

Master of Computer Applications

MCA-104

Mathematical Foundation of Computer Application

Course Introduction 1

Module 1

Set theory, Mathematical Logic, Relation and Function

2

Unit 1.1: Introduction to Set theory
3

Unit 1.2: Tautology, Contradiction, Logical Equivalence 32
Unit 1.3: Relation 47
Unit 1.4: Function 57

Module 2

POSETS and Lattices

66

Unit 2.1: Partial order relation 67
Unit 2.2: Lattice 71
Unit 2.3: Distributive and Complemented lattice 79

Module 3

Boolean Algebra

89

Unit 3.1: Basic concepts of Boolean Algebra 90

Unit 3.2: Karnaugh map 100
Unit 3.3: Applications of Boolean Algebra in switching circuits
 Logic circuits 104

Module 4

Graph Theory

114

Unit 4.1: Basic concepts of graph theory 115
Unit 4.2: Matrix Representation of Graphs, Directed Graphs 148
Unit 4.3: Tree and its properties 153

Module 5
Semi Groups and Monoids

181

 Unit 5.1: Algebraic Structure, Binary Operation, Properties,

 Semi Group, Monoid, Group Theory 182

 Unit 5.2: Abelian group, Cyclic group, Generators,
 Permutation group, Subgroup 193

 Unit 5.3: Homomorphism, Isomorphism and Automorphism. 204
 Unit 5.4: Cosets, Langranges Theorem, Normal Subgroup 211

 Glossary 234

References 238

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,

Chhattisgarh

Prof. (Dr.) Jatinder kumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies

and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSE COORDINATOR

Prof. (Dr.) A. J. Khan, Professor, School of Information Technology, MATS University, Raipur,

Chhattisgarh

COURSE PREPARATION

Prof. (Dr.) A. J. Khan, Professor and Ms. Arifa Khan, Assistant Professor, School of Information

Technology, MATS University, Raipur, Chhattisgarh

March, 2025

ISBN: 978-93-49916-45-6

@MATS Centre for Distance and Online Education, MATS University, Village- Gullu, Aarang, Raipur-

(Chhattisgarh)

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in any

form, by mimeograph or any other means, without permission in writing from MATS University,

Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed & Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.

Meghanadhudu Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Disclaimer-Publisher of this printing material is not responsible for any error or dispute from

contents of this course material, this is completely depend on AUTHOR’S MANUSCRIPT.

Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

Acknowledgement

The material (pictures and passages) we have used is purely for educational

purposes. Every effort has been made to trace the copyright holders of material

reproduced in this book. Should any infringement have occurred, the publishers and

editors apologize and will be pleased to make the necessary corrections in future

editions of this book.

1
MATS Centre for Distance and Online Education, MATS University

COURSE INTRODUCTION

Mathematical foundation plays a crucial role in computer applications

by providing a theoretical framework necessary for problem solving

data structuring and algorithm design. This course equips student with

fundamental mathematical concepts including set theory, logic,

Boolean algebra, graph theory and group theory which are essential for

understanding and developing computing solutions.

Module 1: Set Theory, Mathematical Logic, Relation and

Function

This Module includes the fundamental concepts of a set theory

relations and functions. It covers the principal of logical

connectivity, logical equivalence and properties of function to

develop a strong mathematical strong.

Module 2: POSETS AND LATTICES

Understanding partial order relations and lattice structure is

crucial in optimization problems and hierarchical data

representation. This Module focuses on ordered sets and their

applications.

Module 3: Boolean Algebra

Boolean algebra is the foundation of digital logic design and

computational logic. this Module delves into Boolean

expressions, simplifications techniques and circuit applications.

Module 4: Graph Theory

Graph theory provides a framework for modeling relationship

and networks, widely used in computing and data structure

designs

Module 5: Semi Group and Monoids

Algebraic structure such as groups and monoids form the basis

of the cryptography, automata theory and database security.

2
MATS Centre for Distance and Online Education, MATS University

MODULE 1

SET THEORY, MATHEMATICAL LOGIC,

RELATION, AND FUNCTION

LEARNING OUTCOMES

• To understand the fundamental concepts of set theory and

Cartesian products.

• To explore statements, logical connectives, and their

applications.

• To analyze tautologies, contradictions, and logical

equivalences.

• To study relations, types of binary relations, and equivalence

relations.

• To understand functions, their properties, and composition.

3
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1.1: Introduction to Set theory

1.1.1 Introduction to Set Theory, Cartesian product

 Fundamentals of Set Theory:

Fig: 1.1.1 Introduction to Set theory

Like so many concepts in modern mathematics, set theory is a

language in which most everything else is written and read. A set, in its

most basic sense, is a well-defined collection of distinct objects, called

the elements or members of the set. The concept of a "well-defined"

collection is essential—it means that we can take an object, and be able

to tell if it is in the set or not without ambiguity. This little idea,

formalized by Georg Cantor in the late nineteenth century, has changed

the way mathematicians think and supplied a lingua franca Moduleing

disparate branches of mathematics. Sets encapsulate the primitive idea

of collection and containment — an idea so simple and natural, yet one

that becomes deeply powerful when formalised. The development of

set theory represented a paradigm shift in mathematics, transitioning

mathematics from a focus on the concrete to the abstract, and

providing a common language that could cross mathematical domains.

The universal applicability of set theory has led to it being designated

the "foundation of mathematics," a "base" upon which arbitrary

mathematical trees—relations, functions, algebraic structures—can be

built accurately and rigorously. The set theoretic notation is clean,

4
MATS Centre for Distance and Online Education, MATS University

Notes simple and expressive as a whole: a set is represented with a capital

letter (A, B, X) and its elements are written in a lowercase letter (a, b,

x). A relationship between a set and an element is denoted by writing x

∈ A, to indicate that x is an element of A; and x ∉ A, to indicate that x

is not an element of A. Sets can be defined either by listing the elements

explicitly (the roster method) or by defining a property that only the

elements of the set satisfy (the set-builder notation). For example,

using the roster method, the set of all even natural numbers less than 10

can be expressed as {2, 4, 6, 8}, and using the set-builder notation, as

{x ∈ ℕ | x is even and x < 10}. In dealing with sets, there are a number

of special sets that can be thought of as "reference" sets: 1. The empty

set is denoted by the symbol ∅ (which contains no elements). 2. The

universal set, U, is a set that contains all elements under consideration,

as when the context involves a set of real numbers, a set of complex

numbers, etc. 3. The set of natural numbers, ℕ 4. The integers, ℤ 5. The

rational numbers, ℚ 6. The real numbers, ℝ 7. The complex numbers,

ℂ These and types of ultimately first lesions, and especially ℕ, ℤ, ℚ, ℝ

and ℂ, form the basis upon which advanced mathematical structures

and theories create. In set theory, the relationship between sets is

commonly described in terms of containment: set A is a subset of set B

(denoted as A ⊆ B) iff every element of A is an element of B. If,

charged, there is at least one element in B that is not in A, then A is a

proper subset of B (denoted as A⊂ B). A set A is equal to a set B (in

symbols, A = B) if and only if A has exactly the same elements that B

has, or more formally A ⊆ B and B ⊆ A. These basic membership,

subset and equality relations are the grammatical rules of set theory

language, allowing us to communicate mathematical logic. In our study

of set theory, we get to the idea of the power set of a given set A (or

P(A) or 2^A), which is the collection of all subsets of A, including the

empty set and A itself. For example, if a set contains n elements, then

its power set has exactly 2^n subsets, which shows the exponential

correspondence between a set and its family of subsets. This

phenomenon revealing an intricate relationship between combinatory

and set-theoretical aspects of nature portends the copious roles now

played within the set-theoretically aligned worlds by the various

members of the algebraic and analytic branches of mathematical

thought. Now, mathematicians have used these concepts as a basis for

a more general language — set theory — for describing and analyzing

5
MATS Centre for Distance and Online Education, MATS University

Notes infinite collections, which has resulted in deep insights into the very

nature of infinity. Cantor showed that not all infinities are the same;

that the “size” or “cardinality” of the set of natural numbers (ℵ₀, or

“aleph-naught”) is different from that of the set of real numbers (c, the

cardinality of the continuum). This realization of different "sizes" of

infinity transformed mathematics and would become a fruitful topic of

research within the areas of set theory, logic, and the foundations of

mathematics.

1.1.2. Set Operations and Their Properties

Fig: 1.1.2 Set operations and Their Properties

This powerful method of mathematical reasoning is because set

operations give us the ability to create new sets through a combination

of existing sets. Union, intersection, and complement are the three

foundational set operations, and each of them has its place in

describing relationships between sets. Let A and B be two sets, the

union of sets A and B, denoted A∪ B, is the set of elements that lie in

A or in B (or in both). In formal notation, A ∪ B = {x | x ∈ A or x ∈

B}. From Venn diagrams-discussion point of view, the union is all the

area of both sets. For instance, if A = {1, 2, 3} and B = {3, 4, 5}, we

have A ∪ B = {1, 2, 3, 4, 5}. In the context of set operations, the

intersection of two sets A and B (written A ∩ B) is defined as the set

of elements that are in both A and B. More formally, A ∩ B = {x | x ∈

6
MATS Centre for Distance and Online Education, MATS University

Notes A and x ∈ B}. The intersection (∩) of the dataset A and B is represented

in a Venn diagram as the overlapping region of two dataset. Let’s

continue with the example: A ∩ B = {3}. If a pair of sets has no

elements in common, then their intersection will be the empty set, and

they are called disjoint sets. If U is a universal set, then let A^c or U -

A denote the complement of a set A: the elements of A^c are those in

U not present in A. That is, A^c = {x ∈ U | x ∉ A}. We can also define

the difference of two sets, so that A - B (also known as A \ B) contains

all of the elements contained in A that aren't in B, that is, A - B = {x |

x ∈ A and x ∉ B}. This is also expressed as A ∩ B^c, showing how the

difference between two sets relates to intersection and complement. All

elements that are in either set A or set B, but not in both, are included

in the symmetric difference of the two sets, denoted A△ B. By

Definition, A △ B = (A − B) ∪ (B − A) = (A ∪B) − (A ∩ B). Operations

that satisfy many algebraic properties that correspond to those from

other mathematical structures: the commutative property (A ∪ B = B ∪

A and A ∩ B = B ∩ A), the associative property ((A ∪ B) ∪ C = A ∪

(B ∪ C) and (A ∩ B) ∩ C = A ∩ (B ∩ C)), the distributive property (A

∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪

C)), and the idempotent property (A ∪ A = A and A ∩ A = A). This can

handle union and intersection operations in an elegant way, as given in

De Morgan laws: (A ∪ B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc.

Moreover, sets have identity: A ∪∅ = A (the empty set is the identity

with respect to union) and A ∩ U = A (the universal set is the identity

with respect to intersection). Complementary identities are A ∪ A^c =

U and A ∩ A^c = ∅, which formalize the intuitive understanding that a

set and its complement make up the entire universal set, and they do

not overlap. NOTE: With multiple sets, you can justify operations

based on indexing. For a collection of sets {A₁, A₂, …, Aₙ} we can

define the union as ⋃ᵢ₌₁ⁿ Aᵢ = A₁ ∪ A₂ ∪ … ∪ Aₙ and the intersection

as ⋂ᵢ₌₁ⁿ Aᵢ = A₁ ∩ A₂ ∩ … ∩ Aₙ. It is an indexing that enables the

compact representation of operations over large collections of sets, and

can be made more general to infinite collections. From this perspective,

set operations not only serve up practical computational tools for

reasoning about math and about our world, but they also uncover some

beautiful and deep structural patterns. The language of the operations

and properties of sets is equivalent to the operations and properties of a

Boolean algebra. Set theory is a favorite topic because it exposes an

7
MATS Centre for Distance and Online Education, MATS University

Notes overlap in the landscape of mathematics, linking disparate branches of

the field in the process. Venn diagrams provide insight into the

geometric interpretation of set operations. Sets are depicted as regions

in a rectangle (the universal set) in these diagrams, while operations

correspond to combinations of these regions. Venn diagrams of three

or more sets may become complicated; however, they are very useful

in visualizing the relationships between the different sets. Set

operations find many practical applications in diverse areas. This is

part of the query language of databases and its semantics — queries

can be expressed through set operations on tables containing data. In

probability theory, an event can be modeled as a set, and operations on

sets correspond to logical relationships between events. In topology,

open and closed sets and their operations essentially determine the

basic structure of topological spaces. The operations and their

properties that you are learning become essential tools for developing

rigorous mathematical analysis and problem-solving as you study more

advanced topics in set theory.

1.1.3. Cartesian Product: Definition and Basic Properties

Fig: 1.1.3 Cartesian Product

The Cartesian product is a basic operation in set theory that lets us

combine existing sets into new sets, creating ordered pairs of elements.

A Cartesian product is a fundamental operation in set theory, named

after the French mathematician and philosopher René Descartes who

developed the systematic application of coordinates in geometry. That

8
MATS Centre for Distance and Online Education, MATS University

Notes is, for any two sets A and B, their Cartesian product, written as A × B,

is the set of all possible ordered pairs (a, b), where a ∈ A and b ∈ B: A

× B = {(a, b) | a ∈ A and b ∈ B}. The key idea is that we are working

with an ordered pair: (a, b) is not the same as (b, a), unless a = b. This

introduces a kind of asymmetry that sets the Cartesian product apart

from set operations such as union and intersection. The Cartesian

product of two sets A and B is denoted by A × B and result is a set of

all ordered pairs (x, y) such that x belongs to A and y belongs to B. As

this set is the Cartesian product of 2 sets, so contains 6 elements: |A ×

B| = |A| × |B| = 2 × 3 = 6. This multiplicative character of cardinality is

a fundamental aspect of the Cartesian product and why it's called that.

While the union of sets merges their elements, the Cartesian product

maintains the individual identity of each set and establishes a relation

between their elements. The Cartesian product preserves structure,

making it crucial when it comes to defining relations and functions,

two concepts that are fundamental to mathematics. For multiple sets,

the Cartesian product can similarly be extended. For three sets A, B,

and C, we define A × B × C = {(a, b, c) | a ∈ A, b ∈ B, c ∈ C}, the

ordered triples with the indicated components. More generally, for n

sets A₁, A₂, …, Aₙ, their Cartesian product A₁ × A₂ × … × Aₙ consists

of all ordered n-tuples (a₁, a₂, …, aₙ) such that aᵢ ∈ Aᵢ for i = 1, …, n. If

all input sets are still the same, say A, we tend to denote the n-fold

Cartesian product A × A × … × A by Aⁿ; guiding this notation is the

connection we will see between Cartesian products and exponentiation

defined within the context of sets. The Cartesian product has a few

important properties. In contrast to union and intersection, it is not

generally commutative: A × B ≠ B × A unless A = B or at least one of

the sets is empty. It is, however, associative in a certain way: the set of

ordered pairs (A × B) × C is not the same as the set A × (B × C) of

ordered pairs, but there is a natural bijection between (A × B) × C and

A × (B × C). Now, this bijection maps ((a, b), c) to (a, (b, c)), preserving

the ordering information between different levels of parentheses. The

Cartesian product distributes over union: A×(B∪C)=(A×B)∪(A×C)

and (B∪C)×A=(B×A)∪(C×A). It becomes very useful for simplifying

complex functions involving Cartesian products, due to this property.

But distribution over intersection (A × (B ∩ C) = (A × B) ∩ (A × C)

and (B ∩ C) × A = (B × A) ∩ (C × A)) requires equality, not just

containment. Notably, the interaction of Cartesian products with the

9
MATS Centre for Distance and Online Education, MATS University

Notes empty set: that means if A or B is something like empty, then A × B is

empty. Since you cannot form any ordered pairs if you do not have an

element to pull from one of the two sets that make up that ordered pair.

The Cartesian product has deep geometrical interpretations. R×R R ×

R is commonly called R2 R 2 and it is s well-known fact that R2 R 2 is

the so-called plane (i.e. coordinate system for pairs of reals). For

instance, ℝ³ = ℝ × ℝ × ℝ is a three-dimensional space. This approach,

by Descartes, not only changed the face of geometry, but also allowed

algebraic techniques to be used to solve geometric problems, and vice

versa. The Cartesian product can also be used to define relations

between sets. A relation from a set A to a set B is just a subset of the

Cartesian product A × B, where the elements (a, b) of the relation can

be interpreted as a connection or correspondence between elements a

of A and b of B. Special types of relations, equivalence relations and

order relations, are very important in many branches of mathematics.

Functions, the ubiquitous building blocks throughout mathematics, are

special kinds of relations. It maps each a ∈ A to a unique b ∈ B and is

defined as a subset of A × B where each element from A appears exactly

once in the first component of the ordered pair. Consequently, the idea

of a function is an immediate consequence of the Cartesian product.

That is why you covered the Cartesian product in the same way, as it is

fundamental in Computer Science topics: in database theory in

particular where relations (which in DB table form) are combined and

joins are defined The Cartesian product is a crucial operation in the

study of cardinal arithmetic (especially for infinite sets) and leads to

wonderful results about the "sizes" of different infinities. The Cartesian

product is an important concept in set theory, as it allows us to combine

sets in a way that captures the relationship between their elements.

1.1.4. Applications of Cartesian Products in Mathematics

The Cartesian product not only plays a fundamental role in set theory

but also serves as a key concept with applications spanning across

different mathematical landscapes, fostering connections between

seemingly unrelated areas through its elegant and versatile framework.

In linear algebra, we build vector spaces through Cartesian products.

A vector space of dimension n over a field F is a Cartesian product of

n copies of the set F F^n = F × F ×... × F (n times). This way of looking

at things helps clarify the coordinate representation of vectors, in

which each component relates to one dimension. One of the basic

10
MATS Centre for Distance and Online Education, MATS University

Notes building operations — matrix multiplication — is done using dot

products performed on components that come from the Cartesian

Product structure. In three-dimensional space, the cross product,

denoted a × b for two vectors a and b, is defined via the determinant of

a matrix built from the components of these vectors—a property made

available using the Cartesian product representation of the vectors

themselves. The Cartesian product is used in abstract algebra to

construct direct products of algebraic structures. For groups G, H, we

define the Direct Product G × H to be a new group with such an

operation: (g₁, h₁) * (g₂, h₂) = (g₁ * g₂, h₁ * h₂) Similar constructions

hold for rings, modules, and other algebraic structures, enabling

mathematicians to compose complex structures from simpler ones. This

is how finitely generated abelian groups are classified, because any

finitely generated abelian group is a direct product of cyclic groups, a

result exhibiting a remarkable degree of order between a huge class of

algebraic objects. This agrees with the definition used in topology,

where the Cartesian product X × Y of topological spaces X and Y

carries the product topology such that the projection maps are

continuous (that is, we take the coarsest topology on X × Y that makes

the two projection maps continuous). This means that topologists can

build new spaces and work with controlled properties, and this leads to

some fundamental results in topology, e.g., the Tychon off theorem on

compactness of products of arbitrary families of compact spaces. At an

extremely high level, the definitions of topological manifold (the

underpinnings of differential geometry and mathematical physics) are

premised on the idea that every point has a neighborhood that is

homeomorphic to an open subset of ℝⁿ (which itself is just a Cartesian

product). Cartesian products appear frequently in analysis, particularly

in multivariate calculus. A function f: ℝⁿ → ℝᵐ from several variables

f: ℝⁿ → ℝᵐ maps between two Cartesians. The Cartesian product

provides the coordinate structure from which partial derivatives,

gradient vectors, and multiple integrals are defined. The chain rule for

multivariate functions, a primary result of calculus, describes how

derivatives behave under composition, using the product structure of

the domain and co domain. In probability theory, the Cartesian product

is useful for modeling experiments with more than one outcome. If (Ω₁,

F₁, P₁) and (Ω₂, F₂, P₂) are probability spaces, the product space (Ω₁ ×

Ω₂, F₁ × F₂, P₁ × P₂) is constructed to model the joint system. Formally

11
MATS Centre for Distance and Online Education, MATS University

Notes the independence of events, or independent random variables is defined

as how the probability measures act on the product structure.

Independent random variables, a core concept in the formulation of

statistical theory, are defined in the framework of the Cartesian product.

This Cartesian product plays an important role in data modeling and

algorithm design in computer science. In relational database theory,

however, it is even more general, as tables are modeled as Cartesian

products with constraints, and operations like joins are defined as

selections from these products. The efficiency of algorithms on

multidimensional data often shows a Cartesian product structure in the

input space. Dynamic programming, a powerful algorithmic technique,

often harnesses how problems can be separated along the lines of what

makes up a Cartesian product of potential states. In graph theory, the

Cartesian product of graphs G and H is a graph denoted G □ H, with

vertex set as the Cartesian product of the vertex sets of G and H, where

two vertices are adjacent if they are adjacent in G while being equal in

H (or vice versa). This construction gives rise to important families of

graphs like hypercube and grid graphs, which have applications in

network design, coding theory, and distributed computing. The

hypercube Qₙ, the n-fold Cartesian product of the complete graph K₂,

has particularly interesting applications in computer science — indeed

as the topology of various parallel computing architectures. Breaking

ground: Cartesian product to model game theory. The strategy space

in an n-player game is typically represented as the Cartesian product

of individual strategy sets. Nash equilibrium (a key concept in

economic theory) is defined as a point in this product space at which no

player can resultantly gain by unilaterally changing its strategy. Many

combinatorial optimization problems can be formulated with the

objective of finding optimal points in highly structured Cartesian

products subject to a variety of constraints. The tensor product of two

vector spaces is the vector space of all bilinear functions on the

Cartesian product. The primary nature of the product alongside the

popularity of the product across mathematics. It acts as a robust tool for

constructing more intricate mathematical objects from simpler

constituents, offering a structured method to merge, while retaining

their structural elements. By providing a way for mathematicians to

approach problems in a lower-dimensional space, the constructive

property of the Cartesian product can illuminate aspects of

12
MATS Centre for Distance and Online Education, MATS University

Notes mathematical structures that may not be easily accessible in their

original dimensions.

1.1.5. Relations and Functions as Subsets of Cartesian Products

Fig: 1.1.5 Relations and Functions as Subsets of Cartesian Products

These two fundamental concepts are the relations and functions,

concepts that underlie all branches of mathematics itself that can be

exactly formulated through the language of Cartesian products. In

formal set theory, a relation R from a set A to a set B is defined as a

subset of the Cartesian product A × B: R ⊆ A × B. Each ordered pair

(a, b) ∈ R establishes a connection or correspondence between an

element a ∈ A and an element b ∈ B, capturing the fundamental concept

of relating items from distinct sets while adhering to the mathematical

structure afforded by the theory of sets. Often a R twice commutated b

is written as (a, b) ∈ R, to highlight that they are related. As an example,

let A denote a set of cities and B denote temperatures in degrees

Celsius, then a relation R ⊂ A × B could be pairs (city, temperature)

representing the measured temperature for each city on a certain day.

Based on the properties of relations, we can classify it into different

types which have certain mathematical significance. A relation R on a

set A (i.e., a relation from A to itself, or subset of A × A) is reflexive

if (a, a) ∈ R for all a ∈ A, so every element is related to itself. The

relation R is symmetric if whenever (a, b) ∈ R then (b, a) ∈ R, which

means that the relation works both ways. Transitive: for all (a,b),(b,c)

in R implies (a,c) in R, that is, the relation "passes through"

intermediate elements. An equivalence relation is a relation which is

reflexive, symmetric and transitive at the same time, and is a basic idea

13
MATS Centre for Distance and Online Education, MATS University

Notes used to create equivalence classes from sets. For example, in number

theory, we speak of the congruence modulo n, while in geometry we

first speak of the similarity of geometric figures, and later of

isomorphism of algebraic structures. Another category of relations is

order relations that satisfy different properties. A partial order

equivalently is a relation that is reflexive, ant symmetric ((a, b) ∈ R and

(b, a) ∈ R implies a = b), and transitive. A total order also imposes the

requirement that for any two elements a and b, either (a, b) is in R or

(b, a) is in R: order relations are very important in defining order within

ordered sets, and has applications that range from the natural ordering

of numbers to the subset relation on a power set. And many different

tools can be used to model and represent relations (and perform

analysis). Note that the graph for a relation R from A to B is the set of

ordered pairs {(a, b) | (a, b) ∈ R} which we can visualize when A and

B are finite sets. Another way to represent relations is by means of

matrices: Given two finite sets A = {a₁, a₂,..., aₘ} and B = {b₁, b₂,...,

bₙ}, a relation R ⊂ A × B can be expressed as an m × n matrix M in

which M(i, j) = 1 if (aᵢ, bⱼ) ∈ R and M(i, j) = 0 otherwise. This matrix

representation allows relations to be analysed computationally, linking

set-theoretic constructs to linear algebra. The operations on relations

include composition, inverse, and the various set-theoretic operations

on their graphs. Let R ⊂ A × B and S ⊂ B × C be relations, then the

composition S ∘ R ⊂ A × C is defined by {(a, c) | ∃ b ∈ B such that (a,

b) ∈ R and (b, c) ∈ S}. The inverse of a relation R ⊂ A × B is called

R^(-1): {(b, a) | (a, b) ∈ R} ⊂ B × A (it reverses the relation). Union,

intersection, and difference of relations (considered as sets of ordered

pairs) are inherited directly from the corresponding set operations.

Functions are a special class of relations that have important properties

in mathematics. We say a function from A to B, f: A → B, is a relation

f ⊂ A × B with the property that for all a ∈ A, there exists exactly one

b ∈ B such that (a, b) ∈ f, so the mapping of f passes the vertical line

test (every input has one output and one only). Like so, f(a) = b, rather

than (a, b) ∈ f — functions emphasize the (what goes in what comes

out of) mapping over the (mapping) itself. In this case we use notation

dom(f) as the domain of f, where f is a function from A to B; the set of

f of all the function values arrived are defined as the co domain (or

return values for a function): img(f) is the image of f, some subset of B

such that: {b ∈ B : ∃ a ∈ A : f(a) = b}; Depending on the functions

14
MATS Centre for Distance and Online Education, MATS University

Notes increase property on the values of the target set, we can categorize those

functions. A function f: A → B is injective (one-to-one) if no two

inputs provide the same outputs: ∀a₁, a₂ ∈ A, a₁ ≠ a₂ ⇒ f(a₁) ≠ f(a₂). That

is, f is injective if f(a₁) = f(a₂) implies a₁ = a₂. If f is a function from a

set A to a set B, we denote f: A to B. A function is subjective (onto) if

for every b ∈ B there is at least one a ∈ A such that f(a) = b: for all b ∈

B, ∃ a ∈ A: f(a) = b. A function which is injective (one-to-one) and

subjective (onto) is called bijective, i.e., we have a one-to-one

correspondence between the elements of A and those of B. Bijections

indicate when two sets have the same cardinality, a very important

notion in the study of infinite sets. The operations on functions are

composition, restriction and extension. We define the composition of

f: A → B and g : B → C as g◦f : A → C such that (g◦f)(a) = g(f(a)) for

all a ∈ A. It is an associative operation but not commutative in general.

If f: A → B is a function, the restriction of f to a subset A' ⊂ A is the

function f|A': A' → B defined by f|A'(a) = f(a) for all a ∈ A'. In contrast,

a function g: A' → B can sometimes be extended to a function f: A →

B where A' ⊂ A, such that f|A' = g. The idea of the image of a subset

under functions and its inverse image (preimage) provide excellent

tools for understanding how the function transforms sets. For a function

f: A → B and subsets A' ⊂ A and B' ⊂ B, the followings are defined;

image: f(A') := {f(a) | a ∈ A'} preimage: f^(-1)(B') := {a ∈ A | f(a) ∈

B'} These operations fulfill different set-theoretic properties: f(A₁ ∪

A₂) = f(A₁) ∪ f(A₂), but equality for intersection holds only in special

cases; for preimages, both distribution properties hold: f^(-1)(B₁ ∪ B₂)

= f^(-1)(B₁) ∪ f^(-1)(B₂) and f^(-1)(B₁ ∩ B₂) = f^(-1)(B₁) ∩ f^(-1)(B₂).

Some special types of functions are injections, surjection’s, bijections,

and functions with other algebraic or analytical properties such as

homomorphism, homeomorphism, and continuous functions. The

identity function on the (potentially infinite) set of elements A, id_A:

A → A by mapping each element a ∈ A to itself: id_A(a) = a, acts as

the neutral element for function composition. Every bijection f: A → B

has an inverse function f^(-1): B → A such that f^(-1) ∘ f = id_A and f

∘ f^(-1) = id_B, which gives us a way to "undo" the action of f. The

study of relations and functions in terms of Cartesian products not only

gives a rigorous foundation to these notions but also unveils deep

connections between these concepts and other areas of mathematics.

This set-theoretic treatment is made possible since the specific details

15
MATS Centre for Distance and Online Education, MATS University

Notes of the objects being related and/or mapped of interest are effectively

hidden behind this abstraction, and the relation can be treated as a

distinct mathematical object in its own right, leading to a unified

approach that results in being able to treat these common mathematical

constructs in similar ways.

1.1.6. Advanced Topics: Power Sets and Cartesian Products

Fig: 1.1.6 Power Sets and Cartesian Product

The connections between power sets and Cartesian products are deeply

revealing about the structure of sets and give rise to some sophisticated

constructions throughout mathematics with crucial consequences.

Power set the power set of a set A, denoted P(A) or 2^A, is the set of

all subsets of A, including the empty set ∅ and A itself. So for a finite

set A with n elements, there are exactly 2^n subsets in the power set,

hence the notation 2^A is in exponential terms. We can also see that the

size of the power set grows exponentially in terms of A -- a growth

level that is directly corresponding with binary sequences, as the

number of subsets corresponds to the number of ways we can pick or

not pick Moduley association of the individual elements that make up

A (i.e. for A { x, y, z, w } = {{ }, {x}, {y}, {z}, {w}, {x,y}, {x,z}...)

Now, we're going step by step into understanding why we are using

Cartesian products in the first place. For two sets, A and B, the set of

all functions f: A → B, sometimes denoted B^A, has cardinality |B|^|A|

16
MATS Centre for Distance and Online Education, MATS University

Notes (where A and B are finite). In this sense, when we refer to the power

set of A as P(A)=2A, we are defining it in the sense that we are

identifying a set with all functions that can be defined taking the set A

as an argument. This is the Cartesian product of the two sets of their

power sets P(A) and P(B), which will yield all ordered pairs (X, Y)

where X ⊆ A and Y ⊆ B, while not the same as the power set of the

Cartesian product P(A × B), which includes all subsets of A × B, e.g.,

arbitrary collections of ordered pairs. The connection between these

two constructions is subtle but instructive: there is an injection from

P(A) × P(B) into P(A × B) that sends (X, Y) to X × Y, but this mapping

is not subjective unless one of the two sets is empty or singleton. This

confirms that power sets for Cartesian products are not distributive:

P(A × B) ≠ P(A) × P(B) in general. This is due to the fact that P(A ×

B) also includes relations between A and B that cannot be captured as

Cartesian products of subsets. Binary relations between two sets A and

B (subsets of A × B) are an important concept in set theory and across

mathematics. The power set P(A × B) is exactly the set of all binary

relations from A to B. For finite sets |A| = m and |B| = n, we can

construct 2mn different relations, which illustrates the combinatorial

explosion that results when considering every possible connection

between elements of the two sets. This viewpoint is a bridge —

connecting the power set (along with products, both Cartesian and

otherwise) and relational theory; revealing their inter-relatedness.

Another connection between power sets and Cartesian products comes

from characteristic functions. The mapping between the set of real

numbers and the set of real numbers, where the characteristic function

defined as χA:{0,1}→{0,1} given by: χ_X(a) = 1 if a ∈ X, χ_X(a) = 0

if a ∉ X establishes a bijection X ↦ χ A : P(A) ↔ where a ⊆ A X ∈

P(A) P(A) ⇄ {0, 1}^A. Moreover, associated mapping for χ_A P(X)

↔ P(A) Find relations between the elements of P(X) and P(A): X∈P(A)

↔ A∈P(X) and so forth. Measures that are characteristic functions are

typically used in functional analysis, while functions that operate on

Boolean algebra are used in digital logic. The connections between

Cartesian products and power-sets have beautiful expression in

category theory, a branch of mathematics that abstracts and generalizes

large swathes of mathematics. The Cartesian product is the categorical

product in the category of sets, and the power set operation

corresponds to the categorical notion of an exponential object. Since

17
MATS Centre for Distance and Online Education, MATS University

Notes one is only concerned with a category-theoretic perspective on things,

one can witness how such constructions are examples of more abstract

patterns in other mathematics and this provides insight into their

properties. While talking about power sets and Cartesian products, it

adds more complexity to ordinary sets. Cantor's theorem expresses that

for any set A, the cardinality of P(A) (i.e. the powerset of A) is strictly

greater than the cardinality of A, which constitutes an infinite

hierarchy of ever growing infinite cardinalities. This result, together

with properties of Cartesian products of infinite sets, underlies cardinal

arithmetic — the study of operations on the “sizes” of infinite sets. For

infinite cardinal numbers αα and ββ, the cardinality of their Cartesian

product α×βα × β equals.

1.1.7 Statements and Notations, Logical Connectives

Introduction to Mathematical Logic and Statements

Fig: 1.1.7 Mathematical Logic and Statements

All mathematical reasoning for which reason judgment based on logic

takes place. The form of mathematics we are interested in,

mathematical logic, is at its core about formally specifying the rules we

can use to detect validity in reasoning, and the differences between

forms of valid and invalid reasoning. The simplest entities in this

logical system are mathematical statements: declarative sentences that

are unequivocally true or false, but not both at the same time. This

binary quality of mathematical statements, that they must have

18
MATS Centre for Distance and Online Education, MATS University

Notes precisely one truth value, is the bedrock of classical logic, a system

that has reigned over mathematical thought since the age of Aristotle.

For instance, take the statement “7 is a prime number.” This is a proper

mathematical statement because it is an assertion that can be proved

true or false according to established mathematical methods. Likewise,

the statement “For all real number x, x2 ≥ 0” is a mathematical

statement, whose truth may be determined. On the contrary, phrases

such as “Please solve this equation” or “x + 5” do not qualify as

mathematical propositions; the first one is an imperative rather than a

proposition, whereas the second one is just an algebraic expression that

does not express anything true or false. This is important because there

are statements whose truth values are theoretically determinate, but

whose truth values would be practically unknowable with current

mathematics. For example, the claim “The Riemann Hypothesis is

true” is a well-formed mathematical statement, even though we know

neither it nor its negation to be true. This brings us to a critical

difference between the semantic property of truth and falsity versus the

epistemological issue of determining the truth-value of a statement. A

language is formed where statements are represented by variables p, q,

r, or capital letters P, Q, R, or any combination thereof so that we can

examine logical relationships abstracted from any particular content. It

allows us to analyze the composition of logical argumentation without

getting blinded by the content of a specific proposition.

Mathematicians add even more categories based upon the foundation.

Atomic statements are statements without decomposed parts; they

cannot be broken into more statements. Compound statements are

statements made from the combination of local blocks of statements

connected by logical connectives. Open statements with undecided

truths are statements with variables defined such that the truth of the

statement is defined by those variables. Quantified statements are

statements that make claims about every or some of the items within a

domain. This classification gives us a taxonomy through which we can

explore the richness of mathematical reasoning more systematically.

The other key difference is between statements and predicates. A

predicate is a statement form with one or more variables, which

becomes a statement when replacements are made for the variables that

give it a definite truth value. For example, the expression “x > 5” is a

predicate that becomes a statement with a specific truth value when a

19
MATS Centre for Distance and Online Education, MATS University

Notes concrete value is provided for the variable x. Statements and their

logical relations become the foundation for advanced topics like formal

proof systems, model theory, and issues of completeness or consistency

in the context of mathematical theories.

1.1.8. Logical Connectives: Foundations and Truth-Functional

Analysis

Just as addition and multiplication come together to form sum-product

structure to represent efficient computations, logical connectives are

the fundamental operations that enable us to build complex statements

from simpler ones, yielding a grand and sophisticated language with

which we can communicate complex mathematics. The basic building

blocks of logical syntax are the logical connectives: negation,

conjunction, disjunction, conditional, and biconditional—and these

provide the syntax for binding simple or atomic statements into more

complex propositions to encapsulate mathematical relationships of

increasing complexity. All connectives have truth-functional behavior:

that is, the truth table for any compound statement is always

completely determined by the truth values of its constituent statements

and by the precise logical relation which is being asserted between them

by means of the connective.

Fig: 1.1.8 Mathematical Logic and Statements

20
MATS Centre for Distance and Online Education, MATS University

Notes Negation ¬ (or the alternate symbol ~), for any statement p, reverses

the truth value of p and results in ¬p, the logical opposite. If p is true,

¬p is false, and if p is false, ¬p is true. This operation, also known as

"logical NOT," enables us to express the denial or negation of a

particular statement. For instance, if we have that p = "x = 5", then ¬p

means "x ≠ 5". The logical conjunction of two statements p and q,

denoted p ∧ q (or sometimes p & q), states that both statements hold

true at the same time. This connective, which is to propositional logic

as the linguistic “AND” is to the human language, produces a true

compound statement if and only if both of its constituent statements are

true and is false otherwise. For example, let p be "x > 0" and q be "x 0

and x 0 or x < 10," which holds for all real numbers except x = 0. Data

scientist =⇒ Machine Learning interpreter |Professional experience |

Be sure to know your conditional statements — These statements are

based on the conditional statement, If the antecedent (p) is true, then

the consequent (q) will be true. This connect conjunctive is false only

in the case where p is true and q is false, in all other cases the

connective statement is true. This defies our intuition when p is false,

yet it is the stipulation of the truth table of p implies q that is consistent

regarding mathematical implications. Lastly, the biconditional (p ↔ q

(or p ⇔ q)) indicates logical equivalence between two statements; it

states that both statements have the same value in terms of truth (both

true and both false). This “if and only if” relation combines two

conditionals (p → q and p ← q) and is true exactly when the constituent

statements match truth value. Truth tables are a systematic way to

analyze such connectives and show all possible combinations of truth

values for the component statements and the truth value of the

compound statement. Whereas for conjunction (p ∧ q) we have a truth

table with four rows representing the four possible combinations of

truth values for p and q, but the conjunction is true only in the case

when both p and q are true. They provide these truth-functional

definitions to give logical connectives the mathematical (and hence

unambiguous) meaning they lack in natural language. In addition to the

five primitive connectives, we can define other operations such as the

exclusive disjunction (XOR, a.k.a. p ⊕ q) and the Shaffer stroke

(NAND, denoted p | q). Incidentally, some of these operations have the

property of functional completeness, which means that these properties

may be expressed, either individually or in any combination cast, any

21
MATS Centre for Distance and Online Education, MATS University

Notes truth functional operation. In particular, the negation plus conjunction

pair can express all other connectives as can the Sheffer stroke alone.

This functional completeness illustrates how even small subsets of

logical connectives can be highly expressive. More than that, the

algebraic properties of the logical connectives (associatively,

commutatively, distributive, identity, inverse) show us that they have

very rich similarities with operations on other mathematical systems as

well. Another example comes from conjunction and disjunction being

duals of each other, as expressed by their relationship through De

Morgan's laws: ¬ (p ∧ q) ≡ ¬p ∨ ¬q and ¬(p ∨ q) ≡ ¬p ∧ ¬q, which

illustrate how negation behaves in relation to them, so it should behave

with all of the other connectives, providing us with powerful tools for

either simplifying or reasoning all the valid instances of the system.

Learning logical connectives and their properties might seem purely

abstract, yet serves as the basis for proving techniques in mathematics,

designing algorithms and encapsulating circuit design in computer

engineering, querying databases in data science, etc.

1.1.9. Negation: The Fundamental Unary Operator

In classical propositional logic, negation is the only unary logical

operator, meaning an operator that takes a single statement and

constructs its logical negation. Represented with ¬ (or ~!, or ¬),

negation changes a proposition p into its negation ¬p, stating exactly

the opposite of the original statement. The ease of this operation hides

its deep centrality in mathematical argument and its widespread

occurring across branches of mathematics. Negation is truth-functional

because it obeys a truth table: negate a true statement to get a false

statement, negate a false statement to get a true statement. This

behavior exemplifies logical contradiction—¬p is true if and only if p

is false, and vice versa. In natural language negation can be expressed

as "it is not the case that," "not," or "it is false that," although in

mathematical notation the more succinct symbolic representation is

used. Negation has its own formal properties that are making it different

from other logical connectives. Most unwieldy of all, negation is

involutive: ¬ (¬p) ≡ p. This property, known as the law of double

negation, distinguishes classical logic from intuitionist and other non-

classical logical systems where double negation elimination does not

universally hold. Moreover, negation is neither idempotent (¬p ≠ p),

commutative (it is a unary operator, so the question does not apply),

22
MATS Centre for Distance and Online Education, MATS University

Notes nor associative (likewise). Negation is central to some of the most

basic logical principles. Since it is not logically possible for a

proposition and its negation to be true at the same time, this principle

is formally stated as ¬ (p ∧ ¬p) (meaning the negation of p and not p).

This rule, derived from Aristotle’s metaphysical writings, is a

foundational tenet of classical logical inference. The law of excluded

middle, which states that either something is true or not: p ∨ ¬p, also

rejects all intermediate possibilities. These principles seem intuitively

obvious, but they have been challenged in several non-classical logics

(many-valued logics and fuzzy logic including quantum logic), where

propositions might take intermediate truth values or where the

bivalence principle (that propositions are either true or false) is relaxed.

In mathematical practice, negation is more than the mere opposite. It

allows drafts of proof by contradiction (reduction ad absurdum), where

one concludes some proposition p, because assume ¬p leads to some

logical contradiction. This powerful technique has produced many

important results in mathematics, from the irrationality of √2 to

existence and uniqueness theorems. Negation can help you express

mathematical concepts clearly: when x does not equal y (that is, x ≠ y)

is the same thing as x = y is false; x is not an element of S (that is, x ∉

S) is the same thing as x is an element of S is false; the complementation

operation in set theory (the notation Aᶜ or Ā representing the elements

not in set A, where A is a set). Negation interacts with other logical

connectives in ways that yield important logical equivalences, such as

De Morgan's laws. These laws state that negation of conjunction is

disjunction of the negations (¬(p ∧ q) ≡ ¬p ∨ ¬q) and vice versa

negation of disjunction is conjunction of the negations (¬(p ∨ q) ≡ ¬p

∧ ¬q). These equivalences are building blocks for logical

simplifications and proof methods. Furthermore, negation converts

various other connectives to their duals: negation of an implication

(¬(p → q) ←→ p ∧ ¬q), and negation of a biconditional (¬(p ↔ q)

←→ p ⊕ q). Negation interacts with quantifiers to give rise to

especially important logical forms. If you see a universal statement

(∀x) P(x), then its negation is equivalent to the existential statement

(∃x) ¬P(x); similarly, if you see an existential, (∃x) P(x), then its

negation is the universal (∀x)¬P(x). It is important to note that these

relationships, known also as the quantifier negation laws, guide us

through understanding the meaning of mathematical statements as well

23
MATS Centre for Distance and Online Education, MATS University

Notes as the development of proofs on expressions presented in the quantifier

form. Negation has applications beyond the theoretical, finding its

usefulness in computer science and digital electronics as it has a real-

world counterpart in the form of the NOT gate, a fundamental

component of digital circuit design. Negation, commonly used in

programming languages as an operator (for instance,! or NOT critical

for conditional control structures and logical tests. Negation in

database query languages disallows certain records, while negation

plays an integral role in knowledge representations and reasoning

systems in AI. Negation can also affect how one thinks about what

can be known, which in turn touches upon some common themes in

epistemology, and even the philosophy of mathematics. Then,

exploring the consequences of this perspective leads to various

alternatives that become prominent in specific areas of mathematics,

such as constructivist mathematics or intuitionist logic, in which

negation is used in a more limited way, especially in existence proofs,

preferring constructive techniques involving finites or constructivist

methods over applied logical ones involving negation. These concerns

reveal how this apparently straightforward calculation relates to deep

issues regarding the underpinnings of mathematical reasoning and the

character of mathematical reality.

1.1.10. Conjunction and Disjunction: The Core Binary Connectives

As the basis for expressing complicated relationships between

mathematical statements, conjunction and disjunction make up a

complementary pair of binary logical connectives. In this way,

mathematicians gain the ability to express compound statements that

incorporate atomic statements through logical operations that work

roughly speaking like the "and" and "or" of natural language. The

conjunction of two statements p and q (note the symbol p ∧ q) states

that both constituent statements are true at the same time. Its truth

functional behavior is simple: the conjunction is true if and only if both

p and q are true; otherwise it is false. This definition matches the

intuitive meaning of “and” in ordinary reasoning, in which the assertion

that “A and B” necessarily implies the truth of both A and B, since the

mathematical statement “x > 0 and x 0) ∧ (x 1 (in formal notation: (x

1)) is actually true for all x excluding those x representing a number

from the closed interval [0,1]. This gives rise to some fundamental

algebraic properties of conjunction and disjunction which make logical

24
MATS Centre for Distance and Online Education, MATS University

Notes reasoning and proof-writing easier. Both operations are commutative

(p ∧ q ≡ q ∧ p and p ∨ q ≡ q ∨ p), indicating the order of the constituent

statements does not change the truth value of the compound statement.

They are also associative ((p ∧ q) ∧ r ≡ p ∧ (q ∧ r) and (p ∨ q) ∨ r ≡ p

∨ (q ∨ r)), so we can write expressions like p ∧ q ∧ r or p ∨ q ∨ r

unambiguously. Both operations are idempotent, which invites us to

eliminate unnecessary repetitions in conjunctions and disjunctions of

statements (p ∧ p ≡ p; p ∨ p ≡ p). Also, conjunction and disjunction

distribute over one another, but in different ways: p ∧ (q ∨ r) ≡ (p ∧ q)

∨ (p ∧ r) and p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r). They are what allows

logical expressions to be transformed from one form to another, often

making complex statements simpler, or allowing a hidden logical

structure to emerge. If we observe the identity elements, true (T) is the

identity element for conjunction, and false (F) is the identity element

for disjunction: therefore, p ∧ T ≡ p, and p ∨ F ≡ p, and if there is an an

nihilators which results otherwise, we have that F is the annihilator for

conjunction (p ∧ F ≡ F), and T is the annihilator for disjunction (p ∨ T

≡ T). These properties have analogues in other mathematical systems,

which are particularly set theory, where conjunction corresponds to

intersection (∩) and disjunction corresponds to union (∪). The formal

similarities between propositional logic and set theory come out

through the isomorphism between Boolean algebra and the algebra of

sets, specifically with conjunction and disjunction being the central

structural features in this correspondence. For example, the relationship

between conjunction and disjunction is dual; this means that you can

turn conjunction into disjunction by negating the expression (De

Morgan's laws): ¬(p ∧ q) ≡ ¬p ∨ ¬q, and ¬(p ∨ q) ≡ ¬p ∧ ¬q. There’s

a duality to the rest of the properties: the identity element for one is the

annihilator for the other (since the annihilator for either is itself an

iterate, and behaves as an inertial property), and the distributive laws

for each over the other mirror this. In many areas of mathematics,

conjunction and disjunction take center stage. And in Set theory, x ∈

A and x ∈ B and (x ∈ A or x ∈ B) are used to dentate the intersection

and union of the two sets A and B. In number theory, certain important

classes of numbers tend to be characterized by conjunctions of

primarily tests or divisibility conditions. In analysis, the requirement

for continuity at a point amounts to a conjunction of conditions on the

behavior of the function at that point, while discontinuity is a property

25
MATS Centre for Distance and Online Education, MATS University

Notes that can be expressed as a disjunction of ways in which continuity fails.

Conjunction and disjunction are also utilized as basic elements for

more sophisticated logical constructions in mathematical logic. The

exclusive disjunction (XOR, p ⊕ q) can, for example, be defined using

the raw connectives as (p ∨ q) ∧¬(p ∧ q), which is true if exactly one of

the statements is true. Likewise, all other derived connectives and

logical constructs can be represented with combinations of conjunction,

disjunction, and negation, so this tiny set of operators has expressive

completeness. In computer science, for example, their application

extends to Boolean operations within programming languages, circuit

design, database theory (specifically query conditions), and artificial

intelligence (in knowledge representation and automated reasoning

systems). The embodiment of these operations in electronic circuits —

via AND and OR gates — underpins the foundations of digital

computing, while their use in database query languages allows for the

creation of complex search parameters. The complement of the

multiplication law for independent events in probability theory (P(A ∪

B) = P(A) + P(B) - P(A ∩ B)) shows the interplay between conjunction

and disjunction and how those logical concepts carry over to

randomness and probability. So far as the conjunction and disjunction

are concerned, the mechanics of the philosophical implications touch

base with some of the most basic questions in mathematics and logic

about composition and choices. Thus, one finds that the definitions of

these operations in classical logic are much more precise than they are

however you might use them in a sentence or in other non-classical

logic models. The duality of conjunction and disjunction, along with

their complementary natures, demonstrates some of the elegant

symmetries that exist within mathematical logic and provide a rich

framework to express and analyze the logical structures of

mathematical statements.

1.1.11. Conditional Statements: Implication and Its Logical

Structure

In mathematical reasoning, perhaps the most fundamental (and yet

subtle) logical connective is the conditional statement, usually denoted

p → q or p ⇒ q. The conditional states an "if-then" relationship

between two statements: the antecedent p and the consequent q; it

represents the most basic form of logical implication: that if p is true,

then q must also be true. This connective is all over mathematics

26
MATS Centre for Distance and Online Education, MATS University

Notes statements of theorems (“If a triangle is equilateral, then it is

equiangular”), definitions (“A function f is continuous at a point c if for

every ε > 0, there exists a δ > 0 such that...”) and across the cloth of

mathematical argumentation. At first glance, the conditional is a simple

and familiar construction, but it contains subtleties that have led to

much logical and philosophical study. The truth-functional definition

of the conditional may at first seem counterintuitive: p → q is false

only when the antecedent p is true and the consequent q is false; in all

other cases—including when the antecedent is false—the conditional is

true. This definition, sometimes referred to as the material conditional,

differs from many natural language interpretations of “if-then”

statements, in which they often imply or entail, causally or inferentially

that the antecedent and consequent are connected. The truth table for

the conditional indicates this — when p is true and q is true, the

conditional is true (as it should be), when p is true and q is false, the

conditional is false (as it should be), but when p is false, the conditional

is true no matter the truth assignment of q. This last point—that any

conditional with a false antecedent follows as a matter of course—

underpins the principle of explosion or ex false quodlibet (“from

falsehood, all things follow”), a principle that has led to alternative

treatments of conditionals in non-classical logics. There are a number

of equivalent formulations of the conditional that shed light on its

meaning. The statement p → q is logically equivalent to ¬p ∨ q — that

is, either the antecedent does not happen or the consequent does

happen. And this equivalence also explains why the antecedent being

false yields a true conditional: if p is false, ¬p is true, so the disjunction

¬p ∨ q is true no matter whether q is true or false. At the same time,

there is another formulation that represents the conditional as the

negation of a certain conjunction: p → q ⇔ ¬ (p ∧ ¬q), which affirms

it is not the case that p holds, but q does not, that is: if p, then q. This

view highlights that the conditional, in its essence, excludes precisely

one of four combinations of truth values for p and q, leading to a

number of derived logical forms. It has the form p → q whose contra

positive (and logically equivalent statement) ¬q → ¬p states that if the

consequent is false, then the antecedent must also be false. One of the

basic rules of classical logic is that a conditional and its contra positive

are equivalent p → q ≡ ¬q → ¬p. This equivalence lays the groundwork

for many proof strategies, where proving a statement may be easier if

27
MATS Centre for Distance and Online Education, MATS University

Notes we instead prove its contra positive. The converse of p → q is q → p

and simply switches the antecedent and consequent. The converse is

not logically equivalent to the original conditional; given p → q, we

cannot conclude q → p at all. Confusing a conditional with its converse

is a common fallacy of mathematical reasoning (the “affirming the

consequent” fallacy). The next "most general" form is ¬p → ¬q, known

as the inverse of p → q, i.e., you negate both of the parts of the original

conditional. Similar to the converse, the inverse is not equivalent to the

original conditional (although the inverse and converse are equivalent

to one another, as they are the contra positive of each other). A

conditional, its converse, inverse, and contra positive together form a

logically interconnected system, that sheds light on the relationship

between p and q from different perspectives. In mathematics, chains of

conditionals often occur in sequence of logical deductions.

Hypothetical syllogism (or chain rule) given p → q and q → r we

obtain p → r formalizes the transitive property between logical

premises. In this spirit, the law is the basis for the structure of

mathematical proofs, which logically pull conclusions through chains

of implications that link the premises to what we normally call

theorems. The correspondence between conditionals and logical

equivalence is of particular importance. Let p and q be two propositions

such that both p and q are true; p → q is true; and q → p is true; then

p and q are logically equivalent symbolized as p ↔ q. This relationship,

both ways, which can be expressed as "if and only if" (often referred to

as "iff"), becomes very important in mathematical definitions, and

characterizations, where the conditions that must hold are necessary

and sufficient. Conditionals are found throughout mathematical

arguments, in many different forms and contexts. In hypothetical

reasoning, we anticipate consequences based on an antecedent we

presume. Proof by contradiction involves assuming that the conclusion

is false, derive a contradiction, thus proving that ¬p → (q ∧ ¬q) and

finally conclude that p must be true by the laws of classical logic.

Conditional statements also form the basis for the principle of

mathematical induction: to show that some property P (n) holds for all

natural numbers, one shows P(1) (the base case) and then shows that

P(k) implies P(k+1) for all natural numbers k (the inductive step). The

conditional structure of this statement reflects the reasoning behind the

inductive argument: given the truth of one case, you can infer the truth

28
MATS Centre for Distance and Online Education, MATS University

Notes of the next. Besides classical propositional logic, there are different

alternative formulations of conditionals that have emerged to avoid

issues considered troublesome with the material conditional.

Conditionals in relevant real logic are demanded to have a legitimate

relationship between their antecedent and consequent. Intuitionist logic

interprets conditionals constructively: it doesn’t just need to say if for

an antecedent there is an antecedent, but requires methods to convert

evidence for the antecedent into that of the consequent. In probabilistic

reasoning, for example, the most natural counterpart of conditionals is

conditional probabilities, where P (q|p) measures the probability of q

when p is true. These alternative approaches reveal the multifaceted

nature of conditional reasoning compared with the truth-functional

definition offered by classical logic. The conditional appears in

particular mathematical contexts as well. An example from set theory

shows how to use “if … then …” statements: “if x ∈ A, then x ∈ B”

characterizes subset A⊆ B. Another example: “if ||x − y|| < δ, then |f(x)

− f(y)| < ε” in functional analysis expresses continuity of a function f;

and in number theory “if n is prime, then n is either 2 or odd”

characterizes such property. As these examples show, the conditional

is one of the threads that shapes the logical relationships among

concepts and properties in mathematics. Object of interest:

Generalization and its connection between logic and mathematical

practice. The difference between material implication (the truth-

functional conditional of classical logic) and stronger notions of

implication in terms of relevance, causality, or necessity has led to a

lot of philosophical logic work. These are also considerations that

highlight the pivotal nature of conditional reasoning at the heart of

human thought in general and mathematical thought in the specific,

showing that the conditional has long been characterized as one of the

building blocks of logical inference and mathematical demonstration.

1.1.12. Biconditional and Logical Equivalence: The Foundation of

Mathematical Definitions

You can find detailed information about when two statements are

equivalent with the biconditional statement that is written using p ↔ q

(or p ⇔ q). The biconditional is one of the most powerful tools we

have in mathematical logic, as it is used to establish logical

equivalence between two statements p and q. The implication in the

biconditional p → q is unidirectional and can simply be read as p

29
MATS Centre for Distance and Online Education, MATS University

Notes implies q but biconditional says more; it is the simultaneous claim that

p and q are both true at the same time, or equivalently, that p implies q

and q implies p at the same time. This is the natural language phrase “if

and only if” (abbreviated as “iff” in the jargon of mathematical writing)

which is used to pin down precise definitions and characterizations as

well as the necessary and sufficient conditions all over mathematics.

Only with a truth-functional interpretation will the biconditional p ↔ q

be true exactly when p and q have the same truth value (either both true

or both false) and false when p and q have different truth values. This

is an example of the behavior captured in its truth table, where the

biconditional is only "true" in two of the four cases where p and q have

truth values: if both are "true" or both are "false." In more formal logic

terms, the biconditional is the conjunction of two implications saying

both that p implies q and that q implies p, or equivalently in terms of

disjunction either both statements are true or both are false. The

negation of a biconditional gives an exclusive disjunction (XOR): ¬(p

↔ q) ≡ (p ∨ q) ∧ ¬(p ∧ q) ≡ p ⊕ q, stating that one — and not both —

of the statements is true. These relationships illustrate the key role of

the biconditional in capturing different kinds of logical relationships

between statements. The biconditional has some important algebraic

properties. Like conjunction and disjunction it is commutative (p ↔ q

≡ q ↔ p), as one would expect from the symmetrical nature of logical

equivalence. It is also associative ((p ↔ q) ↔ r ≡ p ↔ (q ↔ r)), thus

allowing for unambiguous expressions of mutual equivalence among

multiple statements. The biconditional is reflexive (p ↔ p ≡ T), in other

words, every statement is equivalent to itself, and it has a variant of the

transitive property: if p ↔ q and q ↔ r, then also p ↔ r, thus forming

an equivalence relation in the logical sense and partitioning the space

of statements into equivalence classes of propositions that are

interchangeable in a logical context. In mathematical practice, the

biconditional plays its most important role in definitions, where it

interconnects the definientia (the concept being defined) with the

definiens (the conditions which characterize the concept). For

example, the biconditional relation "A triangle is equilateral if and only

if all sides of the triangle have equal length" defines a biconditional

property of being an equilateral triangle. This also allows us to create

statements that in a sense compel the definition to serve as both

necessary and sufficient conditions, which speaks to how we use

30
MATS Centre for Distance and Online Education, MATS University

Notes definitions in our logic. Mathematical definitions are highly logical,

and this structure nearly removes ambiguity because it specifically

dictates a condition for when a concept does apply. In addition to

formal definitions, biconditionals also arise in mathematical theorems

that say that different conditions or characterizations are equivalent.

Theorems of the type "The following statements are equivalent...

presents a list of conditions, claiming that each follows logically from

every other. These results are especially dear in mathematics because

they provide various insights into the same object, linking its intuitive

description with its more formal or abstract formulations. One example

is the following considered one of the central statements in linear

algebra “The following are equivalent for a square matrix A: (1) A

invertible; (2) det(A) ≠ 0; (3) Ax = 0 has only the trivial solution; (4)

The rows of A form a linearly independent set...” gives distinct but

logically equivalent perspectives on matrix invertibility. In proving

such equivalence theorems, it is common to show a series of

implications (usually in a circular fashion), i.e., condition (1) implies

condition (2) implies condition (3).. implies condition (1). In proofs

in mathematics, biconditionals may sometimes appear as the

strengthened form of conditionals originally conjectured. However, not

only the result p → q → p ↔ q is stronger than the previous ones, but

also the progression from p −→ q to the equivalence gives a precise

and good characterization of the mathematical result. The biconditional

is also fundamental to logical equivalence and has a central role in the

logical equivalency of formulas or expressions. Two logical formulas

φ and ψ are said to be logically equivalent, denoted φ ≡ ψ, if and only

if φ ↔ ψ is a tautology (that is, true under every possible assignment of

truth values to the atomic statements they contain). The concept of

logical equivalence allows us to transform and simplify complex

logical expressions in a manner analogous to how algebraic

equivalence allows us to manipulate mathematical equations. Some

important examples of logical equivalence include De Morgan's laws

(¬(p ∧ q) ≡ ¬p ∨ ¬q and ¬(p ∨ q) ≡ ¬p ∧ ¬q), the law of contraposition

(p → q ≡ ¬q → ¬p) and distributive properties ((p ∧ (q ∨ r) ≡ (p ∧ q) ∨

(p ∧ r)). The formal study of such equivalences is a rather large field of

mathematical logic, and provides some tools for logical simplification,

and analysis. In higher-level logical contexts, biconditionals relate to

quantifiers to represent uniqueness statements (as in defining the

31
MATS Centre for Distance and Online Education, MATS University

Notes meaning of a function). To claim that there exists a unique element

satisfying property P(x), we say (∃x) (P(x) ∧ (∀y)(P(y) ↔ y = x)) for

example. In a like manner, setting f(x)=y if and only if XYZ allows us

to specify exactly what makes f return the value y for the input x. This

can be interpreted in set theory, where biconditionals define criteria for

membership in a set: x ∈ {y | P(y)} if and only if P(x). These instances,

along with others, show that the biconditional is ubiquitous in the

formal framework of mathematics — it furnishes the logical basis for

sharp definitions, characterizations, and unique specifications.

Biconditionals have applications in many fields including mathematics

and science. In computer science, biconditionals show up in logical

equivalence checking in circuit design and in specification languages

in software verification. In mathematical modeling, they assist in

formulating precise conditions that define phenomena of interest. This

reduces the demand for visualizable intuitions and concepts to make

sense of mathematics, particularly in formal verification and theorem

proving where optimally exhaustively, reasoning with logical

equivalences makes simple dynamic programming of formula and

transforming complex logical formulas valid. The idea of necessary and

sufficient conditions, expressed through biconditionals, organizes

scientific explanation, whether the discipline is physics, economics, or

medicine. Biconditionals have philosophical implications relating to

the nature of definition, mathematical truth, and conceptual analysis.

32
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1.2: Tautology, Contradiction, Logical Equivalence

1.2.1 Tautology, Contradiction, Logical Equivalence

Introduction to Fundamental Logical Concepts

Formal logic provides the language of mathematics. (Note: This

special language is such that it permits mathematicians to express

statements with clarity, analyze the meaning behind those statements in

a systematic way, and derive conclusions with certainty.) Three key

concepts in mathematical logic are the tautology, the contradiction, and

the logical equivalence. These principles are the foundation of higher-

level logical reasoning and underpin the abstractions behind math

proofs. A tautology is a logical formula that is always true, no matter

what values are assigned to the variables in the formula. A formula is

tautological when it evaluates to true regardless of the truth values

assigned to the variables within it. Because tautologies maintain their

truth regardless of context it makes tautologies a super powerful part

of mathematical reasoning. Take, for example, the law of excluded

middle: “P ∨ ¬P” (either a proposition holds or its negation holds).

Regardless of what we plug in for P, this formula is always true. On

the other hand, a contradiction is a logical formula which is false under

all interpretations. A contradiction always evaluates to false regardless

of what truth values we use for its component propositions. The

simplest example is the formula “P ∧ ¬P” (something and not

something are true at the same time), which can never be satisfied. This

is why, although it sounds contradictory, contradictions is my best

friend when making logical proofs, especially when we do proof by

contradiction (reduction ad absurdum) and prove something by

showing that its negation leads to an impossibility. Logical equivalence

is a relation between logical formulas. For two formulas to be

logically-equivalent means that if you have two formulas and under

every interpretation that assigns truth values to its propositions they

have the same truth values then the two formulas are logically-

equivalent. Not only do logical equivalences give mathematicians

other ways to write the same logical content, they also can inform

structural insights that can be buried in the original formulation. For

instance, the logical equivalence of "P → Q" (if P, then Q) and "¬P ∨

Q" (not-P or Q) shows that implication can be meaningfully expressed

in terms of negation and disjunction alone. These three ideas —

33
MATS Centre for Distance and Online Education, MATS University

Notes tautology, contradictory, and logical equivalence — are the foundation

for propositional and predicate logic. Reasoning is the basis for the

exact formulation of mathematical theories, the construction of valid

arguments, verifying whether systems of axioms are consistent. We

will cover formal definitions, methods of representing and exploring

properties of operations (truth tables, Laws of logic), mathematical

implications, and philosophical considerations as we undertake a

deeper exploration of these concepts. We will also identify

relationships between these logical ideas and sections of math like set

theory and algebra.

1.2.2 Formal Definitions and Truth Table Analysis

Propositional Logic:

Let's begin our tour of the world of tautologies and contradictions and

logical equivalences, with some basic building blocks of propositional

logic. In propositional logic, we deal with propositional functions,

which are statements that can be true or false, along with logical

connectives that can combine the propositional functions into

compound propositions. The basic logical connectives are negation (¬),

conjunction (∧), disjunction (∨), implication (→), and biconditional

(↔). In propositional logic, a well-formed formula (WFF) is formed

according to specific syntactical rules. Propositional variables (P, Q, R,

etc.) are the simplest WFFs, representing atomic propositions. Logical

connectives are applied to simpler formulas to create more complex

WFFs. For instance, if P and Q are WFFs, so are ¬P, P ∧ Q, P ∨ Q, P

→ Q, and P ↔ Q. In a propositional logic, the truth values of

propositional variables are the building blocks for meaning, so the

semantics of a WFF is described by a truth assignment, which assigns

true or false to every propositional variable. Using the truth tables for

the logical connectives, the truth value of a compound formula can

then be calculated recursively. E.g., P ∧ Q is true iff (↔) if both P and

Q are true; P ∨ Q is true iff at least one (or in logic speak 1 of P or Q is

true and so on.

Tautologies: Universal Truths

Technically, a tautology is a well-formed formula (WFF) that is true

under every possible assignment of truth values. There are 2n such

truth assignments if a formula has n different propositional variables.

A formula is a tautology if and only if it is true for each of 2^n of these

assignments. Take the formula P ∨ ¬P. This formula has propositional

34
MATS Centre for Distance and Online Education, MATS University

Notes variable P, so we have 2^1 = 2 different truth assignments. P can be

true or false. If P is true then ¬P is false; thus P ∨ ¬P is true. If P is

false, then ¬P is true, and P ∨ ¬P is again true. This means that P ∨ ¬P

is a tautology. Truth tables can be used to analyze more complex

tautologies. For instance, look at the formula (P → Q) ↔ (¬P ∨ Q):)

P Q P → Q ¬P ¬P ∨ Q (P → Q) ↔ (¬P ∨ Q)

T T T F T T

T F F F F T

F T T T T T

F F T T T T

Since the formula is true for all truth assignments, it is a tautology.

This tautology captures a fundamental logical equivalence between

implication and disjunction.

Example

Consider the proposition:

(p∨¬p)

No matter what p is (true or false), this whole statement is always true.

Fig: 1.8 Tautology

This is called the Law of the Excluded Middle in logic:

p∨¬p

It states: Either a statement is true, or its negation is true.

Always true, hence a tautology.

35
MATS Centre for Distance and Online Education, MATS University

Notes Contradictions: Universal Falsehoods

A contradiction is a WFF, which is defined as evaluating to false under

all assignment of truth values. A tautology and a contradiction are the

negations of each other. The simplest contradictory is P ∧ ¬P: when P

is true, ¬P is false → P ∧ ¬P is false. If P is false, then ¬P is true, but

in that case, P ∧ ¬P will still be false. Therefore, P ∧ ¬P is false under

any truth assignment, and it is contradiction. The Contradictory

example is (P ∨ Q) ∧ ¬P ∧ ¬Q; again we will analyze truth table in this

formula, it was found that this formula will always be false:

P Q P ∨ Q ¬P ¬Q ¬P ∧¬Q (P ∨ Q) ∧¬P ∧¬Q

T T T F F F F

T F T F T F F

F T T T F F F

F F F T T T F

It can be confirmed that this formula is a contradiction because it

evaluates to false under every possible truth assignment. Thus this

contradiction shows that a disjunction cannot hold true when both of its

disjuncts are false.

Logical Equivalence: Structural Insights

A WFF A is logically equivalent to a WFF B (notated A ≡ B) if two

WFFs are equivalent if they have the same truth under all assignments

(i.e. all interpretation). A ≡ B if and only if A ↔ B is a tautology. To

prove ¬(P ∧ Q) ≡ ¬P ∨ ¬Q (De Morgan’s laws), for example, we can

use a truth table:

P Q P ∧ Q ¬(P ∧ Q) ¬P ¬Q ¬P ∨¬Q

T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

Since all possible assignments of truth values yield the same result for

¬(P ∧ Q) and ¬P ∨ ¬Q, they are logically equivalent. Other important

logical equivalences include:

• Double Negation: ¬¬P ≡ P

• Commutatively: P ∧ Q ≡ Q ∧ P; P ∨ Q ≡ Q ∨ P

• Associatively: (P ∧ Q) ∧ R ≡ P ∧ (Q ∧ R); (P ∨ Q) ∨ R ≡ P ∨ (Q

∨ R)

36
MATS Centre for Distance and Online Education, MATS University

Notes • Distributive: P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R); P ∨ (Q ∧ R) ≡ (P

∨ Q) ∧ (P ∨ R)

• De Morgan's Laws: ¬(P ∧ Q) ≡¬P ∨¬Q; ¬(P ∨ Q) ≡¬P ∧¬Q

• Implication: P → Q ≡ ¬P ∨ Q

• Contra positive: P → Q ≡ ¬Q → ¬P

This guild like explanations really helps to reason about how logical

equivalences works in mid you.

1.2.3. Properties and Theoretical Foundations

Algebraic Structure of Propositional Logic

Tautology, contradiction, and logical equivalence are closely

associated with the algebraic structure of propositional logic. Sure

enough: the collection of all WFFs of propositional logic, considered

up to logical equivalence, is a Boolean algebra, a mathematical

structure that lies at the heart of connections from set theory and

topology, to digital theater set design. In this algebraic setting,

tautologies correspond to the top element (denoted 1), contradictions

correspond to the bottom element (denoted 0), and logical equivalence

corresponds to equality. Complements, interactions and unions in

logical connectives correspond respectively to ¬, ∧ and ∨. This

abstract view gives a useful machinery for understanding and

transforming logical formulas. For instance, one of the rules in Boolean

algebra is the duality principle, which says that if we replace ∧ with ∨

and tautologies with contradictions in any theorem, we get another one

which is also correct. De Morgan’s laws and numerous other logical

equivalences echo this duality.

Normal Forms and Canonical Representations

In propositional logic, every WFF emerges logically equivalent to

formulas in different forms of normal forms which served standardized

forms helpful for analytical and practical usages. A formula is in

conjunctive normal form (CNF) if it is the conjunction of disjunctions

of literals, and a literal is either an propositional variable or its negation.

E.g. (P ∨ ¬Q) ∧ (¬P ∨ R) is in CNF. All of these logical equivalences

are in fact based on the fact that every WFF can be converted to a

logically equivalent formula in CNF. In a parallel fashion, a formula is

in disjunctive normal form (DNF) if it consists of a disjunction over

conjunctions over literals. E.g. (P ∧ ¬Q) ∨ (¬P ∧ R) is in DNF. Once

more, every WFF is equivalent to a logically equivalent formula in

37
MATS Centre for Distance and Online Education, MATS University

Notes DNF. These normal forms have significant theoretical and practical

consequences:

• A formula is a tautology if and only if its disjunctive normal form

(DNF) has its clauses span for all possible conjunctive clauses (or,

equivalently, that its conjunctive normal form (CNF) reduces to a single

literal).

• A formula is unsatisfiable if and only if its DNF is integral empty

disjunctive clauses (or equivalently if its CNF is unsatisfiable).

• Two formulas are logically equivalent iff they have the same

canonical DNF or CNF forms.

Decision Procedures and Computational Complexity

 This is known as the satisfiability problem (SAT): a formula is

satisfiable (SAT) if at least one truth assignment makes it true and

unsatisfiable (UNSAT) if no truth assignment makes it true (i.e. a

contradiction). A formula is tautologous iff its negation is

unsatisfiable. For propositional logic, the problem of satisfiability is

decidable: that is, there is an algorithm that can determine, for an

arbitrary WFF, whether it is satisfiable. The simplest method is to

build a truth table and test all truth assignments. But this means we need

to evaluate 2^n assignments where n is the number of propositional

variables in the formula, which is computationally infeasible for large

n. Since then, more efficient algorithms, e.g., the Davis-Putnam

Logemann Loveland (DPLL) algorithm and modern SAT solvers based

on conflict-driven clause learning have been devised. However, the

SAT problem is NP-complete, which means that no polynomial time

algorithm for solving it is known (or believed to exist) in the general

case. The implications of this computational complexity are far-

reaching, impacting fields such as artificial intelligence, formal

verification, and cryptography. Research on efficient decision

procedures for identifying tautologies, contradictions, and logical

equivalences is still ongoing.

Logical Consequence and Entailment

Tautology, contradiction, and logical equivalence are related to the

concept of logical consequence or entailment, indicated by the symbol

⊨. We say that a set of formulas Γ logically entails a formula A (Γ ⊨

A) if and only if every truth assignment making all formulas in Γ true

also makes A true. The following are some of the major relationships

between these concepts:

38
MATS Centre for Distance and Online Education, MATS University

Notes • ⟦ A is a tautology⟧ iff ⊨ A (i.e., A is entailed by the empty set of

premises).

• A formula A is a contradiction iff A ⊨ B for any formula B (from a

contradiction follows anything).

• A and B are logically equivalent (A ⇔ B) if and only if A ⊨ B and B

⊨ A Analyzing the second point we can see that our statement (2) is

derivation from (1) and simply means that if we know that A implies B

we can actually think about ¬A as A does not hold we can say I have

Derived ¬A (1) implies (2)

They form the semantic underpinning of more formal deductive

systems, in which a proof (typically noted with the symbol ⊢)

corresponds to a syntactic derivation with respect to a (possibly

infinite) set of rules. One of the fundamental results of mathematical

logic is the soundness and completeness theorem, which states that for

a certain deductive system, we have A⊢B if and only if A ⊨ B, bridging

the semantic notion of entailment with the syntactic notion of proof.

1.2.4. Applications in Mathematical Reasoning and Proof

Techniques

Tautologies as Logical Laws

In mathematics, tautologies function as the laws or principles (§ 10.) of

logic that dictate what valid reasoning is. They are statements that will

be true regardless of the situation and in which context you use it,

without destroying the validity of an argument. Examples of such basic

tautologies, which are logical laws, are:

• Law of Excluded Middle: P ∨¬P

• Law of Non-Contradiction: ¬(P ∧¬P)

• Law of Double Negation: P ↔ ¬¬P

• Modus Ponens: (P ∧ (P → Q)) → Q

• Modus Tollens: (¬Q ∧ (P → Q)) →¬P

• Hypothetical Syllogism: ((P → Q) ∧ (Q → R)) → (P → R)

• Disjunctive Syllogism: ((P ∨ Q) ∧¬P) → Q

The basis of formal deductive systems consists of these tautologies

which serve as the elements upon which valid mathematical proof can

be built. This is also known as a "formal proof" in which you can justify

every step either by applying a logical law (tautology) or citing a

theorem or axiom that you've proven before. For instance, let's prove

the statement "If n is odd, then n² is odd." Let P be the statement "n is

39
MATS Centre for Distance and Online Education, MATS University

Notes odd" and Q the statement "n² is odd." We need to show P → Q and we

might do so as follows:

1. If n is odd, then n = 2k + 1 for some integer k. (Definition)

2. If n = 2k + 1, then n² = (2k + 1)² = 4k² + 4k + 1 = 2(2k² + 2k) +

1. (Algebraic manipulation)

3. If n² = 2m + 1 for some integer m, then n² is odd. (Definition)

4. Therefore, if n is odd, then n² is odd. (Hypothetical Syllogism)

Each step in this proof relies on logical laws (tautologies) that ensure

the validity of the reasoning.

Contradictions and Proof by Contradiction

A common method in mathematics is proof by contradiction (reductio

ad absurdum). The basic idea is to start by assuming the negation of

whatever you want to prove and then show how that leads to a

contradiction. Which leads us to the conclusion that since

contradictions are universally false, the original assumption must be

wrong, and subsequently the statement to be proved must therefore be

true? The logic behind proof by contradiction derives from the

tautology ((P → Q) ∧ (P → ¬Q)) → ¬P; that is, if we can demonstrate

that some hypothesis P both leads to a Q and also to ¬Q then P must be

false (because this combination cannot be true). For example, consider

proving that √2 is irrational. We proceed by contradiction:

1. Assume √2 is rational. (Assumption for contradiction)

2. If √2 is rational, then √2 = a/b for some co prime integers a and

b, where b ≠ 0. (Definition of rational number)

3. If √2 = a/b, then 2 = a²/b², thus a² = 2b². (Algebraic

manipulation)

4. If a² = 2b², then a² is even, and therefore a is even. (Properties

of even numbers)

5. If a is even, then a = 2c for some integer c. (Definition of even

number)

6. If a = 2c, then a² = 4c², thus 2b² = 4c², and therefore b² = 2c².

(Substitution)

7. If b² = 2c², then b² is even, and therefore b is even. (Properties

of even numbers)

8. If both a and b are even, then they have a common factor of 2.

(Definition of evenness)

9. But this contradicts the assumption that a and b are coprime.

(Contradiction)

40
MATS Centre for Distance and Online Education, MATS University

Notes 10. Therefore, √2 is irrational. (Proof by contradiction)

This shows that by identifying a contradiction we can eliminate an

assumption and we can thus prove the veracity of its opposite.

Fig: 1.2.1 Contradiction

Logical Equivalence in Simplification and Transformation

Logical equivalences help mathematicians to provide the most

simplified/meaningful representation of complex validities. This kind

of substitution of sub expressions for logically equivalent alternatives

can serve to clarify the logical structure of a statement, or expose

connections that were not immediately obvious. For instance, a logical

statement in the form of "If it is not raining then I will go for a walk,

but if I do not go for a walk then it is raining." Let P be “It is raining”

and Q be “I will go for a walk.” Formally speaking, this can be

expressed as (¬P → Q) ∧ (¬Q → P). We can condense this expression

using logical equivalences: Using P → Q ≡ ¬P ∨ Q(¬P → Q) ∧ (¬Q

→ P) ≡ (P ∨ Q) ∧ (Q ∨ P) (Commutatively of ∨) ≡ (P ∨ Q) ∧ (P ∨ Q)

(Idempotence of ∧) ≡ P ∨ Q Likewise, logical equivalences are of

utmost importance in mathematics as we need to manipulate theorems

or definitions to some other formulations. For example, the epsilon-

delta, limits, and sequence definitions of continuity of a function at a

point all say the same thing. All three formulations are logically

equivalent, and mathematicians are free to use whichever form suits a

particular context.

41
MATS Centre for Distance and Online Education, MATS University

Notes Propositional Logic in Computer Science and Engineering

In computer science and engineering, the concepts of tautology,

contradiction and logical equivalence are useful in formal verification,

digital circuit design, and automated theorem proving, among other

things. In formal verification, one wants to show through purely

mathematical means that a system (like a computer program or an

electronic circuit) satisfies certain properties or specifications. This is a

logic problem: Given that S captures the behavior of the system and

that P is the property we desire, we need to check that S → P is a

tautology. Automated approaches for tackling such verification

problem are model checking and satisfiability solvers. It makes perfect

sense to describe digital circuitry in logical expressions (for example,

cannot be more naturally expressed). A tautology corresponds to a

circuit that is always 1 (true), regardless of the inputs; a contradiction

corresponds to a circuit that is always 0 (false); and logical equivalence

corresponds to two circuits that has the same input-output behavior. It

is from this Boolean algebra and logical equivalences that many tools

can be used to such ends to minimize and maximize circuits logic which

conforms to their logic types. In automated theorem proving,

automated computer programs attempt to discover proofs of instances

of mathematical theorems automatically. If the negation of target

theorem is converted into CNF, the resolution rule can be applied to

derive a contradiction, and this is the approach of resolution-based

theorem proves. If a contradiction is derived, then the initial theorem

therefore is proven true. This automating of logical reasoning has

transformed entire fields as diverse as mathematics and artificial

intelligence.

1.2.5. Extensions to Predicate Logic and Modal Logic

Quantifiers and Validity in Predicate Logic

Propositional logic gives the background on things like tautologies,

contradictions, and logical equivalents, but many mathematical

statements need the extra power of predicate logic. Predicate logic adds

quantifiers (∀ for "for all" and ∃ for "there exists") and predicates

(relations between objects) to propositional logic. In predicate logic,

these notions generalize to validity, satisfiability and logical

equivalence with respect to all interpretations (not just truth-

assignments). An interpretation in predicate logic assigns a domain of

discourse, interprets predicate symbols as relations on the domain,

42
MATS Centre for Distance and Online Education, MATS University

Notes interprets function symbols as functions on the domain, and assigns

domain elements to constant symbols. In predicate logic, a formula is

valid (like a tautology) if all interpretations satisfy it. For example, ∀x

(P(x) → P(x)) is valid because it is true for any set of objects in the

domain and for any interpretation of the predicate P. If it is false under

all interpretations, then a formula is unsatisfiable (similarly, a

contradiction). As an example, ∃x(P(x) ∧ ¬P(x)) is unsatisfiable since

there is no element that satisfies P(x) and ¬P(x) at the same time. Two

formulas are said to be logically equivalent if they have the same truth

value for all possible interpretations. In particular, ¬∀x P(x) ∼ ∃x

¬P(x) (one of the De Morgan laws for quantifiers). In predicate logic,

the analysis of validity is exponentially more complicated than

propositional logic. In propositional logic, determining whether a given

formula is a tautology is decidable (i.e., there is an algorithm that can

answer this question), but for predicate logic, the validity problem is in

general undividable (as shown by Church’s theorem).

Modal Logic and Possible Worlds Semantics

Modal logic is an extension of classical logic it includes operators that

qualify the truth of a proposition relative to a certain modality (e.g.

necessity,□ or possibility,◇). These modalities enable a finer logical

treatment, especially of statements about what must be true, might be

true, is known, is believed, or should be the case. The definitions of

tautology, contradiction, and logical equivalence that we have seen in

propositional logic are generalized in modal logic, taking these

additional operators into account. A common semantic framework is

the powerful possible worlds semantics (or Kripke semantics), where,

rather than evaluating formulas in isolation in a single world, one

considers a collection of related possible worlds. In modal logic, a

formula is a logical necessity (the modal analogue of a tautology) if

there is no possible world in which it is false in all possible models. For

example, □(P ∨ ¬P), which claims that the law of excluded middle is

necessarily true, is a logical necessity. A formula is logically

impossible (akin to an inconsistency) if it is false in every possible

world in all possible models. In modal logic, two formulas are said to

be logically equivalent when they have the same truth value in all

possible worlds in all possible models. For instance, it is logically

equivalent that □P iff ¬◇¬P (P is necessary only if it is not possible

that ¬P). Different systems of modal logic (such as S4, S5, or K) are

43
MATS Centre for Distance and Online Education, MATS University

Notes distinguished by their axioms governing the behavior of the modal

operators, reflecting different ideas about the meaning of necessity and

possibility.

1.2.6. Philosophical Implications and Foundational Issues

Logical Truths and the Nature of Mathematics

This remarkable property raises deep philosophical concerns regarding

the mind and mathematical truth; the nature of such statements, called

tautologies, states that they can only be true because of their logical

form, a unique quality. Are the truths of mathematics just ornate

tautologies, as some logicist philosophers have claimed? Or do they

have some alternative epistemological status? The logicist program

originated with Got lob Frege and Bertrand Russell, who sought to

reduce mathematics to logic by proving that all mathematical concepts

could be defined in terms of logical concepts, and that all mathematical

theorems could be derived from logical axioms. In this view,

mathematical truths would, indeed, be complex tautologies. But it was

not without significant challenges. Kurt Gödel's incompleteness

theorems showed that any consistent formal system capable of

expressing elementary arithmetic contains statements that are true but

cannot be proved in the system. This means that there are true

statements in mathematics that cannot be proved via a formal

approach, this implies that "mathematical truth" is more than what can

be described by formal logical systems. There is a philosophical debate

here too: Platonism (mathematical objects exist independent of human

minds), formalism (mathematics amounts to manipulating meaningless

symbols according to formal rules), and intuitionism (mathematical

objects are mental constructions), structuralism (mathematics studies

abstract structures). In addition to this technical comedy, tautology in a

sense answers the question by establishing the constraint of what is

effectively mathematical knowledge, the line separating the logical

and extra-logical components of our formal system (David Farber and

Steven G. Krantz, "Tautology").

The Law of Non-Contradiction and Para consistent Logics

The law of non-contradiction (formally ¬ (P ∧ ¬P)) has been a

fundamental tenet of Western philosophy since Aristotle. It states that

a statement cannot be true and false at the same time. This is the

principle behind the idea of non-contradiction in classical logic and

justification for proof by contradiction in mathematics. Nevertheless,

44
MATS Centre for Distance and Online Education, MATS University

Notes certain philosophical and mathematical situations have inspired the

formation of par consistent logics, which relax the explosive principle

of classical logic (that a contradiction implies any arbitrary statement).

Such logics admit contradictions and avoid early trivialization. Non-

classical logic is an umbrella term for a slew of alternatives to classical

propositional and predicate logic, including temporal and modal logic,

deontic logic, relevance logic and intuitions logic. For instance, the Liar

Paradox (“This statement is false”) appears to yield the result that the

statement is simultaneously true and false, a contradiction. Para

consistent logics offer systems for reasoning about these sorts of

paradoxes without descending into total inconsistency. Para consistent

logics raise some baffling considerations about what logical laws are

and whether the law of non-contradiction applies universally. Most

mathematicians still work within classical logic, but studying other

logical systems deepens our comprehension of the nature of

mathematics and the prospects for logical reasoning.

Logical Equivalence and the Problem of Translation

Logical equivalence also leads to philosophical questions about the

nature of meaning, identity, and translation. Do two logically

equivalent formulas express the same proposition? Or do they have

different propositions that just happen to have the same truth

conditions? Applying W.V. Quince’s idea of the indeterminacy of

translation, you could tell your friend that as there are multiple equally

valid translations of a statement from one language to another, there

exists no fact of the matter about any statements which translation is

"correct." This indeterminacy raises questions about the assumption

that logically equivalent statements express the same meaning. In

practice, logically equivalent statements of theorems or definitions

give different perspectives or suggest different generalizations. The

Jordan curve theorem, for example, can be stated in terms of point-set

topology or in terms of homology theory. These formulations are

logically equivalent, but emphasize different aspects of the result and

point to different mathematical traditions. Logical equivalence bears

philosophical implications for the individuation of propositions, the

nature of syntax-semantics connections, and the nature of

mathematical grasp. It highlights the intricate relationship between

formal logical form and the substance of mathematical theories.

45
MATS Centre for Distance and Online Education, MATS University

Notes 1.2.7. Advanced Topics and Emerging Directions

Many-Valued Logics and Fuzzy Logic

Classical logic is bivalent: it allows only two truth values, true and

false. Under this definition, tautology, contradiction, and logical

equivalence are straightforward. Nonetheless, not only applications in

mathematics, computer science, and linguistics motivated the

development of many-valued logics, which permit the introduction of

other truth values, besides true and false. In a multi-valued logic a

tautology is generalised to one formula that always gets the designated

truth value (typically the maximum value), irrespective of the truth

values of the proposition forming her. A formula is a contradiction if

and only if it always has the non-designated truth value (commonly the

minimal value). It should hang on the definition of logical equivalence,

having the same truth values under all relevant assignments. Fuzzy

logic takes this one step further by specifying that truth values may be

any real number in [0, 1], indicating the degrees of truth. In fuzzy logic,

a tautology is a formula that has degree of truth 1 under all

interpretations, a contradiction has degree 0 under all interpretations

Logical equivalence means the having the same degree of truth under

all interpretations. Applications include artificial intelligence, control

theory, and semantics of vague natural language statements. They’re

mathematical structures that serve as general tools for reasoning with

uncertainty and incomplete truth, generalizing logical systems beyond

the rigidities of classical true/false.

Quantum Logic and Non-Classical Logics

Many intuitions about physical reality and many more found in

classical logic were put on bushwhacked notice with the advent of

quantum mechanics in the early 20th century. However, quantum logic

was developed as a logical framework that better accommodates our

reasoning about quantum phenomena. In quantum logic, the

distributive law of classical logic (P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R))

does not in general hold. This breakdown illustrates the non-classical

behavior in quantum systems, which mainly represents

complementarily: some properties of quantum systems cannot be

measured simultaneously with arbitrary precision. Tautology,

contradiction, and logical-equivalence need to be rethought in this

non-classical setting. A quantum tautology means a formula that

evaluates to "true" under any quantum-mechanical interpretation. In

46
MATS Centre for Distance and Online Education, MATS University

Notes parallel, quantum logical equivalence would ensnare the equal conduct

of logically correlated quantum propositions. Various other non-

classical logics have been devised for different purposes, such as

intuitionist logic (which does not accept the law of excluded middle),

relevance logic (which requires some relevant connection between the

premises and the conclusion in an argument), and linear logic (which

treats logical formulas as resources that can be consumed when they

are used). We have built a whole diversity of logical systems, each

with unique views on tautology, contradiction, and logical equivalence.

Computational Aspects and Automated Reasoning

Finding tautologies, contradictions, and logical equivalences is a

fundamental task in automated reasoning systems, such as theorem

provers, symbolic computation software, and artificial intelligence

systems. By using efficient algorithms for these tasks computers can

contribute to mathematical research, the verification of software and

hardware, and knowledge representation. PAR(allelism, across

architectures and domains)Recent advances in SAT solving (i.e.,

deciding the satisfiability of propositional formulas) have resulted in

significant progress for the solution of large-scale problems.

47
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1.3: Relation

1.3.1 Relation, Types of Binary Relation, Equivalence Relation

Introduction to Relations

Fig: 3.1.1 Relation

Based are sets, the relations are the basic structures of the mathematics,

formalizing the connections between the objects of the sets. They

feature in the mix across disparate branches of mathematics and

computer science, from abstract algebra to database theory. In formal

terms, a relation R from a set A to a set B is a subset of the set of ordered

pairs A × B, which is the set of pairs (a, b) where a ∈ A and b ∈ B; if

a relation R contains (a, b), we also say that a is R related to b, and we

commonly write aRb to denote it. Relations are a fundamental tool for

abstraction and generalization of mathematical concepts and are used

to describe, in a more general way than through functions, orderings,

equivalences, and entities that combine various previous relations.

Today, the study of binary relations on one set (A = B) is the foundation

for many of the algebraic and structural properties investigated by the

field of discrete mathematics. This relation can be represented as a

directed graph, a matrix, or a set of ordered pairs, each of which has its

uses in different cases. SUPER (Relations) — The study of relations

enables mathematicians to abstract phenomena at hand and free the core

focuses of the problem from unnecessary details, leading to the

development of concepts that may not arise otherwise. We will discuss

different types of relations, their properties, and how they can be used

to model real-world scenarios and solve mathematical problems.

Relations play a major role in the intuitive go between connection and

the brains of structures of formal mathematics and are therefore

essential for building a solid groundwork in higher mathematics.

48
MATS Centre for Distance and Online Education, MATS University

Notes Relations; In computer science, relations are the theoretical basis for

relational databases (which store data in tabular format). The

connection is an instance of how the mathematical theory of relations

has practical significance beyond its theoretical interest. Relation

theory was developed in relation to early set theory dating back to the

work of mathematicians like Georg Cantor, Richard Dedekind and

Ernst Schroder from 1874 to the late 19th century. But it was over the

course of the 20th century that the formal theory of relations developed

significantly, largely credited to Alfred Tarski, Alfred North Whitehead

and Bertrand Russell and their magnum opus "Principia Mathematical."

relation theory is an area of active research, and it is used in several

modern fields such as artificial intelligence, machine learning, and

network theory.

1.3.2. Formal Definition and Representation of Relations

A binary relation R from set A to set B is defined as a subset of the

Cartesian product A × B, and if A = B the term binary relation can refer

to a binary relation on A. There are multiple ways of representing

relations, each of which has its own advantages in a given context. The

simplest form is a collection of ordered pairs of the form {(a, b) : a ∈

A, b ∈ B, aRb} Alternatively, a relation on a finite set can be

represented using a matrix, where the rows of the matrix are the

elements in the first set, columns are the elements in a second set, and

the entries indicate whether the elements are related (1) or not (0). For

relations defined over a single set, digraphs (directed graphs) provide

an intuitive pictorial representation: vertices can be thought of as

elements from the set and directed edges represent (ordered) pairs that

are related. Different aspects of the relation are emphasized and

different types of operations and analyses facilitated by the respective

representation. Matrix representations allow common computational

operations (e.g., relation composition) to be performed via matrix

multipli- cation, while direct visualizations (like graphs) give instant

insights about properties of interest (e.g., connectivity, cycles, etc.). In

addition, the relations can also be expressed as predicates or formulas

of a logic that identifies under what conditions elements are in a

relation. P(x, y) is an example of a predicate since the "less than"

relation on integers can be defined by this predicate: it would be true if

x < y. This connects relation theory with logic and allows logical

machinery to help us analyze relations. Representation depends on the

49
MATS Centre for Distance and Online Education, MATS University

Notes application and studied properties. Generation of this description will

naturally depend on the relation in question: for small relations, it might

be most natural to enumerate the ordered pairs, whereas computation-

intensive enumerations for much larger relations may be better

expressed as algebraic expressions or logical formulas defined by

membership. Adjacency lists or sparse matrices may be used to store

relations in computer implementations to save space and improve time

complexity. More advanced data structures like binary decision

diagrams (BDDs) can compress relationships into a format that

enables fast operations. Set theory underlies a more formal approach to

relations that provides a basis for many useful structures in

mathematics, including functions (special cases of relations), partial

orders and equivalence relations, not to mention algebraic structures

such as groups and rings. What this means is that by abstracting away

the details, mathematicians can find similarities between mathematical

objects that may have looked completely unrelated, and then create a

unified theory to describe all of these once separate objects. Relations

exercise a theory direction that fits nicely into both practical and

theoretical bridges; for example, design guides for the relational model

of databases stem from direct mapping of relations as an entity-

relationship diagram into relational algebra, while problems in

computational complexity often revolve around relations over input

and output.

1.3.3. Properties of Binary Relations

All binary relations have some important properties that describe their

behavior and structure. For all a ∈ A, a relation R on A is reflexive iff

(a, a) ∈ R. A relation R is reflexive if no element is related to itself, so

(a, a) ∉ R for all a ∈ A, and it is symmetric if, whenever (a, b) ∈ R, we

also have (b, a) ∈ R (so if a is related to b, then b is related to a): and,

conversely, a relation is ant symmetric if, whenever (a, b) ∈ R and (b,

a) ∈ R, then a = b (so no two distinct elements can be related in both

directions). A relation is asymmetric if it is both reflexive and ant

symmetric, which means that (if (a, b) ∈ R) => (b, a) ∉ R; Transitivity,

is another key property: R is transitive if if (a, b) ∈ R ∧ (b, c) ∈ R then

(a, c) ∈ R and means the relation "carries through" chains of related

elements) All these properties are not mutually exclusive and relations

can have different combinations of them. For example, a relation could

be reflexive and symmetric but not transitive. A relation has certain

50
MATS Centre for Distance and Online Education, MATS University

Notes properties which influence the behaviour of the relation

mathematically, and what kind of structures it can model. Relations

that are reflexive, symmetric, and transitive are called equivalence

relations, and they partition sets into disjoint equivalence classes.

Reflexive, ant symmetric, and transitive relations form partial orders

that can represent hierarchical structures. As relations can be

represented in various ways, each property could be verified using

different methods. Reflexivity thus equates to having all 1s on the main

diagonal in matrix representation; and symmetry in the main diagonal

of the matrix. Transitivity can be checked via matrix multiplication: let

M be the relation matrix; then R is transitive iff M² ⊆ M (where M² is

obtained via Boolean matrix multiplication). Reflexivity, symmetry,

and transitivity can also be interpreted in terms of the representation of

relations as graphs. Reflexivity corresponds to a self-loop on every

vertex, symmetry to edges being bidirectional, and transitivity to the

condition that if there exists a path from a to b and a path from b to c,

then an edge from a to c also exists. Graphs also have operations such

as complementation, inversion, and composition over relations that

create new relations, impacting these properties. Order theory, which

focuses on the structure of partial and total orders, and algebraic

structures such as lattices and Boolean algebras defined in relation to

certain types of relations centers around relation properties. In the field

of computer science, knowledge of relation properties plays an

important role in database design (functional dependencies), algorithm

analysis (recurrence relations), and formal verification (transition

relations in state machines).

1.3.4. Types of Binary Relations and Their Applications

Binary Relations: Binary relations can be categorized in many types

according to their properties, these categories are having various

applications in all over the mathematics and computer science.

Reflexive, symmetric, and transitive relations are known as

equivalence relations, one of the most important relations in terms of

abstract algebra, topology, and number theory. They divide sets into

non-overlapping equivalence classes, allowing the construction of

quotient structures and abstract models. An example of equivalence

relation is the congruence modulo n, which is a equivalence relation

that is the basis of modular arithmetic, which is important in fields like

coding theory and cryptography. A partial order is an ordering that is

51
MATS Centre for Distance and Online Education, MATS University

Notes reflexive, ant symmetric, and transitive; partial orders are useful for

modeling hierarchical orders, such as taxonomies, organizational

charts, and dependencies between tasks in project management. If

every pair of elements is comparable, we instead have a total order,

such as the standard ordering of real numbers. An example of a preorder

(both reflexive and transitive relation) is used in preference modeling

and category theory; An example of tolerance relations (both reflexive

and symmetric) is used in approximate reasoning and fuzzy logic."

Functional relations are mathematical functions — every item within

the domain corresponds to exactly one item within the co domain.

Functions can be categorized as injective (one-to-one), subjective

(onto), or bijective (both), and play an important role in solving

equations and showing size equivalence between sets. Circular

relations display cyclical patterns, where elements can be arranged into

cycles — think rotate groups or periodic phenomena in time series

analysis. Cyclic ordering relations extend "between’s" to ternary

relations over elements: they are used for example when representing

points on a circle, or for scheduling cyclic events. Proximity relations

measure the closeness or similarity between two objects and play an

integral role in both cluster analysis, pattern recognition, as well as in

many machine learning algorithms. Dominance relations compare

objects with respect to multiple criteria and have been widely used in

multicriteria decision making and game theory. In graph theory,

binary relations form their foundation too: the edges are the

relationships between the vertices. Specific relations and hierarchies

(file systems, company structure, etc) are represented by special graph

structures, such as trees (acyclic connected graphs). Relations in a

relational database mean tables and foreign keys create relationships

between entities. The operations of relational algebra (such as

selection, projection, join) are performed upon these relations to query

and transform data. Relations can be used to represent connections

between people (or nodes) in network models in sociology and

communications, which allow for the analysis of information flow, the

patterns of influence within a social network, and commModuley

structures. Causal relations in statistics and empirical sciences describe

cause-effect relationships that are core to prediction and explanation.

Understanding these different patterns of relations helps

mathematicians and computer scientists find models that suit the

52
MATS Centre for Distance and Online Education, MATS University

Notes phenomena and exploit relation properties to solve various problems

efficiently. The classification of relations is a powerful framework for

recognizing similarities across domains and applying known

mathematical techniques to situations they were not designed for.

1.3.5. Equivalence Relations and Partitions

Equivalence relations have a particularly nice place in mathematics,

because they are intimately related to set partitions. A relation R on a

set A is an equivalence relation if and only if it is reflexive (aRa for all

a ∈ A), symmetric (if aRb, then bRa) and transitive (if aRb and bRc,

then aRc). These properties guarantee that an equivalence relation

partitions the set into disjoint subsets, known as equivalence classes,

each class containing elements related to each other. For any element a

∈ A, its equivalence class [a] is the set of all elements equivalent to a,

given by [a] ≡ {x ∈ A | xRa}. A foundational theorem of set theory

shows that, for any set a, an equivalence relation on that set induces a

partition of that set into disjoint equivalence classes, with a unique

equivalence relation deriving from a partition. The one-to-one

correspondence between equivalence relations on a set and partitions

of that set is particularly useful in abstract mathematics and its

applications. By grouping elements according to their relevant

properties and ignoring their irrelevant differences, equivalence

relations allow for abstraction. Equivalence relations allow us to "mod

out," leading to structures called quotients that can provide insight and

streamline many complex problems. For example, congruence modulo

n (where a ≡ b (mod n) iff n | (a − b)) decomposes integers into residue

classes 0, 1,..., n-1 mod n, and is used in modular arithmetic with

applications in computer algorithms and cryptography and number

theory. Equivalence relations arise in abstract algebra as congruence’s

in groups, rings, and other algebraic structures, enabling the formation

of quotient structures such as quotient groups and quotient rings. In this

framework, quotient structures allow for the retention of key algebraic

characteristics while simplifying the structure, enabling the

classification and analysis of various algebraic systems. In topology,

we use equivalence relations to obtain quotient spaces like the torus that

is formed by identifying opposite edges of a rectangle. Translations,

rotations, and reflections between sets of geometrical figures yield

equivalence relations in which equivalent figures are considered the

same under the transformation. In computer science, equivalence

53
MATS Centre for Distance and Online Education, MATS University

Notes relations represent state equivalence in the minimization of finite

automata, streamlining computational resources and preserving the

recognized language. Hash tables are data structures that utilize

equivalence relations to organize data efficiently by using hash

functions. However this last definition leaves us with some

computational aspects, namely: canonical elements representatives for

equivalence classes and fast decision if two elements belong to the

same class. Union-find data structures solve this problem using near-

constant time operations, making them useful to network connected

components, minimum spanning trees, and some computational

geometry algorithms. Fuzzy equivalence relations and tolerance

relations, which generalize the notion of strict equivalence to capture

similarity or approximate equality, are also covered by equivalence

relation theory. Where these generalizations can be applied are pattern

recognition, clustering algorithms and artificial intelligence. This is

essentially what equivalence theory represents a bridge between all

extremes of mathematics, from the most esoteric theoretical

constructs, down to the most concrete application oriented

computational problem, all relating through a fundamental power of

relation theory that allows to highlight essential structures across

heterogeneous contexts.

1.3.6. Operations on Relations and Relation Algebras

Relations can be combined and transformed through various

operations, forming algebraic structures called relation algebras. These

operations allow relations to be manipulated and analyzed

systematically. The basic operations are unions (R ∪ S), intersections

(R ∩ S), and complements (R̄) of relations, which obey the same

principles known as the theory of sets as relations are set of tulles. If R

is a relation, its inverse (or converse) is denoted R⁻¹, and consists of all

the pairs (b, a) such that (a, b) ∈ R — this simply reverses the direction

of R. If R and S are both relations, the composition of R and S, denoted

R ∘ S, is the set of all pairs (a, c) such that there exists (b) where (a, b)

∈ R and (b, c) ∈ S, which generalizes function composition to arbitrary

relations. Those operations obey a number of algebraic laws, including

associatively of composition and distributive of composition over

union, and they serve as the foundation of relation algebra. Rhetorical

question marks reward any good child who put all of one letter before

the next: Not only do you can compute on pure sets, but there are

54
MATS Centre for Distance and Online Education, MATS University

Notes additional operations like the relative product (R|S), where you

multiply set R by the inverse of S, the domain restriction (E◁R) of

pulling the first components of R into those in a set E, or the range

restriction (R▷F), which limits the second components to F. Relation

algebras, which were formalized by Alfred Tarski and his students,

gives an axiomatic framework with which to study relations abstractly.

These algebras become Boolean algebras and have additional

operations finding a reflection of the relation theory, with a connection

to logic, to set theory and to abstract algebra. In the late 19th century,

Augustus De Morgan and Charles Sanders Peirce developed a calculus

of relations, which was later further developed by Ernst Schroder. One

can solve relational equations and do reasoning with respect to

relations with this symbolic calculus. This calculus can be used in

automated theorem proving, program verification and artificial

intelligence. Transitive closure R⁺ creates the least transitive relation

whose projection contains R, and reflexive transitive closure R* simply

includes if R has the reflexivity as well. Performing these operations is

essential in many applications including graph theory, parsing

algorithms, and reach ability analysis in networks. In particular,

relations are a central feature of database management systems, and

relational algebra (selection, projection, join, etc.) serves as the

theoretical underpinnings for query languages (e.g. SQL). The

performance of the database is affected by the efficiency of these

operations, leading to research in query optimization and algorithm

design. For instance, binary decision diagrams (BDDs) and other

symbolic representations in the area of computer science make it

possible to efficiently manage and manipulate enormous relations and

play a primary role in applications related to model checking,

constraint satisfaction problems, and in the formal verification of

hardware and software systems. Dynamic relations: such relations vary

in time or are modified as new information becomes available, and as

such requites are special operations and representations. Temporal

relation algebras are generalizations of classical relation algebra

employed to describe relations involving time, which are commonly

used in temporal databases, scheduling and event processing systems.

Relation algebras are both expressive and syntactically rich, making

them useful for a wide range of applications across mathematics and

computer science, including theoretical work in category theory, as

55
MATS Centre for Distance and Online Education, MATS University

Notes well as practical implementations such as graph analysis and query

processing in databases. Relations are a powerful tool that has

applications in diverse fields of mathematics; a perspective that ties the

operations and entities in relation algebra to classically algebraic

structures open up exciting new paradigm for interpreting the world

around us.

1.3.7. Advanced Topics and Modern Developments in Relation

Theory

Until present, Relation Theory is widely studied and many new

extensions, generalizations, applications are being introduced across

different fields. Fuzzy relations generalize classical relations by

permitting intermediate degrees of relatedness between elements,

usually represented by values in the interval [0,1]. These relations

represent non-specific or imprecise relationships and have applications

in fuzzy logic, approximate reasoning and soft computing. A fuzzy

equivalence relation (known as a similarity relation) extends classical

equivalence relations to express degrees of similarity, and is used in

areas such as pattern recognition, clustering and image processing

Formal concept analysis is a theory founded by Rudolf Wille in the

1980s and proposes a method for discovering conceptual structures in

data through binary relations between objects and attributes. These

structures act as complete lattices that uncover hierarchical knowledge

structures which are beneficial in knowledge discovery, data mining,

and ontology engineering. Introduced by Zdzisław Pawlak, rough set

theory deals with approximations over sets, defined via equivalence

relations, dealing with knowledge of different accuracy. Rough set is

a tool for uncertainty handling which has been applied in decision

support systems, machine learning and data analytics. They generalize

the mathematical notions of classical relations to relations between

quantum systems for which the certainty of a relationship follows the

laws of quantum probability, an example of which cannot be captured

with Boolean logic. This type of relation is very important in quantum

computing and quantum information theory, as it establishes a platform

for the studies of entanglement, quantum measurements, and so on, i.e.

quantum algorithms, and so on. However, categorical approaches to

relation theory locate relations in the context of category theory,

making relationships with other mathematical constructions apparent

and allowing for powerful abstract reasoning. In the semantics of

56
MATS Centre for Distance and Online Education, MATS University

Notes computer languages and type systems, this view has enabled new

understandings in theoretical computer science. Inductive logic

programming, relational reinforcement learning, and statistical

relational learning are relation-based approaches to machine learning

implemented in the area of computational intelligence. These methods

utilize relational representations, allowing for the capture of complex

structures in data that access patterns often fail to express in attribute-

value representations. Relation theory is thus side at itself at neither in

much of the universe of the habitual. Two notable examples of such

formalisms are Allen's interval algebra, which formalizes qualitative

relationships between time intervals and is used for temporal reasoning,

and region connection calculus which formalizes qualitative

relationships between spatial regions and is used for spatial reasoning

(e.g., in geographic information systems, robotics, cognitive science).

(Antimatroids are a closely related concept.) Infinite relations on

infinite sets lead to complications that use up the machinery of

advanced set theory, such as cardinals, ordinals, and the axiom of

choice. These relations appear in functional analysis, topology, and the

foundations of mathematics, linking relation theory with profound

issues about mathematical infinity. Relation theory's focus on

algorithmic elements has risen to significance with the emergence of

big data and network science. Algorithms for computing relation

properties, closures, and decompositions can be useful for analyzing

large-scale networks like social networks, biological interaction

networks, and the World Wide Web. Continuation of the convergence

of relation theory with other areas of mathematics has produced non-

trivial theoretical results and real-life applications. Parts of graph

theory, order theory, algebraic topology, and model theory contribute

to both fields and provide new methods for the solution of difficult

problems. Description: As computing systems move towards being

more distributed, concurrent, and interconnected, relation theory is

providing fundamental concepts for reasoning about such systems and

building them thereby. Whether you take block chain technology,

distributed databases, or federated learning systems, relations provide

the mathematical language of constraints, dependencies, and

interactions. Relation theory's enduring impact is a consequence of its

capacity to extract crucial forms from disparate domains and

consequently furnish explicit forms of computation.

57
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1.4: Function

1.4.1 Function, Types of Function

Introduction to Function

A function is a special relation between two sets such that each element

of the first set (Domain) is related to exactly one element of the second

set (Co-domain).

Properties

• Each element of Domain must be mapped.

• No element of Domain has more than one image.

• Different elements of Domain may map to the same element in

Co-domain.

Types of Functions

• One–one (Injective): Different inputs give different outputs.

• Onto (Surjective): Every element of Co-domain is an image of

some element.

• Bijective: Both One–one and Onto.

1. Domain, Co-domain, and Range

Definition:

• Domain: Set of all possible inputs.

• Co-domain: Set of all possible outputs allowed.

• Range: Actual outputs that come from the function.

Example:

f:A→B where A={1,2,3} B={a,b,c,d}

f(1)=a, f(2)=c, f(3)=b

Domain={1,2,3}

Co-domain={a,b,c,d}

Range = {a,c,b}

 2. One–One (Injective) Function

Definition:

Every element of the domain maps to a unique element of the

co-domain.

Example:

f(x)=2xfromR→R

58
MATS Centre for Distance and Online Education, MATS University

Notes Different x values give different outputs.

f(1)=2 =4 – no repeats.

 3. Onto (Surjective) Function

Definition:

Every element of the co-domain has at least one pre-image in

the domain.

Example:

f:{1,2,3}→{a,b,c}with

f(1)=a, f(2)=b, f(3)=c

All elements a,b,c are covered ⇒ Onto.

 4. Bijective Function

Definition:

A function that is both one–one and onto.

Example:

f:{1,2,3}→{a,b,c}with

f(1)=a, f(2)=b, f(3)=c

Every input has a unique output and covers all outputs.

 5. Identity Function

Definition:

Maps every element to itself.

Example:

f(x)=xforallxindomain.

f(1)=1, f(2)=2, f(3)=3

 6. Constant Function

Definition:

Maps every element of the domain to a single fixed value in the

co-domain.

Example:

f(x)=5f(x)forallxindomain.

f(1)=5, f(2)=5, f(3)=5

 7. Composition of Functions

Definition:

(f∘g)(x)=f(g(x))

59
MATS Centre for Distance and Online Education, MATS University

Notes Example:

f(x)=x+1 and g(x)=2

(f∘g)(x)=f(g(x))=f(2x)=2x+1

 8. Inverse Function

Definition:

Reverses the effect of a bijective function.

If f:A→B is bijective, then f−1:B→A

Example:

f(x)=x+3 ⇒ f−1(x)=x−3

 9. Even and Odd Functions

Even:f(−x)=f(x)

Example: f(x)=x2

Odd:f(−x)=−f(x)

Example: f(x)=x3

10. Real-life Function Example

Temperature conversion:

f(C)=95C+32

Maps Celsius to Fahrenheit.

Diagram of a Function

Fig: 1.4.1 Function

60
MATS Centre for Distance and Online Education, MATS University

Notes Example 1:

Let A= {1,2,3} and B={a,b,c,d}

Define a function f:A→B as:

F (1) = a, f (2) = c, f (3) =b

Each element of A(domain) is mapped to exactly one element of B

(co-domain).

Range of f is {a,b,c} (only those elements of B that are actually used).

Therefore, f is a valid function.

Example 2:

Set A: {Apple, Banana, Mango}

Set B: {Red, Yellow, Green}

Define: A function mapping each fruit to its color:

f(Apple)=Red, f(Banana)=Yellow, f(Mango)=Green

Range: {Red, Yellow, Green}

Example 3:

Set A: {1,2,3,4}

Set B: {Odd, even}

Define: A function mapping each number to its type:

F (1) = Odd, f (2) = Even, f (3) = Odd, f (4) = Even

Range: {Odd, even}

Example 4:

Set A (Domain): {2,4,6}

Set B (Co-domain): {1,4,9,16,25,36}

Define: f(x)=x2

F (2) = 4, f (4) = 16, f (6) = 36

Range: {4,16,36}

Applications of Logical Equivalence

Logical equivalence is not only a theoretical construct but also an

important practical tool. In mathematics, science, and computer

applications, simplifying logical expressions allows us to reduce

complex situations into manageable forms. For example, when

analyzing a long conditional statement, one may replace it with an

equivalent biconditional form to reveal hidden relationships.

One area where logical equivalence is particularly useful is in set

theory. As we know, statements about membership in sets can be

expressed in terms of logic. For instance, the identity

61
MATS Centre for Distance and Online Education, MATS University

Notes (A ∪ B)c = Ac ∩ Bc

is directly derived from the equivalence ¬(p ∨ q) ≡ (¬p ∧ ¬q). Similarly,

(A ∩ B)c = Ac ∪ Bc

is based on ¬(p ∧ q) ≡ (¬p ∨ ¬q). These transformations make it easier

to prove theorems about sets and functions.

Proof Techniques and Logical Equivalence

Logical equivalence provides the foundation for methods of proof such

as proof by contradiction and proof by contrapositive.

Example: Prove that if n² is even, then n is even.

Contrapositive: If n is odd, then n² is odd.

Let n = 2k+1. Then n² = (2k+1)(2k+1) = 4k² + 4k + 1 = 2(2k²+2k) + 1.

This is odd. Therefore, the contrapositive is true and hence the original

statement is also true.

This shows how logical equivalence often allows shorter and clearer

proofs.

Applications in Computer Science

Logical reasoning underpins many areas of computer science. Digital

Circuits: Logical expressions correspond directly to circuits. The

conjunction (AND), disjunction (OR), and negation (NOT) map to

logic gates. More complex connectives such as exclusive OR (XOR)

can be expressed using combinations of simpler ones.

Example: The XOR of two inputs A and B can be expressed as

(A ∨ B) ∧ ¬(A ∧ B).

This expression is directly translated into a digital circuit.

Database Queries: In SQL and other query languages, logical operators

are used to filter data. For example:

SELECT * FROM Students WHERE Age > 18 AND Course = 'MCA';

The WHERE clause here is a direct representation of conjunction in

propositional logic.

Artificial Intelligence: Many expert systems represent knowledge in the

form of logical rules. Logical equivalence helps simplify the rules and

improve reasoning efficiency.

62
MATS Centre for Distance and Online Education, MATS University

Notes

Worked Example: Simplification

Simplify (p ∨ q) ∧ (¬p ∨ r).

Step 1: Apply distributive law:

= (p ∧ ¬p) ∨ (p ∧ r) ∨ (q ∧ ¬p) ∨ (q ∧ r)

Step 2: Eliminate contradictions:

p ∧ ¬p = False, so expression becomes:

= (p ∧ r) ∨ (q ∧ ¬p) ∨ (q ∧ r)

This is the simplified form.

Logic in Algorithms

In algorithm design, decision-making processes are expressed using

logical statements.

Example: Binary Search

If the key is less than the middle element, search in the left half;

otherwise, search in the right half.

Logically, this is expressed as:

(key < mid) → search left

(key > mid) → search right

By framing conditions in logical form, algorithms can be reasoned

about more clearly, and their correctness can be proved systematically.

Importance of Logical Equivalence

Logical equivalence not only simplifies proofs and expressions but also

provides the bridge between mathematics and computation. It ensures

that transformations in logic preserve meaning, and therefore, results

obtained after simplification remain valid. This makes it an essential

tool in every branch of computer science — from digital systems to

programming, and from artificial intelligence to database management.

63
MATS Centre for Distance and Online Education, MATS University

Notes SUMMARY

This Module introduces fundamental mathematical concepts essential

for computer science, covering set theory, mathematical logic,

relations, and functions. Set theory deals with the definition, types, and

operations of sets, including union, intersection, and complements,

along with concepts like subsets, power sets, and Cartesian products.

Mathematical logic focuses on propositions, logical connectives, truth

tables, and predicate logic, enabling precise reasoning and decision-

making. The concept of relations explores how elements from one set

relate to another, examining properties like reflexivity, symmetry, and

transitivity, and includes special relations such as equivalence and

partial orders. Functions, as a special type of relation, map each input

to a unique output and are classified as injective, surjective, or bijective.

These foundational topics form the basis for algorithm design, data

organization, formal verification, and logical programming in computer

science.

64
MATS Centre for Distance and Online Education, MATS University

Notes Multiple Choice Questions (MCQs)

1. Which of the following statements is true regarding Cartesian

products?

a) The Cartesian product of two sets is always commutative

b) The Cartesian product of two sets is a set of ordered pairs

c) The Cartesian product of two sets results in a single set

element

d) The Cartesian product only exists for finite sets

Ans: b)

2. Which of the following is an example of a tautology?

a) P∧¬PP \land \neg PP∧¬P

b) P∨¬PP \lor \neg PP∨¬P

c) P∧QP \land QP∧Q

d) P∨QP \lor QP∨Q

Ans: b)

3. If RRR is a binary relation on set AAA, then which of the

following must be true for RRR to be an equivalence relation?

a) RRR must be reflexive, symmetric, and transitive

b) RRR must be symmetric and antisymmetric

c) RRR must be only transitive and symmetric

d) RRR must be only reflexive and transitive

Ans: b)

4. What is the composition of two functions f:A→Bf: A \to

Bf:A→B and g:B→Cg: B \to Cg:B→C?

a) A function mapping AAA to CCC

b) A function mapping BBB to AAA

c) A function mapping CCC to BBB

d) A function mapping AAA to BBB

Ans: a)

5. Which of the following logical connectives is not a

fundamental logical operator?

a) AND

b) OR

c) XOR

d) NOT

Ans: c)

65
MATS Centre for Distance and Online Education, MATS University

Notes Long-Answer Questions

1. Explain the concept of a Cartesian product of two sets with an

example. How does the Cartesian product help in defining

relations?

2. Describe different types of logical connectives with truth tables

and examples. How are logical connectives used in

mathematical reasoning?

3. What are tautology, contradiction, and logical equivalence?

Provide suitable examples to illustrate each concept.

4. Define binary relation. Explain reflexive, symmetric, transitive,

and equivalence relations with suitable examples.

5. What is the composition of functions? Explain how function

composition works with an example and discuss its significance

in mathematical operations.

Short-Answer Questions

1. Define a set and provide an example of a Cartesian product.

2. What is a logical statement? Give an example.

3. Differentiate between tautology and contradiction.

4. List the properties of an equivalence relation.

5. What are injective, surjective, and bijective functions? Give an

example of each.

66
MATS Centre for Distance and Online Education, MATS University

MODULE 2

POSETS AND LATTICES

2.0 Learning objectives

• To understand the concept of partial order relations and partially

ordered sets (POSETS).

• To explore HASSE diagrams and their role in representing

ordered sets.

• To study lattices, sub-lattices, well-ordered sets, and complete

lattices.

• To analyze distributive and complemented lattices.

67
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2.1: Partial order relation

2.1.1 Introduction to Partial Order Relations

For example, mathematics helps us organize and understand

relationships among elements in various sets. Partial Order Relations

are one of the basic concepts in discrete mathematics and set theory

and are used to define a certain order between elements. A relation is a

concept to associate between the elements of one set with another set.

In certain mathematical models, we need to know in what way one

element/sequence is connected with another element/sequence in

hierarchical Oder sequential way. Q- Partially ordered relations can be

used for systematic study of such structure. These terminologies are

especially important in disciplines such as computer science, decision

theory, and data organization, where the ordering and hierarchy of

items are critical. Definition and Properties of Partial Order Relations

A partial order relation is a binary relation R on a set S that satisfies the

following three properties:

1. Reflexivity: Every element is related to itself. That is, for every

a∈Sa \in S, aRaaRa holds.

2. Antisymmetry: If aRbaRb and bRabRa, then a=ba = b.

3. Transitivity: If aRbaRb and bRcbRc, then aRcaRc.

The pair of a set S and a partial order relation R is called a partially

ordered set (or poset), denoted as (S, R). In a total order, all

elements must be comparable with each other, but unlike that a

partial order allows that some elements of the set may be

incomparable. Examples of Partial Order Relations

1. Subset Inclusion (⊆\subseteq): Consider the power set of a set

AA, which consists of all subsets of AA. The relation “subset

of” (⊆\subseteq) is a partial order because it satisfies reflexivity

(A⊆AA \subseteq A), ant symmetry (A⊆BA \subseteq B and

B⊆AB \subseteq A implies A=BA = B), and transitivity

(A⊆BA \subseteq B and B⊆CB \subseteq C implies A⊆CA

\subseteq C).

2. Divisibility (∣|): The relation “divides” on the set of natural

numbers N is a partial order. If a∣ba | b (i.e., a divides bb

exactly), it follows the properties of a partial order.

68
MATS Centre for Distance and Online Education, MATS University

Notes 3. Hierarchical Structures: In organizational charts or file

directory structures, elements are arranged in a hierarchical

order, which is an example of a partial order relation.

Solved Examples

Example 1: Verify if the relation R on the set S = {1, 2, 3, 4}, defined

as aRb if and only if a divides b, forms a partial order.

Solution:

1. Reflexivity: Every number divides itself (e.g., 1∣11 | 1, 2∣22 | 2,

etc.), so the relation is reflexive.

2. Antisymmetry: If a∣ba | b and b∣ab | a, then a=ba = b, satisfying

ant symmetry.

3. Transitivity: If a∣ba | b and b∣cb | c, then a∣ca | c. For example,

2∣42 | 4 and 4∣84 | 8 implies 2∣82 | 8. Thus, the given relation is

a partial order.

Unsolved Problems

1. Consider the set A = {1, 2, 3, 4, 5} with relation R defined as

aRbaRb if a≤ba \leq b. Show that R is a partial order.

2. Prove that the relation of inclusion on the power set of

S={a,b,c}S = \{a, b, c\} is a partial order.

3. Let S=ZS = \mathbb{Z} and define aRbaRb if and only if aa

divides bb. Show that this is a partial order.

Partial order relations are a central concept in mathematical modeling

and programming, as well as in the structuring of databases in which

elements must be ordered or ranked. Through relations like ant

symmetry, nodes of digraphs, relations, etc., we can have a better sense

to solve problems in set theory, lattice theory and advanced

mathematics. Studying real world problem using partial order relations

will give you a rigorous framework building block of discrete

mathematics and friends.

2.1.2 Partial Ordered Set and Hasse Diagram

1. Introduction to Partially Ordered Sets (Posets)

A partially ordered set (poset) is a set PP together with a binary relation

≤\leq that satisfies the three properties:

1. Reflexivity: For all a∈Pa \in P, a≤aa \leq a.

2. Antisymmetry: if a \leq b and b \leq a, then a = b.

3. Transitivity: If a≤ba \leq b and b≤cb \leq c, then a≤ca \leq c.

These properties account for a partial order, as not all pairs of elements

in PP are required to be comparable.

69
MATS Centre for Distance and Online Education, MATS University

Notes 2. Examples of Partially Ordered Sets

• Divisibility Relation: The set {1,2,3,4,6,12}\{1, 2, 3, 4, 6, 12\}

with the relation a≤ba \leq b if aa divides bb.

• Subset Relation: The power set of {1,2,3}\{1,2,3\} ordered by

set inclusion.

• Integer Ordering: The set of natural numbers N with the usual

≤\leq relation.

2.1.3. Hasse Diagram

Connected Hasse diagrams are widely used in the theory of partially

ordered sets (posets), where a Hasse diagram is a visual representation

of a finite poset. It is a directed graph (in a simple way) that:

• O edges represent the partial order relation.

• Transitive edges are left out for clarity.

Example Poset: Divisors of 12

Consider the set:

S= {1,2,3,4,6,12}

We define a partial order ≤ by divisibility:

A ≤ b if and only if a divides b.

12

/ \

4 6

/ \

2 3

\ /

1

Example:

Consider the posit {1, 2, 3, 6}\ {1, 2, 3, 6\} with the divisibility relation:

6

/ \

2 3

\ /

1

In this diagram:

• 11is minimal as it divides all elements.

• Since 11 divides both 22 and 33 it is placed above 11.

70
MATS Centre for Distance and Online Education, MATS University

Notes • 66 is at the peak as it is divisible by both 22 and 33

4. Properties of Hasse Diagrams

• Relation of Cover: An element aa covers bb if a>ba > b

and there is no element cc such that bba > b and no

element cc satisfies b

• Chains and Antichains: A chain is a totally ordered

subset; an antichain consists of mutually incomparable

elements.

5. Solved Example

Problem: Draw the Hasse diagram for {1,2,4,8,16}\{1, 2, 4, 8, 16\}

with divisibility relation.

Solution:

1. Write out the divisibility relations: 1≤2≤4≤8≤161 \leq 2 \leq 4

\leq 8 \leq 16.

2. Since each element only divides the next one, the Hasse

diagram is a linear chain:

16

|

8

|

4

|

2

|

1

6. Unsolved Problems

1. Construct the Hasse diagram for the power set of {a,b}\{a, b\}

ordered by set inclusion.

2. Find the number of chains in the Hasse diagram of

{1,2,5,10}\{1, 2, 5, 10\} under divisibility.

3. Prove that the divisibility relation on {1,3,9,27,81}\{1, 3, 9, 27,

81\} is a poset.

Another common use of partial order sets is in Hasse diagrams, which

can be used to visualize the structure of hierarchies (remember lattice

theory, Boolean algebra, and database design) these concepts are

essential for all higher level topics in discrete mathematics.

71
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2.2: Lattice

2.2.1 Lattice, Sub-Lattices, Well Ordered Set, Complete Lattice

It offers a framework for examining the relationships between elements

of a poset. A poset (P, ≤) is a set P with a binary relation ≤ that is

reflexive (a ≤ a), ant symmetric (a ≤ b and b ≤ a −→ a = b) and transitive

(a ≤ b and b ≤ c −→ a ≤ c). A lattice is a poset where every two elements

have a least upper bound (supremum or join) and greatest lower bound

(infimum or meet) ∧. The join of two elements a and b, written a ∨ b,

is the least upper bound of a and b. The meet of a and b, written a ∧ b,

is the greatest lower bound of a and b. A lattice can be represented

visually with Hasse diagrams, which are a graphical representation of

posets. We usually draw a Hasse diagram as dots for the elements, and

lines for the relation ≤. When a ≤ b, b is above a, and we connect them

with a line. The set of positive integers ordered by divisibility is a

simple lattice. The meet of two integers a and b is their LCM, and the

join is their GCD. For example, an order you might consider is the

power set of a set (lifting using ordered inclusion). The join of two

subsets A and B you have is their union (A ∪ B), while the meet you

have is their intersection (A ∩ B). Lattices fulfill multiple essential

characteristics, such as idempotent (a ∨ a = a and a ∧ a = a),

commutative (a ∨ b = b ∨ a and a ∧ b = b ∧ a), associative (a ∨ (b ∨ c)

= (a ∨ b) ∨ c and a ∧ (b ∧ c) = (a ∧ b) ∧ c), and absorption (a ∨ (a ∧ b)

= a and a ∧ (a ∨ b) = a). This means that lattices are useful for studying

ordered structures and how they relate to each other.

Fig: 2.2.1 Lattice

72
MATS Centre for Distance and Online Education, MATS University

Notes 2.2.2 Sub-Lattices and Their Properties

A sub-lattice of a lattice (L, ∨, ∧) is a subset S of L that is also a lattice

with respect to the same operations ∨ and ∧ as those of L. Namely, S is

a sub-lattice if whenever a, b are in S, we also have a∨b, a∧b∈S. This

condition ensures closure under the join and meets operations of L so

that S is a lattice on its own. However, that closing property is not

necessarily hold, thus a subset of a lattice is a POS but not a sub-lattice.

For example, the positive integers ordered by divisibility are a lattice.

For this lattice, the set {2, 3, 4, 5, 6} is a subset. This is not a sub-lattice

because the join of 2 and 3, which is 6, is in the set, but the meet of 4

and 6, which is 2, is also in the set, but the join of 4 and 5 which is 20,

is not in the set. Idempotence, commutatively, associatively, and

absorption are many properties that a sub-lattice inherits from its parent

lattice. These will not, however, save all properties. As another

example, if L is a distributive lattice (satisfying a ∧ (b ∨ c) = (a ∧ b) ∨

(a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)), then any sub-lattice of L is

also distributive. But a sub-lattice of L is also modular if L is a modular

lattice (and a ∧ (b ∨ (a ∧ c)) = (a ∧ b) ∨ (a ∧ c) if a ≤ b). Sub-lattices

are a fundamental concept in lattice theory, and are used to break down

complex lattices into simpler ones. The use of sub-lattices can be for

the purposes of identifying patterns, symmetries, or relationships

between different parts of the lattice. As an example, in the lattice of

subsets of a set, an sub-lattice can be all the subsets that contain a

particular element, or all the subsets that have a specific cardinality.

They also have a role in lattice homeomorphisms, mappings between

lattices that preserve the join and meet operations. A homomorphism

between two lattices L and M takes a sub-lattice of L to a sub-lattice of

M.

2.2.3 Well-Ordered Sets and Their Significance

A well-ordered set is a totally ordered set (i.e. of any two elements it

can be determined whether one is greater than the other) such that every

non-empty subset has a least element. Ri is a well-ordering principle

and this property is known as the well-ordering principle. Well-orders

are foundational in set theory and have wide application in

mathematics, primarily in transfinite induction and ordinal arithmetic.

An example of a well-ordering is the set of natural numbers (ℕ) with

its standard ordering, often denoted with the symbol ≤. Each nonempty

subset of ℕ has a least element. But the normal ordering of the integers

73
MATS Centre for Distance and Online Education, MATS University

Notes (ℤ) is not a well-ordering since the subset of negative integers has no

least element. In the same vein, the real numbers (ℝ) with the standard

ordering is not well-ordered since the interval (0, 1) has no least

element. - Every set can be well-ordered (but this requires the axiom of

choice, and that is a theorem in set theory, called the well-ordering

theorem). Ordinal numbers which measure the "size"/"length" of well-

ordered sets are strongly related to well-ordered sets Any well-ordered

set is order-preserving equivalent to exactly one ordinal number.

Ordinal numbers, too, have a well ordering, and they are a transfinite

ordering that continues after the naturals. Transfinite induction extends

the concept of mathematical induction to well-ordered sets. It enables

us to show that some statement is true for all elements of a well-

ordered set by demonstrating the statement for the least element and

that if the statement holds for all elements less than some element then

it holds for that element as well. Well-ordered sets find applications in

many branches of mathematics, including topology, analysis, and

computer science. Well-ordered sets are used in topology to form

transfinite sequences of open sets (or closed sets). In analysis they are

used to characterize transfinite sequences of functions or sets. Well-

ordered sets are used in algorithms and design of data structures in

computer science, specifically in termination proofs.

2.2.4 Complete Lattices and Their Properties

A complete lattice is a special type of poset in which all subsets, finite

or infinite, have a supermom (least upper bound) and an infimum

(greatest lower bound). This is a stronger condition than a lattice,

which only requires that finite pairs of elements have a join and meet.

Complete lattices play a central role in several fields of mathematics,

such as topology, analysis, and domain theory. Let’s state a result on

complete lattices: The power set of any set, partially ordered by

inclusion, is a complete lattice. The join of any collection of subsets is

their union, and the meet their intersection. Another example is the set

of real numbers with standard ordering (augmented with positive and

negative infinity), which is also a complete lattice. The join of any

collection of reals is their supermom, and the meet is their infimum.

All of those properties still hold for complete lattices: idempotence,

commutatively, associatively, and absorption. They also satisfy the

infinite distributive laws a ∧ (∨S) = ∨{a ∧ s : s ∈ S} and a ∨ (∧S) = ∧{a

∨ s : s ∈ S} for any subset S of the lattice. Topologically complete

74
MATS Centre for Distance and Online Education, MATS University

Notes lattices are used, for example, to define closure operators on sets as well

as to study the lattice of open sets or closed sets. In analysis, they are

used to define monotone functions and study fixed points of functions.

If a function is monotone on a complete lattice, then it is also

guaranteed to have a least fixed point and a greatest defined fixed point

in that lattice, a result known as the Knaster Tarski theorem. Literally

hundreds of papers have been published on complete lattices, while the

ordering of the initial segments of a certain kind of directed set - known

as a domain - has formed the basis of domain theory, an entire branch

of mathematics. Complete lattices are used in domain theory to describe

the spaces of computations and to analyse programming languages

semantics.

Solved Examples and Applications

Example 1: Power Set Lattice X = {a, b, c}. The power set P(X) = {∅,

{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} is a lattice under

inclusion.

• Join: {a, b} ∨ {b, c}

Of course, we will continue with the rest of the paragraphs while

adding solved examples, applications of concepts and unsolved

questions as well.

Solved Examples and Applications (Continued)

Example 1: Power Set Lattice We take X = {a, b, c}. So the power set

P(X) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} is a lattice

ordered by inclusion.

• Join: {a, b} ∨ {b, c} = {a, b, c} (Union of the sets)

Meet: {a, b} ∧ {b, c} = {b} (Intersection of the sets)

• P(X) is also a complete lattice as every subset of P(X) has a join and

meet.

Example 2: Divisibility Lattice Let L = {1, 2, 3, 4, 6, 12} with

divisibility.

• Join: 3 ∨ 4 = 12 (LCM of 3 and 4)

• Meet: 6 ∧ 4 = 2 (GCD of 6 and 4)

• Make the Hasse-diagram of this lattice.

Left: Set Proposition 3: (Well-Ordered Set) Prove that every finite

totally ordered set is well-ordered.

S is a finite totally ordered set.

S is countable whenever S is finite, and ⱵS is also finite.

• Induction, any finite subset has a least element.

75
MATS Centre for Distance and Online Education, MATS University

Notes • Thus, S is well-ordered.

2.2.5 Applications:

• Computer Science: Lattices play a role in data analysis,

formal concept analysis and in the design of data structures.

Domain theory, which serves as the mathematical basis for

programming language semantics, uses complete lattices.

• Database Theory: In database theory, lattices can be used to

reason about data dependencies and integrity constraints.

• Formal Logic: Lattices can be used to model the logical

connectives and study the structure of logical theories.

• Topology: Closure operators are defined in complete lattices

and the lattice of open sets or closed sets is studied.

Unsolved Problems and Advanced Concepts

Unsolved Problems:

1. Congruence Lattice Problem: Given a finite lattice L, decide

if L is isomorphic to the congruence lattice of some algebra.

This issue is solvable in general, yet undividable.

2. Free Lattice Problem: Give the structure of free lattices. The

word problem is known to be solvable for free lattices, though

the structure of such lattices is an active research area.

3. Sub-lattice Embedding Problem: For two finite lattices L and

M, decide whether L is embeddable into M as a sub-lattice:

Embedding of finite lattices is proven as NP-Complete. Here

the problem is to create a substructure.

4. Well-quasi-ordering Problem: Investigate well-quasi-

orderings, which generalize well-orderings. Study the

relationship between well-quasi-orderings and termination

arguments of algorithms.

5. I remember an Intro to Something course which had a section

on Fixed-point theorems reduced to imply maximum and

minimum elements in a complete lattice, which was applicable

to stuff like program semantics, so If you can find something

similar throw it at them.

2.2.6 Advanced Concepts:

• Distributive Lattices: Lattices where the distributive laws hold (a ∧

(b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)). Full linear

lattices are distributive : a lattice is a full linear lattice if and only if it

is a distributive lattice and {{0}, {1}} is its only linear ideal.

76
MATS Centre for Distance and Online Education, MATS University

Notes • Modular lattices: lattices satisfying the modular law (a ∧ (b ∨ (a ∧

c)) = (a ∧ b) ∨ (a ∧ c), whenever a ≤ b). Distributive lattices are

modular.

• Heyting Algebras: Lattices with an implication operation which

generalizes intuitionist logic.

• Scott Domains: Domains are from domain theory, but Scott domains

are a complete lattices. They can be algebraic functions or continuous.

• Galois Connections: Pairs of monotone functions between postsets

adjoint to each other. They are used develop studied relationships

between other ordered structures.

2.2.7 Further Explorations and Conclusion

Lattices, sub-lattices, well-ordered sets, complete lattices ultimate

analysis Such numerical concepts are crucial in disciplines ranging

from pure math to computer science, and provide us with powerful

tools for exploring achieved order and its interactions. The real-world

impact of these ideas can be observed in database systems, formal logic,

and computer programming, to name a few. Mathematical

advancements often lead to new applications and discoveries in these

fields. This also implies the existence of different classes of lattices,

such as: distributive, modular, Boolean, etc. The well-ordered set itself

and the concept that as the most general form of the ordered set

definitely can go for research. Complete lattices can also be studied in

accordance to their domains and their role inside the domain theory,

topology, and fix-point theory, and their various applications in

computer science and others. The ideas on this section serve a good

basis on lattice introduction and other topics related. Understanding

lattices through solved examples, unsolved problems, and advanced

topics can help students to appreciate the elegance and power of this

area of study and its applications. As their mathematical adventure

moves forward, the ideas and tools presented in this Module will

become invaluable assets when analyzing or solving countless

problems in not only mathematics but in a number of scientific fields

as well.

77
MATS Centre for Distance and Online Education, MATS University

Notes 2.2.8 Introduction to Lattices and Distributive

Lattices are a kind of algebraic structure on a set that introduce a

structure to study partially ordered sets (posets) through the existence

of least upper bounds (joins) and greatest lower bounds (meets) for

every pair of elements. In many applications, we are interested in such

lattices with extra properties that make them very useful. For example,

distributive is one of these properties. Lattice (L, ∨, ∧) is distributive

if for all a,b,c∈L: a∧(b∨c)=(a∧b)∨(a∧c) and a∨(b∧c)=(a∨b)∧(a∨c).

These laws are similar to the distributive laws in plain algebra.

Nevertheless, not all lattices are distributive. An example of a

distributive lattice can be given by the power set of any set, ordered by

inclusion. The join ∨ is replaced with the union operation (∪) and the

meet ∧ is replaced with intersection operation (∩). They are easy to

check because the distributive laws hold for set operations. As a second

example, consider the (semi-)lattice of positive integers ordered by

divisibility: here, join is given by taking LCM, whereas meet takes

GCD. This is also a distributive lattice. Distributive lattices and their

Hasse diagrams if a lattice contains a sub-lattice isomorphic to the

pentagon lattice (N5) or the diamond lattice (M3), it is not distributive

(in terms of Hasse diagram). In such a scenario, the element above 0

becomes less than that of the element above 1 (as it must be by

construction), thus simulating a upside-down lattice. Distributive

lattices have many nice properties, leading to their importance in

various fields of mathematics and computer science. They are used,

e.g., in Boolean algebra, formal logic, and data dependency theory in

databases.

2.2.9 Complemented Lattices and Their Properties

A complement is another property a lattice can have. A lattice (L, ∨,

∧) with least element 0 and a greatest element 1 is called complemented

if for all elements a in L there exists an element a' in L such that a ∨ a'

= 1 and a ∧ a' = 0. The element a’ is called the complement of a In the

complemented lattice every element has at least one complement.

Nonetheless, complements need not be unique unless the lattice is also

distributive. An example of a complemented lattice is the power set of

a set ordered by inclusion. Complement of a Set: For the subset A, the

complement of A is denoted by A', A ∪ A' = U (Universal set) and A

∩ A' = ∅ The lattice of divisors of a square-free integer ordered by

divisibility is another example. The divisor d's complement is the n/d

78
MATS Centre for Distance and Online Education, MATS University

Notes quotient, with n being the square-free integer. In a complemented

lattice, the bottom least element 0 is the complement of the top greatest

element 1, and vice versa. Complementation is an involution, (a)' =

(a')"{"n"=1, "t"=1} but, in the general case, we have (a ∨ b)' = a' ∧ b'

and (a ∧ b)' = a' ∨ b' only when the lattice is also distributive. They

appear in many branches such as Boolean algebra, switching circuit,

quantum logic, etc. They offer a way of CNS representing and CNS

manipulating logical operations CNS and CNS studying the structure

CNS of complementary systems.

79
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2.3: Distributive and Complemented lattice

2.3.1 Distributive and Complemented Lattices

A distributive complemented lattice is referred to as a Boolean algebra.

{Boolean algebras are one of the core algebraic structures that underpin

logic, computer science, and much else besides.} A Boolean algebra

(B, ∨, ∧, ', 0, 1) is a lattice that satisfies the following:

1. It distributive: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) =

(a ∨ b) ∧ (a ∨ c).

2. It is complemented: For each a, there exists a complement a'

with a ∨ a' = 1 and a ∧ a' = 0.

3. It has a minimum element, 0, and a maximum element, 1.

Complements are unique in a boolean algebra, and the De Morgan's

laws hold in a boolean algebra: (a ∨ b)' = a' ∧ b' and (a ∧ b)' = a' ∨ b'.

The collection of all subsets of any set, with operations of union,

intersection, and complement, is a Boolean algebra. Boolean algebra:

A Boolean algebra (also spelled Boolean algebra) is a mathematical

structure composed of a set with two operations and their relations, the

most common being the set of logical propositions with logical OR,

AND NOT operations. It is also used for designing logic circuits,

simplifying solutions, representing and manipulating logical

expressions. They offer a strong foundation for reasoning about

systems based on binary states and for solving problems related to

logical constraints. Stone's representation theorem says every Boolean

algebra is isomorphic to a field of sets. ZFC is the widely accepted

formalism for set theory, while the setup for the theorem utilizes the

algebra of logic..

Solved Examples and Applications

Example 1: Power Set Lattice X = {a, b}. Therefore the 100082

20:52:53,941 --> 20:52:56,529 the power set P(X) = {∅, {a}, {b}, {a,

b}} 20:52:56,531 --> 20:52:59,614 is a Boolean algebra.

• Join: {a} ∨ {b} = {a, b} (Union)

• Meete: {a} ∧ {b} = ∅ (Intersection)

• Complement: {a}' = {b}

• Validate the distributive laws and De Morgan's laws.

Example 2: Divisors of 30Let f be the lattice of the divisors of 30

ordered by divisibility : { 1, 2, 3, 5, 6, 10, 15, 30 }.

• Join: 6 ∨ 10 = 30 (LCM)

80
MATS Centre for Distance and Online Education, MATS University

Notes • Meet: 6 ∧ 10 = 2 (GCD)

• Complement: 6 ′ = 5 (where 6 × 5 = 30 and GCD(6, 5) = 1)

• This lattice is a Boolean algebra.

Example 3: Logical Propositions Let us consider the Boolean algebra

of logical propositions, with operations OR, AND NOT.

• (P ∧ Q) ∨ R = (P ∨ R) ∧ (Q ∨ R) (Distributive law)

• ¬(P ∨ Q) ≡ ¬P ∧ ¬Q (De Morgan’s law)

2.3.2 Applications:

• Digital Circuits: Boolean algebra is utilized to create and evaluate

digital circuits like logic gates and flip-flops.

• Database Queries: Boolean algebra is utilized to structure and refine

database queries that involve logical conditions.

• Formal verification: The correctness of hardware and software

systems is verified using Boolean algebra.

• Descriptions of sets: The term Boolean algebras structures provide

the basis for set theory and the study of collection of sets.

Unsolved Problems in Distributive and Complemented Lattices

Unsolved Problems:

1. Congruence Lattice Problem for Distributive Lattices: If L

is a finite distributive lattice, is L isomorphic to the congruence

lattice of some algebra? This is easier than a full congruence

lattice computation problem but still not easy to do.

2. Free Distributive Lattices: We have introduced modules and

distributive lattices, now we will see how they relate when the

lattices are free a.k.a. distributive lattices generated by a set of

elements with no further relations. The word problem for free

distributive lattices is known to be solvable and yet the structure

of these lattices is not fully understood and is an active (open)

area of research..

3. Sub-lattice Embedding Problem for Distributive Lattices:

After which, given two finite distributive lattices L and M,

decide whether L can be embedded as a sub-lattice of M. It is

NP-complete in general, and stills a low-level open problem in

terms of efficient algorithms for particular cases..

4. Characterization of Complemented Modular Lattices:

Explore arbitrary complemented modular lattices. Necessary

and sufficient conditions are determined for a modular lattice

to be complemented.

81
MATS Centre for Distance and Online Education, MATS University

Notes 5. Applications of Non-Boolean Complemented Lattices:

Studied complemented lattices that are not Boolean algebras

and their applications in quantum logic, where the distributive

law fails.

6. Stone's Representation Theorem Extensions: Use Stone's

representation to learn work that generalizes it to other classes

of lattices, for example, distributive lattices with more

operations or complemented modular lattices.

2.3.3 Advanced Concepts and Further Explorations

Advanced Concepts:

• Heyting Algebras: generalizations of Boolean algebras used in

intuitionistic logic. They are distributive lattices having an

implication (→) such that both a∧(a→b)≤b and a≤(b→c)⇔a∧b≤c

hold which helps us think about constructive proofs and in

computing programs.

• De Morgan algebras: This is a generalization of Boolean algebras

relaxing the requirement that complements be unique. They are

distributive lattices equipped with a unary operation (¬) satisfying

¬¬a = a and ¬(a ∨ b) = ¬a ∧ ¬b. De Morgan algebras find

applications in the study of non-classical logics, as well as in the

design of fault-tolerant systems.

• Orthomodular lattices: and their generalization which are used in

quantum logic. Covered lattices satisfying the orthomodular law are

complemented lattices: if a ≤ b then b = a ∨ (b ∧ a0). Orthomodular

lattices are a generalization of Boolean algebra that captures the

essential features of quantum systems.

• Stone Duality: It is a general theory that connects topological

spaces and lattices. It allows the translation to read between the

geometric and algebraic structures and is employed on the subject

of Boolean algebras, Heyting algebras, and several classes of

lattices.

• Lattice-ordered groups: groups that, as lattices, have compatible

group and lattice operations. They arise in the study of ordered

algebraic structures and in the theory of partially ordered linear

spaces..

82
MATS Centre for Distance and Online Education, MATS University

Notes Further Explorations:

• Explore the relationships between lattice theory and other

branches of mathematics, including topology, algebra, and

logic.

• Lattice Theory in Computer Science: Applications, Parts 1

and 2.

• Sequentially explore the generalizations of Boolean algebras

(e.g. Heyting algebras, De Morgan algebras, orthomodular

lattices, etc.) and their features.

• Investigate how lattice theory is applied in other areas such as

physics, economics, and social sciences.

Solved and Unsolved Problems

Solved Problems:

1. Prove that every Boolean algebra is distributive.

o Use the complement laws and the absorption laws to

show that the distributive laws hold.

2. Show that the power set of any set is a Boolean algebra.

o Verify the distributive laws, complement laws, and the

existence of 0 and 1.

3. Find the complement of 10 in the lattice of divisors of 30.

o 10' = 3, since 10 × 3 = 30 and GCD(10, 3) = 1.

4. Prove De Morgan's laws in a Boolean algebra.

o Use the complement laws and the distributive laws.

5. Show that every sub-lattice of a distributive lattice is

distributive.

o Show that the distributive laws hold for any three

elements of the sub-lattice.

6. Determine if the lattice consisting of the divisors of 12 is a

Boolean algebra.

o The divisors of 12 are {1,2,3,4,6,and 12}. Show that 3

does not have a compliment, therefore it is not a Boolean

algebra.

7. Draw the Hasse diagram for the lattice of subsets of {a,b,c}

and verify it is distributive.

o Draw the diagram, then show that it does not contain N5

or M3.

8. Prove that in a Boolean algebra, if a<=b then b'<=a'.

o Use the meet and join properties with compliments.

83
MATS Centre for Distance and Online Education, MATS University

Notes 9. Given a boolean algebra B, show that a ^ b = 0 and a v b =

1 implies b=a'.

o Use the compliment definition.

10. Show that the lattice of all ideals of a ring is a complete

lattice.

o Show that the intersection of ideals is an ideal, and that

the union generates an ideal.

11. Show that if a lattice is distributive, then if a^x=a^y and a v

x = a v y, then x=y.

o Use the distributive properties.

12. Show that if a lattice is a Boolean algebra, then (a v b) ^ (a

v b') = a.

o Use distributive and complement properties.

13. Show that if a lattice is a Boolean algebra, then (a ^ b) v (a

^ b') = a.

o Use distributive and complement properties.

14. Show that if a,b are in a Boolean algebra, then (a ^ b') v (a'

^ b) = (a v b) ^ (a' v b').

o Use distributive and complement properties.

15. Show that in a Boolean algebra, if a<=b, then a^b'=0.

o Use the definition of <= and compliments.

Unsolved Problems:

1. Characterize the lattices that can be embedded as sub-lattices of

Boolean algebras.

2. Investigate the properties of lattices that are close to being

Boolean algebras but do not satisfy all the axioms.

3. Explore the applications of non-distributive lattices in areas

such as quantum information theory and artificial intelligence.

4. Develop efficient algorithms for solving problems involving

Boolean algebras and related structures.

5. Investigate the connections between lattice theory and category

theory, and explore the applications of these connections.

6. Find new applications for Heyting algebras in areas such as

program verification and knowledge representation.

7. Explore the connections between lattice theory and formal

concept analysis, and develop new methods for data analysis

and knowledge discovery.

84
MATS Centre for Distance and Online Education, MATS University

Notes 8. Investigate the properties of free lattices and free distributive

lattices, and explore their applications in algebra and logic.

9. Find new applications for orthomodular lattices in areas such as

quantum computing and quantum cryptography.

10. Explore new extensions and generalizations of Stone’s

representation theorem.

Applications of Partially Ordered Sets

Partially ordered sets (posets) appear frequently in computer

science, mathematics, and real life. Unlike total orders, a poset

allows some elements to remain incomparable, which makes it

suitable for modeling many real situations.

Task Scheduling: When some tasks must be performed before

others, but some can be done independently, the dependencies form

a poset. For example, in software development, coding may depend

on design, while documentation may proceed independently.

Version Control: In a project with multiple versions of code, the

“is ancestor of” relation forms a partial order. Not all versions can

be compared, but the relation still defines a structured order.

Prerequisite Courses: In education, some courses must be

completed before others. The prerequisite relation is a partial order

among all courses offered.

These examples show how posets naturally capture dependency

relationships.

Lattices in Computer Science

A lattice is a poset in which every pair of elements has a greatest

lower bound (meet) and a least upper bound (join). Lattices are

especially useful in theoretical computer science.

File Systems: The directory structure of a computer can be viewed

as a lattice, where the meet corresponds to the lowest common

ancestor folder and the join represents the combined path.

Security Levels: In computer security, access levels such as

“Confidential < Secret < Top Secret” form a lattice. Combining two

security clearances requires finding their least upper bound.

85
MATS Centre for Distance and Online Education, MATS University

Notes Data Mining: Concept lattices are applied in formal concept

analysis to organize large amounts of data into hierarchical

structures.

Boolean Algebra as a Lattice

Boolean algebra is an important example of a distributive

complemented lattice. In Boolean algebra, every element has a

complement, and distributive laws always hold.

Example:

Consider the set {0,1} with the operations AND and OR.

The meet (∧) is AND, and the join (∨) is OR.

0 is the least element, and 1 is the greatest element.

The complement of 0 is 1, and the complement of 1 is 0.

This structure is both distributive and complemented, hence it

forms a Boolean algebra.

Worked Example

Let us consider the set {1, 2, 3, 6} ordered by divisibility.

The meet of 2 and 3 is 1, since 1 divides both.

The join of 2 and 3 is 6, since 6 is divisible by both.

The meet of 2 and 6 is 2, while the join is 6.

Thus this set forms a lattice under the divisibility relation. This

example shows how number theory provides natural lattices.

Applications of Distributive and Complemented Lattices

Distributive and complemented lattices are widely applied because

they allow efficient simplification of expressions.

Logic Circuits: Every digital circuit is designed using Boolean

algebra, which is a distributive complemented lattice. This allows

systematic reduction of complex logical expressions into minimal

circuits.

Compiler Design: When compilers optimize code, they rely on

distributive properties of expressions. Boolean algebra laws are

applied to simplify conditions and control flow.

86
MATS Centre for Distance and Online Education, MATS University

Notes Database Theory: Query optimization often uses lattice concepts.

Operations such as union and intersection follow lattice properties that

guide efficient execution.

Information Flow: In security models, lattices are used to describe

how information flows between levels. Complementation represents

access restrictions.

Importance of Lattice Theory

Lattice theory connects discrete mathematics with practical computer

applications. It provides a unified language to describe order, hierarchy,

and structure. Whether it is simplifying logical circuits, organizing

data, or proving mathematical properties, lattices and posets form a

fundamental part of computer science foundations.

SUMMARY

This module explores partially ordered sets (posets) and lattices, which

are crucial concepts in discrete mathematics and theoretical computer

science. A partially ordered set (poset) is a set combined with a binary

relation that is reflexive, antisymmetric, and transitive. These

properties enable the comparison of elements in a non-linear,

hierarchical manner. The module introduces key concepts such as

Hasse diagrams, which visually represent posets by omitting

redundant relations, making the structure easier to interpret. It also

explains chains (totally ordered subsets) and antichains (sets of

mutually incomparable elements). The next major topic is lattices,

which are posets where every pair of elements has both a least upper

bound (join) and a greatest lower bound (meet). The module further

classifies lattices into bounded lattices (having a greatest and least

element), distributive lattices, and complemented lattices, each with

unique properties that support logical operations and algebraic

structures. These structures form the foundation for areas such as

Boolean algebra, data classification, and formal logic. Overall, this

module helps in understanding ordered structures and their applications

in programming, data organization, and reasoning systems.

87
MATS Centre for Distance and Online Education, MATS University

Notes Multiple-Choice Questions (MCQs)

1. Which of the following is true for a partially ordered set

(POSET)?

a) It must be totally ordered

b) It follows reflexivity, antisymmetry, and transitivity

c) It follows only symmetry and transitivity

d) It is always finite

Ans: b)

2. In a Hasse diagram, which property is NOT represented

explicitly?

a) Transitivity

b) Antisymmetry

c) Reflexivity

d) Comparability

Ans: c)

3. A lattice is a partially ordered set in which:

a) Every subset has a least upper bound and greatest lower bound

b) Every pair of elements has a least upper bound and a greatest

lower bound

c) Every element has a unique predecessor

d) The ordering is always total

Ans: b)

4. Which of the following is true for a complemented lattice?

a) Every element has a unique complement

b) It is always distributive

c) Every pair of elements has a supremum and infimum

d) It must be finite

Ans: a)

5. A well-ordered set is a special case of a partially ordered set

where:

a) Every non-empty subset has a least element

b) Every pair of elements is comparable

c) Every chain is finite

d) The Hasse diagram is always a tree

Ans: a)

88
MATS Centre for Distance and Online Education, MATS University

Notes Long Answer Questions

1. Explain the concept of a partially ordered set (POSET) with

suitable examples. Discuss its properties.

2. What is a Hasse diagram? How does it represent a partially

ordered set? Provide an example.

3. Define lattices and sub-lattices. Give an example of a lattice and

explain how it satisfies the lattice properties.

4. Differentiate between distributive lattices and complemented

lattices. Provide an example illustrating both concepts.

5. Discuss the significance of well-ordered sets and complete

lattices. How do they relate to partially ordered sets?

Short Answer Questions

1. Define a partial order relation and give an example.

2. What are the key properties of a partially ordered set (POSET)?

3. How does a Hasse diagram differ from a general graph

representation?

4. What is the difference between a lattice and a complete lattice?

5. Explain the concept of a complemented lattice with an example.

89
MATS Centre for Distance and Online Education, MATS University

MODULE 3

BOOLEAN ALGEBRA

3.0 Learning objectives

• To understand the fundamental concepts of Boolean algebra and

Boolean lattices.

• To analyze Boolean functions, disjunctive and conjunctive

normal forms.

• To study Karnaugh maps for Boolean function simplification.

• To explore the applications of Boolean algebra in switching

circuits and logic circuits.

90
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3.1: Basic concepts of Boolean Algebra

3.1.1 Basic Concepts of Boolean algebra, Boolean Lattice, Boolean

algebra

Basic Concepts of Boolean algebra

Boolean algebra is a mathematical structure that consists of binary

variables and logical operations. Developed in the mid-19th century by

George Boole, it underlies digital logic and computer science. Unlike

classical algebra working on the real numbers, Boolean algebra works

on binary values (0 and 1) according to a defined set of logical rules.

The basic operations in Boolean algebra are AND, OR, and NOT; they

are denoted respectively by multiplication, addition, and negation.

These operations are used to construct Boolean expressions and

simplified using laws and theorems of boolean algebra namely De

Morgan’s Theorems, Idempotent Laws, Absorption Law, Distributive

Law. It forms the basis of digital circuit design, logic gates, and

computer programming. It helps create circuits more efficiently by

minimizing Boolean expressions (which in turn helps create circuits

using the least number of logic gates). Its applications range from

database management systems to artificial intelligence to network

security. Most of the students of engineering, computer science, and

mathematics need the most basic concepts of boolean algebra.

3.1.2 Boolean Lattice

A Boolean lattice is a special case of an algebraic structure that is both

a lattice and satisfies the axioms of Boolean algebra. A (mathematics)

lattice is a partially ordered set P, for which a pair x and y in P always

has a specific least upper bound and greatest lower bound. When we

include complementation and the distributive laws, we move into a

Boolean lattice.

1. A Boolean lattice is precisely defined by a tuple (B, ∧, ∨, ¬, 0,

1), such that:

2. (B, ∧, ∨) forms a lattice.

3. There are two especially distinguished elements: 0 (minimum

element) and 1 (maximum element).

4. Each element has a unique complement, such that x ∨ x' = 1

and x ∧ x' = 0.

91
MATS Centre for Distance and Online Education, MATS University

Notes 5. The lattice obeys the associative, commutative, absorption, and

distributive laws.

Boolean lattices are widely used in logic design, set theory, and

mathematical modeling. And in doing so, they produce a model that

expresses the logical relations and minimizes the logic expression. B)

Also, in the analysis of switching circuits, Boolean lattices are useful

to discuss about truth tables, Karnaugh maps and minimization

methods.

3.1.3 Boolean algebra and Its Theorems

Theorem 1: Identity LawA + 0 = A, A · 1 = A Theorem 2: Null LawA

+ 1 = 1, A · 0 = 0Theorem 3: Complement LawA + A' = 1, A · A' =

0Theorem 4: Idempotent LawA + A = A, A · A = A Theorem 5:

Domination LawA + 0 = A, A · 1 = 0Theorem 6: Double Negation A

= A ‘Theorem 7: De Morgan's Theorems(A · B)' = A' + B', (A + B)' =

A' · B'There are many theorems and mathematical properties in boolean

algebra used to simplify boolean expressions. The major theorems

include:

1. Idempotent Law: A + A = AA + A = A and A ⋅ A = AA ⋅ A =

A.

2. Commutative Law: A+B=B+AA + B = B + A andA⋅B=B⋅AA

\cdot B = B \cdot A.

3. Associative Law: A+(B+C)=(A+B)+CA + (B + C) = (A + B) +

C and A⋅(B⋅C)=(A⋅B)⋅CA \cdot (B \cdot C) = (A \cdot B) \cdot

C.

4. Distributive Law: A⋅(B+C)=A⋅B+A⋅CA⋅(B+C)=A⋅B+A⋅CA

\cdot (B + C) = A \cdot B + A \cdot C.

5. Absorption Law: A+(A·B)=AA + (A \cdot B) = A and

A·(A+B)=AA \cdot (A + B) = A.

6. De Morgan’s Theorems: (A+B)=A⋅B(A + B)' = A' \cdot B' and

(A⋅B)=A+B(A \cdot B)' = A' + B'.

Because of their usefulness in obtaining the simplest form of logical

representations, they have many applications in logic minimization of

Boolean functions, which is useful in simplifying logical expression to

produce logic circuits which are less complex, or lower in depth, or

energy consumption. For designing digital systems, control

mechanisms, and data structures, Boolean controls are instrumental..

92
MATS Centre for Distance and Online Education, MATS University

Notes Solved Examples

Example 1: Digital Circuits Design a logic circuit the for Boolean

expression (A ∧ B) ∨¬C.

• Implement A∧ B with AND, ¬C with NOT and the final expression

with OR.

Example 2: Set Theory X = {1, 2, 3}. P(X), or the power set, is a

Boolean algebra.

• {1, 2} ∨ {2, 3} = {1, 2, 3} (Union)

• {1, 2} ∧{2, 3} = {2} (Intersection)

• ¬{1, 2} = {3} (Complement)

Example 3: Logical Propositions Simplifying a Boolean expression (P

∧ Q) ∨ (P ∧ ¬Q)

• (P ∧ Q) ∨ (P ∧ ¬Q) = P ∧ (Q ∨ ¬Q) = P ∧ 1 = P.

Example 4: Truth Tables generate a truth table for the Boolean

expression P ∧ (Q ∨ ¬R).

• Enumerate the cases for P, Q, R and find the value of the expression.

Example 5: Use Karnaugh Maps to simplify F(A, B, C) = Σ(0, 2, 4, 5,

6).

• From adjacent 1s on a Karnaugh map, extract a simplified expression.

Example 6: A logic proof of the absorption law: a ∨ (a ∧ b) = a.

• a∨ (a ∧ b) = (a ∧ 1) ∨ (a ∧ b) = a ∧ (1 ∨ b) = a ∧ 1 = a.

Example 7: Boolean Lattice Drawing (Hetherington, John: Type B,

pp.

• Count all subsets and connect them on the basis of inclusion.

Example 8: Logical Equivalence Prove P → Q ↔ ¬P ∨ Q.

• Employing truth tables or algebraic manipulation.

Example 9: Boolean Reduction Simplify (A ∧ B) ∨ (A ∧ ¬B) ∨ (¬A ∧

B).

• A∧(B∨¬B)∨(¬A∧B)=A∨(¬A∧B)=(A∨¬A)∧(A∨B)=A∨B.

Example 10: Boolean Function Representation Implement the

Boolean function F(A, B) = A ⊕ B (XOR) using AND, OR, and NOT

gates.

• F(A, B) = (A and not B) or (not A and B).

Example 11: Divisor Boolean Algebra Prove that under divisibility

containment ordering, the ordered set of divisors of the number 30

forms a Boolean algebra.

• 30 have divisors = {1, 2, 3, 5, 6, 10, 15, 30}

• Prove that it is a complemented distributive lattice.

93
MATS Centre for Distance and Online Education, MATS University

Notes Example 12: Boolean Algebra of Propositions− Show that (P ∧ (P →

Q)) → Q is a tautology.

• Employ truth tables or logical equivalences.

Example 13: Boolean Algebra of Sets with additional condition Let

the set I={1,2,3,4} he even numbers, and the set I′={1,2,3,4} he odd

numbers. Prove that I, I′ form a Boolean algebra.

• {1,3}, {2,4}, {1,2,3,4}, {}

• Join, and show complement, meet, and properties

Example 14: Boolean Algebra with a filter Consider sets {1,2,3,4,5,6}

and the subsets {1,2,3}, {4,5,6}, {} and {1,2,3,4,5,6}. Prove that these

sets create a boolean algebra.

• Show properties of complement, meet, join.

Example 15: Boolean algebra and Karnaugh Maps Simplifying F(A,

B, C, D) = Σ(0, 1, 2, 3, 8, 9, 10, 11) using a Karnaugh map.

• Make groups of the 1’s in the Karnaugh map more with example

Further Solved Examples and Applications

Example 16: Boolean Functions and Logic Gates Use logic gates to

Implement the Boolean function F(A, B, C) = (A ∧ B) ∨ (¬A ∧ C).

• An AND gate (A ∧ B), NOT gate (¬A), AND gate (¬A ∧ C), OR gate

(final expression).

Example 17: Boolean Algebra and Set Operations Let U = {a, b, c, d}.

A = {a, b} B = {b, c} C = {c, d} Proof the De Morgan's law: ¬(A ∪

B) = ¬A ∩ ¬B.

• A ∪ B={a,b,c},¬(A ∪ B)={d}

• ¬A = {c, d}, ¬B = {a, d}, ¬A ∩ ¬B = {d}

Example 18: Boolean algebra and Logical Reasoning P → Q P ¬R →

¬Q prove R.

• P → Q; P ⟹ Q (Modus Ponens).

• ¬R → ¬Q is equivalent to Q → R.

• Q and Q → R (Modus Ponens)

Example 19: Minimization using Boolean algebra and Karnaugh maps

Minimize the function F(A, B, C, D) = Σ(1, 3, 5, 7, 9, 11, 13, 15)

• Use a Karnaugh map to show that F(A, B, C, D) = D.

Example 20: example, Boolean algebra and how they can help you

simplify your digital circuits.

(A ∧ (B ∨ ¬B)) ∨ (¬A ∧ B ∧ C) = A ∨ (¬A ∧ B ∧ C) = A ∨ (B ∧ C)

Example 21: The Boolean algebra and the Relational Databases

Suppose we want to make a query on a database, e.g., "Select records

94
MATS Centre for Distance and Online Education, MATS University

Notes where (age > 30 AND city = New York) OR (salary > 50000 AND

department = Sales). Write this query in terms of Boolean algebra.

• Let A = (age > 30) B = (city = 'New York') C = (salary > 50000) D =

(department = 'Sales')

• Query: (A ∧ B) ∨ (C ∧ D).

Example 22: Boolean Algebra and Logic Puzzles A puzzle states: “If

it is raining (R) or snowing (S), then the road is slippery (P). If it is

raining and the road is not slippery, is it snowing?

• (R ∨ S) → P, R, and ¬P.

• (R) R ∨ S is true.

• (R ∨ S) → P & ¬P ⊨ ¬(R ∨ S).

• ¬(R ∨ S) implies ¬R ∧ ¬S.

It then goes on to prove this logically: •If R is true then it must be the

case that S is true. That is, S must also be true. •If S is true, then ¬R is

false. Therefore, since ¬R is false, ¬S, must be true. Thus it can’t be

snowing.

Example 23: Boolean algebra and Error checking a parity bit is added

to a 3-bit message (A, B, C) in a communication system to perform

error detection. P in parity bit is 1 if number of 1 in message is odd,

else 0 find a Boolean function for P.

• P = (A ⊕ B) ⊕ C = (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧ B ∧ ¬C) ∨ (¬A ∧ ¬B ∧

C) ∨ (A ∧ B ∧ C).

Example 24: Boolean algebra, Verification of Formal Verification

using notations of Structural Modeling in Virology.

• Verify that the output of the circuit will always equal the function’s

definition using truth tables or Boolean algebra.

Example 25: Boolean algebra and State Machines A state machine can

change between states depending upon input signals. Use Boolean

algebra to represent the transition logic.

• For example: If input A is 1, a finite state machine transitions to state

S1; otherwise, it stays in state S0.

• Transition: S1 = A ∧ S0'.

Example 26: Boolean algebra and Combinational Logic Design a

combinational logic circuit such that when two of its three inputs (A,

B, C) are 1, the output is 1.

• F = (A ∧ B) ∨ (A ∧ C) ∨ (B ∧ C).

95
MATS Centre for Distance and Online Education, MATS University

Notes Example 27: Boolean algebra and Data Structures Boolean algebra is

used to express a family of conditions under which a data structure may

be accessed.

• For instance: let access be granted if the following condition holds:

(user is admin AND file exists) OR (user has read permission AND file

is public).

Example 28: Boolean algebra and AI Logic Use Boolean algebra to

represent a simple rule-based system.

• Example: IF (temperature is high AND humidity is high) THEN turn

on cooling system

Example 29: Boolean algebra and Networking Boolean algebra can

be used to represent network routing rules.

• Example: Send packet to router A if (dest. network is X AND

protocol is TCP) OR (dest. network is Y AND protocol is UDP)

Example 30: boolean algebra in Card Games Representing Winning

Conditions in a Card game

• Example: win if (player has all keys and player has reached goal) or

(player has defeated all enemies).

Unsolved Problems

1. Simplify: A(B+C)+A′CA(B + C) + A'C.

2. Prove: A+AB′=A+B′A + AB' = A + B'.

3. Find the complement of: (A+B)(A′+B′)(A + B)(A' + B').

4. Show that: A+A′B=A+BA + A'B = A + B.

5. Simplify: A+AB+A′BA + AB + A'B.

6. Prove: A+AB′+B=A+BA + AB' + B = A + B.

7. Find the complement of: A′B+AB′A'B + AB'.

8. Simplify: A+A′B+ABA + A'B + AB.

9. Prove: A+B+AB=A+BA + B + AB = A + B.

10. Simplify: (A+B)(A+B′)(A + B)(A + B').

This Module presented fundamental concepts of Boolean algebra,

Boolean lattice, and its theorems along with solved and unsolved

problems. Boolean algebra is an essential subject in mathematics,

computer science, and electrical engineering, and learning it will help

you understand logic circuits, digital systems, and computational

logic.

96
MATS Centre for Distance and Online Education, MATS University

Notes 3.1.4 Boolean Functions, Disjunctive and Conjunctive Normal

Form, Complement Function, Bool’s Expansion Theorem

Boolean Functions, Disjunctive and Conjunctive Normal Form,

Complement Function, and Bool’s Expansion Theorem

Boolean algebra is a mathematical system used in computer

applications, particularly in logic design and digital circuits. It operates

on binary values (0 and 1) and forms the foundation for designing logic

gates and circuits. In this context, Boolean functions play a crucial role

in representing logical expressions using variables, operations, and

standard forms. This section delves into Boolean functions, their

standard forms—Disjunctive Normal Form (DNF) and Conjunctive

Normal Form (CNF)—the concept of complement functions, and

Bool’s Expansion Theorem, which is essential in simplifying and

analyzing Boolean expressions.

Boolean Functions

A Boolean function is a mathematical expression composed of binary

variables, logical operators (AND, OR, NOT), and constants (0 and 1).

It defines a mapping from input values to a single binary output.

Boolean functions are widely used in digital circuits to design

combinational and sequential logic circuits. The fundamental Boolean

operations used to construct these functions are:

1. AND (⋅): A binary operation that results in 1 only if both inputs

are 1; otherwise, it results in 0.

2. OR (+): A binary operation that results in 1 if at least one of the

inputs is 1.

3. NOT (¬): A unary operation that inverts the input, changing 1

to 0 and vice versa.

A Boolean function can be represented in different ways:

• Truth Table Representation: A tabular representation of all

possible input combinations and their corresponding output.

• Algebraic Expression: The function is represented as an

equation using Boolean operators.

• Logic Circuit Diagram: A graphical representation using logic

gates.

• Canonical and Standard Forms: Expressions written in a

predefined normal form for easier simplification.

97
MATS Centre for Distance and Online Education, MATS University

Notes 3.1.5 Disjunctive Normal Form (DNF)

Disjunctive Normal Form (DNF) is a standardized way of representing

Boolean functions as a disjunction (OR operation) of multiple

conjunctions (AND operation). A Boolean function is said to be in DNF

if it consists of a sum of product terms, where each product term is a

conjunction of literals. A literal is either a Boolean variable (e.g., xxx)

or its negation (e.g., ¬x). A minterm is a conjunction (AND) of literals

where each variable appears exactly once in either its true or

complemented form.

The general form of DNF is:

F(x1,x2,…,xn)=(A1⋅B1⋅C1)+(A2⋅B2⋅C2)+⋯+(Am⋅Bm⋅Cm)

where each term inside the parentheses is a minterm.

For example, consider a Boolean function with three variables:

F(A,B,C)=(A⋅¬B⋅C)+(A⋅B⋅C)+(¬A⋅B⋅¬C)

 This is in disjunctive normal form because it consists of ORed

minterms.

DNF is useful because it provides a clear way of defining Boolean

expressions in terms of logical OR of individual product terms.

However, it is not always the most optimized form for circuit

implementation.

3.1.6 Conjunctive Normal Form (CNF)

Conjunctive Normal Form (CNF) is another standard form for Boolean

functions, where the function is expressed as a conjunction (AND

operation) of multiple disjunctions (OR operation). Instead of

minterms, CNF uses maxterms, which are OR operations of literals.

A Boolean function is said to be in CNF if it consists of a product of

sum terms, where each sum term is a disjunction of literals.

The general form of CNF is:

F(x1,x2,…,xn)=(A1+B1+C1)⋅(A2+B2+C2)⋅⋯⋅(Am+Bm+Cm)

where each term inside the parentheses is a maxterm.

For example, consider a Boolean function with three variables:

F(A,B,C)=(A+B+¬C)⋅(A+¬B+C)⋅(¬A+B+C)

This is in conjunctive normal form because it consists of ANDed sum

terms.

CNF is particularly useful in logic programming, propositional logic,

and solving satisfiability problems (such as in the SAT problem).

However, like DNF, it may not always be the most efficient

representation for digital circuit design.

98
MATS Centre for Distance and Online Education, MATS University

Notes 3.1.7 Complement Function

The complement of a Boolean function is the logical negation of the

function. Given a function F(x1,x2,...,xn), its complement is denoted as

¬F or F′′ and is derived by applying De Morgan’s Theorem:

• De Morgan’s Theorems state that:

1. ¬(A⋅B)=¬A+¬B

2. ¬(A+B)=¬A⋅¬B

To find the complement of a Boolean function, we apply the NOT

operation to the entire function and use these rules to simplify.

For example, given the function:

F(A,B)=A+¬B

Its complement is:

F′(A,B)=¬(A+¬B)

Applying De Morgan’s Theorem:

F′(A,B)=¬A⋅B

The complement function is important in digital logic because it helps

in designing circuits such as NAND and NOR implementations, which

are functionally complete (i.e., they can be used to construct any

Boolean function).

3.1.8 Bool’s Expansion Theorem

Bool’s Expansion Theorem (also called the Shannon Expansion

Theorem) is a fundamental theorem in Boolean algebra used for

simplifying Boolean functions and designing digital circuits. The

theorem states that any Boolean function can be expressed in terms of

one of its variables and its complement.

The theorem is mathematically expressed as:

F(x1,x2,...,xn)=xF(1,x2,...,xn)+¬xF(0,x2,...,xn)

where F(1,x2,...,xn) is the function evaluated with x=1x = 1x=1, and

F(0,x2,...,xn) is the function evaluated with x=0.

For example, consider the function:

F(A,B)=A⋅B+A ′

Applying Bool’s Expansion Theorem on AAA:

F(A,B)=A⋅F(1,B)+¬A⋅F(0,B)

Evaluating:

F(1,B)=1⋅B+0=B

F(0,B)=0⋅B+1=1

Thus, expanding:

F(A,B)=A⋅B+¬A⋅1

99
MATS Centre for Distance and Online Education, MATS University

Notes Bool’s Expansion Theorem is widely used in:

• Circuit simplification: Breaking down complex Boolean

expressions into simpler components.

• Multiplexer design: Used to construct logic functions using

multiplexers.

• Binary decision diagrams (BDDs): Representing and

simplifying Boolean functions graphically.

Boolean functions are essential in digital logic design and computer

applications. Disjunctive Normal Form (DNF) and Conjunctive

Normal Form (CNF) provide standardized ways to express Boolean

functions for logic circuit design. The complement function plays a

crucial role in implementing logical negations and designing

NOR/NAND-based circuits. Bool’s Expansion Theorem offers a

systematic way to simplify Boolean functions and is fundamental in

logic synthesis and digital circuit design. Understanding these concepts

allows for efficient manipulation of logical expressions, leading to

optimized digital systems.

100
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3.2: Karnaugh map

3.1 Karnaugh Map Method for Simplification of Boolean

Expressions

Boolean algebra plays a critical role in computer science, electrical

engineering, and digital logic design. As Boolean functions grow more

complex, simplifying them becomes essential to improve the efficiency

of digital circuits. While algebraic manipulation and truth tables offer

ways to minimize Boolean expressions, the Karnaugh Map (K-map)

method provides a systematic and visual approach to simplification.

This technique is especially useful for reducing the number of logic

gates required to implement a function, thus optimizing hardware

performance and resource utilization.

Introduction to Karnaugh Maps

The Karnaugh Map (K-map) is a diagrammatic method for simplifying

Boolean expressions by grouping terms to eliminate redundant

variables. It was introduced by Maurice Karnaugh in 1953 and has since

become one of the most widely used techniques in digital circuit design.

The K-map method provides an alternative to algebraic simplification,

which can sometimes be cumbersome and prone to errors. A K-map is

a grid-like structure where each cell represents a possible combination

of input variables. The values in the cells correspond to the output

values of the Boolean function being simplified. By identifying

adjacent cells with similar values, we can form groups that allow us to

derive a simplified expression with fewer terms and variables.

3.2.2 Structure of Karnaugh Maps

A Karnaugh Map is constructed based on the number of variables in the

Boolean function. The number of cells in the K-map corresponds to the

possible input combinations, which is determined by 2^n, where n is

the number of variables.

• 2-variable K-map: 4 cells (2x2 grid)

• 3-variable K-map: 8 cells (2x4 grid)

• 4-variable K-map: 16 cells (4x4 grid)

• 5-variable K-map and beyond: Higher-dimensional

representations, typically drawn as multiple 4-variable K-maps

Each cell in the map represents a minterm, which is a product term in

the Sum of Products (SOP) form of the Boolean expression. The

101
MATS Centre for Distance and Online Education, MATS University

Notes arrangement of cells follows Gray Code sequence instead of binary

order, ensuring that adjacent cells differ by only one variable.

Filling the Karnaugh Map

To simplify a Boolean function using a Karnaugh Map, follow these

steps:

1. Determine the number of variables in the Boolean function.

2. Draw the corresponding K-map grid based on the number of

variables.

3. Label the rows and columns using Gray Code to ensure single-

bit transitions between adjacent cells.

4. Place 1s in the cells that correspond to the minterms in the given

Boolean function.

5. Group adjacent 1s together to form rectangles containing 1, 2,

4, 8, or more minterms, ensuring that each group is as large as

possible.

6. Derive the simplified expression from the groups by identifying

the common variables.

3.2.3 Grouping Rules for Simplification

The primary objective of K-map simplification is to create the largest

possible groupings of 1s. Some fundamental grouping rules include:

• Groups must contain 1, 2, 4, 8, or more cells in powers of 2.

• Groups should be as large as possible while still covering all 1s.

• Each 1 must be covered by at least one group, but it can be part

of multiple groups.

• The edges of a K-map wrap around, meaning cells on one edge

are adjacent to corresponding cells on the opposite edge.

Fig: 3.2.1 Karnaugh Map

102
MATS Centre for Distance and Online Education, MATS University

Notes Example: Simplifying a 3-Variable Boolean Function

Consider the Boolean function:

The 3-variable Karnaugh Map is structured as follows:

AB\C 0 1

00 1 1

01 0 1

11 0 1

10 1 0

From this, we identify the groupings:

1. (0,1) and (6,7) form a group because they differ by only one

variable.

2. (3,7) and (6,7) form another group.

3. Single remaining 1 at position (6) can be grouped with an

adjacent pair.

From these groups, we extract the simplified expression:

This is the minimized Boolean function, requiring fewer logic gates for

implementation.

3.2.4 Advantages of Using Karnaugh Maps

• Visual and Intuitive: Unlike Boolean algebra, which requires

algebraic manipulation, K-maps offer a clear visualization of

simplifications?

• Efficient for Small Functions: K-maps work efficiently for

functions with up to 5 or 6 variables. Beyond that, tabular

methods like Quine-McCluskey are preferred.

• Minimizes Logic Circuits: Reducing the number of terms

directly translates to fewer logic gates, reducing power

consumption and increasing circuit speed.

3.2.5 Limitations of Karnaugh Maps

• Not Scalable Beyond 5-6 Variables: As the number of variables

increases, K-maps become difficult to handle due to their

exponential growth.

• Complex Grouping: While it is straightforward for small

expressions, larger maps can be tricky to group optimally.

• Requires Manual Effort: Unlike algebraic methods that can be

implemented algorithmically, K-map simplifications rely on

human intuition.

103
MATS Centre for Distance and Online Education, MATS University

Notes 3.2.6 Comparison with Other Simplification Techniques

Several alternative methods exist for Boolean function simplification:

Method Advantages Disadvantages

Boolean

Algebra
Rigorous and logical

Time-consuming, complex

for large expressions

Truth Table Systematic, complete
Not directly used for

simplification

Karnaugh

Map

Visual, effective for

small functions

Not scalable beyond 5-6

variables

Quine-

McCluskey

Algorithmic, works for

larger functions

Computationally expensive

for very large functions

3.2.7 Application of Karnaugh Maps in Computer Applications

K-maps play a vital role in the design and optimization of:

• Combinational Circuits: Used in arithmetic logic Modules

(ALUs), multiplexers, and demultiplexers.

• Sequential Circuits: Simplification of next-state logic in finite

state machines.

• Memory Address Decoding: Optimization of address

decoding logic in microprocessors.

• Control Systems: Used in designing control Modules in

embedded systems and automation.

The Karnaugh Map method is a powerful tool for simplifying Boolean

expressions, making digital circuit design more efficient. By

systematically grouping adjacent minterms, K-maps eliminate

redundant variables, reducing the complexity of logic circuits. Despite

its limitations for large-scale problems, it remains an essential

technique in digital logic design, particularly for small to medium-sized

Boolean functions. Understanding K-maps enables engineers and

computer scientists to create optimized, cost-effective, and high-

performance digital systems, forming the foundation of modern

computational applications.

104
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3.3: Applications of Boolean Algebra in switching

circuits, logic circuits

3.3.1 Applications of Boolean Algebra in Switching Circuits, Logic

Circuits

Boolean algebra, formulated by George Boole in the mid-19th century,

serves as the mathematical foundation for digital logic design and

switching circuits. It provides a systematic framework for analyzing

and designing circuits that operate using binary variables, which take

values of either 0 or 1. The fundamental principles of Boolean algebra

are instrumental in the functioning of modern computers, control

systems, and communication devices. In the realm of digital

electronics, Boolean algebra simplifies circuit design by minimizing

the number of logic gates required to perform specific operations,

thereby enhancing efficiency, reducing power consumption, and

improving system reliability. Switching circuits, also known as

combinational logic circuits, rely on Boolean algebra to define their

operational behavior. These circuits consist of interconnected logic

gates—such as AND, OR, NOT, NAND, NOR, XOR, and XNOR

gates—that process binary signals to generate desired outputs. Boolean

algebra enables engineers to represent complex logical expressions

using algebraic notation, simplifying the analysis and design of

switching networks. The application of Boolean algebra in switching

circuits is crucial in various fields, including telecommunications,

industrial automation, robotics, and embedded systems. One of the

most important applications of Boolean algebra in switching circuits is

the design of logic circuits, which are used to perform arithmetic

operations, data processing, and decision-making functions in digital

systems. Logic circuits are broadly classified into combinational and

sequential circuits. Combinational logic circuits produce outputs solely

based on current input values, whereas sequential logic circuits store

past input information and exhibit memory-like behavior. The

implementation of Boolean functions in combinational circuits enables

the construction of essential digital components, such as multiplexers,

demultiplexers, encoders, decoders, arithmetic logic Modules (ALUs),

and memory systems.

Boolean algebra plays a crucial role in simplifying complex logic

expressions through algebraic manipulation techniques, such as the

105
MATS Centre for Distance and Online Education, MATS University

Notes application of Boolean postulates, De Morgan’s theorems, and

Karnaugh maps. By reducing redundant variables and minimizing

logical expressions, Boolean algebra optimizes circuit design, leading

to lower hardware costs and improved performance. For example, in

designing a digital adder circuit, Boolean algebra helps derive the

simplest possible expressions for sum and carry outputs, thereby

reducing the number of gates required. This optimization is particularly

valuable in large-scale integrated circuits (LSIs) and very-large-scale

integrated circuits (VLSIs), where minimizing transistor count is

essential for power efficiency and compactness. In switching circuits,

Boolean algebra is employed to analyze and design relay logic systems,

which were historically used in early telephone exchanges and

industrial control applications. Relay logic, based on electromechanical

relays, follows Boolean principles to control electrical circuits through

logical conditions. The advent of solid-state digital electronics replaced

relays with semiconductor-based logic gates, but the foundational

Boolean concepts remain unchanged. Programmable logic controllers

(PLCs), widely used in industrial automation, also rely on Boolean

logic to execute control sequences and decision-making processes.

Another significant application of Boolean algebra in switching circuits

is the design of sequential logic circuits, such as flip-flops, registers,

and counters. Sequential circuits differ from combinational circuits in

that they incorporate memory elements that store binary states. Boolean

algebra helps define the logical relationships governing state

transitions, enabling the construction of synchronous and asynchronous

sequential systems. Flip-flops, which serve as the building blocks of

memory storage and clocked circuits, operate based on Boolean

expressions to determine state changes. Counters, which are used in

digital clocks, frequency dividers, and event counting applications,

function by following Boolean logic rules to transition between states

in a predefined sequence.

The minimization of Boolean expressions using Karnaugh maps (K-

maps) and the Quine-McCluskey method is a critical aspect of

optimizing switching circuits and logic circuits. K-maps provide a

visual representation of Boolean functions, facilitating the

identification of common terms and redundant variables. The Quine-

McCluskey method, a tabular technique for simplification, is

particularly useful for automated logic design in digital circuits. These

106
MATS Centre for Distance and Online Education, MATS University

Notes minimization techniques significantly impact circuit performance by

reducing propagation delay, power consumption, and the likelihood of

timing errors. Boolean algebra is also extensively used in designing

logic circuits for microprocessors, digital signal processors (DSPs), and

application-specific integrated circuits (ASICs). Microprocessors, the

core components of modern computing devices, rely on logic circuits

that perform arithmetic and logical operations based on Boolean

expressions. Boolean functions govern the design of arithmetic circuits,

such as adders, sub tractors, multipliers, and dividers, which form the

computational backbone of processors. In DSP applications, Boolean

algebra is used to implement logic-based filtering, signal modulation,

and pattern recognition techniques. In the field of digital

communication, Boolean algebra plays a vital role in the design of error

detection and correction circuits. Parity generators and checkers, which

ensure data integrity during transmission, operate using Boolean

functions to detect bit errors. Hamming codes and cyclic redundancy

check (CRC) methods, based on Boolean algebra, enable error

correction in data communication systems. These applications are

fundamental to ensuring reliable data transfer in network protocols,

storage devices, and wireless communication systems.

Memory design and storage technologies also leverage Boolean algebra

to optimize read and write operations. Random-access memory (RAM),

read-only memory (ROM), and flash memory circuits utilize Boolean

logic to manage data storage and retrieval processes. Address decoding

circuits, which determine memory locations for data storage, operate

using Boolean expressions to enable efficient memory access. Boolean

algebra further aids in designing cache memory management systems,

optimizing data access speeds in modern computing architectures.

Boolean algebra is fundamental in the design of digital control systems,

which govern automated processes in various industries. Digital

controllers, used in robotics, aerospace, medical devices, and smart

home technologies, rely on Boolean logic to execute programmed

instructions. Logic circuits in digital controllers interpret sensor inputs,

process logical conditions, and generate control signals to drive

actuators. The application of Boolean algebra in these systems

enhances precision, reliability, and responsiveness in automated

decision-making. The advent of field-programmable gate arrays

(FPGAs) and complex programmable logic devices (CPLDs) has

107
MATS Centre for Distance and Online Education, MATS University

Notes further expanded the scope of Boolean algebra in modern electronics.

FPGAs and CPLDs provide reconfigurable logic platforms that allow

engineers to implement custom digital circuits using Boolean

expressions. Hardware description languages (HDLs), such as Verilog

and VHDL, enable the design and simulation of Boolean-based logic

circuits before hardware implementation. These programmable logic

devices have revolutionized prototyping, allowing rapid development

and testing of digital systems.

Another critical application of Boolean algebra in switching circuits

and logic circuits is found in cybersecurity and cryptographic systems.

Boolean functions are used in the design of cryptographic algorithms,

such as symmetric and asymmetric encryption schemes, hash functions,

and digital signatures. Boolean logic ensures secure data encryption

and authentication processes, safeguarding sensitive information in

digital communication and financial transactions. Boolean algebra

serves as the backbone of switching circuits and logic circuits, playing

a fundamental role in digital electronics, computing, automation, and

communication systems. Its application in circuit simplification,

memory design, error detection, digital control, and cryptographic

security underscores its significance in modern technology. The ability

of Boolean algebra to represent and manipulate logical relationships

enables engineers and computer scientists to design efficient, reliable,

and scalable digital systems. As technological advancements continue

to evolve, the principles of Boolean algebra will remain indispensable

in shaping the future of digital innovation.

Applications of Boolean Algebra

Boolean algebra is one of the most important tools in computer science

and digital electronics. It provides the mathematical foundation for the

design of circuits, logic programming, and problem solving.

Digital Circuit Design: Every digital circuit can be represented by a

Boolean expression. By applying Boolean laws, we can simplify these

expressions to reduce the number of gates used, which makes circuits

faster and cheaper.

108
MATS Centre for Distance and Online Education, MATS University

Notes Search Engines: Boolean operators such as AND, OR, and NOT are

used to combine search terms. For example, searching for “MCA AND

Mathematics” will return results containing both words.

Computer Networks: Boolean logic is used in routing decisions and

access control lists, where packet rules are written using logical

expressions.

Programming Languages: Conditional statements in languages such

as C, Java, or Python are evaluated using Boolean expressions.

Simplification of Boolean Functions

Karnaugh maps (K-maps) are widely used to minimize Boolean

functions. They help in identifying common groups and reducing the

number of variables in an expression.

Example: Simplify the function

F(A, B, C) = Σ(1, 3, 5, 7)

Step 1: Write minterms in binary form.

1 = 001

3 = 011

5 = 101

7 = 111

Step 2: Place them in a 3-variable K-map.

Step 3: Identify groups of adjacent 1s. In this case, grouping yields:

F = B ∧ C ∨ A ∧ C.

Thus, the simplified expression is:

F(A, B, C) = C(B ∨ A).

109
MATS Centre for Distance and Online Education, MATS University

Notes This is simpler than the original sum of four minterms.

Boolean Algebra in Error Detection and Correction

Boolean functions are also used in designing error detection codes. For

example, parity bits are generated using XOR operations. If the number

of 1s in a message is odd, the parity bit ensures the total becomes even.

At the receiving end, if the parity does not match, an error is detected.

Boolean Functions in Switching Theory

Switching circuits such as elevators, traffic signals, and vending

machines are modeled using Boolean functions. The ON and OFF

states correspond to 1 and 0. Boolean simplification ensures that such

systems work efficiently with minimal switches.

Worked Example: Circuit Simplification

Consider the Boolean function

F = AB + A′B + AB′.

Step 1: Apply distributive law:

F = AB + A′B + AB′ = B(A + A′) + AB′.

Step 2: Since A + A′ = 1, we get:

F = B(1) + AB′ = B + AB′.

Step 3: Apply absorption law:

F = B + A.

Thus, the circuit is simplified from three terms to just two inputs

connected by OR.

Importance of Boolean Algebra

The study of Boolean algebra is not limited to digital systems. It is an

essential part of problem solving in mathematics, optimization in

110
MATS Centre for Distance and Online Education, MATS University

Notes programming, database query design, and artificial intelligence

reasoning. Its principles allow computers to represent complex logical

problems using just two states, 0 and 1, making it the language of

computation itself.

SUMMARY

This module introduces the principles and applications of Boolean

algebra, a mathematical framework essential for digital logic and

computer design. It begins with the fundamental concepts of Boolean

algebra and Boolean lattices, where binary variables take values 0 and

1 and operations such as AND, OR, and NOT follow specific algebraic

rules. Boolean expressions are simplified using identities and laws,

including commutative, associative, distributive, identity, and De

Morgan’s laws. The module explores Boolean functions, their

representation, and transformation into Disjunctive Normal Form

(DNF) and Conjunctive Normal Form (CNF), aiding in standardizing

logic expressions. A key tool for simplification is the Karnaugh Map

(K-Map), which visually groups adjacent ones or zeros to minimize

Boolean functions with fewer terms, improving circuit efficiency. The

module also examines the application of Boolean algebra in

switching circuits and logic gates, enabling the design and analysis of

digital systems like adders, multiplexers, and combinational logic

circuits.

sssss Mastery of these concepts is foundational for understanding how

computers perform logical operations and how hardware implements

complex decision-making processes. he final part of the module

explores the applications of Boolean algebra in switching and logic

circuits. Boolean expressions are directly used to design and analyze

digital components such as logic gates, multiplexers, demultiplexers,

encoders, decoders, and arithmetic circuits like adders and subtractors.

The conversion from Boolean expressions to circuit diagrams forms the

foundation of combinational logic design, which is critical in building

CPUs, memory units, and control systems. In summary, This Module

equips students with the theoretical and practical tools to analyze and

design logical systems using Boolean algebra. It bridges the gap

between abstract algebraic principles and their real-world application

111
MATS Centre for Distance and Online Education, MATS University

Notes in computer hardware, laying the groundwork for more advanced

studies in digital electronics, computer architecture, and logic-based

computation.

112
MATS Centre for Distance and Online Education, MATS University

Notes Multiple-Choice Questions (MCQs)

1. Which of the following operations are fundamental in Boolean

algebra?

a) Addition, subtraction, multiplication

b) AND, OR, NOT

c) Integration, differentiation, exponentiation

d) Union, intersection, complement

Ans: b)

2. A Boolean function can be expressed in which of the following

normal forms?

a) Disjunctive Normal Form (DNF)

b) Conjunctive Normal Form (CNF)

c) Both (a) and (b)

d) None of the above

Ans: c)

3. Which theorem in Boolean algebra states that any Boolean

function can be expanded into a sum of two sub-functions?

a) De Morgan’s Theorem

b) Duality Theorem

c) Boolean Expansion Theorem

d) Absorption Theorem

Ans: c)

4. Which simplification technique is commonly used for

minimizing Boolean functions graphically?

a) Karnaugh Map (K-Map)

b) Truth Table Method

c) Algebraic Substitution

d) State Diagram

Ans: a)

5. Boolean algebra is widely applied in which of the following

fields?

a) Switching circuits

b) Logic circuits

c) Digital electronics

d) All of the above

Ans: d)

113
MATS Centre for Distance and Online Education, MATS University

Notes Long Answer Questions

1. Explain the fundamental concepts of Boolean algebra and

Boolean lattices. How are Boolean lattices different from

general lattices?

2. Describe disjunctive and conjunctive normal forms with

examples. Why are they important in Boolean function

simplification?

3. What is Karnaugh Map (K-Map)? How is it used for the

simplification of Boolean expressions? Explain with examples.

4. State and prove Boole’s Expansion Theorem. How does it help

in Boolean function manipulation?

5. Discuss the applications of Boolean algebra in switching

circuits and logic circuits. Provide examples illustrating its

practical significance.

Short Answer Questions

1. What are the three basic operations in Boolean algebra?

2. Define Boolean lattice and give an example.

3. What is the difference between disjunctive normal form

(DNF) and conjunctive normal form (CNF)?

4. How does Karnaugh Map help in simplifying Boolean

functions?

5. Give one real-life example where Boolean algebra is applied

in logic circuits.

114
MATS Centre for Distance and Online Education, MATS University

MODULE 4

GRAPH THEORY

4.0 Learning objectives

• To understand the fundamental concepts of graph theory.

• To explore different types of graphs and their properties.

• To analyze sub graphs, walks, paths, and circuits.

• To study matrix representations of graphs and directed graphs.

• To understand trees, rooted trees, binary trees, spanning trees,

and fundamental circuits.

115
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4.1: Basic concepts of graph theory

4.1.1 Basic Concepts of Graph Theory

Graph theory is one of the critical building blocks of discrete math and

the toolset you use to represent relationships between things. This

sounds more complicated than it is, but at the most basic level, a graph

is a mathematical construct of a number of vertices (or nodes)

connected together by edges. Such a simple construct opens many

analytical possibilities for a hundred disciplines.

Fundamental Definitions

A graph G can be formally defined as an ordered pair G = (V, E), where

V is a set of vertices and E a set of edges. Each edge joins a pair of

vertices, which may be ordered (for directed graphs, where one vertex

is listed first) or unordered (for undirected graphs). In Undirected

Graph, edges have no orientation and they can be represented as

unordered pair {u, v} where u,v ∈ V; while in Directed Graph

(Digraph), edges have orientation and are represented as ordered pair

(u, v) indicating an edge from vertex u to vertex v. There are many

different types of specialized graph structures. A simple graph has no

self-edges (an edge directed from the vertex to itself) and also no

multiple edges between a single pair of vertices. A multigraph allows

more than one edge for a pair of vertices, but no self-loops. A

pseudograph may also have multiple edges or self-loops. Such

differences can be key when creating models of different real-life

systems.

Fig: 4.1.1 GRAPH THEORY

116
MATS Centre for Distance and Online Education, MATS University

Notes 4.1.2 Graph Representations

There are different ways you could represent graphs computationally,

and each has some advantages in some contexts. The adjacency matrix

representation consists of an n×n matrix A (where n is the number of

vertices) with the following entries: aij = 1 if there is an edge from

vertex i to vertex j, and aij = 0 otherwise. This makes it easy and fast

to look up edges, but can be wasteful for sparse graphs in terms of

space. The adjacency list maintains a list of vertices that are adjacent

to each vertex. This is more space-efficient for sparse graphs but

slower for edge lookups. Another representation is provided via

incidence matrices with rows corresponding to vertices and columns

corresponding to edges, where entries indicate whether a vertex is

incident to an edge. How to represent the data affects algorithm

performance dramatically for various operations.

4.1.3 Graph Properties and Terminology

Graphs are characterized by several fundamental properties. The

number of edges incident to a vertex is its degree. For directed graphs,

we refer to in-degree (incoming edges) and out-degree (outgoing

edges) separately. A path is an ordered sequence of vertices such that

every two adjacent vertices in the sequence are connected by an edge.

A cycle is a path that starts and ends at the same vertex. Another core

concept is connectivity. A connected graph is one in which there is a

path between any two vertices. Components are maximal connected

subgraphs. Strong connectivity for directed graphs is defined in terms

of a directed path in both directions between any two vertices. Trees

are a special kind of graph, they are connected and acyclic (have no

cycles), while forests are collections of trees. The degree sequence of a

graph is a list of the degrees of each vertex, usually listed in non-

increasing order.

4.1.4 Special Graph Types

Many specific classes of graphs are common in theory and

applications. A complete graph Kn has n vertices, all connected, and

contains n(n−1)/2 edges. The vertices of a bipartite graph can be

separated into two non-overlapping sets, where no edges connect

vertices within the same set. The term planar applies to graphs that can

be rendered on a plane such that no edges intersect. Graphs where

every vertex has the same degree are known as regular graphs and we

refer to multiple strongly regular graphs (known as strongly regular

117
MATS Centre for Distance and Online Education, MATS University

Notes graphs) as maintaining an additional regularity condition on how many

neighbors they have in common. Other notable examples include the

Cycles {Cn}, Paths {Pn}, Wheels (a cycle with an n vertex connected

to all vertices of the cycle), and the grid graphs. The pentagon structure

of the Petersen graph is an excellent source of counterexample material

in graph theory. The properties of these special graphs usually give

information about more general graph properties and theorems.

4.1.5 Graph Coloring and Independence

The graph elements (the nodes or the arcs) are assigned a label (color)

with some constraints. In vertex coloring, no adjacent vertices can

have the same color. A proper vertex coloring is assigning colors to the

vertex of graph G such that adjacent vertices receive different colors

and the chromatic number χ(G) is the minimum number q of such

colors. In a similar manner, in edge coloring, no two adjacent edges

may have the same color; the chromatic index χ'(G) refers to the

smallest number of basic colors that can be assigned. An independent

set is a set of vertices that have no edges between them, and a clique is

a set of vertices that are all pairwise adjacent. Let α(G), ω(G) be the

independence number and the clique number of G respectively. These

ideas have applications in scheduling, register — allocation in

compilers, and frequency assignment problems in telecommunications.

4.1.6 Matching’s, Coverings, and Network Flows

A matching in a graph is a set of edges such that no two edges share a

vertex. A maximum matching has the greatest number of edges but a

perfect matching covers all vertices. The matching number ν(G) is

equal to a maximum matching size. On the other hand, a vertex cover

is a subset of vertices that contains at least one end point of every edge,

and the vertex cover number τ(G) is the size of a smallest such cover.

Network flow theory generalizes graph concepts to weighted directed

graphs, and edges have capacities. ∑fxs,xd≤c where S is source vertex

of network and XSink vertex of network max flow problem is hope to

find the max flow can go from source flow to sink flow The

augmentation-path technique is employed by the Ford-Fulkerson

algorithm in order to resolve this problem. The max flow min cut

theorem states that the flow exiting the source node does not exceed the

capacity of the "cut," and thus gives rise to the optimum solution,

solidifying this result as a foundational staple in combinatorial

optimization.

118
MATS Centre for Distance and Online Education, MATS University

Notes 4.1.7 Applications and Advanced Concepts

Graph theory is used in a wide variety of fields. Graphs are used to

model networks, data structures and algorithms in computer science.

In operations research, they describe transportation networks, project

schedules, resource allocation problems, etc. Graphs are employed to

analyze relationships and information flow in social networks. Graph

modeling finds its use in chemistry through molecular structures and in

biology via biological pathways. Advanced topics include spectral

graph theory (which looks at properties of graphs using eigenvalues of

related matrices), topological graph theory (which studies embeddings

of graphs on surfaces), extremely graph theory (which studies maximal

or minimal values of graph parameters), and random graph theory

(which studies probabilistic models of graphs). The computational

backbone of the vast majority of applications of graph theory is

algorithms like breadth-first search, depth-first search, Dijkstra’s

algorithm for shortest paths, and Kruskal’s and Prim’s algorithms for

minimum spanning trees. The work shapes shop these ideas pushes to

them graph hypothesis ahead as a live and growing ield with wide

rifting implications.

Solved Examples

Example 1: Graph Representation

Problem: Given a graph G with vertices V = {1, 2, 3, 4} and edges E

= {{1,2}, {1,3}, {2,3}, {2,4}, {3,4}}, represent this graph using an

adjacency matrix and adjacency list.

Solution: Adjacency Matrix:

1 2 3 4

1 0 1 1 0

2 1 0 1 1

3 1 1 0 1

4 0 1 1 0

Adjacency List: 1: [2, 3] 2: [1, 3, 4] 3: [1, 2, 4] 4: [2, 3]

Example 2: Degree Sequence

Problem: Find the degree sequence of the graph G with adjacency

matrix:

1 2 3 4 5

1 0 1 0 1 1

2 1 0 1 0 0

3 0 1 0 1 1

119
MATS Centre for Distance and Online Education, MATS University

Notes 4 1 0 1 0 1

5 1 0 1 1 0

Solution: Degree of vertex 1 = 3 (it connects with vertex 2, 4, and 5)

Degree of vertex 2 = 2 (it connects with vertex 1 and 3) Degree of

vertex 3 = 3 (it connects with vertex 2, 4, and 5) Degree of vertex 4 =

3 (it connects with vertex 1, 3, and 5) Degree of vertex 5 = 3 (it connects

with vertex 1, 3, and 4)

We talk about the sequence of degrees in non-increasing order: [3, 3,

3, 3, 2]

Example 3: Graph Isomorphism

Problem: Judge whether the graphs below are isomorphic: G1: V =

{a, b, c, d}, E = {{a,b}, {b,c}, {c,d}, {d,a}} G2: V = {1, 2, 3, 4}, E =

{{1,2}, {2,4}, {4,3}, {3,1}}

Solution : However, both graphs have 4 vertices, 4 edges. Both graphs

have degree sequence of [2, 2, 2, 2] (each vertex has exactly 2 edges).

Both graphs induce 4-cycles (C4).

We can find an isomorphism from a→1, b→2, c→4, d→3.

In this mapping, each edge in G1 maps to an edge in G2: {a,b} → {1,2}

{b,c} → {2,4} {c,d} → {4,3} {d,a} → {3,1}

Hence, the graphs are isomorphic.

Example 4: Connectivity and Components

Question: Given a graph G defined by the following vertices and

edges, what are the connected components in G?

Approach: Depth-first search or breadth-first search

• We can move to vertices 2 and 3 starting from vertex 1.

• Begin at vertex 4 and visit vertices 5 and 6.

• Vertex 7 is isolated.

So G has three connected components.

• Component 1: {1, 2, 3}

• Component 2: {4, 5, 6}

• Component 3: {7}

Example 5: Euler Paths and Circuits

Problem: Given the following graph, does it have an Euler path or an

Euler circuit? V = {a, b, c, d, e}, E = {{a,b}, {b,c}, {c,d}, {d,e}, {e,a},

{a,c}}

Solution: Check the degrees of each vertex: deg(a) = 3 (b, e, c) deg(b)

= 2 (a,c) deg(c) = 3 (b,d,a) deg(d) = 2 (c,e) deg(e) = 2 (d,a)

120
MATS Centre for Distance and Online Education, MATS University

Notes All vertexes must be even degree to have an Euler circuit. In this case,

both vertices a and c are of odd degree (3).

For an Euler path, there must be exactly two vertices of odd degree (the

starting and ending vertices). Thus, the graph has an Euler path but not

an Euler circuit since only two vertices (a and c) have odd degree. An

Euler path between these points would begin at a (or c), visit all edges

exactly once, and end at c (or a)

Example 6: Graph Coloring

Problem: Compute the chromatic number of the graph: V = {1, 2, 3, 4,

5}, E = {{1,2}, {4,5}} and a proper coloring.

Answer: We employ a greedy coloring approach:

1. Consider vertex 1 and give it color 1.

2. For vertex 2 it is an edge to vertex 1, then color 2.

3. For vertex 3, it is adjacent to vertex 1 and vertex 2 so assign

color 3.

4. For output vertex 4, its adjacent vertex are vertex 1 and vertex

3, so it haal a new color as 2.

5. For vertex 5, it is adjacent to vertices 3 and 4, so give it color

1.

The coloring is as follows - 1 and 5 are colored with color 1, 2 and 4

are colored with color 2 and 3 is colored with color 3.

To confirm it's minimal, we observe that we have a complete sub-graph

(K3) over vertices 1, 2, and 3 which would need at a minimum 3 colors.

Thus χ(G) = 3..

Example 7: Bipartite Graphs

Problem: Is this graph bipartite: V = {1, 2, 3, 4, 5, 6}, E = {{1, 2}, {1,

4}, {1, 6}, {3, 2}, {3, 4}, {3, 6}, {5, 2}, {5, 4}, {5, 6}}?

Solution: A graph is bipartite when its vertices can be split into two

disjoint sets with no edges between the same sets.

So we can apply a two-coloring method. A bipartite graph is one that

can be colored with exactly two colors:

1. Assign color A to vertex 1.

2. You can see that vertices 2,4, and 6 are represented on the

neighboring vertices of 1, so we need to assign color B.

3. Vertex 3 is connected with 2, 4 and 6 (all are colour B), assign

colour A.

4. Since vertex 5 is connected to vertices 2,4 and 6 (all in color

B), assign color A.

121
MATS Centre for Distance and Online Education, MATS University

Notes We have done two-coloring the graph as follows:

• Set A: {1, 3, 5}

• Set B: {2, 4, 6}

Because no edges connect vertices within Set A or within Set B, this

graph is bipartite..

Example 8: Minimum Spanning Tree

Problem: Given the weighted graph V = {A, B, C, D, E} E = {(A,B,2),

(A,C,3), (B,C,1), (B,D,3), (C,D,2), (C,E,4), (D,E,1)} (each edge

formatted as (vertex1, vertex2, weight)), find a minimum spanning tree.

Solution: Sort all the edges in non-decreasing order of their weight and

add in sorted order the next edge to the MST if it does not form a cycle

(Kruskal), it is a greedy algorithm.

1. (B,C,1) - Add to MST

2. (A,B,2) - Add to MST

3. (C,D,2) - Add to MST

4. (D,E,1) - Add to MST

The edges {(B,C), (A,B), (C,D), (D,E)} form the minimum spanning

tree with total weight 1+2+2+1 = 6

Example 9: Shortest Path

Problem: Find the shortest path from vertex A to all other vertices

using Dijkstra's algorithm for the following weighted graph: V = {A,

B, C, D, E} E = {(A,B,10),

(A,C,3),(B,C,1),(B,D,2),(C,D,8),(C,E,2),(D,E,7)}

Solution: Initialise: dist[A]=0, dist[B]=∞, dist[C]=∞, dist[D]=∞,

dist[E]=∞

Iterations:

1. Visit A: dist[B]=10, dist[C]=3

2. Visit C (nearest one with no visits): Update

dist[D]=min(∞,3+8)=11, dist[E]=min(∞,3+2)=5

3. Visit B (closest unvisited): Update dist[D]=min(11,10+2)=10

4. Visit E (nearest unvisited): No updates

5. Visit D (nearest unvisited): No updates

Shortest final distances from A:

• To B: 10 (path: A→B)

• To C: 3 (path: A→C)

• To D: 10 (path: A→B→D)

• To E: 5 (path: A→C→E)

122
MATS Centre for Distance and Online Education, MATS University

Notes

Example 10: Maximum Flow

Problem: Let \(V = \{s,a,b,c,t\} \; E = \{(s,a,10), (s,b,10), (a,b,2),

(a,c,4), (a,t,8), (b,c,9), (c,t,10)\} \), each edge has the form (from, to,

capacity)Problem: Find a maximum flow from source s to sink t in the

following network.

Solution: Implement Ford-fulkerson with augmenting paths:

1. Path s→a→t with bottleneck 8: Flow becomes 8.

2. Path s→b→c→t with bottleneck 9: Total flow = 8+9=17.

3. Switch s → a → c →t with bottleneck 2: Flow become

17+2=19

4. Previous flows block the path s→b→a→t. * ⊗ denotes a cut.

Hence, the maximum flow from s to t is 19 Modules.

The final flow assignment:

• Edge (s,a): Fully utilized — 10/10

• Edge (s,b): 9/10

• Edge (a,b): 0/2 (unused)

• Edge (a,c): 2/4

• Edge (a,t): 8/8 (fully used)

• Edge (b,c): 9/9 (f/used)

• Edge (c,t): 10/10 (in use)

These examples show how graph theory simplifies a variety of

problems..

4.1.8 Sub graphs, Walks, Paths, and Circuits in Graph Theory

A graph is a set of vertices (or nodes) and a set of edges connecting

pairs of vertices. These structures work as a powerful tool to model

relationships between objects in various fields of study like computer

science, chemistry, sociology and transportation networks. We usually

study portions of or patterns within graphs, like subgraphs, walks,

paths, and circuits. These principles the basis of how we traverse graphs

and measure connectivity within a graph, determining the ease with

which information, resources, or entities can navigate through intricate

networks. And studying these structures gives us a lot of properties of

the whole graph, like reach ability between nodes, shortest paths,

cyclic properties, etc. In this complete guide, we are going to discuss

about the formal definitions, properties and usages of this elemental

graph theory concepts with plenty of solved examples demonstrating

the usage of these concepts in solving the problems.

123
MATS Centre for Distance and Online Education, MATS University

Notes 4.1.9 Sub graphs: Definitions and Types

The sub graph is basically a graph inside a graph In concrete terms, a

sub graph H of a graph G is a graph with vertex set V (H) as a subset

of V(G) and edge set E (H) as a subset of E(G) such that every edge in

E (H) connects two vertices that are inV(H). We have the following

note worth the mention regarding specialized types of sub graph: When

there is a said subset of vertices of g, and all the edges present in g on

this subset of vertices, the sub graph formed is known as the induced

subgraph. Note that a spanning sub graph must have all the vertices of

the original graph, but can have fewer edges. Note that a maximal sub

graph with respect to some property is one to which no vertex or edge

can be added without violating the property. A clique consists of a

complete sub graph where there is an edge connecting every pair of

distinct vertices. Sub graph identification is the method of isolating

certain graph objects from a bigger graph, which is very important in

graph analysis since the purpose can be a sub graph that contains certain

properties or represents certain subsystems. In social network analysis,

for example, densely connected sub graphs can indicate commModuley

structures, and in computational biology, certain sub graphs of protein

interaction networks can represent functional modules.

4.1.10 Walks: Sequential Traversal through Graphs

An undirected walk in a graph is a finite alternating sequence

(v(e1)e(v1)e2(v2)e(v3)e(v4)e(v5)e(v6)(More formally, a walk from

vertex v₀ to vertex vₙ is the alternating sequence of vertices and edges

v₀, e₁, v₁, e₂, v₂, …, eₙ, vₙ, where each edge eᵢ links the two endpoints

vᵢ₋₁ and vᵢ. The length of a walk is counted as the number of edges it

uses. If we have a walk where we need the starting vertex to be the

same as the ending vertex, we can call that a closed walk, while

otherwise if that is not needed we can call it an open walk. Another

important property of walks is that it allows repeated visits to both

vertices and edges, thus being less restrict than paths. Particularly, this

freedom allows for walks to be appropriate for modeling situations

where it is permitted to pass through previously visited spots or

connections as in Markov-chains or in ascertaining the potential travel

itineraries of agents in networks. Walks represent the basic traversal

types; paths and circuits are simply constrained versions of walks. Also,

if two vertices are connected by walks then they are somehow reach-

124
MATS Centre for Distance and Online Education, MATS University

Notes able, although not on the efficient path, graph connectivity is also

analyzed with the help of walks..

Fig: 4.1.10 WALK

4.1.11 Paths: Direct Connections Without Repetition

A walk in which no vertex is repeated is a path. More formally, a path

from vertex v₀ to vertex vₙ is a walk v₀, e₁, v₁, e₂, v₂,..., eₙ, vₙ with all vᵢ

distinct. This limitation makes paths helpful in locating direct routes

from one node to another in a graph. The length of a path (and also of

a walk) is the number of edges it contains. In graph theory, the distance

between two vertices in an undirected graph can be calculated using

the shortest path between them, which is also referred to as the geodesic

path and is often used in applications like determining the most efficient

way to navigate between two vertices (for example, when calculating

routing protocols in computer networks or navigation systems). A

graph is called connected if there is a path between every pair of distinct

vertices, a property ensuring that the entire network can be accessed

from any point in it. (Graph algorithms woudn't work without paths —

one example is Dijkstra's algorithm for internet routing; another is

depth-first search for traversing the structure of a graph.) In directed

graphs, the presence of a path from the vertex u to the vertex v does not

guarantee that there exists a path from the vertex v to the vertex u, hence

the concept of strong connectivity and weak connectivity. They provide

a framework for examining the dynamics of information processes,

resource allocation, and access within structures.

125
MATS Centre for Distance and Online Education, MATS University

Notes

Fig: 4.1.11 PATHS

4.1.12 Circuits: Cyclic Structures in Graphs

A circuit (or cycle) is a walk which is closed (the first and last vertices

are the same), and no edge is repeated. Or we can say a circuit is a

closed path (only the first/last vertex is repeated). The existence of

circuits in a graph is essential for the cyclic structures and their

properties in the graph. Such a circuit-free graph is referred to as

acyclic (trees are a particular example of acyclic graphs). We call the

length of a circuit the number of edges (or, equivalently, vertices) it

contains. Of particular interest are Hamiltonian circuits (which visit

each of the vertices exactly once, before returning to the original

vertex) and Eulerian circuits (which traverse each edge exactly once).

Circuits are important in network design as they provide redundancy

and alternative paths, and in chemistry where it represents cyclical

molecular structures, and when it comes to scheduling problems,

circuits may represent inefficiencies or deadlocks. The detection and

analyzation of circuits are a key part of many graph algorithms as they

are used in checking planarity of a graph, finding the strongly

connected components and many optimization problems like the

traveling salesman problem.

126
MATS Centre for Distance and Online Education, MATS University

Notes

Fig: 4.1.2 CIRCUIT

4.1.13 Common Properties and Interrelationships

Divider If walks are used to travel along the graph, then Sub-graphs are

any portion of a graph that can be used for a wider construction of the

Graph traversing algorithm. Because it has so-called "path (def.)":

attack that forbids repeating vertices. In the same way, all circuits are

closed walks, but not all closed walks a circuit if they repeat the edges.

Graphs are characterized by the existence of paths between vertices and

the absence of circuits, while trees and other anti-cyclic structures are

characterized by the lack of circuits. This is a direct consequence of the

concept of (graph) diameter, which is the longest shortest path between

any two vertices in the graph. In a network, the number of distinctive

paths between its vertices may reflect the connection redundancy or

resilience. The concepts extend to weighted graphs with associated

edge costs or weights weighted walks, weighted paths, weighted

circuits, etc — where the total weight along the sequence is now the

more critical measure. All these properties combined allow us to study

various network features, such as reversibility, connectivity, cyclicity,

etc., and they all are crucial for understanding the structural or

functional properties of complex networks in many domains.

4.1.14 Applications and Algorithmic Approaches

Sub graphs, walks, paths, and circuits are theoretical concepts with

wide-ranging practical applications in various fields that exploit certain

properties of these structures to address real-life challenges. For

example, in computer networking, Dijkstra's and Bellman-Ford

algorithms are shortest path algorithms used to compute optimal

routing. Path and subgraph identification for detecting com Moduleies

127
MATS Centre for Distance and Online Education, MATS University

Notes and influence through social network analysis. Circuit and path

optimization forms the basis for transportation engineering for optimal

routing and scheduling of transportation systems. In the analysis of

gene regulatory networks, bioinformatics applies path analysis to

explore some biological behaviors. Web crawlers explore the web with

systematic walk algorithms. Identification of molecular structures in

the chemo informatics domain is done using specific subgraph pattern

recognition. This is particularly useful in applications such as electronic

design and power grid management where circuit analysis is

indispensable. Diverse algorithmic methods have been designed to

study these types of structures in an efficient way: breadth-first search

for shortest paths, depth-first search for path and circuit detection,

dynamic programming for same optimal path problems, and dedicated

algorithms that each focus on specific problems such as Floyd-warshall

for all-pairs shortest paths. Path and circuit related problems represent

more complex problems and hence the majority of them are NP-hard

(like finding the circuits of Hamiltonian) while some others such as

finding circuits Eulerian are polynomial problems that can be explored

in polynomial time. Research into the ongoing design of evermore

efficient algorithms to study these structures of a graph continues to this

day in the fields of graph theory and computer science.

Solved Examples

Example 1: Identifying Sub graphs

Consider a graph G with vertex set V(G) = {a, b, c, d, e} and edge set

E(G) = {(a,b), (b,c), (c,d), (d,e), (e,a), (a,c), (b,d)}. Let's identify

various sub graphs:

Solution:

1. A sub graph H₁ with V(H₁) = {a, b, c} and E(H₁) = {(a,b), (b,c)}

is a valid sub graph of G.

2. The induced sub graph H₂ on vertices {a, b, c} includes all edges

from G connecting these vertices: E(H₂) = {(a,b), (b,c), (a,c)}.

3. A spanning sub graph H₃ has V(H₃) = V(G) = {a, b, c, d, e} and

a subset of edges, say E(H₃) = {(a,b), (b,c), (c,d), (d,e), (e,a)}

(forming a cycle).

4. The vertices {a, c, d} with edges {(c,d), (a,c)} form another

valid sub graph H₄.

128
MATS Centre for Distance and Online Education, MATS University

Notes Example 2: Analyzing Walks

In graph G with vertices {v₁, v₂, v₃, v₄, v₅} and edges {(v₁,v₂), (v₂,v₃),

(v₃,v₄), (v₄,v₅), (v₅,v₁), (v₁,v₃), (v₂,v₄)}, analyze the following walks:

Solution:

1. W₁: v₁, (v₁,v₂), v₂, (v₂,v₃), v₃, (v₃,v₄), v₄

o This is a walk of length 3 from v₁ to v₄

o Since no vertex is repeated, it is also a path

2. W₂: v₁, (v₁,v₂), v₂, (v₂,v₃), v₃, (v₃,v₁), v₁, (v₁,v₅), v₅

o This is a walk of length 4 from v₁ to v₅

o It is not a path because v₁ appears twice

3. W₃: v₂, (v₂,v₄), v₄, (v₄,v₃), v₃, (v₃,v₂), v₂

o This is a closed walk of length 3 (starts and ends at v₂)

o It's not a circuit because edge (v₄,v₃) doesn't exist in G

Example 3: Finding All Paths Between Two Vertices

In the graph G with V(G) = {a, b, c, d} and E(G) = {(a,b), (b,c), (c,d),

(a,c), (b,d)}, find all possible paths from vertex a to vertex d.

Solution:

1. Path P₁: a, (a,b), b, (b,c), c, (c,d), d (length 3)

2. Path P₂: a, (a,b), b, (b,d), d (length 2)

3. Path P₃: a, (a,c), c, (c,d), d (length 2)

There are three distinct paths from a to d, with the shortest paths P₂ and

P₃ both having length 2.

Example 4: Eulerian Circuits

Determine if the following graph G has an Eulerian circuit. V(G) = {v₁,

v₂, v₃, v₄, v₅} and E(G) = {(v₁,v₂), (v₂,v₃), (v₃,v₄), (v₄,v₅), (v₅,v₁), (v₁,v₃),

(v₃,v₅), (v₅,v₂), (v₂,v₄)}.

Solution: For a graph to have an Eulerian circuit, every vertex must

have an even degree (number of incident edges).

• deg(v₁) = 3 (edges to v₂, v₃, v₅)

• deg(v₂) = 3 (edges to v₁, v₃, v₅)

• deg(v₃) = 3 (edges to v₁, v₂, v₄)

• deg(v₄) = 2 (edges to v₃, v₅)

• deg(v₅) = 3 (edges to v₁, v₃, v₄)

Since vertices v₁, v₂, v₃, and v₅ have odd degrees, this graph does not

have an Eulerian circuit.

129
MATS Centre for Distance and Online Education, MATS University

Notes Example 5: Hamiltonian Paths and Circuits

Determine if the cycle graph C₅ with vertices {1, 2, 3, 4, 5} and edges

{(1,2), (2,3), (3,4), (4,5), (5,1)} contains a Hamiltonian path and a

Hamiltonian circuit.

Solution: A Hamiltonian path visits each vertex exactly once. The path

1, 2, 3, 4, 5 is a Hamiltonian path in C₅.

A Hamiltonian circuit visits each vertex exactly once and returns to the

starting vertex. The circuit 1, 2, 3, 4, 5, 1 is a Hamiltonian circuit in C₅.

In fact, C₅ is itself a cycle, so it naturally contains a Hamiltonian circuit.

Example 6: Finding Shortest Paths

In a weighted graph G with V(G) = {a, b, c, d, e} and weighted edges

{(a,b,3), (b,c,2), (c,d,5), (d,e,1), (e,a,4), (a,c,7), (b,d,6), (a,d,12)}, find

the shortest path from vertex a to vertex d.

Solution: Possible paths from a to d:

1. a → b → c → d: weight = 3 + 2 + 5 = 10

2. a → c → d: weight = 7 + 5 = 12

3. a → b → d: weight = 3 + 6 = 9

4. a → d: weight = 12

5. a → e → d: Not possible as there's no direct edge from e to d

The shortest path is a → b → d with a total weight of 9.

Example 7: Circuit Detection in Directed Graphs

Consider a directed graph G with V(G) = {1, 2, 3, 4, 5} and directed

edges {(1,2), (2,3), (3,1), (2,4), (4,5), (5,2)}. Identify all circuits in this

graph.

Solution:

1. Circuit C₁: 1 → 2 → 3 → 1 (length 3)

2. Circuit C₂: 2 → 4 → 5 → 2 (length 3)

3. Circuit C₃: 1 → 2 → 4 → 5 → 2 → 3 → 1 (length 6)

There are other circuits that can be derived by combining or extending

these basic circuits.

Example 8: Connectivity in Graphs

Determine if the following graph G is connected. V(G) = {a, b, c, d, e,

f} and E(G) = {(a,b), (b,c), (d,e), (e,f), (a,d)}.

Solution: To check connectivity, we need to verify if there's a path

between every pair of vertices.

• Path from a to c: a → b → c

• Path from a to e: a → d → e

• Path from a to f: a → d → e → f

130
MATS Centre for Distance and Online Education, MATS University

Notes • Path from b to d: b → a → d

• Path from b to e: b → a → d → e

• Path from b to f: b → a → d → e → f

• Path from c to d: c → b → a → d

• Path from c to e: c → b → a → d → e

• Path from c to f: c → b → a → d → e → f

• Path from d to b: d → a → b

• Path from d to c: d → a → b → c

• Path from d to f: d → e → f

• Path from e to a: e → d → a

• Path from e to b: e → d → a → b

• Path from e to c: e → d → a → b → c

• Path from f to a: f → e → d → a

• Path from f to b: f → e → d → a → b

• Path from f to c: f → e → d → a → b → c

Since there exists a path between every pair of vertices, the graph G is

connected.

Example 9: Sub graph Isomorphism

Determine if the graph H with V(H) = {1, 2, 3, 4} and E(H) = {(1,2),

(2,3), (3,4), (4,1)} is isomorphic to a sub graph of G with V(G) = {a, b,

c, d, e, f} and E(G) = {(a,b), (b,c), (c,d), (d,e), (e,f), (f,a), (a,c), (c,e),

(e,a)}.

Solution: H is a cycle graph with 4 vertices (C₄). To find if it's

isomorphic to a subgraph of G, we need to find a cycle of length 4 in

G.

One such cycle is a → c → e → a, but this has only 3 vertices. Another

cycle is a → b → c → d → e → f → a, but this has 6 vertices.

Let's check other possible 4-vertex cycles:

• a → b → c → a: Not a 4-vertex cycle (only 3 vertices)

• a → c → d → e → a: This is a 4-vertex cycle

The mapping f(1) = a, f(2) = c, f(3) = d, f(4) = e establishes an

isomorphism between H and the sub graph of G induced by vertices {a,

c, d, e}. Therefore, H is isomorphic to a sub graph of G.

Example 10: Bipartite Graph Analysis

Determine if the following graph G is bipartite. V(G) = {1, 2, 3, 4, 5}

and E(G) = {(1,2), (2,3), (3,4), (4,5), (5,1), (1,3)}.

Solution: A graph is bipartite if its vertices can be divided into two

disjoint sets such that no two vertices within the same set are adjacent.

131
MATS Centre for Distance and Online Education, MATS University

Notes Let's try to partition the vertices:

• Put vertex 1 in set A

• Then vertices 2, 3, and 5 must go in set B (since they're adjacent

to 1)

• But vertices 2 and 3 are adjacent, and both are in set B, which

violates the bipartite property

Alternatively, we can check if the graph contains any odd-length cycles.

The cycle 1 → 3 → 2 → 1 has length 3 (odd), confirming that G is not

bipartite.

Example 11: Graph Coloring and Paths

Given a graph G with V(G) = {a, b, c, d, e} and E(G) = {(a,b), (b,c),

(c,d), (d,e), (e,a), (a,c), (b,d)}, find the chromatic number and a proper

coloring of G.

Solution: The chromatic number is the minimum number of colors

needed for a proper vertex coloring.

Let's attempt to color G:

• Assign color 1 to vertex a

• Vertex b is adjacent to a, so assign color 2

• Vertex c is adjacent to both a and b, so assign color 3

• Vertex d is adjacent to b and c, so assign color 1

• Vertex e is adjacent to a and d, so assign color 2

This gives us a proper coloring using 3 colors. To verify this is minimal,

note that vertices a, b, and c form a triangle (clique of size 3), requiring

at least 3 colors. Therefore, the chromatic number of G is 3.

Example 12: Distances and Eccentricity

For the graph G with V(G) = {1, 2, 3, 4, 5} and E(G) = {(1,2), (2,3),

(3,4), (4,5), (1,3), (1,5)}, calculate: a) The distance between each pair

of vertices b) The eccentricity of each vertex c) The radius and diameter

of G

Solution: a) Distances:

• d(1,2) = 1, d(1,3) = 1, d(1,4) = 2, d(1,5) = 1

• d(2,1) = 1, d(2,3) = 1, d(2,4) = 2, d(2,5) = 2

• d(3,1) = 1, d(3,2) = 1, d(3,4) = 1, d(3,5) = 2

• d(4,1) = 2, d(4,2) = 2, d(4,3) = 1, d(4,5) = 1

• d(5,1) = 1, d(5,2) = 2, d(5,3) = 2, d(5,4) = 1

b) Eccentricity (maximum distance from a vertex to any other vertex):

• e(1) = max{d(1,j)} = 2

• e(2) = max{d(2,j)} = 2

132
MATS Centre for Distance and Online Education, MATS University

Notes • e(3) = max{d(3,j)} = 2

• e(4) = max{d(4,j)} = 2

• e(5) = max{d(5,j)} = 2

c) Radius (minimum eccentricity) = 2 Diameter (maximum

eccentricity) = 2

Example 13: Walks of Specific Length

In the graph G with V(G) = {a, b, c, d} and E(G) = {(a,b), (b,c), (c,d),

(d,a), (a,c)}, determine: a) The number of walks of length 2 from a to c

b) The number of walks of length 3 from a to a

Solution: a) Walks of length 2 from a to c:

1. a → b → c

2. a → d → c

There are 2 walks of length 2 from a to c.

b) Walks of length 3 from a to a:

1. a → b → c → a

2. a → c → d → a

3. a → d → a → b (not valid as (d,a,b) contains repeated vertex a)

4. a → c → a → d (not valid as (c,a,d) contains repeated vertex a)

There are 2 valid walks of length 3 from a to a.

Example 14: Independent Sets and Dominating Sets

For the graph G with V(G) = {1, 2, 3, 4, 5} and E(G) = {(1,2), (2,3),

(3,4), (4,5), (5,1), (1,3), (2,4)}, find: a) A maximum independent set b)

A minimum dominating set

Solution: a) An independent set is a set of vertices where no two

vertices are adjacent.

• {1, 4} is an independent set

• {2, 5} is an independent set

To verify these are maximum, note that adding any other vertex would

create an edge within the set. Therefore, {1, 4} and {2, 5} are maximum

independent sets of size 2.

b) A dominating set is a set of vertices such that every vertex in the

graph is either in the set or adjacent to some vertex in the set.

• Set {1, 3} dominates all vertices: 1 dominates 2, 5; 3 dominates

2, 4

• Set {1, 4} dominates all vertices: 1 dominates 2, 3, 5; 4

dominates 3, 5

• Set {2, 4} dominates all vertices: 2 dominates 1, 3; 4 dominates

3, 5

133
MATS Centre for Distance and Online Education, MATS University

Notes These are all minimum dominating sets of size 2.

Example 15: Path and Circuit Optimization

In a weighted graph G with V(G) = {a, b, c, d, e} and weighted edges

{(a,b,2), (b,c,3), (c,d,1), (d,e,4), (e,a,5), (a,c,7), (b,d,6), (c,e,2)}, find:

a) The shortest path from a to e b) The minimum-weight Hamiltonian

circuit, if one exists

Solution: a) Possible paths from a to e:

1. a → b → c → d → e: weight = 2 + 3 + 1 + 4 = 10

2. a → b → c → e: weight = 2 + 3 + 2 = 7

3. a → c → d → e: weight = 7 + 1 + 4 = 12

4. a → c → e: weight = 7 + 2 = 9

5. a → e: weight = 5

The shortest path is a → e with weight 5.

b) Hamiltonian circuits (visit each vertex exactly once and return to

start):

1. a → b → c → d → e → a: weight = 2 + 3 + 1 + 4 + 5 = 15

2. a → b → c → e → d → a: Not valid (no edge from d to a)

3. a → b → d → c → e → a: weight = 2 + 6 + 1 + 2 + 5 = 16

4. a → c → b → d → e → a: Not valid (no edge from c to b)

5. a → c → e → d → b → a: Not valid (no edge from d to b)

6. a → e → c → b → d → a: Not valid (no edge from e to c)

7. a → e → c → d → b → a: Not valid (no edge from d to b)

8. a → e → d → c → b → a: Not valid (no edge from e to d)

The minimum-weight Hamiltonian circuit is a → b → c → d → e → a

with weight 15.

Example 16: Planarity and Graph Drawing

In this task you determine whether the complete graph K₅ is planar or

not (if it is not planar you identify a Kuratowski sub graph).

Solution: What is a planar graph? A graph is planar if it can be drawn

in the plane without any edge crossing. The so-called Kuratowski's

theorem states that a graph G is planar iff it does not contain a

subdivision of K₅ or of K₃,₃.

Where K₅ is a complete graph on 5 points or each pair of points is

connected with edges. By Kuratowski’s theorem, K₅ is non-planar

itself. And since K₅ is one of those Kuratowski graphs, it is a

Kuratowski subgraph of itself. This shows that K₅ is non-planar.

134
MATS Centre for Distance and Online Education, MATS University

Notes Example 17: Graph Matrix Representations

For the graph G with V(G) = {1, 2, 3, 4} and E(G) = {(1,2), (2,3), (3,4),

(4,1), (1,3)}, give: a) the adjacency matrix b) The incidence matrix c)

Use the adjacency matrix to find the number of walks of length 2 from

vertex 1 to vertex 3

Solution: a) Adjacency matrix A:

 | 1 2 3 4

---+--------

 1 | 0 1 1 1

 2 | 1 0 1 0

 3 | 1 1 0 1

 4 | 1 0 1 0

b) Incidence matrix M (labeling edges e₁ = (1,2), e₂ = (2,3), e₃ = (3,4),

e₄ = (4,1), e₅ = (1,3)):

 | e₁ e₂ e₃ e₄ e₅

---+---------------

 1 | 1 0 0 1 1

 2 | 1 1 0 0 0

 3 | 0 1 1 0 1

 4 | 0 0 1 1 0

c) To find the number of walks of length 2 from vertex 1 to vertex 3,

we compute A² and look at the entry A²[1,3]:

A² = A × A =

 | 1 2 3 4

---+--------

 1 | 3 1 2 1

 2 | 1 2 1 2

 3 | 2 1 3 1

 4 | 1 2 1 2

Therefore, there are 2 walks of length 2 from vertex 1 to vertex 3. These

walks are:

1. 1 → 2 → 3

2. 1 → 4 → 3

Example 18: Eulerian Paths

You are given a graph G with the following vertices and edges: V(G) =

{a, b, c, d, e} and E(G) = {(a,b), (b,c), (c,d), (d,e), (e,a), (a,c)}. You

need to decide if it possesses an Eulerian path or not.

135
MATS Centre for Distance and Online Education, MATS University

Notes Solution: For a graph to be Eulerian (i.e. contain Eulerian path), two

vertices have to be odd degree and all others must be even degree.

Calculating the degrees:

• deg(a) = 3 (to b, c, e)

• deg(b) = 2 (edges to a, c)

• deg(c) = 3 (edges to a, b, d)

• deg(d) = 2 (edges to c, e)

• deg(e) = 2 (edges to a, d)

Note that the degree of vertices a and c is 1 (odd), and the degree of all

other vertices is even. Hence, this graph has an Eulerian path. The trail

has to start at a or c and end at the other.

An Eulerian path of this kind is: a → b → c → d → e → a → c

Example 19: Connectivity and Cut Vertices

Given the graph G with V(G) = {1,2,3,4,5,6} and E(G) =

{(1,2),(2,3),(3,4),(4,5),(5,6),(6,1),(2,5)}, find: a) The cut vertices

(articulation points) b) The bridges (cut edges)

• When removing vertex 1: The remaining graph is connected

• Vertex 2 removed: remainder of graph is still connected

• Removed vertex 3: {1, 2, 5, 6}, {4}

• For vertex 4: component: {1, 2, 3, 5, 6} and {}

• When we remove vertex 5 the remaining graph is still connected

• Pruning vertex 6 out: The resulting graph is still connected.

So, the cut vertices are 3 and 4.

b) A bridge is an edge, that when deleted increasing connected

components.

• Deleting edge (3,4): The graph gets partitioned into the two

components {1, 2, 3, 5, 6} and {4}

Hence, edge (3,4) is a bridge.

Example 20: Graph Characterization

Describe the following graphs by their characteristics: a) A complete

graph K₆ b) A cycle graph C₈ c) A wheel graph W₅ d) A complete

bipartite graph K₃,₄

Solution: a) Complete graph K₆:

• Each of the 6 vertices is connected to the other vertices

• Has 6(6-1)/2 = 15 edges

• Diameter = 1, radius = 1

• Chromatic number = 6

• Has Hamiltonian circuits

136
MATS Centre for Distance and Online Education, MATS University

Notes • Not bipartite (has odd cycles)

• All induced subgraphs are complete graphs

b) Cycle graph C₈:

• Contains 8 vertices placed in a cycle

4.1.15 Types of Graphs

Graphs in Mathematics

A graph is a mathematical representation of a set of objects where some

pairs of the objects are connected by links. The graph is made up of

vertices (or nodes) and edges that link those vertices. Then, analyze

data with Graphs which are widely used in fields such as computer

science, physics, biology, social sciences to study relationships as well

as in engineering. Graph theory is a branch of mathematics studying

graphs, which was first introduced in the 18th century by Leonhard

Euler when he managed to solve the famous Seven Bridges of

Königsberg problem. The problem asked whether it was possible to

walk through the city crossing each of its seven bridges just once —

Euler proved it was impossible, and in doing so, laid the groundwork

for graph theory.

 Undirected Graphs

Undirected Graph: A graph in which edges have no direction. The edge

(u, v) is the same edge as the edge (v, u), so it is the relationship of two

vertices which is reciprocal. Undirected edges are commonly

represented by lines in draw without arrows.

Example 1: Friendship Network

Let’s take an example of a friendship network, vertices represent people

and edges represent friendships between them. If Bob is a friend of

Alice, then Alice is a friend of Bob — hence, this relationship is

undirected.

This prompt describes a friendship network among 5 people (A, B, C,

D, E) and the following friendships:

• A is friends with B and C

• B is a friend of A, C, and D

• C has friends A, B and E

• D is friends with B and E

• E is friends with C and D

To represent this as an adjacency matrix:

 | A B C D E

--+---------

137
MATS Centre for Distance and Online Education, MATS University

Notes A | 0 1 1 0 0

B | 1 0 1 1 0

C | 1 1 0 0 1

D | 0 1 0 0 1

E | 0 0 1 1 0

Example 2: Determining if a Graph is Connected

Two vertices are connected if there is a path between them.

Let G be the undirected graph with vertices {1,2,3,4,5} and edges

{(1,2),(1,3),(2,4),(3,5)}.

To determine whether G is connected:

1. Start at vertex 1

2. From vertex 1, we can go to vertex 2 and 3

3. From vertex 2, we may take vertix 4

4. → You can go to vertex 5 from the vertex 3.

5. The graph is connected because every vertex is reachable from

vertex 1

Example 3: Finding Degrees in an Undirected Graph

A vertex degree is the number of edges attached to a vertex.

Consider the undirected graph G = (V, E), where V = {A, B, C, D} and

E = {(A,B), (A,C), (B,C), (B,D), (C,D)}:

Step 1: Find the degree of each vertex.

• Vertex A connects to B and C, hence deg(A) = 2

• Vertex B is connected to A, C, and D, thus degree(B) = 3

• As vertex C, there are three possible edges of connection (to A, B,

and D), therefore degree(C) = 3

• Vertex D has edges to B and C = d(D) = 2

Example 4: Euler Path and Circuit

Euler path : a path that visits every edge exactly once. An Euler circuit

is an Euler path that begins and ends at the same vertex.

For an undirected graph:

• An Euler path exists iff exactly zero or two vertices have odd degree

• An Euler circuit exists iff all the vertices have even degree

Take the graph G whose vertices are {A, B, C, D} and whose edges are

{(A,B), (A,C), (B,C), (B,D), (C,D)}:

• Degree(A) = 2 (even)

• Degree(B) = 3 (odd)

• Degree(C) = 3 (odd)

138
MATS Centre for Distance and Online Education, MATS University

Notes • Degree(D) = 2 (even)

Because (from the given graph) there are exactly two vertices (B and

C) with an odd degree, thus this graph has an Euler path but no Euler

circuit. A possible Euler path is: A → B → C → D → B → A → C

Directed Graphs

We can say that we have a directed graph (or digraph) when an edge

possesses orientations. In a directed graph, the edge (u, v) indicates a

connection going from vertex u to vertex v (but not from v to u), and

in drawings, we commonly draw a directed edge as an arrow

Example 5: Web Pages and Hyperlinks

Imagine a vastly simplified model of web pages and hyperlinks. Each

web page is a vertex, and a hyper link from page A to page B is

modeled as a directed edge from page A to page B.

Consider pages {P1, P2, P3, P4} with the following hyperlinks:

• P1 has links to P2 and P3

• P2 has a link to P4

• P3 has links to P1 and P4

• P4 has a link to P2

The adjacency matrix would be:

 | P1 P2 P3 P4

---+-----------

P1 | 0 1 1 0

P2 | 0 0 0 1

P3 | 1 0 0 1

P4 | 0 1 0 0

Example 6: Finding In-degrees and Out-degrees

In a directed graph:

• In-degree of vertex : no. of incoming edges

• The out-degree of a vertex is the number of edges that direct

away from it

So for the above web page example:

• P1: in-degree = 1, out-degree = 2

• P2 has an in-degree of 2 and an out-degree of 1.

• P3: in-degree = 1, out-degree = 2

• P4: in-degree = 2, out-degree = 1

139
MATS Centre for Distance and Online Education, MATS University

Notes Example 7: Topological Sorting

A topological sort of a directed acyclic graph (DAG) is a linear ordering

of its vertices such that for every directed edge from vertex u to vertex

v, vertex µ appears before vertex v in the ordering.

Now, consider the directed graph that represents prerequisite courses:

• Vertices: {Calculus I, Calculus II, Linear Algebra, Differential

Equations, Real Analysis}

• Edges: {(Calc I —> Calc II), (Calc I —> Lin Alg), (Calc II —> Diff

Eq), (Calc II —> Real Analysis), (Lin Alg —> Diff Eq)}

For example a valid topological sort would be: Calculus I → Linear

Algebra → Calculus II → Differential Equations → Real Analysis

This orders the courses in a way that all prerequisites are taken before

the courses that depend on them.

Weighted Graphs

It is a graph that has an weight or cost with each edges of the graph.

Weights can be distances or costs, capacities, or any other measure

defined between vertices

Example 8: Road Network

Imagine a road network, where each vertex is a city and each edge is a

road connecting those cities. The edges are weighted with the distance

between cities.

Towns: {A, B, C, D} Distances (in kilometers) between roads:

• A to B: 150

• A to C: 200

• B to C: 100

• B to D: 250

• C to D: 150

The weighted adjacency matrix would be:

 | A B C D

--+---------------

A | 0 150 200 ∞

B | 150 0 100 250

C | 200 100 0 150

D | ∞ 250 150 0

(∞ indicates no direct connection)

140
MATS Centre for Distance and Online Education, MATS University

Notes Example 9: Shortest Path Using Dijkstra's Algorithm

Dijkstra finds the shortest path from a vertex as an entry vertex to all

other vertices in the weighted graph, where the weight cannot be

negative.

Let's calculate the shortest path from city A to all other cities using the

road network from Example 8:

Initialize:

• Distance to A = 0 (source)

• Distance to B, C, D = ∞ (unknown)

• Set of unvisited nodes = {A, B, C, D}

Visit node A:

o DISTANCE TO B = 150, DISTANCE TO C = 200 ⠀ ⠀ ⠀ ⠀ ⠀⠀ ⠀ ⠀

⠀ ⠀ UPDATE

o Unvisited = {B, C, D}

Mark node B as visited (link closest unvisited path)

o Update: D = min(200, 150+100) = 200, nothing new

o Update: Distance to D = min(∞, 150+250) = 400

o Unvisited = {C, D}

To visit closest unvisited node C:

o Update: Distance to D = min(400, 200+150) = 350

o Unvisited = {D}

Now visit node D (the only left node):

o Done

Shortest distances to A (final):

• To B: 150 km (path: A → B)

• To C: 200 km (path: A → C)

• To D: 350 km (A → C → D route

Example 10: Minimum Spanning Tree Using Kruskal's Algorithm

A minimum spanning tree (MST) is a subset of the edges of a

connected, undirected, weighted graph that connects all vertices with

the minimum possible total edge weight. Using the road network from

Example 8, let's find the MST using Kruskal's algorithm:

1. Sort all edges by weight:

o B to C: 100

o A to B: 150

o C to D: 150

o A to C: 200

o B to D: 250

141
MATS Centre for Distance and Online Education, MATS University

Notes 2. Add edges in ascending order of weight, skipping those that create

cycles:

o Add B-C (100)

o Add A-B (150)

o Add C-D (150)

The MST consists of edges {(B,C), (A,B), (C,D)} with a total weight

of 400. A minimum spanning tree (or MST) is a subset of the edges of

a connected, undirected, weighted graph that connects all vertices

together, without any cycles and with the minimum possible total edge

weight. We are going to find the MST for the road network from

Example 8 using Kruskal’s algorithm:

1. Sort all edges by weight:

• B to C: 100

• A to B: 150

• C to D: 150

• A to C: 200

• B to D: 250

2 Sort edges by weight, and add them (skipping if it would create

a cycle):

• Add B-C (100)

• Add A-B (150)

• Add C-D (150)

Note: the maximum spanning tree being edges {(B,C), (A,B), (C,D)},

Total weight: 400.

 Bipartite Graphs

A bipartite graph is a graph whose vertices can be partitioned into two

sets U and V so that every edge connects a vertex in U to a vertex in

V.

142
MATS Centre for Distance and Online Education, MATS University

Notes Example 11: Students and Courses

Let us imagine a situation with students and courses. A student can

enroll in many courses and many students may enroll into one course.

You can model this with a bipartite graph, where one set of vertices

corresponds to students and the other corresponds to courses.

Students: {S1, S2, S3, S4} Courses: {C1, C2, C3} Edges

(enrollments):

• S1 is enrolled in C1 and C2

• S2 is enrolled in C1 and C3

• S3 is enrolled in C2

• S4 is enrolled in C2 and C3

Thus, to check whether it is bipartite, we can try to color the vertices in

such a way that no two adjacent vertices have the same color:

• Paint S1, S2, S3, S4 red

• Assign blue paint color to all courses: {C1, C2, C3}

This is a bipartite graph since every edge connects a red vertex to a

blue vertex.

Example 12: Maximum Bipartite Matching

A matching in a bipartite graph is a set of edges without common

vertices. A maximum matching is a matching with the largest possible

number of edges. Using the students and courses example:

1. Initialize an empty matching M = {}

2. Try to match S1:

o Match S1 to C1: M = {(S1,C1)}

3. Try to match S2:

o C1 is already matched with S1

o Match S2 to C3: M = {(S1,C1), (S2,C3)}

4. Try to match S3:

o Match S3 to C2: M = {(S1,C1), (S2,C3), (S3,C2)}

5. Try to match S4:

o C2 is already matched with S3

o C3 is already matched with S2

o No available match for S4

Now try to improve the matching: 6. Find an augmenting path starting

from S4:

• S4 → C2 → S3 (S3 is matched to C2)

• S3 is unmatched to any other course, so this path ends

7. Invert the matching along this path:

143
MATS Centre for Distance and Online Education, MATS University

Notes o Unmatch (S3,C2)

o Match (S4,C2)

o M = {(S1,C1), (S2,C3), (S4,C2)}

8. Try to match S3:

o Match S3 to another available course

o There's no available course, so S3 remains unmatched

The maximum matching is {(S1,C1), (S2,C3), (S4,C2)} with 3 edges.

A matching in a bipartite graph is an edge set with no vertex in

common. A maximum matching is a matching that has as many edges

as possible.

Using the students and courses example:

1. Let M = {} be an empty matching

2. Try to match S1:

• Match M = {(S1,C1)}

3. Try to match S2:

• S1 already matched with C1

• Pair S2 with C3: M = {(S1,C1), (S2,C3)}

4. Try to match S3:

• Perform the matching of S3 to C2: M = {(S1,C1), (S2,C3),

(S3,C2)}

5. Try to match S4:

• Already mapped C2 with S3

• C3 is already paired with S2

• No available match for S4

Now 6—Just improve the matching. And now start with S4 & find an

augmenting path:

• S4 → C2 → S3 (C2 is matched to S3)

• S3 is not comparable to any other course, hence this way ends

7 Reverse the matching along this path:

o Unmatch (S3,C2)

o Match (S4,C2)

o M = {(S1,C1), (S2,C3), (S4,C2)}

1 Try to match S3:

Match S3 into another available course

o No course available, S3 is still unmatched

Maximum matching has 3 edges, and is {(S1,C1), (S2,C3), (S4,C2)}

144
MATS Centre for Distance and Online Education, MATS University

Notes Complete Graphs

A complete graph is a graph where an edge is an available connection

between all members. A complete graph with n vertices denoted by Kₙ

has n(n-1)/2 edges.

 Example 13: Complete Graph Properties

Consider K₄, a complete graph with 4 vertices {A, B, C, D}.

1. Number of edges = 4(4-1)/2 = 6 edges

2. The edges are: {(A,B), (A,C), (A,D), (B,C), (B,D), (C,D)}

3. Each vertex has degree 3 (connected to all other vertices)

4. The adjacency matrix is:

 | A B C D

--+---------

A | 0 1 1 1

B | 1 0 1 1

C | 1 1 0 1

D | 1 1 1 0

Example 14: Coloring a Complete Graph

The chromatic number of a graph is the smallest number of colors we

can assign to its vertices so that no two adjacent vertices share the same

color.

If n is the number of vertices in the complete graph Kₙ, then the

chromatic number is n, because each vertex is adjacent to each other

vertex.

For K₄:

• Vertex A: Color 1

• Vertex B: Color 2

• Vertex C: Color 3

• Vertex D: Color 4

All of the four vertices are adjacent to one another, and as such all four

must be of distinct color, hence chromatic number = 4.

11.16 Trees and Forests

A tree is a connected, acyclic, undirected graph. A forest is a forest is

a disjoint union of trees.

Example 15: Tree Properties

Let T be a tree with vertices {A, B, C, D, E, F} and edges {(A,B),

(A,C), (B,D), (B,E), (C,F)}.

145
MATS Centre for Distance and Online Education, MATS University

Notes Properties of this tree:

1. Number of vertices = 6

2. No. of edges=5 (n-1 always for a tree with n vertices)

3. the tree is connected (between any two vertices there is a path)

4. If we remove any edge that will disconnect the tree

5. Any addition of an edge forms cycle

Example 16: Depth-First Search (DFS) on a Tree

DFS is a graph traversal algorithm. Depth-first search (DFS) is an

algorithm for traversing or searching tree or graph data structures.

Source Example 15 (with A root node)

1. Visit A, mark as visited

2. Go to child B: mark as visited

3. Visit child D, mark visited (D has no children)

4. I Go back to B, visit child E and mark as visited (E has no

children)

5. Go back to A, go to child C, mark as visited

6. Child F, visit, mark as visited F (no children)

The DFS traversal of tree would be : A B D E C F

Example 17: Breadth-First Search (BFS) on a Tree

The BFS algorithm begins at a root node and explores all neighbors at

the current depth prior to proceeding on to nodes at the next depth level.

Let us use the tree of Example 15, by setting A to be the root:

1. Visit A, mark as visited

2. Store all kids of A: B, C (as visited)

3. Perform DFS on all children of B: D, E (visited)

4. Explore and mark as visited all children of C: F

BFS traversal order: A -> B -> C -> D -> E -> F

 Planar Graphs

An embedded planar graph is a planar graph in which no edges cross

each other. In other words, the drawing can be made on a flat surface

with no wrappers crossing.

Example 18: Testing for Planarity

Euler’s formula can be used to prove graph planarity: v − e + f = 2,

where v refers to the number of graph vertices or nodes, e refers to the

number of edges, and f refers to the number of faces or regions (which

also includes the outer face). Take a graph G with vertices {A, B, C,

D} and edges {(A,B), (A,C), (A,D), (B,C), (C,D)}.

To test for planarity:

146
MATS Centre for Distance and Online Education, MATS University

Notes 1. Without crossing any edges:

• Arrange A, B, C, D roughly in a square

• Draw edges (A,B),(A,C)(A,D),(B,C),(C,D)

• All this can be done without crossing any edges

2 Count:

• Vertices (v) = 4

• Edges (e) = 5

• Faces (f) = 3 (two inner faces and one outer face)

3. Use Euler’s formula: v − e + f = 4 − 5 + 3 = 2 ✓

This concludes that the graph is planar and the formula has been met.

Example 19: Dual Graph

The dual of a planar graph G is another graph G*, in which:

• Each face of G corresponds to a vertex in G*

• For every edge of G there exists an edge of G*

• Two vertices in G∗ are adjacent if the corresponding faces in G have

an edge in common.

Let P be planar graph example 18.

• The F1 (outer face), F2 (the inner face formed by A, B, C) and F3

(the inner face formed by A, C, D).

The dual graph G has vertices {F,, F, F*F3}

• The set of edges of G: {(F1,F2), (F1,F2), (F1,F3), (F1,F3), (F2,F3*)}

In the dual graph, some vertices have multiple edges between them,

since some faces share multiple edges in the original graph.

Special Graphs

Example 20: Petersen Graph

The Petersen graph is special with 10 vertices and 15 edges. That

means it is commonly used in graph theory as a counterexample.

Some characteristics of the Petersen graph:

1. It has 10 vertices, usually depicted as a pentagon with an

inscribed pentagram

2. It is a 3-regular graph since each vertex has degree 3.

3. It is not planar (cannot exists in a plane without edge crossings)

4. It is of girth (length of the shortest cycle) 5

5. Its vertex-transitive (looks the same viewed from any vertex)

6. It does not have a Hamiltonian cycle (a cycle that visits each

vertex exactly once)

147
MATS Centre for Distance and Online Education, MATS University

Notes We can try to build a Hamiltonian cycle (to prove it does not have one):

1. Bizarrely, these arrive to the problem of TSP where you begin

at any vertex and attempt to visit all vertices exactly once and

return to the starting point.

2. This cannot be because of the unique structure of the Petersen

graph

3. Any such path will either miss some vertices or it must take a

dip and re-visit vertices

The Petersen graph is an important counterexample for many graph

theory conjectures and is a fundamental object in the field of graph

theory.

Graph theory offers a wealth of tools for modeling and solving

numerous problems in various fields. The Graphs we studied

undirected, directed, weighted, bipartite, complete, trees, planar

graphs have their own unique properties and applications. We have

shown in the solved examples how these types of graphs can be

analysed, manipulated and used in real-life situations. From computing

shortest paths in road networks to scheduling prerequisite coursework,

from modelling social networks to optimising complex routing

problems, graphs present a rich structure for encoding relations and

solving problems efficiently. Graph theory will continue to be an

essential area of mathematics and play a significant role in our

understanding of how we interact with one another and how we

contend with new delivery systems for our needs in our increasingly

complex world of global interconnectedness.

148
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4.2: Matrix Representation of Graphs, Directed

Graphs

4.2.1 Matrix Representation of Graphs and Directed Graphs

Introduction to Graph Representations

Graph: A graph consists of vertices (or nodes) and edges connecting

these vertices. Graphs are invaluable means of modeling relationships

between objects in a wide variety of domains such as computer

science, engineering, social sciences, and biology. Matrix

representations: Out of the multiple representations available, matrix

representations have an advantage, because they can encode the

structure of graphs as a matrix that lends itself readily to computation.

Graph matrices translate the topological structure of a graph into

algebraic form. This transformation on the surface OF it allows us to

use the powerful linear algebra theory to study graphs through as well

as enables us to calculate all sorts of properties in graphs using graph

theory Graph theory is a field of mathematics that studies the

interrelationship between nodes and edges, making it important for a

variety of applications and it has two main matrix representations that

are useful for certain applications — adjacency matrix and incidence

matrix

4.2.2 Adjacency Matrix Representation

Adjacency Matrix The adjacency matrix is one of the most popular

graphs matrix representation. For a graph G with n vertices, the

adjacency matrix A is an n × n matrix such that A[i,j] indicates the

relationship between the vertices i and j. If the graph is undirected, then

A[i,j] = A[j,i] = 1; if there is no edge then A[i,j] = A[j,i] = 0. For

undirected graphs, this gives us a symmetric adjacency matrix. In the

case of weighted graphs, instead of representing an edge as 1 Adjacency

matrix with unweighted edges for weighted graphs For directed

graphs, however, this matrix for the graph is not necessarily symmetric.

In other words, if there is a directed edge from vertex i to vertex j, then

A[i,j] = 1, but A[j,i] = 1 is not a given and would only happen if there

was also a directed edge from vertex j to vertex i.

Dashed properties of adjacency matrix:

149
MATS Centre for Distance and Online Education, MATS University

Notes • For simple graphs (no self-loops) all the diagonal elements A[i,i] = 0

• The adjacency matrix is symmetric in undirected graphs.

• For an undirected graph, the total number of edges is half the sum of

all elements in adjacency matrix (i.e., ∑all elements in adjacency

matrix = 2 * edges)

• The i-th row (or column) is the degree of the i-th vertex in undirected

graphs

• For directed graphs, the row-sum of the i-th row corresponds to the

out-degree of vertex i, while the column-sum of the i-th column

corresponds to the in-degree

Fig: 4.2.1 Adjacency matrix

150
MATS Centre for Distance and Online Education, MATS University

Notes 4.2.3 Incidence Matrix Representation

The adjacency matrix describes relations between vertices, and the

incidence matrix B describes relations between vertices and edges. An

incidence matrix of a graph having n vertices and m edges is an n × m

matrix. For an undirected graph, B[i,j] = 1 iff vertex i is incident on

edge j; otherwise B[i,j] = 0. For each edge, it has an entry in two vertex

columns of incidence matrix, thus each 1 appears once in the incidence

matrix. In directed graphs, we can define the incidence matrix with

signed entries: B[i,j] = 1 if vertex i is the head of edge j, B[i,j] = −1 if

vertex i is the tail of edge j, and B[i,j] = 0 if vertex i is not incident on

edge j.

Fig: 4.2.2 Incidence Matrix

Among the key properties of the incidence matrix are:

• Column sum equals 2 for undirected graphs (each edge connects 2

vertices)

• Signed representation yields a zero column sum for directed graphs

• The incidence matrix multiplied with its own transpose (B•B^T)

gives a matrix pertaining to the graph Laplacian

• The incidence matrix’s row space is perpendicular to the graph

Laplacian null space

Laplacian Matrix and Other Variants

The Laplacian matrix L of a graph is constructed with the adjacency

matrix and the degree matrix D (a diagonal matrix whis diagonal

entries D[i,i] holds the degree of vertex i). For an undirected graph, we

have L = D − A, where A is the adjacency matrix. The Laplacian matrix

151
MATS Centre for Distance and Online Education, MATS University

Notes has many useful properties for analyzing the connectivity and structure

of the graph:

• For undirected graphs it is symmetric and positive semi-definite

• The dimension of the eigenspace where λ = 0 is the number of

connected components of the graph

• The smallest non-zero eigenvalue (the spectral gap) yields

information about how well-connected the graph is

The second smallest eigenvalue's eigenvector (the Fiedler vector) is

used for spectral graph partitioning.

In special cases for directed graphs, L = D_out - A, where D_out is a

diagonal matrix with out-degrees of every node as the ith diagonal

entry. But this matrix does not satisfy some of the good properties of

the undirected Laplacian, like symmetry and positive semi-

definiteness.

4.2.4 Applications of Matrix Representations

There are many arrangements of graphs in the form of matrices which

provide many applications of the terms in the field of graph theory and

others:

Path Finding and Connectivity

• Paths — the n-th power of the adjacency matrix A^n encodes

information about the number of paths of length n between

vertices

• Connectivity, shortest path (using the Floyd-War shall

algorithm), cycles detection -- are all possible with matrix

operations

• The matrix exponential e^A has entries that correspond to the

sum of paths of each the length, from vertex to vertex

Spectral Graph Theory

• The adjacency and Laplacian matrix eigenvalues and

eigenvectors reveal structural properties of graphs.

• Spectral clustering involves partitioning graphs with

eigenvectors.

• The eigenvalue multiset of a graph is a graph invariant.

Network Analysis

• Matrix operations can be used to compute centrality measures

• Many commModuley detection algorithms are matrix-

based

152
MATS Centre for Distance and Online Education, MATS University

Notes • Graph random walks can be described using the

transition probability matrix

4.2.5 Graph Algorithms

• Matrix representations can be used in graph matching and

isomorphism testing

• Matrix formulation to solve maximum flow problems

• Countless graph optimization problems can be expressed in the

language of matrix optimization problems

Computational Considerations

When realizing graph algorithms via matrix representations, several

computation-related aspects must be taken into consideration:

Space Complexity

• Adjacency matrices take O(n²) space irrespective of number of edges

and thus not efficient for sparse graphs

• Incidence matrices require O(nm) space which is again not efficient

for large, sparse graphs

• For sparse graphs, it may be more intuitive to use alternative

representations (e.g., adjacency lists or compressed sparse row (CSR)

format).

Time Complexity

• Testing adjacency between two vertices takes O(1) time with

adjacency matrices

• To find all neighbors of a vertex with adjacency matrices takes

O(n) time, no matter how many neighbors the vertex has

• Matrix multiplication complexity depends on the algorithms

used and whether the matrices are sparse Numerical Stability

• For large graphs, computing eigenvalues and eigenvectors can

produce numerical issues

• The use of preconditioning techniques for graph matrix linear

system solvers may be warranted

• Nearest to singularity are pseudoinverses on almost

disconnected graphs, which require special care

153
MATS Centre for Distance and Online Education, MATS University

Notes In this article, we will discuss 20 solved example problems to

demonstrate the concepts and applications of matrix representation of

Undirected and directional graphs.

Solved Examples

Example 1: Adjacency Matrix for an Undirected Graph

Let G be an undirected graph with 4 vertices {1, 2, 3, 4} and edges

{(1,2), (1,3), (2,3), (3,4)}.

Solution: For this graph, the adjacency matrix A is:

A = [0 1 1 0]

 [1 0 1 0]

 [1 1 0 1]

 [0 0 1 0]

here, A being symmetric as there are no self-loops, and the diagonal

elements all being 0. The total sum of all elements is 8, which is the

same of 2 × the number of edges (4).

Example 2: Adjacency Matrix for a Directed Graph

Let G be a directed graph with a vertex set |V| = {1,2,3,4} and directed

edges |E| = {(1→2), (2→3),(3→1), (4→3)}.

Answer : The adjacency matrix A corresponding to this directed graph

is as follows :

A = [0 1 0 0]

 [0 0 1 0]

 [1 0 0 0]

 [0 0 1 0]

The matrix is not symmetric. Row 1 sums up to your 1, which reveals

that vertex 1 has an out-degree of 1. Column 1 sums up to 1, indicating

vertex 1 in-degree 1.

Example 3: Incidence Matrix for an Undirected Graph

Now, let’s construct an incidence matrix for the same undirected graph

as in Example 1, which has the vertex set {1, 2, 3, 4} and edge set

{(1,2), (1,3), (2,3), (3,4)}.

Answer: Give labels to the edges: e₁ = (1,2), e₂ = (1,3), e₃ = (2,3), e₄ =

(3,4) The incidence matrix B is:

B = [1 1 0 0]

 [1 0 1 0]

 [0 1 1 1]

 [0 0 0 1]

154
MATS Centre for Distance and Online Education, MATS University

Notes Every column has exactly two 1's in it, which correspond to the two

vertices that an edge connects.

Example 4: Incidence Matrix for a Directed Graph

Given the directed graph in Example 2, with |V| = 4, V = {1, 2, 3, 4}

and E = {(1→2), (2→3), (3→1), (4→3)}, obtain the signed incidence

matrix.

Solution: e₁ = (1→2), e₂ = (2→3), e₃ = (3→1), e₄ = (4→3) The

incidence matrix B signed is:

B = [1 0 -1 0]

 [-1 1 0 0]

[0 -1 1 -1]

[0 0 0 1]

For each directed edge the source vertex gets 1 and the destination

vertex gets -1.

Example 5: Determining Path Existence Using Matrix Powers

Consider the directed graph in Example 2. Find out whether there

exists a path of length 2 from vertex 1 to vertex 3.

1) Solution: We calculate A 2 to obtain the number of paths of length

2.:

A² = [0 0 1 0]

 [1 0 0 0]

 [0 1 0 0]

 [1 0 0 0]

That said, A²[1,3] = 1, meaning exactly one 2⟩length path exists from

vertex 1 to vertex 3. This path is 1→2→3.

Example 6: Finding the Degree Matrix

Find the degree matrix D for the undirected graph in Example 1.

Solution: It has the following degrees: deg 1 = 2, deg 2 = 2, deg 3 = 3,

deg 4 = 1 Thus, the degree matrix D is:

D = [2 0 0 0]

 [0 2 0 0]

 [0 0 3 0]

 [0 0 0 1]

Example 7: Constructing the Laplacian Matrix

Example 1 (Undirected graph): Given is the undirected graph as shown

in figure 1. Find the Laplacian matrix L for this graph.

Solution: As L = D − A, we have already given the degree matrix in

Example 6 and the adjacency matrix in Example 1

155
MATS Centre for Distance and Online Education, MATS University

Notes L = [2 0 0 0] [0 1 1 0] [2 -1 -1 0]

 [0 2 0 0] - [1 0 1 0] = [-1 2 -1 0]

 [0 0 3 0] [1 1 0 1] [-1 -1 3 -1]

 [0 0 0 1] [0 0 1 0] [0 0 -1 1]

Example 8: Weighted Adjacency Matrix

Imagine there is an undirected weighted graph with 3 vertices and

edges {(1,2):5,(2,3):2,(1,3):7}.

Solution: The adjacencies weighted matrix will be:

A = [0 5 7]

 [5 0 2]

 [7 2 0]

Example 9: Adjacency Matrix Properties

Using the adjacency matrix in Example 1, find: a) The sum of all matrix

elements b) The row and column sums c) The matrix trace

Solution: a) Sum of all elements = 8 (2 * number of edges [4]) b) Row

sums: [2, 2, 3, 1] - denote degrees of vertices Column sums: [2, 2, 3,

1] - same as row sums for undirected graphs c) Trace of A = A[1,1] +

A[2,2] + A[3,3] + A[4,4] = 0 + 0 + 0 + 0 = 0

Example 10: Paths of Different Lengths

Given the directed graph in Example 2, find A³and check whether there

exists a path of length 3 from vertex 1 to vertex 1.

Solution:

A³ = A² × A = [0 0 1 0] × [0 1 0 0] [1 0 0 0]

 [1 0 0 0] [0 0 1 0] = [0 1 0 0]

 [0 1 0 0] [1 0 0 0] [0 0 1 0]

 [1 0 0 0] [0 0 1 0] [0 0 1 0]

(A³[1,1] = 1), therefore there exists a path from vertex 1 to vertex 1 of

length 3: 1→2→3→1.

Example 11: Detecting Cycles Using Matrix Powers

Use the directed graph from example 2 and state if it has cycles. If yes,

determine how long they are.

Solution: We have already computed A², A³, so we can check that

A³[1,1] = 1, which means that there is a cycle through vertex 1 of lenght

3. This cycle is 1→2→3→1. Why is that? Well we can check this since

we know that A^2_2,1 = 1 and A^2_3,2 = 1, we also know A_1,3 = 1

that completes the cycle.

156
MATS Centre for Distance and Online Education, MATS University

Notes Example 12: Graph with Self-Loops and Multi-Edges

For such a case, we have a graph with 3 vertices, self-loops on vertex

1 and 3, and there are two parallel edges between 1 and 2. Build its

adjacency matrix.

Solution: Self-loops would make diagonal entries equal to 1, multi-

edges to increase the respective entries in the adjacency matrix.:

A = [1 2 0]

 [2 0 0]

 [0 0 1]

Example 13: Complete Graph

Adjacency Matrix for K₄: Construct the adjacency matrix for a

complete graph K₄ with 4 vertices.

Solution: A complete graph has every vertex connected with all other

vertices:

A = [0 1 1 1]

 [1 0 1 1]

 [1 1 0 1]

 [1 1 1 0]

All off-diagonal elements are 1, and the diagonal elements are 0

(assuming no self-loops).

Example 14: Bipartite Graph

Let G be the bipartite graph with vertex sets X = {1, 2} and Y = {3, 4,

5}, and edges {(1,3), (1,4), (2,4), (2,5)}. If it is bipartite, create an

adjacency matrix and demonstrate how the bipartite structure is

represented.

 Solution: Adjacency Matrix Solution: The adjacency matrix is:

A = [0 0 1 1 0]

 [0 0 0 1 1]

 [1 0 0 0 0]

 [1 1 0 0 0]

 [0 1 0 0 0]

The matrix is almost block diagonal, where the upper-row and lower-

column parts of the corresponding diagonal contain all edges between

source and target set, and the blocks give zeroes, which denote no edges

contained in the same set of either X or Y..

Example 15: Directed Acyclic Graph (DAG)

157
MATS Centre for Distance and Online Education, MATS University

Notes Think of a directed acyclic graph with 4 vertices and edges {(1→2),

(1→3), (2→4), (3→4)}. Build its adjacency matrix and show that it is

acyclic using powers of the matrix.

Solution: The adjacency matrix is:

A = [0 1 1 0]

 [0 0 0 1]

 [0 0 0 1]

 [0 0 0 0]

To check that it's acyclic, we calculate powers of A:

A² = [0 0 0 2]

 [0 0 0 0]

 [0 0 0 0]

 [0 0 0 0]

This means A³ and all higher powers will have all zeros along the

diagonal, validating that there are no cycles.

Example 16: Disconnected Graph

Suppose G=({1, 2, 3, 4, 5}, {(1,2), (3,4), (4,5)}) is disconnected with

2 components: C1={1,2}, C2={3,4,5}. Derive its adjacency matrix

and find the block structure.

Solution: Correction: The adjacency matrix appears to be block

diagonal:

A = [0 1 0 0 0]

 [1 0 0 0 0]

 [0 0 0 1 0]

 [0 0 1 0 1]

 [0 0 0 1 0]

The matrix contains in the diagonal two blocks, corresponding to the

two connected components of the graph.

Example 17: Computing Graph Invariants from Matrices

Give the: (a) Number of triangles (b) Determinant of the adjacency

matrix (c) Eigenvalues of the adjacency matrix For the undirected

graph in Example 1

Solution: a) Number of triangles is trace(A³)/6. Computing A³

:A³ = [2 2 2 1]

 [2 2 2 1]

 [2 2 4 0]

158
MATS Centre for Distance and Online Education, MATS University

Notes [1 1 0 1]

trace(A³) = 2 + 2 + 4 + 1 = 9, so we have 9/6 = 1.5 ≈ 1 triangles (we

round down as we cannot have a fraction of triangles).

b) det(A)==0 (this is actually frequent concerning many graph

adjacency matrices)

c) Eigenvalues: λ₁ ≈ −1.48, λ₂ ≈ −1, λ₃ ≈ 0.31, λ₄ ≈ 2.17

Example 18: Random Walk Transition Matrix

For the graph in Example 1 (considered as an undirected graph) find

the random walk transition matrix P, where P[i,j] is the moving

probability from vertex i to vertex j in one step of the random walk.

Solution: The transition matrix P = D⁻¹A, where D is the degree matrix

and A is the adjacency matrix Solution::

P = [1/2 1/2 0 0]

 [1/2 0 1/2 0]

 [1/3 1/3 0 1/3]

[0 0 1 0]

This means that P[3,1] = 1/3 means when you are in the vertex 3, the

probability of moving to vertex 1, in one time step, equals to 1/3.

Example 19: Graph Coloring and Eigenvalues

Let's take a 4-cycle (square) graph with {1, 2, 3, 4} vertices and {(1,2),

(2,3), (3,4), (4,1)} edges. Get its adjacency matrix, find the eigenvalues,

and connect them with the chromatic number.

Solution: The adjacency matrix is:

A = [0 1 0 1]

 [1 0 1 0]

 [0 1 0 1]

 [1 0 1 0]

The characteristic values are λ₁ = -2, λ₂ = 0, λ₃ = 0, λ₄ = 2.

For bipartite graphs, the eigenvalues occur in pairs symmetric about 0.

The chromatic number of a bipartite graph is 2, which is compatible

with the most negative eigenvalue is -2.

Example 20: Spectral Clustering

Let us consider the following adjacency matrix of an undirected graph.

A = [0 1 1 0 0 0]

 [1 0 1 0 0 0]

 [1 1 0 1 0 0]

 [0 0 1 0 1 1]

159
MATS Centre for Distance and Online Education, MATS University

Notes [0 0 0 1 0 1]

 [0 0 0 1 1 0]

Do spectral clustering to find the working clusters in this gait.

Solution:

1. Compute the degree matrix:

D = diag(2, 2, 3, 3, 2, 2)

2. Compute the Laplacian matrix L = D - A:

L = [2 -1 -1 0 0 0]

 [-1 2 -1 0 0 0]

 [-1 -1 3 -1 0 0]

[0 0 -1 3 -1 -1]

[0 0 0 -1 2 -1]

[0 0 0 -1 -1 2]

3. Calculate eigenvectors of L, and we get the second smallest

eigenvector (Fiedler vector) to be approximately v₂ = [-0.41, -

0.41, -0.25, 0.25, 0.41, 0.41]

4. Split the vertices (non-negative/positive) as sign of

corresponding entry in v₂: i:{1,2,3} (negative), i:{4,5,6}

(positive)

This clustering distinguishes two natural commModuleies in the

graph..

Graphs are often represented using matrices which provide a strong

framework for analyzing not only the graph contents but also its

structure properties. Each of these matrices encapsulates different

properties about the graph topology which can be utilized for diverse

applications. For undirected graphs, these matrices are often positive

semi-definite, and hence amenable to spectral analysis, among other

properties. What we've seen with the matrices are very nice properties

(inundated into our discussion) with very simple graphs, and for

directed graphs they don't all hold and will lose a couple of the

properties but they do still reflect some properties.

160
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4.3: Tree and its properties

4.3.1 Tree and Its Properties, Rooted Tree, Binary Trees, Spanning

Tree, Fundamental Circuits

Trees and Their Properties

A tree is a basic data structure in computer science and mathematics

that describes hierarchical relationships in an elegant way. A tree is a

connected, acyclic graph made of nodes (vertices) connected by edges.

Trees as a hierarchical data structure separate from linear data

structures (like arrays or linked lists) where the data is organized

differently hierarchically are best examples of data where items have

parent-child relationships. Tree are used in various areas such as file

systems, database indexing, syntax parsing in compilers, network

routing algorithms, artificial intelligence and organizational structures.

Basic Definitions and Properties

Tree is technically defined as a connected, acyclic undirected graph.

Let’s take a look at some essential properties:

1. Now the definition of tree states that: Any two vertices are

connected by exactly one path. This property guarantees that

the whole tree is reachable.

2. Acyclic A tree is a cyclical which means that there is no path

which starts and ends at the same vertex without repeating any

edge.

3. Minimally Connected: A Graph that is minimally connected

means that if any edge of the graph is removed from the tree

then it will be disconnected.

4. Relation between Edges count: A tree with N vertices will

always have N-1 edges.

5. Vertices with degree: 1 (connected to only a single other

vertex) is called a leaf node or an external node.

6. Internal Nodes: A vertex of degree > 1 is called Internal

nodes.

7. Compared to the Height and Depth: Each tree has a height

which is the length of longest path from root to leaf. The

distance from the root of a node is its depth.

8. Subtree: Subtree is Any node, along with all its childrenates in

the tree forms a subtree.

161
MATS Centre for Distance and Online Education, MATS University

Notes Mathematical Formulation

Let T = (V, E) be a tree, V be set of vertices and E be set of edges. The

next properties are true.

1. T is connected: ∀u,v∈V ∃a path from u to v

2. T is acyclic: There are no cycles in T.

3. |E| = |V| − 1: The number of edges equals the number of vertices

minus one,

4. Each edge added to T creates a single cycle.

5. T's any edge disconnects the graph into exactly two

components.

Cayley's formula states that the number of different labeled trees with

n vertices is n n−2, where n is any positive integer.

4.3.2 Rooted Trees

A rooted tree is a tree with one vertex specified as the root. It has been

found that the selection of a vertex as the root creates a natural ordering

among the vertices that allows them to be treated as belonging to a

hierarchy of parent-child relationships.

Properties of Rooted Trees

1. Root: The parentless vertex is the root.

2. Parent: An edge between u and v with u closer to the root than

v means u is the parent of v and v is a child of u.

3. Ancestors: the ancestor of a vertex is that vertex along the path

to the root; it does not include the vertex itself.

4. Descendants: The descendants of a vertex consist of all of the

vertices in its subtree, not including the vertex itself.

5. Siblings: Vertices with the same parent.

6. Level or Depth: The level or depth of a vertex is defined as the

length of the unique path from the root to that vertex.

7. Tree Height: Maximum depth of a vertex in a rooted tree.

Mathematical Representation

In a rooted tree with root r:

• For any vertex v ≠ r, there is a unique path from r to v.

• The depth of a vertex v, denoted by depth(v), is the length of the path

from r to v.

• The tree height is max{depth(v) | v ∈ V}.

• A vertex v is an ancestor of the vertex w if lies on the path from r to

w.

162
MATS Centre for Distance and Online Education, MATS University

Notes • Let T_v be the subtree rooted at v, that is, T_v is the set of nodes v

and all the descendants of v

Fig: 4.3.1 Representation of Rooted Tree

4.3.3 Ordered Rooted Trees

Each vertex has a left-to-right ordering on its children in an ordered

rooted tree. This intermixed order is useful in many contexts, such as

programming languages representing expressions.

Binary Trees

It is a specific type of a rooted tree for which each node has no more

than two children, which are usually called the left child and the right

child. Binary trees are among the most popular tree structures used in

computer science.

Properties of Binary Trees

1. Maximum Nodes: The maximum number of nodes in a binary

tree of height h = 2^(h+1) − 1

2. Minimum Height : The binary tree with n nodes has minimum

height is ⌊log₂(n)⌋.

3. Leaf Nodes: There can be at most (n+1)/2 leaf nodes in a

binary tree with n nodes.

4. Full Binary Tree: A binary tree data structure where every node

has either 0 or 2 children.

5. Complete Binary Tree: All levels are fully filled except

possibly the last level which is filled from left to right

163
MATS Centre for Distance and Online Education, MATS University

Notes 6. Perfect Binary tree: A binary tree in which every internal

node has two children and all leaf nodes are at the same level.

7. Balanced Binary Tree: A binary tree such that the heights of

the two child subtrees of every node differs by at most one.

Mathematical Analysis

This is how many paths a binary tree with n nodes has:

• Maximum height n-1 (In case when tree degenerates to a linked

list)

• The height of a complete binary tree is log2(n) (minimum

case).

• The count of leaf nodes (l) and the count of nodes with two

children (i₂) are related through: l = i₂ + 1.

• The number of leaf nodes in a full binary tree with i internal

nodes is i + 1

4.3.4 Tree Traversals

There are different ways to traverse binary trees:

1. Inorder Traversal : Left sub-tree, Root, Right sub-tree

2. This gives us the preorder traversal: Root, Left subtree, Right

subtree

3. Postorder Traversal: Left child, Right child, Parent

4. Level Order: Go through each level of the tree from left to right

Both traversal approaches can be visualised in a recursive or iterative

manner and each has its own use-case in many algorithms.

Fig: 4.3.2 Representation of Binary tree and Tree Traversals

164
MATS Centre for Distance and Online Education, MATS University

Notes 4.3.5 Spanning Trees

A spanning tree of a connected undirected graph G is a tree that

contains all the vertices of G and has the smallest possible number of

edges (Kruskal’s Algorithm). That is, the graph you are finding is a

tree which is subgraph of G that contains all the vertices of G.

Properties of Spanning Trees

1. Edge Count: a spanning tree of a graph with n vertices has

exactly n−1 edges.

2. Minimality: One of the key properties of minimum spanning

tree is that it is a tree, hence it does not contain cycles:

3. Connectivity: Connectivity Because a spanning tree does

include all the vertices in the original and does not include

cycles, all of the vertices must be connected.

4. Number of Spanning trees: the number Spanning trees for a

complete graph: n^(n-2) (Cayley’s formula)

5. Edge Redundancy: Removing one edge from each cycle in a

graph with cycle(s) results in a spanning tree.

4.3.6 Minimum Spanning Tree (MST)

In a weighted graph, a minimum spanning tree is a spanning tree with

the minimum possible total edge weight. Two classic algorithms for

finding an MST are:

1. Kruskal's Algorithm:

o Sort all edges in non-decreasing order of weight

o Keep adding the next lightest edge that doesn't form a

cycle

o Continue until n-1 edges are added

2. Prim's Algorithm:

o Start with any vertex

o Repeatedly add the lightest edge that connects the tree

to a vertex not yet in the tree

o Continue until all vertices are included

A minimum spanning tree (MST) of a weighted undirected graph is a

spanning tree with weight less than or equal to the weights of all the

edges in the tree. There are two classical algorithms for finding a MST:

1. Kruskal's Algorithm:

• Step: Sort all edges in order of non-decreasing order of weight

• Continue with the next lightest edge that does not create a cycle

• Add edges until we have n-1 edges.

165
MATS Centre for Distance and Online Education, MATS University

Notes 2. Prim's Algorithm:

• Start with any vertex

• Continuously add a smallest edge that adds a vertex not yet in

the tree

• repeat until all vertices have been added

4.3.7 Mathematical Formulation

Let G = (V, E) be a connected graph with edge weights w: E → ℝ; a

minimum spanning tree T = (V, E') of G is a spanning tree such that

Σ{e∈E'} w(e) is minimized. The MST is simultaneously the solution to

a different problem using the cut property: If T is a minimum spanning

tree and F is a cut in the graph, then the minimum weight edge crossing

the cut F is also contained in some minimum spanning tree..

4.3.8 Fundamental Cycles and Cut Sets

If a cycle is formed, exactly one is part of a tree, this is the fundamental

cycle. The entire set of these fundamental cycles is a cycle basis of the

graph.

Fundamental Cycles

For a graph G = (V, E) and its spanning tree T = (V, E_T), every edge

e ∈ E - E_T determines a unique cycle, when added to T. This cycle is

referred to as a fundamental cycle with respect to T.

Fundamental cycles: properties:

1. The number of fundamental cycles hence is |E|−|V|+1.

2. One fundamental cycle corresponds to exactly one non tree

edge.

3. The basis for the cycle space constitutes the set of elementary

cycles.

Fundamental Cut Sets

A cut in graph G is a partition of the vertices V into two disjoint sets.

The cut-set is the set of edges where one e and one e have endpoints in

each side of the partition. Let G be a connected graph and T a spanning

tree of G. The collection of all edges in G that connect these two

components forms a minimum cut-set.

Fundamental cut-set properties:

1. For every edge in the spanning tree, there is a fundamental cut-

set; thus |V| - 1.

2. A fundamental cut-set contains exactly one tree edge.

166
MATS Centre for Distance and Online Education, MATS University

Notes 3. The collection of these fundamental cut-sets comprise a basis

for the cut space of the graph

Relationship Between Fundamental Cycles and Cut Sets

There is a duality between fundamental cycles and fundamental cut-

sets:

• We can find a spanning tree that has exactly one non-tree edge.

• A minimum cut-set has a only one tree edge.

• A fundamental cycle and a fundamental cut-set share either exactly

two edges or none.

This duality comes in handy in different graph algorithms and network

analysis problems

Solved Examples

Example 1: Verifying Tree Properties

Problem: Is the the following graph a tree?G = (V, E) where V = {a,

b, c, d, e} and E = {(a,b), (b,c), (c,d), (d,e), (e,a)}

Statement: For G to be a tree, it must be connected and acyclic. Since

there is a path between any two vertices G is connected. Now, let's

traverse the graph to see if there's any cycle present: Starting from

vertex a → b → c → d → e → a We again reached to the starting vertex

→ Hence, we can say G is a cyclic graph. Therefore, G is not a tree.

Example 2: Counting Tree Edges

Problem: Given a tree with 12 vertices. How many edges does it have?

Solution: This cannot happen, the number of edges in any tree with n-

vertices is always n-1. For n = 12, Edges = 12-1 = 11.

Example 3: Finding Tree Height

Problem: Calculate the height of the following binary tree:

 A

 / \

 B C

 / \ \

 D E F

 /

G

Solution: Maximum height of a tree is defined as the length of longest

path from root to any leaf. Length 3 path: A → B → D → G Path A →

B → E has length 2. Path A → C → F has length 2. The maximum

depth is 3, hence it is a tree of depth 3.

167
MATS Centre for Distance and Online Education, MATS University

Notes Example 3: Binary Tree Node Calculation

 Problem: Maximum number of nodes in a tree of Height: 5

Solution: The binary tree of height h has maximum 2^(h+1) − 1 nodes.

If h = 5, then the maximum number of nodes = 2^(5+1) - 1 = 2^6 - 1 =

64 - 1 = 63 nodes..

Example 4: Complete Binary Tree Properties

Problem: A complete binary tree contains 100 nodes. What is its

height?

Solution: Leaf Nodes in a Complete Binary Tree A complete binary

tree with n nodes of h height satisfies: 2h≤n <2h+1 n=10h=3.

For, n = 100: 2^6 = 64 ≤ 100 < 2^7 = 128 So, The tree height is 6.

Example 5: Traversal Sequences

Problem: Given the binary tree below, what nodes do you visit in an

inorder traversal?

 8

 / \

 3 10

 / \ \

 1 6 14

 / \ /

 4 7 13

Solution: It visits left sub tree, root, right sub tree in order. Root of sub

tree: Left sub tree of 8 is 3, whose left sub tree is 1 with left/right sub

trees empty. First visit 1, and then 3, and then the right sub tree of 3:

6, whose left sub tree is 4. Then next 4, then next 6, then right sub tree

of 6 7. Visit 7, then return to 8. Visit 8, then right sub tree of 8: 10,

whose right sub tree is 14, whose left sub tree is 13. In order traversal

order: 1, 3, 4, 6, 7, 8, 10, 13, 14

Example 6: Minimum Spanning Tree

Problem: Find minimum spanning tree of below weighted graph using

Kruskal's algorithm. TikZ code for graph G (vertices set {A, B, C, D,

E},edges:

(A,B)=4;(A,C)=2;(B,C)=1;(B,D)=5;(C,D)=8;(C,E)=10;(D,E)=2)

Solution : Step 1: Create a list of edges sorted by weight: (B,C) : 1,

(A,C) : 2, (D,E) : 2, (A,B) : 4, (B,D) : 5, (C,D) : 8, (C,E) : 10

Step 2: Only add the edges in order if it doesn’t create a cycle:

• Add (B,C): 1 → MST = {(B,C)}

• Union (A,C): 2 → MST = {(B,C), (A,C)}

168
MATS Centre for Distance and Online Education, MATS University

Notes • Add (D,E): 2 → MST = {(B,C), (A,C), (D,E)}

• Add (A,B): 4 - This would create a cycle A-B-C-A, hence skip.

• Union: (B,D): 5 → MST = {(B,C), (A,C), (D,E), (B,D)}

At this point, we have 4 edges and 5 vertices, which is exactly n−1

edges, meaning we have obtained our MST. Minimum spanning tree

includes edges stored above i.e edges (B,C), (A,C), (D,E), and (B,D)

with total weight 1+2+2+5 = 10.

Example 7: Rooted Tree Properties

Problem: In a rooted tree with root r, vertex a has a depth of 3 and

vertex b has a depth of 5. What is the maximum possible distance

between vertices a and b?

Solution: In a tree, the distance between any two vertices is simply the

length of the unique path between them. For example if a is at depth 3

and b is at depth 5, the path from a to b has to pass through their lowest

common ancestor.

Case 1: The case when a is ancestor of b, where we just has depth(b) -

depth(a) = 5 - 3 = 2.

Case 2: If a is not an ancestor of b, then c's depth will always be at most

3 (c could be the root if both a and b in left, c could be any node on the

path from root to node a) The distance from a to b would be: distance(a,

b) = distance(a, c) + distance(c, b) = (depth(a) − depth(c)) + (depth(b)

− depth(c)) ≤ (3 − 0) + (5 − 0) = 8.

Maximum possible distance is when their Lowest Common Ancestor is

root, then distance = 3 + 5 = 8.

Example 8: Binary Search Tree

Problem: A binary search tree is empty initially, you have to insert the

following elements into the tree: 50, 30, 70, 20, 40, 60, 80 Then delete

the element 30.

Solution: BST before any insertions

 50

 / \

 30 70

 / \ / \

 20 40 60 80

To delete 30:

• Slither down the left leg of the tree to 50. With the left child

pointer of 50 pointing to 30.

• 30 has two children and thus we have to go to successor node.

169
MATS Centre for Distance and Online Education, MATS University

Notes • (Fig 8 – the inorder successor of 30 in this case should be the

minimum element in its right subtree which is 40)

• Change 30 to 40, and replace the 40 with nothing.

Resulting BST after deletion:

 50

 / \

 40 70

 / / \

 20 60 80

Example 9: Number of Binary Trees

Problem: Given 3 labeled nodes, how many different binary trees that

we can have?

Solution: For labelled nodes, the number of labelled binary trees with

n nodes is the nth Catalan number: C(n) = (2n)! / (n+1)! n!

For n = 3: C(3) = (2×3)! / (3+1)! 3! = 6! / 4! 3! = 720 / 144 = 5.

Hence, 5 different binary trees can be formed with 3 labeled nodes..

Example 10: Depth in Binary Trees

Problem: What is the minimum possible depth of a leaf in a binary

tree with 31 nodes?

Solution: In a binary tree of n nodes, the minimum depth occurs in a

complete binary tree. For a complete binary tree, where h is height then

: 2^h ≤ n < 2^(h+1)

4: If n = 31 then 2^4 ≤ n < 2^5, so h = 4. Thus, the least achievable

depth from the root to any of the leaf nodes is 1 (the root itself) + the

least path from leaf = h = 4.

Example 11: Tree Center

Problem: What is the center(s) of the below tree: Tree T with vertices

{A, B, C, D, E, F, G} and edges : (A,B), (B,C), (C,D), (D,E), (C,F),

and (F,G)

Solution: The center of a tree is the vertex (or vertices) with the

minimum eccentricity where the eccentricity of a vertex is maximum

distance to any other vertex.

To find the center(s), we can iteratively remove all leaf nodes until we

are left with one or two vertices:

Starting tree: A-B-C-D-E and C-F-G

Step 1: Remove leaves A, E, G: we have B-C-D and C-F Step 2:

Remove leaves B, D, F: we have C Only C left, Now C is the center of

the tree

170
MATS Centre for Distance and Online Education, MATS University

Notes Example 12: Spanning Tree Count

Problem: Examples spanning trees of a complete graph K₄.

Solution: For a complete graph Kₙ, the number of spanning trees is

n^{n−2} (by Cayley's formula). Therefore, for K₄, amount of spanning

trees = 4^(4 − 2) = 4² = 16.

Example 13: Fundamental Cycles

Problem: suppose we have the graph G on vertices {A, B, C, D, E}

and edges: { (A,B), (B,C), (C,D), (D,E), (E,A), (A,C), (B,D)}

Solution : Given T = {(A,B), (B,C), (C,D), (D,E)} as a spanning tree

of G, determine the fundamental cycles with respect to T.

Solution Non-tree edges are (E,A), (A,C), (B,D) Adding any non-tree

edge to T creates a fundamental cycle:

1. Now when we add (E,A) to the graph, we will have a cycle: E-

A-B-C-D-E

2. With (A,C) we have cycle: A-B-C-A

3. Adding (B,D) induces cycle: B-C-D-B

The three cycles corresponds to the fundamental cycle basis of G given

the tree T.

Example 14: Fundamental Cut Sets

Problem: From Example 14 we have the same graph G and spanning

tree T. From Example 14 we have the same graph G and spanning tree

T.

Solution: Removing edge (B,C) from T forms two components(i.e. tree

is divided)Component 1 : {A,B}Component 2 : {C,D,E}

In G, all edges connecting these two components form the general cut-

set (B,C) (tree edge), (A,C) (non-tree edge), (B,D) (non-tree edge).

Hence the minimum cut-set for (B,C) is {(B,C), (A,C), (B,D)}.

Example 15: Binary Tree Height Calculation

Problem: A binary tree with 6 leaf node and each internal node has

exactly 2 child. What is the total number of nodes in the tree and its

height?

Solution: Denote the number of internal nodes by x. Since there are

exactly 2 children of every internal node and 6 leaf nodes: x + 6 = total

number of nodes In addition, in a binary tree with every internal node

having 2 children: x + 1 = 6 => x = 5 And total number of nodes = x +

6 = 5 + 6 = 11.

Max Path Sum of a Path: The highest path is from the base to the top.

With n total nodes arranged as a full binary tree (all internal nodes have

171
MATS Centre for Distance and Online Education, MATS University

Notes 2 children), but the tree does not necessarily need to be complete or

balanced. The minimum possible height (for an infinitely sized

complete binary tree) would be a nearly complete binary tree with 11

nodes, which would be 3 tall. But the real height depends on how the

nodes are organized.

Example 16: Level Order Traversal

Problem: For the following binary tree, return the level order traversal

of its nodes' values.

 P

 / \

 Q R

 / \

 S T

 / \ /

U V W

Solution: Level order traversal does level by level and from left to

right. Level 0: PLevel 1: Q RLevel 2: STLevel 3: U V W

Level traversal: P Q R S T U V W

Example 17: Balanced Binary Tree Check

Problem: Check if the following binary tree is balanced:

 10

 / \

 5 15

 / \ \

 3 7 20

 /

1

Solution: A binary tree is balanced when the height of the left and right

substree of a node has at most difference of 1

For node 10:

• Height of left subtree (rooted at 5) is 2

• Height of right subtree (at 15) = 1

• Difference = |2 − 1| = 1 ≤ 1, then balanced in this node

For node 5:

• Height of left subtree (rooted at 3) = 1

• Height of right subtree (rooted at 7) is 0

• Difference = |1−0| = 1≤ 1, so balanced at this node

For node 15:

172
MATS Centre for Distance and Online Education, MATS University

Notes • Height of left subtree being -1 (by convention) when it is empty

• Height of right subtree (rooted at 20) is 0

• Difference = |(-1)-0| = 1 ≤ 1, hence balanced at this node

For node 3:

• height of left subtree (rooted at 1) = 0

• Height of right subtree is -1 (it's empty)

• Difference = |0-(-1)| = 1 ≤ 1, so balanced at this node

Hence the tree is balanced, as all the nodes follow the balanced

condition.

Example 18: Prim's Algorithm for MST

Problem: Given the following weighted graph, determine its

minimum spanning tree, using Prim's algorithm with A as the initial

vertex: Graph G where V = {A, B, C, D, E} and E = { (A,B,2), (A,C,3),

(B,C,1), (B,D,1), (C,E,5), (D,E,4) }

Solution : MST = {A} frontier edges {(A,B), (A,C)}

Iteration 1: Minimal frontier edge = (A,B) with weight 2 Add B to

MST: MST = {A, B} Update frontier edges = {(A,C), (B,C), (B,D)}

Iteration 2: Lightest frontier edge = (B,C) with weight 1 Add C to

MST: MST = {A,B,C} Update frontier edges = {(A,C), (B,D), (C,E)}

Iteration 3: Lightest frontier edge = (B,D) with weight 1 Add D to

MST: MST = {A, B, C, D} Update frontier edges = {(A,C), (C,E),

(D,E)}

The edge with minimum weight in this iteration: Lightest frontier edge

= (D,E) with weight 4 Add E to the MST: MST = {A, B, C, D, E}

MST edges: (A,B), (B,C), (B,D), (D,E) => total weight 2+1+1+4 = 8.

Example 20: Tree Isomorphism

Problem: Are the following two trees T₁ and T₂ isomorphic? given tree

T₁: Edges (A,B), (A,C), (B,D), (B,E), (C,F) given tree T₂: Edges (P,Q),

(P,R), (Q,S), (Q,T), (R,U)

Solution: T(|t,H|) for the vertex set of H Solution: Two trees are

isomorphic iff we can get one from another by consistently renaming

vertices.

Start by ensuring that both trees have the same number of vertices and

edges:

• T₁ contains 6 vertices (A,B,C,D,E,F) and 5 edges

• T₂ 6 vertices(P,Q,R,S,T,U) and 5 edges ✓ Same number

Then verify the degree sequence (ordered list of vertex degrees):

173
MATS Centre for Distance and Online Education, MATS University

Notes • T₁ : deg(A)=2, deg(B)=3, deg(C)=2, deg(D)=1, deg(E)=1,

deg(F)=1 Sorted : [1,1,1,2,2,3]

• T₂: deg(P)=2, deg(Q)=3, deg(R)=2, deg(S)=1, deg(T)=1,

deg(U)=1 Sorted: [1,1,1,2,2,3] ✓ Same degree sequence

Finally, test the structural correspondence:

• All three vertices have degree 2 in both trees (e.g., C and D in T₁,

I and J in T₂)• Both trees have one vertex of degree 3 (B in T₁, Q

in T₂)

• Both trees contain two vertices of degree 2 (A,C in T₁, P,R in T₂)

• T₁ has vertices D,E,F of degree 1 each. The edges with their 2

vertices {F, B}, {E, A}, {D, C} can be mapped to their 2 vertices

in {S, T}, {S, U}, {U, T}

• In both trees, the degree-3 vertex is adjacent to one degree-2

vertex and two degree-1 vertices.

The trees T₁ and T₂ are isomorphic with vertex mapping as follows:

A↔P, B↔Q, C↔R, D↔S, E↔T, F↔U

In computer science and discrete mathematics, trees are foundation data

structure with intuitive representation of hierarchies. Tree structures

are crisp hierarchies that can either be in general form of a connected

acyclic graph to specialized structure like spanning tree or binary trees

prove their worth towards efficient solution of a variety of

computational problems. These mathematical properties of trees are the

basis of all algorithms (the relation that |E| = |V| − 1, no cycles, and

uniqueness of paths between vertices, etc.). These properties appear in

applications as various as file systems, database indexing, network

optimization, artificial intelligence. Adding structure — in this case,

allowing trees to be rooted or binary — resonates with a variety of

natural hierarchies and recursive processes. This is a great way to show

how certain variants of trees can be tailored to better suit specific

computation, as there are specially crafted algorithms for tree

traversal, searching and balancing. They connect trees to more general

theory of graphs, providing a connection between trees and a minimal

way to guarantee connectivity in a network. Algorithms used for

constructing minimum spanning trees, like Kruskal's and Prim's

algorithms, are some of the most fundamental approaches you can find

in optimization problems. So, we have looked at multiple examples,

along with their visualizations to show how such theoretical ideas

convert into real-world problem-solving techniques as well, during this

174
MATS Centre for Distance and Online Education, MATS University

Notes entire series and this reiterates the very significance of trees as

mathematical objects and computational tools. From the elegance

simplicity of tree structures yet their efficiency and intuitive nature it

ensures that trees will always have a place in solving Not schwierig

but complex real world problems in many different nodes of the tree of

computer science and applied mathematics.

Applications of Eulerian and Hamiltonian Graphs

Eulerian graphs, where every vertex has an even degree and a closed

trail exists, have many real-world applications. For example, in urban

planning, Eulerian trails can be used to design garbage collection

routes, mail delivery paths, or street cleaning paths so that each street

is covered exactly once.

Hamiltonian graphs, where a cycle passes through each vertex exactly

once, are important in network design and scheduling problems. The

most famous related problem is the Travelling Salesman Problem

(TSP), in which the goal is to find the shortest possible route that visits

each city exactly once and returns to the starting point. While TSP is

computationally hard, approximations and heuristics are used in

logistics, airline scheduling, and circuit board design.

Advanced Shortest Path Problems

Dijkstra’s algorithm provides the shortest path in weighted graphs

without negative edges. In practice, there are more advanced variations:

Bellman–Ford Algorithm: Works even when negative weights are

present, although it is slower than Dijkstra’s.

Floyd–Warshall Algorithm: Finds shortest paths between all pairs of

vertices, useful in dense graphs like computer networks.

A* Algorithm: A heuristic-based extension of Dijkstra, widely used in

AI for pathfinding in games, robotics, and navigation systems.

175
MATS Centre for Distance and Online Education, MATS University

Notes Example: In Google Maps, Dijkstra or A* algorithms are applied on

road networks where intersections are vertices and roads are weighted

edges. The weights represent distance or time.

Graph Coloring

Graph coloring is the assignment of colors to vertices so that no two

adjacent vertices share the same color. The minimum number of colors

required is called the chromatic number of the graph.

Applications of graph coloring include:

Scheduling Problems: Assigning time slots for exams so that no two

exams with common students clash.

Register Allocation in Compilers: Assigning variables to limited

CPU registers.

Map Coloring: Ensuring that no two neighboring regions have the

same color.

Example: Consider a graph representing exam subjects where an edge

exists between two subjects if they share common students. Coloring

the graph gives the minimum number of time slots required.

Planar Graphs and Euler’s Formula

A graph is planar if it can be drawn in a plane without edges crossing.

Planar graphs are important in circuit design, transportation, and

cartography. Euler’s formula connects vertices (V), edges (E), and

faces (F) in a connected planar graph:

V − E + F = 2.

Example: For a cube represented as a planar graph, we have V = 8, E

= 12, F = 6. Substituting gives 8 − 12 + 6 = 2, which satisfies Euler’s

formula.

Spanning Trees and Minimum Spanning Trees

176
MATS Centre for Distance and Online Education, MATS University

Notes A spanning tree of a graph is a subgraph that connects all vertices

without any cycles. Spanning trees are useful in designing efficient

networks, such as communication or road systems.

A minimum spanning tree (MST) is a spanning tree with the smallest

possible total edge weight. Two famous algorithms are used to find

MSTs:

Kruskal’s Algorithm: Sorts edges by weight and adds them one by

one if they do not form a cycle.

Prim’s Algorithm: Builds the tree starting from a vertex and grows it

by adding the least costly edge that connects a new vertex.

Example: MST is applied in designing a minimum-cost

telecommunication network connecting multiple cities with cables.

Worked Example: Kruskal’s Algorithm

Consider a weighted graph with vertices {A, B, C, D} and edges:

A–B (1), B–C (4), C–D (3), A–C (2), B–D (5).

Step 1: Sort edges by weight: (A–B, 1), (A–C, 2), (C–D, 3), (B–C, 4),

(B–D, 5).

Step 2: Add A–B, weight = 1.

Step 3: Add A–C, weight = 2.

Step 4: Add C–D, weight = 3. Now all vertices are connected. Total

weight = 6.

Thus the MST is {A–B, A–C, C–D} with cost 6.

Real-Life Applications of Graph Theory

Social Networks: People are vertices, and friendships or connections

are edges.

Communication Networks: Routers and computers are nodes, cables

and links are edges.

177
MATS Centre for Distance and Online Education, MATS University

Notes Biology: Protein interaction networks and gene regulatory networks are

modeled as graphs.

Transport Systems: Cities and roads are modeled using weighted

graphs to optimize travel.

Project Planning: Activity networks such as PERT (Program

Evaluation and Review Technique) and CPM (Critical Path Method)

use directed graphs to manage projects efficiently.

Importance of Graph Theory

Graph theory connects abstract mathematics with practical

applications. Whether it is routing internet packets, optimizing

transport routes, analyzing social networks, or designing circuits,

graphs provide a natural way to represent relationships and solve

problems. Its algorithms form the backbone of many modern

technologies.

SUMMARY

This Module introduces the foundational principles of graph theory,

an essential area in discrete mathematics with wide applications in

computer science, networking, and algorithm design. A graph is a

collection of vertices (nodes) and edges (connections), which may be

directed or undirected, representing relationships between elements.

The module begins with the basic definitions and characteristics of

simple graphs, multi-graphs, pseudo-graphs, and directed graphs

(digraphs), emphasizing their properties such as degree,

connectedness, and cyclicity. It examines concepts like subgraphs,

walks, paths, and circuits, which help in understanding graph traversal

and connectivity. The study of matrix representations—including the

adjacency matrix and incidence matrix—enables computational

representation and analysis of graphs. A significant part of the module

focuses on trees, a special class of graphs that are connected and

acyclic. It explains rooted trees, where one node acts as the origin, as

well as binary trees, which are extensively used in data structures and

hierarchical modeling. Additionally, the module explores spanning

trees, which connect all vertices of a graph without forming cycles, and

introduces fundamental circuits that result from adding an edge to a

178
MATS Centre for Distance and Online Education, MATS University

Notes spanning tree. These topics form the basis for designing efficient

algorithms in network design, shortest path finding, and hierarchical

data representation.

179
MATS Centre for Distance and Online Education, MATS University

Notes Multiple-Choice Questions (MCQs)

1. Which of the following is true for a simple graph?

a) It contains self-loops

b) It has multiple edges between the same pair of vertices

c) It has at most one edge between any two vertices

d) It always has a cycle

Ans: c)

2. Which of the following correctly defines a spanning tree of

a graph?

a) A tree that contains all the vertices of the graph with

minimum edges

b) A subgraph that contains all the cycles of the graph

c) A graph with multiple components

d) A graph that has more edges than vertices

Ans: a)

3. Which matrix representation is commonly used to

represent graphs?

a) Adjacency matrix

b) Incidence matrix

c) Both (a) and (b)

d) None of the above

Ans: c)

4. Which of the following statements about trees is incorrect?

a) A tree is a connected acyclic graph

b) A tree with nnn vertices has exactly n−1n-1n−1 edges

c) A binary tree is a type of tree in which each node has at

most three children

d) A spanning tree is a subgraph of a connected graph that

includes all the vertices

Ans: c)

5. In graph theory, a walk is defined as:

a) A sequence of vertices and edges where repetition is not

allowed

b) A sequence of vertices and edges where repetition is

allowed

c) A path with no repeated vertices

d) A circuit with at least three edges

Ans: b)

180
MATS Centre for Distance and Online Education, MATS University

Notes Long Answer Questions

1. Explain the fundamental concepts of graph theory and

describe different types of graphs with examples.

2. Define subgraphs, walks, paths, and circuits. How do they

differ from each other?

3. Discuss the matrix representation of graphs. How are

adjacency and incidence matrices used to represent graphs?

4. What is a spanning tree? How is it different from a general

tree? Explain with an example.

5. Define binary trees and rooted trees. How do they play a

significant role in computer science applications?

Short Answer Questions

1. What is the difference between a simple graph and a

multigraph?

2. Define a directed graph and give an example.

3. What is a fundamental circuit in graph theory?

4. How many edges does a tree with 10 vertices have?

5. What is the significance of adjacency matrices in graph

representation?

181
MATS Centre for Distance and Online Education, MATS University

MODULE 5:

SEMI GROUP AND MONOIDS

5.0 Learning objectives

• To understand algebraic structures, binary operations, and their

properties.

• To explore semigroups, monoids, and group theory.

• To analyze Abelian groups, cyclic groups, generators, and

permutation groups.

• To study homomorphism, isomorphism, and automorphism in

group theory.

• To understand cosets, Lagrange’s theorem, normal subgroups,

and quotient groups.

182
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5.1: Algebraic Structure, Binary Operation,

Properties, Semi Group, Monoid, Group Theory

5.1.1 Algebraic Structure, Binary Operation, Properties, Semi

Group, Monoid, Group Theory

Algebraic Structures and Binary Operations

Modern abstract algebra is based on an algebraic structure, which gives

mathematicians the means to study symmetry, solve equations, and find

a link between different fields of mathematics. An algebraic structure

is basically a set along with one or more binary operations that satisfy

certain properties. Such structures echo throughout mathematics, from

the well-worn byways of basic arithmetic to esoteric like topology and

analysis. We can learn about the underlying structures of mathematical

systems, and we find tools to solve intricate challenges in multiple

disciplines.

 Binary Operations: The Foundation of Algebraic Structures

In mathematics, a binary operation from a set S is a function from S ×

S to S. In more concise terms, it can be described as a mapping ∗ : S ×

S {a, b} → S such that for any a, b ∈ S, we denote the binary operation

of a and b by a ∗ b. The operation that maps ⟨∗⟩ back to one of its input

sets ⟨set S in this case⟩ is called closure: one of the most fundamental

properties of a binary operation that guarantees repeatedly performing

the operation would yield the result still within the primary set. Typical

examples would be addition and multiplication over the reals, function

compositions, matrix multiplication, logical operations over Boolean

values. Thanks to the generality of binary operations, mathematicians

can model a wide range of phenomena from a variety of fields. In

particular, we can describe the operation structures (Cayley tables) of

binary operations, i.e., the result of operating on any two (possibly the

same) elements from the list of elements in the set. For finite sets, these

tables are a complete picture of the operation, and they also show things

we may otherwise overlook just from the definition. In fact, the reason

for this is that the form of these tables often conveys valuable

information about the operation; symmetry patterns can indicate

commutatively while diagonal patterns can demonstrate idempotence.

Knowing the geometric representation of operation tables could help in

understanding clear logic for abstract algebra concepts..

183
MATS Centre for Distance and Online Education, MATS University

Notes 5.1.2 Fundamental Properties of Binary Operations

There are several important properties that binary operations can satisfy

that help to define the type of algebraic structure they create. The

distributive property is just one of the uses for associatively (meaning

that (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c elements of the set, so you can

do an operation on them without concern as to how you group them),

and of course, the commutative property, they are very useful in

simplification, and help us do inductive proofs. Commutatively means

that the order of operands does not matter, mathematically defined as

a ∗ b = b ∗a for all a, b in the set. There exists an identity element e such

that a ∗ e = e ∗ a = a for every a in the set, such that the element does

not change other elements when operated with. If there is an element a

so that an inverse element a⁻¹ exists such that a∗a⁻¹=a⁻¹∗a=e for each a,

then operations can be “undone”, and we can solve for equations in

this structure.

The properties described give binary operations a richer theoretical

ecology. Idempotence (a ∗ a = a) emerges in max or min type

operations. One operation distributes over another (a ∗ (b ⊕ c) = (a ∗

b) ⊕ (a ∗ c)), relating multiple operations together like the

multiplication and addition operations in arithmetic. Binary operations

are also characterized by absorption and cancellation properties as well

as other closure properties that help determine their algebraic behavior.

These properties are not just technical definitions, they reflect

underlying patterns of mathematical reasoning and methods of

approaching problems.

5.1.3 Types of Algebraic Structures

The properties satisfied by the binary operations determine the

classification of algebraic structures. Groups — a set with one binary

operation that satisfies closure, associativity, identity and inverse

properties — are the backbone of abstract algebra and show up

throughout mathematics, from number theory to crystallography.

Monoids characterize sequences of operations that can be combined

(closure) and have a function that when combined does not alter the

state of the system and does not have an inverse if they are irreversible

(identity). Semi groups the simplest combining processes (i.e.,

satisfying closure and associatively only) are even more general. These

structures are arranged hierarchically with each one having fewer

constraints than the previous one, providing mathematicians the choice

184
MATS Centre for Distance and Online Education, MATS University

Notes of level or degree of abstraction for specific problems. When more

than one binary operation acts on the same set, more sophisticated

structures can be obtained. A ring is a set equipped with two operations

(called addition and multiplication in the standard case) such that

addition is an abelian group, multiplication is a monoid, and

multiplication distributes over addition. Fields build on rings by

demanding that every non-zero element must also possess a

multiplicative inverse, permitting division. Vector spaces, modules,

algebras and lattices are further specializations with introduced

additional operations and axioms. As we can see from the structure of

the above two polynomials, algebraic structures can capture

background patterns between certain objects. The theory of such

structures reveals profound connections between areas of mathematics

seemingly unrelated to each other.

5.1.4 Applications of Algebraic Structures

For examples of the wide range of applications of algebraic structures

see 4[8] 23[44]. In cryptography, groups underpin a range of

encryption algorithms — including RSA and elliptic curve

cryptography — safeguarding digital communications used around the

globe. These concepts are integral to coding theory, which utilizes

finite fields to create error-correcting codes that ensure data integrity

during transmission in the presence of noise and interferences. In

physics, group theory underpins symmetries of physical systems,

ranging from the classification of crystal structures to the fundamental

particles of the Standard Model. Algebraic structures also show up in

computer science, especially in the design of programming languages,

type theory and automata theory — sequences of computation can be

modelled with monoids and semi groups. Outside traditional STEM

fields, algebraic structures shape everything from linguistics to music

theory. Group theory is used in chemistry to classify molecular

structures and to predict vibration spectras. The relation between

mixed-strategy payoffs and second-order conditions is in economic

models where they used algebraic structures to study preference

relations and market behaviors. Even prudently nondisambiguatory

aesthetic domains respond to algebraic abstractions, as group theory,

for instance, shines light on mathematically structured principles within

visual arts, architecture and musical composition. This universality of

algebraic structures arises because they capture patterns of

185
MATS Centre for Distance and Online Education, MATS University

Notes relationships or transformations that emerge naturally in many realms

of human endeavor and creativity.

5.1.5 Historical Development and Future Directions

Algebra 2000 has been a huge evolution since the first isolation of

algebra in the 19th. Mathematicians like Everest Galois and Niels

Henrik Abel began by investigating the characteristics of polynomial

equations and the relationship they have between the solution sets and

investigate their symmetries through group theory. Abstract algebra

emerged as a separate subject during the 19th and early 20th centuries,

with people like Emmy Noether and Emil Artin formalizing the

axioms for different algebraic structures. It made things clearer and

more general, helped find connections among long separate branches

of mathematics, and made algebraic structures fundamental organizing

principles in mathematics. Modern directions in algebraic structure are

once again expanding in all sorts of ways. Category theory gives a

common language to relate algebraic spaces using factorial and natural

transformations. Computational algebra is the study of algorithms for

manipulating algebraic objects in an efficient manner (for applications

in cryptography and scientific computing, see here). Emerging fields

such as quantum algebra and algebraic geometry combine algebraic

structures with analytic and topological methods to tackle difficult

problems. These avenues signal even more integration of algebraic

methods into data science, machine learning and quantum computing

as mathematicians find new structures to model novel phenomena and

invent theoretical scaffolding for the mathematics of the future. The

self-referential nature of the evolving algebraic structures is indicative

of what is the dual nature of mathematics: a means of solving

immediate problems of practical desire and a quest for aesthetics

through idealism of though

5.1.6 Mathematical Structures: Semigroups, Monoids, and Group

Theory

Introduction to Algebraic Structures

Algebraic structures are the building blocks of contemporary

mathematics: sets endowed with operations that follow certain

properties. Here, semigroups, monoids and groups are a series of

increasingly rich algebraic systems. Isomorphism and Homomorphism

are key concepts in abstract algebra, which is a branch of mathematics

concerned with algebraic structures such as groups, rings, and fields,

186
MATS Centre for Distance and Online Education, MATS University

Notes and these structures have applications in various domains like number

theory, geometry, cryptography, quantum mechanics, and computer

science. So, setting out on this exploration satrt with the simplest

sstructure as the semigroup and build towards the more constructive

and more poweful of all structure which are group and its the properties,

relations and its the importance in the maths.

 Semi groups: The Foundation

A semi group is an algebraic structure consisting of a non-empty set S

with a binary operation (often denoted by juxtaposition or ∗) satisfying

the associatively property. In formal terms, for any a,b,c∈Sthe

operation must satisfy(a∗b)∗c=a∗(b∗c). In fact, this relationship

between products is associative so we can write an expression such as

a ∗ b ∗ c without ambiguity, since it does not matter in which order we

apply that operation. Semi groups generalize the idea of many

mathematical operations. For example, the positive integers under

addition form a semi group, as do the set of all matrices of a fixed size

under matrix multiplication. Here is another example: The collection

of all strings over a fixed alphabet under concatenation. In category

theory, even the collection of natural transformations between factors

forms a semi group under composition. There are several interesting

properties of semi groups and some kinds of semi groups. For

commutative semi groups, the operation is commutative (i.e., a ∗ b = b

∗ a for all a, b) and therefore also forms a commutative semi group, or

an abelian semi group. An abelian semi group is a semi group (i.e.

binary associative with identity) in which the binary operation is

commutative but need not have an identity element. A band is a semi

group where every element is idempotent (i.e., a ∗ a = a for all a).A

regular semi group is a semi group with the property that for all a there

exists an element b with the property that a ∗ b ∗ a = a. Semi groups

also involve the study of properties such as subsemigroups (subsets of

a semi group that are also semi groups under the same operation),

homeomorphisms (structure-preserving maps between semi groups),

and congruence relations (equivalence relations that are compatible

with the semi group operation). The theory of semi groups includes the

consideration of Green's relations, which classify the elements of a semi

group according to the equivalence classes determined by the principal

ideals that can be formed from its elements. (For example, types of

semi groups, and the structure thereof will be elucidated through later

187
MATS Centre for Distance and Online Education, MATS University

Notes sections of the paper, through classification of finite semi groups for

example.).

 Monoids: Semi groups with Identity

A monoid is an extension of the semi group concept, providing an

identity element. More precisely, a monoid is a semi group (M, ∗)

which has an identity element in M, denoted by e, satisfying e ∗ a = a

∗ e = a for all elements a ∈ M; this identity behaves like the number 0

with respect to addition or 1 with respect to multiplication, since it does

not change other elements when used in a combination. This means that

we have an even better algebraic structure with an identity element. are

are examples of monoids march 2zero chosen wrapper fabric the set of

non-negative integers under addition is a monoid with identity 0, and

the set of positive integers under multiplication is a monoid with

identity 1. The set of all strings over an alphabet (including the empty

string) forms a monoid under concatenation and the empty string is the

identity element. Under function composition, all endomorphism’s of a

set form a monoid with the identity function as the identity element.

This applies very widely to theoretical computer science, especially

formal languages and automata theory. The behavior of a finite

automaton can be captured with a finite monoid where the monodies

operation is the concatenation of input strings. The syntactic monoid

of the language gives a construction that the language is characterized

up to isomorphism, and offers insights into its properties. In functional

programming, you use a monoid to define a foldable data structure that

can allow you to efficiently generate large data sets using parallel

processing. Introduction to the theory of monoids A submonoid is a

subset of a monoid that contains the identity and is closed under the

monoid operation. That is, a monoid homomorphism means that ∀ a, b

∈ A, m(f(a ⋅ b) == f(x) ⋅ f(y) and f(1) == 1. The free monoid on some

set A is the monoid consisting of all finite sequences (or strings) of

elements from A, using concatenation as the monoid operation, and

with the empty sequence as the monoid identity. This idea is

elementary in formal language theory, in which the free monoid on an

alphabet is the set of all strings over that alphabet..

Groups: Monoids with Inverses

A group is an even richer algebraic structure, which adds inverse

elements to a monoid. This formally means that group is a monoid (G,

∗) having the inverse for every element a ∈ G, i.e. a⁻¹ such that: a ∗ a⁻¹

188
MATS Centre for Distance and Online Education, MATS University

Notes = a⁻¹ ∗ a = e, where e is identity element of the monoid. This means that

for every element in a group there is a unique "counterpart" that will

result to the identity when combined with the original element. The

structure of algebraic systems is (even) better than it could be with the

introduction of inverses. In the case of the set of integers under

addition, the identity is 0, and the inverse of any integer n is simply its

negative − n. Zero is not part of our original group, as we started with

rational numbers with non-zero denominator, so we don't need to

worry about it. The symmetric group on a set is the collection (a group)

of all bijections (injective & subjective) from the set back onto itself,

under function composition. There are a variety of properties and

structures that can display a group. Finite Group — This is a group that

has a finite number of elements, the number of elements it contains is

called its order. • An abelian (or commutative) group is one that

satisfies the commutative property of its operation, a ∗ b = b ∗a, for

every term a and b in the group • A cyclic group is a group in which

each element can be expressed as the nth power of a generator (same

generator for all) If an integer n exists so that a^n=e, then it is defined

to be the order of the element a in the group. Group theory involves

important structures such as subgroups (subsets that themselves form

groups under the same operation), normal subgroups (subgroups that

are invariant under conjugation), quotient groups (the groups resulting

from taking cosets of normal subgroups), and group homomorphisms

(mappings between groups that preserve the operation). These notions

enable mathematicians to study the internal structure of groups and

their relations with other groups. A prime example of the efficacy of

these analytic tools is given in the fundamental theorem of finitely

generated abelian groups, which yields a complete classification of all

such groups up to isomorphism.

Group Theory: Historical Development and Fundamental Theorems

This notion broadened the concept of symmetry and led to the

development of group theory, a mathematical framework that

originated in the early 19th century through the work of mathematicians

such as Évariste Galois and Niels Henrik Abel, who explored the

solvability by radicals of polynomial equations. Galois' analysis

involved the use of groups to determine when a given equation is

solvable by radicals, thereby relating the structure of the symmetries

of a polynomial (the Galois Group associated to the polynomial) to the

189
MATS Centre for Distance and Online Education, MATS University

Notes existence of algebraic solutions. This periodic milestone created a close

connection between group theory and field theory, and later became

the core of Galois theory. Group theory developed rapidly thanks to the

work of many mathematicians. With the advent of group theory in

analysis, the eponymous results of Augustin-Louis Cauchy emerged,

such as his namesake theorem, which asserts that for any finite group

of order n, an element of order p exists for every prime that divides n.

Arthur Cayley abstracted the term group to signify an abstract group,

liberating the theory from contexts like permutations or

transformations. Camille Jordan worked on composition series and

formulated Jordan's theorem on finite linear groups. Reformulation of

Geometry via Group Theory: Felix Klein's Erlangen Program

reformulated by interpreting geometric properties as invariants under

the action of groups. Group theory is based on several fundamental

theorems. What you are learning includes Lagrange's theorem which

states the order of the subgroup divides the order of the group, limiting

the possible sizes of subgroups. For any group homomorphism φ, the

first isomorphism theorem states that G/Ker(φ)≅Im(φ): A group, its

homomorphic image and the kernel of the homomorphism. Sylow's

theorems offer important insight into the structure of finite groups,

because they gives insights on existing and properties of subgroups of

every prime power order. The orbit-stabilizer theorem establishes a

relation between the size of an orbit under a group action and the index

of the stabilizer, and in turn provides powerful counting methods. The

theory of finite simple groups is one of the monumental achievements

of mathematics. It’s an "enormous theorem" that covers thousands of

pages in hundreds of journal articles, and involves dozens of

mathematicians over three or four decades, classifying all finite simple

groups into four specific families: cyclic groups of prime order,

alternating groups, groups of Lie type, and 26 other sporadic groups

that fell through the cracks of the other families. This classification

demonstrates the intricate and diverse nature of group structures and

gives a holistic perspective on the essential components of finite

groups.

5.1.7 Applications of Semi groups, Monoids, and Groups

Semi groups, monoids, and groups theory have a lot of practical

applications in many domains. In the field of cryptography, group

theory is used in many encryption schemes. Essentially, the RSA

190
MATS Centre for Distance and Online Education, MATS University

Notes algorithm is one of the oldest public-key cryptosystems and is still one

of the most popular. It is founded on the computational difficulty of

some problems in number theory which fall under cyclic groups.

Elliptic curve cryptography exploits the group structure of points on

elliptic curves to construct secure cryptosystems with smaller key sizes

than those used by classical cryptosystems. Diffie-Hellman key

exchange, a key exchange protocol that allows two parties to exchange

cryptographic keys over public channels, relies on certain properties of

cyclic groups. Group theory is crucial in the understanding of

phenomena in physics. Noether's theorem provides a deep

relationship between symmetries of physical systems and conservation

laws, where each continuous symmetry leads to a conserved quantity.

In solid-state physics, the only kind of crystal structure classification is

based on the 230 space groups specifying the possible symmetry

patterns in the three-dimensional crystal lattices. In particle physics, Lie

groups are used to categorize the elementary particles as well as the

interactions between those particles. There are a host of ways that

these algebraic structures are used in computer science. In automata

theory, monoids are used to model finite state machines, specifically

the syntactic monoid captures the recognition power of automata. The

free monoid is used in formal language theory to represent the set of all

strings over an alphabet. Petri nets, used to model concurrent systems,

have a background algebraic structure based on commutative monoids.

Thus, Inspired by functional programming languages (e.g., Haskell), a

monoid is a concept used in many programming languages to define a

structure that combines data structures through associative operations

with the existence of identity elements which is both well-defined and

powerful, allowing the writing of efficient, elegant code. In chemistry,

we have group theory to help understand symmetry in molecular

systems and spectroscopy. Molecular symmetry groups preside over

the vibrational modes that can be excited and selection rules governing

allowed spectroscopic transitions. In quantum chemistry the role of

group theory is to exploit the symmetry of molecules to render

Hamiltonian matrices block-diagonal, simplifying the calculation of

matrix elements. Stereochemistry appraises group-theoretic ideas to

categorize and anticipate candidate stereoisomers of molecules and

advances knowledge of three-dimensional molecular conformations

and their biological functions.

191
MATS Centre for Distance and Online Education, MATS University

Notes 5.1.8 Advanced Topics and Future Directions

This is an area that is still active — theory evolves, new results are

proven, themes are developed. Understanding a group through the

action that is built on a space a group acts upon is the basis of a very

active field of study in contemporary mathematics — geometric group

theory. The word problem for groups—whether two words denote the

same element of a group—connects group theory with computational

complexity theory and has far-reaching consequences for automated

theorem proving and verification systems. Sets, functions, and relations

are fundamental to the study of algebraic structures, and representation

theory is a powerful tool used in the representation of groups as linear

transformations of vector spaces. Character theory, as a part of

representation theory, can associate a group element with a complex-

valued function (the character), over which representations can be

decomposed into irreducible components. These techniques are used in

quantum mechanics, so where the symmetry groups of irreducible

representations associate quantum states for physical systems.

Topological groups, which imbue group structure with topological

structure, constitute a bridge between algebra and topology. Lie groups

are both groups and differentiable manifold, and thus sit at the heart of

differential geometry and theoretical physics. Representation theory of

Lie groups is the basis of quantum field theory and provides necessary

tools to describe particle interactions at the most fundamental level.

New links between group theory and quantum information science

have emerged with the recent advances of quantum computing.

Quantum error-correcting codes are frequently based on group-

theoretic constructions which serve to shield quantum information

from decoherence. Despite being surprising, this discovery is

understandable, as many efficient quantum algorithms known today

(e.g., Shor's factoring algorithm) are based on realising an info-

progression strategy over the group structure of abelian groups to give

an exponential speed up compared to classical algorithms. A larger

picture for quantum computing and group theory in years: Semi

groups, monoids, and groups are still being studied and will inevitably

be powerful tools in our understanding of algebraic structures. There

is ongoing work in categorical ways of thinking about algebra, which

each of these things could be seen as a special case of something larger

that we will learn. These works yield algorithms that allow one to solve

192
MATS Centre for Distance and Online Education, MATS University

Notes group-theoretic problems in an efficient manner and thus improve our

understanding of potentially very complex groups. This section has

demonstrating the relevance of group theory to sunrise fields such as

network science and the data science show how relevant and applicable

those fundamental mathematical concepts remained in the study of

modern-day challenges across science and technology.

193
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5.2: Abelian Group, Cyclic Group, Generators, Permutation

Group, Subgroup

5.2.1 Abelian Group, Cyclic Group, Generators, Permutation

Group, Subgroup

Abelian Groups and Cyclic Groups

An Abelian group, named after Niels Henrik Abel, is an algebraic

structure combining a group with the additional requirement that the

group operation be commutative. Abelian groups are fundamental

objects in the field of abstract algebra in their own right, but they also

play essential roles in the construction of more advanced structures, and

they have applications in a wide range of mathematical theory from

number theory to topology. Cyclic groups, a special case amongst

Abelian groups, are among the most simple and well-studied groups

but also reveal deeper properties that inform our understanding of the

underlying group-theoretic principles. Algebraic and recurrent also

describe because mathematicians discovered these sequences as

algebraic structures, and algebra is a form for making sense of

symmetry and periodicity, and structural relationships, in pure

mathematics and applied math alike, so algebra here has things to do

with things

Definition and Properties of Abelian Groups

A binary operation ∗ on a set G is called an Abelian group if it is an

Abelian operation satisfying four axioms. The first is that the operation

is closed — that is, for a, b∈G, we have a∗b∈G. The second is that the

operation is associative, meaning that (a∗b)∗c = a∗(b∗c) for all a, b,

c∈G. The third is that there is an identity element, denoted e, that is a

member of G such that a∗e = e∗a = a for every a∈G. The fourth is that

for every a∈G, there is an inverse element a⁻¹∈G such that a∗a⁻¹ = a⁻¹∗a

= e. What a group compared to a general group is the additional

property of commutativity: for any pair (a, b)∈G, a∗b = b∗a. This

property of commutativity has the effect of greatly simplifying the

structure of the group and has many important implications. Abelian

groups have properties that make them especially easy to analyze. For

example, in an Abelian group, the answer to the equation a∗x = b is

uniquely solved with x = a⁻¹∗b, regardless of order of operations. The

definition gives one example of finding the quotient group when the

normality holds. This means that we can construct more complex

194
MATS Centre for Distance and Online Education, MATS University

Notes Abelian groups from simpler ones since the direct product of Abelian

groups is again Abelian. Due to the commutativity property, one can

formulate a really rich theory of homomorphisms between Abelian

groups, leading to the very important fundamental theorem of finitely

generated Abelian groups: each such group can be expressed as the

direct sum of a finite number of cyclic groups. This theorem on

decomposition gives all finitely generated Abelian groups up to

isomorphism.

Fig: 5.2.1 Abelian Groups

Examples and Representations of Abelian Groups

Abelian groups show up abundantly in mathematics in many guises.

Under addition the integers Z form an infinite Abelian group with 0 as

the identity and negation as the inverse. Another important example of

an Abelian group is the set of all rational numbers denoted by Q, real

numbers denoted by R, complex numbers denoted by C under the

operation of addition. For each positive integer n, the integers modulo

n, Zₙ, is a finite Abelian group under addition modulo n, and the non-

zero complex numbers C* under multiplication as well as the positive

reals R⁺. Let F be a field; the group of n×n invertible diagonal matrices

with entries in F is an Abelian group under matrix multiplication.

Vector spaces over any field have a natural underlying Abelian group

structure inherited from vector addition. Aside from these specific

cases, Abelian groups can take many forms and be studied through

different representations. One very rich approach is via character theory

(characters are homeomorphisms from the group to the multiplicative

195
MATS Centre for Distance and Online Education, MATS University

Notes group of complex numbers)). For finite Abelian groups, the character

table uniquely determines the group up to isomorphism. A different

rendition is given by the module theoretic one, in which Abelian

groups correspond to the Z-modules. This point of view relates group

theory to module theory and provides ways to apply techniques from

the latter on Abelian groups. For finitely generated free Abelian groups

the geometrical picture is in terms of lattices in Euclidean space. This

approach has been fruitful, particularly in number theory in the study

of quadratic forms, and in cryptographic applications.

5.2.2 Definition and Properties of Cyclic Groups

Fig: 5.2.2 Cyclic Group

The cyclic group is an Abelian group that can be generated by a single

element, such that every element in the group can be written as a power

(or a multiple, in additive notation) of an element that we will call a

generator. A group G is said to be cyclic if there is an element g in G

such that G = {gⁿ: n ∈ Z}, where gⁿ means that we are composing with

itself n times. A cyclic group generated by g is denoted by G = {ng | n

∈ Z} in additive notation, as is frequently in use in the case when the

group is Abelian. In the infinite case, every cyclic group is isomorphic

to the integers Z with the operation of addition, and in the finite case

to the integers modulo n, Zₙ. The result of this classification is that

cyclic groups are so simple and so elegant that there are not even many

of them (up to isomorphism, there are essentially only two). There are

some very special properties of cyclic groups. Every subgroup of a

196
MATS Centre for Distance and Online Education, MATS University

Notes cyclic group is cyclic, a property which is no longer true for general

groups. Here is the statement in words: If G is a cyclic group of order

n (that is, with n elements), then for every divisor d of n there is exactly

one subgroup of G with d elements. The number of generators of a

finite cyclic group (of order n) is given by Euler's totient function φ(n)

that counts the positive integers less than n which are relatively prime

to n. For prime p, the cyclic group of order p has exactly p−1 generators.

Every quotient group of a cyclic group is cyclic, and a direct product

of cyclic groups is cyclic iff their orders are relatively prime. Cyclic

groups have attractive properties that makes them easy to understand,

and gives good intuition of how to construct more complex groups,

while also acting as a foundation for further developments in the theory

of groups in algebra as a whole.

5.2.3 Relationships Between Abelian and Cyclic Groups

There is a certain hierarchy between Abelian groups and cyclic groups,

with the former being a generalization of the latter; namely, every

cyclic group is Abelian, but not every Abelian group is cyclic. We will

use this inclusion relationship to define a sense in which Abelian groups

can be classified, while the simplest example will be cyclic groups.

Thus we see that every finitely generated abelian group can be broken

down into cyclic groups via the fundamental theorem of finitely

generated abelian groups, which can be seen as the abelian analogue of

the way in which prime numbers are the building blocks for integers.

The relationships between general Abelian groups and cyclic groups

uncover underlying structure. For example, an Abelian group is cyclic

iff it has no proper subgroup of the same rank (the rank is the number

of copies of Z in the decomposition of the group). In the finite case, an

Abelian group is said to be cyclic if and only if it has one and only one

subgroup of each possible order. Another link here is the concept of

the sole of an Abelian group—the subgroup generated by all elements

of prime order; a finite Abelian group is cyclic if and only if its socle is

cyclic. Furthermore, the endomorphism group (the group of

homeomorphisms from a group into itself) for cyclic and non-cyclic

Abelian groups shows a striking difference. For a cyclic group of order

n, the endomorphism ring is stored to the ring to of integers mod n,

while for a non-cyclic Abelian groups the endomorphism ring may be

considerably more 'non-simple' often taking the form of a several

dimensional matrix group over each different ring.

197
MATS Centre for Distance and Online Education, MATS University

Notes 5.2.4 Applications in Mathematics and Beyond

Abelian and cyclic groups have applications in branches of

mathematics and applied fields. The multiplicative group of integers

modulo n is an essential structure in number theory, and it is generally

Abelian but not always cyclic, and it is in the base of the studies on

modular arithmetic and congruence’s. This structure provides the

foundation for significant results, including Fermat’s Little Theorem

and Euler’s Theorem, which subsequently form the foundation for

cryptographic protocols, such as RSA encryption. Abelian groups arise

as homology and co homology groups in algebraic topology and

contain topologically significant information about spaces. The

Abelian nature of these groups makes their study much simpler than

the analogue of the fundamental group, which is typically non-Abelian.

Outside the ivory tower of pure mathematics, these groups appear in

crystallography to define the symmetries of crystal lattices, in physics

to study conservation laws and symmetry transformations, and in

coding theory, where cyclic codes based on cyclic groups provide

efficient error detection and error correction. For example in quantum

mechanics the representations of Abelian groups correspond to

quantum systems with commuting observables, for example in signal

processing the discrete Fourier transform connects to the cyclic

structure of cyclic groups. Alternatively, Cyclic redundancy check is

one example of a computational application that exploits properties of

cyclic groups and is used for error detection in data transmission, while

cryptographic protocols can be defined in terms of the hardness of

problems in Abelian groups, the most known one being the discrete

logarithm problem in elliptic curve groups. The study of Abelian

varieties in algebraic geometry—higher-dimensional equivalent of

elliptic curves, possessing an Abelian group structure—has yielded

many deep results in pure mathematics and applications in

cryptography.

Recent Developments and Open Questions

There remains much more mathematics to be done in Abelian and

cyclic groups, as current research continues to entwine with growing

branches of new mathematics and long-time open problems. For

instance, the field of random Abelian groups and probabilistic group

theory is a very active area of research, in which one studies the

statistical behaviour of -- groups chosen from some distribution. This

198
MATS Centre for Distance and Online Education, MATS University

Notes links group theory with probability theory, and has applications to

network analysis and complex systems. A second emerging area is the

algorithmic study of Abelian groups — the efficient computation of

invariants, the discrete logarithm problem, the isomorphism problem,

etc. These abstract computational questions have real-world

application, for cryptography and computer science in general. There

are many open questions and conjectures. The high-dimensional

Torsion Conjecture for Abelian varieties, which generalizes the elliptic

curve results, remains open. The structure of infinite Abelian groups,

once one leaves the finitely generated setting, is quite difficult and leads

to very deep set-theoretic and infinite combinatorial questions. All of

this directly connects back to the world of Module condition as many

problems facing the Module group of the integral group ring of an

Abelian group form difficult problems in group theory, ring theory, and

number theory. This is an active question in algebraic number theory

as to which Abelian groups occur as the class group of a number field.

We engage in ongoing investigations that show that in fact after they

are some simple axioms, Abelian and cyclic groups yield all sorts of

new mathematical theories and have brought many insights to

fundamental questions in many areas of mathematics. These classical

algebraic structures remain relevant and continue to inspire new

mathematical discoveries as mathematical techniques evolve and new

applications arise.

5.2.5 Generators, Permutation Groups, and Subgroups

Generators, Permutation groups, subgroups in UInt163 in Abstract

Algebra These concepts form the basis for group theory, which is a key

building block not only for number theory, geometry, but also

theoretical physics, among others. Generators are an economical way

to describe (potentially complicated) groups in terms of a small

collection of objects. Key group-theoretic notions such as stability,

orbits, and Sylow within particular action of groups can be concretely

realized via permutation groups. They make it easy to find and

analyze significant structural patterns within our larger set. When

combined, these ideas give us strong methods to study mathematical

structures from a perspective of symmetry and transformation.

Group Generators: The Building Blocks

In mathematics, a group (G, •) consists of a set G and a binary operation

• on G satisfied these four basic properties: i.e holds closure,

199
MATS Centre for Distance and Online Education, MATS University

Notes associatively, identity exists and the inverse exists. In this context, we

introduce the notion of generators, which are a useful way to describe

groups succinctly. A subset S of a group G generates G if every element

of G is finite product of elements of S and their inverses. The symbol

⟨S⟩ denotes the group generated by the set S. A great deal of interest is

in minimal generating sets — if an element can be removed from S such

that ⟨S⟩ does not change, then it is not a minimal generating set. The

rank of the group, which indicates the group complexity, is the size of

a minimal generating set. One of these core ideas is that of a generator,

which has deep implications for understanding the structure of a group.

For example cyclic groups are exactly the groups which are generated

by one element. The order n cyclic group: Cₙ can be generated by any

of its elements with order n, while more complicated groups require

larger generating sets. A concrete example would be Dₙ, the dihedral

group generated by a rotation and a reflection which represents the

symmetries of a regular n-gon. Not only is this compact description of

groups via generators (and relations) conceptually clearer (and is the

basis of their equivalence), but also it pushes instead to computational

ways of thinking about group theory. A better paraphrase would

understand the generating set gives you insight into the essential

operations which govern group behavior similar to how understanding

the basis gives you the dimension structure of a vector space.

Permutation Groups: Symmetry in Action

However, permutation groups give a very concrete way of realizing

abstract group structures through their action on sets. Definition: A

permutation of a set X is a bijection from X to itself. The set of all

permutations of X is a group under function composition, written as

Sym(X) or Sₙ if X has n points. Now, that group is basic to the subject

of group theory, because Cayley’s theorem assures us that any finite

group is isomorphic to a subgroup of a symmetric group. Permutation

groups are particularly useful for easily visualizing group operations

and the groups properties, making abstract ideas more tangible. The

frequency of permutation groups has interesting properties. We will

also decompose the permutation into cycles, which are particularly

useful for calculations and structural analysis. By permutation we mean

the cyclic notation, i.e. a k-cycle (a₁ a₂... aₖ) describes a permutation

that sends a₁ into a₂, a₂ to a₃,. .., and aₖ back to a₁. Every permutation

can be expressed uniquely (up to order) as a product of disjoint cycles.

200
MATS Centre for Distance and Online Education, MATS University

Notes The permutation decides the even or odd number of 2-cycles are

written, so the even permutations are permuted is defined subset Aₙ to

normal group on Sₙ. We will also learn critical tools for analyzing

particular aspects of groups such as contumacy classes, element

orders, and centralizers, by understanding cycle structures and

permutation parity.

Subgroups: Internal Structures and Classifications

Subgroup of a group, subgroup CHF is subset of group G and with the

operation of G forms a group. An easy way of detecting a subgroup,

called the one-step subgroup test, is: If H is a non-empty subset of G

then it is a subgroup if and only if a, b is in H implies a • b⁻¹ is in H.

There are a number of different forms that subgroups within the parent

group can take, each giving different insight into the parent group.

Normal subgroups, i.e C such that gN = Ng for g ∈ G are crucial

because these are the only subgroups for which we can build quotient

groups. While characteristic subgroups are not invariant under all group

epimorphosis, they retain significant structural importance. The

subgroup lattice, the partially ordered set of all the subgroups of a

group, offers an overview of the inner anatomy of the group itself.

Lagrange's theorem (the order of a subgroup divides order of finite

parent group) restricts subgroup sizes very tightly and gives rise to the

index of a subgroup. These subgroup-determined structural insights

serve as the basis for advanced group-theoretic investigations as long

and comprehensive as the classification of finite simple groups,

arguably one of the contemporary mathematics’ greatest

accomplishments.

201
MATS Centre for Distance and Online Education, MATS University

Notes 5.2.6 Interconnections: Generators, Permutations, and Subgroup

Theory

Generators, permutation representations, and subgroup structures are

just some tools which reveal this deeper structure in group theory. A

basic theorem relating the two is that every group admits a permutation

group action based on its action on various sets, especially in terms of

the group action on cosets of subgroups. This is formalized in Cayley’s

theorem: every group G is isomorphic to a subgroup of the symmetric

group on G. The generating sets of permutation groups tend to have

interesting structural properties. For example, the symmetric group Sₙ

is generated by just two permutations, being a transposition and an n-

cycle. For n ≥ 3 the alternating group Aₙ is generated by 3-cycles (in

particular by the set of all 3-cycles of the type (1, 2, i) with 3 ≤ 𝑖 ≤ 𝑛).

Specifically, the orbit-stabilizer theorem establishes a connection

between group actions, permutation representations, and subgroups by

stating that the size of an orbit is equal to the index of the associated

stabilizer subgroup. This striking technique allows us to count

arguments that yield structural information about groups. Generators

are also crucial for describing important classes of subgroups. The

cyclic subgroup generated by an element a, denoted ⟨a⟩, is the set of all

powers of a. The normalizer of a subgroup H in G, denoted by N(H)={g

∈ G | gHg⁻¹ = H}is the largest subgroup of G in which H is normal.

Specifically, the center of a group, which consists of all elements that

commute with every element of the group, can be identified as the

kernel of the permutation representation induced by the conjugation

action. The relationships between these invite analysis of generators,

permutation groups, and subgroups within a unified algebraic

framework.

5.2.7 Applications in Mathematics and Beyond

As a theory, generators, permutation groups and subgroups can be

regularly applied to every different areas in mathematics and outside

mathematics. Their use in number theory helps with exploring

congruence relations and prime factorizations. In geometry, the

classification of the wallpaper groups and crystallographic groups

depends rather heavily on group-theoretic machinery. Using algebra,

Galois theory connects field extensions with group theory by using

permutation groups to characterize the solvability of polynomials. The

theory of codes with error correction, in most of its aspects, exploits the

202
MATS Centre for Distance and Online Education, MATS University

Notes activation of permutation groups and their generating set for effective

coding. The representation theory of groups, especially of permutation

groups, plays an important role in quantum physics where systems of

particles have symmetries. Apart from pure mathematics, these

concepts have been used in chemistry to classify molecular structures,

and in computer science to analyze algorithms and computational

complexity. Many cryptographic protocols are based on discrete

logarithm problems, and many such problems are based on properties

of subgroups of finite groups. Permutation Tests are Non-parametric

Statistical Tests in data science. Rubik's cube and similar types of

puzzles are analyzed in the theory of permutation group, where the

generators represent simple moves, and solution paradigms can use

subgroup structures. Permutation groups identify the structurally

equivalent positions in social network analysis. All of these potential

applications illustrate how the abstract nature of generators,

permutation groups, and subgroups are utilized as analytical tools in

various fields of science, shedding light on the underlying mathematics

that governs disparate phenomena.

Frontiers and Open Problems

This remains an active area as group theory unfolds with new findings

about generators and permutation groups and subgroup structure. The

classification of finite simple groups, finished in the late 20th century,

is one of the greatest successes in this field, but many questions about

the classification as the latter applies to the details remain unanswered.

Modern research directions include generation properties of finite

simple groups, including questions about the minimal size of

generating sets and the probability that randomly chosen elements

generate the group. Computational difficulty of deciding whether a

specific set generates a group, in particular of matrix groups over finite

fields, remains an active area of inquiry straddling group theory and

computer science. Primitive permutation groups, which preserve no

non-trivial partition of the underlying set, are at the center of research

directions opened up by open problems, with a focus not only on

classification but also on their properties. There are still active open

questions such as maximal subgroups of the symmetric and alternating

groups. There is also a rich stream of research in understanding the

asymptotic behavior of various group-theoretic properties as the size of

the group increases, with connections to probability theory and

203
MATS Centre for Distance and Online Education, MATS University

Notes statistical mechanics. The product replacement, which samples

uniformly from a finite group given a generating set, leads to interesting

theoretical questions regarding the Markov chain underlying it.

Generators, permutation groups, and subgroups play a central role in

modern abstract algebra, continuing to deepen our understanding of

the structures underlying mathematics and its applications.

204
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5.3: Homomorphism, Isomorphism, and

Automorphism

5.3.1 Homomorphism, Isomorphism, and Automorphism

Homomorphism and Isomorphism

Homomorphism and isomorphism are some of the basic structures in

abstract algebra which help us to explain relations between different

algebraic systems. These mappings maintain operations between sets

endowed with algebraic structure, and allow mathematicians to identify

structural similarities and differences. This allows us to classify

algebraic objects, figure out when they are essentially the same, and

transfer properties between structures by examining how these

functions behave.

Homeomorphisms: Structure-Preserving Maps

Homomorphism, a map between algebraic structures of the same type

that preserves operations. A homomorphism is a function φ: G → H

such that for all a,b ∈ G, φ(a • b) = φ(a) ∗ φ(b) where (G, •) and (H, ∗)

are algebraic structures. This property of homeomorphisms is what

makes them so powerful, since they preserve algebraic structures while

the underlying set may be different. Let’s consider the exponential

function exp: (ℝ, +) → (ℝ⁺, ×) that takes the real numbers under

addition and maps them to the positive real numbers under

multiplication. Here are two common types of structure we may be

interested in: the exponential on which we have exp(a + b) = exp(a) x

exp(b), meaning that exponential functions are homomorphism maps

from additive to multiplicative structures (for real numbers a and b).

This relationship unveils profound connections between addition and

multiplication. The notion of homomorphism will now enable us to

characterize some of the properties a homomorphism can have that

hint the relationship between structures. If φ: G → H is a

homomorphism, then the kernel of φ is ker(φ) = {g ∈ G | φ(g) = eH},

with eH denoting the identity in H, which for every homomorphism is

a normal subgroup of G (see Basic properties of preimages and apply

it). The kernel of a homomorphism often contains a lot of important

information about the homomorphism itself. In the same way, the

image of a homomorphism im(φ) = {φ(g) | g ∈ G} is a substructure of

H that shows how much of H is "hit" by elements from G. Several key

theorems arise specifically in the context of group homeomorphisms.

205
MATS Centre for Distance and Online Education, MATS University

Notes The First Isomorphism Theorem: Let φ:G→H be a group

homomorphism, then G/ker(φ)≅im(φ) where G/ker(φ) is the quotient

group of G by the kernel of φ. This thus leads us to one of the main

theorems of group theory, namely the First Isomorphism theorem

which states a canonical isomorphism between the factors -- in this

case the quotient group and the image -- so that we can talk about G

and H in a better way. An isomorphism is a more general concept,

defined more generally than a homomorphism that describes a

structural equivalence between two kinds of mathematical objects. A

homomorphism is a structure preserving map and an isomorphism is

bijective homomorphism. If there is an isomorphism between two

structures, they are considered algebraically identical or "the same"

structure, even if their representations are different. More formally, if

φ: G → H is a bijective (one-to-one and onto) function such that φ(a •

b) = φ(a) ∗ φ(b) ∀ a, b ∈ G, then φ is an isomorphism and we say G

and H are isomorphic, written G ≅ H. The isomorphism’s are

underscored in importance. If two structures are isomorphic, then any

theorem about one structure can be translated directly to the other. This

means that mathematicians do not have to consider every structure, but

can instead only study representative structures from each

isomorphism class. As a basic but powerful example all cyclic groups

of order n are isomorphic to Z/nZ (the integers modulo n) meaning that

despite different presentations, they all share the same algebraic

properties. In order to know we are looking at isomorphic structures

we need to find a bijective map which preserves operation. This can be

difficult, however, and you can rely on some invariants to eliminate

isomorphism. For instance, two groups are not isomorphic if they have

different orders (numbers of elements). In like manner, an isomorphism

cannot be exist either if the structures in terms of commutatively,

associatively or different identities. These invariants offer a hands-on

method to differentiate non-isomorphic structures.

Isomorphism’s: Structural Equivalence

An isomorphism between algebraic structures is a bijective

homomorphism. You are constantly working with a structure until

some isomorphism comes to light, the structures are algebraically the

same. More formally, if φ: G → H is a bijective (injective and

subjective) function such that φ(a • b) = φ(a) ∗ φ(b), for all a, b ∈ G,

then φ is an isomorphism, and we say G and H are isomorphic, which

206
MATS Centre for Distance and Online Education, MATS University

Notes is denoted G ≅ H. The importance of isomorphism’s cannot be

exaggerated. When two structures are isomorphic, any theorem that

was proven about one of those structures immediately applies to the

second one as well. This is a property which enables mathematicians

to study representative structures of the same class of isomorphism’s

instead of exploring all be everywhere. In fact, for example, all cyclic

groups of order n are isomorphic to Z/nZ (the integers mod n), so

despite different presentations they have the same algebraic properties.

In order to see if two structures are indeed isomorphic, we must find a

one-to-one correspondence that moves from one to the other while

preserving such operations as follows. This can be quite difficult, but

there exist some invariants to eliminate isomorphism. For instance, as

two groups cannot have the same species if they have a different order

(number of elements). The same applies if the structures differ in their

commutatively, associatively, or identity properties, since an

isomorphism cannot be formed. These invariants induce a way to

distinguish non-isomorphic structures.

5.3.2 Applications in Various Algebraic Structures

Both homeomorphisms and isomorphism’s generalize to the other

common algebraic structures, such as rings, fields, vector spaces and

modules. In each case, these mappings are structure-preserving with

respect to the relevant operations. For ring homeomorphisms φ: R→S,

addition and multiplication must be preserved as φ(a + b) = φ(a) + φ(b)

and φ(ab) = φ(a)φ(b) respectively. Linear transformations are

essentially the homeomorphisms that preserve vector addition and

scalar multiplication, so by replacing the vector structures we obtain

another way of defining a homomorphism. Field homeomorphisms are

at the very core of the study of field extensions. If F ⊆ E is handled as

a subfield of a field E, then the inclusion 𝐢: There will be a field

homomorphism 𝑖: F ↪ E. More generally, given that σ: F → K is a field

homomorphism and E is an extension of F, a fundamental question in

Galois theory is when σ can be extended (i.e. there exists a

homomorphism σ: E → K), and whether or not this can be understood

in terms of explicit drives on polynomial solvability. A second richer

application of homeomorphisms comes from representation theory.

Definition: A representation of a group G on a vector space V is a group

homomorphism ρ: G → GL(V) where GL(V) is the general linear group

of V (the group of invertible linear transformations on V) These

207
MATS Centre for Distance and Online Education, MATS University

Notes representations allow us to study the abstract algebraic properties of

groups in the more concrete setting of linear algebra, thereby

connecting different branches of mathematics.

5.3.3 Homomorphism Theorems and Structural Analysis

The homomorphism theorems are one of the foundational theorems

giving results on the relationship between homeomorphisms and

quotient structures. In addition to the previous isomorphism theorem,

the Second Isomorphism Theorem tells us if H is a subgroup of G and

N is a normal subgroup of G, then (H∩N) is normal in H and H/(H∩N)

≅ HN/N, and the Third Isomorphism Theorem states that if N and K

are normal subgroups of G with N ⊆ K, then (G/N)/(K/N) ≅ G/K.

These also yield strong structural analysis tools. These provide

mathematicians with tools to break down complex constructions into

simpler pieces, detect similarities across various algebraic systems,

and draw connections between mathematically different disciplines.

For example, the correspondence theorem says that for any subjective

homomorphism φ: G → H with kernel K, there is a bijection between

the subgroups of H and the subgroups of G that contain K. Another

key concept related to homeomorphisms is that of exactness. A

sequence of homeomorphisms... → Ai-1 → Ai → Ai+1 →... is exact at

Ai if we have image(incoming) = kernel(outgoing). Particularly useful

in studying extensions of various types of structures, short exact

sequences of the form 0 → A → B → C → 0 (in which the maps, on

either end, are the trivial homeomorphisms) appear everywhere in

algebra, topology and homological algebra.

5.4.4 Training Data and Categorical Perspectives

Homeomorphisms are the morphisms in the category of algebraic

structures from a categorical standpoint. This perspective generates

compelling generalizations and unifying principles. Natural

transformations (functor morphisms) can be seen as "homeomorphisms

between homeomorphisms" which provide a higher level of

abstraction that compared deeper patterns in the same things

mathematical structure. Many important constructions are described

by universal properties stated in terms of homeomorphisms. To

illustrate, the tensor product of modules has a universal property with

respect to bilinear maps, and free objects are defined via universal

properties with respect to homeomorphisms. Major classes these

constructions belong to have universal characterizations; However

208
MATS Centre for Distance and Online Education, MATS University

Notes current approaches to a homotopy theory of ‘types’ proceed via a spiral

of theory development within (and often harmonious, in various ways)

with higher category theory and the emergence of homotopy type

theory. Homotopy equivalence, for example, is a higher-dimensional

analogue of a homeomorphism; actually, is a type of map on

topological spaces (dry math in topological spaces) That preserves the

structure better, here we have something that feels bigger, because we

have this quasi-isomorphism, equivalences of categories. Even as the

structures studied increase in complexity, we see that the central ideas

of structure preservation remain a central feature of mathematics.

Homeomorphisms and isomorphism’s are the foundations of abstract

algebra. Homomorphism showing that one structure can be mapped to

another while preserving operations, is helpful to get an idea when one

structure is same another structure. These ideas have very wide

applicability, not just in abstract algebra but across mathematics in

topology, analysis, geometry and even theoretical computer science.

Research in these specified structure-preserving maps allows

mathematicians to generalize and interpret the similar fundamentals of

different topics, charting commonalities between structures, and using

properties (rather than visual representations) to organize classes of

objects. Homeomorphisms and isomorphism’s, my two favorite maps,

are merely reflections of the inherent structure found in the underlying

mathematics, and to some extent serve as a bridge between abstract and

practical mathematics, and they merely serve to remind us that we are

all learning mathematics from day to day, year to year as whatever lies

beneath all of it keeps evolving. These mappings bridge the intuitive

gap between a product and a series, allowing them to all live within the

same universe while also showing the harmony underlying seemingly

disparate mathematical constructs as they map between domains.

Auto orphisms in Mathematics

An auto orphism is a map from a mathematical object to itself that

preserves the object structure. In a more precise sense, an auto orphism

is an isomorphism of a mathematical object with itself. The word comes

from Greek roots: “auto” meaning “self” and “morphism” meaning

“shape” or “form.” In short, an auto orphism is a transformation of an

object that preserves its essential form. Auto orphisms are important in

many areas of mathematics as they help to elucidate symmetry,

invariance, and the properties of mathematical structures themselves.

209
MATS Centre for Distance and Online Education, MATS University

Notes In the mathematical field of group theory, one defines an auto orphism

of a group by means of the set-theoretic relation of a bijective function

φ: G → G that preserves the group operation. That is, for every a, b ∈

G we have φ(a • b) = φ(a) • φ(b). But the automorphisms of a group

also form a group themselves, commonly denoted Aut(G), known as

the auto orphism group. One of the most basic ideas of auto orphisms

in group theory is that of inner auto orphisms. The auto orphism (inner)

defined by conjugation, φₙ(x) = g⁻¹xg is written in the following way,

where g is fixed in G: the (inner) auto orphisms φ of a group G form a

normal subgroup of Aut(G), and the quotient group Aut(G)/Inn(G) is

called the outer auto orphism group. Auto orphism groups are a rich

avenue of investigation with deep implications for the structure and

symmetries of groups. In linear algebra and vector spaces, an auto

orphism is a linear transformation (if V is a vector space) or an

isomorphism (if V is a group), of a space V and, hence, gives an

isomorphism of V to itself and a homomorphism from V to itself.

Theorem: For a finite-dimensional vector space V over a field F, the

auto orphism group of V is isomorphic to the general linear group

GL(n,F) of n-by-n invertible matrices over F, where n is the dimension

of the vector space V. This includes important examples with rotations,

reflections and other linear transformations that maintain the structure

of vector spaces. If we have additional structures imposed on the vector

spaces, such as inner products or norms, we often find ourselves

considering auto orphisms preserving these additional structures,

resulting in important groups like the orthogonal group O(n) or the

Moduleary group U(n). Field auto orphisms are especially important in

algebraic geometry and number theory. A field auto orphism is a

bijection ϕ: F → F such that for every a, b ∈ F, ϕ(a + b) = ϕ(a) + ϕ(b)

and ϕ(ab) = ϕ(a)ϕ(b). As an example, the mapping taking z to its

complex conjugate z̄ is an auto orphism of the field of complex

numbers. The auto orphism group of a field extension is central in

Galois theory. The Galois group Gal(L/K) is defined to be the group of

auto orphisms of the field L that fix all elements of K if L/K is a field

extension, and the fundamental theorem of Galois theory relates

subgroups of Gal(L/K) to intermediate fields between L and K,

establishing deep connections between group theory and field theory.

Auto orphisms arise in topology and geometry as homeomorphisms

and diffeomorphisms of spaces onto themselves. These are continuous

210
MATS Centre for Distance and Online Education, MATS University

Notes maps (for homeomorphisms) or smooth maps (for diffeomorphisms)

whose inverses are also continuous or smooth, respectively. In a more

general context, category theory effectively extends the auto orphism

concept to any category: An auto orphism of an object A is an

isomorphism of A to itself. This gives us an abstract viewpoint from

which we can find similar patterns amongst diverse mathematical

structures. For example, an auto orphism in the category of graphs is

the graph isomorphism from a graph to itself, i.e., a relabeling of the

vertices that preserves the edge structure. Auto orphisms and their fixed

points are usually very informative about the structure one is

considering. For instance, in group theory, the fix point set of an auto

orphism is a group. In algebraic topology the Lefschetz fixed-point

theorem relates the number of fixed points of a continuous map on a

compact topological space to the trace of the induced map on the

homology groups of the space. Similarly, in arithmetic geometry, the

Grothendieck-Lefschetz fixed point formula counts fixed points of

Fresenius auto orphisms in terms of co homological data. The

connection between such fixed points and algebraic invariants

illustrates how fundamental auto orphisms can relate disparate areas of

mathematics. Auto orphism theory, having broad applications in

multiple fields such as cryptography (e.g. auto orphisms of finite fields

being used in certain encryption schemes), coding theory (in which

auto orphisms of codes assist in classification and error correction), and

physics (where auto orphisms relate to symmetries of physical

systems), is both versatile and complex. One of the cornerstones of

modern theoretical physics is Noether theorem, which states that there

exists a correspondence between symmetries (or auto orphisms) and

conservation laws in a physical system. In the specific case of

crystallography, we can view space groups (which provide the

classification of crystal structures) as groups of auto orphisms of 3-

dimensional Euclidean space that preserve the crystal lattice. Likewise,

in quantum mechanics it is the auto orphisms of the Hilbert spaces that

provide the foundation for the representation theory that describes

such quantum systems. This extends the abstract description of

structure-preserving self-maps to a wide range of applications across

many branches of mathematics and its applications.

211
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5.5: Cosets, Lagrange’s Theorem, Normal

Subgroup, and Quotient Group

5.5.1 Cosets, Lagrange’s Theorem, Normal Subgroup, and

Quotient Group

Cosets and Lagrange's Theorem

before we could understand Lagrange's Theorem, first we need to

understand cosets. Now we can consider the various such groups —

these are the basic building blocks of groups in the same way that

primes are the building blocks of the integers — and it turns out that if

a group is "big enough" it can be partitioned into pieces of equal size,

leading to one of the essential results in abstract algebra.

Fig: 5.5.1 Cosets and Lagrange's Theorem

Cosets: Definition and Properties

Let G be a group and H a subgroup of G. For any g ∈ G, we define the

left coset of H with respect to g to be the set gH = {gh : h ∈ H}. The

right coset is defined analogously to be Hg = {hg : h ∈ H}. There are

profound implications in these seemingly simple constructions. So,

every coset has exactly |H| elements, where |H| is the order (i.e. the

number of elements) of the subgroup H. Moreover, two cosets are

either equal or disjoint, i.e. they have no elements in common. This

property shows that all cosets can be grouped together, such that they

form a partition of the group G — non-overlapping smaller groups

whose union is G. Consider the group Z₆ (integers with addition

212
MATS Centre for Distance and Online Education, MATS University

Notes modulo 6) and the subgroup H = {0, 3}. The cosets of H form 0+H =

{0, 3}, 1+H = {1, 4}, and 2+H = {2, 5}. Observe that these three cosets

partition Z₆ into blocks of equal size. Where, the number of different

cosets of H in G is called the index of H in G and denoted [G:H] In our

example, [Z₆:H] = 3. That relationship of a group, subgroup and the

index is what Lagrange's Theorem is all about

5.5.2 Lagrange's Theorem: Statement and Proof

The Theorem: If G is a finite group and H ⊳ G, then |G| = |H| × [G:H].

This follows immediately from the properties of cosets. This means

that G is equal to the number of cosets coset multiplied by the number

of elements in any coset, which is the order of H. That is, |G| = [G:H]

× |H|; hence |H| divides |G|. This beautiful theorem, which Joseph-Louis

Lagrange proved in 1770, has powerful implications in group theory.

This has the immediate consequence that the order of any element in a

finite group divides the order of the group. For if g ∈ G, then the cyclic

group ⟨g⟩ generated by g has order equal to the order of g, and thus by

Lagrange, this order divides |G|. This means that the possible sizes of

the subgroups is limited, which dramatically reduces the search space

when interpreting the group structures.

Coset Representatives and Normal Subgroups

If H is a subgroup of G we can choose one representative from each

coset, which gives a complete system of coset representatives; the

operation inherits directly from G, so we can fuill the full operation

table of G by simply arranging H on either side. There is a quotient set

G/H, consisting of a collection of representative elements of G under

the operation induced by the cosets of H, which as an resulting set of

representatives can become a group in itself: the quotient group,

potentially meaningful in its own regard as well if the subgroup H is

normal (gHg-1 = H for ∀g in G). To obtain a conclusion, we will use

the property of group operation: the product of two cosets is indecent-

dent of representatives which provides a motivation for a limit where

"limit" must be interpreted as a product of cosets in a certain set. This

correlate pseudo-category is the one you could use to define normal

subgroups and homomorphism images from the point of view of

categorical structures. Namely, a homomorphism f: G → K induces a

normal subgroup, called kernel of f, and the quotient group G/ker(f) is

isomorphic to (the image of) f. This result, called First Isomorphism

Theorem, is a classical result showing that there is an amazing

213
MATS Centre for Distance and Online Education, MATS University

Notes correspondence between - groups with their subgroup structure and its

homomorphism images. The orbit-stabilizer theorem is closely related

to Lagrange's Theorem and generalizes these concepts in the case of

group actions and shows that the size of an orbit is equal to the index

of the stabilizer subgroup.

5.5.3 Applications in Number Theory and Cryptography

We know that certain results from abstract group theory have

important consequences in number theory, and that is the context of the

implications of Lagrange's Theorem. The statement of Fermat's Little

Theorem, stating that if p is prime and p does not divide a, we have aᵖ⁻¹

≡ 1 (mod p), is an immediate consequence of Lagrange's Theorem

applied to the multiplicative group of integers mod p, and Euler's

Theorem generalizes this result to arbitrary modulus n, since aᵠ⁽ⁿ⁾ ≡ 1

(mod n) for any a co prime to n where φ(n) is Euler's totient function

counting all integers less than n that are co prime to n. These results of

number theory ultimately provide the mathematics behind modern

cryptographic systems like RSA encryption. RSA’s security is based

on the difficulty of computing modular multiplicative inverses without

knowing the moduli’s factorization into primes (a problem seen directly

through cyclic groups structure and Lagrange’s Theorem}) The discrete

logarithm problem, which is used in other types of cryptographic

protocols such as Diffie-Hellman key exchange and ElGamal

encryption, also relies on the properties of cyclic groups and their

orders as bounded by Lagrange's Theorem.

5.5.4 Limitations and Extensions of Lagrange's Theorem

Lagrange's Theorem gives a necessary condition for the presence of a

subgroup of a specific order — it must divide the group order; however,

this is not sufficient. The converse of Lagrange's Theorem is not true

in general. Not every divisor of the order of the group is the order of

some subgroup. For example, the alternating group A₄ of order 12 has

no subgroup of order 6, even though 6 divide 12. So this

counterexample was able to show the subtlety regarding group structure

that goes beyond what is forced by Lagrange. Nonetheless, for specific

kinds of groups, the converse is true. Cauchy’s Theorem states that if

p is a prime that divides the order of a finite group G, then G has an

element (and therefore a cyclic group) of order p. For abelian groups,

the converse of Lagrange’s Theorem holds trivially: any divisor of the

order of the group corresponds to a subgroup of that order. The Sylow's

214
MATS Centre for Distance and Online Education, MATS University

Notes Theorems extend the knowledge we have on the subgroup structure and

they tell us not only about the existence of subgroups of these type that

divide the order of G but also about how many conjugacy classes they

fall in. Such extensions of Lagrange's Theorem provide a very powerful

toolkit for analysis of finite groups, giving us a classification of groups

of small order, and offering insight into how to understand groups of

more complicated form.

5.5.5 The Broader Context in Abstract Algebra

Cosets and Lagrange’s Theorem are a prime example of how group

theory intertwines algebraic structures and counting principles, which

is a hallmark of much of the theory. This input also extends into other

algebraic structures. This is similar to the corresponding one to normal

subgroups and quotient groups in group theory; in ring theory, we say

ideals are the analogs of normal subgroups in (non-commuting)

groups; in the same way, quotient rings have analogous structural

properties. The Chinese Remainder Theorem for rings is an analogue

of the decomposition of finite abelian groups into direct products of

cyclic groups. The degree of a field extension (the dimension of the

extension field as a vector space over the base field) satisfies a

multiplicative property (like the index of a subgroup) in field theory.

Almost as if the process of quotient structures, cosmological principles

and decomposition theorems repeats in various forms for the different

systems of algebra. These basic ideas about dividing the entire

structure well-behaved pieces into CRUD are behind some of the most

significant discoveries in contemporary algebra, starting from the

classification of finite simple groups to the structure theorem for

finitely generated modules over principal ideal domains. As elegant as

Lagrange's Theorem itself is—that the order of a subgroup divides the

order of the group—the depth of its implications are felt throughout

mathematics, from the theoretical framework of abstract algebra all the

way to the practical applications in cryptology and coding theory that

allow our digital communications today to be secure.

5.5.6 Normal Subgroups and Quotient Groups

Normal subgroups and quotient groups are two of the critical

constructions in group theory that enable us to analyze the structure of

groups on a more granular level. What is the normal subgroup and

quotient group? These concepts are fundamental to much of abstract

215
MATS Centre for Distance and Online Education, MATS University

Notes algebra and have important applications throughout mathematics, from

Galois theory to the classification of finite simple groups.

Normal Subgroups

Let G be a group and N be a subgroup of G, we say N is a normal

subgroup of G, denoted N ⊴ G, if for each g ∈ G and each n ∈ N we

have gng⁻¹ ∈ N. Equivalently, N is normal in G if and only if gN = Ng

for all g ∈ G where gN and Ng are the left coset and right coset of N

in G. It would help break down this idea if we had a few examples. In

Z (the integers under addition), every subgroup is normal. More

precisely, the subgroup nZ = {nx | x ∈ Z} is normal in Z for any integer

n. A more interesting case is the symmetric group S₃, which includes

all permutations of three objects. The subgroup A₃ of even

permutations is normal in S₃. But the subgroup H = {e, (1 2)} is not

normal in S₃, since (2 3)(1 2)(2 3)⁻¹ = (1 3) ∉ H. There are several

equivalent ways to characterize normal subgroups. A subgroup N≤G

is normal if and only if:

1. gNg⁻¹ = N ∀g∈G (N invariant under conjugation)

2. gNg = Ng for all g ∈ G (coinciding left and right cosets)

3. N can be the kernel of some homomorphism from G to another

group

4. N is the union of some G-conjugacy classes of G

Properties of Normal Subgroups

There are some key properties of normal subgroups that make them

special with respect to regular subgroups. First, the intersection of two

normal subgroups is also normal: if N₁ and N₂ are normal subgroups

of G, then so is the intersection N₁ ∩ N₂, and this extends to arbitrary

combinations of normal subgroups. In addition, if N₁ and N₂ are normal

subgroups of G, then their product N₁N₂ = {n₁n₂ | n₁ ∈ N₁, n₂ ∈ N₂} is

also a normal subgroup of G; the same is not true for arbitrary

subgroups. A further property worth noting is that whenever N is a

normal subgroup of G and H is an arbitrary subgroup of G, then N ∩ H

is a normal subgroup of H, and that whenever f: G → H is a group

homomorphism and N is a normal subgroup of G, then f(N) is a normal

subgroup of f(G). Normal subgroups are an important concept when

considering traits of group homeomorphisms. Each homomorphism φ:

G → H has a kernel ker(φ) of the elements that maps to the identity

216
MATS Centre for Distance and Online Education, MATS University

Notes element, which is again a normal subgroup of G; conversely every

normal subgroup is the kernel of some homomorphism.

Quotient Groups

Let N be a normal subgroup of a group G, we can form a new group,

called the quotient group (or factor group), written: G/N = {gN | for g

a member of G} So G/N is the set of cosets of N in G. The group

operation on G/N is defined by (g₁N)(g₂N) = (g₁g₂)N, and this is well-

defined if and only if N is normal in G, as the operation would depend

on the choice of a representative from the cosets otherwise. For

instance, let’s take Z/nZ, the integers modulo n. In this case, Z is a

group of integers under addition, nZ = {nk | k ∈ Z} is the normal

subgroup of multiples of n, and the quotient group Z/nZ is the cosets 0

+ nZ, 1 + nZ,..., (n-1) + nZ, which we typically denote as {0, 1, 2,..., n-

1} with addition modulo n. Another example is the quotient group

GL(n,R)/SL(n,R), specifically when GL(n,R) is the general linear

group of invertible n×n real matrices, and SL(n,R) is the special linear

group of matrices with determinant 1. The determinant of these

generators are the cosets of the R{0} under multiplication.

217
MATS Centre for Distance and Online Education, MATS University

Notes The Isomorphism Theorems

The isomorphism theorems, basic and beautiful results in group theory,

neutrally express the relationship between normal subgroups and

quotient groups. It is content-wise similar to the first isomorphism

theorem for groups, saying that a homomorphisms φ: G → H induces

an isomorphism between G/ker(φ) and im(φ). The essence of this

theorem is that the quotient group G/ker(φ) records precisely what the

homomorphism φ "remembers" about the structure of G. The Second

Isomorphism theorem tells us that N, being a normal subgroup of G,

implies (H ∩ N) ⊳ H and H/(H ∩ N) ≅ HN/N. Another important form

of isomorphism is expressed in the Third Isomorphism Theorem: If N

and K are normal subgroups of G and N ⊆ K, then K/N is a normal

subgroup of G/N, and (G/N)/(K/N) is isomorphic to G/K. This theorem

is useful as it allows us to "divide" these quotient groups, thus

simplifying more complex quotient groups.

Fig: 5.5.2 The Isomorphism Theorems

5.5.7 Applications and Examples

Normal subgroups and quotient groups are widely used throughout

mathematics. In Galois theory, one studies the structure of field

extensions is via the normal subgroups of the Galois Group. T.H.

generating a vertex, you can imagine this as the fundamental group of

218
MATS Centre for Distance and Online Education, MATS University

Notes a topological space, and covering spaces, normal subgroups and

quotient groups that describe the covering of these spaces.

Here are some specific examples of that:

1. The center Z(G) of a group G, the set of all elements that

commute with all elements of G is always normal. How far is G

from being abelian, and how do we measure it? The “correct”

thing to do here is to consider the quotient group G/Z(G) where

as we already defined Z(G) is the center of G.

2. For SO(3) group: the subgroup {I, -I} (I:identity) is normal In

particular, the group is a double cover if taken modulo the

group that is the center, or the sign of it: so the quotient group

is SO(3)/{I, -I} isomorphic to the projective special orthogonal

group PSO(3), having applications in projective geometry and

quantum mechanics.

3. In number theory, for any positive integer n, the group (Z/nZ)*

of Modules modulo n has normal subgroups corresponding to

important number-theoretic properties. For instance, we have a

quadratic residue normal subgroup when n=p is prime, and the

corresponding factor group gives rise to the law of quadratic

reciprocity (aka for prime p).

5.5.8 Significance in the Classification of Groups

Normal subgroups and quotient groups have important roles in the

classification of groups. In group theory, a simple group is a nontrivial

group whose only normal subgroups are the trivial subgroups. The

classification of finite simple groups, finished in the late twentieth

century, was one of the great achievements in mathematics. A

composition series for a group G is a finite sequence of groups G = G₀

⊃ G₁ ⊃⊢⊃ Gₙ = {e} such that Gᵢ₊₁ is a normal subgroup of Gᵢ, such

that for all ᵢ the quotients Gᵢ/Gᵢ₊₁ are simple groups. The Jordan–Hölder

theorem states that all composition series of a group have the same

length and the same composition factors (up to isomorphism and

ordering). Examining normal subgroups and quotient groups are also

important parts of understanding the structure of a group. For example,

a p-group is guaranteed to have a non-trivial center (which is a normal

subgroup). However, this fact gives rise to an inductive way to think

about p-groups using their quotients. In the same manner solvable

groups are defined as having a series of normal subgroups which have

219
MATS Centre for Distance and Online Education, MATS University

Notes abelian quotient groups. For nilpotent one should take even stronger

condition on its upper central series which is defined through normal

subgroups. A reminder that groups are a major object of study in

abstract algebra, and normal subgroups and quotient groups are

important concepts specifically in group theory. Abstract algebra

provides tools such as groups and fields that reveal the basic structure

of numbers, proving that groups can decompose complicated clusters

into simpler parts, discover hidden symmetries, and forge links among

diverse sectors of mathematics. They are not only of fundamental

importance in pure abstract algebra, but they also play a role in

applications including physics, cryptography, etc..

Solved Examples in Abstract Algebra

Algebraic Structure

Example: Prove that the set of rational numbers ℚ with operations of

addition and multiplication forms an algebraic structure.

Solution: An algebraic structure consists of a set and one or more

operations on that set. The set ℚ with operations + and × forms an

algebraic structure because:

o Addition (+) is a binary operation on ℚ (sum of two

rationals is rational)

o Multiplication (×) is a binary operation on ℚ (product of

two rationals is rational)

o Both operations have defined properties including

associativity and commutativity Therefore, (ℚ, +, ×) is

an algebraic structure.

Example: Determine if (ℤ, −) forms an algebraic structure, where − is

subtraction.

Solution: For an algebraic structure, the operations must be closed on

the set. For any integers a, b ∈ ℤ, a − b ∈ ℤ, so subtraction is closed on

integers. Therefore, (ℤ, −) is an algebraic structure, specifically a

magma.

Example: Show that the set of 2×2 matrices with real entries, denoted

M₂(ℝ), forms an algebraic structure under matrix addition and

multiplication.

Solution: For M₂(ℝ) to form an algebraic structure:

o Matrix addition: For any A, B ∈ M₂(ℝ), A + B ∈ M₂(ℝ)

(closed)

220
MATS Centre for Distance and Online Education, MATS University

Notes o Matrix multiplication: For any A, B ∈M₂(ℝ), A × B ∈

M₂(ℝ) (closed) Both operations produce 2×2 matrices

with real entries, so M₂(ℝ) with these operations forms

an algebraic structure.

Example: Determine if (ℚ⁺, ÷) is an algebraic structure, where ℚ⁺ is

the set of positive rational numbers and ÷ is division.

Solution: For any a, b ∈ ℚ⁺ with b ≠ 0, a ÷ b = a/b ∈ ℚ⁺ (since division

of positive rationals yields a positive rational). Therefore, (ℚ⁺, ÷) is an

algebraic structure, specifically a magma.

Example: Show that (ℝ, √) is not an algebraic structure, where √

represents the square root operation.

Solution: For an algebraic structure, the operation must be a binary

operation (take two elements and return one). Square root √ takes only

one input, making it a unary operation, not a binary operation.

Therefore, (ℝ, √) is not an algebraic structure.

Example: Prove that (P(X), ∪, ∩) forms an algebraic structure, where

P(X) is the power set of a set X.

Solution: For P(X) with union and intersection:

o For any A, B ∈ P(X), A ∪ B ∈ P(X) (closed under union)

o For any A, B ∈ P(X), A ∩ B ∈ P(X) (closed under

intersection) Since both operations are closed on P(X),

(P(X), ∪, ∩) is an algebraic structure, specifically a

lattice.

Example: Determine if (ℤ, max) forms an algebraic structure, where

max returns the maximum of two integers.

Solution: For any a, b ∈ ℤ, max(a,b) ∈ ℤ since the maximum of two

integers is an integer. Therefore, (ℤ, max) is an algebraic structure,

specifically a semilattice.

Example: Show that the set of functions from ℝ to ℝ forms an algebraic

structure under function composition.

Solution: Let F be the set of all functions from ℝ to ℝ. For any f, g ∈

F, the composition f∘g is also a function from ℝ to ℝ, so f∘g ∈ F.

Therefore, (F, ∘) is an algebraic structure.

Example: Determine if ({0, 1}, ∨, ∧) forms an algebraic structure,

where ∨ is logical OR and ∧ is logical AND.

Solution: For elements 0 and 1:

o For any a, b ∈ {0, 1}, a ∨ b ∈ {0, 1} (OR operation is

closed)

221
MATS Centre for Distance and Online Education, MATS University

Notes o For any a, b ∈ {0, 1}, a ∧ b ∈ {0, 1} (AND operation is

closed) Therefore, ({0, 1}, ∨, ∧) forms an algebraic

structure, specifically a Boolean algebra.

Example: Show that (ℤ^+, lcm, gcd) forms an algebraic structure,

where ℤ^+ is the set of positive integers, lcm is least common multiple,

and gcd is greatest common divisor.

Solution: For any a, b ∈ ℤ^+:

o lcm(a,b) ∈ℤ^+ (closed under lcm)

o gcd(a,b) ∈ℤ^+ (closed under gcd) Therefore, (ℤ^+, lcm,

gcd) forms an algebraic structure, specifically a lattice.

Binary Operation

Example: Show that matrix multiplication is a binary operation on the

set of n×n matrices.

Solution: A binary operation maps a pair of elements from a set to an

element in that same set. For any two n×n matrices A and B, their

product AB is also an n×n matrix. Therefore, matrix multiplication is a

binary operation on the set of n×n matrices.

Example: Determine if division is a binary operation on the set of real

numbers ℝ.

Solution: For division to be a binary operation on ℝ, a ÷ b must be in

ℝ for all a, b ∈ ℝ. However, if b = 0, then a ÷ 0 is undefined. Also, the

result is not always in ℝ. Therefore, division is not a binary operation

on ℝ.

Example: Define a binary operation ⊕ on ℤ by a ⊕ b = a + b + 1.

Verify that this is a binary operation.

Solution: For any a, b ∈ ℤ, a + b + 1 ∈ ℤ since the sum of integers and

adding 1 results in an integer. Therefore, ⊕ defined by a ⊕ b = a + b

+ 1 is a binary operation on ℤ.

Example: Let S = {0, 1}. Define the binary operation ⊗ on S by the

table:

⊗ | 0 1

0 | 0 0

1 | 0 1

Verify that this is a binary operation.

Solution: For a binary operation, we need to check that for every pair

a, b ∈ S, a ⊗ b ∈ S.

0 ⊗ 0 = 0 ∈ S

222
MATS Centre for Distance and Online Education, MATS University

Notes 0 ⊗ 1 = 0 ∈ S

1 ⊗ 0 = 0 ∈ S

1 ⊗ 1 = 1 ∈ S Since all results are in S, ⊗ is a binary operation on S.

Example: Show that the cross product is not a binary operation on ℝ².

Solution: For a binary operation, the result must be in the same set as

the operands. The cross product of two vectors in ℝ² produces a vector

in ℝ³ (or a scalar in the specific case of ℝ²). Since the result is not in ℝ²,

the cross product is not a binary operation on ℝ².

Example: Define a binary operation * on ℤ by a * b = 2a + 3b. Verify

this is a binary operation. Solution: For any a, b ∈ ℤ, 2a + 3b ∈ ℤ since

the sum of multiples of integers is an integer. Therefore, * defined by a

* b = 2a + 3b is a binary operation on ℤ.

Example: Determine if exponentiation is a binary operation on the set

of positive real numbers ℝ⁺.

Solution: For any a, b ∈ ℝ⁺, a^b ∈ ℝ⁺ since positive numbers raised to

any real power remain positive real numbers. Therefore, exponentiation

is a binary operation on ℝ⁺.

Example: Show that the operation a ◦ b = max(a, b) is a binary

operation on the set of real numbers ℝ.

Solution: For any a, b ∈ ℝ, max(a, b) ∈ ℝ since the maximum of two

real numbers is a real number. Therefore, ◦ defined by a ◦ b = max(a, b)

is a binary operation on ℝ.

Example: Define a binary operation ⊙ on the set of 2×2 matrices

M₂(ℝ) by A ⊙ B = A + B - AB. Show this is a binary operation.

Solution: For any A, B ∈M₂(ℝ), A + B - AB ∈ M₂(ℝ) since addition,

subtraction, and multiplication of 2×2 matrices result in 2×2 matrices.

Therefore, ⊙ defined by A ⊙ B = A + B - AB is a binary operation on

M₂(ℝ).

Example: Let G = {0, 1, 2}. Define operation ⊕ on G where a ⊕ b =

(a + b) mod 3. Show this is a binary operation.

Solution: For any a, b ∈ G:

o 0 ⊕ 0 = (0 + 0) mod 3 = 0 ∈ G

o 0 ⊕ 1 = (0 + 1) mod 3 = 1 ∈ G

o 0 ⊕ 2 = (0 + 2) mod 3 = 2 ∈ G

o 1 ⊕ 0 = (1 + 0) mod 3 = 1 ∈ G

o 1 ⊕ 1 = (1 + 1) mod 3 = 2 ∈ G

o 1 ⊕ 2 = (1 + 2) mod 3 = 0 ∈ G

o 2 ⊕ 0 = (2 + 0) mod 3 = 2 ∈ G

223
MATS Centre for Distance and Online Education, MATS University

Notes o 2 ⊕ 1 = (2 + 1) mod 3 = 0 ∈ G

o 2 ⊕ 2 = (2 + 2) mod 3 = 1 ∈ G Since all results are in

G, ⊕ is a binary operation on G.

Properties

Example: Prove that matrix multiplication is not commutative on the

set of 2×2 matrices. Solution: For commutativity, we need AB = BA

for all matrices A and B. Let's take: A = [1 0; 0 0] and B = [0 1; 0 0]

AB = [0 1; 0 0] BA = [0 0; 0 0] Since AB ≠ BA, matrix multiplication

is not commutative on 2×2 matrices.

Example: Show that addition of real numbers is associative.

Solution: For associativity, we need (a + b) + c = a + (b + c) for all a,

b, c ∈ ℝ. For any real numbers a, b, c: (a + b) + c = a + b + c = a + (b +

c) Therefore, addition of real numbers is associative.

Example: Determine if subtraction is associative on the set of integers.

Solution: For associativity, (a - b) - c = a - (b - c) must hold for all a,

b, c ∈ ℤ. Let a = 5, b = 3, c = 1: (5 - 3) - 1 = 2 - 1 = 1 5 - (3 - 1) = 5 - 2

= 3 Since 1 ≠ 3, subtraction is not associative on ℤ.

Example: Prove that matrix addition is commutative.

Solution: For any matrices A and B of the same dimensions: A + B =

[aᵢⱼ + bᵢⱼ] = [bᵢⱼ + aᵢⱼ] = B + A Since A + B = B + A for all matrices A

and B, matrix addition is commutative.

Example: Show that the binary operation a * b = ab² on the set of real

numbers has no identity element.

Solution: For an identity element e, we need a * e = e * a = a for all a

∈ ℝ.

a * e = ae² = a ⟹ e² = 1 ⟹ e = ±1

e * a = ea² = e ⟹ a² = 1 for all a, which is impossible Therefore, the

operation * has no identity element.

Example: Prove that maximum operation max(a,b) is idempotent on

the set of real numbers.

Solution: An operation * is idempotent if a * a = a for all elements a.

For any a ∈ ℝ, max(a,a) = a. Therefore, the maximum operation is

idempotent.

Example: Show that the binary operation a ⊕ b = a + b - ab on [0,1]

has 0 as its identity element.

Solution: For identity element e, we need a ⊕ e = e ⊕ a = a for all a

∈ [0,1]. Let e = 0: a ⊕ 0 = a + 0 - a·0 = a 0 ⊕ a = 0 + a - 0·a = a

Therefore, 0 is the identity element.

224
MATS Centre for Distance and Online Education, MATS University

Notes Example: Prove that the operation a * b = ab/2 on positive reals ℝ⁺ is

not associative.

Solution: For associativity, (a * b) * c = a * (b * c) must hold. Let a =

2, b = 4, c = 8: (2 * 4) * 8 = (2·4/2) * 8 = 4 * 8 = 4·8/2 = 16 2 * (4 * 8)

= 2 * (4·8/2) = 2 * 16 = 2·16/2 = 16 In this case, the results are equal.

But we need to find a counterexample: Let a = 2, b = 3, c = 4: (2 * 3) *

4 = (2·3/2) * 4 = 3 * 4 = 3·4/2 = 6 2 * (3 * 4) = 2 * (3·4/2) = 2 * 6 =

2·6/2 = 6 This doesn't prove non-associativity. Let's try different

values: Let a = 2, b = 2, c = 2: (2 * 2) * 2 = (2·2/2) * 2 = 2 * 2 = 2·2/2

= 2 2 * (2 * 2) = 2 * (2·2/2) = 2 * 2 = 2·2/2 = 2 Actually, this operation

is associative for the values we've tried. To properly disprove

associativity, we need: Let a = 4, b = 6, c = 8: (4 * 6) * 8 = (4·6/2) * 8

= 12 * 8 = 12·8/2 = 48 4 * (6 * 8) = 4 * (6·8/2) = 4 * 24 = 4·24/2 = 48

The operation appears to be associative, contrary to the initial assertion.

Example: Show that the operation a ○ b = |a - b| on ℝ is commutative.

Solution: For commutativity, a ○ b = b ○ a must hold for all a, b ∈ ℝ.

a ○ b = |a - b| = |-(b - a)| = |b - a| = b ○ a Therefore, the operation is

commutative.

Example: Prove that the operation a * b = lcm(a,b) on positive integers

is commutative and associative.

Solution: Commutativity: lcm(a,b) = lcm(b,a) for all a, b ∈ ℤ⁺, by

definition of lcm.

Associativity: We need to show lcm(lcm(a,b),c) = lcm(a,lcm(b,c)) for

all a, b, c ∈ ℤ⁺.

Let's denote lcm(a,b) as the least positive integer divisible by both a

and b.

lcm(lcm(a,b),c) is the least positive integer divisible by both lcm(a,b)

and c. This means it's divisible by a, b, and c, and is the smallest such

number.

Similarly, lcm(a,lcm(b,c)) is the smallest positive integer divisible by

a, b, and c.

Since they're both the smallest positive integer divisible by a, b, and c,

they must be equal.

Therefore, the lcm operation is both commutative and associative.

Semi Group

Example: Prove that (ℕ, +) is a semigroup, where ℕ is the set of natural

numbers.

Solution: For (ℕ, +) to be a semigroup:

225
MATS Centre for Distance and Online Education, MATS University

Notes 1. Closure: For any a, b ∈ℕ, a + b ∈ℕ (sum of natural numbers is

a natural number)

2. Associativity: For any a, b, c ∈ℕ, (a + b) + c = a + (b + c) Both

properties hold, so (ℕ, +) is a semigroup.

Example: Show that the set of 2×2 matrices with real entries forms a

semigroup under matrix multiplication.

Solution: For the set M₂(ℝ) with operation ×:

3. Closure: For any A, B ∈ M₂(ℝ), A × B ∈ M₂(ℝ)

4. Associativity: For any A, B, C ∈M₂(ℝ), (A × B) × C = A × (B

× C) Both properties hold, so (M₂(ℝ), ×) is a semigroup.

Example: Determine if (ℤ, ×) is a semigroup, where ℤ is the set of

integers.

Solution: For (ℤ, ×) to be a semigroup:

5. Closure: For any a, b ∈ℤ, a × b ∈ℤ (product of integers is an

integer)

6. Associativity: For any a, b, c ∈ℤ, (a × b) × c = a × (b × c) Both

properties hold, so (ℤ, ×) is a semigroup.

Example: Show that the set of all strings over an alphabet Σ forms a

semigroup under string concatenation.

Solution: Let S be the set of all strings over Σ and · be concatenation.

7. Closure: For any strings s, t ∈ S, s·t ∈ S (concatenation of

strings is a string)

8. Associativity: For any strings r, s, t ∈ S, (r·s)·t = r·(s·t) Both

properties hold, so (S, ·) is a semigroup.

Example: Prove that ({0, 1}, ∧) is a semigroup, where ∧ is logical

AND.

Solution: For ({0, 1}, ∧) to be a semigroup:

9. Closure: For any a, b ∈ {0, 1}, a ∧ b ∈ {0, 1} (result of AND

is either 0 or 1)

10. Associativity: For any a, b, c ∈ {0, 1}, (a ∧ b) ∧ c = a ∧ (b ∧ c)

Both properties hold, so ({0, 1}, ∧) is a semigroup.

Example: Show that (P(X), ∪) is a semigroup, where P(X) is the power

set of a set X and ∪ is union.

Solution: For (P(X), ∪) to be a semigroup:

11. Closure: For any A, B ∈ P(X), A ∪ B ∈ P(X) (union of subsets

is a subset)

12. Associativity: For any A, B, C ∈ P(X), (A ∪ B) ∪ C = A ∪ (B

∪ C) Both properties hold, so (P(X), ∪) is a semigroup.

226
MATS Centre for Distance and Online Education, MATS University

Notes Example: Determine if (ℝ⁺, min) is a semigroup, where ℝ⁺ is the set of

positive reals and min returns the minimum value.

2. Solution: For (ℝ⁺, min) to be a semigroup:

1. Closure: For any a, b ∈ℝ⁺, min(a, b) ∈ℝ⁺ (minimum of positive

reals is positive)

2. Associativity: For any a, b, c ∈ℝ⁺, min(min(a, b), c) = min(a,

min(b, c)) Both properties hold, so (ℝ⁺, min) is a semigroup.

Example: Show that the set of all n×n matrices with entry 1 at position

(1,1) and 0 elsewhere forms a semigroup under matrix addition.

Solution: Let S be the specified set of matrices. For matrix addition:

3. Closure: For matrices A, B ∈ S, A + B has entry 2 at (1,1) and

0 elsewhere, which is not in S. Therefore, (S, +) is not a

semigroup due to lack of closure.

Example: Prove that (ℤ⁺, gcd) is a semigroup, where ℤ⁺ is the set of

positive integers and gcd is greatest common divisor.

Solution: For (ℤ⁺, gcd) to be a semigroup:

4. Closure: For any a, b ∈ℤ⁺, gcd(a, b) ∈ℤ⁺ (gcd of positive

integers is positive)

5. Associativity: For any a, b, c ∈ℤ⁺, gcd(gcd(a, b), c) = gcd(a,

gcd(b, c)) Both properties hold, so (ℤ⁺, gcd) is a semigroup.

Example: Show that (ℤ, ⊕) is a semigroup, where a ⊕ b = a² + b².

Solution: For (ℤ, ⊕) to be a semigroup:

6. Closure: For any a, b ∈ℤ, a ⊕ b = a² + b²∈ℤ (sum of squares

of integers is an integer)

7. Associativity: For any a, b, c ∈ℤ: (a ⊕ b) ⊕ c = (a² + b²) ⊕ c

= (a² + b²)² + c² a ⊕ (b ⊕ c) = a ⊕ (b² + c²) = a² + (b² +

c²)²Since (a² + b²)² + c²≠ a² + (b² + c²)² in general, the operation

is not associative. Therefore, (ℤ, ⊕) is not a semigroup due to

lack of associativity.

Monoid

Example: Prove that (ℕ, ×, 1) is a monoid, where ℕ is the set of natural

numbers.

Solution: For (ℕ, ×, 1) to be a monoid:

1. (ℕ, ×) must be a semigroup:

▪ Closure: For any a, b ∈ℕ, a × b ∈ℕ

▪ Associativity: For any a, b, c ∈ℕ, (a × b) × c = a × (b ×

c)

227
MATS Centre for Distance and Online Education, MATS University

Notes 2. Identity element: For all a ∈ℕ, a × 1 = 1 × a = a All conditions are

satisfied, so (ℕ, ×, 1) is a monoid.

Example: Show that (ℤ, +, 0) is a monoid.

Solution: For (ℤ, +, 0) to be a monoid:

3. (ℤ, +) must be a semi group:

▪ Closure: For any a, b ∈ℤ, a + b ∈ℤ

▪ Associativity: For any a, b, c ∈ℤ, (a + b) + c = a + (b +

c)

4. Identity element: For all a ∈ℤ, a + 0 = 0 + a = a All conditions are

satisfied, so (ℤ, +, 0) is a monoid.

Example: Determine if (ℝ⁺, ÷, 1) is a monoid, where ℝ⁺ is the set of

positive reals and ÷ is division.

Solution: For (ℝ⁺, ÷, 1) to be a monoid:

5. (ℝ⁺, ÷) must be a semigroup:

▪ Closure: For any a, b ∈ℝ⁺, a ÷ b ∈ℝ⁺

▪ Associativity: For any a, b, c ∈ℝ⁺, (a ÷ b) ÷ c = a ÷ (b

÷ c) Let a = 8, b = 2, c = 2: (8 ÷ 2) ÷ 2 = 4 ÷ 2 = 2 8 ÷

(2 ÷ 2) = 8 ÷ 1 = 8 Since 2 ≠ 8, division is not

associative. Therefore, (ℝ⁺, ÷, 1) is not a monoid due to

lack of associativity.

Example: Show that (S, ∘, id) is a monoid, where S is the set of all

bijective functions from a set X to itself, ∘ is function composition, and

id is the identity function.

Solution: For (S, ∘, id) to be a monoid:

6. (S, ∘) must be a semigroup:

▪ Closure: For any f, g ∈ S, f ∘ g ∈ S (composition of

bijections is a bijection)

▪ Associativity: For any f, g, h ∈ S, (f ∘ g) ∘ h = f ∘ (g ∘

h)

7. Identity element: For all f ∈ S, f ∘ id = id ∘ f = f All conditions are

satisfied, so (S, ∘, id) is a monoid.

Example: Prove that ({0, 1}, ∨, 0) is a monoid, where ∨ is logical OR.

 Solution: For ({0, 1}, ∨, 0) to be a monoid:

8. ({0, 1}, ∨) must be a semi group:

▪ Closure: For any a, b ∈ {0, 1}, a ∨ b ∈ {0, 1}

▪ Associatively: For any a, b, c ∈ {0, 1}, (a ∨ b) ∨ c = a

∨ (b ∨ c)

228
MATS Centre for Distance and Online Education, MATS University

Notes 9. Identity element: For all a ∈ {0, 1}, a ∨ 0 = 0 ∨ a = a 0 ∨ 0 = 0 ✓ 1

∨ 0 = 1 ✓ 0 ∨ 1 = 1 ✓ All conditions are satisfied, so ({0, 1}, ∨, 0)

is a monoid.

Example: Show that (P(X), ∩, X) is a monoid, where P(X) is the power

set of a set X and ∩ is intersection.

 Solution: For (P(X), ∩, X) to be a monoid:

10. (P(X), ∩) must be a semi group:

▪ Closure: For any A, B ∈ P(X), A ∩ B ∈ P(X)

▪ Associatively: For any A, B, C ∈ P(X), (A ∩ B) ∩ C = A ∩ (B ∩ C)

11. Identity element: For all A ∈ P(X), A∩ X = X ∩ A = A Since for any set

A ⊆ X, A ∩ X = A, X serves as the identity. All conditions are satisfied,

so (P(X), ∩, X) is a monoid.

SUMMARY

This Module focuses on the algebraic structures known as semigroups

and monoids, which are foundational in abstract algebra and computer

science, especially in automata theory and formal languages. A

semigroup is defined as a non-empty set equipped with a binary

operation that is associative, meaning that the grouping of elements

does not affect the result of the operation. Semigroups generalize the

concept of arithmetic operations and are used to model systems where

elements combine consistently. The module then extends to monoids,

which are semigroups that also include an identity element—an

element that, when combined with any other element, leaves it

unchanged. These structures are explored through examples such as

sets of strings under concatenation, numbers under multiplication or

addition, and matrices under multiplication. The module covers key

concepts like homomorphisms (structure-preserving mappings

between algebraic structures), subsemigroups, submonoids, and finite

presentation of semigroups and monoids. Applications are discussed

in areas such as language recognition, state machines, and symbolic

computation, where these algebraic systems help define and analyze

formal systems. By the end of the module, students gain a clear

understanding of how semigroups and monoids provide an abstract

framework for combining elements and structuring computations.

229
MATS Centre for Distance and Online Education, MATS University

Notes Multiple-Choice Questions (MCQs)

1. Which of the following is a defining property of a

semigroup?

a) Associativity of the binary operation

b) Existence of an identity element

c) Existence of inverse for each element

d) Commutativity of the binary operation

Ans: a)

2. A monoid is a semigroup that also has:

a) An inverse for every element

b) A commutative binary operation

c) An identity element

d) A unique subgroup

Ans: c)

3. Which of the following statements is true for an Abelian

group?

a) Every element has an inverse, and the group operation is

commutative

b) The operation must be non-associative

c) There is no identity element

d) It must always be cyclic

Ans: a)

4. In group theory, a homomorphism is a function that:

a) Preserves the group operation between two groups

b) Is always bijective

c) Converts an Abelian group into a non-Abelian group

d) Always results in a normal subgroup

Ans: a)

5. Lagrange’s theorem states that:

a) The number of cosets of a subgroup divides the order of the

group

b) Every group is a cyclic group

c) Every subgroup must be normal

d) The number of generators in a cyclic group is always even

Ans: a)

230
MATS Centre for Distance and Online Education, MATS University

Notes Long Answer Questions

1. Define semigroup and monoid. How do they differ from

groups? Provide examples.

2. Explain Abelian groups and cyclic groups. How are cyclic

groups generated? Provide an example.

3. What are homomorphism, isomorphism, and automorphism in

group theory? Explain their significance with examples.

4. State and explain Lagrange’s theorem. How does it help in

understanding the structure of groups?

5. Discuss the concept of cosets and normal subgroups. How do

quotient groups arise from normal subgroups?

Short Answer Questions

1. What is a binary operation? Give an example.

2. Define a monoid. How is it different from a semigroup?

3. What is a generator of a cyclic group?

4. Give an example of a group that is not Abelian.

5. What is the significance of normal subgroups in group theory?

Applications and Extensions of Cosets and Lagrange’s Theorem

The study of cosets and Lagrange’s theorem not only provides insight

into the structure of groups but also lays the foundation for advanced

areas of algebra. Lagrange’s theorem ensures that the order of every

subgroup divides the order of the group, a fact which is useful in both

theoretical and applied contexts. This principle appears in topics

ranging from modular arithmetic to the design of secure cryptographic

systems.

Example

Consider the group of integers modulo 12 under addition, denoted by

Z₁₂. The subgroup H = {0, 4, 8} has order 3. By Lagrange’s theorem,

the order of this subgroup divides the order of Z₁₂, which is 12.

Therefore, there are 12 ÷ 3 = 4 distinct cosets of H. These are:

H = {0, 4, 8}

1 + H = {1, 5, 9}

2 + H = {2, 6, 10}

3 + H = {3, 7, 11}

231
MATS Centre for Distance and Online Education, MATS University

Notes This example shows that cosets partition a group into equal-sized

subsets, which is a key property in understanding group structures.

Normal Subgroups and Their Role

A subgroup N of a group G is called a normal subgroup if the left

cosets and right cosets coincide, that is, gN = Ng for all g in G. This

property allows the construction of quotient groups, which simplify

the study of larger groups by reducing them into smaller, more

manageable structures.

Normal subgroups are essential in algebra because they preserve

structure under quotienting, much like how congruence classes

preserve arithmetic under modular operations

Example

In the group of integers Z under addition, the subgroup 3Z = {..., -6, -

3, 0, 3, 6, ...} is normal. For any integer n, we have n + 3Z = 3Z + n.

This gives rise to the quotient group Z/3Z, which consists of the three

cosets:

{3Z}

{1 + 3Z}

{2 + 3Z}

This quotient group is isomorphic to the cyclic group of order 3.

Quotient Groups

If N is a normal subgroup of G, then the set of cosets G/N forms a

group under the operation

(gN)(hN) = (gh)N.

This new group is called a quotient group or factor group. Quotient

groups reduce complex structures into simpler forms while retaining

essential properties of the original group.

Example

Take G = Z₆ = {0, 1, 2, 3, 4, 5} under addition modulo 6. Let N = {0,

3}. The cosets are:

N = {0, 3}

1 + N = {1, 4}

2 + N = {2, 5}

Thus, the quotient group G/N has order 3 and is isomorphic to Z₃.

232
MATS Centre for Distance and Online Education, MATS University

Notes Applications in Computer Science and Cryptography

Concepts like cosets, normal subgroups, and quotient groups play a

vital role in applied mathematics and computer science.

Cryptography: Modern encryption techniques such as RSA and

elliptic curve cryptography rely heavily on group structures. Quotient

groups help simplify operations and ensure computational feasibility

in secure systems.

Coding Theory: Error detection and correction codes are often built

using cosets of subgroups, where different cosets represent different

error classes.

Automata Theory: Groups and subgroups model state transitions.

Normal subgroups in particular help in minimizing automata by

identifying equivalent states.

Network Security: Authentication and key exchange protocols

frequently use properties of subgroups and quotient groups to

guarantee security.

Worked Example: Quotient Groups in Cryptography

Let us consider the multiplicative group of integers modulo 13,

denoted by Z₁₃*. This group consists of {1, 2, 3, ..., 12}. Take the

subgroup H = {1, 12}. Since Z₁₃* is abelian, H is a normal subgroup.

The quotient group Z₁₃*/H partitions the group into cosets:

H = {1, 12}

2H = {2, 11}

3H = {3, 10}

4H = {4, 9}

5H = {5, 8}

6H = {6, 7}

Thus, the quotient group has order 6. Such structures are useful in key

generation and modular arithmetic operations in cryptography, where

quotient groups allow efficient computation without compromising

security.

233
MATS Centre for Distance and Online Education, MATS University

Notes

Importance of Quotient Groups in Modern Mathematics

Quotient groups are not limited to abstract algebra; they play

significant roles in diverse fields.

In Topology, quotient groups simplify the study of fundamental

groups and homotopy classes.

In Number Theory, class groups, which describe ideal factorizations

in number fields, are quotient groups.

In Physics, symmetry groups often involve quotient structures to

classify fundamental particles and physical systems.

234
MATS Centre for Distance and Online Education, MATS University

Notes GLOSSARY

• Abelian Group: A group in which the binary operation is

commutative.

• Adjacency Matrix: A square matrix used to represent a finite

graph, indicating edge connections.

• Algebraic Structure: A set with one or more binary operations

defined on it.

• Automorphism: An isomorphism from a mathematical structure

to itself.

• Binary Operation: An operation that combines two elements of

a set to produce another element of the same set.

• Bijective Function: A function that is both one-to-one and onto.

• Boolean Algebra: A mathematical structure dealing with binary

variables and logical operations.

• Boolean Function: A function whose inputs and outputs are

binary values (0 or 1).

• Cartesian Product: A set of ordered pairs formed from two sets.

• Circuit (Graph Theory): A closed walk in which no edges are

repeated.

• Closure Property: A property where an operation on any two

elements of a set produces an element of the same set.

• Complement (Set Theory): The set of all elements not in a given

set.

• Complemented Lattice: A bounded lattice in which every

element has a complement.

• Conjunctive Normal Form (CNF): A Boolean expression

written as an AND of ORs.

• Coset: A subset formed by multiplying all elements of a

subgroup by a fixed group element.

• De Morgan's Laws: Rules that relate conjunctions and

disjunctions of logical statements through negation.

• Directed Graph (Digraph): A graph where edges have a

direction from one vertex to another.

• Disjunctive Normal Form (DNF): A Boolean expression written

as an OR of ANDs.

235
MATS Centre for Distance and Online Education, MATS University

Notes • Distributive Lattice: A lattice where join and meet operations

distribute over each other.

• Edge (Graph): A connection between two vertices in a graph.

• Equivalence Relation: A relation that is reflexive, symmetric,

and transitive.

• Function: A mapping from one set (domain) to another

(codomain) where each input has exactly one output.

• Generator (Group Theory): An element that can generate all

elements of the group using the group operation.

• Graph: A collection of vertices connected by edges.

• Group: A set with a binary operation that is associative, has an

identity, and where every element has an inverse.

• Homomorphism: A structure-preserving map between two

algebraic structures.

• Hasse Diagram: A graphical representation of a finite poset.

• Identity Element: An element that leaves other elements

unchanged under a binary operation.

• Incidence Matrix: A matrix representing the relationship

between vertices and edges in a graph.

• Injective Function: A function where different inputs always

map to different outputs.

• Inverse Element: An element that reverses the effect of another

under a binary operation.

• Isomorphism: A bijective homomorphism indicating structural

similarity between two algebraic structures.

• Join (Lattice Theory): The least upper bound of two elements in

a lattice.

• Karnaugh Map (K-Map): A visual method for simplifying

Boolean expressions.

• Lagrange’s Theorem: States that the order of a subgroup divides

the order of the group.

• Lattice: A poset where every two elements have a join and meet.

• Logic Circuit: A circuit built using logic gates to represent

Boolean functions.

• Logical Equivalence: Two logical statements that have the same

truth values in all cases.

236
MATS Centre for Distance and Online Education, MATS University

Notes • Matrix Representation (Graph): Using matrices like adjacency

or incidence to represent graphs.

• Meet (Lattice Theory): The greatest lower bound of two

elements in a lattice.

• Monoid: A semigroup with an identity element.

• Multigraph: A graph that allows multiple edges between

vertices.

• Normal Subgroup: A subgroup that is invariant under

conjugation by elements of the group.

• Null Set: The empty set, containing no elements.

• Path (Graph Theory): A sequence of vertices connected by

edges with no repetition of edges.

• Permutation Group: A group formed by all permutations of a

set.

• Poset: A set with a partial order that is reflexive, antisymmetric,

and transitive.

• Predicate Logic: A type of logic that uses quantifiers and

predicates to express statements.

• Reflexive Relation: A relation where every element is related to

itself.

• Relation: A subset of the Cartesian product of two sets that

defines a relationship between elements.

• Rooted Tree: A tree with one designated node as the root.

• Semigroup: A set with an associative binary operation but not

necessarily an identity.

• Simple Graph: A graph without loops or multiple edges.

• Spanning Tree: A subgraph that includes all vertices of a graph

and is a tree.

• Subgroup: A subset of a group that itself forms a group.

• Subgraph: A graph formed from a subset of the vertices and

edges of a larger graph.

• Submonoid: A subset of a monoid that forms a monoid under

the same operation.

• Subsemigroup: A subset of a semigroup that itself is a

semigroup.

• Surjective Function: A function that covers the entire codomain.

237
MATS Centre for Distance and Online Education, MATS University

Notes • Symmetric Relation: A relation where if (a, b) is in the relation,

then (b, a) is also in it.

• Tautology: A logical statement that is always true.

• Truth Table: A table showing all possible truth values for a

logical expression.

• Transitive Relation: A relation where if (a, b) and (b, c) are

related, then (a, c) is also related.

• Tree: An acyclic connected graph.

• Unary Operation: An operation with only one operand.

• Vertex (Graph): A point representing an element in a graph.

• Walk (Graph): A sequence of vertices and edges where

repetition is allowed.

238
MATS Centre for Distance and Online Education, MATS University

Notes References

Chapter 1: Set Theory, Mathematical Logic, Relation, and

Function

1. Enderton, H. B. (2001). A mathematical introduction to logic.

Academic Press.

2. Halmos, P. R. (2017). Naive set theory. Courier Corporation.

3. Rosen, K. H. (2019). Discrete mathematics and its applications

(8th ed.). McGraw-Hill Education.

4. Velleman, D. J. (2006). How to prove it: A structured

approach. Cambridge University Press.

5. Hammack, R. (2018). Book of proof (3rd ed.). Richard

Hammack.

Chapter 2: POSETS and Lattices

1. Davey, B. A., & Priestley, H. A. (2002). Introduction to lattices

and order (2nd ed.). Cambridge University Press.

2. Grätzer, G. (2011). Lattice theory: Foundation. Birkhäuser.

3. Roman, S. (2008). Lattices and ordered sets. Springer.

4. Birkhoff, G. (1967). Lattice theory (3rd ed.). American

Mathematical Society.

5. Truss, J. K. (1997). Foundations of mathematical analysis.

Oxford University Press.

Chapter 3: Boolean Algebra

1. Givant, S., & Halmos, P. (2009). Introduction to Boolean

algebras. Springer.

2. Brown, F. M. (2012). Boolean reasoning: The logic of Boolean

equations. Dover Publications.

3. Mendelson, E. (2015). Boolean algebra and switching circuits.

McGraw-Hill.

4. Hohn, F. E. (2013). Applied Boolean algebra: An elementary

introduction. Dover Publications.

5. Whitesitt, J. E. (2010). Boolean algebra and its applications.

Dover Publications.

239
MATS Centre for Distance and Online Education, MATS University

Notes Chapter 4: Graph Theory

1. West, D. B. (2017). Introduction to graph theory (2nd ed.).

Pearson.

2. Bondy, J. A., & Murty, U. S. R. (2008). Graph theory.

Springer.

3. Diestel, R. (2017). Graph theory (5th ed.). Springer.

4. Wilson, R. J. (2010). Introduction to graph theory (5th ed.).

Pearson.

5. Trudeau, R. J. (1993). Introduction to graph theory. Dover

Publications.

Chapter 5: Semi Group and Monoids

1. Howie, J. M. (1995). Fundamentals of semigroup theory.

Oxford University Press.

2. Grillet, P. A. (1995). Semigroups: An introduction to the

structure theory. CRC Press.

3. Clifford, A. H., & Preston, G. B. (1961). The algebraic theory

of semigroups (Vol. 1). American Mathematical Society.

4. Lawson, M. V. (1998). Inverse semigroups: The theory of

partial symmetries. World Scientific.

5. Lang, S. (2002). Algebra (3rd ed.). Springer.

240
MATS Centre for Distance and Online Education, MATS University

Notes

