

MATS CENTRE FOR DISTANCE & ONLINE EDUCATION

Inorganic Chemistry II

Master of Science (M.Sc.) Semester - 2

CC 07

INORGANIC CHEMISTRY II

MATS University

INORGANIC CHEMISTRY

CODE: ODL/MSS/MSCCH/201

.No	Module No	Unit No	Page-no
01	Module 01	THEORIES OF METAL COMPLEXES	1-33
	Unit 1.1	Introduction to Metal Complex Theories	1-9
	Unit 1.2	Valence Bond Theory (VBT)	10-14
	Unit 1.3	Ligand Field Theory (LFT)	15 -25
	Unit 1.4	Ligand Field Stabilization Energy (LFSE)	26-30
	Unit 1.5	Metal Complexes: Applications in Our Daily Lives	31-39
02	Module 02	SPECTRAL & MAGNETIC CHARACTERISTICS OF	40-121
		METAL COMPLEXES	
	Unit 2.1	Introduction to Spectral & Magnetic Characteristics	40-52
	Unit 2.2	Electronic Transitions in Metal Complexes	53-66
	Unit 2.3	Effects on Spectra	67-80
	Unit 2.4	Magnetic Characteristics of Metal Complexes	81-99
	Unit 2.5	Advanced Magnetic Concepts	100-121
03	Module 03	REACTION MECHANISMS OF TRANSITION	122-163
		METAL COMPLEXES – PART I	
	Unit 3.1	Introduction to Reaction Mechanisms	122-133
	Unit 3.2	Energy Profile of Reactions	134-138
	Unit 3.3	Kinetics of Octahedral Substitutions	139-148
	Unit 3.4	Anation Reactions	149-163
04	Module 04	REACTION MECHANISMS OF TRANSITION METAL	164-192
	Unit 4.1	Substitution Reactions in Square Planar Complexes	164-172
	Unit 4.2	Redox Reactions in Metal Complexes	173- 179
	Unit 4.3	Outer-Sphere & Inner-Sphere Reactions	180-192
05	Module 05	METAL & COMPLEXES	193-240
	Unit 5.1	Introduction to Metal & Complexes	193-203
	Unit 5.2	Metal Carbonyl Complexes	204-216
	Unit 5.3	Transition Metal-Nitrosyl Complexes	217-225
	Unit 5.4	Dinitrogen & Dioxygen Complexes	226-238
		REFERENCES	238-240

COURSE DEVELOPMENT EXPERT COMMITTEE

- Prof. (Dr.) Ashish Saraf, HoD, School of Sciences, MATS University, Raipur, Chhattisgarh
- 2. Prof. (Dr.) Vishwaprakash Roy, School of Sciences, MATS University, Raipur, Chhattisgarh
- 3. Dr. Prashant Mundeja, Professor, School of Sciences, MATS University, Raipur, Chhattisgarh
- 4. Dr. Sandhyarani Panda, Professor, School of Sciences, MATS University, Raipur, Chhattisgarh
- 5. Mr. Y. C. Rao, Company Secretary, Godavari Group, Raipur, Chhattisgarh COURSE COORDINATOR

Dr. Nitin Kumar Jaiswal, Professor, School of Sciences, MATS University, Raipur, Chhattisgarh

COURSE /BLOCK PREPARATION

Dr. Radha Krishnan, Associate Professor, School of Sciences, MATS University, Raipur, Chhattisgarh

March, 2025

First Edition: 2025 ISBN:978-93-49916-55-5

@MATS Centre for Distance and Online Education, MATS University, Village-Gullu, Aarang, Raipur- (Chhattisgarh)

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in any form, by mimeograph or any other means, without permission in writing from MATS University, Village-Gullu, Aarang, Raipur-(Chhattisgarh)

Printed & Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr. MeghanadhuduKatabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Disclaimer-Publisher of this printing material is not responsible for any error or dispute from contents of this course material, this is completely depends on AUTHOR'S MANUSCRIPT. Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

Acknowledgements:

The material (pictures and passages) we have used is purely for educational purposes. Every effort has been made to trace the copyright holders of material reproduced in this book. Should any infringement have occurred, the publishers and editors apologize and will be pleased to make the necessary corrections in future editions of this book.

MODULE INTRODUCTION

Course has five modules. Each module is divided into individual units. Under this theme we have covered the following topics:

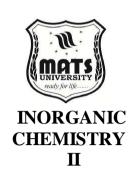
S.No	Unit No	Module No
01	Unit 1.2 Unit 1.3 Unit 1.4	THEORIES OF METAL COMPLEXES Introduction to Metal Complex Theories Valence Bond Theory (VBT) Ligand Field Theory (LFT) Ligand Field Stabilization Energy (LFSE) Metal Complexes: Application in our daily life
02	Unit 2.2	SPECTRAL & MAGNETIC CHARACTERISTICS OF METAL COMPLEXES Introduction to Spectral & Magnetic Characteristics Electronic Transitions in Metal Complexes Effects on Spectra
	Unit 2.4	Magnetic Characteristics of Metal Complexes Advanced Magnetic Concepts
03	Module 03	
	Unit 3.2 Unit 3.3	COMPLEXES – PART I Introduction to Reaction Mechanisms Energy Profile of Reactions Kinetics of Octahedral Substitutions Anation Reactions
04	Module 04	REACTION MECHANISMS OF TRANSITION METAL COMPLEXES – PART II
	Unit 4.1	Substitution Reactions in Square Planar Complexes
		Redox Reactions in Metal Complexes
		Outer-Sphere & Inner-Sphere Reactions
05	Module 05	METAL & COMPLEXES
		Introduction to Metal & Complexes
		Metal Carbonyl Complexes
		Transition Metal-Nitrosyl Complexes
	Unit 5.4	Dinitrogen & Dioxygen Complexes

These themes of the Book discuss about Theories of metal Complexes and spectral & Magnetic characteristics of Metal complexes. The reaction mechanisms of transition metal complexes have been covered broadly in two Units. The structure of metal complexes with multiple application are also highlighted in the last Unit. This book is designed to help you think about the topic of the particular find relatively easy. This will reinforce your earlier learning.

MODULE-I

THEORIES OF METAL COMPLEXES

OBJECTIVE


- The principal aims of this chapter are:
- To delineate metal complexes & comprehend their importance in coordination chemistry as well as in diverse industrial, biological, & catalytic applications.
- To examine the theoretical frameworks employed to characterize metal complexes, encompassing their foundational concepts, assumptions, & constraints.
- To elucidate Valence Bond Theory (VBT) & its use in comprehending the bonding & geometry of coordination compounds, as well as its limits in precisely predicting magnetic & spectral characteristics.

Unit 1.1 Introduction to Metal Complex Theories

Metal complexes, or coordination compounds, constitute a rich & important domain of inorganic chemistry that connects basic theoretical principles with a multitude of practical applications. These exceptional, official deals contain a steel (or metallic ion) with attached molecules or ions, known as the ligands. Metal complexes have been studied extensively for over a century, leading to the development of a range of theoretical frameworks to explain their structure, bonding, stability & other chemistries. These theories not only forms the basis for appreciate and comprehend the general inherent nature of interactions between metal & the ligands but also guide multiple industrial yields in the span of several fields of science.

1.1.1 Definition of Metal Complexes

When a central metal atom or ion coordinates with one or more the ligands, a metal complex is formed, which results in a unique chemical entity with characteristics that differ from the metal & the the ligands independently. The ligands can either be neutral molecules, such as ammonia or water, or negatively charged ions, such as chloride or cyanide, which donate electron pairs in a coordinate covalent bond with the central metal. The the ligands are binding to the metal (as electron pair acceptors) in a process called coordination, resulting in a structure in which the metal acts as a Lewis acid & the ligands as Lewis bases (electron pair donor).

The nomenclature of metal complexes adheres to specific regulations established by the International Union of Pure & Applied Chemistry (IUPAC). These nomenclature conventions classify the core metal, the types of the ligands, & elemental types, & may also encompass structural data such as geometric isomerism & oxidation states. Significance of standardized nomenclature in coordination chemistry

1.1.2 Core Principles in Coordination Chemistry

At a fundamental level, metal complex formation is a Lewis acid-base interaction in which the metal center is an electron pair acceptor (Lewis acid), & the ligands are electron pair donors (Lewis bases).. For example, hard metal ions (Na+, Mg2+, Al3+) possessing high charge density & low polarizability have a stronger interaction with hard bases, such as F-, OH-, & H₂O, which are characterized by small & highly electronegative donor atoms. This guideline predicts the stability of numerous metal-ligand pairs and accounts for most coordination chemistry trends. The chelate effect the greater stability obtained by using bidentate (or polydentate) the ligands (the ligands that coordinate through more than one donor atom) ligands. Most compared to monodentate the significant among these is likely to be the contribution of favorable entropy differences since, once the metal ion has been complexed by the chelating ligands, there are very much fewer independent particles in solution. Stereochemical aspects lie at the center of metal complex chemistry. These electronic & steric factors are the reasons why certain geometric arrangement is preferred by different coordination numbers.

For instance, four-coordinate complexes will typically be tetrahedral or square planar, & six-coordinate complexes will be octahedral. Another significant concept pertains to isomerism in metal complexes, which can exist in various forms.

• Structural isomers are distinguished based on variations in connectivity of atoms within the molecular structure.

Stereoisomers same bonds different spatial arrangements

- Geometric isomers (like cis & trans forms) differ in the relative positions of the ligands
- The thing which is called as optical isomer are the nonsuperimposable mirror images.
- Linkage isomerism occurs when the atom of an ambidentate ligand that is binding to the metal is different.

• Coordination isomers involve the transfer of the ligands between the different metal centers within polynuclear complexes. The 18-electron rule can be a useful tool in predicting the stability of a complex, especially for transition metals. Similar to the octet rule that is common in main group chemistry, this rule assumes that stable complexes typically have a total of 18 valence electrons, which include both the d electrons from the metals and the ligand-donated electrons.

Valence Bond Theory (VBT) is a very early quantum mechanical theory to describe bonding behavior of metal complexes. This theory, considerably based on Linus Pauling's 1930s work, tried to ex tend the orbital hybridization concept, which had already been describing organic molecule successful geometry, coordination chemistry. VBT explains that when a metal coordinates with a ligand to create a complex, its atomic orbitals are hybridized to give a new equivalent set of orbitals a r e oriented directly towards t h e ligands. For example, the coordination of a tetrahedral complex involves the metal having sp³ hybridization whereas the coordination of an octahedral complex generally involves d²sp³ hybridization for the transition metals. One of the important strengths of VBT is that it can take into account the magnetic properties of the coordination compounds. The theory differentiates between two types of complexes:

- Outer orbital (high-spin) complexes where the hybridization involves outer d orbitals (4d or 5d) resulting in more unpaired electrons
- Low-spin (inner orbital) complexes, with inner d-orbital (3d) hybridization, producing fewer unpaired electrons

This explains the fact that many transition metal complexes correlate the observed magnetic moments & show that two complexes of the same metal behave differently depending on the nature of the ligands., VBT explains the bonding in octahedral complex [Co(NH₃)₆]³⁺, where the Co³⁺ ion (d⁶) uses d²sp³ hybridization with only two 3d orbital participating in hybridization & four 3d orbital containing 6 d-electrons in pairs. The inner orbital complex is diamagnetic, as would be expected from experiment.

1.1.3 Theory has a hard time explaining:

- Colors of transition metal complexes due to electronic transition between split d orbitals
- The relative strengths of the different metal-ligand bonds & how these change across the spectrochemical series
- The exact energetics of the complex formation, for example the stabilization energies of specific geometric disposition

• Complexes & especially the fine structure seen in electronic spectra: detailed spectroscopic characteristics

1.4 Crystal Field Theory: Fundamentals and Applications

Crystal Field Theory (CFT), introduced in the 1930s by physicists Hans Bethe & John Van Vleck, represented an important shift in the treatment of metal complexes compared to previous methods. Driven partly by the increasing complexity of metal complexes & their structures, CFT departed from Valence Bond Theory, which had an emphasis on covalent bonding & orbital overlap, & adopted an approach that was predominantly electrostatic, largely interpreting the interaction between a metal ion & its the ligands as arising from the repulsion between the ligands' electron pairs & the electrons in the metal's d orbitals. CFT assumes that the ligands, treated as point negative charges or dipoles, break the spherical symmetry of the electrical field of the isolated metal ion. This perturbation leads to the common splitting of the degenerates d orbitals of the transition metal into the subsets with the particular energies. The exact splitting pattern for this depends on how the ligands are arranged geometrically around the metal center.

For tetrahedral complexes the pattern is inverted with the e set at lower energy than the t2 set. The number of the ligands is also fewer & they do not align as directly with the d orbitals, but consequently the splitting is only about 4/9th the size of that seen in octahedral complexes. Inthe case of square planar complexes, which are widely observed for d⁸ trace metals like Pt(II), they do show a more complex splitting pattern, which causes all 5 d orbitals to obtain different energies. This unique architecture assists to explain why this geometry is common for specific electronics configurations. The complex then looks colored, & the measured color is the complementary color to what was absorbed. This elegantly explains why the same metal can exhibit different colors in different complexes due to different the ligands causing differing magnitudes of d-orbital splitting.

Crystal Field Theory (CFT) led to the generation of the spectrochemical series, a hierarchy of the ligands based on their effective d-orbital splitting. Strong-field the ligands (e.g. CO, CN⁻) lead to large splitting & weak-field the ligands (e.g. I⁻, Br⁻) give rise to small splitting. This series enables the prediction & explanation of the spectroscopic characteristics of a range of complexes. In particular, a high-spin & low-spin concept of transition metal complexes is used in CFT to account for magnetism. An example of a high-spin species is $[Ti(H2O)6]^{+3}$. Death by synthesis (orbital pairing energy developing an energetic shortage of one-electron notations for those of Delta (Δ) < P in LotM correct picture 14 mm parentheses) In contrast, in high-spin complexes, when Δ < P electrons pair only after

all other orbitals (or lower-energy orbitals) are occupied, resulting in a high-spin state with a larger number of unpaired electrons. This Model is able to accommodate the different spin states present in certain complexes of Fe², Co² ad Ni², depending on the character of the ligands. CFT has utilized to explain the thermodynamics stability of transition metal complexes asked o crystal field stability Energy (CFSE) another triumph of CFT. This energy is the additional stability a complex gain by filling lower energy d orbitals reversibility preferentially. The CFSE also changes systematically along the transition series ad coincide with experimental properties like hydrogen enthalpies, lattice energies and stability constants, the theories of ligands field theory have been developed from the basis premises of the crystal field Theory. Or I the 1950s.Ligads Field Theory (LFT) tried to provide a more advanced study of metal complexes, but to some extent sidestepping some of the limitations that crystal field Theory had yet maintaining the basic terminology. Ligand field theory (LFT), originally developed in the early1950 by carl Ballhause, Joh Griffith and Leslie is a combination of crystal field model and molecular orbital techniques this fusing molecular orbital features into the crystal field model.

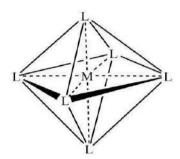
The key insight that forms the basis of LFT is that metal-ligand bonding must include a substantial covalent contribution rather than proceeding purely on an electrostatic basis. This appreciate and comprehend was pivotal at describing various complex behavior which were hard to comprehend with pure CFT, especially for those paramount π -acceptor & π -donor the ligands such as carbonyl (CO) or cyanide (CN⁻) complexes. In LFT, the splitting of d orbitals arises due to both electrostatic repulsions (as in CFT) & orbital interaction (between metal & the ligands). The theory makes a distinction between two classes of interaction between orbitals:

- σ -bonding (head-on overlap between metal and ligand orbitals)
- π (pi)-bonding, i.e. sideways overlap of appropriate orbitals

This distinction enables the LFT to account for the spectrochemical series on a more fundamental basis. Strong-field the ligands such as CO & CN⁻ are high in the series because they donate electron density through σ -bonds and accept electron density from filled metal d orbitals through π -back-bonding. This π -acceptor behavior gives rise to an effective splitting of the d orbitals that exceeds expectations based only on electrostatic arguments. On the other hand, the ligands with filled p orbitals, like halide or oxide ions, are able to undergo π - donation to the metal, reducing the energy gap between t_2g & eg orbitals in octahedral complexes. Therefore, this π -donor nature explains their lower position in the spectrochemical series, such as these the ligands.

- Bioinorganic chemistry elucidating the action of metalloenzymes & metalloproteins
- Material science, assisting in the design of coordination polymers & metal-organic frameworks
- Photochemistry, used in the design of photosensitizers & light-harvesting complexes
- Catalysis, appreciate and comprehend reaction mechanisms and catalyst optimization

Ligand Field Theory continues to find application today, illustrating how theoretical models in chemistry do not grow obsolete but are refined & complement each other over time. LFT is just one such hybrid model that, through the use of Crystal Field Theory's conceptual clarity & Molecular Orbital Theory's more descriptive bonding, maximizes both worlds intuitive conceptualization & quantitative detail.


1.5 Metal Complexes Molecular Orbital Theory

Molecular Orbital Theory (MOT) is the mostcomprehensive method of explaining metal complex bonding, in which the whole coordination molecule is handled in a single quantum mechanical Molecular Orbital Theory (MOT) is also distinct from Valence Bond Theory and Crystal Field Theory in that it considers all of the valence orbitals of the complex, and not merely metal orbitals, providing a broader picture of electronic structure by the formation of delocalized molecular orbitals across the entire complex. The MOT regulation specifies how metal and ligand atoms join their orbitals to produce molecular orbitals with bonding, antibonding, and non-bonding characteristics. The number molecular orbitals generated is the same as the number of atomic orbitals utilized for bonding. Electrons are then occupied in these molecular orbitals according to the Aufbau principle, exclusion principle, and Hunds rule. For a typical octahedral complex ML, the molecular orbital diagram constructed from the metal valence orbitals (typically ns, np, and (n-1)d) and six ligand group orbitals, which are linear combinations of isolated ligand orbitals of appropriate symmetry. This results in the creation of:

- Bonding molecular orbitals, mainly ligand-based but with some metal character
- Primarily metal-based but with some ligand character antibonding molecular orbitals

• Intraligand (between molecular orbitals localized largely on the ligands) transitions

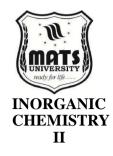
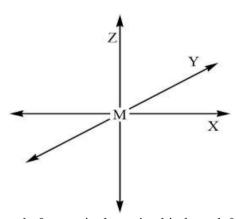



Fig- 1. The octahedral coordination and corresponding σ -basis set for ligand orbitals in octahedral complexes.

The further development of MOT for coordination compounds is a part of the general trend in theoretical chemistry to more integrated & deeprooted theories. By taking into consideration all electronic interactions in metal complexes, MOT provides the most comprehensive picture of their structure, bonding, & characteristics, creating a solid basis for both

fundamental research & practical use in this broad & significant field of chemistry.

MOT constructs molecular orbitals extending over the entire complex & provides the most thorough account of bonding. This means that all kinds of orbital interactions, including the tiny π -backbonding that largely affect the characteristics of the complex, are automatically taken into account. Describing Characteristics: For example, VBT provides a model that correlates structural characteristics (i.e., coordination geometries) with the directional character of hybridized orbitals. But CFT, LFT & MOT gives us more & better appreciate and comprehend on the reason why specific geometries preferred for electron configurations, producing patterns such as the predominance of square planar complexes for d8 metals.

Summary

Metal complexes are formed when a central metal atom or ion binds with surrounding ligands through coordinate bonds, and their study forms the basis of coordination chemistry. Early explanations by Valence Bond Theory (VBT) described hybridization and geometry but failed to account for color and spectra. Crystal Field Theory (CFT) improved understanding by explaining dorbital splitting and related magnetic and optical properties, though it treated bonding as purely ionic. To overcome these gaps, Molecular Orbital Theory (MOT) and Ligand Field Theory (LFT) provided a more complete framework, combining covalency and orbital interactions to explain stability, reactivity, magnetism, and spectra. Together, these theories form the foundation for interpreting the structure and applications of metal complexes in chemistry, biology, and industry.

Multiple Choice Questions (MCQs):

- **Q1.** The central atom/ion in a coordination complex is usually:
- a) Non-metal
- b) Metal ion
- c) Inert gas
- d) Halogen
- Answer: b)
- **Q2.** In Crystal Field Theory, the splitting of d-orbitals in an octahedral field gives:
- a) Two sets: ege geg and t2gt {2g}t2g
- b) Equal energy orbitals
- c) One set of three orbitals only
- d) One set of five orbitals only
- Answer: a)
- **Q3.** Which property is often not explained properly by Crystal Field Theory?
- a) Magnetic moment
- b) Color of complexes
- c) Spectrochemical series
- d) Covalent bonding in complexes

Answer: d)

Q4. The effective atomic orbitals involved in Molecular Orbital Theory of octahedral complexes are:

- a) s, p, and d orbitals
- b) Only s and p orbitals
- c) Only d orbitals
- d) Only f orbitals

Answer: a)

Q5. The term "coordination number" refers to:

- a) Number of complexes formed
- b) Number of atoms attached to ligand
- c) Number of atoms/ions directly bonded to the central metal ion
- d) Number of valence electrons in the metal

Answer: c)

Short Questions:

- 1. Define a metal complex with one suitable example.
- 2. What is the difference between a ligand and a metal center?
- 3. State two limitations of Crystal Field Theory.
- 4. Write two main assumptions of Molecular Orbital Theory applied to metal complexes.
- 5. What are coordination numbers? Give one example each for coordination number 4 and

Long Questions:

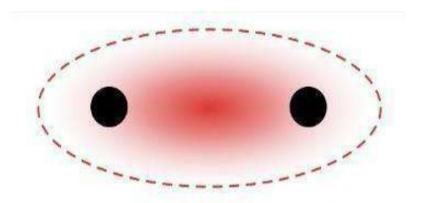
- 1. Discuss the core principles of coordination chemistry with examples.
- 2. Explain Crystal Field Splitting in an octahedral complex with a neat diagram.
- 3. Compare and contrast Crystal Field Theory (CFT) and Molecular Orbital Theory (MOT).
- 4. "Some magnetic and spectral properties of complexes cannot be explained by Crystal Field Theory alone." Discuss this with examples.
- 5. Write in detail the Molecular Orbital diagram of an octahedral metal complex and explain bonding and stability.

INORGANIC CHEMISTRY II

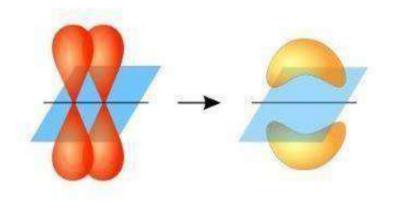
UNIT 1.2

Valence Bond Theory (VBT)

1.2.1 Basic Principles & Assumptions


Valence B o n d Theory came into existence in the early 20th century as one of the earliest quantum mechanical bonding theories. Valence Bond Theory (VBT), originally formulated in the late 1920s and early 1930s by Linus Pauling and others, has a different perspective on molecule structure in terms of atomic orbital overlap to produce localized interactions between atoms. The application of quantum mechanics to describe Lewis structures revolutionized chemistry.

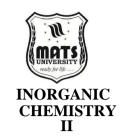
VBT relies on several foundational assumptions. It starts by assuming that a chemical bond results when two atoms' atomic orbitals overlap, thereby their electrons combining and forming a region of enhanced electron density between the nuclei. The electrons are paired in opposite spin states, in accordance with the Pauli Exclusion Principle, thus reducing electrostatic repulsion. Increased overlap of the orbitals forms a stronger bond.


With the development of valence bond theory (VBT), the idea of hybridization was brought into the picture, i.e., the mathematical mixing of atomic orbitals to create hybrid orbitals with various energy, shape, and direction. The nature of a bond Bonding is what characterizes the manner in which different atoms, such as carbon, are able to form several equivalent bonds with a restricted number of valence electrons in the correct orbitals. For instance, carbon with an electronic ground state configuration of (1s² 2s² 2p²) appears contradictory in its ability to form four equivalent bonds, empirically achieved in the molecule methane. Carbon uses sp³ hybridization, one s and three p orbitals to create four equivalent hybrid orbitals pointing to the tetrahedral vertices, exactly defining methane geometry

These hybridization schemes serve to effectively predict & thus account for the molecular geometries of millions of compounds, particularly organic compounds. In addition, another integral principle of VBT is resonance structures. This part of VBT describes dipoles between molecules and a lot of physical characteristics of compounds. Sigma (σ) & pi (π) bonds, by the nature of their orbital overlap. Sigma bonds resultant from head-on overlap of atomic orbitals along the internuclear axis, while pi bonds form from parallel overlap of p orbitals that are perpendicular to the bond axis. This distinction accounts for rotational barriers and reactivity patterns in molecules with multiple bonds.

σ bond between two atoms; localization of electron density

Two p-orbitals forming a π -bond.



Coordination Number	Type of Hybridisation	Distribution of Hybrid Orbitals in Space
4	sp ³	Tetrahedral
4	dsp ²	Square planar
5	sp ³ d	Trigonal bipyramidal
6	sp ³ d ²	Octahedral
6	d ² sp ³	Octahedral

VBT can also describe color & spectroscopic characteristics of the formed coordination compounds. D-d electronic transitions explain the characteristic colors of transition metal complexes, according to the theory. These transitions happen between split d-orbitals where the energy differences are in the region of visible spectrum. Split nature & magnitude depends on the metal's oxidation state, the ligand field strength, the complex's geometry VBT specifically addresses these through its hybridization models. For hetero nuclear complexes with multiple types of the ligands, the trans effect — the fact that some the ligands can cause incoming the ligands to orient themselves trans to the original ligand during substitution reactions — is addressed by VBT. This phenomenon can be understood in the context of the way in which metal d-orbitals are populated in the presence of a given ligand & how the ligand can preferentially stabilize certain layers of the bond direction more strongly than others.

Table: 1 Important types of hybridisation found in the first row transition metal complexes and the geometry of the complexes

Coordination number of the central metal atom/ion	Type of hybridisation undergone by the central metal atom/ion	Geometry of the complex	Examples of complexes
2	$sp(4s, 4p_x)$	Linear or diagonal	$[CuCl_2]^-$, $[Cu(NH_3)_2]^+$ etc.
3	$sp^2(4s, 4p_x, 4p_y)$	Trigonal planar or equilateral triangular	$\begin{bmatrix} \text{Cu}^{+} \left(\text{S=C} \overset{\text{NH-CH}_2}{\downarrow} \right)_{3}^{+}, \\ \text{ICu}^{+} \text{Cl}(\textit{uu})_{2}^{-} \right)^{0} \text{ (distorted trigonal)} \end{bmatrix}$
			planar) etc.
4	$dsp^2(3d_{x^2-y^2}, 4s, 4p_x, 4p_y)$	Square planar	[Ni(CN) ₄] ²⁻ , [PdCl ₄] ²⁻
4	$sp^2d(4s, 4p_x, 4p_y, 4d_{x^2-y^2})$	Square planar	$[Cu(NH_3)_4]^{2+}$ $[Pt(NH_3)_4]^{2+}$ etc.
4	$sp^{3}(4s, 4p_{x}, 4p_{y}, 4p_{z})$	Tetrahedral	[NiCl ₄] ²⁻ , [Cu(CN) ₄] ³⁻ , Ni(CO) ₄ etc.
5	$dsp^{3}(3d_{z^{2}}, 4s, 4p_{x}, 4p_{y}, 4p_{z})$	Trigonal bipyramidal	Fe(CO) ₅ , [CuCl ₅] ³⁻ , [Ni ²⁺ (triars) Br ₂] ⁰
5	$dsp^{3}(3d_{x^{2}-y^{2}}, 4s, 4p_{x}, 4p_{y}, 4p_{z})$	Square pyramidal	[Co ²⁺ (triars) I ₂] ⁰ , [Ni(CN) ₅] ³⁻ etc.
6	$d^2sp^3(3d_{x^2-y^2}, 3d_{z^2}, 4s, 4p_{x}, 4p_{y}, 4p_{z})$	Inner-orbital octahedral	$[T_i(H_2O)_6]^{3+}$, $[Fe(CN)_6]^{3-}$ etc.
6	$sp^{3}d^{2}(4s, 4p_{x}, 4p_{y}, 4p_{y}, 4p_{y}, 4d_{x^{2}-y^{2}}, 4d_{z^{2}})$	Outer-orbital octahedral	$[Fe^+(NO^+)(H_2O)_5]^{2+}$, $[CoF_6]^{3-}$ etc.

1.2.2 Limitations of VBT

- VBT cannot account for the relative stabilities of different shapes and different coordination numbers in metal complexes, e.g., it cannot explain satisfactorily as to why Co (+2) (d8 system) forms both octahedral and tetrahedral complexes while Ni (+2) (d⁷ system) rarely forms tetrahedral complexes.
- VBT cannot explain as to why Cu (+2) forms only one distorted octahedral complex even when all the six ligands are identical.
- This theory cannot account for the relative rates of reactions of analogous metal complexes. e.g. [Mn(phen)₃]²+ dissociates

instantaneously in acidic aqueous solution while [Fe(phen)3]2+dissociates at a slow rate.

- The classification of metal complexes on the basis of their magnetic behaviour into covalent (inner-orbital) and ionic (outer-orbital) complexes is not satisfactory and is often misleading.
- VBT fails to explain the finer details of magnetic properties including the magnitude of the orbital contribution to the magnetic moments, i.e. although both tetrahedral (sp3 hybridisation) and outer-orbital octahedral (sp2d2 hybridisation) complexes of Co(+2) (d7 system) have three unpaired electrons and are, therefore, expected to have μ value equal to 3.87 B.M.; the tetrahedral complexes generally have μ value in the range of 4.4 4.8 B.M., while the octahedral complexes have still higher value of μ in the range of 4.7 5.2 B.M. The increase in the value of μ is due to the orbital contribution. Similar is the case with tetrahedral and octahedral complexes of Ni (+2) (d8 system). VBT cannot explain the increase in the value of μ .
- VBT cannot interpret the spectra (colour) of the complexes.
- This theory does not predict or explain the magnetic behaviours of complexes. This theory only predicts the number of unpaired electrons. Its prediction even for the number of unpaired electrons and their correlation with stereochemistry is misleading. VBT cannot explain the temperature dependent paramagnetism of the complexes.
- VBT cannot give any explanation for the order of reactivities of inner-orbital inert complexes of d3, d4, d5 and d6 ions of the observed differences in the energies of activation in a series of similar complexes.
- The magnetic moment values of the complexes of certain ions (e.g., Co2+, Ni2+ etc.) are much higher than those expected by spin-only formula. VBT cannot explain the enhanced values of magnetic moments.

Summary

Valence Bond Theory (VBT) explains bonding in metal complexes by assuming that metal-ligand bonds form through overlap of ligand orbitals with hybridized orbitals of the central metal ion, giving rise to specific geometries (e.g., tetrahedral, square planar, octahedral). It accounts for magnetic properties based on paired or unpaired electrons in the d-orbitals. However, VBT has significant limitations: it cannot explain the color and spectra of complexes, fails to justify differences between strong- and weak-field ligands, and does not provide quantitative information about stability or energy levels. These shortcomings led to the development of more advanced theories like Crystal Field Theory (CFT) and Ligand Field Theory (LFT)

Multiple Choice Questions (MCQs):

Q1. According to VBT, the geometry of [Ni(CN)4]2-[Ni(CN)_4]^{2-

- [Ni(CN)4]2-is:
- a) Tetrahedral
- b) Square planar
- c) Octahedral
- d) Trigonal bipyramidal

Answer: b)

- **Q2.** In VBT, bonding between metal and ligand is considered as:
- a) Purely ionic
- b) Purely covalent
- c) Coordinate covalent (donation of electron pair)
- d) Metallic

Answer: c)

- Q3. Which of the following cannot be explained properly by VBT?
- a) Magnetic properties
- b) Color of complexes
- c) Hybridization of orbitals
- d) Geometry of complexes

Answer: b)

- **Q4.** An inner orbital octahedral complex shows:
- a) High-spin state
- b) Use of outer d-orbitals
- c) Pairing of electrons in inner d-orbitals

d) No hybridizationAnswer: c)

Q5. The hybridization of orbitals in [Co(NH3)6]3+[Co(NH_3)_6]^{3+}[Co(NH3)6]3+ (low-spin complex) according to VBT is:

a) $sp3d2sp^3d^2sp3d2$

b) d2sp3d^2sp^3d2sp3

c) $sp3sp^3sp3$

d) dsp2dsp^2dsp2

Answer: b

Short Questions:

- 1. State two basic assumptions of Valence Bond Theory.
- 2. How does VBT explain the geometry of a tetrahedral complex?
- 3. Mention two limitations of Valence Bond Theory

Long Questions:

- 1. Explain the principles of VBT with examples of octahedral complexes.
- 2. Discuss how VBT explains magnetic properties of complexes. Illustrate with an example.
- 3. Describe the main limitations of VBT and how they are overcome by Crystal Field Theory.

UNIT 1.3

Ligand Field Theory (LFT)

Ligand Field Theory (LFT) is an enhancement of Crystal Field Theory (CFT) that offers a more thorough comprehension of transition metal complexes through the integration of molecular orbital concepts. In contrast to CFT, which regards ligands as simple point charges affecting the d-orbitals of the metal core, a fundamental element of LFT is the notion of molecular orbital overlap between the metal and ligand

orbitals. This hypothesis acknowledges that ligands contain electron-donating orbitals capable of interacting with the metal's d-orbitals, resulting in the creation of bonding, nonbonding, and antibonding molecular orbitals. The energy disparity among these orbitals affects the electronic transitions responsible for the distinctive hues of transition metal complexes. Furthermore, LFT elucidates the discrepancies in magnetic characteristics encountered in various coordination contexts by examining the degree of orbital interactions and electron delocalization.

1.3.1 Differential Splitting of d-Orbitals in Different Ligand Fields

An octahedral complex contains a central metal ion surrounded by six the ligands located at the corners of an octahedron. These the ligands approach along the $\pm x$, $\pm y$ & $\pm z$ axes & therefore create a very symmetric environment that interacts differently with the five d- orbitals of the transition metal. In a free metal ion, d-orbitals are degenerate (the same in energy). They split into two different groups when they are placed in an octahedral field however.i.e. setIncludesdx²-y²&dz² orbitals, extending in direction towards the the ligands.

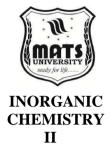
These orbitals have greater repulsive forces with the electrons of the ligands and hence are of greater energy the set dxy, dxz, &dyz orbitals pointing between the ligands. Orbitals with lower energy experience weaker repulsive interactions. Octahedral complexes have intricate spectroscopic properties. More complicated spectra lead to multi-electron systems due to interelectronic repulsions & selection rules This tetragonal field degeneracy lowers the symmetry from cubic to tetragonal, wherein the axial the ligands (along the z-axis) are at different distances from the metal center than equatorial the ligands (in the xy-plane).

With this distortion, the degeneracy of the d-orbitals is further split:

- dz² (energy relies on axial ligand distance)
- dx2-y2 (distance to equatorial the ligands affects energy)

The t2g set splits into:

- And dxy (mainly sensitive to equatorial the ligands)
- One degenerate pair: dxz and dyz (touched by both axial & equatorial the ligands)
- (dx^2-y^2) (most energy, axial points of the ligands)
- dxy (in between the ligands in the xy-plane)
- dxz & dyz (degenerate pair)


• dz² (lowest for many cases)

Square planar geometry is especially favored for d^8 metal ions (for instance, Pt^{2+} , Pd^{2+} , Au^{3+} , & strong-field the ligands with Ni^{2+}) where the stabilization by placing eight electrons in all except the highest energy dx^2-y^2 orbital is quite large.. They also exhibit in their electronic spectra (especially those compounds with available d- electrons) several bands of absorption associated with the transitions between the d-orbitals (there are 5, but owing to the crystal field effect, their degeneracy can be destroyed) molecular orbital energy level diagram for σ -bonding in octahedral complexes can be shown as:

Figure - The formation of σ -molecular orbitals (bonding, antibonding and non-bonding) in octahedral complexes of transition metals.

1.3.1.2 Tetrahedral Field

The metal ion in tetrahedral complexes is surrounded by four the ligands at the opposite corners of a cube. In contrast to octahedral geometry, the the ligands do not approach along the coordinate axes, but rather along the body diagonals of a cube. Tetrahedral case: The dorbital splitting in a tetrahedral field is inverted as compared to the octahedral case:

- t2 set: dxy, dxz, & dyz orbitals, of higher energy
- E set: Consists of dx^2-y^2 & dz^2 orbitals that is of low energy.

To denormalize, common tetragonal geometry includes:

- low spin d⁰ configurations (MnO₄⁻, for exemple)
- d¹0 configurations (e.g. ZnCl₄²-)
- Weak-field the ligands in d⁴-d⁷ configurations

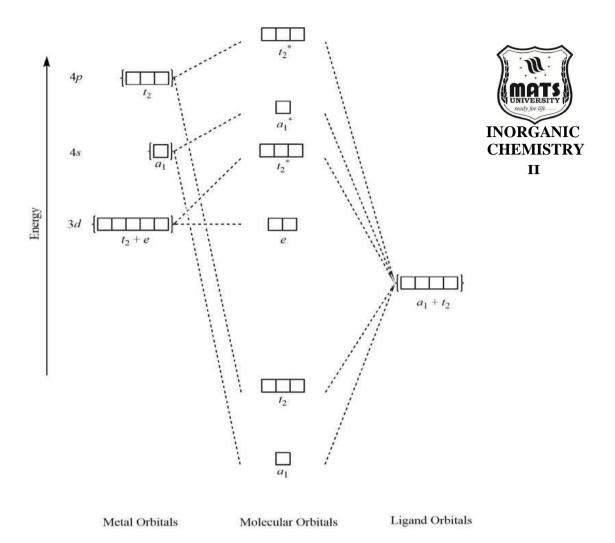
The symmetry designations of different metal orbitals taking part in this type of overlap can still be given as

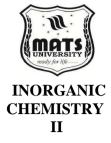
S	_	<i>a</i> 1
px, py, pz	_	<i>t</i> 2
dxy, dxz, dyz	_	<i>t</i> 2
<i>dz</i> 2, <i>dx</i> 2 <i>y</i> 2	_	e

Figure The σ -basis set for ligand orbitals in tetrahedral complexes.

Molecular orbital energy level diagram for σ - bonding in tetrahedral complexes can be shown as:

_




Figure - The formation of σ -molecular orbitals (bonding, antibonding and non-bonding) in tetrahedral complexes of transition metals.

The tetrahedral vacancies exhibit spectra results that more bands formed within bands when compared with octahedral spectra, indicating the intensity of absorption for tetrahedral complexes compared to octahedral complex.

Trigonal Bipyramidal and Square Pyramidal Fields

Trigonal bipyramidal & square pyramidal geometries are largely found in five-coordinate complexes,

This splitting is sensitive to distortions, & trigonal bipyramidal complexes readily interconvert with square pyramidal geometry.

The symmetry designations of different metal orbitals taking part in square-planar overlap are:

S	_	a1g
px, py	_	eu
dz2	_	a1g
dx2 y2 –		b1g
pz	_	a2u
dxy	_	b2g
dyz, dxz	_	eg

Five-coordinate complexes are often fluxional, rapidly transforming between trigonal bipyramidal & square pyramidal geometries. Such dynamic behavior can complicate spectroscopic characterization, which often requires low-temperature studies to "freeze out" individual conformations.

These two geometries are relatively common in:

Intermediates in substitution reactions

- Complexes with metals of d⁵ microlations (e.g., Fe³⁺, Mn²⁺)
- Complexes with sterics-heavy the ligands that preclude higher coordination numbers

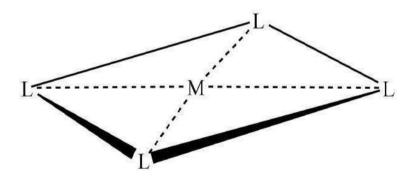
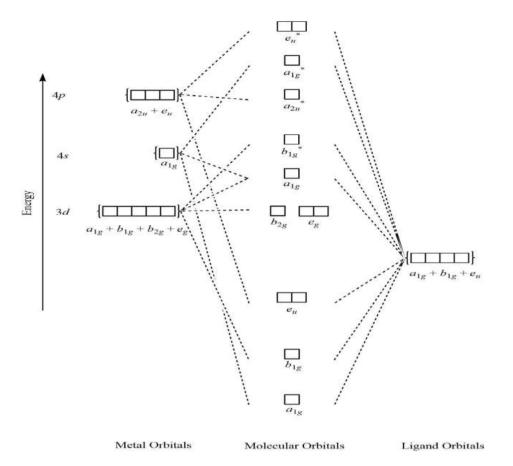
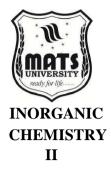



Figure -. The σ -basis set for ligand orbitals and corresponding coordination in square-planar complexes of transition metals.

The molecular orbital energy level diagram for σ -bonding in square-planar complexes can be shown as

CHEMISTRY II

Figure -. The generation of σ -molecular orbitals in square-planar complexes.


The d-orbital splitting arrangements of five-coordinate complexes yield characteristic electronic spectra, although the appearance of the spectra is greatly influenced by distortions & fluxional behavior.

1.3.1.2 Jahn-Teller Effect

(15, 17, 31) Jahn-Teller effect represents an essential process in coordination chemistry, where specific electronic states spontaneously distort the coordination geometry, thus preventing orbital degeneracy & resulting in a more stable overall state. This effect is important & has a much stronger impact on the structure, spectroscopy & reactivity of transition metals complexes.

What Causes Distortion & What are the Types of Distortion

The Jahn-Teller theorem (1937) states that all non-linear molecular systems in degenerate electronic states will undergo a distortion that removes the degeneracy & lowers the total energy (Hermann, 1937; Edward, 1937). This message will impact most configurations with unbalanced occupancy of degenerate orbitals, in the setting of transition metal complexes. This is most strongly felt in octahedral complexes, where the following electronic configurations will apply:

- d⁹ configurations (e.g. Cu²⁺): Add one electron into the eg set for an asymmetric occupation.
- High-spin d⁴ configurations (e.g., Cr²⁺): 1 electron in the egset.
- Low-spin d^7 cases (Co^{2+} for example): One hole in the eg set.

The degree of distortion goes in the following roughly order: $d^9 \gg \text{high-spin } d^4 \gg \text{low-spin } d^7$.

Degenerate occupation of t2g orbitals (d1, d2 low-spin, d5 low-spin) also gives rise to weak Jahn-Teller distortions (the second-order Jahn-Teller effect).

There are two major forms of distortion that are observed in octahedral complexes. Tetragonal elongation The most common distortion is when metal-ligand bonds are elongated along one of the axes, most commonly the z-axis. This lowers the energy of the dz^2 orbital below that of the dx^2-y^2 orbital, & raises the dxy orbital in energy in the dxy group, with dxz & dyz also increasing.

Tetragonal compression less frequent but It is also seen in certain systems, it is compression of metal-ligand bonds the direction of one This enhances the energy of the dz² orbital compared to the dx²-y² & makes t2g set adjustments accordingly. Preference for elongation over compressionin the overwhelming majority of situations arises from s ubtle interaction between the electronic & nuclear repulsion terms. (which Jahn-Teller distortions in very general degenerated sense refer to the distortion of electron energy levels) are small in one case and have large amplitudes in another case.

- Strong effects (10^{-2} to 10^{-3} eV stabilization) are for eg degeneracy.
- Weak effects (10^{-4} to 10^{-5} eV stabilization) are for t2g degeneracy.

In the dynamic Jahn-Teller effect, the energy barrier between different distorted structural configurations is small & interconversion between several distorted geometries is rapid. This creates an average structure that can look undistorted in some experimental measurements.

All effects on spectra and structure

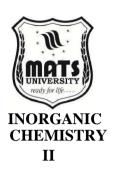
We can first explore some observable characteristics of transition metals complexes which are related to the Jahn-Teller effect:

X-ray crystallography: Structural distortions in Jahn-Teller active complexes. In Cu²⁺ octahedral complexes, the axial bonds are usually longer than equatorial bonds by 10–20%. These distortions can spread through crystal lattices, & in some cases lead to cooperative effects.

Electronic spectra: Jahn-Teller distortions break degeneracy of electronic states, giving rise to:

- Splitting of absorption bands that would be single in undistorted complexes.
- Vibronic coupling leads to broadening of spectral features
- Typical absorption patterns unique to the type & degree of distortion

In fact, Cu²⁺ complexes display a d-d spectrum with three bands instead of one, as would be expected for a normal octahedral complex.


- Vibrational spectra: Characteristic splitting in the regions of metal-ligand stretching evident in infrared & Raman spectroscopy spectra, attributed to loss of symmetry due to formation of complex.
- EPR spectra: Electron paramagnetic resonance spectroscopy is particularly sensitive to Jahn-Teller effects. The g tensor components in Cu²⁺ complexes are anisotropic reflecting the distorted environment.

which computing for crystal field stabilization energy: Jahn-Teller distortions have a substantial impact on the net stabilization energy of complexes, thus influencing thermodynamic characteristics including:

- Formation constants
- Redox potentials
- Reaction energetics

The Jahn-Teller effect plays a role in many chemical processes:

- Stereochemistry preferences: Some metal ions have a tendency to form distorted complexes (Cu²⁺ has a preference for elongation in octahedral or square planar geometries).
- Kinetics of ligand exchange: Longer bonds, particularly those along the distorted axis, are typically more labile, giving rise to diagnostic kinetic regimes.
- Cooperative phenomena in solid-state materials: Jahn-Teller distortions can crystallize into long-range order in extended lattices, leading to:
- Magnetic ordering
- Phase transitions
- Property of electric conductivity
- Catalytic activity: The electronic asymmetry and structural distortion can facilitate enhanced reactivity at certain coordination sites.

Rich & complex behavior results in transition metal systems from the interplay of the Jahn-Teller effect and other electronic factors (spin-orbit coupling, metal-ligand covalency). His work makes a significant contribution towards rational design of coordination compounds with tunable electronic, magnetic & catalytic characteristics.

Some examples of Jahn-Teller effect are:

- Copper (II) complexes: The prototypical Jahn-Teller active systems, featuring d^9 configuration, resulting in significant axial elongation. Axial Cu-O bonds in $[Cu(H_2O)_6]^{2+}$ are ~40% longer than equatorial ones.
- Manganese (III) complexes: In high-spin d⁴ configuration, strong Jahn-Teller distortions play a role in determining manganese bioinorganic chemistry in the context of photosystem II.
- Chromium (II) complexes: High-spin d⁴ configuration exhibits distortions that affect the air sensitivity & unique chemistry of Cr²⁺ compounds.
- Jahn-Teller Effects in Low-Spin Cobalt (II) Complexes: CCFT of Cobalt(II) (d7)-based complexes show that no Jahn-Teller effects are observed in the d7 configuration, though they will be very dependent on spin-orbit coupling effect

Summary

Ligand Field Theory (LFT) is an extension of Crystal Field Theory that incorporates both electrostatic and covalent interactions between ligands and the central metal ion. It explains the d-orbital splitting patterns in different ligand environments: in an octahedral field, the t2gt_{2g}t2g orbitals are stabilized while the ege_geg orbitals are raised in energy, whereas in a tetrahedral field the reverse occurs, but with a smaller splitting magnitude (Δt≈49Δo\Delta_t \approx \tfrac{4}{4}{9}\Delta_oΔt≈94Δo). The distribution of electrons in these orbitals determines the complex's magnetic, optical, and stability properties. The Jahn–Teller effect further modifies geometry in cases of uneven electronic distribution (especially in d9, d7, or high-spin d4 systems), causing distortions such as elongation or compression to lower the system's overall energy. Together, these concepts allow accurate prediction of geometry, magnetism, and spectra of metal complexes.

Multiple Choice Questions (MCQs):

- Q1. Ligand Field Theory (LFT) combines features of:
- a) Valence Bond Theory and VSEPR
- b) Crystal Field Theory and Molecular Orbital Theory
- c) Valence Bond Theory and Molecular Orbital Theory
- d) Crystal Field Theory and Hybridization

Answer: b)

- **Q2.** In an octahedral field, which orbitals have lower energy?
- a) ege geg
- b) $t2gt \{2g\}t2g$
- c) Both are equal
- d) Depends on ligand strength

Answer: b) t2gt {2g}t2g

- **Q3.** In a tetrahedral field, the relative splitting $(\Delta t \triangle t\Delta t)$ is approximately:
- a) Equal to $\Delta 0 \setminus Delta 0\Delta 0$
- b) $12\Delta 0 \cdot dfrac \{1\} \{2\} \cdot Delta 021\Delta 0$
- c) $23\Delta0 \cdot dfrac \{2\} \{3\} \cdot Delta \ 032\Delta0$
- d) $49\Delta0$ \dfrac $\{4\}\{9\}$ \Delta $094\Delta0$

Answer: d) $49\Delta0\dfrac\{4\}\{9\}\Delta_094\Delta0$

Q4. The Jahn–Teller effect is most pronounced in which electronic configuration?

- a) d⁹
- b) d1
- c) d⁵ (high spin)
- d) d10

Answer: a) d9

Q5. Which of the following complexes is expected to undergo Jahn–Teller distortion?

- a) $[Ti(H2O)6]3+[Ti(H_2O)_6]^{3}+[Ti(H2O)6]3+(d^1)$
- b) [Mn(H2O)6]2+[Mn(H 2O) 6]^{2+}[Mn(H2O)6]2+ (d⁵, high-spin)
- c) $[Cu(H2O)6]2+[Cu(H_2O)_6]^{2+}[Cu(H2O)6]2+(d^9)$
- d) $[Zn(H2O)6]2+[Zn(H 2O) 6]^{2+}[Zn(H2O)6]2+(d^{10})$

Answer: c) $[Cu(H2O)6]2+[Cu(H_2O)_6]^{2}+[Cu(H2O)6]2+$

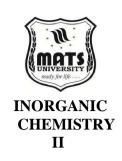
Short Questions:

- 1. Define Ligand Field Theory (LFT). How does it differ from Crystal Field Theory (CFT)?
- 2. What is meant by d-orbital splitting in ligand fields?
- 3. Which set of orbitals (t2gt_{2g}t2g or ege_geg) is raised in energy in an octahedral field?
- 4. Why is splitting smaller in tetrahedral complexes compared to octahedral complexes?
- 5. Write a short note on the Jahn–Teller effect.

Long Questions:

- 1. Explain the basic principles of Ligand Field Theory (LFT). How does it overcome the shortcomings of CFT?
- 2. Discuss the differential splitting of d-orbitals in octahedral, tetrahedral, and square planar fields with neat diagrams.
- 3. Derive the relationship between octahedral splitting parameter $(\Delta 0 \backslash Delta_0\Delta 0)$ and tetrahedral splitting parameter $(\Delta t \backslash Delta_t\Delta t)$.
- 4. Explain the Jahn–Teller effect with suitable examples. How does it affect the geometry of complexes?
- 5. Compare the electronic configurations, magnetic properties, and stability of high-spin and low-spin octahedral complexes using LFT.

UNIT 1.4

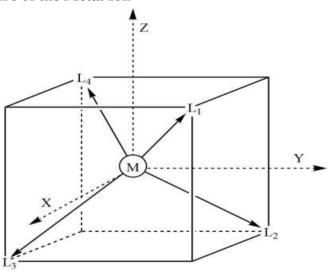

LIGAND FIELD STABILIZATION ENERGY (LFSE)


1.4.1 Ligand Field Stabilization Energy (LFSE)

Ligand field stabilization energy (LFSE) is one of the most basic ideas in coordination chemistry, & helps to provide a theoretical underpinning to the thermodynamic & structural characteristics of transition metal complexes. This energy term corresponds to the coordination of a central metal ion with its the ligands that causes the degeneracy of d-orbitals to split & leads to a net decrease of the energy of the complex. A huge energy term, associated with their larger numbers, deeper orbitals, & so on, which have far-reaching consequences for the stability, reactivity, & physical characteristics of coordination compounds as the fields dedicated to these phenomena are of paramount importance in explaining the reactivity of transition metals in these reactions.

LFSE is a concept that arose from crystal field theory & was developed into more comprehensive ligand field theory based on molecular orbitals to explain metal-ligand interaction. The fundamental principle behind LFSE comes from the stabilization of electrons in lower-energy d-orbitals after they have been split by surrounding the ligands, & the energy benefit they provide. This stabilizing influence varies systematically across the transition series & is critically dependent on the metal ion electron configuration, the complex geometry, and the coordinating the ligands nature. It is not only of theoretical importance — the impact of LFSE reaches much,

much further. It rationalises many experimental observations in coordination chemistry, such as the Irving-Williams series of stability constants, the coordination geometry of certain metal ions & the deviations from trends in hydration enthalpies through first-row transition metals. The impact of LFSE explained in this article also deepens our comprehension of vital physical characteristics including color, magnetism & reactivity patterns of metal complexes, used in applications from catalysis to materials science.



Determining LFSE involves weighing factors such as the number & arrangement of d- electrons, the value of the crystal field splitting parameter, and the spatial arrangement of the ligands around the transition metal. Unique patterns of d-orbital splitting are observed for different coordination geometries, giving rise to characteristic LFSE values that compete for the stability of competing structural configurations. LFSE demonstrates the influence of this electronic phenomenon over all types of thermodynamics parameters (lattice energies, hydration enthalpies, formation constants) associated to coordination compounds. Here, we embark on a detailed dive into the world of ligand field stabilization energy, with an emphasis on both its theoretical background & practical calculation approaches, as well as highlighting the thermodynamic ramifications this concept holds in furthering our appreciate and comprehend ing of transition metal chemistry & its applications.

1.4.1.1 Factors Affecting the Splitting Parameter (Δ)

Nature of the Metal Ion

The nature of the central metal ion largely governs the extent of the crystal field splitting parameter. This is attained through a number of interdependent aspects of the electronic structure & the position of the metal in the periodic table

The valence shell is characterized by their principal quantum number which has a direct impact on the splitting parameter. When we go down a group in the periodic table, we ine d- orbitals. These orbitals are more distant from the nucleus & interact less strongly with the ligands orbitals. Therefore, crystal field splitting generally reduces down a group. For example, under otherwise identical conditions (same oxidation state & ligands), splitting parameter in the order is 3d Cu²The reason for this is that the effective nuclear charge experienced b y electrons rises with rising atomic number as you go along the period. Due to increasing number of protons in the nucleus & electrons in the d-orbital effective nuclear charge increases making the d-orbitals more closely attached to nucleus better interacting with ligand field. The electronic character of the metal ion is another of the parameters which influence the splitting parameter In particular, the number of d-electrons affects the interactions between

d-orbitals & the ligands. Peak 9: Mn²⁺, [Ar] 4s² 3d⁵ → Transition metals with a d⁵ configuration (half-filled set of d-type orbitals) often exhibit less than expected crystal field splitting than would be expected if we just looked at where in the periodic table they are. Reduced splitting occurs because half-filled set of orbitals are more stable than the alternative; this arrangement results in maximum parallel spins per d-orbital, which maximizes exchange energy..

1.4.1.2 Oxidation State of the Metal

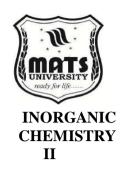
INORGANIC CHEMISTRY II

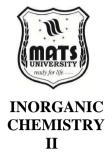
The oxidation state of the metal ion has a huge effect on the crystal field splitting parameter & is one of the most important factors controlling the electronic structure of coordination compounds. The higher oxidation states always produce larger splitting parameters, an effect that can be accounted for by a host of related effect cts. First & most importantly, oxidation state truly does change the nuclear charge the d-electrons experience. oxidation numbers indicate higher removal of electrons from the metal, resulting in lower electron-electron repulsions, thus more density can be drawn into the nuclear This shrinkage of the d-orbitals allows for more overlap with ligand orbitals, which increases their interaction & leads to a higher genius of electric splitting crystal field For instance. Fe³ complexes tend to have wider splittings than analogous Fe²complexes of the same ligands. The higher oxidation states have a greater effective nuclearcharge, and this makes to redu ce the ionic radius of the metal ion.

The smaller sizes then reduce metal-ligand bond distances and thus increase orbital overlap & increase covalent bonding character. At elevated oxidation states, this leads to a stronger effective covalent interaction contributing significantly to the increased crystal field splitting found in high oxidation state complexes.

1.4.1.3 Ligand Nature (Spectrochemical Series)

The character of the ligands coordinating to a metal ion has most likely the most direct & strongest effect on the crystal field splitting parameter. This effect is classified in the spectrochemical series, which orders


- I⁻ pairing energy: Low-spin complex Paramagnetism in complexes can occur in low-spin complexes (Δ > pairing energy) with minimum unpaired electrons & high-spin complexes (Δ Zn²⁺. This unique stability is rationalized by Jahn-Teller distortion of octahedral Cu²⁺ complexes, which offers increased stabilization, when compared to the reduced Δ , for this configuration.
- Language of Response Mechanisms & Kinetics: The relative value of Δ affects the transitional free energy (i.e., the activation energy) for ligand replacement reactions. The large Δ of spin


transitions for a dioxyhemoglobin in the framework of qualitative valence bond theory explain the kinetic inertness range found in arrays of metal-coordinating second & third-row transition metal complexes due to their high energy barrier for rearranging d electron configuration during ligand exchange. This property is of great importance in the design of stable catalysts and therapeutic agents.

• Redox Characteristics: The crystal field splitting impacts redox potentials by stabilizing some oxidation states more than others. For example, strong-field the ligands such as CN^- & CO stabilize lower oxidation states via π -backbonding, whereas weak-field the ligands stabilize higher oxidation states. This relationship is harnessed in the development of redox catalysts & electrochemical sensors.

Rational design of coordination compounds for various applications has been achieved by using the knowledge of what influences the parameters that govern the crystal field splitting:

- In catalysis, Δ can be fine-tuned allowing for the modulation of the electronic structure of metal centres thereby affecting substrate binding, activation & product selectivity. Different redox potentials of both the ligands & metals can lead to sequence-selective electron transfer reactions, resulting in catalytic activity, as is the case with the hydrogenation reactions catalyzed by Wilkinson's catalyst [RhCl(PPh₃)₃], where high-field the ligands generate an electronic configuration suitable for oxidative addition of H₂.
- In medicine, platinum-based anticancer agents such as cisplatin [Pt(NH₃)₂Cl₂] depend on the kinetic inertness imparted by Pt²⁺'s large crystal field splitting to ensure that the drug has time to reach its biological target before it undergoes a ligand exchange. Likewise, gadolinium MRI contrast agents take advantage of the electronic nature governed by the crystal field splitting to modulate relaxivity.
- Spin-crossover complexes in material science can exist in either a high or low spin state but can undergo a reversible transition between the two states through temperature, pressure, or light, making them useful for applications in molecular switches, sensors, & data storage. Comparably, these materials exist at the boundary where Δ is at par with the energy for electron pairing, rendering them exquisitely vulnerable to external stimuli.
- In the field of environmental chemistry, the design of selective chelating agents for remediation of heavy metals is based on the principles of crystal field theory to ensure that high affinity & selectivity for target metal ions is achieved.

-ligand vibrational modes (Resonance Raman spectroscopy), allowing the extraction of information about strength of metal-ligand bonds & covalency relative to the crystal field splitting.

In general, the ligands that are non-innocent, meaning they can have more than one redox state & share electron density with the metal in non-trivial ways, do not follow the crystal field-theory model perfectly. The formal oxidation assignment is also not transparent in the case of dithiolene, catecholate & nitrosyl the ligands & the resulting electronic structure is complex & would require advanced theoretical treatment.Jahn-Teller and pseudo-Jahn-Teller distortions play a very important role in crystal field splitting patterns leading to degeneracy breaking of orbitals.

These effects dominate in d (Cu²), high-spin d (Cr²), & low-spin d (Co²) octahedral complexes (among others), in which they can be stretched or compressed along some axe s& transform the reduced octahedral splitting to a more complex pattern. The cooperative effect that exists in polynuclear complexes & metal clusters where multiple metal centers are in interaction through bridging the ligands or direct metalmetal bonds, results in complex electronic structures where the crystal field splitting of one metal center induces the crystal field splitting of adjacent centers, & is themselves induced by them.

Summary

Ligand Field Stabilization Energy (LFSE) is the extra stability a metal complex gains due to the preferential filling of lower-energy $t2gt_{2g}t2g$ and ege_{geg} orbitals after d-orbital splitting in a ligand field. The LFSE depends on the number and arrangement of delectrons, spin states (high-spin or low-spin), and geometry of the complex (octahedral, tetrahedral, or square planar). The splitting parameter (Δ), which measures the energy gap between these orbitals, is influenced by several factors: the metal ion's oxidation state (higher oxidation \rightarrow larger Δ), the size of the metal ion (smaller radius \rightarrow larger Δ), the position of the metal in the periodic table (transition from $3d \rightarrow 4d \rightarrow 5d$ increases Δ), and the nature of ligands as described by the spectrochemical series (strong-field ligands produce larger Δ). Together, LFSE and Δ govern the magnetic properties, color, stability, and reactivity of coordination complexes.

Multiple Choice Questions (MCQs):

Q1. LFSE arises due to:

- a) Nuclear attraction of ligands
- b) Unequal filling of t2gt {2g}t2g and ege geg orbitals
- c) Orbital hybridization
- d) Increase in pairing energy

Answer: b)

- **Q2.** For an octahedral complex, each electron in a t2gt_{2g}t2g orbital contributes:
- a) $-0.6\Delta0-0.6$ \Delta $0-0.6\Delta0$
- b) $-0.4\Delta0-0.4$ \Delta $0-0.4\Delta0$
- c) $+0.4\Delta0+0.4$ \Delta $0+0.4\Delta0$
- d) $+0.6\Delta0+0.6$ \Delta $0+0.6\Delta0$

Answer: b)

- **Q3.** Which factor increases Δ ?
- a) Strong-field ligands
- b) Higher oxidation state of metal
- c) Smaller metal ion radius
- d) All of the above

Answer: d)

Q4. The LFSE for a d³ octahedral complex is:

- a) $-1.2\Delta 0-1.2$ \Delta $0-1.2\Delta 0$
- b) $-0.6\Delta0-0.6$ \Delta $0-0.6\Delta0$
- c) $-0.4\Delta0-0.4$ \Delta $0-0.4\Delta0$

d) 0

Answer: a)

Q5. The order of Δ for different geometries is generally:

- a) $\Delta oct > \Delta tet \setminus Delta \{oct\} > \setminus Delta \{tet\} \Delta oct > \Delta tet$
- b) $\Delta tet > \Delta oct \setminus Delta \{tet\} > \setminus Delta \{oct\} \Delta tet > \Delta oct \}$
- c) $\Delta oct = \Delta tet \ Delta_{oct} = \ Delta_{tet} \ \Delta oct = \Delta tet$
- d) Depends only on ligand charge

Answer: a)

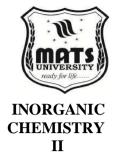
Short Questions:

- 1. Define Ligand Field Stabilization Energy (LFSE).
- 2. What is the LFSE of a high-spin d⁵ octahedral complex?
- 3. How does the oxidation state of a metal ion influence the crystal field splitting parameter (Δ)?
- 4. Why is Δ generally smaller in tetrahedral complexes compared to octahedral complexes?

Long Questions:

- 1. Explain the concept of LFSE with suitable examples. Calculate LFSE values for d¹, d³, and d⁶ octahedral complexes.
- 2. Discuss in detail the factors affecting the magnitude of the crystal field splitting parameter (Δ).
- 3. Compare LFSE values for high-spin and low-spin d⁶ octahedral complexes. What role does pairing energy play?
- 4. Describe how ligand type (using the spectrochemical series) and metal ion properties affect Δ and thereby influence the stability of complexes.

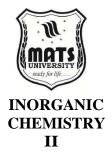
UNIT 1.5


Metal Complexes: Applications in Our Daily Lives

Metal complexes quietly control some processes that maintain & enhance our standard of living, often operating unseen in the products & systems that surround us daily. Current water treatment plants utilize metal-based as aluminum sulfate & iron chloride that in their turn coordinate with the impurities to form coordination complexes & clump &settle out for being filtered out, thereby enhancing the purity millions of individuals worldwide. The MRI drinking water for contrast agents which revolutionized medical diagnostics & imaging work through gadolinium complexes designed specifically to enhance tissue contrast without the agents causing harm; the agents temporarily alter the magnetic properties of tissues through coordination interactions, uncovering physiological information that would otherwise remain hidden & allowing for earlier, more accurate disease detection

1.5.1 Theoretical Frameworks for Metal Complexes Practical Applications.

The phone in your pocket contains alternate circuit elements that rely on well engineered metal-organic compounds to create semiconductors; photoresists used in lithographic patterning often contain coordination complexes whose photochemical properties are a consequence of energy levels predicted by theoretical models, allowing the assembly of nanoscale electronic devices that process information & connect people worldwide. Water purification tablets employed by hikers & in emergencies frequently contain silver coordination compounds, whose antimicrobial efficacy stems from the interaction of silver ions with biological molecules; these portable purification solutions ensure safe drinking water in the absence of conventional treatment infrastructure.


- 1. Energy-efficient LED lamps used in residential & commercial applications are likely to have rare earth metal complexes as the phosphors that transform initial emissions to warm white light, as explained by ligand field & molecular orbital theories; such lighting devices consume much less electricity than incandescent devices, thereby saving energy costs & environmental footprint.
- 2. Next-generation gas storage, separation, and catalysis metal- organic frameworks (MOFs) possess exceptional properties due to highly controlled coordination spheres at metal sites, resulting in materials with record surface area & selectivity that can revolutionize hydrogen storage for clean energy, carbon capture for climate change, and water harvesting in the desert.
- 3. Biodegradable chelating agents that chelate replace environmentally persistent chemicals in cleaning products & industrial processes came forth on the basis of theoretical knowledge of coordination stability constants & metal-ligand interactions, resulting in effective cleaning products & industrial processes environmental impact. Together, these applications show the concepts straightforward application of coordination chemistry theoretical into technologies tuned for environmental sustainability, human health energy efficiency, & information processing abilities that collectively define contemporary society.

1.5.2 Valence Bond Theory

Practical **Applications** Valence Bond Theory, though limited. has delivered insightful information that directs the creation compounds with desired magnetic, catalytic, & materials structural characteristics in day-to-day products & technology. amalgams which restored form and Dental have function to hundreds of millions of teeth worldwide are mercurysilver alloys whose structural durability and longevities are partly attributed hybridization to the states of the metals present, yielding restorations that are resilient in the demanding oral environment characterized by temperature fluctuations, mechanical forces, & chemical exposures.

- 1. Colorimetric water test kits utilized by homeowners & environmental monitors to identify metal contaminants such as lead, copper, or iron operate through coordination reactions that yield visible color changes when metal ions interact with specific the ligands in the test reagents;
- INORGANIC CHEMISTRY
- 2. The catalytic precious metals employed in petroleum refining and pharmaceutical manufacturing depend on specific hybridization states in order to facilitate electron transfer and molecular activation for effective production on of fuel and drugs for enhanced mobility and health.
- 3. The effectiveness of different substances used in food packaging in inhibiting oxidative degradation depends on metal-based oxygen scavengers, whose effectiveness is due to hybridization states which allow forehanced oxygen binding and removal, thus promoting extended shelf life and minimizing food loss. The table glazes typically contain transition metal complexes, whose color is a function of hybridization and electronic character of metals such as copper, cobalt, or iron contained in the vitreous matrix.
- 4. These aesthetic finishes beautify functional items, turning them into aesthetic components of daily life, thus validating the application of Valence Bond Theory in aesthetic arts and crafts that beautify home environments.

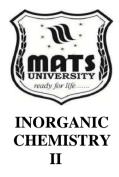
The principles of the Ligand Field Theory: have significantly improved UV protection without visible protection technology demonstrates how metal-ligand interactions directly contribute to preventing skin cancer & premature aging coordination compounds. This has improved the ability to design materials and technology to improve aesthetic value, efficiency, and functionality in various aspects of life. The sunblock protecting your skin from harmful ultraviolet radiation likely includes zinc oxide or titanium dioxide particles whose electronic properties, as influenced by ligand field effects, afford broad-spectrum UV protection without visible protection technology demonstrates how metal-ligand interactions directly contribute to preventing skin cancer & premature aging

- 1. The dynamic LCD screens that convey information across various devices, from wristwatches to televisions, employ color filters with metal complexes whose specific absorption characteristics, elucidated by ligand field splitting patterns, generate the red, green, & blue color components that amalgamate to produce full-color images; these display technologies have revolutionized access to information, entertainment, & communication by translating electronic signals into visible data through the principles of coordination chemistry.
- 2. The photochromic lenses in eyeglasses, which darken in sunlight & clear indoors, generally incorporate coordination complexes of silver, copper, or other transition metals within the lens material.
- 3. The contrast agents utilized in medical magnetic resonance imaging gain their efficacy from paramagnetic metal centers, with their magnetic characteristics influenced by ligand field effects; these diagnostic instruments improve the visualization of internal tissues, facilitating non-invasive identification of pathological conditions that may otherwise necessitate exploratory surgery.
- 4. Coordination compounds utilized in cancer chemotherapy, especially platinum complexes such as cisplatin & its derivatives, leverage ligand exchange kinetics influenced by ligand field effects to selectively attach to DNA in rapidly proliferating cells; these pharmaceutical agents have revolutionized cancer treatment outcomes despite their difficult side effect profiles.
- 5. The selectivity of ion-selective electrodes employed in water quality assessment, blood electrolyte analysis, & industrial process regulation arises from the preferential coordination of specific metal ions by meticulously engineered the ligands, resulting in sensors capable of differentiating chemically analogous species based on nuanced variations in coordination preferences. Collectively, these applications illustrate the practical implications of ligand field splitting theory, which governs the energetic configuration of d-orbitals in coordination compounds, directly influencing technologies that safeguard health, augment visual information presentation, facilitate medical diagnostics, & advance environmental sustainability across various facets of modern life.

Summary

This module focus on the bonding in metal complexes and is interpreted through three main theoretical approaches. Valence Bond Theory explains bonding through hybridization of atomic orbitals but lacks in accounting for magnetic behaviour, electronic spectra, and stability patterns. Ligand Field Theory enhances this understanding by addressing the splitting of d-orbitals in various geometries such as octahedral, tetrahedral, square planar, and others. It also considers the Jahn-Teller effect, Ligand Field Stabilization Energy (LFSE), and factors influencing crystal field splitting, as outlined in the spectrochemical series.

Molecular Orbital Theory provides a more detailed view by incorporating both sigma and pi interactions using group theoretical principles. It illustrates bonding through MO diagrams and highlights the role of π -back bonding in influencing bond stability. The nephelauxetic series further explains covalency in metal-ligand bonds. A comparative evaluation of these three theories reveals their individual strengths and limitations in explaining the structural, magnetic, and electronic characteristics of coordination compounds.



Multiple-Choice Questions (MCQs)

- 1. Valence Bond Theory (VBT) explains the bonding in metal complexes using:
- a) Molecular orbitals
- b) Hybridization & overlapping of atomic orbitals
- c) Electrostatic interactions only
- d) Crystal field interactions
- 2. Which of the following is not a limitation of Valence Bond Theory (VBT)?
- a) It does not explain the color of metal complexes
- b) It cannot explain the magnetic characteristics of all complexes
- c) It accurately predicts electronic spectra
- d) It does not consider the ligand field effects
- 3. In an octahedral field, the d-orbitals split into:
- a) t2gt_{2g}t2g (lower energy) & ege_geg (higher energy) levels
- b) ege_geg (lower energy) & t2gt_{2g}t2g (higher energy) levels
- c) $dxy,dxz,dyzd_{xy}, d_{xz}, d_{yz}dxy,dxz,dyz$ (higher energy) & $dz^2,dx^2-y^2d_{z^2}, d_{x^2-y^2}dz^2,dx^2-y^2$ (lower energy)
- d) Uniform energy levels
- 4. The Jahn-Teller Effect occurs primarily in:
- a) High-spin d⁶ octahedral complexes
- b) Low-spin d⁴ tetrahedral complexes
- c) d⁹ octahedral complexes
- d) d¹ square planar complexes
- 5. The Ligand Field Stabilization Energy (LFSE) is dependent on:
- a) The distribution of d-electrons in metal orbitals
- b) The oxidation state of the metal
- c) The nature of the ligand
- d) All of the above

- 6. The Spectrochemical Series arranges the ligands based on their ability to:
- INORGANIC CHEMISTRY

- a) Form covalent bonds
- b) Increase the splitting parameter (Δ)
- c) Decrease the oxidation state of metal ions
- d) Enhance thermal stability
- 7. Which metal oxidation state generally results in a larger splitting energy (Δ)?
- a) + 1
- b) + 2
- c) +3
- d) +4
- 8. In Molecular Orbital Theory (MOT) for metal complexes, π bonding occurs due to:
- a) Overlap of metal d-orbitals with ligand p- or π -orbitals
- b) Purely ionic interactions
- c) Weak van der Waals forces
- d) Absence of hybridization
- 9. In MOT diagrams, π -acceptor the ligands (e.g., CO, CN $^-$) tend to:
- a) Increase the metal-ligand bond strength
- b) Decrease metal oxidation state
- c) Act as weak-field the ligands
- d) Reduce ligand field splitting

- 10. Which of the following correctly compares VBT, LFT, & MOT?
- a) VBT explains color better than LFT
- b) LFT is better than MOT in explaining bonding
- c) MOT considers both σ & π bonding, unlike VBT & LFT
- d) VBT & MOT predict paramagnetism more accurately than LFT

Answers Key:

- 1. b
- 2. c
- 3. a
- 4. c
- 5. d
- 6. b
- 7. d
- 8. a
- 9. a
- 10. c

Short Answer Questions

- 1. Define metal complexes & explain why theoretical models are important in appreciate and comprehend ing them.
- 2. What are the main assumptions of Valence Bond Theory (VBT)?
- 3. How does Ligand Field Theory (LFT) explain d-orbital splitting in octahedral fields?
- 4. Explain the Jahn-Teller Effect with an example.
- 5. What is Ligand Field Stabilization Energy (LFSE), & why is it important?
- 6. How does the spectrochemical series affect ligand field splitting?

- 7. What factors influence the crystal field splitting parameter(Δ)?
- 8 Compare σ & π bonding in metal complexes based on Molecular Orbital Theory (MOT).
- 9.H ow does π bonding in metal complexes affect their stability?
- 10, List two advantages & two disadvantages of each metal complex theory (VBT, LFT, MOT).

Long Answer Questions

- 1. Explain the Valence Bond Theory (VBT) & discuss its strengths & limitations in explaining coordination complexes.
 - 2. Describe the splitting of d-orbitals in various ligand fields (octahedral, tetrahedral, square planar) according to Ligand Field Theory (LFT).
 - 3. Discuss the Jahn-Teller Effect, its origin, & how it influences molecular structure & spectra.
 - 4. What is Ligand Field Stabilization Energy (LFSE)? Explain how LFSE affects the thermodynamics & stability of metal complexes.
 - 5. Explain the factors affecting the splitting parameter (Δ), including metal ion characteristics, oxidation state, & ligand nature.
 - 6. Describe Molecular Orbital Theory (MOT) for metal complexes, including group theory, $\sigma \& \pi$ bonding, & MO diagrams.
 - 7. Compare & contrast Valence Bond Theory (VBT), Ligand Field Theory (LFT), & Molecular Orbital Theory (MOT) in terms of their applications & limitations.
 - 8. Explain the Spectrochemical Series & how it helps predict the field strength of the ligands.
 - 9. Discuss the role of π bonding in metal complexes & how it affects ligand field stabilization & spectroscopic characteristics.
 - 10. How do theoretical models of metal complexes help in appreciate and comprehend ing their magnetic, electronic, & structural characteristics?

INORGANIC CHEMISTRY

MODULE -2

SPECTRAL & MAGNETIC CHARACTERISTICS OF METAL COMPLEX

Objectives

- To comprehend the spectral & magnetic characteristics of metal complexes & their importance in coordination chemistry.
- To comprehend the formulation & analysis of term symbols for d-ions, encompassing multiplicity & degeneracy.
- To investigate electronic transitions in metal complexes, emphasizing d-d transitions, selection criteria, Orgel diagrams, & Tanabe-Sugano diagrams.
- To investigate the impacts of Jahn-Teller distortion, spin-orbit coupling, & charge transfer on spectral characteristics.

Unit 2.1 Introduction to Spectral & Magnetic Characteristics

Electronic spectroscopy and magnetism, two fundamental physical phenomena that serve as the foundation of atomic and molecular structure of matter, have greatly expanded our knowledge and appreciation of molecular systems. Features of this type, bound up with the electronic structure of materials, are powerful analytical tools in the hands of researchers in fields ranging from chemistry to physics, materials science, Electronic spectra are a and astronomy. type of spectra that occurs due to the interaction between electromagnetic radiation and transitions in energy levels. atoms molecules, leading to

According to quantum mechanical principles, these transitions generate special spectral patterns that serve as identifiers for chemistry. Light absorption or emission at specific wavelengths provides valuable information about the electronic structure, nature of bonding, and molecular motion. Magnetic properties are also a consequence of the intrinsic spin of electrons, as well as their orbital motion, in atoms and molecules. Magnetic ordering of materials i.e. diamagnetic/paramagnetic/ferromagnetic & antiferromagnetic provides a great deal of information about electronic distribution & structure arrangement at atomic scale.

2.1.1 Theoretical Background for Electronic Transitions

Electronic transitions are the basis of spectroscopic phenomena and result from the quantum mechanical behaviour of electrons in atoms & molecules. When electrons jump from one energy state to another, including when they discharge light, for example, these transitions are electromagnetically

coupled, & they will either absorb or release electromagnetic radiation with energy equal to the difference between their energies. At the core of this mechanism is quantum theory,

specifically, Planck's & Einstein's realization that energy is quantized & light behaves like a wave & a particle simultaneously. The Bohr model was the first successful theoretical model describing electronic transitions in the hydrogen atom & modeled the energy levels as En =-RH/n², with RH the Rydberg constant & n the principal quantum number. Although this model described the hydrogen spectrum, more complex systems needed the solution to wave mechanics in the work of Erwin Schrödinger. The wave function of a quantum mechanical system is given by the Schrödinger equation ($\hat{H}\Psi = E\Psi$), in which the Hamiltonian operator (\hat{H}) contains terms for kinetic & potential energy. As the Schrödinger equation is not solvable, approximate techniques must be employed for many-electron systems.

One widely used approach is the Born-Oppenheimer approximation, which separates the nuclear & electronic degrees of freedom in a molecular system, thereby greatly simplifying mechanical treatment of molecules. The approximation can often be importantly justified owing to violent differences between the masses of nuclei & electrons, for which one can often treat electronic separately the transitions from nuclear motion. Electronic transition selection rules bear a relationship with quantum mechanics, via calculation of transition dipole moments. These regulations define the changes that are "permissible" probability) and those that are "prohibited" (low or zero probability). The minimum choice criteria are the Laporte rule, which prohibits direct transitions between states of like parity in centrosymmetric molecules. Spin selection rule (S = 0), i.e., total spin quantum number is conserved. By virtue of the conservation law of angular momentum, there is a strong selection rule for orbital angular momentum(L=±1). Occasionally, the forbidden transitions occur via mechanisms that circumvent these selection rules, including spin-orbit coupling, and magnetic dipole- and electric coupling, vibronic quadrupole-associated interactions.

The electronic transition size depends proportionally on the square of the transition dipole moment, which is expressed a s=f*id, where i and f are the initial and final electronic states' wave functions, respectively, and the electric dipole moment operator. This is the integral which computes the overlap between states & provides, through Fermis Golden Rule, the transition probability.

The molecular orbital theory (Chapter 8) extends these concepts to molecules, describing electronic transitions between molecular orbitals (e.g., $\sigma \rightarrow \sigma$, $\pi \rightarrow \pi$, & $n \rightarrow \pi^*$ transitions). The energies of such transitions are connected to the bonding features & are affected by conjugation, substituent effects, solvents, etc.

The time-dependent perturbation theory provides a rigorous treatment of the role played by electromagnetic radiation in inducing transitions between quantum states. It considers the electromagnetic field as a perturbation to the molecular Hamiltonian, & produces transition rates expressions that relate directly to experimentally accessible magnitudes, such as few-photon absorption coefficients or emission intensities. Modern theoretical descriptions commonly use density functional theory (DFT) & time-dependent DFT to estimate the energies & intensities of electronic transitions with great accuracy. These tools have become important to interpret experimental spectra & to predict the spectroscopic characteristics of new materials. Hence, the theoretical underpinnings of electronic transitions are a refined synthesis of quantum mechanics, electromagnetic theory, computational methods. This framework not only accounts for observed spectroscopic phenomena, but also informs future design principles for molecules & materials with tunable optical characteristics for applications ranging from solar cells to fluorescent biomarkers.

2.1.2 Fundamental Aspects of Magnetism

The magnetic characteristics of materials come from the motion of electric charges (mostly electrons), which creates magnetic moments via two ways: by the orbital angular momentum (the movement of electrons in orbits around nuclei) & the intrinsic spin angular momentum. The total magnetic moment of an atom or molecule is expected to be given by the vector sum of these contributions, subject to the quantum mechanical rules that restrict angular momentum to discrete values. Magnetic susceptibility (χ) describes the characteristics of how a material interacts with external magnetic fields, as the extent of the induced magnetism (M) when exposed to an external magnetic field (H) can be expressed as: $M = \gamma H$. Based on the susceptibility values & the mechanisms that lead to the magnetization of the material, materials can be broadly classified into several categories, including: Diamagnetic material has a negative susceptibility (χ 0) & thus generate magnetization that is parallel to the applied field. Parametricism arises when there are unpaired electrons with random orientations of magnetic moments (thermal action & Brown motion) but which become partly to some extent aligned in an external field. The susceptibility obeys the Curie law: γ

= C/T, where C is the Curie constant & T is the absolute temperature.

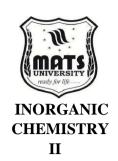
The ferromagnetic material is known to obtain a spontaneous magnetization in the absence of an external field & to have very high positive values of the susceptibility. This phenomenon occurs due to the strong exchange interactions that favor parallel alignment of neighboring magnetic moments and produce magnetic domains. Above the Curie temperature (TC), exchange interactions are overcome


by thermal energy, & ferromagnetic materials exhibit paramagnetic behavior. Antiferromagnetic materials have magnetic moments which are arranged in an anti-parallel fashion, so that the net magnetization is zero, although there is high internal order. Above Néel temperature (TN), thermal fluctuations disrupt this ordering, & the material is paramagnetic. Unlike antiferromagnetic materials, ferromagnetic materials are distinguished by collinear magnetic moments of different magnitude that give rise to a net magnetization. This class of materials exhibits the characteristics of both ferromagnetic and antiferromagnetic systems, like those in ferrites that are widely used in electronic devices. In solids, the most powerful interactions which result in magnetic ordering are quantum mechanical in nature group exchanges due to Coulomb repulsion of the electrons with the Pauli exclusion principle. H = 2JSS (J is exchange integral & S & S are spin operators). The ferromagnetic ordering is facilitated by positive values of J and values of J. Magnetic antiferro magnetic ordering by negative anisotropy, or directional dependence of magnetic properties, is due to its crystal structure (magneto crystalline anisotropy), sample shape (shape anisotropy), & external stresses(magneto elastic anisotropy). These interactions create preferred directions of magnetization referred to as easy axes & determine the macroscopic magnetic properties. Magnetic behavior is significantly influenced by thermal fluctuations because of temperature changes. temperatures (TC TN) are order-disorder phase Critical or

Critical temperatures (TC or TN) are order-disorder phase transitions, where thermal energy is balanced with exchange energy to control magnetic ordering. Above these temperatures, all materials show Curie-Weiss behavior: $\chi = C/(T-\theta)$, where θ is the so-called Weiss constant. Materials are influenced by external magnetic fields capable of aligning magnetic moments & causing domain wall motion in ferromagnetics & ferrimagnets. Such a process produces a typical sigmoidal magnetization curve (hysteresis loop), which allows determining important parameters like saturation magnetization, appreciate and comprehend the basis of magnetic behaviour has led to technological innovations in data storage, sensing, energy conversion & medical imaging. Ongoing research of emergent phenomena including multiferroicity, topological magnetic states, & quantum magnetism, using large volumes of magnet materials, will not only broaden the horizon of magnetism, but, in particular, offer new scientific & technological applications.

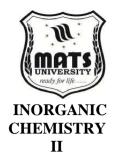
2.1. 3 Electromagnetic Spectrum and Its Regions

The electromagnetic spectrum is the range of all electromagnetic radiation frequencies, all waves emitted by the sun and all the



wavelengths needed by plants. This full continuum, ranging from lowenergy radio waves to high-energy gamma rays, interacts differently with matter & gives us unique spectroscopic information. The lowest energy region of the spectrum is occupied by radio waves with wavelengths ranging from kilometers to centimeters. Despite their low energy, radio waves allow powerful analytical methods, including nuclear magnetic resonance (NMR) spectroscopy, which investigates the magnetic environment of atomic nuclei, and electron paramagnetic resonance (EPR), which investigates unpaired electrons. These techniques give detailed structural information of molecules in a nondestructive manner. Microwave radiation (centimeter to millimeter wavelengths) interacts with rotational molecular energy levels. Microwave is most accurate technique spectroscopy the of measurement of rotational transitions, thus resulting in extremely accurate molecular geometries and dipole moment determinations. Moreover, microwave radiation in ferromagnetic resonance studies studies the driving of electron spin transitions that is used to explore & better appreciate and comprehend magnetic materials. Infrared (IR) radiation, of wavelengths between 700nm and 1mm, induces the vibrational modes of molecules to a large extent. The IR spectrum is segmented into several regions: far-infrared (10-400 cm⁻¹), mid-infrared (400-4000 cm⁻¹), and near-infrared (4000-14000 cm⁻¹). Mid-IR spectra are most useful to derive structures by assigning functional groups from their diagnostic absorption bands, whereas far-IR spectra give information regarding crystal lattice vibrations and metal-ligand vibrations. Near infrared (Near-IR) spectroscopy is routinely used for quick compositional analysis and process control. Visible (400-700 nm) is associated with electronic transitions in the atoms and molecules (typically valence electrons). These alterations create colors that can be seenby human eyes, and they are the basis of calorimetry, photometry, and most spectrophotometric techniques.

What it tests: Conjugated systems, d-d transitions in transition metal complexes, charge transfer Ultraviolet (UV) radiation ranges from 10 to 400 nm and is classified into near- UV (400-200 nm) & vacuum- UV (200-10 nm). UV spectroscopy has mainly shown the electronic transitions of π -electrons, non-bonding electrons & charge transfer species. This approach is especially useful for the investigation of aromatic species, unsaturated systems, & biological compounds such as proteins & nucleic acids.

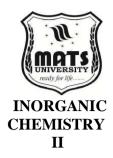

X- rays (0.01-10 nm) excite core (rather than valence) electrons, revealing atomic composition & structure. X-ray absorption spectroscopy, including XANES (X-ray Absorption Near Edge Structure) & EXAFS (Extended X-ray Absorption Fine Structure) probes electronic structure & local coordination environments [5]. X-ray diffraction (XRD) techniques yield atomic-resolution crystal structures, while X-ray photoelectron spectroscopy (XPS) provides

valuable information on the elemental composition & oxidation states of surface species. Gamma rays (less than 0.01 nm), emitted from nuclear reactions, are the highest energy photons in the spectrum. Gamma rays are exploited in Mössbauer spectroscopy to probe nuclear energy levels influenced by chemical phase environments, in this way providing details about oxidation states, coordination numbers, & magnetic characteristics, most commonly for iron bearing compounds. Most regions of the electromagnetic spectrum are not distinctly separated & overlap one another in practice. Modern spectroscopic methods often amalgamate multiple domains or utilize couplings between such domains. As an example, Raman spectroscopy uses visible or near-IR radiation to indirectly excite vibrational transitions via inelastic scattering. With the advent of tunable lasers, synchrotron radiation sources & free- electron lasers, the range of accessible spectral regions has been greatly extended, making possible a new generation of techniques such as time-resolved spectroscopy. These advances enable scientists to investigate dynamic processes over time scales from fem to seconds to seconds and thus uncover features of molecular dynamics and reaction mechanisms inaccessible previously. The understanding and appreciation of the interactions electromagnetic radiation with matter for nearly the whole spectrum has revolutionized the discipline of analytical chemistry, materials science, astronomy& medical diagnosis. Spectral regions provide different aspects to these properties of the materials, & together, these provide a unique set of tools that includes most if not all of the scientific disciplines. Electronic Transitions Types Electronic transitions are the excitation of electrons to a higher energy state and are the basis of both absorption and emission spectroscopy.

Characteristics of these transitions also differ markedly as a function of the electronic structure of the particular atom or molecule involved, thus making it possible to identify the elements by unique spectral signatures that yield analytical information. Electronic transitions in atomic structures take place between defined energy levels distinguished based on the principal quantum numbers related to different electron configurations.

The simplest case is the hydrogen atom, in which energy level jumps lead to the well-known Lyman (ultraviolet), Balmer (visible), and Paschen(infrared)series. In the case of multi-electron the single electron discrete energy levels are altered by the remaining electrons & their interactions (e.g., by electronelectron repulsions), producing so-called fine structure of spectral lines. However, in part because of the additional degrees of freedom associated with vibrational & rotational motion, the electronic

transitions in molecules are much more complicated. Electronic transitions in molecules fall to spare types:


- $\sigma \to \sigma$: Promoting an electron from a bonding σ orbital to an antibonding σ orbital. They demand substantial energy (usually the vacuum ultraviolet region) & are specific to saturated compounds featuring C-C & C-H bonds. Conventional UV-visible spectroscopy does not observe these transitions as they require too high a photon energy.
- $n \rightarrow \sigma *$ transitions: These transitions consist in the excitation of nonbonding (lone pair) electrons to antibonding $\sigma *$ orbitals. This is common in molecules containing atoms which have lone pairs (O, N, S, halogens); such transitions are generally around 150-250nm & moderately intense. While solvents can have a large effect on such transitions, polar protic solvents are commonly blue-shifted due to hydrogen bonding with lone pairs.
- $n \to \pi^*$ transitions: these occur in molecules that have both non-bonding electrons & π bonds (carbonyls, nitriles, azo compounds), this is characterised by the promotion of a non-bonding electron to an antibonding π^* orbital. They usually present in the near-UV to visible region (250-350 nm) & are weak ($\epsilon \approx 10$ -100 L•mol⁻¹•cm⁻¹) but can easily be identified by the influence of solvent polarity, in many instances exhibiting red shifts in more polar solvents.
- $\pi \to \pi^*$ transitions: Transitions in these occur, where π -bonded electrons are excited to antibonding π^* orbitals, as seen in unsaturated & aromatic compounds. They usually demonstrate high absorption ($\epsilon \approx 1,000\text{-}10,000 \, \text{L} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$) in the UV-visible range. These processes are markedly influenced by conjugation, the extension of which leads to a bathochromic shift (red shift) & enhancement of the absorbance, that is, with each conjugated double bond present, the shift & the absorbance are increased cumulatively.
- Charge transfer transitions: These are when electrons are transferred between molecular orbitals on different parts of the molecule or on different molecules. Coordination compounds typically involve metal-to-ligand charge transfer (MLCT), ligand-to-metal charge transfer (LMCT), and ligand-to-ligand charge transfer (LLCT). Doing so often yields intense absorption bands ($\epsilon > 10,000$ L•mol⁻¹•cm⁻¹) which contribute to the vibrant colors of many transition metal complexes.
- d-d transitions: These transitions usually happen in transition metal compounds, where an electron from a partially filled d-orbital redistributes to a higher d orbital. In octahedral complexes, the transitions are between t₂g & eg levels, while tetrahedral complexes show transitions between e and t₂ levels. These transitions are weak

(on the order of 10⁻¹ to 10² L•mol⁻¹•cm⁻¹) due to Laporte selection rule restrictions but provide significant insight into coordination geometry & ligand field strength. f-f transitions: Transitions between quite different states characteristic of lanthanide & actinide are compounds(exclusively), as these transitions occur within the 4f or 5f orbitals. Due to shielding of f-orbital outer electrons, they provide less interaction with the chemical environment forming narrow & sharp bands. These transitions are generally forbidden by selection rules and therefore are of low intensity. Conjugation, electron donating or withdrawing substituents, stereochemistry, & local environment influences the energy & intensity of electronic transitions. The extended conjugation also decreases the energy of the occupied & the unoccupied orbitals resulting in bathochromic shifts. Such groups with lone pairs that can leak increase binding (auxochromes), whereas electron donating or electron with drawing groups can significantly alter transition energies by inductive & mesomeric effects. By knowing the different kinds of molecules and their behavior in electronic transitions, researchers are able to interpret complex spectra, analyze unknown materials, study reaction mechanisms, and create molecules with specific spectral features for use in sunscreens, dyes, photovoltaic devices, and sensors.

The magnetic materials are categorized according to their response to the applied magnetic fields, which is the result of their electronic structure and the interaction of the magnetic moment. Such a classification serves as a paradigm for the determination of magnetic properties within various materials and at various temperatures. Diamagnetism is attributed to electron movement in an atom & is a property of matter; all matter does respond to some extent diamagnetically, but the strength is material dependent. This intrinsic characteristic is a consequence of the electron pair orbital dynamics, which is influenced by an external field following Lenz's law. All substances are diamagnetic to a certain degree; however, this phenomenon is normally overshadowed by stronger effects in substances that have unpaired electrons. Pure diamagnetism is seen in superconductors (which show perfect diamagnetism, the Meissner effect), noble gases, most organic molecules, & materials with completely filled electron shells such as bismuth, pyrolytic carbon mercury. Independent of the conditions, all the paramagnetic materials have a positive magnetic susceptibility, have a value between 10 and 103. This is due to the fact that they have unpaired electrons in their atomic lattice, which gives them intrinsic magnetic moments.

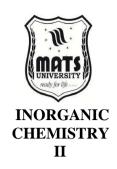
. Without any external field, thermal agitation

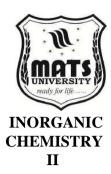
randomizes the direction of these moments, leading to net magnetization. In event, after a field applied. the anv moments are partially aligned with it, producing magnetization according to the Curie law = C/T (where C is the material's Curie constant & T the absolute temperature). The majority of transition metal compounds, some of earth metals, molecular oxygen, and some free organic radicals are paramagnetic. Ferromagnetic substances are under their Curie temperature (TC) spontaneously magnetized owing to strong exchange interactions among neighboring magnetic moments that are parallel to each other. These materials possess immensely high positive susceptibilities & intricate magnetization behavior with magnetic domains & hysteresis. ferrimagnets exhibit a nonlinear response to applied fields, attained at the saturation magnetization in which all domains are aligned with the applied field. Iron, cobalt, nickel, and gadolinium are a range of common ferromagnetic elements, as well as various alloys of these substances. The magnetic moments in antiferromagnetic substances are aligned antiparallel to one another, but with some degree of ordering in the material. Since they are oppositely aligned, there is no overall magnetization.

This ordering occurs below the Néel temperature (TN) and is due to the effect of negative exchange interactions between the adjacent moments.

These relationships are destroyed by thermal fluctuations at TN, above which the material is paramagnetic and obeys the Curie-Weiss law (negative Weiss constant) =C/(T+). They include manganese oxide, nickel oxide, and transition metal halides. Ferrimagnetic materials are made up of two or more sublattices with anti-parallel magnetic moments of different strengths in order to yield a net magnetization. This non-symmetric cancellation produces ferromagnetism- like phenomena like domain &hysteresis, but usually with reduced saturation magnetization. In that ferrites (MFeO, where M is divalent meta lion) constitute the context. most technologically important group of ferrimagnetic substances based on their use in transformers, inductors, and data storage equipment. This categorical framework is further extended through the introduction of various specialized categories. Superparamagnetic material is comprised of ferromagnetic or ferrimagnetic nanometer-scale particles that are small enough to be below the threshold of individual magnetic domains. Also, paramagnetic behavior of the particles with highly large magnetic moments is observable, since thermal fluctuations can reduce the high energy barrier for the reversal of such moments. Meta magnetic materials show magnetic state change, i.e., antiferromagnetic to ferromagnetic transition (aFMF), when subjected to certain external conditions, i.e., suitable field strength, temperature, or pressure.

In Helimagnetism, the competing exchange interactions between spins


reveals a 3D complex ordering by the spiral arrangement of the magnetic moments. speromagnets & spin glass systems hold randomly oriented frozen magnetic moments due to disorder & competing interactions that prohibit normal long-range order. Multiferroics are those materials that display more than one of the ferroic characteristics (ferromagnetism, ferroelectricity, or ferroelasticity) at the same time, which allows cross-coupling effects, allowing to control the magnetism with the electric fields or stress. Magnetic material can be categorized not only with respect to the intrinsic magnetic ordering, but also practical characteristics like coercivity (resistance to demagnetization) & remanence (magnetization retained when the magnetic field is reduced). Using these characteristics, ferromagnetic & ferrimagnetic materials are grouped as:


- Soft magnetic materials (low coercivity, low remanence): easily magnetized & demagnetized, found in transformers & electromagnets.
- Hard (high coercivity, high remanence): Difficult to demagnetize, used for permanent magnets.
- Semi-hard magnetic materials (intermediate characteristics): used in applications that need control of switching behavior.

It is also a guide to the quest for new magnetic materials with the required properties for a variety of technical uses. Light-Matter Interactions Spectroscopic effects are generally governed by the interaction of matter&light, which can be decomposed into a spectrum of individual mechanisms each of which might retrieve information. All such interactions are material property correlation-based between the energy of the photon & the energy levels of the material & are all governed by quantum mechanical laws. When electromagnetic radiation hits a piece of matter, it may be reflected, refracted, scattered, absorbed, or emitted. The relative significance of these processes depends on the electronic structure of the material & the wavelength of radiation. Absorption and emission phenomena are especially convenient for spectroscopic studies

When the energy of a photon matches the energy gap between two quantum states of the material, the photon's energy can be absorbed, promoting an electron from a lower energy state to a higher energy state (that is why we need a photon in a matrix to explain the matrix with COM the proof of which is provided in the theory of generation). This occurs according to the Bohr-Einstein frequency condition:

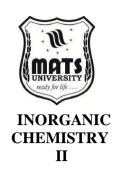
 $\Delta E = E_2 - E_1 = h\nu$, where ΔE is the energy difference of the states, h is Planck's constant, & ν is the frequency of the absorbed photon.

Absorption varies directly with the probability of the transition dipole moment, an estimate of the electromagnetic field strength coupling with the electrons in the material. Beer-Lambert's law accounts for the change in absorption strength in solutions A=cl, where A is the absorbance, is the molar absorption coefficient (indicator of the extent to which a substance interferes with light of a given wavelength), c is concentration, &1 is path length. This connection allows to determine the composition of the sample in a quantitative manner bv means of absorption spectroscopy. Atomic species absorption of light creates line spectra with tightly spaced, discrete features corresponding to transitions between highly discrete energy levels. On the other hand, molecular absorption gives broader bands because other rotational & vibrational transitions overlap each other, which happen simultaneously with the electronic transition. Thisband broadening is due to the Franck-Condon principle, according to which vibronic transitions possess a probability that depends on the extent of overlap of vibrational wave functions of ground and excited electronic states. When electrons emit energy by falling from a higher to a lower energy state, electromagnetic radiation emitted a process known as emission. When a state is in drops from a state of being energized to one that has lower energy & is not being stimulated by an arriving photon the emission is random, because it can be any amount of velocity & kind of energy as long as the energy added to the total energy makes up for the energy that waslost. The area of stimulated emission, the basis of the functioning of lasers, is the interaction between the excited state atom and the photon, the hit atom emitting a second of the same type of photon, the process amplifying the original input. Emission is categorized into two main aspects, depending on their timescales • Fluorescence with prompt emission (10 to 10 seconds, typically) from an excited electronic state after internal conversion or non-radiative relaxation to the lowest vibrational level of that state. This process is usually present among states with identical spin multiplicity (i.e. singlet to singlet) & leads to emission at longer wavelengths than the excitation light (Stokes shift).

Phosphorescence has much longer emission lifetimes (10⁻³ seconds to hours) than fluorescence, as phosphorescence involves transitions between states of different spin multiplicities (generally triplet to singlet), which are prohibited. For this to happen, intersystem crossing (more movement between spin states, with spin-orbit coupling allowing intersystem mixing) must occur and, in general, provide larger Stokes shifts than fluorescence.

Furthermore, scattering phenomena enable new pathways for light- matter interactions. Elastic (or Rayleigh) scattering does not change the photon energy but does redirect it, giving rise to effects such as a blue sky. Raman scattering, where photons can gain or lose energy to match molecular vibrations or rotations, & Brillouin scattering, which

involves interaction of light with acoustic phonons in condensed matter, are inelastic scattering processes. While the quantum efficiency or quantum yield of luminescence processes (fluorescence or phosphorescence) gives an idea about the ratio of emitted & absorbed photons & thus information on competing radiative & non-radiative deactivation pathways. Quantum yields vary from close to zero to near unity depending on the molecular structure and environment.


Several environmental factors profoundly impact light-matter interactions:

- Solvent effects include the effects of hydrogen bonding, dipoledipole interactions, & refractive index on electronic transition energies, which lead to spectral shifts, providing details of solute- solvent interactions.
- Temperature influences spectral line widths & intensities, through population distributions among the energy levels (under Boltzmann statistics) & also by changing the non-radiative decay rates.
- Pressure can influence molecular shapes and intermolecular separations, & thus transition energies & intensities, especially in condensed phases.
- External electric & magnetic fields cause splitting of the energy levels (Stark & Zeeman effects, respectively), providing insights into electronic structure & symmetry.

By mastering the fundamental principles that dictate how light interacts with matter, researchers are able to obtain detailed insights into material characteristics through spectroscopic measurements. To rationalize these interactions, the field of spectroscopy developed rich analytical tools for chemical identification & structural characterization, & they provide the foundation for a broad range of technologies, including lasers, photovoltaics, optical communication, & biomedical imaging & diagnostics.

2.1.4 Electronic Structure and Magnetic Characteristics Relationship

There is a direct connection between quantum mechanical concepts & physical macroscopic phenomena through the complex relationship between electronic structure & magnetic characteristics. This link serves as a capacitance tool in enhancing conceptual appreciate and comprehend ing & engineering of magnetic materials for their use in different applications. Magnetic characteristics arise from two factors

at the atomic level: orbital angular momentum (L) associated with electrons orbiting the nucleus & spin angular momentum (S) from the electrons themselves. Individual contributions are summed up to vield a total magnetic moment for the atom using quantum mechanical coupling schemes, Russell-Saunders (LS) coupling being common in the lighter & elements the i-i coupling appropriate for the heavier elements. For transition metal ions, the crystal field theory predicts the chemical environments that will dictate the magnetic character.

Depending upon ligand fields & how we place the the ligands around the d-orbitals, d-orbitals will become split which will change the configuration of electrons which will change the magnetic moment. Strong-field the ligands lead to large crystal field splitting () in octahedral complexes, giving rise to low-spin configurations containing paired electrons & diminished magnetic moments.

In contrast, weak-field the ligands produce high-spin configurations with maximal unpaired electrons & greater magnetic moments. The trend is described in terms of spectrochemical series, which lists the ligands in order of increasing ligand field strength as follows: CO > CN > NO > phen > NH > en > py > HO > OH > F > Cl > Br > I.

The effective magnetic moment (μ eff) is determined from the spin-only expression, μ eff = g $\sqrt{S}(S+1)$ μ B, where g is the Landé g-factor (which is about 2 for electrons), S is the total spin quantum number, & μ B is the Bohr magneton. This is a reasonable approximation for first-row transition metals, where orbital contributions are increasingly more relevant for heavier elements & must be included in the more complete formula: μ eff = $g\sqrt{J}(J+1)$ μ B with J the total angular momentum quantum number.

Summary

Spectral and magnetic characteristics of coordination complexes provide insight into their electronic structure. Electronic transitions (mainly d–d and charge transfer) are studied using the UV–Visible region of the electromagnetic spectrum. The magnetic properties of complexes depend on the number of unpaired electrons: paramagnetic (unpaired electrons) and diamagnetic (all paired). Magnetic susceptibility measurements reveal electronic configurations and spin states. The relationship between electronic structure and magnetism helps explain color, geometry, stability, and reactivity of metal complexes.

Multiple Choice Questions (MCQs):

- **Q1.** Which type of transition is most common in transition metal complexes?
- a) $\sigma \rightarrow \sigma^*$
- b) $\pi \rightarrow \pi^*$
- c) d-d transitions
- d) n $\rightarrow \pi^*$

Answer: C

- **Q2.** A complex with all electrons paired will exhibit:
- a) Paramagnetism
- b) Ferromagnetism
- c) Diamagnetism
- d) Antiferromagnetism

Answer: C

- **Q3.** Which region of the electromagnetic spectrum is used for studying electronic transitions in complexes?
- a) Microwave
- b) UV-Visible
- c) Infrared
- d) X-ray

Answer: B

Q4. Magnetic susceptibility is directly related to:

- a) Number of bonded ligands
- b) Number of unpaired electrons
- c) Oxidation state only
- d) Spin-orbit coupling

Answer: B

Q5. A high-spin octahedral d⁵ complex will have:

- a) 0 unpaired electrons
- b) 3 unpaired electrons
- c) 5 unpaired electrons
- d) 1 unpaired electron

Answer: C

Short Questions:

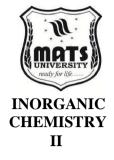
- 1. Define electronic transitions in coordination complexes.
- 2. What is the significance of the electromagnetic spectrum in studying transition metal complexes?
- 3. How does unpaired electron count influence magnetic properties?
- 4. Differentiate between paramagnetism and diamagnetism.
- 5. What type of transitions are observed in d–d spectra of metal complexes?

Long Questions:

- 1. Explain the spectral characteristics of coordination complexes with reference to d–d and charge transfer transitions.
- 2. Discuss the theoretical background of electronic transitions in transition metal complexes using Crystal Field Theory (CFT).
- 3. Elaborate on the fundamental aspects of magnetism in metal complexes. How are magnetic susceptibility measurements useful?
- 4. Describe the regions of the electromagnetic spectrum and their role in studying the structure and properties of metal complexes.
- 5. Explain the relationship between electronic structure and magnetic properties of coordination complexes with examples.

UNIT 2.2

Electronic Transitions in Metal Complexes


For this reason, electronic transitions in transition metal complexes are among the most exciting subjects of study in inorganic chemistry & present deep information about the electronic structure, bonding and spectroscopic characteristics of these compounds. Transition metal complexes are known to display various colors due to these electronic transitions, especially the ones related to the d orbitals present at the metal center. These transitions are electron transitions between various energy levels in the complex that absorb certain wavelengths of the electromagnetic radiation. Knowledge of crystal field theory, molecular orbital theory, & quantum mechanical selection rules that dictate which transitions are allowed or forbidden helps to explain these transitions.

INORGANIC CHEMISTRY

2.2.1 Characteristics of d-d Transitions

The d-d transitions are electronic transitions between two of the split d orbitals back & forth in a metal complex. In octahedral complexes, the

five degenerate d orbitals become split into two sets, giving rise to the higher energy eg set $(dx^2-y^2 \& dz^2)$ orbitals) & the lower energy t2g set (dxy, dxz, & dyz) orbitals). Here, t2 & e form two sets, with the energy gap between the two sets described as the crystal field splitting parameter, Δo (the 'o' refers to the octahedral arrangement). So the name of the theme is that d-d transitions are low intense. This low intensity results from the Laporte selection rule, which prohibits transitions between orbitals of the same parity (e.g., $d\rightarrow d$ transitions) in centrosymmetric molecules. However, there can still be (albeit weak) transitions if such vibronic coupling is possible where the center of symmetry is momentarily removed via asymmetric vibrations that render the transitions "vibronically allowed." This is the reason why many transition metal complexes are colored even though they may have theoretical d-d transitions that are "forbidden".

2.2.2 The colors of the complex (and therefore energies of d-d transitions) depend on several things:

- Electron Configurations: The shape of the d-orbitals & metal:s oxidation state can affect the overall crystal field splitting.
- Nature of the ligands: Strong field the ligands (the ligands towards top of spectrochemical series) cause greater splitting than weak field the ligands.
- The complex geometry: Various geometries (octahedral, tetrahedral, square planar) give rise to different splitting patterns & different transition energies.
- Intrinsic energy of the d orbitals of metal ion: Different metals (e.g. Cu, Ni, Fe, Co, etc.) have different stable forms due to the relative energies of their d orbitals.

The d-d transitions can also be classified based on the orbitals. For octahedral complexes, t2g to eg transitions occur, and for tetrahedral complexes, etot2transitions occur. The magnitude and nature of these changes can be very informative regarding the electronic structure and bonding characteristics in the complex.

A third significant characteristic relates to the band width of such transitions. As opposed to the sharp—spectral—lines of atomic transitions, d-d transitions in complexes are characterized by broadbands owing to the Franck-Condon principle. The Born-Oppenheimer approximation is that when an electron moves into a higher energy—state, the nuclear geometry does not immediately return. But the new electronic state is defined by a special equilibrium nuclear structure, and thus—vibrational fine structure appears as a wide absorption band. There are a number of selection rules that govern whether an electronic transition will happen in metal complexes or not. These rules are based on quantum mechanics & describe the intensity and tendency of spectral bands.

2.2. 3 Spin Selection Rule

Transition involving change in spin multiplicity is forbidden by spin selection rule. This can be written mathematically as $\Delta S = 0$, where S is the total spin quantum number. This rule is due to the reason that electromagnetic radiation does not interact efficiently with the spin of an electron. Transitions that break this rule ($\Delta S \neq 0$) are termed spinforbidden transitions, & would be very weak if observed. The example of a high-spin d⁵ octahedral complex such as [Mn(H₂O)₆]²⁺; in such a case the ground state possesses a spin multiplicity of 6 (as it has 5 d electrons, with all of them having parallel spins). Transitions to excited states with different spin multiplicities violate the spin selection rule (forbidden). But when spin-orbit coupling is introduced, the strong selection rules can be weakened, particularly in the case of heavier transition metals. The molar extinction coefficient (E) is often used to quantify the intensity of electronic transitions. The ε values for spinallowed transitions are usually 1-1000 L•mol⁻¹•cm⁻¹, while spinforbidden transitions have much smaller ε values (<1 L•mol⁻¹•cm⁻¹).

INORGANIC

CHEMISTRY

II

2.2. 4 Laporte Selection Rule

The Laporte selection rule is especially relevant for the case of d-d transitions in transition metal complexes. This means that in centrosymmetric molecules (the ones that contain an inversion center) transitions from / to orbitals of the same parity are forbidden. Since d orbitals have g parity, d-d transitions are therefore Laporte-forbidden, because they violate this rule. In order for a transition to be Laporte-allowed, the parity of the initial & final states must change. Consequently, transitions such as $g\rightarrow u$ or $u\rightarrow g$ are allowed, whereas $g\rightarrow g$ or $u\rightarrow u$ are not. In transition metal complexes:

- d-d transitions $(g \rightarrow g)$ are Laporte-forbidden
- Charge transfer (MLCT) transitions $(d \rightarrow \pi^*, g \rightarrow u)$ are Laporte-allowed
- Laporte-allowed Ligand-to-metal charge transfer (LMCT) transitions $(p\rightarrow d, u\rightarrow g)$

But Laporte-forbidden transitions can still take place via several mechanisms:

• Vibronic coupling — Asymmetric vibrations temporarily break the center of symmetry, allowing the transition to be "vibronically

allowed". This is also the reason that most octahedral complexes despite the presence of Laporte-forbidden d-d transitions are colored.

- Orbital mixing: In non-centrosymmetric complexes (e.g., those in tetrahedral coordination), the mixing of the d & p orbitals relaxes the Laporte selection rule. This is the reason tetrahedral complexes are frequently much more colorful than octahedral complexes.
- π -donor or π -acceptor the ligands: These have the ability to mix with metal d orbitals, bringing a p character that partly lifts the Laporte rule.
- Laporte-allowed transitions generally have ε values in the range of 10^3 to 10^5 L•mol⁻¹•cm⁻¹, whereas Laporte-forbidden transitions that become partially allowed via the mentioned mechanisms have ε values of $1-10^2$ L•mol⁻¹•cm⁻¹.
- Lattice Pulse Selection Rule This rule is almost identical to the selection rule for the atomic orbital angular momentum quantum number & states $\Delta L = \pm 1$, where L is the orbital angular momentum of the laser coupled. This is not a rule that folks use so much when transitioning into transition metal spectra but nonetheless it is important for clarifying certain transitions. Based on classification, the use of selection rules is utilized for the purpose of predicting and describing electronic transition intensity in the case of metal complexes, thus concluding the series of selection rules utilized for the two groups of metal complexes. While such regulations place transitions in allowed or forbidden categories, it is necessary to note that forbidden transitions can take place, but weakened, by a number of processes that soften the strict conditions of the selection rules.

2.2. 5 Orgel Diagrams

Orgel diagrams are plots on a graph representing the energy of electronic states of transition metal complexes as a function of the crystal field strength. They were first developed by Leslie Orgel in the 1950s. They area diagrammatic device for the representation of spectroscopic information, particularly for some of the high-spin complexes with quite straight forward electronic structures. Orgel diagrams are plots of the electronic state energy levels as functions of the crystal field strength. The diagram orientations are selected to lift the electron spin degeneracy, and also the orbital degeneracy, to provide maximum simplicity to the energy ordering. Observe that the x-axis is the crystal field splitting parameter & the y-axis is energy. To the left-hand side at zero field ($\Delta = 0$) the energies are those for the free ion (spherical field) in which case the states are designated using the term symbols from atomic spectroscopy.

With increasing crystal field strength (greater position along x-axis in this diagram) these free-ion states split (due to crystal field effects) & their energies evolve in characteristic fashions — which depend on electron configuration & complex geometry.

2. 2.5.1Orgel diagrams are especially useful for:

- The change in energies of the electronic states with crystal field strength.
- Finding possible electronic transitions & their energies to first approximation.
- From spectroscopic data to electronic structure: a correlation.
- In some cases, differentiating between high-spin & low-spin configurations.

The splitting profile of different electronic states in octahedral and tetrahedral crystal fields in the following tables

Table. 2.1 Splitting of free ion terms in the tetrahedral crystal field.

Electronic state	Symmetry designation in the tetrahedral field (Mulliken symbols)
S	A1
P	T1
D	E + T2
F	A2 + T1 + T2
G	A1 + E + T1 + T2
Н	E + T1 + T1 + T2
I	A1 + A2 + E + T1 + T2 + T2

Electronic state Symmetry designation in the octahedral field (Mulliken symbols)

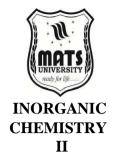


Table 2.2. Splitting of free ion terms in the octahedral crystal field.

Symmetry designation in the octahedral field (Mulliken symbols)
Alg
T1 <i>g</i>
Eg + T2g
A2g + T1g + T2g
A1g + Eg + T1g
+ T2g Eg + T1g
+ T1g + T2g

The A, E and T represent singly, doubly and triply degenerate states, respectively. The presence of "g" in symmetry designations of the octahedral field is for the gerade or centrosymmetric environment. appreciate and comprehend Orgel Diagrams for d¹ to d9 Systems

Orgel diagrams are usually generated for certain electron configurations & geometries. Now, let us take a look at how those can be interpreted for different d-electron configurations:

In a d¹ system, the lone electron fills the lowest level of the three available. The ground state (which comes from the 2D free-ion term) is t2g in an octahedral field. eg as the only excited state accessible via a single electronic transition. The Orgel diagram for this system has two lines from the 2D term which diverge as the crystal field strength increases: t2g moves downward and eg moves upward. The energy of these states differ by Δo & only one absorption band can be seen (corresponds to the t2g \rightarrow eg transition).

For e.g [Ti(H₂O)₆]³⁺ has single broad absorption band at around 20,000 cm⁻¹ associated with this transition, resulting that complex being purple.

d² Systems(e.g., V³⁺ in octahedral field)

The overall wave function of a ground state for d² systems is a t2g² configuration as a ³F term. Among excited states are t2g¹eg¹ (also from ³F) and t2g¹eg¹ (from ¹D). In fact more than one electronic states diverges from these ³F & ¹D terms, as is illustrated by the Orgel diagram.

Utilizing a high spin 3d transition metal, for example: $[V(H_2O)_6]^{3+}$, will yield 3 bands of absorption due to the transitions of the ground state ${}^3T1g(F)$ to the excited states ${}^3T2g(F)$, ${}^3T1g(P)$ & the 1Eg states.

d³ systems (e.g. V²+ or Cr³+ in octahedral field)

For d³ systems the ground state is t2g³ corresponding to the ⁴F germ. Excited states are t2g²eg¹ (from ⁴F & ⁴P). 3d -- splitting as shown here in the Orgel diagram -- & the resulting electronic states. For example,

 $[Cr(H_2O)_6]^{3+}$ has two primary absorption bands that occur from transitions from the 4A2g ground state to the 4T2g & 4T1g excited states.

d⁴ to d⁷ Systems

For these types of configurations, these Orgel diagrams get complicated because there exist high-spin & low-spin configurations. Tanabe-Sugano diagrams (covered later) are usually more useful for these systems. Orgel diagram still gives valuable insights for high-spin complexes.

d⁸Systems (e.q Ni²⁺ in octahedral field)

For example, for high-spin d⁸ systems, the ground state comes from the ³F term & is t2g⁶eg². Among the excited states did we have t2g⁵eg³ (from ³F & ¹D). The Orgel diagram illustrates how these states degenerate at lower crystal field strengths. For example, for [Ni(H₂O)₆]²⁺, three absorption bands are typically seen for transitions from the ³A2g ground state to ³T2g excited state (higher energy), ³T1g(F) excited state, & ³T1g(P) excited state (lower energy).

d⁹ Systems (e.g., Cu²⁺ in octahedral environment)

For d⁹ systems the ground electronic state is $t2g^6eg^3$, arising from the 2D term. $t2g^5eg^4$ is the only excited state that can be reached via a single electronic transition. The Orgel diagram for this setup is straightforward, conclusively showing the splitting of the 2D terminto $^2T2g \& ^2Eg$ states. $[Cu(H_2O)_6]^{2+}$ displays one broad band of absorption relate to the $^2Eg \rightarrow ^2T2g$ transition that gives this complex its characteristic blue color.

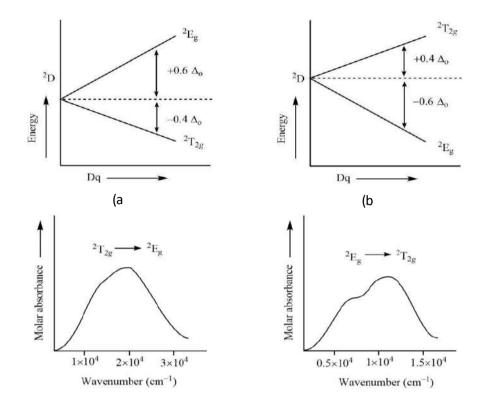


Figure -2. 1 The splitting pattern of 2D state in octahedral complexes with (a) d1-configuration and (b) d9-configuration; and the corresponding electronic spectra of (c) [Ti(H2O)6]3+ and (d) [Cu(H2O)6]2+.

2.2.5.2 Limitations of Orgel Diagrams

Orgel diagrams are useful tools but they have numerous limitations:

- In these cases, they are most effective for high-spin complexes that have reasonably simple electronic structures (d^1 , d^2 , d^3 , d^8 , d^9).
- They do not explicitly consider the repulsion between electrons.
- They do not resolve the transition between high- & low-spin configurations well.
- They do not give access to the details of the transition intensities.

For more complicated scenarios, particularly those requiring the inclusion of multiple electrons & the possibility of spin-pairing changes, Tanabe-Sugano diagrams provide a more complete method.

2.2.6 Tanabe-Sugano Diagrams

Tanabe-Sugano diagrams: Tanabe & Sugano proposed in the 1950s a more advanced method to visualize electronic transitions in transition

metal complexes. Another feature is that, unlike Orgel diagams, that plot absolute energies, the Tanabe-Sugano diagrams plot the energies of electronic states relative to the ground state. It is because of this that more accurate results are obtained, including for high-spin to low-spin transitions over any range of crystal field splitting.

2.2.6.1 Tanabe-Sugano Diagrams- Basic Structure

In a Tanabe-Sugano diagram:

- Horizontal axis: $\Delta/B \rightarrow Dimensionless$ parameter describing the ratio of the crystal field splitting parameter to the Racah parameter, a measure of the strength of the crystal field relative to the electron-electron repulsion.
- The vertical axis denotes the energy (E/B), also normalized with respect to the Racah parameter.
- The energy of ground state is always set as reference (zero), appearing as horizontal segment at the diagram bottom.

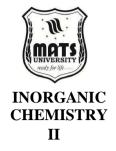
All other electronic states are plotted with respect to this ground state.

The scheme is for a certain configuration (most-frequently octahedral) looking at a specific d-electron arrangement.

Tanabe—Sugano Diagrams include both inter-electron repulsion & crystal field effects, making them more complete than Orgel diagrams. They are most valuable for:

- Predicting the energies of electronic transitions across a wide range of ligand field strengths.
- Spin-allowed versus spin-forbidden transitions.
- Determination of crystal field parameters (Δ & B) from spectroscopic data
- Interpreting high-spin to low-spin transitions.
- Introduction to Strong & Weak Field Scenarios


Tanabe-Sugano diagrams are useful because they incorporate weak-field & strong-field scenarios & all the combinations in-between.


2.2.6.1.2 Weak Field Case

Weak field limit (small Δ/B):

• Electron-electron Coulombic repulsion is greater than crystal field splitting.

The electronic states are similar to the free ion ones.

- High-spin versions are preferred, with electron filling under Hund's rule of illustrated t2g & eg energy levels.
- Electron-electron interactions dominate the determination of the ground state, not crystal field effects.

In a weak field, for example, in a d⁵ system:

- The electronic complex in the ground state ⁶A1g, from the ⁶S term & electron configuration t2g³eg².
- ${}^4\text{T1g}$, ${}^4\text{T2g}$, & ${}^4\text{A1g}$ excited states are reached through spin-forbidden transitions ($\Delta S \neq 0$) & hence weak.
- These excited states are shown on the Tanabe-Sugano diagram at higher energies than the ground state.

2.2.6.1.3 Strong Field Case

Strong field regime (large Δ/B values):

- Coulomb repulsion is not as strong as crystal field splitting.
- Derives main from the arrangement of the crystal field.
- Low-spin states for d⁴-d⁷: lower energy state t2g orbitals are filled before the higher energy eg orbitals.
- As Δ/B increases, the ground state can also switch between high-spin and low-spin.

Thus, in a strong field d⁵ system:

- At a critical value of Δ/B , the low-spin 2T2g state ($t2g^5$) becomes lower in energy than the ground state 6A1g (high-spin, $t2g^3eg^2$).
- The low-spin configuration opens up new spin-allowed transitions.
- As demonstrated in the Tanabe-Sugano diagram, there is a sharp change in the arrangement of energy levels at this crossover point.

Weak — Strong Field Regime Transition

Tanabe-Sugano diagrams also give a pictorial representation of the transition between weak & strong field regimes which is one of the most interesting aspects associated with them. For d^4 - d^7 configurations, this transition corresponds to a change in the nature of both the ground state from high-spin to low-spin as Δ/B increases.

For example:

- For d⁶ configurations (as in Fe²⁺), the ground state is ⁵T2g (highspin, t2g⁴ eg²), then it becomes ¹A1g (low-spin, t2g⁶) when Δ / B exceeds a threshold.
- This change can be detected on the Tanabe-Sugano diagram as an intersection of energy levels.
- The spectroscopic characteristics are extremely different at this transition point, where absorption bands change their appearance or disappear.

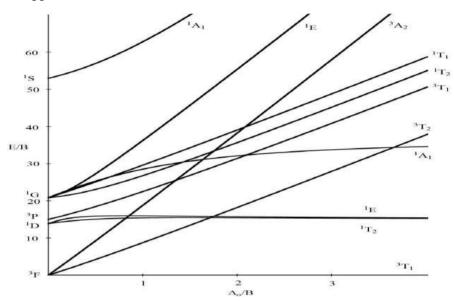


Figure .2 Splitting of free ion terms for d2 complexes in the octahedral crystal field.

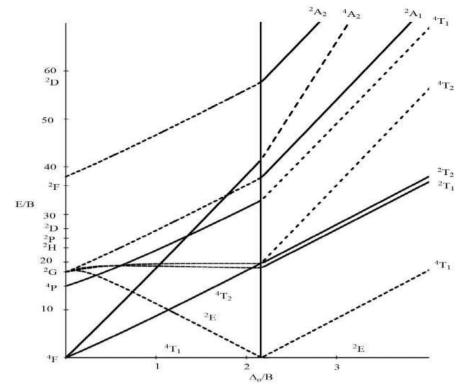


Figure 3 - Splitting of free ion terms for d7 complexes in the octahedral crystal field.

2.2.6.1.4 Application to Certain d-electron Configurations

Tanabe-Sugano diagrams have also been constructed for all pertinent d-electron configurations. Here are examples of how they are being used:

d1 & d9 Systems

The Tanabe-Sugano diagrams for d^1 (e.g., Ti^{3+}) & d^9 (e.g., Cu^{2+}) systems are relatively straight-forward. Define the crystal-field parameters so the maximum crystal-field strength is represented by Δ , & the energy as E=0 corresponds to the high-spin state (above is the energy band structure definition, bottom is the spin representation). No high-spin to low-spin transition occurs, & the ground state remains constant across entire regimes of crystal-field strength. The groundstate for d^1 is 2T2g ($t2g^1$) & the first excited state is 2Eg (eg^1). That energy difference is equal to Δo .

d² & d⁸ Systems

From the Tanabe-Sugano diagrams, d^2 (e.g., V^{3+}) and d^8 (e.g., Ni^{2+}) systems give rise to many excited states that stem from the 3F & 1D terms. The ground state (3T1g for d^2 & 3A2g for d^8) is invariant with respect to the crystal field strength, but the energies of excited states shift in non-linear fashion as Δ/B increases.

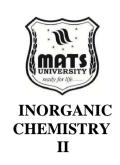
d³ & d⁷ Systems

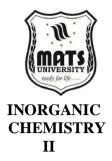
For d³ (e.g., Cr³+) & d7 (e.g., Co²+) scenarios, the Tanabe-Sugano diagrams become fairly intricate. For d³, the ground state 4A2g (t2g³) is at all crystal field strengths. For d7, spin transitions are from high-spin 4T1g (t2g⁵eg²) to low-spin 2Eg (t2g⁶eg¹) at high Δ /B-values.

d4 & d6 Systems

The Tanabe-Sugano diagrams for d^4 (e.g., Cr^{2+}) & d^6 (e.g., Fe^{2+}) systems exhibit a discontinuous transition from high-spin to low-spin configuration with increasing Δ/B . In the case of d^4 , the transitiongoes from 5Eg ($t2g^3eg^1$) to 3T1g ($t2g^4$). For d^6 , it is from 5T2g ($t2g^4eg^2$) to 1A1g ($t2g^6$).

d⁵ Systems


The Tanabe-Sugano diagram is especially interesting for d⁵ systems (e.g. Mn²⁺, Fe³⁺). The high-spin ground state [of] ⁶A1g (t2g³eg²), is obtained from the ⁶S term. Since this is the only sextet state available (all other states have different spin multiplicity), all transitions will be spin-forbidden, hence weak. This is why high-spin d⁵ complexes are usually pale or colourless. At very high crystal field strengths, it transitions to a low-spin ²T2g (t2g⁵) ground state.


The Tanabe-Sugano diagrams are not a purely theoretical concepts, but also an experimental approach that can be utilized in the data analysis of spectroscopic results. Here's how they can be used:

- This diagram is therefore used though not always so simply to determine the crystal field parameters (Δ, B) by comparing observed transition energies with allowed transitions shown on the diagram.
- Assigning Electronic Transition to Absorption Bands: The diagram makes it possible to assign experimentally observed absorption bands to specific electronic transitions.
- The numerical value of Δ/B can itself predict the energies & intensities of electronic transitions (due to their characteristics of the orbitals involved)
- The diagram helps with appreciate and comprehend ing color: Why do we see colors characteristic of certain d-electron configurations in complexes?

As an illustrative example, say we have an octahedral Ni²⁺ complex (d⁸) which displays three bands in its absorption spectrum at 7,000 cm⁻¹, 13,000 cm⁻¹, & 25,000 cm⁻¹. Using d⁸ Tanabe-Sugano diagram:

- These bands have been assigned to the transitions of the ³A2g ground state to ³T2g, ³T1g(F), & ³T1g (P) excited states, respectively.
- Δ/B can be obtained from the ratio of the second to first transition energy (≈ 1.86).

After assigning values, if Δ/B is calculated then B, is computed from that, then Δ is accordingly calculated.-

These data tell us something about the strength of the metal-ligand bond, & thus the position of the ligand on the spectrochemical series.

2.2.6.2 . Tanabe-Sugano Diagrams — Limitations

Though attractive & useful, Tanabe-Sugano diagrams have their limits:

- In reality complexes may have less than perfect octahedral or tetrahedral symmetry, which the equations assume.
- They ignore spin-orbit interactions, which can be sizeable in heavier transition metals.
- These are not direct insights to transition intensities.
- They do not treat charge transfer transitions, which can be significant in many complexes.
- These provide an approximation based on a single-electron model, & do not encompass multi-electron phenomena.
- Nonetheless, Tanabe-Sugano diagrams are vital tools for appreciate and comprehend ing electronic transitions in transition metal complexes.

Summary

Electronic transitions in metal complexes, mainly d–d transitions, give rise to characteristic colors. Their intensity is restricted by two rules: The Spin Selection Rule ($\Delta S=0$) and the Laporte Selection Rule ($g\to g$ transitions are forbidden), which make many transitions weak. Orgel diagrams provide a simple way to visualize electronic transitions in high-spin octahedral and tetrahedral complexes (d^1-d^9), but cannot handle strong-field or low-spin cases. Tanabe–Sugano diagrams extend this approach by considering the effect of varying ligand field strength (Δ/B ratio), allowing prediction of transitions in both high-spin and low-spin complexes. However, Tanabe–Sugano diagrams can become complex and are limited by approximations. Together, these tools help explain the spectra, colors, and electronic structures of transition metal complexes.

Multiple Choice Questions (MCQs):

Q1. d–d transitions are generally weak because:

- a) They are spin forbidden
- b) They are Laporte forbidden
- c) They are charge transfer transitions
- d) They are magnetic in origin

Answer: B

- **Q2.** Which rule states that $\Delta S = 0$ during electronic transitions?
- a) Laporte Rule
- b) Spin Selection Rule
- c) Pauli Rule
- d) Hund's Rule

Answer: B

- **Q3.** Orgel diagrams are especially useful for:
- a) High-spin complexes of d¹-d9 ions
- b) All types of transitions including charge transfer
- c) Explaining low-spin complexes
- d) Explaining magnetic susceptibility

Answer: A

Q4. Tanabe–Sugano diagrams are applied to:

- a) Weak-field ligands only
- b) Both high-spin and low-spin complexes
- c) Only tetrahedral complexes
- d) Only charge transfer spectra

Answer: B

Q5. A major limitation of Orgel diagrams is:

- a) They cannot explain color of complexes
- b) They do not account for strong ligand fields (low-spin cases)
- c) They are difficult to interpret
- d) They cannot be used for any transition

Answer: B

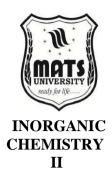
Short Questions:

- 1. What are d–d transitions in metal complexes?
- 2. State the Spin Selection Rule and its significance.
- 3. Why are Laporte-forbidden transitions weak in intensity?
- 4. What is the main purpose of an Orgel diagram?
- 5. How do Tanabe–Sugano diagrams improve upon Orgel diagrams?


Long Questions:

- 1. Explain the characteristics of d–d transitions and discuss why complexes exhibit colors.
- 2. Describe the Spin Selection Rule and Laporte Selection Rule. How do they affect the spectra of transition metal complexes?
- 3. Discuss the construction and applications of Orgel diagrams. What are their limitations?
- 4. Explain the role of Tanabe–Sugano diagrams in predicting electronic transitions. Apply the diagram to at least one d² or d⁶ configuration.
- 5. Compare Orgel and Tanabe–Sugano diagrams in terms of usefulness, limitations, and applications to different d-electron systems.

UNIT 2.3


Effects on Spectra

Spectroscopic characteristics of transition metal compounds/complexes are strongly dependent on structural & electronic effects. We discuss three central physical mechanisms in influencing the spectral characteristics of these materials: Jahn-Teller distortions, spin-orbit coupling, & charge transfer interactions. Hence & collectively, these effects define the energetics, the intensities & features of electronic transitions & allow shedding valuable light on the intrinsic nature of coordination compounds & their broad use in chemistry, materials science & biology.

2.3.1 Jahn-Teller Distortion in Spectra

Probably, the Jahn-Teller effect is one of the most important factors influencing the electronic structure and spectral characteristics of transition metal complexes. This theorem, postulated by Hermann Arthur Jahn & Edward Teller, in 1937 & states that any non-linear molecular system, once it is in a degenerate electronic state willdistort to remove the degeneracy, thus decreasing the total energy of the system. Such spontaneous symmetry breaking is most evident in octahedral complexes of particular electronic configuration, especially d⁹ Cu²⁺ & high-spin d⁴ Cr²⁺ complexes with degeneracy in the eg orbitals (dz² & dx²-y²) which forces structural distortion. A paradigmatic case of Jahn-Teller distortion happens in octahedral Cu²⁺ complexes with d⁹ electronic configuration. In a perfect octahedron, the five d orbitals separate into two groups: the lower-energy t2g (dxy, dxz, dyz) & the higher-energy eg (dz² & dx²-y²) orbitals. & for Cu²⁺, the

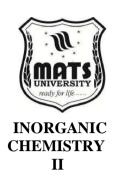
electronic configuration is t2g6eg3 & the ninth electron fills one of the degenerate eg orbitals. This results in an electronically unfavorable condition of the distorted complex, usually stretching along the z-axial (that is, triggered distillation), which causes the dx²-y² orbital to increase in energy & the dz² orbital to decrease. This lifts the degeneracy & increases the stability of the system.

distortions have incredible implications Jahn-Teller spectroscopy & characterization of such complexes that are manifold in nature. In absorption spectra, these distortions appear as band splitting, peak broadening, & shifts of the absorption maxima. In Cu²⁺ complexes, where the d orbitals are split into higher & lower energy sets rather than degenerate in a perfect octahedral field, normally octahedral complexes will show one band from the previous allowed transitions where, due to the degeneracy, only a small number of bands exist, but now a set of bands corresponding to the transitions between non-degenerate d orbitals. The splitting of these spectral bands is directly proportional to the extent of geometric distortion. The broad absorption band seen at approximately 800 nm (12,500 cm⁻¹) in hexa aqua copper(II) complexes [Cu(H₂O)₆]²⁺ is a superposition of several transitions & is due to Jahn-Teller distorted geometry. This band is significantly wider than those found in complexes free from Jahn-Teller effects, consistent with the flexibility of the distortion in solution. The wide spectral feature comes from a distribution of differently distorted geometries, which can rapidly interconvert in solution, resulting in time-averaged spectrum with characteristic broadening.

Another unique spectral signature of Jahn-Teller active compounds is temperature dependence. As the energy of thermal fluctuations increases at elevated temperatures, the complex can sample increasingly strained conformations, further broadening the band. Alternatively, at low temperatures the complex may be stuck in particular distorted geometries so that the previously overlapping spectral features can emerge as well-defined separate bands. Jahn-Teller distortions are also seen in vibrational spectra, where they induce characteristic splitting of infrared & Raman modes. The decrease of symmetry induced by the distortion in turn activates vibrational modes that would otherwise be inactive in the undistorted higher-symmetry structure. Eg,S stretching frequencies for metals can exhibit highly patterned behavior each phenomenon of the distortion

reflects imbalances in atom ligand bond lengths. The dynamic nature of Jahn-Teller distortions adds to the complexity of spectral interpretations. These systems demonstrate what is known as the "dynamic Jahn-Teller effect," an effect in which the complex rapidly balances between various distorted configurations. This results in temperature-dependent spectra, since the rate of interconversion between distorte geometries changes with T. If interconversion is slow on the timescale of measurement (e.g. at low temperatures), one may observe characteristic spectral features corresponding to discrete geometric configurations. With increasing temperature & concomitant interconversion, these features merge into wider bands corresponding to time-averaged structures.

INORGANIC CHEMISTRY II


Table -2.1 Symmetrical and Unsymmetrical t2g and eg orbitals.

nfigurations	Unsymmetrical configurations			
5	1	2	4	5
	t2g, t2	2g, t2g	, <i>t</i> 2g	
2	1	3	2	
h-spin)	eg, eg	g, eg (lo	ow-spin))
	5	$ \begin{array}{ccc} & & & & \\ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Now, the conditions for different kinds of distortion can be summed up as:

Table – 2.2 Conditions for Jahn-Teller distortion.

Type of distortion	Configuration required
No distortion	t2g (symmetrical) + eg (symmetrical)
Slight distortion	t2g (unsymmetrical)
Strong distortion	eg (unsymmetrical)

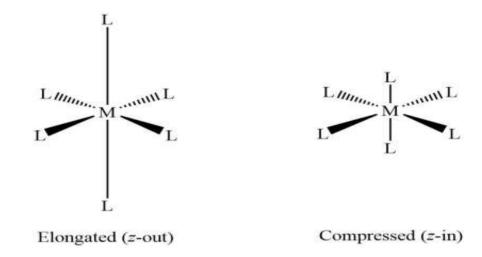


Fig. .2.1 The Jahn-Teller distortions for an octahedral complex.

Apart from Cu²⁺, other transition metal ions exhibiting a prominent Jahn-Teller effect are high-spin Mn(3+) (d⁴) & low-spin Nit(3+) (d⁷) in octahedral coordination. In Mn³ complexes, the Jahn-Teller effect is due to the unfavorable occupation of the eg orbitals, and an e¹g configuration, commonly leading to elongation along a specific axis. energies are influenced significantly by The d-d transition distortion, producing distinct splitting patterns observed in absorption spectra. The electronic structural properties have a great imp act on the spectral properties of the strongly purple potassium permanganate (KMnO). The size of the Jahn-Teller distortion also depends ligand character. Energetic consequences of the distortion are evident in slight blue-shifts of the absorption spectra of strong-field the ligands which tightly interact with the metal dorbitals. In contrast, weak-filed the ligands can lead to smaller distortions & spectral manifestations. This ligand sensitivity offers access to the control of the spectral properties of Jahn-Teller active complexes by rational choice of ligands. Jahn-Teller distortions may be aligned & can produce cooperative effects that affect other spectral properties within crystal lattices. Such cooperative distortions can actually induce phase transitions, lowering symmetry, and result in spectral properties that are not observed in isolated complexes. Ionic perovskites that are Jahn-Teller active, such as LaMnO, undergo large phase transitions with temperature that have remarkable effects on their optical and magnetic properties.

Jahn-Teller distortions are just one part of a highly rich variety of spectral phenomena resulting from the interplay of electronic effects (not just with spin-orbit coupling but also with magnetic exchange interactions) in transition metal compounds. [6] Such interactions often bring forth complex spectral features which depend on the temperature & pressure,

accounting not only for the electronic structure but also for the bonding characteristics of these materials Some experimental methods for the Jahn Teller effect study are variable-temperature spectroscopy, MCD, EPR, & resonance Raman methods. spectroscopy in general is very sensitive to both electronic and geometric effects generated by Jahn-Teller distortions. It provides well resolved, sharp transitions with anisotropic g-values and hyperfine coupling constants that reflect the lower symmetry of the distorted complex

2.3.1 Static and Dynamic Jahn-Teller Distortion

Based on the geometry observed the Jahn-Teller distortion is categorized into two types as discussed below.

1. **Static Jahn-Teller distortion**: Some molecules show tetragonal shape under all conditions i.e., in solid state and in solution state; at lower and relatively higher temperatures. This is referred to as static Jahn-Teller distortion. Hence the distortion is strong and permanent. For example, in CuF2 lattice

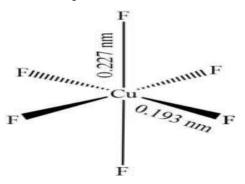


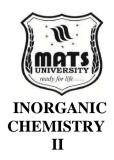
Fig-2.2 Static Jahn-Teller distortion in CuF2 lattice.

2. **Dynamic Jahn-Teller distortion**: If the energy gap between z-out and z-in is smaller than the available thermal energy, the complex ions tend to attain both states, i.e., compressed and elongated. This is known as the "Dynamic Jahn Teller Effect". For examples, consider K2Pb[Cu(NO2)6] complex:

Fig – 2.3 Dynamic Jahn -Teller distortion in K₂Pb[Cu(NO ₂)₆].

Recent theoretical treatments include vibronic coupling models, where the interaction between electronic & nuclear degrees of freedom is addressed. The models give an overall outline in an effort to comprehend spectral signatures, such as the pseudo-Jahn-Teller intricate effect, semantically related to interactions between adjacent electronic states by way of vibrational modes. Jahn-Teller effects have been pumped for applications design of optical sensors, switchable materials, & catalysts. Additionally, the ability of Jahn-Teller distortions to external variables like pressure, temperature, and electric fields makes them prime candidates for the synthesis of responsive materials with optically tunable properties. Particularly in the case of transition metal-based catalysts, a little change in the geometric structure drastically influences the catalytic performance. Therefore, control and understanding of these distortions are important for better performance. Spin orbit interaction, a quantum mechanical fundamental force, exerts a profound effect on the electronic structure and the spectroscopic behavior of transition metal complexes. This is caused by the inter action between the spin angular momentum and the orbital angular momentum of an electron, resulting in the lifting of degeneracy of energy levels that are degenerate only because of electrostatic interactions. Spin-orbit coupling scales at least as Z (the atomic number), i.e., that the coupling becomes very large for heavier lanthanides & transition metals. Spin orbit coupling has a geometric physical origin and occurs thro ugh the laws of relativity. An electron travels along an orbital route around the nucleus, and from the electron's perspective, the nucleus will appear to move in relation to it, thus generating a magnetic field. This magnetic field interacts with the electrons spin magnetic moment, resulting in energy being shifted according to the relative orientation of spin & orbital angular momenta.

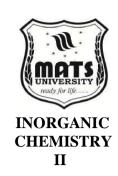
The Hamiltonian describing this coupling is given by HSO = $\lambda L \cdot S$, where λ is the spin-orbit coupling constant, L is the orbital angular momentum operator, and S is the spin angular momentum operator. For transition metal complexes, the effects of spin-orbit coupling lead to several unique spectroscopic features. Perhaps most fundamentally, spin-orbit coupling allows for off-resonant transitions, thereby relaxing the spin selection rule (ΔS =0) that would otherwise preclude interconversions between states of differing spin multiplicity. This relaxation processes permit what are called "spin-forbidden" transitions like singlet-triplet transitions in organic materials or high-spin to low-spin transitions in transition metal compounds. Although these transitions are, even in the absence of crystal field effects, weakly allowed with oscillator strengths usually orders of magnitude


smaller than those of spin allowed transitions, they nevertheless appear in the absorption & emission spectra with intensities varying with the power of spin-orbit coupling.

One particular application of spin-orbit coupling is evident in the electronic absorption spectra of octahedral d³ complexes like Cr³⁺. In these systems, the ground state is ⁴A₂g, & transitions to the excited states ²Eg & ²T₁g are formally spin forbidden. However, the spin-orbit coupling mixes these excited states with states of the same total angular momentum but different spin multiplicity, adding some allowedness to the transitions. As a result, these transitions show up as faint yet noticeable bands in the absorption spectrum, usually with molar absorptivities (ε) of 1-10 M⁻¹cm⁻¹, compared with 10⁴-10⁵ M⁻¹cm⁻¹ for allowed transitions. Absorption spectrum shows two weak bands in the visible region; emission is from the lowest excited state (2E) to the ground state (4A2). This emission, called R-line fluorescence, has an exceptionally long lifetime (milliseconds instead of nanoseconds), because the transition involved is spin-forbidden & is only partially allowed due to spin-orbit coupling. For low-spin complexes containing second & third-row transition metals systems where spin-orbit coupling is much stronger, these effects become even more dramatic in the spectra. For octahedral d⁶ complexes such as [Ru(bpy)₃]²⁺ & [Os(bpy)₃]²⁺, spin-orbit coupling enables intersystem crossing between singlet & triplet excited states to happen effectively, allowing for high phosphorescence efficiency. The spin-orbit coupling, however, is much greater in the heavier element causing the intersystem crossing to proceed rapidly into the better-emitting triplet state with decay into the ground state proceeding by way of radiative emission.

Spin-orbit coupling not only facilitates transitions otherwise forbidden, but also directly contributes to the energetics of electronic states via the fine structure splitting. This is especially true in the case of lanthanide & actinide complexes, where the energy levels cannot be described using the Russell-Saunders coupling scheme & the J-J coupling scheme has to be applied. In Eu³⁺ complexes, for example, the emission spectrum features bands associated with transitions from the

 $^5\mathrm{D}_0$ excited state to the various levels of the $^7\mathrm{FJ}$ (J = 0-6) ground term, where the energy separations directly reveal the strength of the spin-orbit coupling. Temperature dependent spectral features affected by spin-orbit coupling are useful for identifying the coupling mechanism. Spectral simplification often happens at really low temperatures, when thermal energy cannot be used to populate higher-lying levels in a spin-orbit split manifold, & transitions are mainly originating from the lowest level. As the temperature is raised, each transition appears corresponding to the higher levels within the manifold getting



thermally populated, which manifests as characteristic changes in the spectral profiles. Magnetic circular dichroism (MCD) spectroscopy is an especially potent method for studying spin-orbit coupling effects in transition metal complexes. A MCD method Jim MCD measures the differential absorbance of left & right circularly polarized light in a magnetic field. The MCD signal is contributed by three mechanisms (A, B, & C terms), with the only contribution that is directly related to the effects of spin-orbit coupling on the ground state arises from the C term. Quantitative information on spin-orbit coupling parameters & state mixing can be obtained from temperature-dependent MCD spectra.

For heavy transition metals such as platinum, iridium, & osmium, the spin-orbit coupling is so strong that it can qualitatively change the description of the electronic structure. For square-planar d⁸ Pt(II) complexes, the strong spin-orbit coupling leads to significant mixing of singlet & triplet states, thereby complicating the traditional treatment of purely distinct spin states. Such mixing appears in the photophysical characteristics of Pt(II) complexes, where the emitters display typically features of emission between fluorescence & phosphorescence & are sometimes referred to as "fast phosphorescence." The superb range of spectroscopic characteristics found between hybridization & ligand field. In octahedral complexes, the symmetry of the ligand field dictates which components of the spin-orbit coupling operator are effective. In strong axial ligand field complexes, for example, orbital angular momentum projection along the z-component may be quenched, resulting in anisotropic spin-orbit coupling effects which show up as directional dependence of spectral transitions. During the past two decades, computational methods for the modeling of SO effects on spectra have been quite advanced reaching from perturbative to fully relativistic approaches. These models all become increasingly accurate in predicting spectral features influenced by spin-orbit coupling when employed with density functional theory (DFT) with relativistic corrections, or complete active space self- consistent field (CASSCF) methods coupled with spin-orbit configuration interaction (SOCI).

Spin-orbit coupling in spectroscopy has many practical applications in a range of fields. Spin-orbit coupling plays a role in magnetic anisotropy in molecular magnetism, which is essential for single molecule magnets. X-ray & electron spin resonance imaging, for instance, benefit from high energy characteristic X-ray emission from heavy metals like gold with intersystem crossing rates heavily dominated by heavy atom induced spin-orbit coupling.258 In photophysical applications, heavy atom induced spin-orbit coupling substantially increase intersystem crossing rates leading to fab-rich phosphorescent materials for organic light-emitting diodes

(OLEDs).259 The unique spectral signatures derived from spin-orbit coupling also act as sensitive probes of coordination environment & electronic structure in analytical applications. In Metal-to-Ligand Charge Transfer (MLCT) transitions, the electron density is transferred from a primarily metal- based orbital to a primarily ligand- based orbital. On the other hand, LMCT transitions are the transfer of electron density between ligand- based and metal-based orbitals. These types of transitions have large transition dipole moments & therefore possess high molar absorptivities (ε) on the order of 10³-10⁵ M⁻¹cm⁻¹, orders of magnitude above the values corresponding to d-d transitions ($\epsilon \approx 1-10^2$ M⁻¹cm⁻¹). A current study also explores the possibility of using chemical methods to adjust the spin-orbit coupling effects, opening up new avenues for spectral characteristic manipulation. These tactics include adding heavy atoms, adjusting the covalency between metals and ligands, and controlling of molecular symmetry to either strengthen or weaken specific channels of spin- orbit coupling. Combining these approaches results in adaptable techniques for revealing the photo physical properties of transition metal complexes for uses ranging from bio imaging to photocatalysis.

2. 3.2 Charge Transfer Spectra

Spectra of Charge Transfer in contrast to the localized d-d transitions found in many transition metal complexes, charge transfer is a distinct class of electronic excitations. These transitions signify significant changes in the electron density between various complex components, typically between the ligands and the metal center. Due to their intensities being orders of magnitude higher than the corresponding d-d transitions, the accompanying spectral characteristics usually overpower the visible and ultraviolet portions of absorption spectra.

2.3.2.1 Metal-ligand bonding:

Metal-ligand bonding, redox properties, and photochemical behavior all benefit greatly from charge transfer spectra.in compounds that coordinate. The direction of the electron transfer determines the classification of charge transfer transitions into two classes: ligand-to-metal charge transfer (LMCT) and metal-to-ligand charge transfer (MLCT).

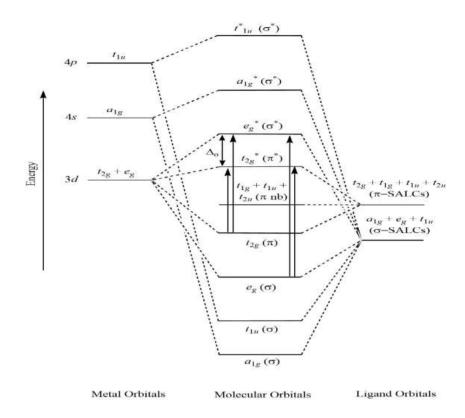


Fig-2.3.1 Ligand to metal charge transfer in octahedral (ML6) complexes.

The energetics of charge transfer transitions are critically dependent on the redox characteristics of the metal center & the ligands. MLCT transfers are preferred in the case of complexes including rather rich metals in electrons (low oxidation states) bound to the ligands with lowlying unoccupied orbitals, having π^* orbitals generally. Well- studied examples are [Ru(bpy)₃]²⁺ & other polypyridyl complexes of Ru(II), Os(II), & Fe(II) where the metal d orbitals act as electron donors & the π^* orbitals of the aromatic the ligands act as electron acceptors. The lowest-energy MLCT transitions in these complexes are readily found in the visible region, imparting intense colors ranging from orange-red for Ru(II) complexes to deep blue-purple for Os(II) analogues. The spectroscopic signature of MLCT transitions is not limited to their high intensity. These transitions frequently display characteristic to chromic behavior, where absorption maxima move to lower energies (red shift) in more polar solvents. This dependence on solvent arises from differential stabilization of the excited state, which has more dipole character than the ground state due to charge separation. The extent of this to chromic shift can serve as a useful measure of the extent of charge separation in the excited state. In complexes with metals in high oxidation states, coordinated with the ligands with filled orbitals that have relatively high energy, the predominant types of transitions are LMCT transitions. An archetypal case of these are ions of permanganate (MnO₄⁻) & chromate (CrO₄²⁻),

in which the oxygen p orbitals increase electron density & the empty metal d orbitals gain it. The purple color of permanganate solutions (with $\lambda max \approx 525$ n a m) is caused by LMCT transitions in the visible region, while the yellow color of chromate solutions is due to LMCT transitions at higher energies ($\lambda max \approx 370$ nm). The energy differences between these transitions correlate with the d orbital energy differences between Mn(VII) & Cr(VI), whereby the metal in the higher oxidation state (Mn) possesses lower-energy acceptor orbitals, resulting in lower-energy LMCT transitions.

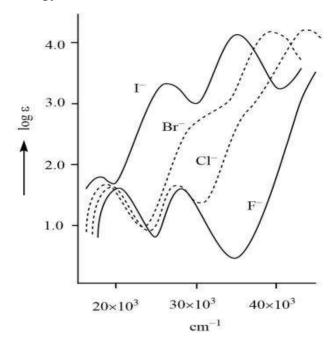
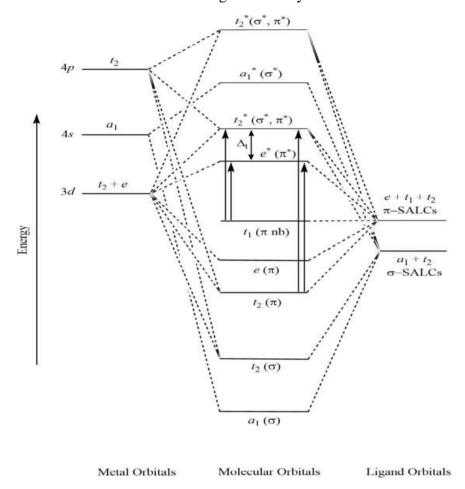


Figure -2.3.2 The UV-visible absorption spectra of [Co(NH3)5(X)]2+(X=F-,Cl-,Br-orI-).

Charge transfer excitation has particularly important photochemical consequences. In contrast to d-d excited states, which largely lose energy via non-radiative processes or indirectly through weak phosphorescence charge transfer excited states often drive photochemical pathways of diverse nature. MLCT excited states, in this context, can be considered as formally consisting of an oxidized metal center & a reduced ligand, yielding a charge-separated state with unique redox features. This modified redox behavior is foundational for many applications, namely photocatalysis, solar energy conversion & photochemical synthesis. In this regard, the photophysics of MLCT states has been thoroughly investigated in ruthenium(II) polypyridyl complexes, in which the initially populated ¹MLCT state decays within a few tens of picoseconds to a 3MLCT state with such near-to-unity



quantum efficiency, due to the significant spin-orbit coupling brought about by the ruthenium core. The resulting ³MLCT state has a relatively long lifetime (hundreds of nanoseconds to microseconds), allowing it to participate in bimolecular electron transfer reactions with appropriate donor or acceptors. This photophysical behavior forms the basis of applications from dye-sensitized solar cells to photodynamic therapy agents.

These LMCT excited states typically result in the metal center being photo reduced with or without ligand dissociation. A classic example is the photochemistry of hexacyanoferrate (III), [Fe(CN)₆]³⁻, for which LMCT excitation causes reduction of Fe(III) to Fe(II) with simultaneous generation of a cyanide radical. Manifold transition metal oxo complexes undergo similar photoreductive processes & the basis of their photocatalytic activity in water oxidation & other environmentally relevant transformations. In multinuclear complexes and extended structures, complex charge transfer transitions can occur beyond the simple MLCT or LMCT classifications. In MMCT transitions, electrons are transferred between distinct metal centers, as seen in mixed-valence species such as the Creutz-Taube ion, [(NH₃)₅Ru-py-theta-Ru(NH₃)₅]⁵⁺. The intervalence charge transfer (IVCT) band in these compounds provides direct spectroscopic access to the degree of electronic coupling between the metal centers, which in turn provides details on the dynamics of electron transfer in multi- center systems. However, ligandto-ligand charge transfer (LLCT) transitions can also be facilitated by a complex that has both rich and poor electrons, with the ligands coordinated to the same metal center. These transitions can occur independently or, more frequently, overlap with LMCT or MLCT transitions to form complex electronic states. For the spectroscopic identification and assignment of these mixed transitions, sophisticated methods like resonance Raman spectroscopy, transient absorption spectroscopy, and magnetic circular dichroism are frequently needed. The theoretical description of charge transfer spectra has advanced significantly with the advent of computational techniques in chemistry. Time-dependent density functional theory (TD-DFT) has become a particularly useful tool for the prediction & interpretation of charge transfer transitions, but because of self-interaction errors, standard functionals typically significantly underestimate the energies involved. They are now more accurate thanks to more advanced techniques like range-separated functionals, which allow experimental spectra to be assigned with greater assurance.

Charge transfer transitions are of particular chemical interest due to their environmental sensitivity, making them useful as probes in analytical (e.g. chemical sensing) applications. These charge transfer bands can therefore undergo characteristic shifts

due to changing solvent polarity, pH, or the presence of an analyte, leading to colorimetric & spectroscopic sensors. The strong absorption and, in some instances, emission related to such transitions provides these detection methods with high sensitivity.

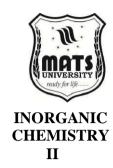


Figure -2.3.4 Ligand to metal charge transfer in tetrahedral (ML4) complexes.

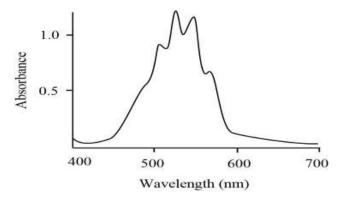
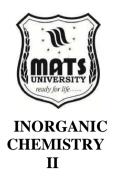



Figure 2.3.5 - The UV-visible absorption spectra of MnO4.

Charge transfer chromophores are also applied in a wide variety of technical purposes. Transition metal compounds have been widely investigated in solar energy conversion, & ruthenium & osmium polypyridyl complexes with low-energy strong MLCT absorption act as sensitizers in dye-sensitized solar cells by harvesting visible light & inducing the photoinduced electron transfer to semiconductor electrodes. Cyclometalated iridium(III) complexes of mixed MLCT/LLCT character serve as efficient phosphorescent emitters for application in organic lightemitting diodes (OLEDs), widely used display technology & solid-state lighting. Metal oxide semiconductors like TiO and ZnO have strong LMCT transition absorption, which lays the groundwork for their application in photovoltaics and photocatalysis. New developments in charge transfer spectroscopy New developments, potential avenues for future study, and The creation of panchromatic absorbers for solar energy applications, the need for earth-abundant substitutes for precious metal chromophores, and the creation of stimuli-responsive materials with switchable charge transfer capabilities are some examples of developments. Summary The substantial work that has been done in the additive synthesis of CT alloys over the past few years is justified by the fact that charge transfer (CT) chromophores have become crucial building blocks in a variety of optoelectronic applications.

Summary

The Jahn–Teller effect arises in electronically degenerate systems, causing geometric distortion to remove degeneracy. It significantly alters spectra by splitting bands and shifting absorption maxima. Static Jahn–Teller distortion produces permanent structural changes, while dynamic Jahn–Teller distortion leads to time-averaged distortions observable at higher temperatures. Charge transfer spectra (ligand-to-metal or metal-to-ligand transitions) are much more intense than d–d transitions due to allowed selection rules, often dominating the UV–Vis spectra of complexes. Metal–ligand bonding (σ -donation and π -back bonding) influences orbital energies, splitting patterns, and spectral properties, thereby controlling color, stability, and reactivity of coordination compounds.

Multiple Choice Questions (MCQs):

Q1. Jahn–Teller distortion is most commonly observed in:

- a) d³ and d8 complexes
- b) High-spin d⁵ complexes
- c) Octahedral d⁹ and high-spin d⁴ complexes
- d) Low-spin d⁶ complexes

Answer: C

- Q2. A static Jahn–Teller effect occurs when:
- a) Distortion is time-dependent
- b) Distortion is permanent in geometry
- c) The spectrum is unchanged
- d) There is only spin pairing

Answer: B

- **Q3.** Which type of spectrum generally shows higher intensity bands than d–d transitions?
- a) Charge transfer spectra
- b) Infrared spectra
- c) Microwave spectra
- d) Raman spectra

Answer: A

Q4. In charge transfer spectra, electron transfer occurs:

- a) Between two ligands
- b) From ligand to metal or metal to ligand
- c) From metal to solvent
- d) Between two metals only

Answer: B

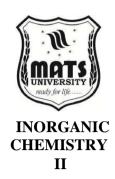
Q5. The extent of metal-ligand bonding interactions strongly affects:

- a) Geometry only
- b) Magnetic susceptibility only
- c) Both spectra and stability of complexes
- d) Only electronic transitions forbidden by rules

Answer: C

Short Questions:

- 1. What is the Jahn-Teller effect and how does it influence spectra?
- 2. Differentiate between static and dynamic Jahn–Teller distortion.
- 3. What is meant by a charge transfer (CT) spectrum?
- 4. How does metal-ligand bonding affect the intensity of absorption bands?
- 5. Give an example of a complex showing a Jahn–Teller distortion in its spectrum.


Long Questions:

- 1. Explain the effects of Jahn–Teller distortion on electronic spectra with suitable examples.
- 2. Discuss the difference between static and dynamic Jahn–Teller distortion and their spectral consequences.
- 3. Describe charge transfer spectra in transition metal complexes. How do they differ from d–d transitions?
- 4. Explain how metal-ligand bonding (σ -donation, π -back bonding) influences the spectra and stability of complexes.
- 5. Analyze the overall effects of structural distortions and bonding on the electronic spectra and magnetic properties of coordination complexes.

UNIT 2.4

Magnetic Characteristics of Metal Complexes

One of the most fundamental properties of matter is magnetism, which is particularly important in coordination chemistry because it provides an engaging way to examine the electronic structure and bonding of metal complexes. Gaining important knowledge about the coordination environments, oxidation states, and electronic arrangement of transition metal complexes requires an appreciation and understanding of their magnetic properties. They originate from unpaired electrons that are permitted to occupy the d-orbitals of transition metal ions, which in turn causes magnetism. In many coordination chemistry studies and related applications, data serve as a crucial diagnostic tool.

2. 4.1 Types of Magnetism

The different kinds of magnetic behaviour exhibited by these metal complexes arise from the unique interactions between external fields & the electron configurations of the metal orbitals.

2.4.1.1 Diamagnetism

Diamagnetism Regardless of a material's other magnetism, diamagnetism is the most basic shared magnetic behavior. The reaction of paired electrons to the external magnetic field is the cause of this phenomenon. Under the influence of an external field, the orbital movement of the paired electrons creates an inducted magnetic moment that tends to oppose the external field thus generating a weak repulsion. Consequently, magnetic fields repel diamagnetic materials. If all are paired in coordination compounds, diamagnetism results

. This happens often in low-spin d, d configurations or complexes with d⁶, d⁸ configurations. Notable and examples includes complexes of Zn^2\$ (d¹⁰ configuration complete) & low-spin octahedral Fe^2\$ (d⁶) complexes with strong- field the ligands like CN⁻ or CO. Finally, the diamagnetic contribution is non-zero for all matter & it is only when there are no unpaired electrons that this is the dominant or only contribution to the magnetic characteristics of matter. Diamagnetic materials have a negative, small in magnitude, temperature-independent magnetic susceptibility. Though typically 'overwhelmed' by more robust magnetic influences operating in species where unpaired electrons are present, the diamagnetic term must nonetheless be included to obtain the paramagnetic part of magnetic susceptibility.

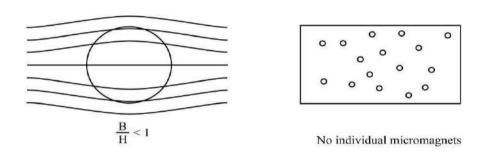
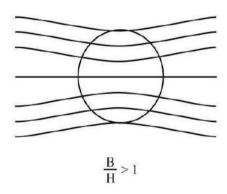
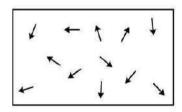


Figure 1 -The behavior of a diamagnetic body in the externally applied magnetic field and corresponding magnetic domain.

2.4.1.2 Paramagnetism


Paramagnetism is the most common & clinically informative spin, or magnetic property, for transition metal coordination. This happens in materials that have unpaired electrons, which create stable magnetic moments. When there is an external magnetic field, these magnetic moments feel a torque that allign them with the direction of the field, as consequence they are attracted to stronger field intensity regions. The well known paramagnetic effect is due to two main sources — the inherent spin of unpaired electrons & their orbital angular momentum. The limit of small Δ (i.e., the majority of first-row transition metal complexes) produces an extremely quenched orbital contribution from method 1 which renders the spin contribution as the more substantial.


This feature is the basis for the usefulness of the spin-only expression for the calculation of magnetic moments.

Numerous coordination compounds are paramagnetic:

- High-spin complexes of Fe³⁺ (d⁵) having five unpaired electrons
- $Co^{2+}(d^7)$ tetrahedral complexes with three unpaired electrons
- Cu²⁺ (d⁹) square planar complexes with one unpaired electron

The paramagnetism can range from very weak to very strong, and thus the extent of paramagnetism is closely related to the number of unpaired electrons present in the system, which is one of the reasons why magnetic measurements are such a powerful tool to determine electronic configurations & to differentiate between low & high spin states of a given metal complex. The paramagnetism' displays a typical temperature dependence which is either the Curie law' (in the case of simple systems) or the `Curie-Weiss law' (which applies to interacting magnetic systems). Upon increasing temperature, quadratics come to play until thermal energy overcomes the aligning potential of individual magnetic moments with the applied field, leading to decreasing paramagnetic susceptibility.

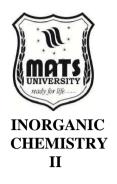

Randomaly oriented micromagnets

Figure -2 The behavior of a paramagnetic body in the externally applied magnetic field and corresponding magnetic domain.

2.4.1.3 Ferromagnetism

Ferromagnetism is a collective magnetic behavior found in some materials that occurs owing to the interaction of neighboring unpaired electrons via a quantum mechanical exchange mechanism that tends to align their spins parallel in orientation. Such parallel assemblies lead to strongly magnetically ordered domains or regions and, consequently, to spontaneous magnetization even in the zero external field. While ferromagnetism is rare in coordination chemistry with discrete

complexes, it plays a significant role in extended structures, such as metal-organic frameworks (MOFs), or polynuclear complexes where two or more metal centers are connected via bridging the ligands capable of facilitating magnetic coupling.

Ferromagnetic materials display a number of unique characteristics:

- Spontaneous magnetisation below certain temperature (Curie temperature)
- Magnetic hysteresis, in which the sample magnetization depends on the magnetic history of the sample
- G-XX Magnonic crystal with up to 65 times increased magnetic susceptibility vs. paramagnetic analogs

Examples, especially in the coordination chemistry field, are certain copper(II) carboxylate dimers & iron(III) oxide clusters with certain bridging geometries that favour ferromagnetic exchange.

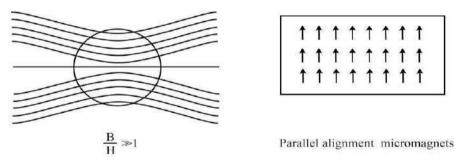


Figure -3 The behavior of a ferromagnetic body in an externally applied magnetic field and corresponding magnetic domain.

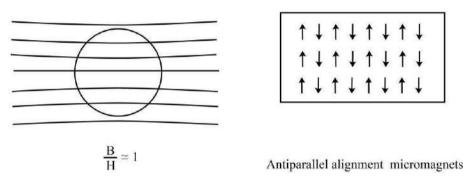
2.4.1.4Antiferromagnetism

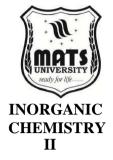
For example, in antiferromagnetism two unpaired electrons on adjacent atoms interact through an exchange interaction that stabilizes antiparallel orientation of their spins. This arrangement creates equal, opposite magnetic moments on each sublattice & hence zero total magnetization when there isn't a field applied externally.

Antiferromagnetic coupling in coordination compounds is often seen in:

- Bridging the ligands at specific geometries in dinuclear complexes
- Metal organic frameworks exhibiting some patterns of connection
- Polymeric clusters with specific metal-metal distances

Antiferromagnetic materials are characterized by temperature-dependent susceptibility, which has a peak value at the critical temperature known as the Néel temperature. Below this temperature, thermal energy is not enough to break antiparallel ordering of spins. The copper(II) acetate monohydrate dimer is a classic example of an antiferromagnetic in coordination chemistry, where two Cu^{2+} ions (each with one unpaired electron) are coupled by four bridging acetate the ligands & through a coupled S=0 ground state at low temps.




Figure 4. The behavior of an antiferromagnetic body in an externally applied magnetic field and corresponding magnetic domain.

2.4.1.5 Ferrimagnetism

is similar & Ferrimagnetism to both ferromagnetism antiferromagnetism & occurs in materials that contain two or more distinct magnetic sublattices with unequal but antiparallel magnetic moments. This imbalance gives rise to a net magnetic moment & spontaneous magnetization below a critical temperature. Ferrimagnetism can also arise out of hetero metallic (like the same, different metal ions) complexes or extended structures in coordination chemistry, or oxides in solid state chemistry (e.g. different oxidation states of the same metal). A classic example is mixed-valence iron oxide (magnetite, Fe3O4) in which Fe2+ & Fe3+ reside on different crystallographic sites & contribute unequal amounts of antiparallel aligned magnetic moments to a net magnetic moment.

2.4.1.6 Metamagnetism

The transition from antiferromagnetic/paramagnetic to ferromagnetic state under sufficiently strong external magnetic field is known as meta magnetism. This is the result of the field exceeding the antiferromagnetic exchange interactions, forcing the spins to align with the field. In coordination chemistry, meta magnetic transitions have also been reported for some metal—organic frameworks (MOFs) & coordination polymers with particular structural features that place the antiferromagnetically coupled metal centers at critical distances that allow meta magnetism to ensue at some critical temperature.

2.4.1.7 Magnetic Susceptibility

Magnetic susceptibility (χ) quantifies a material's response to an applied magnetic field & serves as the primary experimental parameter measured in magnetic studies of coordination compounds. It is defined as the ratio of the induced magnetization (M) to the applied magnetic field strength (H):

$$\chi = M/H$$

For practical purposes, several different expressions of magnetic susceptibility are employed:

Volume Susceptibility (χ_v)

Volume susceptibility relates the magnetization per unit volume to the applied field strength & is dimensionless in SI units.

Mass Susceptibility (γ_m)

Mass susceptibility (χ_m) normalizes the magnetic response to the

sample mass: $\chi_{\rm m} = \chi_{\rm v}/\rho$

Where ρ represents the density of the material. Mass susceptibility is commonly expressed in units of cm³/g or m³/kg.

Molar Susceptibility (χ_{mol})

Molar susceptibility is particularly useful in coordination chemistry as it normalizes the magnetic response to the amount of substance:

$$\gamma_{mol} = \gamma_m \times M$$

Where M denotes the molar mass of the compound. Molar susceptibility is typically reported in units of cm³/mol.

The total molar susceptibility of a coordination compound comprises both diamagnetic & paramagnetic contributions:

$$\chi_{mol} = \chi^{dia} + \chi^{para}$$

For accurate determination of the paramagnetic component (which provides information about unpaired electrons), the diamagnetic contribution must be subtracted:

$$\chi^{para} = \chi_{mol}$$
 - χ^{dia}

The diamagnetic correction can be estimated using Pascal's constants, which assign specific diamagnetic contributions to atoms, bonds, & structural features, or through direct comparison with analogous diamagnetic compounds.

2.4.1.8 Measurement Techniques

Several experimental methods have been developed to measure the magnetic characteristics of coordination compounds, each with specific advantages & limitations. These techniques vary in sensitivity, sample requirements, & the information they provide.

2.4.1.8.1 The Gouy Method

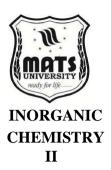
The Gouy method represents one of the oldest & most widely used techniques for measuring magnetic susceptibility of coordination compounds. This classical approach, developed by Louis Georges Gouy in the late 19th century, relies on the force experienced by a sample when placed in a non-uniform magnetic field.

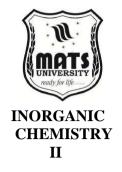
Principle & Apparatus

In the Gouy balance apparatus, a cylindrical sample is suspended from an analytical balance & positioned so that one end lies within a uniform region of a magnetic field while the other end extends into a region of negligible field strength. When the field is applied, the sample experiences a net force along the field gradient. For paramagnetic substances, this force pulls the sample toward the stronger field region, while diamagnetic materials experience a slight repulsion.

The apparatus consists of:

- An analytical balance with high precision (typically 0.1 mg or better)
- A cylindrical sample tube of uniform cross-section
- An electromagnet capable of generating fields up to ~1.5 Tesla
- A sample holder that positions the tube vertically between the magnet poles


Measurement Procedure


The measurement process involves several key steps:

- 1. The sample is packed uniformly into a cylindrical tube to avoid density gradients
- 2. The tube is weighed precisely without the magnetic field
- 3. The magnetic field is applied, & the apparent weight change (Δw) is recorded
- 4. The volume susceptibility is calculated from the weightchange using the equation:

$$\chi_v = (\Delta w \times g)/(H^2 \times A \times m/2)$$

Where:

- g is the gravitational acceleration
- H is the magnetic field strength
- A is the cross-sectional area of the sample
- m is the mass of the sample

For standardization & to eliminate systematic errors, the measurement is typically calibrated using a substance of known susceptibility, such as mercury (II) tetra thiocyanate cobaltate (III), HgCo (SCN)₄.

Advantages & Limitations

The Gouy method offers several advantages:

- Relatively simple instrumentation & methodology
- Ability to measure a wide range of susceptibilities
- Compatibility with solid, liquid, & solution samples
- Minimal sample preparation requirements

However, the technique also presents significant limitations:

- Relatively large sample quantities (typically 0.5-1 g) are required
- Precise packing of the sample is critical to avoid systematic errors
- Temperature control can be challenging, particularly at extreme temperatures
- The method offers moderate precision compared to more modern techniques
- Ferromagnetic impurities can severely distort measurements

Despite these limitations, the Gouy method remains valuable in educational settings & for routine measurements where high precision is not essential.

2.4.1.8.2 The Faraday Method

The Faraday method represents a refinement of the Gouy technique that addresses some of its limitations. This approach employs a small sample positioned entirely within a region of uniform field gradient, resulting in a more consistent force experienced by the entire sample.

Key advantages of the Faraday method include:

- Smaller sample requirements (typically 50-100 mg)
- Higher precision, particularly for weakly magnetic materials

- Better temperature control due to the smaller sample size
- Reduced sensitivity to packing irregularities

However, the method requires more sophisticated equipment with precisely engineered magnetic field gradients, making it less accessible for routine laboratory use.

2.4.1.8.3 - Evans Method (NMR Method)

The Evans method utilizes nuclear magnetic resonance (NMR) spectroscopy to determine magnetic susceptibility through the effect of paramagnetic species on the chemical shift of a reference compound (typically the solvent or an internal standard like tetramethylsilane).

This technique proves particularly valuable for:

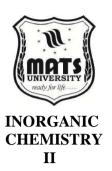
- Solution-state measurements of coordination compounds
- Samples available only in small quantities (1-10 mg)
- Temperature-dependent studies in solution
- Investigations of paramagnetic complexes in biological systems

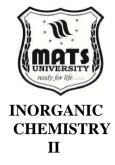
The method measures the difference in chemical shift (Δf) between the reference in the presence & absence of the paramagnetic compound, from which the mass susceptibility can be calculated:

$$\chi_{\rm m} = (3 \times \Delta f)/(4\pi \times f \times c)$$

Where:

- f is the operating frequency of the NMR spectrometer
- c is the concentration of the paramagnetic species


The Evans method offers exceptional precision for dilute solutions & requires minimal sample preparation, making it the preferred technique for many modern investigations of paramagnetic coordination compounds.


2.4.2 SQUID Magnetometry

Superconducting Quantum Interference Device (SQUID) magnetometry represents the gold standard for high-precision magnetic measurements in contemporary coordination chemistry research. This technique utilizes superconducting loops containing Josephson junctions to detect incredibly small magnetic fields with unparalleled sensitivity.

SQUID magnetometers offer several distinct advantages:

- Exceptional sensitivity (detection limits around 10^{-10} emu)
- Minimal sample requirements (as little as 1 mg)

- Wide temperature range capabilities (typically 1.8-400 K)
- Ability to measure in varying applied fields (up to 7 Tesla in commercial systems)
- High precision for both strong & weak magnetic responses

These capabilities make SQUID magnetometry ideal for:

- Temperature-dependent studies revealing magnetic phase transitions
- Field-dependent measurements identifying metamagnetic behavior
- Investigations of weak magnetic coupling in polynuclear complexes
- Characterization of single-molecule magnets & spin crossover compounds

While the technique requires specialized equipment & cryogenic facilities, its unmatched precision & versatility have established it as the primary method for advanced magnetic studies of coordination compounds.

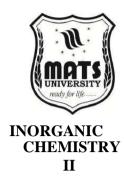
2.4.3 Vibrating Sample Magnetometry (VSM)

Vibrating Sample Magnetometry provides another sensitive technique for measuring magnetic moments. In this approach, a sample vibrates within a uniform magnetic field, inducing an electrical signal in detection coils proportional to the sample's magnetic moment.

VSM offers a good compromise between precision & accessibility:

- Moderate sensitivity (around 10⁻⁶ emu)
- Relatively straightforward operation compared to SQUID magnetometry
- Rapid measurement capabilities for routine characterization
- Compatibility with variable temperature & field studies

This technique proves particularly useful for educational settings & industrial applications where high throughput is prioritized over ultimate sensitivity.


Magnetic Moment & Electronic Structure

The magnetic moment of a coordination complex provides direct insight into its electronic configuration, serving as a diagnostic probe for oxidation state, spin state, & bonding characteristics. This

relationship forms the theoretical foundation for interpreting magnetic measurements in coordination chemistry.

2.4.4 The Spin-Only Formula

For many first-row transition metal complexes, the orbital angular momentum contribution to the magnetic moment is largely quenched by the ligand field, leaving the spin angular momentum as the dominant contributor. This phenomenon gives rise to the spin-only formula, which relates the effective magnetic moment ($\mu_e ff$) to the number of unpaired electrons (n):

$$\mu_e ff = g\sqrt{[S(S+1)]} \mu_B$$

Where:

- g is the electron g-factor (approximately 2.0023 for a free electron)
- S is the total spin quantum number (S = n/2 for n unpaired electrons)
- μB is the Bohr magneton $(9.274 \times 10^{-24} \text{ J/T})$

This expression simplifies to the widely used form:

$$\mu_e ff = \sqrt{[n(n+2)]} \mu_B$$

The spin-only formula provides a remarkably good approximation for many octahedral & tetrahedral complexes of first-row transition metals, particularly those with less than half-filled d-shells.

Expected spin-only magnetic moments for different numbers of unpaired electrons are:

- n = 1: $\mu_e ff = 1.73 \ \mu B$
- n = 2: $\mu_e ff = 2.83 \ \mu B$
- n = 3: $\mu_e ff = 3.87 \ \mu_B$
- n = 4: $\mu_e ff = 4.90 \ \mu B$
- n = 5: $\mu_e ff = 5.92 \, \mu_B$

Experimental magnetic moments typically deviate slightly from these ideal values due to:

- Residual orbital contributions
- Spin-orbit coupling effects
- Temperature-dependent phenomena
- Magnetic exchange interactions in polynuclear complexes

2.4.5 Orbital Contribution & Spin-Orbit Coupling

While the spin-only formula provides a good approximation for many complexes, significant deviations occur in certain cases due to unquenched orbital angular momentum & spin-orbit coupling. For ions with degenerate ground states (particularly those with t_2g^3 , t_2g^5 , eg^1 , or eg^3 configurations in octahedral fields), the orbital angular momentum is not fully quenched, leading to magnetic moments substantially higher than the spin-only values. Notable examples include:

- Octahedral Co²⁺ complexes (d⁷): Theoretical spin-only moment of 3.87 μB, but typically exhibit values of 4.3-5.2 μB
- Octahedral Ni^{2+} complexes (d⁸): Theoretical spin-only moment of 2.83 μ B, but often show values around 3.2 μ B

The extent of orbital contribution depends on several factors:

- The specific electronic configuration & ground state
- The symmetry of the coordination environment
- The nature of the metal-ligand bonding
- The strength of the spin-orbit coupling

For second & third-row transition metals, the spin-orbit coupling becomes increasingly significant, often leading to magnetic moments that deviate substantially from spin-only predictions. In these cases, more sophisticated theoretical treatments incorporating the full angular momentum (J = L + S) become necessary.

2.4.6 Determination of Electronic Configuration from Magnetic Data

Magnetic measurements serve as a powerful tool for elucidating the electronic configurations of coordination complexes, particularly in distinguishing between high-spin & low-spin states in d^4 - d^7 configurations.

2.4.6 .1 High-Spin vs. Low-Spin Complexes

For transition metal ions with d^4 - d^7 configurations in octahedral environments, the electronic arrangement depends on the relative magnitudes of the pairing energy (P) & the crystal field splitting parameter (Δ_0):

- When $P > \Delta_o$: High-spin configuration prevails, maximizing the number of unpaired electrons
- When $P < \Delta_0$: Low-spin configuration dominates, with electrons preferentially filling the lower-energy t_2g orbitals

Magnetic measurements provide a definitive method to distinguish between these possibilities:

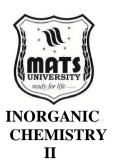
- Fe²+ (d⁶): High-spin state has 4 unpaired electrons ($\mu_e ff \approx 4.9$ μ_B), while low-spin state is diamagnetic
- Co³+ (d⁶): High-spin state has 4 unpaired electrons ($\mu_e ff \approx 4.9$ μ_B), while low-spin state is diamagnetic
- Fe³+ (d⁵): High-spin state has 5 unpaired electrons ($\mu_e ff \approx 5.9$ μ_B), while low-spin state has 1 unpaired electron ($\mu_e ff \approx 1.7~\mu_B$)

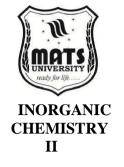
This application has proven particularly valuable in characterizing spin crossover compounds that exhibit temperature-dependent transitions between high-spin & low-spin states, manifested as dramatic changes in magnetic susceptibility.

2.4.6.2 Temperature Dependence & Magnetic Exchange

The temperature dependence of magnetic susceptibility provides additional insights into electronic structure & magnetic interactions:

- Simple paramagnets following the Curie law ($\chi \propto 1/T$) indicate isolated magnetic centers
- Deviations toward higher susceptibilities at low temperatures (positive Weiss constants) suggest ferromagnetic interactions
- Deviations toward lower susceptibilities at low temperatures (negative Weiss constants) indicate antiferromagnetic coupling


In polynuclear complexes, analysis of magnetic exchange interactions through variable-temperature studies can reveal:


- The strength of magnetic coupling (quantified by the exchange coupling constant, J)
- The dimensionality of the magnetic interactions (1D chains, 2D sheets, or 3D networks)
- The pathway & mechanism of magnetic exchange (direct exchange, superexchange, or double exchange)
- The ground state spin value of the coupled system

These parameters provide valuable information about the electronic structure & bonding within & between metal centers.

2.4.6.3 Calculation Methods & Worked Examples

Practical application of magnetic theory in coordination chemistry involves several calculation methods that extract meaningful electronic structure information from experimental measurements. The following approaches & examples illustrate these principles.

Converting Experimental Data to Magnetic Moments

The process of converting raw experimental data to magnetic moments typically involves several steps:

- 1. Determination of mass susceptibility (χ_m) from experimental measurements using appropriate instrumental equations
- 2. Conversion to molar susceptibility: $\chi_{mol} = \chi_m \times molecular$ weight
- 3. Application of diamagnetic corrections: $\chi^{para} = \chi_{mol} \chi^{dia}$
- 4. Calculation of effective magnetic moment: $\mu_e ff = 2.828 \sqrt{(\chi^{para} \times T)}$

Where T is the absolute temperature in Kelvin.

Example 1: Magnetic Moment Calculation from Gouy Method Data

Consider a cobalt (II) complex with the formula [Co(NH₃)₆]Cl₂ measured using the Gouy method at 298 K. The following experimental data was obtained:

• Sample mass: 0.786 g

• Tube length: 10.0 cm

Cross-sectional area: 0.25 cm²

Applied field: 0.8 Tesla

• Observed weight change: 11.2 mg

Calculate the magnetic moment & determine the spin state of the complex.

Step 1: Calculate volume susceptibility

$$\chi_v = (\Delta w \times g)/(H^2 \times A \times l) \; \chi_v = (0.0112 \; g \times 980 \; cm/s^2)/[(0.8 \; T)^2 \times 0.25 \; cm^2 \times 10.0 \; cm] \; \chi_v = 6.86 \times 10^{-5} \; (in \; cgs \; units)$$

Step 2: Convert to mass susceptibility

 $\chi_m = \chi_v/\rho$, where ρ is the density (approximately 1.8 g/cm³ for this complex) $\chi_m = (6.86 \times 10^{-5})/1.8 = 3.81 \times 10^{-5}$ cm³/g

Step 3: Calculate molar susceptibility

Molecular weight of [Co(NH₃)₆]Cl₂ = 58.93 + 6(14.01 + 3) + 2(35.45) = 267.48 g/mol $\chi_{mol} = \chi_m \times MW = 3.81 \times 10^{-5} \times 267.48 = 1.02 \times 10^{-2}$ cm³/mol

Step 4: Apply diamagnetic correction

Using Pascal's constants, estimate χ^{dia} :

• Co^{2+} : -13 × 10⁻⁶ cm³/mol

- NH₃ (6 groups): $6 \times (-18 \times 10^{-6}) = -108 \times 10^{-6} \text{ cm}^3/\text{mol}$
- Cl⁻ (2 ions): $2 \times (-23 \times 10^{-6}) = -46 \times 10^{-6}$ cm³/mol Total $\chi^{dia} = -167 \times 10^{-6}$ cm³/mol = -1.67×10^{-4} cm³/mol

$$\chi^{\rm para} = \chi_{\rm mol}$$
 – $\chi^{\rm dia} = 1.02 \times 10^{-2}$ – (-1.67 \times $10^{-4}) = 1.04 \times 10^{-2}~cm^3/mol$

Step 5: Calculate effective magnetic moment

$$\mu_e ff = 2.828 \sqrt{(\chi^{para} \times T)} \ \mu_e ff = 2.828 \sqrt{(1.04 \times 10^{-2} \times 298)} \ \mu_e ff = 4.97 \ \mu_B$$

Step 6: Interpret the result

The calculated moment (4.97 μ B) substantially exceeds the spin-only value for three unpaired electrons (3.87 μ B) but aligns with typical values observed for high-spin octahedral Co²⁺ complexes (4.7-5.2 μ B). This elevated moment indicates significant orbital contribution from the ${}^4T_{1}g$ ground state.

The result confirms a high-spin d⁷ configuration with three unpaired electrons, consistent with the relatively weak-field nature of ammonia the ligands for Co²⁺.

Example 2: Distinguishing Geometric Isomers

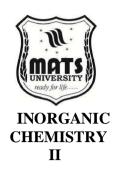
Magnetic measurements can differentiate between geometric isomers with different electronic configurations. Consider two nickel(II) complexes with the formula $[Ni(PPh_3)_2X_2]$, where X represents a halide ligand. The magnetic measurements yield:

- Complex A: $\mu_e ff = 3.12 \, \mu B$ at 298 K
- Complex B: $\mu_e ff = 0 \mu B$ (diamagnetic)

Determine the likely geometric arrangements for these complexes.

Analysis:

- Complex A exhibits paramagnetism consistent with two unpaired electrons (spin-only value: 2.83 µB), with the slightly higher experimental value indicating some orbital contribution
- Complex B is diamagnetic, indicating no unpaired electrons


For a d⁸ configuration of Ni²⁺:

- Tetrahedral geometry typically produces paramagnetic complexes with two unpaired electrons
- Square planar geometry results in diamagnetic complexes with all electrons paired

Therefore:

• Complex A likely adopts a tetrahedral geometry around the nickel center

• Complex B possesses a square planar arrangement

This conclusion is further supported by considering that triphenylphosphine (PPh₃) is a strong-field ligand that favors square planar geometry for d⁸ configurations when present in sufficient proportion relative to the weaker-field halide the ligands.

Example 3: Temperature-Dependent Measurements & Exchange Coupling

Consider a dinuclear copper(II) complex $[Cu_2(\mu\text{-OAc})_4(py)_2]$ for which variable-temperature magnetic susceptibility measurements yield the following data:

Temperature (K)	$\chi_{\text{mol}} (10^{-3} \text{ cm}^3/\text{mol})$
300	0.45
250	0.51
200	0.54
150	0.49
100	0.27
50	0.1

Analyze this data to determine the nature of magnetic coupling between the copper centers.

Step 1: Convert to magnetic moment at each temperature

At 300 K:
$$\mu_e ff = 2.828 \sqrt{(0.45 \times 10^{-3} \times 300)} = 1.04 \ \mu_B$$
 At 50 K: $\mu_e ff = 2.828 \sqrt{(0.10 \times 10^{-3} \times 50)} = 0.20 \ \mu_B$

Step 2: Analyze the temperature dependence

The effective moment decreases significantly as temperature decreases, with values well below the expected range for independent Cu^{2+} centers (1.7-2.2 μ B per copper). This behavior indicates strong antiferromagnetic coupling between the two copper(II) ions.

Step 3: Apply the Bleaney-Bowers equation for a coupled dinuclear system

$$\chi_{\text{mol}} = (2Ng^2\mu B^2/kT) \times [3/(3+\exp(-2J/kT))]$$

Where:

- N is Avogadro's number
- g is the g-factor
- μB is the Bohr magneton
- k is the Boltzmann constant
- J is the exchange coupling constant

Fitting the experimental data to this equation yields $J \approx -300~\text{cm}^{-1}$, indicating strong antiferromagnetic coupling through the acetate bridges. This strong coupling results from the specific geometry of the copper acetate paddle-wheel structure, where bridging acetate the ligands facilitate effective overlap between the magnetic orbitals of the two d⁹ Cu²⁺ centers.

2.4.7 - Advanced Applications & Modern Developments

Magnetic studies of coordination compounds continue to evolve, with several cutting-edge applications in contemporary research.

2.4.7.1 - Single-Molecule Magnets (SMMs)

Single-molecule magnets represent a revolutionary class of coordination compounds that exhibit magnetic bistability & slow magnetic relaxation at the molecular level. These materials bridge the gap between classical bulk magnets & quantum systems, offering potential applications in high-density information storage & quantum computing.

2.4.7.1.1 - Key characteristics of SMMs include:

- High-spin ground states with significant magnetic anisotropy
- Energy barriers to magnetization reversal ($\Delta = |D|S^2$) for integer spin or $|D|(S^2-1/4)$ for half-integer spin
- Hysteresis of magnetic origin at low temperatures
- Quantum tunneling of magnetization under specific conditions

Prominent examples include:

- Mn_{12} -acetate cluster, the first discovered SMM with S=10 ground state
- Dysprosium double-decker phthalocyanine complexes with extremely high anisotropy barriers
- Polynuclear lanthanide clusters with record blocking temperatures

Magnetic characterization of SMMs typically requires sophisticated measurements, including:

- AC susceptibility to determine relaxation dynamics
- Micro-SQUID magnetometry to observe quantum tunneling steps
- Single-crystal magnetic studies to elucidate anisotropy axes
 Spin Crossover (SCO) Complexes

Spin crossover phenomena occur in certain transition metal complexes that can switch between high-spin & low-spin electronic configurations in response to external stimuli such as temperature, pressure, or light irradiation. This disability creates opportunities for molecular switches & sensors.

Magnetic measurements prove essential for characterizing SCO behavior, revealing:

- Transition temperatures & thermal hysteresis
- Completeness of spin conversion
- Cooperativity between metal centers in crystalline materials
- Kinetics of the spin transition process

Iron(II) complexes with nitrogen-donor the ligands represent the most extensively studied SCO systems, with magnetic moments transitioning between ~0 μ B (low-spin, S=0) & ~4.9 μ B (high-spin, S=2) upon spin state switching.

2.4.8- Magnetic Resonance Imaging (MRI) Contrast Agents

Paramagnetic coordination compounds, particularly gadolinium(III) complexes, serve as critical components in MRI contrast agents. These materials enhance image contrast by accelerating the relaxation of water protons in biological tissues.

The paramagnetic characteristics directly influence contrast agent efficacy through:

- The number of unpaired electrons (Gd³⁺ with seven unpaired electrons is ideal)
- The electronic relaxation time
- Water exchange rates at the metal center
- Rotational correlation times of the complex

Magnetic studies of potential contrast agents focus on:

- Relaxivity measurements in various media
- Stability constants in physiological conditions
- Coordination geometry & water accessibility
- Temperature dependence of magnetic characteristics

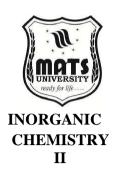
Quantum Information Processing

The discrete, well-defined energy levels of magnetic coordination compounds make them promising candidates for quantum bits (qubits) in quantum information processing. Molecular qubits based on coordination compounds offer advantages including:

- Chemical tunability through ligand design
- Coherence times amenable to manipulation
- Potential for creating entangled multi-qubit systems
- Integration into larger molecular architectures

2.4.8.1 Magnetic characterization of molecular qubits employs specialized techniques including:

- Electron paramagnetic resonance (EPR) spectroscopy with high field/frequency capabilities
- Pulsed EPR methods to determine quantum coherence times
- Ultra-low temperature magnetometry
- Micro-resonator methods for single-molecule studies


2.4.8.1.1 Molecular Spintronics

Molecular spintronics represents an emerging field that utilizes the spin characteristics of coordination compounds to create novel electronic devices with enhanced functionality. These systems exploit:

- Spin-dependent electron transport
- Magnetic switching behavior
- Spin filtering capabilities
- Magneto-resistance effects

Magnetic measurements in molecular spintronics research often combine traditional bulk techniques with specialized approaches:

- Spin-polarized scanning tunneling microscopy
- Magneto-transport measurements in molecular junctions
- X-ray magnetic circular dichroism (XMCD) for element-specific magnetism
- Muon spin resonance (μ SR) for local probe studies

Summary

Magnetic characteristics of metal complexes arise from the presence of unpaired electrons and can be classified as diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic, or ferrimagnetic. Magnetic susceptibility is a key parameter, measurable by classical methods like the Gouy and Faraday methods, and modern techniques like the Evans NMR method, SQUID magnetometry, and Vibrating Sample Magnetometry (VSM). The spin-only formula ($\mu = \sqrt{n(n+1)}$) relates the number of unpaired electrons (n) to the observed magnetic moment, helping determine electronic configurations and spin states of complexes. Magnetic data provide valuable insights into geometry, bonding, and electronic structures. Moreover, single-molecule magnets (SMMs) and paramagnetic complexes play important roles in applications such as MRI contrast agents and advanced magnetic materials.

Multiple Choice Questions (MCQs):

Q1. The spin-only formula for magnetic moment (μ) is:

- a) $\mu = \sqrt{n}$
- b) $\mu = \sqrt{(n(n+1))}$
- c) $\mu = 2\sqrt{n}$
- d) $\mu = \sqrt{(n^2 + 1)}$

Answer: B

Q2. The **Gouy method** measures magnetic susceptibility by observing:

- a) Frequency shift in NMR
- b) Deflection of a sample in a magnetic field
- c) Vibration frequency of a sample
- d) Quantum resonance of spins

Answer: B

Q3. SQUID magnetometry is especially useful because:

- a) It works at very high temperatures
- b) It provides ultra-sensitive measurements at low temperatures
- c) It is simpler than Gouy method
- d) It cannot detect paramagnetism

Answer: B

Q4. The Evans method for magnetic measurements is based on:

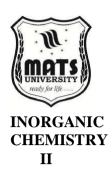
- a) Electron spin resonance
- b) Nuclear magnetic resonance (NMR)
- c) Vibrating sample response
- d) Light absorption shifts

Answer: B

Q5. Metal complexes are widely used as **MRI contrast agents** due to:

- a) Their color properties
- b) Their strong absorption of light
- c) Their magnetic characteristics
- d) Their ability to form charge transfer bands

Answer: C


Short Questions:

- 1. Define magnetic susceptibility in the context of metal complexes.
- 2. What is the spin-only formula for magnetic moment?
- 3. Differentiate between paramagnetism and diamagnetism.
- 4. State one advantage and one limitation of the Gouy method.
- 5. Name two modern techniques for measuring magnetic properties of complexes.

Long Questions:

- 1. Explain the different types of magnetism (diamagnetism, paramagnetism, ferromagnetism, antiferromagnetism, ferrimagnetism) observed in metal complexes.
- 2. Discuss the principle, working, advantages, and limitations of the Gouy and Faraday methods of magnetic susceptibility measurement.
- 3. Describe the Evans NMR method and its importance in measuring magnetic susceptibility of paramagnetic complexes.
- 4. Explain the principle and applications of SQUID magnetometry and Vibrating Sample Magnetometry (VSM).
- 5. Using the spin-only formula, explain how magnetic moment values can be used to determine the electronic configuration and spin states of transition metal complexes.

UNIT 2.5

Advanced Magnetic Concepts

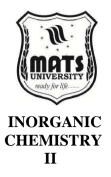
Magnetism, one of nature's four fundamental forces, is an exceedingly more complicated affair than the everyday examples—simple bar magnets & refrigerator magnets—that we know. Magnetism occurs when the movement of charged particles—such as electrons—couples them to an external field. The orbital contribution to the magnetic moment, the cooperative phenomena (ferromagnetism & antiferromagnetism) & the application of the magnetic measurements for the determination of structure are discussed in this section.

2.5 .1 Orbital Contribution to Magnetic Moment

The Role of Orbit in the Magnetic Moment The intrinsic spin of electrons and their orbital motion around an atom's nucleus are the two main causes of the magnetic properties of atoms and molecules. Although frequently eclipsed by the orbital degrees of freedom's contribution to the magnetic moment, that is equally crucial for appreciating and understanding the bulk magnetic properties of materials as is spin in introductory treatments. Electrons circling an atomic nucleus can be conceptualized as tiny current loops for the purposes of first approximation and visualization.

A magnetic dipole is created when a current loop generatesa magnetic field perpendicular to the plane the loop forms, according toclassical electromagnetic theory. The magnitude of this magnetic moment is directly proportional to the current passing through the loop, and the enclosed loop's area. This translates to a magnetic moment proportional to the orbital angular momentum of the electron in quantum mechanical terms. According to quantum mechanics, orbital

magnetism begins with the orbital angular momentum operator, L. For an electron in a hydrogen-like atom, the incident operator has an expectation value equaling the orbital angular momentum quantum number l, which can take the values l = 0, 1, 2, n - 1 for the principal quantum number n. The expression for the magnetic moment originated from this orbital motion is:



where μ_o is the Bohr magneton (9.274×10⁻²⁴ J/T), a fundamental unit of magnetic moment.

Unlike classical objects, electrons in atoms do not orbit in clearly defined planes. Instead, their wave functions depict probability distributions in three dimensions. Electrons in s orbitals are denoted by L=0; S=1/2, whereas electrons in p, d, or f orbitals are denoted by l>0. These distributions inherit angular momentum, which is a key component of the atom's magnetic properties. However, because they have spherically symmetric wave functions and no orbital angular momentum, electrons in s orbitals (l=0) do not contribute to the magnetic moment in any way through orbital motion.

This orbital contribution is especially noticeable in rare-earth and transition metalcompounds. Large orbital magnetic moments can be produced intransition metals by the partially filled d orbitals (l=2). However,crystal field effects often quench this contribution in crystallineenvironments. On the other hand, because the outer electrons provide astrong shield for the 4f electrons from the crystal field, the orbital quenching is very weak for rare-earth elements with partially filled forbitals (l=3). Due to the electrostatic interactions with neighboring atoms in the lattice,crystal field essentially lifts the degeneracy of the free atom by breaking the

spherical symmetry, thus allowing coupled states of orbital angular momentum with the crystal lattice, instead of spin. This effect, called orbital quenching, greatly diminishes the orbital contribution of transition metal compounds to the total magnetic moment.

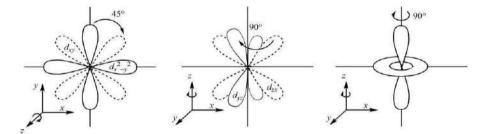


Figure-.1.5 The circulation of electron density in a partially filled d-subshell about the z-axis.

Consequently, these elements show significant orbital contributions to their magnetic moments, which could demonstrate their exceptional magnetic properties. The magnetic behavior is further complicated by spin-orbit coupling, which is the coupling between the orbital and spin magnetic moments. The electron's relativistic motion around the nucleus causes an effective magnetic field to interact with the electron's spin, which is the source of this coupling. In heavy elements, the magnetic strength of the spin-orbit coupling plays a significant role because it scales with atomic number. The Russell- Saunders coupling scheme provides a good description of this interaction

light elements (<30). Using this scheme, one obtains a total orbital angular momentum L from the orbital angular momenta from all electrons, & a total spin angular momentum S from the spin angular momentum of all electrons, which couple to give rise to a total angular momentum J = L + S, with associated quantum numbers L, S, J.

In the Russell-Saunders scheme, total magnetic moment can be expressed as:

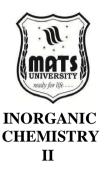
$$\mu = \text{-g} \; \mu_o \; \sqrt{(J(J{+}1))}$$

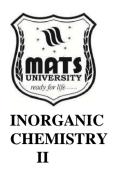
where g is the Landé g-factor:

$$g=1+[J(J+1)+S(S+1)-L(L+1)]/[2J(J+1)]$$

Equation shows the total magnetic moment is a combination of spin magnetic moment & orbital magnetic moment contributions. For heavier elements the j-j coupling scheme is more valid. This scheme treats the spin-orbit interaction for each electron one at a time, resulting in a total angular momentum per electron given by j = 1 + s, which combine to give the total angular momentum J. The orbital part of the magnetic moment also gives a contribution for molecular systems, &

especially, for those containing metal centers. In coordination compounds, orbital contribution can be mixed, but a ligand field (more of a crystal field) can quench this fractional or the full orbital contribution based on the complex's symmetry & the ligand-enzyme interaction. The resultant magnetic anisotropy—the directional dependence of magnetic characteristics—has important implications for molecular magnetism & single-molecule magnets. Orbital contributions to magnetic moment play a critical role in interpreting magnetic data & designing materials with desired magnetic characteristics. Techniques like XMCD [X-ray magnetic circular dichroism] that gain access to orbital & spin contributions separately, can map out the electronic structure of magnetic materials down to the atoms.

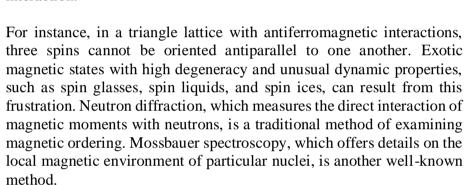

2. 5.1.1 (a) Ferromagnetism & (b) Antiferromagnetism


In addition to the magnetic property of single atoms or molecules, collective magnetic behaviors can emerge in condensed matter systems due to the interactions between magnetic moments. Ferromagnetism and antiferromagnetism are two of the earliest paradigms of the wide range of magnetic ordering states that result from these cooperative effects. The process that creates permanent magnets, ferromagnetism, results from the propensity of nearby Without an external magnetic field, magnetic moments will align with one another in a parallel fashion to produce a spontaneous magnetization. Up to a certain temperature known as the Curie temperature (T), where thermal fluctuations surpass the ordering interaction and cause the antiferromagnetic material to turn paramagnetic, this alignment persists.

The exchange interaction, a strictly quantum mechanical process, is the microscopic source of ferromagnetism. Phenomenon that has no traditional equivalent. This results from the interaction of the Pauli exclusion principle and the Coulomb repulsion between electrons. According to the Pauli principle, electrons' spatial wave functions must be antisymmetric if possess parallel spins, which means that they will typically be bumped farther apart than electrons with antiparallel spins. In fact, this parallel configuration is thermodynamically advantageous in certain systems since it reduces the Coulomb repulsion energy between two spins The simplest model describing ferromagnetic ordering is the Heisenberg model, where the exchange interaction between neighboring spins S₁ & S₂ is described by the Hamiltonian:

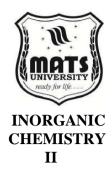
 $H = -2J S_1 \cdot S_2$

Here, J is the exchange integral that measures the interaction strength. A positive J promotes parallel relative orientation (ferromagnetism), while a negative J promotes antiparallel relative orientation (antiferromagnetism). The direct exchange mechanism outlined earlier



works only between nearest-neighbor atoms. In a lot of materials the magnetic atoms are separated by non-magnetic elements, often requiring indirect exchange mechanisms. One example of such a magnetic interaction is super exchange, which takes place in ionic solids in which ions of oppositive charge along with anions (usually oxides) act like they are cations. The magnetic coupling is mediated via the overlapping orbitals of the anion bridging the two transition metal exchange can enable either ferromagnetic antiferromagnetic order, depending on the arrangement of the cationanion-cation. Another indirect mechanism is the RKKY (Ruderman-Kittel-Kasuya- Yosida) interaction, most common in metals in which localized (magnetic) moments couple through conduction electrons. **RKKY** interaction alternates from ferromagnetic The antiferromagnetic coupling [1], depending on the distance between the material components, causing the appearance of complex magnetic structures in certain materials. For instance, in metallic systems where the d or f electrons are only partially delocalized, the band structure plays an important role in determining magnetic ordering. onsite correlations, Itinerant Ferromagnetism the Stoner scenario of itinerant ferromagnetism that explains the spontaneous spin alignment through a population imbalance between spin-up & spin-down electrons in the conduction band. This occurs when the lower exchange energy of aligned spins balances the energy cost of flipping electrons from one spin band into the other. Cobalt, nickel, iron, and numerous alloys and compounds are examples of classical ferromagnets. They are widely utilized in data storage devices, transformers, generators, and electrical motors.

New possibilities in spintronics and quantum information processing have been made possible by recent developments in nanoscale ferromagnets. Antiferromagnets are distinguished by the antiparallel alignment of nearby magnetic moments, which results in strong magnetic ordering but zero net magnetization, in contrast to ferromagnetism, which uses the parallel approach to create magnetic order. until the Néel temperature (T), the material is in the antiferromagnetic state; after that, it turns into a paramagnetic state. Two interpenetrating sublattices with equal and opposite magnetizations make up the most basic antiferromagnetic structure. Many antiferromagnets, however, have more intricate configurations, such as canted antiferromagnetism (weak ferromagnetism), where the moments are not precisely antiparallel and result in a tiny net magnetization. Within this category, there are variations such as helical antiferromagnetism, where the points rotate around a crystallographic direction, and ferrimagnetism, where the points are unevenly aligned in an antiparallel fashion.


Antiferromagnetic ordering is often the result of negative exchange interactions that can be facilitated by super exchange or RKKY mechanisms The super exchange interaction mediated by intervening oxygen ions causes antiferromagnetic coupling between the metal ions in transition metal oxides, including MnO, NiO. FeO. Despite technological lacking ferromagnets' evident uses. antiferromagnetic materials have drawn more and more attention lately. They are promising options for the upcoming generation of spintronic devices due to their lack of stray magnetic fields, insensitivity to them, and possibly faster dynamics. Exchange bias is one of the effects used in antiferromagnetic spintronics, where a ferromagnetic (FM) and an antiferromagnetic (AFM) layer interact to shift the FM element's hysteresis loop. A rich phase diagram illustrating the interaction between ferromagnetic and antiferromagnetic phases is especially intriguing in frustrated magnetic systems. When all of these exchanges cannot be satisfied simultaneously due to the lattice's geometry Geometric frustration is the term used to describe the ensuing interaction

These experimental methods are supported by calculations ranging from Monte Carlo simulations to density functional theory, which can forecast magnetic phase diagrams and other microscopic mechanisms. The dance between ferromagnetism and antiferromagnetism must be understood and appreciated in order to create new magnetic materials with desired properties. For instance, hybrid structures made up of ferromagnetic and antiferromagnetic segments exhibit both exchange bias and spin valve effects. These structures serve as the foundation for useful devices in magnetic sensorics and spintronics, such as magnetic memory. Future directions for advancing magnetic technologies are suggested by the development of novel methods for modifying the magnetic ordering, such as electric field tunable exchange interactions.

In this paper we apply magnetic measurements to determine structural information. Magnetometric measurements represent valuable tools for exploring structural & electronic characteristics of materials. Investigating the behavior of compounds in magnetic fields yields valuable insights into

the geometry of precursors, oxidation state, coordination environment, & electronic configuration—often complementary to existing structural techniques & sometimes even more revealing than traditional techniques themselves. The amount of magnetization (M) of a material per unit of an applied magnetic field (H) is described by the magnetic susceptibility (χ), the primary parameter examined in magnetic investigations: M/H The susceptibility is a characteristic property of many diamagnetic and paramagnetic materials in moderate fields and can be thought of as field independent.

$$\chi = M/H$$

This value for a specific substance is normalized to a per mole basis by the molar susceptibility((χ_m)), enabling comparisons between various substances. Magnetic susceptibility can be measured using a variety of experimental techniques. The force applied to a sample in an uneven magnetic field is measured by the Gouy balance and Faraday balance techniques. Because it can detect minute variations in magnetic flux connected to a superconducting ring, the superconducting quantum interference device (SQUID) magnetometer has exceptional sensitivity. The electromotive force produced by a vibrating magnetized sample is measured in vibrating sample magnetometry (VSM).

Each method has particular strengths & weaknesses when it comes to sensitivity, temperature range, and sample needs.

The measured susceptibility is therefore the sum of diamagnetism (due to paired electrons) & paramagnetism (due to unpaired electrons). The diamagnetic correction needs to be applied in order to isolate the paramagnetic component, which carries the structural information:

$$\chi_p = \chi_m - \chi^{dia}$$

where χ_p is the paramagnetic susceptibility & χ^{dia} is the diamagnetic correction, which is usually approximated based on published values (known as Pascal's constants) based on the various atoms & bonds present. For paramagnetic materials with non interacting magnetic sites, the temperature dependence of susceptibility obeys the Curie law:

$$\chi_p = C/T$$

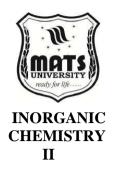
where C is the Curie constant, & T is the absolute temperature. Curie's Law relates the Curie constant directly to the effective magnetic moment (μ_e ff) through:

$$C = N\mu_o\mu_e ff^2/3k_a$$

where N is Avogadro's number, μ_0 is the permeability of free space, & k_a is Boltzmann's constant. The effective magnetic moment is in turn tied to the electronic structure of the magnetic centers. For weak

interactions among magnetic centers, the Curie-Weiss law is a more satisfactory description:

$$\gamma_p = C/(T-\theta)$$


where θ (also called the Weiss constant) accounts for the nature & strength of magnetic interactions: it is positive for ferromagnetic coupling & negative for antiferromagnetic coupling. The effective magnetic moment of transition metal complexes can be considered as a fingerprint for the metal oxidation state & coordination environment. The spin-only formula gives a good approximation in octahedral complexes of first-row transition metals with quenched orbital contributions:

$$\mu_e ff = 2\sqrt{(S(S+1))} \mu_a$$

where S is the total spin quantum number & μ_a the Bohr magneton. Analyzing the quantity of experimental μ_e ff with this theoretical value allows determining the number of unpaired electrons which means to determine the electronic configuration. Such deviations from the spinonly value generally imply significant orbital contributions or spinorbit coupling. For example, μ_eff for cobalt(II) complexes is generally larger than the spin-only value predicted for three unpaired electrons, an indication of unquenched orbital character. Instead some copper(II) complexes have values slightly less than expected for one unpaired electron due to antiferromagnetic coupling between adjacent centers. The temperature dependence of magnetic susceptibility offers even richer structural detail. For polymanganese complexes comprised of numerous interacting magnetic centers, the shape of the susceptibility curve itself is informative as to the nature of the magnetic coupling pathways. These experimental data can, in principle, be analyzed in terms of a variety of theoretical models, for example the Bleaney-Bowers equation for dimers, or the Fisher model for chains, in order to extract exchange coupling constants.

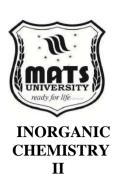
In coordination polymers & metal-organic frameworks, magnetic measurements can provide insights into the dimensionality of magnetic interactions that characterize these systems, whether they form isolated clusters, chains, layers, or threedimensional networks. Such information is crucial for unraveling structure-property correlations & rationally designing materials with specific magnetic functionalities. In addition to paramagnetic systems, magnetic measurements provide vital structural insight for Ferro-, Ferri- & Antiferromagnetic materials. Temperatures of magnetic ordering transitions (Curie or Néel temperatures) are strongly dependent on the strength of exchange interactions, which then reflects interatomic distances & bonding geometries. This saturation magnetization of ferromagnets is simply obtained from the number of aligned

moments/unit volume, & thus provides useful information on site occupancies & moment distributions. Another source of structural information is magnetic anisotropy, which is the directionality of the magnetic properties. By measuring the susceptibility in different crystallographic directions, one can ascertain the orientation of the magnetic easy axes and easy planes in single crystals. Anisotropy can still be detected in polycrystalline samples using techniques like magnetic torque measurements [17].

Magnetic anisotropy is a sensitive probe of structural distortions because its strength and nature depend on the local coordination geometry and crystal field. More sophisticated magnetic techniques also broaden the structural toolkit. The local environment of paramagnetic centers is investigated by electron paramagnetic resonance (EPR) spectroscopy using the g-tensor and hyperfine couplings. Nuclear magnetic resonance (NMR) of paramagnetically shifted nuclei can map the global electron spin density distribution and reveal specifics of chemical bonding. The difference between the absorption of left and right circularly polarized light by a magnetic circular dichroism (MCD) element- specific information about the electronic states underlying magnetic behavior is provided by a sample in a magnetic field. The electronic structure of magnetic materials can be directly accessed by applying this technique to X-ray energies (XMCD), which enables the independent quantification of orbital and spin magnetic moments. Numerous fields can benefit from the use of magnetic measurements for structural determination.

In bioinorganic chemistry, magnetic susceptibility is used to identify the nuclearity and spin state of metalloprotein active sites. The mineralogical makeup of rocks and the circumstances surrounding their formation are revealed by magnetic studies in geochemistry. Magnetic measurements are used in materials science to design spintronics, data storage media, and quantum computing components. The potential of magnetic structural determination has increased with recent instrumentation advancements. The magnetism of individual molecules or nanoparticles can be measured using micro-SQUID techniques. Scanning and magnetic force microscopy One of the spatially resolved techniques for mapping magnetic structures with nanometer resolution is SQUID microscopy.

Single-shot time- resolved measurements now access magnetic dynamics across picosecond timescales, providing the window into transient states & relaxation processes. Complementary techniques, combined with magnetic measurements, yield the most structural insight. Ball- mapping magnetic data against X-ray diffraction patterns can lead to a more refined solution devoid of ambiguity concerning disorder & site occupancies. Characterization of these systems through magnetic

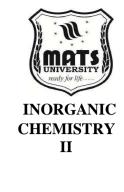

methods provide complementary information to spectroscopic techniques (e.g. UV-vis, IR, Raman) & provides a more holistic appreciate and comprehend ing of electronic structure & bonding. Computational methods, particularly density functional theory (DFT) calculations, continue to close the gap between measured magnetic characteristics & the underpinning structural characteristics.

Progressing deeper into the realm of quantum materials, where novel magnetic ground states are realized (skyrmions, spin liquids, & topological magnets) magnetic measurements will remain a cornerstone for structural determination [75, 76]. As such, continued evolution toward more sensitive, more selective, & more informative magnetic probes hold the potential to uncover previously inaccessible structural subtleties & will enable further innovations across chemistry, physics, materials science, & engineering.

2. 5.2 Incorporation of Higher Magnetic Concepts

The discussed themes of the orbital contribution to magnetic moment, ferromagnetism & antiferromagnetism, & of magnetic measurements to deduce determining structures are important & wellconnected facets of (the world of) the magnetic phenomenon. This inter-relationship provides a unified platform for magnetic material analysis & design. This orbital contribution to the magnetic moment has a fundamental impact on the tendency for magnetic ordering in materials. However, orbital wavefunctions are inherently anisotropic, particularly in systems with high orbital angular momentum, & they provide preferential directions for magnetic alignment, making magnetization along specific crystallographic axes easier than others. This magnetic anisotropy is an important factor influencing the stability of ferromagnetic & antiferromagnetic states, especially in lowdimensional systems where the effects of symmetry-breaking are pronounced. Furthermore, the coupling between orbital & spin degrees of freedom, which takes place via spin-orbit coupling, can trigger different exchange mechanisms. For example, the Dzyaloshinskii-Moriya interaction—an antisymmetric exchange due to spin-orbit coupling in non-centrosymmetric environments—can cause canting in otherwise collinear antiferromagnetic configurations, leading to weak ferromagnetism. This shows how much orbital effects can radically change magnetic ordering patterns.

Magnetic measurements are therefore an experimental window to these effects (quantifying both the orbital contribution & exchange interactions). The temperature dependence of magnetic susceptibility, in particular deviations from Curie-Weiss behavior, gives insight into exchange pathways, & its dimensionality. Magnetization along multiple crystallographic directions reveals both the extent of magnetic anisotropy & the orbital contribution to the magnetic moment. High-



precision measurements undertaken with advanced methods such as XMCD spectrometry can directly separate orbital & spin contributions to the magnetic moment, offering a powerful means of studying complex magnetic materials. Torque magnetometry allows establishing the angular dependence that maps the symmetry of magnetic anisotropy & provides information about the local coordination environment & crystal field effects contributing to the orbital contributions.

For materials with long-range magnetic order (either magnetic ferromagnetic or antiferromagnetic), neutron diffraction becomes a unrivaled structural probe, providing a direct image of the spatial arrangement of magnetic moments. The observed features are tied to both the nature of the magnetic order as well as the size & direction of the individual moments, which are critically dependent on orbital contribution. This synergy between these magnetic concepts has practical applications. To achieve high coercivity (resistance to demagnetization) in permanent magnets, both strong ferromagnetic exchange interactions & large magnetic anisotropy through orbital contributions are needed. The synthesis & appreciate and comprehend ing of oxygen coordinatively unsaturated (CUS) oxide embeddings can be critical for the development & optimization of spintronic devices where the control of antiferromagnetic domains is dependent on exchange pathways that are sensitive to crystal structure & orbital effects that can alter magnetic anisotropy. In addition, these magnetic principles can help us appreciate and comprehend various kinds of matter on different scales. At the atomic scale, individual ions' magnetic characteristics are determined by the orbital contribution. Exchange interactions between magnetic centers are the origin of cooperative magnetic behavior on a molecular scale, which dominates coordination complexes. These nanosurface effects alter the direction of both orbital contributions & exchange interactions leading to novel magnetism in nanoparticles & thin films. In ferromagnets & antiferromagnets, domain structures at the macroscopic scale control the bulk magnetic characteristics important for applications.

Combining these ideas has led to major advances in everything from quantum computing to medical imaging. The exchange of magnetic interactions between metal centers & orbital contributions are used to find systems with long coherence times, as seen in quantum bits based on single-molecule magnets. Magnetic resonance imaging (MRI) contrast agents employ paramagnetic complexes that exhibit relaxation characteristics that are highly sensitive to the electronic structure & coordination environment of the metal center. As we look ahead to future progress, the interplay of these magnetic ideas will be a template for finding new materials & new phenomena. Research topics such as topological magnetism, which relies on the interplay between spin-orbit coupling & exchange interactions to realize topologically protected

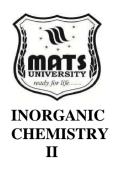
magnetic textures, demonstrates the continued relevance of these fundamental ideas. The interdisciplinary nature of magnetism that traverses the domains of physics, chemistry, materials science, and engineering highlights the importance of a holistic appreciate and comprehend ing that integrates orbital contributions, magnetic ordering, & techniques to determine structures. appreciate and comprehend ing how these interconnected concepts interrelate will allow researchers to tackle problems such as sustainable energy technologies & quantum information processing, meaning that magnetism will continue to be a touchstone area of science for many findable areas of discovery.

2.5.3 Advanced Concepts: Awesome, Alluring, and Awaiting Action So these are some of the most exciting concepts in magnetism, which was already field rich in evolving just. This magnetic moment can be decomposed into a spin & an orbital contribution, the latter of which is due to the quantum mechanical nature of the electron(s) and provides a basis for appreciate and comprehend magnetic anisotropy & spin- orbit effects. The subtleties of many-body physics & the richness of magnetic ordering patterns manifest in the collective phenomena of ferromagnetism & antiferromagnetism, arising from exchange interactions. These phenomena are utilized in both magnetic measurements for structural determination & complementary and, in some cases, more finely detailed information than can be obtained by conventional structural techniques. All these interconnected facets of magnetism lead to discoveries across the map of science, a learning curve helping us to build new bridges — in quantum materials, spintronics & not only.

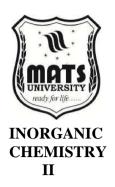
2. 5. 4 APPLICATIONS ON DAY-TO-DAY LIFE

2. 5. 4 .1 Spectral & Magnetic Characteristics of Metal Complexes: Practical Applications

The spectral & magnetic characteristics of metal complexes subtly support many technologies that protect health, bolster security, & elevate quality of life in ways often overlooked by the general populace. Blood glucose monitors utilized by millions of diabetics globally often incorporate enzyme electrodes featuring coordination complexes, whose electron transfer characteristics & spectroscopic responses facilitate precise, real-time monitoring of blood sugar levels; this crucial technology enables diabetics to regulate insulin dosing effectively & avert perilous hyperglycemic episodes through immediate feedback provided by the finely calibrated magnetic & electronic attributes of metalloenzyme mimics. The anti-counterfeiting elements integrated into currency notes, passports, & high-value documents frequently utilize metal complexes with unique spectral signatures that emit specific colors when exposed to particular light


wavelengths; these security features, imperceptible under standard lighting yet vividly visible under UV lamps, establish authentication systems that are challenging to duplicate without sophisticated expertise in coordination chemistry. Oxygen sensors in automotive engines, essential for ensuring efficient fuel combustion & reducing harmful emissions, operate using zirconia-based materials doped with transition metals, whose magnetic characteristics vary predictably with oxygen levels; these sensors allow engine control systems to dynamically adjust fuel delivery, enhancing fuel efficiency & decreasing pollutant output. Magnetic resonance imaging (MRI) contrast agents, which transformed medical diagnostics, operate solely through the magnetic characteristics of gadolinium & other paramagnetic metal complexes. These agents temporarily modify the relaxation characteristics of water protons in tissues via coordination interactions, uncovering anatomical & physiological details that would otherwise be obscured & facilitating earlier, more precise disease detection.

The reflective coatings on energy-efficient windows, which sustain comfortable indoor temperatures throughout the year & diminish heating & cooling expenses, often contain silver & other metallic layers that selectively reflect infrared radiation while allowing visible light to pass through. These "low-e" coatings exemplify the potential of utilizing the interaction between metal complexes & electromagnetic radiation for substantial energy conservation. Antimicrobial wound dressings that accelerate healing while preventing infection often utilize silver complexes whose spectroscopic & electron-transfer characteristics disrupt bacterial metabolism without harming human tissue; these medical devices demonstrate how the redox chemistry of coordination compounds can be selectively deployed for therapeutic benefit. The stunning hues in artisanal glass, exquisite ceramics, & decorative glazes throughout history have depended on transition metal complexes, whose unique spectral characteristics arise from d-d transitions; these aesthetic uses of coordination chemistry have enhanced human cultural expression while illustrating the principles that would ultimately culminate in contemporary spectroscopic analysis. Fundamentally, the hemoglobin molecule, responsible for oxygen transport in the human body, operates through the finely calibrated magnetic characteristics of iron coordination complexes; this vital biological function illustrates how nature has refined coordination chemistry to facilitate respiration & sustain life.

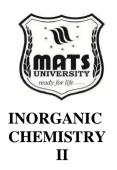

2. 5. 4.2 Term Symbols for d-Ions: Practical Applications

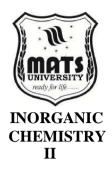
The ostensibly abstract mathematical representations of term symbols for d-ions directly inform technologies that bolster security, facilitate scientific progress, & enhance quality of life by accurately describing & predicting the behavior of transition metal complexes. The color-

shifting security inks utilized on high-denomination banknotes & official documents contain transition metal complexes, whose unique optical characteristics stem from accurately defined electronic states represented by term symbols. These specialized inks alter color when observed from various angles due to the distinct interactions of their electronic states with polarized light, resulting in security features that are exceptionally challenging to replicate without a sophisticated comprehension of coordination chemistry. Specialized optical filters employed in astronomical observatories & satellite imaging systems frequently incorporate glass doped with transition metal ions, whose selective absorption characteristics, delineated through term symbol analysis, allow scientists to isolate specific wavelengths of cosmic radiation; these precision filters have facilitated discoveries regarding distant planetary atmospheres, stellar formation, & the fundamental structure of the universe by leveraging the quantum mechanical characteristics of d-electron configurations. Gemstone authentication instruments employed by jewelers & gemological laboratories to differentiate natural from synthetic stones often utilize spectroscopic analysis of trace transition metal impurities, whose distinctive absorption patterns—directly correlated to their term symbols—act as definitive identifiers; these analytical methods safeguard consumers against fraud while preserving the value of authentic gemstones.

Advanced catalytic systems for environmental remediation, particularly those that decompose persistent pollutants incontaminated water, frequently utilize transition metal complexes withmeticulously designed electronic configurations; efficacy of thesecatalysts in electron transfer reactions is directly linked to the energylevels & transition probabilities forecasted through term symbolanalysis. The specialized phosphors utilized in X-ray imaging systems, which convert harmful radiation medical into visible light, oftencontain rare earth & transition ions. Their luminescencecharacteristics, defined by term symbol notation, enhance detectionsensitivity & reduce patient radiation exposure, thereby facilitatingessential diagnostic functions improving patient safety. Next-generation quantum computing architectures utilizing transition metal-based qubits depend heavily comprehensive appreciate andcomprehend ing of electronic structure & magnetic characteristicscharacterized by term symbols; these innovative computing platformsoffer unparalleled computational discovery, materials capabilities for drug design, & systems complex modeling. Colorimetric sensorsemployed for environmental monitoring of heavy metal contaminationin water supplies operate through ligand-metal interactions that yieldspecific indicative of electronic state transitionscharacterized by term symbols; these accessible testing technologiesallow communities safetv without need to ascertain water for advanced laboratory infrastructure. Our scientific appreciate and

comprehend ing of photosynthesis, the process that sustains nearly alllife on Earth, has significantly improved through the analysis of electronic states & transitions in chlorophyll & related metalloenzymes. This illustrates how the mathematical framework of term symbols directly enhances our comprehension of the fundamental energy conversion processes that underpin the biosphere.

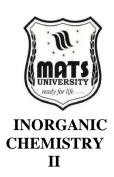

2. 5. 5 Electronic Transitions in Metal Complexes: Practical Applications


The electronic transitions in metal complexes, especially the d-d transitions dictated by selection rules & illustrated by Orgel & Tanabe-Sugano diagrams, directly facilitate technologies & applications that improve daily living in several fields. High-quality camera lenses & professional photography equipment often utilize advanced optical filters that contain transition metal complexes embedded in glass. These complexes, with precisely characterized d-d transitions, selectively absorb specific wavelengths. Such specialized filters enhance image contrast, diminish atmospheric haze, or produce artistic effects by leveraging the quantum mechanical characteristics that dictate the transmission & absorption of wavelengths. Smart windows, prevalent in energy-efficient structures & luxury vehicles, automatically modify their tint according to sunlight intensity. They employ electrochromic materials with transition metal complexes, whose d-d transitions significantly alter under minimal voltage application. These dynamic glazing systems improve visual comfort, lower cooling expenses, & safeguard interiors from UV damage by utilizing regulated electronic transitions in reaction to environmental factors.

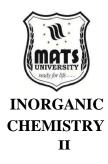
The gemstone industry heavily depends on the comprehension of electronic transitions; the vivid red of natural rubies is attributed to d-d transitions in chromium ions, whereas the distinctive green of emeralds arises from analogous transitions in vanadium & chromium— insight that enables gemologists to verify natural stones & create synthetic counterparts with identical spectroscopic characteristics for cost-effective jewelry alternatives. Colorimetric sensors utilized in home pregnancy tests & rapid medical diagnostics often incorporate coordination complexes that exhibit significant color changes due to modifications in d-d transitions upon the presence of specific biomarkers; these user-friendly testing platforms facilitate swift health monitoring without the need for specialized equipment by converting biochemical data into visible color alterations through coordination chemist

Table -. Expected stereochemistry of transition metal complexes using the number of unpaired d-electrons from crystal field theory.

number of unpaired <i>d</i> -electrons from crystal field theory.			
Weak ⁻ field Unpaired electrons / Stereochemistry		Strong ⁻ field Unpaired electron Stereochemistry	
$\frac{0 (d^0)}{0 (d^0)}$	Symmetrical	0 (%)	Symmetrical
	•		•
1	Slightly distorted	1	Slightly distorted
$1 (d^1, t2g)$	octahedron	1 (d ¹ , t2g	octahedron
2 $2d^2 e^2 \cos 2 \cos$	Tetrahedron or slightly	$\frac{2}{2}$	Tetrahedron or
$2d^2$, e^2 or $t2g$	distorted octahedron	$2 (d^2 e^2 or t2g)$	slightly distorted octahedron
3 $3 (d^3, t2g)$	Perfect octahedron	3 (d³, t2g)	Perfect octahedron
$ \begin{array}{ccc} 3 & 1 \\ 4 & 4 \end{array} $ $ \begin{array}{cccc} 4d^4, t2g \ eg \end{array} $	Square-planar or tetragon	al 4 $2 \text{ or } 0 (d^4, t2g \text{ or } e)$	Slightly distorted octahedron or tetrahedral
3 3 2 $2 + 5 (d^5, e^2 t^2)$ or $t^2 g eg$	Tetrahedron or perfect octahedron	5 1 (d ⁵ , t2g	Slightly distorted octahedron
4 2 4 (d ⁶ , t2g eg)	Slightly distorted octahedron	$0 (d^6 t 2g)$	Perfect octahedron
3 5 2 $3 (d^7, e^4 t2 \text{ or } t2g eg)$	Tetrahedron or slightly distorted octahedron	$ \begin{array}{cc} 6 & 1 \\ 1 & (d^7, t2g \\ eg) \end{array} $	Square planar or tetragonal
6 2 2 (d ⁸ , t2g eg)	Perfect octahedron	$ \begin{array}{cc} 6 & 2 \\ 0 & (d^8, t2g \\ eg) \end{array} $	Square planar or tetragonal
6 3 1 (d ⁹ , t2g eg)	Square planar or tetragona	$ \begin{array}{ccc} 1 & 6 & 3 \\ & 1 (d^9, t2g \\ & eg) \end{array} $	Square planar or tetragonal
$0 (d^{10})$	Symmetrical	$0 (d^{10})$	Symmetrical


Specialized catalysts that facilitate environmentally sustainable manufacturing processes for pharmaceuticals & fine chemicals typically attain their selectivity through meticulous engineering of metal complex electronic states & transitions; these green chemistry methodologies minimize waste production & energy usage while generating vital medicines & materials by leveraging the correlation between electronic structure & catalytic activity. The vivid, resilient pigments found in premium artistic paints, automotive finishes, & architectural coatings often obtain their remarkable color stability & weather resistance from transition metal complexes, which exhibit d-d transitions at energies that mitigate photochemical degradation; these substances improve aesthetic durability while minimizing maintenance needs due to their intrinsic electronic characteristics. Military camouflage technologies increasingly utilize coordination compounds with near-infrared electronic transitions that align with the spectroscopic signatures of natural vegetation; these sophisticated materials improve soldier safety by obscuring personnel from both visual & electronic detection through meticulously designed electronic characteristics. Fundamentally, semiconductor manufacturing processes that produce computer chips utilize photoresists containing coordination complexes, whose electronic transitions facilitate nanoscale pattern transfer. These materials convert electronic designs into physical structures via light-induced electronic transitions, resulting in the integrated circuits that drive the digital age.

2.5.6 Jahn-Teller Distortion, Spin-Orbit Coupling, & Charge Transfer: Practical Applications


The intricate quantum mechanical phenomena of Jahn-Teller distortion, spin-orbit coupling, & charge transfer transitions in metal complexes are fundamental to several technologies that improve healthcare, security, energy efficiency, & information processing capacities. High-density data storage devices that retain our digital photographs, documents, & communications increasingly employ magnetic materials whose efficacy relies on meticulously regulated spin-orbit coupling in transition metal compounds; these storage technologies facilitate the conservation of extensive information resources while reducing physical space demands through quantum mechanical effects that stabilize magnetic domains at nanoscale dimensions. The near-infrared night vision technologies that augment military & emergency response capabilities operate via specialized detectors utilizing charge transfer processes in coordination compounds; these essential safety & security systems enable visualization in otherwise impenetrable darkness by transforming invisible infrared radiation into electronic signals through electronic transitions between metal centers & the ligands. Specialized medical

imaging contrast agents for liver & spleen visualization often incorporate superparamagnetic iron oxide nanoparticles, whose magnetic characteristics are affected by spin-orbit coupling effects. These diagnostic tools improve tumor & pathology detection by offering tissue-specific contrast through quantum mechanical interactions between electronic & nuclear spin states. Premium automobile paints exhibit vibrant colors that retain their aesthetic appeal over years of sun exposure, often utilizing metal complex pigments. These pigments possess exceptional photostability due to charge transfer bands that absorb harmful ultraviolet radiation without degradation. Such specialized coatings enhance vehicle appearance & value retention through coordination chemistry principles that harmlessly dissipate solar energy. Oxygen sensors in medical devices that assess patient oxygenation during surgery & recovery often utilize ruthenium complexes, whose luminescence characteristics significantly vary due to oxygen-induced electronic transitions; these essential monitoring systems deliver real-time feedback on patient status via optical signals influenced by charge transfer processes modified by molecular oxygen. High-efficiency photocatalysts employed in selfcleaning surfaces & air purification systems attain their exceptional activity via charge transfer transitions that produce reactive species upon light absorption; these environmental technologies improve indoor air quality & minimize maintenance needs by utilizing sunlight to initiate electron transfer between metal centers & coordinated the ligands.

Electrochromic displays, characterized by vibrant colors, utilized in e-readers & specialized information displays, often incorporate coordination compounds that exhibit significant color changes upon the addition or removal of electrons, with Jahn-Teller effects frequently influencing the pronounced spectral shifts; these lowpower display technologies improve readability while reducing energy consumption through principles of coordination chemistry. Notably, the advancement of future technology hinges on emerging quantum computing architectures utilizing transition metal-based qubits, which frequently incorporate Jahn-Teller active systems. These systems exhibit electronic degeneracy that facilitates the manipulation of quantum states for information processing. Such sophisticated computing platforms possess the potential to revolutionize drug discovery, materials design, & artificial intelligence by processing specific problems exponentially faster than traditional computers, illustrating how intricate quantum mechanical phenomena in coordination compounds may ultimately reshape information technology through their distinctive electronic characteristics.

Summary

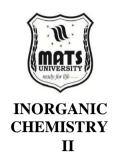
This module focuses on the spectral and magnetic properties of transition metal complexes, emphasizing their significance in understanding electronic structure and geometry. The spectral behavior of complexes is examined through the derivation and interpretation of term symbols for d-ions, which describe the electronic states of metal centers. The characteristics of d-d transitions are discussed along with selection rules that govern their occurrence. Orgel diagrams and Tanabe–Sugano diagrams are employed to predict electronic transitions in both high-spin and low-spin complexes. The impact of Jahn–Teller distortions and spin–orbit coupling on spectral features is analyzed. Additionally, the module covers charge transfer spectra, highlighting transitions involving electron movement between metal and ligand orbitals.

The magnetic behavior of metal complexes is addressed by exploring different types of magnetism such as paramagnetism, diamagnetism, ferromagnetism, and antiferromagnetism. The magnetic susceptibility of complexes is measured using the Gouy method, and the interpretation of magnetic data includes calculations of the spin-only magnetic moment and consideration of the orbital contribution. The role of magnetic measurements is emphasized in determining the geometry and electronic configuration of transition metal complexes, offering valuable insight into their structural and bonding characteristics.

Multiple-Choice Questions (MCQs)

- 1. Electronic spectra of metal complexes arise due to:
 - a) Vibrational transitions
 - b) d-d electronic transitions
 - c) Nuclear magnetic resonance
 - d) Covalent bond formation
- 2. Term symbols in d orbital configurations represent:
 - a) Electronic configurations of the ligands
 - b) Total angular momentum states of metal ions
 - c) Hybridization states
 - d) The oxidation state of a metal ion
- 3. Laporte's selection rule states that:
 - a) d-d transitions are allowed in octahedral complexes
 - b) Transitions within the same parity $(g \rightarrow g \text{ or } u \rightarrow u)$ are forbidden
 - c) Spin-forbidden transitions are most intense
 - d) All electronic transitions are allowed

- 4. Orgel diagrams are useful for interpreting electronic spectra of:
 - a) Octahedral & tetrahedral complexes
 - b) Square planar complexes only
 - c) Lanthanide & actinide compounds
 - d) Organic molecules


- a) Predict the color of transition metal complexes
- b) Determine the effect of ligand field strength on electronic transitions
- c) Explain molecular orbital interactions
- d) Study diamagnetism in complexes
- 6. Jahn-Teller distortion primarily affects:
 - a) Tetrahedral complexes
 - b) Octahedral complexes with partially filled degenerate orbitals
 - c) Square planar complexes
 - d) High-spin d⁵ complexes
- 7. Charge transfer spectra are observed when:
 - a) Electrons transition between metal & ligand orbitals
 - b) d-d transitions occur
 - c) Vibrational coupling takes place
 - d) The ligands undergo bond breaking
- 8. The Gouy method is used to measure:
 - a) Electronic spectra of metal complexes
 - b) Magnetic susceptibility
 - c) Ligand field splitting energy
- d) Conductivity of coordination compounds
- 9. The spin-only magnetic moment is calculated using:

a)
$$\mu = n(n+1) \text{ mu} = \sqrt{n(n+1)} \mu = n(n+1) BM$$

b)
$$\mu$$
=2.83S(S+1)\mu = 2.83 \sqrt{S(S+1)} μ =2.83S(S+1) BM

c)
$$\mu=2.83 n(n+1) \mu=2.83 \sqrt{n(n+1)} \mu=2.83 n(n+1) BM$$

d)
$$\mu$$
=1.73n\mu = 1.73 n μ =1.73n BM

INORGANIC CHEMISTRY II

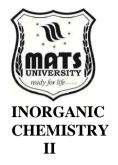
- 10. Ferromagnetism in metal complexes is characterized by:
 - a) Opposing spins canceling each other
 - b) Parallel alignment of magnetic moments
 - c) Random spin orientations
 - d) Complete absence of unpaired electrons

Answers Keys:

- 1. b
- 2. b
- 3. b
- 4. a
- 5. b
- 6. b
- 7. a
- 8. b
- 9. d
- 10. b

Short Answer Questions

- 1. Define term symbols & explain their significance in d-orbital configurations.
- 2. What ared-d electronic transitions, & why are they important in spectroscopy?
- 3. Explain Laporte's selection rule & its implications for transition metal complexes.
- 4. What is the difference between Orgel diagrams & Tanabe-Sugano diagrams?
- 5. Describe the effect of Jahn-Teller distortion on the spectral characteristics of metal complexes.
- 6. What is the significance of charge transfer spectra, & how do they differ from d-d transitions?
- 7. Explain the Gouy method & how it is used to measure magnetic susceptibility.
- 8. How does spin-orbit coupling influence electronic spectra?


- 9. Write the formula for the spin-only magnetic moment & explain each term.
- 10. Differentiate between ferromagnetism & antiferromagnetism in metal complexes.

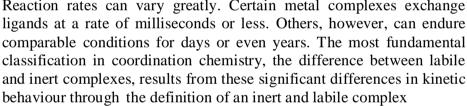
Long Answer Questions

- 1. Explain the construction of term symbols for d-orbital configurations & their physical meaning.
- 2. Discuss the selection rules for electronic transitions in metal complexes, including Laporte & spin selection rules.
- 3. Explain Orgel diagrams for weak field complexes & describe their applications for d¹ to d9 systems.
- 4. Discuss the Tanabe-Sugano diagrams, explaining how they help in appreciate and comprehend ing electronic transitions in strong & weak field cases.
- 5. Describe the Jahn-Teller effect, including its origin, types of distortion, & impact on spectral characteristics.
- 6. Explain charge transfer spectra, their origin, & how they differ from ligand field transitions.
- 7. Discuss the various types of magnetism (paramagnetism, diamagnetism, ferromagnetism, antiferromagnetism) observed in metal complexes.
- 8. Explain the Gouy method & how it is used to determine the magnetic moment of metal complexes.
- 9. Derive the spin-only magnetic moment formula & calculate the moment for a high-spin d⁵ complex.

MODULE -3

REACTION MECHANISMS OF TRANSITION METAL COMPLEXES – PART I

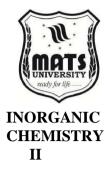
Objectives


- To comprehend the essential principles of metal complex reactivity, it is crucial to differentiate between inert & labile complexes.
- To examine the energy profile of metal complex processes by distinguishing between intermediates & transition states.
- To investigate the kinetics & mechanisms of octahedral substitution processes, emphasizing associative (A) & dissociative (D) pathways.
- To investigate the acid & base hydrolysis of metal complexes, finding critical parameters that affect reaction rates & the mechanism of the conjugate base.
- To examine anion processes, their kinetics, & practical applications in catalysis & synthesis.

Unit 3.1 Introduction to Reaction Mechanisms

At the core of coordination chemistry are a diverse and fascinating class of compounds known as metal complexes. One or more surrounding molecules are coordinated with a central metal atom or ion in these complexes. anions (referred to as ligands) that create coordinate covalent bonds by delivering electron pairs to the metal center. From industrial catalysis to biological systems, where metalloenzymes are involved in the majority of vital biological processes, the relationships between the reactivity of metal complexes are crucial to many branches of science. A complex interplay between the metal center, the ligands' (electronic and steric) properties, and external variables like solvent, temperature, and pressure determines the reactivity of metal complexes. The amazing variety of reaction pathways that these complexes can access is one of the most fascinating aspects


coordination chemistry. Redox processes (where the oxidation state of the ligand is changed), ligand substitution (changing one ligand for another), and metal is changed), and these pathways include reactions that modify the complex's structural makeup. Understanding and appreciating the subsequent reactions is essential for controlling and forecasting the behavior of metal complexes in various applications. Metal complexes are referred to as catalysts in the context of homogeneous catalysis because they can enhance reaction conditions, enabling more efficient selective transformation of homologs and/or modifications. The successful design of efficient catalysts is based on the knowledge of the interaction between metal centers & substrates, & how the ligands can modulate this interaction.


cytochromes, and nitrogenase are examples Hemoglobin. metalloenzymes that perform vital tasks in biological systems through carefully regulated reactions at their metallocenters. Research on these naturally occurring metallic aggregates has impacted the creation of bio-inspired catalysts that aim to imitate the specificity and effectiveness of biochemical processes. Transition metals have special chemical properties due to their partially filled d-orbitals, which result in stable coordination complexes with a range of coordination numbers and structures. The transition metal's d-orbitals and the ligands form a bond. resulting in molecular orbitals that affect the complex's stability and reactivity. Through mechanisms explained by crystal field theory (and its more complex extension, ligand field theory), we now know that ligand effects can change the energies of d-orbitals. This can result in behavior like high-spin versus low-spin states that change patterns of reactivity. This is connected to the 18-electron rule, also known as the effective atomic number rule, which enables us to understand and value the relative stability of certain complexes, particularly organometallics. The electronic structure, coordination geometry, and metallig and bonding character of a metal complex are all directly related to its reactivity. To increase our understanding and appreciation of metal complex reactions, it is essential to analyze reactivity mechanisms. The kinetics of these reactions are also important. Reaction rates can vary greatly. Certain metal complexes exchange

3.1.1.2 Inert & labile complex definition

The distinction between "inert" & "labile" metal complexes is one of the most significant conceptual categories in coordination chemistry; it was first proposed by Henry Taube in the 1950s. It should be emphasized that this distinction is kinetic not thermodynamic in nature, referring to the speed with which complexes undergo ligand substitution reactions rather than the absolute stability of the complexes. The slow rate of ligand exchange is a characteristic of inert complexes. In the presence of a solution of possible replacement the ligands, inert complexes retain their coordination sphere over extended periods of time—with half-lives well above minutes or hours under standard conditions (room temperature & in aqueous solutions). Classic examples of inert complexes: octahedral complexes of trivalent chromium [Cr(III)], cobalt [Co(III)], & rhodium [Rh(III)], & square

planar complexes of platinum(II) [Pt(II)]. For example, the hexa ammine cobalt(III) complex [Co(NH₃)₆]³⁺ can retain its coordination sphere (CM) in aqueous solution for days even in the presence of competing the ligands.

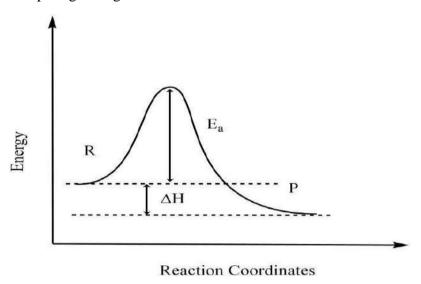
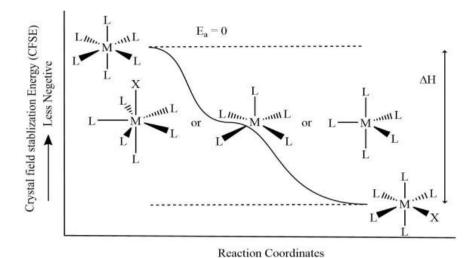



Fig 3.1 The general reaction coordinates diagram.

The lack of reactivity of these complexes can be attributed to a number of factors but electronic configuration is by far the most important. As such, transition metal ions that adopt d³ (such as Cr³+), low-spin d⁶ (such as Co³+) & d³ (such as Pt²+) electronic configurations readily form inert complexes as their respective ligand substitution reactions exhibit large activation energies. High activation barriers often arise from reorganization of the coordination sphere on the way to substitution, including spin state changes or large rearrangements of the bonding electrons. Conversely,

labile complexes partake in rapid ligand exchange reactions, with half-lives on the order of seconds or less under standard conditions. Most divalent first-row transition metal complexes, such as nickel(II) [Ni(II)], copper(II) [Cu(II)], & zinc(II) [Zn(II)], & many alkali & alkaline earth metal complexes also fall into the category (for example, see ref 36, & references therein). The hexa aqua manganese(II)—complex [Mn($H_2O_{)6}$]²⁺, for example, exchanges its water—the ligands for those from the solvent adjacent to it on time scales that approach instantaneous, for which reason it is difficult to investigate the kinetics of such reactions without specialized techniques.

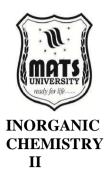
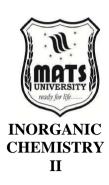
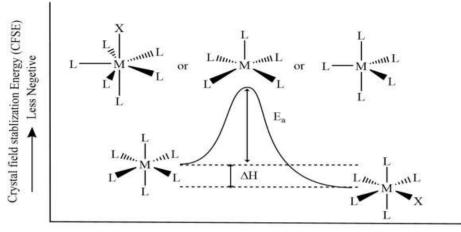




Fig 3.1.1 The reaction coordinates diagram for ligand displacement reactions in labile metal complexes.

Lability is particularly ascribed to electronic configurations that readily allow adaptations within the coordination sphere. Labile complexes are usually formed when metal ions have d⁵ (eg Mn²⁺), d⁹ (eg Cu²⁺), or d¹⁰ (eg Zn²⁺) configuration of high-spin. Electrons in antibonding orbitals or a lack of significant crystal field stabilization energy cannot stabilize complexes with lower coordination numbers against competing processes that reduce coordination number through ligand substitution. This difference can lead to significant practical consequences between the inert & labile complexes for their applications. Inert complexes are beneficial in cases where stability & permanence are essential, including in some aspects of imaging agents, lengthy persisting catalysts, or therapeutic compounds expected to remain bio-active in biological climates. For example, the slow substitution kinetics of cisplatin [cis-Pt(NH₃)₂Cl₂] allows this anticancer drug to arrive onto its target DNA before significant degradation occurs. In contrast, labile complexes are preferred for fast exchange or catalytic turnover. Common catalytic processes rely on the capacity of the metal center to bind the substrates, mediate the reaction, & release the products in a catalytic cycle. The lability of iron in hemoglobin & myoglobin is vital to the efficient binding & release of oxygen in biological systems.

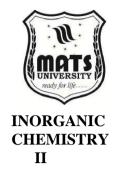
Reaction Coordinates

Fig 3.1.2 The general reaction coordinates diagram for ligand displacement reactions in inert metal complexes.

Again, to emphasize, the inert-labile distinction is relative, as well as context-dependent. What is considered to be an inert complex with respect to one conditions set may be considered as labile in other conditions set (high temperature, different pH, or in the presence of certain catalytic systems). Furthermore, the descriptive distinction between inert & labile behavior is not discrete: rather, a continuum of kinetic behaviors exists among metal complexes. In addition, the inert-labile classification should not be confused with thermodynamic stability (attack). A thermodynamically stable complex (one with an energetically favorable free energy of formation) may be kinetically labil, & one which is less thermodynamically stable may be kinetically inert. This explains why some complexes, although their final decomposition is thermodynamically favored, can be very stable for a long time due to high activation barriers.

The x-ray structure of the bis-anionic, terminal metalloligand reveals that my appreciate and comprehend ing of the factors that goven the inert or labile behaviour of a complex is a fundamental aspect of coordination chemistry. By controlling these parameters—like the type of metal, oxidation state, ligand field strength, & coordination geometry—chemists design complexes with kinetic characteristics suitable for specific applications, ranging from catalysis to materials science to medicine. That inert-labile classification serves as a basis in reaction mechanism studies of metal complexes, which illuminate further details of the ligand-exchange processes, redox reactivity, & bond cleavage & formation during the conversion of coordinated substrates. Coordination chemistry strives to adjust/ appreciate and comprehend the susceptibility of metal complexes to change through its pursuit of reactivity.

3.1.3 Thermodynamic versus Kinetic Stability


Thermodynamic vs Kinetic Stability of Metal Complexes When talking about the stability of metal complexes, a differentiation needs to be made between thermodynamic stability & kinetic stability, as the two concepts refer to different phenomena in the chemical world. Thermodynamic stability involves the energy change that occurs when a complex forms or dissociates, while kinetic stability has to do with the rate of these processes. Thermodynamic stability is characterized by the equilibrium constant for complex formation, or by the standard Gibbs free energy change (ΔG°) of the reaction. The formation of a thermodynamically stable complex has a negative ΔG° meaning that the process is spontaneous. The stability is determined by metal-ligand bond strength, chelate & macrocyclic effects, resonance stabilization, & entropic factors. The hexacyanoferrate(III) complex [Fe(CN)₆]³⁻ is an example of this quality, as the cyanide the ligands have both very strong σ -donor & π -acceptor attributes & accumulate relatively strong metal-ligand bond energies. Likewise, during complexation with chelators such as ethylene diamine(en) or ethylene diamine tetraacetate (EDTA), thermodynamically stable complexes are produced thanks to the chelate effect in which the thermodynamic stability of the complex improves thanks to the entropic advantage that arises from having multiple donor atoms belonging to the same ligand.

Kinetic stability, in contrast, refers to the energy barrier that needs to be overcome for a reaction to take place. A kinetically stable (inert) complex has a large activation energy for ligand substitution, even when the substitution is thermodynamically favorable. inactiveness is frequently due to electronic configuration, steric hindrance or the necessity for substantial reorganization in the course of the reaction. Thermodynamic versus kinetic stability are not always straightforward. For example, [Co(NH₃)₆]³⁺is both thermodynamically & kinetically stable, as it is relatively low in formation energy & has slow ligand exchange rates. Others may be thermodynamically stable yet kinetically labile, as in many Ni(II) complexes, where the bonds are strong but ligand exchange occurs rapidly. However, some complexes may be thermodynamically unstable yet kinetically stable, lasting for extended periods despite spontaneous decomposition energetically favorable.

3.1.4 Factors Influencing Inertness & Lability

The inert or labile nature of a metal complex will depend on several factors, & the electronic configuration of the metal ion has a major influence in this behavior.

3.1.5 Crystal Field Effects and Electronic Configuration

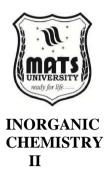
Particularly, the electron configuration of the metal ion (especially the electron distribution in the d-orbitals) significantly contributes to the kinetic characteristics of the complexes. For example, the crystal field stabilization energy (CFSE)—the energetic benefit associated with the splitting of d-orbitals by the ligands—correlates with kinetic inertness. For this reason, such metals create complexes that are more difficult to reduce.

For octahedral complexes, particular electronic arrangements are known to be correlated with inertness:

- d³ configuration (e.g. Cr³+): all 3 electrons can fit in the t₂g orbitals so large CFSE is there & higher energy e*g orbitals are unset.
- Low-spin d⁶ configuration (as in Co³⁺): All six electrons are in the lower-energy t₂g orbitals, resulting in maximum CFSE ($\Delta = 2/5$).
- d⁸ configuration with square planar complexes (example: Pt²⁺): Square planar complexes having singular/non-degenerate set of orbitals will have high CFSE.

3.1.5.1 In contrast, complexes with low CFSE are more likely to be labile:

- For high-spin d⁵ configuration (e.g., Mn²⁺), we have five e⁻ in t₂g & e*g are all filled: because all of them occupied one by one per level, the net CFSE is zero.
- d⁹ (e.g. Cu²⁺): The Jahn-Teller distortion generally associated with this configuration actually assists in replacement of a liganding atom.
- d^{10} configuration (e.g. Zn^{2+}): all d-orbitals filled & no CFSE gain possible.


3.1.5.2 Charge & Size of the Metal Ion

The charge density of the metal ion, which is defined by its charge and ionic radius, affects the extent of its interaction with the ligands. Overall, complexes with more inert characteristics are formed by ions of metals with higher charge densities. Thus, trivalence ions like Al³⁺, Cr³⁺ & Fe³⁺ form much more inert complexes than divalent ones. This trend within the periodic table that second & third-row transition metals form increasingly more inert complexes compared to their first-row analogues, is due in part to the heavier elements having larger size & more diffuse d-orbitals. This gives rise to both stronger covalent bonds and larger activation energies for the ligands to substitute.

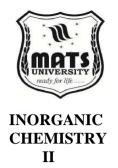
$$[AlF6]^{3-} > [SiF6]^{2-} > [PF6]^{-} > [SF6]^{0}$$

Similarly, the rate of water exchange increases with the decrease of cationic charge as:

$$[Al(H2On]^{3+} < [Mg(H2On]^{2+} < [Na(H2O)n]^{+1}$$

+3 +2 +1

3.1.5.3 Nature of the ligands


The characteristics of the ligands coordinated to the metal significantly influence the kinetic behavior of the complex:

- Field strength: Strong-field the ligands that cause large crystal field splitting (such as CN⁻, CO, & phosphines) tend to promote inertness, particularly for d⁶ metals where they can enforce low-spin configurations.
- Chelating the ligands: Multi dentate the ligands that form chelate rings with the metal often enhance kinetic inertness due to the increased stability of the coordination sphere & the requirement for multiple bonds to break simultaneously.
- Steric factors: Bulky the ligands can impede the approach of incoming nucleophiles, affecting the mechanism & rate of substitution reactions.

3.1.5.4 Coordination Number & Geometry

The spatial arrangement of the ligands around the metal center influences reaction pathways & activation energies:

- Octahedral complexes often have higher activation barriers for ligand substitution compared to tetrahedral ones, partly due to the more crowded coordination sphere & the greater reorganization needed during substitution.
- Square planar complexes (common for d⁸ configurations) exhibit unique mechanistic behavior, with substitution typically occurring via associative pathways.

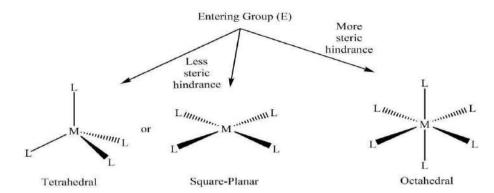


Figure -3.5 . The general diagram comparing the steric and site availability for ligand attack in four- coordinated and six coordinated complexes of non-transition metals.

3.1.5.4 Solvent Effects

The solvent plays a crucial role in ligand substitution reactions:

- Polar, coordinating solvents can stabilize charged intermediates & transition states.
- Solvent molecules can compete with other the ligands for coordination sites, acting as incoming or leaving groups.
- Hydrogen bonding interactions between solvent & the ligands can affect activation energies & reaction rates.

3.1.6 Experimental Determination of Inertness & Lability

The classification of a complex as inert or labile requires experimental determination of its ligand substitution kinetics. Several techniques are employed for this purpose:

3.1.6.1 Conventional Kinetic Methods

For relatively slow reactions (typical of inert complexes), conventional methods such as UV-visible spectroscopy, NMR spectroscopy, or conductivity measurements can track the progress of substitution reactions over time. These methods allow the determination of rate constants & activation parameters (ΔH_+^+ , ΔS_+^+ , & ΔG_+^+) that characterize the kinetic behavior. For example, the substitution of chloride in $[Co(NH_3)_5Cl]^{2+}$ by water can be monitored by the change in absorption spectrum as the reaction proceeds, yielding rate constants that confirm its inert nature.

3.1.6.2 Fast Reaction Techniques

For labile complexes with very rapid ligand exchange, specialized techniques are required:

- Stopped-flow methods: Rapidly mix reactants & monitor the initial stages of fast reactions with time resolution down to milliseconds.
- Temperature-jump relaxation: Perturb an equilibrium system with a sudden temperature change & observe the rate of return to equilibrium.
- NMR line broadening & exchange spectroscopy (EXSY): Analyze the effects of chemical exchange on NMR spectra to extract rate information.
- Pressure-jump methods: Similar to temperature-jump but using pressure perturbations.

These techniques have revealed that water exchange on many first-row transition metal aqua complexes occurs with half-lives on the order of microseconds to milliseconds, confirming their labile character.

3.1.6.3 Isotopic Exchange Studies

Isotopically labeled the ligands (such as ¹⁸O-labeled water or ³⁶Cl-labeled chloride) can be used to track exchange processes without changing the chemical identity of the complex. Mass spectrometry or spectroscopic techniques can then detect the incorporation of the labeled atoms, providing information about exchange rates even in systems where no net chemical reaction occurs.

3.1.6.4 Implications of Inertness & Lability in Applications

The kinetic behavior of metal complexes has profound implications for their practical applications across various fields:

3.1.6 .4,1 Catalysis

Catalytic processes often require a delicate balance of lability & inertness:


- The metal center must be labile enough to allow substrate binding & product release.
- It must also maintain sufficient integrity during the catalytic cycle to prevent decomposition.

Industrial catalysts like Wilkinson's catalyst [RhCl(PPh₃)₃] & hydroformylation catalysts exemplify this balance, with rhodium complexes exhibiting moderate ligand exchange rates that facilitate catalytic turnover while maintaining structural integrity.

3.1.6.4.2 Medicinal Chemistry

The kinetic characteristics of metal-based drugs significantly influence their biological activity:

- Cisplatin's anticancer activity depends on its kinetic inertness, allowing it to reach DNA before undergoing hydrolysis to form the active aqua species.
- Gadolinium contrast agents for MRI must be sufficiently inert to prevent the release of toxic Gd³⁺ ions in the body.

3.1.6.4.3 Environmental Chemistry

The mobility & bioavailability of metal ions in the environment are influenced by the kinetics of their complexation with natural the ligands:

- Rapidly exchanging metal ions tend to be more bioavailable.
- Kinetically inert species may persist in environmental compartments, affecting long-term exposure & remediation strategies.

3.1.6.4.4 Analytical Chemistry

Many analytical applications of metal complexes, particularly in chromatography & extraction, rely on controlled kinetic behavior:

- Extraction processes often require rapid complex formation for efficiency.
- Certain separations exploit differences in the kinetic lability of different metal ions.

3.1.7 Mechanistic Classification Based on Kinetic Behavior

The inert-labile distinction provides a foundation for more detailed mechanistic classifications of ligand substitution reactions. Based on kinetic studies, several distinct mechanisms have been identified:

3.1.7 .1 Dissociative (D) Mechanism

In a purely dissociative process, the rate-determining step involves the departure of the leaving ligand, creating an intermediate with reduced coordination number. This mechanism is common for inert octahedral complexes & shows characteristic kinetic behavior:

- First-order kinetics (rate depends only on the concentration of the complex)
- Negative activation entropy ($\Delta S \ddagger < 0$) due to the more ordered transition state
- Independence of rate on the nature or concentration of the entering ligand

3.1.7 .2 Associative (A) Mechanism

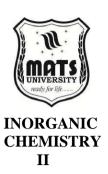
In a purely associative process, the rate-determining step involves the formation of a bond with the entering ligand, creating an intermediate with increased coordination number. This mechanism is common for square planar complexes (particularly d⁸ configurations like Pt(II)) & exhibits:

- Second-order kinetics (rate depends on concentrations of both complex & entering ligand)
- Negative activation entropy due to the more ordered transition state
- Strong dependence of rate on the nucleophilicity of the entering ligand

3.1.7 .3 Interchange Mechanisms (Id & Ia)

Most reactions occur via interchange mechanisms, where bond-making & bond-breaking occur in a concerted manner without discrete intermediates. These are further classified as:

- Interchange dissociative (Id): Bond-breaking character dominates the transition state.
- Interchange associative (Ia): Bond-making character dominates the transition state.


The distinction between these mechanisms provides deeper insight into the intimate details of ligand substitution reactions & helps explain the factors that determine whether a complex behaves as inert or labile.

3.1.8 Advanced Concepts in Inertness & Lability

As research in coordination chemistry has advanced, several sophisticated concepts have emerged that refine our appreciate and comprehending of inertness & lability:

3.1.8 .1 Trans Effect & Trans Influence

In square planar complexes, the rate of substitution of a ligand is strongly influenced by the ligand trans to it—a phenomenon known as the trans effect. The ligands with strong trans effects (such as CO, CN⁻, & H⁻) accelerate the substitution of the trans ligand, effectively creating regions of localized lability within an otherwise inert complex. This concept has been extended to the trans influence, which describes the ground-state weakening of the bond trans to certain the ligands, affecting both thermodynamic & kinetic characteristics.

Summary

In coordination chemistry, inert complexes undergo substitution reactions very slowly, while labile complexes react quickly. This behavior depends on kinetic stability, not necessarily thermodynamic stability, which relates to the free energy of formation. Factors influencing inertness/lability include metal oxidation state, electronic configuration, ligand nature, and CFSE (higher CFSE → more inert). For example, Co(III) and Cr(III) complexes are inert, whereas most first-row divalent transition metal complexes are labile. Experimental methods (e.g., rate measurements, spectroscopic monitoring) help determine lability. Mechanistically, substitution reactions are classified as associative (A), dissociative (D), or interchange (I), depending on whether bond formation or bond breaking dominates. Understanding inertness and lability is crucial in catalysis, bioinorganic chemistry, and industrial applications.

Multiple Choice Questions (MCQs):

Q1. Complexes of Co(III) are generally:

- a) Very labile
- b) Inert
- c) Thermodynamically unstable
- d) Always diamagnetic

Answer: B

- **Q2.** Thermodynamic stability depends mainly on:
- a) Reaction rate
- b) Free energy change (ΔG)
- c) Bond-breaking speed
- d) Activation energy

Answer: B

- **Q3.** Kinetic stability (inertness) of a complex is determined by:
- a) ΔG
- b) Rate of ligand substitution
- c) Color of the complex
- d) Electronegativity of ligands

Answer: B

Q4. High CFSE values generally make complexes:

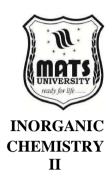
- a) More labile
- b) More inert
- c) Less thermodynamically stable
- d) Always paramagnetic

Answer: B

Q5. Mechanistic pathways of substitution reactions are classified as:

- a) Ionic and covalent
- b) Associative, dissociative, and interchange
- c) Thermodynamic and kinetic
- d) Homolytic and heterolytic

Answer: B


Short Questions:

- 1. Define inert and labile complexes with examples.
- 2. What is the difference between thermodynamic stability and kinetic stability?
- 3. How does crystal field stabilization energy (CFSE) affect inertness and lability?
- 4. Name one experimental method to determine inertness or lability of a complex.
- 5. Why are low-spin Co(III) complexes usually inert?

Long Questions:

- 1. Explain the concepts of inertness and lability **in** metal complexes. Give suitable examples.
- 2. Differentiate between thermodynamic stability and kinetic stability of complexes with illustrations.
- 3. Discuss the factors influencing inertness and lability such as oxidation state, electronic configuration, ligand type, and CFSE.
- 4. Describe the experimental determination of inertness and lability in coordination complexes.
- 5. Explain the mechanistic classification of substitution reactions in coordination chemistry based on kinetic behavior (dissociative, associative, interchange).

UNIT 3.2.

Energy Profile of Reactions

Chemical reactions are all about energy changes and the transformation of reactants into products. These changes in energy are critical for predicting whether the reaction you want will happen, & even if you perform a reaction, at what rate & what mechanism. Free energy diagram: Reaction Pathway & Activation Energy

3. 2.1. Stereo chemical Considerations

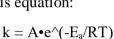
The stereochemistry of the complex can significantly influence its kinetic behavior:

- Facial (fac) versus meridional (mer) isomers may exhibit different substitution rates due to differences in electronic & steric environments.
- Chirality can affect reaction pathways, particularly in biological systems where enzymes may recognize one enantiomer preferentially.

 Non-classical Substitution Mechanisms

Beyond the classical D, A, & I mechanisms, research has revealed more complex pathways:

- Reductive elimination/oxidative addition sequences in organometallic chemistry.
- Electron transfer-induced substitution, where redox processes facilitate ligand exchange.
- Photochemically activated substitution, where electronic excitation lowers activation barriers.

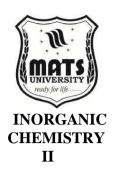

3.2.2 Computational Approaches

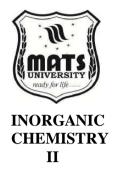
Modern computational methods have provided unprecedented insight into the factors governing inertness & lability:

- Density functional theory (DFT) calculations can predict activation barriers & transition state geometries.
- Molecular dynamics simulations reveal the role of solvent reorganization & thermal fluctuations.
- Ab initio methods help elucidate the electronic factors that determine kinetic behavior.

These advanced concepts continue to refine our appreciate and comprehend ing of inertness & lability, enabling more precise control over the design of metal complexes for specific applications.

The reaction pathway describes the detailed path that reactants follow as they are converted to products. This can be represented by a smooth path on an energy landscape, showing how the potential energy of the system evolves as bonds are broken & formed. Use a theoretical construct known as the reaction coordinate, which just means the degree (x-ordinate when plotting a reaction energy profile) along the reaction, typically from reactants (some point in the left on the x-axis of the energy profile) to products (some point on the right). All we have to know is that to get a reaction to proceed the reactants need to have enough energy to go over an energy barrier called the activation energy (E_a). Activation energy blue is the minimum energy needed to convert a reaction into an activated complex which then goes on to form products. The energy barrier we observe exists because when bonds are broken, the system gets stuck in a higher-energy state before new bonds are formed. The concept of an activation energy was first introduced by Svante Arrhenius in 1889 who suggested that not all the colliding molecules have enough energy to surpass this barrier. This made him come up with the Arrhenius equation:


Where:


- k is the rate constant
- A is the pre-exponential factor (collision frequency related)
- E_a is the activation energy
- R is the gas constant
- T the absolute temperature

The general concept of an activation energy barrier accounts for why many reactions (thermodynamically favorable reactions with negative ΔG) may occur slowly or not at all at room temperature. Glucose, for instance, has a thermodynamically favorable combustion (ΔG 0) — the activation energy of the forward reaction is higher than that of the reverse reaction. The Hammond postulate gives more information about the structure of transition state & states that the transition state of an exothermic reaction resembles the reactants while the transition state of an endothermic reaction resembles the products. This principle is useful for predicting how the rates of reaction will change due to structural modification.

3.2.3 Intermediate vs Transition State

This is especially important for the default reaction mechanism & energy profile interpretation, which looks at reaction intermediates & transition states. Though both are intermediates & formed during a reaction, they have different fundamental nature & energy

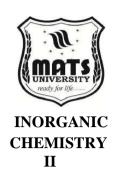
characteristics. A transition state is the highest-energy configuration along a reaction coordinate, meaning that it is reached as old bonds are being partially broken & new bonds are being partly constructed. Three main features characterize the transition states:

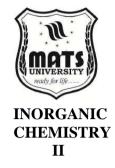
- Glimpse of Transition: Transition states are very short-lived, on the order of 10^-13 to 10^-14 seconds, which is about the time taken by a single molecular vibration.
- Partial bonds: They have partially formed and partially broken bonds, usually shown as dashed lines in structural depictions.
- Energy maxima: Transition states are energy maxima in reaction energy profiles energy decreases whether the system proceeds toward reactants or products.
- In no way isolateable: Because of their high energy & instability, transition states are not isolable or visible to standard spectroscopic techniques; however, indirect information on the structure of transition states can be collected from kinetic isotope effects & computational modeling.
- First-order saddle points: Transition states can be described in terms of potential energy surfaces as first-order saddle points—maxima in one dimension (the reaction coordinate) but minima in all other dimensions.

By contrast, reaction intermediates are well-defined chemical species (as opposed to vague game-players) that exist during multi-step reactions & have definite, if sometimes short, lifetimes. Intermediates have the following key characteristics:

- Relative Stability: The intermediates have due to the presence of energy minima between reactants & products are more stable than the transition states.
- Intermediates: many are isolated (likely); some are reactive species so have relatively longer lifetimes than transition states
- Intermediates differ notably from transition states in that they have complete electronic structures even with normal bond orders.
- Spectroscopic accessibility: Many intermediates can be either detected or even characterized by rapid spectroscopic techniques (e.g. stopped-flow spectroscopy, flash photolysis, or low-temperature NMR).
- Kinetic importance: This leads to the formation or decomposition of intermediates, which can affect reaction kinetics & thus may show as steps in rate equations.

The multi-step reaction energy profile illustrates the differences between intermediates & transition states: On such a profile, intermediates are manifested as local energy minima (valleys) as a function of their position along the reaction coordinate while transition states appear as energy maxima (peaks). Each step in the reaction must surmount an activation energy barrier through a transition state to produce either intermediates or the final products.


Take the SN1 reaction of tert-butyl bromide with water: (CH3)3C-Br + H2O \rightarrow (CH3)3C-OH + HBr


The energy profile for this process is as follows:

- Reactors at the initial energy level
- A transition state for heterolytic cleavage of the C-Br bond
- Intermediate carbocation [(CH3)3C+] & bromide ion [Br-] at a local energy minimum

A second transition state representing the nucleophilic attack of water on the carbocation (Products in the ultimate energy level)

Here, the carbocation intermediate lies at a local energy minimum between two energy peaks, each end of which is topped with a transition state. Not all carbocations have a potential energy well, so this would mean that not all of them would be considered intermediates in a reaction, but since the tertiary carbocation is relatively stable, it stays in solution long enough to be considered a true intermediate & not just a transition state. The difference between concerted & stepwise mechanisms also lays bare the difference between transition states & intermediates. In concerted reactions such as the Diels-Alder cycloaddition, reactants convert to products in a single transformation between them in the absence of isolable intermediates through a single transition state. The energy profile displays one activation barrier. Stepwise reactions (e.g., SN1 mechanism) each involve one or more intermediates & thus have multiple transition states as well as a more complex energy profile with multiple peaks & valleys. The ratedetermining step in a multi-step reaction is simply the step that contains the highest energy transition state in the energy profile. This ratelimiting step has a high activation energy & thus limits the overall reaction rate. In the SN1 example above, the first step (the formation of the carbocation) generally has the higher activation energy, therefore it is the rate-determining step. This methodology was subsequently supplemented, enabling computational chemistry to change the face of discovery by bringing us the structures & energies of intermediates & transition states of reaction energy profiles that we could heretofore only hypothesize based on classical considerations. Computational methods, including density functional theory (DFT), can predict activation energies to within a good degree of accuracy & can provide

mechanistic insight that may be very difficult or even impossible to obtain experimentally.

Through experimental methods, we also learn more about these reaction energy profiles. For instance, bond-rearrangement events that take place in the transition-state region can be revealed by kinetic isotope effects. Indirect information on charge development in the transition state as substituents is provided by Hammett correlations, are seen to alter the rate of reactions. Energy profiles become more complicated when there is multi-surface reactivity, such as spin-state changes or photochemical reactions. A non-adiabatic transition between potential energy surfaces is made possible, for instance, by a feature such as a conical intersection, a point of avoided crossing. The Marcus theory of electron transfer reactions is another advanced method for appreciating and understanding energy profiles, especially for redox reactions. The activation energy for electron transfer in this instance depends on the reaction free energy (G°). The energy required to reorganize the nuclear conformation of the reactants, products, and surrounding solvent is known as the reorganization energy. In practical applications across chemistry & biochemistry, appreciate and comprehend ing reaction energy profiles is crucial. In order to increase the efficiency of synthetic approaches in drug design, reaction barriers are predicted computationally. To explain how proteins lower activation barriers during enzyme catalysis, we analyze energy profiles that include electrostatic stabilization, strain, & proximity effects By identifying rate-limiting steps and potential catalytic techniques, energy profiles in materials science help develop catalysts for a range of industrial processes.

New spectroscopic techniques continue to push the boundaries of our understanding of reaction dynamics. Ultra-fast processes and the timescale surrounding transition states are revealed by femtosecond Electron diffraction and time-resolved crystallography can capture snapshots of systems evolving along their reaction coordinate and freeze the structural changes that take place during the reactions. This concept can also be applied to physical and biological processes, such as protein folding, phase transitions, or molecular conformational changes. It is also possible to think of these processes as traverses on intricate, multidimensional energy landscapes that have numerous saddle points, maxima, and minima. Lastly, a reaction's energy profile is a useful conceptual tool that can aid in understanding and appreciating a transition state. By separating transition states from intermediates, chemists are able to forecast, explain, and regulate reaction outcomes. & examining reaction pathway energetics.11 (2014): 376302 from an analysis of reaction energy profiles of Nakamura et al.

Summary

The energy profile of a reaction shows how potential energy changes along the reaction pathway. Transition states are high-energy points (peaks) that cannot be isolated, while intermediates are real chemical minima. species corresponding to energy Stereochemical considerations in substitution reactions (e.g., retention, inversion, racemization) are crucial in determining the product's geometry, particularly in square-planar and octahedral complexes. Computational approaches like Density Functional Theory (DFT) and molecular simulations provide valuable insights into reaction mechanisms, activation barriers, and stereoelectronic effects. Understanding these aspects is vital for predicting reactivity, mechanism, and stereochemistry in inorganic, bioinorganic, and catalytic systems.

Multiple Choice Questions (MCQs):

- Q1. In an energy profile diagram, the peak corresponds to:
- a) Intermediate
- b) Transition state
- c) Reactants
- d) Products

Answer: B

- **Q2.** Which of the following is a **real chemical species** that can sometimes be isolated?
- a) Transition state
- b) Intermediate
- c) Activated complex
- d) Virtual state

Answer: B

- Q3. Retention or inversion of stereochemistry is mainly discussed in:
- a) Ionic reactions
- b) Ligand substitution reactions
- c) Radical reactions
- d) Electrochemical reactions

Answer: B

Q4. Which computational method is most widely used for studying electronic structures of complexes?

- a) Molecular mechanics
- b) Density Functional Theory (DFT)
- c) Monte Carlo
- d) Simple Hückel theory

Answer: B

Q5. Which statement is correct?

- a) Transition state can be isolated in pure form
- b) Intermediate lies at a local energy minimum
- c) Intermediates always have higher energy than transition states
- d) Transition states have infinite lifetime

Answer: B

Short Questions:

- 1. Differentiate between an intermediate and a transition state.
- 2. What is meant by an energy profile of a reaction?
- 3. Define stereochemical retention and inversion in substitution reactions.
- 4. Give one computational method used to study reaction mechanisms.
- 5. Why is the activation energy higher for inert complexes than labile ones?

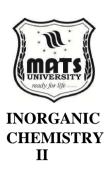
Long Questions:

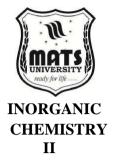
- 1. Explain the energy profile diagram of a substitution reaction, highlighting activation energy and reaction coordinate.
- 2. Discuss the stereochemical considerations in substitution reactions of octahedral and square planar complexes.
- 3. Describe the role of computational approaches (like DFT and molecular dynamics) in understanding reaction pathways in coordination chemistry.
- 4. Compare and contrast the concepts of transition state and intermediate with suitable examples.
- 5. How do stereoelectronic factors and ligand orientation influence the reaction mechanism and outcome of coordination reactions?

UNIT 3.3

Kinetics of Octahedral Substitutions

Octahedral substitution reactions are a hallmark of coordination chemistry, governing the ligand-pairing events in octahedral metal complexes. Numerous factors influence these reactions' kinematic profiles, which governed by various mechanistic are pathways. Understanding the kinetics of octahedral substitution is crucial for understanding biological processes, catalysis, and applications of metal centers in systems and materials science. A special case for a ligand substitution is found in octahedral complexes. in which the coordination sites are symmetrically arranged into an octahedron around a centrally located metal atom.


The ligands also playa significant role in the arrangement around the light absorbing center. Both the approach of incoming ligands and the departure of leavinggroups are impacted by the electronic and steric constraints that are specific to the protein environment and are imposed by the spatial distribution of these sitesa. It hough substitution A processes are not significantly impacted by tetrahedral or square planar geometries, octahedral Coordination can present special challenges for ligandsubstitution, resulting in unique mechanistic pathways that allow these reactions to proceed quickly enough. For the symbology, an octahedral substitution can be represented generally as


$$[ML_5X] + Y \rightarrow [ML_5Y] + X \rightarrow [ML_5Y_2] + [3-3] -.$$

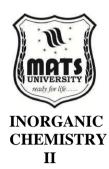
Despite the apparent simplicity of this illustration, the mechanism is frequently far more intricate, involving significant rearrangements in the coordination domain, bond breaking and forming events, and extensive electronic reorganizations.

3.3.1 A mechanisms of octahearal substitutions

Octahedral substitution has been thoroughly studied & categorized according to its kinetic profile, activation parameters, & the effect of entering & leaving groups on reactivity. Octahedral complexes diverge in their pathways, as they often undergo associative processes, unlike their square planar counterparts, due to the geometry's increased sterics & electronic species. A large body of work has defined the principal mechanistic pathways for octahedral substitution in terms of broad types of processes: dissociative, associative, & interchange. These

classes are based on how the rate-determining step is characterized by nature & the structure of either the transition state or intermediate created during the intermediate The departing group departs before much interaction with the entering group in the dissociative mechanism (D).

In order to restore the octahedral geometry, the incoming ligand reacts with the intermediate, which has a lower coordination number (typically five coordinates). Because the rate-determining step takes place prior to the entering ligand becoming involved in the reaction, this kind of mechanism is characterized by a rate law that is independent of the enteringligand'sconcentration. Rather, in the associative pathway(A), the incoming group engages before the departing group significantly dissociates.


The leaving group is expelled, creating an intermediate, which causes the coordination number to increase (usually for coordination by seven-coordinate N-intermediates) until the octahedral configuration can be restored. This step is in fact rate-determining since the rate law obtained from this mechanism shows a dependence on the entering ligand concentration.

In between these extremes is the interchange mechanism, where (the entering group forms a bond simultaneously with the leaving group) are not made & broken in a strictly sequential manner but instead involve a concerted transfer of groups where some bond is formed with the entering group while simultaneously some other bond is broken with the group leaving the reactive center (not necessarily to the same extent). This mechanism can be further subdivided into a dissociative interchange (Id) & associative interchange (Ia) depending on whether breaking or formation is more advanced in the transition state. The energetics of these mechanisms are markedly different. Since leaving groups do not provide assistance in breaking the metal—ligand bond in dissociative pathways, these pathways are generally characterized by higher activation enthalpies. However, they tend to exhibit positive entropies of activation due to the greater disorder of a five-coordinate intermediate. In contrast, associative mechanisms typically exhibit lower activation enthalpies but negative activation entropies, which is consistent with the ordering effect of coordi- nating the complex with the incoming ligand in the transition state.

3.3.2 Associative (A) & Dissociative (D) Pathways

Octahedral substitution occurs by two principal pathways, gate (G) & associative (A) or dissociative (D) pathways. This leads to a larger coordination sphere, and, typically, a seven-coordinate intermediate. In this mechanism, the kinetics are second-order, & the rate law is of the type: rate = kcomplex. Associative mechanisms forming a seven-coordinate intermediate are sterically demanding. This steric eversion or constraint partly explains the relative scarcity of associative mechanisms in octahedral versus square planar substitution. For

smaller metal ions that have largely open coordination sites & strongly nucleophilic entering groups, however, the associative pathway is favored. Important attributes of this associative pathway are that they possess a negative volume of activation (ΔV_{+}^{+}) associated with compression of the system in the transition state & a pronounced dependence on the nucleophilicity of the entering group with a relative insensitivity to the nature of the leaving group. Associative character in substitution reactions can be found in complexes of d³ configuration (such as Cr(III)) & complexes with labile metal centers.

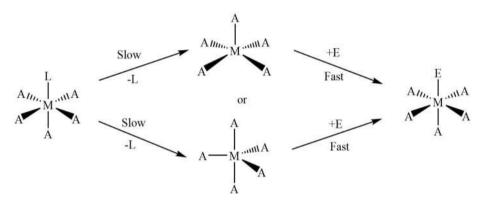


Fig-3.1 Pathway for ligand displacement reactions in octahedral metal complexes through SN1.

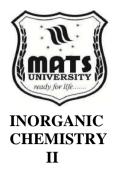



Fig 3.2 The typical reaction coordinate diagram for ligand displacement reactions in octahedral metal complexes through SN1 mechanism.

The dissociative (D) pathway, on the other hand, sees the leaving group depart before any sensible interaction with the entering ligand, leading to a five-coordination intermediate. This process proceeds via a first order mechanism, & is written in the form of the following rate law: rate = k[complex], which is independent of entering ligand concentration. The dissociative mechanism predominates octahedral

substitution reactions especially on the inert metal centers defined by d⁶ low spin complexes such as Co(III) & Rh(III). For larger metal ions & sterically hindering coordination environments, the formation of five-coordinate intermediates is often favored energetically, rather than expanding to seven-coordinate species as in associative mechanisms. This observations is consistent with the characteristics of dissociative mechanisms with positive volumes of activation (ΔV^{\ddagger}_{+}), facilitated by expansion of the system in the transition state, a strong dependence of ΔV^{\ddagger}_{+} on the nature of the leaving group, & relative insensitivity to the identity of the entering group [increase in the leaving group size]. If the departing group is a ligand attached to a metal, the dissociative pathways involve breaking a metal-ligand bond, while the activation energy for dissociative processes is often related to the metal-ligand bond strength associated with the leaving group.

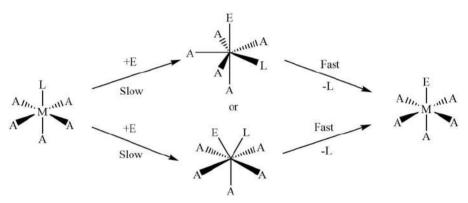


Fig 3.3 The general reaction mechanism for ligand displacement reactions in octahedral metal complexes through SN₂ pathway.

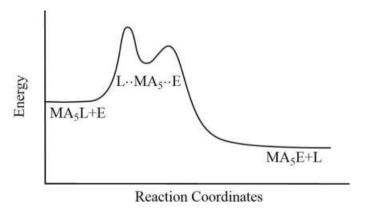
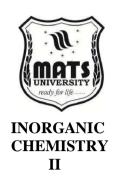



Fig3.4 The typical reaction coordinate diagram for ligand displacement reactions in octahedral metal complexes through SN2 mechanism.

The interchange mechanisms (Id & Ia), in which concerted bond breaking and bond formation takes place & no isolated intermediates form, are found between these two extremes. In the dissociative interchange (Id) mechanism, bond-breaking proceeds further than

bond-forming in the transition state, while the associative interchange (Ia) mechanism has more advanced bond forming than the bond breaking in the transition state. Careful kinetic studies involving determination of activation parameters (ΔH^{\ddagger} , ΔS^{\ddagger} , ΔV^{\ddagger}) & variations of entering & leaving group characteristics generally provide the best distinguishing between these mechanisms. stereochemical implications are also important as different mechanisms can afford different stereochemical selections of products. Retention of configuration is often found with dissociative mechanisms in octahedral complexes containing chelating the ligands, because the five-coordinate intermediate retains its geometric orientation as the entering group approaches. In contrast, if the incoming group approaches from a different side to that of the departing group, then isomerization will occur as it is an associative mechanism.

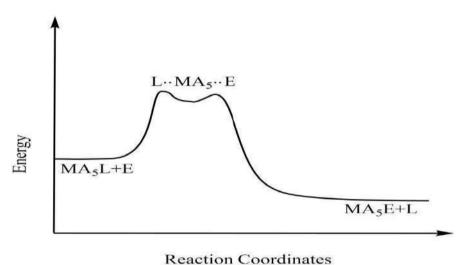


Figure - The typical reaction coordinate diagram for ligand displacement reactions in octahedral metal complexes through the interchange mechanism.

3.3.4 Factors That Affect the Rate of Reaction

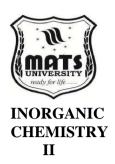
The fundamental principles dictating coordination chemistry & allows for the rational design of complexes with modulated reactivity profiles. Substitution rates are critically dictated by the electronic configuration of the metal center. The CFSE has a large impact on the activation energy for ligation substitution. Complexes with great CFSE, however, like for instance low-spin d⁶ (e.g. Co(III), Rh(III), Ir(III)) have low substitution rates, for the reason that a large amount of energy is required to distort the octahedral geometry during the reaction. In contrast, zero CFSE complexes (e.g., high-spin d⁵ (Mn(II)) or d¹⁰ (Zn(II)) configurations, tend to be more reactive. This step: metal substitution rates, which depend on the d-electron count influencing metal-ligand bond strengths & the stability of the intermediates. For

example, d³ complexes such as Cr(III) have intermediate reactivity, whereas d8 complexes like Ni(II) can be quite labile. Principles of the spectrochemical series & the nephelauxetic effect also modify these electronic effects by affecting the extent of orbital overlap & the covalent character of metal-ligand bonds.

Ligand effects are another important aspect of octahedral substitution kinetics. The trans influence, where some the ligands can promote the substitution of groups trans to them, has both σ -bonding & π -bonding contributions. Strong σ -donors & π -acceptors generally present well-The chelate effect has a major impact on substitution rates in multidentate ligand systems.

Because of the entropic cost of their dissociation, chelating the ligands tends to lower substitution rates. This effect is a continuation of the chelate effect, and when paired with the macrocyclic effect, it explains why complexes of cyclic polydentate ligands, like porphyrins and crown ethers, are so inert. The impact of steric effects on substitution rates and mechanisms is extensive. By reducing ground-state strain in the complex and lowering the activation energy for ligand dissociation, bulky ligands may encourage dissociative processes. Conversely, they might hinder associative pathways by keeping incoming groups from being close. In many systems, it has been demonstrated that the cone angle, a quantitative atomistic description of steric demand that was first used to describe phosphine ligands, correlates with rates of substitution.

There are several ways that solvent effects manifest inoctahedral substitution reactions. In the case of dissociative mechanisms, where solvent molecules can occupy the empty coordination site of the five coordinate intermediate, the competition for solvent coordination is limited to incoming ligands. The solvent's polarity determines the stability of charged intermediates and transition states, and its capacity to form hydrogen bonds will influence which leaving groups or ligands are specifically stabilized. The activation energies for charge-separating or charge-redistributing reactions in the transition state are determined by th solvent dielectric constant. Higher dielectric constants, in particular, have a tendency to accelerate reactions where charge separation increases in the state of transition. Defined trans effects for example, by destabilizing the trans bond due to direct competition for metal orbitals, or via electronic polarization. Moreover, specific solvent-solute interactions (e.g. hydrogen bonding, dipole-dipole interactions) can have a significant impact on reaction mechanisms & rate constants. Pressure effects can give mechanistic insights, because associative & dissociative mechanisms have different sensitivity to changes in pressure. In associative mechanisms, involving volume decrease in the transition complex, higher pressure increases their rate (negative volume of activation). In contrast, the sheer of


dissociative mechanisms, which are associated with the transition state by volume expansion, are hindered by pressure (positive volume of activation). These principles have been used to clarify mechanisms under circumstances where traditional kinetic behaviors would be ambiguous.

Seen in Eyring or Arrhenius plots, the temperature dependence of substitution rates gives activation parameters that illuminate the transition state. Compurature or low energy free activation energies, along with positive activation entropies correspond to a dissociative character while smaller enthalpies & negative entropies indicate an associative character (19). The isokinetic relationship, where compensation between entropic & enthalpic components occurs across a series of thermnetically linked reactions, further highlights the mechanistic unity(56, 57). An interesting class of octahedral substitution is the substitution in coordinated the ligands. In such cases, the metal center modifies the reactivity of coordinating the ligands but does not directly engage in bond making or breaking. For example, metal coordination can promote carbonyls for nucleophilic attack or aryls for electrophilic substitution. These effects result from both electronic perturbation of the ligand & steric constrictions afforded by the coordination environment. Acids-bases may catalyze wts reaction of substitution in aqueous systems. The lability of leaving groups can be increased through their protonation 79, as this alters the local electron density at the metal-ligand bond. Clearance of incoming the ligands similarly enhance their nucleophilic character through deprotonation, promoting associative mechanisms. dependence of substitution rates is often a manifestation of these acidbase equilibria being superimposed onto the inherent substitution mechanism.

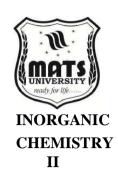
Dissociative substitution rates are strongly influenced by leaving group ability. Leaving group lability in turn depends on the bond strength with the metal, the stability of the free ligand & solvation effects. A rough guide to leaving group abilities is given be the order of the ligands in the spectrochemical series, as weak-field the ligands (for example, I⁻, Br⁻, Cl⁻, F⁻) usually leave more readily than strong- field the ligands (for example, CN⁻, CO, phosphines). Associative mechanisms are mainly dependent on the nucleophilicity of the entering group. This is due to the complementary reactivity of softer nucleophiles (I⁻, PR₃, thioethers) to soft metal centers as predicted by Pearson's hard-soft acid-base (HSAB) principle which extends well to coordination chemistry, where nucleophilicity trends often track those of organic chemistry. But some orbital interactions & steric factors can cause exceptions to simple electronegativity-based predictions.

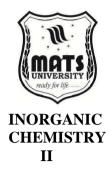
3.3.5 Kinetic Models with Special Cases

In addition to the classical A & D mechanisms, an extended version of the kinetic model of the octahedral substitution reaction has been proposed which takes this complexity into account. For example, the Eigen-Wilkins mechanism when logic for pre-equilibrium there is a formation of an outer-sphere complex prior to the actual substitution metallochromism. It has proved especially successful at explaining substitution kinetics in aqueous systems where solvation is key. The intimate mechanism, realized by Langford & Gray, offers a more detailed perspective of interchange processes by contemplating the synchronicity of bond breaking & forming. It brings together the two ends of the spectrum-pure associative & pure dissociative processessince almost all real systems lie somewhere in between, exhibits some concerted behavior. Substitution in trans-effect complexes illustrates how judicious placement of the ligands can profoundly accelerate certain substitution reactions. Distinct from the thermodynamic trans effect, the kinetic trans effect proceeds through a σ -bonding and π bonding derived mechanism gave. Substitution rates can be increased by an order of magnitude by transdirecting the ligands (such as H, CH, and PR) that weaken the trans bond or stabilize the transition state. Stereochemical features of octahedral substitution can provide information about mechanisms.

As a diagnostic test for pathway differentiation, rearrangement or inversion of arrangement upon substitution is commonly employed. For instance, depending on the approach trajectory of the entering moiety, dissociative pathways frequently accompany configuration retention, while associative channels can result in isomerization. Linkage isomerization is an intriguing special case in which this type of substitution takes place without breaking the metal-ligand bond. After coordination to the metal for ambidentate ligands like thiocyanate (SCN/NCS), nitrite (NO/ONO), and sulfoxide (RSO), isomerization can take place. Because of the limitations imposed by the requirement to stay attached to the metal center, this can lead to more complex kinetic behavior than typical substitution reactions can handle. Electron transfer- catalyzed substitution mechanisms have been described in a variety of systems, particularly those involving redox active metal centers.

For example, substitution in Co(III) can be dramatically accelerated by reduction to Co(II) allowing for fast ligand exchange followed by reoxidation to Co(III). This "reduction mechanism" sidesteps the high activation barrier for direct substitution at the inert Co(III) center.


A general route for activation of substitution in otherwise inert complexes is photo induction. Light absorption can excite electrons into antibonding orbitals, reducing the strength of certain metal-ligand bonds & enabling their scission. This strategy has been particularly fruitful for d⁶ systems such as Cr(III) & Co(III) in scenarios where


thermal substitution is tantamount to an endless wait. Such substitution in polynuclear complexes increases complexity because of the electronic interaction between metal centers. Additionally, bridging the ligands can influence electronic communication across the complex, resulting in cooperative effects in which reactivity at one metal center is impacted by substitution at another. In biological systems with cooperative ligand binding, like hemoglobin, this has been thoroughly described. Pure dielectric type effects are not the only significant effects of solution on substitution mechanisms. In addition to changing reaction pathways, the stabilization of intermediates and transition states through solvent coordination can produce special switching mechanisms that rely on the properties of the solvent.

For instance, substitution reactions in non-coordinating solvents that follow dissociative pathways can assume an associative nature in media that are highly coordinating. One tool for mechanistic clarification is pressure studies. The nature of the transition state can be easily understood from the activation volume (V), where a negative value corresponds to compressed (associative nature) and a positive value corresponds to expanded (dissociative nature). In systems where conventional kinetic methods yield nondiscriminatory answers, this approach has proven particularly helpful in elucidating mechanistic uncertainties.

Additional Uses and Current Advancements The principles of octahedral substitution kinetics, in particular, are widely applicable to chemistries ofvarious types and scales. In homogeneous catalysis, ligand exchange procedures are essential for catalyst design and optimization. Usually, precatalyst activation involves substitution processes that may lead to catalyst deactivation through undesirable ligand exchange reactions. Therefore, a thorough understanding of the alternative mechanisms and governing factors is necessary for the logical design of catalytic structures. In the study of bioinorganic chemistry, metal ion substitution kinetics are essential to numerous biological processes. It is still challenging to examine the binding profiles of individual metalloproteins in complex mixtures, even though selective coordination and release mechanisms regulate the movement of metals between various environments. Hemoglobin and myoglobin, for instance, are metalloproteins that function through a regulated and release mechanism oxygen. for metalloenzymes are often more complex, requiring coordination steps for substrate and subsequent product release that adhere to similar design principles of simple coordination complexes. Understanding substitution kinetics is essential for the development of novel contrast agents due to their specific medical applications, particularly in MRI.

To develop optimal gadolinium-based contrast agents, one must find the right balance between the exchange rate of the water molecules & stability

within biological conditions. The environments of these agents are carefully planned to optimize exchange dynamics. For instance, platinum anticancer medications (Pt(II) complexes) belong to the class of metal-based therapeutic agents that work through ligandinduced exchange and substitution mechanisms. Their controlled substitution reactions in the target tissue and kinetic inertness in the bloodstream are what give them therapeutic value. In an attempt to create medications with improved selectivity and fewer side effects, this kinetic property is currently being optimized. Through exchange reactions, they are employed in material science to create coordination polymers, metal-organic frameworks (MOFs), and other cutting-edge materials.

This makes it possible to modify these materials post-synthetically by means of substitution reactions at metal centers, enabling the implementation of functionality following the establishment of the structural framework. Our structural understanding of substitution mechanisms has significantly improved as a result of recent methodological advancements. Because high-pressure NMR techniques enable the direct observation of volume changes during reactions, they offer compelling proof for mechanistic assignments. Ultrafast laser spectroscopy and time-resolved spectroscopic methods like stoppedflow methodologies make it possible to observe short- lived intermediates that have hitherto been mainly unreachable. These days, computational techniques are powerful instruments for examining substitution mechanisms. Density functional theory (DFT) calculations are now capable of precisely predicting reaction pathways and activation parameters, including transition state structures that are not directly observable in the lab.

Ab initio molecular dynamics simulations show that solvation effects are dynamic in nature & provide insights into the myriad roles that solvent molecules play in promoting substitution. Experimental & computational techniques have been utilized to develop a more detailed picture of substitution mechanisms than is offered by A & D classification alone, as well as taking into account orbital interactions, solvent dynamics, & environmental factors (including both diaxial interactions & steric or electronic effects). This integrated approach has been especially useful in elucidating substitution in complex biological systems and heterogeneous environments.

Summary

The energy profile of a reaction shows how potential energy changes along the reaction pathway. Transition states are high-energy points (peaks) that cannot be isolated, while intermediates are real chemical species corresponding energy minima. Stereochemical considerations in substitution reactions (e.g., retention, inversion, racemization) are crucial in determining the product's geometry, particularly in square-planar and octahedral complexes. Computational approaches like Density Functional Theory (DFT) and molecular simulations provide valuable insights into reaction mechanisms, activation barriers, and stereoelectronic effects. Understanding these aspects is vital for predicting reactivity, mechanism, and stereochemistry in inorganic, bioinorganic, and catalytic systems.

Multiple Choice Questions (MCQs):

- Q1. In an energy profile diagram, the peak corresponds to:
- a) Intermediate
- b) Transition state
- c) Reactants
- d) Products

Answer: B

- **Q2.** Which of the following is a **real chemical species** that can sometimes be isolated?
- a) Transition state
- b) Intermediate
- c) Activated complex
- d) Virtual state

Answer: B

- Q3. Retention or inversion of stereochemistry is mainly discussed in:
- a) Ionic reactions
- b) Ligand substitution reactions
- c) Radical reactions
- d) Electrochemical reactions

Answer: B

- **Q4.** Which computational method is most widely used for studying electronic structures of complexes?
- a) Molecular mechanics
- b) Density Functional Theory (DFT)
- c) Monte Carlo
- d) Simple Hückel theory

Answer: B

Q5. Which statement is correct?

- a) Transition state can be isolated in pure form
- b) Intermediate lies at a local energy minimum
- c) Intermediates always have higher energy than transition states
- d) Transition states have infinite lifetime

Answer: B

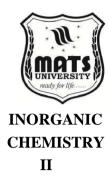
Short Questions:

- 1. Differentiate between an intermediate and a transition state.
- 2. What is meant by an energy profile of a reaction?
- 3. Define stereochemical retention and inversion in substitution reactions.
- 4. Give one computational method used to study reaction mechanisms.
- 5. Why is the activation energy higher for inert complexes than labile ones?

Long Questions:

- 1. Explain the energy profile diagram of a substitution reaction, highlighting activation energy and reaction coordinate.
- 2. Discuss the stereochemical considerations in substitution reactions of octahedral and square planar complexes.
- 3. Describe the role of computational approaches (like DFT and molecular dynamics) in understanding reaction pathways in coordination chemistry.
- 4. Compare and contrast the concepts of transition state and intermediate with suitable examples.
- 5. How do stereoelectronic factors and ligand orientation influence the reaction mechanism and outcome of coordination reactions?


UNIT 3.4


Anation Reactions

Anation reactions are a prototypical class of ligand substitution reaction in the coordination chemistry of coordination complexes in which a neutral ligand is substituted for an anionic ligand within a metal complex. The term "anation" is used in a more restricted sense to describe replacement of a coordinated water molecule in a complex with an anion. The reactions are essential in learning the fundamentals of inorganic reaction mechanisms & have important applications in varied industries, catalytic systems & analytical methods. Anation reaction studies reveal clues to the reactivity patterns of transition metal complexes & help us appreciate and comprehend the determinants of anation mechanisms. Inscribing the mechanistic routes & kinetic parameters of these reactions enables us to predict the outcome of reactions, design novel coordination compounds with desired attributes, & improve industrial processes that utilize metal-ligand interactions.

3.4.1 Mechanism & Kinetics

Other reactions, which proceed through interchange mechanisms, have characteristics of both types of mechanisms. The exact mechanism is dictated by several factors such as the electronic configuration of the metal center, steric constraints of the he ligands, & the reactivity of the incoming & outgoing species. In the (A) associative mechanism, the incoming anion first forms a bond with the metal center resulting in higher coordination number in the transition state. This mechanism is defined by a negative entropy of activation ($\Delta S^{\ddagger}_{\downarrow}$), & is a common feature for square planar d8 complexes such as Pt(II) & Pd(II) [6]. In this system, the rate-determining step is the formation of the metalligand bond with the incoming substituent, & the rate is sensitive to the concentration as well as nucleophilicity of the incoming anion. The dissociative mechanism (D), in contrast, starts with the leaving group exiting, producing a coordination vacancy at the metal center prior to binding of the entering anion.

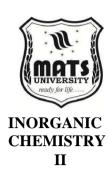
A positive entropy of activation characterizes this mechanism and is characteristic of octahedral d3 & high-spin d5 complexes, i.e., Cr(III) & Mn(II) compounds. The step facilitating the cleavage of both the metal-ligand bond & leaving group determines the rate of reaction, with the rate now less dependent on the entering anion's identity & concentration.

A good number of anation pathways are through interchange mechanisms (Ia or Id) that encompass co-operative bond-making & bond-breaking events. In the associative interchange (Ia) mechanism, bond formation with the incoming species is dominant, whereas in the dissociative interchange (Id) mechanism, bond breaking with the outgoing species is dominant. These are proposed as endpoints on a continuous spectrum between purely associative & purely dissociative signaling mechanisms.

The kinetics for anation reactions can be described by the following rate equation:

Rate =
$$kMLn(H2O)$$

Where MLn(H2O) is the metal complex with a coordinated water molecule, X- is the incoming anion, & k is the rate constant for second order. On the other hand, the rate law can also be more complex depending on reaction conditions, catalyst presence, & the existence of parallel reaction pathways. Various factors are at play in determining the kinetics of anation reactions:


The electron nature of the metal center: The classical picture states that electron-rich metal centers with filled d-orbitals tend to support associative mechanisms, whereas electron-deficient metals tend to favor a dissociative pathway. Lability of the leaving group: Weakly coordinating the ligands such as water are replaced more readily than strongly coordinating the ligands like amines or cyanides. The nucleophilicity of the incoming anion: Generally more nucleophilic anion will react faster in associative processes. For halides, thegeneral trend is I- > Br- > Cl- > F- in terms of nucleophilicity.

- **Steric factors**: The presence of bulky the ligands in the coordination sphere may prevent the approach of entering groups to the coordination site causing reductions in the rate of reaction, particularly in associative mechanisms.
- Trans effect: In square planar complexes, the nature of the ligand that is trans to the leaving group has a strong effect on the reaction rate. Functions of some group 18, 17, and 16 metal complexes, in addition to, various other the ligands are also studied in chemical sciences.
- Solvent effects: The dielectric constant, donor characteristics, & hydrogen-bonding capabilities of the solvent can have a drastic impact on the stability of charged intermediates & transition states.
- **Prevention of mechanistic ambiguity:** Currently used pressure effects for mechanistic discrimination suffer from mechanistic ambiguity: Associative mechanisms typically have negative volumes of activation (ΔV_+^{\dagger}) & are accelerated with higher pressure, whilst dissociative mechanisms have positive ΔV_+^{\dagger} values & are decelerated under pressure.

We study anation processes as a function of temperature (reaction temperatures typically spanned50 °C) yielding Arrhenius plots typical of anation reactions, with activation energies generally reporting in the range 40–100 kJ/mol. Kinetic studies yield activation parameters which shed mechanistic light. The use of a large negative activation entropy (ΔS^{\ddagger}) indicates an associative mechanism with increased ordering of the transition state, while a positive ΔS^{\ddagger} indicates a dissociative mechanism with increasing disorder. Hence, a negative value of volume of activation (ΔV^{\ddagger}) implies compression in the transition state, consistent with an associative pathway, whereas a

positive ΔV_{+}^{+} indicates expansion, indicative of a dissociative mechanism.

Partial & complete destruction of symmetry during concerted octahedral mechanism which results in the substitution of water in [Co(NH3)5H2O]3+ by various anions, is therefore an Id mechanism. The rate-determining step is the breaking of the Co-OH2 bond, after which the entering anion rapidly coordinates. The reaction occurs via the formation of a five-coordinate intermediate or transition state, & the rate is relatively unaffected by the identity of the entering group but highly responsive to the electronic characteristics of the metal center &

the other the ligands in the coordination sphere. In contrast, the anation of square planar complexes, e.g. [Pt(NH3)3H2O]2+, will generally occur via an Ia mechanism. The formation of a trigonal bipyramidal transition state or intermediate is the rate-determining step for this reaction, making its reaction rate greatly dependent on the entering anion's nucleophilicity. The trans effect is an important factor governing the site & rate of reactions, with the ligands that are both strong σ -donors & π -acceptors exhibiting the strongest trans effects.

In solutions of low dielectric constant, ion-pairing effects can further complicate the kinetics of anation reactions. The electrostatic interaction between the charged complex & the incoming anion can result in the formation of an outer-sphere complex that may assist in the later ligand substitution. The ion-pairing effect causes simple second-order kinetics decay constantly to deviation, & thus requires more complex rate laws. Different factors can also catalyze or inhibit the reactions of a nation. — For example, acids can facilitate anation reactions by protonating the leaving group so as to generate a better leaving group. Likewise, bases may facilitate some anation reactions by deprotonation of coordinated water to generate hydroxo complexes with differing substitution kinetics. Well, it turns out that metal ions, especially ones that can undergo redox transitions, are able to catalyze anation reactions via electron transfer processes or via formation of bridged intermediates.

3.4.2 Applications and Industrial Examples

Anation reactions are present in coordination chemistry, & there are a myriad of applications in different fields. A few well-known examples and their industrial use cases are:

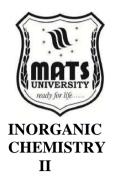
Chloro substitution of pentaamminecobalt(III) complex

The anation reaction of [Co(NH3)5H2O]3+ with chloride ions leading to the formation of [Co(NH3)5Cl]2+ is a classically studied anation reaction that occurs via a dissociative interchange (Id) mechanism. It has been used extensively as a model system for the he ligands, metal, & leaving group influence on octahedral substitution kinetics. The rate law of this reaction is:

Rate =
$$k[Co(NH3)5H2O]3+[C1-]$$

The kinetics show a rather flat dependence on the entering anion nature but very strong trends with the electronic characteristics of the metal center & other the ligands in the coordination sphere; the reaction proceeds through a five-coordinate intermediate or transition state. Such a reaction is pertinent to cobalt-based catalysts in a wide range of oxidations.

3.4.3 Accumulative Reactions in Platinum Anticancer Drugs


Cisplatin (cis-[PtCl2(NH3)2]), an anticancer drug that is widely used in the treatment of various cancers, is activated by the key anation reactions in biological entities important for its therapeutic action. Within a few minutes the chloride the ligands are replaced either one or both by water molecules in what is known as an aquation process (the reverse of anation) leading to the generation of the reactive species cis-[PtCl(H2O)(NH3)2]+ & cis-[Pt(H2O)2(NH3)2]2+ respectively. After being metabolically activated, these agua complexes will undergo anation reactions with DNA—specifically to the N7 positions of guanine bases—to produce intra- & inter-strand crosslinks that block DNA replication & result in cell death. Kinetics & mechanism of these anation reactions have been studied in-depth to design more effecient platinum-based anticancer drugs having lesser side effects. Second & third-generation platinum drugs [carboplatin & oxaliplatin (78)] have been developed based on more recent appreciate and comprehend ing of how the rate of aquation & subsequent anation reactions affect biological activity (79), leading to alternative leaving groups & different kinetic profiles.

Hydrometallurgical processes for extracting and recovering metals from ores & secondary sources depend on anation reactions. For example, gold recovery through cyanide leaching proceeds through formation of the stable complex [Au(CN)2]- via an anation reaction:

$$Au + 2CN - + 1/2O2 + H2O \rightarrow [Au(CN)2] - + OH -$$

The recovery of copper by solvent extraction, on the other hand, involves anation reactions that facilitate the formation of complexes between the target copper ions & extractants that contain oxygen or nitrogen donor atoms. The formed complexes can be selectively extracted into an organic phase & separated from impurities, followed by stripping through reverse anation reactions to recover the copper. The kinetics & selectivity of these anation reactions are important criteria for the efficiency of the associated hydrometallurgical processes and appreciate and comprehend ing the factors that

influence them has resulted in more selective extractants compounds & more efficient recovery methods.

3.4.4 Anation in Catalytic Systems

Many catalytic cycles consist of substrate molecule anation-like steps in which coordinated solvent or other the ligands are replaced by substrate molecules. For instance, in the Monsanto acetic acid process, carbon monoxide is aminated with rhodium catalyst, replacing a coordinated iodide ligand:

$$[Rh(CO)2I2] - + CO \rightarrow [Rh(CO)3I2] - + I -$$

From this, oxidative addition, then migratory insertion & reductive elimination, yield the entire catalytic cycle for methanol carbonylation to acetic acid. This process is kinetically highly dependent on the kinetics of the initial anation reaction that can be demonstrated via first-order kinetic studies. Likewise, for olefin hydrogenation catalysts like Wilkinson's catalyst [RhCl(PPh3)3], anation reactions in which triphenylphosphine is displaced by hydrogen or olefin substrate are pivotal steps in the catalytic cycle. A more thorough appreciate and comprehend ing of these anation processes has driven the advancement of more effective & selective catalysts for a wide range of industrial transformations.

3.4.5 Anation in Water Treatment

In this, the electrochemical processes based on anation reactions have been used as water treatments methods for the removal of toxic heavy metals & anions. Against this background, anation reactions, where arsenate or arsenite anions displace coordinated water or hydroxide the ligands from the surfaces of iron (III)-rich oxide materials or from iron containing coordination compounds, play an important role in the effective removal of arsenic from drinking water. In the same manner, fluoride ions from drinking water may be eliminated by adsorbing them onto aluminum-containing adsorbents, where fluoride anions take part in anation reactions with regard to aluminum hydroxide or alumina to substitute surface hydroxyls. The efficiency of these methods themselves relies on the kinetics & thermodynamics of the correlated anation reactions, & optimization efforts are focused on improving the rate & extent of the anation processes.

3.4.6 Anation in Analytical Chemistry

Diverse analytical methods for anion detection & analysis are based on thenation reactivity. As an illustration, colorimetric & spectrophotometric methods for halides, cyanide, thiocyanate, & other anions usually depend on their anation reactions of these anions with transition metal complexes, which produce color or spectral variations. The classical Volhard method for the determination of chloride consists

of anation of chloride with silver ions to give insoluble silver chloride, then back-titration of excess Ag+ with thiocyanate to yield a colored complex with iron(III). These analytical methods can be more sensitive & selective with good appreciate and comprehend ing of the kinetics & equilibria in the anation reactions.

INORGANIC CHEMISTRY

3.4.7 Anation in Corrosion Processes

Anation reactions are very important to the corrosion processes, especially in passive oxide layer breakdown on metal surfaces. As an example, in the case of stainless steel exposed to chloride-containing environments, the pits of localized attack involve anation reactions, whereby chloride ions displace oxygen or hydroxide the ligands in the passive oxide layer, creating defects & initiating localized corrosion. Different metals & alloys have a tendency to pitting corrosion, given the kinetics of these anation reactions, and corrosion inhibitors usually act as preventing or retarding these reactions. Research on the factors influencing these anation processes has resulted in more corrosion-resistant alloys, more efficient corrosion inhibitors, etc.

3.4.8 Anation in Electrodeposition

Reactiom of the Anation reactions are directly make the electrodeposition it self would be during metal plating & electroplating as functional coatings. As the composition & structure of metal-ligand complexes in plating bath ultimately determine the quality & characteristics of electrodeposited coatings, it can be inferred that the equilibria & kinetics of anation reactions between metal ions and diverse the ligands impact the composition & structure of electrodeposited coatings. Nickel plating is an example wherein the formation of numerous nickel-ligand complexes through anation reactions affects the deposition rate, current efficiency, & characteristics of the deposited nickel. Additives such as brighteners used in plating baths typically work by altering these anation equilibria and kinetics. This knowledge has allowed the development of more efficient & environmentally friendly plating processes.

3.4. 9 What is a Supramolecule?

Anation reactions have gained considerable attention in supramolecular chemistry to construct functional molecular assemblies & materials. This strategy has been widely employed for the assembly of metalorganic frameworks (MOFs) & coordination polymers via anation reactions between metal centers & coordinated solvent molecules or the ligands in a metal-ligand complex to afford coordination networks with extended structures.

Many molecular capsules, cages & containers also depend on anation reactions for their assembly & guest recognition characteristics. The dynamics and selectivity of these assemblies are determined by the outcomes of these anation reactions, and identifying these variables has produced supramolecular systems that are more responsive and selective.

3.4. 9.1 Anation reactions:

In environmental chemistry, anation reactions are crucial for the mobility, speciation, and metal ion bioavailability in natural soils and waters. As an illustration of a particular problem, the fate and movement of hazardous heavy metals such as lead, mercury, and cadmium in the environment are tightly controlled by their anation reactions with various ligands. Similarly, neither the bioavailability nor the toxicity of metal ions to aquatic organisms are determined by their speciation, which is governed by anation equilibria and kinetics.

3.4. 9.2 Anation in Biological Systems:

These procedures are essential for determining the ecological effects and environmental fate of metal pollutants as well as for creating efficient remediation plans. In Biological Systems, Anation Living organisms have a lot of nitrogenase reactions, particularly in metalloenzymes and other metalloproteins.

In anation reactions, a wide variety of biological ligands can be bound by the metal center of metalloenzymes. causing these enzymes' reliance on metal coordination environments to alter their activity, selectivity, and regulation. One illustration would be the significance of the coordination of oxygen to iron in the hemoglobin center, which necessitates the loss of a water molecule.

Like all other such zinc- dependent enzymes, anation reactions (i.e., the replacement of a coordinated water molecule in the first reaction step with substrate) will occur, setting up the catalytic steps that follow. Studying such biological anation processes has great potential to inspire design of novel & more selective metalloenzyme >> inhibitors in therapeutic applications but also reveal molecular insights into physiological & pathological processes.

3.4. 9.3 Anation in Materials Science

Anation reactions have become widely applied in materials science for the synthesis & modification of functional materials. To illustrate, anion exchange reactions are employed to intercalate anions into layered double hydroxides (LDHs) to tailor the characteristics for the materials to be used in catalysis, drug delivery & remediation. Likewise, surface modification of metal oxides by anation reactions with different organic & inorganic the ligands are commonly applied to tune their characteristics for use in sensors, catalysts, & electronic devices. More efficient & selective processes rely on the kinetics & thermodynamics of the pertinent anation reactions, & an appreciate and comprehend ing of these factors has yielded more effective synthetic methods & more functional materials.

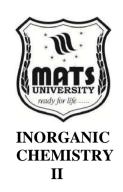

3.4. 10 Towards the Future: Outlooks & Inequities

As much progress has been made in ourlation appreciate and comprehend ing of nation reactions, a few challenges & opportunities remain:

- Developing more streamlined computational approaches to predict the mechanisms and rates of anation reactions, especially in more complex systems featuring multiple metal centers & multidentate the ligands.
- appreciate and comprehend ing the role of solvent dynamics& hydrogen bonding in anation reactions including aqueous & mixed solvent systems.
- Spanning the effect of external stimuli (light, pressure, electric fields) on anation reactions & their use in various exploitation systems.
- Metal-ligand interactions are fundamental in emerging fields including artificial photosynthesis, water splitting, & CO2 reduction, thus opening inventiveness for possible anation reactions with remarkable implications.

More selective & efficient anation based processes for recovery & recycling of critical metals from electronics & other secondary sources

Exploring the ternary reactions involved in production & transformation of metal containing nanoparticles & clusters & thenuse them to synthesize air-sensitive functional nanomaterials. Investigate the emergence of a nation of reactions as new all-map agents, especially for metal-reliant biology. With the continued development of experimental techniques, computational methods, & theoretical frameworks, it will be no surprising that this appreciate and comprehend ing of anation reactions & their applications will grow deeper than we can currently anticipate. This appreciate and comprehend ing will facilitate the development of more efficient & selective chemical reactions, effective therapeutic agents, delivering practical materials, which together will enhance the sustainable growth of the chemical, pharmaceutical & materials industries. To summarize, anation reactions are a fundamental type of ligand substitution process in coordination chemistry with applications in various areas of research

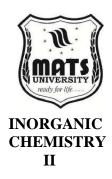

& industry. The mechanistic and kinetic understanding and appreciation gained from these reactions has been essential to our understanding of chemical reactivity and has paved the way for numerous technological and industrial processes. Our understanding of reactions also grows over time, and we can anticipate more innovative uses and discoveries in the years to come.

3.4. 9.11 PRACTICAL APPLICATIONS

Useful Metal Complex Reactivity Applications in Daily Life Although metal complex chemistry may seem mysterious and limited to lab settings, its concepts have a significant impact on many aspects of our daily lives. The effectiveness of many everyday objects and medical treatments that we rely on is directly impacted by the distinction between inert and labile complexes. Consider the water you use every day; metal complexes that selectively bind to pollutants are often required for its purification. Iron and aluminum complexes are used in water treatment facilities to form labile bonds with impurities, which enable their efficient removal through filtering precipitation. The effectiveness and speed of drinking water purification are determined by the specific reactivity rates of these complexes. Because of carefully designed metal coordination chemistry operating at an industrial level, you can turn on your tap without worrying about waterborne illnesses. One important application of metal complex reactivity concepts is found in the medications that many people take on a daily basis. Because platinum-based anticancer agents, like cisplatin, form inert and labile coordination bonds optimally, they work effectively. These complexes are fairly stable in the bloodstream, but when they come into contact with cancer cells, ligand substitution processes take place, which makes it easier for platinum to bind to DNA and cause cell death. The control of substitution reaction kinetics is directly related to the effectiveness of these life-saving treatments.

Similarly, gadolinium-based contrast agents used in MRI imaging rely on carefully controlled ligand exchange rates to lessen toxicity and provide diagnostic insights. Even something as seemingly simple as washing clothes involves extremely complex chemistry. Many laundry detergents contain sequestering agents that combine with the calcium and magnesium ions found in hard water to form compounds. These complexation reactions follow associative pathways, in which chelating agents like citrates or EDTA replace water molecules in the coordination sphere of metal ions. Without this mechanism, soap and metal ions would precipitate, creating the familiar soap scum. that reduces the effectiveness of cleaning. The speed at which these substitution processes occur determines how well your detergent works to solve hard water problems and launder your clothes The food you

ingest frequently derives advantages from regulated metal complex reactions. Chelating agents, which block metal ions that would otherwise promote oxidation reactions that lead to spoiling, are occasionally necessary for food preservation. When you open a package of processed food that hasn't lost its color or flavor, you see the results of Pro-oxidant metals are sequestered by carefully designed ligand substitution processes. Food safety and shelf life are greatly impacted by these food-grade metal complexes' stability constants and reaction mechanisms. The effectiveness of fertilizers used in agriculture to grow our food depends on the chemistry of metal complexes. Plants require absorbable forms of micronutrients like iron, manganese, and zinc.



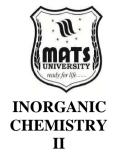
These metals are commonly included in modern fertilizers as complexes with various organic ligands that encounter controlled dissociative substitution in the soil, which releases the essential metals at rates that correspond to plant uptake. The kinetics of these release systems determine whether crops experience cycles of toxicity and deficiency or receive steady nutrition. The applications of metal complex reactivity are also demonstrated by our electronic devices.

The fabrication of integrated circuits entails multiple etching & deposition processes in which metal complexes are essential. Copper interconnects in computer chips are often deposited by procedures in which copper complexes are reduced while preserving particular coordination environments that affect the quality of the resultant metal layers. The mechanics of acid & base hydrolysis examined in inorganic chemistry directly influence the optimization of industrial processes for the electronics we utilize continuously.

Catalytic converters in our vehicles exemplify a significant application of metal complex chemistry in daily life. These devices depend on meticulously engineered complexes of platinum, palladium, & rhodium that enable the transformation of poisonous emissions into less deleterious compounds. The reaction mechanisms entail meticulously regulated ligand substitution procedures in which exhaust components substitute coordinated molecules on the catalyst surface. The distinction between successful & inefficient catalytic converters mostly hinges on the optimization of substitution reaction kinetics, which directly influences air quality in our communities.

Summary


This module focuses on the fundamental aspects of the reaction mechanisms in transition metal complexes, emphasizing their kinetic and mechanistic behavior. It begins with the analysis of the energy profile of reactions to illustrate the activation energy and transition states involved. The reactivity patterns of metal complexes are discussed in terms of inert and labile behavior, providing a framework for understanding reaction rates and pathways.


The kinetic applications of Valence Bond Theory (VBT) and Crystal Field Theory (CFT) are explored to interpret substitution processes, particularly in octahedral complexes. Mechanistic pathways for acid hydrolysis and base hydrolysis are studied in detail, with attention to the factors influencing these reactions. The module also covers the conjugate base mechanism, supported by both direct and indirect experimental evidence, and examines anquation reactions, as well as substitution reactions that occur without metal—ligand bond cleavage.overall, the content provides a comprehensive understanding of the kinetic principles and mechanistic insights relevant to coordination chemistry.

MultipleChoice Questions (MCQs)

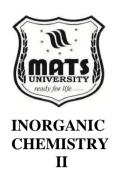
- 1. Labile metal complexes are characterized by:
- a) High activation energy & slow ligand exchange
- b) Low activation energy & fast ligand exchange
- c) High oxidation state & inert nature
- d) Formation of highly stable chelates
- 2. The reaction coordinate diagram of a metal complex reaction shows:
- a) The energy of reactants, intermediates, & products
- b) The oxidation state changes of the metal
- c) Only the activation energy of the reaction
- d) The rate law of the reaction
- 3. In an associative (A) substitution mechanism, the reaction proceeds by:
- a) Formation of a five-coordinate intermediate
- b) Formation of a seven-coordinate intermediate
- c) Direct dissociation of the leaving ligand
- d) Electron transfer between metal ions

- 4. The dissociative (D) pathway in ligand substitution is characterized by:
- a) Expansion of the coordination sphere
- b) Loss of a ligand before the new ligand binds
- c) Concerted ligand exchange
- d) Outer-sphere electron transfer
- 5. Which of the following factors increases the rate of ligand substitution in an octahedral complex?
- a) High oxidation state of the metal
- b) Strong ligand field stabilization energy (LFSE)
- c) Presence of a bulky incoming ligand
- d) Low charge density on the metal ion
- 6. Acid hydrolysis of metal complexes involves:
- a) Ligand replacement by OH⁻ ions
- b) Protonation of coordinated the ligands leading to ligand loss
- c) Formation of a metal-carbon bond
- d) Electron transfer reactions
- 7. The conjugate base mechanism in base hydrolysis suggests that:
- a) The metal-ligand bond is protonated before dissociation
- b) The metal complex reacts with OH⁻ before ligand dissociation
- c) The leaving ligand is stabilized by solvation
- d) Hydroxide ions act as leaving groups
- 8. Anation reactions involve:
- a) Substitution of a neutral ligand by an anionic ligand
- b) Oxidation of metal complexes
- c) Ligand protonation
- d) Reduction of the metal ion
- 9. The rate of base hydrolysis of a metal complex is typically affected by:
- a) The identity of the leaving ligand

- b) The oxidation state of the metal
- c) Solvent polarity
- d) All of the above
- 10. Which of the following is an example of an anation reaction?
- a) $[Co(H_2O)_6]^{3+} + Cl^- \rightarrow [CoCl(H_2O)_5]^{2+} + H_2O$
- b) $[Fe(CN)_6]^{4-} \rightarrow [Fe(CN)_6]^{3-}$
- c) $Cu^{2+} + NH_3 \rightarrow [Cu(NH_3)_4]^{2+}$
- d) $Pt^{2+} + CO \rightarrow [Pt(CO)_2]^{2+}$


Answers Key:

- 1. b
- 2. a
- 3. a
- 4. b
- 5. d
- 6. b
- 7. b
- 8. a
- 9. d
- 10. a
- Short Answer Questions
- 1. Define inert & labile metal complexes & provide examples.
- 2. What is the difference between intermediates & transition states in reaction mechanisms?
- 3. Describe the associative (A) & dissociative (D) mechanisms in octahedral substitution.
- 4. How does oxidation state affect the ligand substitution rate in metal complexes?
- 5. What is the mechanism of acid hydrolysis in transition metal complexes?
- 6. Explain the evidence supporting the conjugate basemechanism in base hydrolysis.
- 7. What factors influence the rate of base hydrolysis in metal complexes?
- 8. Define anation reactions & give an example of an industrial application.


- 9. Compare the kinetics of ligand substitution in square planar vs. octahedral complexes.
- 10. How does solvent polarity influence ligand substitution reactions?

Long Answer Questions

- 1. Explain the energy profile of ligand substitution reactions in metal complexes, including activation energy & reaction pathway.
- 2. Discuss the associative (A) & dissociative (D) mechanisms in detail, with examples of metal complexes following each mechanism.
- 3. Explain the factors affecting reaction rates in octahedral substitution, including steric, electronic, & solvent effects.
- 4. Describe the mechanism of acid hydrolysis, including key steps & influencing factors.
- 5. Discuss the conjugate base mechanism of base hydrolysis & provide supporting experimental evidence.
- 6. Compare the kinetics of ligand substitution in inert & labile complexes, with examples.
- 7. Explain anation reactions, their mechanism, & provide examples of industrial applications.
- 8. Describe the thermodynamic & kinetic factors that determine whether a complex will undergo an associative or dissociative pathway.
- 9. Compare ligand substitution rates in high-spin & low-spin complexes, explaining the role of LFSE.
- 10. How do experimental techniques such as UV-Vis spectroscopy & NMR help in studying metal complex reaction mechanisms?

MODULE -4

REACTION MECHANISMS OF TRANSITION METAL COMPLEXES – PART II

Objectives

- To comprehend the mechanics & dynamics of substitution processes in square planar metal complexes, focusing on the trans effect & its applications.
- To categorize & examine redox processes in metal complexes, emphasizing one-electron transfer mechanisms.
- Distinguish between outer-sphere & inner-sphere electron transfer reactions by elucidating their mechanisms & affecting factors.
- To present the Marcus-Hush theory of electron transport, addressing its principles, cross-reactions, & kinetic ramifications.

Unit 4.1 Substitution Reactions in Square Planar Complexes

Square planar complexes are an interesting class of coordination complexes known for their unique substitution pathway. These complexes, which are formed by d8 metal ions like Pt(II), Pd(II), Au(III), Rh(I), & Ir(I), have substitution reactions that are mechanistically & kinetically distinct from their octahedral analogs. The square planar environment with vacant sites available at the axial coordination generates a milieu prone to nucleophilic attack, thus initiating displacement processes that have been the subject of numerous studies with applications in diverse fields from catalysis to medicinal chemistry [abstract omitted]; however, so far this chemistry had never been investigated for THPTA & its close derivatives.

4.1.1 Mechanisms & Kinetics

In a striking departure from the dissociative pathways present in octahedral complexes, substitution reactions in square planar complexes predominantly follow an associative mechanism. This essential difference stems from the electronic distribution & geometrical approachability of the metal dosage form. For example, when treating the reaction of square planar complex [MA₃X] with entering group Y the reaction generally proceeds through a trigonal bipyramidal transition state or intermediate, & the rate-determining step in the reaction is the production of this five-coordinate species not the breaking of metal-leaving group however. These substitutions display second-order rate laws in their kinetic profile, with the rate being directly proportional to both the concentration of the complex & the buried nucleophile. The general equation of rate can be written as:

Rate = k_2MA_3X

That is consistent with the associative nature of the mechanism because bond formation with the entering group occurs before bond breaking with the leaving group. But a broader kinetic analysis highlights a more intricate picture. In a number of systems, especially for coordinatively competent solvents, the law observed has the form:

Rate =
$$(k_1 + k_2[Y])[MA_3X]$$

This second term rate law describes a concerted two pathway model where k_1 is a solvent coordinated mechanism (solvolysis) & $k_2[Y]$ the direct attack by Y. The solvent pathway involves the initial coordination of a solvent molecule which is then followed by its displacement in a subsequent step by the entering group Y. In strongly coordinating solvents—water or methanol, for example—this solvent participation is particularly impactful. For square planar substitution reactions, the energy profile presents a significantly different pathway than for octahedral complexes. Their lower activation energy makes the associative pathway more favorable, thus the tendency for square planar complexes to undergo substitution more easily than octahedral ones with the same metal center. In the associative mechanism, the entering group forms a bond to the transition state, resulting in abuild- up of partial negative charge that can be stabilized by placement of electronwithdrawing groups on the metal complex (or other means for stabilization).

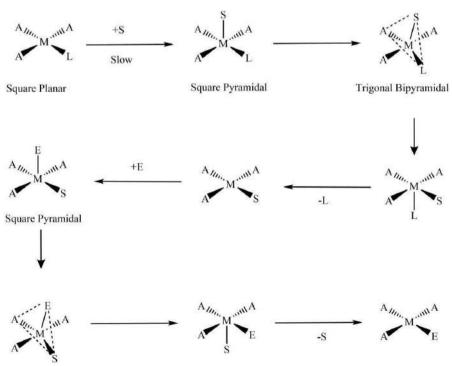


Fig-4.1.1 The systematic mechanism of solvent-assisted ligand displacement reactions in square planar complexes.

II

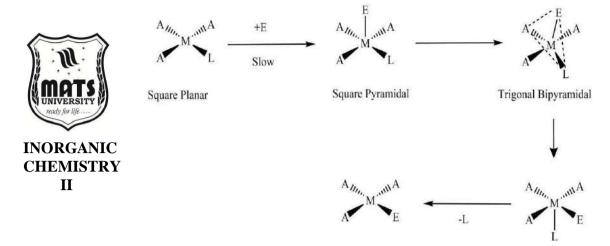


Fig-4.1.2 Mechanism of ligand displacement in square planar complexes via normal associative pathway.

Dissemination of these substitutions is affected by a number of factors. The identity of the metal center is the most important determinant, with general reactivity trends for similar complexes observed to be of the form Ni(II) > Pd(II) > Pt(II) following the trends of the decreasing size & increasing effective nuclear charge. This ordering corresponds to a Δk of $\sim 10^5$ between Ni(II) & Pt(II) complexes.

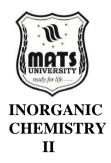
The non-involved ligands' electronic properties also have a significant impact on the reaction's rates. This usually results in the metal center becoming more electrophilic, which increases its reactivity with nucleophiles to undergo substitution reactions and accelerates the rates of trans-substitution reactions. Microkinetic details that have a significant impact on the kinetics of the reaction are determined by the entering groups. Particularly effective nucleophiles are soft donor atoms, like thioethers and phosphines. In actuality, nucleophiles with soft donor atoms and square planar complexes with soft metal centers (Pt(II)) exhibit significantly higher reactivity. The hard & soft acids & bases (HSAB) theory, which asserts that soft-soft interactions are energetically favorable, is in line with this preference. The generalized order of nucleophilicity for different entering groups toward Pt(II) complexes is:

$$Br > I > SCN > Cl > R_3P > NH_3 > H_2O$$

This is directly opposite the trend seen for nucleophilicity in organic chemistry, & reflects the unusual electronic effects present in transition metal complexes. The lability of the leaving group also affects reaction rates, as weaker bonds between the metal and its the ligands lead to facile substitution. Lability of the leaving group for Pt(II) complexes is thus typically:

$$NO_2^- > SCN^- > I^- > Br^- > Cl^- > H_2O > NH_3$$

This order is dictated by thermodynamic & kinetic elements such as bond strength, sterics, and transition state stabilization.


The steric environment surrounding the metal center is another source of complexity. By blocking the entering group's access to the metal center, large ligands can slow down the rates of substitution and raise the activation energy required for the trigonal bipyramidal transition state to appear. Complexes containing chelating ligands or sterically demanding substituents also exhibit a strong steric effect. Therefore, there are multiple ways to observe solvent effects in square planar substitutions. Solvents influence reaction rates through their capacity to stabilize or destabilize reactants, transition states, and products in addition to their involvement in the reaction mechanism. Polar solvents that stabilize the charged transition state frequently aid in these reactions, and the presence of coordinating solvents may complicate the kinetics by competing with the entering group in addition to buffering the charges. These reactions' temperature dependence studies have yielded useful thermodynamic parameters. ΔH^{\pm} For square planar substitutions varies from about 60 to 120 kJ/mol, with ΔS‡ values correspondingly negative, very much as expected for the associative mechanism, which reduces the translational degrees of freedom in the transition-state.

These parameters were essential for exposing the subtle mechanistic insights and the reaction energetics. Our appreciation and understanding of square planar substitutions have been strengthened by additional mechanistic research, particularly that which makes use of isotope effects and pressure studies. he associative mechanism, in which the transition state has a smaller volume than the substrates, is usually responsible for pressure effects where acceleration of these reactions is observed. This has been experimentally verified following theoretical predictions. The argument for an associative mechanism has been supported by research on the isotope effect, particularly with ¹N-labeled ammonia ligands, which has been helpful in determining the degree of bond formation and breaking present in the transition state. Our understanding of mechanisms has significantly improved thanks to modern computational techniques. Comprehensive details regarding the reaction coordinate, such as transition state geometries, energy barriers, and electronic redistribution patterns, have been mapped using DFT calculations that would be difficult for only experimental methods. Although the associative approach has generally been supported by these computational studies, they have revealed subtle aspects pertaining to the role that ligand-metal orbital interactions play in regulating reactivity landscapes.

4.1. 2 What is the Trans Effect?

One of the more interesting aspects of square planar substitution chemistry is the trans effect, a kinetic phenomenon with major

implications for both synthetic strategy as well as mechanistic insight. The trans effect describes the ability of coordinated ligand to preferentially labilize the group trans positioned relative to it in a square planar complex directing site of subsequent substitution. This effect is observed as a faster substitution for the ligand located trans to certain directing groups, & can be harnessed as a powerful means for regioselective synthesis of square planar complexes.

4.1. 2 .1 Trans effects follow a well-established hierarchy of increasing strength:

$$F^-,\,H_2O,\,OH^- < NH_3 < py < Cl^- < Br^- < I^-,\,SCN^-,\,NO_2^- < CH_3^- < CO,\,CN^-,\,C_2H_4 < H^-,\,PR_3$$

This ordering shows that π -acidic the ligands (e.g. CO & CN⁻) & strong σ-donors (e.g. H⁻ & phosphines) generally generate the largest trans effects. The difference between trans effect (a kinetic effect) & trans influence (a ground state thermodynamic effect that weakens the bond trans to a given ligand) is instrumental in appreciate and comprehend ing square planar reactivity fully. Although these phenomena are often correlated, their mechanistic origins & manifestations can be quite different. Three different theoretical arguments describe the trans effect, but the most accepted ones are the σ -trans effect & the π -trans effect. Pi-acentric σ-trans effect refers to the polarization of charge density in the metal-ligand σ-bonding framework. Such a strong σdonor ligand donates electron density to the metal, which subsequently redistributes the accumulated electron density preferentially along the trans direction, weakening the trans metal-ligand bond, making it more vulnerable to substitution. The polarization effect argues that strong σdonors such as H⁻ & phosphines have strong trans-issues, which could explain why they tend to give them.

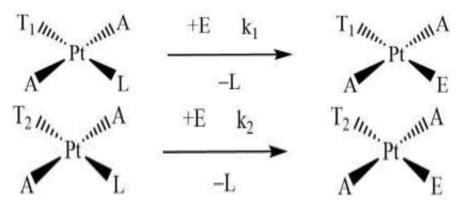
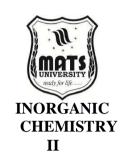
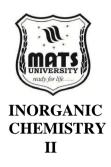



Figure 4.1.3 Kinetic trans-effect in action with $k2 \gg k1$ showing that T2 ligand is having greater trans-effect strength than T1.


The π -trans effect—most pronounced for π -acidic the ligands like CO & CN⁻ themselves—has a different origin. These the ligands take free electron density from occupied metal d-orbitals in the form of π -

backbonding, lowering electron density in the metal d-orbital that is populating bonding with the trans ligand. Such depletion weakens the trans bond & allows for its easier substitution. Later theoretical analyses have suggested the trans effect is also a consequence of stabilisation of the trigonal bipyramidal transition state, with the trans-directing ligand taking up equatorial positions in this geometry to lower the activation energy for substitution of the trans group even further. The trans effect is of immense synthetic utility. It gives a comparison of ligand combinations in the assembly of square planar complexes & allows for their regioselective synthesis. For example, the synthesis of cisplatin, [Pt(NH₃)₂Cl₂], harnesses the trans effect using a strategically designed synthetic sequence. Since K₂[PtCl₄] is symmetric, the first ammonia substitution can take place at any location. But the second ammonia will preferentially occupy the trans position relative to a chloride rather than (seat) trans to the first ammonia, because chloride has a greater trans effect than ammonia. This makes the selectivity give predominantly the cis isomer, which exhibits the important biological activity lost in the trans configuration.

More involved synthetic methods use the trans effect to build intricate architectures with defined arrangements of the ligands. As an illustration, the precise addition of the ligands can be mediated in the synthesis of [Pt(NH₃)(py)(Cl)(NO₂)], where py is pyridine, through the use of the hierarchy of trans effects. Introducing the ligands that exert strong trans effects early in the synthetic sequence allows chemists to focus on substitution at specific positions for regioselectivity that would be difficult or near impossible due to other factors in the system. In addition to being synthetic applications, the trans effect offers mechanistic insights. Observing which ligand is substituted in a specific complex can provide insight into relative trans effects of different the ligands, allowing for further refinement & extension of the known trans effect series. However, mechanistic studies of this type have been especially informative toward elucidating catalytic cycles involving square planar intermediates, in which differences in ligand exchange rate are sometimes a key determinant of catalytic efficiency & selectivity.

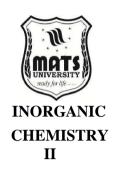
4.1. 2 .2 Synthesis of the isomers of [Pt(NH3)(NO2)Cl2]1-:

The trans-effect order of the three groups in [Pt(NH3)(NO2)C12]1-complex is NO -> Cl-> NH3.

$$\begin{bmatrix} CI_{M_{M_{1}}} & PI_{1}^{-1} & PI_{2}^{-1} & PI_{3}^{-1} & PI_{3}^{-1} & PI_{4}^{-1} & PI_{5}^{-1} & PI_{5}^{-$$

$$\begin{bmatrix} \text{Cl}_{M_{M_{1}}} & \text{Pt}^{\text{min}} & \text{Cl} \end{bmatrix}^{2-} & +\text{NO}_{2}^{-} & \begin{bmatrix} \text{Cl}_{M_{M_{1}}} & \text{NO}_{2} \\ \text{Cl} & \text{Cl} \end{bmatrix}^{2-} & +\text{NH}_{3} & \begin{bmatrix} \text{Cl}_{M_{M_{1}}} & \text{NH}_{3} \\ \text{O}_{2} & \text{N} \end{bmatrix}^{1-} \\ \text{(b)}$$

Fig 4.1.4 Synthesis route for (a) $cis-[Pt(NH_3)(NO_2)Cl_2]I-$ and $trans-[Pt(NH_3)(NO_2)Cl_2]I-$ complexes.


In computational chemistry, the trans effect is also important because it serves as a standard by which to evaluate theoretical approaches. Calculating trans effect magnitudes quantitatively is a difficult test for electronic structure, computations, since it requires precisely capturing and bonding components, which can only be accomplished through computational techniques. By clarifying this essential idea in coordination chemistry, theoretical studies have also improved our understanding and appreciation of the orbital interactions involved in the trans effect. The trans effect plays a crucial role in biological systems, particularly in platinum-based anticancer medications. modifying their profiles of reactivity with biological nucleophiles, including proteins and DNA. Aquation reactions, in which water replaces the chloride, and subsequent coordination to DNA, primarily at guanine N7 sites, are responsible for cisplatin's anticancer properties. The drug's pharmacokinetic profile and, ultimately, its therapeutic efficacy are determined by these substitution kinetics, which are influenced by the trans effect.


Knowledge of these mechanisms has inspired the design of second-& third-generation platinum-based anticancer drugs with more favorable preclinical profiles. As we will summarize here, the trans effect has also been leveraged in catalyst design, particularly in homogeneous catalysis, where square planar complexes are catalysts or catalytic intermediates. In the case of Pd-catalyzed cross-coupling

reactions, for example, the reductive elimination step can be associated with a square planar intermediate in which the trans influence can impact the rate and selectivity of the process. These effects are frequently exploited in catalyst design strategies to improve performance, where ligands are selected for their trans-directing capacity in addition to their electronic and steric properties.

Dynamic combinatorial chemistry has recently used the trans effect to create adaptive systems for coordination. When these systems are exposed to environmental stimuli, they reorganize, with the trans effect guiding the process to states that are thermodynamically preferred. These systems show promise for use in selective sensing platforms and tunable materials. The adsorption and reaction of molecules on various metal surfaces in the field of surface chemistry also exhibits the trans effect. Like molecular complexes, surface-bound species exhibit transdirecting properties that affect the adsorption energetics and reactivity of neighboring sites. These surface trans effects are essential for materials science and heterogeneous catalysis, linking molecular chemistry of surface phenomena coordination. A significant amount of research on hemilability and chelate effects has been added to considerations of the trans effect in coordination science, resulting in more complex molecular structures with precise properties. The design of metal complexes for molecular recognition and sensing applications or small molecule activation may be determined by the combined elements of these principles.

The trans effect is present even in octahedral and tetrahedral geometry, but it is less pronounced and takes a different form. patterns of selectivity. By revealing general principles that go beyond their specific geometries, these findings have expanded the conceptual framework of directed substitution in coordination complexes. As a result, square planar complex substitution reactions offer a very diverse field of inorganic chemistry with distinct kinetics and mechanistic pathways. The associative mechanism that these systems adhere to reveals the unique electronic and steric environment governing the square planar arrangement, in contrast to substitutions in other coordination geometries like octahedral and tetrahedral. The trans effect, which significantly affects substitution regioselectivity, serves as an example of the general framework for using basic mechanistic concepts to restore synthetic control, which may also help guide chemical design. From fundamental coordination chemistry to applied domains like catalysis, materials science, and medicinal chemistry, these reactions continue to be the focus of studies that offer insights with ramifications across all branches of chemistry

Increased characterization of square planar substitutions will occur as analytical techniques improve, as this type of substitution continues to add utility to chemical synthesis & technology. The way that experimental results match theoretical models and direct real-world applications demonstrates the importance of coordination chemistry in a variety of scientific fields. Square planar substitution chemistry's rich mechanistic detail and practicality strongly appeal to the rigor of inorganic reaction mechanisms, both intellectually and practically.

Summary

Substitution reactions in square planar complexes (commonly Pt(II), Pd(II)) generally follow an associative (A) mechanism, where the entering ligand coordinates before the leaving group departs. The kinetics of these reactions are influenced by the electronic and steric nature of both the metal and ligands. A key concept is the trans effect, where a ligand in a square planar complex can enhance the substitution rate of a ligand positioned trans to it. This arises from σ -donor and π -acceptor interactions and follows a hierarchy of increasing strength: $H_2O < NH_3 < halides < PR_3 < CO < CN^-$. The trans effect is particularly important in synthetic chemistry, such as the stepwise preparation of cisplatin (cis-[Pt(NH_3)₂Cl₂]), an anticancer drug.

Multiple Choice Questions (MCQs):

- Q1. Substitution in square planar complexes usually follows:
- a) Associative mechanism
- b) Dissociative mechanism
- c) Inner-sphere electron transfer
- d) Radical pathway

Answer: A

- **Q2.** The trans effect refers to:
- a) Weakening of bonds cis to a ligand
- b) Strengthening of bonds trans to a ligand
- c) Labilization of ligands trans to a strong ligand
- d) Change in oxidation state

Answer: C

- Q3. Which ligand shows the strongest trans effect?
- a) H₂O
- b) NH₃
- c) CO
- d) CN-

Answer: D

Q4. Substitution in [PtCl₄]²⁻ complexes most often proceeds via:

- a) Interchange mechanism
- b) Associative mechanism
- c) Radical mechanism
- d) Photolysis

Answer: B

Q5. The order of trans effect strength is generally:

- a) $H_2O < NH_3 < PR_3 < CO < CN^-$
- b) $CN^- < CO < PR_3 < NH_3 < H_2O$
- c) $CO < NH_3 < CN^- < H_2O < PR_3$
- d) $PR_3 < H_2O < CN^- < NH_3 < CO$

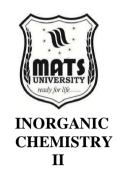
Answer: A

Short Questions:

- 1. Define substitution reactions in square planar complexes.
- 2. What is the typical mechanism of substitution in square planar complexes?
- 3. Explain the term trans effect.
- 4. Give two examples of ligands with strong trans effects.
- 5. Why are square planar complexes of Pt(II) commonly studied for substitution reactions?

Long Questions:

- 1. Describe the general mechanism of ligand substitution reactions in square planar complexes.
- 2. Explain the kinetics of square planar substitution reactions and compare them with octahedral substitutions.
- 3. Define the trans effect and discuss its theoretical basis.
- 4. Write the hierarchy of ligands in trans effect strength and explain it with examples.
- 5. Discuss the applications of trans effect in synthesis, particularly in the preparation of cisplatin and related complexes.

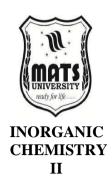

UNIT 4.2

Redox Reactions in Metal Complexes

4.2.1 Classification of Redox Reactions

A fundamental aspect of coordination chemistry, metal complex redox reactions have profound implications for materials science, biological processes, and catalysis. Metal centers and ligands exchange electrons and change their oxidation states in these reactions. Different viewpoints on mechanisms and reactivity patterns are among the various ways that redox issues in metal complexes can be categorized. The inner sphere and outer-sphere electron transfer mechanisms form the basis of one of the basic classification schemes for redox reactions of metal complexes. The creation of a bridged intermediate by the oxidant and reductant, in which the electron is transferred via a ligand connecting the two metal centers, is one mechanism that involves inner-sphere processes. In this function, the bridging ligand serves as an electron transfer channel, increasing orbital overlap and, eventually, electron transfer rates. This view fully extends to solvate frames across cooperative metal-metal links, and is comparable to the bound urban of chlorine on mixed-complex precursor phases. On the other hand, bridged intermediate formation is not necessary for outer-sphere mechanisms. Rather, there is little coordination-sphere reorganization and the charge is conducted directly by the metal centers. These reactions frequently occur with electron transfer via space or a mechanism of weak electronic coupling and are typical between complexes with stable coordinate geometries.

The Marcus theory, which takes into account the idea of a reaction barrier in terms of reorganization energy and whether the reaction is optimized on a thermodynamic driving force scale, has led to a vigorous discussion of outer-sphere electron transfer in both theory and practice. Another classification system based on whether electron flow is directional or multidirectional is formed by complementary electron transfer (CET) and non-complementary electron transfer (NCET)The transfer of an electron from the reductant's filled orbital to its empty orbital is known as CET. oxidant with comparable symmetry properties, allowing for effective electron transfer and good orbital overlap. In contrast, electron transfer between orbitals with distinct symmetry properties mediates NCET, which results in slower rates because of the orbitals' poor overlap. This description highlights how orbital symmetry and electronic structure define the kinetics of ET reactions.

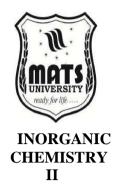

Depending on the type of electron transfer, the redox reactions in metal complexes can also be categorized into homogeneous & heterogeneous. Homogeneous electron transfer occurs when the oxidant and reductant are normally in the same phase in solution. Well-known kinetic models with a predictable rate law are used to describe these reactions in large part. Among these is heterogeneous electron transfer, in which the reactants are in two distinct phases, such as an electron transfer between an electrode surface and a species in the solution phase. Surface modification, adsorption, and the electrical double-layer effect are additional factors that influence these reactions. A second classification of metal-versus ligand-centered redox reactions results from the ligands' involvement in the redox process. Metal-centered redox reactions deal with the metal center's oxidation state transition while maintaining the coordination environment. Reactions with stable ligands are common in transition metal complexes and are typically linked to significant changes in electronic and magnetic behavior. Conversely, ligandcentered redox processes move an electron to or from the ligand without altering the metal's official state of oxidation. Complexes containing redox-active or so- called non-innocent ligands, like guines, dithiolenes, and certain nitrogen-containing heterocycles, frequently exhibit such reactions. The design of molecular switches and sensors, as well as biological electron transfer chains, depend on ligand-centered redox processes. Sorting redox reactions according to the quantity of electrons transferred is another way to classify them. Electron paramagnetic resonance (EPR) spectroscopy can be used to examine the radical intermediates that frequently mediate these changes. In two-electron transfer reactions, two electrons are frequently transferred in concert or sequentially in complexes of metals, particularly copper and iron, that are accessible in a variety of oxidation states. Although they are less frequent, multi- electron transfer reactions—in which three or more electrons are transferred—are crucial for certain catalytic processes, such as water oxidation and nitrogen fixation.

4.2.2 Mechanism of One-Electron Transfer Reactions

The most obvious kind of redox process in metal complexes is oneelectron transfer reactions, but their mechanistic details are surprisingly intricate. In addition to applying a number of theoretical frameworks and experimental techniques, one must consider thermodynamic, kinetic, and structural factors in order to understand these mechanisms.

Marcus' theory for outer-sphere one-electron transfer based on Marcus theory. This theory states that the rate of electron transfer is controlled by 3 major parameters, these being the thermodynamic driving force (ΔG°), the reorganization energy (λ) & the electronic coupling between the donor & acceptor (HAB). The reorganization energy is the energy needed to

distort the nuclear configurations of the reactants to fit the configurations of the products without transferring any electron Changes in inner-sphere (bond lengths and angles) and outer-sphere (solvent) coordinates are captured by this parameter. These parameters are then related to the different elements that control the electron transfer properties of the multiple component polymer matrix using the Marcus theory. The parabolic relationship between reaction rate and driving force led to the illogical prediction of an inverted region where a slower reaction is caused by an increase in driving force.



Decades after it was first proposed theoretically, this phenomenon was experimentally verified. It has significant implications for the design of effective electron transfer systems, artificial photosynthesis, and other energy conversion systems. The amount of overlap between donor and acceptor orbitals is taken into account by the electronic coupling term (HAB), which depends on the reactant distance and the intervening According to the relationship HABeR, where is the medium-dependent attenuation factor, this coupling typically diminishes exponentially with distance for outer-sphere reactions. The coordination of the reactants is more intimately approached when inner-sphere one- electron transfer mechanisms are used. spheres, as a bridging ligand, for instance, can mediate.

These mechanisms progress via three distinct steps: (1) a precursor complex is formed in which the oxidant & reductant associate through weak interactions; (2) a bridged intermediate forms where a ligand from one complex forms a bond to the other metal center; (3) electron transfer through the bridging ligand; (4) reorganization of the bridged complex to accommodate the new electron distribution, & (5) the dissociation of the successor complex into separate products. Furthermore, by promoting electronic coupling between the reactants, the bridging ligand can promote electron transfer; this pathway is far more efficient than outer- sphere mechanisms.

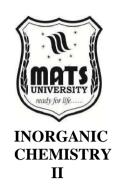
The bridging ligands may be hydroxides, cyanides, halides, or other anionic ligands that can work together to simultaneously in both metal centers. There are several experimental methods for distinguishing between inner-sphere and outer-sphere mechanisms. Because of the intermediacy of the bridged intermediate, inner-sphere mechanisms frequently exhibit more complex rate laws, making detailed kinetic studies instructive. Since inner-sphere mechanisms frequently result in ligand transfer or stereochemical changes on the metal centers, the statistical analysis is supported by stereochemical evidence.

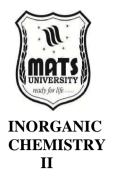
Spectroscopic methods can identify transient intermediates that are indicative of inner-sphere pathways. encompassing time-resolved spectroscopy Moreover, distinguishing between these mechanisms can be achieved through effects of systematic ligand variations on reaction

rates, since the identity & characteristics of the bridging ligand are critical to inner-sphere rates, while they influence outer-sphere processes far less.

Solvent effects are important in the one-electron transfer of metal complexes. In outer-sphere mechanisms, the solvent reorganization contribution to the total reorganization energy may dominate, especially for complexes with rigid coordination geometries. The dielectric constant of the solvent modifies the stabilization of charge- separated states, which in turn affects the thermodynamics & kinetics of electron transfer. Organized structures in solvents can be formed that promote or inhibit electron transfer due to hydrogen bonding & specific solvent-solute interactions. In protic solvents, proton coupled electron transfer (PCET) mechanisms can become important, where one transfers electrons along with protons to yield more nuanced kinetic behavior & solvent isotope effects.

In one-electron transfer reactions, the thermodynamic driving force modulates kinetics according to Marcus theory relationships. For small driving force reactions ($|\Delta G^{\circ}|$ λ), higher driving forces decrease reaction rates thanks to an activation barrier related to the (re)organization of nuclear coordinates. This surprising behavior has been experimentally demonstrated for a variety of systems including intramolecular electron transfer in donor-bridge-acceptor molecules & electron transfer quenching of excited states. The temperature dependence studies give useful information about the activation parameters for the one-electron transfer reactions. Both Arrhenius & Eyring analyses of temperature- dependent rate constants yield activation energies, entropies, & volumes that are directly related to the reorganization energy & mechanism of reaction


The energy required to rearrange the nuclear coordinates is consistent with the fact that such processes typically have positive activation energies. Activation entropies help determine whether the system tends toward order or disorder in the transition state's formation. Increased ordering in the transition state is implied by negative activation entropies, which is usually the result of substantial solvent reorganization or an inner-sphere mechanism involving a bridged intermediate.

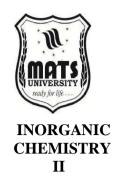

Mechanisms with large (significant structural change) and small (minimal structural reorganization) activation volumes can be distinguished by the activation volumes derived from pressure dependence studies. The mechanism of electron transfer in polynuclear complexes is complicated by the presence of multiple metal centers with redox potential.

These systems can exhibit cooperative effects; whereby redox behavior is changed by electron transfer at one center. of a different center through a changed geometric configuration or an electronic coupling. Mixed-valence compounds, in which their metal centers are at

different oxidation states, are excellent models for studying intramolecular electron transfer phenomena. These complexes are further classified using the Robin-Day scheme, where Class I compounds have no electronic coupling between the various metal centers, Class II compounds exhibit moderate coupling resulting in partial delocalization of the electron, & Class III compounds show strong coupling and, hence, complete delocalization & averaging of oxidation states. Spectroscopic methods, & in particular intervalence charge transfer (IVCT) spectroscopy, affords experimental tools to differentiate between these classes & to quantify the extent of electron coupling. Another significant class of one-electron transfer reactions involves metal-ligand electron transfer. For instance, these processes interface electron transfer at the metal center with a coordinating ligand as opposed to between two metal centers. This kind of electron transfer is especially significant for complexes with redox-active or "noninnocent" the ligands, including quinones, semiquinones, dithiolenes, nitrogen-containing heterocycles. Ligand-centered generated through metal-ligand electron transfer possess unique spectroscopic signatures & reactivity profiles. These processes can be understood within the framework of frontier molecular orbital theory, which highlights the relative energies of the metal d orbitals & ligand π^* orbitals. Strong mixing takes place when the energy of these orbitals are comparable by producing molecular orbitals which have significant contributions from both metal & ligand. This orbital mixing can obscure the distinction between metal-centered & ligand-centered redox processes & can introduce ambiguities in the assignment of formal oxidation states.

For redox reactions, coordination unsaturation opens up more mechanistic pathways for electron transfer reactions. In these instances, electron transfer may be coupled to ligand binding or dissociation events. For example, before electron transfer, a reductant can coordinate to a free site at the oxidant, or electron transfer can lead to ligand dissociation, owing to the metallacycle through bond reorganization of the metal's electronic configuration and binding preferences. These processes are particularly relevant for many catalytic cycles involving redox-active metal complexes, where such coordination unsaturation is frequently necessary for substrate activation. Electron transfer coupled to ligand exchange processes can be kinetically complex & may necessitate more advanced analytical approaches to elucidate mechanism. These include effects of quantum mechanics such as tunneling & non-adiabatic processes which are important for some of the one-electron transfer reactions. At low temperatures or for systems with weak electronic coupling a quantum mechanical process known as electron tunneling can dominate where the electron transfers by virtue of tunneling through a potential energy barrier rather than above it. This results in reaction rates that are

temperature-independent, or show only weak temperature dependence at low temperatures. However, when the electronic coupling between donor & acceptor is weak, the probability of electron transfer is low even if the nuclear configurations (i.e., the relative positions) are favorable, which is known as non-adiabatic electron transfer. These quantum effects become particularly relevant for long-distance electron transfer in biological systems & in some inorganic systems with rigid structures that avoid close approach of the redox centers.


Advances in experimental techniques to investigate one-electron transfer pathways have become more sophisticated, yielding progressively greater details of these processes. Reactions on millisecond to nanosecond timescales can be probed using stopped- flow & flash photolysis techniques to detect transient intermediates & measure elementary rate constants. By using radiolytic reduction or oxidation to create reactive species, this technique makes it possible to examine reactions that are difficult to initiate using conventional methods. Cyclic voltammetry and spectroelectro chemistry are two electrochemical methods that provide data on the electron transfer processes at electrode interfaces: thermodynamics and kinetics.

The electronic structures of reactants, products, and intermediates can be finely detailed using sophisticated spectroscopic techniques such as electron paramagnetic resonance (EPR), Mossbauer spectroscopy, and time-resolved absorption & emission spectroscopy. Additionally, electron transfer can now be observed at femtosecond timescales thanks to ultrafast spectroscopic techniques, which reveal previously undiscovered aspects of these processes. These days, computational methods are crucial for researching one-electron transfer mechanisms. Density functional theory (DFT) calculations were used to determine the electronic structures, redox potentials, and reorganization energies of metal complexes. The solvent dynamics and conformational changes that occur during the electron transfer process are clarified by our molecular dynamics simulations.

Accurate management of the redox centers' immediate environment while taking into account the influence of the extended system is made possible by combined quantum mechanical/molecular mechanical approaches. These computational (OM/MM) methods support experimental research and can frequently access elements of the Reaction mechanism is difficult to investigate experimentally. Applications for one-electron transfer reactions in metal complexes are numerous. Sequential one-electron transfer events between metalloproteins make up electron transfer chains in biological systems, such as respiration and photosynthesis. These processes are important for creating bioelectronic devices and artificial photosynthetic systems. In homogeneous catalysis, one-electron transfer procedures frequently start or stop catalytic cycles, affecting both activity and selectivity. Kinetics & thermodynamics of electron transfer in the

design of efficient catalysts for example, one-electron transfer reactions play a fundamental role in how electroactive materials operate, such as those used in electrochemical batteries, super capacitors, electrochromic devices. The principles of electron transfer also guide efforts to create molecular electronics, which use the electrons in single molecules as parts of electronic circuits. The leading research frontiers into the one-electron transfer mechanisms involve to a significant degree the investigation of processes that entail coupling electron & proton transfer (PCET), which are of fundamental importance in myriad biological & catalytic processes. These processes then couple electron transfer with proton transfer to avoid these high- energy intermediates, leading to better energetics. An additional area of activity is the study of ultrafast electron transfer reactions using high- time resolution spectroscopy methods, which sheds light on the initial steps in these reactions. These theoretical approaches, including quantum mechanical effects & explicit treatment of the environment, are being further developed to quantitatively predict electron transfer rates & mechanisms. Moreover, using these fundamental principles to inform the design of improved catalysts, energy conversion devices, & molecular devices remains an active challenge at the boundary between basic & applied research.

Feature Article One-electron transfer reactions: from fundamentals to materials and biology. These reactions may occur along inner-sphere or outer-sphere pathways, with the involvement of different levels of electronic coupling & nuclear (re)organization. The concept of electron transfer as referenced by the Marcus theory underpins many of these processes, encapsulating thermodynamic driving force, reorganization energy, & electronic coupling. From traditional kinetic approaches to state-of-the-art experimental spectroscopic & computational methods, new tools and techniques are advancing our appreciate and comprehend ing of these fundamental processes. With further development of kinetic & thermodynamic theories as well as experimental techniques, the appreciate and comprehend ing of one- electron transfer reactions & their unique kinetics will clearly spark new applications in energy transfer/catalysis, electrochemical energy conversion, & molecular electronics, among others, solving challenges for the society.

Summary

Redox reactions in metal complexes involve electron transfer between metal centers or between metal-ligand systems. They are broadly classified into inner-sphere and outer-sphere mechanisms. In inner-sphere electron transfer, a bridging ligand mediates electron flow between donor and acceptor metal centers, as in the reaction of $[Co(NH_3)_5Cl]^{2+}$ with $[Cr(H_2O)_6]^{2+}$. In outer-sphere transfer, no bridging ligand is involved, and electron transfer occurs through orbital overlap, as seen in $[Fe(CN)_6]^{3-}/[Fe(CN)_6]^{4-}$ systems. Factors such as ligand environment, solvent polarity, and reorganization energy (explained by Marcus theory) control these processes. Redox reactions in coordination complexes are central to biological electron transfer (cytochromes, Fe–S proteins) and catalytic cycles in industrial and environmental chemistry.

Multiple Choice Questions (MCQs):

- Q1. Redox reactions in metal complexes primarily involve:
- a) Proton transfer
- b) Electron transfer
- c) Radical elimination
- d) Ligand rearrangement

Answer: B

- Q2. In inner-sphere electron transfer, electron transfer occurs via:
- a) Direct overlap of orbitals without ligand bridging
- b) A bridging ligand between donor and acceptor
- c) A solvent-mediated pathway
- d) None of the above

Answer: B

- Q3. Which is a classic example of outer-sphere electron transfer?
- a) $[Co(NH_3)_5Cl]^{2+} + [Cr(H_2O)_6]^{2+}$
- b) $[Fe(CN)_6]^{3-} + [Fe(CN)_6]^{4-}$
- c) $[PtCl_4]^{2-} + NH_3$
- d) $[Cu(NH_3)_4]^{2+} + H_2O$

Answer: B

Q4. The Marcus theory explains:

- a) Thermodynamics of ligand substitution
- b) Kinetics of electron transfer
- c) Magnetic susceptibility of complexes
- d) Spectral properties of complexes

Answer: B

Q5. In outer-sphere reactions, rate is largely influenced by:

- a) Bridging ligands
- b) Reorganization energy and orbital overlap
- c) Photolysis
- d) Crystal field splitting only

Answer: B

Short Questions:

- 1. Define a redox reaction in metal complexes.
- 2. What are the two main classes of redox reactions in coordination chemistry?
- 3. Name one example of an outer-sphere electron transfer reaction.
- 4. What is the role of ligands in controlling redox behavior?
- 5. Distinguish between inner-sphere and outer-sphere electron transfer.

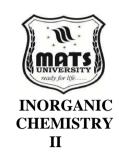
Long Questions:

- 1. Explain the classification of redox reactions in metal complexes with examples.
- 2. Discuss the mechanism of inner-sphere electron transfer reactions and highlight an example.
- 3. Describe the outer-sphere electron transfer mechanism and the factors influencing its rate.
- 4. Compare inner-sphere vs. outer-sphere electron transfer in terms of mechanism, ligand involvement, and kinetics.
- 5. How do redox reactions in coordination chemistry find applications in biological systems and catalysis? Give suitable examples.

UNIT 4.3

Outer-Sphere & Inner-Sphere Reactions

Electron transfer processes in coordination compounds are proposed mechanistic pathways: follow one of two to outer-sphere reactions reactions. These mechanisms differ drastically inner-sphere transfer, & the extent of coupling in the electron or between the coordination spheres & the charge -transfer (or red)state, the approach & how fast the interaction occurs, & are known as electronhopping or electrostatic attraction to their red statescientists are still studying the rate where electrons can intercalate between metal centers. Understanding and appreciating the kinetics, thermodynamics, and stereochemical results of redox reactions involving transition metals complexe requires an understanding of these mechanisms.


4.3.1 Mechanism of Outer-Sphere Reaction

One of the most straightforward, but most sophisticated coordination chemistry mechanisms. These reactions involve the transfer of electrons between two reactants while causing minimal alteration to their primary coordination spheres. The donor and acceptor complexes maintain their structural identity and their ability to bind ligands from the reaction even in this afterstate. The electron must tunnel through space from one metal center to another, above a barrier created by the ligands surrounding it. Outer-sphere mechanisms are characterized by little to no orbital overlap between the reactants. In particular, Marcus was awarded the 1992 Nobel Prize in Chemistry for his groundbreaking research that established the theoretical underpinnings of electron transfer in the external sphere. On the other hand, the Marcus theory quantifies the connection between the reaction's thermodynamic driving force and the rate of electron transfer. The theory shows how the reactants and surrounding solvation molecules rearrange to create conditions that support attempts at electron transfer.

However, the Marcus theory establishes a quantitative relationship between the reaction rate of electron transfer and the thermodynamic driving force of the reaction. The theory depicts the reaction coordinate in terms of rearrangement of the reactants & of surrounding solvation molecules to settings that favor attempts to transfer electrons. This reorganization is necessary because the electron transfer must follow the Franck- Condon principle, which states that electronic transitions happen without adjusting the positions of the atomic nuclei Typically, the outer-sphere mechanism is a stepwise process. A precursor complex is created when imports combine in solution. Weak intermolecular forces, such as hydrogen bonds, van der Waals interactions, also known as electrostatic attractions, are determined by the ligands' characteristics and the complexes' total charges

. The electron donor and acceptor in this precursor complex are situated within a likely electron transfer distance, typically $10-20\,$ Å. In most outer-sphere reactions, the rate- determining step is the electron transfer event itself.

The reorganization energy, the reaction's free energy change, and the donor and acceptor's electronic coupling are some of the variables that affect this step's rate. The energy required to move the molecules of the reactants and surrounding solvent out of their equilibrium positions and into the positions required for electron transfer is known as reorganization energy. Because it incorporates the contributions from both the inner-sphere reorganization and (the shifts in bond lengths and angles inside the coordination spheres) and the reorganization of solvent molecules outside the sphere. The products are created when the precursor complex dissociates following electron transfer, and they subsequently settle into their new equilibrium configurations. The Marcus equation relates the overall reaction rate of an outer-sphere electron transfer reaction to the rate constant for the transfer event, & through Δ Get, λ , & Hm for the reacting species, all of which can be computed. Because of this, there is actually what Marcus theory calls an "inverted region", where above a critical driving force, increasing that driving force results in decreasing reaction rates. The true shape of this dependency, a counterintuitive prediction that has been proved experimentally, reflects the complexity of electron transfer processes.

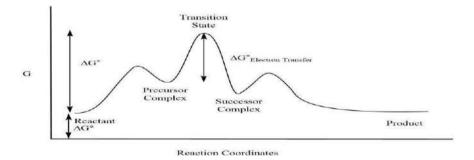
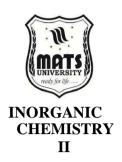
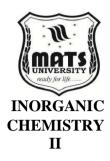


Fig-4.3.1 The general reaction coordinate diagram for the mechanism involved outer-sphere electron transfer reactions.

Fig-4.3.2 Formation of (a) internal reorganization and (b) corresponding ligand field splitting.


Outer-sphere mechanisms are then often found in reactions of complexes with stable coordination spheres, especially those with full d-electron shells or strong field the ligands which produces kinetically inert complexes. A staple of electrochemical studies is the transfer of electrons between hexacyanoferrate(II) & hexacyanoferrate(III) ions, as well as the reduction of tris(bipyridine)ruthenium(III) by an assortment of reducing agents. Since they determine the value of the reorganization energy and the strength of the electronic coupling between the products, the architecture and arrangement of the ligands typically determine the frequency of these processes


. Numerous methods, such as electron paramagnetic resonance spectroscopy, infrared, and UV-visible spectroscopy, have been used to study outer-sphere electron transfer reactions. These methods provide valuable insights into the kinetics of the electron transfer process as well as the electronic structures of the reactants and products.

Electrochemical methods like cyclic voltammetry have also been used to determine thermodynamic parameters pertinent to these reactions, specifically the standard reduction potentials of the complexes involved. Outer-sphere electron transfer reactions differ from inner- sphere mechanisms in a few important ways. These include the absence of ligand exchange during the reaction, the absence of bridging between the ligands connecting the reactants, and the fact that the reaction rate is independent of the bridging groups' characteristics and steric factors that could affect ligand exchange. Furthermore, because there aren't any notable coordination sphere rearrangements, outer-sphere mechanisms preserve the reactants' stereochemistry. There are uses for outer-sphere electron transfer outside of sub fundamental coordination chemistry. These kinds of reactions occur frequently in biological systems, particularly in the electron transport chains involved in respiration and photosynthesis. Among other uses, the understanding and appreciation of outer-sphere mechanisms has influenced the design of molecular electronics, artificial photosynthetic elements, and electron transfer catalysis. Additional textbooks on the subject have been written by researchers, and knowledge gleaned from researching outer-sphere electron transfer has been applied to the development of molecular switches, sensors, and other functional materials that rely on regulated electron transfer mechanisms.

The mechanism of inner-sphere electron transfer reactions is more complex than that of outer-sphere processes. In these reactivities, the reactants' coordination spheres are directly involved in electron transfers featuring the emergence of a bridged intermediate complex during which both metals share one or more the ligands. [7†source] The bridging ligand can be defined as the molecule through which electrons can pass, allowing overlap by their orbitals between the donor & acceptor metal centers, rendering the electron transfer process more efficient. Henry Taube, Nobel Laureate in Chemistry 1983, first proposed the concept of inner-sphere electron transfer based on his pioneering work. Taube's work helped to clarify the role of bridging the ligands in electron transfer reactions & to establish the underlyingprinciplesthatruleinner-spheremechanisms.

His work on cobalt(III) & chromium(II) metal complexes gave strong evidence for the nature of bridged intermediates & the metal to ligand transfer that followed inner-sphere electron transfer. Inner-sphere mechanism generally happens through well-defined steps of processes. As in the case of outer-sphere reactions, the first step is the formation of a precursor complex. In the case of inner-sphere mechanisms, however, this complex is transformed into a bridged intermediate when a ligand is transferred from one coordination sphere to another. At least one of the reactants must involve a complex that is labile enough that it has a coordination site that a bridging ligand can easily occupy during the substitution process.

The bridging ligand facilitates inner-sphere electron transfer by providing pathway for electronic communication. communication is only effective if the bridging ligand is of a certain nature, which can promote orbital overlap & electron delocalization. Halides, cyanide, thiocyanate, & carboxylates are among the most effective binding motifs & act as π -donors or acceptors, which allow them to engage in π -bonding interactions with the metal centers. After the formation of bridged intermediate the electron transfer between donor & acceptor metal center takes place via bridging ligand. Such electron transfer is commonly paired with substantial changes in the electronic structures of the metal centers, which can result in variations in their coordination preferences & ligand binding strengths. Therefore, the bridged intermediate can further undergo ligand exchange, rearrangement, or dissociation for the formation of the final products. One example of an inner-sphere electron transfer reaction is the reduction of pentaammine chlorocobalt (III) by chromium (II) aqua ions. The aforementioned chloride ligand acts as a bridge between a cobalt (III) & a chromium (II) centre in this process. Chromium (II) is oxidized to chromium (III) with electron transfer through a chloride bridge to produce cobalt(II) aqua ions & a chloride-coordinated chromium(III) complex. The observation that chloride is transferred from cobalt to chromium served as strong evidence for Taube's proposed inner-sphere mechanism. The kinetics for inner-sphere electron transfer reactions are dependent on this multiple factors that include lability of the complexes, nature of the bridging ligand,

thermodynamic driving force of the reaction & the reorganization energy associated with the electron transfer. In contrast to outer- sphere reactions, in inner-sphere mechanisms the rate-determining step is usually the formation of a bridged intermediate, rather than the electron transfer itself. In such reactions, especially those of kinetically inert complexes, the divisions stem from the considerable configuration changes required for bridged intermediate formation.

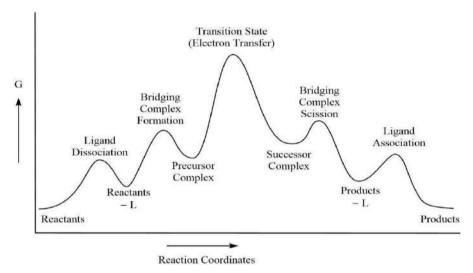
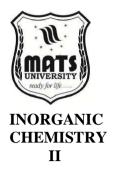



Fig 4.3.1 The reaction coordinate diagram for inner sphere electron transfer mechanism.

$$\begin{bmatrix} H_{2}O_{H_{1},...} & OH_{2} \\ H_{2}O_{H_{2},...} & OH_{2} \\ OH_{2} & OH_{2} \end{bmatrix}^{2+} + \begin{bmatrix} NH_{3} \\ H_{2}N_{H_{1},...} & OH_{3} \\ OH_{2} & OH_{2} \\ OH_{2} & OH_{2} \end{bmatrix}^{2+} + \begin{bmatrix} NH_{3} \\ H_{2}N_{H_{1},...} & OH_{2} \\ NH_{3} \\ NH_{3} \end{bmatrix}^{2+} + \begin{bmatrix} OH_{2} \\ H_{2}O_{H_{1},...} & OH_{2} \\ H_{2}O_{H_{1},...} & OH_{2} \\ OH_{2} & OH_{2} \\ H_{3}N_{1} & OH_{3} \\ NH_{3} \\ NH_{3} \end{bmatrix}^{4+} + \begin{bmatrix} OH_{2} \\ H_{2}O_{H_{1},...} & OH_{2} \\ OH_{2} & OH_{2} \\ H_{3}N_{1} & OH_{3} \\ NH_{3} \\ NH_{3} \end{bmatrix}^{4+} + \begin{bmatrix} OH_{2} \\ H_{2}O_{H_{1},...} & OH_{2} \\ OH_{2} & OH_{2} \\ H_{3}N_{1} & OH_{3} \\ NH_{3} \\$$

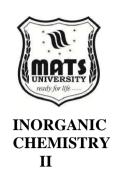
Fig 4.3.2 The formation of precursor complex, successor complex and the state of electron transfer in inner-sphere electron transfer mechanism.

Inner-sphere electron transfer reactions often give us information about the reaction mechanisms through their stereochemical results. The geometry of the bridged intermediate & the ligand transfer pathway can be mapped from the retention or inversion of configuration at the metal centers. The detection of bridged intermediates or observation of ligand transfer are also diagnostic for inner-sphere mechanisms. Inner-sphere electron transfer reactions are ubiquitous in synthetic & biological systems. In synthetic chemistry, such reactions are used for the synthesis of mixed-metal compounds, small-molecule activation, &

different catalytic processes, among others. Mechanisms within the inner sphere of biological systems as previously stated, metalloenzyme activities in biological systems, specifically substrate oxidation and reduction, are influenced by inner-sphere mechanisms. These enzymes frequently have bridging ligands that can be made from cofactors or residues of amino acids that facilitate the movement of electrons between the metal centers. Numerous spectroscopic methods, electrochemistry, and stopped-flow kinetics have been developed transfer. In addition to energy investigate inner-sphere electron profiles of inner-sphere electron transfer reactions, computational methods like density functional theory have also provided a valuable understanding and appreciation of the electronic reactants, intermediates, and products. It should be noted that some reactions exhibit both inner-sphere and outer-sphere pathways, making the distinction between them not always obvious. Different mechanisms predominate in a given reaction, depending on the characteristics of the metal centers and ligands, the reaction conditions, and whether the driving force is thermodynamic. Determining these counterbalancing forces is essential to forecasting the electron transfer mechanism, reactions, as well as the development of functional materials and catalysts using coordinated electron transfer processes. Final Thoughts Two of the basic mechanistic manifestations in coordination chemistry are inner-sphere versus outer-sphere electron transfer reactions, which have opposing traits and functional significance. Interestingly, even though the idea is rather broad, it has already been clarified how these mechanisms control redox reactions in transition metal complexes and has influenced the creation of a large number of applications in materials science, biochemistry, and catalysis.

4.3.4 PRACTICAL APPLICATION

Practical Applications of Square Planar & Redox Chemistry in Everyday Life


The chemistry of square planar complexes & redox reactions may appear to be esoteric academic knowledge; nonetheless, these concepts subtly influence numerous facets of our daily existence. The mechanisms that regulate these reactions significantly influence technology, medicine, & environmental activities we frequently encounter. Platinum-based anticancer agents exemplify a prominent practical application of square planar chemistry. Medications such as cisplatin function by a meticulously regulated substitution process, wherein the square planar platinum complex enters the bloodstream almost unaltered, yet experiences ligand substitution events within

cancer cells. The trans effect—where specific the ligands enhance the substitution of groups positioned opposite to them—is meticulously utilized in these pharmaceuticals to guarantee their reaction occurs at the appropriate moment & location within the body.

The longevity of a cancer patient receiving chemotherapy depends on the controlled kinetics of square planar substitution processes, which allow platinum to attach to DNA and cause cancer cells to undergo apoptosis while minimizing damage to healthy tissue. Modern cars' catalytic converters rely heavily on metal complexes' redox chemistry. In order to facilitate electron transfer processes that convert harmful pollutants like carbon monoxide and nitrogen oxides into less dangerous molecules, these devices use platinum, palladium, and rhodium in various oxidation states. The functioning of these catalysts depends on inner-sphere electron transfer mechanisms, in which a bridging ligand temporarily connects two metal centers during electron exchange. By using sophisticated metal complex redox chemistry to protect the air every time you drive your car. quality and public health through carefully designed electron transfer channels. In essence, modern rechargeable batteries that power our laptops, smartphones, and electric cars depend on controlled redox reactions involving metal complexes. Transition metal oxides, which frequently include cobalt, nickel, or manganese, are used in lithium-ion batteries. During cycles of charging and discharging, these oxides take part in reversible one-electron transfer processes.

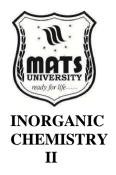
. The Marcus- Hush hypothesis aids engineers in comprehending & optimizing the energy barriers associated with electron transfers, so directly affecting the charging speed of devices & their endurance in recharge cycles prior to degradation. The electric car on the street and the smartphone in your pocket are two examples of how metal complex redox chemistry is applied and improved by the ideas covered in this chapter. Numerous communities use water filtration techniques that take advantage of metal complexes' redox properties to Eliminate hazardous substances. To remove impurities from drinkable water, ironbased coagulants use carefully controlled redox and substitution reactions. Concurrently, iron or copper complexes that generate hydroxyl radicals through electron transfer pathways are commonly used in sophisticated oxidation processes used to remove persistent organic contaminants from wastewater.

Pollutants can be efficiently broken down into harmless components through outer-sphere electron transfer processes, in which electrons move between metal centers without coming into direct contact. These applied redox processes are probably responsible for the purity of the clean water coming from your tap. fundamentals. The complex chemistry of metal, which involves specific electronic transitions, is the source of the vibrant colors found in many everyday items, such as LCD screens and textile dyes. Metal-complex dyes utilized in textiles depend on the exact energy gaps between molecular orbitals, which are

directly affected by ligand field stabilization & the electron transfer characteristics of the metal centers. These colorants' ability to withstand undesired substitution and redox processes is what determines their stability in various environments. Similarly, transition metal complexes are widely used in electronic display pixels, whose optical The ligand field theory and electron transfer concepts covered in this chapter determine characteristics. Chelated metal nutrients, whose effectiveness depends on controlled substitution reactions, are frequently found in agricultural fertilizers and soil amendments. Micronutrients like iron and zinc are commonly supplied in octahedral or square planar complexes that are designed to release these essential elements at rates that correspond to plant absorption. Crop nutrient availability is determined by the stability constants and substitution mechanisms of these metal complexes, which also affect the occurrence of toxicity and deficiency cycles. Applied metal complex chemistry, which improved nutrition delivery through coordination chemistry and substitution kinetics concepts, most likely contributed to the food on your plate.

Photographic techniques, despite the growing prevalence of digital technology, continue to employ silver- based chemistry in numerous applications that depend on meticulously regulated redox reactions While some developing processes require complex redox chemistry with well-defined electron transfer mechanisms, conventional film photography depends on the photoreduction of silver ions to metallic silver. The redox chemistry of silver determines the properties of silver nanoparticles, even in the digital age. Complexes are used in specialized electronic components and antimicrobial coatings. These ideas of metal complex redox chemistry have probably benefited the pictures that preserve your family's memories. Square planar complexes and their replacement procedures are widely used in industrial catalysis, which is crucial for the manufacturing of numerous common products like plastics medications. The 2010 Nobel Prize in Chemistryand winning palladium-catalyzed cross-coupling processes rely on the square planar palladium complexes' unique reactivity as well as their ability to control oxidative addition and reductive elimination sequences. Numerous products, such as medications, electronic components, and specialty polymers, are made using these reactions. The synthetic materials you encounter on a daily basis, like the plastic found in household utensils and the active ingredients pharmaceuticals, are often the result of industrial processes that have been improved through an understanding of redox chemistry and square planar substitution mechanisms.

Summary


This module focuses the mechanistic details of substitution and redox reactions in transition metacomplexes, with a focus on square planar geometries and electron transfer processes. It begins with an analysis of substitution reactions in square planar complexes, emphasizing the role of the trans effect in influencing reaction pathways and directing ligand replacement. The underlying mechanisms of these substitution reactions are discussed in the context of both associative and dissociative processes.

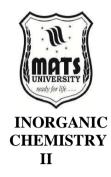
The study further explores redox behavior, specifically one-electron transfer reactions. These are classified into outer sphere and inner sphere mechanisms. Outer sphere reactions, which proceed without direct bonding changes between reactants, are interpreted using cross reaction studies and the Marcus-Hush theory, which provides a theoretical framework for understanding the kinetics and thermodynamics of electron transfer. In contrast, inner sphere mechanisms involve a bridging ligand that facilitates electron exchange between metal centers. Through these discussions, a comprehensive understanding is developed of the fundamental processes that govern the reactivity and electron flow in coordination compounds.

Multiple-Choice Questions (MCQs)

- 1. Substitution reactions in square planar complexes generally follow:
- a) Associative (A) mechanism
- b) Dissociative (D) mechanism
- c) SN1 mechanism
- d) Concerted electron transfer
- 2. The trans effect in square planar complexes influences:
- a) The rate of ligand substitution
- b) The oxidation state of the metal
- c) The formation of high-spin complexes
- d) The paramagnetism of the complex
- 3. Which of the following the ligands exhibits a strong trans effect?
- a) NH₃
- b) Cl-
- c) CO
- d) H₂O

- 4. Outer-sphere electron transfer is characterized by:
- a) Direct bonding between reactants
- b) No covalent bond formation between metal centers
- c) Ligand substitution before electron transfer
- d) Metal-metal bond formation
- 5. Inner-sphere electron transfer occurs via:
- a) Electron hopping through solvent molecules
- b) Formation of a bridging ligand between two metal centers
- c) Direct tunneling of electrons
- d) No interaction between metal complexes
- 6. Which of the following is an example of an outer-sphere reaction?
- a) $[Fe(H_2O)_6]^{2+} + [Fe(H_2O)_6]^{3+} \rightarrow electron transfer$
- b) $[CoCl(NH_3)_5]^{2+} + [Cr(H_2O)_6]^{3+} \rightarrow Cr$ -bound Cl^- transfer
- c) Oxidation of [Cr(H₂O)₆]²⁺ via ligand substitution
- d) Reductive elimination in square planar complexes
- 7. The Marcus-Hush theory explains:
- a) Kinetics of ligand exchange
- b) Mechanism of electron transfer reactions
- c) Color changes in transition metal complexes
- d) Inner-sphere ligand substitution
- 8. According to Marcus theory, the rate of electron transfer reactions depends on:
- a) Ligand exchange rates
- b) The reorganization energy of the reactants
- c) Metal-ligand bond strength
- d) pH of the reaction medium

- 9. A key assumption of Marcus Theory is that:
- a) Electron transfer occurs instantaneously
- b) Electron transfer depends on nuclear reorganization
- c) The rate is independent of solvent polarity
- d) Redox reactions do not involve charge distribution changes
- 10. Cross reactions in electron transfer refer to:
- a) Electron transfer between two identical metal ions
- b) Electron transfer between different metal ions
- c) Ligand exchange between transition metals
- d) Magnetic coupling in metal complexes


Answers Key:

- 1. a
- 2. a
- 3. c
- 4. b
- 5. b
- 6. a
- 7. b
- 8. b 9. b
- 10. b

Short Answer Questions

- 1. What is the trans effect, & how does it influence ligand substitution in square planar complexes?
- 2. Differentiate between outer-sphere & inner-sphere electron transfer mechanisms.
- 3. Explain why the ligands like CO & CN⁻ have a strong trans effect.
- 4. Describe the mechanism of electron transfer in an outer-sphere reaction.
- 5. What is the role of bridging the ligands in inner-sphere redox reactions?

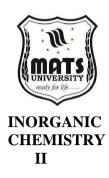
- 6. What are the key factors influencing the rate of electron transfer reactions?
- 7. Define the reorganization energy in the Marcus-Hush theory.
- 8. Why do cross-reactions in electron transfer sometimes have different kinetics than self-exchange reactions?
- 9. How does the oxidation state of a metal center influence ligand substitution rates?
- 10. Explain the kinetics of substitution reactions in square planar complexes.

Long Answer Questions

- 1. Explain the mechanism of ligand substitution in square planar complexes, highlighting the trans effect & its applications.
- 2. Discuss the classification of redox reactions in metal complexes, including examples of each type.
- 3. Compare & contrast outer-sphere & inner-sphere electron transfer reactions, including their mechanisms & factors affecting their rates.
- 4. Explain Marcus-Hush electron transfer theory, including how it predicts reaction rates.
- 5. Discuss the role of solvent dynamics & ligand environment in controlling electron transfer rates.
- 6. How does ligand substitution affect the reactivity of metal complexes in catalytic cycles?
- 7. Explain reorganization energy in the context of Marcus Theory & its impact on redox reaction rates.
- 8. Discuss the factors affecting cross-reactions in electron transfer & how they relate to reaction feasibility.
- 9. Describe the kinetic & thermodynamic factors governing redox reactions in transition metal complexes.
- 10. How do spectroscopic techniques help in studying electron transfer mechanisms in transition metal complexes?

MODULE-5

METAL π COMPLEXES


Objectives

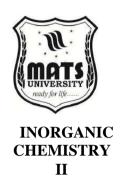
- To delineate metal π complexes & comprehend their importance in coordination chemistry & catalysis.
- To examine the structure, bonding, spectroscopic characteristics, synthesis, & reactivity of metal carbonyl complexes.
- To investigate the bonding, production, & reactivity of transition metal-nitrosyl complexes.
- To examine the synthesis, coordination, & utilization of dinitrogen & dioxygen metal complexes in biological & industrial applications.
- To investigate the function of tertiary phosphines as the ligands, their bonding characteristics, & their applications in catalysis & synthesis.

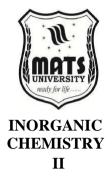
UNIT 5.1 Introduction to Metal π Complexes

One of the most intriguing & vital class of compounds in modern chemistry Metal π complexes. Bonds between the π electrons of unsaturated organic the ligands & metal atoms result in unique chemical entities that exhibit unique structures & reactivity patterns. In contrast to metal complexes that make σ bonds with metal through lone pairs of electrons, metal π complexes interact with the π electron clouds of alkenes, alkynes, aromatic molecules, & other unsaturated organic molecules. Because the bonding is so fundamentally different, this leads to rich structural diversity and chemical functionality with significant implications across a range of chemistry disciplines. Much more than just an academic interest, metal π complexes underpin myriad industrial processes, synthetic methodologies, and biological systems. The mid-20th century was the era of discovery for organometallics, with the elucidation of the structure of ferrocene in 1952 representing a paradigm shift in organometallic chemistry that challenged existing theories of chemical bonding. This porcelain-doll breakthrough paved the way for a Nobel Prize to Geoffrey Wilkinson and Ernst Otto Fischer in 1973 & launched him into a whole new frontier in the study of the interactions of metals with organic compounds.

The unusual electronic & structural features of metal π complexes afford them a versatility not present in other classes of compounds. π -bonds formed between metals & unsaturated the ligands afford

electron-rich neighbourhoods amenable to chemical manipulation. The metal center serves both as electron donor & acceptor, which allows it to mediate reactions that would otherwise be thermodynamically unfavorable or kinetically hindered. The ability of metal π complexes to serve as Lewis acid or Lewis base, depending on reaction requirements, make them especially potent catalysts for many organic transformations such as hydrogenation, carbonylation, polymerization & cross-coupling reactions, which constitute the foundation of contemporary chemical production. Metal π complexes are essential components in catalytic systems used in the industrial production of everyday materials from pharmaceuticals & agrochemicals to polymers & fine chemicals. Which enables guidance of reaction pathways, increasing yields & minimizing waste while promoting green chemistry. Examples of these metallic π acids can be seen in the 2005 Nobel prize winning ruthenium π complexes, which are used in olefin metathesis; & in reactions involving rhodium complexes which are used in hydroformylation to form aldehydes, then also with cross coupling using nickel & palladium catalysts to form carbon-carbon bonds.


Metal π complex formation is premised on overlap of unsaturated the ligands filled π orbitals with empty orbitals on the metal (and backdonation of filled metal d orbitals to empty π^* antibonding orbitals on the ligand). This orbital interaction produces a synergistic bonding arrangement that stabilizes the complex and affects the resulting reactivity, as is commonly explained using the Dewar-Chatt-Duncanson model.In addition, the type and intensity of these interactions vary greatly based on the metal electronic configuration, oxidation state, and ligand structural characteristics, but this diversity allows chemists to adjust these complexes' properties for particular uses. The development of intricate metal chemistry


A review of history and a theoretical investigation The 1820s saw the preparation of simple complexes like Zeises salt (K[PtCl(CH)]•HO)), but it wasn't until the middle of the 20th century that their true nature became a scientific curiosity. Organometallic chemistry was revolutionized by the discovery of ferrocene (Fe(CH)) by Pauson & Kealy in 1951 (reported as a structure that was later shown to be incorrect) and its correct structural elucidation by Wilkinson & Woodward. Contrary to accepted theories of chemical bonding, this sandwich compound—which had a Fe atom positioned between two cyclopentadienyl rings—exhibited unparalleled stability and aromatic character and gave rise to numerous similar structures.

The architectural and structural diversity of metal complexes is impressive. ranging from just simple monometallic complexes with a single π -bound ligand to elaborate multinuclear systems with bridging

the ligands, the structural possibilities appear almost infinite. Themost common ligand types are alkenes, alkynes, dienes (including cyclic systems such as cyclooctadiene), arenes (e.g. benzene & its derivatives), & cyclopentadienyl & related ring systems. These bonding modes can be represented systematically using haptic notation (\(\eta^n\), where n is the number of contiguous atoms in the ligand bonded to the metal). For example, in the η^2 case, ethylene typically binds, & in the η⁵ case, cyclopentadienyl. Similar diversity & fascinating electronic characteristics of metal π complexes are observed. The interaction alters the relative contributions of the ops, and therefore they are related to changes of electron density within the whole complex that affect its stability, reactivity, & spectroscopic characteristics. This can create a variety of electronic environments, where electron rich metal centers can donate electron density to electron-withdrawing substituents on the ligands & where electron-poor metals can accept electron density from the electron rich the ligands. Such electronic tunability is one of the reasons for the excellent catalytic activity of many metal π complexes in stabilizing reaction intermediates & enabling electron transfer processes.

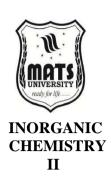
The metal π systems also show fascinating magnetic & spectroscopic behaviours that give important information on their electronic structure & bonding. Nuclear magnetic resonance (NMR) spectroscopy, for instance, shows well-defined ligand proton shifts when coordinated with metals, which are a reflection of changes in electron density & shielding. Likewise, infrared spectroscopy can sense changes in stretching frequencies of the bonds of π -bound the ligands, indicating a change in bond strength & electron density. The role of these spectroscopic methods, complementing X-ray crystallography, has been crucial to our appreciate and comprehend ing of the structures & bonding in metal π complexes. Metal π interactions in biological systems: Potential role in protein function & enzyme catalysis For example, through their π nutrient proteins often interact with aromatic amino acid residues like histidine, tryptophan, & tyrosine metal ions in metalloproteins, contributing to protein stability and function. These interactions can affect protein folding, substrate binding, & catalytic activity. The detailed correlations between these natural metal π interactions have led to the design of biomimetic catalysts aiming to recapitulate enzymatic reactivity with high efficiency & selectivity. Metal π complexes can be classified from different viewpoints, such as the nature of the metal center, the kind of π -bonding ligand, & the overall structure of the complex. A typical classification system is as follows: half-sandwich complexes (the metal binds to one face of a π system), sandwich complexes (the metal is located between two π systems that are in a parallel formation), and multidecker sandwich complexes (where multiple alternating species of metals & π -the ligands exists). Alternatively, these complexes were

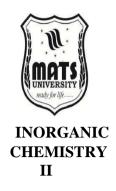
classified according to the oxidation state of the metal or electronic configuration, emphasizing the correlation between electronic structure & reactivity.

Various strategies have been reported for the synthesis of metal π complexes depending on the targeted structure. One straightforward route is through direct complexation of metal precursors with π -donor the ligands, typically resulting in the substitution of more labile the ligands (e.g., carbon monoxide or phosphines). The relationship between the metal's oxidation state and how it interacts with different kinds of ligands is exploited by redox-controlled syntheses. Trans metalation reactions are an additional flexible synthetic pathway where the ligands moved between metals. The stability of the required complex, compatibility of functional groups, and the availability of precursors are some examples of parameters that frequently the synthetic method. The substantial influence of metal coordination on the properties of unsaturated ligands is exemplified by the reactivity motifs of metal complexes. In contrast to the electrophilic reactivity usually seen with free alkenes and alkynes, coordination to a metal center usually encourages bonds to be activated toward nucleophilic attack. The redistribution of electron density that results from coordination is the cause of this activation, which instills carbons with partial positive charges that were previously found in environments with lots of electrons. However, in certain situations, as determined by the complex electronic interaction that characterizes such systems, back-donation from the metal can enhance the observed nucleophilicity of coordinated ligands. In addition to changing the ligands' reactivity, coordination with metals can stabilize reactive intermediates that, in a typical situation, would be transient or undetectable.

. Also reactive species such as metallocycles, carbonium ions, etc. can be solubilized & stabilized through coordination to appropriate metal centers for subsequent isolation & characterization. This stabilizing influence has proven quite valuable in elucidating reaction mechanisms & materials behavior in reactive intermediates during a number of transformations.

Metal π complexes have arguably made their most significant contribution to practical chemistry through catalytic applications. These complexes serve as precursors to homogeneous catalysts that drive a myriad of transformations with high efficiency & selectivity. Hydrogenation catalysts [RhCl(PPh₃)₃] (Wilkinson's catalyst) & [Ir(cod)(PCy₃)(py)]PF₆ (Crabtree's catalyst) allow for the step-wise addition of hydrogen at unsaturated bonds at ambient temperature. Olefin metathesis catalysts, & specifically those based on ruthenium (Grubbs catalysts) & molybdenum (Schrock catalysts), have transformed the way in which we form carbon-carbon bonds. The development of cross-coupling catalysts, especially palladium or nickel π complexes, has revolutionized synthetic strategies to forge

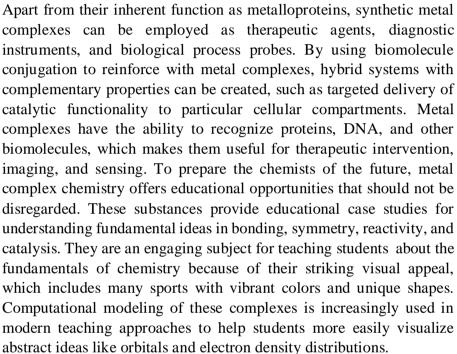

complex molecular architectures. The mechanistic principles that govern these types of catalytic processes often imply elementary steps in which π complexation is a critical feature. Common mechanistic patterns include:


- Formation of activated π complexes through coordination of unsaturated substrates
- CO-Insertion into Metal—Hydride or Metal—Carbon Bonds
- New bond formation and regeneration of the catalyst via reductive elimination
- $-\beta$ -hydride elimination as an important step in many catalytic cycles
- Ligand exchange mediated metathesis processes

The comprehension of these mechanistic fundamentals has allowed for the rational engineering of new catalysts with superior activity, selectivity, & stability parameters, thus propelling ongoing innovation within this domain.

Beyond traditional catalysis, metal complexes are important in the fields of energy conversion, medicinal chemistry, and materials science. It qualified metallocene derivatives in materials science to act as precision catalysts in polyolefin production, attaining highly precise control over parameters like branching, stereochemistry, and molecular weight distribution. In electrochemistry, ferrocene and its derivatives are used as redox-active parts of sensors, batteries, and other electrochemical equipment. Because of their special structural and electrical properties, metal complexes are also utilized as building blocks to create switches, molecular machines, and other functional materials. In medicinal chemistry, metal complexes have been developed as potential drug candidates.

Ferrocene-containing compounds exhibit noteworthy biological properties, including antimicrobial, anticancer, and antimalarial effects. In addition to removing functional groups and protecting certain sensitive groups, this reductive process keeps multiple coordination pair splits in the target molecules, improving lipophilicity and membrane involvement and improving targeting and therapeutic efficacy. The multidisciplinary field of bioorganometallic chemistry, which seeks to take advantage of the special properties of metal complexes and their possible uses in biomedicine, serves as the foundation for these applications. Another frontier in energy-related applications is metal complex chemistry. In dye-sensitized solar cells, ruthenium polypyridyl complexes are frequently employed as photosensitizers, absorbing light energy and producing electron transfer processes. Electrocatalysts for


water splitting, carbon dioxide reduction, and other energy conversion processes also rely heavily on metal π complexes Their significance to issues in energy storage and conversion is highlighted by their ability to activate small molecules and transfer multiple electrons. Theoretical understanding and appreciation of metal complexes has changed since their discovery. significantly, reflecting improvements in computational and experimental approaches. Although the Dewar-Chatt-Duncanson model is a qualitative depiction of metal-ligand interactions, more sophisticated theories based on density functional theory and molecular orbital theory offer a deeper understanding and appreciation of electronic structure and bonding.

Today's computational research can predict binding energies, structural parameters, and spectroscopic features with previously unheard-of precision, opening the door for well-informed experimental research and mechanistic investigation. Recent advancements, however, demonstrate the remarkable vitality and innovation present in the field of metal complex chemistry. Concerns are addressed by the creation of first-row transition metals for use as substitutes for precious metals. about sustainability and shows novel precious metal reactivity patterns. The agrochemical and pharmaceutical industries are very interested in the enantiospecific


Metal π complex- configured photochemical systems utilize mild energy input to facilitate diverse chemical transformations. Investigating cooperative effects in multinuclear complexes reveals emergent functionalities that aren't present in monometallic systems. Metal complexes with unusual ligands represent another fascinating frontier. The structural and electronic diversity of these compounds is greatly enhanced by heterocyclic ligands, boron-containing systems, and other unconventional architectures that go beyond the traditional carbon-based systems. Similarly, metal complexes add hierarchical structures and special functions to extended materials, polymer materials, and supramolecular assemblies.

Therefore, current research primarily acknowledges the sustainability and environmental aspects of metal complex chemistry. The study of alternatives based on earth-abundant elements like iron, cobalt, and nickel has emerged as a result of the growing emphasis on sustainable chemistry, even though these complexes have traditionally relied on metals like platinum, palladium, and rhodium. In addition to reducing dependency on limited resources, these first-row transition metals typically exhibit superior or complementary reactivity patterns in comparison to their heavier counterparts. Such research on recyclable catalysts, more efficient processes with less byproduct

formation, and the development of biodegradable metal π complexes merges with the ideals of green chemistry & our environmental problems. Metal π complexes in extreme environments may be regarded as a niche, albeit interesting, area of research. Studies of how these complexes perform at high pressure, extreme temperatures, or in non-conventional solvents yield insights into fundamental characteristics & possible uses in specialized settings. Such metal complexes, for instance, maintain their catalytic activity in supercritical carbon dioxide, allowing for more environmentally friendly industrial processing techniques. Others exhibit enhanced stability or distinct reactivity patterns in ionic liquids, which could result in new changes.

The future development of metal complex chemistry is probably going to be defined by a number of trends and challenges. By anticipating advantageous structures, enhancing reaction conditions, recognizing structure-property relationships, the application of artificial intelligence and machine learning techniques holds significant promise for expediting the discovery process. With the development of operando spectroscopy techniques, metal complex behavior under reaction conditions will be unprecedentedly accessible, enabling the identification of transient intermediates and dynamic processes. The use of metal π ensembles within spatial confinement — in the interior of proteins, zeolite pores or metal- organic framework channels will unravel how steric constraints can modulate reactivity & selectivity. Field specific challenges include developing even more efficient synthetic methods for complex multinuclear systems or for systems that utilize exotic the ligands. The ability to stereodirect metal centers is limited in many contexts,

especially in asymmetric synthesis applications Because of the stability of their reaction products, metal complexes in general are persistently limited in their practical applications, particularly when taking into account potentially coordinating functionalities (like amines) or harsh environments.

Metal complex chemistry's wide ties to other scientific and technological fields are a reflection of its multidisciplinary history. Synthetic chemists, spectroscopists, theorists, materials scientists, and biologists work together to drive innovation and application in this field. The realization and exploitation of the unique properties of metal complexes are trained by the convergence of perspectives and approaches from these fields. Finally, metal complexes are essential to modern chemistry because they allow for the development of transformative technologies across disciplines and serve as a bridge between the organic and inorganic realms. Because of their distinct bonding patterns, structural variety, and reactive flexibility, the scientific and industrial The petri dish ingenuity of plasmatic intelligence constantly stirs things up.

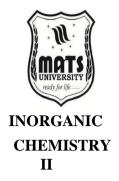
Their historical origins in scholarly curiosity as well as the contemporary issues of sustainability, health, and energy show how even common chemical concepts can form the basis of the most cutting-edge and scientifically significant inventions. Metal complexes will undoubtedly continue to be essential to future chemistry, providing solutions for materials science, photovoltaics, medicine, and environmental protection as the field continues to discover new emergent behavior and applications from these compounds.

Opportunities for education outside of traditional chemistry curricula are offered by metal complexes. These substances serve as excellent examples for conversations about the relationship between structure and property, the applicability of quantum mechanical concepts to actual systems, and the way that basic scientific research can result in technology.

Their historical evolution serves as a crucial teaching tool for students studying all scientific fields, showing how scientific knowledge is developed through a synthesis of experimental observation, theoretical understanding, and technological advancement. The aesthetic aspect of metal complexes should also be highlighted. Many of these substances have captivated chemists and non-chemists alike with their vivid colors and amazing crystal forms.

The compounds' aesthetic appeal is emphasized by the deep green hue of some chromium arene complexes, the orange crystals of ferrocene, and the yellow needles of ruthenocene. Metal complexes are now common themes in chemical art and visualization due to these aesthetic qualities, adding to their scientific importance by more effectively showcasing chemistry's beauty to a larger audience. For this reason, such


compounds made of π -metal species are named as π -metal clusters & classification is implemented to recognize crystal types. η^n is the classical haptic notation, specifying the span of contiguous atoms in the ligand that interacts with the metal, although when the coordination is more complex hyphenation becomes less helpful & one must use other descriptors. Multiple coordination modes may need to be specified at the same time in the specific case of multinuclear complexes with bridging ligands.

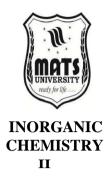

These complexes' great structural diversity necessitates a methodical approach to their naming and labeling. encourage the scientific community to communicate effectively. The characterization of metal complexes has significantly improved due to advancements in analytical techniques. Special techniques like X-ray absorption spectroscopy, Mossbauer spectroscopy, or electron paramagnetic resonance can provide detailed information on the electronic structure and bonding when used in conjunction with traditional techniques like NMR and infrared spectroscopy.

Modern mass spectrometry techniques help identify reaction intermediates and provide information on complex mixtures. Computational methods are used in conjunction with these experimental approaches to help interpret experimental data and predict spectroscopic signatures. In fact, metal complexes are becoming increasingly relevant in industry, with applications that go well beyond traditional sectors. These substances are also utilized in electronics to create conducting polymers, organic light-emitting diodes, and other materials. They are employed in environmental technology as pollutant sensors and in remediation catalytic processes. They support hydrogenation and other modifications in the manufacturing of edible oils and other items used in the food industry.

This expanding list of uses demonstrates the wide range of technological domains in which these compounds find use. Technologies based on metal complexes have a big economic impact. These organizations enable catalytic-mediated reactions that yield valuable products worth billions of dollars annually, such as fine chemicals, polymers, and medications. Given the efficiency gains and waste reductions brought about by metal complex catalysis in comparison to related methodologies, this translates into significant cost savings and environmental benefits. The economic impact will only increase as these technological advancements continue, particularly in high-value industries like sustainable energy technologies, advanced materials, and precision medicine.

Metallo complex chemistry is found all over the world, and the work produced and reviewed here reflects both new and established trends that are patterned after the field's development. Although North America, Europe, & Japan have historically been leading countries in this field, much of the research is now also being

conducted in China, South Korea, India, & other emerging scientific countries. By reaching out to new locations, this geographical diversity brings fresh ideas, techniques & usability, which fosters advancement & exploration. Much of the progress made in this area is made by international collaboration that combines complementary expertise & resources. The context of culture & society in which metal π -complex chemistry develops is also relevant. The direction and pace of research in this area are influenced by a number of factors, including funding priorities, regulatory frameworks, public attitudes toward chemistry, and environmental expectations. For instance, there is now more interest in earth-abundant metals as a result of the growing emphasis on sustainability, environmentally innocuous procedures.


Similarly, in response to societal demands and the difficulties confronting the healthcare industry, applications pertaining to health have surfaced. Placing the changing terrain of metal complex chemistry (or lack thereof) in these broader contexts will be beneficial. Because it makes us think about what we mean by chemical bonding, how structure relates to characteristics, and where the boundaries of chemical disciplines lie, metal complex chemistry also has philosophical significance. These findings upend basic bonding and reactivity models, clarifying the minute details that influence chemical behavior.

Additionally, they are a quintessential illustration of emergent traits, which manifest in specific atomic configurations. & electrons & how basic physical laws can give rise to complex functions. With the development of new educational technologies and ideas from cognitive science, the field of teaching metal complex chemistry is constantly changing.

Tools for virtual and augmented reality facilitate the visualization and manipulation of three-dimensional structures, enhancing students' intuition for spatial relationships and bonding patterns. Using problem-based learning techniques is one pedagogical method where students are expected to apply the concepts of metal complex chemistry to real- world situations while developing their analytical and critical thinking abilities. Peer teaching and discussion can strengthen understanding and appreciation, encourage retention, and offer priceless formative assessment in a collaborative learning setting, appreciate and comprehend ing the history of metal π complex discoveries provides insight into the human aspects of science.

The serendipitous finding of ferrocene is a good example of how science often involves surprises, missteps, & rethinking. The social dynamics of groups of scientists has been elucidated through studies of the competitive & collaborative relationships between research groups focused on metal π complexes. These different historical contexts inform our appreciate and comprehend of how chemical knowledge is produced & changes over time.

Similarly, the judiciousness regarding the research & implementation of metal π complexes can also be pondered on ethical grounds. Concerns regarding resource consumption, environmental consequences & potential misapplications of these technologies are raised in different contexts. Ethical questions around, & hence the responsible development & use of metal π complex technologies must recognize the trade-off between actors that may be exploited for profit & the altruism that scientists have to partake on an equal basis with respects stemming from harmful consequences, whether practical or not. Transparent engagement on both the capabilities & limitations of these technologies help further ethical decision-making.

Summary

Metal π complexes are coordination compounds where metals bond with ligands containing π -electron systems such as alkenes, alkynes, arenes, and CO. Their bonding is explained by the Dewar–Chatt–Duncanson model, involving both σ -donation from ligand π orbitals to the metal and π -backbonding from filled metal d-orbitals to ligand π^* orbitals. Classic examples include Zeise's salt [PtCl₃(C₂H₄)]⁻ and metal carbonyls. These complexes are fundamental in homogeneous catalysis, polymerization (e.g., Ziegler–Natta catalysts), hydrogenation, and biological systems. Their ability to activate π -bonds makes them essential in both theoretical organometallic chemistry and industrial applications.

Multiple Choice Questions (MCQs):

- **Q1.** A metal π complex is formed when:
- a) A metal bonds with π -electron systems
- b) A metal forms only σ -bonds
- c) A ligand undergoes oxidation
- d) A proton attaches to a ligand

Answer: A

- **Q2.** Zeise's salt, $K[PtCl_3(C_2H_4)] \cdot H_2O$, is an example of:
- a) Metal-alkyne complex
- b) Metal–alkene π complex
- c) Metal–arene π complex
- d) Metal carbonyl

Answer: B

- **Q3.** The Dewar–Chatt–Duncanson model explains:
- a) π -acceptor and σ -donor interactions in metal–alkene bonding \checkmark
- b) Redox properties of complexes
- c) Magnetic susceptibility
- d) Crystal field splitting

Answer: A

Q4. Which of the following ligands can form π complexes with metals?

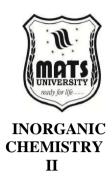
- a) NH₃
- b) H₂O
- c) C₂H₄
- d) CH₄

Answer: C

Q5. Metal π complexes have major applications in:

- a) Water treatment
- b) Catalysis and polymerization
- c) Electrolysis
- d) Magnetic resonance

Answer: B


Short Questions:

- 1. What is a metal π complex?
- 2. Give one example of a metal-alkene complex.
- 3. Explain the role of π -backbonding in stabilizing metal π complexes.
- 4. Mention one industrial application of metal π complexes.
- 5. Differentiate between σ -bonding and π -bonding in coordination chemistry.

Long Questions:

- 1. Define metal π complexes and describe the nature of metalligand interactions with examples.
- 2. Explain the Dewar–Chatt–Duncanson model for metal–alkene bonding.
- 3. Discuss the role of metal π complexes in catalysis, highlighting examples like Zeise's salt and organometallic catalysts.
- 4. How do π -acceptor ligands like CO and olefins stabilize metal complexes? Explain with MO considerations.
- 5. Describe the importance of metal π complexes in industrial and biological systems (e.g., polymerization catalysts, enzyme models).

UNIT 5.2

Metal Carbonyl Complexes

Metal carbonyl complexes are one of the most significant & oldest classes under the umbrella of organometallic compounds. Complexes of transition metals with bonded carbon monoxide the ligands have widespread applications in industrial catalysis, synthetic organic chemistry, & the pathway towards fundamental bonding theory. Inthis chapter, we investigate the construction of metal carbonyls, focusing on their structural characteristics, bonding characteristics, spectroscopic characteristics, synthetic strategies & important chemical reactions.

1. By direct reaction: Some of the mononuclear carbonyls can be prepared by the direct reaction of carbon monoxide with metal powder.

$$Ni + 4CO \longrightarrow Ni(CO)_{4}$$

$$1 \text{ atm}$$

$$200^{\circ}C$$

$$Fe + 5CO \longrightarrow Fe(CO)_{5}$$

$$200 \text{ atm}$$

$$150^{\circ}C$$

$$2Co + 8CO \longrightarrow Co_{2}(CO)_{8}$$

$$35 \text{ atm}$$

2. By reduction: One of the most widely used methods to synthesize metal carbonyls is the reduction of corresponding metal salts in the presence of carbon monoxide.

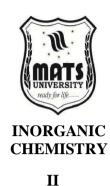
benzene diglyme,
$$100^{\circ}C$$

$$VCl_{3} +4Na +6CO -\rightarrow [(diglyme)_{2}Na][V(CO)_{6}] +3NaCl$$
 high pressure

$$2\text{CoI2} + 4\text{Cu} + 8\text{CO} \xrightarrow{200^{\circ}\text{C}} \text{Co2(CO)8} + 4\text{CuI}$$

$$200 \text{ atm}$$

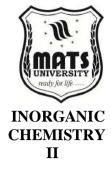
$$120 - 200^{\circ}\text{C}$$


$$2\text{CoCO3} + 2\text{H2} + 8\text{CO} \xrightarrow{----} \text{Co2(CO)8} + 2\text{H2O} + 2\text{CO2}$$

$$250 - 300 \text{ atm}$$

$$250^{\circ}\text{C}$$

$$\text{Re2O7} + 17\text{CO} \xrightarrow{-----} \text{Re2(CO)10} + 7\text{CO2}$$


$$350 \text{ atm}$$

In the last reaction, carbon monoxide is the reducing agent on its own.

2. By reduction: One of the most widely used methods to synthesize metal carbonyls is the reduction of corresponding metal salts in the presence of carbon monoxide.

In the last reaction, carbon monoxide is the reducing agent on its own.

3. From iron pentacarbonyl: Carbon monoxide ligands in Fe(CO)5 are labile and therefore can be used to synthesize other metal carbonyls.

$$MoCl6 + 3Fe(CO)5 \xrightarrow{110^{\circ}C} Mo(CO)6 + 3FeCl2 + 9CO$$

Ether

4. From metathesis reaction: Mixed-metal carbonyls can successfully be prepared via a metathesis reaction route as:

5. From metathesis reaction: Mixed-metal carbonyls can successfully be prepared via a metathesis reaction route as:

$$KCo(CO)4 + [Ru(CO)3Cl2]2 \longrightarrow 2RuCo2(CO)11 + 4KCl$$

5.2.1 The "Structure and Bonding in Metal Carbonyls"

Carbon monoxide molecules are coordinated to transition metal centres in metal carbonyl complexes. The unprecedented nature of these compounds has been pivotal in our appreciate and comprehend ing of chemical bonding, notably the synergistic interaction between metals & the ligands. The metal-carbonyl bond consists of two individual action that act simultaneously: a sigma donation from the carbon monoxide to the metal & a pi donation from the metal to the carbon monoxide. The CO molecule has a lone pair on the carbon. The lone pair then coordinates to an empty orbital on the metal center, forming a sigma bond in the sigma bonding component. This donation renders more electron density at the metal, resulting in a partial negative charge. At the same time metal d-orbitals fill & overlap the CO π^* antibonding empty orbital causing the pi back donation. This backdonation reinforces the metal-carbon bond, but loosens the carbonoxygen bond. This is a synergistic bonding model, & it is often called the Dewar-Chatt-Duncanson model, & it explains many of the characteristics of the metal carbonyls that we have observed. The extent of back-donation can have a profound impact on the strength of the C-O bond, as demonstrated by infrared spectroscopic studies. The frequency of C-O stretching in pure carbon monoxide is about 2143 cm⁻¹. Nonetheless, for carbonyl complexes with metals, this frequency is often lower (1850 $\leq \Psi$ 2120 cm⁻¹) due to the weakening of the C-O bond resulting from the metal-to-ligand back-donation.

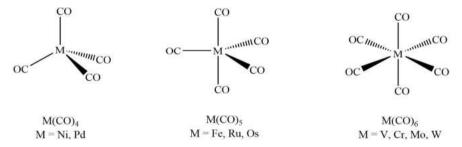
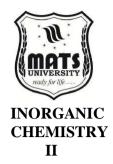
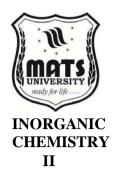
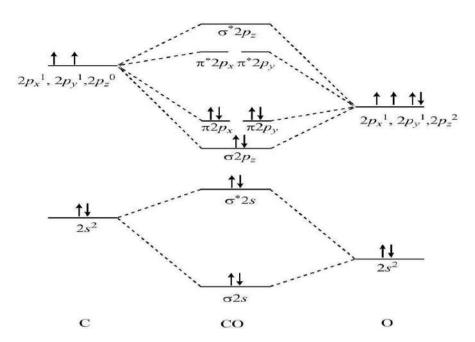




Fig. 5. 2. .1. The structures of some mononuclear metal carbonyls.

Metal carbonyls display a wide range of geometrical arrangements, which are mainly dictated by the electronic and steric characteristics of the metal atom at the centre. Common geometric shapes of simple mononuclear carbonyls, such as Ni(CO)4, Fe(CO)5, & Cr(CO)6 reveal tetrahedral, trigonal bipyramidal, & octahedral configurations, respectively. These are apparently all consistent with the so-called 18 electron rule of organometallic chemistry, which proposes that transition metal complexes have a tendency to approach total electrophytic configurations with 18 valence electrons (like the noble gases). This additional structural complexity is achieved in binuclear & polynuclear metal carbonyls by the presence of metal-metal bonds & bridging carbonyl the ligands. In such systems, carbonyl the ligands assume terminal, doubly-bridging (μ_2) or triply-bridging (μ_3) conformations. For example, Fe₂(CO)₉ has three bridging carbonyls & six terminal carbonyls, while Fe₃(CO)₁₂ has both terminal & bridging carbonyls in its triangular metal framework. Metal carbonyls are good model systems to get information about the nature of bonding from the bond length. Typical M-C bond lengths in terminal carbonyl the ligands range from 1.8 to 2.0 Å, whereas C-O bond lengths are ca. 1.15 Å (this

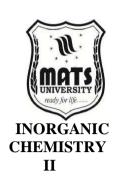

is somewhat longer than the 1.128 Å length seen in free CO). The corresponding bridging carbonyls have longer M-C bonds (2.0–2.3 Å) & even longer C-O bonds (1.16–1.20 Å), indicating less pi backdonation to each CO ligand.

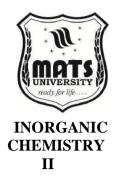
OC
$$\frac{OC}{OC}$$
 $\frac{OC}{OC}$ $\frac{OC}{OC}$ $\frac{OC}{OC}$ $\frac{CO}{CO}$ $\frac{CO}{CO}$ $\frac{CO}{CO}$ $\frac{CO}{CO}$ $\frac{CO}{CO}$ $\frac{M}{M}$ $\frac{M$

Figure - 5. 2..2 The structures of some binuclear metal carbonyls.

The stability and reactivity of metal carbonyl complexes are chiefly determined by electronic factors. Carbonyls of metals in low oxidation states (especially d⁶, d⁸ & d¹⁰ configurations) are the most stable because of their highest ability for pi back-donation. This is a significant limitation, in that higher oxidation states generally impart lower stability on carbonyl complexes, due to decreasing electron richness of the metal centers, & therefore, lower ability for back- donation. Coordination numbers in metal carbonyls are nicely described by the 18-electron rule. The coordination number is varied to achieve the 18electron configuration, since each CO ligand donates 2 electrons to the metal's valence shell. That means Ni(0) (10 valence electrons) coordinates with four CO the ligands (8 e⁻) \rightarrow 18 e⁻, Fe(0) (8 valence electrons) needs five CO the ligands (10 e-). However, there are exceptions to the 18-electron rule, especially for the early transition metals & out for some of the 2nd & 3rd row transition elements. So for example, V(CO)₆ is a 17-electron complex that is remarkably stable despite being a radical. Such deviations emphasize the intricate balance of electronic & steric influences on the stability of metal carbonyls.

The bonding model in metal carbonyls (for the bonded species detailed in eqs 3 & 5) also applies to other π -acceptor the ligands (e.g., isocyanides (RNC), carbon disulfide (CS₂), & nitric oxide (NO)), which also participate in such synergistic bonding interactions. This paradigm has been enormously useful in interpreting a wide variety of organometallics, well beyond simple carbonyls. Another way to describe appreciably bonding interactions is through crystal field theory. Since these the ligands are strong field the ligands, they may greatly split d-orbitals, leading to low-spin complexes for most of the metal carbonyl complexes. The use of such electronic arrangement is a necessary condition for exhibiting the diamagnetic property in many of these metal carbonyls, so that they can be examined by nuclear magnetic resonance spectroscopy.




Fig- 5.2 .3 The first generation molecular orbital diagram of carbonyl ligan

5.2.2 Spectroscopy of Metal Carbonyls in Different Ways

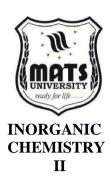
Infrared spectroscopy is an invaluable analytical tool for characterising carbon complexes of transition metals. These compounds' distinct carbon-oxygen stretching vibrations usually result in strong absorption bands in the infrared spectrum between 1850 and 2120 cm2, which can be easily identified from other typical functional groups. This spectroscopic signature makes it easier to screen for carbonyl ligands and provides crucial details about their bonding environment. The degree of metal-to-ligand back donation can be directly determined by looking at the position of the CO stretching frequency. The antibonding orbitals of CO back populate as donation increases, weakening the C-O bond and reducing the stretching frequency.

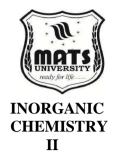
Because of this relationship, the electronic properties of the metal center can be investigated using infrared spectroscopy. Therefore, while electron-poor metals have frequencies that are higher than those of free CO, electron-rich centers can have good back-donation and correspondingly lower CO stretching frequencies. The frequency of CO stretching in metal carbonyl complexes is influenced by a variety of factors.

The back-donation ability is strongly influenced by the metal's oxidation state; lower oxidation states will generally exhibit lower stretching frequencies as a result of the increased back-donation. It is also well known that other ligands can affect CO stretching bands through steric and electronic effects.

Electron donating the ligands increase electron density at the metal center, thus promoting back-donation to CO and reducing the stretching frequency. In contrast, electron-withdrawing the ligands have an opposite effect. Terminal & bridging carbonyl the ligands boast unique spectroscopic signatures. Terminal COs generally show stretch frequencies from 1850 to 2120 cm⁻¹, whereas bridging carbonyls absorb at lower frequencies (1700-1860 cm⁻¹) where decreasing bond order leads to lower force constants. Triply-bridging carbonyl the ligands exhibit even lower stretching frequencies sometimes below 1700 cm⁻¹. These spectroscopic distinctions allow for structural elucidation of intricate polynuclear metal carbonyls. With the new quantum numbers defined & the related symmetries imposed, we turn to group theory, which gives a very powerful framework to analyse the vibrational spectra of the metal carbonyls. The frequency & number of CO stretching bands provide information on the symmetry of the molecule, enabling the symmetry of carbonyl the ligands to be deduced. For instance, octahedral M(CO)₆ complexes have only a single IRactive band due to their high symmetry (Oh point group), in contrast with the ligands of lower symmetry, e.g. Fe(CO)₅ (D3h) leading to multiple bands.

Raman spectroscopy, that is primarily sensitive to changes in polarizability, complements infrared analysis in that it detects vibrations that are, for symmetry reasons, infrared-inactive. This is the so-called mutual exclusion rule; vibrations that are active in Raman spectroscopy must be inactive in infrared spectroscopy, & vice versa, in centrosymmetric molecules. Yes, combined infrared & Raman studies permit an exhaustive vibrational analysis & are particularly useful for high-symmetry metal carbonyls. Variable-temperature infrared spectroscopy allows monitoring of dynamic processes in metal carbonyl complexes. For example, intramolecular carbonyl exchange in Fe(CO)₅ is an example of fluxional behavior, which leads to temperature-dependent spectroscopic changes. At low temperatures, separate absorption bands are observed from distinct CO environments, while at higher temperatures exchanges speed up & bands coalesce. Additional structural information is obtained from isotopic labeling experiments in which ¹³C- or ¹⁸O-enriched carbon monoxide has been used. Replacing ¹²C by ¹³C results in a downshift of the CO stretching frequency by about 40 cm⁻¹ (to lower frequencies), given the increase of the reduced mass of the oscillator. These isotopic changes assist in assigning complicated vibrational spectra & clarifying reaction mechanisms involving carbonyl the ligands.

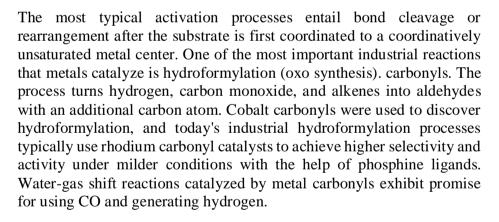

The force constant of the C-O bond (obtained with the stretching frequency) measures the strength of a bond & is related to the extent of back-donation of π electrons from the metal atom to the carbinol group. Typical force constants vary from 16-17 ×10⁵ dyne/cm for


terminal carbonyls up to $14\text{-}15 \times 10^5$ dyne/cm for bridging carbonyls, compared to $(18.5 \times 10^5 \, \text{dyne/cm}$ for free CO. These are quantitative measures of back-donation effects. Metal carbonyl complexes where more than one carbonyl acts as a ligand show coupling of individual CO stretching vibrations, leading to symmetric & antisymmetric stretching modes. These coupled vibrations create distinctive patterns of bands that depend on the geometric arrangement of the carbonyl the ligands. For example, cis-M(CO)₂ fragments usually show two bands, whereas trans-M(CO)₂ units show a single band. Density functional theory calculations of metal carbonyls have also become more popular for vibrational spectrum interpretation and prediction.

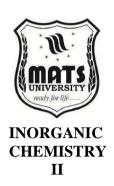
These computational techniques help with the assignment of challenging problems and frequently closely match experimental frequencies. spectra, especially for unstable or novel carbonyls that are challenging to experimentally characterize. Following specific reactions with metal carbonyls is another application for infrared spectroscopy. For instance, when the complex's symmetry and electronic properties change, substitution reactions cause signature changes in the CO stretching pattern. These make it possible to track the progress of reactions and examine mechanistic evolution. Vibrational methods have been forced into the domains of metal carbonyls adsorbed on surfaces by SEIRAS and ATR techniques. These methods are particularly helpful when studying surface-bound intermediates and heterogeneous catalysts in CO activation catalytic contexts.

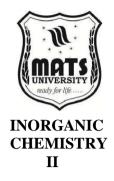
Preparations and Significant Reactions

The synthesis of metal carbonyl complexes takes place using a variety of methods from direct carbonylation of metals to reduction of metal salts in the presence of CO at high pressure. Over decades of investigation, these preparative avenues have been honed, providing reproducible methods to obtain a diverse range of carbonyl complexes. One of the earliest & simplest synthetic methods is the direct reaction of finely powdered metals with carbon monoxide at high temperature & pressure. Nickel tetracarbonyl, Ni(CO)₄, was initially synthesized by Ludwig Mond in 1890 by the direct carbonylation of metallic nickel under atmospheric pressure & relatively moderate temperature. This process, called the Mond process, became the basis for the industrial purification of nickel. Similar direct carbonylation methods yield iron pentacarbonyl [Fe(CO)₅] & chromium hexacarbonyl [Cr(CO)₆], but these often require more rigorous conditions (150-200 °C & 50-200 atm pressure). Further, reductive carbonylation provides complementary synthetic pathway that can accommodate metals that are not easily carbonylated via direct reaction. This method depends on the reduction of metal salts or oxides in the presence of carbon monoxide but is often supplemented by other reducing agents. One example is molybdenum hexacarbonyl [Mo(CO)6], which can be prepared by reducing molybdenum chloride with aluminum powder at



CO pressure. Manganese carbonyl compounds are typically prepared by reduction of manganese(II) compounds in the presence of CO and a suitable reducing agent.

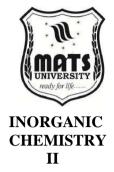

Milder synthetic alternatives for delicate systems are photochemical & thermal carbonylation approaches. Ultraviolet irradiation of transition metal complexes in the presence of carbon monoxide (CO) allows for ligation of CO to the complex by promoting ligand substitution, a common route to the formation of other carbonyl the ligands, which was previously only low yielding or inaccessible. To show the effectiveness of these methods, preparation of mixed-ligand carbonyl complexes such as (n⁵-C₅H₅)Mn(CO)₃ is highlighted in section E, where photolysis of manganese pentacarbonyl bromide in the presence of cyclopentadienyl anion generates the resulting compound. 5965 Metal carbonyl anions, commonly known as carbonylate anions, are an important class of reactive intermediates in carbonyl chemistry. Example compounds, namely [Fe(CO)₄]²⁻ & [Mn(CO)₅]⁻, can be synthesized from the respective neutral carbonyls by reduction with strong reducing agents such as sodium metal or sodium naphthalenide. Functionalized carbonyl complexes & heteronuclear metal clusters can also be obtained by chemical oxidation of carbonylate anions which act as ubiquitous nucleophiles. Mononuclear precursors in controlled thermal decomposition24 or photolysis25 procedures have also been used to prepare both binuclear & polynuclear metal carbonyls. For instance, the reactive iron species formed by the photolytic decomposition of iron pentacarbonyl is trinuclear Fe₃(CO)₁₂, whereas controlled thermolysis provides Fe₂(CO)₉. These processes generally happen via CO ligand loss leading to coordinatively unsaturated metal centers that cluster to yield metal-metal bonds.


Insertions of carbon monoxide are a foundational reaction in metal carbonyl chemistry with important consequences for industrial processes. In these processes CO condenses with metal-element bonds, giving rise to new functionalized carbonyls. CO insertion into metalalkyl bonds, for example, forms acyl complexes, which are important intermediates in hydroformylation catalysis. CO can similarly insert into metal-hydrogen bonds to give formyl complexes, a central theme syngas conversion chemistry. Another important class of transformations is the substitution reactions of metal carbonyls. Various donor the ligands appropriate for coordination like phosphines, amines, or N-heterocyclic carbenes can selectively replace carbonyl the ligands. Such substitutions usually occur through one of several dissociative mechanisms, especially for 18-electron species, where initial CO dissociation generates a reactive 16-electron complex. Both the electronic and steric characteristics of the incoming ligand, & the electron density at the metal center determines the rate & selectivity of substitution. The migratory insertion reaction, which involves the

combining of a CO ligand & another ligand on the metal center, features prominently in many catalytic cycles. In the canonical case, a metalalkyl entity performs migratory insertion with a neighboring CO ligand, resulting in a metal-acyl complex. This fundamental change underlies industrial reactions such as Monsanto acetic acid synthesis & hydroformylation catalysis. The reactivity of low-valent metal carbonyls is greatly broadened by oxidative addition reactions. In these conversions, at the reaction of a substrate that contains a covalent bond (H-H, C-H, C-X, etc.), the metal center increases its oxidation state, coordination number, & electron count by two. For example, halogens produce halocarbonyl species, but under the right circumstances, hydrogen can also produce metal hydride species. The microscopic opposite of oxidative addition is reductive elimination, which occurs when two ligands combine and depart from the metal center, thereby decreasing the coordination number and metal oxidation state. These kinds of changes are essential to catalytic cycles, which usually include the step where products are formed. For example, metal acyl complexes can liberate aldehydes or ketones by reductively eliminating a hydride ligand. Metal carbonyls are essential for stoichiometric activation of small molecules and catalysis. Under mild circumstances, carbonyls of low-valent metals activate carbon dioxide, oxygen, alkenes, alkynes, and dihydrogen.

Carbon monoxide and water combine in this process to produce hydrogen and carbon dioxide. Particularly in basic media and for applications in the hydrogen economy or the upgrading of synthesis gas, iron carbonyls are active for this transformation. The metal carbonyls exhibit a variety of carbonylation reactions, transferring groups of CO into natural substrates. The Monsanto acetic acid process, which uses a rhodium carbonyl catalyst to carbonylate methanol to acetic acid, is frequently used as an example in industrial settings. From a variety of organic substrates, carboxylic acids, esters, and amides can be produced chemistry. extending related carbonylation Functionalized organometallics are produced when metal carbonyls exhibit electrophile reactivity. Electrophile reactivity of metal carbonyls leads to functionalized organometallics. For example,

acylium ions react with metal carbonyls to give acylmetal products. Likewise, alkylation of the carbonylate anions affords alkyl metal complexes. which may be precursors to further transformations. Another relevant reaction pathway is nucleophilic attack on coordinated CO the ligands. The back-donation from the metal-insert center increases the electrophilicity of the CO carbon atom, & thus yields this active intermediate, which can easily undergo nucleophilic attack. Using this reactivity, one can generate metalloacyl species and, subsequently, C-C bond forming reactions of relevance to organic synthesis. CO is extracted from organic substrates, typically aldehydes, by transition metal catalysts in decarbonylation reactions. This reaction, which has been used to assemble complex molecules, works particularly well with rhodium and iridium carbonyls. The same catalytic systems are commonly used in the reverse process of carbonylation when CO pressure is present. Photochemical reactions occur when CO dissociates from metal carbonyls to form coordinatively unsaturated intermediates. Numerous transformations, including ligand substitution, oxidative addition, and small molecule activation, are the photogenerated species.In mild possible for photochemistry enables selective and detailed access to reactive intermediates. thermally inaccessible or at least transformations. Clusters of metal carbonyls show a wide range of structural changes and rearrangements. These processes can be classified into core expansion & contraction processes, which involve the addition or loss of metal atoms to the cluster(s) & skeletal rearrangements, which involve a geometrical rearrangement of metal atoms retaining the same nuclearity. Such dynamic behavior underscores the weaker bonding in metal clusters, as well as their potential for catalysis.


Controlled thermochemical reduction of metal nanocrystals are accessible via metal carbonyls. This method, called metal-organic chemical vapor deposition (MOCVD), is used in materials science & microelectronics. Many metal carbonyls are highly volatile, thus providing an ideal source for metals that can be deposited at a controlled rate to produce high-purity deposits. Reactions of Metal Carbonyls with Alkenes/Alkynes: π-complexes & metallacycles These conversions frequently generate catalytic cycles for alkene hydrogenation, isomerization, & polymerization processes. The Pauson-Khand reaction is also an example of synthetic utility; using a metal carbonyl (usually Co₂(CO)₈), cycloaddition between an alkyne, an alkene, & carbon monoxide give cyclopentenones. The metal carbonyl hydrides that are key intermediates in hydrogenation & hydroformylation catalysis. Such hydride complexes can participate in

further reactivity including the insertion of unsaturated substrates as well as reductive elimination processes that close catalytic cycles for the functionalization of organic substrates. Most metal carbonyls are protonated to give hydride complexes and, at least in some cases, molecular hydrogen. 2 & 3: in metal carbonyl complexes, the basicity of metal centers is directly proportional to their electron density, which varies depending on the metal & co-the ligands involved. The well known acid-base reactions outline the electronic characteristics of metal carbonyl complexes, as well as their possible catalytic action.

It has also been observed that metal carbonyls can participate in electron transfer reactions resulting in radical species with unique reactivity. For example, one-electron reduction can lead to 19-electron radical anions, whereas oxidation may give rise to 17-electron radical cations. Oddelectron species often show increased substitution kinetics compared to the 18-electron precursors, known as the radical mechanism of substitution. Beyond terminal and bridging modes of bonding, carbon monoxide coordination in metal complexes leads to semi-bridging interactions & to uncommon bonding geometries. Semi- bridging carbonyls where the CO ligand predominantly interacts with a single metal center, but in addition has a weaker bond to a second metal. These subtle bonding variations control reactivity & are prominent in the mechanisms of reaction involving multinuclear species. Introduction 3 Surprisingly, metal carbonyls are precursors for organometallic reagents such as iron carbonyl diene complexes. The formation of complexes such as Fe(CO)3(diene) by the reaction of Fe(CO)5 with conjugated dienes have been used as stoichiometric reagents in organic synthesis, especially for stereoselective transformations of unsaturated systems, appreciate and comprehend ing surface interactions of metal carbonyls is important for heterogeneous catalysis. These molecular metal carbonyls and the surface chemisorption of CO on metals exhibit many similarities, including nearly identical binding mechanisms and infrared spectroscopic properties. Surface science methods can be used to investigate these surface-bound species in depth, offering a link to both heterogeneous and homogeneous catalysis. The reactivity of metal carbonyls with CO has garnered interest as a means of using CO. In reactions that lead to insertion into metal-element bonds or reduction to carbon monoxide, formate, or methanol, certain low- valent metal carbonyls are known to activate CO. These changes offer encouraging avenues for turning this greenhouse gas into chemicals with added value. Metal carbonyls undergo the C-H activation process, which entails the cleavage of unreactive C-H bonds at the metal center.

This addressable reactivity provides a route to hydrocarbon functionalization & has important consequences for synthetic methodology & studies of fundamental bond activation

mechanisms. Metal carbonyls are also readily photolytically activated to produce very reactive fragments that readily insert into C-H bonds.

This indicates that the metal carbonyls undergo fluxional behavior that can also inform on their dynamic structures. However, intramolecular rearrangements, such as the Berry pseudorotation in Fe(CO)₅, make certain positions equivalent on the NMR timescale, even though they are geometrically distinct. & that interplay impacts reactivity patterns & spectroscopic characteristics, particularly in variable-temperature NMR experiments. In summary, metal carbonyl complexes lie at the foundation of organometallic chemistry, displaying abundant structural diversity, unusual spectroscopic characteristics, & diverse reactivity. Their distinctive bonding characteristics have deepened our fundamental knowledge of chemical bonding, whereas their reactions underpin many industrially important catalytic processes. These compounds range from simple homoleptic carbonyls that were first discovered in the late 19th century to complex mixed-ligand & cluster species that are studied to this day, motivating innovations in catalysis, materials science, & synthetic methodology. Through the interlinked study of metal-carbonyl species by experiment & theory, the complexity & richness of such interactions have been revealed, making metal-carbonyls a paradigmatic archetype for the constantly adapting & sophisticated field of coordination chemistry.

Summary

Metal π complexes are coordination compounds where metals bond with ligands containing π -electron systems such as alkenes, alkynes, arenes, and CO. Their bonding is explained by the Dewar–Chatt–Duncanson model, involving both σ -donation from ligand π orbitals to the metal and π -backbonding from filled metal d-orbitals to ligand π^* orbitals. Classic examples include Zeise's salt [PtCl₃(C₂H₄)]⁻ and metal carbonyls. These complexes are fundamental in homogeneous catalysis, polymerization (e.g., Ziegler–Natta catalysts), hydrogenation, and biological systems. Their ability to activate π -bonds makes them essential in both theoretical organometallic chemistry and industrial applications.

Multiple Choice Questions (MCQs):

- **Q1.** A metal π complex is formed when:
- a) A metal bonds with π -electron systems
- b) A metal forms only σ -bonds
- c) A ligand undergoes oxidation
- d) A proton attaches to a ligand

Answer: A

- **Q2.** Zeise's salt, $K[PtCl_3(C_2H_4)] \cdot H_2O$, is an example of:
- a) Metal-alkyne complex
- b) Metal–alkene π complex
- c) Metal–arene π complex
- d) Metal carbonyl

Answer: B

- **Q3.** The Dewar–Chatt–Duncanson model explains:
- a) π -acceptor and σ -donor interactions in metal–alkene bonding \checkmark
- b) Redox properties of complexes
- c) Magnetic susceptibility
- d) Crystal field splitting

Answer: A

Q4. Which of the following ligands can form π complexes with metals?

- a) NH₃
- b) H₂O
- c) C₂H₄
- d) CH₄

Answer: C

Q5. Metal π complexes have major applications in:

- a) Water treatment
- b) Catalysis and polymerization
- c) Electrolysis
- d) Magnetic resonance

Answer: B

Short Questions:

- 1. What is a metal π complex?
- 2. Give one example of a metal-alkene complex.
- 3. Explain the role of π -backbonding in stabilizing metal π complexes.
- 4. Mention one industrial application of metal π complexes.
- 5. Differentiate between σ -bonding and π -bonding in coordination chemistry.

Long Questions:

- 1. Define metal π complexes and describe the nature of metalligand interactions with examples.
- 2. Explain the Dewar–Chatt–Duncanson model for metal–alkene bonding.
- 3. Discuss the role of metal π complexes in catalysis, highlighting examples like Zeise's salt and organometallic catalysts.
- 4. How do π -acceptor ligands like CO and olefins stabilize metal complexes? Explain with MO considerations.
- 5. Describe the importance of metal π complexes in industrial and biological systems (e.g., polymerization catalysts, enzyme models).

UNIT-5.3

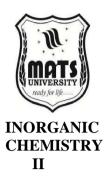
Transition Metal-Nitrosyl Complexes

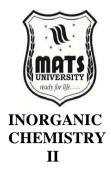
Introduction Transition metal-nitrosyl complexes comprise one of the most intriguing & thoroughly explored aspects of coordination chemistry, with important implications ranging from the elementary theories of chemical bonding to technological applications in catalysis, materials science, & biology. One of the most versatile the ligands in terms of coordination chemistry is the nitrosyl ligand (NO) with respect to transition metals, owing to its dynamic coordination behaviour, which poses a persistent challenge to classical bonding concepts. The conflicting electronic attributes of the NO group, & in particular, its non-innocent nature, engender unique structural & reactivity trends that set metal-nitrosyl chemistry apart from other branches of coordination chemistry. Metal-nitrosyl complexes have been the focus of extensive theoretical and experimental studies of bonding since the advent of coordination chemistry. The initial description of IVCDR was relatively simple, but the astronomical development of spectroscopic techniques & computational power has allowed to thoroughly investigate the IVCDR region.

The nitrosyl ligand, with its unpaired electron, is capable of several different coordination modes to transition metals, with varying geometric & electronic parameters. The two main coordination modes are linear (M-N-O) & bent (M-N-O)

geometries, with essentially distinct electronic interactions between the metal & the NO ligand. In the linear geometry characteristic of {M-NO}^6 complexes (in accordance with Enemark-Feltham nomenclature), the metal-nitrogen-oxygen angle is near 180° & the bonding is commonly described in terms of a formalism wherein NO^+ (nitrosonium ion) donates to a metal center. This gives rise to a configuration where filled orbitals $d\pi$ of the metal interact with empty π^* antibonding orbitals of NO⁺, leading to a synergy such as that which exists in metal complex carbonyls. This π -acceptor strength of the NO⁺ ligand induces substantial electron density back donation to the metal, resulting in stabilization of lower oxidation states of metals in complexes. Linear nitrosyl complexes consistently exhibit shorter M-N bond distances than the corresponding bent complexes in X-ray crystallographic studies, consistent with the stronger binding elements associated with multiple bond character in these systems.

In contrast, bent nitrosyl complexes, analogous to $\{M\text{-NO}\}^8$ systems, commonly exhibit metal-nitrogen-oxygen angles between 120° & 140° . In such complexes, the metal has more complicated bonding than just the metal reacting with NO^- (and NO2^-). The observed bent geometry results from the electron-withdrawing functionalization of the ligand nitrogen atom, which favors population of the 9^* antibonding orbitals of the NO ligand & consequently lowers the bond order of the N-O bond & generates a lone pair on the nitrogen atom. The electronic nature gives rise to a almost exclusive σ -donation from the nitrogen lone pair to the metal and a weaker π -acceptor capacity than that of the linear coordination mode. Bent nitrosyl complexes are therefore more common in complexes with a metal centre in an oxidation state that is higher than unity, which is able to accommodate the additional electron density from a NO^- ligand.


The difference between the linear and bent geometries, however, is an idealized view of metal-nitrosyl bonding. Most importantly however, many complexes do have an intermediate angle which manifests a continuum of electronic states between the NO^+ & NO^formulations. The Enemark-Feltham notation, where metal-nitrosyl complexes are termed {M(NO)x}^n (in which case, n is equal to the sum of the metal d electrons & the π^* electrons contributed by the NO the ligands), has proven to be the most effective way to conceptualize the electronic structure without forcing a formal assignment of oxidation states to the metal & nitrosyl portions of the molecule. Emphasizing the total electron count of the metal-nitrosyl unit, this approach recognizes the lack of a well-defined oxidation state in such elaborate ligand coordination spheres. In addition to the simple linear & bent coordination modes, nitrosyl the ligands can bond via more complex arrangements. Bridging nitrosyls, in which the NO group tethers two or more metal centers together, are structurally diverse with μ-η1:η1-NO (bound through N to both metals), μ-η1:η2- NO (bound through N to one metal & side-on to the other), & μ - η 2: η 2-


NO (side-on bound to both metals) geometries. This bridging behavior is important in polynuclear metal complexes & cluster compounds & can be a significant structural contributor in catalytic intermediates. Advanced spectroscopic techniques play an important role in the characterization of metal-nitrosyl complexes. Infrared spectroscopy gives insights into the nature of the M-NO bonding, & the NO stretching frequency (ν NO) is a sensitive probe of the electronic state of the nitrosyl ligand. Theo Organic Nitrosyl Complexes

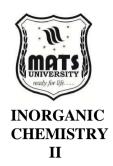
The chemical structure of a nitrosyl complex consists of one or more nitrosyl the ligands (NO+), a N + O bond, which forms when N, Ofrom a nitrogen atom in a nitrosyl ligand donate oxygen to the nitrogen atom of another nitrosyl ligand, & the N-O bond length of nitrosyl complexes are characteristic of these complexes. Linear nitrosyl complexes generally show higher v NO values (1650-1900 cm^-1) than bent nitrosyl complexes (1400-1650 cm^-1) due to the N-O bond strength in the former being stronger than in the latter. X-ray crystallography is still the gold standard for elucidating the geometric parameters of metal- nitrosyl complexes, though the electronic structure & oxidation states can also be deduced using complementary techniques such as electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), & X-ray absorption spectroscopy (XAS). Understanding and appreciating metal-nitrosyl bonded interactions has been made much easier by DFT calculations and more complex ab initio techniques. The factors influencing preference for linear versus bent geometries have been clarified by these theoretical tools. the energetics of various coordination modes and the properties of the metal-nitrosyl bonding orbitals. Similar to this, recent computational research has emphasized the significance of spin-orbit coupling and relativistic effects in heavy metal-nitrosyl complexes, which further complicate their electronic structure. After other ligands have been coordinated, the coordination sphere of meta-nitrosyl complexes can be structurally further varied. Although the nitrosyl ligand trans is largely responsible for this influence due to its scope effect, the nitrosyl moiety's linear geometry also significantly affects binding behavior and is in charge of the elongation of metal to ligand bonds within the metal-nitrosyl complex, which can even lead to the total loss of the the nitrosyl ligand is trans-bound to ligands. On the other hand, it has been demonstrated that the electronic and steric properties of different ligands can adjust the nitrosyl group's binding mode, offering a means of regulating the complex's reactivity and properties. The interaction between the nitrosy lligand and the chemical surroundings in the coordination environment, which can also be adjusted to maximize nearly any desired functional property, is what gives this system its versatility

5.3.2 Synthesis & Reactivity

The methods for the preparation of transition metal-nitrosyl complexes are extremely diverse, reflecting the varying coordination preferences of the nitrosyl ligand in the transition metal series. Direct reactions with nitric oxide gas are the simplest & most straightforward method, & this or similar routes have been primarily employed for metal complexes with open coordination sites or labile the ligands.

For example, the classical synthesis of sodium nitroprusside, Na₂[Fe(CN)₅NO] is performed by reacting sodium hexacyanoferrate(II) with sodium nitrite in an acidic environment, producing NO in situ that subsequently coordinates to the iron center. This direct methodology has been adopted in a range of metal systems, providing important information regarding the kinetics & thermodynamics of NO coordination. Other synthetic approaches rely on the use of nitrosyl transfer agents, which are able to transfer the NO group to a metal center without needing gaseous NO: the most widely used nitrosyl transfer reagents are nitrosonium salts (NO+X-, where X- are BF₄-, PF₆-, SbF₆-), organic nitrites (RONO), nitrosyl halides (NOX, where X is a halogen) or nitrous acid (HNO₂). Compared to NO gas reactions, this access offers a gentler, more regulated method of introducing the nitrosyl group along with generally higher selectivity.

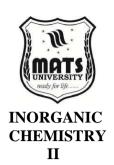

For example, nitrosonium tetrafluoroborate and ruthenium complexes react in acetonitrile to produce a easy access to ruthenium-nitrosyl species, which serve as general building blocks for additional synthetic development. Redox-based techniques comprise a second significant class of synthetic methods for metal-nitrosyl complexes. These procedures either depend on the oxidation of nitrogenous ligands (such as NH, NHOH, or NH) coordinated to the metal or on the reduction of nitrogen oxides (such as NO, NO, or NO) bound to a metal center. The reaction of metal complexes with nitrite salts under the right circumstances, in which nitrite is reduced to NO while remaining coordinated to the metal, is a typical touchpoint on the reduction pathway. Conversely, the oxidation pathway is demonstrated by the transformation of coordinated hydroxylamine into nitrosyl in certain complexes of iron and ruthenium.


Metal-nitrosyl species with distinct oxidation states or coordination geometries that might be challenging to obtain through straightforward coordination of NO are commonly accessible through these redox-based techniques. The synthesis of polynuclear metal-nitrosyl complexes presents an additional degree of difficulty and possibility. Often with the help of partial metallation reduction, controlled oligomerization involving the corresponding mononuclear precursors can provide access to bridging nitrosyl ligands. The selective coordination of NO or nitrosyl transfer agents to preformed polymetallic frameworks at specific metal sites is an additional strategy. The formation of heterometallic systems with bridging nitrosyls can be a challenging task, as control over the reaction conditions must be exerted to prevent disproportionation or rearrangement, but will grant access to materials with novel electronic

& magnetic characteristics resulting from metal-metal interactions mediated by the NO bridge.

In recent years, synthetic approaches to metal-nitrosyl complexes have increasingly focused on controlling the secondary coordination sphere—that is, the non-covalent environment that encompasses the metal-nitrosyl unit. These hydrogen bonding, π -stacking, & other supramolecular interactions can drastically alter the geometric & electronic characteristics of the coordinated nitrosyl, which can in turn affect its reactivity. The introduction of hydrogen bond donors which are positioned to interact with the oxygen atom of the nitrosyl ligand can for instance stabilize the bent coordination mode by accepting electron density from N-O π^* orbitals. These approaches are inspired by metalloenzymes containing metal-nitrosyl sites, where the protein microenvironment modulates the characteristics of the metal-NO unit for particular biological functions. The reactivity of transition metalnitrosyl complexes is remarkably diverse, involving nitrosyl ligandcentered transformations & metal-centered reactions modulated by the electronic characteristics of the nitrosyl. Indeed, as the NO ligand is redox non-innocent, much of this reactivity was underpinned by the ability of the nitrosyl to shuttle between NO+, NO•, & NO- forms to suit the electronic needs of the reaction. This versatility allows metalnitrosyl complexes to exhibit both one- & two-electron behavior to function as useful reagents in organic synthesis, catalysis, & materials chemistry. A direct nucleophilic attack at the nitrogen atom of the coordinated nitrosyl is a basic pattern of reactivity, particularly common for M-N-O complexes having a linear arrangement & with nitrosyl bearing substantial NO+ character. Nucleophiles including alcohols, amines, & hydride donors can add to the electrophilic nitrogen, forming derivative the ligands in the form of N-alkoxy, Namino, or N-hydroxy nitrosyls. For example, the transitions have been explored in-depth for nitroprusside and its related iron-nitrosyl systems, in which the nucleophilic addition products frequently exhibit unique spectroscopic features, showing greater stability than their parent nitrosyl complexes. The nucleophile reactivity is tunable by metal center & cothe ligands, granting spatial & kinetic control over the addition process.

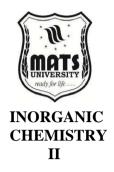
Less common is electrophilic attack at the oxygen atom of the nitrosyl ligand in complexes that favor the bent coordination mode, in accord with having a partial negative charge on the oxygen in the NO-formulation. This pattern of reactivity is seen for some late transition metal complexes in which Lewis acids or proton donors can coordinate to nitrosyl oxygen to facilitate N-O bond cleavage in suitable conditions. Susceptibility to electrophilic attack is directly proportional to the metal-nitrogen-oxygen angle, with more acute angles generally correlating with increased electrophile reactivity. Redox



transformations of metal-nitrosyl complexes represent an especially fertile realm of reactivity. Depending on the relative energy levels of their frontier orbitals, a reduction may be more advantageous for the nitrosyl ligand or the metal center. A significant red shift in the N-O is linked to the classic coordination mode, which transitions from linear to bent. stretching frequency when the nitrosyl ligand is reduced. Multiple reductions can result in coordinated nitroxyl (HNO) or even hydroxylamine (NHOH) derivatives. As an alternative, oxidation processes can cause bent nitrosyls to change into linear nitrosyls, and in more severe situations, they can cause nitrosyls to dissociate or change into coordinate nitro (NO) or nitrito (ONO) ligands. Strong models for biological nitrogen oxide metabolism and chemical nitrogen oxide abatement processes in industry are provided by the interconversion of these various nitrogen oxide species at metal centers.

A lot of attention has been paid to the photochemical reactions of metalnitrosyl complexes. particularly in the development of phototherapeutic agents and photoactive materials. For instance, photodynamic therapy, in which a controlled release of NO in biological systems can trigger desired physiological responses, uses irradiation with the appropriate wavelengths to cause NO to dissociate from the metal center. The kind of excited states that are accessible upon irradiation has a significant impact on the photochemistry of metal-nitrosyls, and the results vary significantly depending on whether MLCT, LMCT, or IL transitions are the chromophore's main driving forces.

However, time-resolved spectroscopic techniques provided valuable insights into the dynamics of these photochromic changes, such as information on short-lived intermediates along the corresponding reaction pathways and spin crossings verified by intersystem crossing between various spin states. Metalnitrosyl complexes have a variety of catalytic uses because of their redox properties, which allow them to react with small molecules like olefins, carbon monoxide (CO), and dioxygen (O). Nitrosyl oxidation to coordinated nitrite or nitrate occurs when it interacts with O; however, in certain situations, the resulting species is more complex because of N-O bond cleavage and reassembly. In these reactions, the metal's coordination site is in competition with CO, and the relative The winner is determined by the binding strengths of CO and NO. CO sensing platforms based on metalnitrosyl complexes, whose CO-M displacement of NO is accompanied by a detectable spectroscopic or electrochemical signal, have made use of this competitive binding. We would anticipate either straightforward coordination competition or more intricate changes from olefins, such as nitrosylation of the olefin or subsequent changes facilitated by the metal- nitrosyl unit.


Nitrosyl ligand transfer reactions involving migration of the NO group between metal centers constitute an important class of transformations with implications for synthetic applications & biological processes (1– 3). Multinuclear intermediates created when the nitrosyl bridges between the donor and acceptor metals before the transfer is complete may mediate these direct metal-to-metal transfers. Alternatively, the NO could dissociate and then recapture at another metal site to accomplish the transfer. (For instance, in systems where the metal- nitrosyl bond is relatively labile).

The relative NO affinities of the metals involved, the geometric constraints of the coordination environments, and any auxiliary ligands that have the ability to stabilize or destabilize the metal-nitrosyl bonds are some of the factors that control the thermodynamics and kinetics of nitrosyl transfer. Metal-nitrosyl complexes have been used in a variety of catalysis applications, including energy conversion, environmental remediation, and organic synthesis. Metal-nitrosyls serve as either reagents or catalysts for nitrosylation reactions in organic synthesis, which introduce the NO group into organic substrates with a certain level of selectivity Specifically, iron and ruthenium nitrosyl complexes have been found to be effective catalysts for the nitrosylation of Olefins, aromatic compounds, and activated C-H bonds. More precisely, metal-nitrosyl entities are important as intermediaries in the catalytic denitrification of nitrogen oxides (NO) to innocuous products (such as N), which is a paradigm that helps reduce air pollution.

Reduced metal-nitrosyl intermediates are frequently linked electrocatalytic nitrite reduction to ammonia, an energetically and environmentally significant transformation whose stability and reactivity dictate the transformation's overall efficiency and selectivity. Since nitric oxide has been recognized as a crucial signal transduction molecule in other physiological processes, the biological chemistry of metal-nitrosyl complexes has gained attention in recent years. Natural metalloenzymes found in bacteria, such as soluble guanylate cyclase (sGC) and nitric oxide synthase (NOS), as well as Higher eukaryotic heme proteins, such as myeloperoxidase (MPO), cytochrome P450, and guanylate cyclase, interact with NO to produce metal-nitrosyl species that either mediate the biological action of NO or are involved in its metabolism.

Synthetic metal-nitrosyl complexes are therefore useful models for these biological systems and can provide insight into the structural and electrical conditions that control NO binding and activation in the protein milieu. Additionally, metal-nitrosyl complexes designed to release NO when specific physiological Relevant conditions (such as low pH, altered redox atmosphere, and light irradiation) can be regarded as a promising

class of NO donor drugs that may be used as treatments for a variety of illnesses, ranging from cancer to cardiovascular disorders. Metal-nitrosyl complexes interact with biological targets beyond simple NO delivery. Some metal—nitrosyl complexes undergo transnitrosylation reactions, whereby the NO+ equivalent is transferred to biological thiols to generate S-nitrosothiols (RSNOs), which can function as endogenous NO carriers & storage reservoirs. The functional consequences of such reactivity are relevant to the therapeutic utility of metal-nitrosyl complexes, as well as to their potential toxicity, because excessive S-nitrosylation of protein thiols can alter normal cellular physiology. Metal-nitrosyl complexes represent an invaluable class of bioactive molecules that allow the specific targeting, regulation, & manipulation of endogenous - & post synthetically modified - metal:sulfur clusters whose intrinsic affinity for NO lies in the low micromolar range and thus can be readily modulated, making them excellent candidates for specific mediators of NO-dependent signaling pathways.

The advances in the chemistry of metal-nitrosyl complexes during the past decades have been greatly facilitated by new development of characterization techniques & theoretical frameworks. Methods like X-ray absorption spectroscopy (XAS) nuclear resonant or spectroscopy (NRVS) based on synchrotron radiation can give accurate insight into the electronic structure and vibrational characteristics of metalnitrosyl units even embedded in complex matrix such as proteins or heterogeneous catalysts. Direct observation of the dynamics photoinduced processes taking place in metal-nitrosyl systems (including reaction intermediates & energy dissipation pathways) is obtained using time-resolved spectroscopic techniques such as femtosecond infrared & ultraviolet-visible (UV-vis) spectroscopy. Computational studies, especially those involving multi configurational & relativistic calculations, have been increasingly employed to refine current knowledge on bonding & reactivity in metal-nitrosyl species & predict spectroscopic characteristics & mechanisms. Turning to future directions in metal-nitrosyl chemistry, there are several promising paths forward. Multinuclear metal-nitrosyl complexes with tunable electronic coupling between metal centers may provide both a platform for buildings such high-performance materials & a new class of compounds with unusual magnetic, optical, or conductive characteristics. Metal-nitrosyl units incorporated in metal-organic frameworks (MOFs) or covalent organic frameworks (COFs) would allow new strategies for gas separation, sensing & heterogeneous catalysis.

* Biocompatible scaffolds (proteins, peptides, nanoparticles, etc)) can be paired with metal-nitrosyl complexes to allow for specific targeting of NO release in therapy, potentially addressing the shortcomings of current NO donor systems. Despite this direct manifest, it also highlights the needs of investigating metal- nitrosyl chemistry not only in axiomata transition metals, but also in main group elements, lanthanides & actinides, which will yield unique bonding settings & reactivity trends. Overall, transition metal-nitrosyl complexes are a vibrant & dynamic area of research at the nexus of inorganic chemistry, materials science, catalysis, & biochemistry, These last finalized reactivity instincts when bonded to a nitrosyl ligand which may also represent a redox non innocent ligand & exhibit a non classical density of binding modes proving to showcase both basic & applied studies. Over recent years, our comprehension of the fundamental principles governing metal-nitrosyl systems has benefited from new synthetic methodologies, characterization techniques, & theoretical frameworks, opening new opportunities for the application of metal-nitrosyl systems in addressing issues from sustainable chemistry to human health. The new developments in metal-nitrosyl chemistry make an intriguing combination of scientific, technological & biomedical relevance, reflecting modern-day challenges.

Summary

Transition metal–nitrosyl complexes are compounds where nitric oxide (NO) coordinates to a metal center. NO is an ambidentate ligand that binds in two main ways: Linear (NO+ type): strong π -acceptor, stabilized by M \rightarrow NO backbonding. Bent (NO- type): weaker π -backbonding, more electron-rich metal center. The Enemark–Feltham notation (M-NO)n(M-NO)^n(M-NO)n is widely used to describe their electron count. These complexes are synthesized by reactions of NO with metal carbonyls, substitution of CO ligands by NO, or reduction of nitrites/nitrates. Their reactivity involves substitution, redox changes between NO+/NO-/NO- forms, and photochemical behavior. They are important in catalysis, biological systems (NO signaling), and environmental processes.

Multiple Choice Questions (MCQs):

- Q1. In transition metal-nitrosyl complexes, NO can coordinate as:
- a) Only linear ligand
- b) Only bent ligand
- c) Either linear or bent
- d) Neither

Answer: C

- **Q2.** Linear nitrosyl complexes are best described as:
- a) NO-type
- b) NO+ type
- c) NO radical type
- d) Mixed

Answer: B

- **Q3.** The Enemark–Feltham notation (M–NO)n(M–NO)^n(M–NO)n represents:
- a) Metal valence electrons only
- b) Metal + NO π^* electron count
- c) Number of NO ligands
- d) Number of oxidation states

Answer: B

Q4. Which technique is most useful to distinguish between linear and bent nitrosyl ligands?

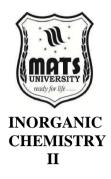
- a) UV-Vis
- b) IR spectroscopy
- c) NMR spectroscopy
- d) XRD only

Answer: B

Q5. Which of the following reactions can yield a nitrosyl complex?

- a) $Fe(CO)_5 + NO \rightarrow Fe(NO)_2(CO)_2$
- b) $Fe(CO)_5 + O_2 \rightarrow FeO(CO)_5$
- c) $Fe(CO)_5 + H_2 \rightarrow FeH_2(CO)_4$
- d) $FeCl_3 + NH_3 \rightarrow Fe(NH_3)_6Cl_3$

Answer: A


Short Questions:

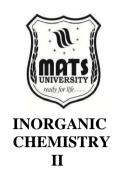
- 1. What is the Enemark–Feltham notation used for in nitrosyl complexes?
- 2. Differentiate between linear and bent nitrosyl ligands.
- 3. Give one method of preparing transition metal nitrosyl complexes.
- 4. Compare the bonding of NO with that of CO in metal complexes.
- 5. Mention one biological significance of metal-nitrosyl complexes.

Long Questions:

- 1. Describe the bonding in transition metal–nitrosyl complexes using MO concepts and backbonding.
- 2. Discuss the structural features of linear vs bent nitrosyl complexes with examples.
- 3. Explain different methods of synthesis of transition metal-nitrosyl complexes.
- 4. Write notes on the reactivity of metal–nitrosyl complexes in terms of substitution and redox behavior.
- 5. Explain the Enemark–Feltham notation in detail with suitable examples of nitrosyl complexes.

UNIT 5.4

Dinitrogen & Dioxygen Complexes

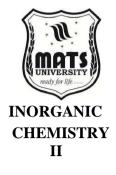

Two of the most predominant gases in the atmosphere of Earth are molecular dinitrogen (N₂) & dioxygen (O₂), which together comprise nearly 99% of dry air. Notwithstanding their prevalence, these gases are strikingly unreactive at ambient conditions owing to their stable triple (N≡N) & double (O=O) bonds. The inherently stable N₂ (bond dissociation energy 941 kJ/mol) & O₂ (bond dissociation energy 498 kJ/mol) do by nature have longer lifetime. Such stability represents a major hurdle for biological systems & industrial processes that wish to use these molecules as feedstocks. Nature has honed specialized metalloenzymes to trigger these molecules under soft conditions often used in the industry, however, tends to demand also high temperature & pressure. Investigating how these abundant but kinetically inert molecules can be coordinated, activated, & converted by transition metal complexes has been at the forefront of coordination chemistry, through which both fundamental science & practical applications have been significantly enabled.

5.4.1 Dinitrogen Complexes

The first dinitrogen complexes, the compound [Ru(NH₃)₅(N₂)]²⁺, was reported by Allen & Senoff in 1965 & is considered a landmark event in coordination chemistry. Many techniques have since been developed to prepare these metal-dinitrogen complexes, illustrating that transition metals can indeed bind N₂ in a variety of modes. These methods include:

Direct Coordination of N₂: Many low-valent, electron-rich transition metal complexes are capable of directly binding of diatomic atmospheric N₂. This result usually requires the generation of a coordinatively unsaturated metal centre that is capable to bind N₂. For instance, [RuCl₂(PPh₃)₃] reacts with N₂ in the presence of reducing agents to afford [Ru(N₂)(PPh₃)₄. Displacement Reactions (N₂ Displaces Weakly Bound The ligands): Solvents, ethylene, or dihydrogen are weakly bound the ligands that can be displaced by N₂. A canonical example of this behaviour in the context of a complex of Shilov comes from the displacement of coordinated solvent: upon the addition of N₂ to [Mo(THF)(dppe)₂] the solvent THF can be replaced, to yield [Mo(N₂)₂(dppe)₂].

Decomposition under N_2 atm: Metal complexes can indeed be reduced under N_2 to bind N_2 at the reduced metal center. An example given is the reduction of [MoCl₄(phosphine)₂] with sodium amalgam under N_2 to produce [Mo(N_2)₂(phosphine)₂]. Protonation of azide complexes: N_2 complexes can be prepared from protonation of metal azidecomplexes known from the literature, with loss of N_2H_4 . By using solid N_2 rather than gasphase N_2 , this provides a route to N_2 complexes without directly using gasphase N_2 .


Photochemical Methods: Contains precursors that can undergo photolysis in the presence of N_2 to produce N_2 complexes. Photolysis of $[Mn_2(CO)_{10}]$ under N_2 produces $[Mn(CO)_4(N_2)Mn(CO)_4]$. Such synthetic methodologies have afforded a broad range of transition metal N_2 complexes, particularly well-developed for Group 6 (Cr, Mo, W), Group 7 (Mn, Re) as well as Group 8 (Fe, Ru, Os) metals across transition metals. The stability & reactivity of the resulting N_2 complexes is strongly dependent on the choice of ancillary the ligands. In particular, phosphines bearing donating substituents are excellent at increasing metal center electron density & backbonding to the N_2 ligand to stabilize M- N_2 bonds.

5.4.2 Bonding in Dinitrogen Complexes

Metal-dinitrogen complexes exhibit a beautiful interplay between σ -donation & π -backbonding interactions in their bonding. In contrast to CO in which excellent π -acceptor character, N_2 is a poor σ -donor & weak π -acceptor, rendering its coordination to metals less energetically favored. The bonding model can be defined in the following way:

- σ -Donation: The filled σ -symmetry lone pair orbital on the nitrogen atom donates electron density to an empty metal d-orbital of appropriate symmetry. This donation is weak comparatively to other donor the ligands.
- π -Backbonding: Occupied metal d-orbitals of π -symmetry donate electron density to the empty π^* antibonding orbitals of N_2 . This backbonding serves the purpose of strengthening the M-N bond while weakening the N-N bond that is essential for activation.

The strength of these interactions governs the coordination mode of N_2 , which can bind to metals in multiple fashions:

- End-on Terminal (η^1) : The most frequently observed mode where N_2 coordinates through one nitrogen atom only resulting an M-N-N carbon between N_2 . NNO ligand types: $[Ru(NH_3)_5(N_2)]^{2+}$ $[Fe(N_2)(dppe)_2]$.
- End-on Bridging $(\mu-\eta^1:\eta^1)$: N_2 connects the two metal centers via its terminal nitrogen atoms. This is similar to what is seen with $[(CO)_5Mn(N_2)Mn(CO)_5]$ & encourages the activation of N_2 .
- Side-on (η^2) : Both nitrogen atoms bridge to the same metal center in a side-on mode. This rare coordination mode has been reported on some early transition metal complexes & ultimately contributes to the instability of the N-N bond.
- Side-on Bridging $(\mu-\eta^2:\eta^2)$: N_2 bridges through two metal centers in side-on configurations leading to four-membered rings. Such bonding leads to considerable N-N bond activation.

N₂ activation is quantified by several parameters:

- N-N Bond Length: The N-N bond length in free N_2 is 1.098 Å, which increases upon coordination, with values in the 1.10–1.20 Å range for terminally bound N_2 but >1.40 Å for highly activated side- on complexes.
- N-N stretch: The free N₂ molecule has a stretching frequency of 2331 cm⁻¹. This frequency drops on coordination, to around 1900-2100 cm⁻¹ for terminally bound complexes, & to 50 million tons year-1).
- Propylene Oxide Production: Pathways for Propylene Oxide production that rely on O₂ activation includes the chlorohydrin pathway, & direct oxidation pathways.
- Acetaldehyde Production: The Wacker process involves the oxidation of ethylene to acetaldehyde, employing a PdCl₂/CuCl₂ catalyst system in the presence of a terminal oxidant (O₂).
- Fine Chemicals & Pharmaceuticals: Selective oxidation is a key reaction in the preparation of numerous high-value products & there is a growing focus on catalytic methods using O₂ as a clean oxidant.

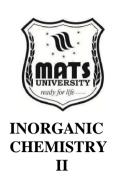
Conventionally, these processes are heavily dependent on heterogeneous catalysts carried out at high temperatures & pressures. Nonetheless, interest in bio-inspired O₂ activation has turned to the development of more selective & energy-efficient catalytic systems.

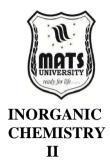
Biomimetic Methods of Oxidation in the Society

Simplified biological O₂ activation has inspired the design of biomimetic catalysts to be used in industrial oxidation reactions:

- Metalloporphyrin Catalysts: Synthetic metalloporphyrins, particularly iron & manganese complexes, have been utilized in a variety of oxidation reactions, including alkane hydroxylation, epoxidation, & sulfoxidation.
- Non-Heme Metal Catalysts Complexes of iron & manganese with nitrogen-donor the ligands have been explored as transition metal catalysts for a wide variety of oxidative transformations, particularly in the context of C-H functionalization.
- Copper Systems: Dinuclear copper complexes have been designed & synthesized to hydroxylate phenols (and similar transformations) with inspiration by tyrosinase.

With the benefits of stability and recyclability, polyoxometalates can activate O for specific oxidation reactions. Compared to conventional industrial catalytic processes, biomimetic catalysts are thought to be more selective, operate in milder environments with less of an impact on the environment, and possibly even function in green solvents. One area of active research is the integration of these catalysts into sustainable oxidation technologies.


5.4.3 Practical Applications of Metal π Complexes in Chemistry


5.4.3.1 Metal Carbonyl Complexes

In industrial catalysis, metal carbonyl complexes are frequently used, particularly in hydroformylation processes that produce aldehydes from alkenes, carbon monoxide, and hydrogen. An important use of homogeneous catalysis in the chemical industry, the oxo process produces millions of tons of aldehydes annually that serve as building blocks for detergents, plasticizers, and other essential industrial chemicals. Excellent selectivity and efficacy in these reactions have been made possible by the careful control of steric and electronic properties in modified metal carbonyl catalysts. Furthermore, through controlled CO dissociation, metal carbonyls serve as crucial precursors in the synthesis of organometallic centers by promoting the formation of coordinatively unsaturated metal centers. Catalysts for asymmetric hydrogenation, carbonylation, and C-C bond formation processes—all crucial for pharmaceutical and fine chemical synthesis—have been developed using this property. Metal carbonyls' unique infrared spectroscopic properties make them superior molecular probes for examining electronic effects in metal complexes, providing information about the nature of metal-ligand interactions that guides catalyst design.

5.4.3 .2 Transition Metal-Nitrosyl Complexes

Transition metal-nitrosyl complexes have become important in medical chemistry & biochemistry because of their function in the storage & distribution of nitric oxide (NO). These complexes can release nitric

oxide under particular physiological situations, prompting their exploration as possible therapeutic agents for cardiovascular disorders, cancer treatment, & antimicrobial uses. The capacity of specific ruthenium & iron nitrosyl complexes to release NO in a regulated fashion has led to their advancement as agents for photodynamic treatment, wherein light-activated NO release can provoke selective cell death in tumor tissues. Nitrosyl complexes in materials science are utilized in the creation of photochromic materials & molecular switches, leveraging the reversible binding of nitric oxide to transition metals. The unique electrical & structural alterations resulting from NO coordination render these complexes significant for investigating fundamental elements of metal-ligand interactions. Moreover, transition metal-nitrosyl complexes have been employed as catalysts in diverse organic transformations, such as the nitrosylation of aromatic compounds & selective oxidation processes, showcasing their versatility beyond biological applications.

5. 4. 3.4 Dinitrogen & Dioxygen Complexes

Dinitrogen complexes signify a crucial advancement in sustainable chemistry, having significant ramifications for artificial nitrogen fixation & ammonia production. In contrast to the energy-intensive Haber-Bosch method that now prevails in industrial ammonia synthesis, dinitrogen complexes present prospective pathways for nitrogen fixation under moderate conditions, which could transform fertilizer production & tackle global food security issues. Recent advancements in molecular dinitrogen complexes of molybdenum, iron, & other transition metals have illustrated the viability of N₂ activation & functionalization under ambient circumstances, advancing the development of biomimetic nitrogen fixation systems inspired by nitrogenase enzymes.

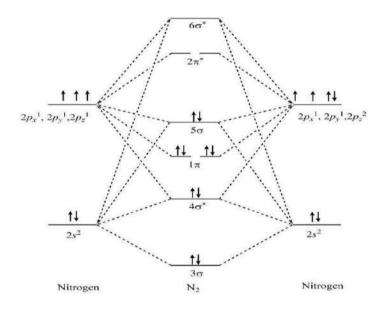
Preparation: i) Metal dinitrogen complexes can be prepared via many routes, but direct formation from dinitrogen is very common. For example:

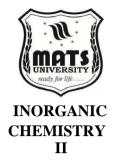
$$\begin{split} & [CoH_2(PPh_3)_3] + N_2 \rightarrow [Co(PPh_3)_3(N_2)] + H_2 \\ & [RuH_4(PPh_3)_3] + N_2 \rightarrow [RuH_2(PPh_3)_3(N_2)] + H_2 \\ & [CoH_3(PPh_3)_3] + N_2 \rightarrow [CoH(PPh_3)_3(N_2)] + H_2 \\ & [FeH_4(PEtPh_2)_3] + N_2 \rightarrow [FeH_2(PEtPh_2)_3(N_2)] + H_2 \end{split}$$

ii) From compounds containing chains of nitrogen atoms:

$$[Ru(NH_3)_5L]n^+ + N^- \rightarrow [Ru(NH_3)_5(N_2)]_2^+ + L$$

Bonding: In order to rationalize the nature of the bonding between the metal center and the N2, we must understand the bonding within the dinitrogen ligand first. The molecular orbital diagram for N2 is given below.




Fig- 5.4.1 The molecular orbital diagram of dinitrogen molecule.

Reactions: i) The displacement of dinitrogen ligand by some other groups:

$$trans-[Mo(N_2)_2(dppe)_2] + 2C_2H_4 \rightarrow trans-[Mo(C_2H_4)_2(dppe)_2] + 2N_2$$

 $trans-[Mo(N_2)_2(dppe)_2] + 2RNC \rightarrow trans-[Mo(RNC)_2(dppe)_2] + 2N_2$
 $trans-[Mo(N_2)_2(dppe)_2] + 2CO \rightarrow trans-[Mo(CO)_2(dppe)_2] + 2N_2$

ii) Reactions of Ligating N_2 with Lewis Acids:

$$[ReCl(N_2) \quad (PMe_2Ph)_4] \quad + \quad [Mo(Cl_4) \quad (THF)_2]$$

$$CH_2Cl_2, MeOH \quad [(PMePh)ClReN \quad MoCl \quad (OMe)]$$

$$---- \rightarrow [ReCl(N_2) (PMe_2Ph)_4] + [MoCl_4(PPh_3)_2] \rightarrow$$

$$[MoCl_4\{(N_2) ReCl(PMe_2Ph)_4\}_2]$$

iii) Formation of metal-hydrazido complxes from ligating N2:

$$\label{eq:trans-model} \begin{split} \textit{trans-} \left[Mo(N_2)_2 (dppe)_2 \right] + 2HCl \rightarrow \left[MoCl(NNH_2) \ (dppe)_2 \right] Cl + N_2 \\ THF \end{split}$$

trans [W(N 2)2(dppe)₂] +2HBF₄
$$\longrightarrow$$
 [WF(NNH₂) (dppe)₂]
[BF4] + BF3. THF + N2

iv) Formation of carbon-nitrogen bonds:

$$\begin{split} & [W(N_2)_2(dppe)_2] + RCOCl + HCl \rightarrow [WCl(N_2HCOR) \ (dppe)_2] \ Cl \\ & [Mo(N_2) \ (RCN)(dppe)_2] + PhCOCl \rightarrow [MoCl(NNCOPh)(dppe)2] \\ & [Mo(N_2)_2(dppe)_2] + RCOCl + HCl \rightarrow [MoCl(N_2HCOR) \ (dppe)_2]Cl \end{split}$$

Dioxygen complexes have significant uses in bioinorganic chemistry, functioning as models for oxygen-transport proteins such as hemoglobin & myoglobin. These complexes have facilitated comprehensive investigations into the mechanics of oxygen activation pertinent to various biological oxidation processes. Dioxygen complexes have been engineered as catalysts for selective oxidation processes in industrial settings, providing ecologically friendly alternatives to conventional oxidation procedures that typically depend on stoichiometric oxidants & produce significant waste. The capacity to regulate the reactivity of coordinated O₂ via ligand design has resulted in advancements in complex oxidative transformations, such as the selective hydroxylation of hydrocarbons & asymmetric epoxidation of olefins.

Preparation: i) Formation of a mononuclear dioxygen adduct with or without displacement of ligands

[IrCl(CO)(PPh3)2] + O2
$$\rightleftharpoons$$
 [IrCl(CO)(PPh3)2O2)]
[Co(DMG)2] + O2 + Pyridine \rightarrow [Co(DMG)2(O2) (Pyridine)]

ii) Formation of a dimer or a binuclear dioxygen adduct:

$$2[Rh(PPh_3)_2Cl] + 2O_2 \rightarrow [Rh(PPh_3)_2(O_2) Cl]_2$$
$$2[Co(histidine)_2] + O_2 \rightarrow [Co_2(histidine)_4(O_2)]$$

iii) Oxidation of ligands with the oxidized ligand remaining coordinated:

$$[Ru(PPh_3)_2(CO)_2(SO_2)] + O_2 \rightarrow [Ru(PPh_3)_2(CO)_2(SO_4)]$$

iv) Displacement of free oxidized ligand:

$$[Pt(PPh_3)_4] + 2O_2 \rightarrow [Pt(PPh_3)_2(O_2)] + 2Ph_3PO$$

Bonding: The nature of bonding in metal-dioxygen complexes is usually evaluated by single-crystal X-ray crystallography, focusing both on the overall geometry as well as the O–O distances, which reveals the bond order of the O2 ligand. However, in order to rationalize the initial idea of the metal-ligand bonding, we must understand the bonding within the dioxygen ligand first. The molecular orbital diagram for $\rm O_2$

is given below.

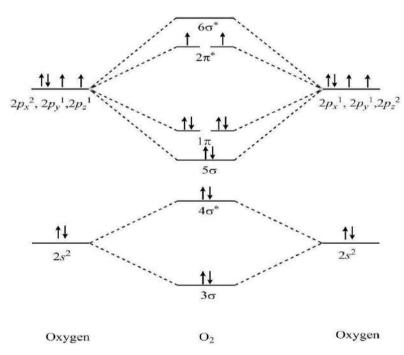
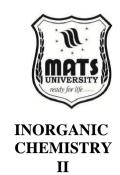
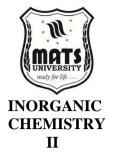




Fig- 5.4.2 The molecular orbital diagram of the dioxygen molecule.

5.4.3. 5 Tertiary Phosphines as The ligands

Tertiary phosphine the ligands have transformed homogeneous catalysis by their exceptional capacity to adjust the electronic & steric

characteristics of transition metal complexes. The pioneering advancement of chiral phosphine the ligands such as BINAP by Noyori marked the commencement of a new epoch in asymmetric catalysis, facilitating the synthesis of single enantiomers of pharmacological intermediates with remarkable selectivity.

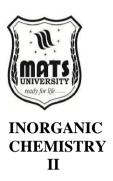
The first phosphine complexes were cis- and trans-[PtCl2(PEt3)2], reported by Cahours and Gal in 1870. Being a L-type ligand, the phosphines do not change the overall charge of the metal complex. These complexes may simply be prepared by the addition of phosphines to a coordinatively unsaturated metal precursor, or by ligand displacement of another L-type complex, such as a solvent molecule acting as a ligand. However, it should also be noted that the replacement of X-type ligand (1-electron donor neutral ligand) can also yield such complexes.

 $[PdCl2]n + 2nPPh3 \rightarrow n[PdCl2(PPh3)2]$ $[Cr(CO)6] + PPh3 \rightarrow [Cr(CO)5(PPh3)] + CO$ $K4[Ni(CN)4] + 4PPh3 \rightarrow [Ni(PPh3)4] + 4KCN$ $[Rh(PPh3)3Cl] \rightarrow [Rh(PPh3)2Cl] + PPh3$

 $[Pt(PPh3)3] + MeI \rightarrow [Pt(I)(Me)(PPh3)2] + PPh3$

This innovation has revolutionized pharmaceutical manufacturing methods, enabling more efficient & environmentally sustainable production of several life-saving drugs. Phosphine-modified palladium catalysts have become essential in cross-coupling reactions, enabling carbon-carbon bond forms that were hitherto difficult or unfeasible in organic synthesis. The Buchwald-Hartwig amination, Suzuki-Miyaura coupling, & Negishi coupling processes, all reliant on phosphine the ligands, have significantly enhanced the synthetic chemist's repertoire & are now commonly utilized in the pharmaceutical, agrochemical, & materials sectors. In addition to conventional catalysis, phosphine complexes have been utilized in medicinal chemistry as anticancer drugs, with various molecules demonstrating encouraging efficacy against cisplatin-resistant malignancies. Water-soluble phosphine the ligands, such as TPPTS, have facilitated the creation of biphasic catalytic systems that merge the benefits of homogeneous catalysis with streamlined product separation, tackling a significant difficulty in commercial catalyst application. The ongoing advancement of phosphine ligand design, encompassing the creation of hemilabile phosphines, electron-rich alkylphosphines, & immobilized phosphine

systems, perpetually unveils new possibilities in sustainable chemical synthesis & green chemistry applications.


Summary

This module focus on the chemistry of metal π -complexes, emphasizing metal carbonyls and related ligand systems. It covers the structure and bonding in metal carbonyls, where metal-carbon monoxide interactions are explained through synergic bonding involving both σ -donation and π -backbonding. Vibrational spectroscopy, particularly infrared (IR) analysis, is highlighted as a key technique for determining bonding characteristics and structural details of these complexes. Important synthetic methods and chemical reactivity patterns of metal carbonyls are also discussed.

In addition to carbonyls, the preparation, bonding, structure, and key reactions of transition metal complexes with nitrosyl (NO), dinitrogen (N_2), and dioxygen (O_2) ligands are examined. These complexes are of great interest due to their roles in catalysis and biological systems. The role of tertiary phosphines as ligands is also explored, focusing on their electronic and steric effects and their impact on the stability and reactivity of metal complexes. This comprehensive study enhances the understanding of metal-ligand π interactions and their significance in organometallic and coordination chemistry.

Multiple-Choice Questions (MCQs)

- 1. Metal π complexes are characterized by:
- a) σ-bonding interactions only
- b) Coordination of the ligands through π -electron systems
- c) Ionic bonding between metal & ligand
- d) Hydrogen bonding
- 2. Metal carbonyl complexes exhibit back-donation, which involves:
- a) Ligand-to-metal π donation only
- b) Metal-to-ligand π back-donation
- c) Only σ bonding between metal & ligand
- d) Free radical formation in the complex

- 3. Which spectroscopy is most commonly used to study metal carbonyl complexes?
- a) UV-Visible spectroscopy
- b) Infrared (IR) spectroscopy
- c) NMR spectroscopy
- d) Massspectrometry
- 4. The M–CO bond strength in metal carbonyl complexes increases when:
- a) The metal has a lower oxidation state
- b) The metal has a higher oxidation state
- c) The metal has no d-electrons
- d) π -back donation is weak
- 5. Transition metal-nitrosyl complexes contain NO the ligands, which can bond as:
- a) Linear $(M-N\equiv O)$ or bent $(M-N\equiv O)$
- b) Only linear (M–N≡O)
- c) Only bent (M–N=O)
- d) Ionic bonds with metals
- 6. The metal-dinitrogen $(M-N_2)$ bond is formed due to:
- a) Only σ bonding between metal & nitrogen
- b) Only π donation from nitrogen to metal
- c) Both σ donation & π back-donation
- d) Weak van der Waals forces
- 7. Which metal complex is crucial in biological nitrogenfixation?
- a) $[Fe(CO)_5]$
- b) [MoFe₇S₉]
- c) $[Cu(NH_3)_4]^{2+}$
- d) [PtCl₄]²⁻
- 8. Dioxygen complexes play an essential role in:
- a) Photosynthesis
- b) Oxygen transport in biological systems

- c) Nucleic acid stabilization
- d) Enzyme-free catalysis
- 9. Tertiary phosphines (PR₃) as the ligands are known for:
- a) Strong π -acceptor characteristics
- b) Their ability to form stable metal-ligand bonds
- c) Weak σ -donor effects
- d) Low catalytic activity
- 10. The Tolman cone angle describes:
- a) The electronic effect of phosphine the ligands
- b) The steric bulk of phosphine the ligands
- c) The oxidation state of the metal
- d) The π -back donation of CO

Answers Key:

- 1. b
- 2. b
- 3. b
- 4. a
- 5. a
- 6. c
- 7. b
- 8. b
- 9. b 10. b

Short Answer Questions

- 1. What are metal π complexes, & why are they important in coordination chemistry?
- 2. Describe the structure & bonding in metal carbonyl complexes.
- 3. How does π -back donation affect the CO stretching frequency in IR spectroscopy?
- 4. Explain the difference between linear & bent nitrosyl complexes.

INORGANIC CHEMISTRY II

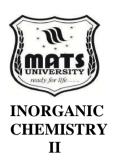
- 5. How do dinitrogen complexes help in biological nitrogen fixation?
- 6. What is the role of dioxygen complexes in biological systems?
- 7. Explain how tertiary phosphines (PR₃) act as the ligands in transition metal complexes.
- 8. What are the important reactions of metal carbonylcomplexes?
- 9. Describe the spectroscopic methods used to study metalnitrosyl complexes.
- 10. What is the Tolman cone angle, & how does it influence catalysis?

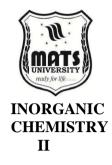
Long Answer Questions

- 1. Explain the structure & bonding in metal carbonyl complexes, including σ -donation & π -back bonding.
- 2. Describe the vibrational spectroscopy of metal carbonyl complexes, with an emphasis on IR spectroscopy trends.
- 3. Discuss the bonding, structure, & reactivity of transition metalnitrosyl complexes.
- 4. Explain the preparation & bonding in dinitrogen complexes, with their significance in biological nitrogen fixation.
- 5. Describe the formation, bonding, & applications of dioxygen complexes in biological & industrial systems.
- 6. Explain the effect of metal oxidation state & ligand electronic characteristics on the stability of metal π complexes.
- 7. Discuss the preparation & reactivity of metal carbonyls, with reference to important industrial applications.
- 8. Explain the role of tertiary phosphines in catalysis, & compare their electronic & steric effects.
- 9. Compare & contrast metal-dinitrogen & metal-dioxygen complexes in terms of structure & bonding.
- 10. Explain the importance of π -acceptor the ligands (CO, NO, N₂, & O₂) in transition metal chemistry

References

Module 1: Theories of Metal Complexes


- **1.** Cotto,F.A.,Wilkiso,G.,Murillo,C.A., & ochma,M.(1999) Advances Inorganic Chemistry.6th ed.John Wiley & Sons.
- 2. Figgis, B.N., & Hitchman, M.A. (2000). Ligand Field Theory and Its Applications. Wiley-VCH.
- 3. Miessler, G.L., Fischer, P.J., & Tarr, D.A. (2014). Inorganic Chemistry. 5th ed. Pearson.
- 4. Ballhausen, C.J. (1962). Introduction to Ligand Field Theory. McGraw-Hill.
- 5. Housecroft, C.E., & Sharpe, A.G. (2012). Inorganic Chemistry. 4th ed. Pearson Education.


Module 2: Spectral and Magnetic Properties of Metal Complexes

- 1. Drago, R.S. (1992). Physical Methods for Chemists. 2nd ed. Saunders College Publishing.
- 2. Lever, A.B.P. (1984). Inorganic Electronic Spectroscopy. 2nd ed. Elsevier.
- 3. Earnshaw, A. (1968). Introduction to Magnetochemistry. Academic Press.
- 4. Figgis, B.N., & Lewis, J. (1960). The Magnetochemistry of Complex Compounds. In Lewis, J., & Wilkins, R.G. (eds.), Modern Coordination Chemistry. Interscience.
- 5. Slichter, C.P. (1990). Principles of Magnetic Resonance. 3rd ed. Springer-Verlag.

Module 3: Reaction Mechanisms of Transition Metal Complexes – Part I

- 1. Tobe, M.L., & Burgess, J. (1999). Inorganic Reaction Mechanisms. Longman.
- 2. Wilkins, R.G. (1991). Kinetics and Mechanism of Reactions of Transition Metal Complexes. 2nd ed. VCH Publishers.
- 3. Jordan, R.B. (1998). Reaction Mechanisms of Inorganic and Organometallic Systems. 2nd ed. Oxford University Press.
- 4. Basolo, F., & Pearson, R.G. (1967). Mechanisms of Inorganic Reactions. 2nd ed. John Wiley & Sons.
- 5. Langford, C.H., & Gray, H.B. (1965). Ligand Substitution Processes. W.A. Benjamin.

Module 4: Reaction Mechanisms of Transi tion Metal Complexes – Part II

- 1. Marcus, R.A. (1985). Electron Transfer Reactions in Chemistry: Theory and Experiment. Nobel Lecture.
- 2. Taube, H. (1970). Electron Transfer Reactions of Complex Ions in Solution. Academic Press.
- Hush, N.S. (1967). Intervalence-Transfer Absorption. Part
 Theoretical Considerations and Spectroscopic Data.
 Progress in Inorganic Chemistry, Vol. 8.
- 4. Sutin, N. (1982). Nuclear, Electronic, and Frequency Factors in Electron Transfer Reactions. Accounts of Chemical Research.

Module 5: Metal π Complexes

- 1. Crabtree, R.H. (2014). The Organometallic Chemistry of the Transition Metals. 6th ed. John Wiley & Sons.
- 2. Elschenbroich, C. (2016). Organometallics. 3rd ed. Wiley-VCH.
- 3. Cotton, F.A., & Wilkinson, G. (1980). Advanced Inorganic Chemistry. 4th ed. John Wiley & Sons.
- 4. Collman, J.P., Hegedus, L.S., Norton, J.R., & Finke, R.G. (1987). Principles and Applications of Organotransition Metal Chemistry. University Science Books.
- 5. Tolman, C.A. (1977). Steric Effects of Phosphorus Ligands in Organometallic Chemistry and Homogeneous Catalysis. Chemical Reviews.

MATS UNIVERSITY

MATS CENTRE FOR DISTANCE AND ONLINE EDUCATION

UNIVERSITY CAMPUS: Aarang Kharora Highway, Aarang, Raipur, CG, 493 441
RAIPUR CAMPUS: MATS Tower, Pandri, Raipur, CG, 492 002

