UNIVERSITY

MATS CENTRE FOR
DISTANCE & ONLINE EDUCATION

Mathematical Foundation of Computer Application

Master of Computer Applications (MCA)
Semester-1

SELF LEARNING MATERIAL



\

UNIVERSITY

MATS UNIVERSITY

www.matsuniversity.ac.in

MCA-104

NAAC N
GRADEA

ACCREDITED UNIVERSITY

Master of Computer Applications

Mathematical Foundation of Computer Application

Course Introduction 1
Module 1 2
Set theory, Mathematical Logic, Relation and Function
Unit 1.1: Introduction to Set theory
3
Unit 1.2: Tautology, Contradiction, Logical Equivalence 32
Unit 1.3: Relation a7
Unit 1.4: Function 57
Module 2 66
POSETS and Lattices
Unit 2.1: Partial order relation 67
Unit 2.2: Lattice 71
Unit 2.3: Distributive and Complemented lattice 79
Module 3 89
Boolean Algebra
Unit 3.1: Basic concepts of Boolean Algebra 90
Unit 3.2: Karnaugh map 100
Unit 3.3: Applications of Boolean Algebra in switching circuits 104
Logic circuits
Module 4 114
Graph Theory
Unit 4.1: Basic concepts of graph theory 115
Unit 4.2: Matrix Representation of Graphs, Directed Graphs 148
Unit 4.3: Tree and its properties 153
Module 5 181
Semi Groups and Monoids
Unit 5.1: Algebraic Structure, Binary Operation, Properties, 182
Semi Group, Monoid, Group Theory
Unit 5.2: Abelian group, Cyclic group, Generators, 193
Permutation group, Subgroup
Unit 5.3: Homomorphism, Isomorphism and Automorphism. 204
Unit 5.4: Cosets, Langranges Theorem, Normal Subgroup 211
Glossary 234
References 238




COURSE DEVELOPMENT EXPERT COMMITTEE

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS
University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,
Chhattisgarh

Prof. (Dr.) Jatinder kumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies
and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSE COORDINATOR

Prof. (Dr.) A. J. Khan, Professor, School of Information Technology, MATS University, Raipur,
Chhattisgarh

COURSE PREPARATION

Prof. (Dr.) A. J. Khan, Professor and Ms. Arifa Khan, Assistant Professor, School of Information

Technology, MATS University, Raipur, Chhattisgarh

March, 2025

ISBN: 978-93-49916-45-6

@MATS Centre for Distance and Online Education, MATS University, Village- Gullu, Aarang, Raipur-
(Chhattisgarh)

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in any
form, by mimeograph or any other means, without permission in writing from MATS University,
Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed & Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.
Meghanadhudu Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)
Disclaimer-Publisher of this printing material is not responsible for any error or dispute from
contents of this course material, this is completely depend on AUTHOR’S MANUSCRIPT.

Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)




Acknowledgement

The material (pictures and passages) we have used is purely for educational
purposes. Every effort has been made to trace the copyright holders of material
reproduced in this book. Should any infringement have occurred, the publishers and
editors apologize and will be pleased to make the necessary corrections in future

editions of this book.



COURSE INTRODUCTION

Mathematical foundation plays a crucial role in computer applications
by providing a theoretical framework necessary for problem solving
data structuring and algorithm design. This course equips student with
fundamental mathematical concepts including set theory, logic,
Boolean algebra, graph theory and group theory which are essential for
understanding and developing computing solutions.

Module 1: Set Theory, Mathematical Logic, Relation and

Function

This Module includes the fundamental concepts of a set theory

relations and functions. It covers the principal of logical

connectivity, logical equivalence and properties of function to

develop a strong mathematical strong.

Module 2: POSETS AND LATTICES

Understanding partial order relations and lattice structure is

crucial in optimization problems and hierarchical data

representation. This Module focuses on ordered sets and their

applications.

Module 3: Boolean Algebra

Boolean algebra is the foundation of digital logic design and

computational logic. this Module delves into Boolean

expressions, simplifications techniques and circuit applications.

Module 4: Graph Theory

Graph theory provides a framework for modeling relationship

and networks, widely used in computing and data structure

designs

Module 5: Semi Group and Monoids

Algebraic structure such as groups and monoids form the basis

of the cryptography, automata theory and database security.
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MODULE 1
SET THEORY, MATHEMATICAL LOGIC,
RELATION, AND FUNCTION

LEARNING OUTCOMES

To understand the fundamental concepts of set theory and
Cartesian products.

To explore statements, logical connectives, and their
applications.

To analyze tautologies, contradictions, and logical
equivalences.

To study relations, types of binary relations, and equivalence
relations.

To understand functions, their properties, and composition.
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Unit 1.1: Introduction to Set theory

1.1.1 Introduction to Set Theory, Cartesian product
Fundamentals of Set Theory:

Introduction to
Set Theory

Fig: 1.1.1 Introduction to Set theory

Like so many concepts in modern mathematics, set theory is a
language in which most everything else is written and read. A set, in its
most basic sense, is a well-defined collection of distinct objects, called
the elements or members of the set. The concept of a "well-defined"
collection is essential—it means that we can take an object, and be able
to tell if it is in the set or not without ambiguity. This little idea,
formalized by Georg Cantor in the late nineteenth century, has changed
the way mathematicians think and supplied a lingua franca Moduleing
disparate branches of mathematics. Sets encapsulate the primitive idea
of collection and containment — an idea so simple and natural, yet one
that becomes deeply powerful when formalised. The development of
set theory represented a paradigm shift in mathematics, transitioning
mathematics from a focus on the concrete to the abstract, and
providing a common language that could cross mathematical domains.
The universal applicability of set theory has led to it being designated
the "foundation of mathematics," a "base" upon which arbitrary
mathematical trees—relations, functions, algebraic structures—can be

built accurately and rigorously. The set theoretic notation is clean,
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simple and expressive as a whole: a set is represented with a capital
letter (A, B, X) and its elements are written in a lowercase letter (a, b,
x). A relationship between a set and an element is denoted by writing x
€ A, to indicate that x is an element of A; and x & A, to indicate that x
is not an element of A. Sets can be defined either by listing the elements
explicitly (the roster method) or by defining a property that only the
elements of the set satisfy (the set-builder notation). For example,
using the roster method, the set of all even natural numbers less than 10
can be expressed as {2, 4, 6, 8}, and using the set-builder notation, as
{x € N |xis even and x < 10}. In dealing with sets, there are a number
of special sets that can be thought of as "reference" sets: 1. The empty
set is denoted by the symbol @ (which contains no elements). 2. The
universal set, U, is a set that contains all elements under consideration,
as when the context involves a set of real numbers, a set of complex
numbers, etc. 3. The set of natural numbers, N 4. The integers, Z 5. The
rational numbers, Q 6. The real numbers, R 7. The complex numbers,
C These and types of ultimately first lesions, and especially N, Z, Q, R
and C, form the basis upon which advanced mathematical structures
and theories create. In set theory, the relationship between sets is
commonly described in terms of containment: set A is a subset of set B
(denoted as A € B) iff every element of A is an element of B. If,
charged, there is at least one element in B that is not in A, then A is a
proper subset of B (denoted as Ac B). A set A is equal to a set B (in
symbols, A =B) if and only if A has exactly the same elements that B
has, or more formally A € B and B © A. These basic membership,
subset and equality relations are the grammatical rules of set theory
language, allowing us to communicate mathematical logic. In our study
of set theory, we get to the idea of the power set of a given set A (or
P(A) or 2*A), which is the collection of all subsets of A, including the
empty set and A itself. For example, if a set contains n elements, then
its power set has exactly 2”n subsets, which shows the exponential
correspondence between a set and its family of subsets. This
phenomenon revealing an intricate relationship between combinatory
and set-theoretical aspects of nature portends the copious roles now
played within the set-theoretically aligned worlds by the various
members of the algebraic and analytic branches of mathematical
thought. Now, mathematicians have used these concepts as a basis for

a more general language — set theory — for describing and analyzing
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infinite collections, which has resulted in deep insights into the very
nature of infinity. Cantor showed that not all infinities are the same;
that the “size” or “cardinality” of the set of natural numbers (No, or
“aleph-naught”) is different from that of the set of real numbers (c, the
cardinality of the continuum). This realization of different "sizes" of
infinity transformed mathematics and would become a fruitful topic of
research within the areas of set theory, logic, and the foundations of
mathematics.

1.1.2. Set Operations and Their Properties

Set Operations and Their Properties

9

Union v

AUB={x|zx€ Aorx € B}

Intersection
AnB={z|zc Aandz € B)

Complement
A—B={x|zr€ Aand #B)

ole
@@

Symmetric Difference
AAB=(A—B)U(B—A)

Commutative
AUB=BUAand ANB=BnNA

Associative
(AUB)UC=AU (BUC)
(ANB)NC=AN(BNC)

Distributive
AN(BUC)=(ANB)U(ANC)
AU(BNC)=(AUB)N(AUCQC)

Idempotent
AUA=A and ANA=A

De Morgan’s Laws

(AUB) = A°NB° (ANB)‘ =

A“UB*

Indexed Unions and Intersections
U 4 U4

i=1 i=1

Indexed Unions and Intersections

Fig: 1.1.2 Set operations and Their Properties

This powerful method of mathematical reasoning is because set
operations give us the ability to create new sets through a combination
of existing sets. Union, intersection, and complement are the three
foundational set operations, and each of them has its place in
describing relationships between sets. Let A and B be two sets, the
union of sets A and B, denoted AU B, is the set of elements that lie in
A or in B (or in both). In formal notation, AU B={x|XE Aorx €
B}. From Venn diagrams-discussion point of view, the union is all the
area of both sets. For instance, if A = {1, 2,3} and B = {3, 4, 5}, we
have A U B = {1, 2, 3, 4, 5}. In the context of set operations, the
intersection of two sets A and B (written A N B) is defined as the set
of elements that are in both A and B. More formally, ANB={x|x €
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A and x € B}. The intersection (N) of the dataset A and B is represented
in a Venn diagram as the overlapping region of two dataset. Let’s
continue with the example: A N B = {3}. If a pair of sets has no
elements in common, then their intersection will be the empty set, and
they are called disjoint sets. If U is a universal set, then let A~c or U -
A denote the complement of a set A: the elements of A”c are those in
U not present in A. Thatis, A”c = {x € U | x € A}. We can also define
the difference of two sets, so that A - B (also known as A \ B) contains
all of the elements contained in A that aren't in B, that is, A - B = {x |
X € A and x € B}. This is also expressed as A N B”c, showing how the
difference between two sets relates to intersection and complement. All
elements that are in either set A or set B, but not in both, are included
in the symmetric difference of the two sets, denoted AA B. By
Definition, AAB=(A—B)U(B—A)=(A UB) — (A N B). Operations
that satisfy many algebraic properties that correspond to those from
other mathematical structures: the commutative property (AU B=B U
A and A N B =B N A), the associative property (AUB)UC=A U
(BuC)and (AN B)NC=AN (BN CQC)), the distributive property (A
NBUC=(ANB)U(ANC)andAuBNC)=(AUB)N (AU
()), and the idempotent property (A U A=A and A N A = A). This can
handle union and intersection operations in an elegant way, as given in
De Morgan laws: (A U B)c = Ac N Be and (A N B)c = Ac U Be.
Moreover, sets have identity: A UQ = A (the empty set is the identity
with respect to union) and A N U = A (the universal set is the identity
with respect to intersection). Complementary identities are A U A”c =
U and A N A”c = @, which formalize the intuitive understanding that a
set and its complement make up the entire universal set, and they do
not overlap. NOTE: With multiple sets, you can justify operations
based on indexing. For a collection of sets {Ai, Az, ..., Ay} we can
define the union as Ui-" Ai = A1 U A2 U ... U A, and the intersection
as N Ai = Ai N A2 N ... N A, It is an indexing that enables the
compact representation of operations over large collections of sets, and
can be made more general to infinite collections. From this perspective,
set operations not only serve up practical computational tools for
reasoning about math and about our world, but they also uncover some
beautiful and deep structural patterns. The language of the operations
and properties of sets is equivalent to the operations and properties of a

Boolean algebra. Set theory is a favorite topic because it exposes an
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overlap in the landscape of mathematics, linking disparate branches of
the field in the process. Venn diagrams provide insight into the
geometric interpretation of set operations. Sets are depicted as regions
in a rectangle (the universal set) in these diagrams, while operations
correspond to combinations of these regions. Venn diagrams of three
or more sets may become complicated; however, they are very useful
in visualizing the relationships between the different sets. Set
operations find many practical applications in diverse areas. This is
part of the query language of databases and its semantics — queries
can be expressed through set operations on tables containing data. In
probability theory, an event can be modeled as a set, and operations on
sets correspond to logical relationships between events. In topology,
open and closed sets and their operations essentially determine the
basic structure of topological spaces. The operations and their
properties that you are learning become essential tools for developing
rigorous mathematical analysis and problem-solving as you study more
advanced topics in set theory.

1.1.3. Cartesian Product: Definition and Basic Properties

Cartesian Product: Definition and

Basic Properties
)

(1,x)

1,
@ AxB Elf‘z’g
(2,x)
(2,5)
(2,2)

N 2 27/
AXxB={(a,b)|acAandbe B}

Fig: 1.1.3 Cartesian Product

The Cartesian product is a basic operation in set theory that lets us
combine existing sets into new sets, creating ordered pairs of elements.
A Cartesian product is a fundamental operation in set theory, named
after the French mathematician and philosopher René Descartes who
developed the systematic application of coordinates in geometry. That
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is, for any two sets A and B, their Cartesian product, written as A x B,
is the set of all possible ordered pairs (a, b), wherea € Aandb € B: A
x B = {(a,b)|a € A and b € B}. The key idea is that we are working
with an ordered pair: (a, b) is not the same as (b, a), unless a =b. This
introduces a kind of asymmetry that sets the Cartesian product apart
from set operations such as union and intersection. The Cartesian
product of two sets A and B is denoted by A x B and result is a set of
all ordered pairs (X, y) such that x belongs to A and y belongs to B. As
this set is the Cartesian product of 2 sets, so contains 6 elements: |A x
B|=|A| x [B| =2 x 3 = 6. This multiplicative character of cardinality is
a fundamental aspect of the Cartesian product and why it's called that.
While the union of sets merges their elements, the Cartesian product
maintains the individual identity of each set and establishes a relation
between their elements. The Cartesian product preserves structure,
making it crucial when it comes to defining relations and functions,
two concepts that are fundamental to mathematics. For multiple sets,
the Cartesian product can similarly be extended. For three sets A, B,
and C, we define A X BxC = {(a,b,c)|a€ A, b € B, c € C}, the
ordered triples with the indicated components. More generally, for n
sets A1, Az, ..., Ay, their Cartesian product A: X Az x ... X A, consists
of all ordered n-tuples (ai, a2, ..., a,) such that a; € Ajfori=1, ..., n. If
all input sets are still the same, say A, we tend to denote the n-fold
Cartesian product A x A x ... X A by A®; guiding this notation is the
connection we will see between Cartesian products and exponentiation
defined within the context of sets. The Cartesian product has a few
important properties. In contrast to union and intersection, it is not
generally commutative: A x B # B x A unless A = B or at least one of
the sets is empty. It is, however, associative in a certain way: the set of
ordered pairs (A x B) x C is not the same as the set A x (B x C) of
ordered pairs, but there is a natural bijection between (A x B) x C and
A x (B x C). Now, this bijection maps ((a, b), ¢) to (a, (b, ¢)), preserving
the ordering information between different levels of parentheses. The
Cartesian product distributes over union: AX(BUC)=(AxB)U(AxC)
and (BUC)xA=(BxA)U(CxA). It becomes very useful for simplifying
complex functions involving Cartesian products, due to this property.
But distribution over intersection (A x (B N C)=(A x B) N (A x C)
and (BN C)x A=(B x A) N (C x A)) requires equality, not just

containment. Notably, the interaction of Cartesian products with the
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empty set: that means if A or B is something like empty, then A x B is
empty. Since you cannot form any ordered pairs if you do not have an
element to pull from one of the two sets that make up that ordered pair.
The Cartesian product has deep geometrical interpretations. RXR R x
R is commonly called R2 R 2 and it is s well-known fact that R2 R 2 is
the so-called plane (i.e. coordinate system for pairs of reals). For
instance, R* =R x R x R is a three-dimensional space. This approach,
by Descartes, not only changed the face of geometry, but also allowed
algebraic techniques to be used to solve geometric problems, and vice
versa. The Cartesian product can also be used to define relations
between sets. A relation from a set A to a set B is just a subset of the
Cartesian product A x B, where the elements (a, b) of the relation can
be interpreted as a connection or correspondence between elements a
of A and b of B. Special types of relations, equivalence relations and
order relations, are very important in many branches of mathematics.
Functions, the ubiquitous building blocks throughout mathematics, are
special kinds of relations. It maps each a € A to a unique b € B and is
defined as a subset of A x B where each element from A appears exactly
once in the first component of the ordered pair. Consequently, the idea
of a function is an immediate consequence of the Cartesian product.
That is why you covered the Cartesian product in the same way, as it is
fundamental in Computer Science topics: in database theory in
particular where relations (which in DB table form) are combined and
joins are defined The Cartesian product is a crucial operation in the
study of cardinal arithmetic (especially for infinite sets) and leads to
wonderful results about the "sizes" of different infinities. The Cartesian
product is an important concept in set theory, as it allows us to combine
sets in a way that captures the relationship between their elements.
1.1.4. Applications of Cartesian Products in Mathematics

The Cartesian product not only plays a fundamental role in set theory
but also serves as a key concept with applications spanning across
different mathematical landscapes, fostering connections between
seemingly unrelated areas through its elegant and versatile framework.
In linear algebra, we build vector spaces through Cartesian products.
A vector space of dimension n over a field F is a Cartesian product of
n copies of the set F F*'n =F X F x... X F (n times). This way of looking
at things helps clarify the coordinate representation of vectors, in

which each component relates to one dimension. One of the basic
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building operations — matrix multiplication — is done using dot
products performed on components that come from the Cartesian
Product structure. In three-dimensional space, the cross product,
denoted a x b for two vectors a and b, is defined via the determinant of
a matrix built from the components of these vectors—a property made
available using the Cartesian product representation of the vectors
themselves. The Cartesian product is used in abstract algebra to
construct direct products of algebraic structures. For groups G, H, we
define the Direct Product G x H to be a new group with such an
operation: (g1, hi) * (g2, h2) = (g1 * g2, i * h2) Similar constructions
hold for rings, modules, and other algebraic structures, enabling
mathematicians to compose complex structures from simpler ones. This
is how finitely generated abelian groups are classified, because any
finitely generated abelian group is a direct product of cyclic groups, a
result exhibiting a remarkable degree of order between a huge class of
algebraic objects. This agrees with the definition used in topology,
where the Cartesian product X x Y of topological spaces X and Y
carries the product topology such that the projection maps are
continuous (that is, we take the coarsest topology on X X Y that makes
the two projection maps continuous). This means that topologists can
build new spaces and work with controlled properties, and this leads to
some fundamental results in topology, e.g., the Tychon off theorem on
compactness of products of arbitrary families of compact spaces. At an
extremely high level, the definitions of topological manifold (the
underpinnings of differential geometry and mathematical physics) are
premised on the idea that every point has a neighborhood that is
homeomorphic to an open subset of R» (which itself is just a Cartesian
product). Cartesian products appear frequently in analysis, particularly
in multivariate calculus. A function f: R*» — R™ from several variables
f: R» — R™ maps between two Cartesians. The Cartesian product
provides the coordinate structure from which partial derivatives,
gradient vectors, and multiple integrals are defined. The chain rule for
multivariate functions, a primary result of calculus, describes how
derivatives behave under composition, using the product structure of
the domain and co domain. In probability theory, the Cartesian product
is useful for modeling experiments with more than one outcome. If (€21,
Fi, P1) and (Q, F2, P2) are probability spaces, the product space ({1

>, F1 x Fa, P1 X P2) 1s constructed to model the joint system. Formally
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the independence of events, or independent random variables is defined
as how the probability measures act on the product structure.
Independent random variables, a core concept in the formulation of
statistical theory, are defined in the framework of the Cartesian product.
This Cartesian product plays an important role in data modeling and
algorithm design in computer science. In relational database theory,
however, it is even more general, as tables are modeled as Cartesian
products with constraints, and operations like joins are defined as
selections from these products. The efficiency of algorithms on
multidimensional data often shows a Cartesian product structure in the
input space. Dynamic programming, a powerful algorithmic technique,
often harnesses how problems can be separated along the lines of what
makes up a Cartesian product of potential states. In graph theory, the
Cartesian product of graphs G and H is a graph denoted G o H, with
vertex set as the Cartesian product of the vertex sets of G and H, where
two vertices are adjacent if they are adjacent in G while being equal in
H (or vice versa). This construction gives rise to important families of
graphs like hypercube and grid graphs, which have applications in
network design, coding theory, and distributed computing. The
hypercube Q,, the n-fold Cartesian product of the complete graph Ko,
has particularly interesting applications in computer science — indeed
as the topology of various parallel computing architectures. Breaking
ground: Cartesian product to model game theory. The strategy space
in an n-player game is typically represented as the Cartesian product
of individual strategy sets. Nash equilibrium (a key concept in
economic theory) is defined as a point in this product space at which no
player can resultantly gain by unilaterally changing its strategy. Many
combinatorial optimization problems can be formulated with the
objective of finding optimal points in highly structured Cartesian
products subject to a variety of constraints. The tensor product of two
vector spaces is the vector space of all bilinear functions on the
Cartesian product. The primary nature of the product alongside the
popularity of the product across mathematics. It acts as a robust tool for
constructing more intricate mathematical objects from simpler
constituents, offering a structured method to merge, while retaining
their structural elements. By providing a way for mathematicians to
approach problems in a lower-dimensional space, the constructive

property of the Cartesian product can illuminate aspects of
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mathematical structures that may not be easily accessible in their
original dimensions.

1.1.5. Relations and Functions as Subsets of Cartesian Products

A B
{.'L'l,yl, y2) =R

Ff(AxB)AB

Relations and Functions as
Subsets of Cartesian Products

Fig: 1.1.5 Relations and Functions as Subsets of Cartesian Products

These two fundamental concepts are the relations and functions,
concepts that underlie all branches of mathematics itself that can be
exactly formulated through the language of Cartesian products. In
formal set theory, a relation R from a set A to a set B is defined as a
subset of the Cartesian product A x B: R € A x B. Each ordered pair
(a, b) € R establishes a connection or correspondence between an
element a € A and an element b € B, capturing the fundamental concept
of relating items from distinct sets while adhering to the mathematical
structure afforded by the theory of sets. Often a R twice commutated b
1s written as (a, b) € R, to highlight that they are related. As an example,
let A denote a set of cities and B denote temperatures in degrees
Celsius, then a relation R € A x B could be pairs (city, temperature)
representing the measured temperature for each city on a certain day.
Based on the properties of relations, we can classify it into different
types which have certain mathematical significance. A relation R on a
set A (i.e., a relation from A to itself, or subset of A x A) is reflexive
if (a, a) € R for all a € A, so every element is related to itself. The
relation R is symmetric if whenever (a, b) € R then (b, a) € R, which
means that the relation works both ways. Transitive: for all (a,b),(b,c)
in R implies (a,c) in R, that is, the relation "passes through"
intermediate elements. An equivalence relation is a relation which is

reflexive, symmetric and transitive at the same time, and is a basic idea
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used to create equivalence classes from sets. For example, in number
theory, we speak of the congruence modulo n, while in geometry we
first speak of the similarity of geometric figures, and later of
isomorphism of algebraic structures. Another category of relations is
order relations that satisfy different properties. A partial order
equivalently is a relation that is reflexive, ant symmetric ((a, b) € R and
(b, a) € R implies a =Db), and transitive. A total order also imposes the
requirement that for any two elements a and b, either (a, b) is in R or
(b, @) is in R: order relations are very important in defining order within
ordered sets, and has applications that range from the natural ordering
of numbers to the subset relation on a power set. And many different
tools can be used to model and represent relations (and perform
analysis). Note that the graph for a relation R from A to B is the set of
ordered pairs {(a, b) | (a, b) € R} which we can visualize when A and
B are finite sets. Another way to represent relations is by means of
matrices: Given two finite sets A = {ai, az,..., an} and B = {bs, ba,...,
b,}, a relation R € A x B can be expressed as an m X n matrix M in
which M(, j) = 1 if (a;, bj) € R and M(4, j) = 0 otherwise. This matrix
representation allows relations to be analysed computationally, linking
set-theoretic constructs to linear algebra. The operations on relations
include composition, inverse, and the various set-theoretic operations
on their graphs. Let R © A x B and S © B x C be relations, then the
composition S e R < A x C is defined by {(a, c) | 3 b € B such that (a,
b) € R and (b, ¢) € S}. The inverse of a relation R € A x B is called
R~A(-1): {(b, a) | (a, b) € R} € B x A (it reverses the relation). Union,
intersection, and difference of relations (considered as sets of ordered
pairs) are inherited directly from the corresponding set operations.
Functions are a special class of relations that have important properties
in mathematics. We say a function from A to B, f: A — B, is a relation
f c A x B with the property that for all a € A, there exists exactly one
b € B such that (a, b) € f, so the mapping of f passes the vertical line
test (every input has one output and one only). Like so, f(a) = b, rather
than (a, b) € f — functions emphasize the (what goes in what comes
out of) mapping over the (mapping) itself. In this case we use notation
dom(f) as the domain of f, where f'is a function from A to B; the set of
f of all the function values arrived are defined as the co domain (or
return values for a function): img(f) is the image of f, some subset of B
such that: {b € B: 3 a € A : f(a) = b}; Depending on the functions
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increase property on the values of the target set, we can categorize those
functions. A function f: A — B is injective (one-to-one) if no two
inputs provide the same outputs: Vai, a2 € A, a1 # a2 = f(a:) # f(a2). That
is, fis injective if f(a:) = f(az) implies a: = a. If f is a function from a
set A to a set B, we denote f: A to B. A function is subjective (onto) if
for every b € B there is at least one a € A such that f(a) =b: forall b €
B, 3 a € A: f(a) = b. A function which is injective (one-to-one) and
subjective (onto) is called bijective, i.e., we have a one-to-one
correspondence between the elements of A and those of B. Bijections
indicate when two sets have the same cardinality, a very important
notion in the study of infinite sets. The operations on functions are
composition, restriction and extension. We define the composition of
f:A—Bandg:B — Casgef: A— Csuch that (gof)(a) = g(f(a)) for
all a € A. It is an associative operation but not commutative in general.
If f: A — B is a function, the restriction of f to a subset A' C A is the
function f]A": A' — B defined by flA'(a) = f(a) for all a € A'. In contrast,
a function g: A' — B can sometimes be extended to a function f: A —
B where A' € A, such that f]A' = g. The idea of the image of a subset
under functions and its inverse image (preimage) provide excellent
tools for understanding how the function transforms sets. For a function
f: A — B and subsets A' c A and B' c B, the followings are defined;
image: f(A') := {f(a) |a € A'} preimage: {*(-1)(B') ;== {a € A |f(a) €
B'} These operations fulfill different set-theoretic properties: f(A: U
Az) = f(A1) U f(A2), but equality for intersection holds only in special
cases; for preimages, both distribution properties hold: f*(-1)(B: U B2)
=1(-1)(B1) U fA(-1)(B2) and *(-1)(B1 N B2) = f*(-1)(B1) N £(-1)(B>).
Some special types of functions are injections, surjection’s, bijections,
and functions with other algebraic or analytical properties such as
homomorphism, homeomorphism, and continuous functions. The
identity function on the (potentially infinite) set of elements A, id_A:
A — A by mapping each element a € A to itself: id _A(a) = a, acts as
the neutral element for function composition. Every bijection f: A — B
has an inverse function f*(-1): B — A such that f*(-1) e f=1d A and f
o fA(-1) = 1d_B, which gives us a way to "undo" the action of f. The
study of relations and functions in terms of Cartesian products not only
gives a rigorous foundation to these notions but also unveils deep
connections between these concepts and other areas of mathematics.

This set-theoretic treatment is made possible since the specific details
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of the objects being related and/or mapped of interest are effectively
hidden behind this abstraction, and the relation can be treated as a
distinct mathematical object in its own right, leading to a unified
approach that results in being able to treat these common mathematical
constructs in similar ways.

1.1.6. Advanced Topics: Power Sets and Cartesian Products

18
oy

N A4

P(P) P(AxB)

A\ 4

Fig: 1.1.6 Power Sets and Cartesian Product

The connections between power sets and Cartesian products are deeply
revealing about the structure of sets and give rise to some sophisticated
constructions throughout mathematics with crucial consequences.
Power set the power set of a set A, denoted P(A) or 2™A, is the set of
all subsets of A, including the empty set @ and A itself. So for a finite
set A with n elements, there are exactly 2*n subsets in the power set,
hence the notation 2*A is in exponential terms. We can also see that the
size of the power set grows exponentially in terms of A -- a growth
level that is directly corresponding with binary sequences, as the
number of subsets corresponds to the number of ways we can pick or
not pick Moduley association of the individual elements that make up
A e for A {x,y,z,w}={{} {x} {y}, {z}, {w}, {xy}, {x.2)..)
Now, we're going step by step into understanding why we are using
Cartesian products in the first place. For two sets, A and B, the set of

all functions f: A — B, sometimes denoted B*A, has cardinality |B|"|A]
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(where A and B are finite). In this sense, when we refer to the power
set of A as P(A)=2A, we are defining it in the sense that we are
identifying a set with all functions that can be defined taking the set A
as an argument. This is the Cartesian product of the two sets of their
power sets P(A) and P(B), which will yield all ordered pairs (X, Y)
where X € A and Y € B, while not the same as the power set of the
Cartesian product P(A x B), which includes all subsets of A x B, e.g.,
arbitrary collections of ordered pairs. The connection between these
two constructions is subtle but instructive: there is an injection from
P(A) x P(B) into P(A x B) that sends (X, Y) to X x Y, but this mapping
is not subjective unless one of the two sets is empty or singleton. This
confirms that power sets for Cartesian products are not distributive:
P(A x B) # P(A) x P(B) in general. This is due to the fact that P(A x
B) also includes relations between A and B that cannot be captured as
Cartesian products of subsets. Binary relations between two sets A and
B (subsets of A X B) are an important concept in set theory and across
mathematics. The power set P(A x B) is exactly the set of all binary
relations from A to B. For finite sets |A] = m and [B| = n, we can
construct 2mn different relations, which illustrates the combinatorial
explosion that results when considering every possible connection
between elements of the two sets. This viewpoint is a bridge —
connecting the power set (along with products, both Cartesian and
otherwise) and relational theory; revealing their inter-relatedness.
Another connection between power sets and Cartesian products comes
from characteristic functions. The mapping between the set of real
numbers and the set of real numbers, where the characteristic function
defined as yA:{0,1}—{0,1} given by: x X(a)=11fa € X, x X(a)=0
if a € X establishes a bijection X = y A : P(A) <> wherea € A X €
P(A) P(A) 2 {0, 1}"A. Moreover, associated mapping for y A P(X)
< P(A) Find relations between the elements of P(X) and P(A): X€EP(A)
> A€P(X) and so forth. Measures that are characteristic functions are
typically used in functional analysis, while functions that operate on
Boolean algebra are used in digital logic. The connections between
Cartesian products and power-sets have beautiful expression in
category theory, a branch of mathematics that abstracts and generalizes
large swathes of mathematics. The Cartesian product is the categorical
product in the category of sets, and the power set operation

corresponds to the categorical notion of an exponential object. Since
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one is only concerned with a category-theoretic perspective on things,
one can witness how such constructions are examples of more abstract
patterns in other mathematics and this provides insight into their
properties. While talking about power sets and Cartesian products, it
adds more complexity to ordinary sets. Cantor's theorem expresses that
for any set A, the cardinality of P(A) (i.e. the powerset of A) is strictly
greater than the cardinality of A, which constitutes an infinite
hierarchy of ever growing infinite cardinalities. This result, together
with properties of Cartesian products of infinite sets, underlies cardinal
arithmetic — the study of operations on the “sizes” of infinite sets. For
infinite cardinal numbers oo and Bf, the cardinality of their Cartesian
product axBa %  equals.

1.1.7 Statements and Notations, Logical Connectives

Introduction to Mathematical Logic and Statements

Introduction to Mathematic Logic
and Statements

STATEMENT NOT A STATEMENT
A declarative sentence A phrase that is not a
that is either trueofaise declarative sentence or
is ambiguous

“7 is a prime number.”

X

“Please solve this equation.”

COMPOUND PREDICATE
STATEMENT A sentence involving
Formed from statements variables that becomes
using logical connectives a statement when values
are assigned

% e
For all real numbers x, x* > 0 x>5

Fig: 1.1.7 Mathematical Logic and Statements

All mathematical reasoning for which reason judgment based on logic
takes place. The form of mathematics we are interested in,
mathematical logic, is at its core about formally specifying the rules we
can use to detect validity in reasoning, and the differences between
forms of valid and invalid reasoning. The simplest entities in this
logical system are mathematical statements: declarative sentences that
are unequivocally true or false, but not both at the same time. This

binary quality of mathematical statements, that they must have
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precisely one truth value, is the bedrock of classical logic, a system
that has reigned over mathematical thought since the age of Aristotle.
For instance, take the statement “7 is a prime number.” This is a proper
mathematical statement because it is an assertion that can be proved
true or false according to established mathematical methods. Likewise,
the statement “For all real number x, x2 > 0” is a mathematical
statement, whose truth may be determined. On the contrary, phrases
such as “Please solve this equation” or “x + 5” do not qualify as
mathematical propositions; the first one is an imperative rather than a
proposition, whereas the second one is just an algebraic expression that
does not express anything true or false. This is important because there
are statements whose truth values are theoretically determinate, but
whose truth values would be practically unknowable with current
mathematics. For example, the claim “The Riemann Hypothesis is
true” is a well-formed mathematical statement, even though we know
neither it nor its negation to be true. This brings us to a critical
difference between the semantic property of truth and falsity versus the
epistemological issue of determining the truth-value of a statement. A
language is formed where statements are represented by variables p, q,
r, or capital letters P, Q, R, or any combination thereof so that we can
examine logical relationships abstracted from any particular content. It
allows us to analyze the composition of logical argumentation without
getting blinded by the content of a specific proposition.
Mathematicians add even more categories based upon the foundation.
Atomic statements are statements without decomposed parts; they
cannot be broken into more statements. Compound statements are
statements made from the combination of local blocks of statements
connected by logical connectives. Open statements with undecided
truths are statements with variables defined such that the truth of the
statement is defined by those variables. Quantified statements are
statements that make claims about every or some of the items within a
domain. This classification gives us a taxonomy through which we can
explore the richness of mathematical reasoning more systematically.
The other key difference is between statements and predicates. A
predicate is a statement form with one or more variables, which
becomes a statement when replacements are made for the variables that
give it a definite truth value. For example, the expression “x > 5 1s a

predicate that becomes a statement with a specific truth value when a
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concrete value is provided for the variable x. Statements and their
logical relations become the foundation for advanced topics like formal
proof systems, model theory, and issues of completeness or consistency
in the context of mathematical theories.

1.1.8. Logical Connectives: Foundations and Truth-Functional
Analysis

Just as addition and multiplication come together to form sum-product
structure to represent efficient computations, logical connectives are
the fundamental operations that enable us to build complex statements
from simpler ones, yielding a grand and sophisticated language with
which we can communicate complex mathematics. The basic building
blocks of logical syntax are the logical connectives: negation,
conjunction, disjunction, conditional, and biconditional—and these
provide the syntax for binding simple or atomic statements into more
complex propositions to encapsulate mathematical relationships of
increasing complexity. All connectives have truth-functional behavior:
that is, the truth table for any compound statement is always
completely determined by the truth values of its constituent statements
and by the precise logical relation which is being asserted between them
by means of the connective.

LOGICAL CONNECTIVES

CONNECTIVE | SYMBOL | TRUTH TABLE
P -P
Negation — T E
F T
P q| pnrg
Conjunction A TIT|T|T
F|F|F|F
p v|pvg
Disjunction \Y/ T [T | T|T
F|T|T|T
p—q | p—q
Conditional - T|T|T|T
FIF|T|T
p<q |peg
Biconditional o R EEE:
F|F|F|F

Fig: 1.1.8 Mathematical Logic and Statements

19
MATS Centre for Distance and Online Education, MATS University

4m

N \\\

UNIVERSITY

ready for life......

Notes

ars)

YW i

|



(mar

UNIVERSITY
ready for life.

Notes

S

Negation — (or the alternate symbol ~), for any statement p, reverses
the truth value of p and results in —p, the logical opposite. If p is true,
—p is false, and if p is false, —p is true. This operation, also known as
"logical NOT," enables us to express the denial or negation of a
particular statement. For instance, if we have that p="x = 5", then —p
means "x # 5". The logical conjunction of two statements p and q,
denoted p A q (or sometimes p & q), states that both statements hold
true at the same time. This connective, which is to propositional logic
as the linguistic “AND” is to the human language, produces a true
compound statement if and only if both of its constituent statements are
true and is false otherwise. For example, let p be "x > 0" and q be "x 0
and x 0 or x < 10," which holds for all real numbers except x = 0. Data
scientist == Machine Learning interpreter |Professional experience |
Be sure to know your conditional statements — These statements are
based on the conditional statement, If the antecedent (p) is true, then
the consequent (q) will be true. This connect conjunctive is false only
in the case where p is true and q is false, in all other cases the
connective statement is true. This defies our intuition when p is false,
yet it is the stipulation of the truth table of p implies q that is consistent
regarding mathematical implications. Lastly, the biconditional (p <> q
(or p & q)) indicates logical equivalence between two statements; it
states that both statements have the same value in terms of truth (both
true and both false). This “if and only if” relation combines two
conditionals (p — q and p «<— q) and is true exactly when the constituent
statements match truth value. Truth tables are a systematic way to
analyze such connectives and show all possible combinations of truth
values for the component statements and the truth value of the
compound statement. Whereas for conjunction (p A q) we have a truth
table with four rows representing the four possible combinations of
truth values for p and g, but the conjunction is true only in the case
when both p and q are true. They provide these truth-functional
definitions to give logical connectives the mathematical (and hence
unambiguous) meaning they lack in natural language. In addition to the
five primitive connectives, we can define other operations such as the
exclusive disjunction (XOR, ak.a. p @ q) and the Shaffer stroke
(NAND, denoted p | q). Incidentally, some of these operations have the
property of functional completeness, which means that these properties

may be expressed, either individually or in any combination cast, any
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truth functional operation. In particular, the negation plus conjunction
pair can express all other connectives as can the Sheffer stroke alone.
This functional completeness illustrates how even small subsets of
logical connectives can be highly expressive. More than that, the
algebraic properties of the logical connectives (associatively,
commutatively, distributive, identity, inverse) show us that they have
very rich similarities with operations on other mathematical systems as
well. Another example comes from conjunction and disjunction being
duals of each other, as expressed by their relationship through De
Morgan's laws: " (p Aq) =—pV ~q and ~(p V q) = p A —q, which
illustrate how negation behaves in relation to them, so it should behave
with all of the other connectives, providing us with powerful tools for
either simplifying or reasoning all the valid instances of the system.
Learning logical connectives and their properties might seem purely
abstract, yet serves as the basis for proving techniques in mathematics,
designing algorithms and encapsulating circuit design in computer
engineering, querying databases in data science, etc.

1.1.9. Negation: The Fundamental Unary Operator

In classical propositional logic, negation is the only unary logical
operator, meaning an operator that takes a single statement and
constructs its logical negation. Represented with — (or ~!, or —),
negation changes a proposition p into its negation —p, stating exactly
the opposite of the original statement. The ease of this operation hides
its deep centrality in mathematical argument and its widespread
occurring across branches of mathematics. Negation is truth-functional
because it obeys a truth table: negate a true statement to get a false
statement, negate a false statement to get a true statement. This
behavior exemplifies logical contradiction—p is true if and only if p
is false, and vice versa. In natural language negation can be expressed

"

as "it is not the case that," "not," or "it is false that," although in
mathematical notation the more succinct symbolic representation is
used. Negation has its own formal properties that are making it different
from other logical connectives. Most unwieldy of all, negation is
involutive: — (—p) = p. This property, known as the law of double
negation, distinguishes classical logic from intuitionist and other non-
classical logical systems where double negation elimination does not
universally hold. Moreover, negation is neither idempotent (—p # p),

commutative (it is a unary operator, so the question does not apply),
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nor associative (likewise). Negation is central to some of the most
basic logical principles. Since it is not logically possible for a
proposition and its negation to be true at the same time, this principle
is formally stated as — (p A —p) (meaning the negation of p and not p).
This rule, derived from Aristotle’s metaphysical writings, is a
foundational tenet of classical logical inference. The law of excluded
middle, which states that either something is true or not: p V —p, also
rejects all intermediate possibilities. These principles seem intuitively
obvious, but they have been challenged in several non-classical logics
(many-valued logics and fuzzy logic including quantum logic), where
propositions might take intermediate truth values or where the
bivalence principle (that propositions are either true or false) is relaxed.
In mathematical practice, negation is more than the mere opposite. It
allows drafts of proof by contradiction (reduction ad absurdum), where
one concludes some proposition p, because assume —p leads to some
logical contradiction. This powerful technique has produced many
important results in mathematics, from the irrationality of V2 to
existence and uniqueness theorems. Negation can help you express
mathematical concepts clearly: when x does not equal y (that is, x #y)
is the same thing as x =y is false; x is not an element of S (that is, x &
S) is the same thing as x is an element of S is false; the complementation
operation in set theory (the notation A¢ or A representing the elements
not in set A, where A is a set). Negation interacts with other logical
connectives in ways that yield important logical equivalences, such as
De Morgan's laws. These laws state that negation of conjunction is
disjunction of the negations (—(p A q) = —p V —q) and vice versa
negation of disjunction is conjunction of the negations (—(p V q) = —p
A —q). These equivalences are building blocks for logical
simplifications and proof methods. Furthermore, negation converts
various other connectives to their duals: negation of an implication
(—(p — q) «— p A —q), and negation of a biconditional (—(p <> q)
«—— p @ q). Negation interacts with quantifiers to give rise to
especially important logical forms. If you see a universal statement
(Vx) P(x), then its negation is equivalent to the existential statement
(3x) —P(x); similarly, if you see an existential, (3x) P(x), then its
negation is the universal (Vx)—P(x). It is important to note that these
relationships, known also as the quantifier negation laws, guide us

through understanding the meaning of mathematical statements as well
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as the development of proofs on expressions presented in the quantifier
form. Negation has applications beyond the theoretical, finding its
usefulness in computer science and digital electronics as it has a real-
world counterpart in the form of the NOT gate, a fundamental
component of digital circuit design. Negation, commonly used in
programming languages as an operator (for instance,! or NOT critical
for conditional control structures and logical tests. Negation in
database query languages disallows certain records, while negation
plays an integral role in knowledge representations and reasoning
systems in Al. Negation can also affect how one thinks about what
can be known, which in turn touches upon some common themes in
epistemology, and even the philosophy of mathematics. Then,
exploring the consequences of this perspective leads to various
alternatives that become prominent in specific areas of mathematics,
such as constructivist mathematics or intuitionist logic, in which
negation is used in a more limited way, especially in existence proofs,
preferring constructive techniques involving finites or constructivist
methods over applied logical ones involving negation. These concerns
reveal how this apparently straightforward calculation relates to deep
issues regarding the underpinnings of mathematical reasoning and the
character of mathematical reality.

1.1.10. Conjunction and Disjunction: The Core Binary Connectives
As the basis for expressing complicated relationships between
mathematical statements, conjunction and disjunction make up a
complementary pair of binary logical connectives. In this way,
mathematicians gain the ability to express compound statements that
incorporate atomic statements through logical operations that work
roughly speaking like the "and" and "or" of natural language. The
conjunction of two statements p and q (note the symbol p A q) states
that both constituent statements are true at the same time. Its truth
functional behavior is simple: the conjunction is true if and only if both
p and q are true; otherwise it is false. This definition matches the
intuitive meaning of “and” in ordinary reasoning, in which the assertion
that “A and B” necessarily implies the truth of both A and B, since the
mathematical statement “x > 0 and x 0) A (x 1 (in formal notation: (x
1)) is actually true for all x excluding those x representing a number
from the closed interval [0,1]. This gives rise to some fundamental

algebraic properties of conjunction and disjunction which make logical
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reasoning and proof-writing easier. Both operations are commutative
(pAq=qApandpV q=qV p), indicating the order of the constituent
statements does not change the truth value of the compound statement.
They are also associative (p AQ)Ar=pA(qAr)and(pV q)Vr=p
V (q V 1)), so we can write expressions like p AQqATOrpVvVqVr
unambiguously. Both operations are idempotent, which invites us to
eliminate unnecessary repetitions in conjunctions and disjunctions of
statements (p A p=p; p V p = p). Also, conjunction and disjunction
distribute over one another, but in different ways: p A (QV 1) =(p A Qq)
Vip Ar)andpV (QAT)=(pV q A (pV r). They are what allows
logical expressions to be transformed from one form to another, often
making complex statements simpler, or allowing a hidden logical
structure to emerge. If we observe the identity elements, true (T) is the
identity element for conjunction, and false (F) is the identity element
for disjunction: therefore, p A T=p, and p V F =p, and if there is an an
nihilators which results otherwise, we have that F is the annihilator for
conjunction (p A F =F), and T is the annihilator for disjunction (p V T
=T). These properties have analogues in other mathematical systems,
which are particularly set theory, where conjunction corresponds to
intersection (N) and disjunction corresponds to union (U). The formal
similarities between propositional logic and set theory come out
through the isomorphism between Boolean algebra and the algebra of
sets, specifically with conjunction and disjunction being the central
structural features in this correspondence. For example, the relationship
between conjunction and disjunction is dual; this means that you can
turn conjunction into disjunction by negating the expression (De
Morgan's laws): =(p Aq) = —pV —q, and ~(p V q) = —p A —q. There’s
a duality to the rest of the properties: the identity element for one is the
annihilator for the other (since the annihilator for either is itself an
iterate, and behaves as an inertial property), and the distributive laws
for each over the other mirror this. In many areas of mathematics,
conjunction and disjunction take center stage. And in Set theory, x €
A and x € B and (x € A or x € B) are used to dentate the intersection
and union of the two sets A and B. In number theory, certain important
classes of numbers tend to be characterized by conjunctions of
primarily tests or divisibility conditions. In analysis, the requirement
for continuity at a point amounts to a conjunction of conditions on the

behavior of the function at that point, while discontinuity is a property
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that can be expressed as a disjunction of ways in which continuity fails.
Conjunction and disjunction are also utilized as basic elements for
more sophisticated logical constructions in mathematical logic. The
exclusive disjunction (XOR, p € q) can, for example, be defined using
the raw connectives as (p V q) A—(p A q), which is true if exactly one of
the statements is true. Likewise, all other derived connectives and
logical constructs can be represented with combinations of conjunction,
disjunction, and negation, so this tiny set of operators has expressive
completeness. In computer science, for example, their application
extends to Boolean operations within programming languages, circuit
design, database theory (specifically query conditions), and artificial
intelligence (in knowledge representation and automated reasoning
systems). The embodiment of these operations in electronic circuits —
via AND and OR gates — underpins the foundations of digital
computing, while their use in database query languages allows for the
creation of complex search parameters. The complement of the
multiplication law for independent events in probability theory (P(A U
B)=P(A) + P(B) - P(A N B)) shows the interplay between conjunction
and disjunction and how those logical concepts carry over to
randomness and probability. So far as the conjunction and disjunction
are concerned, the mechanics of the philosophical implications touch
base with some of the most basic questions in mathematics and logic
about composition and choices. Thus, one finds that the definitions of
these operations in classical logic are much more precise than they are
however you might use them in a sentence or in other non-classical
logic models. The duality of conjunction and disjunction, along with
their complementary natures, demonstrates some of the elegant
symmetries that exist within mathematical logic and provide a rich
framework to express and analyze the logical structures of
mathematical statements.

1.1.11. Conditional Statements: Implication and Its Logical
Structure

In mathematical reasoning, perhaps the most fundamental (and yet
subtle) logical connective is the conditional statement, usually denoted
p — q or p = q. The conditional states an "if-then" relationship
between two statements: the antecedent p and the consequent q; it
represents the most basic form of logical implication: that if p is true,

then q must also be true. This connective is all over mathematics
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statements of theorems (“If a triangle is equilateral, then it is
equiangular”), definitions (““A function f'is continuous at a point ¢ if for
every € > 0, there exists a 6 > 0 such that...”) and across the cloth of
mathematical argumentation. At first glance, the conditional is a simple
and familiar construction, but it contains subtleties that have led to
much logical and philosophical study. The truth-functional definition
of the conditional may at first seem counterintuitive: p — q is false
only when the antecedent p is true and the consequent q is false; in all
other cases—including when the antecedent is false—the conditional is
true. This definition, sometimes referred to as the material conditional,
differs from many natural language interpretations of “if-then”
statements, in which they often imply or entail, causally or inferentially
that the antecedent and consequent are connected. The truth table for
the conditional indicates this — when p is true and q is true, the
conditional is true (as it should be), when p is true and q is false, the
conditional is false (as it should be), but when p is false, the conditional
is true no matter the truth assignment of q. This last point—that any
conditional with a false antecedent follows as a matter of course—
underpins the principle of explosion or ex false quodlibet (“from
falsehood, all things follow”), a principle that has led to alternative
treatments of conditionals in non-classical logics. There are a number
of equivalent formulations of the conditional that shed light on its
meaning. The statement p — q is logically equivalent to —p V q — that
is, either the antecedent does not happen or the consequent does
happen. And this equivalence also explains why the antecedent being
false yields a true conditional: if p is false, —p is true, so the disjunction
—p V q is true no matter whether q is true or false. At the same time,
there is another formulation that represents the conditional as the
negation of a certain conjunction: p — q < — (p A —q), which affirms
it is not the case that p holds, but q does not, that is: if p, then q. This
view highlights that the conditional, in its essence, excludes precisely
one of four combinations of truth values for p and g, leading to a
number of derived logical forms. It has the form p — q whose contra
positive (and logically equivalent statement) —=q — —p states that if the
consequent is false, then the antecedent must also be false. One of the
basic rules of classical logic is that a conditional and its contra positive
are equivalent p — q =—q — —p. This equivalence lays the groundwork

for many proof strategies, where proving a statement may be easier if
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we instead prove its contra positive. The converse of p — qisq—p
and simply switches the antecedent and consequent. The converse is
not logically equivalent to the original conditional; given p — q, we
cannot conclude q — p at all. Confusing a conditional with its converse
is a common fallacy of mathematical reasoning (the “affirming the
consequent” fallacy). The next "most general" form is =p — —q, known
as the inverse of p — q, i.e., you negate both of the parts of the original
conditional. Similar to the converse, the inverse is not equivalent to the
original conditional (although the inverse and converse are equivalent
to one another, as they are the contra positive of each other). A
conditional, its converse, inverse, and contra positive together form a
logically interconnected system, that sheds light on the relationship
between p and q from different perspectives. In mathematics, chains of
conditionals often occur in sequence of logical deductions.
Hypothetical syllogism (or chain rule) given p — q and q — r we
obtain p — r formalizes the transitive property between logical
premises. In this spirit, the law is the basis for the structure of
mathematical proofs, which logically pull conclusions through chains
of implications that link the premises to what we normally call
theorems. The correspondence between conditionals and logical
equivalence is of particular importance. Let p and q be two propositions
such that both p and q are true; p — q is true; and q — p is true; then
p and q are logically equivalent symbolized as p «<» q. This relationship,
both ways, which can be expressed as "if and only if" (often referred to
as "iff"), becomes very important in mathematical definitions, and
characterizations, where the conditions that must hold are necessary
and sufficient. Conditionals are found throughout mathematical
arguments, in many different forms and contexts. In hypothetical
reasoning, we anticipate consequences based on an antecedent we
presume. Proof by contradiction involves assuming that the conclusion
is false, derive a contradiction, thus proving that =p — (q A —q) and
finally conclude that p must be true by the laws of classical logic.
Conditional statements also form the basis for the principle of
mathematical induction: to show that some property P (n) holds for all
natural numbers, one shows P(1) (the base case) and then shows that
P(k) implies P(k+1) for all natural numbers k (the inductive step). The
conditional structure of this statement reflects the reasoning behind the

inductive argument: given the truth of one case, you can infer the truth
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of the next. Besides classical propositional logic, there are different
alternative formulations of conditionals that have emerged to avoid
issues considered troublesome with the material conditional.
Conditionals in relevant real logic are demanded to have a legitimate
relationship between their antecedent and consequent. Intuitionist logic
interprets conditionals constructively: it doesn’t just need to say if for
an antecedent there is an antecedent, but requires methods to convert
evidence for the antecedent into that of the consequent. In probabilistic
reasoning, for example, the most natural counterpart of conditionals is
conditional probabilities, where P (q|p) measures the probability of q
when p is true. These alternative approaches reveal the multifaceted
nature of conditional reasoning compared with the truth-functional
definition offered by classical logic. The conditional appears in
particular mathematical contexts as well. An example from set theory
shows how to use “if ... then ...” statements: “if x € A, then x € B”
characterizes subset AC B. Another example: “if ||x — y|| <9, then [f(x)
— f(y)| < €” in functional analysis expresses continuity of a function f;
and in number theory “if n is prime, then n is either 2 or odd”
characterizes such property. As these examples show, the conditional
is one of the threads that shapes the logical relationships among
concepts and properties in mathematics. Object of interest:
Generalization and its connection between logic and mathematical
practice. The difference between material implication (the truth-
functional conditional of classical logic) and stronger notions of
implication in terms of relevance, causality, or necessity has led to a
lot of philosophical logic work. These are also considerations that
highlight the pivotal nature of conditional reasoning at the heart of
human thought in general and mathematical thought in the specific,
showing that the conditional has long been characterized as one of the
building blocks of logical inference and mathematical demonstration.
1.1.12. Biconditional and Logical Equivalence: The Foundation of
Mathematical Definitions

You can find detailed information about when two statements are
equivalent with the biconditional statement that is written using p <> q
(or p & q ). The biconditional is one of the most powerful tools we
have in mathematical logic, as it is used to establish logical
equivalence between two statements p and q. The implication in the

biconditional p — q is unidirectional and can simply be read as p
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implies q but biconditional says more; it is the simultaneous claim that
p and q are both true at the same time, or equivalently, that p implies q
and q implies p at the same time. This is the natural language phrase “if
and only if” (abbreviated as “iff” in the jargon of mathematical writing)
which is used to pin down precise definitions and characterizations as
well as the necessary and sufficient conditions all over mathematics.
Only with a truth-functional interpretation will the biconditional p <> q
be true exactly when p and q have the same truth value (either both true
or both false) and false when p and q have different truth values. This
is an example of the behavior captured in its truth table, where the
biconditional is only "true" in two of the four cases where p and g have
truth values: if both are "true" or both are "false." In more formal logic
terms, the biconditional is the conjunction of two implications saying
both that p implies q and that q implies p, or equivalently in terms of
disjunction either both statements are true or both are false. The
negation of a biconditional gives an exclusive disjunction (XOR): —(p
—q) =(pVYA—(pAQq)=p D q, stating that one — and not both —
of the statements is true. These relationships illustrate the key role of
the biconditional in capturing different kinds of logical relationships
between statements. The biconditional has some important algebraic
properties. Like conjunction and disjunction it is commutative (p <> q
=q < p), as one would expect from the symmetrical nature of logical
equivalence. It is also associative ((p <> q) <> r=p <> (q <> 1)), thus
allowing for unambiguous expressions of mutual equivalence among
multiple statements. The biconditional is reflexive (p <> p=T), in other
words, every statement is equivalent to itself, and it has a variant of the
transitive property: if p <> q and q < r, then also p < r, thus forming
an equivalence relation in the logical sense and partitioning the space
of statements into equivalence classes of propositions that are
interchangeable in a logical context. In mathematical practice, the
biconditional plays its most important role in definitions, where it
interconnects the definientia (the concept being defined) with the
definiens (the conditions which characterize the concept). For
example, the biconditional relation "A triangle is equilateral if and only
if all sides of the triangle have equal length" defines a biconditional
property of being an equilateral triangle. This also allows us to create
statements that in a sense compel the definition to serve as both

necessary and sufficient conditions, which speaks to how we use
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definitions in our logic. Mathematical definitions are highly logical,
and this structure nearly removes ambiguity because it specifically
dictates a condition for when a concept does apply. In addition to
formal definitions, biconditionals also arise in mathematical theorems
that say that different conditions or characterizations are equivalent.
Theorems of the type "The following statements are equivalent...
presents a list of conditions, claiming that each follows logically from
every other. These results are especially dear in mathematics because
they provide various insights into the same object, linking its intuitive
description with its more formal or abstract formulations. One example
is the following considered one of the central statements in linear
algebra “The following are equivalent for a square matrix A: (1) A
invertible; (2) det(A) # 0; (3) Ax = 0 has only the trivial solution; (4)
The rows of A form a linearly independent set...” gives distinct but
logically equivalent perspectives on matrix invertibility. In proving
such equivalence theorems, it is common to show a series of
implications (usually in a circular fashion), i.e., condition (1) implies
condition (2) implies condition (3).. implies condition (1). In proofs
in mathematics, biconditionals may sometimes appear as the
strengthened form of conditionals originally conjectured. However, not
only the result p — q — p <> q is stronger than the previous ones, but
also the progression from p — q to the equivalence gives a precise
and good characterization of the mathematical result. The biconditional
is also fundamental to logical equivalence and has a central role in the
logical equivalency of formulas or expressions. Two logical formulas
¢ and v are said to be logically equivalent, denoted ¢ = v, if and only
if ¢ <> y is a tautology (that is, true under every possible assignment of
truth values to the atomic statements they contain). The concept of
logical equivalence allows us to transform and simplify complex
logical expressions in a manner analogous to how algebraic
equivalence allows us to manipulate mathematical equations. Some
important examples of logical equivalence include De Morgan's laws
(—~(pAq)=—pV —qand ~(p V q) = p A —q), the law of contraposition
(p — q =—q — —p) and distributive properties (p A(QV1r)=(pAq)V
(p A 1)). The formal study of such equivalences is a rather large field of
mathematical logic, and provides some tools for logical simplification,
and analysis. In higher-level logical contexts, biconditionals relate to

quantifiers to represent uniqueness statements (as in defining the
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meaning of a function). To claim that there exists a unique element
satisfying property P(x), we say (3x) (P(x) A (Vy)(P(y) « y = x)) for
example. In a like manner, setting f(x)=y if and only if XYZ allows us
to specify exactly what makes f return the value y for the input x. This
can be interpreted in set theory, where biconditionals define criteria for
membership in a set: x € {y | P(y)} if and only if P(x). These instances,
along with others, show that the biconditional is ubiquitous in the
formal framework of mathematics — it furnishes the logical basis for
sharp definitions, characterizations, and unique specifications.
Biconditionals have applications in many fields including mathematics
and science. In computer science, biconditionals show up in logical
equivalence checking in circuit design and in specification languages
in software verification. In mathematical modeling, they assist in
formulating precise conditions that define phenomena of interest. This
reduces the demand for visualizable intuitions and concepts to make
sense of mathematics, particularly in formal verification and theorem
proving where optimally exhaustively, reasoning with logical
equivalences makes simple dynamic programming of formula and
transforming complex logical formulas valid. The idea of necessary and
sufficient conditions, expressed through biconditionals, organizes
scientific explanation, whether the discipline is physics, economics, or
medicine. Biconditionals have philosophical implications relating to

the nature of definition, mathematical truth, and conceptual analysis.
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Unit 1.2: Tautology, Contradiction, Logical Equivalence

1.2.1 Tautology, Contradiction, Logical Equivalence

Introduction to Fundamental Logical Concepts

Formal logic provides the language of mathematics. (Note: This
special language is such that it permits mathematicians to express
statements with clarity, analyze the meaning behind those statements in
a systematic way, and derive conclusions with certainty.) Three key
concepts in mathematical logic are the tautology, the contradiction, and
the logical equivalence. These principles are the foundation of higher-
level logical reasoning and underpin the abstractions behind math
proofs. A tautology is a logical formula that is always true, no matter
what values are assigned to the variables in the formula. A formula is
tautological when it evaluates to true regardless of the truth values
assigned to the variables within it. Because tautologies maintain their
truth regardless of context it makes tautologies a super powerful part
of mathematical reasoning. Take, for example, the law of excluded
middle: “P v —P” (either a proposition holds or its negation holds).
Regardless of what we plug in for P, this formula is always true. On
the other hand, a contradiction is a logical formula which is false under
all interpretations. A contradiction always evaluates to false regardless
of what truth values we use for its component propositions. The
simplest example is the formula “P A —P” (something and not
something are true at the same time), which can never be satisfied. This
is why, although it sounds contradictory, contradictions is my best
friend when making logical proofs, especially when we do proof by
contradiction (reduction ad absurdum) and prove something by
showing that its negation leads to an impossibility. Logical equivalence
is a relation between logical formulas. For two formulas to be
logically-equivalent means that if you have two formulas and under
every interpretation that assigns truth values to its propositions they
have the same truth values then the two formulas are logically-
equivalent. Not only do logical equivalences give mathematicians
other ways to write the same logical content, they also can inform
structural insights that can be buried in the original formulation. For
instance, the logical equivalence of "P — Q" (if P, then Q) and "—P Vv
Q" (not-P or Q) shows that implication can be meaningfully expressed

in terms of negation and disjunction alone. These three ideas —
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tautology, contradictory, and logical equivalence — are the foundation
for propositional and predicate logic. Reasoning is the basis for the
exact formulation of mathematical theories, the construction of valid
arguments, verifying whether systems of axioms are consistent. We
will cover formal definitions, methods of representing and exploring
properties of operations (truth tables, Laws of logic), mathematical
implications, and philosophical considerations as we undertake a
deeper exploration of these concepts. We will also identify
relationships between these logical ideas and sections of math like set
theory and algebra.

1.2.2 Formal Definitions and Truth Table Analysis

Propositional Logic:

Let's begin our tour of the world of tautologies and contradictions and
logical equivalences, with some basic building blocks of propositional
logic. In propositional logic, we deal with propositional functions,
which are statements that can be true or false, along with logical
connectives that can combine the propositional functions into
compound propositions. The basic logical connectives are negation (—),
conjunction (A), disjunction (V), implication (—), and biconditional
(«<). In propositional logic, a well-formed formula (WFF) is formed
according to specific syntactical rules. Propositional variables (P, Q, R,
etc.) are the simplest WFFs, representing atomic propositions. Logical
connectives are applied to simpler formulas to create more complex
WFFs. For instance, if P and Q are WFFs, soare =P, PAQ,PV Q, P
— Q, and P <~ Q. In a propositional logic, the truth values of
propositional variables are the building blocks for meaning, so the
semantics of a WFF is described by a truth assignment, which assigns
true or false to every propositional variable. Using the truth tables for
the logical connectives, the truth value of a compound formula can
then be calculated recursively. E.g., P A Q is true iff (<) if both P and
Q are true; P vV Q is true iff at least one (or in logic speak 1 of P or Q is
true and so on.

Tautologies: Universal Truths

Technically, a tautology is a well-formed formula (WFF) that is true
under every possible assignment of truth values. There are 2n such
truth assignments if a formula has n different propositional variables.
A formula is a tautology if and only if it is true for each of 2n of these

assignments. Take the formula P V —P. This formula has propositional
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variable P, so we have 2”1 = 2 different truth assignments. P can be
true or false. If P is true then —P is false; thus P vV —P is true. If P is
false, then —P is true, and P v —P is again true. This means that P v —P

is a tautology. Truth tables can be used to analyze more complex

tautologies. For instance, look at the formula (P — Q) < (—P VvV Q):)

Plo/p— o|-P-PvQl® -0~ PvQ
et [rlr o
el JrlF o
Frfr Jrjr o
et rjr o

Since the formula is true for all truth assignments, it is a tautology.
This tautology captures a fundamental logical equivalence between
implication and disjunction.

Example

Consider the proposition:

(pvV—p)

No matter what p is (true or false), this whole statement is always true.

Truth Table for a Tautology

p | -p |PV P

T F T
F T T
P T il

Fig: 1.8 Tautology
This is called the Law of the Excluded Middle in logic:
pVTp

It states: Either a statement is true, or its negation is true.
Always true, hence a tautology.
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Contradictions: Universal Falsehoods

A contradiction is a WFF, which is defined as evaluating to false under
all assignment of truth values. A tautology and a contradiction are the
negations of each other. The simplest contradictory is P A =P: when P
is true, —P is false — P A —P is false. If P is false, then —P is true, but
in that case, P A —P will still be false. Therefore, P A =P is false under
any truth assignment, and it is contradiction. The Contradictory
example is (P V Q) A =P A —Q; again we will analyze truth table in this

formula, it was found that this formula will always be false:

plo|p v @-p|-q|-P A-Q|Pv @) A-P @
frfr [ |F F
et | |F F
Frfr |t r |F F
Felr o |r F

It can be confirmed that this formula is a contradiction because it
evaluates to false under every possible truth assignment. Thus this
contradiction shows that a disjunction cannot hold true when both of its
disjuncts are false.

Logical Equivalence: Structural Insights

A WFF A is logically equivalent to a WFF B (notated A = B) if two
WFFs are equivalent if they have the same truth under all assignments
(i.e. all interpretation). A = B if and only if A <> B is a tautology. To
prove =(P A Q) =—P vV —Q (De Morgan’s laws), for example, we can
use a truth table:

#o/P 2 |- 2 0)-P|-0|-Pv-0
Trfr |r FF |F
EEF T ET T
EEF T EF T
EEF T ET T

Since all possible assignments of truth values yield the same result for
—(P A Q) and =P vV —Q, they are logically equivalent. Other important
logical equivalences include:

e Double Negation: —P =P

e Commutatively: PAQ=QAP;PVQ=QVP

e Associatively: ( PAQ)AR=PA(QAR);(PVQ)VR=PV(Q

VR)
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e Distributive: PA(QVR)=(PAQ)V(PAR); PV(QAR)=(P
VQ)A(PVR)

e De Morgan's Laws: =(P A Q) =P v—Q; =(PV Q) =P A—Q

e Implication: P - Q=-PVvQ

e Contra positive: P - Q=—-Q — —P
This guild like explanations really helps to reason about how logical
equivalences works in mid you.
1.2.3. Properties and Theoretical Foundations
Algebraic Structure of Propositional Logic
Tautology, contradiction, and logical equivalence are closely
associated with the algebraic structure of propositional logic. Sure
enough: the collection of all WFFs of propositional logic, considered
up to logical equivalence, is a Boolean algebra, a mathematical
structure that lies at the heart of connections from set theory and
topology, to digital theater set design. In this algebraic setting,
tautologies correspond to the top element (denoted 1), contradictions
correspond to the bottom element (denoted 0), and logical equivalence
corresponds to equality. Complements, interactions and unions in
logical connectives correspond respectively to —, A and V. This
abstract view gives a useful machinery for understanding and
transforming logical formulas. For instance, one of the rules in Boolean
algebra is the duality principle, which says that if we replace A with vV
and tautologies with contradictions in any theorem, we get another one
which is also correct. De Morgan’s laws and numerous other logical
equivalences echo this duality.
Normal Forms and Canonical Representations
In propositional logic, every WFF emerges logically equivalent to
formulas in different forms of normal forms which served standardized
forms helpful for analytical and practical usages. A formula is in
conjunctive normal form (CNF) if it is the conjunction of disjunctions
of literals, and a literal is either an propositional variable or its negation.
E.g. (PV—Q)A (=P Vv R)isin CNF. All of these logical equivalences
are in fact based on the fact that every WFF can be converted to a
logically equivalent formula in CNF. In a parallel fashion, a formula is
in disjunctive normal form (DNF) if it consists of a disjunction over
conjunctions over literals. E.g. (P A =Q) V (=P A R) is in DNF. Once

more, every WFF is equivalent to a logically equivalent formula in
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DNF. These normal forms have significant theoretical and practical
consequences:

* A formula is a tautology if and only if its disjunctive normal form
(DNF) has its clauses span for all possible conjunctive clauses (or,
equivalently, that its conjunctive normal form (CNF) reduces to a single
literal).

* A formula is unsatisfiable if and only if its DNF is integral empty
disjunctive clauses (or equivalently if its CNF is unsatisfiable).

* Two formulas are logically equivalent iff they have the same
canonical DNF or CNF forms.

Decision Procedures and Computational Complexity

This is known as the satisfiability problem (SAT): a formula is
satisfiable (SAT) if at least one truth assignment makes it true and
unsatisfiable (UNSAT) if no truth assignment makes it true (i.e. a
contradiction). A formula 1is tautologous iff its negation is
unsatisfiable. For propositional logic, the problem of satisfiability is
decidable: that is, there is an algorithm that can determine, for an
arbitrary WFF, whether it is satisfiable. The simplest method is to
build a truth table and test all truth assignments. But this means we need
to evaluate 2”n assignments where n is the number of propositional
variables in the formula, which is computationally infeasible for large
n. Since then, more efficient algorithms, e.g., the Davis-Putnam
Logemann Loveland (DPLL) algorithm and modern SAT solvers based
on conflict-driven clause learning have been devised. However, the
SAT problem is NP-complete, which means that no polynomial time
algorithm for solving it is known (or believed to exist) in the general
case. The implications of this computational complexity are far-
reaching, impacting fields such as artificial intelligence, formal
verification, and cryptography. Research on efficient decision
procedures for identifying tautologies, contradictions, and logical
equivalences is still ongoing.

Logical Consequence and Entailment

Tautology, contradiction, and logical equivalence are related to the
concept of logical consequence or entailment, indicated by the symbol
. We say that a set of formulas I" logically entails a formula A (I' &
A) if and only if every truth assignment making all formulas in I true
also makes A true. The following are some of the major relationships

between these concepts:
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* [ A is a tautology] iff £ A (i.e., A is entailed by the empty set of
premises).
* A formula A is a contradiction iff A &= B for any formula B (from a
contradiction follows anything).
* A and B are logically equivalent (A < B) if and only if A = B and B
F A Analyzing the second point we can see that our statement (2) is
derivation from (1) and simply means that if we know that A implies B
we can actually think about ~A as A does not hold we can say I have
Derived —A (1) implies (2)
They form the semantic underpinning of more formal deductive
systems, in which a proof (typically noted with the symbol F)
corresponds to a syntactic derivation with respect to a (possibly
infinite) set of rules. One of the fundamental results of mathematical
logic is the soundness and completeness theorem, which states that for
a certain deductive system, we have A+B if and only if A & B, bridging
the semantic notion of entailment with the syntactic notion of proof.
1.2.4. Applications in Mathematical Reasoning and Proof
Techniques
Tautologies as Logical Laws
In mathematics, tautologies function as the laws or principles (§ 10.) of
logic that dictate what valid reasoning is. They are statements that will
be true regardless of the situation and in which context you use it,
without destroying the validity of an argument. Examples of such basic
tautologies, which are logical laws, are:

e Law of Excluded Middle: P v—P

e Law of Non-Contradiction: ~(P A—P)

e Law of Double Negation: P <> —P

e Modus Ponens: (PA(P—Q)) —Q

e Modus Tollens: (—Q A (P — Q)) —»—P

e Hypothetical Syllogism: (P — Q) A (Q - R)) = (P —>R)

e Disjunctive Syllogism: (P V Q) A—P) — Q
The basis of formal deductive systems consists of these tautologies
which serve as the elements upon which valid mathematical proof can
be built. This is also known as a "formal proof" in which you can justify
every step either by applying a logical law (tautology) or citing a
theorem or axiom that you've proven before. For instance, let's prove

the statement "If n is odd, then n? is odd." Let P be the statement "n is
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odd" and Q the statement "n? is odd." We need to show P — Q and we
might do so as follows:
1. Ifnis odd, then n =2k + 1 for some integer k. (Definition)
2. Ifn=2k+1,thenn?>= 2k + 1)>=4k> + 4k + 1 = 2(2k> + 2k) +
1. (Algebraic manipulation)
3. Ifn*=2m+ | for some integer m, then n? is odd. (Definition)
4. Therefore, if n is odd, then n? is odd. (Hypothetical Syllogism)
Each step in this proof relies on logical laws (tautologies) that ensure
the validity of the reasoning.
Contradictions and Proof by Contradiction
A common method in mathematics is proof by contradiction (reductio
ad absurdum). The basic idea is to start by assuming the negation of
whatever you want to prove and then show how that leads to a
contradiction. Which leads us to the conclusion that since
contradictions are universally false, the original assumption must be
wrong, and subsequently the statement to be proved must therefore be
true? The logic behind proof by contradiction derives from the
tautology (P — Q) A (P — —Q)) — —P; that is, if we can demonstrate
that some hypothesis P both leads to a Q and also to —~Q then P must be
false (because this combination cannot be true). For example, consider
proving that V2 is irrational. We proceed by contradiction:
1. Assume V2 is rational. (Assumption for contradiction)
2. If~2 is rational, then V2 = a/b for some co prime integers a and
b, where b # 0. (Definition of rational number)
3. If V2 = a/b, then 2 = a%b?, thus a®> = 2b2 (Algebraic
manipulation)
4. If a*> = 2b?, then a? is even, and therefore a is even. (Properties
of even numbers)
5. Ifais even, then a = 2c for some integer c. (Definition of even
number)
6. If a = 2c, then a? = 4¢?, thus 2b? = 4¢?, and therefore b? = 2¢2.
(Substitution)
7. 1f b% = 2c?, then b? is even, and therefore b is even. (Properties
of even numbers)
8. If both a and b are even, then they have a common factor of 2.
(Definition of evenness)
9. But this contradicts the assumption that a and b are coprime.

(Contradiction)
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10. Therefore, \2 is irrational. (Proof by contradiction)

This shows that by identifying a contradiction we can eliminate an

assumption and we can thus prove the veracity of its opposite.

CONTRADICTION

Assumption
is true

Conclusion
is true

Conclusi
is false

Fig: 1.2.1 Contradiction

Logical Equivalence in Simplification and Transformation

Logical equivalences help mathematicians to provide the most
simplified/meaningful representation of complex validities. This kind
of substitution of sub expressions for logically equivalent alternatives
can serve to clarify the logical structure of a statement, or expose
connections that were not immediately obvious. For instance, a logical
statement in the form of "If it is not raining then I will go for a walk,
but if I do not go for a walk then it is raining." Let P be “It is raining”
and Q be “I will go for a walk.” Formally speaking, this can be
expressed as ("P — Q) A (—Q — P). We can condense this expression
using logical equivalences: Using P - Q=—-P VvV Q(—P — Q) A (—Q
—P)=PVQ)A(QVP) (Commutatively of V) =(PV Q) A (P V Q)
(Idempotence of A) = P v Q Likewise, logical equivalences are of
utmost importance in mathematics as we need to manipulate theorems
or definitions to some other formulations. For example, the epsilon-
delta, limits, and sequence definitions of continuity of a function at a
point all say the same thing. All three formulations are logically
equivalent, and mathematicians are free to use whichever form suits a

particular context.
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Propositional Logic in Computer Science and Engineering

In computer science and engineering, the concepts of tautology,
contradiction and logical equivalence are useful in formal verification,
digital circuit design, and automated theorem proving, among other
things. In formal verification, one wants to show through purely
mathematical means that a system (like a computer program or an
electronic circuit) satisfies certain properties or specifications. This is a
logic problem: Given that S captures the behavior of the system and
that P is the property we desire, we need to check that S — P is a
tautology. Automated approaches for tackling such verification
problem are model checking and satisfiability solvers. It makes perfect
sense to describe digital circuitry in logical expressions (for example,
cannot be more naturally expressed). A tautology corresponds to a
circuit that is always 1 (true), regardless of the inputs; a contradiction
corresponds to a circuit that is always 0 (false); and logical equivalence
corresponds to two circuits that has the same input-output behavior. It
is from this Boolean algebra and logical equivalences that many tools
can be used to such ends to minimize and maximize circuits logic which
conforms to their logic types. In automated theorem proving,
automated computer programs attempt to discover proofs of instances
of mathematical theorems automatically. If the negation of target
theorem is converted into CNF, the resolution rule can be applied to
derive a contradiction, and this is the approach of resolution-based
theorem proves. If a contradiction is derived, then the initial theorem
therefore is proven true. This automating of logical reasoning has
transformed entire fields as diverse as mathematics and artificial
intelligence.

1.2.5. Extensions to Predicate Logic and Modal Logic

Quantifiers and Validity in Predicate Logic

Propositional logic gives the background on things like tautologies,
contradictions, and logical equivalents, but many mathematical
statements need the extra power of predicate logic. Predicate logic adds
quantifiers (V for "for all" and 3 for "there exists") and predicates
(relations between objects) to propositional logic. In predicate logic,
these notions generalize to validity, satisfiability and logical
equivalence with respect to all interpretations (not just truth-
assignments). An interpretation in predicate logic assigns a domain of

discourse, interprets predicate symbols as relations on the domain,
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interprets function symbols as functions on the domain, and assigns
domain elements to constant symbols. In predicate logic, a formula is
valid (like a tautology) if all interpretations satisfy it. For example, Vx
(P(x) — P(x)) is valid because it is true for any set of objects in the
domain and for any interpretation of the predicate P. If it is false under
all interpretations, then a formula is unsatisfiable (similarly, a
contradiction). As an example, 3x(P(x) A ~P(x)) is unsatisfiable since
there is no element that satisfies P(x) and —P(x) at the same time. Two
formulas are said to be logically equivalent if they have the same truth
value for all possible interpretations. In particular, —Vx P(x) ~ 3x
—P(x) (one of the De Morgan laws for quantifiers). In predicate logic,
the analysis of wvalidity is exponentially more complicated than
propositional logic. In propositional logic, determining whether a given
formula is a tautology is decidable (i.e., there is an algorithm that can
answer this question), but for predicate logic, the validity problem is in
general undividable (as shown by Church’s theorem).

Modal Logic and Possible Worlds Semantics

Modal logic is an extension of classical logic it includes operators that
qualify the truth of a proposition relative to a certain modality (e.g.
necessity,0d or possibility,<). These modalities enable a finer logical
treatment, especially of statements about what must be true, might be
true, 1s known, is believed, or should be the case. The definitions of
tautology, contradiction, and logical equivalence that we have seen in
propositional logic are generalized in modal logic, taking these
additional operators into account. A common semantic framework is
the powerful possible worlds semantics (or Kripke semantics), where,
rather than evaluating formulas in isolation in a single world, one
considers a collection of related possible worlds. In modal logic, a
formula is a logical necessity (the modal analogue of a tautology) if
there is no possible world in which it is false in all possible models. For
example, o(P v —P), which claims that the law of excluded middle is
necessarily true, is a logical necessity. A formula is logically
impossible (akin to an inconsistency) if it is false in every possible
world in all possible models. In modal logic, two formulas are said to
be logically equivalent when they have the same truth value in all
possible worlds in all possible models. For instance, it is logically
equivalent that oP iff ~G—P (P is necessary only if it is not possible
that —P). Different systems of modal logic (such as S4, S5, or K) are
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distinguished by their axioms governing the behavior of the modal
operators, reflecting different ideas about the meaning of necessity and
possibility.

1.2.6. Philosophical Implications and Foundational Issues

Logical Truths and the Nature of Mathematics

This remarkable property raises deep philosophical concerns regarding
the mind and mathematical truth; the nature of such statements, called
tautologies, states that they can only be true because of their logical
form, a unique quality. Are the truths of mathematics just ornate
tautologies, as some logicist philosophers have claimed? Or do they
have some alternative epistemological status? The logicist program
originated with Got lob Frege and Bertrand Russell, who sought to
reduce mathematics to logic by proving that all mathematical concepts
could be defined in terms of logical concepts, and that all mathematical
theorems could be derived from logical axioms. In this view,
mathematical truths would, indeed, be complex tautologies. But it was
not without significant challenges. Kurt Godel's incompleteness
theorems showed that any consistent formal system capable of
expressing elementary arithmetic contains statements that are true but
cannot be proved in the system. This means that there are true
statements in mathematics that cannot be proved via a formal
approach, this implies that "mathematical truth" is more than what can
be described by formal logical systems. There is a philosophical debate
here too: Platonism (mathematical objects exist independent of human
minds), formalism (mathematics amounts to manipulating meaningless
symbols according to formal rules), and intuitionism (mathematical
objects are mental constructions), structuralism (mathematics studies
abstract structures). In addition to this technical comedy, tautology in a
sense answers the question by establishing the constraint of what is
effectively mathematical knowledge, the line separating the logical
and extra-logical components of our formal system (David Farber and
Steven G. Krantz, "Tautology").

The Law of Non-Contradiction and Para consistent Logics

The law of non-contradiction (formally — (P A —P)) has been a
fundamental tenet of Western philosophy since Aristotle. It states that
a statement cannot be true and false at the same time. This is the
principle behind the idea of non-contradiction in classical logic and

justification for proof by contradiction in mathematics. Nevertheless,
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certain philosophical and mathematical situations have inspired the
formation of par consistent logics, which relax the explosive principle
of classical logic (that a contradiction implies any arbitrary statement).
Such logics admit contradictions and avoid early trivialization. Non-
classical logic is an umbrella term for a slew of alternatives to classical
propositional and predicate logic, including temporal and modal logic,
deontic logic, relevance logic and intuitions logic. For instance, the Liar
Paradox (“This statement is false”) appears to yield the result that the
statement is simultaneously true and false, a contradiction. Para
consistent logics offer systems for reasoning about these sorts of
paradoxes without descending into total inconsistency. Para consistent
logics raise some baffling considerations about what logical laws are
and whether the law of non-contradiction applies universally. Most
mathematicians still work within classical logic, but studying other
logical systems deepens our comprehension of the nature of
mathematics and the prospects for logical reasoning.

Logical Equivalence and the Problem of Translation

Logical equivalence also leads to philosophical questions about the
nature of meaning, identity, and translation. Do two logically
equivalent formulas express the same proposition? Or do they have
different propositions that just happen to have the same truth
conditions? Applying W.V. Quince’s idea of the indeterminacy of
translation, you could tell your friend that as there are multiple equally
valid translations of a statement from one language to another, there
exists no fact of the matter about any statements which translation is
"correct." This indeterminacy raises questions about the assumption
that logically equivalent statements express the same meaning. In
practice, logically equivalent statements of theorems or definitions
give different perspectives or suggest different generalizations. The
Jordan curve theorem, for example, can be stated in terms of point-set
topology or in terms of homology theory. These formulations are
logically equivalent, but emphasize different aspects of the result and
point to different mathematical traditions. Logical equivalence bears
philosophical implications for the individuation of propositions, the
nature of syntax-semantics connections, and the nature of
mathematical grasp. It highlights the intricate relationship between

formal logical form and the substance of mathematical theories.
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1.2.7. Advanced Topics and Emerging Directions

Many-Valued Logics and Fuzzy Logic

Classical logic is bivalent: it allows only two truth values, true and
false. Under this definition, tautology, contradiction, and logical
equivalence are straightforward. Nonetheless, not only applications in
mathematics, computer science, and linguistics motivated the
development of many-valued logics, which permit the introduction of
other truth values, besides true and false. In a multi-valued logic a
tautology is generalised to one formula that always gets the designated
truth value (typically the maximum value), irrespective of the truth
values of the proposition forming her. A formula is a contradiction if
and only if it always has the non-designated truth value (commonly the
minimal value). It should hang on the definition of logical equivalence,
having the same truth values under all relevant assignments. Fuzzy
logic takes this one step further by specifying that truth values may be
any real number in [0, 1], indicating the degrees of truth. In fuzzy logic,
a tautology is a formula that has degree of truth 1 under all
interpretations, a contradiction has degree 0 under all interpretations
Logical equivalence means the having the same degree of truth under
all interpretations. Applications include artificial intelligence, control
theory, and semantics of vague natural language statements. They’re
mathematical structures that serve as general tools for reasoning with
uncertainty and incomplete truth, generalizing logical systems beyond
the rigidities of classical true/false.

Quantum Logic and Non-Classical Logics

Many intuitions about physical reality and many more found in
classical logic were put on bushwhacked notice with the advent of
quantum mechanics in the early 20th century. However, quantum logic
was developed as a logical framework that better accommodates our
reasoning about quantum phenomena. In quantum logic, the
distributive law of classical logic (P A (QV R)=(P AQ)V (P AR))
does not in general hold. This breakdown illustrates the non-classical
behavior in quantum systems, which mainly represents
complementarily: some properties of quantum systems cannot be
measured simultaneously with arbitrary precision. Tautology,
contradiction, and logical-equivalence need to be rethought in this
non-classical setting. A quantum tautology means a formula that

evaluates to "true" under any quantum-mechanical interpretation. In
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parallel, quantum logical equivalence would ensnare the equal conduct
of logically correlated quantum propositions. Various other non-
classical logics have been devised for different purposes, such as
intuitionist logic (which does not accept the law of excluded middle),
relevance logic (which requires some relevant connection between the
premises and the conclusion in an argument), and linear logic (which
treats logical formulas as resources that can be consumed when they
are used). We have built a whole diversity of logical systems, each
with unique views on tautology, contradiction, and logical equivalence.
Computational Aspects and Automated Reasoning

Finding tautologies, contradictions, and logical equivalences is a
fundamental task in automated reasoning systems, such as theorem
provers, symbolic computation software, and artificial intelligence
systems. By using efficient algorithms for these tasks computers can
contribute to mathematical research, the verification of software and
hardware, and knowledge representation. PAR(allelism, across
architectures and domains)Recent advances in SAT solving (i.e.,
deciding the satisfiability of propositional formulas) have resulted in

significant progress for the solution of large-scale problems.
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Unit 1.3: Relation

1.3.1 Relation, Types of Binary Relation, Equivalence Relation

Introduction to Relations

Fig: 3.1.1 Relation

Based are sets, the relations are the basic structures of the mathematics,
formalizing the connections between the objects of the sets. They
feature in the mix across disparate branches of mathematics and
computer science, from abstract algebra to database theory. In formal
terms, a relation R from a set A to a set B is a subset of the set of ordered
pairs A x B, which is the set of pairs (a, b) where a € A and b € B; if
a relation R contains (a, b), we also say that a is R related to b, and we
commonly write aRb to denote it. Relations are a fundamental tool for
abstraction and generalization of mathematical concepts and are used
to describe, in a more general way than through functions, orderings,
equivalences, and entities that combine various previous relations.
Today, the study of binary relations on one set (A = B) is the foundation
for many of the algebraic and structural properties investigated by the
field of discrete mathematics. This relation can be represented as a
directed graph, a matrix, or a set of ordered pairs, each of which has its
uses in different cases. SUPER (Relations) — The study of relations
enables mathematicians to abstract phenomena at hand and free the core
focuses of the problem from unnecessary details, leading to the
development of concepts that may not arise otherwise. We will discuss
different types of relations, their properties, and how they can be used
to model real-world scenarios and solve mathematical problems.
Relations play a major role in the intuitive go between connection and
the brains of structures of formal mathematics and are therefore

essential for building a solid groundwork in higher mathematics.
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Relations; In computer science, relations are the theoretical basis for
relational databases (which store data in tabular format). The
connection is an instance of how the mathematical theory of relations
has practical significance beyond its theoretical interest. Relation
theory was developed in relation to early set theory dating back to the
work of mathematicians like Georg Cantor, Richard Dedekind and
Ernst Schroder from 1874 to the late 19th century. But it was over the
course of the 20th century that the formal theory of relations developed
significantly, largely credited to Alfred Tarski, Alfred North Whitehead
and Bertrand Russell and their magnum opus "Principia Mathematical."
relation theory is an area of active research, and it is used in several
modern fields such as artificial intelligence, machine learning, and
network theory.

1.3.2. Formal Definition and Representation of Relations

A binary relation R from set A to set B is defined as a subset of the
Cartesian product A X B, and if A = B the term binary relation can refer
to a binary relation on A. There are multiple ways of representing
relations, each of which has its own advantages in a given context. The
simplest form is a collection of ordered pairs of the form {(a,b): a €
A, b € B, aRb} Alternatively, a relation on a finite set can be
represented using a matrix, where the rows of the matrix are the
elements in the first set, columns are the elements in a second set, and
the entries indicate whether the elements are related (1) or not (0). For
relations defined over a single set, digraphs (directed graphs) provide
an intuitive pictorial representation: vertices can be thought of as
elements from the set and directed edges represent (ordered) pairs that
are related. Different aspects of the relation are emphasized and
different types of operations and analyses facilitated by the respective
representation. Matrix representations allow common computational
operations (e.g., relation composition) to be performed via matrix
multipli- cation, while direct visualizations (like graphs) give instant
insights about properties of interest (e.g., connectivity, cycles, etc.). In
addition, the relations can also be expressed as predicates or formulas
of a logic that identifies under what conditions elements are in a
relation. P(x, y) is an example of a predicate since the "less than"
relation on integers can be defined by this predicate: it would be true if
x <y. This connects relation theory with logic and allows logical

machinery to help us analyze relations. Representation depends on the
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application and studied properties. Generation of this description will
naturally depend on the relation in question: for small relations, it might
be most natural to enumerate the ordered pairs, whereas computation-
intensive enumerations for much larger relations may be better
expressed as algebraic expressions or logical formulas defined by
membership. Adjacency lists or sparse matrices may be used to store
relations in computer implementations to save space and improve time
complexity. More advanced data structures like binary decision
diagrams (BDDs) can compress relationships into a format that
enables fast operations. Set theory underlies a more formal approach to
relations that provides a basis for many useful structures in
mathematics, including functions (special cases of relations), partial
orders and equivalence relations, not to mention algebraic structures
such as groups and rings. What this means is that by abstracting away
the details, mathematicians can find similarities between mathematical
objects that may have looked completely unrelated, and then create a
unified theory to describe all of these once separate objects. Relations
exercise a theory direction that fits nicely into both practical and
theoretical bridges; for example, design guides for the relational model
of databases stem from direct mapping of relations as an entity-
relationship diagram into relational algebra, while problems in
computational complexity often revolve around relations over input
and output.

1.3.3. Properties of Binary Relations

All binary relations have some important properties that describe their
behavior and structure. For all a € A, a relation R on A is reflexive iff
(a, a) € R. A relation R is reflexive if no element is related to itself, so
(a,a) € R for all a € A, and it is symmetric if, whenever (a, b) € R, we
also have (b, a) € R (so if a is related to b, then b is related to a): and,
conversely, a relation is ant symmetric if, whenever (a, b) € R and (b,
a) € R, then a = b (so no two distinct elements can be related in both
directions). A relation is asymmetric if it is both reflexive and ant
symmetric, which means that (if (a, b) € R) => (b, a) € R; Transitivity,
is another key property: R is transitive if if (a, b) € R A (b, ¢) € R then
(a, ¢) € R and means the relation "carries through" chains of related
elements) All these properties are not mutually exclusive and relations
can have different combinations of them. For example, a relation could

be reflexive and symmetric but not transitive. A relation has certain
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properties which influence the behaviour of the relation
mathematically, and what kind of structures it can model. Relations
that are reflexive, symmetric, and transitive are called equivalence
relations, and they partition sets into disjoint equivalence classes.
Reflexive, ant symmetric, and transitive relations form partial orders
that can represent hierarchical structures. As relations can be
represented in various ways, each property could be verified using
different methods. Reflexivity thus equates to having all 1s on the main
diagonal in matrix representation; and symmetry in the main diagonal
of the matrix. Transitivity can be checked via matrix multiplication: let
M be the relation matrix; then R is transitive iff M? € M (where M? is
obtained via Boolean matrix multiplication). Reflexivity, symmetry,
and transitivity can also be interpreted in terms of the representation of
relations as graphs. Reflexivity corresponds to a self-loop on every
vertex, symmetry to edges being bidirectional, and transitivity to the
condition that if there exists a path from a to b and a path from b to c,
then an edge from a to c also exists. Graphs also have operations such
as complementation, inversion, and composition over relations that
create new relations, impacting these properties. Order theory, which
focuses on the structure of partial and total orders, and algebraic
structures such as lattices and Boolean algebras defined in relation to
certain types of relations centers around relation properties. In the field
of computer science, knowledge of relation properties plays an
important role in database design (functional dependencies), algorithm
analysis (recurrence relations), and formal verification (transition
relations in state machines).

1.3.4. Types of Binary Relations and Their Applications

Binary Relations: Binary relations can be categorized in many types
according to their properties, these categories are having various
applications in all over the mathematics and computer science.
Reflexive, symmetric, and transitive relations are known as
equivalence relations, one of the most important relations in terms of
abstract algebra, topology, and number theory. They divide sets into
non-overlapping equivalence classes, allowing the construction of
quotient structures and abstract models. An example of equivalence
relation is the congruence modulo n, which is a equivalence relation
that is the basis of modular arithmetic, which is important in fields like

coding theory and cryptography. A partial order is an ordering that is
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reflexive, ant symmetric, and transitive; partial orders are useful for
modeling hierarchical orders, such as taxonomies, organizational
charts, and dependencies between tasks in project management. If
every pair of elements is comparable, we instead have a total order,
such as the standard ordering of real numbers. An example of a preorder
(both reflexive and transitive relation) is used in preference modeling
and category theory; An example of tolerance relations (both reflexive
and symmetric) is used in approximate reasoning and fuzzy logic."
Functional relations are mathematical functions — every item within
the domain corresponds to exactly one item within the co domain.
Functions can be categorized as injective (one-to-one), subjective
(onto), or bijective (both), and play an important role in solving
equations and showing size equivalence between sets. Circular
relations display cyclical patterns, where elements can be arranged into
cycles — think rotate groups or periodic phenomena in time series
analysis. Cyclic ordering relations extend "between’s" to ternary
relations over elements: they are used for example when representing
points on a circle, or for scheduling cyclic events. Proximity relations
measure the closeness or similarity between two objects and play an
integral role in both cluster analysis, pattern recognition, as well as in
many machine learning algorithms. Dominance relations compare
objects with respect to multiple criteria and have been widely used in
multicriteria decision making and game theory. In graph theory,
binary relations form their foundation too: the edges are the
relationships between the vertices. Specific relations and hierarchies
(file systems, company structure, etc) are represented by special graph
structures, such as trees (acyclic connected graphs). Relations in a
relational database mean tables and foreign keys create relationships
between entities. The operations of relational algebra (such as
selection, projection, join) are performed upon these relations to query
and transform data. Relations can be used to represent connections
between people (or nodes) in network models in sociology and
communications, which allow for the analysis of information flow, the
patterns of influence within a social network, and commModuley
structures. Causal relations in statistics and empirical sciences describe
cause-effect relationships that are core to prediction and explanation.
Understanding these different patterns of relations helps

mathematicians and computer scientists find models that suit the
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phenomena and exploit relation properties to solve various problems
efficiently. The classification of relations is a powerful framework for
recognizing similarities across domains and applying known
mathematical techniques to situations they were not designed for.
1.3.5. Equivalence Relations and Partitions

Equivalence relations have a particularly nice place in mathematics,
because they are intimately related to set partitions. A relation R on a
set A is an equivalence relation if and only if it is reflexive (aRa for all
a € A), symmetric (if aRb, then bRa) and transitive (if aRb and bRc,
then aRc). These properties guarantee that an equivalence relation
partitions the set into disjoint subsets, known as equivalence classes,
each class containing elements related to each other. For any element a
€ A, its equivalence class [a] is the set of all elements equivalent to a,
given by [a] = {x € A | xRa}. A foundational theorem of set theory
shows that, for any set a, an equivalence relation on that set induces a
partition of that set into disjoint equivalence classes, with a unique
equivalence relation deriving from a partition. The one-to-one
correspondence between equivalence relations on a set and partitions
of that set is particularly useful in abstract mathematics and its
applications. By grouping elements according to their relevant
properties and ignoring their irrelevant differences, equivalence
relations allow for abstraction. Equivalence relations allow us to "mod
out," leading to structures called quotients that can provide insight and
streamline many complex problems. For example, congruence modulo
n (where a=b (mod n) iff n | (a — b)) decomposes integers into residue
classes 0, 1,..., n-1 mod n, and is used in modular arithmetic with
applications in computer algorithms and cryptography and number
theory. Equivalence relations arise in abstract algebra as congruence’s
in groups, rings, and other algebraic structures, enabling the formation
of quotient structures such as quotient groups and quotient rings. In this
framework, quotient structures allow for the retention of key algebraic
characteristics while simplifying the structure, enabling the
classification and analysis of various algebraic systems. In topology,
we use equivalence relations to obtain quotient spaces like the torus that
is formed by identifying opposite edges of a rectangle. Translations,
rotations, and reflections between sets of geometrical figures yield
equivalence relations in which equivalent figures are considered the

same under the transformation. In computer science, equivalence
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relations represent state equivalence in the minimization of finite
automata, streamlining computational resources and preserving the
recognized language. Hash tables are data structures that utilize
equivalence relations to organize data efficiently by using hash
functions. However this last definition leaves us with some
computational aspects, namely: canonical elements representatives for
equivalence classes and fast decision if two elements belong to the
same class. Union-find data structures solve this problem using near-
constant time operations, making them useful to network connected
components, minimum spanning trees, and some computational
geometry algorithms. Fuzzy equivalence relations and tolerance
relations, which generalize the notion of strict equivalence to capture
similarity or approximate equality, are also covered by equivalence
relation theory. Where these generalizations can be applied are pattern
recognition, clustering algorithms and artificial intelligence. This is
essentially what equivalence theory represents a bridge between all
extremes of mathematics, from the most esoteric theoretical
constructs, down to the most concrete application oriented
computational problem, all relating through a fundamental power of
relation theory that allows to highlight essential structures across
heterogeneous contexts.

1.3.6. Operations on Relations and Relation Algebras

Relations can be combined and transformed through various
operations, forming algebraic structures called relation algebras. These
operations allow relations to be manipulated and analyzed
systematically. The basic operations are unions (R U S), intersections
(R N'S), and complements (R) of relations, which obey the same
principles known as the theory of sets as relations are set of tulles. If R
is a relation, its inverse (or converse) is denoted R™, and consists of all
the pairs (b, a) such that (a, b) € R — this simply reverses the direction
of R. If R and S are both relations, the composition of R and S, denoted
R o S, is the set of all pairs (a, ¢) such that there exists (b) where (a, b)
€ R and (b, ¢) € S, which generalizes function composition to arbitrary
relations. Those operations obey a number of algebraic laws, including
associatively of composition and distributive of composition over
union, and they serve as the foundation of relation algebra. Rhetorical
question marks reward any good child who put all of one letter before

the next: Not only do you can compute on pure sets, but there are
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additional operations like the relative product (R|S), where you
multiply set R by the inverse of S, the domain restriction (E<IR) of
pulling the first components of R into those in a set E, or the range
restriction (R>F), which limits the second components to F. Relation
algebras, which were formalized by Alfred Tarski and his students,
gives an axiomatic framework with which to study relations abstractly.
These algebras become Boolean algebras and have additional
operations finding a reflection of the relation theory, with a connection
to logic, to set theory and to abstract algebra. In the late 19th century,
Augustus De Morgan and Charles Sanders Peirce developed a calculus
of relations, which was later further developed by Ernst Schroder. One
can solve relational equations and do reasoning with respect to
relations with this symbolic calculus. This calculus can be used in
automated theorem proving, program verification and artificial
intelligence. Transitive closure R* creates the least transitive relation
whose projection contains R, and reflexive transitive closure R* simply
includes if R has the reflexivity as well. Performing these operations is
essential in many applications including graph theory, parsing
algorithms, and reach ability analysis in networks. In particular,
relations are a central feature of database management systems, and
relational algebra (selection, projection, join, etc.) serves as the
theoretical underpinnings for query languages (e.g. SQL). The
performance of the database is affected by the efficiency of these
operations, leading to research in query optimization and algorithm
design. For instance, binary decision diagrams (BDDs) and other
symbolic representations in the area of computer science make it
possible to efficiently manage and manipulate enormous relations and
play a primary role in applications related to model checking,
constraint satisfaction problems, and in the formal verification of
hardware and software systems. Dynamic relations: such relations vary
in time or are modified as new information becomes available, and as
such requites are special operations and representations. Temporal
relation algebras are generalizations of classical relation algebra
employed to describe relations involving time, which are commonly
used in temporal databases, scheduling and event processing systems.
Relation algebras are both expressive and syntactically rich, making
them useful for a wide range of applications across mathematics and

computer science, including theoretical work in category theory, as
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well as practical implementations such as graph analysis and query
processing in databases. Relations are a powerful tool that has
applications in diverse fields of mathematics; a perspective that ties the
operations and entities in relation algebra to classically algebraic
structures open up exciting new paradigm for interpreting the world
around us.

1.3.7. Advanced Topics and Modern Developments in Relation
Theory

Until present, Relation Theory is widely studied and many new
extensions, generalizations, applications are being introduced across
different fields. Fuzzy relations generalize classical relations by
permitting intermediate degrees of relatedness between elements,
usually represented by values in the interval [0,1]. These relations
represent non-specific or imprecise relationships and have applications
in fuzzy logic, approximate reasoning and soft computing. A fuzzy
equivalence relation (known as a similarity relation) extends classical
equivalence relations to express degrees of similarity, and is used in
areas such as pattern recognition, clustering and image processing
Formal concept analysis is a theory founded by Rudolf Wille in the
1980s and proposes a method for discovering conceptual structures in
data through binary relations between objects and attributes. These
structures act as complete lattices that uncover hierarchical knowledge
structures which are beneficial in knowledge discovery, data mining,
and ontology engineering. Introduced by Zdzistaw Pawlak, rough set
theory deals with approximations over sets, defined via equivalence
relations, dealing with knowledge of different accuracy. Rough set is
a tool for uncertainty handling which has been applied in decision
support systems, machine learning and data analytics. They generalize
the mathematical notions of classical relations to relations between
quantum systems for which the certainty of a relationship follows the
laws of quantum probability, an example of which cannot be captured
with Boolean logic. This type of relation is very important in quantum
computing and quantum information theory, as it establishes a platform
for the studies of entanglement, quantum measurements, and so on, i.e.
quantum algorithms, and so on. However, categorical approaches to
relation theory locate relations in the context of category theory,
making relationships with other mathematical constructions apparent

and allowing for powerful abstract reasoning. In the semantics of
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computer languages and type systems, this view has enabled new
understandings in theoretical computer science. Inductive logic
programming, relational reinforcement learning, and statistical
relational learning are relation-based approaches to machine learning
implemented in the area of computational intelligence. These methods
utilize relational representations, allowing for the capture of complex
structures in data that access patterns often fail to express in attribute-
value representations. Relation theory is thus side at itself at neither in
much of the universe of the habitual. Two notable examples of such
formalisms are Allen's interval algebra, which formalizes qualitative
relationships between time intervals and is used for temporal reasoning,
and region connection calculus which formalizes qualitative
relationships between spatial regions and is used for spatial reasoning
(e.g., in geographic information systems, robotics, cognitive science).
(Antimatroids are a closely related concept.) Infinite relations on
infinite sets lead to complications that use up the machinery of
advanced set theory, such as cardinals, ordinals, and the axiom of
choice. These relations appear in functional analysis, topology, and the
foundations of mathematics, linking relation theory with profound
issues about mathematical infinity. Relation theory's focus on
algorithmic elements has risen to significance with the emergence of
big data and network science. Algorithms for computing relation
properties, closures, and decompositions can be useful for analyzing
large-scale networks like social networks, biological interaction
networks, and the World Wide Web. Continuation of the convergence
of relation theory with other areas of mathematics has produced non-
trivial theoretical results and real-life applications. Parts of graph
theory, order theory, algebraic topology, and model theory contribute
to both fields and provide new methods for the solution of difficult
problems. Description: As computing systems move towards being
more distributed, concurrent, and interconnected, relation theory is
providing fundamental concepts for reasoning about such systems and
building them thereby. Whether you take block chain technology,
distributed databases, or federated learning systems, relations provide
the mathematical language of constraints, dependencies, and
interactions. Relation theory's enduring impact is a consequence of its
capacity to extract crucial forms from disparate domains and

consequently furnish explicit forms of computation.
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Unit 1.4: Function Notes

1.4.1 Function, Types of Function

Introduction to Function

A function is a special relation between two sets such that each element

of the first set (Domain) is related to exactly one element of the second

set (Co-domain).

Properties

Each element of Domain must be mapped.

No element of Domain has more than one image.

Different elements of Domain may map to the same element in

Co-domain.

Types of Functions

One—one (Injective): Different inputs give different outputs.
Onto (Surjective): Every element of Co-domain is an image of
some element.

Bijective: Both One—one and Onto.

1. Domain, Co-domain, and Range

Definition:

Domain: Set of all possible inputs.

Co-domain: Set of all possible outputs allowed.
Range: Actual outputs that come from the function.
Example:

f:A—B where A={1,2,3} B={a,b,c,d}

f(1)=a, f(2)=c, f(3)=b

Domain={1,2,3}
Co-domain={a,b,c,d}
Range = {a,c,b}

9 2. One-One (Injective) Function

Definition:

Every element of the domain maps to a unique element of the
co-domain.

Example:

f(x)=2xfromR—R
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Notes Different X values give different outputs.
f(1)=2 =4 — no repeats.

@ 3. Onto (Surjective) Function

Definition:

Every element of the co-domain has at least one pre-image in
the domain.

Example:

f:{1,2,3}—{a,b,c} with

f(1)=a, f(2)=b, f(3)=c

All elements a,b,c are covered = Onto.

@ 4. Bijective Function

Definition:

A function that 1is both one-one and onto.
Example:

f:{1,2,3}—{a,b,c}with

f(1)=a, f(2)=b, f(3)=c

Every input has a unique output and covers all outputs.

9 5. Identity Function

Definition:

Maps every element to itself.
Example:

f(x)=xforallxindomain.

f(1)=1, f(2)=2, f(3)=3

@ 6. Constant Function

Definition:

Maps every element of the domain to a single fixed value in the
co-domain.

Example:

f(x)=5f(x)forallxindomain.

f(1)=5, f(2)=5, f(3)=5

@ 7. Composition of Functions

Definition:

(fog)(x)=f(g(x))
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Example:
f(x)=x+1 and g(x)=2

(fog)(x)=f(g(x)=f2x)=2x+1

9 8. Inverse Function

Definition:

Reverses the effect of a  bijective
If f:A—B is bijective, then f—1:B—A

Example:

f(x)=x+3 = f~1(x)=x—3

9 9. Even and Odd Functions
Even:f(—x)=f(x)

Example: f(x)=x2

Odd: f(—x)=—1(x)

Example: f(x)=x3

10. Real-life Function Example

Temperature conversion:
f(C)=95C+32

Maps Celsius to Fahrenheit.

Diagram of a Function

CO-DOMAIN

Fig: 1.4.1 Function
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Example 1:
Let A= {1,2,3} and B={a,b,c,d}
Define a function f:A—B as:

F(l)=a,f(2)=c, f(3)=b

Each element of A(domain) is mapped to exactly one element of B
(co-domain).
Range of fis {a,b,c} (only those elements of B that are actually used).

Therefore, f is a valid function.
Example 2:

Set A: {Apple, Banana, Mango}
Set B: {Red, Yellow, Green}
Define: A function mapping each fruit to its color:

f(Apple)=Red, f(Banana)=Yellow, f(Mango)=Green
Range: {Red, Yellow, Green}
Example 3:

Set A: {1,2,3,4}
Set B: {Odd, even}
Define: A function mapping each number to its type:

F (1) =0dd,f (2) = Even,f (3) = Odd,f (4) = Even
Range: {Odd, even}
Example 4:

Set A (Domain): {2,4,6}
Set B (Co-domain): {1,4,9,16,25,36}
Define: f(x)=x2

F(2)=4,f(4)=16,f(6) =36
Range: {4,16,36}

Applications of Logical Equivalence

Logical equivalence is not only a theoretical construct but also an
important practical tool. In mathematics, science, and computer
applications, simplifying logical expressions allows us to reduce
complex situations into manageable forms. For example, when
analyzing a long conditional statement, one may replace it with an
equivalent biconditional form to reveal hidden relationships.

One area where logical equivalence is particularly useful is in set
theory. As we know, statements about membership in sets can be
expressed in terms of logic. For instance, the identity
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(AUB)c=AcNBc
is directly derived from the equivalence —(p V q) = (—p A —q). Similarly,
(ANB)c=AcUBc

is based on ~(p A q) = (—p V —q). These transformations make it easier
to prove theorems about sets and functions.

Proof Techniques and Logical Equivalence

Logical equivalence provides the foundation for methods of proof such
as proof by contradiction and proof by contrapositive.

Example: Prove that if n? is even, then n is even.
Contrapositive: If n is odd, then n? is odd.
Let n = 2k+1. Then n? = (2k+1)(2k+1) = 4k? + 4k + 1 = 2(2k>+2k) + 1.

This is odd. Therefore, the contrapositive is true and hence the original
statement is also true.

This shows how logical equivalence often allows shorter and clearer
proofs.

Applications in Computer Science

Logical reasoning underpins many areas of computer science. Digital
Circuits: Logical expressions correspond directly to circuits. The
conjunction (AND), disjunction (OR), and negation (NOT) map to
logic gates. More complex connectives such as exclusive OR (XOR)
can be expressed using combinations of simpler ones.

Example: The XOR of two inputs A and B can be expressed as
(AVB)A—(AAB).
This expression is directly translated into a digital circuit.

Database Queries: In SQL and other query languages, logical operators
are used to filter data. For example:

SELECT * FROM Students WHERE Age > 18 AND Course = 'MCA';

The WHERE clause here is a direct representation of conjunction in
propositional logic.

Artificial Intelligence: Many expert systems represent knowledge in the
form of logical rules. Logical equivalence helps simplify the rules and

improve reasoning efficiency.
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Worked Example: Simplification
Simplify (pV Q) A(—p V).

Step 1: Apply distributive law:
=(PATPVEPADV(QATP)V(QAT)
Step 2: Eliminate contradictions:

p A —p = False, so expression becomes:
=(PADV(QATP)V(QAT)

This is the simplified form.

Logic in Algorithms

In algorithm design, decision-making processes are expressed using
logical statements.

Example: Binary Search

If the key is less than the middle element, search in the left half;
otherwise, search in the right half.

Logically, this is expressed as:
(key <mid) — search left
(key > mid) — search right

By framing conditions in logical form, algorithms can be reasoned
about more clearly, and their correctness can be proved systematically.

Importance of Logical Equivalence

Logical equivalence not only simplifies proofs and expressions but also
provides the bridge between mathematics and computation. It ensures
that transformations in logic preserve meaning, and therefore, results
obtained after simplification remain valid. This makes it an essential
tool in every branch of computer science — from digital systems to
programming, and from artificial intelligence to database management.
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SUMMARY

This Module introduces fundamental mathematical concepts essential
for computer science, covering set theory, mathematical logic,
relations, and functions. Set theory deals with the definition, types, and
operations of sets, including union, intersection, and complements,
along with concepts like subsets, power sets, and Cartesian products.
Mathematical logic focuses on propositions, logical connectives, truth
tables, and predicate logic, enabling precise reasoning and decision-
making. The concept of relations explores how elements from one set
relate to another, examining properties like reflexivity, symmetry, and
transitivity, and includes special relations such as equivalence and
partial orders. Functions, as a special type of relation, map each input
to a unique output and are classified as injective, surjective, or bijective.
These foundational topics form the basis for algorithm design, data
organization, formal verification, and logical programming in computer

science.
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Notes Multiple Choice Questions (MCQs)

Y
1.
2.
3.
4.
5.

Which of the following statements is true regarding Cartesian
products?

a) The Cartesian product of two sets is always commutative
b) The Cartesian product of two sets is a set of ordered pairs
c¢) The Cartesian product of two sets results in a single set
element

d) The Cartesian product only exists for finite sets

Ans: b)

Which of the following is an example of a tautology?

a) PA—PP \land \neg PPA—P

b) Pv—PP \lor \neg PPv—P

c¢) PAQP \land QPAQ

d) PvQP \lor QPVQ

Ans: b)

If RRR is a binary relation on set AAA, then which of the
following must be true for RRR to be an equivalence relation?
a) RRR must be reflexive, symmetric, and transitive

b) RRR must be symmetric and antisymmetric

¢) RRR must be only transitive and symmetric

d) RRR must be only reflexive and transitive

Ans: b)

What is the composition of two functions f:A—Bf: A \to
Bf:A—B and g:B—Cg: B \to Cg:B—C?

a) A function mapping AAA to CCC

b) A function mapping BBB to AAA

¢) A function mapping CCC to BBB

d) A function mapping AAA to BBB

Ans: a)

Which of the following logical connectives is not a
fundamental logical operator?

a) AND

b) OR

c) XOR

d) NOT

Ans: ¢)
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Long-Answer Questions

1.

Explain the concept of a Cartesian product of two sets with an
example. How does the Cartesian product help in defining
relations?

Describe different types of logical connectives with truth tables
and examples. How are logical connectives used in
mathematical reasoning?

What are tautology, contradiction, and logical equivalence?
Provide suitable examples to illustrate each concept.

Define binary relation. Explain reflexive, symmetric, transitive,
and equivalence relations with suitable examples.

What is the composition of functions? Explain how function
composition works with an example and discuss its significance

in mathematical operations.

Short-Answer Questions

1.

2
3.
4.
5

Define a set and provide an example of a Cartesian product.
What is a logical statement? Give an example.

Differentiate between tautology and contradiction.

List the properties of an equivalence relation.

What are injective, surjective, and bijective functions? Give an

example of each.
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MODULE 2
POSETS AND LATTICES

2.0 Learning objectives
e To understand the concept of partial order relations and partially
ordered sets (POSETS).
e To explore HASSE diagrams and their role in representing
ordered sets.
e To study lattices, sub-lattices, well-ordered sets, and complete
lattices.

e To analyze distributive and complemented lattices.
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Unit 2.1: Partial order relation

2.1.1 Introduction to Partial Order Relations
For example, mathematics helps us organize and understand
relationships among elements in various sets. Partial Order Relations
are one of the basic concepts in discrete mathematics and set theory
and are used to define a certain order between elements. A relation is a
concept to associate between the elements of one set with another set.
In certain mathematical models, we need to know in what way one
element/sequence is connected with another element/sequence in
hierarchical Oder sequential way. Q- Partially ordered relations can be
used for systematic study of such structure. These terminologies are
especially important in disciplines such as computer science, decision
theory, and data organization, where the ordering and hierarchy of
items are critical. Definition and Properties of Partial Order Relations
A partial order relation is a binary relation R on a set S that satisfies the
following three properties:
1. Reflexivity: Every element is related to itself. That is, for every
a€Sa\in S, aRaaRa holds.
2. Antisymmetry: If aRbaRb and bRabRa, then a=ba =b.
3. Transitivity: If aRbaRb and bRcbRc, then aRcaRc.
The pair of a set S and a partial order relation R is called a partially
ordered set (or poset), denoted as (S, R). In a total order, all
elements must be comparable with each other, but unlike that a
partial order allows that some elements of the set may be
incomparable. Examples of Partial Order Relations
1. Subset Inclusion (S\subseteq): Consider the power set of a set
AA, which consists of all subsets of AA. The relation “subset
of” (S\subseteq) is a partial order because it satisfies reflexivity
(ASAA \subseteq A), ant symmetry (ASBA \subseteq B and
BCSAB \subseteq A implies A=BA = B), and transitivity
(ASBA \subseteq B and BECB \subseteq C implies ASCA
\subseteq C).
2. Divisibility (I|): The relation “divides” on the set of natural
numbers N is a partial order. If alba | b (i.e., a divides bb

exactly), it follows the properties of a partial order.
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3. Hierarchical Structures: In organizational charts or file
directory structures, elements are arranged in a hierarchical
order, which is an example of a partial order relation.

Solved Examples

Example 1: Verify if the relation R on the set S = {1, 2, 3, 4}, defined
as aRb if and only if a divides b, forms a partial order.

Solution:

1. Reflexivity: Every number divides itself (e.g., 1111 | 1, 2[22 | 2,
etc.), so the relation is reflexive.

2. Antisymmetry: If alba | b and blab | a, then a=ba = b, satisfying
ant symmetry.

3. Transitivity: If alba | b and blcb | c, then a|ca | c¢. For example,
2142 | 4 and 4184 | 8 implies 2|82 | 8. Thus, the given relation is
a partial order.

Unsolved Problems

1. Consider the set A = {1, 2, 3, 4, 5} with relation R defined as
aRbaRb if a<ba \leq b. Show that R is a partial order.

2. Prove that the relation of inclusion on the power set of
S={a,b,c}S =\{a, b, c\} is a partial order.

3. Let S=ZS = \mathbb{Z} and define aRbaRb if and only if aa
divides bb. Show that this is a partial order.

Partial order relations are a central concept in mathematical modeling
and programming, as well as in the structuring of databases in which
elements must be ordered or ranked. Through relations like ant
symmetry, nodes of digraphs, relations, etc., we can have a better sense
to solve problems in set theory, lattice theory and advanced
mathematics. Studying real world problem using partial order relations
will give you a rigorous framework building block of discrete
mathematics and friends.

2.1.2 Partial Ordered Set and Hasse Diagram

1. Introduction to Partially Ordered Sets (Posets)

A partially ordered set (poset) is a set PP together with a binary relation
<\leq that satisfies the three properties:

1. Reflexivity: For all a€Pa \in P, a<aa\leq a.

2. Antisymmetry: if a \leq b and b \leq a, then a =b.

3. Transitivity: If a<ba \leq b and b<cb \leq c, then a<ca \leq c.

These properties account for a partial order, as not all pairs of elements

in PP are required to be comparable.
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2. Examples of Partially Ordered Sets Notes
o Divisibility Relation: The set {1,2,3,4,6,12}\{1, 2, 3,4, 6, 12\}
with the relation a<ba \leq b if aa divides bb.
e Subset Relation: The power set of {1,2,3}\{1,2,3\} ordered by
set inclusion.
o Integer Ordering: The set of natural numbers N with the usual
<\leq relation.
2.1.3. Hasse Diagram
Connected Hasse diagrams are widely used in the theory of partially
ordered sets (posets), where a Hasse diagram is a visual representation
of a finite poset. It is a directed graph (in a simple way) that:
* O edges represent the partial order relation.
* Transitive edges are left out for clarity.
Example Poset: Divisors of 12
Consider the set:
S={1,2,3,4,6,12}
We define a partial order < by divisibility:

A <b if and only if a divides b.

12
/\
4 6
/N
2 3
\ o/
1
Example:
Consider the posit {1,2, 3, 6}\ {1, 2, 3, 6\} with the divisibility relation:
6
/\
2 3
\/
1

In this diagram:
e 1lis minimal as it divides all elements.
e Since 11 divides both 22 and 33 it is placed above 11.
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Notes e 66 is at the peak as it is divisible by both 22 and 33
4. Properties of Hasse Diagrams
e Relation of Cover: An element aa covers bb if a>ba>Db
and there is no element cc such that bba > b and no
element cc satisfies b
e Chains and Antichains: A chain is a totally ordered
subset; an antichain consists of mutually incomparable
elements.
5. Solved Example
Problem: Draw the Hasse diagram for {1,2,4,8,16}\{1, 2, 4, 8, 16\}
with divisibility relation.
Solution:
1. Write out the divisibility relations: 1<2<4<8<161 \leq 2 \leq 4
\leq 8 \leq 16.
2. Since each element only divides the next one, the Hasse
diagram is a linear chain:
16

|
8
|
4
|
2
|
1

6. Unsolved Problems
1. Construct the Hasse diagram for the power set of {a,b}\{a, b\}
ordered by set inclusion.
2. Find the number of chains in the Hasse diagram of
{1,2,5,10}\{1, 2, 5, 10\} under divisibility.
3. Prove that the divisibility relation on {1,3,9,27,81}\{1, 3, 9, 27,
81\} is a poset.
Another common use of partial order sets is in Hasse diagrams, which
can be used to visualize the structure of hierarchies (remember lattice
theory, Boolean algebra, and database design) these concepts are

essential for all higher level topics in discrete mathematics.
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Unit 2.2: Lattice

2.2.1 Lattice, Sub-Lattices, Well Ordered Set, Complete Lattice

Lattice Not a Lattice

Fig: 2.2.1 Lattice

It offers a framework for examining the relationships between elements
of a poset. A poset (P, <) is a set P with a binary relation < that is
reflexive (a <a), ant symmetric (a<b and b<a—— a=>b) and transitive
(a<bandb<c——a<c). A lattice is a poset where every two elements
have a least upper bound (supremum or join) and greatest lower bound
(infimum or meet) A. The join of two elements a and b, written a V b,
is the least upper bound of a and b. The meet of a and b, written a A b,
is the greatest lower bound of a and b. A lattice can be represented
visually with Hasse diagrams, which are a graphical representation of
posets. We usually draw a Hasse diagram as dots for the elements, and
lines for the relation <. When a <b, b is above a, and we connect them
with a line. The set of positive integers ordered by divisibility is a
simple lattice. The meet of two integers a and b is their LCM, and the
join is their GCD. For example, an order you might consider is the
power set of a set (lifting using ordered inclusion). The join of two
subsets A and B you have is their union (A U B), while the meet you
have is their intersection (A N B). Lattices fulfill multiple essential
characteristics, such as idempotent (a V a = a and a A a = a),
commutative (aVb=bVaandaAb=Db A a), associative (a V (b V ¢)
=(avb)vcandaA(bAc)=(aAb)Ac), and absorption (aV (a A b)
=aand a A (aV b)=a). This means that lattices are useful for studying

ordered structures and how they relate to each other.
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2.2.2 Sub-Lattices and Their Properties

A sub-lattice of a lattice (L, V, A) is a subset S of L that is also a lattice
with respect to the same operations V and A as those of L. Namely, S is
a sub-lattice if whenever a, b are in S, we also have aVvb, aAb€eS. This
condition ensures closure under the join and meets operations of L so
that S is a lattice on its own. However, that closing property is not
necessarily hold, thus a subset of a lattice is a POS but not a sub-lattice.
For example, the positive integers ordered by divisibility are a lattice.
For this lattice, the set {2, 3,4, 5, 6} is a subset. This is not a sub-lattice
because the join of 2 and 3, which is 6, is in the set, but the meet of 4
and 6, which is 2, is also in the set, but the join of 4 and 5 which is 20,
is not in the set. Idempotence, commutatively, associatively, and
absorption are many properties that a sub-lattice inherits from its parent
lattice. These will not, however, save all properties. As another
example, if L is a distributive lattice (satisfyinga A(bV c)=(aAb)V
(aAc)andaV (bAc)=(aVDb)A(aV c)),then any sub-lattice of L is
also distributive. But a sub-lattice of L is also modular if L is a modular
lattice (anda A (bV (aAc))=(aAb)V (aAc)ifa<b). Sub-lattices
are a fundamental concept in lattice theory, and are used to break down
complex lattices into simpler ones. The use of sub-lattices can be for
the purposes of identifying patterns, symmetries, or relationships
between different parts of the lattice. As an example, in the lattice of
subsets of a set, an sub-lattice can be all the subsets that contain a
particular element, or all the subsets that have a specific cardinality.
They also have a role in lattice homeomorphisms, mappings between
lattices that preserve the join and meet operations. A homomorphism
between two lattices L and M takes a sub-lattice of L to a sub-lattice of
M.

2.2.3 Well-Ordered Sets and Their Significance

A well-ordered set is a totally ordered set (i.e. of any two elements it
can be determined whether one is greater than the other) such that every
non-empty subset has a least element. Ri is a well-ordering principle
and this property is known as the well-ordering principle. Well-orders
are foundational in set theory and have wide application in
mathematics, primarily in transfinite induction and ordinal arithmetic.
An example of a well-ordering is the set of natural numbers (IN) with
its standard ordering, often denoted with the symbol <. Each nonempty

subset of N has a least element. But the normal ordering of the integers
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(Z) is not a well-ordering since the subset of negative integers has no
least element. In the same vein, the real numbers (R) with the standard
ordering is not well-ordered since the interval (0, 1) has no least
element. - Every set can be well-ordered (but this requires the axiom of
choice, and that is a theorem in set theory, called the well-ordering
theorem). Ordinal numbers which measure the "size"/"length" of well-
ordered sets are strongly related to well-ordered sets Any well-ordered
set is order-preserving equivalent to exactly one ordinal number.
Ordinal numbers, too, have a well ordering, and they are a transfinite
ordering that continues after the naturals. Transfinite induction extends
the concept of mathematical induction to well-ordered sets. It enables
us to show that some statement is true for all elements of a well-
ordered set by demonstrating the statement for the least element and
that if the statement holds for all elements less than some element then
it holds for that element as well. Well-ordered sets find applications in
many branches of mathematics, including topology, analysis, and
computer science. Well-ordered sets are used in topology to form
transfinite sequences of open sets (or closed sets). In analysis they are
used to characterize transfinite sequences of functions or sets. Well-
ordered sets are used in algorithms and design of data structures in
computer science, specifically in termination proofs.

2.2.4 Complete Lattices and Their Properties

A complete lattice is a special type of poset in which all subsets, finite
or infinite, have a supermom (least upper bound) and an infimum
(greatest lower bound). This is a stronger condition than a lattice,
which only requires that finite pairs of elements have a join and meet.
Complete lattices play a central role in several fields of mathematics,
such as topology, analysis, and domain theory. Let’s state a result on
complete lattices: The power set of any set, partially ordered by
inclusion, is a complete lattice. The join of any collection of subsets is
their union, and the meet their intersection. Another example is the set
of real numbers with standard ordering (augmented with positive and
negative infinity), which is also a complete lattice. The join of any
collection of reals is their supermom, and the meet is their infimum.
All of those properties still hold for complete lattices: idempotence,
commutatively, associatively, and absorption. They also satisfy the
infinite distributive lawsa A (VS)=V{aAs:s€S}andaV (AS)=A{a
V s :s € S} for any subset S of the lattice. Topologically complete
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lattices are used, for example, to define closure operators on sets as well
as to study the lattice of open sets or closed sets. In analysis, they are
used to define monotone functions and study fixed points of functions.
If a function is monotone on a complete lattice, then it is also
guaranteed to have a least fixed point and a greatest defined fixed point
in that lattice, a result known as the Knaster Tarski theorem. Literally
hundreds of papers have been published on complete lattices, while the
ordering of the initial segments of a certain kind of directed set - known
as a domain - has formed the basis of domain theory, an entire branch
of mathematics. Complete lattices are used in domain theory to describe
the spaces of computations and to analyse programming languages
semantics.

Solved Examples and Applications

Example 1: Power Set Lattice X = {a, b, c}. The power set P(X) = {@,
{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} is a lattice under
inclusion.

* Join: {a, b} V {b, c}

Of course, we will continue with the rest of the paragraphs while
adding solved examples, applications of concepts and unsolved
questions as well.

Solved Examples and Applications (Continued)

Example 1: Power Set Lattice We take X = {a, b, c}. So the power set
P(X) = {0, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} is a lattice
ordered by inclusion.

* Join: {a,b} V {b,c} = {a, b, c} (Union of the sets)

Meet: {a, b} A {b, c} = {b} (Intersection of the sets)

* P(X) is also a complete lattice as every subset of P(X) has a join and
meet.

Example 2: Divisibility Lattice Let L = {1, 2, 3, 4, 6, 12} with
divisibility.

*Join: 3V 4= 12 (LCM of 3 and 4)

* Meet: 6 A4=2(GCD of 6 and 4)

» Make the Hasse-diagram of this lattice.

Left: Set Proposition 3: (Well-Ordered Set) Prove that every finite
totally ordered set is well-ordered.

S is a finite totally ordered set.

S is countable whenever S is finite, and ES is also finite.

* Induction, any finite subset has a least element.
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* Thus, S is well-ordered.

2.2.5 Applications:

Computer Science: Lattices play a role in data analysis,
formal concept analysis and in the design of data structures.
Domain theory, which serves as the mathematical basis for
programming language semantics, uses complete lattices.
Database Theory: In database theory, lattices can be used to
reason about data dependencies and integrity constraints.
Formal Logic: Lattices can be used to model the logical
connectives and study the structure of logical theories.
Topology: Closure operators are defined in complete lattices

and the lattice of open sets or closed sets is studied.

Unsolved Problems and Advanced Concepts

Unsolved Problems:

1.

Congruence Lattice Problem: Given a finite lattice L, decide
if L is isomorphic to the congruence lattice of some algebra.
This issue is solvable in general, yet undividable.

Free Lattice Problem: Give the structure of free lattices. The
word problem is known to be solvable for free lattices, though
the structure of such lattices is an active research area.
Sub-lattice Embedding Problem: For two finite lattices L and
M, decide whether L is embeddable into M as a sub-lattice:
Embedding of finite lattices is proven as NP-Complete. Here
the problem is to create a substructure.

Well-quasi-ordering Problem: Investigate  well-quasi-
orderings, which generalize well-orderings. Study the
relationship between well-quasi-orderings and termination
arguments of algorithms.

I remember an Intro to Something course which had a section
on Fixed-point theorems reduced to imply maximum and
minimum elements in a complete lattice, which was applicable
to stuff like program semantics, so If you can find something

similar throw it at them.

2.2.6 Advanced Concepts:

* Distributive Lattices: Lattices where the distributive laws hold (a A
(bvec)=(aAb)Vv(aAc)anda V(bAc)=(aVb)A(aVc)).Full linear
lattices are distributive : a lattice is a full linear lattice if and only if it

is a distributive lattice and {{0}, {1}} is its only linear ideal.
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* Modular lattices: lattices satisfying the modular law (a A (b V (a A
c)) = (a A b) V (a A c), whenever a < b). Distributive lattices are
modular.

* Heyting Algebras: Lattices with an implication operation which
generalizes intuitionist logic.

* Scott Domains: Domains are from domain theory, but Scott domains
area complete lattices. They can be algebraic functions or continuous.
* Galois Connections: Pairs of monotone functions between postsets
adjoint to each other. They are used develop studied relationships

between other ordered structures.

2.2.7 Further Explorations and Conclusion

Lattices, sub-lattices, well-ordered sets, complete lattices ultimate
analysis Such numerical concepts are crucial in disciplines ranging
from pure math to computer science, and provide us with powerful
tools for exploring achieved order and its interactions. The real-world
impact of these ideas can be observed in database systems, formal logic,
and computer programming, to name a few. Mathematical
advancements often lead to new applications and discoveries in these
fields. This also implies the existence of different classes of lattices,
such as: distributive, modular, Boolean, etc. The well-ordered set itself
and the concept that as the most general form of the ordered set
definitely can go for research. Complete lattices can also be studied in
accordance to their domains and their role inside the domain theory,
topology, and fix-point theory, and their various applications in
computer science and others. The ideas on this section serve a good
basis on lattice introduction and other topics related. Understanding
lattices through solved examples, unsolved problems, and advanced
topics can help students to appreciate the elegance and power of this
area of study and its applications. As their mathematical adventure
moves forward, the ideas and tools presented in this Module will
become invaluable assets when analyzing or solving countless
problems in not only mathematics but in a number of scientific fields

as well.
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2.2.8 Introduction to Lattices and Distributive

Lattices are a kind of algebraic structure on a set that introduce a
structure to study partially ordered sets (posets) through the existence
of least upper bounds (joins) and greatest lower bounds (meets) for
every pair of elements. In many applications, we are interested in such
lattices with extra properties that make them very useful. For example,
distributive is one of these properties. Lattice (L, V, A) is distributive
if for all a,b,c€L: aA(bVc)=(aAb)V(aAc) and aV(bAc)=(aVb)A(aVve).
These laws are similar to the distributive laws in plain algebra.
Nevertheless, not all lattices are distributive. An example of a
distributive lattice can be given by the power set of any set, ordered by
inclusion. The join V is replaced with the union operation ( U ) and the
meet A is replaced with intersection operation ( N ). They are easy to
check because the distributive laws hold for set operations. As a second
example, consider the (semi-)lattice of positive integers ordered by
divisibility: here, join is given by taking LCM, whereas meet takes
GCD. This is also a distributive lattice. Distributive lattices and their
Hasse diagrams if a lattice contains a sub-lattice isomorphic to the
pentagon lattice (N5) or the diamond lattice (M3), it is not distributive
(in terms of Hasse diagram). In such a scenario, the element above 0
becomes less than that of the element above 1 (as it must be by
construction), thus simulating a upside-down lattice. Distributive
lattices have many nice properties, leading to their importance in
various fields of mathematics and computer science. They are used,
e.g., in Boolean algebra, formal logic, and data dependency theory in
databases.

2.2.9 Complemented Lattices and Their Properties

A complement is another property a lattice can have. A lattice (L, V,
A) with least element 0 and a greatest element 1 is called complemented
if for all elements a in L there exists an element a' in L such that a v a'
=1landaAa' =0. The element a’ is called the complement of a In the
complemented lattice every element has at least one complement.
Nonetheless, complements need not be unique unless the lattice is also
distributive. An example of a complemented lattice is the power set of
a set ordered by inclusion. Complement of a Set: For the subset A, the
complement of A is denoted by A', A U A' = U (Universal set) and A
N A' = @ The lattice of divisors of a square-free integer ordered by

divisibility is another example. The divisor d's complement is the n/d
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quotient, with n being the square-free integer. In a complemented
lattice, the bottom least element 0 is the complement of the top greatest
element 1, and vice versa. Complementation is an involution, (a)' =
(a)"{"n"=1, "t"=1} but, in the general case, we have (a Vb)'=a' A b'
and (a A b)' = a' vV b' only when the lattice is also distributive. They
appear in many branches such as Boolean algebra, switching circuit,
quantum logic, etc. They offer a way of CNS representing and CNS
manipulating logical operations CNS and CNS studying the structure
CNS of complementary systems.
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Unit 2.3: Distributive and Complemented lattice Notes

2.3.1 Distributive and Complemented Lattices
A distributive complemented lattice is referred to as a Boolean algebra.
{Boolean algebras are one of the core algebraic structures that underpin
logic, computer science, and much else besides.} A Boolean algebra
(B, Vv, A, ', 0, 1) is a lattice that satisfies the following:
1. Tt distributive:aA(bVc)=(aAb)V (aAc)andaV (bAc)=
(avb)A(avVveo).

2. It is complemented: For each a, there exists a complement a'

withava' =landaAa =0.

3. Ithas a minimum element, 0, and a maximum element, 1.
Complements are unique in a boolean algebra, and the De Morgan's
laws hold in a boolean algebra: (aVb)'=a' Ab'and(aAb) =a'Vvb.
The collection of all subsets of any set, with operations of union,
intersection, and complement, is a Boolean algebra. Boolean algebra:
A Boolean algebra (also spelled Boolean algebra) is a mathematical
structure composed of a set with two operations and their relations, the
most common being the set of logical propositions with logical OR,
AND NOT operations. It is also used for designing logic circuits,
simplifying solutions, representing and manipulating logical
expressions. They offer a strong foundation for reasoning about
systems based on binary states and for solving problems related to
logical constraints. Stone's representation theorem says every Boolean
algebra is isomorphic to a field of sets. ZFC is the widely accepted
formalism for set theory, while the setup for the theorem utilizes the
algebra of logic..

Solved Examples and Applications

Example 1: Power Set Lattice X = {a, b}. Therefore the 100082
20:52:53,941 --> 20:52:56,529 the power set P(X) = {@, {a}, {b}, {a,
b}} 20:52:56,531 -->20:52:59,614 is a Boolean algebra.

* Join: {a} V {b} = {a, b} (Union)

* Meete: {a} A {b} = @ (Intersection)

* Complement: {a}'= {b}

* Validate the distributive laws and De Morgan's laws.

Example 2: Divisors of 30Let f be the lattice of the divisors of 30
ordered by divisibility : { 1, 2, 3, 5, 6, 10, 15, 30 }.

* Join: 6 V 10 =30 (LCM)
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* Meet: 6 A 10 =2 (GCD)

* Complement: 6 ' =5 (where 6 X 5 = 30 and GCD(6, 5) = 1)

* This lattice is a Boolean algebra.

Example 3: Logical Propositions Let us consider the Boolean algebra
of logical propositions, with operations OR, AND NOT.

* (PAQ)VR=(PVR)A(QVR) (Distributive law)

* (PvQ)=—PA—Q (De Morgan’s law)

2.3.2 Applications:

* Digital Circuits: Boolean algebra is utilized to create and evaluate
digital circuits like logic gates and flip-flops.

* Database Queries: Boolean algebra is utilized to structure and refine
database queries that involve logical conditions.

* Formal verification: The correctness of hardware and software
systems 1is verified using Boolean algebra.

* Descriptions of sets: The term Boolean algebras structures provide
the basis for set theory and the study of collection of sets.

Unsolved Problems in Distributive and Complemented Lattices
Unsolved Problems:

1. Congruence Lattice Problem for Distributive Lattices: If L
is a finite distributive lattice, is L isomorphic to the congruence
lattice of some algebra? This is easier than a full congruence
lattice computation problem but still not easy to do.

2. Free Distributive Lattices: We have introduced modules and
distributive lattices, now we will see how they relate when the
lattices are free a.k.a. distributive lattices generated by a set of
elements with no further relations. The word problem for free
distributive lattices is known to be solvable and yet the structure
of these lattices is not fully understood and is an active (open)
area of research..

3. Sub-lattice Embedding Problem for Distributive Lattices:
After which, given two finite distributive lattices L and M,
decide whether L can be embedded as a sub-lattice of M. It is
NP-complete in general, and stills a low-level open problem in
terms of efficient algorithms for particular cases..

4. Characterization of Complemented Modular Lattices:
Explore arbitrary complemented modular lattices. Necessary
and sufficient conditions are determined for a modular lattice

to be complemented.
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5. Applications of Non-Boolean Complemented Lattices:
Studied complemented lattices that are not Boolean algebras
and their applications in quantum logic, where the distributive
law fails.

6. Stone's Representation Theorem Extensions: Use Stone's
representation to learn work that generalizes it to other classes
of lattices, for example, distributive lattices with more

operations or complemented modular lattices.

2.3.3 Advanced Concepts and Further Explorations

Advanced Concepts:

Heyting Algebras: generalizations of Boolean algebras used in
intuitionistic logic. They are distributive lattices having an
implication (—) such that both aA(a—b)<b and a<(b—c)<anb=<c
hold which helps us think about constructive proofs and in
computing programs.

De Morgan algebras: This is a generalization of Boolean algebras
relaxing the requirement that complements be unique. They are
distributive lattices equipped with a unary operation (—) satisfying
——a = a and ~(a V b) = —a A —b. De Morgan algebras find
applications in the study of non-classical logics, as well as in the
design of fault-tolerant systems.

Orthomodular lattices: and their generalization which are used in
quantum logic. Covered lattices satisfying the orthomodular law are
complemented lattices: ifa<bthenb=aV (b A a0). Orthomodular
lattices are a generalization of Boolean algebra that captures the
essential features of quantum systems.

Stone Duality: It is a general theory that connects topological
spaces and lattices. It allows the translation to read between the
geometric and algebraic structures and is employed on the subject
of Boolean algebras, Heyting algebras, and several classes of
lattices.

Lattice-ordered groups: groups that, as lattices, have compatible
group and lattice operations. They arise in the study of ordered
algebraic structures and in the theory of partially ordered linear

spaces..
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Notes Further Explorations:

* Explore the relationships between lattice theory and other
branches of mathematics, including topology, algebra, and
logic.
* Lattice Theory in Computer Science: Applications, Parts 1
and 2.
* Sequentially explore the generalizations of Boolean algebras
(e.g. Heyting algebras, De Morgan algebras, orthomodular
lattices, etc.) and their features.
* Investigate how lattice theory is applied in other areas such as
physics, economics, and social sciences.

Solved and Unsolved Problems

Solved Problems:

1. Prove that every Boolean algebra is distributive.

o Use the complement laws and the absorption laws to
show that the distributive laws hold.

2. Show that the power set of any set is a Boolean algebra.

o Verify the distributive laws, complement laws, and the
existence of 0 and 1.

3. Find the complement of 10 in the lattice of divisors of 30.

o 10"=3,since 10 x 3 =30 and GCD(10, 3) = 1.

4. Prove De Morgan's laws in a Boolean algebra.

o Use the complement laws and the distributive laws.

5. Show that every sub-lattice of a distributive lattice is
distributive.

o Show that the distributive laws hold for any three
elements of the sub-lattice.

6. Determine if the lattice consisting of the divisors of 12 is a
Boolean algebra.

o The divisors of 12 are {1,2,3,4,6,and 12}. Show that 3
does not have a compliment, therefore it is not a Boolean
algebra.

7. Draw the Hasse diagram for the lattice of subsets of {a,b,c}
and verify it is distributive.

o Draw the diagram, then show that it does not contain N5
or M3.

8. Prove that in a Boolean algebra, if a<=b then b'<=a'.

o Use the meet and join properties with compliments.
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10.

11.

12.

13.

14.

15.

Given a boolean algebra B, show thata *b=0andavb=
1 implies b=a'.

o Use the compliment definition.
Show that the lattice of all ideals of a ring is a complete
lattice.

o Show that the intersection of ideals is an ideal, and that

the union generates an ideal.

Show that if a lattice is distributive, then if a*x=a”y and av
X =avy, then x=y.

o Use the distributive properties.
Show that if a lattice is a Boolean algebra, then (a v b) * (a
vb')=a.

o Use distributive and complement properties.
Show that if a lattice is a Boolean algebra, then (a * b) v (a
Ab')=a.

o Use distributive and complement properties.
Show that if a,b are in a Boolean algebra, then (a * b') v (a'
Ab)y=(@vb)”*(a'vb').

o Use distributive and complement properties.
Show that in a Boolean algebra, if a<=b, then a*b'=0.

o Use the definition of <= and compliments.

Unsolved Problems:

1.

Characterize the lattices that can be embedded as sub-lattices of
Boolean algebras.

Investigate the properties of lattices that are close to being
Boolean algebras but do not satisfy all the axioms.

Explore the applications of non-distributive lattices in areas
such as quantum information theory and artificial intelligence.
Develop efficient algorithms for solving problems involving
Boolean algebras and related structures.

Investigate the connections between lattice theory and category
theory, and explore the applications of these connections.

Find new applications for Heyting algebras in areas such as
program verification and knowledge representation.

Explore the connections between lattice theory and formal
concept analysis, and develop new methods for data analysis

and knowledge discovery.

83
MATS Centre for Distance and Online Education, MATS University

UNIVERSITY
ready for life.......

Notes



(mar

UNIVERSITY
ready for life.

S

8. Investigate the properties of free lattices and free distributive
lattices, and explore their applications in algebra and logic.

9. Find new applications for orthomodular lattices in areas such as
quantum computing and quantum cryptography.

10. Explore new extensions and generalizations of Stone’s

representation theorem.

Applications of Partially Ordered Sets

Partially ordered sets (posets) appear frequently in computer
science, mathematics, and real life. Unlike total orders, a poset
allows some elements to remain incomparable, which makes it
suitable for modeling many real situations.

Task Scheduling: When some tasks must be performed before
others, but some can be done independently, the dependencies form
a poset. For example, in software development, coding may depend
on design, while documentation may proceed independently.
Version Control: In a project with multiple versions of code, the
“is ancestor of” relation forms a partial order. Not all versions can
be compared, but the relation still defines a structured order.
Prerequisite Courses: In education, some courses must be
completed before others. The prerequisite relation is a partial order
among all courses offered.

These examples show how posets naturally capture dependency
relationships.

Lattices in Computer Science
A lattice is a poset in which every pair of elements has a greatest
lower bound (meet) and a least upper bound (join). Lattices are

especially useful in theoretical computer science.

File Systems: The directory structure of a computer can be viewed
as a lattice, where the meet corresponds to the lowest common
ancestor folder and the join represents the combined path.

Security Levels: In computer security, access levels such as
“Confidential < Secret < Top Secret” form a lattice. Combining two

security clearances requires finding their least upper bound.
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Data Mining: Concept lattices are applied in formal concept Notes
analysis to organize large amounts of data into hierarchical

structures.

Boolean Algebra as a Lattice
Boolean algebra is an important example of a distributive
complemented lattice. In Boolean algebra, every element has a

complement, and distributive laws always hold.

Example:

Consider the set {0,1} with the operations AND and OR.

The meet (A) is AND, and the join (V) is OR.

0 is the least element, and 1 is the greatest element.

The complement of 0 is 1, and the complement of 1 is 0.

This structure is both distributive and complemented, hence it
forms a Boolean algebra.

Worked Example

Let us consider the set {1, 2, 3, 6} ordered by divisibility.

The meet of 2 and 3 is 1, since 1 divides both.

The join of 2 and 3 is 6, since 6 is divisible by both.

The meet of 2 and 6 is 2, while the join is 6.

Thus this set forms a lattice under the divisibility relation. This

example shows how number theory provides natural lattices.

Applications of Distributive and Complemented Lattices
Distributive and complemented lattices are widely applied because

they allow efficient simplification of expressions.

Logic Circuits: Every digital circuit is designed using Boolean
algebra, which is a distributive complemented lattice. This allows
systematic reduction of complex logical expressions into minimal

circuits.

Compiler Design: When compilers optimize code, they rely on
distributive properties of expressions. Boolean algebra laws are

applied to simplify conditions and control flow.
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Database Theory: Query optimization often uses lattice concepts.
Operations such as union and intersection follow lattice properties that

guide efficient execution.

Information Flow: In security models, lattices are used to describe
how information flows between levels. Complementation represents

access restrictions.

Importance of Lattice Theory

Lattice theory connects discrete mathematics with practical computer
applications. It provides a unified language to describe order, hierarchy,
and structure. Whether it is simplifying logical circuits, organizing
data, or proving mathematical properties, lattices and posets form a

fundamental part of computer science foundations.

SUMMARY
This module explores partially ordered sets (posets) and lattices, which
are crucial concepts in discrete mathematics and theoretical computer
science. A partially ordered set (poset) is a set combined with a binary
relation that is reflexive, antisymmetric, and transitive. These
properties enable the comparison of elements in a non-linear,
hierarchical manner. The module introduces key concepts such as
Hasse diagrams, which visually represent posets by omitting
redundant relations, making the structure easier to interpret. It also
explains chains (totally ordered subsets) and antichains (sets of
mutually incomparable elements). The next major topic is lattices,
which are posets where every pair of elements has both a least upper
bound (join) and a greatest lower bound (meet). The module further
classifies lattices into bounded lattices (having a greatest and least
element), distributive lattices, and complemented lattices, each with
unique properties that support logical operations and algebraic
structures. These structures form the foundation for areas such as
Boolean algebra, data classification, and formal logic. Overall, this
module helps in understanding ordered structures and their applications

in programming, data organization, and reasoning systems.
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Multiple-Choice Questions (MCQs) Notes

1.

Which of the following is true for a partially ordered set
(POSET)?

a) It must be totally ordered

b) It follows reflexivity, antisymmetry, and transitivity

c) It follows only symmetry and transitivity

d) It is always finite

Ans: b)

In a Hasse diagram, which property is NOT represented
explicitly?

a) Transitivity

b) Antisymmetry

c) Reflexivity

d) Comparability

Ans: ¢)

A lattice is a partially ordered set in which:

a) Every subset has a least upper bound and greatest lower bound
b) Every pair of elements has a least upper bound and a greatest
lower bound

c¢) Every element has a unique predecessor

d) The ordering is always total

Ans: b)

Which of the following is true for a complemented lattice?
a) Every element has a unique complement

b) It is always distributive

c¢) Every pair of elements has a supremum and infimum

d) It must be finite

Ans: a)

A well-ordered set is a special case of a partially ordered set
where:

a) Every non-empty subset has a least element

b) Every pair of elements is comparable

c¢) Every chain is finite

d) The Hasse diagram is always a tree

Ans: a)
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Long Answer Questions

1.

Explain the concept of a partially ordered set (POSET) with
suitable examples. Discuss its properties.

What is a Hasse diagram? How does it represent a partially
ordered set? Provide an example.

Define lattices and sub-lattices. Give an example of a lattice and
explain how it satisfies the lattice properties.

Differentiate between distributive lattices and complemented
lattices. Provide an example illustrating both concepts.

Discuss the significance of well-ordered sets and complete

lattices. How do they relate to partially ordered sets?

Short Answer Questions

1.
2.
3.

Define a partial order relation and give an example.

What are the key properties of a partially ordered set (POSET)?
How does a Hasse diagram differ from a general graph
representation?

What is the difference between a lattice and a complete lattice?

Explain the concept of a complemented lattice with an example.
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MODULE 3
BOOLEAN ALGEBRA

3.0 Learning objectives
e To understand the fundamental concepts of Boolean algebra and
Boolean lattices.
e To analyze Boolean functions, disjunctive and conjunctive
normal forms.
e To study Karnaugh maps for Boolean function simplification.
e To explore the applications of Boolean algebra in switching

circuits and logic circuits.
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Unit 3.1: Basic concepts of Boolean Algebra

3.1.1 Basic Concepts of Boolean algebra, Boolean Lattice, Boolean
algebra

Basic Concepts of Boolean algebra

Boolean algebra is a mathematical structure that consists of binary
variables and logical operations. Developed in the mid-19th century by
George Boole, it underlies digital logic and computer science. Unlike
classical algebra working on the real numbers, Boolean algebra works
on binary values (0 and 1) according to a defined set of logical rules.
The basic operations in Boolean algebra are AND, OR, and NOT; they
are denoted respectively by multiplication, addition, and negation.
These operations are used to construct Boolean expressions and
simplified using laws and theorems of boolean algebra namely De
Morgan’s Theorems, Idempotent Laws, Absorption Law, Distributive
Law. It forms the basis of digital circuit design, logic gates, and
computer programming. It helps create circuits more efficiently by
minimizing Boolean expressions (which in turn helps create circuits
using the least number of logic gates). Its applications range from
database management systems to artificial intelligence to network
security. Most of the students of engineering, computer science, and
mathematics need the most basic concepts of boolean algebra.

3.1.2 Boolean Lattice

A Boolean lattice is a special case of an algebraic structure that is both
a lattice and satisfies the axioms of Boolean algebra. A (mathematics)
lattice is a partially ordered set P, for which a pair x and y in P always
has a specific least upper bound and greatest lower bound. When we
include complementation and the distributive laws, we move into a

Boolean lattice.

1. A Boolean lattice is precisely defined by a tuple (B, A, v, —, 0,
1), such that:

2. (B, A, V) forms a lattice.

3. There are two especially distinguished elements: 0 (minimum
element) and 1 (maximum element).

4. Each element has a unique complement, such that x vV x' =1
and x Ax'=0.
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5. The lattice obeys the associative, commutative, absorption, and
distributive laws.
Boolean lattices are widely used in logic design, set theory, and
mathematical modeling. And in doing so, they produce a model that
expresses the logical relations and minimizes the logic expression. B)
Also, in the analysis of switching circuits, Boolean lattices are useful
to discuss about truth tables, Karnaugh maps and minimization
methods.
3.1.3 Boolean algebra and Its Theorems
Theorem 1: Identity LawA + 0= A, A - 1 = A Theorem 2: Null LawA
+1=1, A - 0=0Theorem 3: Complement LawA + A'=1, A - A' =
OTheorem 4: Idempotent LawA + A = A, A - A = A Theorem 5:
Domination LawA + 0= A, A - 1 = 0Theorem 6: Double Negation A
= A ‘Theorem 7: De Morgan's Theorems(A - B)'=A'+B', (A+ B)' =
A' - B'There are many theorems and mathematical properties in boolean
algebra used to simplify boolean expressions. The major theorems
include:
1. Idempotent Law: A+ A=AA+A=AandA-A=AA -A=
A.
2. Commutative Law: A+tB=B+AA + B =B + A andA-B=B-AA
\cdot B=B \cdot A.
3. Associative Law: A+(B+C)=(A+B)+CA+(B+C)=(A+B) +
C and A+(B-C)=(A-B)-CA \cdot (B \cdot C) = (A \cdot B) \cdot
C.
4. Distributive Law: A-:(B+C)=A-B+A-CA-(B+C)=A-B+A:-CA
\cdot (B + C) = A\cdot B + A \cdot C.
5. Absorption Law: A+(A-B)=AA + (A \cdot B) = A and
A-(A+B)=AA \cdot (A + B) = A.
6. De Morgan’s Theorems: (A+B)=A-B(A +B)'= A'\cdot B'and
(A-B)=A+B(A \cdot B)' = A'+ B'".
Because of their usefulness in obtaining the simplest form of logical
representations, they have many applications in logic minimization of
Boolean functions, which is useful in simplifying logical expression to
produce logic circuits which are less complex, or lower in depth, or
energy consumption. For designing digital systems, control

mechanisms, and data structures, Boolean controls are instrumental..
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Solved Examples

Example 1: Digital Circuits Design a logic circuit the for Boolean
expression (A A B) v—C.

* Implement AA B with AND, ~C with NOT and the final expression
with OR.

Example 2: Set Theory X = {1, 2, 3}. P(X), or the power set, is a
Boolean algebra.

«{1,2} v {2,3} = {1, 2,3} (Union)

* {1,2} A{2,3} = {2} (Intersection)

* {1, 2} = {3} (Complement)

Example 3: Logical Propositions Simplifying a Boolean expression (P
AQ)V (PA—Q)

*PAQV(EPAQ=PAQV—Q=PALl=P.

Example 4: Truth Tables generate a truth table for the Boolean
expression P A (Q V —R).

* Enumerate the cases for P, Q, R and find the value of the expression.
Example 5: Use Karnaugh Maps to simplify F(A, B, C) =Z(0, 2, 4, 5,
6).

* From adjacent 1s on a Karnaugh map, extract a simplified expression.
Example 6: A logic proof of the absorption law: aV (a A b) = a.
caV(aAb)=(aAl)V (aAb)=aA(lVb)=aAl=a.

Example 7: Boolean Lattice Drawing (Hetherington, John: Type B,
pp.

* Count all subsets and connect them on the basis of inclusion.
Example 8: Logical Equivalence Prove P - Q < —P Vv Q.

* Employing truth tables or algebraic manipulation.

Example 9: Boolean Reduction Simplify (AAB)V(AA—B)V (A A
B).

* AA(BV—B)V(—AAB)=AV(—AAB)=(AV—A)A(AVB)=AVB.
Example 10: Boolean Function Representation Implement the
Boolean function F(A, B) = A @ B (XOR) using AND, OR, and NOT
gates.

* F(A, B) = (A and not B) or (not A and B).

Example 11: Divisor Boolean Algebra Prove that under divisibility
containment ordering, the ordered set of divisors of the number 30
forms a Boolean algebra.

* 30 have divisors = {1, 2, 3, 5, 6, 10, 15, 30}

* Prove that it is a complemented distributive lattice.
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Example 12: Boolean Algebra of Propositions— Show that (P A (P —
Q)) — Q is a tautology.

* Employ truth tables or logical equivalences.

Example 13: Boolean Algebra of Sets with additional condition Let
the set [={1,2,3,4} he even numbers, and the set I'={1,2,3,4} he odd
numbers. Prove that I, I' form a Boolean algebra.

« {1,3}, {2,4}, {1,2,3.4}, {}

* Join, and show complement, meet, and properties

Example 14: Boolean Algebra with a filter Consider sets {1,2,3,4,5,6}
and the subsets {1,2,3}, {4,5,6}, {} and {1,2,3,4,5,6}. Prove that these
sets create a boolean algebra.

 Show properties of complement, meet, join.

Example 15: Boolean algebra and Karnaugh Maps Simplifying F(A,
B,C,D)=%(0,1,2,3,8,9, 10, 11) using a Karnaugh map.

» Make groups of the 1’s in the Karnaugh map more with example
Further Solved Examples and Applications

Example 16: Boolean Functions and Logic Gates Use logic gates to
Implement the Boolean function F(A, B, C)= (AAB)V (A AC).

* An AND gate (A A B), NOT gate (—A), AND gate (—A A C), OR gate
(final expression).

Example 17: Boolean Algebra and Set Operations Let U= {a, b, c, d}.
A ={a, b} B={b, c} C= {c, d} Proof the De Morgan's law: =(A U
B)=—A N —B.

* A UB={ab,c},~(A U B)={d}

*—A={c,d}, B={a,d},~A N —B={d}

Example 18: Boolean algebra and Logical ReasoningP — QP R —
—Q prove R.

* P - Q; P = Q (Modus Ponens).

* "R — —Q is equivalent to Q — R.

* Q and Q — R (Modus Ponens)

Example 19: Minimization using Boolean algebra and Karnaugh maps
Minimize the function F(A, B, C, D)=%(1, 3,5, 7,9, 11, 13,15)

» Use a Karnaugh map to show that F(A, B, C, D) =D.

Example 20: example, Boolean algebra and how they can help you
simplify your digital circuits.

(AANBV-B)V(—A ABAC)=AV(—AABAC)=AV(BACQC)
Example 21: The Boolean algebra and the Relational Databases

Suppose we want to make a query on a database, e.g., "Select records
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where (age > 30 AND city = New York) OR (salary > 50000 AND
department = Sales). Write this query in terms of Boolean algebra.

* Let A = (age > 30) B = (city = 'New York') C = (salary > 50000) D =
(department = 'Sales")

* Query: (AAB)V (CAD).

Example 22: Boolean Algebra and Logic Puzzles A puzzle states: “If
it is raining (R) or snowing (S), then the road is slippery (P). If it is
raining and the road is not slippery, is it snowing?
*(RvS)—P,R,and —P.

*(R)RVSis true.

*RVS)—»P&PE—-(RVS).

* (R Vv S) implies "R A —S.

It then goes on to prove this logically: *If R is true then it must be the
case that S is true. That is, S must also be true. *If S is true, then —R is
false. Therefore, since "R is false, =S, must be true. Thus it can’t be
snowing.

Example 23: Boolean algebra and Error checking a parity bit is added
to a 3-bit message (A, B, C) in a communication system to perform
error detection. P in parity bit is 1 if number of 1 in message is odd,
else 0 find a Boolean function for P.
*P=(ADPB)PC=(AABAC)V(CAABA-C)V(—A A—BA
C)V(AABAQ).

Example 24: Boolean algebra, Verification of Formal Verification
using notations of Structural Modeling in Virology.

* Verify that the output of the circuit will always equal the function’s
definition using truth tables or Boolean algebra.

Example 25: Boolean algebra and State Machines A state machine can
change between states depending upon input signals. Use Boolean
algebra to represent the transition logic.

* For example: If input A 1s 1, a finite state machine transitions to state
S1; otherwise, it stays in state SO.

* Transition: S1 =A A SO'.

Example 26: Boolean algebra and Combinational Logic Design a
combinational logic circuit such that when two of its three inputs (A,
B, C) are 1, the output is 1.

*F=(AAB)V(AAC)V(BACQ).
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Example 27: Boolean algebra and Data Structures Boolean algebra is
used to express a family of conditions under which a data structure may
be accessed.
* For instance: let access be granted if the following condition holds:
(user is admin AND file exists) OR (user has read permission AND file
is public).
Example 28: Boolean algebra and Al Logic Use Boolean algebra to
represent a simple rule-based system.
» Example: IF (temperature is high AND humidity is high) THEN turn
on cooling system
Example 29: Boolean algebra and Networking Boolean algebra can
be used to represent network routing rules.
» Example: Send packet to router A if (dest. network is X AND
protocol is TCP) OR (dest. network is Y AND protocol is UDP)
Example 30: boolean algebra in Card Games Representing Winning
Conditions in a Card game
» Example: win if (player has all keys and player has reached goal) or
(player has defeated all enemies).
Unsolved Problems

1. Simplify: A(B+C)+A'CAB + C) + A'C.
Prove: A+tAB'=A+B'A+ AB'=A+B'.
Find the complement of: (A+B)(A'+B')(A + B)(A' + B").
Show that: A+tA'B=A+BA+A'B=A+B.
Simplify: A+AB+A'BA + AB + A'B.
Prove: A+AB'+B=A+BA + AB'+ B=A + B.
Find the complement of: A'B+AB’A'B + AB'.
Simplify: A+A’'B+ABA + A'B + AB.
. Prove: A+tB+AB=A+BA + B+ AB=A + B.
10. Simplify: (A+B)(A+B’)(A + B)(A + B").

© 0 N Lk W N

This Module presented fundamental concepts of Boolean algebra,
Boolean lattice, and its theorems along with solved and unsolved
problems. Boolean algebra is an essential subject in mathematics,
computer science, and electrical engineering, and learning it will help
you understand logic circuits, digital systems, and computational
logic.
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3.1.4 Boolean Functions, Disjunctive and Conjunctive Normal
Form, Complement Function, Bool’s Expansion Theorem
Boolean Functions, Disjunctive and Conjunctive Normal Form,
Complement Function, and Bool’s Expansion Theorem
Boolean algebra is a mathematical system used in computer
applications, particularly in logic design and digital circuits. It operates
on binary values (0 and 1) and forms the foundation for designing logic
gates and circuits. In this context, Boolean functions play a crucial role
in representing logical expressions using variables, operations, and
standard forms. This section delves into Boolean functions, their
standard forms—Disjunctive Normal Form (DNF) and Conjunctive
Normal Form (CNF)—the concept of complement functions, and
Bool’s Expansion Theorem, which is essential in simplifying and
analyzing Boolean expressions.
Boolean Functions
A Boolean function is a mathematical expression composed of binary
variables, logical operators (AND, OR, NOT), and constants (0 and 1).
It defines a mapping from input values to a single binary output.
Boolean functions are widely used in digital circuits to design
combinational and sequential logic circuits. The fundamental Boolean
operations used to construct these functions are:
1. AND (+): A binary operation that results in 1 only if both inputs
are 1; otherwise, it results in 0.
2. OR (+): A binary operation that results in 1 if at least one of the
inputs is 1.
3. NOT (—): A unary operation that inverts the input, changing 1
to 0 and vice versa.
A Boolean function can be represented in different ways:
e Truth Table Representation: A tabular representation of all
possible input combinations and their corresponding output.
e Algebraic Expression: The function is represented as an
equation using Boolean operators.
e Logic Circuit Diagram: A graphical representation using logic
gates.
e Canonical and Standard Forms: Expressions written in a

predefined normal form for easier simplification.
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3.1.5 Disjunctive Normal Form (DNF) Notes
Disjunctive Normal Form (DNF) is a standardized way of representing
Boolean functions as a disjunction (OR operation) of multiple
conjunctions (AND operation). A Boolean function is said to be in DNF
if it consists of a sum of product terms, where each product term is a
conjunction of literals. A literal is either a Boolean variable (e.g., Xxxx)
or its negation (e.g., x). A minterm is a conjunction (AND) of literals
where each variable appears exactly once in either its true or
complemented form.
The general form of DNF is:
F(x1,x2,...,xn)=(A1-B1-:C1)+(A2-B2-:C2)+::-+(Am-Bm-Cm)
where each term inside the parentheses is a minterm.
For example, consider a Boolean function with three variables:
F(A,B,C)=(A-—B-C)+(A-B-C)+(—A-B-—C)
This is in disjunctive normal form because it consists of ORed
minterms.
DNF is useful because it provides a clear way of defining Boolean
expressions in terms of logical OR of individual product terms.
However, it is not always the most optimized form for circuit
implementation.
3.1.6 Conjunctive Normal Form (CNF)
Conjunctive Normal Form (CNF) is another standard form for Boolean
functions, where the function is expressed as a conjunction (AND
operation) of multiple disjunctions (OR operation). Instead of
minterms, CNF uses maxterms, which are OR operations of literals.
A Boolean function is said to be in CNF if it consists of a product of
sum terms, where each sum term is a disjunction of literals.
The general form of CNF is:
F(x1,x2,...,xn)=(A1+B1+C1):(A2+B2+C2)----:(Am+Bm+Cm)
where each term inside the parentheses is a maxterm.
For example, consider a Boolean function with three variables:
F(A,B,C)=(A+B+—C)-(A+—B+C)-(—A+B+C)
This is in conjunctive normal form because it consists of ANDed sum
terms.
CNF is particularly useful in logic programming, propositional logic,
and solving satisfiability problems (such as in the SAT problem).
However, like DNF, it may not always be the most efficient

representation for digital circuit design.
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3.1.7 Complement Function
The complement of a Boolean function is the logical negation of the
function. Given a function F(x1,x2,...,xn), its complement is denoted as
—F or F"" and is derived by applying De Morgan’s Theorem:
e De Morgan’s Theorems state that:
1. «(A-B=A+B
2. —(A+B)=—A-—B
To find the complement of a Boolean function, we apply the NOT
operation to the entire function and use these rules to simplify.
For example, given the function:
F(A,B)=A+—B
Its complement is:
F'(A,B)=—(A+—B)
Applying De Morgan’s Theorem:
F'(A,B)=—A‘B
The complement function is important in digital logic because it helps
in designing circuits such as NAND and NOR implementations, which
are functionally complete (i.e., they can be used to construct any
Boolean function).
3.1.8 Bool’s Expansion Theorem
Bool’s Expansion Theorem (also called the Shannon Expansion
Theorem) is a fundamental theorem in Boolean algebra used for
simplifying Boolean functions and designing digital circuits. The
theorem states that any Boolean function can be expressed in terms of
one of its variables and its complement.
The theorem 1s mathematically expressed as:
F(x1,x2,...,xn)=xF(1,x2,...,xn)+—xF(0,x2,...,xn)
where F(1,x2,...,xn) is the function evaluated with x=1x = 1x=1, and
F(0,x2,...,xn) is the function evaluated with x=0.
For example, consider the function:
F(A,B)=A-B+A’
Applying Bool’s Expansion Theorem on AAA:
F(A,B)=A-F(1,B)+—A-F(0,B)
Evaluating:
F(1,B)=1-B+0=B
F(0,B)=0-B+1=1
Thus, expanding:
F(A,B)=A-B+—A:1
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Bool’s Expansion Theorem is widely used in:
e Circuit simplification: Breaking down complex Boolean
expressions into simpler components.
e Multiplexer design: Used to construct logic functions using
multiplexers.
e Binary decision diagrams (BDDs): Representing and
simplifying Boolean functions graphically.
Boolean functions are essential in digital logic design and computer
applications. Disjunctive Normal Form (DNF) and Conjunctive
Normal Form (CNF) provide standardized ways to express Boolean
functions for logic circuit design. The complement function plays a
crucial role in implementing logical negations and designing
NOR/NAND-based circuits. Bool’s Expansion Theorem offers a
systematic way to simplify Boolean functions and is fundamental in
logic synthesis and digital circuit design. Understanding these concepts
allows for efficient manipulation of logical expressions, leading to

optimized digital systems.
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Unit 3.2: Karnaugh map

3.1 Karnaugh Map Method for Simplification of Boolean
Expressions
Boolean algebra plays a critical role in computer science, electrical
engineering, and digital logic design. As Boolean functions grow more
complex, simplifying them becomes essential to improve the efficiency
of digital circuits. While algebraic manipulation and truth tables offer
ways to minimize Boolean expressions, the Karnaugh Map (K-map)
method provides a systematic and visual approach to simplification.
This technique is especially useful for reducing the number of logic
gates required to implement a function, thus optimizing hardware
performance and resource utilization.
Introduction to Karnaugh Maps
The Karnaugh Map (K-map) is a diagrammatic method for simplifying
Boolean expressions by grouping terms to eliminate redundant
variables. It was introduced by Maurice Karnaugh in 1953 and has since
become one of the most widely used techniques in digital circuit design.
The K-map method provides an alternative to algebraic simplification,
which can sometimes be cumbersome and prone to errors. A K-map is
a grid-like structure where each cell represents a possible combination
of input variables. The values in the cells correspond to the output
values of the Boolean function being simplified. By identifying
adjacent cells with similar values, we can form groups that allow us to
derive a simplified expression with fewer terms and variables.
3.2.2 Structure of Karnaugh Maps
A Karnaugh Map is constructed based on the number of variables in the
Boolean function. The number of cells in the K-map corresponds to the
possible input combinations, which is determined by 2*n, where n is
the number of variables.

e 2-variable K-map: 4 cells (2x2 grid)

e 3-variable K-map: 8 cells (2x4 grid)

e 4-variable K-map: 16 cells (4x4 grid)

e 5S-variable K-map and beyond: Higher-dimensional

representations, typically drawn as multiple 4-variable K-maps

Each cell in the map represents a minterm, which is a product term in

the Sum of Products (SOP) form of the Boolean expression. The
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arrangement of cells follows Gray Code sequence instead of binary

order, ensuring that adjacent cells differ by only one variable.

o 1 A o0 Ol m 10 AB 00 o 1 10
o 1 o 0o 1 3 2 00 | o 1 3 2
3 2 1 4 5 7 6 o1 | 4 5 7 6
22 =4 cells n 12 13 15 | 14
23 =8cells
10 8 9 n 10

2%=16cells

Fig: 3.2.1 Karnaugh Map

Filling the Karnaugh Map

To simplify a Boolean function using a Karnaugh Map, follow these

steps:
1.

Determine the number of variables in the Boolean function.

2. Draw the corresponding K-map grid based on the number of

variables.

Label the rows and columns using Gray Code to ensure single-
bit transitions between adjacent cells.

Place 1s in the cells that correspond to the minterms in the given
Boolean function.

Group adjacent 1s together to form rectangles containing 1, 2,
4, 8, or more minterms, ensuring that each group is as large as
possible.

Derive the simplified expression from the groups by identifying

the common variables.

3.2.3 Grouping Rules for Simplification

The primary objective of K-map simplification is to create the largest

possible groupings of 1s. Some fundamental grouping rules include:

Groups must contain 1, 2, 4, 8, or more cells in powers of 2.
Groups should be as large as possible while still covering all 1s.
Each 1 must be covered by at least one group, but it can be part
of multiple groups.

The edges of a K-map wrap around, meaning cells on one edge

are adjacent to corresponding cells on the opposite edge.

101
MATS Centre for Distance and Online Education, MATS University

N :.\\\.:
‘mn

UNIVERSITY

ready for life......

Notes

ars)

YW i

|



G T )

ready for life.

Notes Example: Simplifying a 3-Variable Boolean Function
Consider the Boolean function:

The 3-variable Karnaugh Map is structured as follows:

AB\C01
00 11
01 01
11 01
10 10

From this, we identify the groupings:

1. (0,1) and (6,7) form a group because they differ by only one
variable.

2. (3,7) and (6,7) form another group.

3. Single remaining 1 at position (6) can be grouped with an
adjacent pair.

From these groups, we extract the simplified expression:

This is the minimized Boolean function, requiring fewer logic gates for
implementation.

3.2.4 Advantages of Using Karnaugh Maps

e Visual and Intuitive: Unlike Boolean algebra, which requires
algebraic manipulation, K-maps offer a clear visualization of
simplifications?

o Efficient for Small Functions: K-maps work efficiently for
functions with up to 5 or 6 variables. Beyond that, tabular
methods like Quine-McCluskey are preferred.

e Minimizes Logic Circuits: Reducing the number of terms
directly translates to fewer logic gates, reducing power
consumption and increasing circuit speed.

3.2.5 Limitations of Karnaugh Maps

e Not Scalable Beyond 5-6 Variables: As the number of variables
increases, K-maps become difficult to handle due to their
exponential growth.

e Complex Grouping: While it is straightforward for small
expressions, larger maps can be tricky to group optimally.

e Requires Manual Effort: Unlike algebraic methods that can be
implemented algorithmically, K-map simplifications rely on

human intuition.
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3.2.6 Comparison with Other Simplification Techniques

Several alternative methods exist for Boolean function simplification:

Method Advantages Disadvantages

Boolean ) ) Time-consuming, complex
Rigorous and logical .

Algebra for large expressions

. Not directly used for
Truth Table |Systematic, complete || . ) )
simplification

Karnaugh Visual, effective for|Not scalable beyond 5-6

Map small functions variables
Quine- Algorithmic, works for|Computationally  expensive
McCluskey |larger functions for very large functions

3.2.7 Application of Karnaugh Maps in Computer Applications
K-maps play a vital role in the design and optimization of:
e Combinational Circuits: Used in arithmetic logic Modules
(ALUs), multiplexers, and demultiplexers.
e Sequential Circuits: Simplification of next-state logic in finite
state machines.
e Memory Address Decoding: Optimization of address
decoding logic in microprocessors.
e Control Systems: Used in designing control Modules in
embedded systems and automation.
The Karnaugh Map method is a powerful tool for simplifying Boolean
expressions, making digital circuit design more efficient. By
systematically grouping adjacent minterms, K-maps eliminate
redundant variables, reducing the complexity of logic circuits. Despite
its limitations for large-scale problems, it remains an essential
technique in digital logic design, particularly for small to medium-sized
Boolean functions. Understanding K-maps enables engineers and
computer scientists to create optimized, cost-effective, and high-
performance digital systems, forming the foundation of modern

computational applications.
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Unit 3.3: Applications of Boolean Algebra in switching
circuits, logic circuits

3.3.1 Applications of Boolean Algebra in Switching Circuits, Logic
Circuits

Boolean algebra, formulated by George Boole in the mid-19th century,
serves as the mathematical foundation for digital logic design and
switching circuits. It provides a systematic framework for analyzing
and designing circuits that operate using binary variables, which take
values of either 0 or 1. The fundamental principles of Boolean algebra
are instrumental in the functioning of modern computers, control
systems, and communication devices. In the realm of digital
electronics, Boolean algebra simplifies circuit design by minimizing
the number of logic gates required to perform specific operations,
thereby enhancing efficiency, reducing power consumption, and
improving system reliability. Switching circuits, also known as
combinational logic circuits, rely on Boolean algebra to define their
operational behavior. These circuits consist of interconnected logic
gates—such as AND, OR, NOT, NAND, NOR, XOR, and XNOR
gates—that process binary signals to generate desired outputs. Boolean
algebra enables engineers to represent complex logical expressions
using algebraic notation, simplifying the analysis and design of
switching networks. The application of Boolean algebra in switching
circuits is crucial in various fields, including telecommunications,
industrial automation, robotics, and embedded systems. One of the
most important applications of Boolean algebra in switching circuits is
the design of logic circuits, which are used to perform arithmetic
operations, data processing, and decision-making functions in digital
systems. Logic circuits are broadly classified into combinational and
sequential circuits. Combinational logic circuits produce outputs solely
based on current input values, whereas sequential logic circuits store
past input information and exhibit memory-like behavior. The
implementation of Boolean functions in combinational circuits enables
the construction of essential digital components, such as multiplexers,
demultiplexers, encoders, decoders, arithmetic logic Modules (ALUs),
and memory systems.

Boolean algebra plays a crucial role in simplifying complex logic

expressions through algebraic manipulation techniques, such as the
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application of Boolean postulates, De Morgan’s theorems, and
Karnaugh maps. By reducing redundant variables and minimizing
logical expressions, Boolean algebra optimizes circuit design, leading
to lower hardware costs and improved performance. For example, in
designing a digital adder circuit, Boolean algebra helps derive the
simplest possible expressions for sum and carry outputs, thereby
reducing the number of gates required. This optimization is particularly
valuable in large-scale integrated circuits (LSIs) and very-large-scale
integrated circuits (VLSIs), where minimizing transistor count is
essential for power efficiency and compactness. In switching circuits,
Boolean algebra is employed to analyze and design relay logic systems,
which were historically used in early telephone exchanges and
industrial control applications. Relay logic, based on electromechanical
relays, follows Boolean principles to control electrical circuits through
logical conditions. The advent of solid-state digital electronics replaced
relays with semiconductor-based logic gates, but the foundational
Boolean concepts remain unchanged. Programmable logic controllers
(PLCs), widely used in industrial automation, also rely on Boolean
logic to execute control sequences and decision-making processes.
Another significant application of Boolean algebra in switching circuits
is the design of sequential logic circuits, such as flip-flops, registers,
and counters. Sequential circuits differ from combinational circuits in
that they incorporate memory elements that store binary states. Boolean
algebra helps define the logical relationships governing state
transitions, enabling the construction of synchronous and asynchronous
sequential systems. Flip-flops, which serve as the building blocks of
memory storage and clocked circuits, operate based on Boolean
expressions to determine state changes. Counters, which are used in
digital clocks, frequency dividers, and event counting applications,
function by following Boolean logic rules to transition between states
in a predefined sequence.

The minimization of Boolean expressions using Karnaugh maps (K-
maps) and the Quine-McCluskey method is a critical aspect of
optimizing switching circuits and logic circuits. K-maps provide a
visual representation of Boolean functions, facilitating the
identification of common terms and redundant variables. The Quine-
McCluskey method, a tabular technique for simplification, is

particularly useful for automated logic design in digital circuits. These
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minimization techniques significantly impact circuit performance by
reducing propagation delay, power consumption, and the likelihood of
timing errors. Boolean algebra is also extensively used in designing
logic circuits for microprocessors, digital signal processors (DSPs), and
application-specific integrated circuits (ASICs). Microprocessors, the
core components of modern computing devices, rely on logic circuits
that perform arithmetic and logical operations based on Boolean
expressions. Boolean functions govern the design of arithmetic circuits,
such as adders, sub tractors, multipliers, and dividers, which form the
computational backbone of processors. In DSP applications, Boolean
algebra is used to implement logic-based filtering, signal modulation,
and pattern recognition techniques. In the field of digital
communication, Boolean algebra plays a vital role in the design of error
detection and correction circuits. Parity generators and checkers, which
ensure data integrity during transmission, operate using Boolean
functions to detect bit errors. Hamming codes and cyclic redundancy
check (CRC) methods, based on Boolean algebra, enable error
correction in data communication systems. These applications are
fundamental to ensuring reliable data transfer in network protocols,
storage devices, and wireless communication systems.

Memory design and storage technologies also leverage Boolean algebra
to optimize read and write operations. Random-access memory (RAM),
read-only memory (ROM), and flash memory circuits utilize Boolean
logic to manage data storage and retrieval processes. Address decoding
circuits, which determine memory locations for data storage, operate
using Boolean expressions to enable efficient memory access. Boolean
algebra further aids in designing cache memory management systems,
optimizing data access speeds in modern computing architectures.
Boolean algebra is fundamental in the design of digital control systems,
which govern automated processes in various industries. Digital
controllers, used in robotics, aerospace, medical devices, and smart
home technologies, rely on Boolean logic to execute programmed
instructions. Logic circuits in digital controllers interpret sensor inputs,
process logical conditions, and generate control signals to drive
actuators. The application of Boolean algebra in these systems
enhances precision, reliability, and responsiveness in automated
decision-making. The advent of field-programmable gate arrays
(FPGAs) and complex programmable logic devices (CPLDs) has
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further expanded the scope of Boolean algebra in modern electronics.
FPGAs and CPLDs provide reconfigurable logic platforms that allow
engineers to implement custom digital circuits using Boolean
expressions. Hardware description languages (HDLs), such as Verilog
and VHDL, enable the design and simulation of Boolean-based logic
circuits before hardware implementation. These programmable logic
devices have revolutionized prototyping, allowing rapid development
and testing of digital systems.

Another critical application of Boolean algebra in switching circuits
and logic circuits is found in cybersecurity and cryptographic systems.
Boolean functions are used in the design of cryptographic algorithms,
such as symmetric and asymmetric encryption schemes, hash functions,
and digital signatures. Boolean logic ensures secure data encryption
and authentication processes, safeguarding sensitive information in
digital communication and financial transactions. Boolean algebra
serves as the backbone of switching circuits and logic circuits, playing
a fundamental role in digital electronics, computing, automation, and
communication systems. Its application in circuit simplification,
memory design, error detection, digital control, and cryptographic
security underscores its significance in modern technology. The ability
of Boolean algebra to represent and manipulate logical relationships
enables engineers and computer scientists to design efficient, reliable,
and scalable digital systems. As technological advancements continue
to evolve, the principles of Boolean algebra will remain indispensable

in shaping the future of digital innovation.
Applications of Boolean Algebra

Boolean algebra is one of the most important tools in computer science
and digital electronics. It provides the mathematical foundation for the

design of circuits, logic programming, and problem solving.

Digital Circuit Design: Every digital circuit can be represented by a
Boolean expression. By applying Boolean laws, we can simplify these
expressions to reduce the number of gates used, which makes circuits

faster and cheaper.
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Search Engines: Boolean operators such as AND, OR, and NOT are
used to combine search terms. For example, searching for “MCA AND

Mathematics” will return results containing both words.

Computer Networks: Boolean logic is used in routing decisions and
access control lists, where packet rules are written using logical

expressions.

Programming Languages: Conditional statements in languages such

as C, Java, or Python are evaluated using Boolean expressions.
Simplification of Boolean Functions

Karnaugh maps (K-maps) are widely used to minimize Boolean
functions. They help in identifying common groups and reducing the

number of variables in an expression.
Example: Simplify the function
F(A,B,C)=2%(1,3,5,7)

Step 1: Write minterms in binary form.

1 =001
3=011
5=101
7=111

Step 2: Place them in a 3-variable K-map.

Step 3: Identify groups of adjacent 1s. In this case, grouping yields:

F=BACVAAC.

Thus, the simplified expression is:

F(A,B,C)=C(B V A).
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Boolean Algebra in Error Detection and Correction

Boolean functions are also used in designing error detection codes. For
example, parity bits are generated using XOR operations. If the number
of Is in a message is odd, the parity bit ensures the total becomes even.

At the receiving end, if the parity does not match, an error is detected.

Boolean Functions in Switching Theory

Switching circuits such as elevators, traffic signals, and vending
machines are modeled using Boolean functions. The ON and OFF
states correspond to 1 and 0. Boolean simplification ensures that such
systems work efficiently with minimal switches.

Worked Example: Circuit Simplification

Consider the Boolean function

F=AB+A'B+ AB'.

Step 1: Apply distributive law:

F=AB+A'B+AB'=B(A +A’) + AB".

Step 2: Since A + A’ =1, we get:

F=B(l1)+ AB'=B + AB".

Step 3: Apply absorption law:

F=B+A.

Thus, the circuit is simplified from three terms to just two inputs

connected by OR.

Importance of Boolean Algebra

The study of Boolean algebra is not limited to digital systems. It is an

essential part of problem solving in mathematics, optimization in
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programming, database query design, and artificial intelligence
reasoning. Its principles allow computers to represent complex logical
problems using just two states, 0 and 1, making it the language of

computation itself.

SUMMARY

This module introduces the principles and applications of Boolean
algebra, a mathematical framework essential for digital logic and
computer design. It begins with the fundamental concepts of Boolean
algebra and Boolean lattices, where binary variables take values 0 and
1 and operations such as AND, OR, and NOT follow specific algebraic
rules. Boolean expressions are simplified using identities and laws,
including commutative, associative, distributive, identity, and De
Morgan’s laws. The module explores Boolean functions, their
representation, and transformation into Disjunctive Normal Form
(DNF) and Conjunctive Normal Form (CNF), aiding in standardizing
logic expressions. A key tool for simplification is the Karnaugh Map
(K-Map), which visually groups adjacent ones or zeros to minimize
Boolean functions with fewer terms, improving circuit efficiency. The
module also examines the application of Boolean algebra in
switching circuits and logic gates, enabling the design and analysis of
digital systems like adders, multiplexers, and combinational logic
circuits.

sssss Mastery of these concepts is foundational for understanding how
computers perform logical operations and how hardware implements
complex decision-making processes. he final part of the module
explores the applications of Boolean algebra in switching and logic
circuits. Boolean expressions are directly used to design and analyze
digital components such as logic gates, multiplexers, demultiplexers,
encoders, decoders, and arithmetic circuits like adders and subtractors.
The conversion from Boolean expressions to circuit diagrams forms the
foundation of combinational logic design, which is critical in building
CPUs, memory units, and control systems. In summary, This Module
equips students with the theoretical and practical tools to analyze and
design logical systems using Boolean algebra. It bridges the gap

between abstract algebraic principles and their real-world application
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in computer hardware, laying the groundwork for more advanced

studies in digital electronics, computer architecture, and logic-based

computation.
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Notes Multiple-Choice Questions (MCQs)

1. Which of the following operations are fundamental in Boolean
algebra?
a) Addition, subtraction, multiplication
b) AND, OR, NOT
c) Integration, differentiation, exponentiation
d) Union, intersection, complement
Ans: b)

2. A Boolean function can be expressed in which of the following
normal forms?
a) Disjunctive Normal Form (DNF)
b) Conjunctive Normal Form (CNF)
c¢) Both (a) and (b)
d) None of the above
Ans: ¢)

3. Which theorem in Boolean algebra states that any Boolean
function can be expanded into a sum of two sub-functions?
a) De Morgan’s Theorem
b) Duality Theorem
c¢) Boolean Expansion Theorem
d) Absorption Theorem
Ans: ¢)

4. Which simplification technique is commonly used for
minimizing Boolean functions graphically?
a) Karnaugh Map (K-Map)
b) Truth Table Method
c) Algebraic Substitution
d) State Diagram
Ans: a)

5. Boolean algebra is widely applied in which of the following
fields?
a) Switching circuits
b) Logic circuits
c) Digital electronics
d) All of the above
Ans: d)

112
MATS Centre for Distance and Online Education, MATS University



UNIVERSITY
ready for life.......

Long Answer Questions Notes

1.

Explain the fundamental concepts of Boolean algebra and
Boolean lattices. How are Boolean lattices different from
general lattices?

Describe disjunctive and conjunctive normal forms with
examples. Why are they important in Boolean function
simplification?

What is Karnaugh Map (K-Map)? How is it used for the
simplification of Boolean expressions? Explain with examples.
State and prove Boole’s Expansion Theorem. How does it help
in Boolean function manipulation?

Discuss the applications of Boolean algebra in switching
circuits and logic circuits. Provide examples illustrating its

practical significance.

Short Answer Questions

1.
2.
3.

What are the three basic operations in Boolean algebra?
Define Boolean lattice and give an example.

What is the difference between disjunctive normal form
(DNF) and conjunctive normal form (CNF)?

How does Karnaugh Map help in simplifying Boolean
functions?

Give one real-life example where Boolean algebra is applied

in logic circuits.
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MODULE 4
GRAPH THEORY

4.0 Learning objectives
e To understand the fundamental concepts of graph theory.
e To explore different types of graphs and their properties.
e To analyze sub graphs, walks, paths, and circuits.
e To study matrix representations of graphs and directed graphs.
e To understand trees, rooted trees, binary trees, spanning trees,

and fundamental circuits.
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Unit 4.1: Basic concepts of graph theory

4.1.1 Basic Concepts of Graph Theory

Graph theory is one of the critical building blocks of discrete math and
the toolset you use to represent relationships between things. This
sounds more complicated than it is, but at the most basic level, a graph
is a mathematical construct of a number of vertices (or nodes)
connected together by edges. Such a simple construct opens many
analytical possibilities for a hundred disciplines.

Fundamental Definitions

A graph G can be formally defined as an ordered pair G =(V, E), where
V is a set of vertices and E a set of edges. Each edge joins a pair of
vertices, which may be ordered (for directed graphs, where one vertex
is listed first) or unordered (for undirected graphs). In Undirected
Graph, edges have no orientation and they can be represented as
unordered pair {u, v} where u,v € V; while in Directed Graph
(Digraph), edges have orientation and are represented as ordered pair
(u, v) indicating an edge from vertex u to vertex v. There are many
different types of specialized graph structures. A simple graph has no
self-edges (an edge directed from the vertex to itself) and also no
multiple edges between a single pair of vertices. A multigraph allows
more than one edge for a pair of vertices, but no self-loops. A
pseudograph may also have multiple edges or self-loops. Such
differences can be key when creating models of different real-life

systems.

Basic Concepts of Graph Theory

Fundamental Definitions
A graph G can formally defined as an orderd pair G = (V,E),
where V is a set of vertices and E a s set of edges (g. V).

B

Undirected Graph Directed Graph

X

X
X

Multigraph Pseudograph

Fig: 4.1.1 GRAPH THEORY

115
MATS Centre for Distance and Online Education, MATS University

YW i

N \\\

UNIVERSITY
reu or life.......

Notes

ars)



(mar

UNIVERSITY
ready for life.

S

4.1.2 Graph Representations

There are different ways you could represent graphs computationally,
and each has some advantages in some contexts. The adjacency matrix
representation consists of an nxn matrix A (where n is the number of
vertices) with the following entries: aij = 1 if there is an edge from
vertex i to vertex j, and aij = 0 otherwise. This makes it easy and fast
to look up edges, but can be wasteful for sparse graphs in terms of
space. The adjacency list maintains a list of vertices that are adjacent
to each vertex. This is more space-efficient for sparse graphs but
slower for edge lookups. Another representation is provided via
incidence matrices with rows corresponding to vertices and columns
corresponding to edges, where entries indicate whether a vertex is
incident to an edge. How to represent the data affects algorithm
performance dramatically for various operations.

4.1.3 Graph Properties and Terminology

Graphs are characterized by several fundamental properties. The
number of edges incident to a vertex is its degree. For directed graphs,
we refer to in-degree (incoming edges) and out-degree (outgoing
edges) separately. A path is an ordered sequence of vertices such that
every two adjacent vertices in the sequence are connected by an edge.
A cycle is a path that starts and ends at the same vertex. Another core
concept is connectivity. A connected graph is one in which there is a
path between any two vertices. Components are maximal connected
subgraphs. Strong connectivity for directed graphs is defined in terms
of a directed path in both directions between any two vertices. Trees
are a special kind of graph, they are connected and acyclic (have no
cycles), while forests are collections of trees. The degree sequence of a
graph is a list of the degrees of each vertex, usually listed in non-
increasing order.

4.1.4 Special Graph Types

Many specific classes of graphs are common in theory and
applications. A complete graph Kn has n vertices, all connected, and
contains n(n—1)/2 edges. The vertices of a bipartite graph can be
separated into two non-overlapping sets, where no edges connect
vertices within the same set. The term planar applies to graphs that can
be rendered on a plane such that no edges intersect. Graphs where
every vertex has the same degree are known as regular graphs and we

refer to multiple strongly regular graphs (known as strongly regular
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graphs) as maintaining an additional regularity condition on how many
neighbors they have in common. Other notable examples include the
Cycles {Cn}, Paths {Pn}, Wheels (a cycle with an n vertex connected
to all vertices of the cycle), and the grid graphs. The pentagon structure
of the Petersen graph is an excellent source of counterexample material
in graph theory. The properties of these special graphs usually give
information about more general graph properties and theorems.

4.1.5 Graph Coloring and Independence

The graph elements (the nodes or the arcs) are assigned a label (color)
with some constraints. In vertex coloring, no adjacent vertices can
have the same color. A proper vertex coloring is assigning colors to the
vertex of graph G such that adjacent vertices receive different colors
and the chromatic number y(G) is the minimum number q of such
colors. In a similar manner, in edge coloring, no two adjacent edges
may have the same color; the chromatic index y'(G) refers to the
smallest number of basic colors that can be assigned. An independent
set is a set of vertices that have no edges between them, and a clique is
a set of vertices that are all pairwise adjacent. Let a(G), ©(G) be the
independence number and the clique number of G respectively. These
ideas have applications in scheduling, register — allocation in
compilers, and frequency assignment problems in telecommunications.
4.1.6 Matching’s, Coverings, and Network Flows

A matching in a graph is a set of edges such that no two edges share a
vertex. A maximum matching has the greatest number of edges but a
perfect matching covers all vertices. The matching number v(QG) is
equal to a maximum matching size. On the other hand, a vertex cover
is a subset of vertices that contains at least one end point of every edge,
and the vertex cover number 1(G) is the size of a smallest such cover.
Network flow theory generalizes graph concepts to weighted directed
graphs, and edges have capacities. ) fxs,xd<c where S is source vertex
of network and XSink vertex of network max flow problem is hope to
find the max flow can go from source flow to sink flow The
augmentation-path technique is employed by the Ford-Fulkerson
algorithm in order to resolve this problem. The max flow min cut
theorem states that the flow exiting the source node does not exceed the
capacity of the "cut," and thus gives rise to the optimum solution,
solidifying this result as a foundational staple in combinatorial
optimization.
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4.1.7 Applications and Advanced Concepts

Graph theory is used in a wide variety of fields. Graphs are used to
model networks, data structures and algorithms in computer science.
In operations research, they describe transportation networks, project
schedules, resource allocation problems, etc. Graphs are employed to
analyze relationships and information flow in social networks. Graph
modeling finds its use in chemistry through molecular structures and in
biology via biological pathways. Advanced topics include spectral
graph theory (which looks at properties of graphs using eigenvalues of
related matrices), topological graph theory (which studies embeddings
of graphs on surfaces), extremely graph theory (which studies maximal
or minimal values of graph parameters), and random graph theory
(which studies probabilistic models of graphs). The computational
backbone of the vast majority of applications of graph theory is
algorithms like breadth-first search, depth-first search, Dijkstra’s
algorithm for shortest paths, and Kruskal’s and Prim’s algorithms for
minimum spanning trees. The work shapes shop these ideas pushes to
them graph hypothesis ahead as a live and growing ield with wide
rifting implications.

Solved Examples

Example 1: Graph Representation

Problem: Given a graph G with vertices V = {1, 2, 3, 4} and edges E
= {{1,2}, {1,3}, {2,3}, {2,4}, {3,4}}, represent this graph using an
adjacency matrix and adjacency list.

Solution: Adjacency Matrix:

1234
101160

21011

3 1101

40110

Adjacency List: 1: [2, 3] 2:[1, 3,4] 3: [1, 2, 4] 4: [2, 3]

Example 2: Degree Sequence

Problem: Find the degree sequence of the graph G with adjacency
matrix:

12345

1 01011

210100

301011
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Solution: Degree of vertex 1 = 3 (it connects with vertex 2, 4, and 5)
Degree of vertex 2 = 2 (it connects with vertex 1 and 3) Degree of
vertex 3 = 3 (it connects with vertex 2, 4, and 5) Degree of vertex 4 =
3 (it connects with vertex 1, 3, and 5) Degree of vertex 5 = 3 (it connects
with vertex 1, 3, and 4)

We talk about the sequence of degrees in non-increasing order: [3, 3,
3,3,2]

Example 3: Graph Isomorphism

Problem: Judge whether the graphs below are isomorphic: G1: V =
{a, b, c,d}, E = {{a,b}, {b,c}, {c,d}, {d,a}} G2: V={1,2,3,4}, E=
{{1.2}, {24}, {4.3}, {3,1}}

Solution : However, both graphs have 4 vertices, 4 edges. Both graphs
have degree sequence of [2, 2, 2, 2] (each vertex has exactly 2 edges).
Both graphs induce 4-cycles (C4).

We can find an isomorphism from a—1, b—2, c—4, d—3.

In this mapping, each edge in G1 maps to an edge in G2: {a,b} — {1,2}
{b,c} — {2,4} {c,d} — {4,3} {d,a} — {3,1}

Hence, the graphs are isomorphic.

Example 4: Connectivity and Components

Question: Given a graph G defined by the following vertices and
edges, what are the connected components in G?

Approach: Depth-first search or breadth-first search

» We can move to vertices 2 and 3 starting from vertex 1.

* Begin at vertex 4 and visit vertices 5 and 6.

* Vertex 7 is isolated.

So G has three connected components.

* Component 1: {1, 2, 3}

* Component 2: {4, 5, 6}

* Component 3: {7}

Example 5: Euler Paths and Circuits

Problem: Given the following graph, does it have an Euler path or an
Euler circuit? V= {a, b, c,d, e}, E = {{a,b}, {b,c}, {c,d}, {d,e}, {e,a},
{a,cj}

Solution: Check the degrees of each vertex: deg(a) =3 (b, e, ¢) deg(b)
=2 (a,c) deg(c) =3 (b,d,a) deg(d) = 2 (c,e) deg(e) =2 (d,a)
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All vertexes must be even degree to have an Euler circuit. In this case,
both vertices a and ¢ are of odd degree (3).
For an Euler path, there must be exactly two vertices of odd degree (the
starting and ending vertices). Thus, the graph has an Euler path but not
an Euler circuit since only two vertices (a and c¢) have odd degree. An
Euler path between these points would begin at a (or c), visit all edges
exactly once, and end at c (or a)
Example 6: Graph Coloring
Problem: Compute the chromatic number of the graph: V= {1, 2, 3, 4,
54, E={{1,2}, {4,5}} and a proper coloring.
Answer: We employ a greedy coloring approach:
1. Consider vertex 1 and give it color 1.
2. For vertex 2 it is an edge to vertex 1, then color 2.
3. For vertex 3, it is adjacent to vertex 1 and vertex 2 so assign
color 3.
4. For output vertex 4, its adjacent vertex are vertex 1 and vertex
3, so it haal a new color as 2.
5. For vertex 5, it is adjacent to vertices 3 and 4, so give it color
1.
The coloring is as follows - 1 and 5 are colored with color 1, 2 and 4
are colored with color 2 and 3 is colored with color 3.
To confirm it's minimal, we observe that we have a complete sub-graph
(K3) over vertices 1, 2, and 3 which would need at a minimum 3 colors.
Thus y(G)=3..
Example 7: Bipartite Graphs
Problem: Is this graph bipartite: V= {1,2,3,4, 5,6}, E= {{1,2}, {1,
43, {1, 65, {3, 2}, {3, 4}, {3, 6}, {5, 2}, {5, 4}, {5, 6}}?
Solution: A graph is bipartite when its vertices can be split into two
disjoint sets with no edges between the same sets.
So we can apply a two-coloring method. A bipartite graph is one that
can be colored with exactly two colors:
1. Assign color A to vertex 1.
2. You can see that vertices 2,4, and 6 are represented on the
neighboring vertices of 1, so we need to assign color B.
3. Vertex 3 is connected with 2, 4 and 6 (all are colour B), assign
colour A.
4. Since vertex 5 is connected to vertices 2,4 and 6 (all in color

B), assign color A.
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We have done two-coloring the graph as follows: Notes
*Set A: {1, 3,5}
*SetB: {2,4, 6}
Because no edges connect vertices within Set A or within Set B, this
graph is bipartite..
Example 8: Minimum Spanning Tree
Problem: Given the weighted graph V= {A,B,C,D,E} E={(A,B,2),
(A,C)3), (B,C,1), (B,D,3), (C,D,2), (C,E,4), (D,E,1)} (each edge
formatted as (vertex1, vertex2, weight)), find a minimum spanning tree.
Solution: Sort all the edges in non-decreasing order of their weight and
add in sorted order the next edge to the MST if it does not form a cycle
(Kruskal), it is a greedy algorithm.

1. (B,C,1)- Addto MST

2. (A,B,2) - Add to MST

3. (C,D,2) - Add to MST

4. (D,E,1) - Add to MST
The edges {(B,C), (A,B), (C,D), (D,E)} form the minimum spanning
tree with total weight 1+2+2+1 =6
Example 9: Shortest Path
Problem: Find the shortest path from vertex A to all other vertices
using Dijkstra's algorithm for the following weighted graph: V = {A,
B, C, D, E} E = {(A,B,10),
(A,C,3),(B,C,1),(B,D,2),(C,D,8),(C,E,2),(D,E,7)}
Solution: Initialise: dist[A]=0, dist[B]=cc, dist[C]=c0, dist[D]=0c0,
dist[E]=o0
[terations:

1. VisitA: dist[B]=10, dist[C]=3

2. Visit C (nearest one with no visits): Update

dist[D]=min(o0,3+8)=11, dist[E]=min(o0,3+2)=5

3. Visit B (closest unvisited): Update dist{D]=min(11,10+2)=10

4. Visit E (nearest unvisited): No updates

5. Visit D (nearest unvisited): No updates
Shortest final distances from A:
* To B: 10 (path: A—B)
* To C: 3 (path: A—C)
* To D: 10 (path: A>B—D)
* To E: 5 (path: A—»C—E)
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Example 10: Maximum Flow
Problem: Let \( V = \{s,a,b,c,t\} \; E = \{(s,a,10), (s,b,10), (a,b,2),
(a,c,4), (a,t,8), (b,c,9), (c,t,10)\} \), each edge has the form (from, to,
capacity)Problem: Find a maximum flow from source s to sink t in the
following network.
Solution: Implement Ford-fulkerson with augmenting paths:

1. Path s—a—t with bottleneck 8: Flow becomes 8.

2. Path s—>b—c—t with bottleneck 9: Total flow = 8+9=17.

3. Switch s — a — ¢ —t with bottleneck 2: Flow become

17+2=19

4. Previous flows block the path s—»b—a—t. * @ denotes a cut.
Hence, the maximum flow from s to t is 19 Modules.
The final flow assignment:
* Edge (s,a): Fully utilized — 10/10
* Edge (s,b): 9/10
* Edge (a,b): 0/2 (unused)
* Edge (a,c): 2/4
* Edge (a,t): 8/8 (fully used)
* Edge (b,c): 9/9 (f/lused)
* Edge (c,t): 10/10 (in use)
These examples show how graph theory simplifies a variety of
problems..
4.1.8 Sub graphs, Walks, Paths, and Circuits in Graph Theory
A graph is a set of vertices (or nodes) and a set of edges connecting
pairs of vertices. These structures work as a powerful tool to model
relationships between objects in various fields of study like computer
science, chemistry, sociology and transportation networks. We usually
study portions of or patterns within graphs, like subgraphs, walks,
paths, and circuits. These principles the basis of how we traverse graphs
and measure connectivity within a graph, determining the ease with
which information, resources, or entities can navigate through intricate
networks. And studying these structures gives us a lot of properties of
the whole graph, like reach ability between nodes, shortest paths,
cyclic properties, etc. In this complete guide, we are going to discuss
about the formal definitions, properties and usages of this elemental
graph theory concepts with plenty of solved examples demonstrating

the usage of these concepts in solving the problems.
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4.1.9 Sub graphs: Definitions and Types

The sub graph is basically a graph inside a graph In concrete terms, a
sub graph H of a graph G is a graph with vertex set V (H) as a subset
of V(G) and edge set E (H) as a subset of E(G) such that every edge in
E (H) connects two vertices that are inV(H). We have the following
note worth the mention regarding specialized types of sub graph: When
there is a said subset of vertices of g, and all the edges present in g on
this subset of vertices, the sub graph formed is known as the induced
subgraph. Note that a spanning sub graph must have all the vertices of
the original graph, but can have fewer edges. Note that a maximal sub
graph with respect to some property is one to which no vertex or edge
can be added without violating the property. A clique consists of a
complete sub graph where there is an edge connecting every pair of
distinct vertices. Sub graph identification is the method of isolating
certain graph objects from a bigger graph, which is very important in
graph analysis since the purpose can be a sub graph that contains certain
properties or represents certain subsystems. In social network analysis,
for example, densely connected sub graphs can indicate commModuley
structures, and in computational biology, certain sub graphs of protein
interaction networks can represent functional modules.

4.1.10 Walks: Sequential Traversal through Graphs

An undirected walk in a graph is a finite alternating sequence
(v(el)e(vl)e2(v2)e(v3)e(v4)e(vS)e(v6)( More formally, a walk from
vertex vo to vertex v, is the alternating sequence of vertices and edges
Vo, €1, V1, €2, V2, ..., €, Va, Where each edge e; links the two endpoints
vi-1 and v;. The length of a walk is counted as the number of edges it
uses. If we have a walk where we need the starting vertex to be the
same as the ending vertex, we can call that a closed walk, while
otherwise if that is not needed we can call it an open walk. Another
important property of walks is that it allows repeated visits to both
vertices and edges, thus being less restrict than paths. Particularly, this
freedom allows for walks to be appropriate for modeling situations
where it is permitted to pass through previously visited spots or
connections as in Markov-chains or in ascertaining the potential travel
itineraries of agents in networks. Walks represent the basic traversal
types; paths and circuits are simply constrained versions of walks. Also,

if two vertices are connected by walks then they are somehow reach-
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Walk

Fig: 4.1.10 WALK

4.1.11 Paths: Direct Connections Without Repetition

A walk in which no vertex is repeated is a path. More formally, a path
from vertex vo to vertex v, is a walk vo, €1, V1, €2, Va,..., €, Vo With all v;
distinct. This limitation makes paths helpful in locating direct routes
from one node to another in a graph. The length of a path (and also of
a walk) is the number of edges it contains. In graph theory, the distance
between two vertices in an undirected graph can be calculated using
the shortest path between them, which is also referred to as the geodesic
path and is often used in applications like determining the most efficient
way to navigate between two vertices (for example, when calculating
routing protocols in computer networks or navigation systems). A
graph is called connected if there is a path between every pair of distinct
vertices, a property ensuring that the entire network can be accessed
from any point in it. (Graph algorithms woudn't work without paths —
one example is Dijkstra's algorithm for internet routing; another is
depth-first search for traversing the structure of a graph.) In directed
graphs, the presence of a path from the vertex u to the vertex v does not
guarantee that there exists a path from the vertex v to the vertex u, hence
the concept of strong connectivity and weak connectivity. They provide
a framework for examining the dynamics of information processes,

resource allocation, and access within structures.
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Fig: 4.1.11 PATHS

4.1.12 Circuits: Cyclic Structures in Graphs

A circuit (or cycle) is a walk which is closed (the first and last vertices
are the same), and no edge is repeated. Or we can say a circuit is a
closed path (only the first/last vertex is repeated). The existence of
circuits in a graph is essential for the cyclic structures and their
properties in the graph. Such a circuit-free graph is referred to as
acyclic (trees are a particular example of acyclic graphs). We call the
length of a circuit the number of edges (or, equivalently, vertices) it
contains. Of particular interest are Hamiltonian circuits (which visit
each of the vertices exactly once, before returning to the original
vertex) and Eulerian circuits (which traverse each edge exactly once).
Circuits are important in network design as they provide redundancy
and alternative paths, and in chemistry where it represents cyclical
molecular structures, and when it comes to scheduling problems,
circuits may represent inefficiencies or deadlocks. The detection and
analyzation of circuits are a key part of many graph algorithms as they
are used in checking planarity of a graph, finding the strongly
connected components and many optimization problems like the

traveling salesman problem.
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Fig: 4.1.2 CIRCUIT

4.1.13 Common Properties and Interrelationships

Divider If walks are used to travel along the graph, then Sub-graphs are
any portion of a graph that can be used for a wider construction of the
Graph traversing algorithm. Because it has so-called "path (def.)":
attack that forbids repeating vertices. In the same way, all circuits are
closed walks, but not all closed walks a circuit if they repeat the edges.
Graphs are characterized by the existence of paths between vertices and
the absence of circuits, while trees and other anti-cyclic structures are
characterized by the lack of circuits. This is a direct consequence of the
concept of (graph) diameter, which is the longest shortest path between
any two vertices in the graph. In a network, the number of distinctive
paths between its vertices may reflect the connection redundancy or
resilience. The concepts extend to weighted graphs with associated
edge costs or weights weighted walks, weighted paths, weighted
circuits, etc — where the total weight along the sequence is now the
more critical measure. All these properties combined allow us to study
various network features, such as reversibility, connectivity, cyclicity,
etc., and they all are crucial for understanding the structural or
functional properties of complex networks in many domains.

4.1.14 Applications and Algorithmic Approaches

Sub graphs, walks, paths, and circuits are theoretical concepts with
wide-ranging practical applications in various fields that exploit certain
properties of these structures to address real-life challenges. For
example, in computer networking, Dijkstra's and Bellman-Ford
algorithms are shortest path algorithms used to compute optimal
routing. Path and subgraph identification for detecting com Moduleies

126
MATS Centre for Distance and Online Education, MATS University



and influence through social network analysis. Circuit and path
optimization forms the basis for transportation engineering for optimal
routing and scheduling of transportation systems. In the analysis of
gene regulatory networks, bioinformatics applies path analysis to
explore some biological behaviors. Web crawlers explore the web with
systematic walk algorithms. Identification of molecular structures in
the chemo informatics domain is done using specific subgraph pattern
recognition. This is particularly useful in applications such as electronic
design and power grid management where circuit analysis is
indispensable. Diverse algorithmic methods have been designed to
study these types of structures in an efficient way: breadth-first search
for shortest paths, depth-first search for path and circuit detection,
dynamic programming for same optimal path problems, and dedicated
algorithms that each focus on specific problems such as Floyd-warshall
for all-pairs shortest paths. Path and circuit related problems represent
more complex problems and hence the majority of them are NP-hard
(like finding the circuits of Hamiltonian) while some others such as
finding circuits Eulerian are polynomial problems that can be explored
in polynomial time. Research into the ongoing design of evermore
efficient algorithms to study these structures of a graph continues to this
day in the fields of graph theory and computer science.

Solved Examples

Example 1: Identifying Sub graphs

Consider a graph G with vertex set V(G) = {a, b, c, d, e} and edge set
E(G) = {(a,b), (b,c), (c,d), (d,e), (e,a), (a,c), (b,d)}. Let's identify
various sub graphs:

Solution:
1. Asub graph H: with V(H:) = {a, b, ¢} and E(H:) = {(a,b), (b,c)}
is a valid sub graph of G.

2. The induced sub graph Hz on vertices {a, b, ¢} includes all edges
from G connecting these vertices: E(Hz2) = {(a,b), (b,c), (a,c)}.

3. A spanning sub graph Hs has V(H3) = V(G) = {a, b, ¢, d, e} and
a subset of edges, say E(Hs) = {(a,b), (b,c), (c,d), (d,e), (e,a)}
(forming a cycle).

4. The vertices {a, ¢, d} with edges {(c,d), (a,c)} form another
valid sub graph Ha.
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Example 2: Analyzing Walks
In graph G with vertices {vi, vz, vs, v4, vs} and edges {(vi,v2), (V2,V3),
(V3,va), (Va,V5), (Vs,V1), (V1,V3), (V2,v4)}, analyze the following walks:
Solution:
1. Wi vy, (Vi,v2), V2, (V2,V3), V3, (V3,Va), Va
o This is a walk of length 3 from v to va
o Since no vertex is repeated, it is also a path
2. Waivi, (V1,Vv2), V2, (V2,V3), V3, (V3,V1), V1, (V1,Vs), Vs
o This is a walk of length 4 from v to vs
o Itis not a path because v: appears twice
3. Wi Va2, (Vz,V4), Va, (V4,V3), V3, (V3,V2), V2
o This is a closed walk of length 3 (starts and ends at v2)
o It's not a circuit because edge (vs,v3) doesn't exist in G
Example 3: Finding All Paths Between Two Vertices
In the graph G with V(G) = {a, b, ¢, d} and E(G) = {(a,b), (b,c), (c,d),
(a,c), (b,d)}, find all possible paths from vertex a to vertex d.
Solution:
1. Path Pi: a, (a,b), b, (b,c), ¢, (c,d), d (Iength 3)
2. Path P2: a, (a,b), b, (b,d), d (Iength 2)
3. Path Ps: a, (a,c), ¢, (c,d), d (Iength 2)
There are three distinct paths from a to d, with the shortest paths P> and
Ps both having length 2.
Example 4: Eulerian Circuits
Determine if the following graph G has an Eulerian circuit. V(G) = {vi,
Va2, V3, Va, Vs} and E(G) = {(v1,v2), (V2,V3), (V3,Va), (V4,V5), (Vs,V1), (V1,V3),
(V3,Vs), (Vs,v2), (V2,v4)}.
Solution: For a graph to have an Eulerian circuit, every vertex must
have an even degree (number of incident edges).
e deg(vi) =3 (edges to va, v, Vs)
e deg(vz2) =3 (edges to vi, v, Vs)
e deg(vs) =3 (edges to vi, va, Va)
o deg(vs) =2 (edges to v, vs)
e deg(vs) =3 (edges to vi, v3, va)
Since vertices vi, v2, vs, and vs have odd degrees, this graph does not

have an Eulerian circuit.
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Example 5: Hamiltonian Paths and Circuits
Determine if the cycle graph Cs with vertices {1, 2, 3, 4, 5} and edges
{(1,2), (2,3), (3,4), (4,5), (5,1)} contains a Hamiltonian path and a
Hamiltonian circuit.
Solution: A Hamiltonian path visits each vertex exactly once. The path
1,2, 3,4, 5 is a Hamiltonian path in Cs.
A Hamiltonian circuit visits each vertex exactly once and returns to the
starting vertex. The circuit 1, 2, 3, 4, 5, 1 is a Hamiltonian circuit in Cs.
In fact, Cs is itself a cycle, so it naturally contains a Hamiltonian circuit.
Example 6: Finding Shortest Paths
In a weighted graph G with V(G) = {a, b, c, d, e} and weighted edges
{(a,b,3), (b,c,2), (c,d,5), (d,e,1), (e,a,4), (a,c,7), (b,d,6), (a,d,12)}, find
the shortest path from vertex a to vertex d.
Solution: Possible paths from a to d:

I. a—>b—oc—d:weight=3+2+5=10

2. a—>c—d:weight=7+5=12

3. a—»>b—d:weight=3+6=9

4. a— d: weight =12

5. a— e — d: Not possible as there's no direct edge from e to d
The shortest path is a — b — d with a total weight of 9.
Example 7: Circuit Detection in Directed Graphs
Consider a directed graph G with V(G) = {1, 2, 3, 4, 5} and directed
edges {(1,2), (2,3), (3,1), (2,4), (4,5), (5,2)}. Identify all circuits in this
graph.
Solution:

1. Circuit Ci: 1 -2 — 3 — 1 (length 3)

2. Circuit C2: 2 - 4 — 5 — 2 (length 3)

3. CircuitCs: 1 52 —>4—5—>2—3—1 (length 6)
There are other circuits that can be derived by combining or extending
these basic circuits.
Example 8: Connectivity in Graphs
Determine if the following graph G is connected. V(G) = {a, b, c, d, e,
f} and E(G) = {(a,b), (b,c), (d,e), (e.,f), (a,d)}.
Solution: To check connectivity, we need to verify if there's a path
between every pair of vertices.

e Pathfromatoc:ca—b—c

e Pathfromatoe:a—d—e

e Pathfromatoffa—d—oe—f
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e Pathfrombtod:b—a—d

e Pathfrombtoe:b—a—>d—e

e Pathfrombtoffb—sa—-d—oe—f

e Pathfromctod:c—>b—oa—d

e Pathfromctoe:c—>b—a—d—oe

e Pathfromctofic—>b—oa—->d—oe—f

e Pathfromdtob:d—>a—b

e Pathfromdtoc:d—>a—>b—c

e Pathfromdtofid—>e—f

e Pathfrometoa:e—>d—a

e Pathfrometob:e >d—a—b

e Pathfrometocce >d—a—b—oc

e Path fromftoa:f—-e—>d—a

e Path fromftob:f>e—>d—>a—b

e Path fromftoc:f-e—>d—a—->b—oc
Since there exists a path between every pair of vertices, the graph G is
connected.
Example 9: Sub graph [somorphism
Determine if the graph H with V(H) = {1, 2, 3, 4} and E(H) = {(1,2),
(2,3), (3,4), (4,1)} is isomorphic to a sub graph of G with V(G) = {a, b,
c, d, e, f} and E(G) = {(a,b), (b,c), (c,d), (d,e), (e,f), (f,a), (a,c), (c,e),
(e,)}.
Solution: H is a cycle graph with 4 vertices (Cs). To find if it's
isomorphic to a subgraph of G, we need to find a cycle of length 4 in
G.
One such cycle is a — ¢ — e — a, but this has only 3 vertices. Another
cycleisa— b —c—d— e — f— a, but this has 6 vertices.
Let's check other possible 4-vertex cycles:

e a—b— c— a:Notad4-vertex cycle (only 3 vertices)

e a—c—d—e— a:Thisis a4-vertex cycle
The mapping f(1) = a, f(2) = ¢, f(3) = d, f(4) = e establishes an
isomorphism between H and the sub graph of G induced by vertices {a,
¢, d, e}. Therefore, H is isomorphic to a sub graph of G.
Example 10: Bipartite Graph Analysis
Determine if the following graph G is bipartite. V(G) = {1, 2, 3, 4, 5}
and E(G) = {(1,2), (2,3), (3,4), (4,5), (5,1), (1,3)}.
Solution: A graph is bipartite if its vertices can be divided into two

disjoint sets such that no two vertices within the same set are adjacent.
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Let's try to partition the vertices: Notes

e Putvertex 1 inset A

e Then vertices 2, 3, and 5 must go in set B (since they're adjacent

tol)
e But vertices 2 and 3 are adjacent, and both are in set B, which
violates the bipartite property

Alternatively, we can check if the graph contains any odd-length cycles.
The cycle 1 — 3 — 2 — 1 has length 3 (odd), confirming that G is not
bipartite.
Example 11: Graph Coloring and Paths
Given a graph G with V(G) = {a, b, ¢, d, e} and E(G) = {(a,b), (b,c),
(c,d), (d,e), (e,a), (a,c), (b,d)}, find the chromatic number and a proper
coloring of G.
Solution: The chromatic number is the minimum number of colors
needed for a proper vertex coloring.
Let's attempt to color G:

e Assign color 1 to vertex a

e Vertex b is adjacent to a, so assign color 2

e Vertex c is adjacent to both a and b, so assign color 3

e Vertex d is adjacent to b and ¢, so assign color 1

o Vertex e is adjacent to a and d, so assign color 2
This gives us a proper coloring using 3 colors. To verify this is minimal,
note that vertices a, b, and ¢ form a triangle (clique of size 3), requiring
at least 3 colors. Therefore, the chromatic number of G 1s 3.
Example 12: Distances and Eccentricity
For the graph G with V(G) = {1, 2, 3, 4, 5} and E(G) = {(1,2), (2,3),
(3,4), (4,5), (1,3), (1,5)}, calculate: a) The distance between each pair
of vertices b) The eccentricity of each vertex c) The radius and diameter
of G
Solution: a) Distances:

e d(1,2)=1,d(1,3)=1,d(1,4)=2,d(1,5) =1

e d2,1)=1,d2,3)=1,d(2,4)=2,d(2,5)=2

e d33,1)=1,d3,2)=1,d(33,4)=1,d(3,5)=2

e d4,1)=2,d4,2)=2,d(4,3)=1,d4,5) =1

e d(5,1)=1,d(5,2)=2,d(5,3)=2,d(5,4) =1
b) Eccentricity (maximum distance from a vertex to any other vertex):

e e(l)=max{d(1,)} =2

e ¢e(2)=max{d(2,)} =2
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e ¢(3)=max{d(3,))} =2
e ¢(4)=max{d(4,))} =2
e ¢(5) =max{d(5,))} =2
c¢) Radius (minimum eccentricity) = 2 Diameter (maximum
eccentricity) = 2
Example 13: Walks of Specific Length
In the graph G with V(G) = {a, b, ¢, d} and E(G) = {(a,b), (b,c), (c,d),
(d,a), (a,c)}, determine: a) The number of walks of length 2 from a to ¢
b) The number of walks of length 3 from a to a
Solution: a) Walks of length 2 from a to c:
I. a—-b—oc
2. a—>d—oc
There are 2 walks of length 2 from a to c.
b) Walks of length 3 from a to a:
I. am>b—oc—a
2. a—»c—>d—oa
3. a—d—a— b(notvalid as (d,a,b) contains repeated vertex a)
4. a— ¢ —a— d(not valid as (c,a,d) contains repeated vertex a)
There are 2 valid walks of length 3 from a to a.
Example 14: Independent Sets and Dominating Sets
For the graph G with V(G) = {1, 2, 3, 4, 5} and E(G) = {(1,2), (2,3),
(3.4), (4,5), (5,1), (1,3), (2,4)}, find: a) A maximum independent set b)
A minimum dominating set
Solution: a) An independent set is a set of vertices where no two
vertices are adjacent.
e {1,4} is an independent set
e {2,5} is an independent set
To verify these are maximum, note that adding any other vertex would
create an edge within the set. Therefore, {1,4} and {2, 5} are maximum
independent sets of size 2.
b) A dominating set is a set of vertices such that every vertex in the
graph is either in the set or adjacent to some vertex in the set.
e Set {1, 3} dominates all vertices: 1 dominates 2, 5; 3 dominates
2,4
e Set {1, 4} dominates all vertices: 1 dominates 2, 3, 5; 4
dominates 3, 5
e Set {2, 4} dominates all vertices: 2 dominates 1, 3; 4 dominates
3,5
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These are all minimum dominating sets of size 2.
Example 15: Path and Circuit Optimization
In a weighted graph G with V(G) = {a, b, c, d, e} and weighted edges
{(a,b,2), (b,c,3), (c,d,1), (d,e,4), (e,a,5), (a,c,7), (b,d,6), (c,e,2)}, find:
a) The shortest path from a to e b) The minimum-weight Hamiltonian
circuit, if one exists
Solution: a) Possible paths from a to e:
. a->b—>c—>d—oeweight=2+3+1+4=10
2. a»b—-oc—oeweight=2+3+2=7
3. a»c—>d—oeweight=7+1+4=12
4. a—>c—eweight=7+2=9
5. a—e:weight=5
The shortest path is a — e with weight 5.
b) Hamiltonian circuits (visit each vertex exactly once and return to
start):
a—b—-oc—>d—oe—aweight=2+3+1+4+5=15
a— b—c—e—d— a: Notvalid (no edge from d to a)
a—b—->d—oc—oe—a weight=2+6+1+2+5=16

a— ¢ —b—d— e — a: Notvalid (no edge from c to b)

1

2

3

4

5. a—c¢—e¢—d— b— a:Notvalid (no edge from d to b)

6. a—e—c—b—d— a:Notvalid (no edge from e to c)

7. a—e—c—d—b— a:Notvalid (no edge from d to b)

8. a—e—d—c—b— a:Notvalid (no edge from e to d)
The minimum-weight Hamiltonian circuitisa - b—c—d —e—a
with weight 15.
Example 16: Planarity and Graph Drawing
In this task you determine whether the complete graph Ks is planar or
not (if it is not planar you identify a Kuratowski sub graph).
Solution: What is a planar graph? A graph is planar if it can be drawn
in the plane without any edge crossing. The so-called Kuratowski's
theorem states that a graph G is planar iff it does not contain a
subdivision of Ks or of Ks,s.
Where Ks is a complete graph on 5 points or each pair of points is
connected with edges. By Kuratowski’s theorem, Ks is non-planar
itself. And since Ks is one of those Kuratowski graphs, it is a

Kuratowski subgraph of itself. This shows that Ks is non-planar.
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Example 17: Graph Matrix Representations
For the graph G with V(G) = {1, 2, 3, 4} and E(G) = {(1,2), (2,3), (3,4),
(4,1), (1,3)}, give: a) the adjacency matrix b) The incidence matrix c)
Use the adjacency matrix to find the number of walks of length 2 from
vertex 1 to vertex 3

Solution: a) Adjacency matrix A:

|1234

e

110111

211010

311101

411010
b) Incidence matrix M (labeling edges e: = (1,2), e2 = (2,3), es = (3,4),
es=(4,1),es=(1,3)):

| ei ez eseaes

S

110011

2/11000

3]01 101

400110

c¢) To find the number of walks of length 2 from vertex 1 to vertex 3,
we compute A? and look at the entry A?[1,3]:
A’=AXA=

113121
211212
312131
411212
Therefore, there are 2 walks of length 2 from vertex 1 to vertex 3. These
walks are:
I. 15253
2. 15453
Example 18: Eulerian Paths
You are given a graph G with the following vertices and edges: V(G) =
{a, b, ¢, d, e} and E(G) = {(a,b), (b,c), (c,d), (d,e), (e,a), (a,c)}. You
need to decide if it possesses an Eulerian path or not.
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Solution: For a graph to be Eulerian (i.e. contain Eulerian path), two
vertices have to be odd degree and all others must be even degree.
Calculating the degrees:

* deg(a)=3 (to b, c, e)

* deg(b) = 2 (edges to a, ¢)

* deg(c) =3 (edges to a, b, d)

* deg(d) =2 (edges to c, e)

* deg(e) =2 (edges to a, d)

Note that the degree of vertices a and c is 1 (odd), and the degree of all
other vertices is even. Hence, this graph has an Eulerian path. The trail
has to start at a or ¢ and end at the other.

An Eulerian path of this kindis;ta—b—»>c—>d—>e—a— ¢
Example 19: Connectivity and Cut Vertices

Given the graph G with V(G) = {1,2,3,4,5,6} and E(G) =
{(1,2),(2,3),(3.4),(4,5),(5,6),(6,1),(2,5)}, find: a) The cut vertices
(articulation points) b) The bridges (cut edges)

* When removing vertex 1: The remaining graph is connected

* Vertex 2 removed: remainder of graph is still connected

* Removed vertex 3: {1, 2, 5, 6}, {4}

* For vertex 4: component: {1, 2,3, 5, 6} and {}

* When we remove vertex 5 the remaining graph is still connected

* Pruning vertex 6 out: The resulting graph is still connected.

So, the cut vertices are 3 and 4.

b) A bridge is an edge, that when deleted increasing connected
components.

* Deleting edge (3,4): The graph gets partitioned into the two
components {1, 2, 3, 5, 6} and {4}

Hence, edge (3,4) is a bridge.

Example 20: Graph Characterization

Describe the following graphs by their characteristics: a) A complete
graph Ks b) A cycle graph Cs c) A wheel graph Ws d) A complete
bipartite graph Ks,4

Solution: a) Complete graph Ke:

* Each of the 6 vertices is connected to the other vertices

* Has 6(6-1)/2 = 15 edges

* Diameter = 1, radius = 1

* Chromatic number = 6

e Has Hamiltonian circuits
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* Not bipartite (has odd cycles)
* All induced subgraphs are complete graphs
b) Cycle graph Cs:
» Contains 8 vertices placed in a cycle
4.1.15 Types of Graphs
Graphs in Mathematics
A graph is a mathematical representation of a set of objects where some
pairs of the objects are connected by links. The graph is made up of
vertices (or nodes) and edges that link those vertices. Then, analyze
data with Graphs which are widely used in fields such as computer
science, physics, biology, social sciences to study relationships as well
as in engineering. Graph theory is a branch of mathematics studying
graphs, which was first introduced in the 18th century by Leonhard
Euler when he managed to solve the famous Seven Bridges of
Konigsberg problem. The problem asked whether it was possible to
walk through the city crossing each of its seven bridges just once —
Euler proved it was impossible, and in doing so, laid the groundwork
for graph theory.

Undirected Graphs
Undirected Graph: A graph in which edges have no direction. The edge
(u, v) 1s the same edge as the edge (v, u), so it is the relationship of two
vertices which is reciprocal. Undirected edges are commonly
represented by lines in draw without arrows.
Example 1: Friendship Network
Let’s take an example of a friendship network, vertices represent people
and edges represent friendships between them. If Bob is a friend of
Alice, then Alice is a friend of Bob — hence, this relationship is
undirected.
This prompt describes a friendship network among 5 people (A, B, C,
D, E) and the following friendships:
* A is friends with B and C
*Bisafriend of A, C, and D
* C has friends A, Band E
* D is friends with B and E
* E is friends with C and D
To represent this as an adjacency matrix:

IABCDE
oo
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Al01100 Notes
Bj10110

C|11001

D|01001

E|00110

Example 2: Determining if a Graph is Connected

Two vertices are connected if there is a path between them.

Let G be the undirected graph with vertices {1,2,3,4,5} and edges
{1(1,2),(1,3),(2,4),(3,5)5.

To determine whether G is connected:

Start at vertex 1
From vertex 1, we can go to vertex 2 and 3
From vertex 2, we may take vertix 4

— You can go to vertex 5 from the vertex 3.

A

The graph is connected because every vertex is reachable from
vertex 1

Example 3: Finding Degrees in an Undirected Graph

A vertex degree is the number of edges attached to a vertex.

Consider the undirected graph G = (V, E), where V= {A, B, C, D} and
E = {(A,B), (A,C), (B,C), (B,D), (C.D)}:

Step 1: Find the degree of each vertex.

* Vertex A connects to B and C, hence deg(A) =2

* Vertex B is connected to A, C, and D, thus degree(B) =3

* As vertex C, there are three possible edges of connection (to A, B,
and D), therefore degree(C) =3

+ Vertex D has edges to B and C=d(D) =2

Example 4: Euler Path and Circuit

Euler path : a path that visits every edge exactly once. An Euler circuit
is an Euler path that begins and ends at the same vertex.

For an undirected graph:

» An Euler path exists iff exactly zero or two vertices have odd degree
* An Euler circuit exists iff all the vertices have even degree

Take the graph G whose vertices are {A, B, C, D} and whose edges are
{(A,B), (A,0), (B,C), (B,D), (C,D)}:

* Degree(A) =2 (even)

* Degree(B) = 3 (odd)

* Degree(C) = 3 (odd)
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* Degree(D) =2 (even)
Because (from the given graph) there are exactly two vertices (B and
C) with an odd degree, thus this graph has an Euler path but no Euler
circuit. A possible Euler pathis: A—-B —-C—>D—->B—->A—>C
Directed Graphs
We can say that we have a directed graph (or digraph) when an edge
possesses orientations. In a directed graph, the edge (u, v) indicates a
connection going from vertex u to vertex v (but not from v to u), and
in drawings, we commonly draw a directed edge as an arrow
Example 5: Web Pages and Hyperlinks
Imagine a vastly simplified model of web pages and hyperlinks. Each
web page is a vertex, and a hyper link from page A to page B is
modeled as a directed edge from page A to page B.
Consider pages {P1, P2, P3, P4} with the following hyperlinks:
* P1 has links to P2 and P3
* P2 has a link to P4
* P3 has links to P1 and P4
* P4 has a link to P2
The adjacency matrix would be:
| P1 P2 P3 P4

[
PI|O1 10
P20 001
P3|1 001
P40 100
Example 6: Finding In-degrees and Out-degrees
In a directed graph:

e In-degree of vertex : no. of incoming edges

e The out-degree of a vertex is the number of edges that direct

away from it

So for the above web page example:
* P1: in-degree = 1, out-degree =2
* P2 has an in-degree of 2 and an out-degree of 1.
* P3:in-degree = 1, out-degree =2
* P4: in-degree = 2, out-degree = 1
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Example 7: Topological Sorting Notes
A topological sort of a directed acyclic graph (DAG) is a linear ordering
of its vertices such that for every directed edge from vertex u to vertex
v, vertex | appears before vertex v in the ordering.
Now, consider the directed graph that represents prerequisite courses:
» Vertices: {Calculus I, Calculus II, Linear Algebra, Differential
Equations, Real Analysis}
* Edges: {(Calc I —> Calc II), (Calc I —> Lin Alg), (Calc Il —> Diff
Eq), (Calc II —> Real Analysis), (Lin Alg —> Diff Eq)}
For example a valid topological sort would be: Calculus I — Linear
Algebra — Calculus IT — Differential Equations — Real Analysis
This orders the courses in a way that all prerequisites are taken before
the courses that depend on them.
Weighted Graphs
It is a graph that has an weight or cost with each edges of the graph.
Weights can be distances or costs, capacities, or any other measure
defined between vertices
Example 8: Road Network
Imagine a road network, where each vertex is a city and each edge is a
road connecting those cities. The edges are weighted with the distance
between cities.
Towns: {A, B, C, D} Distances (in kilometers) between roads:
* AtoB: 150
* Ato C: 200
*Bto C: 100
* B to D: 250
*CtoD: 150
The weighted adjacency matrix would be:

/A B C D
S
A0 150200
B|1500 100250
C 2001000 150
D|w 2501500

(oo indicates no direct connection)
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Example 9: Shortest Path Using Dijkstra's Algorithm
Dijkstra finds the shortest path from a vertex as an entry vertex to all
other vertices in the weighted graph, where the weight cannot be
negative.
Let's calculate the shortest path from city A to all other cities using the
road network from Example 8:
Initialize:
* Distance to A = 0 (source)
* Distance to B, C, D = (unknown)
* Set of unvisited nodes = {A, B, C, D}
Visit node A:
o DISTANCE TO B =150, DISTANCE TO C =200
UPDATE
o Unvisited = {B, C, D}
Mark node B as visited (link closest unvisited path)
o Update: D = min(200, 150+100) = 200, nothing new
o Update: Distance to D =min(c, 150+250) =400
o Unvisited = {C, D}
To visit closest unvisited node C:
o Update: Distance to D = min(400, 200+150) = 350
o Unvisited = {D}
Now visit node D (the only left node):
0 Done
Shortest distances to A (final):
* To B: 150 km (path: A — B)
* To C: 200 km (path: A — C)
* To D: 350 km (A — C — D route
Example 10: Minimum Spanning Tree Using Kruskal's Algorithm
A minimum spanning tree (MST) is a subset of the edges of a
connected, undirected, weighted graph that connects all vertices with
the minimum possible total edge weight. Using the road network from
Example 8, let's find the MST using Kruskal's algorithm:
1. Sort all edges by weight:

o BtoC:100
o AtoB:150
o CtoD: 150
o AtoC:200
o BtoD:250
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2. Add edges in ascending order of weight, skipping those that create Notes

cycles:

o Add B-C (100)
o AddA-B (150)
o Add C-D (150)

The MST consists of edges {(B,C), (A,B), (C,D)} with a total weight
of 400. A minimum spanning tree (or MST) is a subset of the edges of

a connected, undirected, weighted graph that connects all vertices

together, without any cycles and with the minimum possible total edge

weight. We are going to find the MST for the road network from

Example 8 using Kruskal’s algorithm:

1.

Note

Sort all edges by weight:
B to C: 100
A to B: 150
Cto D: 150
A to C: 200
B to D: 250
Sort edges by weight, and add them (skipping if it would create
a cycle):
Add B-C (100)
Add A-B (150)
Add C-D (150)
: the maximum spanning tree being edges {(B,C), (A,B), (C,D)},

Total weight: 400.
Bipartite Graphs

A bipartite graph is a graph whose vertices can be partitioned into two

sets
V.

U and V so that every edge connects a vertex in U to a vertex in
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Example 11: Students and Courses
Let us imagine a situation with students and courses. A student can
enroll in many courses and many students may enroll into one course.
You can model this with a bipartite graph, where one set of vertices
corresponds to students and the other corresponds to courses.
Students: {S1, S2, S3, S4} Courses: {Cl, C2, C3} Edges
(enrollments):
* S1 is enrolled in C1 and C2
* S2 is enrolled in C1 and C3
* S3 is enrolled in C2
* S4 is enrolled in C2 and C3
Thus, to check whether it is bipartite, we can try to color the vertices in
such a way that no two adjacent vertices have the same color:
 Paint S1, S2, S3, S4 red
* Assign blue paint color to all courses: {C1, C2, C3}
This is a bipartite graph since every edge connects a red vertex to a
blue vertex.
Example 12: Maximum Bipartite Matching
A matching in a bipartite graph is a set of edges without common
vertices. A maximum matching is a matching with the largest possible
number of edges. Using the students and courses example:
1. Initialize an empty matching M = {}
2. Try to match S1:
o Match S1to C1: M = {(S1,C1)}
3. Try to match S2:
o Cl is already matched with S1
o Match S2 to C3: M = {(S1,C1), (S2,C3)}
4. Try to match S3:
o Match S3 to C2: M = {(S1,C1), (S2,C3), (S3,C2)}
5. Try to match S4:
o (2 is already matched with S3
o (3 is already matched with S2
o No available match for S4
Now try to improve the matching: 6. Find an augmenting path starting
from S4:
e S4 — C2 — S3 (S3 is matched to C2)
e S3 is unmatched to any other course, so this path ends

7. Invert the matching along this path:
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o Unmatch (S3,C2) Notes
o Match (54,C2)
o M= {(S1,Cl1), (S82,C3), (S4,C2)}
8. Try to match S3:
o Match S3 to another available course
o There's no available course, so S3 remains unmatched
The maximum matching is {(S1,C1), (S2,C3), (S4,C2)} with 3 edges.
A matching in a bipartite graph is an edge set with no vertex in
common. A maximum matching is a matching that has as many edges
as possible.
Using the students and courses example:
1. LetM = {} be an empty matching
2. Try to match S1:
e MatchM = {(S1,Cl)}
3. Try to match S2:
e S1 already matched with C1
e Pair S2 with C3: M = {(S1,C1), (S2,C3)}
4. Try to match S3:
e Perform the matching of S3 to C2: M = {(S1,C1), (S2,C3),
(S3,C2)}
5. Try to match S4:
e Already mapped C2 with S3
e (3 is already paired with S2
e No available match for S4
Now 6—Just improve the matching. And now start with S4 & find an
augmenting path:
*S4 — C2 — S3 (C2 is matched to S3)
* S3 is not comparable to any other course, hence this way ends
7 Reverse the matching along this path:
o Unmatch (S3,C2)
o Match (S4,C2)
oM = {(S1,C1), (S2,C3), (S4,C2)}
1 Try to match S3:
Match S3 into another available course
o No course available, S3 is still unmatched
Maximum matching has 3 edges, and is {(S1,C1), (52,C3), (S4,C2)}

143
MATS Centre for Distance and Online Education, MATS University



(mar

UNIVERSITY
ready for life.

Notes

S

Complete Graphs
A complete graph is a graph where an edge is an available connection
between all members. A complete graph with n vertices denoted by K,
has n(n-1)/2 edges.
Example 13: Complete Graph Properties
Consider K4, a complete graph with 4 vertices {A, B, C, D}.
1. Number of edges = 4(4-1)/2 = 6 edges
2. The edges are: {(A,B), (A,C), (A,D), (B,C), (B,D), (C,D)}
3. Each vertex has degree 3 (connected to all other vertices)
4. The adjacency matrix is:
|ABCD
R
Al0111
B|1011
Ci1101
D|1110
Example 14: Coloring a Complete Graph
The chromatic number of a graph is the smallest number of colors we
can assign to its vertices so that no two adjacent vertices share the same
color.
If n is the number of vertices in the complete graph K,, then the
chromatic number is n, because each vertex is adjacent to each other
vertex.
For Ka:
* Vertex A: Color 1
* Vertex B: Color 2
* Vertex C: Color 3
* Vertex D: Color 4
All of the four vertices are adjacent to one another, and as such all four
must be of distinct color, hence chromatic number = 4.
11.16 Trees and Forests
A tree is a connected, acyclic, undirected graph. A forest is a forest is
a disjoint union of trees.
Example 15: Tree Properties
Let T be a tree with vertices {A, B, C, D, E, F} and edges {(A,B),
(AC), (B,D), (B,E), (C,F)}.
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Properties of this tree:

1. Number of vertices = 6

2. No. of edges=5 (n-1 always for a tree with n vertices)

3. thetree is connected (between any two vertices there is a path)

4. If we remove any edge that will disconnect the tree

5. Any addition of an edge forms cycle
Example 16: Depth-First Search (DFS) on a Tree
DFS is a graph traversal algorithm. Depth-first search (DFS) is an
algorithm for traversing or searching tree or graph data structures.
Source Example 15 (with A root node)

1. Visit A, mark as visited

2. Go to child B: mark as visited

3. Visit child D, mark visited (D has no children)

4. 1 Go back to B, visit child E and mark as visited (E has no

children)

5. Goback to A, go to child C, mark as visited

6. Child F, visit, mark as visited F (no children)
The DFS traversal of tree wouldbe: ABDECF
Example 17: Breadth-First Search (BFS) on a Tree
The BFS algorithm begins at a root node and explores all neighbors at
the current depth prior to proceeding on to nodes at the next depth level.
Let us use the tree of Example 15, by setting A to be the root:

1. Visit A, mark as visited

2. Store all kids of A: B, C (as visited)

3. Perform DFS on all children of B: D, E (visited)

4. Explore and mark as visited all children of C: F
BFS traversal order: A->B->C->D->E ->F
Planar Graphs
An embedded planar graph is a planar graph in which no edges cross
each other. In other words, the drawing can be made on a flat surface
with no wrappers crossing.
Example 18: Testing for Planarity
Euler’s formula can be used to prove graph planarity: v — e + f = 2,
where v refers to the number of graph vertices or nodes, e refers to the
number of edges, and f refers to the number of faces or regions (which
also includes the outer face). Take a graph G with vertices {A, B, C,
D} and edges {(A,B), (A,C), (A,D), (B,C), (C,D)}.
To test for planarity:
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1. Without crossing any edges:

e Arrange A, B, C, D roughly in a square

e Draw edges (A,B),(A,C)(A,D),(B,C),(C,D)

e All this can be done without crossing any edges

2 Count:

e Vertices (v) =4

e [Edges(e)=5

e Faces (f) =3 (two inner faces and one outer face)

3. Use Euler’s formula: v—e+f=4—-5+3=2V
This concludes that the graph is planar and the formula has been met.
Example 19: Dual Graph
The dual of a planar graph G is another graph G*, in which:
* Each face of G corresponds to a vertex in G*
* For every edge of G there exists an edge of G*
* Two vertices in G* are adjacent if the corresponding faces in G have
an edge in common.
Let P be planar graph example 18.
* The F1 (outer face), F2 (the inner face formed by A, B, C) and F3
(the inner face formed by A, C, D).
The dual graph G has vertices {F,, F, F*F3}
* The set of edges of G: {(F1,F2), (F1,F2), (F1,F3), (F1,F3), (F2,F3*)}
In the dual graph, some vertices have multiple edges between them,
since some faces share multiple edges in the original graph.
Special Graphs
Example 20: Petersen Graph
The Petersen graph is special with 10 vertices and 15 edges. That
means it is commonly used in graph theory as a counterexample.
Some characteristics of the Petersen graph:

1. It has 10 vertices, usually depicted as a pentagon with an
inscribed pentagram
It is a 3-regular graph since each vertex has degree 3.
It is not planar (cannot exists in a plane without edge crossings)
It is of girth (Iength of the shortest cycle) 5

Its vertex-transitive (looks the same viewed from any vertex)

Sk w

It does not have a Hamiltonian cycle (a cycle that visits each

vertex exactly once)
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We can try to build a Hamiltonian cycle (to prove it does not have one):
1. Bizarrely, these arrive to the problem of TSP where you begin
at any vertex and attempt to visit all vertices exactly once and
return to the starting point.
2. This cannot be because of the unique structure of the Petersen
graph
3. Any such path will either miss some vertices or it must take a
dip and re-visit vertices
The Petersen graph is an important counterexample for many graph
theory conjectures and is a fundamental object in the field of graph
theory.
Graph theory offers a wealth of tools for modeling and solving
numerous problems in various fields. The Graphs we studied
undirected, directed, weighted, bipartite, complete, trees, planar
graphs have their own unique properties and applications. We have
shown in the solved examples how these types of graphs can be
analysed, manipulated and used in real-life situations. From computing
shortest paths in road networks to scheduling prerequisite coursework,
from modelling social networks to optimising complex routing
problems, graphs present a rich structure for encoding relations and
solving problems efficiently. Graph theory will continue to be an
essential area of mathematics and play a significant role in our
understanding of how we interact with one another and how we
contend with new delivery systems for our needs in our increasingly

complex world of global interconnectedness.
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Unit 4.2: Matrix Representation of Graphs, Directed
Graphs

4.2.1 Matrix Representation of Graphs and Directed Graphs
Introduction to Graph Representations

Graph: A graph consists of vertices (or nodes) and edges connecting
these vertices. Graphs are invaluable means of modeling relationships
between objects in a wide variety of domains such as computer
science, engineering, social sciences, and biology. Matrix
representations: Out of the multiple representations available, matrix
representations have an advantage, because they can encode the
structure of graphs as a matrix that lends itself readily to computation.
Graph matrices translate the topological structure of a graph into
algebraic form. This transformation on the surface OF it allows us to
use the powerful linear algebra theory to study graphs through as well
as enables us to calculate all sorts of properties in graphs using graph
theory Graph theory is a field of mathematics that studies the
interrelationship between nodes and edges, making it important for a
variety of applications and it has two main matrix representations that
are useful for certain applications — adjacency matrix and incidence
matrix

4.2.2 Adjacency Matrix Representation

Adjacency Matrix The adjacency matrix is one of the most popular
graphs matrix representation. For a graph G with n vertices, the
adjacency matrix A is an n X n matrix such that A[i,j] indicates the
relationship between the vertices 1 and j. If the graph is undirected, then
Al1,j] = A[},1] = 1; if there is no edge then A[i,j] = A[j,1] = 0. For
undirected graphs, this gives us a symmetric adjacency matrix. In the
case of weighted graphs, instead of representing an edge as 1 Adjacency
matrix with unweighted edges for weighted graphs For directed
graphs, however, this matrix for the graph is not necessarily symmetric.
In other words, if there is a directed edge from vertex i to vertex j, then
Al1,j] =1, but A[j,i] =1 is not a given and would only happen if there
was also a directed edge from vertex j to vertex i.

Dashed properties of adjacency matrix:
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* For simple graphs (no self-loops) all the diagonal elements A[i,i] =0
* The adjacency matrix is symmetric in undirected graphs.

* For an undirected graph, the total number of edges is half the sum of
all elements in adjacency matrix (i.e., Y all elements in adjacency
matrix = 2 * edges)

* The i-th row (or column) is the degree of the i-th vertex in undirected
graphs

* For directed graphs, the row-sum of the i-th row corresponds to the
out-degree of vertex i, while the column-sum of the i-th column

corresponds to the in-degree

Adjacency Matrix Representation

OO0 = =0
_ - OO =
-_ e O = -
OO0 = =20

Fig: 4.2.1 Adjacency matrix
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4.2.3 Incidence Matrix Representation

The adjacency matrix describes relations between vertices, and the
incidence matrix B describes relations between vertices and edges. An
incidence matrix of a graph having n vertices and m edges is ann X m
matrix. For an undirected graph, B[i,j] = 1 iff vertex i is incident on
edge j; otherwise B[i,j] = 0. For each edge, it has an entry in two vertex
columns of incidence matrix, thus each 1 appears once in the incidence
matrix. In directed graphs, we can define the incidence matrix with
signed entries: B[i,j] = 1 if vertex 1 is the head of edge j, B[i,j] =—1 if
vertex 1 is the tail of edge j, and BJ[i,j] = 0 if vertex i is not incident on

edge j.

Incidence Matrix
B 1 & Other Variants
o 1111 ,
4 21100 Directed graph
e 31 (oo £ = Do~
(n x n matrix) 4|10 010
Laplacian Matrix d -0 00
‘1’ —(1) 01 -1-1-1 0
L=D-A- . L=D|d -1 -1 0
-1-1 0 0-1-1 0
d -1 -1 -1 0-1 0
(n x nn matrix)

Fig: 4.2.2 Incidence Matrix

Among the key properties of the incidence matrix are:

* Column sum equals 2 for undirected graphs (each edge connects 2
vertices)

* Signed representation yields a zero column sum for directed graphs
* The incidence matrix multiplied with its own transpose (B*B"T)
gives a matrix pertaining to the graph Laplacian

* The incidence matrix’s row space is perpendicular to the graph
Laplacian null space

Laplacian Matrix and Other Variants

The Laplacian matrix L of a graph is constructed with the adjacency
matrix and the degree matrix D (a diagonal matrix whis diagonal
entries D[1,1] holds the degree of vertex i). For an undirected graph, we

have L=D — A, where A is the adjacency matrix. The Laplacian matrix
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has many useful properties for analyzing the connectivity and structure
of the graph:
* For undirected graphs it is symmetric and positive semi-definite
* The dimension of the eigenspace where A = 0 is the number of
connected components of the graph
* The smallest non-zero eigenvalue (the spectral gap) yields
information about how well-connected the graph is
The second smallest eigenvalue's eigenvector (the Fiedler vector) is
used for spectral graph partitioning.
In special cases for directed graphs, L =D out - A, where D _out is a
diagonal matrix with out-degrees of every node as the ith diagonal
entry. But this matrix does not satisfy some of the good properties of
the undirected Laplacian, like symmetry and positive semi-
definiteness.
4.2.4 Applications of Matrix Representations
There are many arrangements of graphs in the form of matrices which
provide many applications of the terms in the field of graph theory and
others:
Path Finding and Connectivity
o Paths — the n-th power of the adjacency matrix A”n encodes
information about the number of paths of length n between
vertices
J Connectivity, shortest path (using the Floyd-War shall
algorithm), cycles detection -- are all possible with matrix
operations
. The matrix exponential e™A has entries that correspond to the
sum of paths of each the length, from vertex to vertex
Spectral Graph Theory
e The adjacency and Laplacian matrix eigenvalues and
eigenvectors reveal structural properties of graphs.
e Spectral clustering involves partitioning graphs with
eigenvectors.
e  The eigenvalue multiset of a graph is a graph invariant.
Network Analysis

e Matrix operations can be used to compute centrality measures

e Many commModuley detection algorithms are matrix-
based
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e Graph random walks can be described using the
transition probability matrix
4.2.5 Graph Algorithms
* Matrix representations can be used in graph matching and
isomorphism testing
» Matrix formulation to solve maximum flow problems
» Countless graph optimization problems can be expressed in the
language of matrix optimization problems
Computational Considerations
When realizing graph algorithms via matrix representations, several
computation-related aspects must be taken into consideration:
Space Complexity
» Adjacency matrices take O(n?) space irrespective of number of edges
and thus not efficient for sparse graphs
* Incidence matrices require O(nm) space which is again not efficient
for large, sparse graphs
* For sparse graphs, it may be more intuitive to use alternative
representations (e.g., adjacency lists or compressed sparse row (CSR)
format).
Time Complexity
e Testing adjacency between two vertices takes O(1) time with
adjacency matrices
e To find all neighbors of a vertex with adjacency matrices takes
O(n) time, no matter how many neighbors the vertex has
e Matrix multiplication complexity depends on the algorithms
used and whether the matrices are sparse Numerical Stability
e For large graphs, computing eigenvalues and eigenvectors can
produce numerical issues
e The use of preconditioning techniques for graph matrix linear
system solvers may be warranted
e Nearest to singularity are pseudoinverses on almost

disconnected graphs, which require special care
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In this article, we will discuss 20 solved example problems to
demonstrate the concepts and applications of matrix representation of
Undirected and directional graphs.
Solved Examples
Example 1: Adjacency Matrix for an Undirected Graph
Let G be an undirected graph with 4 vertices {1, 2, 3, 4} and edges
{(1,2), (1,3), (2,3), (3.4)}.
Solution: For this graph, the adjacency matrix A is:
A=[0110]

[1010]

[1101]

[0010]
here, A being symmetric as there are no self-loops, and the diagonal
elements all being 0. The total sum of all elements is 8, which is the
same of 2 x the number of edges (4).
Example 2: Adjacency Matrix for a Directed Graph
Let G be a directed graph with a vertex set |V| = {1,2,3,4} and directed
edges [E|= {(1-2), (2—3),(3—1), (4—3)}.
Answer : The adjacency matrix A corresponding to this directed graph
is as follows :
A=[0100]

[0010]

[1000]

[0010]
The matrix is not symmetric. Row 1 sums up to your 1, which reveals
that vertex 1 has an out-degree of 1. Column 1 sums up to 1, indicating
vertex 1 in-degree 1.
Example 3: Incidence Matrix for an Undirected Graph
Now, let’s construct an incidence matrix for the same undirected graph
as in Example 1, which has the vertex set {1, 2, 3, 4} and edge set
1(1,2), (1,3), 2,3), 34)}.
Answer: Give labels to the edges: e1 = (1,2), e2=(1,3), e =(2,3), es=
(3.4) The incidence matrix B is:
B=[1100]

[1010]

[0111]

[0001]
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Every column has exactly two 1's in it, which correspond to the two
vertices that an edge connects.
Example 4: Incidence Matrix for a Directed Graph
Given the directed graph in Example 2, with |[V| =4, V = {1, 2, 3, 4}
and E = {(1-2), (2—3), (3—1), (4—3)}, obtain the signed incidence
matrix.
Solution: e: = (1-2), ez = (2—3), es = (3—1), ea = (4—3) The
incidence matrix B signed is:
B=[10-1 0]

[-1 10 0]
[0-1 1-1]
[00O0 1]
For each directed edge the source vertex gets 1 and the destination
vertex gets -1.
Example 5: Determining Path Existence Using Matrix Powers
Consider the directed graph in Example 2. Find out whether there
exists a path of length 2 from vertex 1 to vertex 3.
1) Solution: We calculate A 2 to obtain the number of paths of length
2.:
A*=[0010]

[1000]

[0100]

[1000]
That said, A?[1,3] = 1, meaning exactly one 2)length path exists from
vertex 1 to vertex 3. This path is 1 —»2—3.
Example 6: Finding the Degree Matrix
Find the degree matrix D for the undirected graph in Example 1.
Solution: It has the following degrees: deg 1 =2, deg2 =2, deg 3 =3,
deg 4 = 1 Thus, the degree matrix D is:
D=[2000]

[0200]

[0030]

[0001]
Example 7: Constructing the Laplacian Matrix
Example 1 (Undirected graph): Given is the undirected graph as shown
in figure 1. Find the Laplacian matrix L for this graph.
Solution: As L = D — A, we have already given the degree matrix in

Example 6 and the adjacency matrix in Example 1
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L=[2000] [0110] [2-1-1 O]
[0200]-[1010]=[-1 2-1 0]
[0030] [1101] [-1-1 3-1]
[0001] [00O10] [O O-1 1]
Example 8: Weighted Adjacency Matrix
Imagine there is an undirected weighted graph with 3 vertices and
edges {(1,2):5,(2,3):2,(1,3):7}.
Solution: The adjacencies weighted matrix will be:
A=[057]
[502]
[720]
Example 9: Adjacency Matrix Properties
Using the adjacency matrix in Example 1, find: a) The sum of all matrix

elements b) The row and column sums ¢) The matrix trace

Solution: a) Sum of all elements = § (2 * number of edges [4]) b) Row
sums: [2, 2, 3, 1] - denote degrees of vertices Column sums: [2, 2, 3,
1] - same as row sums for undirected graphs c¢) Trace of A = A[1,1] +
A[2,2]+A[3,3] + A[4,4]=0+0+0+0=0
Example 10: Paths of Different Lengths
Given the directed graph in Example 2, find A%and check whether there
exists a path of length 3 from vertex 1 to vertex 1.
Solution:
3=A2xA=[0010]x[0100] [100O0]

[1000] [0010]=[0100]

[0100] [1000] [0010]

[1000] [0010] [0010]
(A3[1,1] = 1), therefore there exists a path from vertex 1 to vertex 1 of
length 3: | 52—3—1.
Example 11: Detecting Cycles Using Matrix Powers
Use the directed graph from example 2 and state if it has cycles. If yes,
determine how long they are.
Solution: We have already computed A2, A3, so we can check that
A3[1,1]=1, which means that there is a cycle through vertex 1 of lenght
3. This cycle is 1 -2—3—1. Why is that? Well we can check this since
we know that A*2 2.1 = 1and A*2 3,2=1, we also know A 1,3=1
that completes the cycle.
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Example 12: Graph with Self-Loops and Multi-Edges
For such a case, we have a graph with 3 vertices, self-loops on vertex
1 and 3, and there are two parallel edges between 1 and 2. Build its
adjacency matrix.
Solution: Self-loops would make diagonal entries equal to 1, multi-
edges to increase the respective entries in the adjacency matrix.:
A=[120]

[200]

[001]
Example 13: Complete Graph
Adjacency Matrix for Ka: Construct the adjacency matrix for a
complete graph K4 with 4 vertices.
Solution: A complete graph has every vertex connected with all other
vertices:
A=[0111]

[1011]

[1101]

[1110]
All off-diagonal elements are 1, and the diagonal elements are 0
(assuming no self-loops).
Example 14: Bipartite Graph
Let G be the bipartite graph with vertex sets X = {1, 2} and Y = {3, 4,
5}, and edges {(1,3), (1,4), (2,4), (2,5)}. If it is bipartite, create an
adjacency matrix and demonstrate how the bipartite structure is
represented.
Solution: Adjacency Matrix Solution: The adjacency matrix is:
A=[00110]

[00011]

[10000]

[11000]

[01000]
The matrix is almost block diagonal, where the upper-row and lower-
column parts of the corresponding diagonal contain all edges between
source and target set, and the blocks give zeroes, which denote no edges
contained in the same set of either X or Y..
Example 15: Directed Acyclic Graph (DAG)
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Think of a directed acyclic graph with 4 vertices and edges {(1—2), Notes
(1-3), (2—4), (3—4)}. Build its adjacency matrix and show that it is
acyclic using powers of the matrix.
Solution: The adjacency matrix is:
A=[0110]

[0001]

[0001]

[0000]
To check that it's acyclic, we calculate powers of A:
A2=[0002]

[0000]

[0000]

[0000]
This means A® and all higher powers will have all zeros along the
diagonal, validating that there are no cycles.
Example 16: Disconnected Graph
Suppose G=({1, 2, 3, 4, 5}, {(1,2), (3,4), (4,5)}) is disconnected with
2 components: C1={1,2}, C2={3,4,5}. Derive its adjacency matrix
and find the block structure.
Solution: Correction: The adjacency matrix appears to be block
diagonal:
A=[01000]

[10000]

[00010]

[00101]

[00010]
The matrix contains in the diagonal two blocks, corresponding to the
two connected components of the graph.
Example 17: Computing Graph Invariants from Matrices
Give the: (a) Number of triangles (b) Determinant of the adjacency
matrix (c) Eigenvalues of the adjacency matrix For the undirected

graph in Example 1
Solution: a) Number of triangles is trace(A®)/6. Computing A3

AS=[2221]
[2221]
[2240]
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[1101]
trace(A®) =2+2+4+1=9, so we have 9/6 = 1.5 = 1 triangles (we
round down as we cannot have a fraction of triangles).
b) det(A)==0 (this is actually frequent concerning many graph
adjacency matrices)
c) Eigenvalues: A1 = —1.48, A =—1,A=0.31, Aa=2.17
Example 18: Random Walk Transition Matrix
For the graph in Example 1 (considered as an undirected graph) find
the random walk transition matrix P, where P[i,j] is the moving
probability from vertex i to vertex j in one step of the random walk.
Solution: The transition matrix P=D"'A, where D is the degree matrix
and A is the adjacency matrix Solution::
P=[1/2122 0 0]

[1/2 0 1/2 0]

[1/31/3 0 1/3]
[0O0 1 0]
This means that P[3,1] = 1/3 means when you are in the vertex 3, the
probability of moving to vertex 1, in one time step, equals to 1/3.
Example 19: Graph Coloring and Eigenvalues
Let's take a 4-cycle (square) graph with {1, 2, 3, 4} vertices and {(1,2),
(2,3),(3,4), (4,1)} edges. Get its adjacency matrix, find the eigenvalues,
and connect them with the chromatic number.
Solution: The adjacency matrix is:
A=[0101]

[1010]

[0101]

[1010]
The characteristic values are A1 = -2, A2=0, A3 =0, s = 2.
For bipartite graphs, the eigenvalues occur in pairs symmetric about 0.
The chromatic number of a bipartite graph is 2, which is compatible
with the most negative eigenvalue is -2.
Example 20: Spectral Clustering

Let us consider the following adjacency matrix of an undirected graph.

A=[011000]
[101000]
[110100]
[001011]
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[000101]

[000110]
Do spectral clustering to find the working clusters in this gait.
Solution:

1. Compute the degree matrix:

D =diag(2, 2, 3, 3, 2, 2)

2. Compute the Laplacian matrix L=D - A:
L=[2-1-1 0 0 0]

[-1 2-1 0 0 0]

[-1-1 3-1 0 0]
[00-1 3-1-1]
[00O0-1 2-1]
[000-1-1 2]

3. Calculate eigenvectors of L, and we get the second smallest
eigenvector (Fiedler vector) to be approximately v2 = [-0.41, -
0.41,-0.25, 0.25,0.41, 0.41]

4. Split the vertices (non-negative/positive) as sign of
corresponding entry in va2: 1:{1,2,3} (negative), 1i:{4,5,6}
(positive)

This clustering distinguishes two natural commModuleies in the
graph..

Graphs are often represented using matrices which provide a strong
framework for analyzing not only the graph contents but also its
structure properties. Each of these matrices encapsulates different
properties about the graph topology which can be utilized for diverse
applications. For undirected graphs, these matrices are often positive
semi-definite, and hence amenable to spectral analysis, among other
properties. What we've seen with the matrices are very nice properties
(inundated into our discussion) with very simple graphs, and for
directed graphs they don't all hold and will lose a couple of the
properties but they do still reflect some properties.
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Unit 4.3: Tree and its properties

4.3.1 Tree and Its Properties, Rooted Tree, Binary Trees, Spanning
Tree, Fundamental Circuits

Trees and Their Properties

A tree is a basic data structure in computer science and mathematics
that describes hierarchical relationships in an elegant way. A tree is a
connected, acyclic graph made of nodes (vertices) connected by edges.
Trees as a hierarchical data structure separate from linear data
structures (like arrays or linked lists) where the data is organized
differently hierarchically are best examples of data where items have
parent-child relationships. Tree are used in various areas such as file
systems, database indexing, syntax parsing in compilers, network
routing algorithms, artificial intelligence and organizational structures.
Basic Definitions and Properties

Tree is technically defined as a connected, acyclic undirected graph.
Let’s take a look at some essential properties:

1. Now the definition of tree states that: Any two vertices are
connected by exactly one path. This property guarantees that
the whole tree is reachable.

2. Acyclic A tree is a cyclical which means that there is no path
which starts and ends at the same vertex without repeating any
edge.

3. Minimally Connected: A Graph that is minimally connected
means that if any edge of the graph is removed from the tree
then it will be disconnected.

4. Relation between Edges count: A tree with N vertices will
always have N-1 edges.

5. Vertices with degree: 1 (connected to only a single other
vertex) is called a leaf node or an external node.

6. Internal Nodes: A vertex of degree > 1 is called Internal
nodes.

7. Compared to the Height and Depth: Each tree has a height
which is the length of longest path from root to leaf. The
distance from the root of a node is its depth.

8. Subtree: Subtree is Any node, along with all its childrenates in

the tree forms a subtree.
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Mathematical Formulation
Let T=(V, E) be atree, V be set of vertices and E be set of edges. The
next properties are true.
1. Tis connected: Vu,veV Ja path fromutov
2. Tis acyclic: There are no cycles in T.
3. |E|=1|V]|— 1: The number of edges equals the number of vertices
minus one,
Each edge added to T creates a single cycle.
T's any edge disconnects the graph into exactly two
components.
Cayley's formula states that the number of different labeled trees with

n vertices is n n—2, where n is any positive integer.

4.3.2 Rooted Trees
A rooted tree is a tree with one vertex specified as the root. It has been
found that the selection of a vertex as the root creates a natural ordering
among the vertices that allows them to be treated as belonging to a
hierarchy of parent-child relationships.
Properties of Rooted Trees
1. Root: The parentless vertex is the root.
2. Parent: An edge between u and v with u closer to the root than
v means u is the parent of v and v is a child of u.
3. Ancestors: the ancestor of a vertex is that vertex along the path
to the root; it does not include the vertex itself.
4. Descendants: The descendants of a vertex consist of all of the
vertices in its subtree, not including the vertex itself.
5. Siblings: Vertices with the same parent.
Level or Depth: The level or depth of a vertex is defined as the
length of the unique path from the root to that vertex.
7. Tree Height: Maximum depth of a vertex in a rooted tree.
Mathematical Representation
In a rooted tree with root r:
* For any vertex v # 1, there is a unique path fromr to v.
* The depth of a vertex v, denoted by depth(v), is the length of the path
fromrto v.
* The tree height is max{depth(v) | v € V}.
* A vertex v is an ancestor of the vertex w if lies on the path from r to

Ww.
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Notes * Let T_v be the subtree rooted at v, that is, T v is the set of nodes v

and all the descendants of v

In a rooted tree with root r:

o For any vertex v+ 7, there
is a unique path frem 7 to v.

e The depth of a vertex v, Root
denoted by depth (v),
is the length of the
path from 7 to v

e A vertexvis an ancestor
of the vertex w if v
lies on the path from r to
w.

e Let T, be the subtree
rooted at v, that is, 7;,
is the set of nodes v and T
all the descendants of v &

v

leAsn —

Fig: 4.3.1 Representation of Rooted Tree

4.3.3 Ordered Rooted Trees
Each vertex has a left-to-right ordering on its children in an ordered
rooted tree. This intermixed order is useful in many contexts, such as
programming languages representing expressions.
Binary Trees
It is a specific type of a rooted tree for which each node has no more
than two children, which are usually called the left child and the right
child. Binary trees are among the most popular tree structures used in
computer science.
Properties of Binary Trees
1. Maximum Nodes: The maximum number of nodes in a binary
tree of height h =2"(h+1) — 1
2. Minimum Height : The binary tree with n nodes has minimum
height is |log2(n)].
3. Leaf Nodes: There can be at most (n+1)/2 leaf nodes in a
binary tree with n nodes.
4. Full Binary Tree: A binary tree data structure where every node
has either 0 or 2 children.
5. Complete Binary Tree: All levels are fully filled except

possibly the last level which is filled from left to right
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Perfect Binary tree: A binary tree in which every internal
node has two children and all leaf nodes are at the same level.
Balanced Binary Tree: A binary tree such that the heights of

the two child subtrees of every node differs by at most one.

Mathematical Analysis

This is how many paths a binary tree with n nodes has:

Maximum height n-1 (In case when tree degenerates to a linked
list)

The height of a complete binary tree is log2(n) (minimum
case).

The count of leaf nodes (I) and the count of nodes with two
children (i2) are related through: =1+ 1.

The number of leaf nodes in a full binary tree with i internal
nodes isi+ 1

4.3.4 Tree Traversals

There are different ways to traverse binary trees:

1.
2.

3.
4.

Inorder Traversal : Left sub-tree, Root, Right sub-tree

This gives us the preorder traversal: Root, Left subtree, Right
subtree

Postorder Traversal: Left child, Right child, Parent

Level Order: Go through each level of the tree from left to right

Both traversal approaches can be visualised in a recursive or iterative

manner and each has its own use-case in many algorithms.

Mathematical Analysis Tree Traversals

« Maximum height n-1 (In case 1. Inoder Traversal: Left sub-tree,
when tre a case when tree de-n Root
has a linked list) 2. Preorder Traversal: Root,

* The height of complete binary tree Left subtree, Right subtree

is log,(n) (minimum cas) 3. Postorder Traversal: Left child,
¢ The count of leaf nodes in a full Right child, Parent

binary tree with i internal nodes 4. Level Order: Go through each

is i+1 level of the tree from left-right

Fig: 4.3.2 Representation of Binary tree and Tree Traversals
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4.3.5 Spanning Trees

A spanning tree of a connected undirected graph G is a tree that
contains all the vertices of G and has the smallest possible number of
edges (Kruskal’s Algorithm). That is, the graph you are finding is a
tree which is subgraph of G that contains all the vertices of G.
Properties of Spanning Trees

1. Edge Count: a spanning tree of a graph with n vertices has
exactly n—1 edges.

2. Minimality: One of the key properties of minimum spanning
tree is that it is a tree, hence it does not contain cycles:

3. Connectivity: Connectivity Because a spanning tree does
include all the vertices in the original and does not include
cycles, all of the vertices must be connected.

4. Number of Spanning trees: the number Spanning trees for a
complete graph: n”(n-2) (Cayley’s formula)

5. Edge Redundancy: Removing one edge from each cycle in a
graph with cycle(s) results in a spanning tree.

4.3.6 Minimum Spanning Tree (MST)

In a weighted graph, a minimum spanning tree is a spanning tree with
the minimum possible total edge weight. Two classic algorithms for
finding an MST are:

1. Kruskal's Algorithm:

o Sort all edges in non-decreasing order of weight
o Keep adding the next lightest edge that doesn't form a
cycle
o Continue until n-1 edges are added
2. Prim's Algorithm:
o Start with any vertex
o Repeatedly add the lightest edge that connects the tree
to a vertex not yet in the tree
o Continue until all vertices are included
A minimum spanning tree (MST) of a weighted undirected graph is a
spanning tree with weight less than or equal to the weights of all the
edges in the tree. There are two classical algorithms for finding a MST:
1. Kruskal's Algorithm:
e Step: Sort all edges in order of non-decreasing order of weight
e Continue with the next lightest edge that does not create a cycle

e Add edges until we have n-1 edges.
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2. Prim's Algorithm:

e Start with any vertex

e Continuously add a smallest edge that adds a vertex not yet in

the tree

e repeat until all vertices have been added
4.3.7 Mathematical Formulation
Let G =(V, E) be a connected graph with edge weights w: E — R; a
minimum spanning tree T = (V, E') of G is a spanning tree such that
Y{e€E'} w(e) is minimized. The MST is simultaneously the solution to
a different problem using the cut property: If T is a minimum spanning
tree and F is a cut in the graph, then the minimum weight edge crossing
the cut F is also contained in some minimum spanning tree..
4.3.8 Fundamental Cycles and Cut Sets
Ifacycle is formed, exactly one is part of a tree, this is the fundamental
cycle. The entire set of these fundamental cycles is a cycle basis of the

graph.

Fundamental Cycles
For a graph G = (V, E) and its spanning tree T = (V, E_T), every edge
e € E - E_T determines a unique cycle, when added to T. This cycle is
referred to as a fundamental cycle with respect to T.
Fundamental cycles: properties:
1. The number of fundamental cycles hence is |E|—-|V|+1.
2. One fundamental cycle corresponds to exactly one non tree
edge.
3. The basis for the cycle space constitutes the set of elementary
cycles.
Fundamental Cut Sets
A cut in graph G is a partition of the vertices V into two disjoint sets.
The cut-set is the set of edges where one e and one e have endpoints in
each side of the partition. Let G be a connected graph and T a spanning
tree of G. The collection of all edges in G that connect these two
components forms a minimum cut-set.
Fundamental cut-set properties:
1. For every edge in the spanning tree, there is a fundamental cut-
set; thus |V| - 1.

2. A fundamental cut-set contains exactly one tree edge.
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3. The collection of these fundamental cut-sets comprise a basis
for the cut space of the graph

Relationship Between Fundamental Cycles and Cut Sets
There is a duality between fundamental cycles and fundamental cut-
sets:
* We can find a spanning tree that has exactly one non-tree edge.
* A minimum cut-set has a only one tree edge.
* A fundamental cycle and a fundamental cut-set share either exactly
two edges or none.
This duality comes in handy in different graph algorithms and network
analysis problems
Solved Examples
Example 1: Verifying Tree Properties
Problem: Is the the following graph a tree?G = (V, E) where V = {a,
b, ¢, d, e} and E = {(a,b), (b,c), (c,d), (d,e), (e,a)}
Statement: For G to be a tree, it must be connected and acyclic. Since
there is a path between any two vertices G is connected. Now, let's
traverse the graph to see if there's any cycle present: Starting from
vertex a — b — ¢ — d — ¢ — a We again reached to the starting vertex
— Hence, we can say G is a cyclic graph. Therefore, G is not a tree.
Example 2: Counting Tree Edges
Problem: Given atree with 12 vertices. How many edges does it have?
Solution: This cannot happen, the number of edges in any tree with n-
vertices 1s always n-1. Forn =12, Edges =12-1=11.
Example 3: Finding Tree Height
Problem: Calculate the height of the following binary tree:

A

/\

B C
I\
D E F

/
G
Solution: Maximum height of a tree is defined as the length of longest
path from root to any leaf. Length 3 path: A - B— D — GPath A —
B — E has length 2. Path A — C — F has length 2. The maximum
depth is 3, hence it is a tree of depth 3.
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Example 3: Binary Tree Node Calculation Notes
Problem: Maximum number of nodes in a tree of Height: 5
Solution: The binary tree of height h has maximum 2”(h+1) — 1 nodes.
If h =5, then the maximum number of nodes =2"(5+1)-1=2"6-1 =
64 - 1 =63 nodes..
Example 4: Complete Binary Tree Properties
Problem: A complete binary tree contains 100 nodes. What is its
height?
Solution: Leaf Nodes in a Complete Binary Tree A complete binary
tree with n nodes of h height satisfies: 2h<n <2h+1 n=10h=3.
For, n=100: 26 = 64 < 100 < 2”7 = 128 So, The tree height is 6.
Example 5: Traversal Sequences
Problem: Given the binary tree below, what nodes do you visit in an
inorder traversal?
8
/\
3 10
AN
1 6 14
I\
4 713
Solution: It visits left sub tree, root, right sub tree in order. Root of sub
tree: Left sub tree of 8 is 3, whose left sub tree is 1 with left/right sub
trees empty. First visit 1, and then 3, and then the right sub tree of 3:
6, whose left sub tree is 4. Then next 4, then next 6, then right sub tree
of 6 7. Visit 7, then return to 8. Visit 8, then right sub tree of 8: 10,
whose right sub tree is 14, whose left sub tree is 13. In order traversal
order: 1,3,4,6,7, 8,10, 13, 14
Example 6: Minimum Spanning Tree
Problem: Find minimum spanning tree of below weighted graph using
Kruskal's algorithm. TikZ code for graph G (vertices set {A, B, C, D,
E},edges:
(A,B)=4;(A,C)=2;(B,C)=1;(B,D)=5;(C,D)=8;(C,E)=10;(D,E)=2)
Solution : Step 1: Create a list of edges sorted by weight: (B,C) : 1,
(A,C):2,(D,E):2,(AB):4,(B,D):5, (C,D):8,(C,E): 10
Step 2: Only add the edges in order if it doesn’t create a cycle:
*Add (B,C): 1 - MST = {(B,C)}
* Union (A,C): 2 —» MST = {(B,C), (A,C)}
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*Add (D,E): 2 - MST = {(B,C), (A,C), (D,E)}
* Add (A,B): 4 - This would create a cycle A-B-C-A, hence skip.
* Union: (B,D): 5 — MST = {(B,C), (A,C), (D,E), (B,D)}
At this point, we have 4 edges and 5 vertices, which is exactly n—1
edges, meaning we have obtained our MST. Minimum spanning tree
includes edges stored above i.e edges (B,C), (A,C), (D,E), and (B,D)
with total weight 1+2+2+5 = 10.
Example 7: Rooted Tree Properties
Problem: In a rooted tree with root r, vertex a has a depth of 3 and
vertex b has a depth of 5. What is the maximum possible distance
between vertices a and b?
Solution: In a tree, the distance between any two vertices is simply the
length of the unique path between them. For example if a is at depth 3
and b is at depth 5, the path from a to b has to pass through their lowest
common ancestor.
Case 1: The case when a is ancestor of b, where we just has depth(b) -
depth(a) = 5-3=2.
Case 2: If a is not an ancestor of b, then c's depth will always be at most
3 (c could be the root if both a and b in left, ¢ could be any node on the
path from root to node a) The distance from a to b would be: distance(a,
b) = distance(a, c¢) + distance(c, b) = (depth(a) — depth(c)) + (depth(b)
—depth(c)) <3-0)+(5— 0)=8&.
Maximum possible distance is when their Lowest Common Ancestor is
root, then distance =3 +5=28.
Example 8: Binary Search Tree
Problem: A binary search tree is empty initially, you have to insert the
following elements into the tree: 50, 30, 70, 20, 40, 60, 80 Then delete
the element 30.
Solution: BST before any insertions

50

/\

30 70
JANVA
2040 60 80

To delete 30:

e Slither down the left leg of the tree to 50. With the left child

pointer of 50 pointing to 30.

e 30 has two children and thus we have to go to successor node.
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e (Fig 8 — the inorder successor of 30 in this case should be the
minimum element in its right subtree which is 40)

e Change 30 to 40, and replace the 40 with nothing.
Resulting BST after deletion:

50

/\

40 70
VA
20 60 80

Example 9: Number of Binary Trees
Problem: Given 3 labeled nodes, how many different binary trees that
we can have?
Solution: For labelled nodes, the number of labelled binary trees with
n nodes is the nth Catalan number: C(n) = (2n)! / (n+1)! n!
Forn=3:C(3)=(2x3)!/(3+1)!3!1=6!/4!31=720/144 =5.
Hence, 5 different binary trees can be formed with 3 labeled nodes..
Example 10: Depth in Binary Trees
Problem: What is the minimum possible depth of a leaf in a binary
tree with 31 nodes?
Solution: In a binary tree of n nodes, the minimum depth occurs in a
complete binary tree. For a complete binary tree, where h is height then
: 2°h <n <27(h+1)
4: If n = 31 then 24 < n < 275, so h = 4. Thus, the least achievable
depth from the root to any of the leaf nodes is 1 (the root itself) + the
least path from leaf =h =4.
Example 11: Tree Center
Problem: What is the center(s) of the below tree: Tree T with vertices
{A, B, C, D, E, F, G} and edges : (A,B), (B,C), (C,D), (D,E), (C,F),
and (F,QG)
Solution: The center of a tree is the vertex (or vertices) with the
minimum eccentricity where the eccentricity of a vertex is maximum
distance to any other vertex.
To find the center(s), we can iteratively remove all leaf nodes until we
are left with one or two vertices:
Starting tree: A-B-C-D-E and C-F-G
Step 1: Remove leaves A, E, G: we have B-C-D and C-F Step 2:
Remove leaves B, D, F: we have C Only C left, Now C is the center of

the tree
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Example 12: Spanning Tree Count
Problem: Examples spanning trees of a complete graph Ka.
Solution: For a complete graph K,, the number of spanning trees is
n*{n—2} (by Cayley's formula). Therefore, for K, amount of spanning
trees =44 —2)=4*=16.
Example 13: Fundamental Cycles
Problem: suppose we have the graph G on vertices {A, B, C, D, E}
and edges: { (A,B), (B,C), (C,D), (D,E), (E,A), (A,C), (B,D)}
Solution : Given T = {(A,B), (B,C), (C,D), (D,E)} as a spanning tree
of G, determine the fundamental cycles with respect to T.
Solution Non-tree edges are (E,A), (A,C), (B,D) Adding any non-tree
edge to T creates a fundamental cycle:

1. Now when we add (E,A) to the graph, we will have a cycle: E-

A-B-C-D-E

2. With (A,C) we have cycle: A-B-C-A

3. Adding (B,D) induces cycle: B-C-D-B
The three cycles corresponds to the fundamental cycle basis of G given
the tree T.
Example 14: Fundamental Cut Sets
Problem: From Example 14 we have the same graph G and spanning
tree T. From Example 14 we have the same graph G and spanning tree
T.
Solution: Removing edge (B,C) from T forms two components(i.e. tree
is divided)Component 1 : {A,B}Component 2 : {C,D,E}
In G, all edges connecting these two components form the general cut-
set (B,C) (tree edge), (A,C) (non-tree edge), (B,D) (non-tree edge).
Hence the minimum cut-set for (B,C) is {(B,C), (A,C), (B,D)}.
Example 15: Binary Tree Height Calculation
Problem: A binary tree with 6 leaf node and each internal node has
exactly 2 child. What is the total number of nodes in the tree and its
height?
Solution: Denote the number of internal nodes by x. Since there are
exactly 2 children of every internal node and 6 leaf nodes: x + 6 = total
number of nodes In addition, in a binary tree with every internal node
having 2 children: x + 1 = 6 => x = 5 And total number of nodes = x +
6=5+6=11.
Max Path Sum of a Path: The highest path is from the base to the top.

With n total nodes arranged as a full binary tree (all internal nodes have
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2 children), but the tree does not necessarily need to be complete or Notes
balanced. The minimum possible height (for an infinitely sized
complete binary tree) would be a nearly complete binary tree with 11
nodes, which would be 3 tall. But the real height depends on how the
nodes are organized.
Example 16: Level Order Traversal
Problem: For the following binary tree, return the level order traversal
of its nodes' values.
P
/\
QR
/N
S T
/N
Uuv w
Solution: Level order traversal does level by level and from left to
right. Level 0: PLevel 1: Q RLevel 2: STLevel 3: UV W
Level traversai PQRSTUV W
Example 17: Balanced Binary Tree Check
Problem: Check if the following binary tree is balanced:
10
/\
5 15
/NN
37 20
/
1
Solution: A binary tree is balanced when the height of the left and right
substree of a node has at most difference of 1
For node 10:
* Height of left subtree (rooted at 5) is 2
* Height of right subtree (at 15) =1
* Difference = |2 — 1| =1 < 1, then balanced in this node
For node 5:
* Height of left subtree (rooted at 3) =1
* Height of right subtree (rooted at 7) is 0
* Difference =|1-0| = 1< 1, so balanced at this node
For node 15:
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 Height of left subtree being -1 (by convention) when it is empty
* Height of right subtree (rooted at 20) is 0
* Difference =|(-1)-0| = 1 < 1, hence balanced at this node
For node 3:
* height of left subtree (rooted at 1) =0
 Height of right subtree is -1 (it's empty)
* Difference = |0-(-1)| = 1 < 1, so balanced at this node
Hence the tree is balanced, as all the nodes follow the balanced
condition.
Example 18: Prim's Algorithm for MST
Problem: Given the following weighted graph, determine its
minimum spanning tree, using Prim's algorithm with A as the initial
vertex: Graph G where V= {A, B, C, D, E} and E= { (A,B.,2), (A,C,3),
(B,C,1), (B,D,1), (C,E,S), (D,E4) }
Solution : MST = {A} frontier edges {(A,B), (A,C)}
Iteration 1: Minimal frontier edge = (A,B) with weight 2 Add B to
MST: MST = {A, B} Update frontier edges = {(A,C), (B,C), (B,D)}
Iteration 2: Lightest frontier edge = (B,C) with weight 1 Add C to
MST: MST = {A,B,C} Update frontier edges = {(A,C), (B,D), (C,E)}
Iteration 3: Lightest frontier edge = (B,D) with weight 1 Add D to
MST: MST = {A, B, C, D} Update frontier edges = {(A,C), (C,E),
(D,E)}
The edge with minimum weight in this iteration: Lightest frontier edge
= (D,E) with weight 4 Add E to the MST: MST = {A, B, C, D, E}
MST edges: (A,B), (B,C), (B,D), (D,E) => total weight 2+1+1+4 = 8.
Example 20: Tree [somorphism
Problem: Are the following two trees T1 and T> isomorphic? given tree
Ti: Edges (A,B), (A,C), (B,D), (B,E), (C,F) given tree T2: Edges (P,Q),
(PR), (Q.8), (Q.T), (R,U)
Solution: T(|t,H|) for the vertex set of H Solution: Two trees are
isomorphic iff we can get one from another by consistently renaming
vertices.
Start by ensuring that both trees have the same number of vertices and
edges:

* Ti contains 6 vertices (A,B,C,D,E,F) and 5 edges

* T2 6 vertices(P,Q,R,S,T,U) and 5 edges v Same number

Then verify the degree sequence (ordered list of vertex degrees):
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 Ti : deg(A)=2, deg(B)=3, deg(C)=2, deg(D)=1, deg(E)=1,

deg(F)=1 Sorted : [1,1,1,2,2,3]

o T2 deg(P)=2, deg(Q)=3, deg(R)=2, deg(S)=1, deg(T)=1,

deg(U)=1 Sorted: [1,1,1,2,2,3] v Same degree sequence
Finally, test the structural correspondence:

* All three vertices have degree 2 in both trees (e.g., C and D in T,

I'and J in T2)* Both trees have one vertex of degree 3 (B in T1, Q

in T2)

* Both trees contain two vertices of degree 2 (A,C in T1, PR in T2)

* T has vertices D,E,F of degree 1 each. The edges with their 2

vertices {F, B}, {E, A}, {D, C} can be mapped to their 2 vertices

in {S, T}, {S, U}, {U, T}

* In both trees, the degree-3 vertex is adjacent to one degree-2

vertex and two degree-1 vertices.
The trees T: and T2 are isomorphic with vertex mapping as follows:
AP, B~Q, CoR, DS, EoT, FoU
In computer science and discrete mathematics, trees are foundation data
structure with intuitive representation of hierarchies. Tree structures
are crisp hierarchies that can either be in general form of a connected
acyclic graph to specialized structure like spanning tree or binary trees
prove their worth towards efficient solution of a wvariety of
computational problems. These mathematical properties of trees are the
basis of all algorithms (the relation that |E| = [V| — 1, no cycles, and
uniqueness of paths between vertices, etc.). These properties appear in
applications as various as file systems, database indexing, network
optimization, artificial intelligence. Adding structure — in this case,
allowing trees to be rooted or binary — resonates with a variety of
natural hierarchies and recursive processes. This is a great way to show
how certain variants of trees can be tailored to better suit specific
computation, as there are specially crafted algorithms for tree
traversal, searching and balancing. They connect trees to more general
theory of graphs, providing a connection between trees and a minimal
way to guarantee connectivity in a network. Algorithms used for
constructing minimum spanning trees, like Kruskal's and Prim's
algorithms, are some of the most fundamental approaches you can find
in optimization problems. So, we have looked at multiple examples,
along with their visualizations to show how such theoretical ideas

convert into real-world problem-solving techniques as well, during this
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entire series and this reiterates the very significance of trees as
mathematical objects and computational tools. From the elegance
simplicity of tree structures yet their efficiency and intuitive nature it
ensures that trees will always have a place in solving Not schwierig
but complex real world problems in many different nodes of the tree of

computer science and applied mathematics.

Applications of Eulerian and Hamiltonian Graphs

Eulerian graphs, where every vertex has an even degree and a closed
trail exists, have many real-world applications. For example, in urban
planning, Eulerian trails can be used to design garbage collection
routes, mail delivery paths, or street cleaning paths so that each street

is covered exactly once.

Hamiltonian graphs, where a cycle passes through each vertex exactly
once, are important in network design and scheduling problems. The
most famous related problem is the Travelling Salesman Problem
(TSP), in which the goal is to find the shortest possible route that visits
each city exactly once and returns to the starting point. While TSP is
computationally hard, approximations and heuristics are used in

logistics, airline scheduling, and circuit board design.
Advanced Shortest Path Problems

Dijkstra’s algorithm provides the shortest path in weighted graphs

without negative edges. In practice, there are more advanced variations:

Bellman—Ford Algorithm: Works even when negative weights are

present, although it is slower than Dijkstra’s.

Floyd—Warshall Algorithm: Finds shortest paths between all pairs of

vertices, useful in dense graphs like computer networks.

A* Algorithm: A heuristic-based extension of Dijkstra, widely used in

Al for pathfinding in games, robotics, and navigation systems.
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Example: In Google Maps, Dijkstra or A* algorithms are applied on
road networks where intersections are vertices and roads are weighted

edges. The weights represent distance or time.
Graph Coloring

Graph coloring is the assignment of colors to vertices so that no two
adjacent vertices share the same color. The minimum number of colors

required is called the chromatic number of the graph.
Applications of graph coloring include:

Scheduling Problems: Assigning time slots for exams so that no two

exams with common students clash.

Register Allocation in Compilers: Assigning variables to limited
CPU registers.

Map Coloring: Ensuring that no two neighboring regions have the

same color.

Example: Consider a graph representing exam subjects where an edge
exists between two subjects if they share common students. Coloring

the graph gives the minimum number of time slots required.
Planar Graphs and Euler’s Formula

A graph is planar if it can be drawn in a plane without edges crossing.
Planar graphs are important in circuit design, transportation, and
cartography. Euler’s formula connects vertices (V), edges (E), and

faces (F) in a connected planar graph:
V-E+F=2.

Example: For a cube represented as a planar graph, we have V =8, E
=12, F = 6. Substituting gives 8 — 12 + 6 = 2, which satisfies Euler’s

formula.

Spanning Trees and Minimum Spanning Trees
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A spanning tree of a graph is a subgraph that connects all vertices
without any cycles. Spanning trees are useful in designing efficient

networks, such as communication or road systems.

A minimum spanning tree (MST) is a spanning tree with the smallest
possible total edge weight. Two famous algorithms are used to find
MSTs:

Kruskal’s Algorithm: Sorts edges by weight and adds them one by

one if they do not form a cycle.

Prim’s Algorithm: Builds the tree starting from a vertex and grows it

by adding the least costly edge that connects a new vertex.

Example: MST is applied in designing a minimum-cost

telecommunication network connecting multiple cities with cables.
Worked Example: Kruskal’s Algorithm

Consider a weighted graph with vertices {A, B, C, D} and edges:
A-B (1), B-C (4), C-D (3), A—C (2), B-D (5).

Step 1: Sort edges by weight: (A-B, 1), (A-C, 2), (C-D, 3), (B-C, 4),
(B-D, 5).

Step 2: Add A-B, weight=1.
Step 3: Add A—C, weight = 2.

Step 4: Add C-D, weight = 3. Now all vertices are connected. Total
weight = 6.

Thus the MST is {A-B, A—C, C-D} with cost 6.
Real-Life Applications of Graph Theory

Social Networks: People are vertices, and friendships or connections

are edges.

Communication Networks: Routers and computers are nodes, cables

and links are edges.

176
MATS Centre for Distance and Online Education, MATS University



Biology: Protein interaction networks and gene regulatory networks are

modeled as graphs.

Transport Systems: Cities and roads are modeled using weighted

graphs to optimize travel.

Project Planning: Activity networks such as PERT (Program
Evaluation and Review Technique) and CPM (Critical Path Method)

use directed graphs to manage projects efficiently.
Importance of Graph Theory

Graph theory connects abstract mathematics with practical
applications. Whether it is routing internet packets, optimizing
transport routes, analyzing social networks, or designing circuits,
graphs provide a natural way to represent relationships and solve
problems. Its algorithms form the backbone of many modern

technologies.

SUMMARY
This Module introduces the foundational principles of graph theory,
an essential area in discrete mathematics with wide applications in
computer science, networking, and algorithm design. A graph is a
collection of vertices (nodes) and edges (connections), which may be
directed or undirected, representing relationships between elements.
The module begins with the basic definitions and characteristics of
simple graphs, multi-graphs, pseudo-graphs, and directed graphs
(digraphs), emphasizing their properties such as degree,
connectedness, and cyclicity. It examines concepts like subgraphs,
walks, paths, and circuits, which help in understanding graph traversal
and connectivity. The study of matrix representations—including the
adjacency matrix and incidence matrix—enables computational
representation and analysis of graphs. A significant part of the module
focuses on trees, a special class of graphs that are connected and
acyclic. It explains rooted trees, where one node acts as the origin, as
well as binary trees, which are extensively used in data structures and
hierarchical modeling. Additionally, the module explores spanning
trees, which connect all vertices of a graph without forming cycles, and
introduces fundamental circuits that result from adding an edge to a
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Notes spanning tree. These topics form the basis for designing efficient
algorithms in network design, shortest path finding, and hierarchical

data representation.
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Multiple-Choice Questions (MCQs) Notes

Which of the following is true for a simple graph?

a) It contains self-loops

b) It has multiple edges between the same pair of vertices
c) It has at most one edge between any two vertices

d) It always has a cycle

Ans: ¢)

Which of the following correctly defines a spanning tree of
a graph?

a) A tree that contains all the vertices of the graph with
minimum edges

b) A subgraph that contains all the cycles of the graph

c¢) A graph with multiple components

d) A graph that has more edges than vertices

Ans: a)

Which matrix representation is commonly used to
represent graphs?

a) Adjacency matrix

b) Incidence matrix

c¢) Both (a) and (b)

d) None of the above

Ans: ¢)

Which of the following statements about trees is incorrect?
a) A tree is a connected acyclic graph

b) A tree with nnn vertices has exactly n—1n-1n—1 edges
c) A binary tree is a type of tree in which each node has at
most three children

d) A spanning tree is a subgraph of a connected graph that
includes all the vertices

Ans: ¢)

In graph theory, a walk is defined as:

a) A sequence of vertices and edges where repetition is not
allowed

b) A sequence of vertices and edges where repetition is
allowed

¢) A path with no repeated vertices

d) A circuit with at least three edges

Ans: b)
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Long Answer Questions

1.

Explain the fundamental concepts of graph theory and
describe different types of graphs with examples.

Define subgraphs, walks, paths, and circuits. How do they
differ from each other?

Discuss the matrix representation of graphs. How are
adjacency and incidence matrices used to represent graphs?
What is a spanning tree? How is it different from a general
tree? Explain with an example.

Define binary trees and rooted trees. How do they play a

significant role in computer science applications?

Short Answer Questions

1.

CRENECIN

What is the difference between a simple graph and a
multigraph?

Define a directed graph and give an example.

What is a fundamental circuit in graph theory?

How many edges does a tree with 10 vertices have?
What is the significance of adjacency matrices in graph

representation?
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MODULE 5:
SEMI GROUP AND MONOIDS

5.0 Learning objectives

To understand algebraic structures, binary operations, and their
properties.

To explore semigroups, monoids, and group theory.

To analyze Abelian groups, cyclic groups, generators, and
permutation groups.

To study homomorphism, isomorphism, and automorphism in
group theory.

To understand cosets, Lagrange’s theorem, normal subgroups,

and quotient groups.
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Unit 5.1: Algebraic Structure, Binary Operation,
Properties, Semi Group, Monoid, Group Theory

5.1.1 Algebraic Structure, Binary Operation, Properties, Semi
Group, Monoid, Group Theory

Algebraic Structures and Binary Operations

Modern abstract algebra is based on an algebraic structure, which gives
mathematicians the means to study symmetry, solve equations, and find
a link between different fields of mathematics. An algebraic structure
is basically a set along with one or more binary operations that satisfy
certain properties. Such structures echo throughout mathematics, from
the well-worn byways of basic arithmetic to esoteric like topology and
analysis. We can learn about the underlying structures of mathematical
systems, and we find tools to solve intricate challenges in multiple
disciplines.

Binary Operations: The Foundation of Algebraic Structures

In mathematics, a binary operation from a set S is a function from S x
S to S. In more concise terms, it can be described as a mapping * : S X
S {a, b} — S such that for any a, b € S, we denote the binary operation
of'aand b by a * b. The operation that maps (*) back to one of its input
sets (set S in this case) is called closure: one of the most fundamental
properties of a binary operation that guarantees repeatedly performing
the operation would yield the result still within the primary set. Typical
examples would be addition and multiplication over the reals, function
compositions, matrix multiplication, logical operations over Boolean
values. Thanks to the generality of binary operations, mathematicians
can model a wide range of phenomena from a variety of fields. In
particular, we can describe the operation structures (Cayley tables) of
binary operations, i.e., the result of operating on any two (possibly the
same) elements from the list of elements in the set. For finite sets, these
tables are a complete picture of the operation, and they also show things
we may otherwise overlook just from the definition. In fact, the reason
for this is that the form of these tables often conveys valuable
information about the operation; symmetry patterns can indicate
commutatively while diagonal patterns can demonstrate idempotence.
Knowing the geometric representation of operation tables could help in

understanding clear logic for abstract algebra concepts..
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5.1.2 Fundamental Properties of Binary Operations

There are several important properties that binary operations can satisfy
that help to define the type of algebraic structure they create. The
distributive property is just one of the uses for associatively (meaning
that (a * b) * c=a * (b x ¢) for all a, b, ¢ elements of the set, so you can
do an operation on them without concern as to how you group them),
and of course, the commutative property, they are very useful in
simplification, and help us do inductive proofs. Commutatively means
that the order of operands does not matter, mathematically defined as
a * b=> *a for all a, b in the set. There exists an identity element e such
that a * e = e * a = a for every a in the set, such that the element does
not change other elements when operated with. If there is an element a
so that an inverse element a! exists such that axa '=a'xa=¢ for each a,
then operations can be “undone”, and we can solve for equations in
this structure.

The properties described give binary operations a richer theoretical
ecology. Idempotence (a * a = a) emerges in max or min type
operations. One operation distributes over another (a * (b @ c¢) = (a *
b) @ (a * c)), relating multiple operations together like the
multiplication and addition operations in arithmetic. Binary operations
are also characterized by absorption and cancellation properties as well
as other closure properties that help determine their algebraic behavior.
These properties are not just technical definitions, they reflect
underlying patterns of mathematical reasoning and methods of
approaching problems.

5.1.3 Types of Algebraic Structures

The properties satisfied by the binary operations determine the
classification of algebraic structures. Groups — a set with one binary
operation that satisfies closure, associativity, identity and inverse
properties — are the backbone of abstract algebra and show up
throughout mathematics, from number theory to crystallography.
Monoids characterize sequences of operations that can be combined
(closure) and have a function that when combined does not alter the
state of the system and does not have an inverse if they are irreversible
(identity). Semi groups the simplest combining processes (i.e.,
satisfying closure and associatively only) are even more general. These
structures are arranged hierarchically with each one having fewer

constraints than the previous one, providing mathematicians the choice
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of level or degree of abstraction for specific problems. When more
than one binary operation acts on the same set, more sophisticated
structures can be obtained. A ring is a set equipped with two operations
(called addition and multiplication in the standard case) such that
addition is an abelian group, multiplication is a monoid, and
multiplication distributes over addition. Fields build on rings by
demanding that every non-zero element must also possess a
multiplicative inverse, permitting division. Vector spaces, modules,
algebras and lattices are further specializations with introduced
additional operations and axioms. As we can see from the structure of
the above two polynomials, algebraic structures can capture
background patterns between certain objects. The theory of such
structures reveals profound connections between areas of mathematics
seemingly unrelated to each other.

5.1.4 Applications of Algebraic Structures

For examples of the wide range of applications of algebraic structures
see 4[8] 23[44]. In cryptography, groups underpin a range of
encryption algorithms — including RSA and elliptic curve
cryptography — safeguarding digital communications used around the
globe. These concepts are integral to coding theory, which utilizes
finite fields to create error-correcting codes that ensure data integrity
during transmission in the presence of noise and interferences. In
physics, group theory underpins symmetries of physical systems,
ranging from the classification of crystal structures to the fundamental
particles of the Standard Model. Algebraic structures also show up in
computer science, especially in the design of programming languages,
type theory and automata theory — sequences of computation can be
modelled with monoids and semi groups. Outside traditional STEM
fields, algebraic structures shape everything from linguistics to music
theory. Group theory is used in chemistry to classify molecular
structures and to predict vibration spectras. The relation between
mixed-strategy payoffs and second-order conditions is in economic
models where they used algebraic structures to study preference
relations and market behaviors. Even prudently nondisambiguatory
aesthetic domains respond to algebraic abstractions, as group theory,
for instance, shines light on mathematically structured principles within
visual arts, architecture and musical composition. This universality of

algebraic structures arises because they capture patterns of
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relationships or transformations that emerge naturally in many realms
of human endeavor and creativity.

5.1.5 Historical Development and Future Directions

Algebra 2000 has been a huge evolution since the first isolation of
algebra in the 19th. Mathematicians like Everest Galois and Niels
Henrik Abel began by investigating the characteristics of polynomial
equations and the relationship they have between the solution sets and
investigate their symmetries through group theory. Abstract algebra
emerged as a separate subject during the 19th and early 20th centuries,
with people like Emmy Noether and Emil Artin formalizing the
axioms for different algebraic structures. It made things clearer and
more general, helped find connections among long separate branches
of mathematics, and made algebraic structures fundamental organizing
principles in mathematics. Modern directions in algebraic structure are
once again expanding in all sorts of ways. Category theory gives a
common language to relate algebraic spaces using factorial and natural
transformations. Computational algebra is the study of algorithms for
manipulating algebraic objects in an efficient manner (for applications
in cryptography and scientific computing, see here). Emerging fields
such as quantum algebra and algebraic geometry combine algebraic
structures with analytic and topological methods to tackle difficult
problems. These avenues signal even more integration of algebraic
methods into data science, machine learning and quantum computing
as mathematicians find new structures to model novel phenomena and
invent theoretical scaffolding for the mathematics of the future. The
self-referential nature of the evolving algebraic structures is indicative
of what is the dual nature of mathematics: a means of solving
immediate problems of practical desire and a quest for aesthetics
through idealism of though

5.1.6 Mathematical Structures: Semigroups, Monoids, and Group
Theory

Introduction to Algebraic Structures

Algebraic structures are the building blocks of contemporary
mathematics: sets endowed with operations that follow certain
properties. Here, semigroups, monoids and groups are a series of
increasingly rich algebraic systems. Isomorphism and Homomorphism
are key concepts in abstract algebra, which is a branch of mathematics

concerned with algebraic structures such as groups, rings, and fields,
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and these structures have applications in various domains like number
theory, geometry, cryptography, quantum mechanics, and computer
science. So, setting out on this exploration satrt with the simplest
sstructure as the semigroup and build towards the more constructive
and more poweful of all structure which are group and its the properties,
relations and its the importance in the maths.

Semi groups: The Foundation

A semi group is an algebraic structure consisting of a non-empty set S
with a binary operation (often denoted by juxtaposition or *) satisfying
the associatively property. In formal terms, for any a,b,cE€Sthe
operation must satisfy(axb)xc=a*(bxc). In fact, this relationship
between products is associative so we can write an expression such as
a * b * ¢ without ambiguity, since it does not matter in which order we
apply that operation. Semi groups generalize the idea of many
mathematical operations. For example, the positive integers under
addition form a semi group, as do the set of all matrices of a fixed size
under matrix multiplication. Here is another example: The collection
of all strings over a fixed alphabet under concatenation. In category
theory, even the collection of natural transformations between factors
forms a semi group under composition. There are several interesting
properties of semi groups and some kinds of semi groups. For
commutative semi groups, the operation is commutative (i.e.,a*b=>b
* a for all a, b) and therefore also forms a commutative semi group, or
an abelian semi group. An abelian semi group is a semi group (i.e.
binary associative with identity) in which the binary operation is
commutative but need not have an identity element. A band is a semi
group where every element is idempotent (i.e., a * a = a for all a).A
regular semi group is a semi group with the property that for all a there
exists an element b with the property that a * b x a = a. Semi groups
also involve the study of properties such as subsemigroups (subsets of
a semi group that are also semi groups under the same operation),
homeomorphisms (structure-preserving maps between semi groups),
and congruence relations (equivalence relations that are compatible
with the semi group operation). The theory of semi groups includes the
consideration of Green's relations, which classify the elements of a semi
group according to the equivalence classes determined by the principal
ideals that can be formed from its elements. (For example, types of

semi groups, and the structure thereof will be elucidated through later
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sections of the paper, through classification of finite semi groups for
example.).

Monoids: Semi groups with Identity

A monoid is an extension of the semi group concept, providing an
identity element. More precisely, a monoid is a semi group (M, *)
which has an identity element in M, denoted by e, satisfyinge xa=a
* ¢ = a for all elements a € M; this identity behaves like the number 0
with respect to addition or 1 with respect to multiplication, since it does
not change other elements when used in a combination. This means that
we have an even better algebraic structure with an identity element. are
are examples of monoids march 2zero chosen wrapper fabric the set of
non-negative integers under addition is a monoid with identity 0, and
the set of positive integers under multiplication is a monoid with
identity 1. The set of all strings over an alphabet (including the empty
string) forms a monoid under concatenation and the empty string is the
identity element. Under function composition, all endomorphism’s of a
set form a monoid with the identity function as the identity element.
This applies very widely to theoretical computer science, especially
formal languages and automata theory. The behavior of a finite
automaton can be captured with a finite monoid where the monodies
operation is the concatenation of input strings. The syntactic monoid
of the language gives a construction that the language is characterized
up to isomorphism, and offers insights into its properties. In functional
programming, you use a monoid to define a foldable data structure that
can allow you to efficiently generate large data sets using parallel
processing. Introduction to the theory of monoids A submonoid is a
subset of a monoid that contains the identity and is closed under the
monoid operation. That is, a monoid homomorphism means that V a, b
€ A, m(f(a - b) =={(x) - f(y) and (1) == 1. The free monoid on some
set A is the monoid consisting of all finite sequences (or strings) of
elements from A, using concatenation as the monoid operation, and
with the empty sequence as the monoid identity. This idea is
elementary in formal language theory, in which the free monoid on an
alphabet is the set of all strings over that alphabet..

Groups: Monoids with Inverses

A group is an even richer algebraic structure, which adds inverse
elements to a monoid. This formally means that group is a monoid (G,

*) having the inverse for every element a € G, i.e. a' such that: a * a™!
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=a!' x a=e, where e is identity element of the monoid. This means that
for every element in a group there is a unique "counterpart" that will
result to the identity when combined with the original element. The
structure of algebraic systems is (even) better than it could be with the
introduction of inverses. In the case of the set of integers under
addition, the identity is 0, and the inverse of any integer n is simply its
negative — n. Zero is not part of our original group, as we started with
rational numbers with non-zero denominator, so we don't need to
worry about it. The symmetric group on a set is the collection (a group)
of all bijections (injective & subjective) from the set back onto itself,
under function composition. There are a variety of properties and
structures that can display a group. Finite Group — This is a group that
has a finite number of elements, the number of elements it contains is
called its order. * An abelian (or commutative) group is one that
satisfies the commutative property of its operation, a * b = b *a, for
every term a and b in the group * A cyclic group is a group in which
each element can be expressed as the nth power of a generator (same
generator for all) If an integer n exists so that a*n=e, then it is defined
to be the order of the element a in the group. Group theory involves
important structures such as subgroups (subsets that themselves form
groups under the same operation), normal subgroups (subgroups that
are invariant under conjugation), quotient groups (the groups resulting
from taking cosets of normal subgroups), and group homomorphisms
(mappings between groups that preserve the operation). These notions
enable mathematicians to study the internal structure of groups and
their relations with other groups. A prime example of the efficacy of
these analytic tools is given in the fundamental theorem of finitely
generated abelian groups, which yields a complete classification of all
such groups up to isomorphism.

Group Theory: Historical Development and Fundamental Theorems
This notion broadened the concept of symmetry and led to the
development of group theory, a mathematical framework that
originated in the early 19th century through the work of mathematicians
such as Evariste Galois and Niels Henrik Abel, who explored the
solvability by radicals of polynomial equations. Galois' analysis
involved the use of groups to determine when a given equation is
solvable by radicals, thereby relating the structure of the symmetries

of a polynomial (the Galois Group associated to the polynomial) to the
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existence of algebraic solutions. This periodic milestone created a close
connection between group theory and field theory, and later became
the core of Galois theory. Group theory developed rapidly thanks to the
work of many mathematicians. With the advent of group theory in
analysis, the eponymous results of Augustin-Louis Cauchy emerged,
such as his namesake theorem, which asserts that for any finite group
of order n, an element of order p exists for every prime that divides n.
Arthur Cayley abstracted the term group to signify an abstract group,
liberating the theory from contexts like permutations or
transformations. Camille Jordan worked on composition series and
formulated Jordan's theorem on finite linear groups. Reformulation of
Geometry via Group Theory: Felix Klein's Erlangen Program
reformulated by interpreting geometric properties as invariants under
the action of groups. Group theory is based on several fundamental
theorems. What you are learning includes Lagrange's theorem which
states the order of the subgroup divides the order of the group, limiting
the possible sizes of subgroups. For any group homomorphism ¢, the
first isomorphism theorem states that G/Ker(¢)=Im(p): A group, its
homomorphic image and the kernel of the homomorphism. Sylow's
theorems offer important insight into the structure of finite groups,
because they gives insights on existing and properties of subgroups of
every prime power order. The orbit-stabilizer theorem establishes a
relation between the size of an orbit under a group action and the index
of the stabilizer, and in turn provides powerful counting methods. The
theory of finite simple groups is one of the monumental achievements
of mathematics. It’s an "enormous theorem" that covers thousands of
pages in hundreds of journal articles, and involves dozens of
mathematicians over three or four decades, classifying all finite simple
groups into four specific families: cyclic groups of prime order,
alternating groups, groups of Lie type, and 26 other sporadic groups
that fell through the cracks of the other families. This classification
demonstrates the intricate and diverse nature of group structures and
gives a holistic perspective on the essential components of finite
groups.

5.1.7 Applications of Semi groups, Monoids, and Groups

Semi groups, monoids, and groups theory have a lot of practical
applications in many domains. In the field of cryptography, group
theory is used in many encryption schemes. Essentially, the RSA
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algorithm is one of the oldest public-key cryptosystems and is still one
of the most popular. It is founded on the computational difficulty of
some problems in number theory which fall under cyclic groups.
Elliptic curve cryptography exploits the group structure of points on
elliptic curves to construct secure cryptosystems with smaller key sizes
than those used by classical cryptosystems. Diffie-Hellman key
exchange, a key exchange protocol that allows two parties to exchange
cryptographic keys over public channels, relies on certain properties of
cyclic groups. Group theory is crucial in the understanding of
phenomena in physics. Noether's theorem provides a deep
relationship between symmetries of physical systems and conservation
laws, where each continuous symmetry leads to a conserved quantity.
In solid-state physics, the only kind of crystal structure classification is
based on the 230 space groups specifying the possible symmetry
patterns in the three-dimensional crystal lattices. In particle physics, Lie
groups are used to categorize the elementary particles as well as the
interactions between those particles. There are a host of ways that
these algebraic structures are used in computer science. In automata
theory, monoids are used to model finite state machines, specifically
the syntactic monoid captures the recognition power of automata. The
free monoid is used in formal language theory to represent the set of all
strings over an alphabet. Petri nets, used to model concurrent systems,
have a background algebraic structure based on commutative monoids.
Thus, Inspired by functional programming languages (e.g., Haskell), a
monoid is a concept used in many programming languages to define a
structure that combines data structures through associative operations
with the existence of identity elements which is both well-defined and
powerful, allowing the writing of efficient, elegant code. In chemistry,
we have group theory to help understand symmetry in molecular
systems and spectroscopy. Molecular symmetry groups preside over
the vibrational modes that can be excited and selection rules governing
allowed spectroscopic transitions. In quantum chemistry the role of
group theory is to exploit the symmetry of molecules to render
Hamiltonian matrices block-diagonal, simplifying the calculation of
matrix elements. Stereochemistry appraises group-theoretic ideas to
categorize and anticipate candidate stereoisomers of molecules and
advances knowledge of three-dimensional molecular conformations

and their biological functions.
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5.1.8 Advanced Topics and Future Directions

This is an area that is still active — theory evolves, new results are
proven, themes are developed. Understanding a group through the
action that is built on a space a group acts upon is the basis of a very
active field of study in contemporary mathematics — geometric group
theory. The word problem for groups—whether two words denote the
same element of a group—connects group theory with computational
complexity theory and has far-reaching consequences for automated
theorem proving and verification systems. Sets, functions, and relations
are fundamental to the study of algebraic structures, and representation
theory is a powerful tool used in the representation of groups as linear
transformations of vector spaces. Character theory, as a part of
representation theory, can associate a group element with a complex-
valued function (the character), over which representations can be
decomposed into irreducible components. These techniques are used in
quantum mechanics, so where the symmetry groups of irreducible
representations associate quantum states for physical systems.
Topological groups, which imbue group structure with topological
structure, constitute a bridge between algebra and topology. Lie groups
are both groups and differentiable manifold, and thus sit at the heart of
differential geometry and theoretical physics. Representation theory of
Lie groups is the basis of quantum field theory and provides necessary
tools to describe particle interactions at the most fundamental level.
New links between group theory and quantum information science
have emerged with the recent advances of quantum computing.
Quantum error-correcting codes are frequently based on group-
theoretic constructions which serve to shield quantum information
from decoherence. Despite being surprising, this discovery is
understandable, as many efficient quantum algorithms known today
(e.g., Shor's factoring algorithm) are based on realising an info-
progression strategy over the group structure of abelian groups to give
an exponential speed up compared to classical algorithms. A larger
picture for quantum computing and group theory in years: Semi
groups, monoids, and groups are still being studied and will inevitably
be powerful tools in our understanding of algebraic structures. There
is ongoing work 1in categorical ways of thinking about algebra, which
each of these things could be seen as a special case of something larger

that we will learn. These works yield algorithms that allow one to solve

191
MATS Centre for Distance and Online Education, MATS University

YW i

N \\\

UNIVERSITY
ready for life.......

Notes

ars)



G T )

g \\\

UNIVERSITY

ready for life.

Notes

ars)

|

group-theoretic problems in an efficient manner and thus improve our
understanding of potentially very complex groups. This section has
demonstrating the relevance of group theory to sunrise fields such as
network science and the data science show how relevant and applicable
those fundamental mathematical concepts remained in the study of

modern-day challenges across science and technology.
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Unit 5.2: Abelian Group, Cyclic Group, Generators, Permutation
Group, Subgroup

5.2.1 Abelian Group, Cyclic Group, Generators, Permutation
Group, Subgroup

Abelian Groups and Cyclic Groups

An Abelian group, named after Niels Henrik Abel, is an algebraic
structure combining a group with the additional requirement that the
group operation be commutative. Abelian groups are fundamental
objects in the field of abstract algebra in their own right, but they also
play essential roles in the construction of more advanced structures, and
they have applications in a wide range of mathematical theory from
number theory to topology. Cyclic groups, a special case amongst
Abelian groups, are among the most simple and well-studied groups
but also reveal deeper properties that inform our understanding of the
underlying group-theoretic principles. Algebraic and recurrent also
describe because mathematicians discovered these sequences as
algebraic structures, and algebra is a form for making sense of
symmetry and periodicity, and structural relationships, in pure
mathematics and applied math alike, so algebra here has things to do
with things

Definition and Properties of Abelian Groups

A binary operation * on a set G is called an Abelian group if it is an
Abelian operation satisfying four axioms. The first is that the operation
1s closed — that is, for a, bEG, we have a*b€G. The second is that the
operation is associative, meaning that (axb)*c = ax(bxc) for all a, b,
c€G. The third is that there is an identity element, denoted e, that is a
member of G such that axe = exa = a for every a€G. The fourth is that
for every a€Q, there is an inverse element a '€G such that axa™ =a'*a
= e. What a group compared to a general group is the additional
property of commutativity: for any pair (a, b)EG, axb = b*a. This
property of commutativity has the effect of greatly simplifying the
structure of the group and has many important implications. Abelian
groups have properties that make them especially easy to analyze. For
example, in an Abelian group, the answer to the equation a*x = b is
uniquely solved with x = a™'*b, regardless of order of operations. The
definition gives one example of finding the quotient group when the

normality holds. This means that we can construct more complex
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Abelian groups from simpler ones since the direct product of Abelian
groups is again Abelian. Due to the commutativity property, one can
formulate a really rich theory of homomorphisms between Abelian
groups, leading to the very important fundamental theorem of finitely
generated Abelian groups: each such group can be expressed as the
direct sum of a finite number of cyclic groups. This theorem on
decomposition gives all finitely generated Abelian groups up to

isomorphism.

Aebelian Groups

A binary operation * on a set G is called
an Abelian group if it is an Abelian
operation satisfying four axioms.

1. Closed: For a,be G, we have a+be G.

2. Associative: There is an element e€ G
such that a-e=e-a=a

4. Inverse element: For every a € G, there
is an element a~'€@G such that axa =1
=g:lea=c

4. Inverse element: For every a € G, there

is an element a~1€ G such that axa~?
=alxa=e

What distinguishes an Abelian group
compared to a general group is the addi-

Fig: 5.2.1 Abelian Groups

Examples and Representations of Abelian Groups

Abelian groups show up abundantly in mathematics in many guises.
Under addition the integers Z form an infinite Abelian group with 0 as
the identity and negation as the inverse. Another important example of
an Abelian group is the set of all rational numbers denoted by Q, real
numbers denoted by R, complex numbers denoted by C under the
operation of addition. For each positive integer n, the integers modulo
n, Zn, is a finite Abelian group under addition modulo n, and the non-
zero complex numbers C* under multiplication as well as the positive
reals R*. Let F be a field; the group of nxn invertible diagonal matrices
with entries in F is an Abelian group under matrix multiplication.
Vector spaces over any field have a natural underlying Abelian group
structure inherited from vector addition. Aside from these specific
cases, Abelian groups can take many forms and be studied through
different representations. One very rich approach is via character theory

(characters are homeomorphisms from the group to the multiplicative
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group of complex numbers)). For finite Abelian groups, the character
table uniquely determines the group up to isomorphism. A different
rendition is given by the module theoretic one, in which Abelian
groups correspond to the Z-modules. This point of view relates group
theory to module theory and provides ways to apply techniques from
the latter on Abelian groups. For finitely generated free Abelian groups
the geometrical picture is in terms of lattices in Euclidean space. This
approach has been fruitful, particularly in number theory in the study
of quadratic forms, and in cryptographic applications.

5.2.2 Definition and Properties of Cyclic Groups

Cyclic Groups

A group G is said to be cyclic if there is
an element g in G such that G = {g™:Z,
where g™ means that we are composing
with itself n times.

Properties:

o Every subgroup of a cyclic group is cyclic.

e If G is a cyclic group of order n (that is,
with n elements), then for every divisor

d of n there is exactly one subgroup of G
with d elements.

o Every quotient group of a cyclic group
is cyclic, and a direct product of cyclic
groups is cyclic iff their orders are

Fig: 5.2.2 Cyclic Group

The cyclic group is an Abelian group that can be generated by a single
element, such that every element in the group can be written as a power
(or a multiple, in additive notation) of an element that we will call a
generator. A group G is said to be cyclic if there is an element g in G
such that G = {g": n € Z}, where g" means that we are composing with
itself n times. A cyclic group generated by g is denoted by G = {ng | n
€ Z} in additive notation, as is frequently in use in the case when the
group is Abelian. In the infinite case, every cyclic group is isomorphic
to the integers Z with the operation of addition, and in the finite case
to the integers modulo n, Z,. The result of this classification is that
cyclic groups are so simple and so elegant that there are not even many
of them (up to isomorphism, there are essentially only two). There are

some very special properties of cyclic groups. Every subgroup of a
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cyclic group is cyclic, a property which is no longer true for general
groups. Here is the statement in words: If G is a cyclic group of order
n (that is, with n elements), then for every divisor d of n there is exactly
one subgroup of G with d elements. The number of generators of a
finite cyclic group (of order n) is given by Euler's totient function ¢(n)
that counts the positive integers less than n which are relatively prime
to n. For prime p, the cyclic group of order p has exactly p—1 generators.
Every quotient group of a cyclic group is cyclic, and a direct product
of cyclic groups is cyclic iff their orders are relatively prime. Cyclic
groups have attractive properties that makes them easy to understand,
and gives good intuition of how to construct more complex groups,
while also acting as a foundation for further developments in the theory
of groups in algebra as a whole.

5.2.3 Relationships Between Abelian and Cyclic Groups

There is a certain hierarchy between Abelian groups and cyclic groups,
with the former being a generalization of the latter; namely, every
cyclic group is Abelian, but not every Abelian group is cyclic. We will
use this inclusion relationship to define a sense in which Abelian groups
can be classified, while the simplest example will be cyclic groups.
Thus we see that every finitely generated abelian group can be broken
down into cyclic groups via the fundamental theorem of finitely
generated abelian groups, which can be seen as the abelian analogue of
the way in which prime numbers are the building blocks for integers.
The relationships between general Abelian groups and cyclic groups
uncover underlying structure. For example, an Abelian group is cyclic
iff it has no proper subgroup of the same rank (the rank is the number
of copies of Z in the decomposition of the group). In the finite case, an
Abelian group is said to be cyclic if and only if it has one and only one
subgroup of each possible order. Another link here is the concept of
the sole of an Abelian group—the subgroup generated by all elements
of prime order; a finite Abelian group is cyclic if and only if its socle is
cyclic. Furthermore, the endomorphism group (the group of
homeomorphisms from a group into itself) for cyclic and non-cyclic
Abelian groups shows a striking difference. For a cyclic group of order
n, the endomorphism ring is stored to the ring to of integers mod n,
while for a non-cyclic Abelian groups the endomorphism ring may be
considerably more 'non-simple' often taking the form of a several

dimensional matrix group over each different ring.
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5.2.4 Applications in Mathematics and Beyond

Abelian and cyclic groups have applications in branches of
mathematics and applied fields. The multiplicative group of integers
modulo n is an essential structure in number theory, and it is generally
Abelian but not always cyclic, and it is in the base of the studies on
modular arithmetic and congruence’s. This structure provides the
foundation for significant results, including Fermat’s Little Theorem
and Euler’s Theorem, which subsequently form the foundation for
cryptographic protocols, such as RSA encryption. Abelian groups arise
as homology and co homology groups in algebraic topology and
contain topologically significant information about spaces. The
Abelian nature of these groups makes their study much simpler than
the analogue of the fundamental group, which is typically non-Abelian.
Outside the ivory tower of pure mathematics, these groups appear in
crystallography to define the symmetries of crystal lattices, in physics
to study conservation laws and symmetry transformations, and in
coding theory, where cyclic codes based on cyclic groups provide
efficient error detection and error correction. For example in quantum
mechanics the representations of Abelian groups correspond to
quantum systems with commuting observables, for example in signal
processing the discrete Fourier transform connects to the cyclic
structure of cyclic groups. Alternatively, Cyclic redundancy check is
one example of a computational application that exploits properties of
cyclic groups and is used for error detection in data transmission, while
cryptographic protocols can be defined in terms of the hardness of
problems in Abelian groups, the most known one being the discrete
logarithm problem in elliptic curve groups. The study of Abelian
varieties in algebraic geometry—higher-dimensional equivalent of
elliptic curves, possessing an Abelian group structure—has yielded
many deep results in pure mathematics and applications in
cryptography.

Recent Developments and Open Questions

There remains much more mathematics to be done in Abelian and
cyclic groups, as current research continues to entwine with growing
branches of new mathematics and long-time open problems. For
instance, the field of random Abelian groups and probabilistic group
theory is a very active area of research, in which one studies the

statistical behaviour of -- groups chosen from some distribution. This
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links group theory with probability theory, and has applications to
network analysis and complex systems. A second emerging area is the
algorithmic study of Abelian groups — the efficient computation of
invariants, the discrete logarithm problem, the isomorphism problem,
etc. These abstract computational questions have real-world
application, for cryptography and computer science in general. There
are many open questions and conjectures. The high-dimensional
Torsion Conjecture for Abelian varieties, which generalizes the elliptic
curve results, remains open. The structure of infinite Abelian groups,
once one leaves the finitely generated setting, is quite difficult and leads
to very deep set-theoretic and infinite combinatorial questions. All of
this directly connects back to the world of Module condition as many
problems facing the Module group of the integral group ring of an
Abelian group form difficult problems in group theory, ring theory, and
number theory. This is an active question in algebraic number theory
as to which Abelian groups occur as the class group of a number field.
We engage in ongoing investigations that show that in fact after they
are some simple axioms, Abelian and cyclic groups yield all sorts of
new mathematical theories and have brought many insights to
fundamental questions in many areas of mathematics. These classical
algebraic structures remain relevant and continue to inspire new
mathematical discoveries as mathematical techniques evolve and new
applications arise.

5.2.5 Generators, Permutation Groups, and Subgroups

Generators, Permutation groups, subgroups in Ulntl163 in Abstract
Algebra These concepts form the basis for group theory, which is a key
building block not only for number theory, geometry, but also
theoretical physics, among others. Generators are an economical way
to describe (potentially complicated) groups in terms of a small
collection of objects. Key group-theoretic notions such as stability,
orbits, and Sylow within particular action of groups can be concretely
realized via permutation groups. They make it easy to find and
analyze significant structural patterns within our larger set. When
combined, these ideas give us strong methods to study mathematical
structures from a perspective of symmetry and transformation.

Group Generators: The Building Blocks

In mathematics, a group (G, ¢) consists of a set G and a binary operation

* on G satisfied these four basic properties: i.e holds closure,
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associatively, identity exists and the inverse exists. In this context, we
introduce the notion of generators, which are a useful way to describe
groups succinctly. A subset S of a group G generates G if every element
of G is finite product of elements of S and their inverses. The symbol
(S) denotes the group generated by the set S. A great deal of interest is
in minimal generating sets — if an element can be removed from S such
that (S) does not change, then it is not a minimal generating set. The
rank of the group, which indicates the group complexity, is the size of
a minimal generating set. One of these core ideas is that of a generator,
which has deep implications for understanding the structure of a group.
For example cyclic groups are exactly the groups which are generated
by one element. The order n cyclic group: C, can be generated by any
of its elements with order n, while more complicated groups require
larger generating sets. A concrete example would be D, the dihedral
group generated by a rotation and a reflection which represents the
symmetries of a regular n-gon. Not only is this compact description of
groups via generators (and relations) conceptually clearer (and is the
basis of their equivalence), but also it pushes instead to computational
ways of thinking about group theory. A better paraphrase would
understand the generating set gives you insight into the essential
operations which govern group behavior similar to how understanding
the basis gives you the dimension structure of a vector space.
Permutation Groups: Symmetry in Action

However, permutation groups give a very concrete way of realizing
abstract group structures through their action on sets. Definition: A
permutation of a set X is a bijection from X to itself. The set of all
permutations of X is a group under function composition, written as
Sym(X) or S, if X has n points. Now, that group is basic to the subject
of group theory, because Cayley’s theorem assures us that any finite
group is isomorphic to a subgroup of a symmetric group. Permutation
groups are particularly useful for easily visualizing group operations
and the groups properties, making abstract ideas more tangible. The
frequency of permutation groups has interesting properties. We will
also decompose the permutation into cycles, which are particularly
useful for calculations and structural analysis. By permutation we mean
the cyclic notation, i.e. a k-cycle ( a: a.... ax ) describes a permutation
that sends a: into a2, a» to as,. .., and ax back to a:. Every permutation

can be expressed uniquely (up to order) as a product of disjoint cycles.
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The permutation decides the even or odd number of 2-cycles are
written, so the even permutations are permuted is defined subset A, to
normal group on S,. We will also learn critical tools for analyzing
particular aspects of groups such as contumacy classes, element
orders, and centralizers, by understanding cycle structures and
permutation parity.

Subgroups: Internal Structures and Classifications

Subgroup of a group, subgroup CHF is subset of group G and with the
operation of G forms a group. An easy way of detecting a subgroup,
called the one-step subgroup test, is: If H is a non-empty subset of G
then it is a subgroup if and only if a, b is in H implies a « b™" is in H.
There are a number of different forms that subgroups within the parent
group can take, each giving different insight into the parent group.
Normal subgroups, i.e C such that gN = Ng for g € G are crucial
because these are the only subgroups for which we can build quotient
groups. While characteristic subgroups are not invariant under all group
epimorphosis, they retain significant structural importance. The
subgroup lattice, the partially ordered set of all the subgroups of a
group, offers an overview of the inner anatomy of the group itself.
Lagrange's theorem (the order of a subgroup divides order of finite
parent group) restricts subgroup sizes very tightly and gives rise to the
index of a subgroup. These subgroup-determined structural insights
serve as the basis for advanced group-theoretic investigations as long
and comprehensive as the classification of finite simple groups,
arguably one of the contemporary mathematics’ greatest

accomplishments.
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5.2.6 Interconnections: Generators, Permutations, and Subgroup
Theory

Generators, permutation representations, and subgroup structures are
just some tools which reveal this deeper structure in group theory. A
basic theorem relating the two is that every group admits a permutation
group action based on its action on various sets, especially in terms of
the group action on cosets of subgroups. This is formalized in Cayley’s
theorem: every group G is isomorphic to a subgroup of the symmetric
group on G. The generating sets of permutation groups tend to have
interesting structural properties. For example, the symmetric group S,
is generated by just two permutations, being a transposition and an n-
cycle. For n > 3 the alternating group A, is generated by 3-cycles (in
particular by the set of all 3-cycles of the type (1, 2, 1) with 3 <i<n).
Specifically, the orbit-stabilizer theorem establishes a connection
between group actions, permutation representations, and subgroups by
stating that the size of an orbit is equal to the index of the associated
stabilizer subgroup. This striking technique allows us to count
arguments that yield structural information about groups. Generators
are also crucial for describing important classes of subgroups. The
cyclic subgroup generated by an element a, denoted (a), is the set of all
powers of a. The normalizer of a subgroup H in G, denoted by N(H)={g
€ G | gHg' = H}is the largest subgroup of G in which H is normal.
Specifically, the center of a group, which consists of all elements that
commute with every element of the group, can be identified as the
kernel of the permutation representation induced by the conjugation
action. The relationships between these invite analysis of generators,
permutation groups, and subgroups within a unified algebraic
framework.

5.2.7 Applications in Mathematics and Beyond

As a theory, generators, permutation groups and subgroups can be
regularly applied to every different areas in mathematics and outside
mathematics. Their use in number theory helps with exploring
congruence relations and prime factorizations. In geometry, the
classification of the wallpaper groups and crystallographic groups
depends rather heavily on group-theoretic machinery. Using algebra,
Galois theory connects field extensions with group theory by using
permutation groups to characterize the solvability of polynomials. The

theory of codes with error correction, in most of its aspects, exploits the
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activation of permutation groups and their generating set for effective
coding. The representation theory of groups, especially of permutation
groups, plays an important role in quantum physics where systems of
particles have symmetries. Apart from pure mathematics, these
concepts have been used in chemistry to classify molecular structures,
and in computer science to analyze algorithms and computational
complexity. Many cryptographic protocols are based on discrete
logarithm problems, and many such problems are based on properties
of subgroups of finite groups. Permutation Tests are Non-parametric
Statistical Tests in data science. Rubik's cube and similar types of
puzzles are analyzed in the theory of permutation group, where the
generators represent simple moves, and solution paradigms can use
subgroup structures. Permutation groups identify the structurally
equivalent positions in social network analysis. All of these potential
applications illustrate how the abstract nature of generators,
permutation groups, and subgroups are utilized as analytical tools in
various fields of science, shedding light on the underlying mathematics
that governs disparate phenomena.

Frontiers and Open Problems

This remains an active area as group theory unfolds with new findings
about generators and permutation groups and subgroup structure. The
classification of finite simple groups, finished in the late 20th century,
is one of the greatest successes in this field, but many questions about
the classification as the latter applies to the details remain unanswered.
Modern research directions include generation properties of finite
simple groups, including questions about the minimal size of
generating sets and the probability that randomly chosen elements
generate the group. Computational difficulty of deciding whether a
specific set generates a group, in particular of matrix groups over finite
fields, remains an active area of inquiry straddling group theory and
computer science. Primitive permutation groups, which preserve no
non-trivial partition of the underlying set, are at the center of research
directions opened up by open problems, with a focus not only on
classification but also on their properties. There are still active open
questions such as maximal subgroups of the symmetric and alternating
groups. There is also a rich stream of research in understanding the
asymptotic behavior of various group-theoretic properties as the size of

the group increases, with connections to probability theory and
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statistical mechanics. The product replacement, which samples
uniformly from a finite group given a generating set, leads to interesting
theoretical questions regarding the Markov chain underlying it.
Generators, permutation groups, and subgroups play a central role in
modern abstract algebra, continuing to deepen our understanding of

the structures underlying mathematics and its applications.
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Unit 5.3: Homomorphism, Isomorphism, and
Automorphism

5.3.1 Homomorphism, Isomorphism, and Automorphism
Homomorphism and Isomorphism

Homomorphism and isomorphism are some of the basic structures in
abstract algebra which help us to explain relations between different
algebraic systems. These mappings maintain operations between sets
endowed with algebraic structure, and allow mathematicians to identify
structural similarities and differences. This allows us to classify
algebraic objects, figure out when they are essentially the same, and
transfer properties between structures by examining how these
functions behave.

Homeomorphisms: Structure-Preserving Maps

Homomorphism, a map between algebraic structures of the same type
that preserves operations. A homomorphism is a function ¢: G — H
such that for all a,b € G, ¢(a * b) = ¢(a) * ¢(b) where (G, ) and (H, *)
are algebraic structures. This property of homeomorphisms is what
makes them so powerful, since they preserve algebraic structures while
the underlying set may be different. Let’s consider the exponential
function exp: (R, +) — (R*, x) that takes the real numbers under
addition and maps them to the positive real numbers under
multiplication. Here are two common types of structure we may be
interested in: the exponential on which we have exp(a + b) = exp(a) x
exp(b), meaning that exponential functions are homomorphism maps
from additive to multiplicative structures (for real numbers a and b).
This relationship unveils profound connections between addition and
multiplication. The notion of homomorphism will now enable us to
characterize some of the properties a homomorphism can have that
hint the relationship between structures. If ¢: G — H is a
homomorphism, then the kernel of ¢ is ker(p) = {g € G | ¢(g) = eH},
with eH denoting the identity in H, which for every homomorphism is
a normal subgroup of G (see Basic properties of preimages and apply
it). The kernel of a homomorphism often contains a lot of important
information about the homomorphism itself. In the same way, the
image of a homomorphism im(p) = {¢(g) | g € G} is a substructure of
H that shows how much of H is "hit" by elements from G. Several key

theorems arise specifically in the context of group homeomorphisms.
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The First Isomorphism Theorem: Let ¢:G—H be a group
homomorphism, then G/ker(p)=im(¢p) where G/ker(op) is the quotient
group of G by the kernel of ¢. This thus leads us to one of the main
theorems of group theory, namely the First Isomorphism theorem
which states a canonical isomorphism between the factors -- in this
case the quotient group and the image -- so that we can talk about G
and H in a better way. An isomorphism is a more general concept,
defined more generally than a homomorphism that describes a
structural equivalence between two kinds of mathematical objects. A
homomorphism is a structure preserving map and an isomorphism is
bijective homomorphism. If there is an isomorphism between two
structures, they are considered algebraically identical or "the same"
structure, even if their representations are different. More formally, if
¢: G — H is a bijective (one-to-one and onto) function such that ¢(a *
b) = p(a) * ¢(b) V a, b € G, then ¢ is an isomorphism and we say G
and H are isomorphic, written G = H. The isomorphism’s are
underscored in importance. If two structures are isomorphic, then any
theorem about one structure can be translated directly to the other. This
means that mathematicians do not have to consider every structure, but
can instead only study representative structures from each
isomorphism class. As a basic but powerful example all cyclic groups
of order n are isomorphic to Z/nZ (the integers modulo n) meaning that
despite different presentations, they all share the same algebraic
properties. In order to know we are looking at isomorphic structures
we need to find a bijective map which preserves operation. This can be
difficult, however, and you can rely on some invariants to eliminate
isomorphism. For instance, two groups are not isomorphic if they have
different orders (numbers of elements). In like manner, an isomorphism
cannot be exist either if the structures in terms of commutatively,
associatively or different identities. These invariants offer a hands-on
method to differentiate non-isomorphic structures.

Isomorphism’s: Structural Equivalence

An isomorphism between algebraic structures is a bijective
homomorphism. You are constantly working with a structure until
some isomorphism comes to light, the structures are algebraically the
same. More formally, if ¢: G — H is a bijective (injective and
subjective) function such that ¢(a * b) = p(a) * ¢(b), for all a, b € G,
then ¢ is an isomorphism, and we say G and H are isomorphic, which
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is denoted G = H. The importance of isomorphism’s cannot be
exaggerated. When two structures are isomorphic, any theorem that
was proven about one of those structures immediately applies to the
second one as well. This is a property which enables mathematicians
to study representative structures of the same class of isomorphism’s
instead of exploring all be everywhere. In fact, for example, all cyclic
groups of order n are isomorphic to Z/nZ (the integers mod n), so
despite different presentations they have the same algebraic properties.
In order to see if two structures are indeed isomorphic, we must find a
one-to-one correspondence that moves from one to the other while
preserving such operations as follows. This can be quite difficult, but
there exist some invariants to eliminate isomorphism. For instance, as
two groups cannot have the same species if they have a different order
(number of elements). The same applies if the structures differ in their
commutatively, associatively, or identity properties, since an
isomorphism cannot be formed. These invariants induce a way to
distinguish non-isomorphic structures.

5.3.2 Applications in Various Algebraic Structures

Both homeomorphisms and isomorphism’s generalize to the other
common algebraic structures, such as rings, fields, vector spaces and
modules. In each case, these mappings are structure-preserving with
respect to the relevant operations. For ring homeomorphisms ¢: R—S,
addition and multiplication must be preserved as ¢(a +b)=(a) + ¢(b)
and ¢(ab) = o¢(a)e(b) respectively. Linear transformations are
essentially the homeomorphisms that preserve vector addition and
scalar multiplication, so by replacing the vector structures we obtain
another way of defining a homomorphism. Field homeomorphisms are
at the very core of the study of field extensions. If F € E is handled as
a subfield of a field E, then the inclusion i: There will be a field
homomorphism i: F & E. More generally, given that 6: F — K is a field
homomorphism and E is an extension of F, a fundamental question in
Galois theory is when o can be extended (i.e. there exists a
homomorphism 6: E — K), and whether or not this can be understood
in terms of explicit drives on polynomial solvability. A second richer
application of homeomorphisms comes from representation theory.
Definition: A representation of a group G on a vector space V is a group
homomorphism p: G — GL(V) where GL(V) is the general linear group

of V (the group of invertible linear transformations on V) These
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representations allow us to study the abstract algebraic properties of
groups in the more concrete setting of linear algebra, thereby
connecting different branches of mathematics.

5.3.3 Homomorphism Theorems and Structural Analysis

The homomorphism theorems are one of the foundational theorems
giving results on the relationship between homeomorphisms and
quotient structures. In addition to the previous isomorphism theorem,
the Second Isomorphism Theorem tells us if H is a subgroup of G and
N is a normal subgroup of G, then (HNN) is normal in H and H/(HNN)
= HN/N, and the Third Isomorphism Theorem states that if N and K
are normal subgroups of G with N € K, then (G/N)/(K/N) = G/K.
These also yield strong structural analysis tools. These provide
mathematicians with tools to break down complex constructions into
simpler pieces, detect similarities across various algebraic systems,
and draw connections between mathematically different disciplines.
For example, the correspondence theorem says that for any subjective
homomorphism ¢: G — H with kernel K, there is a bijection between
the subgroups of H and the subgroups of G that contain K. Another
key concept related to homeomorphisms is that of exactness. A
sequence of homeomorphisms... — Ai-1 — Ai — Ai+1 —... is exact at
Ai if we have image(incoming) = kernel(outgoing). Particularly useful
in studying extensions of various types of structures, short exact
sequences of the form 0 - A — B — C — 0 (in which the maps, on
either end, are the trivial homeomorphisms) appear everywhere in
algebra, topology and homological algebra.

5.4.4 Training Data and Categorical Perspectives
Homeomorphisms are the morphisms in the category of algebraic
structures from a categorical standpoint. This perspective generates
compelling generalizations and unifying principles. Natural
transformations (functor morphisms) can be seen as "homeomorphisms
between homeomorphisms" which provide a higher level of
abstraction that compared deeper patterns in the same things
mathematical structure. Many important constructions are described
by universal properties stated in terms of homeomorphisms. To
illustrate, the tensor product of modules has a universal property with
respect to bilinear maps, and free objects are defined via universal
properties with respect to homeomorphisms. Major classes these

constructions belong to have universal characterizations; However
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current approaches to a homotopy theory of ‘types’ proceed via a spiral
of theory development within (and often harmonious, in various ways)
with higher category theory and the emergence of homotopy type
theory. Homotopy equivalence, for example, is a higher-dimensional
analogue of a homeomorphism; actually, is a type of map on
topological spaces (dry math in topological spaces) That preserves the
structure better, here we have something that feels bigger, because we
have this quasi-isomorphism, equivalences of categories. Even as the
structures studied increase in complexity, we see that the central ideas
of structure preservation remain a central feature of mathematics.
Homeomorphisms and isomorphism’s are the foundations of abstract
algebra. Homomorphism showing that one structure can be mapped to
another while preserving operations, is helpful to get an idea when one
structure is same another structure. These ideas have very wide
applicability, not just in abstract algebra but across mathematics in
topology, analysis, geometry and even theoretical computer science.
Research in these specified structure-preserving maps allows
mathematicians to generalize and interpret the similar fundamentals of
different topics, charting commonalities between structures, and using
properties (rather than visual representations) to organize classes of
objects. Homeomorphisms and isomorphism’s, my two favorite maps,
are merely reflections of the inherent structure found in the underlying
mathematics, and to some extent serve as a bridge between abstract and
practical mathematics, and they merely serve to remind us that we are
all learning mathematics from day to day, year to year as whatever lies
beneath all of it keeps evolving. These mappings bridge the intuitive
gap between a product and a series, allowing them to all live within the
same universe while also showing the harmony underlying seemingly
disparate mathematical constructs as they map between domains.
Auto orphisms in Mathematics

An auto orphism is a map from a mathematical object to itself that
preserves the object structure. In a more precise sense, an auto orphism
is an isomorphism of a mathematical object with itself. The word comes
from Greek roots: “auto” meaning “self” and “morphism” meaning
“shape” or “form.” In short, an auto orphism 1is a transformation of an
object that preserves its essential form. Auto orphisms are important in
many areas of mathematics as they help to elucidate symmetry,

invariance, and the properties of mathematical structures themselves.
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In the mathematical field of group theory, one defines an auto orphism
of a group by means of the set-theoretic relation of a bijective function
¢: G — G that preserves the group operation. That is, for every a, b €
Gwehaveop(a*b)=0(a)*o( b).Butthe automorphisms ofa group
also form a group themselves, commonly denoted Aut(G), known as
the auto orphism group. One of the most basic ideas of auto orphisms
in group theory is that of inner auto orphisms. The auto orphism (inner)
defined by conjugation, @.(x) = g'xg is written in the following way,
where g is fixed in G: the (inner) auto orphisms ¢ of a group G form a
normal subgroup of Aut(G), and the quotient group Aut(G)/Inn(G) is
called the outer auto orphism group. Auto orphism groups are a rich
avenue of investigation with deep implications for the structure and
symmetries of groups. In linear algebra and vector spaces, an auto
orphism is a linear transformation (if V is a vector space) or an
isomorphism (if V is a group), of a space V and, hence, gives an
isomorphism of V to itself and a homomorphism from V to itself.
Theorem: For a finite-dimensional vector space V over a field F, the
auto orphism group of V is isomorphic to the general linear group
GL(n,F) of n-by-n invertible matrices over F, where n is the dimension
of the vector space V. This includes important examples with rotations,
reflections and other linear transformations that maintain the structure
of vector spaces. If we have additional structures imposed on the vector
spaces, such as inner products or norms, we often find ourselves
considering auto orphisms preserving these additional structures,
resulting in important groups like the orthogonal group O(n) or the
Moduleary group U(n). Field auto orphisms are especially important in
algebraic geometry and number theory. A field auto orphism is a
bijection ¢: F — F such that for every a, b € F, ¢(a + b) = ¢(a) + ¢(b)
and ¢(ab) = ¢(a)dp(b). As an example, the mapping taking z to its
complex conjugate z is an auto orphism of the field of complex
numbers. The auto orphism group of a field extension is central in
Galois theory. The Galois group Gal(L/K) is defined to be the group of
auto orphisms of the field L that fix all elements of K if L/K is a field
extension, and the fundamental theorem of Galois theory relates
subgroups of Gal(L/K) to intermediate fields between L and K,
establishing deep connections between group theory and field theory.
Auto orphisms arise in topology and geometry as homeomorphisms

and diffeomorphisms of spaces onto themselves. These are continuous
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maps (for homeomorphisms) or smooth maps (for diffeomorphisms)
whose inverses are also continuous or smooth, respectively. In a more
general context, category theory effectively extends the auto orphism
concept to any category: An auto orphism of an object A is an
isomorphism of A to itself. This gives us an abstract viewpoint from
which we can find similar patterns amongst diverse mathematical
structures. For example, an auto orphism in the category of graphs is
the graph isomorphism from a graph to itself, i.e., a relabeling of the
vertices that preserves the edge structure. Auto orphisms and their fixed
points are usually very informative about the structure one is
considering. For instance, in group theory, the fix point set of an auto
orphism is a group. In algebraic topology the Lefschetz fixed-point
theorem relates the number of fixed points of a continuous map on a
compact topological space to the trace of the induced map on the
homology groups of the space. Similarly, in arithmetic geometry, the
Grothendieck-Lefschetz fixed point formula counts fixed points of
Fresenius auto orphisms in terms of co homological data. The
connection between such fixed points and algebraic invariants
illustrates how fundamental auto orphisms can relate disparate areas of
mathematics. Auto orphism theory, having broad applications in
multiple fields such as cryptography (e.g. auto orphisms of finite fields
being used in certain encryption schemes), coding theory (in which
auto orphisms of codes assist in classification and error correction), and
physics (where auto orphisms relate to symmetries of physical
systems), is both versatile and complex. One of the cornerstones of
modern theoretical physics is Noether theorem, which states that there
exists a correspondence between symmetries (or auto orphisms) and
conservation laws in a physical system. In the specific case of
crystallography, we can view space groups (which provide the
classification of crystal structures) as groups of auto orphisms of 3-
dimensional Euclidean space that preserve the crystal lattice. Likewise,
in quantum mechanics it is the auto orphisms of the Hilbert spaces that
provide the foundation for the representation theory that describes
such quantum systems. This extends the abstract description of
structure-preserving self-maps to a wide range of applications across

many branches of mathematics and its applications.
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Unit 5.5: Cosets, Lagrange’s Theorem, Normal
Subgroup, and Quotient Group

5.5.1 Cosets, Lagrange’s Theorem, Normal Subgroup, and
Quotient Group

Cosets and Lagrange's Theorem

before we could understand Lagrange's Theorem, first we need to
understand cosets. Now we can consider the various such groups —
these are the basic building blocks of groups in the same way that
primes are the building blocks of the integers — and it turns out that if
a group is "big enough" it can be partitioned into pieces of equal size,

leading to one of the essential results in abstract algebra.

[ Cosets and Lagrange's Theorem ]

Let G be a group and H a subgroup of G.
For any g € G, the left coset of H with
respect to g is the set gH ={gh: h e H}.

l l

Two cosets are
either equal
or disjoint

Consider the
group Z; and the
subgroup H={0,
3}

The cosets of H
form 0 +H = {0, 3},
1+H=1{1,4},and

2+H={2,5}

These three cosets partition Z;
into blocks of equal size

l [

The number of cosets of Hin G is
denoted [G : H]

[ Theorem of a finite group G, |G| =|G: HHH]

Fig: 5.5.1 Cosets and Lagrange's Theorem

Cosets: Definition and Properties

Let G be a group and H a subgroup of G. For any g € G, we define the
left coset of H with respect to g to be the set gH = {gh : h € H}. The
right coset is defined analogously to be Hg = {hg : h € H}. There are
profound implications in these seemingly simple constructions. So,
every coset has exactly |H| elements, where |H| is the order (i.e. the
number of elements) of the subgroup H. Moreover, two cosets are
either equal or disjoint, i.e. they have no elements in common. This
property shows that all cosets can be grouped together, such that they
form a partition of the group G — non-overlapping smaller groups

whose union is G. Consider the group Zs (integers with addition
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modulo 6) and the subgroup H = {0, 3}. The cosets of H form 0+H =
{0,3}, 1I+H= {1, 4},and 2+H = {2, 5}. Observe that these three cosets
partition Zs into blocks of equal size. Where, the number of different
cosets of H in G is called the index of H in G and denoted [G:H] In our
example, [Zs:H] = 3. That relationship of a group, subgroup and the
index is what Lagrange's Theorem is all about

5.5.2 Lagrange's Theorem: Statement and Proof

The Theorem: If G is a finite group and H & G, then |G| = [H| x [G:H].
This follows immediately from the properties of cosets. This means
that G is equal to the number of cosets coset multiplied by the number
of elements in any coset, which is the order of H. That is, |G| = [G:H]
x |HJ; hence [H| divides |G|. This beautiful theorem, which Joseph-Louis
Lagrange proved in 1770, has powerful implications in group theory.
This has the immediate consequence that the order of any element in a
finite group divides the order of the group. For if g € G, then the cyclic
group (g) generated by g has order equal to the order of g, and thus by
Lagrange, this order divides |G|. This means that the possible sizes of
the subgroups is limited, which dramatically reduces the search space
when interpreting the group structures.

Coset Representatives and Normal Subgroups

If H is a subgroup of G we can choose one representative from each
coset, which gives a complete system of coset representatives; the
operation inherits directly from G, so we can fuill the full operation
table of G by simply arranging H on either side. There is a quotient set
G/H, consisting of a collection of representative elements of G under
the operation induced by the cosets of H, which as an resulting set of
representatives can become a group in itself: the quotient group,
potentially meaningful in its own regard as well if the subgroup H is
normal (gHg-1 = H for Vg in G). To obtain a conclusion, we will use
the property of group operation: the product of two cosets is indecent-
dent of representatives which provides a motivation for a limit where
"limit" must be interpreted as a product of cosets in a certain set. This
correlate pseudo-category is the one you could use to define normal
subgroups and homomorphism images from the point of view of
categorical structures. Namely, a homomorphism f: G — K induces a
normal subgroup, called kernel of f, and the quotient group G/ker(f) is
isomorphic to (the image of) f. This result, called First [somorphism

Theorem, is a classical result showing that there is an amazing
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correspondence between - groups with their subgroup structure and its
homomorphism images. The orbit-stabilizer theorem is closely related
to Lagrange's Theorem and generalizes these concepts in the case of
group actions and shows that the size of an orbit is equal to the index
of the stabilizer subgroup.

5.5.3 Applications in Number Theory and Cryptography

We know that certain results from abstract group theory have
important consequences in number theory, and that is the context of the
implications of Lagrange's Theorem. The statement of Fermat's Little
Theorem, stating that if p is prime and p does not divide a, we have ar™!
= 1 (mod p), is an immediate consequence of Lagrange's Theorem
applied to the multiplicative group of integers mod p, and Euler's
Theorem generalizes this result to arbitrary modulus n, since a®® = |
(mod n) for any a co prime to n where @(n) is Euler's totient function
counting all integers less than n that are co prime to n. These results of
number theory ultimately provide the mathematics behind modern
cryptographic systems like RSA encryption. RSA’s security is based
on the difficulty of computing modular multiplicative inverses without
knowing the moduli’s factorization into primes (a problem seen directly
through cyclic groups structure and Lagrange’s Theorem}) The discrete
logarithm problem, which is used in other types of cryptographic
protocols such as Diffie-Hellman key exchange and ElGamal
encryption, also relies on the properties of cyclic groups and their
orders as bounded by Lagrange's Theorem.

5.5.4 Limitations and Extensions of Lagrange's Theorem
Lagrange's Theorem gives a necessary condition for the presence of a
subgroup of a specific order — it must divide the group order; however,
this is not sufficient. The converse of Lagrange's Theorem is not true
in general. Not every divisor of the order of the group is the order of
some subgroup. For example, the alternating group A« of order 12 has
no subgroup of order 6, even though 6 divide 12. So this
counterexample was able to show the subtlety regarding group structure
that goes beyond what is forced by Lagrange. Nonetheless, for specific
kinds of groups, the converse is true. Cauchy’s Theorem states that if
p is a prime that divides the order of a finite group G, then G has an
element (and therefore a cyclic group) of order p. For abelian groups,
the converse of Lagrange’s Theorem holds trivially: any divisor of the

order of'the group corresponds to a subgroup of that order. The Sylow's
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Theorems extend the knowledge we have on the subgroup structure and
they tell us not only about the existence of subgroups of these type that
divide the order of G but also about how many conjugacy classes they
fall in. Such extensions of Lagrange's Theorem provide a very powerful
toolkit for analysis of finite groups, giving us a classification of groups
of small order, and offering insight into how to understand groups of
more complicated form.

5.5.5 The Broader Context in Abstract Algebra

Cosets and Lagrange’s Theorem are a prime example of how group
theory intertwines algebraic structures and counting principles, which
is a hallmark of much of the theory. This input also extends into other
algebraic structures. This is similar to the corresponding one to normal
subgroups and quotient groups in group theory; in ring theory, we say
ideals are the analogs of normal subgroups in (non-commuting)
groups; in the same way, quotient rings have analogous structural
properties. The Chinese Remainder Theorem for rings is an analogue
of the decomposition of finite abelian groups into direct products of
cyclic groups. The degree of a field extension (the dimension of the
extension field as a vector space over the base field) satisfies a
multiplicative property (like the index of a subgroup) in field theory.
Almost as if the process of quotient structures, cosmological principles
and decomposition theorems repeats in various forms for the different
systems of algebra. These basic ideas about dividing the entire
structure well-behaved pieces into CRUD are behind some of the most
significant discoveries in contemporary algebra, starting from the
classification of finite simple groups to the structure theorem for
finitely generated modules over principal ideal domains. As elegant as
Lagrange's Theorem itself is—that the order of a subgroup divides the
order of the group—the depth of its implications are felt throughout
mathematics, from the theoretical framework of abstract algebra all the
way to the practical applications in cryptology and coding theory that
allow our digital communications today to be secure.

5.5.6 Normal Subgroups and Quotient Groups

Normal subgroups and quotient groups are two of the critical
constructions in group theory that enable us to analyze the structure of
groups on a more granular level. What is the normal subgroup and

quotient group? These concepts are fundamental to much of abstract
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algebra and have important applications throughout mathematics, from

Galois theory to the classification of finite simple groups.

Normal Subgroups
Let G be a group and N be a subgroup of G, we say N is a normal
subgroup of G, denoted N =2 G, if for each g € G and each n € N we
have gng™' € N. Equivalently, N is normal in G if and only if gN = Ng
for all g € G where gN and Ng are the left coset and right coset of N
in G. It would help break down this idea if we had a few examples. In
Z (the integers under addition), every subgroup is normal. More
precisely, the subgroup nZ = {nx |x € Z} is normal in Z for any integer
n. A more interesting case is the symmetric group Ss, which includes
all permutations of three objects. The subgroup As of even
permutations is normal in Ss. But the subgroup H = {e, (1 2)} is not
normal in Ss, since (2 3)(1 2)(2 3)" = (1 3) € H. There are several
equivalent ways to characterize normal subgroups. A subgroup N<G
is normal if and only if:

1. gNg'=NVgeG (N invariant under conjugation)

2. gNg=Ng for all g € G (coinciding left and right cosets)

3. N can be the kernel of some homomorphism from G to another

group

4. N is the union of some G-conjugacy classes of G
Properties of Normal Subgroups
There are some key properties of normal subgroups that make them
special with respect to regular subgroups. First, the intersection of two
normal subgroups is also normal: if N: and N: are normal subgroups
of G, then so is the intersection Ni1 N N2, and this extends to arbitrary
combinations of normal subgroups. In addition, if N: and N2 are normal
subgroups of G, then their product NiN2 = {ninz2 | n1 € N1, n2 € N2} is
also a normal subgroup of G; the same is not true for arbitrary
subgroups. A further property worth noting is that whenever N is a
normal subgroup of G and H is an arbitrary subgroup of G, then N N H
is a normal subgroup of H, and that whenever f: G — H is a group
homomorphism and N is a normal subgroup of G, then f(N) is a normal
subgroup of f(G). Normal subgroups are an important concept when
considering traits of group homeomorphisms. Each homomorphism ¢:

G — H has a kernel ker(¢) of the elements that maps to the identity
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element, which is again a normal subgroup of G; conversely every

normal subgroup is the kernel of some homomorphism.

Quotient Groups

Let N be a normal subgroup of a group G, we can form a new group,
called the quotient group (or factor group), written: G/N = {gN | for g
a member of G} So G/N is the set of cosets of N in G. The group
operation on G/N is defined by (giN)(g2N) = (gi1g2)N, and this is well-
defined if and only if N is normal in G, as the operation would depend
on the choice of a representative from the cosets otherwise. For
instance, let’s take Z/nZ, the integers modulo n. In this case, Z is a
group of integers under addition, nZ = {nk | k € Z} is the normal
subgroup of multiples of n, and the quotient group Z/nZ is the cosets 0
+nZ, 1 +nZ,..., (n-1) + nZ, which we typically denote as {0, 1, 2,..., n-
1} with addition modulo n. Another example is the quotient group
GL(n,R)/SL(n,R), specifically when GL(n,R) is the general linear
group of invertible nxn real matrices, and SL(n,R) is the special linear
group of matrices with determinant 1. The determinant of these

generators are the cosets of the R{0} under multiplication.
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The Isomorphism Theorems

The isomorphism theorems, basic and beautiful results in group theory,
neutrally express the relationship between normal subgroups and
quotient groups. It is content-wise similar to the first isomorphism
theorem for groups, saying that a homomorphisms ¢: G — H induces
an isomorphism between G/ker(¢) and im(p). The essence of this
theorem is that the quotient group G/ker(p) records precisely what the
homomorphism ¢ "remembers" about the structure of G. The Second
Isomorphism theorem tells us that N, being a normal subgroup of G,
implies (H N N) > H and H/(H N N) = HN/N. Another important form
of isomorphism is expressed in the Third Isomorphism Theorem: If N
and K are normal subgroups of G and N € K, then K/N is a normal
subgroup of G/N, and (G/N)/(K/N) is isomorphic to G/K. This theorem
is useful as it allows us to "divide" these quotient groups, thus
simplifying more complex quotient groups.

ISOMORPHISM
THEOREMS

" A
First Isomorphism Theorem

¢: G = H induces an
isomorphism G/ker(¢)
=im(¢)

e N\
Second Isomorphism Theorem

J

N is a normal subgroup of G
HNN>H and
H/(HnN) < HN/N

Third Isomorphism Theorem
N, K are normal subgroups of G
NeK
K/N is a normal subgroup
of G/N,

(G/N)/(K[(N) = G/K

Fig: 5.5.2 The Isomorphism Theorems

5.5.7 Applications and Examples

Normal subgroups and quotient groups are widely used throughout
mathematics. In Galois theory, one studies the structure of field
extensions is via the normal subgroups of the Galois Group. T.H.

generating a vertex, you can imagine this as the fundamental group of
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a topological space, and covering spaces, normal subgroups and
quotient groups that describe the covering of these spaces.

Here are some specific examples of that:

1. The center Z(G) of a group G, the set of all elements that
commute with all elements of G is always normal. How far is G
from being abelian, and how do we measure it? The “correct”
thing to do here is to consider the quotient group G/Z(G) where
as we already defined Z(G) is the center of G.

2. For SO(3) group: the subgroup {I, -1} (L:identity) is normal In
particular, the group is a double cover if taken modulo the
group that is the center, or the sign of it: so the quotient group
is SO(3)/{1, -1} isomorphic to the projective special orthogonal
group PSO(3), having applications in projective geometry and
quantum mechanics.

3. In number theory, for any positive integer n, the group (Z/nZ)*
of Modules modulo n has normal subgroups corresponding to
important number-theoretic properties. For instance, we have a
quadratic residue normal subgroup when n=p is prime, and the
corresponding factor group gives rise to the law of quadratic
reciprocity (aka for prime p).

5.5.8 Significance in the Classification of Groups

Normal subgroups and quotient groups have important roles in the
classification of groups. In group theory, a simple group is a nontrivial
group whose only normal subgroups are the trivial subgroups. The
classification of finite simple groups, finished in the late twentieth
century, was one of the great achievements in mathematics. A
composition series for a group G is a finite sequence of groups G = Go
D Gi1 D2 Gy, = {e} such that Gi+ is a normal subgroup of Gi, such
that for all ; the quotients Gi/Gi+ are simple groups. The Jordan—Hdlder
theorem states that all composition series of a group have the same
length and the same composition factors (up to isomorphism and
ordering). Examining normal subgroups and quotient groups are also
important parts of understanding the structure of a group. For example,
a p-group is guaranteed to have a non-trivial center (which is a normal
subgroup). However, this fact gives rise to an inductive way to think
about p-groups using their quotients. In the same manner solvable

groups are defined as having a series of normal subgroups which have
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abelian quotient groups. For nilpotent one should take even stronger
condition on its upper central series which is defined through normal
subgroups. A reminder that groups are a major object of study in
abstract algebra, and normal subgroups and quotient groups are
important concepts specifically in group theory. Abstract algebra
provides tools such as groups and fields that reveal the basic structure
of numbers, proving that groups can decompose complicated clusters
into simpler parts, discover hidden symmetries, and forge links among
diverse sectors of mathematics. They are not only of fundamental
importance in pure abstract algebra, but they also play a role in
applications including physics, cryptography, etc..

Solved Examples in Abstract Algebra

Algebraic Structure

Example: Prove that the set of rational numbers Q with operations of
addition and multiplication forms an algebraic structure.

Solution: An algebraic structure consists of a set and one or more
operations on that set. The set Q with operations + and x forms an
algebraic structure because:

o Addition (+) is a binary operation on Q (sum of two
rationals is rational)

o Multiplication (%) is a binary operation on Q (product of
two rationals is rational)

o Both operations have defined properties including
associativity and commutativity Therefore, (Q, +, X) is
an algebraic structure.

Example: Determine if (Z, —) forms an algebraic structure, where — is
subtraction.

Solution: For an algebraic structure, the operations must be closed on
the set. For any integers a, b € Z, a — b € Z, so subtraction is closed on
integers. Therefore, (Z, —) is an algebraic structure, specifically a
magma.

Example: Show that the set of 2x2 matrices with real entries, denoted
Mz(R), forms an algebraic structure under matrix addition and
multiplication.

Solution: For M2(R) to form an algebraic structure:

o Matrix addition: For any A, B € M2(R), A+ B € M2(R)
(closed)
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o Matrix multiplication: For any A, B EMz(R), A x B €
M:(R) (closed) Both operations produce 2x2 matrices
with real entries, so M2(R) with these operations forms
an algebraic structure.
Example: Determine if (QF, +) is an algebraic structure, where Q" is
the set of positive rational numbers and + is division.
Solution: For any a, b € Q" with b # 0, a + b =a/b € Q" (since division
of positive rationals yields a positive rational). Therefore, (Q7, +) is an
algebraic structure, specifically a magma.
Example: Show that (R, V) is not an algebraic structure, where V
represents the square root operation.
Solution: For an algebraic structure, the operation must be a binary
operation (take two elements and return one). Square root V takes only
one input, making it a unary operation, not a binary operation.
Therefore, (R, V) is not an algebraic structure.
Example: Prove that (P(X), U, N) forms an algebraic structure, where
P(X) is the power set of a set X.
Solution: For P(X) with union and intersection:
o ForanyA, B € P(X), AU B € P(X) (closed under union)
o For any A, B € P(X), A N B € P(X) (closed under
intersection) Since both operations are closed on P(X),
(P(X), U, N) 1s an algebraic structure, specifically a
lattice.
Example: Determine if (Z, max) forms an algebraic structure, where
max returns the maximum of two integers.
Solution: For any a, b € Z, max(a,b) € Z since the maximum of two
integers is an integer. Therefore, (Z, max) is an algebraic structure,
specifically a semilattice.
Example: Show that the set of functions from R to R forms an algebraic
structure under function composition.
Solution: Let F be the set of all functions from R to R. For any f, g €
F, the composition fog is also a function from R to R, so fog € F.
Therefore, (F, o) is an algebraic structure.
Example: Determine if ({0, 1}, V, A) forms an algebraic structure,
where V is logical OR and A is logical AND.
Solution: For elements 0 and 1:
o Foranya,be€ {0,1},aVvbe {0, 1} (OR operation is

closed)
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o Foranya, b€ {0,1},aAnbe€ {0, 1} (AND operation is
closed) Therefore, ({0, 1}, Vv, A) forms an algebraic
structure, specifically a Boolean algebra.

Example: Show that (Z"+, lem, gcd) forms an algebraic structure,
where Z"+ is the set of positive integers, lcm is least common multiple,
and ged is greatest common divisor.

Solution: For any a, b € Z"+:

o lem(a,b) €Z"+ (closed under Icm)

o gcd(a,b) €27+ (closed under ged) Therefore, (Z7+, lem,
gcd) forms an algebraic structure, specifically a lattice.

Binary Operation

Example: Show that matrix multiplication is a binary operation on the
set of nxn matrices.

Solution: A binary operation maps a pair of elements from a set to an
element in that same set. For any two nxn matrices A and B, their
product AB is also an nxn matrix. Therefore, matrix multiplication is a
binary operation on the set of nxn matrices.

Example: Determine if division is a binary operation on the set of real
numbers R.

Solution: For division to be a binary operation on R, a + b must be in
R for all a, b € R. However, if b =0, then a + 0 is undefined. Also, the
result is not always in R. Therefore, division is not a binary operation
on R.

Example: Define a binary operation @ on Zbya @ b=a+b + 1.
Verify that this is a binary operation.

Solution: For any a,b € Z,a+ b + 1 € Z since the sum of integers and
adding 1 results in an integer. Therefore, @ definedbya @ b=a+b
+ 1 is a binary operation on Z.

Example: Let S = {0, 1}. Define the binary operation @ on S by the
table:

®[01

1101

Verify that this is a binary operation.

Solution: For a binary operation, we need to check that for every pair
a,beS,a® beS.

0®0=0€S
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0®1=0€S
1®0=0€S
1 ® 1 =1 € S Since all results are in S, & is a binary operation on S.
Example: Show that the cross product is not a binary operation on R2.
Solution: For a binary operation, the result must be in the same set as
the operands. The cross product of two vectors in R? produces a vector
in R? (or a scalar in the specific case of R?). Since the result is not in R?,
the cross product is not a binary operation on R2.
Example: Define a binary operation * on Z by a * b = 2a + 3b. Verify
this is a binary operation. Solution: For any a, b € Z, 2a + 3b € Z since
the sum of multiples of integers is an integer. Therefore, * defined by a
* b =2a+ 3b is a binary operation on Z.
Example: Determine if exponentiation is a binary operation on the set
of positive real numbers R*.
Solution: For any a, b € R*, a"b € R* since positive numbers raised to
any real power remain positive real numbers. Therefore, exponentiation
is a binary operation on R".
Example: Show that the operation a © b = max(a, b) is a binary
operation on the set of real numbers R.
Solution: For any a, b € R, max(a, b) € R since the maximum of two
real numbers is a real number. Therefore, ° defined by a < b =max(a, b)
is a binary operation on R.
Example: Define a binary operation (O on the set of 2x2 matrices
M:z(R) by A © B =A + B - AB. Show this is a binary operation.
Solution: For any A, B EM2z(R), A + B - AB € M2x(R) since addition,
subtraction, and multiplication of 2x2 matrices result in 2x2 matrices.
Therefore, O defined by A O B=A + B - AB is a binary operation on
Ma(R).
Example: Let G = {0, 1, 2}. Define operation € on G where a @ b =
(a+b) mod 3. Show this is a binary operation.
Solution: For any a, b € G:

o 00=(0+0)mod3=0€G

o 0P1=0+1)mod3=1€G

o 0p2=0+2)mod3=2€G

o 1®0=(1+0mod3=1€G

o 1@1=(1+1)mod3=2€G

o 1PH2=(1+2)mod3=0€G

o 20=2+0)mod3=2€G

222
MATS Centre for Distance and Online Education, MATS University



o 21=Q2+1)mod3=0€G
o 2@ 2=(2+2)mod3 =1 € G Since all results are in
G, @ is a binary operation on G.

Properties
Example: Prove that matrix multiplication is not commutative on the
set of 2x2 matrices. Solution: For commutativity, we need AB = BA
for all matrices A and B. Let's take: A =[1 0; 0 0] and B=1[0 1; 0 0]
AB=[01;00] BA=[00; 0 0] Since AB # BA, matrix multiplication
is not commutative on 2x2 matrices.
Example: Show that addition of real numbers is associative.
Solution: For associativity, we need (a+b) +c=a+ (b +c¢) forall a,
b, ¢ € R. For any real numbers a, b,c: (a+b)+c=a+b+c=a+(b+
c) Therefore, addition of real numbers is associative.
Example: Determine if subtraction is associative on the set of integers.
Solution: For associativity, (a - b) - ¢ =a - (b - ¢) must hold for all a,
b,ceZ. Leta=5b=3,c=1:(5§-3)-1=2-1=15-3-1)=5-2
=3 Since 1 # 3, subtraction is not associative on Z.
Example: Prove that matrix addition is commutative.
Solution: For any matrices A and B of the same dimensions: A + B =
[a;; + bjj] = [bjj + a;] =B + A Since A + B =B + A for all matrices A
and B, matrix addition is commutative.
Example: Show that the binary operation a * b = ab? on the set of real
numbers has no identity element.
Solution: For an identity element e, weneeda *e=¢ *a=aforall a
€ R.
a*e=ac’=a=e’=1=e==%l
e *a=ea’>=e = a*>=1 for all a, which is impossible Therefore, the
operation * has no identity element.
Example: Prove that maximum operation max(a,b) is idempotent on
the set of real numbers.
Solution: An operation * is idempotent if a * a = a for all elements a.
For any a € R, max(a,a) = a. Therefore, the maximum operation is
idempotent.
Example: Show that the binary operationa @ b=a+ b - ab on [0,1]
has 0 as its identity element.
Solution: For identity element e, weneeda @ e=c¢ @ a=a forall a
€[0,1]. Lete=0:a@O0=a+0-a0=a0Pa=0+a-0a=a
Therefore, 0 is the identity element.
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Example: Prove that the operation a * b = ab/2 on positive reals R* is
not associative.

Solution: For associativity, (a * b) * ¢ =a * (b * ¢) must hold. Let a =
2,b=4,c=8:(2*4)*8=(24/2)*8=4*8=4-82=162* (4 *8)
=2%*(4-8/2)=2*16=2-16/2 = 16 In this case, the results are equal.
But we need to find a counterexample: Leta=2,b=3,c=4:(2*3)*
4=(232)*4=3%4=34/2=62*3*4)=2%34/2)=2*%6=
2:6/2 = 6 This doesn't prove non-associativity. Let's try different
values: Leta=2,b=2,c=2:(2%2)*¥2=(2-2/2)*2=2%2=22/2
=22*(2*2)=2%(2:2/2)=2*2=2-2/2 =2 Actually, this operation
is associative for the values we've tried. To properly disprove
associativity, we need: Leta=4,b=6,c=8: (4 *6) * 8§ =(4-6/2) * 8
=12*8=12-82=484*(6*8)=4* (6-8/2) =4 *24=4-24/2 =48
The operation appears to be associative, contrary to the initial assertion.
Example: Show that the operation a © b =|a - b| on R is commutative.
Solution: For commutativity, a © b=b o a must hold for all a, b € R.
aob=la-b]=](b-a)=|b-al=Db o a Therefore, the operation is
commutative.

Example: Prove that the operation a * b = lcm(a,b) on positive integers
is commutative and associative.

Solution: Commutativity: lcm(a,b) = lcm(b,a) for all a, b € Z*, by
definition of lcm.

Associativity: We need to show lcm(lcm(a,b),c) = lem(a,lcm(b,c)) for
alla,b,c € Z".

Let's denote lcm(a,b) as the least positive integer divisible by both a
and b.

lem(lecm(a,b),c) is the least positive integer divisible by both Icm(a,b)
and c. This means it's divisible by a, b, and ¢, and is the smallest such
number.

Similarly, lem(a,lcm(b,c)) 1s the smallest positive integer divisible by
a, b, and c.

Since they're both the smallest positive integer divisible by a, b, and ¢,
they must be equal.

Therefore, the lcm operation is both commutative and associative.
Semi Group

Example: Prove that (N, +) is a semigroup, where N is the set of natural
numbers.

Solution: For (N, +) to be a semigroup:
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1. Closure: For any a, b €N, a + b €N (sum of natural numbers is
a natural number)
2. Associativity: Forany a, b, c €N, (a+b)+c=a+ (b +c) Both
properties hold, so (N, +) is a semigroup.
Example: Show that the set of 2x2 matrices with real entries forms a
semigroup under matrix multiplication.
Solution: For the set M2(R) with operation X:
3. Closure: For any A, B € M2(R), A x B € M2(R)
4. Associativity: For any A, B, C eMz(R), (AxB) x C=A x (B
x C) Both properties hold, so (M2(R), X) is a semigroup.
Example: Determine if (Z, x) is a semigroup, where Z is the set of
integers.
Solution: For (Z, x) to be a semigroup:
5. Closure: For any a, b €Z, a X b €Z (product of integers is an
integer)
6. Associativity: Forany a, b, ¢ €Z, (a x b) x c =a X (b x ¢) Both
properties hold, so (Z, X) is a semigroup.
Example: Show that the set of all strings over an alphabet £ forms a
semigroup under string concatenation.
Solution: Let S be the set of all strings over X and - be concatenation.
7. Closure: For any strings s, t € S, s't € S (concatenation of
strings is a string)
8. Associativity: For any strings r, s, t € S, (r's)'t = r'(s't) Both
properties hold, so (S, ) is a semigroup.
Example: Prove that ({0, 1}, A) is a semigroup, where A is logical
AND.
Solution: For ({0, 1}, A) to be a semigroup:
9. Closure: Forany a,b € {0, 1},aAb € {0, 1} (result of AND
is either 0 or 1)
10. Associativity: Forany a,b,c € {0, 1},(aAb)Ac=aA(bAc)
Both properties hold, so ({0, 1}, A) is a semigroup.
Example: Show that (P(X), U) is a semigroup, where P(X) is the power
set of a set X and U is union.
Solution: For (P(X), U) to be a semigroup:
11. Closure: For any A, B € P(X), A U B € P(X) (union of subsets
is a subset)
12. Associativity: Forany A, B, C € P(X), AUB)UC=AU (B
U C) Both properties hold, so (P(X), U) is a semigroup.
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Example: Determine if (R*, min) is a semigroup, where R* is the set of
positive reals and min returns the minimum value.
2. Solution: For (R*, min) to be a semigroup:

1. Closure: For any a, b €R", min(a, b) ER* (minimum of positive
reals is positive)

2. Associativity: For any a, b, ¢ €ER*, min(min(a, b), ¢) = min(a,
min(b, ¢)) Both properties hold, so (R*, min) is a semigroup.

Example: Show that the set of all nxn matrices with entry 1 at position
(1,1) and 0 elsewhere forms a semigroup under matrix addition.
Solution: Let S be the specified set of matrices. For matrix addition:

3. Closure: For matrices A, B € S, A + B has entry 2 at (1,1) and
0 elsewhere, which is not in S. Therefore, (S, +) is not a
semigroup due to lack of closure.

Example: Prove that (Z*, gcd) is a semigroup, where Z* is the set of
positive integers and ged is greatest common divisor.
Solution: For (Z*, gcd) to be a semigroup:

4. Closure: For any a, b €Z", ged(a, b) €Z" (ged of positive
integers is positive)

5. Associativity: For any a, b, ¢ €Z*, gcd(ged(a, b), ¢) = gcd(a,
gcd(b, ¢)) Both properties hold, so (Z*, gcd) is a semigroup.

Example: Show that (Z, @) is a semigroup, where a @ b = a> + b
Solution: For (Z, @) to be a semigroup:

6. Closure: For any a, b €Z, a @ b = a*> + b’€Z (sum of squares
of integers is an integer)

7. Associativity: Forany a,b,c €Z: (a@ b) P c=(a>+b*) D c
=@+b) +cta@ b@c)y=ad (b>+c*)=a+(b>+
c?)*Since (a? + b?)* + c*# a? + (b* + ¢?)? in general, the operation
is not associative. Therefore, (Z, @) is not a semigroup due to
lack of associativity.

Monoid
Example: Prove that (N, %, 1) is a monoid, where N is the set of natural
numbers.
Solution: For (N, x, 1) to be a monoid:
1. (N, x) must be a semigroup:
* Closure: For any a, b €N, a x b EN
= Associativity: Forany a, b, c EN, (ax b) xc=a x (b x

c)
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2. Identity element: For all a €N, a x 1 =1 x a = a All conditions are
satisfied, so (I, X, 1) is a monoid.
Example: Show that (Z, +, 0) is a monoid.
Solution: For (Z, +, 0) to be a monoid:
3. (Z, +) must be a semi group:
= Closure: Forany a,b€Z,a+b €Z
= Associativity: Forany a,b,c €Z,(a+b)+c=a+(b+
c)
4. Identity element: For all a €Z, a + 0 = 0 + a = a All conditions are
satisfied, so (Z, +, 0) is a monoid.
Example: Determine if (R, +, 1) is a monoid, where R* is the set of
positive reals and + is division.
Solution: For (R, +, 1) to be a monoid:
5. (R*, ) must be a semigroup:
= Closure: Forany a, b €R*, a+~b €R"
= Associativity: For any a, b,c ER", (a+~b)+c=a~+ (b
+c)Leta=8,b=2,c=2:(8+2)+2=4+2=28+
2 +2)=8+1=28 Since 2 # 8§, division is not
associative. Therefore, (R*, +, 1) is not a monoid due to
lack of associativity.
Example: Show that (S, o, id) is a monoid, where S is the set of all
bijective functions from a set X to itself, o is function composition, and
id is the identity function.
Solution: For (S, o, id) to be a monoid:
6. (S, o) must be a semigroup:
» Closure: Forany f, g € S, f o g € S (composition of
bijections is a bijection)
» Associativity: Forany f, g, h€ S, (fog)oh=fo(go
h)
7. Identity element: Forall f € S, fo id = id o f = f All conditions are
satisfied, so (S, o, id) is a monoid.
Example: Prove that ({0, 1}, v, 0) is a monoid, where V is logical OR.
Solution: For ({0, 1}, Vv, 0) to be a monoid:
8. ({0, 1}, V) must be a semi group:
» Closure: Foranya,b€ {0,1},avbe {0, 1}
= Associatively: Forany a,b,c € {0, 1},(aVb)Vc=a
V(bVec)
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10.

11.

9. Identity element: Foralla€ {0, 1},av0=0va=a0Vv0=0V1
v0=1v 0V 1=1V All conditions are satisfied, so ({0, 1}, Vv, 0)
is a monoid.

Example: Show that (P(X), N, X) is a monoid, where P(X) is the power

set of a set X and N is intersection.

Solution: For (P(X), N, X) to be a monoid:

(P(X), N) must be a semi group:

Closure: For any A, B € P(X), AN B € P(X)

Associatively: Forany A, B,Ce P(X),(ANB)NC=ANBNC)

Identity element: For all A € P(X), AN X=X N A=A Since for any set

AcC X, ANX=A, Xserves as the identity. All conditions are satisfied,

so (P(X), N, X) is a monoid.

SUMMARY
This Module focuses on the algebraic structures known as semigroups
and monoids, which are foundational in abstract algebra and computer
science, especially in automata theory and formal languages. A
semigroup is defined as a non-empty set equipped with a binary
operation that is associative, meaning that the grouping of elements
does not affect the result of the operation. Semigroups generalize the
concept of arithmetic operations and are used to model systems where
elements combine consistently. The module then extends to monoids,
which are semigroups that also include an identity element—an
element that, when combined with any other element, leaves it
unchanged. These structures are explored through examples such as
sets of strings under concatenation, numbers under multiplication or
addition, and matrices under multiplication. The module covers key
concepts like homomorphisms (structure-preserving mappings
between algebraic structures), subsemigroups, submonoids, and finite
presentation of semigroups and monoids. Applications are discussed
in areas such as language recognition, state machines, and symbolic
computation, where these algebraic systems help define and analyze
formal systems. By the end of the module, students gain a clear
understanding of how semigroups and monoids provide an abstract

framework for combining elements and structuring computations.
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Multiple-Choice Questions (MCQs) Notes

Which of the following is a defining property of a
semigroup?

a) Associativity of the binary operation

b) Existence of an identity element

c¢) Existence of inverse for each element

d) Commutativity of the binary operation

Ans: a)

. A monoid is a semigroup that also has:

a) An inverse for every element

b) A commutative binary operation

c¢) An identity element

d) A unique subgroup

Ans: ¢)

Which of the following statements is true for an Abelian
group?

a) Every element has an inverse, and the group operation is
commutative

b) The operation must be non-associative

c) There is no identity element

d) It must always be cyclic

Ans: a)

In group theory, a homomorphism is a function that:

a) Preserves the group operation between two groups

b) Is always bijective

c¢) Converts an Abelian group into a non-Abelian group

d) Always results in a normal subgroup

Ans: a)

Lagrange’s theorem states that:

a) The number of cosets of a subgroup divides the order of the
group

b) Every group is a cyclic group

c¢) Every subgroup must be normal

d) The number of generators in a cyclic group is always even
Ans: a)
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Long Answer Questions
1. Define semigroup and monoid. How do they differ from
groups? Provide examples.
2. Explain Abelian groups and cyclic groups. How are cyclic
groups generated? Provide an example.
3. What are homomorphism, isomorphism, and automorphism in
group theory? Explain their significance with examples.
4. State and explain Lagrange’s theorem. How does it help in
understanding the structure of groups?
5. Discuss the concept of cosets and normal subgroups. How do
quotient groups arise from normal subgroups?
Short Answer Questions
1. What is a binary operation? Give an example.
2. Define a monoid. How is it different from a semigroup?
3. What is a generator of a cyclic group?
4. Give an example of a group that is not Abelian.
5

. What is the significance of normal subgroups in group theory?

Applications and Extensions of Cosets and Lagrange’s Theorem

The study of cosets and Lagrange’s theorem not only provides insight
into the structure of groups but also lays the foundation for advanced
areas of algebra. Lagrange’s theorem ensures that the order of every
subgroup divides the order of the group, a fact which is useful in both
theoretical and applied contexts. This principle appears in topics
ranging from modular arithmetic to the design of secure cryptographic
systems.

Example

Consider the group of integers modulo 12 under addition, denoted by
Z12. The subgroup H = {0, 4, 8} has order 3. By Lagrange’s theorem,
the order of this subgroup divides the order of Zi2, which is 12.
Therefore, there are 12 + 3 = 4 distinct cosets of H. These are:
H={0, 4, 8}

1+H={1,5,9}

2+H=1{2,6,10}

3+H=1{3,7,11}
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This example shows that cosets partition a group into equal-sized

subsets, which is a key property in understanding group structures.

Normal Subgroups and Their Role

A subgroup N of a group G is called a normal subgroup if the left
cosets and right cosets coincide, that is, gN = Ng for all g in G. This
property allows the construction of quotient groups, which simplify
the study of larger groups by reducing them into smaller, more
manageable structures.

Normal subgroups are essential in algebra because they preserve
structure under quotienting, much like how congruence classes
preserve arithmetic under modular operations

Example

In the group of integers Z under addition, the subgroup 3Z = {..., -6, -
3,0,3,6, ...} is normal. For any integer n, we have n + 3Z =3Z +n.
This gives rise to the quotient group Z/3Z, which consists of the three
cosets:

132}

{1+37}

{2+37}

This quotient group is isomorphic to the cyclic group of order 3.

Quotient Groups

If N is a normal subgroup of G, then the set of cosets G/N forms a
group under the operation

(gN)(hN) = (gh)N.

This new group is called a quotient group or factor group. Quotient
groups reduce complex structures into simpler forms while retaining
essential properties of the original group.

Example

Take G =Zs= {0, 1, 2, 3, 4, 5} under addition modulo 6. Let N = {0,

3}. The cosets are:

N = {0, 3}
1+N={1,4}
2+N={2,5}

Thus, the quotient group G/N has order 3 and is isomorphic to Zs.
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Applications in Computer Science and Cryptography
Concepts like cosets, normal subgroups, and quotient groups play a

vital role in applied mathematics and computer science.

Cryptography: Modern encryption techniques such as RSA and
elliptic curve cryptography rely heavily on group structures. Quotient
groups help simplify operations and ensure computational feasibility

in secure systems.

Coding Theory: Error detection and correction codes are often built
using cosets of subgroups, where different cosets represent different

error classes.

Automata Theory: Groups and subgroups model state transitions.
Normal subgroups in particular help in minimizing automata by

identifying equivalent states.

Network Security: Authentication and key exchange protocols
frequently use properties of subgroups and quotient groups to

guarantee security.

Worked Example: Quotient Groups in Cryptography

Let us consider the multiplicative group of integers modulo 13,
denoted by Zis*. This group consists of {1, 2, 3, ..., 12}. Take the
subgroup H = {1, 12}. Since Z:5* is abelian, H is a normal subgroup.

The quotient group Zi;*/H partitions the group into cosets:

H={1,12}
2H= {2, 11}
3H = {3, 10}
4H = {4, 9}
SH={5,8}
6H = {6,7}

Thus, the quotient group has order 6. Such structures are useful in key
generation and modular arithmetic operations in cryptography, where
quotient groups allow efficient computation without compromising

security.
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Importance of Quotient Groups in Modern Mathematics
Quotient groups are not limited to abstract algebra; they play

significant roles in diverse fields.

In Topology, quotient groups simplify the study of fundamental
groups and homotopy classes.

In Number Theory, class groups, which describe ideal factorizations

in number fields, are quotient groups.

In Physics, symmetry groups often involve quotient structures to
classify fundamental particles and physical systems.
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Notes GLOSSARY

e Abelian Group: A group in which the binary operation is
commutative.

e Adjacency Matrix: A square matrix used to represent a finite
graph, indicating edge connections.

e Algebraic Structure: A set with one or more binary operations
defined on it.

e Automorphism: An isomorphism from a mathematical structure
to itself.

e Binary Operation: An operation that combines two elements of
a set to produce another element of the same set.

e Bijective Function: A function that is both one-to-one and onto.

e Boolean Algebra: A mathematical structure dealing with binary
variables and logical operations.

e Boolean Function: A function whose inputs and outputs are
binary values (0 or 1).

e Cartesian Product: A set of ordered pairs formed from two sets.

e Circuit (Graph Theory): A closed walk in which no edges are
repeated.

o Closure Property: A property where an operation on any two
elements of a set produces an element of the same set.

e Complement (Set Theory): The set of all elements not in a given
set.

o Complemented Lattice: A bounded lattice in which every
element has a complement.

e Conjunctive Normal Form (CNF): A Boolean expression
written as an AND of ORs.

o Coset: A subset formed by multiplying all elements of a
subgroup by a fixed group element.

e De Morgan's Laws: Rules that relate conjunctions and
disjunctions of logical statements through negation.

o Directed Graph (Digraph): A graph where edges have a
direction from one vertex to another.

e Disjunctive Normal Form (DNF): A Boolean expression written
as an OR of ANDs.
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Distributive Lattice: A lattice where join and meet operations Notes
distribute over each other.

Edge (Graph): A connection between two vertices in a graph.

Equivalence Relation: A relation that is reflexive, symmetric,
and transitive.

Function: A mapping from one set (domain) to another
(codomain) where each input has exactly one output.

Generator (Group Theory): An element that can generate all
elements of the group using the group operation.

Graph: A collection of vertices connected by edges.

Group: A set with a binary operation that is associative, has an
identity, and where every element has an inverse.

Homomorphism: A structure-preserving map between two
algebraic structures.

Hasse Diagram: A graphical representation of a finite poset.

Identity Element: An element that leaves other elements
unchanged under a binary operation.

Incidence Matrix: A matrix representing the relationship
between vertices and edges in a graph.

Injective Function: A function where different inputs always
map to different outputs.

Inverse Element: An element that reverses the effect of another
under a binary operation.

Isomorphism: A bijective homomorphism indicating structural
similarity between two algebraic structures.

Join (Lattice Theory): The least upper bound of two elements in
a lattice.

Karnaugh Map (K-Map): A visual method for simplifying
Boolean expressions.

Lagrange’s Theorem: States that the order of a subgroup divides
the order of the group.

Lattice: A poset where every two elements have a join and meet.

Logic Circuit: A circuit built using logic gates to represent
Boolean functions.

Logical Equivalence: Two logical statements that have the same
truth values in all cases.
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Matrix Representation (Graph): Using matrices like adjacency
or incidence to represent graphs.

Meet (Lattice Theory): The greatest lower bound of two
elements in a lattice.

Monoid: A semigroup with an identity element.

Multigraph: A graph that allows multiple edges between
vertices.

Normal Subgroup: A subgroup that is invariant under
conjugation by elements of the group.

Null Set: The empty set, containing no elements.

Path (Graph Theory): A sequence of vertices connected by
edges with no repetition of edges.

Permutation Group: A group formed by all permutations of a
set.

Poset: A set with a partial order that is reflexive, antisymmetric,
and transitive.

Predicate Logic: A type of logic that uses quantifiers and
predicates to express statements.

Reflexive Relation: A relation where every element is related to
itself.

Relation: A subset of the Cartesian product of two sets that
defines a relationship between elements.

Rooted Tree: A tree with one designated node as the root.

Semigroup: A set with an associative binary operation but not
necessarily an identity.

Simple Graph: A graph without loops or multiple edges.

Spanning Tree: A subgraph that includes all vertices of a graph
and is a tree.

Subgroup: A subset of a group that itself forms a group.

Subgraph: A graph formed from a subset of the vertices and
edges of a larger graph.

Submonoid: A subset of a monoid that forms a monoid under
the same operation.

Subsemigroup: A subset of a semigroup that itself is a
semigroup.

Surjective Function: A function that covers the entire codomain.
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Symmetric Relation: A relation where if (a, b) is in the relation, Notes
then (b, a) is also in it.

Tautology: A logical statement that is always true.

Truth Table: A table showing all possible truth values for a
logical expression.

Transitive Relation: A relation where if (a, b) and (b, c) are
related, then (a, ¢) is also related.

Tree: An acyclic connected graph.
Unary Operation: An operation with only one operand.
Vertex (Graph): A point representing an element in a graph.

Walk (Graph): A sequence of vertices and edges where
repetition is allowed.
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