorithm with help of algorithm analysis. It enables us to assess 

various algorithms and select the optimal for a specific issue. 

Why Analyze Algorithms? 

• To measure performance and scalability. 

• To compare different approaches to solve a problem. 

• To optimize resource usage (memory, CPU). 

Time Complexity 

Time complexity is the amount of time an algorithm takes to run 

based on the input size (n). With Big-O notation it can be expressed. 

Common Time Complexities 

Complexity Name Example Algorithms 

O(1) Constant Time Accessing an array element 

O(log n) Logarithmic Time Binary Search 

O(n) Linear Time Linear Search 

O(n log n) Linearithmic Time Merge Sort, Quick Sort 

O(n²) Quadratic Time Bubble Sort, Selection Sort 

O(2ⁿ) Exponential Time Recursive Fibonacci 

O(n!) Factorial Time Traveling Salesman Problem (TSP) 

 

Example: Comparing Linear and Binary Search 

Linear Search (O(n)) – Scans all elements one by one. 

python 

CopyEdit 

def linear_search(arr, target): 

    for i in range(len(arr)): 

        if arr[i] == target: 

            return i  # Found 

    return -1  # Not found 

Binary Search (O(log n)) – Divides the list in half at each step. 
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Notes def binary_search(arr, target): 

    left, right = 0, len(arr) - 1 

    while left <= right: 

        mid = (left + right) // 2 

        if arr[mid] == target: 

            return mid 

        elif arr[mid] < target: 

            left = mid + 1 

        else: 

            right = mid - 1 

    return -1 

Binary Search is much faster than Linear Search for large datasets. 

Space Complexity 

The space complexity is a measure of the amount of memory your 

algorithm will take with respect to the input size. It includes: 

• Fixed part (code, constants). 

• Variable part (dynamic memory allocation, recursion stack). 

Common Space Complexities 

Complexity Description Example 

O(1) Constant space Swapping two variables 

O(n) Linear space Storing an array of size n 

O(n²) Quadratic space Adjacency matrix for graphs 

O(n log n) Recursive algorithms Merge Sort 

 

Example: Iterative vs. Recursive Fibonacci 

Iterative Fibonacci (O(1) Space) 

def fibonacci_iter(n): 

    a, b = 0, 1 

    for _ in range(n): 

        a, b = b, a + b 

    return a 

Recursive Fibonacci (O(n) Space - Due to Call Stack) 

python 

CopyEdit 

def fibonacci_rec(n): 

    if n <= 1: 

        return n 
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Notes     return fibonacci_rec(n - 1) + fibonacci_rec(n - 2) 

Iteration is more space-efficient than recursion. 

5.2.2 Execution Time Measurement 

Execution time measurement refers to the process of determining how 

long a program or a specific piece of code takes to run on a computer 

system. It is an essential aspect of performance analysis, as it helps 

programmers evaluate the efficiency of their algorithms and identify 

bottlenecks in their code. Execution time is generally influenced by 

several factors, including the algorithm’s design, the programming 

language used, the efficiency of the compiler or interpreter, the input 

size, and the underlying hardware such as CPU speed, memory, and 

disk access. There are different ways to measure execution time. One 

common method is to record the start time before the execution of the 

code and the end time after its completion, then calculate the difference 

between them. This can be done using built-in functions in most 

programming languages, such as time () in Python or 

System.nanoTime() in Java. Execution time can be expressed in units 

like milliseconds, microseconds, or nanoseconds depending on the 

precision required. Measuring execution time is particularly important 

in algorithm analysis, where we want to compare how different 

algorithms perform for the same task. For instance, sorting a list of 

numbers using Bubble Sort will generally take more time than using 

Merge Sort, especially for large datasets. In such cases, execution time 

provides practical validation of theoretical time complexity. Beyond 

raw measurement, execution profiling tools are often used to provide 

detailed insights into which parts of a program consume the most time, 

helping developers optimize performance. Ultimately, execution time 

measurement is not just about speed, but also about ensuring scalability, 

responsiveness, and efficiency in real-world computing applications. 

5.2.3 Using Python’s time Module 

import time 

def sample_function(n): 

    return sum(range(n)) 

start_time = time.time() 

sample_function(1000000) 

end_time = time.time() 

print("Execution Time:", end_time - start_time, "seconds") 

Factors Affecting Execution Time: 
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Notes • Hardware (CPU, RAM). 

• Programming language and compiler optimizations. 

• Input size and distribution. 

• It analyzes the speed with which operations are performed 

using time complexity. 

• We use space complexity for memory usage analysis. 

• Execution time for real-time performance feedback. 

So, depending on the requirements of the problem, how the algorithms 

are optimized are different in terms of time and space. 

5.2.4 Asymptotic notations 

When we say the performance(time complexity to be precise) of 

algorithm is expressed with n(n being input size) then we mean 

asymptotic notation. It is used to compare algorithms and to estimate 

scalability. 

Why Use Asymptotic Notations? 

• Ignore constant factors and lower-order terms. 

• Focus on growth rate as input size increases. 

• Helps in comparing algorithms efficiently. 

Types of Asymptotic Notations 

Notation Meaning Definition Example 

O (Big-O) 

Upper Bound 

(Worst Case) 

f(n) ≤ c * g(n) for 

large n 

O(n²) for Bubble 

Sort 

Ω (Big-

Omega) 

Lower Bound 

(Best Case) 

f(n) ≥ c * g(n) for 

large n 

Ω(n) for Linear 

Search 

Θ (Theta) 

Tight Bound 

(Average Case) 

c₁ * g(n) ≤ f(n) ≤ 

c₂ * g(n) 

Θ(n log n) for 

Merge Sort 

 

5.2.5 Big-O Notation (Upper Bound, Worst Case) 

• Defines the maximum time taken by an algorithm. 

• Example: Worst-case Linear Search takes O(n) comparisons. 

Example Code: Linear Search (O(n)) 

def linear_search(arr, target): 

    for i in range(len(arr)): 

        if arr[i] == target: 

            return i  # Found 

    return -1  # Not found 

Best for predicting the worst-case scenario. 
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Notes Omega (Ω) Notation (Lower Bound, Best Case) 

• Defines minimum time an algorithm will take. 

• Example: Best-case Linear Search finds the element at Ω(1) 

(first position). 

Example Code: Best Case for Linear Search (Ω(1)) 

def best_case_search(arr, target): 

    if arr[0] == target: 

        return 0  # Found in first position 

    return -1 

Useful for theoretical analysis but not always practical. 

Theta (Θ) Notation (Tight Bound, Average Case) 

• Defines the exact time complexity (both upper and lower 

bounds). 

• Example: Merge Sort runs in Θ(n log n) in all cases. 

Best notation for accurate complexity analysis. 

Asymptotic Complexity Comparison 

Complexity Name Example Algorithms 

O(1) Constant Time Array Access 

O(log n) Logarithmic Time Binary Search 

O(n) Linear Time Linear Search 

O(n log n) Linearithmic Time Merge Sort, Quick Sort 

O(n²) Quadratic Time Bubble Sort 

O(2ⁿ) Exponential Time Fibonacci (Recursive) 

O(n!) Factorial Time Traveling Salesman Problem (TSP) 

 

•  Big-O is used for worst case analysis. 

•  Omega (Ω) denotes the optimal scenario. 

• Theta (Θ) tightly determines execution time. 

Asymptotic notations are one of the fundamental concepts in 

computers, Understanding that is very important for algorithms and 

optimizing the performance. 

  



 

155 
MATS Centre for Distance and Online Education, MATS University 

 

Notes Unit 5.3: Algorithm design techniques: Greedy, Divide 

and conquer, Dynamic programming 

 

5.3.1 Algorithm design techniques: Greedy, Divide and conquer, 

Dynamic 

1. Greedy Algorithm 

A Greedy Algorithm is a problem-solving approach that makes 

decisions incrementally, choosing the best apparent option at each step, 

known as the local optimum, with the expectation that these choices 

will collectively lead to the best overall solution, or global optimum. It 

relies on immediate benefit rather than considering all possible future 

consequences, making it simpler and faster than other exhaustive 

methods. Greedy algorithms are widely used in optimization problems 

such as finding the shortest path in networks, constructing minimum 

spanning trees, and solving coin change or scheduling problems. While 

they are efficient and often effective, they do not always guarantee the 

optimal solution for every problem, as the locally best choices can 

sometimes prevent reaching the true global optimum. Despite this 

limitation, their straightforward logic and efficiency make greedy 

algorithms a powerful tool in both theoretical and practical computing 

applications Key Features: 

• No backtracking or re-evaluation. 

• Works best for optimization problems. 

• Fast and simple but does not guarantee the best solution always. 

Example: Fractional Knapsack Problem 

• Problem: Given n items with weights and values, maximize the 

total value in knapsack of capacity W, where fractions of items 

can be taken. 

• Greedy Strategy: Pick items with highest value/weight ratio 

first. 

• Python Implementation: 

def fractional_knapsack(items, capacity): 

    items.sort(key=lambda x: x[1] / x[0], reverse=True)  # Sort by 

value/weight ratio 

    total_value = 0 

    for weight, value in items: 

        if capacity >= weight: 

            capacity -= weight 
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Notes             total_value += value 

        else: 

            total_value += value * (capacity / weight) 

            break 

    return total_value 

# Example usage: (weight, value) pairs 

items = [(10, 60), (20, 100), (30, 120)] 

capacity = 50 

print("Maximum value:", fractional_knapsack(items, capacity))  # 

Output: 240.0 

Time Complexity: O(n log n) (Sorting dominates). 

5.3.2 Other Greedy Algorithm Examples: 

• Huffman Coding (Data Compression) 

• Prim’s & Kruskal’s Algorithm (Minimum Spanning Tree) 

• Dijkstra’s Algorithm (Shortest Path for Weighted Graphs) 

 Limitations: May fail to find the global optimum (e.g., 0/1 Knapsack). 

2. Divide and Conquer Algorithm 

The Divide and Conquer Algorithm is a fundamental strategy in 

computer science that works by breaking down a large, complex 

problem into smaller and more manageable subproblems. Each of these 

subproblems is then solved, often using the same recursive approach, 

until they become simple enough to be handled directly. Once the 

solutions to the subproblems are obtained, they are combined to form 

the solution to the original larger problem. This method is highly 

efficient because it reduces difficult tasks into smaller, easier ones and 

then merges their outcomes in a structured way. Classic examples of 

this approach include Merge Sort and Quick Sort for efficient sorting, 

Binary Search for fast data lookup, and Strassen’s Algorithm for matrix 

multiplication. The strength of Divide and Conquer lies in its ability to 

improve performance by reducing time complexity, particularly for 

problems that naturally fit into smaller independent parts. However, its 

recursive nature sometimes requires additional memory for function 

calls and intermediate storage. Despite this trade-off, the Divide and 

Conquer paradigm remains a powerful technique, widely applied in 

algorithms, data structures, and problem-solving across areas such as 

sorting, searching, computational geometry, and parallel computing. 

Key Features: 

• Recursive approach 
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Notes • Used in sorting, searching, and computational geometry 

• Efficient for large problems 

Example: Merge Sort 

Problem: Sort an array using Divide and Conquer. 

Steps: 

1. Divide: Split the array into two halves. 

2. Conquer: Recursively sort each half. 

3. Combine: Merge two sorted halves. 

Python Implementation: 

def merge_sort(arr): 

    if len(arr) > 1: 

        mid = len(arr) // 2 

        left_half = arr[:mid] 

        right_half = arr[mid:] 

        merge_sort(left_half) 

        merge_sort(right_half) 

        i = j = k = 0  # Merging process 

        while i < len(left_half) and j < len(right_half): 

            if left_half[i] < right_half[j]: 

                arr[k] = left_half[i] 

                i += 1 

            else: 

                arr[k] = right_half[j] 

                j += 1 

            k += 1 

        while i < len(left_half): 

            arr[k] = left_half[i] 

            i += 1 

            k += 1 

        while j < len(right_half): 

            arr[k] = right_half[j] 

            j += 1 

            k += 1 

arr = [38, 27, 43, 3, 9, 82, 10] 

merge_sort(arr) 

print(arr)  # Output: [3, 9, 10, 27, 38, 43, 82] 

Time Complexity: O(n log n) 
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Notes Other Divide and Conquer Examples: 

• Quick Sort (Pivot-based sorting, O(n log n)) 

• Binary Search (O(log n) Search Algorithm) 

• Closest Pair of Points (Computational Geometry) 

 Limitations: May use extra space (Merge Sort needs O(n) extra space). 

3. Dynamic Programming (DP) 

Dynamic Programming (DP) is an advanced problem-solving 

technique that deals with complex problems by breaking them into 

smaller, overlapping subproblems and storing the results of these 

subproblems to avoid redundant computations. Unlike the Divide and 

Conquer approach, where subproblems are independent, DP is 

particularly effective when the same subproblems occur repeatedly, as 

it reuses previously computed results to enhance efficiency. This 

strategy can be implemented in two main ways: the top-down approach 

(memorization), where problems are solved recursively and results are 

cached for reuse, and the bottom-up approach (tabulation), where 

solutions to smaller subproblems are built iteratively to solve larger 

problems. Dynamic Programming significantly reduces time 

complexity in cases where naive recursive solutions would otherwise 

lead to exponential growth. Classic applications include the Fibonacci 

sequence, shortest path algorithms like Floyd-War shall and Bellman-

Ford, the Knapsack problem, matrix chain multiplication, and optimal 

binary search tree construction. Its strength lies in transforming 

computationally expensive tasks into polynomial-time solutions by 

exploiting the principles of optimal substructure and overlapping 

subproblems. Consequently, DP is a cornerstone in algorithm design, 

widely used in optimization, artificial intelligence, operations research, 

and computer science theory. 

Key Features: 

• Optimal substructure (Problem can be broken into 

subproblems). 

• Overlapping subproblems (Results are reused). 

• Uses extra space for memoization or tables. 

Example: Fibonacci Series (Using Memoization) 

• Problem: Compute Fibonacci numbers efficiently. 
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Notes • DP Strategy: Store already computed results. 

• Python Implementation (Memoization - Top Down) 

def fibonacci(n, memo={}): 

    if n in memo: 

        return memo[n] 

    if n <= 1: 

        return n 

    memo[n] = fibonacci(n - 1, memo) + fibonacci(n - 2, memo) 

    return memo[n] 

print(fibonacci(10))  # Output: 55 

5.3.3 Python Implementation (Tabulation - Bottom Up) 

def fibonacci_tabulation(n): 

    dp = [0, 1] 

    for i in range(2, n + 1): 

        dp.append(dp[i - 1] + dp[i - 2]) 

    return dp[n] 

print(fibonacci_tabulation(10))  # Output: 55 

Time Complexity: 

• Naïve Recursion: O(2ⁿ) 

• Memoization: O(n) 

• Tabulation: O(n) 

Other Dynamic Programming Examples: 

• 0/1 Knapsack Problem (Maximize profit in limited capacity) 

• Longest Common Subsequence (DNA sequencing, text 

similarity) 

• Matrix Chain Multiplication (Optimization problems) 

•  Limitations: Requires extra memory, slower for small inputs. 

4. Comparison of Greedy, Divide and Conquer, and Dynamic 

Programming 

Feature Greedy 

Divide & 

Conquer 

Dynamic 

Programming 

Approach 

Step-by-step 

choice 

Recursion + 

Merging 

Memoization or 

Tabulation 

Optimal 

Solution 

Not always 

guaranteed 

Always for 

problems with 

optimal 

substructure 

Always for 

overlapping 

subproblems 
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Notes 

Efficiency Fast but may fail 

Recursive, efficient 

for large data 

Efficient but uses 

extra memory 

Example 

Kruskal’s 

Algorithm, 

Huffman Coding 

Merge Sort, Quick 

Sort 

Fibonacci, 

Knapsack 

• Greedy approaches are fast, but may not yield the optimal 

solution. 

• Divide and Conquer splits problems into independent 

subproblems and merges results. 

• Dynamic programming works the best for problems involving 

overlapping subproblems and optimal substructure. 

Algorithm Design Techniques These are the types of techniques that 

one can use depending on the type of the problem & goodness of the 

required optimization.  

5.6 programming (one example of each) 

Greedy Algorithm Example: Activity Selection Problem 

Problem: Given n activities with start and end times, select the 

maximum number of activities that do not overlap. 

Greedy Strategy: 

• Sort activities by finish time. 

• Select activities that start after the previous selected activity 

ends. 

 

Python Implementation: 

def activity_selection(activities): 

    activities.sort(key=lambda x: x[1])  # Sort by finish time 

    selected = [activities[0]]  # Select first activity 

    for i in range(1, len(activities)): 

        if activities[i][0] >= selected[-1][1]:  # Non-overlapping condition 

            selected.append(activities[i]) 

    return selected 

# Example Usage 

activities = [(1, 3), (2, 5), (4, 6), (6, 8), (5, 9)] 

print("Selected Activities:", activity_selection(activities)) 

Time Complexity: O(n log n) (Sorting dominates). 

2. Divide and Conquer Example: Quick Sort 

Problem: Sort an array using Quick Sort (Divide and Conquer). 

Steps: 
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Notes 1. Choose a pivot element. 

2. Partition the array into two halves:  

• Left: Elements smaller than the pivot. 

• Right: Elements greater than the pivot. 

3. Recursively sort both halves. 

Python Implementation: 

def quick_sort(arr): 

    if len(arr) <= 1: 

        return arr 

    pivot = arr[len(arr) // 2]  # Choose pivot 

    left = [x for x in arr if x < pivot] 

    middle = [x for x in arr if x == pivot] 

    right = [x for x in arr if x > pivot] 

    return quick_sort(left) + middle + quick_sort(right) 

# Example Usage 

arr = [10, 7, 8, 9, 1, 5] 

print("Sorted Array:", quick_sort(arr)) 

Time Complexity: O(n log n) (Average case). 

Dynamic Programming Example: 0/1 Knapsack Problem 

Problem: Given n items with weights and values, find the maximum 

value that can be obtained in a knapsack of capacity W, where items 

cannot be divided. 

DP Strategy: 

• Use a 2D table to store maximum values for each weight limit. 

Python Implementation: 

def knapsack(weights, values, capacity): 

    n = len(values) 

    dp = [[0] * (capacity + 1) for _ in range(n + 1)] 

    for i in range(1, n + 1): 

        for w in range(capacity + 1): 

            if weights[i - 1] <= w: 

                dp[i][w] = max(values[i - 1] + dp[i - 1][w - weights[i - 1]], 

dp[i - 1][w]) 

            else: 

                dp[i][w] = dp[i - 1][w] 

    return dp[n][capacity] 

# Example Usage 

weights = [2, 3, 4, 5] 



  

162 
MATS Centre for Distance and Online Education, MATS University 

 

Notes values = [3, 4, 5, 6] 

capacity = 5 

print("Maximum Value:", knapsack(weights, values, capacity))  # 

Output: 7 

Time Complexity: O(n × W) (Efficient DP solution). 

Greedy Algorithm (Activity Selection) – Fast but doesn't always 

guarantee optimality. 

 Divide and Conquer (Quick Sort) – Efficient and widely used in 

sorting. 

 Dynamic Programming (0/1 Knapsack) – Optimal but uses extra 

space. 

Summary: 

An algorithm is a finite sequence of well-defined instructions used to 

solve a specific problem or perform a task efficiently. Its performance 

is measured through time complexity, which refers to how long an 

algorithm takes to execute based on input size (using notations like Big 

O, Omega, and Theta), and space complexity, which refers to the 

memory consumed during execution. Common complexities range 

from O(1) for constant time to O(n), O(n log n), O(n²), and O(2ⁿ) for 

more intensive operations. Several algorithm design techniques exist, 

including Divide and Conquer (e.g., Merge Sort), Greedy methods 

(e.g., Prim’s algorithm), Dynamic Programming (e.g., Fibonacci 

calculation), Backtracking (e.g., N-Queens), and Brute Force 

approaches. These techniques help create optimized and scalable 

solutions to various computational problems. Algorithms can be 

expressed using pseudocode or flowcharts for better understanding and 

planning. In computational theory, problems are classified into P, NP, 

and NP-Complete based on their solvability and verification 

complexity. Efficient algorithms are essential in domains like data 

processing, graph theory, AI, encryption, and scheduling, making 

algorithm analysis and design a critical foundation of computer science 

and software development. 

Multiple-Choice Questions (MCQs) 

1. Which of the following statements about algorithms is true? 

a) An algorithm must always have an infinite number of steps 

b) An algorithm must be unambiguous and well-defined 

c) An algorithm must be implemented in a specific programming 

language 
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Notes d) An algorithm does not require an input 

(Answer: b) 

2. Which of the following asymptotic notations describes the worst-

case time complexity of an algorithm? 

a)  Big-O (O) 

b) Omega (Ω) 

c) Theta (Θ) 

d) Small-O (o) 

(Answer: a) 

3. What is the time complexity of a linear search algorithm? 

a) O(1) 

b) O(n) 

c) O(log n) 

d) O(n²) 

(Answer: b) 

4. Which of the following problems belongs to the P category? 

a) Traveling Salesman Problem 

b) Sorting an array using Merge Sort 

c) Boolean Satisfiability Problem (SAT) 

d) Hamiltonian Cycle Problem 

(Answer: b) 

5. Which of the following statements best describes NP-complete 

problems? 

a) They are solvable in polynomial time 

b) Their solutions can be verified in polynomial time, but solving 

them may require exponential time 

c) They are always unsolvable 

d) They require logarithmic space complexity 

(Answer: b) 

6. Which algorithm design paradigm follows a "divide and conquer" 

approach? 

a) Greedy 

b) Dynamic Programming 

c) Merge Sort 

d) Backtracking 

(Answer: c) 

7. Which of the following is an example of a greedy algorithm? 

a) Quick Sort 
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Notes b) Prim’s Algorithm 

c) Merge Sort 

d) Binary Search 

(Answer: b) 

8. Which algorithm design approach solves subproblems first and then 

builds up the final solution? 

a) Divide and Conquer 

b) Greedy Algorithm 

c) Dynamic Programming 

d) Brute Force 

(Answer: c) 

9. What is the time complexity of the Merge Sort algorithm in the 

worst case? 

a) O(n) 

b) O(n log n) 

c) O(n²) 

d) O(log n) 

(Answer: b) 

10. Which of the following is NOT an example of a dynamic 

programming problem? 

a) Fibonacci sequence 

b) Knapsack problem 

c) Dijkstra’s shortest path 

d) Longest common subsequence 

(Answer: c) 

 

Short Questions 

1. Define an algorithm and explain its importance in computing. 

2. What is the difference between time complexity and space 

complexity? 

3. Explain the significance of Big-O notation in algorithm analysis. 

4. What is the difference between P and NP problems? 

5. What is NP-complete problems, and why are they difficult to solve? 

6. Compare Greedy algorithms and Dynamic Programming 

approaches. 

7. Describe Divide and Conquer methodology and give an example. 

8. Explain why Merge Sort is better than Bubble Sort in terms of 

complexity. 
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Notes 9. What is memorization, and how is it used in Dynamic 

Programming? 

10. How does the Knapsack Problem utilize dynamic programming? 

 

Long Questions 

1. Explain the role of algorithms in computing, their characteristics, 

and provide real-world examples of their applications. 

2. Discuss asymptotic notations (Big-O, Omega, and Theta) with 

examples. 

3. Compare P, NP, and NP-complete problems, and explain their 

computational significance. 

4. Describe and implement Merge Sort using the Divide and Conquer 

approach. 

5. Explain Greedy Algorithm methodology with an example such as 

Kruskal’s Algorithm. 

6. Write a C or Python program to compute the Fibonacci sequence 

using recursion and dynamic programming, and compare their 

performance. 

7. Explain Dynamic Programming, its working principle, and solve a 

Longest Common Subsequence (LCS) problem. 

8. Compare Greedy algorithms vs. Dynamic Programming vs. Divide 

and Conquer, highlighting their advantages and limitations. 

9. Discuss the Traveling Salesman Problem (TSP) and its 

classification in NP-complete problems. 

10. Implement a graph algorithm using BFS (Breadth-First Search) or 

DFS (Depth-First Search) in Python or C. 

 

Glossary:  

Data Structure: A method of organizing, managing, and 

storing data for efficient access and modification. 

• Linear Data Structure: A structure where elements are 

arranged sequentially (e.g., arrays, stacks, queues). 

• Array: A fixed-size sequential collection of elements of the 

same type. 

• Searching Algorithm: A method to find the position of a target 

element in a data structure (e.g., Linear Search, Binary Search). 

• Sorting Algorithm: A technique to arrange elements in a 

particular order (e.g., Bubble Sort, Insertion Sort, Quick Sort). 
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Notes • Stack: A linear data structure following the Last In First Out 

(LIFO) principle. 

• Push and Pop: Operations in a stack to insert and remove 

elements respectively. 

• Recursion: A technique where a function calls itself to solve a 

problem. 

• Queue: A linear structure following the First In First Out 

(FIFO) principle. 

• Enqueue and Dequeue: Operations in a queue to insert and 

remove elements respectively. 

• Linked List: A linear data structure where each element (node) 

contains a data part and a pointer to the next node. 

• Singly Linked List: A list where each node points only to the 

next node. 

• Doubly Linked List: Each node contains two pointers: one to 

the next node and one to the previous. 

• Circular Linked List: The last node points back to the first 

node. 

• Dynamic Memory Allocation: Allocating memory during 

runtime, typically used in linked lists. 

• Tree: A hierarchical data structure with nodes connected in 

parent-child relationships. 

• Binary Tree: A tree where each node has at most two children. 

• Binary Search Tree (BST): A binary tree where left child < 

parent < right child. 

• AVL Tree: A self-balancing binary search tree where the height 

difference between left and right subtrees is at most one. 

• Graph: A non-linear structure consisting of nodes (vertices) 

connected by edges, useful for modeling networks. 

• Algorithm: A step-by-step procedure or formula for solving a 

problem. 

• Time Complexity: A measure of the amount of time an 

algorithm takes to complete as a function of the input size. 

• Space Complexity: A measure of the memory used by an 

algorithm. 

• Greedy Algorithm: A strategy that makes the locally optimal 

choice at each step. 
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Notes • Divide and Conquer: A technique that divides a problem into 

smaller subproblems, solves them recursively, and combines 

results. 

• Dynamic Programming: A method for solving complex 

problems by breaking them into simpler overlapping 

subproblems and storing the results. 
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