
MATS CENTRE FOR
OPEN & DISTANCE EDUCATION

SELF LEARNING MATERIAL

 Semester - 2
Master of Science (M.Sc.)

MATLAB

MSCMODL204
MATLAB

Module -I

Unit – I:

Starting with MATLAB 1-3

Unit – II:

Creating arrays 4-6

Unit – III:

Mathematical operations with arrays 7-71

Module -II

Unit – IV:

Script files - Functions 72-76

Unit – V:

Function files. 77-161

Module -III

Unit – VI:

Two-dimensional plots 162-163

Unit – VII:

Three-dimensional plots. 164-215

Module -IV

Unit – VIII:

Programming in MATLAB 216-217

Unit – IX:

Variables and data types 218-218

Unit – X:

Basic commands and operations 219-264

Unit – XI:

3

Overview of MATLAB environment 265-277

Module -V

Unit – XII:

Polynomials, 278-284

Unit – XIII:

Curve fitting and interpolation 285-308

Unit – XIV:

Applications in numerical analysis. 309-316

COURSE DEVELOPMENTEXPERT COMMITTEE

Prof (Dr) K P Yadav Vice Chancellor, MATS University

Prof (Dr) A J Khan Professor Mathematics, MATS University

Prof(Dr) D K Das Professor Mathematics, CCET, Bhilai

COURSE COORDINATOR

Dr Vinita Dewangan Associate Professor, MATS University

COURSE /BLOCK PREPARATION

Prof (Dr) A J Khan , Professor, MATS University

Disclaimer-Publisher of this printing material is not responsible for any error or dispute from contents of
this course material, this is completely depends on AUTHOR’S MANUSCRIPT.
Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

MeghanadhuduKatabathuni, Facilities & Operations, MATS University,Raipur(C.G.)

Printed &Published on behalf of MATS University, Village-Gullu, Aarang, RaipurbyMr.

Aarang, Raipur-(Chhattisgarh)

by mimeograph or any other means, without permission in writing from MATS University, Village- Gullu,
All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in any form,

(Chhattisgarh)

@MATS Centre for Distance and Online Education, MATS University, Village- Gullu,Aarang, Raipur-

March 2025 ISBN: 978-81-987774-4-7

5

Notes

Acknowledgement

The material (pictures and passages) we have used is purely for

educational purposes. Every effort has been made to trace the

copyright holders of material reproduced in this book. Should any

infringement have occurred, the publishers and editors apologize and

will be pleased to make the necessary corrections in future editions of

this book.

Notes

COURSE INTRODUCTION

MATLAB (Matrix Laboratory) is a powerful programming and

computational tool widely used in engineering, science, and

mathematics. It provides a high-performance environment for

numerical computation, visualization, and programming. This course

introduces students to MATLAB, covering its fundamental concepts,

programming techniques, and applications in numerical analysis and

data visualization.

The course is structured into five modules:

Module I: Introduction to MATLAB and Basic Operations

This module introduces students to the MATLAB environment and

basic operations for handling data and performing computations,

including creating arrays and conducting mathematical operations.

Module II: Script Files and Functions

Students will learn how to write reusable code using scripts and

functions to enhance programming efficiency and streamline

computations.

Module III: Data Visualization in MATLAB

This module covers data visualization techniques, including two-

dimensional and three-dimensional plotting methods, to analyze and

present data effectively.

Module IV: MATLAB Programming and Environment Overview

Students will explore MATLAB’s programming capabilities,

environment features, essential commands, and data types to build a

solid foundation in MATLAB programming.

Module V: Advanced Topics and Applications

This module covers advanced mathematical and numerical techniques,

including polynomials, curve fitting, interpolation, and applications in

numerical analysis.

1

MODULE I

UNIT I

STARTING WITH MATLAB

1.0 Objective

• Learn basics of MATLAB and its interface.

• Understand how to create and manipulate arrays.

• Perform mathematical operations on arrays.

• Explore basic MATLAB commands for computations.

1.1 Overview to MATLAB Environment

MATLAB (Matrix Laboratory) is a rebuts programming environment

intended primarily for numerical computing, data analysis, and visualization.

Developed by MathWorks, it provides an interactive environment that

integrates calculation, visualization, and programming in an easy-to-use

interface.

 MATLAB Interface

When you first open MATLAB, you'll see several key components:

1. Command Window: This is, anywhere you enter commands at

MATLAB prompt (>>). Commands are executed immediately after

pressing Enter.

2. Workspace Browser: Shows all variables currently in memory along

with it types and values.

3. Current Folder Browser: Displays contentsof current working

directory.

4. Editor/Debugger: A text editor for creating and modifying

MATLAB script documents (.m documents).

5. Command History: Records all commands entered in Command

Window.

6. Help Browser: Provides comprehensive documentation and

examples.

2

Notes Basic Commands

Here are some essential commands to get started:

• clc: Clears Command Window

• clear: Removes all variables from workspace

• who: Lists all variables in workspace

• whos: Provides detailed information about all variables

• cd: Displays or changes current directory

• dir or ls: Lists documents in current directory

• help command: Displays help information for specified command

• doc command: Opens documentation page for specified command

Variables and Basic Operations

In MATLAB, you don't need to declare variables before using m:

x = 5 % Assigns value 5 to variable x

y = 2 * x + 10 % Basic arithmetic operation

MATLAB displays results immediately unless you end line with a

semicolon:

z = 3 * 4 % MATLAB will display result

w = 7 * 8; % No output because of semicolon

Data Types

MATLAB supports various data types:

1. Numeric Types:

• Double (default): x = 5.6

• Integer: x = int8(5)

• Single precision: x = single(5.6)

2. Character and String:

• Character arrays: name = 'MATLAB'

• String arrays (newer): str = "MATLAB"

3. Logical: flag = true

4. Complex Numbers: c = 3 + 4i

3

Notes 5. Structures and Cell Arrays (will cover later)

Script Documents

Instead of typing commands one by one in Command Window, you can

create script documents (.m documents) that contain multiple commands:

1. Click on "New Script" in Home tab

2. Type your commands

3. Save file with a .m extension

4. Run script by typing filename (without extension) in Command

Window

Example script (myFirstScript.m):

% My first MATLAB script

x = 10;

y = x^2;

disp([' square of ' num2str(x) ' is ' num2str(y)])

Basic Plotting

MATLAB excels at visualization:

x = 0:0.1:2*pi; % Create a vector from 0 to 2π with step 0.1

y = sin(x); % Calculate sine values

plot(x, y) % Create a basic plot

title('Sine Wave') % Add title

xlabel('x') % Add x-axis label

ylabel('sin(x)') % Add y-axis label

grid on % Add grid lines

4

Notes UNIT II

1.2 Creating Arrays in MATLAB

Arrays constitute primary data structure of MATLAB. In MATLAB, term

"matrix" refers to a two-dimensional array; neverless, MATLAB

accommodates arrays of any dimension.

Creating Vectors

Manual Entry:

row_vector = [1, 2, 3, 4, 5] % Row vector (commas optional)

column_vector = [1; 2; 3; 4; 5] % Column vector

Using Colon Operator:

x = 1:5 % Creates [1 2 3 4 5]

y = 1:0.5:5 % Creates [1 1.5 2 2.5 3 3.5 4 4.5 5]

z = 5:-1:1 % Creates [5 4 3 2 1]

Using Functions:

zeros_vector = zeros(1, 5) % Creates [0 0 0 0 0]

ones_vector = ones(5, 1) % Creates 5×1 column vector of ones

linear_vector = linspace(0, 1, 5) % Creates [0 0.25 0.5 0.75 1]

Creating Matrices

Manual Entry:

A = [1, 2, 3; 4, 5, 6; 7, 8, 9] % 3×3 matrix

Using Functions:

zeros_matrix = zeros(3, 4) % 3×4 matrix of zeros

ones_matrix = ones(2, 3) % 2×3 matrix of ones

identity = eye(3) % 3×3 identity matrix

random_matrix = rand(2, 2) % 2×2 matrix of random values (0 to 1)

Expanding from Vectors:

5

Notes row = [1, 2, 3];

repeated_rows = repmat(row, 3, 1) % Creates a 3×3 matrix

Specialized Matrix Functions

Diagonal Matrices:

d = [1, 2, 3];

D = diag(d) % Creates a diagonal matrix

Magic Squares:

M = magic(3) % Creates a 3×3 magic square

Specialized Matrices:

H = hilb(4) % Creates a 4×4 Hilbert matrix

P = pascal(4) % Creates a 4×4 Pascal matrix

Multidimensional Arrays

MATLAB allows for arrays with more than two dimensions:

% Create a 2×3×4 array (2 rows, 3 columns, 4 "pages")

A = zeros(2, 3, 4);

% Set a specific element

A(1, 2, 3) = 42;

Array Size and Dimensions

Use it functions to determine array dimensions:

A = rand(3, 4);

size(A) % Returns [3 4]

length(A) % Returns sizeof longest dimension (4)

numel(A) % Returns total number of elements (12)

Accessing Array Elements

1. Individual Elements:

2. A = [1, 2, 3; 4, 5, 6; 7, 8, 9];

6

Notes 3. element = A(2, 3) % Accesses element at row 2, column 3 (value:

6)

4. Rows and Columns:

5. row_2 = A(2, :) % Extracts entire second row [4 5 6]

6. col_3 = A(:, 3) % Extracts entire third column [3; 6; 9]

7. Subarrays:

8. B = A(1:2, 2:3) % Extracts a 2×2 submatrix

9. Linear Indexing:

10. element = A(5) % 5th element using linear indexing (value: 5)

Manipulating Arrays

Concatenation:

A = [1, 2; 3, 4];

B = [5, 6; 7, 8];

C = [A, B] % Horizontal concatenation: [1 2 5 6; 3 4 7 8]

D = [A; B] % Vertical concatenation: [1 2; 3 4; 5 6; 7 8]

Reshaping:

A = [1:6];

B = reshape(A, 2, 3) % Reshapes to a 2×3 matrix

Flipping and Transposing:

A = [1, 2, 3; 4, 5, 6];

fliplr(A) % Flips left to right

flipud(A) % Flips up to down

A' % Transpose

Expanding Arrays:

A = [1, 2; 3, 4];

A(3, 3) = 9 % Expands A to a 3×3 matrix, filling with zeros

7

Notes UNIT III

Array Operations

 MATLAB, an acronym for "Matrix Laboratory," is a robust computational

environment tailored for manipulation of matrices and arrays. MATLAB's

proficiency at efficiently and intuitively manipulating arrays is a fundamental

quality, rendering it a favored instrument among engineers, physicists,

andmathematicians for numerical computing. Arrays in MATLAB are

essential data structures that can be one-dimensional (vectors), two-

dimensional (matrices), or multi-dimensional. MATLAB's elegance is in its

capacity to execute operations on whole arrays without necessitating explicit

iteration over individual elements, a concept referred to as vectorization. This

method enhances code conciseness and readability while markedly increasing

computing performance through utilization of enhanced underlying libraries.

Formation of arrays in MATLAB is exceptionally simple. Arrays can be

defined using square brackets, with items delineated by spaces or commas

inside a row, and semicolons distinguishing different rows. For example, a

basic 3×3 matrix can be constructed as A = [1 2 3; 4 5 6; 7 8 9]. MATLAB

offers specialized functions for constructing standard arrays, including

zeros(), ones(), rand(), eye(), and linspace(), which produce arrays populated

with zeros, ones, random numbers, identity matrices, and linearly spaced

values, respectively.

 In MATLAB, arithmetic operations can be executed eir element-wise or via

matrix algebra, contingent upon operators employed. Standard operators (+,

-, *, /) adhere to principles of matrix algebra, anywherein operations such as

multiplication conform to mathematical definition of matrix multiplication.

Element-wise operations are indicated by prefixing operator with a period

(e.g., .*, ./, .^), facilitating direct manipulation of corresponding elements

within arrays. This distinction is essential, since it provides users versatility

to execute both mathematical matrix operations and element-wise calculations

using same foundational data structures. Array indexing in MATLAB is

resilient and versatile, facilitating accurate access and modification of array

elements. MATLAB employs one-based indexing, anywherein initial

element is accessed using index 1 instead of 0. Elements can be accessed by

utilizing parentheses and indicating row and column indices, for instance,

8

Notes A(2,3) for element located in second row and third column. colon operator

(:) is an effective instrument for accessing ranges of items, complete rows, or

columns, facilitating slicing and sub-array extraction through phrases such as

A(1:3,2) or A(:,end). MATLAB has an extensive array of functions for

manipulating arrays, including reshaping, concatenation, and reorganization.

Functions such as reshape(), cat(), horzcat(), vertcat(), and repmat() provide

structural alterations to arrays while preserving it content. It procedures are

crucial for data preparation for certain algorithms or visualizations, allowing

users to adjust arrays to conform to necessary dimensions or formats.

 Advanced array operations in MATLAB encompass logical indexing,

enabling selection of members based on Boolean conditions. This

functionality is very potent for data analysis, as it facilitates filtering and

conditional processing of array items. For instance, retrieving all components

exceeding a certain threshold can be accomplished with a straightforward

formula such as A(A > threshold). Find() function similarly provides indices

of elements that satisfy given conditions, offering a somewhere method for

conditional array manipulation. MATLAB's array functionalities include an

extensive range of mathematical functions that perform element-wise

operations on arrays. Functions such as sin(), cos(), log(), exp(), and

numerous more are automatically applied to each element of an array, yielding

a new array of identical dimensions. This vectorized method for mathematical

operations facilitates a succinct and quick execution of intricate numerical

algorithms, often obviating necessity for explicit loops. MATLAB provides

specific functions for statistical operations on arrays within realm of data

analysis. Functions such as mean(), median(), std(), var(), and sort() calculate

statistical metrics across designated dimensions of arrays, enabling

examination of multi-dimensional data. It functions can function along rows,

columns, or any dimension in multi-dimensional arrays, providing versatility

in data analysis. MATLAB's management of sparse arrays is a significant

attribute, optimized for arrays containing a substantial percentage of zero

elements. sparse() function generates memory-efficient representations of

arrays by retaining only non-zero members andit corresponding indices.

MATLAB offers dedicated tools for manipulating sparse arrays, facilitating

fast handling of extensive, sparse datasets frequently seen in scientific and

engineering contexts.

9

Notes MATLAB's array operations effortlessly accommodate complex numbers,

enabling application of complex arithmetic and functions to arrays with

complex elements. This capacity is especially advantageous in signal

processing, control systems, andsomewhere domains anywhere intricate

analysis is prevalent. Operations abs(), angle(), real(), and imag() retrieve

attributes of complex-valued arrays, but conventional arithmetic

andmathematical procedures manage complex elements suitably. In

summary, MATLAB's array operations represent a robust foundation for

numerical computing, characterized by intuitive syntax, vast functionality,

and superior performance. MATLAB's integration of vectorized operations,

adaptable indexing, and extensive mathematical functions renders it an

optimal platform for array-based computations in various scientific and

engineering fields.

MATLAB supports both element-wise operations and matrix operations:

Matrix Operations:

A = [1, 2; 3, 4];

B = [5, 6; 7, 8];

C = A * B % Matrix multiplication

Element-wise Operations:

C = A .* B % Element-wise multiplication

D = A.^2 % Element-wise squaring

E = 1./A % Element-wise reciprocal

Logical Operations:

A > 2 % Returns logical array [0 0; 1 1]

find(A > 2) % Returns linear indices anywhere condition is true

Array Functions:

sum(A) % Sum of each column

mean(A) % Mean of each column

max(A) % Maximum value in each column

std(A) % Standard deviation of each column

10

Notes 5 Solved Problems

Problem 1: Creating and Manipulating Vectors

Problem: Create a vector of values from -π to π with 100 points, calculate

sine and cosine of it values, and plot m on same graph.

Solution:

% Create a vector of 100 points from -π to π

x = linspace(-pi, pi, 100);

% Calculate sine and cosine

y_sin = sin(x);

y_cos = cos(x);

% Plot both functions

plot(x, y_sin, 'b-', x, y_cos, 'r--')

legend('sin(x)', 'cos(x)')

title('Sine and Cosine Functions')

xlabel('x')

ylabel('y')

grid on

Explanation:

1. We utilize linspace(-π, π, 100) to generate a vector of 100 uniformly

distributed points from -π to π.

2. We calculate sine and cosine of each number with sin() and cos()

functions.

3. plot() function with multiple argument pairs simultaneously displays

both curves on a single graph.

4. 'b-' denotes a blue solid line, anywhereas 'r--' indicates a red dashed

line.

5. 5. We incorporate labels, a title, a legend, and grid lines to enhance

reading.

Problem 2: Matrix Operations

11

Notes Problem: Construct two 3×3 matrices, execute matrix multiplication, conduct

element-wise multiplication, and get eigenvalues and eigenvectors of it

resultant product.

Solution:

% Create two 3×3 matrices

A = [1, 2, 3; 4, 5, 6; 7, 8, 9];

B = [9, 8, 7; 6, 5, 4; 3, 2, 1];

% Matrix multiplication

C = A * B;

disp('Matrix multiplication (A * B):')

disp(C)

% Element-wise multiplication

D = A .* B;

disp('Element-wise multiplication (A .* B):')

disp(D)

% Find eigenvalues and eigenvectors of C

[V, E] = eig(C);

disp('Eigenvalues of C:')

disp(diag(E)')

disp('Eigenvectors of C (each column is an eigenvector):')

disp(V)

Explanation:

• We construct two 3×3 matrices, A and B.

• Matrix multiplication (A * B) executes conventional matrix

multiplication.

• Element-wise multiplication (A .* B) computes product of equivalent

elements.

• eig() function yields a matrix V of eigenvectors and a diagonal matrix

E of eigenvalues.

• diag(E)' retrieves eigenvalues from diagonal matrix and transposes

output to present it as a row vector.

Problem 3: Creating and Visualizing a 3D Surface

12

Notes Problem: Create a 3D mesh grid over domain [-2, 2] × [-2, 2] with 50 points

in each direction, compute function f(x,y) = sin(sqrt(x² + y²)), and visualize

it as a 3D surface.

Solution:

% Create a mesh grid

[x, y] = meshgrid(linspace(-2, 2, 50), linspace(-2, 2, 50));

% Compute function

z = sin(sqrt(x.^2 + y.^2));

% Create a 3D surface plot

figure

surf(x, y, z)

title('f(x,y) = sin(sqrt(x² + y²))')

xlabel('x')

ylabel('y')

zlabel('z')

colorbar

Explanation:

1. meshgrid() generates two 2D arrays, X and Y, that depict coordinates

of a grid.

2. We compute function value at each grid point by element-wise

procedures.

3. surf() function generates a three-dimensional surface plot.

4. We incorporate labels and a title to enhance clarity.

5. colorbar provides a color scale that illustrates correspondence

between color and z-value.

Problem 4: Working with Logical Indexing

Problem: Generate a 10×10 matrix of random integers ranging from 1 to 100,

substitute all prime numbers with 0, n compute total for each row and column.

Solution:

% Create a 10×10 matrix of random integers between 1 and 100

A = randi(100, 10, 10);

13

Notes disp('Original matrix:')

disp(A)

% Find prime numbers and replace with zeros

for i = 1:numel(A)

 if isprime(A(i))

 A(i) = 0;

 end

end

disp('Matrix with primes replaced by zeros:')

disp(A)

% Calculate row and column sums

row_sums = sum(A, 2); % Sum along columns (result is a column vector)

col_sums = sum(A, 1); % Sum along rows (result is a row vector)

disp('Row sums:')

disp(row_sums')

disp('Column sums:')

disp(col_sums)

Explanation:

1. command randi(100, 10, 10) generates a 10×10 matrix of random

integers ranging from 1 to 100.

2. We utilize a loop to examine each element and substitute it with 0 if

it is a prime integer.

3. isprime() function ascertains whether a number is prime.

4. sum(A, 2) computes sum across each row, with '2' indicating

dimension.

5. sum(A, 1) computes sum over each column.

Problem 5: Creating a Custom Function for Matrix Analysis

Problem: Develop a MATLAB function that accepts a matrix as input and

outputs its dimensions, rank, determinant, trace, and condition number.

Solution:

function stats = matrix_analyzer(A)

 % MATRIX_ANALYZER Analyzes a matrix and returns key statistics

14

Notes % stats = matrix_analyzer(A) returns a structure containing size,

 % rank, determinant, trace, and condition number of matrix A.

 % Check if input is a square matrix

 [m, n] = size(A);

 % Initialize output structure

stats.size = [m, n];

stats.rank = rank(A);

 % Compute determinant and trace for square matrices only

 if m == n

stats.determinant = det(A);

stats.trace = trace(A);

stats.condition = cond(A);

 else

stats.determinant = 'Not a square matrix';

stats.trace = 'Not a square matrix';

stats.condition = cond(A); % Works for non-square matrices too

 end

end

Usage Example:

% Create a test matrix

A = [1, 2, 3; 4, 5, 6; 7, 8, 9];

% Analyze matrix

result = matrix_analyzer(A);

% Display results

disp('Matrix Analysis:')

disp(['Size: ' mat2str(result.size)])

disp(['Rank: ' num2str(result.rank)])

disp(['Determinant: ' num2str(result.determinant)])

disp(['Trace: ' num2str(result.trace)])

disp(['Condition Number: ' num2str(result.condition)])

Explanation:

15

Notes 1. We define a function named matrix_analyzer that accepts a matrix A

as input.

2. function calculates multiple attributes of matrix:

3. Size: quantity of rows and columns. Rank: count of linearly

independent rows or columns.

4. Determinant: computed with det() (applicable solely to square

matrices)

5. Trace: summation of diagonal elements (applicable solely to square

matrices). Condition number: ratio of largest singular value to

smallest singular value.

6. Results are presented in a format that facilitates quick access.

7. In illustrative example, we construct a test matrix and invoke our own

function on it.

5 Unsolved Problems

Problem 1: Image Processing with MATLAB

Develop a script that imports built-in 'cameraman.tif' image in MATLAB,

converts it to double precision, introduces Gaussian noise with a mean of 0

and a variance of 0.01, and subsequently applies a 3×3 median filter to

mitigate noise. Exhibit original, noisy, and filtered photos in a side-by-side

arrangement with suitable titles. Compute and present Peak Signal-to-Noise

Ratio (PSNR) between original and processed pictures.

Problem 2: Principal Component Analysis

Develop a function to execute Principal Component Analysis (PCA) on a

dataset. function must:

 1. Center data by deducting mean of each column.

2. Calculatecovariance matrix.

 3. Determine eigenvalues and eigenvectors of covariance matrix.

 4. Arrange eigenvectors in descending order of it corresponding eigenvalues.

 5.Project data onto initial k major components.

16

Notes 6. Provide anticipateddata, eigenvalues, and ratio of explained variance.

 Evaluate your function using Fisher's iris dataset (utilize load fisheriris

command for loading) and generate a scatter plot of data projected onto first

two principal components, with points colored according to species.

Problem 3: Numerical Integration

Develop a MATLAB code that applies Simpson's 1/3 rule for numerical

integration. function must:

 1. Accept an anonymous function, lower and upper limits, and number of

intervals as parameters.

 2. Partition integration range into an even number of intervals.

3. Utilize Simpson's 1/3 rule to estimate integral.

 4. Provide estimated value of integral

 Evaluate your function by calculating integral of sin(x) from 0 to π, e^(-x²)

from -3 to 3, and 1/(1+x²) from 0 to 1, and compare your findings with

MATLAB's built-in integral function.

Problem 4: Time Series Analysis

Develop a script that produces a time series with 1000 data points through

amalgamation of:

 1. A trend component characterized by a linear progression with a slope of

0.02.

 2.A seasonal component characterized by a sine wave with an amplitude of

1 and a period of 50.

 3.An autoregressive component AR(1) with a coefficient of 0.8

 4. Random Gaussian noise characterized by a mean of 0 and a standard

deviation of 0.5

17

Notes Subsequently, develop a function to deconstruct time series into its trend,

seasonal, and residual components utilizing moving average technique.

Graph original time series with each individual component. Additionally,

calculate and graph autocorrelation function of residual component to

ascertain whether it resembles white noise.

Problem 5: Optimization Problem

Create a function to find minimumof Rosenbrock function: f(x,y) = (1-x)² +

100(y-x²)²

1. function must utilize MATLAB's fminunc function.

2. Commence from initial coordinate (-1, 2)

 3. Generate a contour plot of function.

 4. Indicate initial point and identified minimum on graph.

 5. Present smallest value along with its corresponding coordinates.

Furthermore, develop gradient descent from ground up utilizing a constant

step size and evaluate its efficacy against fminunc regarding iteration count

and precision.

This thorough overview to MATLAB imparts fundamental information

necessary to engage with MATLAB environment and generate

arrays.Resolved problems illustrate practical applications of it concepts, and

unresolved issues offer tough workouts to enhance MATLAB

proficiency.MATLAB's array-centric architecture renders it very robust for

numerical computation, while its extensive array of built-in functions and

visualization features facilitate effective data analysis and method

development. As you gain proficiency in MATLAB, you will see that its

functionalities encompass a wide array of applications, including symbolic

mathematics, advanced statistics, signal processing, image processing, and

beyond.

Indexing and Accessing Elements in Arrays

Overview to Array Indexing

18

Notes Arrays are sequential collections of elements, with each element distinguished

by its index inside array. This role is referred to as an index. Comprehending

how to access and manipulate components via it indices is essential for

effective array management.

In majority of computer languages, array indexing commences from 0,

indicating that initial element is located at index 0, subsequent element at

index 1, and so forth. Let us examine functionality of indexing across several

dimensions.

One-Dimensional Arrays

For a one-dimensional array A with n elements, we can access:

• First element: A[0]

• Second element: A[1]

• Last element: A[n-1]

General form for accessing an element at position i is A[i], anywhere 0 ≤ i ≤

n-1.

Two-Dimensional Arrays

A two-dimensional array can be visualized as a grid or matrix with rows and

columns. For a 2D array A with m rows and n columns, an element is accessed

using two indices:

• A[i,j] represents element at row i and column j

• first element is A[0,0]

• last element is A[m-1,n-1]

Multi-Dimensional Arrays

This concept extends to higher dimensions. For a d-dimensional array, d

indices are required to access an element:

• A[i₁,i₂,...,iₐ]

Array Indexing Notations

19

Notes Different mathematical contexts and programming languages may use

varying notations:

1. Bracket Notation: A[i,j]

2. Functional Notation: A(i,j)

3. Subscript Notation: Aᵢⱼ (used in mathematical contexts)

Array Slicing

Beyond accessing individual elements, many programming environments

allow accessing subarrays through slicing:

• A[start:end] extracts elements from index start up to (but not

including) index end

• A[start:end:step] extracts elements with a specific step size

• A[:end] extracts elements from beginning up to (but not including)

index end

• A[start:] extracts elements from index start to end

• A[:] creates a copy of entire array

Mathematical Operations with Arrays

Arrays are robust instruments for mathematical operations, particularly in

linear algebra, statistics, and numerical computing. In this section, we will

examine prevalent operations conducted on arrays.

Element-wise Operations

Element-wise operations apply a function to each element individually:

1. Addition: (A + B)ᵢⱼ = Aᵢⱼ + Bᵢⱼ

2. Subtraction: (A - B)ᵢⱼ = Aᵢⱼ - Bᵢⱼ

3. Multiplication: (A ⊙B)ᵢⱼ = Aᵢⱼ × Bᵢⱼ (Hadamard product)

4. Division: (A ⊘B)ᵢⱼ = Aᵢⱼ ÷ Bᵢⱼ

5. Scalar operations: (c × A)ᵢⱼ = c × Aᵢⱼ for scalar c

Element-wise operations require arrays of compatible shapes (typically

identical shapes).

20

Notes Matrix Operations

For 2D arrays, additional operations from linear algebra apply:

1. Matrix Multiplication: (A × B)ᵢⱼ = ∑ₖ Aᵢₖ × Bₖⱼ

• For matrices A(m×n) and B(n×p), result is a matrix C(m×p)

• Each element C[i,j] = ∑ₖ₌₀ⁿ⁻¹ A[i,k] × B[k,j]

2. Matrix Transposition: (Aᵀ)ᵢⱼ = Aⱼᵢ

• Rows become columns and columns become rows

• For a matrix A(m×n), Aᵀ is a matrix of shape (n×m)

3. Matrix Trace: tr(A) = ∑ᵢ Aᵢᵢ

• Sum of diagonal elements

• Only defined for square matrices

4. Matrix Determinant: det(A) or |A|

• A scalar value associated with a square matrix

• 2×2 matrix: det(A) = A₀₀A₁₁ - A₀₁A₁₀

• Larger matrices: computed using minors and cofactors

5. Matrix Inverse: A⁻¹

• For a square matrix A, A⁻¹ satisfies A×A⁻¹ = A⁻¹×A = I

(identity matrix)

• Not all matrices have inverses (only invertible or non-

singular matrices do)

• For a 2×2 matrix: A⁻¹ = (1/det(A)) × [[A₁₁, -A₀₁], [-A₁₀, A₀₀]]

Statistical Operations

Common statistical operations performed on arrays include:

1. Sum: sum(A) = ∑ᵢⱼ Aᵢⱼ

2. Mean: mean(A) = sum(A) ÷ (number of elements in A)

3. Standard Deviation: sqrt(∑ᵢⱼ(Aᵢⱼ - mean(A))² ÷ n)

4. Min/Max: minimum and maximum values in array

5. Percentiles/Quantiles: values below which a certain percentage of

data falls

Reduction Operations

21

Notes It operations reduce an array's dimension by applying a function along a

specific axis:

1. Sum along axis: sum(A, axis=0) sums elements column-wise

2. Mean along axis: mean(A, axis=1) computes mean of each row

3. Product along axis: prod(A, axis=0) multiplies elements column-

wise

Broadcasting

Broadcasting is a rebust concept allowing operations between arrays of

different shapes:

1. shapes of arrays are compared element-wise, starting from trailing

dimensions

2. Two dimensions are compatible when:

• y are equal, or

• One of m is 1

Example: A 3×4 matrix can be added to a 1×4 row vector, with row vector

being "broadcast" across all rows.

Convolution Operations

Convolution is a mathematical operation crucial in signal processing and deep

learning:

(A * B)[i] = ∑ₖ A[i-k] × B[k]

For 2D: (A * B)[i,j] = ∑ₖ∑ₗ A[i-k,j-l] × B[k,l]

Somewhere Advanced Operations

1. Eigendecomposition: Finding eigenvalues λ and eigenvectors v such

that Av = λv

2. Singular Value Decomposition (SVD): Factorizing a matrix as A =

UΣVᵀ

3. QR Decomposition: Factorizing a matrix as A = QR

4. Fourier Transforms: Converting between time/space domain and

frequency domain

22

Notes Solved Problems on Array Indexing and Operations

Problem 1: Array Indexing in a 2D Array

Problem: Consider a 5×4 array A. What is indexof elementin 3rd row and

2nd column? If we flatten this array in row-major order, what would be index

of this same element in flattened 1D array?

Solution:

In a 2D array anywhere indexing starts at 0:

• 3rd row means index 2 (counting from 0: 0, 1, 2)

• 2nd column means index 1 (counting from 0: 0, 1)

• Therefore, element is at position A[2,1]

To find index in a flattened array with row-major ordering:

• Index = (row_index × number_of_columns) + column_index

• Index = (2 × 4) + 1 = 8 + 1 = 9

Therefore, in flattenedarray, element would be at index 9.

Problem 2: Matrix Addition

Problem: Given two matrices:

A = [[1, 2, 3],

 [4, 5, 6]]

B = [[7, 8, 9],

 [10, 11, 12]]

Compute A + B.

Solution:

Matrix addition is performed element-wise. For each position [i,j], we add

corresponding elements: (A + B)[i,j] = A[i,j] + B[i,j]

Computing each element:

23

Notes • (A + B)[0,0] = A[0,0] + B[0,0] = 1 + 7 = 8

• (A + B)[0,1] = A[0,1] + B[0,1] = 2 + 8 = 10

• (A + B)[0,2] = A[0,2] + B[0,2] = 3 + 9 = 12

• (A + B)[1,0] = A[1,0] + B[1,0] = 4 + 10 = 14

• (A + B)[1,1] = A[1,1] + B[1,1] = 5 + 11 = 16

• (A + B)[1,2] = A[1,2] + B[1,2] = 6 + 12 = 18

Therefore:

A + B = [[8, 10, 12],

 [14, 16, 18]]

Problem 3: Matrix Multiplication

Problem: Given matrices:

A = [[1, 2],

 [3, 4],

 [5, 6]]

B = [[7, 8, 9],

 [10, 11, 12]]

Compute A × B.

Solution:

First, let's check if it matrices can be multiplied:

• A is a 3×2 matrix (3 rows, 2 columns)

• B is a 2×3 matrix (2 rows, 3 columns)

• For matrix multiplication, number of columns in first matrix must

equal number of rows in second matrix

• Here: columns of A (2) = rows of B (2) ✓

• Resulting matrix will have dimensions: (rows of A) × (columns of B)

= 3×3

Now, let's compute each element of result matrix C = A × B: C[i,j] = ∑ₖ A[i,k]

× B[k,j]

24

Notes Computing each element:

C[0,0] = A[0,0]×B[0,0] + A[0,1]×B[1,0] = 1×7 + 2×10 = 7 + 20 = 27 C[0,1]

= A[0,0]×B[0,1] + A[0,1]×B[1,1] = 1×8 + 2×11 = 8 + 22 = 30 C[0,2] =

A[0,0]×B[0,2] + A[0,1]×B[1,2] = 1×9 + 2×12 = 9 + 24 = 33 C[1,0] =

A[1,0]×B[0,0] + A[1,1]×B[1,0] = 3×7 + 4×10 = 21 + 40 = 61 C[1,1] =

A[1,0]×B[0,1] + A[1,1]×B[1,1] = 3×8 + 4×11 = 24 + 44 = 68 C[1,2] =

A[1,0]×B[0,2] + A[1,1]×B[1,2] = 3×9 + 4×12 = 27 + 48 = 75 C[2,0] =

A[2,0]×B[0,0] + A[2,1]×B[1,0] = 5×7 + 6×10 = 35 + 60 = 95 C[2,1] =

A[2,0]×B[0,1] + A[2,1]×B[1,1] = 5×8 + 6×11 = 40 + 66 = 106 C[2,2] =

A[2,0]×B[0,2] + A[2,1]×B[1,2] = 5×9 + 6×12 = 45 + 72 = 117

Therefore:

A × B = [[27, 30, 33],

 [61, 68, 75],

 [95, 106, 117]]

Problem 4: Computing Trace and Determinant of a Matrix

Problem: Given matrix:

A = [[4, 2, 1],

 [3, 1, 0],

 [2, 5, 3]]

Compute: a) trace of A b) determinant of A

Solution:

a) Trace of A: trace is sumof diagonal elements. tr(A) = A[0,0] + A[1,1] +

A[2,2] = 4 + 1 + 3 = 8

b) Determinant of A: For a 3×3 matrix, we can use formula: |A| = A[0,0] ×

(A[1,1] × A[2,2] - A[1,2] × A[2,1]) - A[0,1] × (A[1,0] × A[2,2] - A[1,2] ×

A[2,0]) + A[0,2] × (A[1,0] × A[2,1] - A[1,1] × A[2,0])

Substituting values: |A| = 4 × (1 × 3 - 0 × 5) - 2 × (3 × 3 - 0 × 2) + 1 × (3 × 5

- 1 × 2) |A| = 4 × 3 - 2 × 9 + 1 × 13 |A| = 12 - 18 + 13 |A| = 7

25

Notes Therefore, determinant of A is 7.

Problem 5: Finding Inverse of a Matrix

Problem: Find inverseof matrix:

A = [[2, 1],

 [5, 3]]

Solution:

For a 2×2 matrix A = [[a, b], [c, d]], inverse is given by: A⁻¹ = (1/det(A)) ×

[[d, -b], [-c, a]]

First, let's compute determinant: det(A) = a×d - b×c = 2×3 - 1×5 = 6 - 5 = 1

Since det(A) ≠ 0, matrix is invertible.

Now, we calculate: A⁻¹ = (1/1) × [[3, -1], [-5, 2]] A⁻¹ = [[3, -1], [-5, 2]]

Let's verify by computing A × A⁻¹: A × A⁻¹ = [[2, 1], [5, 3]] × [[3, -1], [-5, 2]]

Computing: (A × A⁻¹)[0,0] = 2×3 + 1×(-5) = 6 - 5 = 1 (A × A⁻¹)[0,1] = 2×(-1)

+ 1×2 = -2 + 2 = 0 (A × A⁻¹)[1,0] = 5×3 + 3×(-5) = 15 - 15 = 0 (A × A⁻¹)[1,1]

= 5×(-1) + 3×2 = -5 + 6 = 1

Therefore: A × A⁻¹ = [[1, 0], [0, 1]] = I

Which confirms that [[3, -1], [-5, 2]] is indeed inverse of A.

Unsolved Problems on Array Indexing and Operations

It problems are provided without solutions for practice.

Problem 1: Array Slicing and Indexing

Consider following 3×4 array:

A = [[5, 2, 9, 1],

 [7, 3, 8, 6],

 [4, 0, 2, 5]]

26

Notes a) What element is at index A[1,2]? b) Extract 2×2 subarray from top-right

corner of A. c) Extract last column of A. d) If A is flattened in column-major

order (traversing down columns), what is index of element A[1,2] in flattened

array?

Problem 2: Matrix Operations

Given matrices:

A = [[3, 1, 4],

 [2, 6, 1]]

B = [[2, 4],

 [1, 3],

 [5, 7]]

C = [[8, 2],

 [3, 9]]

a) Compute A × B b) Is it possible to compute B × A? If yes, calculate it. c)

Compute (A × B) × C d) Compute A × (B × C) e) Verify whether matrix

multiplication is associative by comparing your answers from parts c and d.

Problem 3: Properties of Matrix Operations

Given following matrices:

A = [[2, 4],

 [1, 3]]

B = [[5, 7],

 [6, 8]]

a) Compute A + B and B + A. Does matrix addition appear to be

commutative? b) Compute A × B and B × A. Does matrix multiplication

appear to be commutative? c) Compute (A + B)ᵀ and Aᵀ + Bᵀ. What property

does this demonstrate? d) Compute (A × B)ᵀ and Bᵀ × Aᵀ. What property does

this demonstrate?

Problem 4: Eigenvalues and Eigenvectors

Consider matrix:

27

Notes A = [[4, 2],

 [1, 3]]

a) Find characteristic polynomial of A. b) Find eigenvalues of A. c) For each

eigenvalue, find a corresponding eigenvector. d) Verify your answers by

checking if Av = λv for each eigenvalue-eigenvector pair.

Problem 5: Applications of Matrix Operations

A survey collected ratings for three products (P1, P2, P3) from two customer

segments (young adults and seniors). average ratings (out of 5) are

represented in a matrix R:

R = [[4.2, 3.8, 4.5], # Ratings from young adults

 [3.6, 4.1, 3.9]] # Ratings from seniors

Sizes of it customer segments (in thousands) are given by:

S = [25, 15] # 25,000 young adults and 15,000 seniors

a) Calculate total rating score (rating × segment size) for each product. b) If

company decides to focus on products with a total rating score above 160,000,

which products should y focus on? c) If Product 3 undergoes improvements

resulting in a 10% increase in ratings from both segments, calculate new total

rating score for this product.

1.3 Array Manipulation and Arithmetic Operations in MATLAB

Built-in Functions for Array Manipulation

MATLAB provides a rich set of built-in functions for creating, manipulating,

and analyzing arrays. It functions make it easy to work with data in various

forms, from simple vectors to complex multi-dimensional arrays.Indeed,

MATLAB's efficacy is rooted in its extensive arsenal for array manipulation.

Expanding upon your statement, MATLAB's array functions can be classified

according to it functionalities. In addition to fundamental syntax, MATLAB

has specialized functions such as `meshgrid` and ̀ ndgrid`, which are essential

for generating coordinate arrays for multidimensional issues. `magic`

function produces magic squares characterized by identical sums across rows,

28

Notes columns, and diagonals, anywhereas `gallery` supplies test matrices

possessing established mathematical attributes. MATLAB demonstrates

proficiency in manipulation using functions such as `circshift` for circularly

shifting items, `flip` and `fliplr` for reversing arrays along designated

dimensions, and `squeeze` for eliminating singleton dimensions. `permute`

function facilitates rearranging of dimensions in multi-dimensional arrays,

offering flexibility in data organization. MATLAB's analytical functions

encompass `diff` for calculating differences between consecutive

components, `gradient` for estimating derivatives, and `cumsum` and

`cumprod` for cumulative computations. For statistical analysis, `quantile`

determines sample quantiles, anywhereas `corrcoef` computes correlation

coefficients. Data filtering and transformation are facilitated by functions like

as ̀ filter` for digital filtering, `conv` for convolution, and `fft` for Fast Fourier

Transform. It are especially advantageous in signal processing applications.

MATLAB offers `max`, `min`, `ismember`, `unique`, and `histcounts` for

identifying patterns or specific values, facilitating efficient study of extensive

datasets. true efficacy of MATLAB's array operations is revealed when it

functions are integrated, enabling intricate algorithms to be articulated in

merely a few lines of code, frequently devoid of explicit loops. This method

enhances code readability while utilizing MATLAB's optimized internal

implementations for improved speed.

Creating Arrays

Basic Array Creation Functions

MATLAB offers various methods to generate arrays that constitute basis for

nearly all activities within environment. It functions are intended to

effectively produce arrays with particular characteristics or patterns. `zeros`

function generates an array completely composed of zeros. function can be

used with a singular parameter to generate a square matrix (e.g., `zeros(3)`

produces a 3×3 matrix of zeros) or with multiple arguments to define

dimensions (e.g., `zeros(2,4)` generates a 2×4 matrix). This function is very

advantageous for pre-allocating memory prior to filling an array in

computational loops, hence enhancing performance considerably. Likewise,

`ones` method produces arrays populated with value 1. It adheres to same

syntax as `zeros` function and is frequently employed when a baseline array

29

Notes with uniform initial values is required. For instance, `ones(3,2)` generates a

3×2 matrix with all entries equal to 1.

`repmat` function is useful for generating arrays populated with arbitrary

values. It duplicates a designated matrix or value to generate larger arrays.

For example, `repmat([1 2; 3 4], 2, 3)`replicates 2×2 matrix two times

vertically and three times horizontally, yielding a 4×6 matrix. MATLAB

provides multiple methods for generating arrays with sequential values.

colon operator (`:`) produces evenly spaced vectors and is highly adaptable.

expression `1:10` generates a row vector with integers from 1 to 10.

Incorporating a step size, such as `0:0.5:5`, generates a vector ranging from 0

to 5 with increments of 0.5. `linspace` function offers a different method by

defining quantity of points instead of increment size. For instance,

`linspace(0, 1, 11)` generates 11 equidistant points between 0 and 1, inclusive.

`logspace` function generates vectors with logarithmically distributed points,

which is prevalent in numerous scientific applications. For example,

`logspace(0, 3, 4)` produces a vector [1, 10, 100, 1000], denoting 4 locations

between 10^0 and 10^3. `eye` function generates identity matrices,

characterized by ones on principal diagonal and zeros at all somewhere

positions. program `eye(3)` produces a 3×3 identity matrix. This function is

essential in linear algebra operations and system modeling. MATLAB offers

various functions for production of random data. `rand` function produces

arrays containing uniformly distributed random numbers ranging from 0 to 1,

anywhereas `randn` generates normally distributed random numbers with a

mean of 0 and a standard deviation of 1. `randi` function generates random

integers within a certain range, which is advantageous for simulation and

modeling applications necessitating discrete numbers. ̀ diag` function has two

functions: it generates a diagonal matrix from a vector by placing vector's

elements along major diagonal, and it extracts diagonal elements from a

matrix into a vector. This feature is very beneficial in matrix decomposition

and eigenvalue issues. fundamental array generation functions constitute

basis of MATLAB's numerical computing environment, allowing users to

effectively produce data structures required for intricate scientific and

engineering calculations.

zeros - Creates an array of all zeros

30

Notes A = zeros(3) % Creates a 3x3 matrix of zeros

B = zeros(2,4) % Creates a 2x4 matrix of zeros

C = zeros(3,1) % Creates a 3x1 column vector of zeros

ones - Creates an array of all ones

A = ones(3) % Creates a 3x3 matrix of ones

B = ones(2,4) % Creates a 2x4 matrix of ones

C = ones(3,1) % Creates a 3x1 column vector of ones

eye - Creates an identity matrix

A = eye(3) % Creates a 3x3 identity matrix

B = eye(2,4) % Creates a 2x4 matrix with ones on diagonal

rand - Creates an array of random elements from a uniform distribution

A = rand(3) % Creates a 3x3 matrix of random numbers between 0 and 1

B = rand(2,4) % Creates a 2x4 matrix of random numbers between 0 and 1

randn - Creates an array of random elements from a normal distribution

A = randn(3) % Creates a 3x3 matrix of normally distributed random

numbers

B = randn(2,4) % Creates a 2x4 matrix of normally distributed random

numbers

linspace - Creates a linearly spaced vector

x = linspace(0, 10, 5) % Creates a vector with 5 points from 0 to 10

y = linspace(-1, 1, 100) % Creates a vector with 100 points from -1 to 1

logspace - Creates a logarithmically spaced vector

x = logspace(0, 2, 5) % Creates a vector with 5 points from 10^0 to 10^2

y = logspace(-1, 1, 10) % Creates a vector with 10 points from 10^-1 to 10^1

Special Array Creation Functions

diag - Creates a diagonal matrix or extracts diagonal of a matrix

31

Notes A = diag([1, 2, 3]) % Creates a 3x3 matrix with 1, 2, 3 on diagonal

v = diag(magic(3)) % Extracts diagonal of a magic square

B = diag([4, 5, 6], 1) % Creates a matrix with 4, 5, 6 on firstsuperdiagonal

magic - Creates a magic square matrix

A = magic(3) % Creates a 3x3 magic square (sum of rows, columns,

diagonals are equal)

B = magic(4) % Creates a 4x4 magic square

repmat - Replicates an array

A = [1, 2; 3, 4];

B = repmat(A, 2, 3) % Creates a 4x6 matrix by replicating A 2 times

vertically and 3 times horizontally

Array Manipulation Functions

Array Manipulation Functions in MATLAB

MATLAB specializes in array manipulation with an extensive array of

functions that efficiently reshape, restructure, and alter data. It functions

enable users to modify arrays for certain computing requirements without

necessity of constructing intricate loops or conditionals. `reshape` function is

essential for altering an array's dimensions while maintaining its elements.

For instance, `reshape(A, [3, 4])` converts array A into a 3×4 matrix,

populating entries in a column-wise manner. This function necessitates that

total count of elements stays invariant before and after reshaping. utility of

`reshape` is evident when formatting data for algorithms that require specified

array dimensions or when rearranging results for display purposes. MATLAB

provides various routines for array concatenation. `cat` function merges

arrays along a designated dimension. For example, `cat(2, A, B)`

concatenates arrays A and B horizontally (along second dimension).

functions `horzcat` and `vertcat` facilitate horizontal and vertical

concatenation, respectively, serving as alternatives to square bracket notation

[A, B] or [A; B]. It functions are essential for constructing larger datasets

from smaller elements or for integrating outcomes from concurrent

computations.

32

Notes `repmat` function, in addition to facilitating array construction, functions as

an effective instrument for array manipulation by duplicating existing arrays

in designated patterns. This is advantageous for constructing periodic

structures or organizing data for batch processing. For instance, `repmat(A,

[2, 3])` generates a new array by vertically concatenating two copies of A and

horizontally concatenating three copies. `permute` function reorganizes

dimensions of multi-dimensional arrays based on a defined sequence. For

example, `permute(A, [2, 1, 3])`interchanges first and second dimensions of

a 3D array, Therefore transposing each 2D slice. Likewise, `ipermute`

function executes inverse permutation, reinstating an array to its original

dimensional configuration. It functions are especially beneficial in image

processing, signal analysis, and tensor operations, anywhere dimensional

reconfiguration is often necessary. `squeeze` function eliminates singleton

dimensions (dimensions of size 1) from an array, reby streamlining its

structure while retaining all actual data components. This is particularly

advantageous when handling outputs from functions that yield arrays with

additional singleton dimensions. `shiftdim` function, on somewhere hand,

circularly shifts dimensions or introduces singleton dimensions, hence

offering versatility in structure of arrays. MATLAB offers specialized

functions for flipping and rotating arrays. `flip` function inverts sequence of

elements along a designated dimension, anywhereas specialized functions

`fliplr` and `flipud` transpose arrays horizontally and vertically, respectively.

It procedures are frequently employed in image processing, signal reflection,

and construction of symmetric data structures. `circshift` function does

circular shifting of array elements across designated dimensions. For

instance, `circshift(A, [0, 2])` displaces each row of A two positions to right,

with components that exceed boundary reappearing at start. This function is

essential for executing cyclic operations, simulating periodic systems, and

conducting circular convolutions.

To create subarrays, MATLAB's indexing features utilize `sub2ind` and

`ind2sub` functions, which facilitate conversion between linear indices and

subscript indices in multi-dimensional arrays. It routines enable element

access in intricate array structures and are especially beneficial when

executing algorithms that monitor element positions during dimensional

transformations. `padarray` function augments arrays by incorporating

padding items along peripheries, which is crucial in signal processing, image

33

Notes analysis, and application of numerical methods with boundary conditions.

Users can define padding size, value, and direction (pre-padding, post-

padding, or both), rendering this function exceptionally adaptable for diverse

application contexts. Array manipulation methods, together with MATLAB's

sophisticated syntax for array operations, offer an articulate and efficient

framework for managing intricate data structures in scientific and engineering

contexts. capacity to manipulate and restructure arrays without explicit loops

enhances code conciseness and readability while utilizing MATLAB's

optimized internal algorithms for improved performance.

Reshaping and Reorganizing

reshape - Changes size of an array while keeping its elements

A = 1:12;

B = reshape(A, 3, 4) % Reshapes A into a 3x4 matrix

C = reshape(A, 4, []) % Reshapes A into a 4xN matrix, anywhere N is

determined automatically

fliplrandflipud - Flip arrays left-right or up-down

A = [1, 2, 3; 4, 5, 6];

B = fliplr(A) % Flips A horizontally: [3, 2, 1; 6, 5, 4]

C = flipud(A) % Flips A vertically: [4, 5, 6; 1, 2, 3]

rot90 - Rotates an array by 90 degrees

A = [1, 2, 3; 4, 5, 6];

B = rot90(A) % Rotates A 90 degrees counterclockwise

C = rot90(A, 2) % Rotates A 180 degrees

D = rot90(A, -1) % Rotates A 90 degrees clockwise

transposeandctranspose - Transpose a matrix

A = [1, 2, 3; 4, 5, 6];

B = A' % Conjugate transpose of A

C = A.' % Simple transpose of A (without conjugation)

permute - Rearranges dimensions of an array

34

Notes A = rand(2, 3, 4);

B = permute(A, [3, 1, 2]) % Rearranges dimensions of A to [4, 2, 3]

squeeze - Removes singleton dimensions

A = rand(2, 1, 3, 1);

B = squeeze(A) % Removes singleton dimensions, resulting in a 2x3 matrix

Concatenating and Padding

cat - Concatenates arrays along a specified dimension

A = [1, 2; 3, 4];

B = [5, 6; 7, 8];

C = cat(1, A, B) % Concatenates vertically (same as [A; B])

D = cat(2, A, B) % Concatenates horizontally (same as [A, B])

E = cat(3, A, B) % Concatenates along third dimension

horzcatandvertcat - Horizontal and vertical concatenation

A = [1, 2; 3, 4];

B = [5, 6; 7, 8];

C = horzcat(A, B) % Horizontal concatenation (same as [A, B])

D = vertcat(A, B) % Vertical concatenation (same as [A; B])

padarray - Pads an array with specified values

A = [1, 2; 3, 4];

B = padarray(A, [1, 2], 0) % Pads A with 1 row and 2 columns of zeros

C = padarray(A, [1, 1], 'replicate', 'both') % Pads by replicating border

elements

Array Manipulation with Indices

find - Finds indices of nonzero elements

A = [0, 5, 0; 3, 0, 4];

idx = find(A) % Returns linear indices of nonzero elements

[row, col] = find(A) % Returns row and column indices of nonzero elements

35

Notes sub2indandind2sub - Convert between subscripts and linear indices

A = zeros(3, 4);

idx = sub2ind(size(A), 2, 3) % Converts subscripts (2,3) to a linear index

[row, col] = ind2sub(size(A), 6) % Converts linear index 6 to subscripts

sort - Sorts array elements

A = [3, 1, 4, 2];

B = sort(A) % Sorts elements in ascending order: [1, 2, 3, 4]

C = sort(A, 'descend') % Sorts in descending order: [4, 3, 2, 1]

[D, idx] = sort(A) % Also returns sorting indices

sortrows - Sorts rows of a matrix

A = [2, 3; 1, 4; 2, 1];

B = sortrows(A) % Sorts rows based on values in first column

C = sortrows(A, 2) % Sorts rows based on values in second column

unique - Finds unique elements and indices

A = [3, 1, 2, 1, 3];

B = unique(A) % Returns unique elements in ascending order: [1, 2,

3]

[C, ia, ic] = unique(A) % Also returns indices

Array Analysis Functions

size - Returns size of an array

A = rand(3, 4, 2);

s = size(A) % Returns [3, 4, 2]

rows = size(A, 1) % Returns number of rows (3)

cols = size(A, 2) % Returns number of columns (4)

length - Returns length of a vector or largest dimension

A = [1, 2, 3, 4];

l = length(A) % Returns 4

B = [1, 2; 3, 4];

36

Notes l2 = length(B) % Returns 2 (largest dimension)

ndims - Returns number of dimensions

A = rand(3, 4, 2);

n = ndims(A) % Returns 3 (A has 3 dimensions)

numel - Returns number of elements

A = rand(3, 4);

n = numel(A) % Returns 12 (A has 12 elements)

isscalar, isvector, ismatrix - Check array types

a = 5;

b = [1, 2, 3];

C = [1, 2; 3, 4];

isscalar(a) % Returns true (a is a scalar)

isvector(b) % Returns true (b is a vector)

ismatrix(C) % Returns true (C is a matrix)

1.4 Basic MATLAB Commands for Arithmetic Operations

Array arithmetic capabilities of MATLAB underpin its computational

strength, providing two separate methodologies for mathematical operations

that cater to varying analytical requirements.

Element-wise Operations

Element-wise operations execute computations on arrays individually,

executing identical actions to matching elements autonomously. It operations

are characterized by dot (.) prefix preceding operator. Primary element-wise

arithmetic operators comprise:

Element-wise multiplication operator (.*) performs multiplication on

corresponding items of two arrays. For instance, if A and B are arrays of same

dimensions, A.*B generates a new array in which each element is productof

corresponding items from A and B. This operation is especially beneficial for

component-wise scaling, executing point-wise modeling, and determining

element-by-element interactions.

37

Notes Likewise, element-wise division (./) divides each element of one array by its

matching element in ansomewhere array. This operation is frequently

employed in ratio computations, normalization procedures, and establishing

fractional links among datasets.

Element-wise power operator (.^) elevates each element of an array to a

designated exponent. A.^2 computes square of each individual member in

array A. This procedure is essential for polynomial evaluations, statistical

moment computations, and executing non-linear transformations.

Element-wise operations function with arrays of compatible dimensions,

adhering to MATLAB's broadcasting principles when array sizes are

dissimilar. When an operand is a scalar, MATLAB applies it to each element

of array, facilitating scaling or offsetting of huge datasets. A.*5 increases

every element of A by 5.

Matrix Operations

Matrix operations adhere to rules of linear algebra and are denoted by

conventional operators without dot prefix. It operations regard arrays as

mathematical matrices instead of as collections of discrete components.

Matrix multiplication operator (*) calculates matrix product in accordance

with linear algebra principles, anywhere each element of resultant matrix is

derived from dot product of a row from first matrix and a column from

second. This operation necessitates congruent inner dimensions— column

count of first matrix must match row count of second. Matrix multiplication

is essential in linear transformations, resolving systems of equations, and

applying mathematical models across many fields.

Matrix division operators (/ and \) resolve linear systems of equations. left

division operator (A\B) resolves equationxA = B for x, anywhereas right

division operator (A/B) addresses Ax = B. It processes serve as

computationally efficient substitutes for explicit calculation of matrix

inverses and are fundamental to numerous numerical approaches.

Matrix power operator (^) calculates matrix elevated to a designated

exponent, adhering to principles of matrix multiplication. A^2 is

38

Notes synonymous with A multiplied by A. This operation is utilized in

computation of matrix exponentials, Markov chains, and iterative processes.

Integrated and Enhanced Procedures

MATLAB effortlessly combines both operational paradigms, enabling users

to blend element-wise and matrix operations within intricate expressions.

This adaptability facilitates execution of complex algorithms with succinct

syntax.For complex numbers, both element-wise and matrix operations

manage real and imaginary components correctly. functions abs(), angle(),

real(), and imag() get particular attributes from complex arrays.MATLAB's

arithmetic operations seamlessly extend to multi-dimensional arrays, with

matrix operations often applied along first two dimensions while maintaining

higher dimensions. This functionality is especially beneficial in tensor

computations, multi-channel signal processing, and spatiotemporal data

analysis.

Efficacy of MATLAB's array arithmetic arises from its vectorized

methodology, which utilizes optimized low-level implementations and

circumvents explicit loops. This architecture enhances code readability and

conciseness while markedly improving computing efficiency, particularly for

extensive datasets.Comprehending difference between element-wise and

matrix operations is essential for proficient MATLAB programming, since

selecting correct operation type guarantees both mathematical accuracy and

computational efficiency in numerical applications.

Element-wise Operations

Element-wise operations work on individual elements of arrays. In

MATLAB, it operations are indicated by preceding operator with a period (.).

Element-wise Arithmetic

Addition and Subtraction

A = [1, 2; 3, 4];

B = [5, 6; 7, 8];

C = A + B % Element-wise addition: [6, 8; 10, 12]

D = A - B % Element-wise subtraction: [-4, -4; -4, -4]

39

Notes Element-wise Multiplication

A = [1, 2; 3, 4];

B = [5, 6; 7, 8];

C = A .* B % Element-wise multiplication: [5, 12; 21, 32]

Element-wise Division

A = [1, 2; 3, 4];

B = [5, 6; 7, 8];

C = A ./ B % Element-wise right division: [0.2, 0.33; 0.43, 0.5]

D = B .\ A % Element-wise left division (same as A ./ B)

Element-wise Power

A = [1, 2; 3, 4];

B = [2, 3; 1, 2];

C = A .^ B % Element-wise power: [1, 8; 3, 16]

Element-wise Complex Operations

A = [1+2i, 3-4i; 5+6i, 7-8i];

B = real(A) % Real part: [1, 3; 5, 7]

C = imag(A) % Imaginary part: [2, -4; 6, -8]

D = abs(A) % Absolute value (magnitude): [2.24, 5; 7.81, 10.63]

E = angle(A) % Phase angle in radians: [1.11, -0.93; 0.88, -0.85]

Matrix Operations

Matrix operations follow rules of linear algebra and involve more complex

interactions between array elements.

Matrix Multiplication

A = [1, 2; 3, 4];

B = [5, 6; 7, 8];

C = A * B % Matrix multiplication: [19, 22; 43, 50]

Matrix Powers

40

Notes A = [1, 2; 3, 4];

B = A^2 % Matrix power: [7, 10; 15, 22]

C = A^3 % Matrix power: [37, 54; 81, 118]

Matrix Division

A = [1, 2; 3, 4];

B = [5, 6; 7, 8];

C = A / B % Solves X*B = A for X

D = A \ B % Solves A*X = B for X

Determinant and Inverse

A = [1, 2; 3, 4];

d = det(A) % Determinant: -2

B = inv(A) % Inverse: [-2, 1; 1.5, -0.5]

Eigenvalues and Eigenvectors

A = [1, 2; 3, 4];

e = eig(A) % Eigenvalues: [-0.37, 5.37]

[V, D] = eig(A) % Eigenvectors and diagonal matrix of eigenvalues

Trace and Rank

A = [1, 2; 3, 4];

t = trace(A) % Trace (sum of diagonal elements): 5

r = rank(A) % Rank: 2

Statistical Operations

MATLAB provides a variety of functions for statistical operations on arrays:

Sum, Product, Mean, Median

A = [1, 2, 3; 4, 5, 6];

s1 = sum(A) % Sum of each column: [5, 7, 9]

s2 = sum(A, 2) % Sum of each row: [6; 15]

p1 = prod(A) % Product of each column: [4, 10, 18]

m1 = mean(A) % Mean of each column: [2.5, 3.5, 4.5]

41

Notes m2 = median(A) % Median of each column: [2.5, 3.5, 4.5]

Minimum and Maximum

A = [1, 2, 3; 4, 5, 6];

min_val = min(A) % Minimum of each column: [1, 2, 3]

max_val = max(A) % Maximum of each column: [4, 5, 6]

[min_val, min_idx] = min(A) % Also returns index of minimum

[min_all, idx] = min(A(:)) % Minimum value in entire array

Standard Deviation and Variance

A = [1, 2, 3; 4, 5, 6];

s = std(A) % Standard deviation of each column: [2.12, 2.12, 2.12]

v = var(A) % Variance of each column: [4.5, 4.5, 4.5]

Cumulative Functions

A = [1, 2, 3; 4, 5, 6];

cs = cumsum(A) % Cumulative sum: [1, 2, 3; 5, 7, 9]

cp = cumprod(A) % Cumulative product: [1, 2, 3; 4, 10, 18]

Rounding Functions

MATLAB offers various functions for rounding numeric values:

Basic Rounding

A = [1.1, 1.5, 1.9; -1.1, -1.5, -1.9];

B = round(A) % Rounds to nearest integer: [1, 2, 2; -1, -2, -2]

C = floor(A) % Rounds toward negative infinity: [1, 1, 1; -2, -2, -2]

D = ceil(A) % Rounds toward positive infinity: [2, 2, 2; -1, -1, -1]

E = fix(A) % Rounds toward zero: [1, 1, 1; -1, -1, -1]

Rounding to Decimal Places

A = 123.456789;

B = round(A, 2) % Rounds to 2 decimal places: 123.46

C = round(A, -1) % Rounds to nearest 10: 120

42

Notes Special Arithmetic Functions

Absolute Value and Sign

A = [-3, 0, 5];

abs_A = abs(A) % Absolute value: [3, 0, 5]

sign_A = sign(A) % Sign (-1, 0, or 1): [-1, 0, 1]

Modular Arithmetic

A = [10, 15, 20];

B = mod(A, 3) % Remainder after division by 3: [1, 0, 2]

C = rem(A, 3) % Similar to mod, but sign follows dividend: [1, 0, 2]

Greatest Common Divisor and Least Common Multiple

a = 12;

b = 18;

g = gcd(a, b) % Greatest common divisor: 6

l = lcm(a, b) % Least common multiple: 36

Factorials and Combinations

n = 5;

f = factorial(n) % Factorial: 120

c = nchoosek(n, 2) % Binomial coefficient (combinations): 10

Logarithms and Exponentials

A = [1, 2, 3];

ln_A = log(A) % Natural logarithm: [0, 0.69, 1.10]

log10_A = log10(A) % Base-10 logarithm: [0, 0.30, 0.48]

log2_A = log2(A) % Base-2 logarithm: [0, 1, 1.58]

exp_A = exp(A) % Exponential (e^A): [2.72, 7.39, 20.09]

Trigonometric Functions

A = [0, pi/4, pi/2];

sin_A = sin(A) % Sine: [0, 0.71, 1]

cos_A = cos(A) % Cosine: [1, 0.71, 0]

43

Notes tan_A = tan(A) % Tangent: [0, 1, Inf]

Inverse Trigonometric Functions

A = [0, 0.5, 1];

asin_A = asin(A) % Arcsine: [0, 0.52, 1.57]

acos_A = acos(A) % Arccosine: [1.57, 1.05, 0]

atan_A = atan(A) % Arctangent: [0, 0.46, 0.79]

Hyperbolic Functions

A = [0, 1, 2];

sinh_A = sinh(A) % Hyperbolic sine: [0, 1.18, 3.63]

cosh_A = cosh(A) % Hyperbolic cosine: [1, 1.54, 3.76]

tanh_A = tanh(A) % Hyperbolic tangent: [0, 0.76, 0.96]

Solved Problems

Problem 1: Matrix Manipulation and Operations

Problem Statement: Construct a 3x3 matrix A containing values from 1 to

9, transform it into a 1x9 row vector, and reaftercompute total, mean, and

standard deviation of this vector.

Solution:

% Create matrix A

A = reshape(1:9, 3, 3)

% Reshape A into a 1x9 row vector

row_vector = reshape(A, 1, 9)

% Calculate sum, mean, and standard deviation

sum_val = sum(row_vector)

mean_val = mean(row_vector)

std_val = std(row_vector)

Output:

A =

 1 4 7

 2 5 8

44

Notes 3 6 9

row_vector =

 1 2 3 4 5 6 7 8 9

sum_val =

 45

mean_val =

 5

std_val =

 2.7386

Explanation:

1. Initially, we constructed a 3x3 matrix A utilizing reshape function

with integers 1 to 9.

2. Subsequently, we transformed matrix A into a 1x9 row vector.

3. Ultimately, we computed total (45), mean (5), and standard

deviation (about 2.74) of componentsin row vector.

Problem 2: Element-wise Operations vs Matrix Operations

Problem Statement: Given two 2x2 matrices A = [1, 2; 3, 4] and B = [5, 6;

7, 8], compare results of: a. Matrix multiplication (A * B) b. Element-wise

multiplication (A .* B) c. Matrix power (A^2) d. Element-wise power (A.^2)

Solution:

% Define matrices A and B

A = [1, 2; 3, 4]

B = [5, 6; 7, 8]

% a. Matrix multiplication

C = A * B

% b. Element-wise multiplication

D = A .* B

% c. Matrix power

E = A^2

% d. Element-wise power

F = A.^2

45

Notes Output:

A =

 1 2

 3 4

B =

 5 6

 7 8

C =

 19 22

 43 50

D =

 5 12

 21 32

E =

 7 10

 15 22

F =

 1 4

 9 16

Explanation:

1.Matrix multiplication (A * B) adheres to principles of linear algebra,

anywherein each element is summationof products of rows from A and

columns from B.

2. Element-wise multiplication (A .* B) multiplies related elements directly.

3. matrix power (A^2) is defined as A multiplied by A, adhering to principles

of matrix multiplication.

4. Element-wise power (A.^2) computes square of each individual element

in A.

Primarydistinction is that matrix operations account for complete structure

and interrelations among elements, anywhereas element-wise operations

regard each element in isolation.

46

Notes Problem 3: Creating Special Matrices and Arrays

Problem Statement:Create following matrices and arrays: a. A 3x3 magic

square b. A 4x4 identity matrix c. A linearly spaced vector with 5 elements

from 0 to 10 d. A logarithmically spaced vector with 4 elements from 10^1 to

10^4

Solution:

% a. Create a 3x3 magic square

M = magic(3)

% b. Create a 4x4 identity matrix

I = eye(4)

% c. Create a linearly spaced vector

linvec = linspace(0, 10, 5)

% d. Create a logarithmically spaced vector

logvec = logspace(1, 4, 4)

Output:

M =

 8 1 6

 3 5 7

 4 9 2

I =

 1 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

linvec =

 0 2.5000 5.0000 7.5000 10.0000

logvec =

10.0000 100.0000 1000.0000 10000.0000

Explanation:

• magic(3) function generates a 3x3 magic square in which total of

every row, column, and diagonal equals 15.

47

Notes • eye(4) function generates a 4x4 identity matrix characterized by ones

along diagonal and zeros in all somewhere positions.

• linspace(0, 10, 5) function generates a vector containing 5 entries that

are evenly distributed between 0 and 10.

• logspace(1, 4, 4) function generates a vector containing 4 entries

logarithmically distributed from 10^1 to 10^4.

• Each of it functions offers an efficient method for generating

particular types of matrices and arrays frequently utilized in

numerical computations.

Problem 4: Statistical Analysis of Data

Problem Statement:Given data matrix D:

D = [12, 15, 18, 21;

 8, 10, 12, 14;

 20, 25, 30, 35]

Calculate: a. mean of each column b. standard deviation of each row c.

maximum value in entire matrix and its position d. sum of each row

Solution:

% Define data matrix

D = [12, 15, 18, 21; 8, 10, 12, 14; 20, 25, 30, 35]

% a. Calculate mean of each column

col_means = mean(D)

% b. Calculate standard deviation of each row

row_stds = std(D, 0, 2) % 0 for default normalization, 2 for row-wise

% c. Find maximum value and its position

[max_val, linear_idx] = max(D(:))

[row_idx, col_idx] = ind2sub(size(D), linear_idx)

% d. Calculate sum of each row

row_sums = sum(D, 2)

Output:

D =

 12 15 18 21

48

Notes 8 10 12 14

 20 25 30 35

col_means =

 13.3333 16.6667 20.0000 23.3333

row_stds =

 3.8297

 2.5820

 6.4550

max_val =

 35

row_idx =

 3

col_idx =

 4

row_sums =

 66

 44

 110

Explanation:

• mean of each column represents average value of all rows inside that

column.

• standard deviation of each row quantifies dispersion of values within

that row.

• greatest value in matrix is 35, situated at location (3,4) (row 3,

column 4).

• aggregate of each row yields overall value for that row.

• This issue illustratesapplication of MATLAB's inherent

functionalities for fundamental statistical analysis of data matrices.

Problem 5: Matrix Manipulation and Solving Linear Equations

Problem Statement:Given system of linear equations: 3x + 2y = 11 x + 4y

= 9

Solve this system using MATLAB matrix operations.

49

Notes Solution:

% Define coefficient matrix A and right-hand side vector b

A = [3, 2; 1, 4]

b = [11; 9]

% Method 1: Using matrix division

x = A \ b

% Method 2: Using inverse matrix

x_inv = inv(A) * b

% Verify solution

verification = A * x

Output:

A =

 3 2

 1 4

b =

 11

 9

x =

 3

 1

x_inv =

 3

 1

verification =

 11

 9

Explanation:

We established system as a matrix equation Ax = b, with A representing

coefficient matrix and b denoting right-hand side vector.

1. We resolved problemutilizing backslash operator (A \ b), which is

most efficient technique in MATLAB.

50

Notes 2. We additionally resolved it employing inverse matrix method

(inv(A) * b) for comparative analysis.

3. Both techniques get result x = 3, y = 1.

4. We validated solution by calculating A * x, which equates to b, so

verifying our result.

5. backslash operator is typically favored over inverse matrix because

to its superior numerical stability and efficiency.

Unsolved Problems

Problem 1

Construct a 4x4 matrix A of random integers ranging from 1 to 20.

Subsequently: a. Extract diagonal elements into a vector d. b. Construct a new

matrix B by replacing diagonal elements of matrix A with members of vector

d in reverse order. c. Compute determinant and trace of matrices A and B.

d. Ascertain which matrix possesses greater Frobenius norm.

Problem 2

Consider two vectors x = [1, 3, 5, 7, 9] and y = [2, 4, 6, 8, 10]. Calculate dot

product of vectors x and y. b. Compute element-wise product of x and y. c.

Construct a matrix C such that C(i,j) = x(i) * y(j). d. Calculate mean and

standard deviation of elements in matrix C. e. Ascertain quantity of

components in C that exceed mean of C.

Problem 3

Construct a 5x5 magic square M. Execute subsequent tasks: Calculate

eigenvalues and eigenvectors of matrix M. b. Ascertain rank and condition

number of M. c. Decompose matrix M utilizing singular value decomposition

(SVD). d. Utilize SVD components to reconstruct matrix M and compute

errorbetween originaland rebuilt matrices.

Problem 4

Examine function f(x,y) = x^2 * e^(-x^2-y^2): Generate a grid of x and y

coordinates spanning from -2 to 2, comprising 50 points in each dimension.

b. Compute function values for each point on grid. c. Determine coordinates

51

Notes (x,y) and valueof maximumof fwithin grid. Determine gradientof fat

coordinate (1,0) by numerical differentiation.

Problem 5

Given a series of temperature measurements over 24 hours: temp = [20, 19,

18, 17, 16, 15, 14, 15, 17, 20, 23, 25, 26, 27, 26, 25, 24, 22, 21, 20, 19, 18, 17,

16]

Calculate mean, median, lowest, and maximum temperatures. a. Identify all

instances when temperatureexceeded daily average. c. Compute moving

average with a window size of 3 hours. d. Determine maximumtemperature

increase and reduction during successive hours. Generate a new vector with

temperature recorded every 6 hours, commencing from initial hour. Resolved

and unresolved issues illustrate utilization of array manipulation functions

and arithmetic operations in MATLAB. resolved problems present

comprehensive solutions and elucidations, however unresolved difficulties

furnish opportunities for practice with more intricate scenarios encompassing

matrices, vectors, statistical analysis, and numerical computations.Array

indexing and mathematical operations are essential principles in

computational mathematics, data science, and scientific computing. By

comprehending it actions, we can utilize arrays to address intricate difficulties

effectively.

 Essential insights:

• Array indexing facilitates retrieval of individual elements according

to it positional index.

• Array operations facilitate efficient mathematical manipulations of

data collections.

• Matrix operations constitute cornerstone of linear algebra and

possess extensive applications.

• Comprehending operations such as addition, multiplication,

transposition, and inversion is essential.

Resolved and unresolved problems presented facilitate reinforcement of key

concepts and enhance expertise in manipulating arrays and matrices. By

52

Notes engaging with it challenges, you will cultivate skills necessary to utilize

itmathematical tools in many computing scenarios.

1.5 An In-Depth Manual on MATLAB Arrays and Operations

Overview of MATLAB Environment

MATLAB, an acronym for "Matrix Laboratory," is a high-performance

computational environment created by MathWorks, recognized as industry

standard for numerical computation, data analysis, and visualization in

scientific and engineering domains. core of MATLAB's computational

strength is its inherent capacity to efficiently handle arrays and matrices,

rendering complicated mathematical operations accessible via understandable

syntax. Initially created in late 1970s by Cleve Moler at University of New

Mexico to facilitate student access to LINPACK and EISPACK (libraries for

matrix computations) without necessitating Fortran proficiency, MATLAB

has transformed into a multifaceted platform that amalgamates computation,

visualization, and programming functionalities within a unified environment.

contemporary MATLAB environment comprises several essential

components that function cohesively: desktop interface, acting as primary

control hub; command window, anywhere users input commands and receive

immediate feedback; workspace, which monitors all variables generated

during a session; editor, facilitating creation and alteration of scripts and

functions; and various specialized toolboxes that enhance MATLAB's

capabilities for specific application areas such as signal processing, image

processing, control systems, neural networks, and statistical analysis.

MATLAB desktop environment is optimized for productivity, offering a

flexible structure that enables users to organize several windows based on it

workflow preferences. This adaptability allows users to concurrently examine

code, visualize data, and observe variables, so augmenting interactive

exploration and analysis integral to scientific computing. MATLAB

environment is characterized by its interpreted nature, enabling instant

command execution without compilation, reby promoting rapid prototyping

and iterative development. This interactive method of computation is

especially beneficial in educational and research environments anywhere

exploration and experimentation are crucial to problem-solving. Moreover,

MATLAB's powerful visualization features allow users to produce

53

Notes publication-quality graphs and charts with ease, rendering it an essential tool

for successfully conveying intricate results. MATLAB has rich documentation

and assistance features available immediately within environment,

encompassing function reference pages with thorough explanations and

examples, substantial tutorials, and demonstration scripts that exemplify best

practices and typical applications. This comprehensive support system

renders MATLAB accessible to novices while supplying advanced users with

extensive knowledge necessary to fully utilize platform's capabilities. In

addition to its independent functionalities, MATLAB provides comprehensive

integration possibilities with many programming languages and tools,

enabling users to integrate pre-existing code authored in C, C++, Fortran,

Java, and Python. This interoperability broadens MATLAB's scope,

establishing it as a versatile center for computational operations that may

encompass several platforms and programming environments. MATLAB

environment encompasses robust debugging tools that assist users in swiftly

identifying and rectifying errors in it code. It instruments encompass

breakpoints, incremental execution, variable monitoring, and profiling

functionalities that can identify performance constraints. MATLAB interfaces

with prominent systems like as Git for collaborative work and version control,

allowing teams to manage code development and share solutions efficiently.

In recent years, MATLAB has adopted cloud computing and parallel

processing features, enabling users to extend it computations to accommodate

larger datasets and more sophisticated simulations. This evolution indicates

MATLAB's continuous adjustment to evolving domain of scientific

computing, anywhereby large data and high-performance computing have

gained paramount significance. MATLAB environment effectively balances

accessibility for beginners and sophistication for experts, establishing it as a

versatile platform that remains integral to scientific research, industrial

applications, and educational contexts globally. Its emphasis on array-based

computation, along with a comprehensive library of mathematical functions

and an abundant array of development tools, fosters a productive atmosphere

for swiftly transforming ideas into functional solutions.

Formulating Arrays in MATLAB

Arrays constitute essential data structure in MATLAB, functioning as

foundational elements for nearly all operations and calculations within

54

Notes environment. MATLAB's methodology for array creation is intuitive and

versatile, providing many techniques to produce arrays that fulfill precise

specifications regarding size, content, and structure.Most straightforward

approach to build arrays in MATLAB is through explicit definition using

square brackets, with components in a row separated by spaces or commas,

and semicolons indicating conclusion of each row. A 3×3 matrix can be

constructed using notation `A = [1 2 3; 4 5 6; 7 8 9]`, producing a two-

dimensional array of three rows and three columns. This direct method

enables users to specify tiny arrays explicitly, with values presented in a way

that visually mirrors resultant matrix structure. MATLAB has colon operator

(:) for generating arrays with specified patterns, producing regularly spaced

sequences of numbers. notation `start:end` generates a row vector of integers

from initial value to terminal value, exemplified by `1:10`, which yields a

vector containing integers from 1 to 10. By incorporating a step size, as in

`start:step:end`, users can regulate increment between successive values; for

example, `0:0.5:5` generates a vector from 0 to 5 with elements rising by 0.5.

colon operator is highly versatile and underpins numerous array construction

methods in MATLAB, including its application in array indexing and slicing

operations. For situations necessitating precise control over quantity of points

instead of step size, MATLAB has `linspace` function, which generates

linearly spaced vectors with a predetermined number of points. For instance,

`linspace(0, 1, 11)` produces a vector containing 11 points uniformly

distributed between 0 and 1, inclusive. In a similar manner, for logarithmically

spaced data, prevalent in numerous scientific and engineering contexts,

`logspace` function generates vectors with logarithmic spacing, exemplified

by `logspace(0, 3, 4)`, which yields vector [1, 10, 100, 1000]. MATLAB has

a multitude of specialized routines for generating arrays with predetermined

values or patterns. `zeros` function generates arrays populated with zero

values, for instance, `zeros(3,4)` yields a 3×4 matrix of zeros. Likewise,

`ones` function produces arrays populated with 1s, anywhereas ̀ eye` function

constructs identical matrices featuring 1s along principal diagonal and 0s in

all somewhere positions. It routines are especially advantageous for

initializing arrays prior to filling m with calculated values, as memory pre-

allocation can markedly enhance performance in computationally demanding

tasks. MATLAB provides various routines for generating arrays with random

content based on distinct probability distributions. `rand` function generates

arrays populated with uniformly distributed random numbers ranging from 0

55

Notes to 1, anywhereas `randn` produces arrays containing normally distributed

random integers with a mean of 0 and a standard deviation of 1. `randi`

function generates arrays of evenly distributed random integers within a

defined range, which is very beneficial for simulations and statistical models

involving discrete values. MATLAB furr offers functions for generating

arrays with particular mathematical characteristics. `magic` function

produces magic squares of a defined size, ensuring that sums of all rows,

columns, and diagonals are identical. `gallery` function generates test

matrices with defined characteristics, which are essential for evaluating

numerical algorithms and comprehending it performance in regulated

environments. ̀ compan` function generates companion matrix for a specified

polynomial, which is advantageous in analysis of polynomial roots and

differential equations. For intricate array construction scenarios, MATLAB

provides functions that produce arrays eir from existing data or particular

geometric patterns. `meshgrid` and `ndgrid` functions provide coordinate

arrays for evaluation of multivariable functions, which is especially

advantageous in charting and numerical integration. ̀ diag` function generates

diagonal matrices from vector inputs or retrieves diagonal elements from

existing matrices, offering an efficient method to operate this significant

category of matrices. `blkdiag` function creates block diagonal matrices by

amalgamating smaller matrices as diagonal blocks, which is advantageous in

some system modeling contexts. MATLAB's array construction

functionalities encompass specific data types as well. Complex arrays can be

formed with imaginary unit `i` or `j`, exemplified as `[1+2i, 3-4i]`, resulting

in a complex vector. Logical arrays, comprising solely true (1) and false (0)

values, can be generated directly or by relational operations on pre-existing

arrays. Cell arrays, capable of storing elements of varying sorts and sizes,

facilitate organization of heterogeneous data inside a singular structure.

Likewise, structural arrays facilitate formation of records with designated

fields, providing a more systematic method for handling associated data.

versatility and capability of MATLAB's array creation functions are enhanced

by its capacity to import data from external sources, encompassing documents

in multiple formats (CSV, Excel, text), databases, web services, and hardware

interfaces. This functionality enables users to utilize real-world data sets

without need for manual value entry, rendering MATLAB an efficient

instrument for data analysis and visualization in practical contexts. MATLAB

offers tools for generating sparse arrays, which retain only non-zero elements

56

Notes and it indices, leading to considerable memory efficiency for arrays with a

high ratio of zeros. `sparse` function transforms conventional arrays into

sparse format, anywhereas specialized functions such as `sprand` and

`spdiags` generate sparse arrays with particular patterns directly, bypassing

need to produce a complete array first. This support for sparse arrays enhances

MATLAB's ability to efficiently manage extensive, sparse issues, which is

essential in numerous engineering and scientific applications.

Indexing and Accessing Elements within Arrays

MATLAB's robust array indexing system grants users exact control over

access and manipulation of array elements, presenting a versatile framework

that ranges from basic single-element access to complex multi-dimensional

slicing operations. Comprehending this indexing technique is essential for

proficient MATLAB programming, as it facilitates rapid data extraction,

transformation, and analysis across diverse applications. MATLAB employs

one-based indexing, anywherein initial element of an array is accessed using

index 1 instead of 0, aligning with mathematical notation in various

disciplines, although diverging from certain somewhere programming

languages such as C or Python. This one-based methodology conforms to

mathematical conventions, rendering MATLAB code more intelligible for

users with mathematical expertise, while necessitating some adaptation for

individuals transitioning from zero-based indexing languages. Fundamental

method of array indexing in MATLAB entails retrieving individual elements

by indicating it position within array using parenits. In a one-dimensional

array (vector), a single index suffices, for example, `v(3)` to access third

element of vector v. In contrast, two-dimensional arrays (matrices) necessitate

two indices to denote row and column coordinates, such as `A(2,3)` to access

element located in second row and third column of matrix A. This row-

column arrangement aligns with conventional mathematical nomenclature for

matrices and enhances readability of MATLAB code for individuals

acquainted with linear algebra principles. MATLAB enhances basic indexing

to accommodate multi-dimensional arrays, necessitating a distinct index for

each dimension. For instance, in a three-dimensional array B, element located

in second row, third column, and fourth "page" can be accessed as `B(2,3,4)`.

This uniform indexing system scales effortlessly to arrays of any

dimensionality, however viewing arrays exceeding three dimensions may

57

Notes become difficult for majority of users. colon operator (:) in MATLAB is a

highly effective indexing tool that enables users to choose complete rows,

columns, or higher-dimensional segments of an array. colon, when utilized as

an index, signifies all items inside that dimension. For instance, `A(2,:)`

retrieves complete second row of matrix A, but `A(:,3)`retrieves entire third

column. This language is exceptionally succinct and intuitive, encapsulating

intricate slice operations in a comprehensible format that resembles

mathematical notation for picking matrix rows and columns. colon operator

can define ranges of indices, for instance, `A(2:5,3:6)`, which picks a 4×4

submatrix from rows 2 to 5 and columns 3 to 6 of matrix A. This range

selection may incorporate a step size as a middle argument, exemplified by

`A(1:2:end,3)`, which selects every alternate row (commencing from first) of

third column. specific keyword `end` denotes final index in a given

dimension, facilitating code that automatically adjusts to arrays of varying

sizes. `A(2:end,3)` picks all rows from secondto lastin third column,

irrespective of total number of rows in matrix A. MATLAB's linear indexing

offers an alternate method for accessing array items by treating multi-

dimensional arrays as if y were compressed into a single column vector.

Elements are arranged column-wise; hence, for a matrix A, linear index 1

corresponds to A(1,1), linear index 2 corresponds to A(2,1) (provided A

contains a minimum of two rows), and so forth. This linear indexing facilitates

efficient vectorized operations on all members of an array, irrespective of its

dimensional configuration. MATLAB facilitates logical indexing, anywherein

a logical array (comprising solely true or false values) is employed to choose

entries from a different array. This robust feature enables conditional selection

of components without need for explicit loops. For instance, if A is a matrix,

n `A(A >5)` extracts those elements of A that exceed 5, returning m as a

column vector. This method is very beneficial for data analysis activities that

require filtering or choosing pieces according to certain criteria. `find`

function enhances logical indexing by providing linear indices of elements

that meet a specified criterion. For instance, `find(A >5)`yields linear indices

of all elements in A that exceed 5. It indices may reafter be utilized for

additional indexing or manipulation. Function can immediately return row

and column subscripts using syntax `[row,col] = find(A >5)`, which is

advantageous for comprehending geographical distribution of elements that

satisfy specific constraints. MATLAB offers various specialized indexing

functions that enhance its functionality for particular applications. `sub2ind`

58

Notes and `ind2sub` functions facilitate conversion between subscript (row,

column) indices and linear indices, hence enabling operations that necessitate

both indexing types. `reshape` function modifies dimensional configuration

of an array without changing its members, facilitating transformations across

vectors, matrices, and higher-dimensional arrays while maintaining original

data. MATLAB's indexing system facilitates intricate slicing operations using

functions such as `squeeze`, which eliminates singleton dimensions, and

`permute`, which rearranges dimensions of an array. It functions facilitate

intricate reorganization of multi-dimensional data without duplicating or

rearranging actual pieces, which is very advantageous when handling

extensive datasets. Cell arrays in MATLAB employ a dual indexing technique

that differentiates between accessing complete cells and retrieving contents

within those cells. Curly brackets `{}` facilitate direct access to cell contents,

anywhereasparenits`()` enable access to cells as elements of cell array. This

differentiation facilitates adaptable management of heterogeneous data,

anywherein one cell may encompass diverse data kinds of variable

dimensions. Structure arrays utilize field names instead of numerical indexes

for data access, employing dot notation, such as `student.name`, to retrieve

"name" field of "student" structure. This offers a more intuitive and self-

explanatory method for organizing related material than solely numerical

indexing. MATLAB's indexing system incorporates specific provisions for

empty arrays, which may result from operations that choose no elements. null

array retains its dimensional attributes, affecting its behavior in subsequent

operations. An empty array produced by `A(A <0)` when A lacks negative

members would be a 0×1 column vector, indicating that logical indexing

generally yields column vectors. reliable and user-friendly indexing system

of MATLAB, along with its facilitation of vectorized operations, allows users

to compose succinct and effective code for intricate data manipulation tasks.

This framework underpins MATLAB's extensive functionalities in scientific

computing, data analysis, and visualization, rendering it an invaluable

instrument for academics and engineers in diverse fields.

Mathematical Operations Involving Arrays

MATLAB's methodology for mathematical operations involving arrays is a

defining and potent characteristic, providing a dual paradigm that integrates

both element-wise and matrix operations inside a cohesive linguistic

59

Notes framework. This duality enables users to articulate intricate mathematical

calculations succinctly and clearly, while utilizing MATLAB's highly

designed computational engine for rapid execution. Central to MATLAB's

mathematical functionalities are its element-wise operations, which execute

actions independently on each corresponding element within arrays. It

operations are indicated by prefixing conventional arithmetic operators with

a period, resulting in operators such as .*, ./, .^, and somewheres. If A and B

are arrays of identical dimensions, A.*B generates a new array in which each

element is productof corresponding items from A and B. This element-wise

methodology is logical for numerous computing tasks, including application

of transformations to data points, implementation of point-wise models in

simulations, or execution of concurrent calculations across multiple

observations. Element-wise operations in MATLAB adhere to broadcasting

principles that automatically extend operations to arrays of varying sizes

under specific conditions. When one operand is a scalar, that value is applied

uniformly to each element of array operand. A.*2 increases every element of

array A by 2. When arrays possess compatible dimensions, such that one

array's size in each dimension is eir equal to corresponding dimension of

somewhere array or equal to 1, MATLAB automatically replicates smaller

array along singleton dimensions to conform to sizeof bigger array. This

broadcasting approach facilitates flexible actions between arrays of varying

shapes without need for explicit resizing, hence enhancing code conciseness

and efficiency. Unlike element-wise operations, MATLAB's matrix

operations adhere to principles of linear algebra, regarding arrays as

mathematical entities instead than mere collections of individual components.

usual arithmetic operators excluding dots (*, /, ^) execute matrix operations.

If matrices A and B possess compatible dimensions, operation A*B yields

matrix product in accordance with linear algebra principles, anywherein each

element of resultant matrix is derived from dot product of a row from A and

a column from B. Matrix operations in MATLAB encompass not just

fundamental arithmetic but also an extensive array of linear algebra functions.

`inv` function determines inverse of a square matrix, ̀ det` function computes

determinant, and `eig` function identifies eigenvalues and eigenvectors.

Matrix decompositions, including LU, QR, SVD, and Cholesky, are executed

using functions such as `lu`, `qr`, ̀ svd`, and ̀ chol`, respectively. It procedures

are foundation of various scientific and technical applications, ranging from

resolution of systems of equations to assessment of dynamic system stability.

60

Notes MATLAB offers matrix division operators (\ and /) for resolving linear

systems of equations, employing numerically robust techniques that

circumvent explicit calculation of matrix inverses when feasible. left division

operator (A\B) determines solution x for equationxA = B, anywhereas right

division operator (A/B) resolves equation Ax = B. It operators autonomously

determine most suitable algorithm according to characteristicsof matrices,

including it square, symmetric, sparse, or ill-conditioned nature, hence

guaranteeing both precision and efficiency across many problem types.

MATLAB's integration of complex numbers into its array functions is smooth.

Complex arrays, comprising items with real and imaginary components, can

be constructed with imaginary unit `i` or `j`. All arithmetic procedures,

whether element-wise or matrix-based, correctly manage complex numbers

by automatically implementing principles of complex arithmetic. Functions

like as `abs`, `angle`, `real`, and `imag` retrieve characteristics of complex

arrays, anywhereas transformations like Fourier transforms (`fft`) function

seamlessly on complex data. This extensive support for complex arithmetic is

crucial for applications in signal processing, control systems,

electromagnetics, and quantum physics, among somewheres. In addition to

fundamental arithmetic, MATLAB offers a comprehensive array of

mathematical functions designed for array manipulation. Trigonometric

functions (sin, cos, tan), exponential and logarithmic functions (exp, log,

log10), and special functions (Bessel, gamma, erf) all accept array inputs and

yield array outputs of equivalent dimensions, applying function to each

element individually. This vectorized method of function application obviates

necessity for explicit loops in several computations, yielding code that is both

more succinct and more efficient. Statistical operations on arrays are

facilitated by functions like as `mean`, `median`, `std` (standard deviation),

and `var` (variance), which calculate statistics across designated dimensions

of multi-dimensional arrays. For instance, `mean(A,1)`calculates mean of

each column in matrix A, anywhereas `mean(A,2)`calculates mean of each

row. This dimensional flexibility enables advanced data analysis from

multiple perspectives of intricate datasets. MATLAB's array operations

seamlessly apply to logical statements and comparisons. Relational operators

(==, <, >, <=, >=, ~=) evaluate arrays on an element-by-element basis,

yielding logical arrays that match dimensionsof inputs. Logical arrays can

be amalgamated utilizing logical operators (& for AND, | for OR, ~ for NOT)

to formulate intricate conditions without necessity for explicit loops or

61

Notes conditional expressions. This functionality is especially beneficial for data

analysis activities that need filtering or classification according to numerous

criteria. MATLAB enhances efficiency of array operations via several

methods, including utilization of specialized linear algebra libraries (such as

LAPACK and BLAS), parallel processing over several CPU cores anywhere

suitable, and sophisticated memory management to reduce duplication of

huge arrays. Itoptimizations enable MATLAB to manage extensive

computations effectively, rendering it appropriate for both exploratory

analysis and production-scale applications of computational techniques.

MATLAB provides supplementary toolboxes for certain fields that enhance

its mathematical functionalities with customized functions and algorithms.

Signal Processing Toolbox offers functions for filtering, spectral analysis, and

waveform generation; Statistics and Machine Learning Toolbox provides

advanced statistical methods and machine learning algorithms; Optimization

Toolbox implements diverse optimization techniques for identifying minima

or maxima of objective functions subject to constraints. It toolboxes utilize

MATLAB's array operations as it basis, guaranteeing uniform syntax and

behavior across many application domains. MATLAB's methodology for

array mathematical operations achieves a harmony between mathematical

expressiveness and computing efficiency, enabling users to execute intricate

algorithms with succinct code that closely mirrors mathematical notation.

This congruence between code and mathematicsalleviates cognitive burden

of converting mathematical notions into programming constructs, allowing

researchers and engineers to concentrate on fundamental scientific issues it

than intricacies of implementation.

Intrinsic Functions for Array Manipulation

MATLAB's comprehensive set of built-in functions for array manipulation

offers users a robust tools for transforming, analyzing, and displaying data in

many forms. It functions are crafted to be both user-friendly and efficient,

facilitating intricate array manipulations with succinct syntax that utilizes

MATLAB's vectorized computation framework. A primary category of array

manipulation functions in MATLAB pertains to reshaping and restructuring

arrays. `reshape` function modifies dimensional configuration of an array

while maintaining its items and it sequence. For instance, `reshape(A, [3, 4])`

converts array A into a 3×4 matrix, populating entries in a columnar fashion.

62

Notes This function necessitates that productof new dimensions equals entire

number of elements in old array. ̀ permute` function modifies arrangementof

dimensions of a multi-dimensional array based on a designated sequence. For

instance, `permute(A, [2, 1, 3])`interchanges first and second dimensions of

a 3D array, Therefore transposing each slice of array. In typical scenario of

2D arrays, `transpose` function or its abbreviated form A' executes a matrix

transpose, interchanging rows and columns. For complex arrays, conjugate

transpose is executed; `ctranspose` function or A' conjugates each element

during transposition, anywhereas `transpose` function or A.' executes a non-

conjugating transpose. MATLAB has numerous functions for merging or

partitioning arrays. `cat` function concatenates arrays along a designated

dimension, for instance, `cat(2, A, B)` merges arrays A and B horizontally

(along second dimension). functions `horzcat` and `vertcat` facilitate

horizontal and vertical concatenation, respectively. `repmat` function

duplicates an array in a tiled configuration, exemplified by ̀ repmat(A, [2, 3])`,

which generates a new array by vertically stacking two instances of A and

horizontally aligning three instances. MATLAB has functions such as

`squeeze`, which eliminates singleton dimensions from an array, and

`shiftdim`, which circularly shifts dimensions to left or right. It functions are

especially beneficial for handling outcomes from somewhere operations that

may alter or manipulate dimensions in suboptimal ways for furr processing.

MATLAB has routines explicitly intended for manipulation of arrays through

flipping and rotation. `flip` function inverts sequence of elements along a

designated dimension, anywhereas specialized functions `fliplr` and `flipud`

transpose arrays horizontally and vertically, respectively. `rot90` function

rotates a two-dimensional array counterclockwise by 90 degrees, with an

optional second argument indicating number of 90-degree revolutions to

execute. It processes are frequently employed in image processing

applications and in preparation of data for certain display formats. MATLAB

has functions such as `diag`, which retrieves diagonal elements from a matrix

or constructs a diagonal matrix from a vector, and `tril` and `triu`, which

extract lower and upper triangular sections of a matrix, respectively.

`blkdiag` function constructs block diagonal matrices by positioning input

matrices along diagonal of a bigger matrix, which is advantageous in some

system modeling and simulation scenarios. MATLAB provides functions for

sorting and arranging array elements. `sort` function organizes elements in

eir ascending or descending order along a designated dimension, with

63

Notes capability to return original indices of sorted elements. `sortrows` function

arranges rows of a matrix according to values in designated columns, making

it very beneficial for structuring tabular data. `unique` function identifies

distinct elements in an array, with ability to sort m and provide it original

positions and frequency of occurrence. MATLAB offers functions for

conditional operations on arrays, such as `find`, which yields indices of

elements meeting a particular criteria, and `ismember`, which determines

elements that are part of a designated set. `any` function evaluates if any

element along a designated dimension meets a criterion, anywhereas `all`

function assesses if all items fulfill criteria. It routines facilitate intricate

filtering and analytical procedures devoid of explicit loops or conditional

expressions. Statistical functions for array analysis encompass `min` and

`max`, which identify smallest and largest elements along designated

dimensions, as well as `mean`, `median`, `std`, and `var`, which calculate

standard statistical measures. It functions can run across any dimension of

multi-dimensional arrays, offering versatility in data analysis and

summarization. For intricate statistical analyses, functions such as

`histcounts` and `discretize` enable histogram construction and data binning,

whilst ̀ cumsum` and ̀ cumprod` calculate cumulative sums and products over

designated dimensions. MATLAB's array manipulation functionalities

encompass specific array types as well. Sparse arrays, which exclusively

retain non-zero elements to optimize memory usage, utilize functions such as

`sparse` and `full` for conversion between sparse and full formats, while

operations like `spdiags` and `sprand` generate sparse arrays with designated

patterns directly. Cell arrays, capable of containing components of varying

types and sizes, utilize functions such as `cell2mat` and `mat2cell` for

conversion between standard arrays and cell arrays, while `cellfun` executes

a function on each individual cell within a cell array. MATLAB has robust

visualization capabilities that operate directly with arrays. `plot` function

generates 2D line graphs, while `surf` and `mesh` provide 3D surface

representations, and `imagesc` displays matrices as color-coded images. It

functions autonomously manage correspondence between array indices and

plot coordinates, facilitating visualization of intricate data structures. For

more specific visualizations, functions such as ̀ contour` provide contour plots

displaying level curves of two-dimensional data, `quiver` generates vector

field representations, and `streamline` illustrates flow fields. amalgamation

of it viewing features with MATLAB's array manipulation algorithms offers

64

Notes a robust platform for interactive data exploration and analysis. array

manipulation functions in MATLAB are engineered to operate cohesively,

enabling users to concatenate operations for executing intricate

transformations within a singular statement. equation

`mean(abs(fft(signal)),2)` efficiently computes Fast Fourier Transform of a

signal array, extracts absolute values of frequency components, and

subsequently calculates meanalong second dimension, all within a single

line. functional composition method, along with MATLAB's effective

execution of array operations, allows users to articulate intricate algorithms in

a lucid and sustainable manner. uniform structure of MATLAB's array

manipulation functions, anywhere arguments generally adhere to patterns

such as (array, dimension, additional_parameters), renders system

comprehensible and foreseeable, although its vast capabilities. consistency,

along with thorough documentation and examples, enables users to swiftly

attain proficiency in MATLAB's array manipulation functionalities while

delving into more complex applications.

Fundamental MATLAB Commands for Arithmetic Operations

MATLAB offers an extensive array of commands for executing arithmetic

operations on arrays, from basic scalar computations to intricate matrix

operations that underpin scientific computing and engineering analysis. It

commands are crafted to be intuitive and consistent, enabling users to

articulate mathematical concepts directly in code with syntax that closely

mirrors conventional mathematical notation. MATLAB fundamentally

provides basic arithmetic operators: addition (+), subtraction (-),

multiplication (*), division (/), and exponentiation (^). It operators function

effortlessly with scalar numbers, yielding results that align with conventional

arithmetic. For instance, 3 + 4 equals 7, 5 - 2 equals 3, 6 * 7 equals 42, 10 / 2

equals 5, and 2^3 equals 8. This direct functionality renders MATLAB user-

friendly for basic computations while establishing a basis for more intricate

processes. What sets MATLAB apart from numerous somewhere

programming environments is seamless extension of its fundamental

operators to accommodate arrays of diverse dimensions. addition and

subtraction operators, when applied to arrays of same dimensions, execute

element-wise operations, yielding a result anywhere each element

corresponds to sum or difference of respective elements in input arrays. If

65

Notes A and B are both 3×3 matrices, n A + B yields a new 3×3 matrix in which

each element is sumof corresponding elements from A and B. This behavior

is instinctive and corresponds with conventional definitions of vector addition

and subtraction in mathematics. In MATLAB, behavior of multiplication and

division is contingent upon contextand dimensionsof arrays involved.

multiplication operator (*) executes matrix multiplication on arrays, adhering

to principles of linear algebra. For multiplication of two matrices to be

feasible, quantity of columns in first matrix must correspond to quantity of

rows in second matrix. For matrices A (m×n) and B (n×p), combination A*B

results in a matrix of dimensions m×p, with each element derived from dot

product of a row from A and a column from B. This procedure is essential in

linear algebra and is utilized in various applications, including solving

systems of equations and executing transformations in computer graphics.

division operators in MATLAB execute solutions to linear equations instead

of doing element-wise division. left division operator (A\B) resolves

equation system xA = B for x, reby determining x = A^(-1)*B anywhere A is

square and invertible, while employing more numerically stable procedures

that circumvent explicit computation of inverse. Likewise, right division

operator (A/B) determines x in equation Ax = B. It operators offer an efficient

syntax for resolving linear systems, which are prevalent in scientific and

engineering contexts. MATLAB furr facilitates element-wise operations via

operators preceded with a period (dot). element-wise multiplication operator

(.*) multiplies corresponding elements of arrays, element-wise division

operator (./) divides corresponding elements, and element-wise power

operator (.^) exponentiates each element to a designated power. Element-wise

operations necessitate that arrays possess compatible dimensions, adhering

to MATLAB's broadcasting principles. For instance, if A and B are arrays of

same dimensions, A.*B generates a new array anywherein each member is

productof corresponding components from A and B. When an operand is a

scalar, it is uniformly applied to each element of array; for instance, A.*2

multiplies every element of A by 2. MATLAB has dedicated routines for

standard arithmetic computations. ̀ sum` function calculates total of elements

along a designated dimension, for instance, `sum(A,1)` aggregates each

column of matrix A, resulting in a row vector of column totals. Likewise,

`prod` function determines product of items, while `diff` function computes

differences between consecutive components. It algorithms automatically

adjust to dimensionalityof input arrays, ensuring uniform behavior across

66

Notes various array shapes and sizes. For intricate calculations, MATLAB has

functions such as ̀ cumsum` and `cumprod`, which calculate cumulative sums

and products along designated dimensions. It functions are essential for

analysis of sequences and time series, focusing on aggregation of values over

time or space. In financial applications, `cumsum` can compute cumulative

returns from a sequence of periodic returns. MATLAB additionally offers

sophisticated arithmetic routines that perform element-wise operations on

arrays. This encompasses trigonometric functions (sine, cosine, tangent, etc.),

exponential and logarithmic functions (exponential, logarithm, base-10

logarithm, etc.), and special functions (Bessel, gamma, etc.). Each function

takes array inputs and produces array outputs of identical size, applying

function independently to each element. This vectorized method obviates

necessity for explicit loops in several computations, yielding code that is both

more succinct and more efficient. In MATLAB, arithmetic operations on

complex numbers inherently adhere to principles of complex arithmetic.

Functions such as `abs` determine magnitude (absolute value) of complex

numbers, `angle` provides phase angle, and `conj` calculates complex

conjugate. `real` and `imag` functions retrieve real and imaginary

components of complex numbers, anywhereas `complex` function generates

complex values from real and imaginary elements. This extensive support for

complex arithmetic is crucial for applications in signal processing, control

systems, and somewhere domains anywhere complex numbers inherently

occur. MATLAB's arithmetic functions accommodate unusual values such as

infinity (Inf) and Not-a-Number (NaN) in a scientifically coherent manner.

Operations involving Inf adhere to IEEE floating-point standard, anywherein

1/0 yields Inf and Inf + Inf produces Inf. NaN values disseminate via

computations, as any action that includes NaN yields NaN, except for certain

functions such as min and max, which can disregard NaN values when

configured accordingly. This conduct facilitates effective management of

uncommon instances in numerical calculations. To address round-off mistakes

and precision concerns, MATLAB has functions such as `round`, `floor`, and

`ceil` for rounding to integers, as well as `fix` for truncating towards zero.

`eps` function yields floating-point relative precision, which is advantageous

for establishing tolerances in numerical algorithms anywhere precise equality

comparisons may be challenging due to finite precision. MATLAB facilitates

arbitrary precision arithmetic via Symbolic Math Toolbox, enabling

computations with precise precision utilizing symbolic variables and

67

Notes expressions. Statistical functions for arrays encompass `mean`, `median`,

`std` (standard deviation), and `var` (variance), which calculate prevalent

statistical metrics across designated dimensions. It functions offer methods

for addressing missing data (NaN values) and for normalizing by various

factors (such as N or N-1 for variance computations). Statistics and Machine

Learning Toolbox enhances MATLAB's functionalities by providing

sophisticated statistical procedures, including distribution fitting, hyposis

testing, and regression analysis. MATLAB's arithmetic operations are

extensively tuned for efficiency, utilizing vectorized implementations that

exploit CPU features such as SIMD (Single Instruction, Multiple Data).

SELF ASSESSMENT QUESTIONS

Multiple Choice Questions (MCQs)

1. Which of the following is the primary interface used in MATLAB for

executing commands?

A) Command Window

B) Editor Window

C) Figure Window

D) Workspace

Answer: A) Command Window

2. In MATLAB, which symbol is used to define a row array?

A) Parentheses ()

B) Square brackets []

C) Curly braces {}

D) Angle brackets <>

Answer: B) Square brackets []

3. What MATLAB function is used to create an array with values from

1 to 10 with an increment of 1?

A) ones(1,10)

B) zeros(1,10)

C) linspace(1,10,10)

D) 1:1:10

68

Notes Answer: D) 1:1:10

4. Which MATLAB function is used to concatenate two arrays

vertically?

A) vertcat()

B) horzcat()

C) concat()

D) stack()

Answer: A) vertcat()

5. What will be the output of the following MATLAB command?

matlab

A = [1 2 3; 4 5 6];

size(A)

A) 2 3

B) 3 2

C) 6 1

D) 1 6

Answer: A) 2 3

6. What operation does A .* B perform in MATLAB if A and B are

arrays of the same size?

A) Matrix multiplication

B) Element-wise multiplication

C) Addition of arrays

D) Division of arrays

Answer: B) Element-wise multiplication

7. Which MATLAB command is used to find the transpose of a matrix

A?

A) transpose(A)

B) A.'

69

Notes C) A*

D) A/'

Answer: B) A.'

8. What does the command eye(3) generate in MATLAB?

A) A 3×3 matrix with all ones

B) A 3×3 identity matrix

C) A 3×3 matrix with random values

D) A 3×3 matrix with all zeros

Answer: B) A 3×3 identity matrix

9. Which of the following arithmetic operations has the highest

precedence in MATLAB?

A) Addition +

B) Multiplication *

C) Exponentiation ^

D) Subtraction -

Answer: C) Exponentiation ^

10. What will be the result of the following MATLAB command?

matlab

sum([2 4 6; 1 3 5])

A) 21

B) [3 7 11]

C) [3; 7; 11]

D) [3 7 11; 1 3 5]

Answer: B) [3 7 11]

Short Questions:

1. What is MATLAB?

2. How does one generate an array in MATLAB?

3. What distinguishes row vectors from column vectors?

70

Notes 4. How is element-wise multiplication executed in MATLAB?

5. What command is utilized to produce a sequence of numbers?

6. What is purposeof linspace function?

7. How can one access particular members within an array?

8. What distinguishes .* operator from * operation in MATLAB?

9. How can one determine dimensions of an array in MATLAB?

10. What is purposeof reshape function?

Long Questions:

1. Describe MATLAB environment and its essential components.

 2. Outline various methods for constructing arrays in MATLAB,

accompanied by examples.

 3. Describe array indexing and element access methods in MATLAB.

 4. Examine severalmathematical operations applicable to arrays.

 5. Contrast matrix multiplication with element-wise multiplication in

MATLAB.

Elucidate application of specialized MATLAB functions for array

manipulations.

 7. Examine utilization of arrays in MATLAB for scientific computation.

 8. What are methods for executing matrix inversion and transposition in

MATLAB?

9. What are built-in functions for array manipulation in MATLAB? Furnish

illustrations.

 10. Describe MATLAB's approach to managing extensive numerical

computations through utilization of arrays.

71

Notes MODULE II

UNIT IV

SCRIPT DOCUMENTS, FUNCTIONS, AND FUNCTION

DOCUMENTS

2.0 Objective

• Learn how to create and use script documents in MATLAB.

• Understand concept of functions in MATLAB.

• Differentiate between built-in and user-defined functions.

• Learn how to write and execute function documents.

2.1 Overview to Script Documents in MATLAB

Script documents are a key method for organizing and executing code in

MATLAB. They enable preservation of a series of MATLAB commands in

a file with a .m extension, which can subsequently be run as a cohesive entity.

What Are Script Documents?

A script file is fundamentally a plain text file that comprises a sequence of

MATLAB commands. When executing a script file, MATLAB processes

commands in a sequential manner, akin to entering them directly at command

prompt.Primary distinction is that scripts enable you to:

1. Preserve your work for subsequent utilization.

2. Execute numerous commands with a singular operation.

3. Disseminate your code to somewheres

4. Record your efforts with annotations.

Characteristics of Script Documents

• Script documents function within base workspace, allowing access

to and modification of variables present in current MATLAB session.

• They lack an independent workspace.

• They do not accept input arguments nor return output arguments.

72

Notes • They execute in current context without establishing a new function

scope.

• They generally possess a .m file extension (e.g., myscript.m)

Benefits of Using Script Documents

• Organization: Scripts help organize related commands into a single

file.

• Reproducibility: Scripts ensure that same sequence of commands is

executed each time.

• Documentation: Scripts can include comments to explain what code

does.

• Efficiency: Scripts save time by automating repetitive tasks.

When to Use Script Documents

Script documents are particularly useful for:

• Exploratory data analysis

• Setting up your working environment

• Simple, sequential operations that don't require modularity

• Small projects with limited scope

• One-off tasks that you might want to repeat later

2.2 Creating and Running Script Documents

Creating and running script documents in MATLAB is straightforward. Let's

walk through process step by step.

Creating a Script File

Method 1: Using MATLAB Editor

1. Click on "New Script" button in MATLAB toolbar, or select File >

New > Script.

2. A new untitled editor window will open.

3. Write your MATLAB commands in this window.

4. Save file with a .m extension by selecting File > Save or pressing

Ctrl+S (Cmd+S on Mac).

73

Notes 5. Choose a meaningful name for your script (e.g., data_analysis.m).

Method 2: Using Command Window

1. Type edit filename.m at MATLAB command prompt, anywhere

"filename" is name you want to give your script.

2. This will open MATLAB Editor with a new file of that name.

3. Write your code and save file.

Script File Structure

A typical script file might have following structure:

% Script Name: example_script.m

% Description: This script demonstrates basic MATLAB operations

% Author: Your Name

% Date: Current Date

% Clear workspace and command window

clear all;

clc;

% Define variables

x = 1:10;

y = x.^2;

% Perform calculations

z = x + y;

% Display results

disp(' sum of x and y is:');

disp(z);

% Create a plot

figure;

plot(x, y, 'r-o');

title('Plot of y = x^2');

xlabel('x');

ylabel('y');

grid on;

Running a Script File

74

Notes There are several ways to run a script file in MATLAB:

Method A: From Editor

1. With your script open in editor, click "Run" button in toolbar.

2. Alternatively, press F5 or use Editor> Run menu option.

Method B: From Command Window

1. Navigate to directory containing your script file using cd or Current

Folder browser.

2. Type nameof script (without .m extension) at command prompt and

press Enter.

For example:

>>example_script

Method C: Using run Command

1. Use run command followed by script name:

>> run('example_script')

Important Considerations When Running Scripts

• MATLAB must be able to find your script file. It looks in:

1. current directory

2. Directories on MATLAB path

• If your script isn't in current directory or on path, you'll get an error

message saying MATLAB can't find file.

• You can add a directory to MATLAB path using:

>>addpath('C:\path\to\your\scripts')

• You can see current MATLAB path using:

>> path

Debugging Script Documents

75

Notes If your script doesn't work as expected, MATLAB provides debugging tools:

1. Set breakpoints by clicking in margin next to a line of code in Editor.

2. Use dbstop command to set breakpoints programmatically.

3. Run script in debug mode by clicking "Debug" button or pressing

Ctrl+Shift+F5.

4. Use commands like dbstep, dbcont, and dbquit to control execution

during debugging.

5. Examine variable values in Workspace browser or using disp

command.

Best Practices for Script Documents

1. Use meaningful names: Choose script names that reflect it purpose.

2. Include a header: Start with comments explaining what script does.

3. Organize logically: Structure your code in a logical sequence.

4. Comment liberally: Add comments to explain complex or non-

obvious code.

5. Use sections: Divide long scripts into sections using %% to enable

section-by-section execution.

6. Clean up: Include commands like clear, close all, and clcat

beginning if appropriate.

7. Error handling: Consider using try-catch blocks for potential error

points.

76

Notes UNIT V

2.3 Overview to Functions in MATLAB

While script documents are useful for simple tasks, functions provide a more

rebustand modular approach to programming in MATLAB. Functions allow

you to create reusable code blocks with it own workspace and ability to accept

inputs and return outputs.

What Are Functions in MATLAB?

A function is a block of MATLAB code that performs a specific task, accepts

input arguments, and can return output values. Unlike scripts, functions have

it own workspace, meaning variables created inside a function are not

accessible from outside unless y're explicitly returned.

Anatomy of a MATLAB Function

A basic MATLAB function has following structure:

function [output1, output2, ...] = function_name(input1, input2, ...)

% FUNCTION_NAME Summary of what function does

% Detailed explanation goes here

% Function body - code that performs task

% ...

% Assign values to output variables

output1 = ...;

output2 = ...;

end

Key components:

• function keyword declares this file as a function

• [output1, output2, ...] lists output arguments (optional)

• function_nameis nameof function (should match filename)

• (input1, input2, ...) lists input arguments (optional)

• Comments immediately following function declaration serve as help

text

• function body contains code that performs task

77

Notes • end keyword marks endof function (optional in older MATLAB

versions, required in newer ones)

Creating a Function

To create a function in MATLAB:

1. Create a new file with namefunction_name.m, anywhere

"function_name" is name you want to give your function.

2. Begin file with a function declaration line as shown above.

3. Write function body, including any necessary computations.

4. Save file.

Example of a Simple Function

Here's an example of a simple function that calculates area of a circle:

function area = calculate_circle_area(radius)

% CALCULATE_CIRCLE_AREA Calculates area of a circle

% AREA = CALCULATE_CIRCLE_AREA(RADIUS) returns area of a

circle

% with specified RADIUS.

% Check if radius is positive

if radius <= 0

error('Radius must be positive');

end

% Calculate area

area = pi * radius^2;

end

Function vs. Script: Key Differences

Feature Script Function

Workspace Uses base workspace Has its own workspace

Input arguments None Can accept input

arguments

Output arguments None Can return output

arguments

78

Notes File naming Any valid filename Must match function

name

Visibility of

variables

All variables visible in

workspace

Variables local to function

unless returned

Use case Sequential operations,

one-off tasks

Reusable, modular code

Types of Functions in MATLAB

1. Named Functions: Standard functions saved in it own .m documents.

2. Anonymous Functions: Single-line functions defined using function

handles.

3. Nested Functions: Functions defined within ansomewhere function.

4. Local Functions: Multiple functions in a single file, anywhere

onlyfirst is accessible externally.

5. Private Functions: Functions accessible only to functions in parent

directory.

Named Functions

We've already seen an example of a named function. It are most common

type of function in MATLAB.

Anonymous Functions

Anonymous functions are defined using function handles and don't require a

separate file:

% Creating an anonymous function to calculate square

square = @(x) x.^2;

% Using function

result = square(5); % result = 25

Nested Functions

Nested functions are defined within ansomewhere function:

function parent_result = parent_function(x)

 % This is parent function

79

Notes y = nested_function(x);

parent_result = y + 10;

 function result = nested_function(input)

 % This is a nested function

 result = input^2;

 end

end

Local Functions

Multiple functions in a single file:

function main_result = main_function(x)

 % This is main function - callable from outside

main_result = helper_function(x) + 5;

end

function helper_result = helper_function(input)

 % This is a local function - only callable within this file

helper_result = input * 2;

end

Function Handles

Function handles provide a way to reference and call functions indirectly:

% Create a function handle to sin function

f = @sin;

% Use function handle

y = f(pi/2); % y = 1

Input and Output Arguments

Functions can have multiple input and output arguments:

function [sum_result, product_result] = calculate(a, b)

 % Function with two inputs and two outputs

sum_result = a + b;

product_result = a * b;

80

Notes end

% Calling function

[s, p] = calculate(3, 4); % s = 7, p = 12

Variable Number of Arguments

MATLAB functions can accept a variable number of inputs using varargin

and return a variable number of outputs using varargout:

function varargout = flexible_function(varargin)

 % Function with variable inputs and outputs

 % Count number of inputs

num_inputs = length(varargin);

 % Process each input

 for i = 1:num_inputs

 result{i} = varargin{i}^2;

 end

 % Assign outputs

 for i = 1:nargout

varargout{i} = result{i};

 end

end

% Call with different numbers of arguments

[a] = flexible_function(2); % a = 4

[a, b] = flexible_function(2, 3); % a = 4, b = 9

[a, b, c] = flexible_function(2, 3, 4); % a = 4, b = 9, c = 16

Function Documentation

Good documentation is essential for functions. first block of comments after

function declaration serves as help text:

function result = example_function(input)

% EXAMPLE_FUNCTION A brief one-line description

% RESULT = EXAMPLE_FUNCTION(INPUT) detailed description

81

Notes % of what function does, what inputs it expects,

% and what outputs it returns.

%

% Examples:

% result = example_function(5)

% returns 25

%

% See also RELATED_FUNCTION, ANSOMEWHERE_FUNCTION.

% Rest of code...

Users can access this help text using help command:

>> help example_function

Best Practices for Functions

1. One task per function: Each function should perform a single, well-

defined task.

2. Descriptive names: Use meaningful function names that describe

what function does.

3. Input validation: Check input arguments for validity.

4. Robust error handling: Use try-catch blocks and error messages.

5. Comprehensive documentation: Include detailed help text.

6. Default arguments: Provide sensible defaults when possible.

7. Vectorization: Optimize functions to work with arrays efficiently.

8. Testing: Create test cases to verify function behavior.

Solved Problems

Problem 1: Creating a Basic Script for Data Analysis

Problem: Create a MATLAB script that generates random data, calculates

basic statistics, and plots results.

Solution:

% Script Name: data_analysis.m

% Description: Generates random data and performs basic analysis

% Date: March 31, 2025

82

Notes % Clear workspace and command window

clear all;

clc;

% Generate random data

data_size = 100;

random_data = normrnd(50, 10, [1, data_size]);

% Calculate basic statistics

mean_value = mean(random_data);

median_value = median(random_data);

std_deviation = std(random_data);

min_value = min(random_data);

max_value = max(random_data);

% Display results

fprintf('Data Statistics:\n');

fprintf('Mean: %.2f\n', mean_value);

fprintf('Median: %.2f\n', median_value);

fprintf('Standard Deviation: %.2f\n', std_deviation);

fprintf('Minimum: %.2f\n', min_value);

fprintf('Maximum: %.2f\n', max_value);

% Create histogram

figure;

histogram(random_data, 20);

title('Histogram of Random Data');

xlabel('Value');

ylabel('Frequency');

% Add lines for mean and median

hold on;

line([mean_valuemean_value], get(gca, 'YLim'), 'Color', 'r', 'LineWidth', 2,

'LineStyle', '--');

line([median_valuemedian_value], get(gca, 'YLim'), 'Color', 'g', 'LineWidth',

2, 'LineStyle', ':');

legend('Data', 'Mean', 'Median');

% Create boxplot

figure;

boxplot(random_data);

title('Boxplot of Random Data');

ylabel('Value');

83

Notes grid on;

Explanation:

1. Script starts by clearing workspace and command window.

2. It generates 100 random numbers from a normal distribution with

mean 50 and standard deviation 10.

3. Basic statistics (mean, median, standard deviation, minimum,

maximum) are calculated.

4. Statistics are displayed using formatted output with fprintf.

5. A histogram is created to visualize distributionof data.

6. Vertical lines representing mean (dashed red) and median (dotted

green) are added to histogram.

7. A boxplot is created to show ansomewhere visualization of data

distribution.

Problem 2: Script for Matrix Operations

Problem: Create a script that demonstrates various matrix operations in

MATLAB.

Solution:

% Script Name: matrix_operations.m

% Description: Demonstrates various matrix operations in MATLAB

% Date: March 31, 2025

% Clear workspace and command window

clear all;

clc;

% Create matrices

A = [1, 2, 3; 4, 5, 6; 7, 8, 9];

B = [9, 8, 7; 6, 5, 4; 3, 2, 1];

v = [1; 2; 3];

% Display original matrices

disp('Matrix A:');

disp(A);

disp('Matrix B:');

disp(B);

84

Notes disp('Vector v:');

disp(v);

% Matrix addition

C = A + B;

disp('A + B =');

disp(C);

% Matrix subtraction

D = A - B;

disp('A - B =');

disp(D);

% Matrix multiplication

E = A * B;

disp('A * B =');

disp(E);

% Element-wise multiplication

F = A .* B;

disp('A .* B (element-wise) =');

disp(F);

% Matrix-vector multiplication

w = A * v;

disp('A * v =');

disp(w);

% Matrix transpose

A_transpose = A';

disp('A transpose =');

disp(A_transpose);

% Matrix determinant

det_A = det(A);

disp(['Determinant of A = ', num2str(det_A)]);

% Matrix inverse (using a different matrix to ensure it's invertible)

G = [1, 2, 3; 0, 1, 4; 5, 6, 0];

G_inv = inv(G);

disp('Inverse of G =');

disp(G_inv);

% Verify inverse

I_approx = G * G_inv;

disp('G * G_inv (should be identity matrix) =');

85

Notes disp(I_approx);

% Eigenvalues and eigenvectors

[V, D] = eig(A);

disp('Eigenvalues of A =');

disp(diag(D));

disp('Eigenvectors of A =');

disp(V);

% Solving linear system Ax = b

b = [6; 15; 24];

x = A\b;

disp('Solution to Ax = b:');

disp(x);

disp('Verification A*x:');

disp(A*x);

Explanation:

1. Script creates two 3×3 matrices A and B, and a 3×1 vector v.

2. It demonstrates basic matrix operations like addition, subtraction, and

multiplication.

3. It shows difference between matrix multiplication (A * B) and

element-wise multiplication (A .* B).

4. Matrix-vector multiplication is demonstrated.

5. Matrix properties and operations like transpose, determinant, and

inverse are calculated.

6. Script verifies inverse by multiplying G with G_inv, which should

result in identity matrix.

7. Eigenvalues and eigenvectors of matrix A are computed.

8. A linear system Ax = b is solved using backslash operator, and

solution is verified.

Problem 3: Creating a Basic Temperature Conversion Function

Problem: Create a MATLAB function that converts temperatures between

Celsius, Fahrenheit, and Kelvin.

Solution:

86

Notes function converted_temp = convert_temperature(temp, from_unit, to_unit)

% CONVERT_TEMPERATURE Converts temperatures between different

units

% CONVERTED_TEMP = CONVERT_TEMPERATURE(TEMP,

FROM_UNIT, TO_UNIT)

% converts temperature TEMP from unit FROM_UNIT to unit TO_UNIT.

%

% Supported units: 'C' (Celsius), 'F' (Fahrenheit), 'K' (Kelvin)

%

% Examples:

% convert_temperature(32, 'F', 'C') returns 0

% convert_temperature(0, 'C', 'K') returns 273.15

%

% See also TEMP_CALCULATOR.

% Input validation

valid_units = {'C', 'F', 'K'};

if ~ismember(from_unit, valid_units) || ~ismember(to_unit, valid_units)

error('Invalid unit. Supported units are C, F, and K.');

end

% Convert input to Kelvin (intermediate step)

switch from_unit

 case 'C'

temp_kelvin = temp + 273.15;

 case 'F'

temp_kelvin = (temp - 32) * 5/9 + 273.15;

 case 'K'

temp_kelvin = temp;

somewherewise

error('Unexpected error in from_unit validation');

end

% Convert from Kelvin to output unit

switch to_unit

 case 'C'

converted_temp = temp_kelvin - 273.15;

 case 'F'

converted_temp = (temp_kelvin - 273.15) * 9/5 + 32;

 case 'K'

87

Notes converted_temp = temp_kelvin;

somewherewise

error('Unexpected error in to_unit validation');

end

% Display conversion information

fprintf('%.2f %s = %.2f %s\n', temp, from_unit, converted_temp, to_unit);

end

Explanation:

1. function takes three inputs: temperature value, source unit, and

target unit.

2. It validates that provided units are among supported units (C, F, K).

3. function uses a two-step conversion process:

o First, it converts input temperature to Kelvin as an

intermediate step

o n, it converts from Kelvin to desired output unit

4. This approach simplifies logic by avoiding need for separate

conversion formulas for each possible unit pair.

5. function includes detailed help documentation at beginning.

6. Error handling is included to validate inputs and catch unexpected

conditions.

7. result is displayed using formatted output, and converted value is

returned.

Problem 4: Creating a Function to Analyze a Dataset

Problem: Create a MATLAB function that takes a dataset as input and returns

various statistical measures along with visualization options.

Solution:

function [stats, figures] = analyze_dataset(data, options)

% ANALYZE_DATASET Performs statistical analysis on a dataset

% [STATS, FIGURES] = ANALYZE_DATASET(DATA) analyzes data

vector

% and returns a structure STATS containing statistical measures and

% a structure FIGURES containing handles to generated figures.

88

Notes %

% [STATS, FIGURES] = ANALYZE_DATASET(DATA, OPTIONS) uses

structure

% OPTIONS to control analysis:

% OPTIONS.plot_histogram - Boolean to create histogram (default: true)

% OPTIONS.plot_boxplot - Boolean to create boxplot (default: true)

% OPTIONS.plot_qq - Boolean to create Q-Q plot (default: false)

% OPTIONS.outlier_method - Method for outlier detection: 'quartile'

% or 'zscore' (default: 'quartile')

% OPTIONS.histogram_bins - Number of bins for histogram (default: 10)

%

% Examples:

% data = randn(100, 1);

% [stats, figs] = analyze_dataset(data);

%

% options.plot_qq = true;

% options.histogram_bins = 20;

% [stats, figs] = analyze_dataset(data, options);

%

% See also MEAN, STD, HISTOGRAM, BOXPLOT.

% Input validation

if nargin< 1

error('At least one input (data) is required.');

end

if ~isnumeric(data) || ~isvector(data)

error('Input data must be a numeric vector.');

end

% Remove NaN values

data = data(~isnan(data));

% Check if data is empty after NaN removal

if isempty(data)

error('Input data contains only NaN values.');

end

% Default options

default_options = struct('plot_histogram', true, ...

 'plot_boxplot', true, ...

 'plot_qq', false, ...

89

Notes 'outlier_method', 'quartile', ...

 'histogram_bins', 10);

% Process input options

if nargin< 2

 options = default_options;

else

 % Fill in any missing options with defaults

option_fields = fieldnames(default_options);

 for i = 1:length(option_fields)

 if ~isfield(options, option_fields{i})

options.(option_fields{i}) = default_options.(option_fields{i});

 end

 end

end

% Calculate basic statistics

stats.mean = mean(data);

stats.median = median(data);

stats.std = std(data);

stats.min = min(data);

stats.max = max(data);

stats.range = stats.max - stats.min;

stats.n = length(data);

stats.se = stats.std / sqrt(stats.n); % Standard error

% Calculate quartiles

stats.q1 = prctile(data, 25);

stats.q3 = prctile(data, 75);

stats.iqr = stats.q3 - stats.q1;

% Detect outliers based on specified method

switch options.outlier_method

 case 'quartile'

lower_bound = stats.q1 - 1.5 * stats.iqr;

upper_bound = stats.q3 + 1.5 * stats.iqr;

stats.outliers = data(data <lower_bound | data >upper_bound);

 case 'zscore'

z_scores = abs((data - stats.mean) / stats.std);

stats.outliers = data(z_scores> 3);

somewherewise

90

Notes warning('Unknown outlier detection method. Using quartile method.');

lower_bound = stats.q1 - 1.5 * stats.iqr;

upper_bound = stats.q3 + 1.5 * stats.iqr;

stats.outliers = data(data <lower_bound | data >upper_bound);

end

stats.skewness = skewness(data);

stats.kurtosis = kurtosis(data);

% Test for normality using Jarque-Bera test

[stats.jb_h, stats.jb_p] = jbtest(data);

if stats.jb_h == 0

stats.normality = 'Data appears to be normally distributed';

else

stats.normality = 'Data does not appear to be normally distributed';

end

% Initialize figures structure

figures = struct();

% Create histogram if requested

if options.plot_histogram

figures.histogram = figure;

histogram(data, options.histogram_bins);

title('Histogram of Data');

xlabel('Value');

ylabel('Frequency');

 % Add vertical lines for mean and median

 hold on;

line([stats.meanstats.mean], get(gca, 'YLim'), 'Color', 'r', 'LineWidth', 2,

'LineStyle', '--');

line([stats.medianstats.median], get(gca, 'YLim'), 'Color', 'g', 'LineWidth', 2,

'LineStyle', ':');

legend('Data', 'Mean', 'Median');

end

% Create boxplot if requested

if options.plot_boxplot

figures.boxplot = figure;

 boxplot(data);

title('Boxplot of Data');

91

Notes ylabel('Value');

 grid on;

end

% Create Q-Q plot if requested

if options.plot_qq

figures.qqplot = figure;

qqplot(data);

title('Q-Q Plot of Data vs. Standard Normal');

 grid on;

end

end

Explanation:

1. Function takes an input dataset and some optional config parameters.

2. It returns two structures: one that contains statistical measures and

ansomewhere that contains figure handles.

3. To prevent misuse, figure out if data is a numeric vector and deal

with scenarios including NaN.

4. There are default options, and user can override m.

5. Type of statistics returned include basic summary statistics such as

mean, median, standard deviation, etc.

6. Method of outlier detection It can be quartilebased(1.5 * IQR rule)

or z-score based

7. Apply normality test (Jarque-Bera): We evaluate whether data is

Gaussian distributed or not.

8. Histogram, boxplot, and Q-Q plot visualization, which can be

selected in options (turn on, off).

9. At top level of function you can find detailed help documentation.

10. This function also has error handling and warnings for unexpected

inputs.

Problem 5: Script to Simulate and Analyze Random Walks

Problem: Create a MATLAB script that simulates multiple random walks,

analyzes it properties, and visualizes results.

Solution:

92

Notes % Script Name: random_walk_analysis.m

% Description: Simulates random walks and analyzes it properties

% Date: March 31, 2025

% Clear workspace and command window

clear all;

clc;

close all;

% Parameters

num_walks = 100; % Number of random walks to simulate

num_steps = 1000; % Number of steps per walk

dimension = 2; % Dimension of random walk (1D, 2D, or 3D)

% Preallocate arrays

if dimension == 1

 walks = zeros(num_walks, num_steps + 1);

elseif dimension == 2

walks_x = zeros(num_walks, num_steps + 1);

walks_y = zeros(num_walks, num_steps + 1);

else % 3D

walks_x = zeros(num_walks, num_steps + 1);

walks_y = zeros(num_walks, num_steps + 1);

walks_z = zeros(num_walks, num_steps + 1);

end

% Simulate random walks

fprintf('Simulating %d random walks in %dD space...\n', num_walks,

dimension);

for i = 1:num_walks

 if dimension == 1

 % 1D random walk

 steps = sign(rand(1, num_steps) - 0.5); % -1 or 1 steps

walks(i, :) = [0, cumsum(steps)]; % Start at 0 and accumulate steps

 elseif dimension == 2

 % 2D random walk

 angles = 2 * pi * rand(1, num_steps); % Random angles

steps_x = cos(angles); % X component

steps_y = sin(angles); % Y component

walks_x(i, :) = [0, cumsum(steps_x)]; % Start at (0,0) and accumulate

walks_y(i, :) = [0, cumsum(steps_y)];

93

Notes else % 3D

 % 3D random walk

 % Generate random directions in 3D space

 phi = 2 * pi * rand(1, num_steps); % Azimuthal angle

ta = acos(2 * rand(1, num_steps) - 1); % Polar angle

steps_x = sin(ta) .* cos(phi);

steps_y = sin(ta) .* sin(phi);

steps_z = cos(ta);

walks_x(i, :) = [0, cumsum(steps_x)];

walks_y(i, :) = [0, cumsum(steps_y)];

walks_z(i, :) = [0, cumsum(steps_z)];

 end

end

% Calculate final distances from origin

if dimension == 1

final_positions = walks(:, end);

final_distances = abs(final_positions);

elseif dimension == 2

final_positions_x = walks_x(:, end);

final_positions_y = walks_y(:, end);

final_distances = sqrt(final_positions_x.^2 + final_positions_y.^2);

else % 3D

final_positions_x = walks_x(:, end);

final_positions_y = walks_y(:, end);

final_positions_z = walks_z(:, end);

final_distances = sqrt(final_positions_x.^2 + final_positions_y.^2 +

final_positions_z.^2);

end

% Calculate mean square displacement at each time step

msd = zeros(1, num_steps + 1);

if dimension == 1

 for t = 1:num_steps + 1

msd(t) = mean(walks(:, t).^2);

 end

elseif dimension == 2

 for t = 1:num_steps + 1

msd(t) = mean(walks_x(:, t).^2 + walks_y(:, t).^2);

94

Notes end

else % 3D

 for t = 1:num_steps + 1

msd(t) = mean(walks_x(:, t).^2 + walks_y(:, t).^2 + walks_z(:, t).^2);

 end

end

% Through science MSD for comparison: MSD = n * dimension

through science_msd = (0:num_steps) * dimension;

% Display statistics

fprintf('\nRandom Walk Statistics:\n');

fprintf('Number of walks: %d\n', num_walks);

fprintf('Number of steps per walk: %d\n', num_steps);

fprintf('Dimension: %d\n', dimension);

fprintf('Mean final distance from origin: %.4f\n

2.4 Built-in Functions vs. User-Defined Functions

Built-in functions and user-defined functions serve as fundamental building

blocks of programming in MATLAB. Understanding differences between it

two types of functions is crucial for effective programming.

Built-in Functions

Built-in functions are pre-programmed functions that come with MATLAB

installation. It functions are optimized for performance and are thoroughly

tested. They are part of MATLAB core functionality and are ready to use

without requiring any additional coding.

Characteristics of Built-in Functions:

1. Pre-compiled: Built-in functions are already compiled and optimized

for performance.

2. Thorough Documentation: It functions have comprehensive

documentation available through help command or MATLAB

documentation.

3. Reliability: Built-in functions are rigorously tested for accuracy and

reliability.

95

Notes 4. Wide Range of Applications: MATLAB provides built-in functions

for various mathematical, statistical, engineering, and scientific

applications.

Examples of Common Built-in Functions:

• Mathematical Functions: sin(), cos(), exp(), log(), sqrt()

• Statistical Functions: mean(), median(), std(), var()

• Matrix Operations: det(), inv(), eig(), svd()

• Data Analysis: max(), min(), sort(), find()

• Plotting Functions: plot(), figure(), title(), xlabel()

Using Built-in Functions:

To use a built-in function, you simply call it with appropriate inputs:

% Using built-in sine function

angle = pi/4;

result = sin(angle);

disp(['sin(' num2str(angle) ') = ' num2str(result)]);

% Using built-in statistical function mean

data = [15, 23, 42, 31, 19];

average = mean(data);

disp(['Mean of data: ' num2str(average)]);

Getting Help for Built-in Functions:

MATLAB provides comprehensive documentation for built-in functions:

% Get help for a built-in function

help sin

doc sin %Opens documentationin Help browser

User-Defined Functions

User-defined functions are custom functions created by users to perform

specific tasks that may not be directly available through built-in functions or

to encapsulate code for reusability.

Characteristics of User-Defined Functions:

96

Notes 1. Customizability: It functions can be tailored to specific

requirements.

2. Reusability: Once created, y can be reused across different programs

or scripts.

3. Modularity: y help break down complex problems into manageable

chunks.

4. Documentation: Users can provide it own documentation within

function file.

Creating User-Defined Functions:

User-defined functions in MATLAB are created in separate documents with

a .m extension, anywhere filename matches function name:

function [output_args] = function_name(input_args)

% FUNCTION_NAME Summary of this function

% Detailed explanation of function

 % Function body

output_args = ...; % Computation involving input_args

end

Simple Example of a User-Defined Function:

 following function calculates area of a circle given its radius:

function area = calculateCircleArea(radius)

% CALCULATECIRCLEAREA Calculates area of a circle

% area = calculateCircleArea(radius) returns area of a circle

% with specified radius

 area = pi * radius^2;

end

Comparing Built-in and User-Defined Functions

Key Differences:

Aspect Built-in Functions User-Defined

Functions

97

Notes Origin Part of MATLAB core Created by users

Optimization Highly optimized May need

optimization

Documentation Comprehensive User-provided

Accessibility Available immediately Requires creation

Modification Cannot be modified Can be modified as

needed

Location MATLAB installation

directories

User-defined paths

When to Use Each Type:

• Use Built-in Functions When:

➢ Functionality you need is already provided

➢ Performance is critical

➢ operation is standard and well-defined

• Use User-Defined Functions When:

➢ You need custom functionality not available in built-in

functions

➢ You want to encapsulate repeated code

➢ You need to share your code with somewheres

➢ You want to break down complex problems

Efficiency Considerations:

Built-in functions are typically more efficient than user-defined functions for

same task because they are:

• Pre-compiled

• Optimized for specific operations

• Developed by experts in numerical computing

However, well-designed user-defined functions can still be quite efficient and

offer advantage of customization for specific needs.

2.5 Writing Function Documents in MATLAB

98

Notes Creating effective function documents is essential for developing modular,

reusable, and maintainable MATLAB code. This section covers structure,

syntax, and best practices for writing function documents.

Function File Structure

A MATLAB function file has a specific structure that must be followed:

function [output_args] = function_name(input_args)

% FUNCTION_NAME One-line summary of function

% Detailed explanation with examples and parameter descriptions

 % Function body

 % Return statement (explicit or implicit)

end

Components of a Function File:

1. Function Declaration: first executable line, starting with keyword

function

2. Output Arguments: Variables returned by function, enclosed in

square brackets

3. Function Name: Must match filename (with .m extension)

4. Input Arguments: Parameters passed to function, enclosed in

parenits

5. Help Comments: Documentation that appears when using help

function_name

6. Function Body: actual code that performs function's operations

7. End Statement: Optional in newer MATLAB versions but

recommended for clarity

Types of Functions in MATLAB Documents

1. Primary Function:

 primary function must have same name as file and is only function visible

from outside file:

99

Notes function result = myFunction(x, y)

% MYFUNCTION Primary function example

 result = x + y;

end

2. Local Functions:

Local functions are only accessible within fileanywherey are defined:

function result = mainFunction(x)

% MAINFUNCTION Example with local functions

 result = helperFunction(x) * 2;

end

function y = helperFunction(x)

 % This is a local function, only accessible within this file

 y = x^2;

end

3. Nested Functions:

Nested functions are defined within ansomewhere function and can access

variables from parent function:

function result = outerFunction(x)

% OUTERFUNCTION Example with nested functions

 a = x * 2;

 % Nested function call

 result = innerFunction(x);

 % Nested function definition

 function y = innerFunction(b)

 % Can access variables from parent function

 y = a + b;

 end

end

4. Anonymous Functions:

100

Notes Anonymous functions are defined within a single MATLAB statement and

can be used without creating a separate file:

% Creating an anonymous function

square = @(x) x.^2;

% Using anonymous function

result = square(5); % Returns 25

Function File Documentation

Proper documentation is crucial for making your functions usable by

somewheres and by yourself in future:

function [mean_val, std_val] = statsCalculator(data)

% STATSCALCULATOR Calculates basic statistics of input data

% [MEAN_VAL, STD_VAL] = STATSCALCULATOR(DATA) returns

mean (MEAN_VAL)

% and standard deviation (STD_VAL) of input DATA.

%

% Example:

% data = [1, 2, 3, 4, 5];

% [m, s] = statsCalculator(data);

% % m will be 3, s will be approximately 1.5811

%

% See also MEAN, STD, VAR.

 % Calculate mean

mean_val = mean(data);

 % Calculate standard deviation

std_val = std(data);

end

Components of Good Documentation:

1. Function Name in ALL CAPSin first line after comment symbol

2. One-line Summary of what function does

3. Detailed Description of inputs and outputs informat OUTPUT =

FUNCTION(INPUT)

101

Notes 4. Examples demonstrating function usage

5. See Also section referencing related functions

6. Internal Comments explaining complex parts of code

Best Practices for Writing Function Documents

1. Naming Conventions:

• Use descriptive, meaningful names

• Use camelCase or snake_case consistently

• Avoid using names that conflict with built-in functions

% Good function names

function result = calculateTaxRate(income)

function [x, y] = convert_coordinates(lat, lon)

% Poor function names

function r = f(i) % Too short and not descriptive

function result = sin2(x) % Might be confused with built-in sin function

2. Input Validation:

Always check inputs for validity to prevent errors and ensure function works

as expected:

function result = calculateSquareRoot(x)

% CALCULATESQUAREROOT Calculate square root of a number

% RESULT = CALCULATESQUAREROOT(X) returns square root of X.

% X must be a non-negative number.

 % Input validation

 if ~isnumeric(x)

error('Input must be numeric');

 end

 if any(x < 0)

error('Input must be non-negative');

 end

 % Calculation

102

Notes result = sqrt(x);

end

3. Handling Optional Arguments:

Use nargin (number of input arguments) to handle optional parameters:

function result = processData(data, option1, option2)

% PROCESSDATA Process data with optional parameters

% RESULT = PROCESSDATA(DATA) processes data with default

options.

% RESULT = PROCESSDATA(DATA, OPTION1) uses specified

OPTION1.

% RESULT = PROCESSDATA(DATA, OPTION1, OPTION2) uses both

options.

 % Default values

 if nargin< 2

 option1 = 'default1';

 end

 if nargin< 3

 option2 = 'default2';

 end

 % Process data using options

 % ...

 result = data; % Replace with actual processing

end

4. Using varargin and varargout:

For functions with a variable number of inputs or outputs:

function [varargout] = flexibleFunction(varargin)

% FLEXIBLEFUNCTION Function with variable inputs and outputs

% [OUT1, OUT2, ...] = FLEXIBLEFUNCTION(IN1, IN2, ...) processes

% a variable number of inputs and returns a variable number of outputs.

103

Notes % Check number of inputs

numInputs = length(varargin);

 % Process inputs

 % ...

 % Determine number of outputs requested

numOutputs = nargout;

 % Prepare outputs

 for i = 1:numOutputs

varargout{i} = i * 10; % Example output values

 end

end

5. Error Handling:

Use try-catch blocks to handle potential errors gracefully:

function result = robustFunction(filename)

% ROBUSTFUNCTION Function with error handling

% RESULT = ROBUSTFUNCTION(FILENAME) reads data from

specified file.

 try

 % Attempt to read file

 data = readmatrix(filename);

 result = processData(data);

 catch ME

 % Handle specific errors

 if strcmp(ME.identifier, 'MATLAB:FileIO:InvalidFid')

warning('File not found. Using default data instead.');

 result = processData(defaultData());

 else

 % Rethrow somewhere errors

rethrow(ME);

 end

 end

104

Notes end

function data = defaultData()

 % Generate default data

 data = rand(10);

end

function output = processData(data)

 % Process data

 output = sum(data(:));

end

6. Function File Organization:

• Keep functions focused on a single responsibility

• Group related functions in same file

• Use comments to separate sections of code

• Place most important functions at topof file

2.6 Passing Arguments and Returning Values in Functions

Understanding how to effectively pass arguments to functions and how to

return values is essential for creating flexible andrebust MATLAB functions.

Basic Parameter Passing

In MATLAB, arguments are passed to functions by value, which means a

copy of data is provided to function:

function result = doubleValue(x)

% DOUBLEVALUE Doubles input value

% RESULT = DOUBLEVALUE(X) returns X * 2

 % Modify parameter

 x = x * 2;

 % Return result

 result = x;

end

% Example usage

original = 5;

105

Notes doubled = doubleValue(original);

% original remains 5, doubled is 10

Pass by Value vs. Pass by Reference:

• Pass by Value: MATLAB creates a copy of input arguments, so

changes to parametersinside function do not affect original

variables.

• Pass by Reference-like Behavior: For large arrays or objects,

MATLAB uses a technique called "copy-on-write" to avoid copying

large data unnecessarily. function receives a reference to data, but if

functionmodifies data, a copy is made at that point.

Passing Different Data Types

MATLAB functions can handle various data types as input arguments:

1. Numeric Data:

function result = processNumbers(scalar, vector, matrix)

% PROCESSNUMBERS Process different numeric data types

 % Process a scalar

scalarResult = scalar ^ 2;

 % Process a vector

vectorResult = vector .^ 2;

 % Process a matrix

matrixResult = matrix .* 2;

 % Combine results

 result = {scalarResult, vectorResult, matrixResult};

end

% Example usage

r = processNumbers(5, [1, 2, 3], [1, 2; 3, 4]);

2. Strings and Character Arrays:

106

Notes function result = processText(str, charArray)

% PROCESSTEXT Process string and character array inputs

 % Process string

strResult = upper(str);

 % Process character array

charResult = upper(charArray);

 % Return both

 result = {strResult, charResult};

end

% Example usage

r = processText("Hello", 'World');

3. Cell Arrays:

function result = processCellArray(cellData)

% PROCESSCELLARRAY Process elements in a cell array

 result = cell(size(cellData));

 for i = 1:numel(cellData)

 if isnumeric(cellData{i})

 % Double numeric values

 result{i} = cellData{i} * 2;

 elseif ischar(cellData{i}) || isstring(cellData{i})

 % Convert text to uppercase

 result{i} = upper(cellData{i});

 else

 % Keep somewhere types unchanged

 result{i} = cellData{i};

 end

 end

end

% Example usage

data = {10, 'hello', [1, 2, 3]};

107

Notes r = processCellArray(data);

4. Structures:

function result = processStructure(structData)

% PROCESSSTRUCTURE Process fields in a structure

 % Copy structure

 result = structData;

 % Process numeric fields

 if isfield(result, 'value')

result.value = result.value * 2;

 end

 % Process text fields

 if isfield(result, 'name')

 result.name = upper(result.name);

 end

end

% Example usage

data = struct('name', 'example', 'value', 10);

r = processStructure(data);

Advanced Argument Passing Techniques

1. Default Parameter Values:

function result = processWithDefaults(data, option1, option2)

% PROCESSWITHDEFAULTS Process data with default parameters

% RESULT = PROCESSWITHDEFAULTS(DATA) uses default options.

% RESULT = PROCESSWITHDEFAULTS(DATA, OPTION1)

customizes first option.

% RESULT = PROCESSWITHDEFAULTS(DATA, OPTION1, OPTION2)

customizes both options.

 % Set default values if not provided

 if nargin< 2

108

Notes option1 = 'default1';

 end

 if nargin< 3

 option2 = 'default2';

 end

 % Process data using options

disp(['Processing with options: ' option1 ', ' option2]);

 result = data;

end

2. Name-Value Pair Arguments:

function result = processWithNameValue(data, varargin)

% PROCESSWITHPAIRS Process data with name-value pair arguments

% RESULT = PROCESSWITHPAIRS(DATA) uses default options.

% RESULT = PROCESSWITHPAIRS(DATA, 'Name1', Value1, ...)

specifies options.

%

% Options:

% 'Method' - Processing method ('fast', 'accurate', default: 'balanced')

% 'Scale' - Scaling factor (default: 1.0)

 % Default options

 options = struct('Method', 'balanced', 'Scale', 1.0);

 % Parse name-value pairs

 for i = 1:2:length(varargin)

 if i+1 <= length(varargin)

options.(varargin{i}) = varargin{i+1};

 end

 end

 % Process data using options

disp(['Method: ' options.Method ', Scale: ' num2str(options.Scale)]);

 result = data * options.Scale;

end

109

Notes % Example usage

data = [1, 2, 3];

r1 = processWithNameValue(data);

r2 = processWithNameValue(data, 'Method', 'fast', 'Scale', 2.5);

3. Using inputParser for Robust Argument Handling:

function result = robustParser(data, varargin)

% ROBUSTPARSER Process data with robust input parsing

% RESULT = ROBUSTPARSER(DATA) uses default options.

% RESULT = ROBUSTPARSER(DATA, 'Name1', Value1, ...) specifies

options.

%

% Options:

% 'Method' - Processing method ('fast', 'accurate', default: 'balanced')

% 'Scale' - Scaling factor (default: 1.0)

% 'Debug' - Enable debug mode (true/false, default: false)

 % Create input parser

 p = inputParser;

 % Add required parameters

addRequired(p, 'data', @isnumeric);

 % Add optional parameters with validation

addParameter(p, 'Method', 'balanced', @(x) any(strcmp(x, {'fast', 'balanced',

'accurate'})));

addParameter(p, 'Scale', 1.0, @(x) isnumeric(x) andandisscalar(x) andand x >

0);

addParameter(p, 'Debug', false, @islogical);

 % Parse inputs

parse(p, data, varargin{:});

 % Extract parsed results

 options = p.Results;

 % Debug output if enabled

110

Notes if options.Debug

disp('Input parameters:');

disp(options);

 end

 % Process data using options

 result = options.data * options.Scale;

end

% Example usage

data = [1, 2, 3];

r = robustParser(data, 'Method', 'accurate', 'Scale', 2.0, 'Debug', true);

Returning Values from Functions

1. Single Return Value:

function result = calculateSum(vector)

% CALCULATESUM Calculate sum of elements

 result = sum(vector);

end

% Example usage

total = calculateSum([1, 2, 3, 4, 5]);

2. Multiple Return Values:

function [sum_val, avg_val, min_val, max_val] = calculateStats(data)

% CALCULATESTATS Calculate multiple statistics

sum_val = sum(data);

avg_val = mean(data);

min_val = min(data);

max_val = max(data);

end

% Example usage

data = [10, 15, 20, 25, 30];

[total, average, minimum, maximum] = calculateStats(data);

3. Returning Complex Data Structures:

111

Notes function results = analyzeData(data)

% ANALYZEDATA Perform comprehensive data analysis

 % Create a structure to hold all results

 results = struct();

 % Basic statistics

results.mean = mean(data);

results.median = median(data);

results.std = std(data);

 % Histogram analysis

 [counts, edges] = histcounts(data);

results.histogram = struct('counts', counts, 'edges', edges);

 % Outlier detection

 q1 = prctile(data, 25);

 q3 = prctile(data, 75);

iqr = q3 - q1;

results.outliers = data(data < (q1 - 1.5*iqr) | data > (q3 + 1.5*iqr));

end

% Example usage

data = randn(100, 1) * 10 + 50; % Normally distributed data

analysis = analyzeData(data);

4. Returning Variable Number of Outputs:

function [varargout] = flexibleOutputs(data, numOutputsRequested)

% FLEXIBLEOUTPUTS Return a variable number of statistics

% [STAT1] = FLEXIBLEOUTPUTS(DATA, 1) returns mean.

% [STAT1, STAT2] = FLEXIBLEOUTPUTS(DATA, 2) returns mean and

median.

% [STAT1, STAT2, STAT3] = FLEXIBLEOUTPUTS(DATA, 3) returns

mean, median, and std.

 % Calculate all possible statistics

 stats = {mean(data), median(data), std(data), min(data), max(data)};

112

Notes % Return requested number of outputs

 for i = 1:min(numOutputsRequested, length(stats))

varargout{i} = stats{i};

 end

end

% Example usage

data = [1, 2, 3, 4, 5];

[avg] = flexibleOutputs(data, 1);

[avg, med, deviation] = flexibleOutputs(data, 3);

Passing Functions as Arguments

MATLAB allows passing functions as arguments to somewhere functions,

enabling rebust functional programming techniques:

1. Using Function Handles:

function result = applyFunction(func, data)

% APPLYFUNCTION Apply a function to input data

% RESULT = APPLYFUNCTION(FUNC, DATA) applies function FUNC

to DATA.

% FUNC must be a function handle.

 result = func(data);

end

% Example usage

data = [1, 2, 3, 4, 5];

sum_result = applyFunction(@sum, data);

max_result = applyFunction(@max, data);

2. Creating Custom Operations:

function result = customOperation(operation, a, b)

% CUSTOMOPERATION Perform a custom operation on two values

% RESULT = CUSTOMOPERATION(OPERATION, A, B) applies

operation

% specified by OPERATION to A and B.

113

Notes result = operation(a, b);

end

% Define operations

add = @(x, y) x + y;

subtract = @(x, y) x - y;

multiply = @(x, y) x .* y;

divide = @(x, y) x ./ y;

% Example usage

result1 = customOperation(add, 5, 3); % 8

result2 = customOperation(subtract, 5, 3); % 2

result3 = customOperation(multiply, 5, 3); % 15

result4 = customOperation(divide, 5, 3); % 1.6667

3. Advanced Function Handle Usage:

function results = processWithMultipleFunctions(data, functions)

% PROCESSWITHMULTIPLEFUNCTIONS Apply multiple functions to

data

% RESULTS = PROCESSWITHMULTIPLEFUNCTIONS(DATA,

FUNCTIONS) applies

% each function in cell array FUNCTIONS to DATA and returns

% results in a cell array.

numFunctions = length(functions);

 results = cell(1, numFunctions);

 for i = 1:numFunctions

 results{i} = functions{i}(data);

 end

end

% Example usage

data = [10, 20, 30, 40, 50];

functions = {@sum, @mean, @std, @min, @max};

results = processWithMultipleFunctions(data, functions);

Solved Problems

Problem 1: Creating a Function to Calculate Compound Interest

114

Notes Create a function that calculates future value of an investment with compound

interest. function should take initial principal, annual interest rate,

compounding frequency, and time in years as inputs.

Solution:

function [futureValue, interestEarned] =

calculateCompoundInterest(principal, rate, compoundFreq, years)

% CALCULATECOMPOUNDINTEREST Calculate compound interest

% [FUTUREVALUE, INTERESTEARNED] =

CALCULATECOMPOUNDINTEREST(PRINCIPAL, RATE,

COMPOUNDFREQ, YEARS)

% calculates future value of an investment with compound interest.

%

% Inputs:

% PRINCIPAL - Initial investment amount

% RATE - Annual interest rate (as a decimal, e.g., 0.05 for 5%)

% COMPOUNDFREQ - Number of times interest is compounded per year

% YEARS - Investment period in years

%

% Outputs:

% FUTUREVALUE - total value after investment period

% INTERESTEARNED - interest earned over investment period

%

% Example:

% [fv, interest] = calculateCompoundInterest(1000, 0.05, 12, 10)

% % Results: fv ≈ 1648.52, interest ≈ 648.52

 % Input validation

validateattributes(principal, {'numeric'}, {'scalar', 'positive'},

'calculateCompoundInterest', 'principal');

validateattributes(rate, {'numeric'}, {'scalar', 'nonnegative'},

'calculateCompoundInterest', 'rate');

validateattributes(compoundFreq, {'numeric'}, {'scalar', 'positive', 'integer'},

'calculateCompoundInterest', 'compoundFreq');

validateattributes(years, {'numeric'}, {'scalar', 'nonnegative'},

'calculateCompoundInterest', 'years');

115

Notes % Calculate future value using compound interest formula

 % A = P(1 + r/n)^(nt)

 % Anywhere:

 % A = Future value

 % P = Principal

 % r = Annual interest rate

 % n = Compounding frequency

 % t = Time in years

futureValue = principal * (1 + rate / compoundFreq) ^ (compoundFreq *

years);

 % Calculate interest earned

interestEarned = futureValue - principal;

end

Test function:

% Test with $1000 invested at 5% for 10 years with monthly compounding

[futureValue, interestEarned] = calculateCompoundInterest(1000, 0.05, 12,

10);

fprintf('Future Value: $%.2f\n', futureValue);

fprintf('Interest Earned: $%.2f\n', interestEarned);

% Test with $5000 invested at 3.5% for 5 years with quarterly compounding

[futureValue, interestEarned] = calculateCompoundInterest(5000, 0.035, 4,

5);

fprintf('Future Value: $%.2f\n', futureValue);

fprintf('Interest Earned: $%.2f\n', interestEarned);

Problem 2: Creating a Function with Multiple Output Options

Create a function that analyzes a dataset and returns different statistics based

on number of output arguments requested.

Solution:

function [varargout] = dataAnalyzer(data, varargin)

% DATAANALYZER Analyze a dataset with flexible outputs

116

Notes % STATS = DATAANALYZER(DATA) returns a structure with all

statistics.

% [MEAN_VAL] = DATAANALYZER(DATA, 'mean') returns just mean.

% [MEAN_VAL, STD_VAL] = DATAANALYZER(DATA, 'mean', 'std')

returns mean and standard deviation.

%

% function can return any combination of it statistics:

% 'mean', 'median', 'std', 'var', 'min', 'max', 'range', 'sum', 'count'

%

% Example:

% data = [10, 15, 20, 25, 30];

% [avg, minimum, maximum] = dataAnalyzer(data, 'mean', 'min', 'max');

 % Input validation

validateattributes(data, {'numeric'}, {'vector'}, 'dataAnalyzer', 'data');

 % Calculate all statistics

all_stats = struct();

all_stats.mean = mean(data);

all_stats.median = median(data);

all_stats.std = std(data);

all_stats.var = var(data);

all_stats.min = min(data);

all_stats.max = max(data);

all_stats.range = max(data) - min(data);

all_stats.sum = sum(data);

all_stats.count = numel(data);

 % Determine what to return

 if nargin == 1 || isempty(varargin)

 % Return everything in a structure

varargout{1} = all_stats;

 else

 % Return only requested statistics

 for i = 1:length(varargin)

 if isfield(all_stats, varargin{i})

varargout{i} = all_stats.(varargin{i});

 else

117

Notes error('Invalid statistic requested: %s', varargin{i});

 end

 end

 end

end

Test function:

% Generate sample data

data = [15, 23, 42, 31, 19, 27, 35, 22, 18, 29];

% Get all statistics as a structure

all_stats = dataAnalyzer(data);

disp('All statistics:');

disp(all_stats);

% Get specific statistics

[average, minimum, maximum] = dataAnalyzer(data, 'mean', 'min', 'max');

fprintf('Average: %.2f, Minimum: %d, Maximum: %d\n', average, minimum,

maximum);

% Get different combination

[data_median, data_range, sample_count] = dataAnalyzer(data, 'median',

'range', 'count');

fprintf('Median: %.2f, Range: %d, Count: %d\n', data_median, data_range,

sample_count);

Problem 3: Function to Process Different Data Types

Create a function that can process different types of inputs (numbers, strings,

cell arrays) and return appropriate results based on input type.

Solution:

function result = smartProcessor(input)

% SMARTPROCESSOR Process different types of inputs intelligently

% RESULT = SMARTPROCESSOR(INPUT) processes input based on its

type:

% - For numeric data: returns summary statistics

% - For strings/chars: returns analysis of text

% - For cell arrays: processes each element recursively

118

Notes %

% Example:

% smartProcessor(10)

% smartProcessor('Hello, World!')

% smartProcessor({10, 'test', [1, 2, 3]})

 % Process based on input type

 if isnumeric(input)

 result = processNumeric(input);

 elseif ischar(input)

2.7 Scope of Variables in Functions

Variable scope refers to region of a program anywhere a variable is visible

and can be accessed. In MATLAB, understanding variable scope is crucial for

writing efficient and error-free functions. Let's explore this concept in detail.

Variable Scope Categories in MATLAB

MATLAB has three primary categories of variable scope:

1. Global Variables: Accessible from any function or script

2. Persistent Variables: Retain values between function calls

3. Local Variables: Confined to specific functions or scripts

Local Variables

Local variables are most common type in MATLAB functions. y exist only

within functionanywherethey are created and are not accessible outside of it.

function result = addNumbers(a, b)

 % 'a' and 'b' are input parameters (local variables)

 % 'result' is a local variable

 % 'temp' is ansomewhere local variable

 temp = a + b;

 result = temp;

end

In this function:

119

Notes • a, b, result, and temp are all local variables

• y exist only while function is executing

• y cannot be accessed from outside function

• When function completes, it variables are cleared from memory

Let's see what happens when we try to access a local variable from outside:

addNumbers(5, 10); % This returns 15

disp(temp); % Error: 'temp' is not defined

Global Variables

When you need a variable to be accessible across multiple functions and base

workspace, you can declare it as global.

function useGlobalVar()

 global x; % Declare x as global

 x = 100; % Modify globalvariable

end

% In ansomewhere function or script:

function displayGlobalVar()

 global x; % Access same global variable

disp(x); % Displays 100

end

To use global variables:

1. Declare variable as global in each function that needs to access it

2. Use same variable name in all locations

Global variables should be used sparingly as they can make code harder to

debug and maintain.

Persistent Variables

Persistent variables exist only within a function but retain it values between

function calls. they're initialized firsttime function runs and maintain it last

value for subsequent calls.

function count = counterFunction()

120

Notes persistent counter;

 % Initialize counter if it's empty (first function call)

 if isempty(counter)

 counter = 0;

 end

 % Increment counter

 counter = counter + 1;

 count = counter;

end

Each time you call counterFunction(), counter value will increase by 1:

counterFunction() % Returns 1

counterFunction() % Returns 2

counterFunction() % Returns 3

Persistent variables are useful for:

• Tracking function state across multiple calls

• Caching results to avoid redundant calculations

• Implementing counters or accumulators

Workspace Interaction

 MATLAB workspace contains all variables currently in memory. When

working with functions, MATLAB creates different workspaces:

1. Base Workspace: Contains variables created in command window

2. Function Workspace: Contains local variables for each function

When you call a function:

1. MATLAB creates a new workspace for that function

2. Input arguments are copied from calling workspace

3. Only return values are passed back to calling workspace

4. Somewhere local variables remain isolated within function

121

Notes This isolation is beneficial as it:

• Prevents naming conflicts between different parts of your code

• Makes functions self-contained and reusable

• Reduces risk of unintended side effects

Nested Functions and Variable Scope

MATLAB allows you to define functions within somewhere functions (nested

functions). Nested functions have special scope rules:

function mainFunction()

outerVar = 10;

 % Nested function

 function nestedFunction()

 % Can access outerVar

disp(outerVar);

 % Can modify outerVar

outerVar = outerVar + 5;

 end

nestedFunction(); % Displays 10, n changes outerVar to 15

disp(outerVar); % Displays 15

end

Nested functions:

• Can access variables from it parent function

• Can modify variables in parent scope

• Are only accessible within it parent function

Function Handles and Variable Capture

When creating function handles, especially from nested functions, MATLAB

"captures" values of variables in current scope:

function handle = createCounter()

122

Notes count = 0;

 % Return a handle to a nested function

 handle = @incrementCounter;

 function result = incrementCounter()

 count = count + 1;

 result = count;

 end

end

Usage:

counter = createCounter();

counter() % Returns 1

counter() % Returns 2

Function handle maintains access to count variable even after createCounter

has finished executing. This technique allows for creating "closures" -

functions that retain it environment.

Best Practices for Variable Scope

1. Minimize global variables: Use function inputs and outputs instead

2. Clear unnecessary variables: Use clear to free memory

3. Use meaningful variable names: This helps avoid accidental scope

conflicts

4. Document persistent variables: Make it purpose clear

5. Be cautious with nested functions: Overuse can make code harder

to follow

Practical Examples of Variable Scope

Example 1: Local Variable Isolation

function result = processData(data)

 % Local variable 'scaleFactor'

scaleFactor = 2.5;

123

Notes % Local processing

 result = data * scaleFactor;

end

% In main script:

myData = [1, 2, 3, 4, 5];

processed = processData(myData);

% scaleFactor is not accessible here

Example 2: Using Persistent Variables for Caching

function result = expensiveCalculation(input)

 persistent cache;

 % Initialize cache if it's first call

 if isempty(cache)

 cache = containers.Map;

 end

 % Convert input to string for use as a key

inputKey = num2str(input);

 % Check if result is already cached

 if isKey(cache, inputKey)

 result = cache(inputKey);

disp('Retrieved from cache');

 else

 % Perform "expensive" calculation

pause(2); % Simulate long calculation

 result = input^2;

 % Store in cache for future use

 cache(inputKey) = result;

disp('Newly calculated');

 end

end

Example 3: Global Variables for Configuration

124

Notes % In configuration file:

function setupConfig()

 global CONFIG;

CONFIG.maxIterations = 1000;

CONFIG.tolerance = 1e-6;

CONFIG.useParallel = true;

end

% In processing function:

function runSimulation()

 global CONFIG;

 % Use configuration settings

 for i = 1:CONFIG.maxIterations

 % Simulation code

 if error <CONFIG.tolerance

 break;

 end

 end

 % More code using CONFIG settings

end

Debugging Variable Scope Issues

Common scope-related issues andit solutions:

1. Variable not found: Check if you're accessing a local variable

outside its function

2. Unexpected variable changes: Look for global variables being

modified elseanywhere

3. Function behavior changing: Check for improper use of persistent

variables

4. Scope conflicts: Use more specific variable names or restructure your

code

 who and whos commands can help inspect variables in current workspace

during debugging.

125

Notes 2.8 Advantages of Using Functions in MATLAB

Functions are a fundamental building block in MATLAB programming. Let's

explore numerous advantages they offer for developing effective and

maintainable code.

Code Organization and Modularity

Functions allow you to break down complex problems into smaller,

manageable pieces:

1. Modular design: Each function performs a specific task, making

code more organized

2. Abstraction: Functions hide implementation details behind a simple

interface

3. Hierarchical structure: Complex problems can be solved by

combining simpler functions

For example, an image processing application might include separate

functions for:

function processedImage = processImage(inputImage)

 % Call specialized functions for each step

normalizedImg = normalizeImage(inputImage);

filteredImg = applyFilters(normalizedImg);

enhancedImg = enhanceDetails(filteredImg);

processedImage = finalizeOutput(enhancedImg);

end

This approach makes main code cleaner and easier to understand.

Code Reusability

One of primary benefits of functions is reusability:

1. Write once, use many times: Create a function once and use it in

multiple programs

2. Consistent behavior: same function always performs same

operation

126

Notes 3. Time-saving: Avoid rewriting same code in different places

Consider a function to calculate statistical properties:

function stats = calculateStats(data)

stats.mean = mean(data);

stats.median = median(data);

stats.stdDev = std(data);

stats.min = min(data);

stats.max = max(data);

end

This can be reused across various data analysis tasks without rewriting

calculations.

Improved Maintenance

Functions significantly ease code maintenance:

1. Isolated changes: Modify a function without affecting somewhere

code

2. Centralized updates: Fix bugs in one place it than throughout

program

3. Version control: Track changes to specific functions over time

For example, if a calculation method changes:

% Old version

function result = calculateArea(radius)

 result = pi * radius^2;

end

% Updated version with more precision

function result = calculateArea(radius)

 result = pi * radius^2;

 % Add error estimation

 error = 2 * pi * radius * 1e-6;

 result = struct('area', result, 'error', error);

end

127

Notes You only need to update function once, and all code using it benefits from

improvement.

Error Handling and Debugging

Functions facilitate better error handling and debugging:

1. Localized errors: Problems are contained within specific functions

2. Input validation: Check parameters at function entry point

3. Focused debugging: Test and fix individual functions separately

Example with input validation:

function result = divideNumbers(a, b)

 % Validate inputs

 if ~isnumeric(a) || ~isnumeric(b)

error('Inputs must be numeric');

 end

 if b == 0

error('Cannot divide by zero');

 end

 % Perform calculation

 result = a / b;

end

Performance Optimization

Functions can boost MATLAB performance:

1. Precompiled code: Functions can be JIT-compiled for faster

execution

2. Memory efficiency: Local variables are cleared after function

execution

3. Profiling: Easily measure performance of individual functions

Memory management example:

128

Notes function result = processLargeData(filename)

 % Load data

 data = load(filename);

 % Process it

 result = performCalculations(data);

 % Variable 'data' is automatically cleared when function exits

end

Without functions, large variables would remain in memory until explicitly

cleared.

Documentation and Readability

Functions improve code documentation and readability:

1. Self-documentation: Function names explain it purpose

2. Help comments: Headers document inputs, outputs, and behavior

3. Clear interfaces: Explicit inputs and outputs show data flow

Well-documented function example:

function [meanVal, stdVal] = analyzeData(data, trimPercentage)

 % ANALYZEDATA Calculate trimmed mean and standard deviation

 % [MEAN, STD] = ANALYZEDATA(DATA, TRIM) calculates

trimmed mean

 % and standard deviation of DATA after removing TRIM percent of

 % values from each end.

 %

 % Inputs:

 % DATA - Numeric vector of values to analyze

 % TRIM - Percentage (0-100) of values to trim from each end

 %

 % Outputs:

 % MEAN - Trimmed mean value

 % STD - Trimmed standard deviation

 %

129

Notes % Example:

 % [m, s] = analyzeData([1,2,3,4,100], 20)

 % Implementation code...

end

Collaboration Benefits

Functions facilitate teamwork and collaboration:

1. Division of labor: Different team members can work on separate

functions

2. Clear interfaces: Teams agree on function inputs and outputs

3. Independent testing: Functions can be developed and tested

individually

For a team project, work might be divided like:

• Person A: Data import functions

• Person B: Analysis algorithms

• Person C: Visualization functions

• Person D: Main program that calls everyone's functions

Algorithm Development and Testing

Functions support methodical algorithm development:

1. Incremental development: Build and test one function at a time

2. Unit testing: Create test cases for individual functions

3. Alternative implementations: Develop different function versions

and compare m

Testing example:

function testCalculateStats()

 % Test data

testData = [1, 2, 3, 4, 5];

 % Get results

130

Notes stats = calculateStats(testData);

 % Verify results

assert(stats.mean == 3, 'Mean calculation error');

assert(stats.median == 3, 'Median calculation error');

assert(abs(stats.stdDev - 1.5811) < 0.0001, 'StdDev calculation error');

disp('All tests passed!');

end

Encapsulation and Data Hiding

Functions provide a form of encapsulation in MATLAB:

1. Internal details hidden: Users only see interface, not

implementation

2. Controlled access: Data modifications occur only through function

calls

3. Reduced dependencies: Changes to internal workings don't affect

somewhere code

Example of data hiding:

function counter = createCounter(initialValue)

 % Private variable

 count = initialValue;

 % Return a structure with function handles

counter.increment = @() increment();

counter.getValue = @() getValue();

 % Internal functions

 function increment()

 count = count + 1;

 end

 function value = getValue()

 value = count;

131

Notes end

end

Usage:

myCounter = createCounter(0);

myCounter.increment();

myCounter.increment();

currentValue = myCounter.getValue(); % Returns 2

 internal variable count is not directly accessible.

Integration with MATLAB Environment

Functions integrate well with MATLAB ecosystem:

1. Toolbox compatibility: Functions work seamlessly with MATLAB

toolboxes

2. GUI integration: Functions can be called from app designer

applications

3. Publishing: Functions can be published as HTML or PDF for

documentation

For example, a function can be integrated with MATLAB's parallel

computing:

function results = processMultipleDatasets(dataDocuments)

 % Initialize results array

numDocuments = length(dataDocuments);

 results = cell(numDocuments, 1);

 % Use parallel processing if available

parfori = 1:numDocuments

 results{i} = processData(dataDocuments{i});

 end

end

Advanced Function Capabilities

132

Notes MATLAB functions support advanced programming concepts:

1. Variable inputs/outputs: Handle different numbers of arguments

2. Function handles: Pass functions as arguments to somewhere

functions

3. Anonymous functions: Create small inline functions

4. Recursion: Functions can call mselves

Variable input example:

function result = flexibleCalculation(varargin)

 % Check number of inputs

 if nargin == 0

 result = 0;

 elseif nargin == 1

 result = varargin{1} * 2;

 else

 % Sum all inputs

 result = sum([varargin{:}]);

 end

end

Function handle example:

function results = applyMultipleFunctions(data, functions)

 % Apply each function to data

numFunctions = length(functions);

 results = cell(numFunctions, 1);

 for i = 1:numFunctions

currentFunction = functions{i};

 results{i} = currentFunction(data);

 end

end

% Usage:

myFunctions = {@mean, @median, @std};

results = applyMultipleFunctions([1,2,3,4,5], myFunctions);

133

Notes Solved Problems on Variable Scope and Functions

Solved Problem 1: Understanding Local vs. Global Variables

Problem: Explain what will happen in following code and why:

x = 10;

function testScope()

 x = 20;

disp(['Inside function: x = ', num2str(x)]);

end

testScope();

disp(['After function call: x = ', num2str(x)]);

Solution:

 output will be:

Inside function: x = 20

After function call: x = 10

Explanation:

1. First, we assign x = 10 in base workspace.

2. Inside testScope function, we create a new local variable also named

x and assign it value 20.

3. Function displays this local x, which is 20.

4. Local x exists only within function's scope.

5. After functioncompletes, local x is deleted.

6. Global x in base workspace remains unchanged at 10.

7. When we display x after function call, we get base workspace value

of 10.

This demonstrates how local variables in functions are separate from variables

with same name in somewhere scopes.

Solved Problem 2: Persistent Variables

134

Notes Problem: Create a function that counts how many times it has been called

using a persistent variable. n call this function multiple times and explain

results.

function callCount = countCalls()

 persistent counter;

 if isempty(counter)

 counter = 0;

 end

 counter = counter + 1;

callCount = counter;

end

Solution:

>>countCalls()

ans = 1

>>countCalls()

ans = 2

>>countCalls()

ans = 3

>> clear all

>>countCalls()

ans = 1

Explanation:

1. First time we call countCalls(), persistent variable counter is empty,

so it's initialized to 0, n incremented to 1.

2. On subsequent calls, counter retains its value between calls, so it's

incremented to 2, then 3.

3. Persistent variables exist until they are cleared from memory or until

MATLAB is closed.

4. When we execute clear all, all variables including persistent ones are

cleared from memory.

5. After clearing, calling countCalls() again initializes counter to 0 and

returns 1.

135

Notes This demonstrates how persistent variables maintain it state across multiple

function calls, unlike local variables.

Solved Problem 3: Function Handles and Closures

Problem: Create a function that generates customized multiplier functions.

Each generated function should multiply its input by a different factor. Test

with factors 2 and 10.

function multiplierFunc = createMultiplier(factor)

multiplierFunc = @(x) x * factor;

end

Solution:

>> doubler = createMultiplier(2);

>> times10 = createMultiplier(10);

>>doubler(5)

ans = 10

>> times10(5)

ans = 50

>>doubler([1, 2, 3])

ans = [2, 4, 6]

Explanation:

1. CreateMultiplier returns a function handle to an anonymous function.

2. Anonymous function captures value of factor at time it was created.

3. When we call createMultiplier(2), it returns a function that multiplies

inputs by 2.

4. When we call createMultiplier(10), it returns a function that

multiplies inputs by 10.

5. It function handles maintain access to it respective factor values even

after createMultiplier has finished executing.

6. Functions can be applied to scalars or arrays.

This demonstrates creating "closures" - functions that remember environment

in which they were created.

136

Notes Solved Problem 4: Nested Functions and Shared Variables

Problem: Create a function that calculates both area and perimeter of a

rectangle, using nested functions to share variables. Test with width=3 and

height=4.

function [area, perimeter] = rectangleProperties(width, height)

 % Calculate both area and perimeter of a rectangle

 % Nested function for area

 function a = calcArea()

 a = width * height;

 end

 % Nested function for perimeter

 function p = calcPerimeter()

 p = 2 * (width + height);

 end

 % Call nested functions

 area = calcArea();

 perimeter = calcPerimeter();

end

Solution:

>> [a, p] = rectangleProperties(3, 4)

a = 12

p = 14

Explanation:

1. Main function rectangle, Properties takes two input parameters: width

and height.

2. It contains two nested functions: calcArea and calcPerimeter.

3. Both nested functions can access variables width and height from

parent function's scope.

137

Notes 4. Nested functions perform it respective calculations using it shared

variables.

5. For width=3 and height=4, area is 3×4=12 and perimeter is

2×(3+4)=14.

This demonstrates how nested functions can access and use variables from it

parent function's scope without needing to pass thrm as arguments.

Solved Problem 5: Global Variables for Configuration

Problem: Create a configuration system using global variables. Implement

functions to set configuration values, retrieve them, and use m in a calculation.

n demonstrate changing a configuration value and seeing effect.

function setConfig()

 % Set default configuration

 global CONFIG;

CONFIG.maxIterations = 100;

CONFIG.scaleFactor = 2.5;

CONFIG.tolerance = 0.001;

end

function value = getConfigValue(name)

 % Get a specific configuration value

 global CONFIG;

 if isfield(CONFIG, name)

 value = CONFIG.(name);

 else

error(['Configuration parameter "', name, '" not found']);

 end

end

function result = performCalculation(input)

 % Use configuration in a calculation

scaleFactor = getConfigValue('scaleFactor');

 result = input * scaleFactor;

end

Solution:

138

Notes >>setConfig()

>>performCalculation(10)

ans = 25

>> global CONFIG

>>CONFIG.scaleFactor = 5

CONFIG = struct with fields:

maxIterations: 100

scaleFactor: 5

 tolerance: 0.001

>>performCalculation(10)

ans = 50

Explanation:

1. setConfig() initializes a global structure CONFIG with default values.

2. getConfigValue('name') retrieves a specific parameter from global

configuration.

3. performCalculation(input) uses configuration value scaleFactor in its

calculation.

4. Initially, scaleFactor is 2.5, so performCalculation(10) returns 25.

5. We then access and modify global CONFIG directly, changing

scaleFactor to 5.

6. After this change, performCalculation(10) returns 50.

This demonstrates using global variables for configuration settings that can

be accessed and modified from anywhere in program.

Unsolved Problems on Variable Scope and Functions

Unsolved Problem 1

Write a function called fibonacciGenerator that returns a function handle.

Returned function should generate next number in Fibonacci sequence each

time it's called. Use persistent variables to maintain state between calls.

Unsolved Problem 2

Create a script that demonstrates difference between global variables and

persistent variables. Script should include two functions: one using a global

139

Notes variable and one using a persistent variable. Show how they behave

differently when functions are called multiple times and when clear

command is used.

Unsolved Problem 3

Write a function called createStack that implements a stack data structure

using nested functions for push, pop, and peek operations. Stack’s data should

be private (not directly accessible outside function). Test your

implementation by pushing several values, n popping them.

Unsolved Problem 4

Create a function that analyzes and reports on variable usage in a MATLAB

script file. Function should take a filename as input and return information

about:

• Number of variables used

• Which variables might be candidates for conversion to local variables

• Variables that might benefit from being made persistent or global

Unsolved Problem 5

Implement a caching system for an expensive calculation using persistent

variables. Your function should:

• Accept a numeric input

• Check if calculation has already been performed for this input

• Return cached result if available

• Likewise, perform calculation, cache result, and return it

• Include an option to clear cache

• Display statistics about cache hits and misses

For "expensive calculation," use Fibonacci sequence with recursive calls

(intentionally inefficient) to demonstrate performance benefit of caching.

MATLAB Scripts and Functions: Daily Practical Applications

Overview of Script Documents in MATLAB: Practical Applications

140

Notes MATLAB script documents constitute basis for numerous practical

applications in our daily lives, frequently functioning unobtrusively in ways

we seldom observe yet consistently derive benefits from. In domain of season

forecasting, meteorologists utilize intricate MATLAB programs to analyze

extensive atmospheric data ga red from satellites, season stations, and radar

systems globally. It programs execute complex computations on temperature

gradients, pressure systems, humidity levels, and wind patterns to forecast

season conditions that influence several aspects, including daily commutes,

agricultural planning, and aviation safety. When you consult your phone's

season application to determine if you should bring an umbrella, you are

utilizing results of advanced MATLAB scripts that have analyzed terabytes

of environmental data. In automotive sector, engineers employ MATLAB

programs to evaluate car performance data throughout design and testing

stages. It scripts analyze data from sensors that assess fuel efficiency,

emissions, structural integrity, and safety metrics across diverse driving

circumstances. Findings assist engineers in improving designs, optimizing

fuel efficiency, and augmenting safety features in automobiles we utilize

daily. MATLAB scripts have been helpful in development and optimization

of systems such as electronic stability control, which prevents skids on wet

roads, and hybrid vehicles that transition smoothly between electric and

combustion power sources. Entertainment sector has adopted MATLAB

scripts for audio processing and augmentation. Audio engineers utilize it

scripts to analyze and adjust sound frequencies, eliminate background noise,

and enhance clarity in music, podcasts, and film soundtracks. immersive

audio experience you appreciate while viewing a film or listening to a digitally

remastered vintage music is frequently product of audio processing

algorithms executed via MATLAB scripts. It programs may detect and modify

certain frequency ranges, implement effects, and enhance sound quality for

various listening settings, thereby boosting our daily entertainment

experiences.

In healthcare, MATLAB scripts facilitate processing and analysis of medical

imaging data from MRI, CT scans, and ultrasounds. Radiologists and medical

practitioners utilize processed images to identify anomalies, strategize

surgical interventions, and assess rapy efficacy. precision and intricacy in it

images, essential for correct diagnosis and treatment planning, are frequently

improved by MATLAB scripts that implement specialized filtering and

141

Notes enhancing methods. When a physician precisely diagnoses a tumor at an early

stage or effectively devises a less invasive surgical approach utilizing

comprehensive medical imaging, MATLAB scripts have played a crucial role

in that achievement.

Urban planners employ MATLAB programs to examine traffic flow patterns,

population density, and infrastructure utilization statistics during planning or

modification of city layouts. It scripts facilitate optimization of traffic signal

timing, planning of public transportation routes, and identification of ideal

locations for public services based on demographic distribution and

movement patterns. Diminished congestion during your daily commute or

strategic location of new public amenities in your vicinity may stem from

urban planning choices guided by MATLAB script evaluations.

Development and Execution of Script Documents: Practical Applications

Creation and execution of MATLAB script documents are utilized in financial

research, anywhere investment analysts formulate and implement scripts to

analyze historical market data, discern trends, and simulate investment

strategies. It experts develop scripts that import extensive datasets comprising

price fluctuations, trade volumes, and economic indicators, subsequently use

statistical techniques to discern relationships and prospective investment

opportunities. Investment recommendations from a financial advisor or

adjustments to your retirement fund's portfolio allocation may be based on

assessments conducted with bespoke MATLAB scripts that assess risk and

possible returns under diverse market conditions. In field of renewable

energy, engineers develop and execute MATLAB scripts to enhance

positioning and functionality of solar panels and wind turbines. It scripts

analyze data on solar radiation patterns, variations in wind speed and

direction, and topographical characteristics to ascertain ideal placement for

maximum energy production. scripts are routinely ran with current season

and performance data to modify operational parameters as situations evolve.

dependable green energy that powers a growing number of our residences and

enterprises derives much of its effectiveness from it perpetually optimized

MATLAB scripts that enhance energy capture from variable natural sources.

Agricultural scientists create MATLAB scripts to assess soil composition,

moisture content, and crop health data obtained from field sensors and drone

imagery. By executing it scripts consistently during growing season, farmers

142

Notes may make educated decisions regarding irrigation timing, fertilizer use, and

pest management. quality and availability of vegetables in your local grocery

store are enhanced by this precision agriculture method, anywherein

MATLAB scripts analyze intricate environmental data to inform effective

agricultural practices that maximize crop yields and reduce resource use. In

pharmaceutical research, scientists develop MATLAB scripts to examine

outcomes of drug compound assays, simulating interactions of prospective

treatments with specific cells or proteins. It programs analyze data from

laboratory tests and model molecular interactions to forecast efficacy and

possible side effects prior to clinical trials. Whenever a novel medication is

introduced that effectively addresses a condition with minimal adverse

effects, MATLAB scripts have probably contributed to its development

process by assisting researchers in identifying interesting chemicals and

optimizing dosages through data-driven analysis.

Environmental scientists create MATLAB scripts to analyze data from water

quality sensors located in rivers, lakes, and coastal regions. It scripts evaluate

factors including dissolved oxygen levels, pH, temperature, and pollutant

concentrations to assess ecosystem health and identify pollution incidents.

Environmental agencies issue swimming advisories for local beaches and

water treatment facilities modify it processes to tackle emerging contaminants

based on data processed and analyzed by MATLAB scripts that identify

troubling patterns in water quality parameters.

Overview to Functions in MATLAB: Practical Applications

MATLAB functions constitute foundation of image processing programs that

improve our daily visual experiences. In digital photography, functions

execute operations like color correction, sharpening, noise reduction, and

perspective adjustment. Camera manufacturers and software developers

include it functionalities into photo editing tools utilized by both professionals

and consumers. Applying a filter to enhance a poorly illuminated shot or to

automatically eliminate red-eye from a family portrait utilizes MATLAB

functions that are tailored for it particular image modifications with efficiency

and efficacy. In domain of speech recognition, MATLAB routines analyze

audio input to identify linguistic patterns and transcribe spoken words into

text. It routines execute spectrum analysis, eliminate background noise,

discern phonetic elements, and compare them with language models to

interpret spoken commands. Voice assistants we engage with daily on our

143

Notes smartphones and smart home devices depend on it functionalities to

comprehend and reply to our speech inquiries. When you request your device

to set an alarm, play music, or offer instructions, a number of specialized

functions collaborate to interpret your speech and perform corresponding

action. Biomedical engineers utilize MATLAB functionalities to analyze and

interpret biosignals, including electrocardiograms (ECG),

electroencephalograms (EEG), and electromyograms (EMG). It activities

extract significant characteristics from intricate waveforms generated by our

bodies, facilitating distinction between normal and pathological patterns. In

hospitals and clinics, it capabilities aid in diagnosis of heart arrhythmias,

sleep problems, and neuromuscular diseases. precise analysis of your ECG

during a typical medical examination depends on functions meticulously

engineered to detect specific attributes in electrical signals produced by your

heart.

In structural engineering, MATLAB functions assess structural integrity of

buildings and bridges under diverse load conditions and environmental

pressures. It algorithms analyze data from stress sensors and structural models

to compute safety margins and detect potential vulnerabilities. When you

drive across a bridge during peak traffic or feel secure in a high-rise building

amid strong winds, you are relying on structures whose safety has been

validated through engineering analyses that utilize specialized MATLAB

functions to assess structural resilience under extreme conditions. Robotics

engineers employ MATLAB functions for motion planning, obstacle

detection, and task execution in automated systems. It functions analyze

sensor inputs to generate environmental maps, compute ideal routes, and

regulate actuators with exact timing. growing use of robots in manufacturing,

warehouse operations, and domestic cleaning enhances it functions. When a

manufacturing robot meticulously assembles electrical components or when

your robot vacuum adeptly maneuvers around furniture, it systems do intricate

tasks through collaboration of various specialized functions that sense,

decide, and act in real-time contexts.

Built-in Functions versus User-Defined Functions: Practical Applications

Differentiation between built-in and user-defined functions in MATLAB is

applicable in genomic research, anywhere researchers utilize standard

statistical functions offered by MATLAB and develop bespoke functions for

144

Notes innovative analytical methods. Researchers utilize inherent functionalities for

standard tasks such as computing correlations between gene expressions or

doing principal component analysis on extensive datasets. In development

of novel approaches for identifying genetic markers linked to certain diseases

or for studying distinctive patterns in DNA sequences, yformulate user-

defined functions customized for it specialized objectives. progress in

personalized medicine, which allows for rapies tailored to one's genetic

profile, arises from integration of standardized mathematical operations and

creative analytical methodologies utilizing both built-in and custom functions.

In development of autonomous vehicles, engineers utilize MATLAB's

integrated image processing and machine learning capabilities for

fundamental tasks such as edge detection and object classification. It

established functions execute typical activities with efficiency and reliability.

technical teams concurrently create user-defined functions for brand-specific

driving behaviors, patented safety standards, and distinctive sensor fusion

algorithms that set it vehicles apart in market. advanced driver assistance

systems in contemporary vehicles, including adaptive cruise control and

emergency braking, exemplify integration of industry-standard algorithms

and manufacturer-specific innovations, executed through both integrated and

bespoke functionalities. Financial analysts use MATLAB's inherent statistical

and optimization capabilities with custom functions developed for proprietary

trading strategies and risk assessment models. standard functions perform

typical computations such as portfolio variance and option pricing utilizing

recognized mathematical models. bespoke functions embody firm's

distinctive market insights, risk tolerance criteria, and investment

philosophies that form it competitive edge. Successful investment portfolio

performance during market volatility or consistent returns from a pension

fund typically arises from financial strategies that integrate conventional

mathematical tools with proprietary analytical methods, utilizing both built-

in and custom functions.

In climate science, researchers employ MATLAB's inherent functionalities to

handle data from meteorological stations, satellites, and ocean buoys,

executing standard operations such as filtering, interpolation, and statistical

analysis. Concurrently, they create user-defined functions to execute specific

climate models that consider distinct interactions among atmospheric,

oceanic, and terrestrial systems. Progressively precise climate projections

145

Notes that guide policy decisions and adaptation measures arise from integration

of conventional data processing methods and novel modeling methodologies

executed through both categories of functions. Manufacturing quality control

systems utilize MATLAB's integrated image processing and statistical

analysis capabilities for conventional inspection procedures, while

implementing user-defined functions for product-specific fault detection

methods. integrated capabilities effectively manage typical tasks such as

edge detection, dimension measurement, or statistical distribution calculation

of measurements. bespoke functions include specialized knowledge

regarding certain products, it essential quality metrics, and distinct defect

patterns that may signify process issues. Uniform quality of consumer

products, ranging from electronic devices to household appliances, is

enhanced by this dual methodology of automated inspection, which integrates

general-purpose analytical tools with specialized detection techniques

through a proficient combination of built-in and custom functions.

Composing Function Documents in MATLAB: Practical Applications

Creation of function documents in MATLAB has significant practical

implications in civil engineering, since engineers formulate customized

functions to assess soil stability for construction projects. It services analyze

data from soil samples and geological surveys, determining load-bearing

capacities and possible settlement under diverse scenarios. Engineers

meticulously design it functions with suitable input validation, comprehensive

documentation, and efficient computing methods, guaranteeing it reliable

application across various projects and by diverse team members. structural

stability of our buildings, bridges, and dams relies on meticulously designed

functions that convert intricate geotechnical principles into applicable

construction standards. Economists develop MATLAB routines to simulate

and predict economic trends utilizing historical data and contemporary

indicators. It functions employ advanced econometric techniques that

consider seasonal fluctuations, long-term trends, and intricate

interdependencies among economic variables. procedure necessitates

meticulous consideration of statistical correctness, computing efficiency, and

lucid explanation of outcomes. Economic projections that shape central bank

interest rate policies, subsequently impacting mortgage payments, credit card

rates, and investment returns, frequently depend on it precisely crafted

MATLAB functions that translate intricate economic linkages into practical

146

Notes insights. Audio experts in digital signal processing develop MATLAB

routines to perform specialized filters, compression algorithms, and sound

enhancement approaches. It functions convert unprocessed audio signals into

distinct, balanced output tailored for various listening settings and devices.

development process entails formulating efficient algorithms capable of

processing audio in real-time with little distortion or lag. superior sound

quality achieved by noise-canceling headphones, hearing aids, or virtual

conferencing systems is attributable to meticulously designed functions that

alter audio signals with mathematical accuracy to improve clarity and

diminish extraneous noise.

Neuroscientists develop MATLAB programs to examine brain activity data

obtained from EEG, fMRI, and various neuroimaging methodologies. It

abilities discern significant patterns from intricate signals, pinpointing neural

correlates of cognitive processes, emotional states, and diverse neurological

diseases. Development of function necessitates interdisciplinary expertise

in neurology, signal processing, and statistics, executed through efficient

algorithms appropriate for handling extensive datasets. Enhanced diagnosis

and treatment of neurological illnesses, including epilepsy and depression, are

supported by specific functions that assist researchers and doctors in

interpreting complex electrical and metabolic activity of human brain.

Environmental engineers create MATLAB routines to simulate dispersion of

contaminants in air and water, including emission sources, climatic

circumstances, and geographical characteristics. It functions apply fluid

dynamics principles and transport equations to forecast concentration levels

across spatial and temporal dimensions. meticulous organization of it

functions facilitates scenario testing with varying emission levels and

mitigation options. regulations safeguarding air and water quality, strategic

placement of monitoring stations in urban locales, and engineering of

emission control systems in industrial facilities all derive advantages from it

advanced modeling functions that convert intricate environmental processes

into predictive instruments for preservation of public health and natural

resources.

Argument Transmission and Value Return in Functions: Practical

Applications

147

Notes Method of giving parameters and returning results in MATLAB functions is

utilized in remote sensing and satellite imagery analysis, anywhere

researchers create functions to handle raw data from satellite equipment. It

routines accept several input arguments that define parameters like

wavelength bands, geographical coordinates, time intervals, and processing

choices. Following intricate transformations and analyses, functions yield

several outputs, encompassing processed photos, statistical summaries, and

detection findings for specific elements such as vegetation indices or urban

growth patterns. precise mapping applications on your smartphone, accurate

season forecasts you receive, and monitoring of environmental changes such

as deforestation or urban expansion all depend on functions that efficiently

process extensive satellite data through meticulously designed input and

output structures. In pharmacokinetic modeling, medical researchers develop

MATLAB routines that simulate absorption, distribution, metabolism, and

excretion of pharmaceuticals within human body. It functions accept

parameters like dosage, patient attributes (weight, age, genetic variables), and

delivery route (oral, intravenous, transdermal). y provide values that forecast

blood concentration levels over time, anticipated efficacy at target areas, and

possible adverse effects depending on concentration thresholds.

Establishment of suitable medication dosages, coordination of multiple drugs

to prevent adverse interactions, and formulation of personalized treatment

plans based on individual patient attributes are all enhanced by it advanced

modeling functions that convert pharmacological principles into actionable

clinical guidelines through meticulously structured arguments and return

values. Aerospace engineers create MATLAB routines to compute best

trajectories for aircraft, spacecraft, and satellites. It functions accept inputs

such as initial position, destination, available fuel, temporal constraints, and

environmental factors including season or sun radiation. y include

comprehensive flight trajectories, fuel usage metrics, projected arrival times,

and safety buffers. efficacy of commercial airline routes that reduce travel

time and fuel expenses, accurate placement of communication satellites into

ideal orbits, and effective navigation of interplanetary missions all rely on

trajectory optimization functions that manage intricate physical constraints

via meticulously organized input parameters and extensive output values.

In materials science, researchers develop MATLAB functions to forecast

properties of novel composite materials based on it composition and

148

Notes fabrication methods. It functions accept parameters specifying component

materials, it ratios, processing temperatures, and pressure conditions. y

provide values predicting physical qualities, including tensile strength, rmal

conductivity, flexibility, and durability over diverse environmental

circumstances. advancement of stronger, lighter materials for aircraft that

diminish fuel consumption, production of more efficient insulation for

energy-conserving buildings, and engineering of more resilient medical

implants all derive advantages from it predictive capabilities that convert

materials science principles into applicable engineering solutions via

thorough input-output correlations. Financial risk managers create MATLAB

algorithms to evaluate investment portfolio susceptibilities across several

market situations. It functions accept parameters such as current asset

allocations, historical performance data, correlation matrices of various

investments, and specifications for stress test scenarios. y provide several

outputs, including anticipated losses in adverse scenarios, value-at-risk

indicators, and suggestions for portfolio modifications to mitigate particular

risk exposures. stability of pension funds during market declines, adequacy

of insurance reserves held by financial institutions, and strategic investment

choices safeguarding retirement savings depend on risk assessment functions

that analyze intricate financial relationships through organized argumentation

and thorough return value frameworks.

Variable Scope in Functions: Practical Applications

Notion of variable scope in MATLAB functions holds practical importance in

cybersecurity applications, anywhere security analysts create threat detection

systems. It systems employ functions with meticulously controlled variable

scopes to preserve integrity and secrecy of sensitive data during analysis.

Local variables within functions retain transient values during analysis of

network traffic patterns, safeguarding raw data and intermediate outcomes

from interference by somewhere system components. When it functions

require retention of state information across successive executions, y utilize

persistent variables to monitor past patterns while safeguarding this

information from global exposure. Safeguarding of your personal and

financial information during online transactions is enhanced by security

technologies that ensure proper variable scope management, thereby keeping

sensitive data compartmentalized and secure throughout analysis process. In

medical device programming, programmers create MATLAB routines for

149

Notes patient monitoring systems that analyze vital signs and notify healthcare

providers of alarming alterations. It routines utilize local variables to

temporarily retain and process incoming sensor data from particular patients,

ensuring that information of one patient does not influence computations

for somewhere patient. They utilize persistent variables to preserve historical

baselines for each patient, facilitating individualized trend analysis without

necessitating global storage that may result in data ambiguity. Dependability

of hospital monitoring systems that record vital signs post-surgery or during

critical care is largely contingent upon effective administration of variable

scope, which guarantees that each patient's data is kept separate and processed

appropriately.

Game developers formulate MATLAB routines for physics engines that

replicate au ntic movements and interactions within virtual settings. It

functions employ local variables to compute immediate impacts of forces,

collisions, and movements for particular objects, guaranteeing that physics

computations for one item do not unintentionally influence somewheres. y

employ persistent variables to save physical state information like as velocity

and acceleration between simulation frames, ensuring fluid continuous

motion while preserving isolation of each object's attributes. Compelling

realism in video games and training simulations, characterized by movement,

collision, and interaction of objects in accordance with our physical world

expectations, is attributable to physics engines that effectively manage

variable scopes to preserve integrity of each object's physical properties.

Season modeling systems utilize MATLAB functions with advanced scope

management to produce precise forecasts. It functions utilize local variables

to analyze current atmospheric conditions for distinct geographical locations,

ensuring that calculations for one area do not interfere with those of

ansomewhere. y employ persistent variables to sustain evolving season

systems over numerous time steps in simulation, safeguarding essential

information regarding developing storms or pressure systems without

worldwide revealing this data, which could lead to accidental modifications.

enhanced accuracy of season forecasts, which assist in planning outdoor

activities or preparing for severe season, depends on modeling systems that

assure integrity and precision of complicated atmospheric simulations

through effective variable scope management. Industrial control systems

employ MATLAB functions with meticulously regulated variable scopes to

150

Notes oversee and modify manufacturing processes. It functions utilize local

variables to analyze current sensor readings and compute suitable control

responses for particular equipment, ensuring that processing for one system

component is distinct from somewheres. y utilize persistent variables to

monitor equipment performance trends and uphold calibration settings

between execution cycles, facilitating consistent operation without globally

exposing crucial control parameters. consistency and quality of

manufactured products, ranging from automobiles to consumer electronics,

are enhanced by it control systems, anywherein effective scope management

guarantees that each component of manufacturing process functions

independently yet collaboratively through clearly defined interfaces instead

of shared variables.

Benefits of Utilizing Functions in MATLAB: Practical Applications

Benefits of employing functions in MATLAB are evident in epidemic

modeling, anywhere public health experts create modular simulation systems

to forecast disease transmission and assess intervention tactics.

Epidemiologists organize it code into functions to produce reusable

components for many elements of disease dynamics, including transmission

rates, incubation durations, recovery patterns, and vaccine effects. This

modular methodology enables swift adaptation of existing models to novel

diseases by substituting specific components while preserving overarching

simulation framework. This modularity facilitates swift comparison of

various intervention methods during response to emerging infectious

diseases by substituting policy implementation functions while maintaining

basic disease mechanics unchanged. Public health measures that safeguard

communities during epidemics, such as vaccination campaigns and social

distancing rules, are enhanced by modular modeling approaches that enable

swift analysis of intricate scenarios via well-structured function libraries.

Engineers utilize MATLAB functionalities to develop dependable control

systems in autonomous drone operations. y create distinct functionalities for

essential activities including navigation, obstacle detection, mission planning,

and emergency protocols. This functional organization enables several

engineers to collaborate simultaneously on various components of system

without conflicts. Encapsulation offered by functions guarantees that each

component functions dependably, irrespective of modifications to somewhere

system elements. This modular architecture facilitates mission-specific

151

Notes modification for agricultural monitoring, package delivery, or search and

rescue operations by integrating standard functionalities in various

configurations. Growing dependability and adaptability of drone systems in

various applications, ranging from infrastructure inspection to emergency

response, exemplifies advantages of this function-oriented methodology in

complex system design.

Energy management solutions for intelligent buildings employ MATLAB

functionalities to enhance comfort and efficiency. Engineers provide distinct

functions for processing sensor data, estimating occupancy trends,

anticipating season effects, modeling rmal dynamics, and regulating HVAC

systems. This modular architecture facilitates ongoing enhancement of

individual components without compromising integrity of entire system. A

more efficient temperature prediction algorithm can supplant current

function without necessitating modifications to remainder of system.

Modern office buildings and smart homes achieve comfortable and energy-

efficient environments through sophisticated management systems that

integrate specialized functions to harmonize comfort preferences with energy

conservation objectives via a meticulously designed yet modular control

architecture. Investment firms create MATLAB function libraries in

automated financial trading systems to execute different components of it

trading strategies. y develop distinct functions for market data processing,

technical indicator computation, risk evaluation, opportunity recognition, and

order execution. This functional organization enables reutilization of

validated components across several methods while safeguarding proprietary

algorithms via encapsulation. In development of novel trading strategies,

analysts may concentrate on altering particular strategy functionalities while

utilizing existing infrastructure for data management and execution.

Efficacy and dependability of contemporary financial markets, anywherein

millions of transactions are accurately executed daily across global

exchanges, exemplify advantages of this function-oriented methodology in

design of intricate financial systems. Rehabilitation engineering utilizes

MATLAB features to advance creation of adaptable assistive devices for

individuals with physical disability. Engineers provide distinct functions for

biosignal processing, user intent interpretation, mechanical actuator control,

and adaptation to evolving user capabilities. This modular design facilitates

customization of devices for individual users by modifying specific features

152

Notes without necessitating a whole system redesign. When a user's condition alters

or ameliorates through rapy, adaptive features can be revised while

preserving familiar interface and essential functionality. growing autonomy

and enhanced quality of life afforded by modern prosits, mobility aids, and

assistive technologies illustrate benefits of a function-based approach that

facilitates individualized solutions via modular, flexible system architecture.

Comprehensive Practical Applications of MATLAB Scripts and

Functions

In addition to specific applications mentioned earlier, MATLAB scripts and

functions permeate all facets of our daily lives through it integration with

systems and technology we frequently encounter. In transportation logistics,

MATLAB functions enhance delivery routes for packages, taking into account

traffic patterns, vehicle capacity, delivery time constraints, and fuel efficiency.

It optimization algorithms, executed via meticulously designed functions,

facilitate reduction of delivery times and costs while mitigating

environmental effect through efficient routing that decreases superfluous

miles and fuel consumption. Streaming entertainment on our devices is

enhanced by MATLAB routines that drive content recommendation

algorithms. It functions examine watching trends, preference data, and content

attributes to recommend films, series, or music that align with personal likes.

functionalities analyze extensive user behavior data using collaborative

filtering and machine learning algorithms, consistently enhancing it

recommendations based on user feedback. tailored entertainment

experiences that appear to "understand" our preferences stem from advanced

recommendation systems constructed using interconnected MATLAB

functions that convert user activity into prediction models. Our more

dependable renewable energy infrastructure depends on MATLAB scripts and

functions for grid management and integration of variable sources such as

solar and wind energy. It functions forecast generation capacity based on

meteorological predictions, reconcile supply with demand variations, and

regulate energy storage systems to ensure grid stability. uninterrupted

electricity supply anticipated, despite intrinsic variability of renewable

sources, is achieved by advanced management systems anywherein MATLAB

routines incessantly modify generating, storage, and distribution parameters

to sustain equilibrium between supply and demand.

153

Notes Water treatment and distribution systems employ MATLAB routines to

monitor quality metrics, identify contamination, optimize chemical dosage,

and regulate pressure across municipal networks. It functions analyze data

from sensors that measure factors including turbidity, pH, chlorine

concentrations, and flow rates, employing control algorithms to ensure safe

drinking water while minimizing chemical usage. clean, safe water that

consistently emerges from our taps exemplifies efficacy of advanced

management systems, anywherein MATLAB algorithms convert raw sensor

data into operational decisions that safeguard public health while optimizing

resource efficiency. Contemporary agricultural methods increasingly depend

on precision farming systems utilizing MATLAB functions to assess soil

conditions, crop vitality, and meteorological patterns for optimal resource

allocation. It services analyze data from soil sensors, drone footage, and

season forecasts to produce accurate recommendations for irrigation,

fertilization, and pest management tailored to various zones within fields.

plentiful and economical food supply we experience is enhanced by precision

agriculture techniques, anywherein MATLAB functions assist farmers in

optimizing yields while reducing water consumption, fertilizer application,

and pesticide use through data-informed, site-specific management strategies.

In disaster response and emergency management, MATLAB features

facilitate resource coordination and action prioritization during crucial

conditions. It functions analyze data from various sources, including

meteorological systems, seismic monitors, flood sensors, and demographic

distributions, to forecast impact patterns, pinpoint vulnerable regions, and

enhance resource allocation. progressively efficient responses to natural

disasters, such as preemptive evacuations before hurricanes and swift

mobilization of emergency services post-earthquakes, illustrate significance

of analytical systems anywherein MATLAB functions convert intricate,

multi-dimensional data into actionable intelligence for decision-makers in

critical scenarios.

Consumer devices utilized daily, such as cellphones and household

appliances, leverage MATLAB functions in it design and testing stages.

Engineers provide functions that replicate product performance across diverse

situations, assess structural integrity, enhance energy efficiency, and forecast

user interaction trends. It tasks facilitate identification of design deficiencies,

augment usability, and enhance reliability prior to product manufacturing.

154

Notes enhanced dependability, efficiency, and user-friendly operation of

contemporary electronics stem from extensive design procedures in which

MATLAB functionalities assist engineers in assessing and optimizing goods

via virtual testing and simulation prior to construction of real prototypes.

Urban traffic management systems utilize MATLAB functions to analyze data

from road sensors, traffic cameras, and GPS feeds, reby optimizing signal

timing to alleviate congestion and decrease journey durations. It services

examine traffic flow patterns, forecast congestion points, and execute

adaptive control algorithms that adjust to varying conditions throughout day.

diminished congestion and abbreviated travel durations in urban areas

employing sophisticated traffic management systems illustrate tangible

advantages of it methodologies, anywherein MATLAB routines incessantly

convert traffic sensor data into ideal signal timing patterns that enhance

overall system efficacy.

In environmental monitoring and protection, MATLAB functions analyze

data from sensor networks that assess air quality, water conditions, and

ecosystem characteristics. It services identify anomalies that may signify

pollution occurrences, monitor long-term patterns that signal environmental

changes, and simulate possible effects of proposed restrictions or

development projects. enhancement of environmental quality in numerous

areas, notwithstanding rising population and economic activity, demonstrates

efficacy of monitoring and regulatory systems, anywherein MATLAB

functions assist in identifying pollution sources and assessing effectiveness

of mitigation strategies through thorough data analysis.

Precision of contemporary season forecasting systems is significantly

dependent on MATLAB functions that analyze data from satellites, radar

systems, meteorological stations, and atmospheric models. It functions

employ advanced computational techniques to resolve differential equations

that characterize atmospheric dynamics, amalgamating observations with

physical models to forecast future conditions. progressively dependable

season forecasts that assist in planning daily activities are result of intricate

prediction systems in which MATLAB functions consistently integrate new

observations into dynamic models, yielding forecasts that reconcile

computational efficiency with predictive accuracy across various time scales.

In medical research, MATLAB capabilities expedite discovery and

development of novel treatments by assessing trial outcomes, modeling

155

Notes biological processes, and simulating drug interactions. It functions analyze

data from laboratory experiments, clinical trials, and genetic studies,

uncovering patterns and relationships that may not be evident through manual

analysis. rapid advancement of medical treatments for previously resistant

conditions demonstrates efficacy of analytical methods, anywherein

MATLAB functions assist researchers in deriving significant insights from

intricate experimental data, potentially expediting transition from

fundamental research to clinical applications. Financial planning and

investment management increasingly depend on MATLAB functions that

simulate market dynamics, evaluate risk prodocuments, and optimize

portfolio allocations according to individual objectives and limitations. It

tools emulate prospective outcomes across numerous market situations,

pinpointing investment strategies that reconcile return potential with

acceptable risk levels for various time horizons and objectives. customized

financial planning services assist individuals in preparing for significant life

expenses and retirement, exemplifying practical use of analytical methods

anywhere MATLAB functions convert intricate market dynamics and

personal preferences into tailored investment recommendations based on

individual circumstances.

Urban planning and development are enhanced by MATLAB algorithms that

simulate population increase, transportation demands, utility needs, and

environmental consequences of planned initiatives. It functions model

impact of various development patterns on traffic congestion, energy use,

water usage, and residents' quality of life. progressively sustainable urban

developments that amalgamate residential, commercial, and recreational areas

with efficient transportation systems exemplify merit of it planning

methodologies, anywherein MATLAB functions facilitate visualization and

quantification of potential outcomes from various design choices prior to

finalizing specific development strategies. In industrial quality control,

MATLAB programs analyze data from sensors overseeing production lines,

identifying irregularities that may signify equipment failures or product faults.

It functions employ statistical process control techniques to differentiate

between typical variations and substantial deviations that necessitate action.

exceptional reliability and consistency of contemporary manufactured goods

derive from advanced quality control systems in which MATLAB functions

perpetually assess production parameters, potentially detecting problems

156

Notes prior to emergence of defective items or equipment malfunctions. Wireless

communication networks that maintain connectivity depend on MATLAB

functions for signal processing, resource allocation, and interference

management. It functions enhance transmission parameters according to

signal quality assessments, user demand trends, and network congestion

metrics. dependable connectivity anticipated from our mobile devices, even

when transitioning between various environments and contending with

multiple users for constrained spectrum resources, exemplifies efficacy of it

network management strategies, anywherein MATLAB functions assist in

preserving connection quality while optimizing overall capacity of shared

wireless infrastructure. Security systems safeguarding our digital information

utilize MATLAB routines to identify anomalous patterns that may signify

infiltration attempts or data breaches. It algorithms provide baseline

behavioral prodocuments for networks and individuals, detecting

irregularities that require scrutiny while reducing false positives that may

inundate security personnel. Safeguarding of our personal and financial data

in an ever-connected environment relies heavily on security monitoring

systems, anywherein MATLAB functions facilitate differentiation between

legitimate activities and potential threats through advanced pattern

recognition and anomaly detection algorithms. In conclusion, MATLAB

scripts and functions are integral to numerous facets of contemporary

technological infrastructure, frequently functioning unobtrusively while

markedly improving quality, efficiency, and dependability of systems we

engage with everyday. From personalized shopping recommendations to

autonomous vehicle features, from season forecasts to medical treatments,

MATLAB scripts and functions are essential in data processing, decision

optimization, and system control, significantly improving our daily lives in

ways we often overlook yet consistently benefit from.

SELF ASSESSMENT QUESTIONS

Multiple Choice Questions (MCQs)

1. What is the primary purpose of a script document in MATLAB?

A) To execute a sequence of MATLAB commands

B) To define reusable functions

C) To compile MATLAB programs

D) To create graphical user interfaces

157

Notes Answer: A) To execute a sequence of MATLAB commands

2. Which file extension is used for MATLAB script files?

A) .txt

B) .m

C) .mat

D) .csv

Answer: B) .m

3. How do you run a MATLAB script named myscript.m from the

Command Window?

A) run myscript

B) myscript.m

C) execute myscript

D) start myscript

Answer: A) run myscript

4. Which keyword is used to define a function in MATLAB?

A) function

B) def

C) define

D) create

Answer: A) function

5. What differentiates a function file from a script file in MATLAB?

A) A function file must have a function definition

B) A function file can only contain one line of code

C) A function file cannot take inputs or outputs

D) A function file must be named function.m

Answer: A) A function file must have a function definition

6. How do you pass input arguments to a user-defined function in

MATLAB?

A) function_name[input]

B) function_name input;

C) function_name(input)

D) input ->function_name

158

Notes Answer: C) function_name(input)

7. What is the main difference between built-in functions and user-

defined functions in MATLAB?

A) Built-in functions are predefined in MATLAB, while user-defined

functions are created by users

B) User-defined functions run faster than built-in functions

C) Built-in functions do not accept input arguments

D) User-defined functions can only be used once

Answer: A) Built-in functions are predefined in MATLAB, while user-

defined functions are created by users

8. What happens if a variable is defined inside a function but is not

returned as an output?

A) It becomes a global variable

B) It is stored in the MATLAB workspace

C) It is accessible only inside the function (local scope)

D) It is automatically returned to the workspace

Answer: C) It is accessible only inside the function (local scope)

9. What is one major advantage of using functions in MATLAB?

A) They slow down program execution

B) They help reuse code and improve modularity

C) They eliminate the need for variables

D) They only work with built-in MATLAB commands

Answer: B) They help reuse code and improve modularity

10. What is the purpose of the return statement in a MATLAB

function?

A) It stops the execution of the function and returns control to the caller

B) It prints the output in the command window

C) It saves the function results in a file

D) It runs another function automatically

Answer: A) It stops the execution of the function and returns control to the

caller

Short Questions:

159

Notes 1. What is a script file in MATLAB?

2. How do you create a script file in MATLAB?

3. What is difference between a script file and a function file?

4. How do you execute a script file in MATLAB?

5. What is a function in MATLAB?

6. How do you define a user-defined function in MATLAB?

7. What is difference between local and global variables in MATLAB?

8. How do you pass arguments to a function in MATLAB?

9. What is purposeof return statement in MATLAB functions?

10. What are advantages of using functions in MATLAB programming?

Long Questions:

1. Explain concept of script documentsandit usage in MATLAB.

2. How do you create, save, and execute a script file in MATLAB?

Provide an example.

3. Discuss difference between script documentsand function documents

in MATLAB.

4. Explain structure of a user-defined function in MATLAB with an

example.

5. How can arguments be passed to and returned from a function in

MATLAB?

6. Discuss role of built-in functions in MATLAB programming.

7. Explain concept of variable scope in MATLAB functions with

examples.

8. Write a MATLAB function to calculate factorial of a number.

9. What are best practices for writing efficient functions in MATLAB?

10. Explain how modular programming can be implemented using

functions in MATLAB.

160

Notes MODULE III

UNTI VI

TWO-DIMENSIONAL AND THREE-DIMENSIONAL PLOTS

3.0 Objective

• Learn how to create 2D plots in MATLAB.

• Understand different types of 2D plotting functions.

• Explore 3D plotting techniques in MATLAB.

• Customize plots with labels, legends, and annotations.

MATLAB (Matrix Laboratory) offers rebust capabilities for creating and

customizing various types of plots. Visualization is an essential part of data

analysis, and MATLAB provides numerous functions to represent data

graphically. This comprehensive guide covers fundamentals of plotting in

MATLAB, from basic two-dimensional plots to customizing multiple plots in

a single figure.

3.1 Overview to Plotting in MATLAB

MATLAB's plotting functions are built around concept of graphics objects.

When you create a plot, MATLAB generates a hierarchy of objects:

• Figure: window containing plot

• Axes: area anywhere data is plotted

• Plot elements: Lines, markers, text, etc.

Basic workflow for creating plots in MATLAB is:

1. Generate or import data

2. Create a figure

3. Choose an appropriate plotting function

4. Customize appearance

5. Save or export figure if needed

MATLAB stores most graphical elements as objects with properties that can

be modified. This object-oriented approach gives you precise control over

every aspect of your visualizations.

161

Notes Basic Plot Commands

Fundamental plotting command in MATLAB is plot(). This function creates

a 2D line plot of data. Here's a simple example:

x = 0:0.1:2*pi; % Create x values from 0 to 2π with steps of 0.1

y = sin(x); % Calculate sine values

plot(x, y) % Create a plot of sine function

This code generates a continuous line plot showing a single sine wave cycle.

Handle Graphics

MATLAB's graphics system uses handles to reference graphics objects. When

you create a plot, MATLAB returns a handle that you can use to modify plot:

h = plot(x, y); % Create plot and store handle

set(h, 'LineWidth', 2) %Make line thicker

set(h, 'Color', 'r') % Change line color to red

Alternatively, you can use dot notation with handles:

h.LineWidth = 2; %Make line thicker

h.Color = 'r'; % Change line color to red

Graphics Objects Hierarchy

Understanding hierarchy of graphics objects is crucial for mastering

MATLAB plotting:

1. Root: base of all graphics objects

2. Figure: A window containing plots

3. Axes: A region within a figure anywhere plots are displayed

4. Plot elements: actual visual representations of data

You can access and modify properties at each level using get and set functions

or dot notation.

162

Notes UNIT VII

3.2 Creating Two-Dimensional Plots

MATLAB offers various functions for creating different types of 2D plots.

Each is designed for specific data visualization needs.

Line Plots (plot)

 plot function is most commonly used for 2D line plots. It connects data points

with straight lines.

Basic syntax:

plot(x, y) % Plot y versus x

You can also specify line style, marker type, and color:

plot(x, y, 'r--o') % Red dashed line with circle markers

 line specification string consists of:

• Color: 'r' (red), 'g' (green), 'b' (blue), 'c' (cyan), 'm' (magenta), 'y'

(yellow), 'k' (black), 'w' (white)

• Line style: '-' (solid), '--' (dashed), ':' (dotted), '-.' (dash-dot)

• Marker: 'o' (circle), '+' (plus), '*' (asterisk), '.' (point), 'x' (cross), 's'

(square), 'd' (diamond), '^' (upward triangle)

Multiple data sets can be plotted with a single command:

x = 0:0.1:2*pi;

y1 = sin(x);

y2 = cos(x);

plot(x, y1, 'b-', x, y2, 'r--') % Plot sine in blue solid, cosine in red dashed

Scatter Plots (scatter)

Scatter function creates plots anywhere individual data points are represented

by markers without connecting lines. This is useful for visualizing

163

Notes relationship between two variables or for data that doesn't form a continuous

function.

Basic syntax:

scatter(x, y) % Create scatter plot of y versus x

You can customize marker size and color:

scatter(x, y, sz, c) %szis marker size, c is color

 size and color can be constant or vary with a third variable:

% Create 50 random points

x = rand(50, 1);

y = rand(50, 1);

z = rand(50, 1); % Third variable for color

s = rand(50, 1) * 100; % Fourth variable for size

% Create scatter plot with varying size and color

scatter(x, y, s, z, 'filled') % 'filled' makes markers solid

colorbar % Add a color scale

Bar Charts (bar)

Bar charts are ideal for comparing discrete categories or groups. bar function

creates vertical bars.

Basic syntax:

bar(y) % Create bar chart with y values

You can specify x-coordinates:

x = 1:5;

y = [5, 7, 2, 9, 4];

bar(x, y) % Create bar chart with specific x values

For grouped bars:

data = [5 8 3; 7 2 6; 9 5 4]; % 3×3 matrix of values

164

Notes bar(data) % Creates grouped bars

For stacked bars:

bar(data, 'stacked') % Creates stacked bars

Stem Plots (stem)

Stem plots are useful for emphasizing discrete data points. Each data point is

represented by a stem (line) from x-axis and a marker at data point.

Basic syntax:

stem(y) % Create stem plot of y values

With x-coordinates:

x = 0:0.5:4;

y = exp(-x).*sin(2*pi*x);

stem(x, y) % Create stem plot with specific x values

You can customize appearance:

stem(x, y, 'filled') % Use filled markers

Somewhere 2D Plot Types

MATLAB supports many somewhere 2D plot types, including:

• stairs: Step plot showing piecewise constant values

• area: Filled area plot

• errorbar: Line plot with error bars

• pie: Pie chart for displaying proportions

• histogram: For visualizing data distributions

• polar: For polar coordinates

Example of a stairs plot:

x = 0:0.5:4;

y = exp(-x).*sin(2*pi*x);

stairs(x, y) % Create a step plot

165

Notes Example of an area plot:

x = 0:0.1:2*pi;

y = sin(x);

area(x, y) % Create a filled area plot

3.3 Customizing 2D Plots

MATLAB provides numerous functions to enhance appearance and clarity

of plots. Proper customization can significantly improve data interpretation.

Adding Titles and Labels

Adding descriptive text to plots helps convey information clearly:

x = 0:0.1:2*pi;

y = sin(x);

plot(x, y)

% Add title and labels

title('Sine Function')

xlabel('x (radians)')

ylabel('sin(x)')

You can customize text appearance:

title('Sine Function', 'FontSize', 14, 'FontWeight', 'bold')

xlabel('x (radians)', 'FontSize', 12)

ylabel('sin(x)', 'FontSize', 12)

Grid Lines

Grid lines help readers estimate values from a plot:

plot(x, y)

grid on % Add grid lines

You can specify which grid lines to show:

grid minor % Add minor grid lines

166

Notes Legends

When plotting multiple data sets, legends help identify each one:

x = 0:0.1:2*pi;

y1 = sin(x);

y2 = cos(x);

plot(x, y1, 'b-', x, y2, 'r--')

legend('sin(x)', 'cos(x)') % Add legend with labels

You can control legend position:

legend('sin(x)', 'cos(x)', 'Location', 'norast')

Common location options include: 'norast', 'northwest', 'souast', 'southwest',

'north', 'south', 'east', 'west', 'best'.

Axis Control

You can control range of axes:

plot(x, y)

axis([0 2*pi -1.2 1.2]) % Set x range from 0 to 2π and y range from -1.2 to

1.2

Somewhere useful axis commands:

axis equal % Equal scaling for x and y axes

axis square % Make axes area square

axis tight % Set axis limits to data range

axis off % Hide axes

Line and Marker Properties

You can customize lines and markers in great detail:

x = 0:0.1:2*pi;

y = sin(x);

h = plot(x, y);

% Customize line

167

Notes set(h, 'LineWidth', 2) % Line thickness

set(h, 'Color', [0.3 0.6 0.9]) % Custom RGB color

set(h, 'LineStyle', '-.') % Dash-dot line

set(h, 'Marker', 'o') % Circle markers

set(h, 'MarkerSize', 6) % Marker size

set(h, 'MarkerFaceColor', 'r') % Red filled markers

Using dot notation (modern approach):

h.LineWidth = 2;

h.Color = [0.3 0.6 0.9];

h.LineStyle = '-.';

h.Marker = 'o';

h.MarkerSize = 6;

h.MarkerFaceColor = 'r';

Text Annotations

You can add text to specific locations on a plot:

plot(x, y)

text(pi, 0, 'π', 'FontSize', 12) % Add text at coordinate (π, 0)

For more precise placement:

text(pi, 0, 'π', 'FontSize', 12, 'HorizontalAlignment', 'center',

'VerticalAlignment', 'middle')

Arrows and Lines

Add arrows and lines with annotation function:

plot(x, y)

annotation('arrow', [0.3 0.7], [0.6 0.2]) % Add arrow from (0.3, 0.6) to (0.7,

0.2) in figure coordinates

Color Control

You can change color map used for plots that use color scales:

168

Notes colormap('jet') % Set colormap to jet

colormap('parula') % Set to parula (MATLAB default)

colormap('gray') % Set to grayscale

Create a custom colormap:

mymap = [linspace(1,0,64)' linspace(0,1,64)' zeros(64,1)]; % Red to green

colormap(mymap)

Fonts and Text

Customize text appearance globally:

set(gcf, 'DefaultTextFontName', 'Arial')

set(gcf, 'DefaultTextFontSize', 12)

set(gcf, 'DefaultAxesFontName', 'Arial')

set(gcf, 'DefaultAxesFontSize', 10)

Figure Size and Position

Control figure window size and position:

figure('Position', [100, 100, 800, 600]) % [left, bottom, width, height] in

pixels

3.4 Multiple Plots in a Single Figure

Creating multiple plots in one figure helps compare related data sets.

MATLAB provides several approaches to arrange multiple plots.

Subplot Function

 subplot function divides figure into a grid of subplots:

subplot(m, n, p) % Create m×n grid, select position p

Example with 2×2 grid:

x = 0:0.01:2*pi;

subplot(2, 2, 1) % First position (top-left)

plot(x, sin(x))

169

Notes title('sin(x)')

subplot(2, 2, 2) % Second position (top-right)

plot(x, cos(x))

title('cos(x)')

subplot(2, 2, 3) % Third position (bottom-left)

plot(x, sin(2*x))

title('sin(2x)')

subplot(2, 2, 4) % Fourth position (bottom-right)

plot(x, cos(2*x))

title('cos(2x)')

You can create subplots of different sizes:

subplot(2, 1, 1) % Top half

plot(x, sin(x))

title('sin(x)')

subplot(2, 2, 3) % Bottom left quarter

plot(x, cos(x))

title('cos(x)')

subplot(2, 2, 4) % Bottom right quarter

plot(x, sin(2*x))

title('sin(2x)')

Tight Subplot Layout

Add spacing between subplots:

figure

subplot(2, 2, 1)

plot(x, sin(x))

title('sin(x)')

... % Create somewhere subplots

% Adjust subplot spacing

set(gcf, 'Position', [100, 100, 800, 600]) % Larger figure

tight_layout = get(gcf, 'Position');

set(gcf, 'Position', tight_layout)

Multiple Y-Axes (plotyy/yyaxis)

170

Notes For data with different scales, use dual y-axes:

Using olderplotyy function:

x = 0:0.01:2*pi;

y1 = sin(x);

y2 = 100 * cos(x);

[ax, h1, h2] = plotyy(x, y1, x, y2);

title('Sine and Scaled Cosine Functions')

xlabel('x (radians)')

ylabel(ax(1), 'sin(x)')

ylabel(ax(2), '100 * cos(x)')

legend([h1, h2], 'sin(x)', '100 * cos(x)')

Using neweryyaxis function (MATLAB R2016a and later):

x = 0:0.01:2*pi;

y1 = sin(x);

y2 = 100 * cos(x);

yyaxisleft % Activate left y-axis

plot(x, y1)

ylabel('sin(x)')

yyaxisright % Activate right y-axis

plot(x, y2)

ylabel('100 * cos(x)')

title('Sine and Scaled Cosine Functions')

xlabel('x (radians)')

legend('sin(x)', '100 * cos(x)')

Hold Command

 hold command allows plotting multiple data sets on same axes:

x = 0:0.01:2*pi;

plot(x, sin(x)) % Plot sine

hold on %Hold current plot

plot(x, cos(x), '--') % Add cosine with dashed line

plot(x, -sin(x), ':') % Add negative sine with dotted line

171

Notes hold off %Release hold

title('Multiple Trigonometric Functions')

xlabel('x (radians)')

ylabel('y')

legend('sin(x)', 'cos(x)', '-sin(x)')

Tiling Layouts (tiledlayout)

In newer MATLAB versions (R2019b and later), tiledlayout function offers

better control:

x = 0:0.01:2*pi;

tiledlayout(2, 2, 'TileSpacing', 'compact', 'Padding', 'compact')

nexttile % First tile

plot(x, sin(x))

title('sin(x)')

nexttile % Second tile

plot(x, cos(x))

title('cos(x)')

nexttile % Third tile

plot(x, sin(2*x))

title('sin(2x)')

nexttile % Fourth tile

plot(x, cos(2*x))

title('cos(2x)')

You can create tiles spanning multiple positions:

tiledlayout(2, 2)

nexttile([1 2]) % Span first row

plot(x, sin(x))

title('sin(x)')

nexttile % First tile in second row

plot(x, cos(x))

title('cos(x)')

nexttile % Second tile in second row

plot(x, sin(2*x))

title('sin(2x)')

172

Notes Combining Different Plot Types

Different plot types can be combined in subplots:

x = 0:0.5:4*pi;

y = sin(x);

tiledlayout(2, 2)

nexttile

plot(x, y)

title('Line Plot')

nexttile

scatter(x, y)

title('Scatter Plot')

nexttile

stem(x, y)

title('Stem Plot')

nexttile

bar(x, y)

title('Bar Plot')

Global Figure Adjustments

Make adjustments to all subplots:

% Create subplots

...

% Add a common title for entire figure

sgtitle('Various Trigonometric Functions', 'FontSize', 16, 'FontWeight', 'bold')

% Adjust properties of all axes

ax = findall(gcf, 'type', 'axes');

for i = 1:length(ax)

 set(ax(i), 'Box', 'on', 'GridLineStyle', '--')

 grid(ax(i), 'on')

end

Formulas for Common Plot Types

173

Notes Here are some common mathematical formulas used in plotting, which you

can implement in MATLAB:

1. Linear Function: y = mx + b Anywhere m is slope and b is y-

intercept.

2. x = -5:0.1:5;

3. m = 2; % Slope

4. b = 1; % Y-intercept

5. y = m*x + b;

6. plot(x, y)

7. Quadratic Function: y = ax² + bx + c Anywhere a, b, and c are

constants, with a ≠ 0.

8. x = -5:0.1:5;

9. a = 1; % Coefficient of x²

10. b = -2; % Coefficient of x

11. c = 3; % Constant term

12. y = a*x.^2 + b*x + c;

13. plot(x, y)

14. Exponential Function: y = a·e^(bx) Anywhere a and b are constants.

15. x = -2:0.1:3;

16. a = 2; % Scaling factor

17. b = 0.5; % Growth rate

18. y = a*exp(b*x);

19. plot(x, y)

20. Logarithmic Function: y = a·ln(x) + b Anywhere a and b are

constants.

21. x = 0.1:0.1:5; % Start from 0.1 to avoid log(0)

22. a = 2; % Scaling factor

23. b = 1; % Vertical shift

24. y = a*log(x) + b;

25. plot(x, y)

26. Sinusoidal Function: y = A·sin(ωx + φ) + C Anywhere A is

amplitude, ω is angular frequency, φ is phase shift, and C is vertical

offset.

27. x = 0:0.1:4*pi;

28. A = 2; % Amplitude

29. omega = 2; % Angular frequency

174

Notes 30. phi = pi/4; % Phase shift

31. C = 1; % Vertical offset

32. y = A*sin(omega*x + phi) + C;

33. plot(x, y)

Solved Problems

Problem 1: Creating a Basic Sine Wave Plot

Problem: Create a plot of sine function over two complete cycles (0 to 4π)

with appropriate labels and title.

Solution:

% Define domain

x = 0:0.1:4*pi;

% Calculate sine values

y = sin(x);

% Create plot

figure

plot(x, y, 'b-', 'LineWidth', 1.5)

grid on

% Add labels and title

title('Sine Function Over Two Cycles')

xlabel('x (radians)')

ylabel('sin(x)')

% Add specific points

hold on

plot([pi, 2*pi, 3*pi, 4*pi], [0, 0, 0, 0], 'ro', 'MarkerSize', 8, 'MarkerFaceColor',

'r')

text(pi, 0.2, '\pi', 'FontSize', 12)

text(2*pi, 0.2, '2\pi', 'FontSize', 12)

text(3*pi, 0.2, '3\pi', 'FontSize', 12)

text(4*pi, 0.2, '4\pi', 'FontSize', 12)

hold off

% Set axis limits

axis([0 4*pi -1.2 1.2])

175

Notes Explanation: This solution creates a plot of sine function over interval [0,

4π]. Plot uses a blue line with increased thickness. Grid lines are enabled to

help read values. Plot includes appropriate axis labels and a title. Key points

at π, 2π, 3π, and 4π are marked with red circles and labeled. Axis limits are

explicitly set to provide some padding around plot.

Problem 2: Comparing Multiple Functions

Problem: Create a plot comparing sin(x), sin(2x), and sin(3x) over interval

[0, 2π] with different line styles and a legend.

Solution:

% Define domain

x = 0:0.01:2*pi;

% Calculate function values

y1 = sin(x);

y2 = sin(2*x);

y3 = sin(3*x);

% Create plot

figure

plot(x, y1, 'b-', 'LineWidth', 1.5)

hold on

plot(x, y2, 'r--', 'LineWidth', 1.5)

plot(x, y3, 'g-.', 'LineWidth', 1.5)

hold off

grid on

% Add labels and title

title('Comparison of Sine Functions with Different Frequencies')

xlabel('x (radians)')

ylabel('Amplitude')

% Add legend

legend('sin(x)', 'sin(2x)', 'sin(3x)', 'Location', 'best')

% Set axis limits

axis([0 2*pi -1.2 1.2])

Explanation: This solution plots three sine functions with different

frequencies on same axes. Each function uses a different color and line style

176

Notes for clear distinction. Blue solid line represents sin(x), red dashed line

represents sin(2x), and green dash-dot line represents sin(3x). A legend

identifies each function, and appropriate labels and title are added. Axis limits

provide some padding around plot.

Problem 3: Creating a Scatter Plot with Size and Color Mapping

Problem: Create a scatter plot of 100 random points anywhere x and y

coordinates are random numbers between 0 and 10. Size of each point should

be proportional to x+y, and color should represent distancefrom origin.

Solution:

% Generate random data

n = 100;

x = 10 * rand(n, 1);

y = 10 * rand(n, 1);

% Calculate derived values

size_var = 10 * (x + y); % Size proportional to x+y

distance = sqrt(x.^2 + y.^2); % Distance from origin

% Create scatter plot

figure

scatter(x, y, size_var, distance, 'filled')

colorbar

colormap('jet')

% Add labels and title

title('Scatter Plot with Size and Color Mapping')

xlabel('x-coordinate')

ylabel('y-coordinate')

cb = colorbar;

ylabel(cb, 'Distance from Origin')

% Set axis properties

axis([0 10 0 10])

axis square

grid on

% Add a reference circle at distance = 5

hold on

ta = linspace(0, 2*pi, 100);

177

Notes xc = 5 * cos(ta);

yc = 5 * sin(ta);

plot(xc, yc, 'k--', 'LineWidth', 1)

text(3.5, 3.5, 'r = 5', 'FontSize', 10)

hold off

Explanation: This solution creates a scatter plot of 100 random points. Size

of each marker is proportional to sum of its x and y coordinates, scaled by a

factor of 10 for visibility. color of each marker represents its distance from

origin (0,0), visualized using 'jet' colormap. A colorbar is added to interpret

colors. plot is made square with equal axis ranges from 0 to 10. A dashed

black circle with radius 5 is added as a reference.

Problem 4: Creating a Bar Chart with Error Bars

Problem: Create a bar chart showing average monthly temperature for a city,

along with error bars representing standard deviation of daily temperatures.

Solution:

% Data: Monthly average temperatures and standard deviations

months = 1:12;

month_names = {'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct',

'Nov', 'Dec'};

avg_temps = [5.2, 6.1, 8.3, 11.7, 15.6, 18.9, 21.3, 21.0, 17.8, 13.5, 9.2, 6.4];

std_temps = [2.1, 2.3, 2.5, 2.7, 2.6, 2.4, 2.2, 2.3, 2.5, 2.8, 2.6, 2.2];

% Create bar chart

figure

bar_h = bar(months, avg_temps);

bar_h.FaceColor = [0.3 0.6 0.9]; % Light blue bars

hold on

% Add error bars

errorbar(months, avg_temps, std_temps, '.k')

hold off

% Add labels and title

title('Average Monthly Temperature with Standard Deviation')

xlabel('Month')

ylabel('Temperature (°C)')

178

Notes xticks(1:12)

xticklabels(month_names)

xtickangle(45) %Rotate month labels for better readability

% Add grid for y-axis only

grid on

set(gca, 'YGrid', 'on', 'XGrid', 'off')

% Add a text annotation

text(6.5, 23, 'Summer peak', 'FontSize', 10, 'FontWeight', 'bold')

Explanation: This solution creates a bar chart showing average monthly

temperatures with error bars representing standard deviation. Each month is

labeled on x-axis, with labels rotated 45 degrees for better readability. bars

are colored light blue for visual appeal. Error bars are added using errorbar

function with black dots at ends. A grid is displayed only for y-axis to avoid

cluttering. A text annotation highlights summer temperature peak.

Problem 5: Creating Multiple Subplots with Different Plot Types

Problem: Create a figure with four subplots showing different representations

of function f(x) = x·sin(x) over interval [-2π, 2π]: (1) line plot, (2) scatter

plot, (3) stem plot, and (4) area plot.

Solution:

% Define domain and calculate function values

x = linspace(-2*pi, 2*pi, 100);

y = x .* sin(x);

% Create figure with subplots

figure('Position', [100, 100, 1000, 800]) % Large figure

% Subplot 1: Line plot

subplot(2, 2, 1)

plot(x, y, 'b-', 'LineWidth', 1.5)

title('Line Plot: x·sin(x)')

xlabel('x')

ylabel('x·sin(x)')

grid on

% Subplot 2: Scatter plot

subplot(2, 2, 2)

179

Notes scatter(x, y, 25, y, 'filled')

title('Scatter Plot: x·sin(x)')

xlabel('x')

ylabel('x·sin(x)')

colormap('cool')

colorbar

grid on

% Subplot 3: Stem plot

subplot(2, 2, 3)

% Use fewer points for stem plot to avoid cluttering

x_stem = linspace(-2*pi, 2*pi, 30);

y_stem = x_stem .* sin(x_stem);

stem(x_stem, y_stem, 'g-o', 'filled')

title('Stem Plot: x·sin(x)')

xlabel('x')

ylabel('x·sin(x)')

grid on

% Subplot 4: Area plot

subplot(2, 2, 4)

area(x, y, 'FaceColor', [0.8 0.2 0.2], 'EdgeColor', 'none', 'FaceAlpha', 0.5)

hold on

plot(x, y, 'r-', 'LineWidth', 1) %Add function line on top

hold off

title('Area Plot: x·sin(x)')

xlabel('x')

ylabel('x·sin(x)')

grid on

% Add a common title for entire figure

sgtitle('Multiple Representations of f(x) = x·sin(x)', 'FontSize', 16,

'FontWeight', 'bold')

% Adjust spacing between subplots

set(gcf, 'Position', get(gcf, 'Position')) %This triggers tight layout in newer

MATLAB versions

Explanation: This solution creates a figure with four subplots, each showing

a different visualization of function f(x) = x·sin(x).

180

Notes 1. top-left subplot shows a traditional line plot with a blue line.

2. Top-right subplot shows a scatter plot anywhere points are colored

based on it y-values using 'cool' colormap.

3. Bottom-left subplot shows a stem plot, using fewer points to avoid

cluttering.

4. Bottom-right subplot shows an area plot with semi-transparent red fill

and a solid red line on top.

Each subplot includes appropriate title, axis labels, and grid. A common

super-title for entire figure is added using sgtitle function. Figure size is set

larger to accommodate all subplots comfortably.

Unsolved Problems

Problem 1: Temperature Variation Plot

Create a plot showing daily temperature variation for a week. Use following

data:

• Days: Monday to Sunday

• High temperatures (°C): [22, 25, 23, 21, 20, 24, 27]

• Low temperatures (°C): [15, 17, 16, 14, 13, 15, 18]

Make a bar chart showing both high and low temperatures side by side for

each day. Add appropriate labels, title, and a legend. Use different colors for

high and low temperatures.

Problem 2: Population Growth Comparison

Create a plot comparing exponential growth models for three different

populations:

• Population A: P(t) = 1000·e^(0.05t)

• Population B: P(t) = 800·e^(0.08t)

• Population C: P(t) = 1200·e^(0.03t)

Anywhere t is time in years from 0 to 20. Use a logarithmic scale for y-axis

to better visualize differences in growth rates. Add a legend, appropriate axis

labels, and a grid.

181

Notes Problem 3: Data Visualization Dashboard

Create a figure with four subplots arranged in a 2×2 grid to visualize different

aspects of a dataset:

• Top-left: Line plot showing a time

3.5 Subplots and Figure Management

Overview to Subplots

Subplots allow you to display multiple plots in a single figure, arranged in a

grid-like pattern. This is particularly useful when you want to compare

different datasets or visualize related information side by side. Proper figure

management helps organize it visualizations effectively.

Basic Subplot Creation

To create subplots in MATLAB, you can use subplot function with following

syntax:

subplot(m, n, p)

Anywhere:

• m is number of rows in subplot grid

• n is number of columns in subplot grid

• p is position index of current subplot (numbering starts from 1 and

goes from left to right, top to bottom)

For example, to create a 2×2 grid of plots, you would use:

subplot(2, 2, 1) % Top-left plot

% Plot commands for first subplot

subplot(2, 2, 2) % Top-right plot

% Plot commands for second subplot

subplot(2, 2, 3) % Bottom-left plot

% Plot commands for third subplot

subplot(2, 2, 4) % Bottom-right plot

% Plot commands for fourth subplot

182

Notes Advanced Subplot Management

For more flexible subplot arrangements, you can use:

subplot(position)

Anywhere position is a 4-element vector [left, bottom, width, height] with

values between 0 and 1, representing normalized position and size of

subplotwithin figure.

Additionally, tight_subplot function provides more control over spacing:

ha = tight_subplot(m, n, gap, marg_h, marg_w)

Anywhere:

• gap is gap between subplots

• marg_his margin height [top, bottom]

• marg_wis margin width [left, right]

Figure Management

Proper figure management involves:

1. Creating new figures: figure

2. Setting figure properties: set(gcf, 'PropertyName', value)

3. Clearing figures: clf

4. Closing figures: close

5. Saving figures: saveas(gcf, 'filename.png')

You can also use gcf (get current figure) and gca (get current axis) to access

and modify properties of current figure or axis.

Solved Examples for Subplots and Figure Management

Example 1: Basic 2×2 Subplot Grid

% Create a 2×2 grid of plots

figure

% First subplot (top-left)

183

Notes subplot(2, 2, 1)

x = 0:0.1:2*pi;

y1 = sin(x);

plot(x, y1)

title('Sine Function')

% Second subplot (top-right)

subplot(2, 2, 2)

y2 = cos(x);

plot(x, y2)

title('Cosine Function')

% Third subplot (bottom-left)

subplot(2, 2, 3)

y3 = sin(x).^2;

plot(x, y3)

title('Sine Squared')

% Fourth subplot (bottom-right)

subplot(2, 2, 4)

y4 = cos(x).^2;

plot(x, y4)

title('Cosine Squared')

% Add a super title for entire figure

sgtitle('Trigonometric Functions')

This code creates a 2×2 grid showing different trigonometric functions, with

each subplot having its own title and a super title for entire figure.

Example 2: Subplots with Different Sizes

figure

% Create a larger subplot on left

subplot(1, 2, 1)

x = linspace(0, 10, 100);

y = x.^2;

plot(x, y)

title('Quadratic Function')

xlabel('x')

ylabel('y = x^2')

184

Notes % Create two smaller subplots on right

subplot(2, 2, 2)

ta = linspace(0, 2*pi, 100);

r = 2 + cos(4*ta);

polarplot(ta, r)

title('Polar Plot')

subplot(2, 2, 4)

data = randn(1000, 1);

histogram(data, 20)

title('Histogram')

xlabel('Value')

ylabel('Frequency')

% Adjust spacing

set(gcf, 'Position', [100, 100, 800, 500])

This example creates a layout with one large subplot on left and two smaller

subplots on right, demonstrating different plot types.

Example 3: Subplots with Shared Axes

% Generate data

x = linspace(0, 10, 1000);

y1 = sin(x);

y2 = sin(2*x);

y3 = sin(3*x);

% Create figure with subplots

figure

subplot(3, 1, 1)

plot(x, y1)

title('sin(x)')

xlim([0, 10])

% Hide x-axis for top plots

set(gca, 'XTickLabel', [])

subplot(3, 1, 2)

plot(x, y2)

title('sin(2x)')

xlim([0, 10])

185

Notes % Hide x-axis for middle plot

set(gca, 'XTickLabel', [])

ylabel('Amplitude')

subplot(3, 1, 3)

plot(x, y3)

title('sin(3x)')

xlim([0, 10])

xlabel('Time')

% Adjust spacing between subplots

set(gcf, 'Position', [100, 100, 600, 500])

This example creates three vertically stacked subplots with shared x-axes,

showing sine waves with different frequencies.

Example 4: Custom Subplot Positions

figure

% Create custom positions for subplots

pos1 = [0.1, 0.5, 0.35, 0.35]; % [left, bottom, width, height]

pos2 = [0.55, 0.5, 0.35, 0.35];

pos3 = [0.1, 0.1, 0.8, 0.3];

% First subplot

axes('Position', pos1)

x = linspace(-pi, pi, 100);

y = sin(x);

plot(x, y)

title('Sine Function')

% Second subplot

axes('Position', pos2)

y = cos(x);

plot(x, y)

title('Cosine Function')

% Third subplot (wider, at bottom)

axes('Position', pos3)

y = sin(x) .* cos(x);

plot(x, y)

title('Product of Sine and Cosine')

186

Notes xlabel('x')

ylabel('sin(x)cos(x)')

% Add a super title

sgtitle('Custom Subplot Layout')

This example demonstrates how to create a custom layout with subplots of

different sizes and positions.

Example 5: Multiple Figures with Management

% Create and save multiple figures

% Figure 1: Line plot

figure(1)

x = linspace(0, 10, 100);

y = exp(-0.2*x) .* sin(x);

plot(x, y, 'LineWidth', 2)

title('Damped Sine Wave')

xlabel('Time')

ylabel('Amplitude')

grid on

% Save figure 1

saveas(gcf, 'damped_sine.png')

% Figure 2: Multiple plots

figure(2)

subplot(2, 1, 1)

bar(1:10, randn(10, 1))

title('Random Bar Chart')

subplot(2, 1, 2)

x = linspace(0, 2*pi, 20);

y = sin(x);

stem(x, y)

title('Stem Plot of Sine Function')

xlabel('x')

ylabel('sin(x)')

% Save figure 2

saveas(gcf, 'multi_plot.png')

% Close all figures

187

Notes close all

% Create a new figure with specific properties

figure('Position', [200, 200, 800, 400], 'Color', [0.9, 0.9, 0.9])

plot(x, sin(x), 'r-', x, cos(x), 'b--')

legend('sin(x)', 'cos(x)')

title('Trigonometric Functions')

This example shows how to manage multiple figures, including creating,

saving, and closing figures, as well as setting specific figure properties.

Unsolved Problems for Subplots and Figure Management

Problem 1

Create a 2×3 grid of subplots showing different polynomial functions: y = x,

y = x², y = x³, y = x⁴, y = x⁵, and y = x⁶. Use x values from -2 to 2. Add

appropriate titles, labels, and a super title for entire figure.

Problem 2

Create a figure with four subplots arranged in a 2×2 grid. In first subplot,

display a sine wave. In second subplot, display its Fourier transform

magnitude. In third subplot, display a square wave. In fourth subplot, display

its Fourier transform magnitude. Use appropriate titles and labels.

Problem 3

Create a custom subplot layout with three plots: a large plot on left taking up

full height, and two smaller plots stacked vertically on right. left plot should

display a 3D surface plot of z = sin(sqrt(x² + y²)). top-right plot should show

a contour plot of same function, and bottom-right plot should show a top-

down view with a colormap.

Problem 4

Create a figure with two rows of subplots. top row should contain three

subplots showing scatter plots of random data with increasing correlation (r =

0, r = 0.5, r = 0.9). bottom row should contain three subplots showing

188

Notes histograms of x-coordinates of corresponding scatter plots above. Ensure all

histograms use same bin ranges and counts.

Problem 5

Create a figure management script that:

1. Creates three separate figures with different plots

2. Saves each figure in three formats: PNG, PDF, and SVG

3. Adjusts properties of each figure (size, background color, font sizes)

4. Includes a function to add a consistent watermark or logo to each

figure

5. Creates a subplot figure that combines elements from all three figures

3.6 Creating Three-Dimensional Plots

Overview to 3D Plotting

Three-dimensional plots allow you to visualize functions of two variables or

data with three coordinates. It plots are essential for understanding complex

relationships in data that can't be captured in two dimensions alone.

Types of 3D Plots

 main types of 3D plots include:

1. Mesh and Surface Plots: Display 3D surfaces representing functions

z = f(x,y)

2. Contour Plots: Show level curves of 3D surfaces projected onto a

2D plane

3. Line Plots in 3D Space: Plot parametric curves in three dimensions

Data Formats for 3D Plotting

To create 3D plots, you typically need data in one of it formats:

1. Gridded Data: Values on a regular grid using matrices X, Y, and Z

created with meshgrid

2. Scattered Data: Arbitrary (x,y,z) points in 3D space

3. Parametric Data: Points along a curve defined parametrically

189

Notes Surface and Mesh Plots

Surface Plots with surf

Surface plots create a continuous colored surface representing function z =

f(x,y).

surf(X, Y, Z)

Anywhere X, Y, and Z are matrices of same size. X and Y represent grid

coordinates, and Z contains heights.

Mesh Plots with mesh

Mesh plots are similar to surface plots but show only grid lines without filling

spaces between m.

mesh(X, Y, Z)

 mesh function creates a wireframe surface anywhere lines are colored based

on Z values.

Surface with Edges using surfc

To combine a surface plot with a contour plot beneath it:

surfc(X, Y, Z)

This function creates a surface plot with contour lines projected onto x-y

plane below.

Contour Plots

2D Contour Plots with contour

Contour plots show level curves of a 3D surface projected onto a 2D plane.

contour(X, Y, Z)

You can specify number of contour lines or specific values:

190

Notes contour(X, Y, Z, n) % n contour lines

contour(X, Y, Z, v) % contour lines at values in vector v

Filled Contour Plots with contourf

Filled contour plots color regions between contour lines.

contourf(X, Y, Z)

3D Contour Plots with contour3

3D contour plots show contour lines at it actual heights in 3D space.

contour3(X, Y, Z)

Line Plots in 3D Space

3D Line Plots with plot3

For plotting curves in 3D space:

plot3(x, y, z)

Anywhere x, y, and z are vectors of same length defining points along curve.

Scatter Plots in 3D with scatter3

For displaying discrete points in 3D:

scatter3(x, y, z)

You can customize marker size and color:

scatter3(x, y, z, s, c)

Anywhere s is marker size and c is color.

Generating Data for 3D Plots

Creating Gridded Data with meshgrid

To create a grid of coordinates for 3D plotting:

191

Notes [X, Y] = meshgrid(x, y)

Anywhere x and y are vectors defining grid points along each axis. resulting

X and Y matrices contain coordinates of each point in grid.

Computing Function Values

After creating grid, compute function values:

Z = f(X, Y)

For example, to plot z = sin(sqrt(x² + y²)):

[X, Y] = meshgrid(-5:0.25:5, -5:0.25:5);

Z = sin(sqrt(X.^2 + Y.^2));

surf(X, Y, Z);

Solved Examples for 3D Plots

Example 1: Basic Surface Plot

% Create a grid of points

[X, Y] = meshgrid(-5:0.25:5, -5:0.25:5);

% Calculate Z values for function z = sin(sqrt(x² + y²))

Z = sin(sqrt(X.^2 + Y.^2));

% Create a surface plot

figure

surf(X, Y, Z)

title('Surface Plot of sin(sqrt(x² + y²))')

xlabel('X')

ylabel('Y')

zlabel('Z')

% Add a colorbar to show mapping of colors to Z values

colorbar

This example creates a surface plot of a sinc-like function with a

colorbarshowing height values.

Example 2: Comparing Mesh and Surface Plots

192

Notes % Create a grid of points

[X, Y] = meshgrid(-2:0.1:2, -2:0.1:2);

% Calculate function z = x*exp(-x² - y²)

Z = X .* exp(-X.^2 - Y.^2);

% Create a figure with two subplots

figure

% First subplot: Mesh plot

subplot(1, 2, 1)

mesh(X, Y, Z)

title('Mesh Plot')

xlabel('X')

ylabel('Y')

zlabel('Z')

% Second subplot: Surface plot

subplot(1, 2, 2)

surf(X, Y, Z)

title('Surface Plot')

xlabel('X')

ylabel('Y')

zlabel('Z')

% Adjust figure

sgtitle('Comparison of Mesh and Surface Plots')

set(gcf, 'Position', [100, 100, 800, 400])

This example compares mesh and surface plots of same function, highlighting

difference in visualization.

Example 3: Contour Plots in 2D and 3D

% Create a grid of points

[X, Y] = meshgrid(-3:0.1:3, -3:0.1:3);

% Calculate Z values for function z = sin(x) * cos(y)

Z = sin(X) .* cos(Y);

% Create a figure with four subplots

figure

% First subplot: 2D contour plot

subplot(2, 2, 1)

193

Notes contour(X, Y, Z, 20) % 20 contour lines

title('Contour Plot')

xlabel('X')

ylabel('Y')

colorbar

% Second subplot: Filled contour plot

subplot(2, 2, 2)

contourf(X, Y, Z, 20)

title('Filled Contour Plot')

xlabel('X')

ylabel('Y')

colorbar

% Third subplot: 3D contour plot

subplot(2, 2, 3)

contour3(X, Y, Z, 20)

title('3D Contour Plot')

xlabel('X')

ylabel('Y')

zlabel('Z')

grid on

% Fourth subplot: Surface plot with contour underneath

subplot(2, 2, 4)

surfc(X, Y, Z)

title('Surface with Contour')

xlabel('X')

ylabel('Y')

zlabel('Z')

% Adjust figure

sgtitle('Different Types of Contour Plots')

set(gcf, 'Position', [100, 100, 800, 600])

This example demonstrates various types of contour plots for same function,

showing how y can be used to visualize different aspects of data.

Example 4: 3D Parametric Curve

% Create a parametric curve in 3D (helix)

194

Notes t = linspace(0, 10*pi, 1000);

x = cos(t);

y = sin(t);

z = t/10;

% Plot 3D curve

figure

plot3(x, y, z, 'LineWidth', 2)

grid on

title('3D Helix Curve')

xlabel('X')

ylabel('Y')

zlabel('Z')

% Add a surface to show relationship with a cylinder

hold on

[X, Y, Z] = cylinder(1, 50);

Z = Z * 3; %Scale height

surf(X, Y, Z, 'FaceAlpha', 0.3, 'EdgeAlpha', 0.3)

hold off

% Set view angle

view(30, 30)

This example creates a 3D parametric curve (helix) and adds a transparent

cylinder to show relationshipbetween curve and cylinder surface.

Example 5: Multiple 3D Visualization Techniques

% Create a grid of points

[X, Y] = meshgrid(-3:0.15:3, -3:0.15:3);

% Calculate Z values for two different functions

Z1 = 3 * (1-X).^2 .* exp(-X.^2 - (Y+1).^2) - 10 * (X/5 - X.^3 - Y.^5) .* exp(-

X.^2-Y.^2) - 1/3 * exp(-(X+1).^2 - Y.^2); % Peaks function

Z2 = X.^2 + Y.^2; % Paraboloid

% Create a figure with four subplots

figure

% First subplot: Surface plot of first function

subplot(2, 2, 1)

surf(X, Y, Z1)

195

Notes title('Surface: Peaks Function')

xlabel('X')

ylabel('Y')

zlabel('Z')

% Second subplot: Contour plot of first function

subplot(2, 2, 2)

contourf(X, Y, Z1, 20)

title('Contour: Peaks Function')

xlabel('X')

ylabel('Y')

colorbar

% Third subplot: Surface plot of second function

subplot(2, 2, 3)

surf(X, Y, Z2)

title('Surface: Paraboloid')

xlabel('X')

ylabel('Y')

zlabel('Z')

% Fourth subplot: Contour plot of second function

subplot(2, 2, 4)

contourf(X, Y, Z2, 20)

title('Contour: Paraboloid')

xlabel('X')

ylabel('Y')

colorbar

% Adjust figure

sgtitle('Multiple 3D Visualization Techniques')

set(gcf, 'Position', [100, 100, 800, 600])

This example demonstrates different 3D visualization techniques for two

different functions, showing how surface and contour plots can be used

together to provide a more complete understanding of data.

Unsolved Problems for 3D Plots

Problem 1

196

Notes Create a surface plot of function z = sin(x) * cos(y) for x and y in range [-

2π, 2π]. Add appropriate labels, a title, and a colorbar. Then create a second

plot showing same function as a mesh plot with view angle set to [45, 30].

Problem 2

Generate a 3D visualization of a torus (donut shape) using parametric

equations. parametric equations for a torus with major radius R and minor

radius r are: x = (R + rcos(v)) * cos(u) y = (R + rcos(v)) * sin(u) z = r * sin(v)

anywhere u and v are parameters that range from 0 to 2π. Use R = 3 and r =

1, and create both a mesh and surface plot of torus.

Problem 3

Create a 3D scatter plot of 1000 random points distributed according to a 3D

normal distribution. Color points based on it distance from origin, and add a

colorbar to show mapping of colors to distances. Include appropriate labels

and a title.

Problem 4

Create a visualization of a scalar field using contour slices. Generate a 3D grid

of points and calculate scalar field value f(x,y,z) = sin(x) * cos(y) * sin(z) at

each point. Then create three orthogonal contour slice planes through centerof

grid. Add appropriate labels and a title.

Problem 5

Create a 3D line plot showing trajectory of a projectile under influence of

gravity, air resistance, and wind. initial velocity should be 50 m/s at an angle

of 45 degrees from horizontal, and wind should blow in positive x-direction

with a speed of 10 m/s. Plot trajectoryuntil projectilehits ground (z = 0). Add

appropriate labels and a title.

3.7 Customizing 3D Plots

Overview to 3D Plot Customization

197

Notes Customizing 3D plots is essential for creating effective visualizations that

clearly communicate your data. This section covers various techniques for

enhancing appearance and interpretability of 3D plots.

Importance of Customization

Proper customization can:

• Improve data readability

• Highlight important features

• Enhance aesthetic appeal

• Make plots suitable for publications

• Facilitate comparison between different datasets

View and Camera Control

Setting Viewpoint with view

View function controls camera angle:

view(az, el)

Anywhere:

• azis azimuth angle in degrees (horizontal rotation)

• elis elevation angle in degrees (vertical elevation)

Common viewing angles include:

• view(0, 90): Top view (2D)

• view(0, 0): Front view

• view(90, 0): Side view

• view(45, 45): Isometric view

Default Views

You can also use predefined views:

view(2) % Default 2D view (top view)

view(3) % Default 3D view

198

Notes Rotating and Zooming

To enable interactive rotation and zooming:

Rotate3d on

To programmatically rotate view:

camorbit(daz, del) % Rotate by daz and del degrees

Shading and Lighting

Shading Options

shading function controls how colors are applied to surfaces:

shading flat % Constant color within each face

shading faceted % Flat shading with visible edges (default)

shading interp % Smooth color interpolation across faces

Lighting Effects

Lighting enhances perception of depth in 3D plots:

light % Add a light source at current camera position

You can control light properties:

light('Position', [x, y, z], 'Style', 'local', 'Color', [r, g, b])

Available lighting styles include:

• 'local': Point light source

• 'infinite': Directional light source

You can also control material properties:

material shiny % Shiny surface

material dull % Dull surface

material metal % Metallic surface

199

Notes Colormap Selection and Control

Setting Colormap

colormap function sets color scheme:

colormap(cmap)

Anywhere cmap can be a predefined colormap name or a custom matrix.

Popular colormaps include:

• jet: Rainbow colors (legacy)

• parula: Default MATLAB colormap (perceptually uniform)

• viridis: Perceptually uniform colormap

• hot: Black to white through red and yellow

• cool: Cyan to magenta

• gray: Grayscale

Creating Custom Colormaps

You can create custom colormaps:

cmap = jet(64); % Get 64 colors from jet

cmap = customcolormap([0 0.5 1], [blue; green; red]); % Transition between

colors

Color Scaling

caxis function controls mapping of data values to colors:

caxis([min_val, max_val])

Axis Control and Appearance

Axis Properties

Control axis properties using:

axis([xminxmaxyminymaxzminzmax]) % Set axis limits

axis equal % Equal scaling

200

Notes axis tight % Tight limits around data

axis off % Hide axes

Axis Labels and Title

Add labels and title:

xlabel('X-axis')

ylabel('Y-axis')

zlabel('Z-axis')

title('Plot Title')

For more advanced formatting:

xlabel('X-axis', 'FontSize', 12, 'FontWeight', 'bold')

Grid Lines

Control grid lines:

grid on % Show grid lines

grid off % Hide grid lines

grid minor % Show minor grid lines

Additional Customization

Transparency

Add transparency to surfaces:

alpha(0.7) % Set transparency level for current plot

surf(..., 'FaceAlpha', 0.5) % Set transparency for specific surface

Colorbar

Add a colorbar to show mapping of colors to values:

colorbar

colorbar('south') %Position colorbar

c = colorbar;

c.Label.String = 'Height (m)'; % Add label to colorbar

201

Notes Text Annotations

Add text annotations to plot:

text(x, y, z, 'Text')

Solved Examples for 3D Plot Customization

Example 1: View Angle and Shading

% Create a grid of points

[X, Y] = meshgrid(-3:0.1:3, -3:0.1:3);

% Calculate Z values

Z = peaks(X, Y); %Using built-in peaks function

% Create a figure with multiple subplots showing different views and shading

figure

% Top-left: Default view with faceted shading

subplot(2, 2, 1)

surf(X, Y, Z)

title('Default View, Faceted Shading')

shading faceted

% Top-right: Isometric view with flat shading

subplot(2, 2, 2)

surf(X, Y, Z)

view(45, 30) % Isometric view

shading flat

title('Isometric View, Flat Shading')

% Bottom-left: Side view with interpolated shading

subplot(2, 2, 3)

surf(X, Y, Z)

view(0, 0) % Side view

shading interp

title('Side View, Interpolated Shading')

% Bottom-right: Top view with interpolated shading

subplot(2, 2, 4)

surf(X, Y, Z)

view(0, 90) % Top view

shading interp

202

Notes title('Top View, Interpolated Shading')

% Adjust figure

sgtitle('Different Views and Shading Options')

This example demonstrates how different viewing angles and shading options

affect appearance of a 3D surface plot.

Example 2: Lighting and Material Properties

% Create a sphere

[X, Y, Z] = sphere(50);

% Create a figure with four subplots showing different lighting and materials

figure

% Top-left: Single light, dull material

subplot(2, 2, 1)

surf(X, Y, Z)

shading interp

material dull

light('Position', [1, 1, 1], 'Style', 'local')

title('Single Light, Dull Material')

axis equal tight

% Top-right: Two lights, shiny material

subplot(2, 2, 2)

surf(X, Y, Z)

shading interp

material shiny

light('Position', [1, 1, 1], 'Style', 'local')

light('Position', [-1, -1, 1], 'Style', 'local', 'Color', [0.8, 0.8, 1])

title('Two Lights, Shiny Material')

axis equal tight

% Bottom-left: Three colored lights, metal material

subplot(2, 2, 3)

surf(X, Y, Z)

shading interp

material metal

light('Position', [1, 0, 0], 'Style', 'local', 'Color', [1, 0, 0])

light('Position', [0, 1, 0], 'Style', 'local', 'Color', [0, 1, 0])

203

Notes light('Position', [0, 0, 1], 'Style', 'local', 'Color', [0, 0, 1])

title('Three Colored Lights, Metal Material')

axis equal tight

% Bottom-right: Infinite light, default material

subplot(2, 2, 4)

surf(X, Y, Z)

shading interp

light('Position', [1, 1, 1], 'Style', 'infinite')

title('Infinite Light Source')

axis equal tight

% Adjust figure

sgtitle('Lighting and Material Effects')

This example shows how different lighting setups and material properties can

dramatically change appearance of a 3D object.

Example 3: Colormap Selection

% Create a grid of points

[X, Y] = meshgrid(-3:0.1:3, -3:0.1:3);

% Calculate Z values

Z = sin(sqrt(X.^2 + Y.^2));

% Create a figure with multiple subplots for different colormaps

figure

% Define colormaps to demonstrate

colormaps = {'parula', 'jet', 'hot', 'cool', 'spring', 'summer', 'autumn', 'winter',

'gray'};

% Loop through colormaps and create subplots

for i = 1:length(colormaps)

subplot(3, 3, i)

surf(X, Y, Z)

colormap(gca, colormaps{i})

 title(colormaps{i})

 shading interp

view(45, 30)

 axis tight

204

Notes % Add a small colorbar to each subplot

 c = colorbar;

c.FontSize = 8;

end

% Adjust figure

sgtitle('Different Colormap Options')

set(gcf, 'Position', [100, 100, 800, 600])

This example demonstrates various built-in colormaps applied to same

surface plot, allowing for comparison of it effectiveness for different types of

data.

Example 4: Advanced Axis Control and Annotation

% Create a 3D parametric curve (spiral)

t = linspace(0, 10*pi, 1000);

x = cos(t) .* t/10;

y = sin(t) .* t/10;

z = t/10;

% Create a figure

figure

% Plot 3D curve

plot3(x, y, z, 'LineWidth

I am willing to elucidate MATLAB plotting concepts; neverless, it is

important to acknowledge that 888,000 words would equate to roughly length

of ten novels, which is excessively impractical for our discussion. I will

furnish a thorough elucidation of each issue in a concise manner,

incorporating extensive information for each component.

Practical Applications

Overview of Plotting in MATLAB

MATLAB (Matrix Laboratory) is a robust computational environment

renowned for its superior data visualization through comprehensive charting

functionalities. Fundamentally, MATLAB conceptualizes all data as matrices,

rendering it especially appropriate for scientific and engineering applications

anywhere data is frequently depicted in array format. plotting tools in

MATLAB are engineered to integrate effortlessly with this matrix-oriented

205

Notes methodology, enabling users to swiftly convert numerical data into significant

visual representations. In MATLAB, charts are a crucial instrument for data

analysis, facilitating identification of patterns, trends, and relationships that

may not be readily discernible from raw numerical data alone. fundamental

charting procedure in MATLAB generally entails data preparation, invoking

a suitable plotting function, and subsequently refining resultant

representation to best convey your insights. MATLAB's plotting system is

founded on a hierarchical object paradigm, anywherein each plot element

(such as lines, axes, and text labels) is an object with properties that may be

programmatically changed. This object-oriented methodology provides users

with meticulous control over all facets of it visualizations, encompassing

basic alterations such as color and line style tweaks, as well as intricate

adjustments to foundational rendering attributes.

Generating Two-Dimensional Graphs (plot, scatter, bar, stem)

MATLAB has an array of specialized functions for generating two-

dimensional visuals, each tailored for distinct sorts of data representation.

`plot()` function is primary plotting command in MATLAB, generating line

plots that link data points with straight lines. It is optimal for illustrating trends

throughout a continuous domain, such as temporal data or mathematical

functions. When invoking `plot(x,y)`, MATLAB generates lines that connect

points defined by coordinatesin x and y vectors. For data in which

interrelation of points is more significant than connectingpath, `scatter()`

function generates scatter plots anywhere each data point is represented as a

distinct marker. This is very beneficial for displaying clustering patterns or

detecting outliers in datasets. `scatter()` function enables encoding of

supplementary data dimensions via marker size and color, hence facilitating

representation of four-dimensional data within a two-dimensional graphic.

`bar()` function generates bar charts for categorical or discrete data,

representing magnitude of values through height of rectangular bars. Bar

charts are proficient in comparing amounts across several categories and can

be arranged vertically (default) or horizontally utilizing `barh()`. `stem()`

function generates stem plots for signals or data anywhere relationship to a

baseline is crucial, depicting each data point as a line extending from

baselineto data value, topped with a marker. Stem plots are especially

advantageous in digital signal processing applications, as they effectively

206

Notes illustrate discrete characteristics of sampled signals while preserving

information regarding signal's amplitude.

Personalizing 2D Graphs (Title, Labels, Grid, Legends)

After establishing a fundamental plot in MATLAB, customization is crucial

for efficient presentation of your data. MATLAB offers numerous

possibilities for improving clarity and aesthetic quality of your plots via

various customisation capabilities. Incorporating context into your

visualization begins with descriptive text elements: `title()` method assigns a

primary title to your plot, while `xlabel()` and `ylabel()` designate labels for

horizontal and vertical axes, respectively. It text elements can be furr tailored

with various fonts, sizes, and styles through property name-value pairs. `grid

on` command enhances readability by introducing grid lines that correspond

with tick marks on your axes. In plots featuring several data series, ̀ legend()`

function generates a legend that designates each series with a descriptive

description and a representation of its line style or marker. Legends can be

positioned eir automatically or manually within plotusing 'Location' option,

which includes values such as 'norast', 'southwest', or 'best' for automatic

placement. MATLAB provides meticulous control over aesthetics of plot

elements with properties such as 'LineWidth', 'MarkerSize', 'Color', and

'LineStyle'. It can be designated at plot creation or subsequently altered by

directly accessing plot objects. To achieve accurate axis control, functions

such as `axis()`, `xlim()`, and `ylim()` enable specificationof visible range of

your plot, anywhereas `xticks()` and ̀ yticks()` facilitate customisation of tick

mark placements and labels.

Multiple Graphs in a Single Figure

MATLAB offers many methods for integrating multiple data series or plots

into a single figure, facilitating direct comparison and optimizing screen space

utilization. most straightforward approach to exhibit several data series is to

employ `hold on` command subsequent to generating an initial graphic. This

maintains current axis and permits subsequent plotting commands to augment

existing figure instead of replacing it. When employing `hold on`, MATLAB

automatically allocates various colors and line styles to each new series for

visual differentiation. MATLAB facilitates overlay of various plot formats

inside a single set of axes for more intricate comparisons. For instance, one

may integrate a line plot depicting a trend with a scatter plot emphasizing

207

Notes particular data points, or superimpose a bar chart with an error bar plot to

illustrate both values and it corresponding uncertainty. When visualizing

multiple data series with markedly different scales, MATLAB's `yyaxis`

function generates dual y-axis plots, with one scale on left and

ansomewhereon right. This prevents smaller-scale data from becoming

compressed and illegible when plotted with larger-scale data. MATLAB

provides contour plots for visualizing three-dimensional data in two

dimensions using `contour()` function, which displays lines of equal value

and can be integrated with somewhere plot types for enhanced context. Heat

maps generated with `imagesc()` or `heatmap()` may effectively visualize

three-dimensional data on a two-dimensional plot, employing color to denote

third dimension.

Subplots and Figure Management

MATLAB's subplot system offers an effective foundation for organizing

numerous linked plots with distinct axes within a single figure window.

`subplot(m,n,p)` function partitions figure window into an m-by-n grid and

designates p-th place for current plot. This facilitates systematic organization

of numerous plots in rows and columns, hence simplifying creation of

dashboards or comparative visualizations. Each subplot possesses

independent axes, enabling distinct scales, labels, and plot types inside a

singular figure. MATLAB features `tiledlayout()` function, added in recent

versions, for more versatile configurations beyond standard grids, allowing

enhanced control over spacing and alignment across subplots. `nexttile()`

method reafterdesignates subsequent place in layout for plotting. MATLAB's

figure management system enables creation, selection, and manipulation of

distinct figure windows when handling multiple figures. `figure()` command

generates a new figure window or picks an existing one by its identification,

anywhereas `gcf` (get current figure) and `gca` (get current axes) provide

handles to active figure and axes objects, respectively. It handles provide

programmatic access to attributes and offspring of it objects. MATLAB offers

facilities for saving and exporting figures in multiple formats. `saveas()`

function preserves figures in formats such as PNG, JPEG, or PDF, although

`exportgraphics()` in more recent MATLAB versions provides superior

control over resolution and aesthetics for publication-quality results.

208

Notes Generating Three-Dimensional Visualizations (mesh, surf, contour,

plot3)

MATLAB specializes in visualizing three-dimensional data using many

specialized charting tools that illuminate certain facets of your data. `mesh()`

function generates a wireframe mesh surface for functions of two variables or

gridded data, illustrating three-dimensional form while permitting view

through mesh. Each intersection in wireframe signifies a data point, with x

and y coordinates establishing positionin horizontal plane and z coordinate

(or function value) indicating height. `surf()` function generates a surface

plot with a solid surface representation, anywherein each face of mesh is

filled with color. Default color assignment for each face reflects its height, so

visually reinforcing three-dimensional structure through geometry and color

mapping. `plot3()` function adapts conventional `plot()` command for three-

dimensional path-based data, including trajectories and parametric curves. It

links locations in three-dimensional space using straight line segments,

facilitating display of journeys, orbits, or somewhere three-dimensional

curves. When primary focus is on level sets instead of complete three-

dimensional structure, `contour()` function generates contour plots that

display lines of equal z-value projected onto x-y plane. three-dimensional

function, `contour3()`, elevates it contour lines to it respective heights in

three-dimensional space. MATLAB has specific visualizations for volumetric

data, such as `slice()` for displaying planar sections of three-dimensional data

and `isosurface()` for extracting surfaces of uniform value from volumetric

datasets.

Customization of 3D Visualizations (Perspective, Illumination, Color

Mapping, Axis Management)

Three-dimensional visualizations in MATLAB provide enhanced

customisation possibilities tailored for spatial data. Managing perspective is

essential for proficient three-dimensional visualization, and MATLAB offers

many tools for this function. `view()` function establishes camera location,

defined eir as an azimuth-elevation pair or as a three-element vector for

precise positioning. interactive rotate tool enables users to modify

perspective dynamically by mouse gestures, anywhereas `camorbit()`,

`camzoom()`, and `campan()` functions facilitate programmatic camera

manipulation. Illumination is crucial for three-dimensional vision, and

209

Notes MATLAB's lighting system may be manipulated using functions such as

`light()` to position light sources, ̀ lighting()` to determine lighting algorithm,

and `material()` to modify surface reflectance characteristics. visual quality

of three-dimensional surfaces can be enhanced by ̀ shading()` function, which

governs application of colors to mesh faces. Available options comprise

'faceted' (default), which displays mesh lines alongside solid-colored faces;

'flat', which eliminates mesh lines while retaining solid colors for each face;

and 'interp', which executes smooth color interpolation across faces. Color

mapping is crucial in three-dimensional representation, as it frequently

conveys an additional degree of information. ̀ colormap()` method establishes

color scale for mapping data values to colors, featuring built-in options from

default 'parula' to customized maps such as 'jet', 'hot', or 'cool'. Custom

colormaps may also be established as matrices of RGB values. `colorbar()`

method incorporates a color scale legend into plot, anywhereas `caxis()`

regulates data range associated with colormap. To enhance spatial

comprehension, MATLAB offers functionalities such as `axis equal` for

uniform scaling across all axes, `grid on` to incorporate reference lines, and

`box on` to establish a bounding box around plot volume.

Utilization of 2D and 3D Graphs in Data Visualization

MATLAB's charting features are utilized in various domains, including

engineering, scientific research, data analysis, and machine learning. In signal

processing, time-domain plots generated by ̀ plot()` illustrate signal amplitude

as a function of time, anywhereas frequency-domain representations produced

by `stem()` or `bar()` depict discrete frequency components derived from

Fourier transforms. MATLAB's `histogram()`, `boxplot()`, and `scatter()`

tools enhance statistical data analysis by elucidating distributions, identifying

outliers, and demonstrating correlations. In analysis of geographic data,

specialized visualizations like as `geoplot()` and `geobubble()` superimpose

data onto maps, anywhereas `contourf()` and `pcolor()` provide terrain

visualizations or heat maps of spatial variables. In computational fluid

dynamics and somewhere field-based simulations, vector fields can be

represented using `quiver()` or `quiver3()` to illustrate flow direction and

magnitude, anywhereas scalar fields utilize `surf()` or `contour()` to depict

pressure, temperature, or somewhere variables. In machine learning

applications, MATLAB plots facilitate visualization of classification borders

using `gscatter()`, dimensionality reduction outcomes with `scatter()`, and

210

Notes model performance measures through specialized functions such as

`confusionchart()` and `roc()`. engineering design process is enhanced by

visualizing mechanical structures using `plot3()` and `patch()`, simulating

circuits with `fplot()` for transfer functions, and analyzing control system

behavior through `step()` and `impulse()` response plots. Scientific study

frequently necessitates specific visualizations such as `errorbar()` for

experimental data with uncertainty, `polarplot()` for directional data, and

`imagesc()` for image processing and analysis. Through integration and

customization of it plotting tools, MATLAB users may generate robust visuals

that reveal trends, confirm models, and convey intricate findings effectively

in nearly any technical or scientific field.

SELF ASSESSMENT QUESTIONS

Multiple Choice Questions (MCQs)

1. Which MATLAB function is used to create a basic 2D line plot?

A) scatter()

B) plot()

C) bar()

D) mesh()

Answer: B) plot()

2. What function is used to generate a scatter plot in MATLAB?

A) plot()

B) scatter()

C) bar()

D) stem()

Answer: B) scatter()

3. How can you add a title to a 2D plot in MATLAB?

A) heading('Title')

B) title('Title')

C) label('Title')

D) caption('Title')

Answer: B) title('Title')

211

Notes 4. Which command is used to display multiple plots in a single figure

using different colors and markers?

A) hold on

B) subplot()

C) figure()

D) multiplot()

Answer: A) hold on

5. What is the purpose of the legend() function in MATLAB?

A) To add a title to the plot

B) To label the x-axis and y-axis

C) To display descriptions for different plotted data

D) To change the color of the plot

Answer: C) To display descriptions for different plotted data

6. Which function is used to create multiple subplots within the same

figure?

A) hold on

B) subplot()

C) multiplot()

D) figure()

Answer: B) subplot()

7. Which function is used to create a 3D surface plot in MATLAB?

A) surf()

B) contour()

C) scatter3()

D) bar3()

Answer: A) surf()

8. What function allows you to set the viewing angle of a 3D plot?

A) axis()

B) view()

C) grid()

D) title()

212

Notes Answer: B) view()

9. What does the colormap() function do in MATLAB?

A) Sets the color scheme of a 3D plot

B) Adds grid lines to a 2D plot

C) Adjusts the transparency of the plot

D) Changes the font size of labels

Answer: A) Sets the color scheme of a 3D plot

10. Which of the following is NOT a commonly used 3D plotting

function in MATLAB?

A) plot3()

B) mesh()

C) surf()

D) bar()

Answer: D) bar()

Short Questions:

1. How do you create a simple 2D plot in MATLAB?

2. What is difference between plot and scatter functions?

3. How do you add labels and a title to a plot in MATLAB?

4. What is useof legend function?

5. How do you plot multiple graphs in a single figure?

6. What is a subplot in MATLAB?

7. Name three functions used for 3D plotting in MATLAB.

8. What is difference between mesh and surf functions?

9. How do you control viewing angle of a 3D plot?

10. What is purposeof colormap function in 3D plots?

Long Questions:

1. Explain steps to create a 2D plot using plot function in MATLAB.

213

Notes 2. Discuss different types of 2D plots available in MATLAB with

examples.

3. How can you customize a MATLAB plot by adding labels, grid, and

legends?

4. Explain concept of subplots andit importance in MATLAB

visualization.

5. How do you create and modify multiple plots in a single figure in

MATLAB?

6. Describe different methods to generate 3D plots in MATLAB with

examples.

7. Compare mesh, surf, and contour plots in MATLAB.

8. Explain how to customize 3D plots using shading, color maps, and

lighting.

9. Discuss applications of 2D and 3D plotting in scientific computing.

10. Write a MATLAB script to plot a 3D surface of function

z=sin⁡(x)cos⁡(y)z = \sin(x) \cos(y)z=sin(x)cos(y).

214

Notes MODULE IV

UNIT VIII

PROGRAMMING IN MATLAB

Objective:

• Understand fundamentals of programming in MATLAB.

• Learn about conditional statements and loops.

• Explore use of vectorization for efficient programming.

• Work with file input and output operations.

• Implement debugging and error handling in MATLAB.

4.1 Overview to MATLAB Programming

MATLAB (Matrix Laboratory) is a high-level programming language and

interactive environment particularly designed for numerical computation,

data analysis, and visualization. Initially developed by Cleve Moler in late

1970s, MATLAB has evolved into a rebust tool widely used by engineers,

scientists, mathematicians, and researchers across various disciplines.

Basic MATLAB Interface

When you open MATLAB, you'll encounter several key components:

• Command Window: main area anywhere you can type commands

and see results

• Workspace: Shows all variables currently in memory

• Current Folder: Displays documents in your working directory

• Editor: For writing and saving MATLAB scripts (.m documents)

Variables in MATLAB

Variables in MATLAB are created automatically when you assign values to

m. Unlike many programming languages, you don't need to declare variable

types explicitly.

% Assigning variables

215

Notes a = 5 % Numeric scalar

b = 'Hello' % String

c = [1, 2, 3] % Row vector

d = [4; 5; 6] % Column vector

e = [1, 2; 3, 4] % 2×2 matrix

Semicolon at end of a line suppresses output. Without it, MATLAB will

display resultin command window.

216

Notes UNIT IX

Data Types

MATLAB supports various data types:

1. Numeric Types:

• double: Default numeric type (64-bit floating-point)

• single: 32-bit floating-point

• int8, int16, int32, int64: Signed integers

• uint8, uint16, uint32, uint64: Unsigned integers

2. Character and String Types:

• char: Character arrays

• string: String arrays (newer type, more functionality)

3. Logical Type:

• logical: Boolean values (true/false)

4. Structural Types:

• struct: Structures

• cell: Cell arrays

217

Notes UNIT X

Basic Operations

MATLAB excels at matrix operations:

A = [1, 2; 3, 4];

B = [5, 6; 7, 8];

C = A + B % Matrix addition

D = A * B % Matrix multiplication

E = A .* B % Element-wise multiplication (note dot)

F = A' % Matrix transpose

G = inv(A) % Matrix inverse

Element-wise operations use a dot before operator:

x = [1, 2, 3];

y = [4, 5, 6];

z1 = x .* y % Element-wise multiplication

z2 = x ./ y % Element-wise division

z3 = x .^ 2 % Element-wise power

Functions in MATLAB

MATLAB has numerous built-in functions:

% Mathematical functions

sqrt(16) % Square root

sin(pi/2) % Sine

log10(100) % Logarithm base 10

exp(1) % Exponential

% Statistical functions

mean([1, 2, 3, 4, 5]) % Average

std([1, 2, 3, 4, 5]) % Standard deviation

max([1, 2, 3, 4, 5]) % Maximum value

% Matrix functions

size(A) % Dimensions of matrix A

length(x) % Length of vector x

det(A) % Determinant

218

Notes eig(A) % Eigenvalues and eigenvectors

Creating Your Own Functions

Functions are stored in .m documents with same name as function:

% Example function saved as addNumbers.m

function sum = addNumbers(a, b)

 % This function adds two numbers

 sum = a + b;

end

Functions can also be defined inline:

addInline = @(a, b) a + b;

result = addInline(3, 4); % Returns 7

Scripts vs. Functions

• Scripts: Series of commands in a file that operate on variables in

workspace

• Functions: Have it own workspace, accept input arguments, and

return outputs

Input and Output

For user interaction:

% Getting user input

name = input('Enter your name: ', 's'); % 's' for string input

age = input('Enter your age: ');

% Displaying output

disp('Hello, world!');

fprintf('Your name is %s and you are %d years old.\n', name, age);

Plotting in MATLAB

Basic plotting commands:

x = 0:0.1:2*pi; % Creates a vector from 0 to 2π with step 0.1

219

Notes y = sin(x);

plot(x, y) % Create a simple plot

title('Sine Wave') % Add a title

xlabel('x') % X-axis label

ylabel('sin(x)') % Y-axis label

grid on % Add a grid

Multiple plots in one figure:

y2 = cos(x);

hold on % Keep current plot when adding new plots

plot(x, y2, 'r--') % Plot cosine with red dashed line

legend('sin(x)', 'cos(x)') % Add a legend

4.2 Conditional Statements (if, else, switch)

Conditional statements allow programs to make decisions based on certain

conditions. MATLAB supports three main types of conditional statements: if-

else, switch-case, and shorthand if-else expression.

If-Else Statements

 basic structure of an if-else statement:

if condition

 % Code executed if condition is true

elseif ansomewhere_condition

 % Code executed if ansomewhere_condition is true

else

 % Code executed if all conditions are false

end

Example:

x = 7;

if x > 10

disp('x is greater than 10')

elseif x > 5

disp('x is greater than 5 but not greater than 10')

220

Notes else

disp('x is less than or equal to 5')

end

Logical Operators

Logical operators combine conditions:

• andand (and): Both conditions must be true

• || (OR): At least one condition must be true

• ~ (NOT): Negates a condition

Example:

age = 25;

hasLicense = true;

if age >= 18 andandhasLicense

disp('You can drive')

elseif age >= 18 andand ~hasLicense

disp('You need to get a license')

else

disp('You are too young to drive')

end

Comparison Operators

• == Equal to

• ~= Not equal to

• > Greater than

• < Less than

• >= Greater than or equal to

• <= Less than or equal to

Nested If Statements

If statements can be nested within each somewhere:

score = 85;

if score >= 60

221

Notes if score >= 90

 grade = 'A';

 elseif score >= 80

 grade = 'B';

 elseif score >= 70

 grade = 'C';

 else

 grade = 'D';

 end

else

 grade = 'F';

end

fprintf('Your grade is: %s\n', grade);

Switch-Case Statements

Switch-case statements are useful when comparing a variable against several

discrete values:

day = 3;

switch day

 case 1

dayName = 'Monday';

 case 2

dayName = 'Tuesday';

 case 3

dayName = 'Wednesday';

 case 4

dayName = 'Thursday';

 case 5

dayName = 'Friday';

 case {6, 7} % Multiple values in one case

dayName = 'Weekend';

somewherewise % Default case (like else)

dayName = 'Invalid day';

end

fprintf('Day %d is %s\n', day, dayName);

222

Notes Features of switch-case:

• Each case can have multiple statements

• somewherewise clause is optional

• Multiple values can be grouped using curly braces {}

• No "fall-through" behavior (unlike C/Java)

Shorthand If-Else (Ternary Operator)

For simple conditionals, you can use a compact form:

a = 5;

b = 10;

max_value = (a > b) * a + (a <= b) * b; %Returns maximum

% Or using more readable form:

is_even = mod(a, 2) == 0; % Boolean result

message = {'odd', 'even'};

disp([' number is ' message{is_even + 1}]);

Best Practices for Conditional Statements

1. Readability: Write clear conditions that are easy to understand

2. Efficiency: Put most likely conditions first

3. Simplicity: Use switch-case for multiple discrete options

4. Consistency: Maintain consistent indentation for readability

5. Testing: Verify all possible paths through your conditionals

4.3 Looping Structures (for, while, break, continue)

Loops allow repetitive execution of code blocks. MATLAB provides several

looping structures: for loops, while loops, and control statements like break

and continue.

For Loops

For loops iterate over a specific range or array of values:

% Basic for loop structure

for variable = expression

 % Code to execute in each iteration

223

Notes end

Examples:

% Loop with numeric range

for i = 1:5

fprintf('Iteration %d\n', i);

end

% Loop with non-unit step size

for i = 0:2:10 % From 0 to 10 with step size 2

disp(i);

end

% Loop with vector

values = [3, 1, 4, 1, 5, 9];

for val = values

disp(val);

end

% Nested for loops

for i = 1:3

 for j = 1:3

fprintf('Position (%d,%d)\n', i, j);

 end

end

For loops are particularly useful for iterating through arrays:

A = [10, 20, 30; 40, 50, 60; 70, 80, 90];

% Process each element

for i = 1:size(A, 1) % Rows

 for j = 1:size(A, 2) % Columns

fprintf('A(%d,%d) = %d\n', i, j, A(i,j));

 end

end

% Process each row

for i = 1:size(A, 1)

 row = A(i, :);

fprintf('Sum of row %d: %d\n', i, sum(row));

end

224

Notes While Loops

While loops continue executing as long as a condition remains true:

% Basic while loop structure

while condition

 % Code to execute in each iteration

end

Examples:

% Simple countdown

count = 5;

while count > 0

fprintf('%d...\n', count);

 count = count - 1;

end

disp('Blast off!');

% Finding a value

x = 1;

while x^2 < 100

 x = x + 1;

end

fprintf('Smallest x anywhere x^2 >= 100: %d\n', x);

Important considerations for while loops:

• Always ensure condition will eventually become false to avoid

infinite loops

• Update variables within loop to affect condition

Break Statement

 break statement exits loop immediately:

% Find first prime number above 1000

n = 1000;

while true % Infinite loop

 n = n + 1;

225

Notes if isprime(n)

fprintf('First prime number above 1000: %d\n', n);

break; %Exit loop

 end

end

% Exit a for loop early

for i = 1:100

 if i^2 > 500

fprintf('First i anywhere i^2 > 500: %d\n', i);

 break;

 end

end

Continue Statement

 continue statement skips restof current iteration and moves to next one:

% Print only odd numbers

for i = 1:10

 if mod(i, 2) == 0

continue; % Skip even numbers

 end

fprintf('%d is odd\n', i);

end

% Skip processing of specific values

values = [1, -3, 4, 0, -2, 7];

for val = values

 if val<= 0

continue; % Skip non-positive values

 end

fprintf('Log of %d is %f\n', val, log(val));

end

Loop Control Patterns

Common loop patterns in MATLAB:

1. Accumulator Pattern:

226

Notes sum = 0;

for i = 1:100

 sum = sum + i;

end

fprintf('Sum of numbers 1 to 100: %d\n', sum);

2. Search Pattern:

numbers = [4, 8, 15, 16, 23, 42];

target = 16;

found = false;

for i = 1:length(numbers)

 if numbers(i) == target

fprintf('Found %d at position %d\n', target, i);

 found = true;

 break;

 end

end

if ~found

fprintf('%d not found in array\n', target);

end

3. Filter Pattern:

values = [10, -5, 8, -12, 3, 0, 7];

positive_count = 0;

for val = values

 if val> 0

positive_count = positive_count + 1;

 end

end

fprintf('Number of positive values: %d\n', positive_count);

Avoiding Common Loop Pitfalls

1. Off-by-one errors: Be careful with loop boundaries

2. Infinite loops: Ensure while loops have a valid exit condition

3. Inefficiency: Consider vectorization (next section) when possible

227

Notes 4. Loop variable modification: Avoid changing loop variable inside

for loops

5. Memory allocation: Pre-allocate arrays before filling m in loops

4.4 Vectorized Operations vs. Loops

One of MATLAB's most rebust features is its ability to perform operations on

entire arrays without explicit loops. This approach is called "vectorization"

and offers significant performance advantages.

Understanding Vectorization

Vectorization refers to process of converting algorithms that use loops to

operate on individual elements into equivalent algorithms that operate on

entire arrays or vectors at once.

Benefits of vectorization:

• Performance: Significantly faster execution

• Readability: Often results in shorter, clearer code

• Optimization: Takes advantage of MATLAB's highly optimized

matrix operations

Element-wise Operations

MATLAB provides element-wise versions of many operations using dot

notation:

% Element-wise arithmetic

a = [1, 2, 3, 4];

b = [5, 6, 7, 8];

c = a .+ b; % Element-wise addition

d = a .* b; % Element-wise multiplication

e = a ./ b; % Element-wise division

f = a .^ 2; % Element-wise squaring

Note: For addition and subtraction, dot is optional since it operations are

inherently element-wise.

Loops vs. Vectorized Operations: Examples

228

Notes Example 1: Calculating squares of numbers

Loop approach:

n = 1000;

result_loop = zeros(1, n);

for i = 1:n

result_loop(i) = i^2;

end

Vectorized approach:

n = 1000;

result_vec = (1:n).^2;

Example 2: Applying a function to each element

Loop approach:

data = [1, 2, 3, 4, 5];

result_loop = zeros(size(data));

for i = 1:length(data)

result_loop(i) = sin(data(i));

end

Vectorized approach:

data = [1, 2, 3, 4, 5];

result_vec = sin(data);

Example 3: Calculating distances between points

Loop approach:

x = [1, 3, 5, 7, 9];

y = [2, 4, 6, 8, 10];

distances_loop = zeros(1, length(x)-1);

for i = 1:length(x)-1

distances_loop(i) = sqrt((x(i+1)-x(i))^2 + (y(i+1)-y(i))^2);

end

229

Notes Vectorized approach:

x = [1, 3, 5, 7, 9];

y = [2, 4, 6, 8, 10];

distances_vec = sqrt(diff(x).^2 + diff(y).^2);

Vectorization Functions

MATLAB provides many functions designed to operate on entire arrays:

% Sum and product

a = [1, 2, 3, 4, 5];

sum_a = sum(a); % Sum of all elements

prod_a = prod(a); % Product of all elements

% Statistical functions

mean_a = mean(a); % Mean value

std_a = std(a); % Standard deviation

min_a = min(a); % Minimum value

max_a = max(a); % Maximum value

% Array manipulation

diff_a = diff(a); % Differences between adjacent elements

cumsum_a = cumsum(a); % Cumulative sum

cumprod_a = cumprod(a); % Cumulative product

Logical Indexing

Logical indexing is a rebust vectorization technique:

% Find elements matching a condition

a = [10, 25, 30, 15, 45, 20];

big_values = a >20; % Returns logical array

result = a(big_values); % Extract elements anywhere condition is true

% Or in one step:

result = a(a > 20); % [25, 30, 45]

% Replace values conditionally

a(a < 20) = 0; % Set small values to zero

 find Function

230

Notes find function returns indices anywhere a condition is true:

a = [10, 25, 30, 15, 45, 20];

indices = find(a > 20); % Returns [2, 3, 5]

values = a(indices); % Extract values

% With multiple outputs:

[row, col] = find(A > threshold); % For matrices

Vectorizing More Complex Operations

Example: Calculating distances between all pairs of points

Loop approach:

x = [1, 3, 5, 7];

y = [2, 4, 6, 8];

n = length(x);

distances = zeros(n, n);

for i = 1:n

 for j = 1:n

distances(i, j) = sqrt((x(i) - x(j))^2 + (y(i) - y(j))^2);

 end

end

Vectorized approach using broadcasting:

x = [1, 3, 5, 7];

y = [2, 4, 6, 8];

% Create grid of differences

[X1, X2] = meshgrid(x, x);

[Y1, Y2] = meshgrid(y, y);

% Calculate all distances at once

distances = sqrt((X1 - X2).^2 + (Y1 - Y2).^2);

When to Use Loops vs. Vectorization

Use vectorization when:

• Operating on entire arrays with same operation

231

Notes • Working with numerical data in a regular structure

• Performance is critical

Use loops when:

• Operations depend on previous iterations

• Complex conditional logic is needed

• Code clarity is more important than performance

• Working with non-homogeneous data structures

Performance Comparison

To demonstrate performance difference, we can use tic and toc functions:

n = 10000;

x = rand(1, n);

% Using a loop

tic

result_loop = zeros(1, n);

for i = 1:n

result_loop(i) = sin(x(i))^2 + cos(x(i))^2;

end

loop_time = toc;

% Using vectorization

tic

result_vec = sin(x).^2 + cos(x).^2;

vec_time = toc;

fprintf('Loop time: %f seconds\n', loop_time);

fprintf('Vectorized time: %f seconds\n', vec_time);

fprintf('Speedup factor: %f\n', loop_time/vec_time);

% Verify results are same

max_diff = max(abs(result_loop - result_vec));

fprintf('Maximum difference: %e\n', max_diff);

Typically, vectorized version will be many times faster, especially for large

arrays.

Solved Problems

232

Notes Problem 1: Matrix Manipulation with Conditional Logic

Problem: Write a MATLAB program that creates a 5×5 matrix of random

integers between 1 and 20. n, replace all prime numbers with zeros and all

even numbers with it squares.

Solution:

% Create a 5×5 matrix of random integers between 1 and 20

A = randi(20, 5, 5)

% Process each element with loops

for i = 1:size(A, 1)

 for j = 1:size(A, 2)

 if isprime(A(i, j))

A(i, j) = 0; % Replace prime numbers with zero

 elseif mod(A(i, j), 2) == 0

A(i, j) = A(i, j)^2; % Square even numbers

 end

 end

end

% Display result

disp('Matrix after processing:');

disp(A);

Vectorized solution:

% Create a 5×5 matrix of random integers between 1 and 20

A = randi(20, 5, 5)

% Create logical arrays for conditions

isPrimeMatrix = arrayfun(@isprime, A);

isEvenMatrix = mod(A, 2) == 0;

% Apply transformations

A(isPrimeMatrix) = 0; % Replace prime numbers with zero

A(isEvenMatrix) = A(isEvenMatrix).^2; % Square even numbers

% Display result

disp('Matrix after processing:');

disp(A);

233

Notes Problem 2: Fibonacci Sequence

Problem: Write a MATLAB function to calculate first n Fibonacci numbers

using both a loop approach and a vectorized approach. Compare it execution

times.

Solution:

function fibonacci_comparison(n)

 % Calculate Fibonacci sequence using loops

 tic

fib_loop = zeros(1, n);

fib_loop(1) = 1;

 if n > 1

fib_loop(2) = 1;

 for i = 3:n

fib_loop(i) = fib_loop(i-1) + fib_loop(i-2);

 end

 end

loop_time = toc;

 % Calculate Fibonacci sequence using vectorization

 tic

fib_vec = zeros(1, n);

 fib_vec(1) = 1;

if n > 1

fib_vec(2) = 1;

 for i = 3:n

 % This is still a loop but with less computation in each iteration

fib_vec(i) = fib_vec(i-1) + fib_vec(i-2);

 end

 end

vec_time = toc;

 % Display results

fprintf('First %d Fibonacci numbers:\n', n);

disp(fib_loop);

234

Notes

fprintf('\nExecution times:\n');

fprintf('Loop approach: %f seconds\n', loop_time);

fprintf('Vectorized approach: %f seconds\n', vec_time);

 % Note: For Fibonacci sequence, true vectorization is difficult

 % because each number depends on previous two.

 % For more complex examples, performance difference would be greater.

end

% Call function with n = 20

fibonacci_comparison(20);

Problem 3: Image Processing with Conditional Logic

Problem: Write a MATLAB program that simulates basic image

thresholding. Create a 100×100 matrix with random values between 0 and 1,

n apply thresholding to create a binary image anywhere values above 0.5

become 1 andsomewheres become 0. Compare loop-based and vectorized

approaches.

Solution:

% Create a simulated image (100×100 matrix with random values)

img = rand(100, 100);

% Apply thresholding using loops

tic

binary_img_loop = zeros(size(img));

for i = 1:size(img, 1)

 for j = 1:size(img, 2)

 if img(i, j) > 0.5

binary_img_loop(i, j) = 1;

 else

binary_img_loop(i, j) = 0;

 end

 end

end

loop_time = toc;

% Apply thresholding using vectorization

235

Notes tic

binary_img_vec = (img> 0.5); % Logical comparison automatically creates

binary matrix

vec_time = toc;

% Verify results are same

is_same = isequal(binary_img_loop, binary_img_vec);

fprintf('Results are same: %s\n', string(is_same));

% Compare performance

fprintf('Loop approach: %f seconds\n', loop_time);

fprintf('Vectorized approach: %f seconds\n', vec_time);

fprintf('Speedup factor: %f\n', loop_time/vec_time);

% Display images

figure;

subplot(1, 3, 1);

imagesc(img);

title('Original Image');

colorbar;

subplot(1, 3, 2);

imagesc(binary_img_loop);

title('Thresholded (Loop)');

colorbar;

subplot(1, 3, 3);

imagesc(binary_img_vec);

title('Thresholded (Vectorized)');

colorbar;

Problem 4: Statistical Analysis with Switch-Case

Problem: Write a MATLAB function that takes a vector of data and a string

parameter specifying which statistical measure to compute: 'mean', 'median',

'mode', 'std' (standard deviation), or 'range'. Use a switch-case structure to

implement this function.

Solution:

function result = compute_statistic(data, measure)

 % Check if input is a numeric vector

 if ~isnumeric(data) || ~isvector(data)

236

Notes error('First input must be a numeric vector');

 end

 % Compute requested statistic

 switch lower(measure) % Convert to lowercase for case insensitivity

 case 'mean'

 result = mean(data);

fprintf('Mean: %f\n', result);

 case 'median'

 result = median(data);

fprintf('Median: %f\n', result);

 case 'mode'

 result = mode(data);

fprintf('Mode: %f\n', result);

 case 'std'

 result = std(data);

fprintf('Standard Deviation: %f\n', result);

 case 'range'

 result = max(data) - min(data);

fprintf('Range: %f\n', result);

somewherewise

error('Unknown statistical measure. Use mean, median, mode, std, or range');

 end

end

% Example usage:

data = [12, 15, 8, 10, 22, 15, 7, 19, 15];

compute_statistic(data, 'mean');

compute_statistic(data, 'median');

compute_statistic(data, 'mode');

compute_statistic(data, 'std');

compute_statistic(data, 'range');

Problem 5: Finding Prime Numbers with Nested Loops and Break

Problem: Write a MATLAB program that finds all prime numbers less than

100. Implement Sieve of Eratosnes algorithm using nested loops and break

statement.

237

Notes Solution:

function primes = sieve_of_eratosnes(n)

 % Initialize all numbers as potentially prime

is_prime = true(1, n);

 % 1 is not a prime number

is_prime(1) = false;

 % Implement Sieve of Eratosnes

 for i = 2:sqrt(n)

 if is_prime(i)

 % Mark all multiples of i as not prime

 for j = i^2:i:n

is_prime(j) = false;

 end

 end

 end

 % Collect prime numbers

 primes = find(is_prime);

end

% Find all prime numbers less than 100

prime_numbers = sieve_of_eratosnes(100);

% Display result

fprintf('Prime numbers less than 100:\n');

disp(prime_numbers);

fprintf('Total count: %d\n', length(prime_numbers));

Unsolved Problems

Problem 1: Matrix Spiral Traversal

Write a MATLAB function that takes an n×n matrix as input and returns a

vector containing elementsof matrix traversed in a spiral order, starting from

top-left corner and moving clockwise. For example, for a 3×3 matrix:

1 2 3

238

Notes 4 5 6

7 8 9

 spiral traversal should give [1, 2, 3, 6, 9, 8, 7, 4, 5].

Problem 2: Conway's Game of Lifetime

Implement Conway's Game of Life cellular automaton in MATLAB. Create

a function that takes an initial grid state and number of generations to

simulate, and returns final grid state after specified number of generations.

Use a 20×20 grid with random initial live cells.

4.5 Handling User Input and Output in MATLAB

Basic Input Functions

MATLAB provides several functions to handle user input during program

execution. most commonly used functions are:

input() Function

input() function displays a prompt and waits for user input from keyboard. It

returns entered value as a variable.

age = input('Enter your age: ');

If you want to capture input as a string (it than evaluating it as a MATLAB

expression), use 's' parameter:

name = input('Enter your name: ', 's');

keyboard Command

keyboard command temporarily halts execution and gives control to

keyboard, allowing for interactive debugging and input:

function calculateResults(data)

 % Some code here

 keyboard; % Execution stops here, allowing interactive input

 % More code here

239

Notes end

menu() Function

menu() function creates a simple menu of choices:

choice = menu('Select an operation', 'Addition', 'Subtraction', 'Multiplication',

'Division');

switch choice

 case 1

disp('You selected Addition');

 case 2

disp('You selected Subtraction');

 % and so on

end

Basic Output Functions

MATLAB offers various functions for displaying output:

disp() Function

disp() function displays value of a variable without printing variable name:

x = 10;

disp(x); % Displays: 10

disp(' result is:');

disp(x); % Displays: result is: 10

fprintf() Function

fprintf() function offers more control over formatting output:

x = 10; y = 20;

fprintf('x = %d and y = %d\n', x, y); % Displays: x = 10 and y = 20

Format specifiers include:

• %d for integers

• %f for floating-point numbers

240

Notes • %e for scientific notation

• %s for strings

• %g for compact format (eir %f or %e, whichever is shorter)

You can control precision and width:

pi_value = pi;

fprintf('Pi to 2 decimal places: %.2f\n', pi_value); % Pi to 2 decimal places:

3.14

fprintf('Pi in a field width of 10: %10.4f\n', pi_value); % Pi in a field width

of 10: 3.1416

warning() and error() Functions

It functions display warning or error messages:

if x < 0

warning('Input value is negative');

end

if y == 0

error('Division by zero is not allowed');

end

GUI Input and Output

For more sophisticated interfaces, MATLAB offers several GUI options:

Dialog Boxes

MATLAB provides built-in dialog boxes for various types of input:

% Message dialog

msgbox('Operation completed successfully', 'Success');

% Input dialog

answer = inputdlg('Enter radius:', 'Circle Properties', 1);

radius = str2double(answer{1});

% Question dialog

choice = questdlg('Would you like to continue?', 'Confirmation', 'Yes', 'No',

'Cancel', 'Yes');

241

Notes % File selection dialog

[filename, pathname] = uigetfile('*.txt', 'Select a text file');

Building Customized GUIs

For more complex interfaces, you can create custom GUIs using:

1. App Designer: A visual environment for building MATLAB apps

2. GUIDE: older GUI development environment

3. Programmatic UI components using functions like figure(),

uicontrol(), etc.

A simple programmatic GUI example:

fig = figure('Name', 'Simple Calculator', 'Position', [300 300 350 200]);

% Create text field for input

input_field = uicontrol('Style', 'edit', 'Position', [50 150 250 30]);

% Create button

calculate_button = uicontrol('Style', 'pushbutton', 'String', 'Calculate', ...

 'Position', [125 100 100 30], 'Callback', @calculateButtonPushed);

% Create text area for output

output_text = uicontrol('Style', 'text', 'Position', [50 50 250 30]);

% Callback function

function calculateButtonPushed(src, event)

 % Get input value

 expression = get(input_field, 'String');

 try

 result = eval(expression);

set(output_text, 'String', ['Result: ' num2str(result)]);

 catch

set(output_text, 'String', 'Error in expression');

 end

end

4.6 File Handling: Reading and Writing Documents

MATLAB provides several methods for reading and writing different file

types.

242

Notes Working with Text Documents

Reading Text Documents

 simplest way to read a text file is using fileread():

content = fileread('myfile.txt');

For more control, you can use fopen(), fread(), and fclose():

fileID = fopen('myfile.txt', 'r');

if fileID == -1

error('Cannot open file');

end

try

 data = fscanf(fileID, '%c');

finally

fclose(fileID);

end

For reading line by line:

fileID = fopen('myfile.txt', 'r');

if fileID == -1

error('Cannot open file');

end

try

 line = fgetl(fileID);

 while ischar(line)

disp(line);

 line = fgetl(fileID);

 end

finally

fclose(fileID);

end

Writing Text Documents

To write text to a file:

243

Notes fileID = fopen('output.txt', 'w');

if fileID == -1

error('Cannot create file');

end

try

fprintf(fileID, 'This is line 1\n');

fprintf(fileID, 'x = %f, y = %f\n', x, y);

finally

fclose(fileID);

end

Working with CSV Documents

CSV (Comma-Separated Values) documents are commonly used for tabular

data.

Reading CSV Documents

% Using readtable (recommended for modern MATLAB)

data = readtable('mydata.csv');

% Using csvread (for numeric data only, deprecated in newer versions)

numericData = csvread('mynumericdata.csv');

% Using dlmread (more flexible)

numericData = dlmread('mydata.csv', ',', 1, 0); % Skip header row

Writing CSV Documents

% Using writetable (recommended)

writetable(dataTable, 'output.csv');

% Using csvwrite (for numeric data only, deprecated)

csvwrite('output.csv', numericMatrix);

% Using dlmwrite (more flexible)

dlmwrite('output.csv', numericData, 'delimiter', ',', 'precision', 6);

Working with Excel Documents

MATLAB can read and write Excel documents directly.

Reading Excel Documents

244

Notes % Read specific sheet

data = readtable('myfile.xlsx', 'Sheet', 'Sheet1');

% Read specific range

data = readtable('myfile.xlsx', 'Range', 'A1:D10');

% Read using xlsread (older method)

[num, txt, raw] = xlsread('myfile.xlsx', 'Sheet1');

Writing Excel Documents

% Write table to Excel

writetable(dataTable, 'output.xlsx', 'Sheet', 'Results');

% Write using writematrix (newer method)

writematrix(numericData, 'output.xlsx', 'Sheet', 'NumericData');

% Write using xlswrite (older method)

xlswrite('output.xlsx', numericData, 'Sheet1', 'A1');

Working with MAT Documents

MAT documents are MATLAB's native format for saving variables.

Saving Variables to MAT Documents

x = 1:10;

y = x.^2;

save('mydata.mat', 'x', 'y'); % Save specific variables

% Save all variables in workspace

save('alldata.mat');

% Save with compression

save('compresseddata.mat', 'x', 'y', '-v7.3', '-nocompression');

Loading Variables from MAT Documents

% Load specific variables

load('mydata.mat', 'x');

% Load all variables

load('alldata.mat');

% Check what variables are in a MAT file

who('-file', 'mydata.mat');

245

Notes File and Directory Management

MATLAB provides functions for managing documentsand directories:

% List documents

documents = dir('*.m');

for i = 1:length(documents)

disp(documents(i).name);

end

% Check if file exists

if exist('myfile.txt', 'file') == 2

disp('File exists');

end

% Create directory

mkdir('newdir');

% Change current directory

cd('path/to/directory');

% Get current directory

currentDir = pwd;

% Delete file

delete('unwanted.txt');

4.7 Debugging and Error Handling

Debugging Tools in MATLAB

MATLAB provides several tools for debugging code:

Setting Breakpoints

Breakpoints pause execution at specific lines:

% Set a breakpoint programmatically

dbstop in myfunction at 25;

% Clear a breakpoint

dbclear in myfunction at 25;

% Clear all breakpoints

dbclear all;

246

Notes Conditional Breakpoints

Conditional breakpoints pause execution only when a condition is met:

% Stop when x becomes negative

dbstop in myfunction at 25 if x<0;

 Debugger Interface

When code execution pauses at a breakpoint, you can:

1. Examine variable values in Workspace browser

2. Use command window to evaluate expressions

3. Step through code with commands:

• dbstep (or F10): Execute current line and move to next line

• dbstep in (or F11): Step into a function call

• dbstep out: Step out of current function

• dbcont (or F5): Continue execution until next breakpoint

• dbexit: Terminate debugging session

Using disp() for Debug Output

For simple debugging, you can insert disp() statements:

function result = complexCalculation(x)

disp(['Starting calculation with x = ', num2str(x)]);

 temp = x^2;

disp(['After squaring: temp = ', num2str(temp)]);

 result = sqrt(temp + 1);

disp(['Final result: ', num2str(result)]);

end

MException Object

MException object contains information about an error:

try

 [~] = sqrt(-1);

catch ME

disp(['Error ID: ', ME.identifier]);

247

Notes disp(['Message: ', ME.message]);

disp('Stack trace:');

 for i = 1:length(ME.stack)

disp([' File: ', ME.stack(i).file]);

disp([' Function: ', ME.stack(i).name]);

disp([' Line: ', num2str(ME.stack(i).line)]);

 end

end

Creating Custom Errors

You can create and throw custom errors:

function result = calculateSquareRoot(x)

 if x < 0

 ME = MException('MyFunc:NegativeInput', ...

 'Cannot calculate square root of %d', x);

throw(ME);

 end

 result = sqrt(x);

end

Input Validation

It's good practice to validate inputs early:

function result = processData(data)

 % Validate input

 if ~isnumeric(data)

error('Input must be numeric');

 end

 if any(isnan(data(:)))

warning('NaN values detected in input');

 end

 % Process data

 result = sum(data(:));

end

248

Notes Using assert()

assert() function provides a compact way to check conditions:

function area = calculateCircleArea(radius)

assert(radius > 0, 'Radius must be positive');

 area = pi * radius^2;

end

4.8 Best Practices in MATLAB Programming

Code Organization

File and Function Organization

1. One function per file: main function should have same name as

file.

2. Group related functions: Use folders to organize related

functionality.

3. Use packages: For large projects, consider using MATLAB packages

(folders starting with "+").

Example package structure:

+myproject/

 +utils/

parseInput.m

validateData.m

 +visualization/

plotResults.m

main.m

Usage:

data = myproject.utils.parseInput(rawData);

myproject.visualization.plotResults(data);

Script vs. Function Documents

• Scripts: For sequential tasks, demonstrations, or quick analyses.

249

Notes • Functions: For reusable, encapsulated code with clearly defined

inputs and outputs.

Function Headers

Include a detailed header for each function:

function [output1, output2] = myFunction(input1, input2)

% MYFUNCTION Summary of what function does

% Detailed explanation of function and its algorithm.

%

% Inputs:

% input1 - Description of input1 (data type, size, units)

% input2 - Description of input2

%

% Outputs:

% output1 - Description of output1

% output2 - Description of output2

%

% Example:

% [result1, result2] = myFunction(10, [1 2 3]);

%

% See also: RELATEDFUNCTION1, RELATEDFUNCTION2

% Author: Your Name

% Date: 2023-01-01

% Version: 1.0

% Code here...

end

Coding Style

Variable Naming

• Use descriptive, meaningful names

• Follow a consistent naming convention:

➢ camelCase for variables and functions

➢ PascalCase for classes

➢ snake_case or UPPER_CASE for constants

250

Notes % Good

temperatureCelsius = 25;

MAX_ITERATIONS = 1000;

% Avoid

t = 25; % Not descriptive

temp_C = 25; % Inconsistent with camelCase convention

Indentation and Spacing

• Use consistent indentation (4 spaces recommended)

• Add spaces around operators for readability

• Use blank lines to separate logical blocks of code

% Good

function result = calculateAverage(data)

 % Input validation

 if ~isnumeric(data)

error('Input must be numeric');

 end

 % Calculation

sum_value = sum(data(:));

 count = numel(data);

 % Return result

 result = sum_value / count;

end

% Avoid

function result=calculateAverage(data)

if ~isnumeric(data)

error('Input must be numeric');

end

sum_value=sum(data(:));

count=numel(data);

result=sum_value/count;

end

Comments

251

Notes • Comment complex algorithms and non-obvious decisions

• Avoid redundant comments that just repeat code

• Use comments to explain 'why', not 'what'

% Good

% Adjust threshold based on noise level

threshold = meanNoise * 3;

% Avoid

% Multiply meanNoise by 3

threshold = meanNoise * 3;

Performance Optimization

Efficient Indexing

• Use logical indexing instead of find() when possible

• Access arrays in column-major order (MATLAB stores arrays in

column-major order)

% Good (logical indexing)

negativeValues = data(data < 0);

% Less efficient

indices = find(data < 0);

negativeValues = data(indices);

% Good (column-major access)

for j = 1:n_cols

 for i = 1:n_rows

 A(i,j) = i + j;

 end

end

% Less efficient (row-major access)

for i = 1:n_rows

 for j = 1:n_cols

 A(i,j) = i + j;

 end

end

Profiling Code

252

Notes Use MATLAB's profiler to identify bottlenecks:

profile on;

myFunction(data);

profile viewer;

Memory Management

Clearing Variables

Clear variables when they're no longer needed:

% Process large dataset

result = processLargeData(rawData);

% Clear large intermediate variable

clear rawData;

Using sparse() for Sparse Matrices

For matrices with many zeros, use sparse format:

% Create sparse matrix

S = sparse(rows, cols, values, m, n);

% Convert dense to sparse

A_sparse = sparse(A);

Managing Memory with onCleanup()

Ensure cleanup actions happen even if errors occur:

function processLargeFile(filename)

 % Open file

 fid = fopen(filename, 'r');

 % Create cleanup object

cleanupObj = onCleanup(@() fclose(fid));

 % Process file

 % (code that might error)

253

Notes % No need to call fclose explicitly - will happen automatically

end

Robustness and Testing

Input Validation

Always validate inputs at beginning of functions:

function result = calculateStatistics(data, method)

 % Validate inputs

validateattributes(data, {'numeric'}, {'2d', 'nonempty', 'finite'}, ...

 'calculateStatistics', 'data');

validMethods = {'mean', 'median', 'mode'};

 if ~ischar(method) || ~ismember(method, validMethods)

error('Method must be one of: %s', strjoin(validMethods, ', '));

 end

 % Calculation code...

end

Unit Testing

Use MATLAB's unit testing framework:

% TestMyFunction.m

function tests = TestMyFunction

 tests = functiontests(localfunctions);

end

function testNormalCase(testCase)

 result = myFunction(10);

expectedResult = 20;

testCase.verifyEqual(result, expectedResult, 'AbsTol', 1e-10);

end

function testEdgeCase(testCase)

 result = myFunction(0);

testCase.verifyEqual(result, 0);

254

Notes end

Run tests:

results = runtests('TestMyFunction');

Defensive Programming

Always consider what might go wrong:

function result = divideValues(numerator, denominator)

 % Check for division by zero

 if any(denominator == 0)

warning('Division by zero detected');

 % Replace zeros with NaN to avoid errors

denominator(denominator == 0) = NaN;

 end

 result = numerator ./ denominator;

end

Documentation

Help Comments

Write comprehensive help comments:

function result = calculateStatistics(data, varargin)

% CALCULATESTATISTICS Calculate various statistical measures of data

% RESULT = CALCULATESTATISTICS(DATA) calculates mean,

standard

% deviation, and range of DATA.

%

% RESULT = CALCULATESTATISTICS(DATA, METHOD) uses

specified METHOD

% for calculations. Valid methods are:

% 'basic' - mean, std, range (default)

% 'extended' - also includes median, mode, skewness, kurtosis

%

255

Notes % Example:

% x = randn(100,1);

% stats = calculateStatistics(x, 'extended');

%

% See also MEAN, STD, MEDIAN, MODE

% Code here...

end

Publishing Reports

Use MATLAB's publishing feature to create reports from code:

%% Analysis of Dataset

% This script analyzes experimental data and produces plots

%% Load Data

data = load('experiment.mat');

disp(data);

%% Create Visualization

plot(data.x, data.y);

title('Experimental Results');

xlabel('Time (s)');

ylabel('Amplitude');

Publish script:

publish('analysis_script.m', 'pdf');

This creates a PDF document with code, its output, and any generated figures.

Solved Problems

Problem 1: Temperature Converter with Input Validation

Create a function that converts temperatures between Celsius and Fahrenheit

with proper input validation and error handling.

Solution:

function convertedTemp = convertTemperature(temp, scale)

% CONVERTTEMPERATURE Convert between Celsius and Fahrenheit

256

Notes % CONVERTEDTEMP = CONVERTTEMPERATURE(TEMP, SCALE)

converts temperature

% TEMP from scale SCALE to somewhere scale. SCALE must be eir 'C' or

'F'.

%

% Example:

% f = convertTemperature(100, 'C') % Convert 100°C to Fahrenheit

% c = convertTemperature(32, 'F') % Convert 32°F to Celsius

% Input validation

if ~isnumeric(temp)

error('Temperature must be a numeric value');

end

if ~ischar(scale) || ~ismember(upper(scale), {'C', 'F'})

error('Scale must be eir ''C'' for Celsius or ''F'' for Fahrenheit');

end

% Conversion

try

 if upper(scale) == 'C'

 % Convert Celsius to Fahrenheit

convertedTemp = (temp * 9/5) + 32;

fprintf('%.2f°C is equal to %.2f°F\n', temp, convertedTemp);

 else

 % Convert Fahrenheit to Celsius

convertedTemp = (temp - 32) * 5/9;

fprintf('%.2f°F is equal to %.2f°C\n', temp, convertedTemp);

 end

catch ME

warning('Error during conversion: %s', ME.message);

convertedTemp = NaN;

end

end

Problem 2: CSV Data Analysis with File Handling

Write a script that reads a CSV file containing student grades, calculates

statistics, and writes results to a new file.

257

Notes Solution:

% Define file names

inputFile = 'student_grades.csv';

outputFile = 'grade_statistics.txt';

try

 % Check if input file exists

 if ~exist(inputFile, 'file')

error('Input file %s does not exist', inputFile);

 end

 % Read CSV file

 data = readtable(inputFile);

 % Verify expected columns exist

requiredColumns = {'StudentID', 'Name', 'Math', 'Science', 'English',

'History'};

missingColumns = setdiff(requiredColumns,

data.Properties.VariableNames);

 if ~isempty(missingColumns)

error('Missing columns in input file: %s', strjoin(missingColumns, ', '));

 end

 % Extract grade columns (exclude StudentID and Name)

gradeColumns = data(:,3:end);

gradeMatrix = table2array(gradeColumns);

 % Calculate statistics

studentMeans = mean(gradeMatrix, 2);

subjectMeans = mean(gradeMatrix, 1);

subjectStdDevs = std(gradeMatrix, 0, 1);

 % Find top student

 [maxMean, maxIndex] = max(studentMeans);

topStudent = data.Name{maxIndex};

258

Notes % Create table with student means

resultTable = table(data.StudentID, data.Name, studentMeans, ...

 'VariableNames', {'StudentID', 'Name', 'Average'});

 % Sort by average grade in descending order

resultTable = sortrows(resultTable, 'Average', 'descend');

 % Write results to output file

fileID = fopen(outputFile, 'w');

 if fileID == -1

error('Cannot create output file %s', outputFile);

 end

 % Write header and overall statistics

fprintf(fileID, 'GRADE STATISTICS REPORT\n');

fprintf(fileID, '=====================\n\n');

fprintf(fileID, 'Top student: %s with average %.2f\n\n', topStudent,

maxMean);

 % Write subject statistics

fprintf(fileID, 'SUBJECT STATISTICS:\n');

fprintf(fileID, '-------------------\n');

 for i = 1:length(subjectMeans)

subjectName = gradeColumns.Properties.VariableNames{i};

fprintf(fileID, '%s: Mean = %.2f, StdDev = %.2f\n', ...

subjectName, subjectMeans(i), subjectStdDevs(i));

 end

fprintf(fileID, '\n');

 % Write student ranking

fprintf(fileID, 'STUDENT RANKING BY AVERAGE GRADE:\n');

fprintf(fileID, '--------------------------------\n');

fprintf(fileID, 'Rank\tID\tName\t\tAverage\n');

 for i = 1:height(resultTable)

fprintf(fileID, '%d\t%d\t%s\t\t%.2f\n', ...

i, resultTable.StudentID(i), resultTable.Name{i}, resultTable.Average(i));

259

Notes end

 % Close file

fclose(fileID);

disp(['Statistics successfully written to ', outputFile]);

catch ME

 % Display error information

disp(['Error: ', ME.message]);

disp('Stack trace:');

disp(ME.stack);

 % Ensure file is closed if it was opened

 if exist('fileID', 'var') andandfileID ~= -1

fclose(fileID);

 end

end

Problem 3: GUI-Based Matrix Calculator

Create a simple GUI calculator that allows user to perform basic operations

on two matrices.

Solution:

function matrixCalculator()

% MATRIXCALCULATOR A simple GUI for matrix operations

% Create figure window

fig = figure('Name', 'Matrix Calculator', ...

 'Position', [300 300 500 400], ...

 'NumberTitle', 'off', ...

 'MenuBar', 'none', ...

 'Resize', 'off');

% Create input fields for matrix A

uicontrol('Style', 'text', 'String', 'Matrix A:', ...

 'Position', [20 350 100 20]);

matrixA_Input = uicontrol('Style', 'edit', ...

260

Notes 'Position', [20 300 200 50], ...

 'Max', 2, ... % Enable multiline

 'String', '[1 2; 3 4]');

% Create input fields for matrix B

uicontrol('Style', 'text', 'String', 'Matrix B:', ...

 'Position', [280 350 100 20]);

matrixB_Input = uicontrol('Style', 'edit', ...

 'Position', [280 300 200 50], ...

 'Max', 2, ... % Enable multiline

 'String', '[5 6; 7 8]');

% Create operation selection

uicontrol('Style', 'text', 'String', 'Operation:', ...

 'Position', [20 240 100 20]);

operationDropdown = uicontrol('Style', 'popupmenu', ...

 'String', {'Addition (A+B)', 'Subtraction (A-B)', 'Multiplication (A*B)', ...

 'Element-wise Multiplication (A.*B)', 'Determinant of A', 'Inverse of A'},

...

 'Position', [20 210 200 30], ...

 'Value', 1);

% Create calculate button

calculateButton = uicontrol('Style', 'pushbutton', ...

 'String', 'Calculate', ...

 'Position', [250 210 100 30], ...

 'Callback', @calculateButtonPushed);

% Create output text area

uicontrol('Style', 'text', 'String', 'Result:', ...

 'Position', [20 170 100 20]);

resultText = uicontrol('Style', 'text', ...

 'Position', [20 50 460 120], ...

 'HorizontalAlignment', 'left', ...

 'BackgroundColor', [1 1 1], ...

 'Style', 'edit', ...

 'Max', 2, ... % Enable multiline

 'Enable', 'inactive'); % Make it read-only

% Status bar for error messages

statusBar = uicontrol('Style', 'text', ...

 'Position', [20 10 460 30], ...

261

Notes 'BackgroundColor', [1 0.8 0.8], ...

 'Visible', 'off');

% Callback function for calculate button

function calculateButtonPushed(~, ~)

 try

 % Hide error message if previously shown

set(statusBar, 'Visible', 'off');

 % Get matrices from input fields

matrixAString = get(matrixA_Input, 'String');

matrixBString = get(matrixB_Input, 'String');

 % Evaluate matrix strings to create actual matrices

 A = eval(matrixAString);

 B = eval(matrixBString);

 % Get selected operation

 operation = get(operationDropdown, 'Value');

 % Perform selected operation

 switch operation

 case 1 % Addition

 if isequal(size(A), size(B))

 result = A + B;

resultStr = 'A + B = ';

 else

error('Matrices must have same dimensions for addition');

 end

 case 2 % Subtraction

 if isequal(size(A), size(B))

 result = A - B;

resultStr = 'A - B = ';

 else

error('Matrices must have same dimensions for subtraction');

 end

262

Notes case 3 % Multiplication

 if size(A, 2) == size(B, 1)

 result = A

263

Notes UNIT XI

Practical Applications

Overview of MATLAB Programming

MATLAB, an acronym for Matrix Laboratory, offers a powerful programming

environment that integrates computational capabilities with an understandable

vocabulary tailored for scientific and engineering applications.

Fundamentally, MATLAB regards all variables as matrices or arrays,

facilitating expression of complex mathematical processes in a succinct

format that closely mirrors conventional mathematical notation. This matrix-

oriented methodology differentiates MATLAB from numerous somewhere

programming languages, rendering it especially adept for numerical analysis,

algorithm building, and data processing jobs. MATLAB programming

environment has numerous essential components that collaboratively provide

a comprehensive platform for technical computing. Command Window

functions as an interactive interface that allows users to execute commands

directly, rendering it suitable for exploratory investigation and rapid

calculations. Editor enables users to generate script documents (with a .m

extension) that encapsulate sequences of MATLAB commands for

simultaneous execution, facilitating more intricate and reusable

programming. Functions that accept input arguments and return output values

may also be defined in independent documents, hence enhancing modular

code design and reusability. MATLAB's programming language encompasses

a comprehensive array of built-in functions and operations, addressing a

spectrum from fundamental arithmetic to sophisticated mathematical domains

such as linear algebra, statistics, Fourier analysis, and optimization. language

syntax is crafted to be user-friendly for individuals with less programming

knowledge, while also offering complexity and versatility required for

intricate applications. In MATLAB, variables are dynamically typed,

indicating that it type need not be declared prior to usage, and y may change

type during execution. This adaptability, coupled with MATLAB's automated

memory management, enables programmers to concentrate on problem-

solving it than overseeing low-level implementation details.

264

Notes Conditional Statements (if, else, switch)

Conditional statements constitute foundation of decision-making logic in

MATLAB programming, enabling code execution to diverge based on defined

criteria. primary conditional structure is `if` statement, which assesses a

logical expression and runs a code block just when that expression is true. In

MATLAB, a `if` statement commences with keyword `if`, followed by a

condition, n executable code block, and concludes with `end` keyword.

condition may be any expression that resolves to a logical scalar (a singular

true or false value), including comparisons utilizing operators such as `==`

(equality), `~=` (inequality), `<` (less than), `>` (greater than), `<=` (less than

or equal to), and `>=` (greater than or equal to). In more intricate decision-

making situations, MATLAB permits augmentation of `if` statements with

`elseif` and `else` clauses. `elseif` clause offers additional conditions to

evaluate when initial `if` condition is false, establishing a sequential

assessment process in which MATLAB examines each condition in

succession until it identifies a true condition or concludes structure. optional

`else` phrase delineates code to execute when none of preceding criteria are

satisfied, functioning as a default or catch-all scenario. This hierarchical

framework facilitates execution of multi-branch logic while preserving code

clarity. `switch` statement provides a more refined alternative to numerous

`if-elseif` structures when addressing various discrete scenarios derived from

a single variable or expression. A ̀ switch` statement in MATLAB commences

with keyword `switch`, succeeded by an expression for evaluation, followed

by several `case` blocks delineating potential values and it corresponding

code, an optional `somewherewise` block for addressing unmatched values,

and concludes with `end` keyword. In contrast to several somewhere

programming languages, MATLAB's `switch` statement does not exhibit "fall

through" behavior; only codewithin corresponding case block is run.

`switch` statement accommodates not just numerical and string comparisons

but also cell arrays of potential values, enhancing its versatility for pattern-

matching situations.

Iterative Constructs (for, while, break, continue)

MATLAB provides robust looping features that facilitate repetitive execution

of code segments, crucial for iterative algorithms, data processing, and

simulation. `for` loop offers a systematic method for iteration, executing a

265

Notes code block a specified number of times. A `for` loop in MATLAB is

fundamentally structured as ̀ for index = array`, anywhere ̀ index` is a variable

that iteratively assumes each value in `array`, succeeded by executable code

block, and concluding with a `end` statement. array may consist of a basic

range defined by colon operator (e.g., `1:10` for integers 1 to 10), a more

intricate range with a designated step size (e.g., `0:0.5:5` for values from 0 to

5 in increments of 0.5), or any arbitrary array or matrix. During iteration of a

matrix, loop variable sequentially assumes each column of matrix. In

scenarios when iteration count cannot be predetermined, MATLAB offers

`while` loop, which persists in execution as long as a designated condition is

satisfied. A `while` loop commences with keyword `while`, succeeded by a

logical condition, followed by executable code block, and concludes with a

`end` statement. condition is assessed prior to each iteration, and loop

concludes immediately when condition is false. Consequently, `while` loops

are especially advantageous for convergence algorithms, user interaction

situations, and data processing that persists until specific conditions are

fulfilled. In both `for` and `while` loops, MATLAB accommodates flow

control expressions that alter standard sequential execution. `break`

statement promptly concludes loop upon encounter, redirecting control to

first statement following loop's termination. This is beneficial for premature

termination scenarios, such as when a solution is identified or an erroneous

situation is recognized. `continue` statement, in conjunction with `break`,

bypasses remaining code in current iteration and advances immediately to

subsequent iteration. This facilitates efficient management of exceptional

cases or erroneous data without compromising integrityof overall loop

structure. MATLAB accommodates intricate nested loop structures with

labeled loops and labeled break statements, allowing for exact control over

termination of specific loop levels in multi-level iteration contexts.

Vectorized Operations Versus Loops

One of MATLAB's most potent features is its capacity to execute actions on

entire arrays without necessity of explicit loops, a concept referred to as

vectorization. Vectorized operations utilize MATLAB's improved matrix

processing capabilities to perform calculations far faster than comparable

loop-based implementations. It than processing components sequentially

using iterative loops, vectorized code does operations on full arrays

concurrently, leveraging MATLAB's highly efficient underlying libraries and

266

Notes capacity for parallel processing. fundamental form of vectorization entails

element-wise operations utilizing MATLAB's array operators, indicated by a

preceding dot (e.g., `.*` for element-wise multiplication, `.^` for element-wise

exponentiation, `./` for element-wise division). It operators execute

designated operation on corresponding elements in arrays of compatible

dimensions, yielding a result array of identical size. In addition to

fundamental arithmetic, numerous built-in functions in MATLAB are natively

vectorized, allowing m to accept array inputs and generate array outputs

without necessity of explicit loops. Functions such as `sin()`, `exp()`, `log()`,

and `abs()` inherently execute element-wise on arrays, anywhereas functions

like `sum()`, `mean()`, and `max()` conduct reduction operations across

designated dimensions of multi-dimensional arrays. performance benefit of

vectorization gets progressively more substantial with larger datasets.

Benchmark comparisons between vectorized operations and corresponding

for-loop implementations frequently demonstrate speed enhancements

ranging from 10x to over 100x, especially with substantial arrays.

performance enhancement arises from multiple factors: vectorized operations

diminish interpreter overhead by reducing function calls, facilitate compiler

optimizations such as loop unrolling and SIMD (Single Instruction, Multiple

Data) execution, and permit MATLAB to utilize highly optimized linear

algebra libraries like BLAS and LAPACK. Notwithstanding evident benefits

of vectorization, re exist situations anywhere loops are indispensable or even

advantageous. Operations with dependencies between iterations, such as

specific recursive computations or time-series analysis, cannot be entirely

vectorized. Algorithms necessitating dynamic decision-making during

iterative process may require explicit loop constructs in conjunction with

conditional expressions. Effective MATLAB programming typically requires

a careful integration of vectorized operations anywhere feasible and loops

when essential, reby enhancing both performance and code readability.

Managing User Input and Output in MATLAB

Effective user interaction is a vital component of numerous MATLAB

applications, and language offers various methods for acquiring user input

and delivering output clearly and informatively. `input()` function solicits

data from user via command-line input and pauses for keyboard entry. This

function accepts a text argument that specifies prompt message and returns

evaluated result of user's input. By default, MATLAB endeavors to interpret

267

Notes input as a MATLAB expression, permitting users to input variables,

mathematical expressions, or function calls. To receive string input without

evaluation, 's' option may be utilized (e.g., `input('Enter your name: ', 's')`).

For more organized input, MATLAB has `menu()` function, which generates

a modal dialog window containing a list of alternatives for user selection. This

function provides indexof chosen option, facilitating implementation of

decision trees or option selection in scripts. MATLAB's GUIDE (Graphical

User Interface Development Environment) and App Designer offer extensive

toolkits for developing graphical applications with text fields, buttons, sliders,

and many interactive components. It technologies enable developers to

construct aesthetically pleasing apps that record user input using GUI

components instead of command-line interaction. MATLAB offers various

tools for presenting information to users on output side. fundamental

function is `disp()`, which presents value of a variable or expression without

displaying variable name. `fprintf()` function provides meticulous control

over output formatting with C-style format specifiers, facilitating aligned

columns, designated decimal accuracy, and diverse number representations.

In context of big matrices or datasets, procedures such as `table()` provide

prepared table displays with designated row and column names, anywhereas

visualization tools from MATLAB's comprehensive plotting package offer

graphical representations of data. `waitbar()` function generates a progress

bar for extended processes, which can be updated to reflect completion status,

anywhereas `msgbox()`, `warndlg()`, and `errordlg()` functions present

modal dialog boxes for information, warnings, and errors, respectively. In

debugging scenarios, `assert()` method integrates validation with customized

error messages, and extensive try-catch exception handling architecture

facilitates smooth error recovery with useful user messages.

File Management: Input and Output Operations

MATLAB has an extensive array of functions for file interaction, allowing

programs to read input data, save results, and communicate with somewhere

software systems. Fundamentally, MATLAB provides advanced tools for

importing and exporting workspace variables. `save` command archives

variables from MATLAB workspace into a .mat file, preserving both

valuesand structureof data. In contrast, `load` command imports variables

from .mat documents into workspace. It functions facilitate selective

saving/loading of certain variables, employ compression to minimize file size,

268

Notes and ensure backward compatibility with earlier MATLAB versions.

MATLAB has various specialized functions for text-based data, designed for

certain file formats. ̀ dlmread()` and ̀ dlmwrite()` functions manage delimiter-

separated documents, such as CSV or tab-delimited documents, by

automatically interpreting structure according to designated delimiter.

`readtable()` method generates table objects that maintain data and its

structure for intricate text documents with headers, mixed data types, or

irregular formats, anywhereas `writetable()` facilitates export of tables to

diverse text formats. `textscan()` function provides exact control over field

widths, data types, and management of exceptional instances such as absent

data or comment lines when dealing with fixed-width formatted text

documents. MATLAB offers low-level file I/O routines for binary data,

designed after C language file operations. `fopen()` function opens a file and

returns a file identification for subsequent operations, anywhereas `fread()`

and `fwrite()` execute binary reading and writing, allowing for control over

data types and byte order. It routines are vital for connecting with binary

formats from external systems or for managing extensive datasets when

performance is paramount. MATLAB has dedicated functionality for

prevalent scientific and engineering file types. functions `imread()` and

`imwrite()` manage image documents in formats including JPEG, PNG, and

TIFF, anywhereas `audioread()` and `audiowrite()` handle audio documents

such as WAV and MP3. Add-on toolboxes for domain-specific applications

offer functions for formats such as DICOM (medical imaging), netCDF and

HDF5 (scientific data), as well as many CAD and GIS formats. Effective error

handling is crucial when dealing with documents to address situations such as

absent documents, permission conflicts, or data corruption. MATLAB's file

I/O routines use try-catch exception handling system, enabling programs to

identify and address file-related failures effectively, offering users informative

error messages and possible recovery solutions.

Debugging and Error Management

Debugging and error handling are essential components of MATLAB

programming that guarantee code dependability, maintainability, and user

pleasure. MATLAB offers an extensive array of debugging tools that assist

programmers in swiftly identifying and rectifying errors. embedded debugger

permits establishment of breakpoints at certain lines of code, anywhere

execution halts, facilitating examination of variable values, call stack, and

269

Notes program state at that moment. Upon pausing execution, debugger facilitates

incremental execution using instructions such as "step" (execute current line

and halt at subsequent line), "step in" (enter functions invoked from current

line), and "step out" (finish current function and return to invoking function).

workspace browser offers a visual depiction of all variables inside current

scope, facilitating examination and alteration of it values during debugging

sessions. MATLAB provides conditional breakpoints for intricate debugging

situations, which halt execution solely when designated criteria are satisfied,

facilitating focused analysis of problematic instances without need to

manually traverse standard execution paths. In addition to interactive

debugger, MATLAB offers programmatic error management via try-catch

construct. This technique enables code to execute activities that may fail

(inside "try" block) and delineate remedial measures in event of an error

(within "catch" block). This framework is especially beneficial for managing

expected error scenarios such as file access problems, network timeouts, or

erroneous user input, allowing programs to react graciously instead of

terminating unexpectedly. fundamental syntax comprises a `try` block that

encapsulates possibly erroneous code, succeeded by a `catch` block that

activates just if an error transpires within try block. optional `catch ME`

construct captures error object in variable `ME`, granting access to

comprehensive details regarding problem, such as message, identifier, and

call stack. MATLAB offers `error()` function for purpose of controlled error

production, which triggers an exception accompanied by a designated

message and identifier. This is beneficial for verifying input parameters and

preconditions, ensuring that erroneous operations are identified promptly with

informative error messages. `warning()` method generates warnings that

notify users of potential difficulties without interrupting execution, serving as

a tool for non-critical conditions that require attention but do not obstruct

program continuation. MATLAB provides assertion methods such as

`assert()` and `validateattributes()` for systematic input validation, which

verify conditions and automatically produce relevant error messages upon

validation failure. `narginchk()` method explicitly verifies quantity of input

arguments to a function, guaranteeing that callers supply anticipated

parameters.

Optimal Practices in MATLAB Programming

270

Notes Implementing best practices in MATLAB programming results in code that is

accurate, comprehensible, sustainable, and efficient. A crucial principle is

unambiguous structuring of code into suitably sized functional units. Instead

of producing monolithic scripts, well-structured MATLAB programs

compartmentalize functionality into functions, each doing a specific, well

defined task. This modular methodology enhances clarity, enables testing, and

encourages code reutilization. Functions must adhere to single responsibility

concept, managing a singular coherent task instead of several unconnected

actions. For extensive projects, consolidating similar functions into packages

or bespoke toolboxes offers enhanced organization and namespace control.

designation of variables is a crucial element of comprehensible code.

Descriptive and relevant variable names that convey it purpose enhance code

self-documentation and comprehension. MATLAB's nomenclature style often

employs camelCase for variables and functions (e.g., `filterCutoff`,

`calculateGradient`), although constants are frequently represented in

uppercase with underscores (e.g., `MAX_ITERATIONS`,

`DEFAULT_TOLERANCE`). Refraining from using single-letter variable

names, save in very restricted contexts such as loop indices, markedly

enhances code clarity, especially when reviewing code after a period of

absence. Documentation is crucial for both solo and collaborative endeavors.

MATLAB facilitates organized function comments that interface with help

system, offering users details like purpose, inputs, outputs, and usage

examples right from command window. initial remark line of a function acts

as its H1 line, appearing in search results and function listings, reby

necessitating a precise and succinct description. In code body, comments

ought to elucidate "why" actions are taken, emphasizing aim and methodology

it than reiterating evident processes. Performance optimization is an essential

factor for computationally demanding MATLAB applications. In addition to

essential principle of vectorizing operations whenever feasible, methods such

as preallocating arrays prior to populating m in loops can significantly

enhance execution speed by preventing repetitive memory reallocations.

Profiling tools such as MATLAB Profiler assist in identifying bottlenecks by

quantifying execution time across various functions and code lines, reby

directing optimization efforts to areas with most potential for improvement.

Effective memory management involves utilizing suitable data types (such as

single it than double for extensive arrays when full precision is unnecessary)

and deallocating big temporary variables once y are no longer required to

271

Notes regulate memory consumption. Effective error handling is a crucial best

practice, integrating input validation at function entry points with organized

try-catch blocks for potentially failing operations. User-facing applications

must deliver informative error messages that not only specify issue but also

propose possible remedies or alternatives. In numerical algorithms,

preemptively verifying edge cases such as division by zero, logarithms of

negative values, or matrix singularity prior to executing operations can avert

obscure runtime problems and yield more substantive feedback. Version

control technologies such as Git, although not integrated inside MATLAB, are

becoming seen as vital for MATLAB development. y offer historical tracking,

promote collaboration, and support methodical testing and deployment

processes. Integrating MATLAB development with continuous integration

systems enables automate testing across several platforms and MATLAB

versions, assuring uniform performance in varied contexts.

SELF ASSESSMENT QUESTIONS

Multiple-Choice Questions (MCQs)

1. Which of the following is a valid conditional statement in MATLAB?

A) if-then-else

B) if-else

C) switch-case-default

D) Both B and C

Answer: D) Both B and C

2. What is the correct syntax for a for loop in MATLAB?

A) for i = 1:10, disp(i), end

B) for(i = 1:10) disp(i);

C) loop for i = 1:10 { disp(i); }

D) for i in range(1,10) { disp(i); }

Answer: A) for i = 1:10, disp(i), end

3. What will the following MATLAB code output?

matlab

x = 5;

if x > 3

272

Notes disp('Greater than 3');

else

disp('Less than or equal to 3');

end

A) Greater than 3

B) Less than or equal to 3

C) Error

D) Nothing

Answer: A) Greater than 3

4. Which MATLAB function is used to take user input?

A) input()

B) get()

C) scanf()

D) readline()

Answer: A) input()

5. What is the main advantage of vectorized operations over loops in

MATLAB?

A) They are easier to read but slower

B) They reduce memory usage significantly

C) They execute faster and improve performance

D) They allow for infinite iterations

Answer: C) They execute faster and improve performance

6. Which of the following statements about while loops in MATLAB is

correct?

A) They execute at least once even if the condition is false

B) They execute as long as the condition is true

C) They always execute a fixed number of times

D) They must contain a break statement

Answer: B) They execute as long as the condition is true

7. Which function is used to read data from a file in MATLAB?

273

Notes A) fopen()

B) fscanf()

C) readmatrix()

D) All of the above

Answer: D) All of the above

8. What does the try-catch block do in MATLAB?

A) It tries to catch syntax errors in the code

B) It is used for handling errors and exceptions

C) It runs faster than normal execution

D) It is used for debugging only

Answer: B) It is used for handling errors and exceptions

9. What does the break statement do inside a loop?

A) Terminates the loop immediately

B) Skips the next iteration and continues

C) Exits MATLAB

D) Displays an error message

Answer: A) Terminates the loop immediately

10. What is a good MATLAB programming practice?

A) Writing long, complex scripts without comments

B) Using meaningful variable names and comments

C) Avoiding indentation for better readability

D) Using loops instead of built-in vectorized functions

Answer: B) Using meaningful variable names and comments

Short Questions:

1. What are conditional statements in MATLAB?

2. How does if-else structure work in MATLAB?

3. What is difference between for and while loops?

4. What is vectorization in MATLAB?

5. How do you take user input in MATLAB?

274

Notes 6. What is roleof switch statement in MATLAB?

7. How do you read data from a file in MATLAB?

8. How do you write data to a file in MATLAB?

9. What are debugging tools available in MATLAB?

10. How does error handling work in MATLAB?

Long Questions:

1. Explain use of conditional statements (if, else, switch) in MATLAB

with examples.

2. Compare for and while loops in MATLAB and discuss it applications.

3. What is vectorization? How does it improve efficiency of MATLAB

programs?

4. Discuss different methods for taking user input and displaying output

in MATLAB.

5. Explain how to read and write documents in MATLAB using file I/O

functions.

6. Describe debugging tools available in MATLAB andit importance.

7. Explain error handling in MATLAB using try and catch statements.

8. Discuss best practices for writing efficient MATLAB code.

9. How can loops be replaced with vectorized operations in MATLAB?

Provide examples.

10. Write a MATLAB program that reads a matrix from a file, performs

computations, and writes result to ansomewhere file.

275

Notes MODULE V

UNIT XII

POLYNOMIALS, CURVE FITTING, AND INTERPOLATION –

APPLICATIONS IN NUMERICAL ANALYSIS

5.0 Objective

• Understand polynomial representation and operations in MATLAB.

• Learn about curve fitting techniques andit applications.

• Explore interpolation methods andit significance.

• Apply numerical analysis techniques using MATLAB.

5.1 Overview to Polynomials in MATLAB

What are Polynomials?

A polynomial is a mathematical expression consisting of variables (usually x)

and coefficients, involving only addition, subtraction, multiplication, and

non-negative integer exponents. general form of a polynomial in one variable

x is:

P(x) = a_n * x^n + a_(n-1) * x^(n-1) + ... + a_2 * x^2 + a_1 * x + a_0

Anywhere:

• a_n, a_(n-1), ..., a_1, a_0 are constants called coefficients

• n is a non-negative integer called degreeof polynomial

• a_n ≠ 0 if polynomial has degree n

Polynomial Applications

Polynomials have numerous applications in engineering and scientific

problems:

1. Approximation and Modeling: Representing complex functions

with simpler polynomial expressions

2. Signal Processing: Filtering and transformation of signals

276

Notes 3. Control Systems: Modeling system responses and designing

controllers

4. Data Fitting: Approximating empirical data with continuous

functions

5. Numerical Analysis: Solving differential equations

6. Computer Graphics: Defining curves and surfaces

MATLAB Polynomial Representation

MATLAB represents polynomials as row vectors containing polynomial

coefficients in descending order of powers. For polynomial:

P(x) = a_n * x^n + a_(n-1) * x^(n-1) + ... + a_2 * x^2 + a_1 * x + a_0

 MATLAB representation is:

p = [a_n, a_(n-1), ..., a_2, a_1, a_0]

Examples:

1. P(x) = 3x^4 + 2x^3 - 5x^2 + x - 7 MATLAB representation: p = [3,

2, -5, 1, -7]

2. P(x) = x^3 - 6 MATLAB representation: p = [1, 0, 0, -6]

3. P(x) = 5 MATLAB representation: p = [5]

Creating and Manipulating Polynomials

Basic operations with polynomials in MATLAB:

% Define polynomials

p1 = [1, 0, -2, 0, 1]; % x^4 - 2x^2 + 1

p2 = [1, 3, 0]; % x^2 + 3x

% Polynomial addition

p_sum = polyadd(p1, p2); % Or simply: conv(p1, [1]) + conv(p2, [zeros(1,

length(p1)-length(p2)), 1])

% Polynomial multiplication

p_product = conv(p1, p2);

% Polynomial division

[q, r] = deconv(p1, p2); % Returns quotient q and remainder r

277

Notes % Polynomial evaluation

x = 2;

y = polyval(p1, x);

% Display result

disp(['P(', num2str(x), ') = ', num2str(y)]);

5.2 Polynomial Representation and Operations (poly, roots, polyval)

Key MATLAB Functions for Polynomials

MATLAB provides several built-in functions for working with polynomials:

1. poly Function

 poly function creates a polynomial with specified roots.

Syntax: p = poly(r)

Input:

• r: Vector containing rootsof polynomial

Output:

• p: Row vector of polynomial coefficients in descending order

Example:

% Create a polynomial with roots at 1, 2, and 3

r = [1, 2, 3];

p = poly(r)

% Result: p = [1, -6, 11, -6]

% This represents polynomial x^3 - 6x^2 + 11x - 6

2. roots Function

roots function finds roots of a polynomial.

Syntax: r = roots(p)

Input:

278

Notes • p: Row vector of polynomial coefficients in descending order

Output:

• r: Column vector containing rootsof polynomial

Example:

% Find rootsof polynomial x^3 - 6x^2 + 11x - 6

p = [1, -6, 11, -6];

r = roots(p)

% Result: r = [3; 2; 1]

3. polyval Function

polyval function evaluates a polynomial at specified values.

Syntax: y = polyval(p, x)

Inputs:

• p: Row vector of polynomial coefficients in descending order

• x: Value(s) at which to evaluate polynomial

Output:

• y: Result of polynomial evaluation at x

Example:

% Evaluate polynomial x^3 - 6x^2 + 11x - 6 at x = 4

p = [1, -6, 11, -6];

y = polyval(p, 4)

% Result: y = 24

% Evaluate polynomial at multiple points

x = linspace(0, 5, 100);

y = polyval(p, x);

plot(x, y)

title('Polynomial: x^3 - 6x^2 + 11x - 6')

xlabel('x')

279

Notes ylabel('P(x)')

grid on

4. polyder Function

polyder function calculates derivative of a polynomial.

Syntax: dp = polyder(p)

Input:

• p: Row vector of polynomial coefficients in descending order

Output:

• dp: Row vector representing coefficientsof derivative polynomial

Example:

% Find derivativeof polynomial x^3 - 6x^2 + 11x - 6

p = [1, -6, 11, -6];

dp = polyder(p)

% Result: dp = [3, -12, 11]

% This represents polynomial 3x^2 - 12x + 11

5. polyint Function

polyint function calculates integral of a polynomial.

Syntax: ip = polyint(p, C)

Inputs:

• p: Row vector of polynomial coefficients in descending order

• C: Constant of integration (default is 0)

Output:

• ip: Row vector representing coefficientsof integrated polynomial

Example:

280

Notes % Find integralof polynomial x^2 + 2x + 1

p = [1, 2, 1];

ip = polyint(p)

% Result: ip = [0.3333, 1, 1, 0]

% This represents polynomial (1/3)x^3 + x^2 + x + 0

Polynomial Operations and Applications

Polynomial Arithmetic

MATLAB doesn't have dedicated functions for polynomial addition and

subtraction, but you can use basic vector operations with proper padding:

% Define polynomials

p1 = [3, 0, 2]; % 3x^2 + 2

p2 = [1, -4, 0, 5]; % x^3 - 4x^2 + 5

% Pad shorter polynomial with zeros

p1_padded = [zeros(1, length(p2)-length(p1)), p1]; % [0, 3, 0, 2]

% Addition

p_sum = p1_padded + p2 % [1, -1, 0, 7] representing x^3 - x^2 + 7

% Subtraction

p_diff = p1_padded - p2 % [-1, 7, 0, -3] representing -x^3 + 7x^2 - 3

For polynomials with same degree, addition and subtraction are

straightforward:

p1 = [2, 3, 4]; % 2x^2 + 3x + 4

p2 = [1, 0, 2]; % x^2 + 2

% Addition

p_sum = p1 + p2 % [3, 3, 6] representing 3x^2 + 3x + 6

% Subtraction

p_diff = p1 - p2 % [1, 3, 2] representing x^2 + 3x + 2

Solving Polynomial Equations

To solve polynomial equations of form P(x) = 0:

% Solve x^3 - 7x^2 + 14x - 8 = 0

p = [1, -7, 14, -8];

281

Notes r = roots(p)

% Check solutions by evaluating polynomial at each root

for i = 1:length(r)

 result = polyval(p, r(i));

disp(['P(', num2str(r(i)), ') = ', num2str(result)]);

end

Finding Critical Points

Critical points of a polynomial are anywhere its derivative equals zero:

% Find critical points of P(x) = x^4 - 4x^3 + 6x^2 - 4x + 1

p = [1, -4, 6, -4, 1];

% Find derivative

dp = polyder(p); % [4, -12, 12, -4]

% Find critical points

critical_points = roots(dp);

% Classify critical points using second derivative

d2p = polyder(dp); % [12, -24, 12]

for i = 1:length(critical_points)

x_c = critical_points(i);

 % Evaluate second derivative at critical point

 d2p_val = polyval(d2p, x_c);

 if d2p_val > 0

 type = 'Minimum';

 elseif d2p_val < 0

 type = 'Maximum';

 else

 type = 'Inflection point';

 end

disp(['Critical point at x = ', num2str(x_c), ' is a ', type]);

end

282

Notes UNIT XIII

5.3 Curve Fitting Methods (polyfit, fit, Least Squares Method)

Curve fitting is process of constructing a mathematical function that has best

fit to a series of data points. MATLAB offers several tools for curve fitting,

with polynomial fitting being one of most common approaches.

Polynomial Curve Fitting with polyfit

polyfit function finds coefficients of a polynomial of specified degree that

fits data in a least-squares sense.

Syntax: p = polyfit(x, y, n)

Inputs:

• x: Vector of x-coordinates of data points

• y: Vector of y-coordinates of data points

• n: Degree of polynomial to fit

Output:

• p: Row vector of polynomial coefficients in descending order

Example:

% Generate some noisy data

x = linspace(0, 10, 50);

y_true = 2*x.^2 - 3*x + 1;

y = y_true + 10*randn(size(x)); % Add random noise

% Fit polynomials of different degrees

p1 = polyfit(x, y, 1); % Linear fit

p2 = polyfit(x, y, 2); % Quadratic fit

p3 = polyfit(x, y, 3); % Cubic fit

% Evaluate fitted polynomials

y1 = polyval(p1, x);

y2 = polyval(p2, x);

y3 = polyval(p3, x);

283

Notes Curve Fitting with fit Function

 fit function in MATLAB provides more flexibility than polyfit and supports

various fit types.

Syntax: f = fit(x, y, fitType)

Inputs:

• x: Vector of x-coordinates of data points

• y: Vector of y-coordinates of data points

• fitType: String specifying type of fit

Output:

• f: Fit object containing fitted model

Example:

% Generate data

x = linspace(0, 10, 50);

y = 2*exp(0.5*x) + 5*randn(size(x)); % Exponential function with noise

% Create a column vector if needed

x = x(:);

y = y(:);

% Fit different models

f1 = fit(x, y, 'poly3'); % Cubic polynomial

f2 = fit(x, y, 'exp1'); % Single exponential

f3 = fit(x, y, 'a*exp(b*x) + c'); % Custom exponential model

% Plot results

figure

plot(x, y, 'o', 'DisplayName', 'Data')

hold on

plot(f1, 'r-', 'DisplayName', 'Cubic fit')

plot(f2, 'g-', 'DisplayName', 'Exponential fit')

plot(f3, 'b-', 'DisplayName', 'Custom fit')

legend('Location', 'best')

title('Different Types of Curve Fitting')

xlabel('x')

284

Notes ylabel('y')

grid on

Custom Fitting Functions

For more complex models, you can define custom fitting functions:

% Define a custom fitting function

customFunc = fittype('a*sin(b*x + c) + d', 'independent', 'x');

% Generate data for fitting

x = linspace(0, 4*pi, 100);

y_true = 3*sin(2*x + 0.5) + 1;

y = y_true + 0.5*randn(size(x)); % Add noise

% Fit custom function

startPoints = [3, 2, 0.5, 1]; % Initial guess: [a, b, c, d]

f = fit(x', y', customFunc, 'StartPoint', startPoints);

% Display fit parameters

disp(['a = ', num2str(f.a)])

disp(['b = ', num2str(f.b)])

disp(['c = ', num2str(f.c)])

disp(['d = ', num2str(f.d)])

% Plot results

figure

plot(x, y, 'o', 'DisplayName', 'Data')

hold on

plot(f, 'r-', 'LineWidth', 2, 'DisplayName', 'Fitted function')

legend('Location', 'best')

title('Custom Function Fitting: a*sin(b*x + c) + d')

xlabel('x')

ylabel('y')

grid on

Evaluating Goodness of Fit

Several metrics help assess how well a model fits data:

285

Notes 1. R-squared (R²): Coefficient of determination, indicating proportion

of variance explained by model. Values closer to 1 indicate a better

fit.

2. Root Mean Square Error (RMSE): Measures average magnitude

of errors. Lower values indicate a better fit.

3. Sum of Squared Errors (SSE): Sum of squared differences between

observed and predicted values. Lower values indicate a better fit.

% Evaluate goodness of fit

x = linspace(0, 10, 50);

y_true = 2*x.^2 - 3*x + 1;

y = y_true + 5*randn(size(x)); % Add random noise

% Fit a quadratic polynomial

p = polyfit(x, y, 2);

y_fit = polyval(p, x);

% Calculate error metrics

residuals = y - y_fit;

SSE = sum(residuals.^2);

SST = sum((y - mean(y)).^2);

R_squared = 1 - SSE/SST;

RMSE = sqrt(mean(residuals.^2));

% Display metrics

disp(['SSE: ', num2str(SSE)])

disp(['R²: ', num2str(R_squared)])

disp(['RMSE: ', num2str(RMSE)])

5.4 Interpolation Techniques (interp1, interp2, spline)

Interpolation is process of estimating values between known data points.

Unlike curve fitting, interpolation creates a function that passes exactly

through given data points.

One-Dimensional Interpolation with interp1

 interp1 function performs one-dimensional interpolation.

Syntax: yi = interp1(x, y, xi, method)

286

Notes Inputs:

• x: Vector of x-coordinates of data points

• y: Vector of y-coordinates of data points

• xi: Points at which to interpolate

• method: Interpolation method (default: 'linear')

Output:

• yi: Interpolated values at points xi

Available Methods:

• 'linear': Linear interpolation (default)

• 'nearest': Nearest neighbor interpolation

• 'next': Next neighbor interpolation

• 'previous': Previous neighbor interpolation

• 'spline': Cubic spline interpolation

• 'pchip': Piecewise cubic Hermite interpolation

• 'makima': Modified Akima cubic interpolation

Example:

% Create sample data

x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

y = [0, 0.8415, 0.9093, 0.1411, -0.7568, -0.9589, -0.2794, 0.6570, 0.9894,

0.4121, -0.5440];

% Points for interpolation

xi = linspace(0, 10, 100);

% Perform different types of interpolation

y_linear = interp1(x, y, xi, 'linear');

y_nearest = interp1(x, y, xi, 'nearest');

y_spline = interp1(x, y, xi, 'spline');

y_pchip = interp1(x, y, xi, 'pchip');

% Plot results

figure

plot(x, y, 'ko', 'MarkerSize', 8, 'DisplayName', 'Data points')

hold on

287

Notes plot(xi, y_linear, 'r-', 'LineWidth', 1.5, 'DisplayName', 'Linear')

plot(xi, y_nearest, 'g--', 'LineWidth', 1.5, 'DisplayName', 'Nearest')

plot(xi, y_spline, 'b-', 'LineWidth', 1.5, 'DisplayName', 'Spline')

plot(xi, y_pchip, 'm-.', 'LineWidth', 1.5, 'DisplayName', 'PCHIP')

legend('Location', 'best')

title('One-Dimensional Interpolation Methods Comparison')

xlabel('x')

ylabel('y')

grid on

Cubic Spline Interpolation with spline

Spline function specifically performs cubic spline interpolation, which creates

a smooth curve passing through all data points.

Syntax: yi = spline(x, y, xi)

Inputs:

• x: Vector of x-coordinates of data points

• y: Vector of y-coordinates of data points

• xi: Points at which to interpolate

Output:

• yi: Interpolated values at points xi

Example:

% Create sample data

x = [0, 1, 2, 3, 4, 5];

y = [0, 0.8415, 0.9093, 0.1411, -0.7568, -0.9589];

% Points for interpolation

xi = linspace(0, 5, 100);

% Perform cubic spline interpolation

yi = spline(x, y, xi);

% Plot results

figure

plot(x, y, 'ko', 'MarkerSize', 8, 'DisplayName', 'Data points')

288

Notes hold on

plot(xi, yi, 'b-', 'LineWidth', 2, 'DisplayName', 'Cubic spline')

legend('Location', 'best')

title('Cubic Spline Interpolation')

xlabel('x')

ylabel('y')

grid on

Two-Dimensional Interpolation with interp2

interp2 function performs interpolation for two-dimensional gridded data.

Syntax: ZI = interp2(X, Y, Z, XI, YI, method)

Inputs:

• X, Y: Matrices or vectors defining coordinates for Z

• Z: Matrix containing values to be interpolated

• XI, YI: Coordinates at which to interpolate

• method: Interpolation method (default: 'linear')

Output:

• ZI: Interpolated values at points (XI, YI)

Example:

% Create a sample 2D grid

[X, Y] = meshgrid(linspace(0, 10, 11), linspace(0, 10, 11));

Z = sin(0.3*X) .* cos(0.3*Y);

% Create a finer grid for interpolation

[XI, YI] = meshgrid(linspace(0, 10, 50), linspace(0, 10, 50));

% Perform different types of interpolation

ZI_linear = interp2(X, Y, Z, XI, YI, 'linear');

ZI_nearest = interp2(X, Y, Z, XI, YI, 'nearest');

ZI_cubic = interp2(X, Y, Z, XI, YI, 'cubic');

ZI_spline = interp2(X, Y, Z, XI, YI, 'spline');

% Plot results

figure

289

Notes % Original data

subplot(2, 2, 1)

mesh(X, Y, Z)

title('Original Data')

xlabel('X')

ylabel('Y')

zlabel('Z')

% Linear interpolation

subplot(2, 2, 2)

mesh(XI, YI, ZI_linear)

title('Linear Interpolation')

xlabel('X')

ylabel('Y')

zlabel('Z')

% Nearest interpolation

subplot(2, 2, 3)

mesh(XI, YI, ZI_nearest)

title('Nearest Interpolation')

xlabel('X')

ylabel('Y')

zlabel('Z')

% Cubic interpolation

subplot(2, 2, 4)

mesh(XI, YI, ZI_cubic)

title('Cubic Interpolation')

xlabel('X')

ylabel('Y')

zlabel('Z')

sgtitle('2D Interpolation Methods Comparison')

Solved Examples

Example 1: Finding Roots of a Polynomial

Problem: Find rootsof polynomial P(x) = x^4 - 8x^3 + 24x^2 - 32x + 16 and

verify results.

Solution:

290

Notes % Define polynomial coefficients

p = [1, -8, 24, -32, 16];

% Find roots

r = roots(p)

% Verify results by evaluating polynomial at each root

for i = 1:length(r)

 result = polyval(p, r(i));

disp(['P(', num2str(r(i)), ') = ', num2str(result)]);

end

% Reconstruct polynomialfrom roots

p_reconstructed = poly(r);

disp('Original polynomial coefficients:');

disp(p);

disp('Reconstructed polynomial coefficients:');

disp(p_reconstructed);

Output:

r =

 4.0000

 2.0000

 2.0000

 0.0000

P(4) = 0

P(2) = 0

P(2) = 0

P(0) = 16

Original polynomial coefficients:

 1.0000 -8.0000 24.0000 -32.0000 16.0000

Reconstructed polynomial coefficients:

 1.0000 -8.0000 24.0000 -32.0000 16.0000

Explanation: polynomial P(x) = x^4 - 8x^3 + 24x^2 - 32x + 16 has roots at

x = 4, x = 2 (double root), and x = 0. roots function successfully finds it roots,

and we verify m by evaluating polynomial at each root. values are very close

to zero (within numerical precision). We also reconstruct polynomial from

291

Notes its roots using poly function and confirm that resultmatches original

polynomial.

Example 2: Polynomial Curve Fitting to Noisy Data

Problem: Generate 20 points from function f(x) = 3x^2 - 2x + 1 in range [0,

5] with added random noise. n fit polynomials of degrees 1, 2, and 3 to data

and compare results.

Solution:

% Generate noisy data

x = linspace(0, 5, 20);

y_true = 3*x.^2 - 2*x + 1;

noise = 5*randn(size(x));

y_noisy = y_true + noise;

% Fit polynomials of different degrees

p1 = polyfit(x, y_noisy, 1); % Linear fit

p2 = polyfit(x, y_noisy, 2); % Quadratic fit

p3 = polyfit(x, y_noisy, 3); % Cubic fit

% Evaluate fitted polynomials

x_eval = linspace(0, 5, 100);

y1 = polyval(p1, x_eval);

y2 = polyval(p2, x_eval);

y3 = polyval(p3, x_eval);

y_true_eval = 3*x_eval.^2 - 2*x_eval + 1;

% Calculate error metrics for each fit

rmse1 = sqrt(mean((y_true_eval - y1).^2));

rmse2 = sqrt(mean((y_true_eval - y2).^2));

rmse3 = sqrt(mean((y_true_eval - y3).^

Types of Curve Fitting

Exponential Fitting

For data that exhibits exponential growth or decay:

f(x) = a·eᵇˣ

292

Notes This can be linearized by taking logarithms: ln(f(x)) = ln(a) + bx

Power Law Fitting

For data following a power law relationship:

f(x) = a·xᵇ

This can be linearized by taking logarithms: ln(f(x)) = ln(a) + b·ln(x)

Evaluating Fit Quality

 quality of a curve fit is commonly assessed using:

Economists use curve fitting to model relationships between economic

variables, such as:

• Price and demand curves

• Production and cost functions

• Economic growth models

Physics and Engineering

In physics and engineering, curve fitting helps in:

• Analyzing experimental data

• Deriving empirical formulas

• Calibrating instruments

Medicine and Biology

In medical research:

• Modeling drug response curves

• Analyzing growth patterns

• Studying disease progression

Environmental Science

Environmental scientists use curve fitting for:

293

Notes • Climate trend analysis

• Pollution dispersion models

• Ecosystem population dynamics

Solved Problems in Curve Fitting

Problem 1: Linear Regression Application

Problem: A coffee shop recorded its daily customers and revenue (in dollars)

for 7 days:

Day Customers (x) Revenue (y)

1 45 320

2 57 380

3 62 400

4 73 460

5 85 520

6 91 550

7 98 590

Find linear relationship between customers and revenue, and predict revenue

for 110 customers.

Solution:

Step 1: Calculate sums needed for linear regression formula. n = 7 Σx = 45

+ 57 + 62 + 73 + 85 + 91 + 98 = 511 Σy = 320 + 380 + 400 + 460 + 520 + 550

+ 590 = 3220 Σ(x·y) = (45×320) + (57×380) + (62×400) + (73×460) +

(85×520) + (91×550) + (98×590) = 246,290 Σ(x²) = 45² + 57² + 62² + 73² +

85² + 91² + 98² = 39,989

Step 2: Calculate y = ax + b. a = [n(Σx·y) - (Σx)(Σy)] / [n(Σx²) - (Σx)²] a =

[7(246,290) - (511)(3220)] / [7(39,989) - (511)²] a = [1,724,030 - 1,645,420]

/ [279,923 - 261,121] a = 78,610 / 18,802 a = 4.18

b = [(Σy) - a(Σx)] / n b = [3220 - 4.18(511)] / 7 b = [3220 - 2136.98] / 7 b =

1083.02 / 7 b = 154.72

Step 3: Write linear equation. y = 4.18x + 154.72

294

Notes Step 4: Predict revenue for 110 customers. y = 4.18(110) + 154.72 y = 459.8

+ 154.72 y = 614.52

Therefore, predicted revenue for 110 customers is $614.52.

Problem 2: Polynomial Curve Fitting

Problem: following data represents efficiency of a chemical reaction at

different temperatures:

Temperature (°C) Efficiency (%)

15 42

25 58

35 67

45 71

55 69

65 62

75 48

Fit a quadratic polynomial to this data and determine temperature for

maximum efficiency.

Solution:

Step 1: Set up a quadratic fit, we have three normal equations: “(Σx²)a + (Σx)b

+ nc = Σy (Σx³)a + (Σx²)b + (Σx)c = Σ(xy) (Σx⁴)a + (Σx³)b + (Σx²)c = Σ(x²y)”

Step 2: Calculate required sums. n = 7 Σx = 15 + 25 + 35 + 45 + 55 + 65 +

75 = 315 Σy = 42 + 58 + 67 + 71 + 69 + 62 + 48 = 417 Σx² = 15² + 25² + 35²

+ 45² + 55² + 65² + 75² = 17,675 Σx³ = 15³ + 25³ + 35³ + 45³ + 55³ + 65³ + 75³

= 1,141,875 Σx⁴ = 15⁴ + 25⁴ + 35⁴ + 45⁴ + 55⁴ + 65⁴ + 75⁴ = 78,736,875 Σ(xy)

= (15×42) + (25×58) + (35×67) + (45×71) + (55×69) + (65×62) + (75×48) =

20,030 Σ(x²y) = (15²×42) + (25²×58) + (35²×67) + (45²×71) + (55²×69) +

(65²×62) + (75²×48) = 1,049,950

Step 3: Substitute into normal equations. 17,675a + 315b + 7c = 417

1,141,875a + 17,675b + 315c = 20,030 78,736,875a + 1,141,875b + 17,675c

= 1,049,950

295

Notes Step 4: we get: a = -0.0234 b = 2.2371 c = -1.4571

Step 5: Write quadratic equation. y = -0.0234x² + 2.2371x - 1.4571

Step 6: Find temperature for maximum efficiency. For a quadratic function,

maximum occurs at x = -b/(2a). x = -2.2371/(2×(-0.0234)) x = 2.2371/0.0468

x = 47.8

Therefore, maximum efficiency occurs at approximately 47.8°C.

Problem 3: Exponential Curve Fitting

Problem: population of bacteria in a culture was measured every hour:

Time (hours) Population (thousands)

0 5

1 9

2 16

3 29

4 54

5 98

Fit an exponential curve to this data and predict population after 7 hours.

Solution:

Let Y = ln(y), A = ln(a), and equation becomes Y = A + bx, which is a linear

equation.

Step 2: Calculate transformed data points.

Time (x) Population (y) Y = ln(y)

0 5 1.6094

1 9 2.1972

2 16 2.7726

3 29 3.3673

4 54 3.9890

5 98 4.5850

296

Notes Step 3: Apply linear regression to transformed data. n = 6 Σx = 0 + 1 + 2 + 3

+ 4 + 5 = 15 ΣY = 1.6094 + 2.1972 + 2.7726 + 3.3673 + 3.9890 + 4.5850 =

18.5205 Σ(xY) = (0×1.6094) + (1×2.1972) + (2×2.7726) + (3×3.3673) +

(4×3.9890) + (5×4.5850) = 55.4141 Σ(x²) = 0² + 1² + 2² + 3² + 4² + 5² = 55

b = [n(Σ(xY)) - (Σx)(ΣY)] / [n(Σx²) - (Σx)²] b = [6(55.4141) - (15)(18.5205)]

/ [6(55) - (15)²] b = [332.4846 - 277.8075] / [330 - 225] b = 54.6771 / 105 b

= 0.5207

A = [ΣY - b(Σx)] / n A = [18.5205 - 0.5207(15)] / 6 A = [18.5205 - 7.8105] /

6 A = 10.71 / 6 A = 1.785

Step 4: Convert back to exponential form. a = e^A = e^1.785 = 5.9598

Therefore, y = 5.9598e^(0.5207x)

Step 5: Predict population after 7 hours. y = 5.9598e^(0.5207×7) y =

5.9598e^3.6449 y = 5.9598 × 38.2773 y = 228.1

Therefore, predicted population after 7 hours is approximately 228.1

thousand bacteria.

Problem 4: Power Law Curve Fitting

Problem: An experiment measured stopping distance of a car at different

speeds:

Speed (mph) Stopping Distance (feet)

20 25

30 55

40 90

50 140

60 195

70 265

Appropriate a power law curvature to this statistics& determine probable

stopping distance at 45 mph.

Solution:

297

Notes We want to fit a power law curve of form y = ax^b.

Step 1: Take logarithm of both sides to linearize equation. log(y) = log(a) +

b·log(x)

Let Y = log(y), X = log(x), A = log(a), and equation becomes Y = A + bX,

which is linear.

Step 2: Calculate transformed data points.

Speed (x) Distance (y) X = log(x) Y = log(y)

20 25 1.3010 1.3979

30 55 1.4771 1.7404

40 90 1.6021 1.9542

50 140 1.6990 2.1461

60 195 1.7782 2.2900

70 265 1.8451 2.4232

Step 3: Apply linear regression to transformed data. n = 6 ΣX = 1.3010 +

1.4771 + 1.6021 + 1.6990 + 1.7782 + 1.8451 = 9.7025 ΣY = 1.3979 + 1.7404

+ 1.9542 + 2.1461 + 2.2900 + 2.4232 = 11.9518 Σ(XY) = (1.3010×1.3979) +

(1.4771×1.7404) + (1.6021×1.9542) + (1.6990×2.1461) + (1.7782×2.2900) +

(1.8451×2.4232) = 20.1487 Σ(X²) = 1.3010² + 1.4771² + 1.6021² + 1.6990² +

1.7782² + 1.8451² = 15.7968

b = [n(Σ(XY)) - (ΣX)(ΣY)] / [n(Σ(X²)) - (ΣX)²] b = [6(20.1487) -

(9.7025)(11.9518)] / [6(15.7968) - (9.7025)²] b = [120.8922 - 116.0539] /

[94.7808 - 94.1385] b = 4.8383 / 0.6423 b = 7.5327

A = [ΣY - b(ΣX)] / n A = [11.9518 - 7.5327(9.7025)] / 6 A = [11.9518 -

73.0854] / 6 A = -61.1336 / 6 A = -10.1889

Step 4: Convert back to power law form. a = 10^A = 10^(-10.1889) = 6.4656

× 10^(-11) Therefore, y = 6.4656 × 10^(-11) × x^7.5327

Step 5: Determine stopping distance at 45 mph. y = 6.4656 × 10^(-11) ×

45^7.5327 y = 6.4656 × 10^(-11) × 3.7969 × 10^11 y = 117.7

298

Notes Therefore, expected stopping distance at 45 mph is approximately 117.7 feet.

Problem 5: R² Calculation for Fit Quality

Unsolved Problems in Curve Fitting

Problem 1: Linear Regression Analysis

A company recorded its advertising expenditure and sales for 8 consecutive

months:

Month Advertising ($1000) Sales ($1000)

1 2.5 120

2 3.2 135

3 5.0 160

4 4.1 150

5 6.2 175

6 7.0 185

7 8.5 210

8 9.3 230

Novelty linear association between advertising expenditure & sales. Calculate

number of purpose (R²) and predict sales if advertising expenditure is

$10,000.

Problem 2: Polynomial Regression for Climate Data

 following data shows relationship between altitude (in kilometers) and

average temperature (in °C) in a mountain region:

Altitude (km) Average Temperature (°C)

0.0 22

0.5 18

1.0 15

1.5 11

2.0 5

299

Notes Altitude (km) Average Temperature (°C)

2.5 0

3.0 -7

3.5 -12

4.0 -20

Fit a cubic polynomial (degree 3) to this data and estimate temperature at an

altitude of 2.75 km.

Problem 3: Exponential Growth in Investment

An investment grew according to following schedule:

Year Value ($)

0 10,000

1 10,520

2 11,050

3 11,620

4 12,230

5 12,840

6 13,510

Fit an exponential growth model of form V(t) = V₀e^(rt) to this data,

anywhere V₀ is initial value and r is growth rate. Determine V₀, r, and

expected value after 10 years.

Problem 4: Power Law Relationship in Physics

A physics experiment measured period of oscillation (T in seconds) of a

pendulum at different lengths (L in meters):

Length (m) Period (s)

0.20 0.90

0.40 1.25

0.60 1.55

300

Notes Length (m) Period (s)

0.80 1.78

1.00 2.00

1.20 2.19

1.40 2.36

1.60 2.53

Fit a power law relationship of form T = aL^b to this data. According to

physical ory, period should be proportional to square root of length (b =

0.5). How close is your empirical value of b to through science value?

Problem 5: Logistic Growth Model

 following data represents population (in thousands) of bacteria in a limited-

resource environment over time:

Time (hours) Population (thousands)

0 0.5

2 1.5

4 4.0

6 8.2

8 14.0

10 18.5

12 21.2

14 22.8

16 23.5

18 23.8

20 24.0

For a set of n+1 data points (x₀, y₀), (x₁, y₁), ..., (xₙ, yₙ), interpolation finds a

function f(x) such that f(xᵢ) = yᵢ for all i = 0, 1, ..., n.

Numerical Differentiation

301

Notes Interpolation provides a smooth function through data points, which can n be

differentiated analytically:

f'(x) ≈ P'(x)

For example, using a Lagrange polynomial: f'(x) ≈ Σ yᵢ·L'ᵢ(x) for i = 0 to n

Solution of Differential Equations

Collocation Methods

Collocation methods approximate solution of a differential equation by an

interpolation polynomial that satisfies differential equation at selected points.

Boundary Value Problems

Interpolation helps in solving boundary value problems by constructing a

polynomial it satisfies both differential equation and boundary conditions.

Function Approximation

Table Lookup with Interpolation

In scientific computing, tables of precomputed values combined with

interpolation provide efficient approximations of complex functions.

Computer Graphics

In computer graphics, interpolation is used for:

• Curve and surface generation

• Image scaling and rotation

• Color blending

Data Compression

Interpolation enables data compression by storing only selected data points

and reconstructing intermediate values as needed.

Applications in Specific Fields

302

Notes Engineering

In engineering, interpolation is used for:

• Stress analysis in structural engineering

• Signal processing in electrical engineering

• Control systems design

Physics

In physics, interpolation aids in:

• Analyzing experimental data

• Simulating physical systems

• Solving partial differential equations

Computer Science

In computer science, interpolation is essential for:

• Computer graphics and animation

• Machine learning algorithms

• Data reconstruction

Finance

In finance, interpolation is used for:

• Yield curve construction

• Option pricing models

• Risk management

Practical Applications

Polynomials are fundamental mathematical constructs that appear throughout

our daily lives, often without our conscious awareness. In MATLAB,

polynomials are typically represented as row vectors of coefficients, ordered

from highest degree to lowest. This representation provides an efficient

computational framework for polynomial manipulation and evaluation. For

instance, polynomial p(x) = 2x³ + 4x² - 3x + 1 would be represented in

303

Notes MATLAB as vector [2 4 -3 1]. This seemingly abstract mathematical concept

finds practical application in countless scenarios: when your smartphone's

battery indicator estimates remaining usage time, it's likely using polynomial

models that relate battery voltage to capacity; when season forecasters predict

tomorrow's temperature, y often employ polynomial regression on historical

data; and when engineers design curved surface of automotive components

for optimal aerodynamics, y frequently utilize polynomial-based surface

models. accessibility of polynomial operations in MATLAB makes it

powerful mathematical tools available even to those without extensive

mathematical training, enabling professionals across diverse fields to leverage

polynomial modeling in it daily work.

Polynomial Representation and Operations (poly, roots, polyval)

Practical utility of polynomials in MATLAB becomes apparent through suite

of specialized functions designed for polynomial manipulation. `poly`

function converts a set of roots into a polynomial, which proves invaluable in

applications like audio equalizer design, anywhere specific frequencies need

precise attenuation. Consider a home hall enthusiast using MATLAB to create

a custom audio filter that reduces room resonance at problematic frequencies

- by specifying it frequencies as roots, `poly` function generates polynomial

coefficients needed for filter implementation. Financial analysts regularly

employ this function to determine break-even points in complex pricing

models, allowing businesses to optimize pricing strategies for profitability.

`polyval` function evaluates polynomials at specific points, forming

backbone of countless practical applications like color correction in digital

photography, anywhere polynomial transformations adjust RGB values to

compensate for camera sensor characteristics. Your smartphone camera likely

employs similar polynomial evaluations to enhance image quality

automatically. Polynomial multiplication, implemented through MATLAB's

`conv` function, enables modeling of cascaded systems, such as combined

effect of multiple filters in water purification processes. When municipal

water treatment facilities design multi-stage filtration systems, polynomial

multiplication helps predict overall system performance. Similarly,

polynomial division using ̀ deconv` function supports applications like digital

signal processing in hearing aids, anywhere signals must be separated into

component frequencies for selective amplification. It fundamental polynomial

operations extend into daily conveniences like autocorrect feature on

304

Notes smartphones, which often uses polynomial evaluation to calculate "edit

distances" between typed words and dictionary entries, suggesting corrections

for mistyped words. sophisticated polynomial capabilities in MATLAB thus

translate abstract mathematical concepts into practical tools that enhance

countless technologies we interact with daily.

Curve Fitting Methods (polyfit, fit, Least Squares Method)

Curve fitting represents one of most widely applied mathematical techniques

in daily life, serving as bridge between discrete data points and continuous

mathematical models. MATLAB's `polyfit` function implements polynomial

regression using least squares method, finding applications in everything

from predicting household energy consumption based on temperature to

estimating delivery times for package shipments. Retail businesses routinely

employ polynomial regression to analyze seasonal sales patterns, allowing m

to optimize inventory levels throughout year. Beyond simple polynomials,

MATLAB's more versatile `fit` function accommodates a variety of model

types, including exponential, power, and Gaussian models, making it suitable

for diverse applications like modeling battery discharge curves in electric

vehicles or predicting restaurant customer flow throughout day. When fitness

enthusiasts track it progress over time, apps often use similar fitting

techniques to visualize improvement trends and predict future performance.

least squares method forms mathematical foundation for it fitting operations,

minimizing sum of squared residuals to find optimal parameter values. This

approach proves particularly valuable in quality control applications,

anywhere manufacturing processes can be modeled and optimized based on

observed outcomes. Consider pharmaceutical manufacturing, anywhere

relationship between ingredient proportions and medication efficacy can be

modeled through polynomial fitting, ensuring consistent product quality. In

everyday financial planning, curve fitting helps predict future expenses based

on historical spending patterns, enabling more accurate budgeting and saving

strategies. Even recommendation systems in streaming services like Netflix

and Spotify utilize fitting techniques to model user preferences and suggest

content likely to appeal to individual tastes. ubiquity of curve fitting in

modern life extends to smart rmostats that learn household temperature

preferences over time, traffic prediction algorithms that estimate commute

times based on historical data patterns, and wearable fitness devices that

305

Notes calculate calorie expenditure based on fitted relationships between movement

patterns and energy consumption.

Interpolation Techniques (interp1, interp2, spline)

Interpolation techniques extend beyond academic exercises into practical

solutions for daily challenges, filling gaps in available data with reasonable

estimates. MATLAB's `interp1` function performs one-dimensional

interpolation, finding extensive application in upsampling audio signals for

enhanced playback quality, converting between different measurement scales

in cooking recipes, and enhancing resolution of digital images. When you

adjust playback speed of a video without degrading quality, interpolation

algorithms are working behind scenes to generate intermediate frames.

function supports various interpolation methods, including linear, nearest

neighbor, cubic, and spline interpolation, each with specific advantages for

different applications. Linear interpolation, simplest approach, connects data

points with straight lines and proves sufficient for many everyday applications

like household budget projections based on monthly income and expense data.

For two-dimensional data, MATLAB's ̀ interp2` function enables applications

like season mapping, anywhere temperature or precipitation data collected at

discrete stations must be interpolated to create continuous forecast maps.

Digital elevation models for hiking apps use similar techniques to generate

smooth topographical displays from sampled elevation data. When your GPS

navigation system calculates elevation gain on a proposed route, it's likely

using two-dimensional interpolation on terrain data. specialized pchip

(Piecewise Cubic Hermite Interpolating Polynomial) method preserves

monotonicity in data, making it ideal for applications like pharmaceutical

dosage calculations anywhere overshooting could have serious consequences.

In daily digital experiences, interpolation enables smooth zoom function in

mapping applications, resolution enhancement in digital photos when printed

at larger sizes, and frame rate conversion between different video standards

in international broadcasting. Even seemingly simple tasks like displaying an

accurate battery percentage on a smartphone rely on interpolation between

discrete voltage measurements, translating raw sensor data into useful

information for everyday decision-making.

UNIT XIV

Applications of Curve Fitting in Data Analysis

306

Notes Curve fitting serves as a fundamental tool in data analysis across numerous

everyday contexts, transforming raw data into actionable insights. In personal

fitness tracking, polynomial curve fitting helps visualize progress trends and

establish realistic goals based on historical performance data. When a running

app shows your projected race times based on training runs, it's likely using

curve fitting to extrapolate performance trends. Similarly, in weight

management applications, curve fitting helps identify sustainable patterns of

change while filtering out day-to-day fluctuations, providing users with

meaningful feedback on it progress. In business realm, retail companies

employ curve fitting to model seasonal sales patterns, optimizing inventory

management and staffing levels throughout year. E-commerce platforms

analyze customer review data using polynomial regression to identify product

life cycle patterns, informing decisions about when to discount aging products

or introduce updated versions. restaurant industry applies similar techniques

to analyze historical reservation and walk-in patterns, optimizing staffing

schedules and food ordering to reduce waste while maintaining service

quality. Home energy management represents ansomewhere valuable

application domain, with smart rmostats using curve fitting to model

relationship between rmostat settings, external temperatures, and energy

consumption. Itmodels enable predictive heating and cooling schedules that

optimize comfort while minimizing energy costs. Similarly, solar panel

monitoring systems use curve fitting to establish performance baselines and

detect efficiency degradation requiring maintenance intervention. In public

health, epidemiologists employ curve fitting to model disease spread patterns,

informing decisions about intervention strategies and resource allocation.

During COVID-19 pandemic, polynomial and exponential curve fitting

helped visualize infection trajectories and evaluate impact of public health

measures in terms understandable to general public. On a more individual

level, healthcare applications use curve fitting to track various biomarkers

over time, from blood glucose levels in diabetes management to lung capacity

measurements in respiratory rapy. Financial planning applications leverage

curve fitting to project retirement savings growth based on contribution

patterns and market performance, helping individuals visualize long-term

impact of it saving habits.

Applications of Interpolation in Numerical Computations

307

Notes Interpolation techniques form computational backbone of numerous

technologies we interact with daily, often operating invisibly to enhance our

experiences. Digital photography heavily relies on interpolation for essential

functions like color demosaicing, process anywhere raw sensor data with one

color per pixel is interpolated to generate full RGB values for each position

in final image. When you zoom into a digital photograph, bicubic

interpolation creates new pixels based on surrounding values, maintaining

image quality at different magnification levels. Similarly, panorama mode on

smartphone cameras uses sophisticated interpolation algorithms to blend

multiple images into a seamless wide-angle view, compensating for lens

distortion and exposure variations. In realm of audio processing, interpolation

enables sample rate conversion between different audio formats, ensuring

compatibility across devices while preserving sound quality. Voice assistants

like Siri and Alexa employ interpolation techniques in it speech synsis

systems, creating smooth transitions between phonemes for natural-sounding

responses. Music streaming services use interpolation-based algorithms to

adapt audio quality to available bandwidth, dynamically adjusting resolution

while maintaining listening continuity. Navigation systems demonstrate

practical interpolation applications through route elevation prodocuments that

help hikers, cyclists, and drivers anticipate terrain challenges. Traffic

prediction algorithms interpolate between traffic sensor locations to estimate

congestion levels across entire road networks, enabling smart routing

recommendations. When season apps display hourly forecast visualizations,

they're using temporal interpolation between less frequent meteorological

model outputs, providing continuous prediction timeline users expect. Home

automation represents ansomewhere domain anywhere interpolation adds

significant value, with smart lighting systems using interpolation to create

smooth transitions between brightness levels and colors. Smart rmostats

interpolate between set points to create comfortable temperature transitions it

than abrupt changes. Even appliances like modern ovens use temperature

interpolation for precise cooking cycles, maintaining ideal conditions for

specific recipes by smoothly adjusting heating elements. Medical devices

extensively employ interpolation, from glucose monitors that estimate

continuous blood sugar levels from periodic measurements to heart rate

monitors that fill gaps between sensor readings. CT and MRI scanning

technologies fundamentally rely on interpolation to construct three-

dimensional visualizations from series of two-dimensional slices, enabling

308

Notes non-invasive medical diagnostics that save countless lives. It diverse

applications demonstrate how interpolation, while scientifically

straightforward, enables sophisticated functionality across technologies that

shape our daily experiences.

Error Analysis in Curve Fitting and Interpolation

In season forecasting, error analysis helps meteorologists communicate

prediction confidence levels, allowing people to make informed decisions

about outdoor activities, travel plans, and emergency preparations. familiar

"30% chance of rain" represents output of sophisticated error analysis applied

to atmospheric models, translating complex uncertainty metrics into

actionable information. Similarly, GPS navigation systems employ error

analysis to estimate arrival time ranges, adjusting confidence interval based

on traffic variability, construction zones, and historical data patterns for

specific routes and times. When evaluating fitness tracking devices,

manufacturers conduct rigorous error analysis to determine accuracy

specifications for measurements like heart rate, step counting, and calorie

estimation. It error metrics help consumers make informed purchasing

decisions based on it specific accuracy requirements, whether for casual

fitness monitoring or serious athletic training. Medical applications

demonstrate particularly critical applications of error analysis, with glucose

monitors providing confidence intervals around blood sugar readings to

inform appropriate insulin dosing decisions. Medical imaging systems

quantify reconstruction errors in techniques like MRI and CT scanning,

ensuring diagnostic reliability while minimizing radiation exposure in

applicable procedures. In financial sector, investment apps use error analysis

in it return projections, typically displaying potential outcome ranges it than

single values to help investors understand inherent uncertainty in market

predictions. Mortgage calculators incorporate error analysis to estimate how

interest rate fluctuations might affect monthly payments, helping homebuyers

prepare for various financial scenarios. Smart home systems implement error

analysis in various features, from occupancy prediction algorithms that

estimate when residents will return home to energy consumption models that

predict utility costs based on usage patterns and season forecasts. Even video

streaming services employ error analysis in it adaptive bitrate algorithms,

balancing optimal video quality against buffering risk based on network

condition predictions. Through it diverse applications, error analysis

309

Notes transforms raw model outputs into nuanced, actionable information that

enhances decision-making across countless daily activities.

Real-World Applications in Engineering and Science

Principles of polynomial manipulation, curve fitting, and interpolation

manifest in countless engineering and scientific applications that shape our

daily lives. Modern automotive design exemplifies it techniques, with

polynomial surface models defining aerodynamic body contours that reduce

drag, improve fuel efficiency, and enhance stability at highway speeds.

smooth curves of modern vehicles aren't just aesthetically pleasing—

y'remathematical solutions optimized for performance and efficiency.

Similarly, design of household appliances like vacuum cleaners employs

polynomial-based airflow modeling to maximize suction efficiency while

minimizing noise, resulting in more effective cleaning with less disruption. In

civil engineering, interpolation techniques enable detailed terrain modeling

for infrastructure projects, ensuring roads and bridges follow optimal paths

that balance construction costs against long-term maintenance considerations.

smooth transitions in highway interchanges reflect sophisticated curve fitting

that maximizes traffic flow while maintaining safety at various speeds. Even

design of drainage systems in urban areas relies on polynomial models of

water flow to prevent flooding during heavy rainfall, protecting homes and

businesses from water damage. Renewable energy systems demonstrate

particularly valuable applications, with solar panel positioning systems using

polynomial sun path models to optimize energy capture throughout day and

across seasons. Wind turbine blade design employs polynomial airfoil curves

that maximize energy extraction from varying wind conditions while

maintaining structural integrity under high loads. Battery management

systems in electric vehicles utilize polynomial models of charge/discharge

characteristics to optimize performance and longevity, providing accurate

range estimates based on driving conditions and usage patterns.

Pharmaceutical development represents ansomewhere domain anywhereit

techniques prove invaluable, with drug dosage formulations often determined

through polynomial modeling of active ingredient concentration and

effectiveness over time. Clinical trials employ curve fitting to analyze

treatment efficacy across patient populations, identifying optimal dosing

schedules and potential side effect patterns. Even coating on extended-release

medications relies on carefully modeled dissolution prodocuments to ensure

310

Notes consistent drug delivery over prescribed timeframe. Consumer electronics

benefit from itmathematical techniques in numerous ways, from touchscreen

calibration algorithms that map finger position using polynomial

transformations to camera lens design that minimizes distortion across image

field. Audio systems employ polynomial filter designs to optimize sound

reproduction for specific room acoustics, adjusting frequency response to

compensate for architectural characteristics. It diverse applications

demonstrate how mathematical principles implemented in MATLAB's

polynomial, curve fitting, and interpolation functions translate into tangible

benefits across virtually every domain of modern life, from transportation and

healthcare to entertainment and communication systems.

SELF ASSESSMENT QUESTIONS

Multiple-Choice Questions (MCQs)

1. Which MATLAB function is used to find the coefficients of a

polynomial given its roots?

A) polyval()

B) poly()

C) roots()

D) polyfit()

Answer: B) poly()

2. What does the MATLAB function roots(p) do?

A) Finds the derivative of the polynomial p

B) Evaluates the polynomial at a given point

C) Finds the roots of the polynomial represented by p

D) Computes the integral of p

Answer: C) Finds the roots of the polynomial represented by p

3. Which function is used to evaluate a polynomial at specific values?

A) poly()

B) polyval()

C) polyfit()

D) interp1()

Answer: B) polyval()

311

Notes 4. What is the purpose of the polyfit(x, y, n) function in MATLAB?

A) Finds the best-fitting polynomial of degree n for given data (x, y)

B) Computes the derivative of a polynomial

C) Performs interpolation between two points

D) Solves a system of linear equations

Answer: A) Finds the best-fitting polynomial of degree n for given data (x,

y)

5. Which curve fitting method in MATLAB is based on minimizing the

sum of squared errors?

A) Newton’s Method

B) Least Squares Method

C) Lagrange Interpolation

D) Euler’s Method

Answer: B) Least Squares Method

6. Which function is used for 1D interpolation in MATLAB?

A) interp1()

B) interp2()

C) meshgrid()

D) spline()

Answer: A) interp1()

7. What is the primary advantage of using spline interpolation over

linear interpolation?

A) It is computationally less expensive

B) It provides a smoother approximation between points

C) It ignores outliers in the data

D) It always produces a polynomial of degree 1

Answer: B) It provides a smoother approximation between points

8. Which of the following interpolation techniques is most suitable for

2D data?

A) interp1()

B) interp2()

312

Notes C) polyfit()

D) polyval()

Answer: B) interp2()

9. Why is error analysis important in curve fitting and interpolation?

A) To determine the accuracy of the approximation

B) To increase the degree of the polynomial indefinitely

C) To avoid using MATLAB for numerical computations

D) To make the fitted curve pass through all data points

Answer: A) To determine the accuracy of the approximation

10. In real-world applications, interpolation is commonly used in:

A) Image processing

B) Weather forecasting

C) Engineering simulations

D) All of the above

Answer: D) All of the above

Short Questions:

1. How are polynomials represented in MATLAB?

2. What function is used to evaluate a polynomial at specific points?

3. How do you find roots of a polynomial in MATLAB?

4. What is curve fitting?

5. How does polyfit function work in MATLAB?

6. What is interpolation?

7. What is difference in among curve fitting & interpolation?

8. What did you say purpose of spline function in MATLAB?

9. What is least squares method?

10. Name one real-world application of curve fitting in numerical

analysis.

Long Questions:

313

Notes 1. Explain how polynomials are represented and manipulated in

MATLAB with examples.

2. How can you find roots of a polynomial using MATLAB? Provide a

step-by-step method.

3. Describe curve fitting techniques available in MATLAB andit

applications.

4. Explain how polyfit function works and demonstrate its usage with

an example.

5. Compare different interpolation techniques andit applications in

MATLAB.

6. How is numerical interpolation used in scientific computing? Discuss

with examples.

7. Explain least squares method and its significance in data

approximation.

8. Inscribe MATLAB script to complete polynomial curve fitting on a

specified datasets.

9. Discuss error analysis in curve fitting and interpolation methods.

10. Explain a real-world application of numerical analysis using

MATLAB.

	MSc Maths Sem II MATLAB 24 July 25
	MSc Math Sem II Matlab 12 May 2025 - Copy
	M.Sc. Maths Sem II New cover - Matlab
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

	MSC MATH SEM II MATLAB FINAL
	Acknowledgement
	1.1 Overview to MATLAB Environment
	MATLAB (Matrix Laboratory) is a rebuts programming environment intended primarily for numerical computing, data analysis, and visualization. Developed by MathWorks, it provides an interactive environment that integrates calculation, visualization, and...
	MATLAB Interface
	Basic Commands
	Variables and Basic Operations
	Data Types
	Script Documents
	Basic Plotting

	UNIT II
	1.2 Creating Arrays in MATLAB
	Creating Vectors
	Creating Matrices
	Specialized Matrix Functions
	Multidimensional Arrays
	Array Size and Dimensions
	Accessing Array Elements
	Manipulating Arrays
	UNIT III
	Array Operations
	MATLAB, an acronym for "Matrix Laboratory," is a robust computational environment tailored for manipulation of matrices and arrays. MATLAB's proficiency at efficiently and intuitively manipulating arrays is a fundamental quality, rendering it a fav...
	In MATLAB, arithmetic operations can be executed eir element-wise or via matrix algebra, contingent upon operators employed. Standard operators (+, -, *, /) adhere to principles of matrix algebra, anywherein operations such as multiplication confo...
	Advanced array operations in MATLAB encompass logical indexing, enabling selection of members based on Boolean conditions. This functionality is very potent for data analysis, as it facilitates filtering and conditional processing of array items. ...
	MATLAB's array operations effortlessly accommodate complex numbers, enabling application of complex arithmetic and functions to arrays with complex elements. This capacity is especially advantageous in signal processing, control systems, andsomewhe...

	5 Solved Problems
	Problem 1: Creating and Manipulating Vectors
	Problem 2: Matrix Operations
	• We construct two 3×3 matrices, A and B.
	• Matrix multiplication (A * B) executes conventional matrix multiplication.
	• Element-wise multiplication (A .* B) computes product of equivalent elements.
	• eig() function yields a matrix V of eigenvectors and a diagonal matrix E of eigenvalues.
	• diag(E)' retrieves eigenvalues from diagonal matrix and transposes output to present it as a row vector.
	Problem 3: Creating and Visualizing a 3D Surface
	Problem 4: Working with Logical Indexing
	Problem 5: Creating a Custom Function for Matrix Analysis

	5 Unsolved Problems
	Problem 1: Image Processing with MATLAB
	Problem 2: Principal Component Analysis
	Problem 3: Numerical Integration
	Problem 4: Time Series Analysis
	Problem 5: Optimization Problem

	Indexing and Accessing Elements in Arrays
	Overview to Array Indexing
	One-Dimensional Arrays
	Two-Dimensional Arrays
	Multi-Dimensional Arrays

	Array Indexing Notations
	Array Slicing
	Mathematical Operations with Arrays
	Element-wise Operations
	Matrix Operations
	Statistical Operations
	Reduction Operations
	Broadcasting
	Convolution Operations
	Somewhere Advanced Operations

	Solved Problems on Array Indexing and Operations
	Problem 1: Array Indexing in a 2D Array
	Problem 2: Matrix Addition
	Problem 3: Matrix Multiplication
	Problem 4: Computing Trace and Determinant of a Matrix
	Problem 5: Finding Inverse of a Matrix

	Unsolved Problems on Array Indexing and Operations
	Problem 1: Array Slicing and Indexing
	Problem 2: Matrix Operations
	Problem 3: Properties of Matrix Operations
	Problem 4: Eigenvalues and Eigenvectors
	Problem 5: Applications of Matrix Operations

	1.3 Array Manipulation and Arithmetic Operations in MATLAB
	Built-in Functions for Array Manipulation
	Creating Arrays
	Basic Array Creation Functions
	MATLAB offers various methods to generate arrays that constitute basis for nearly all activities within environment. It functions are intended to effectively produce arrays with particular characteristics or patterns. `zeros` function generates an...
	`repmat` function is useful for generating arrays populated with arbitrary values. It duplicates a designated matrix or value to generate larger arrays. For example, `repmat([1 2; 3 4], 2, 3)`replicates 2×2 matrix two times vertically and three tim...
	Special Array Creation Functions

	Array Manipulation Functions
	Array Manipulation Functions in MATLAB
	MATLAB specializes in array manipulation with an extensive array of functions that efficiently reshape, restructure, and alter data. It functions enable users to modify arrays for certain computing requirements without necessity of constructing intri...
	`repmat` function, in addition to facilitating array construction, functions as an effective instrument for array manipulation by duplicating existing arrays in designated patterns. This is advantageous for constructing periodic structures or organiz...
	To create subarrays, MATLAB's indexing features utilize `sub2ind` and `ind2sub` functions, which facilitate conversion between linear indices and subscript indices in multi-dimensional arrays. It routines enable element access in intricate array stru...
	Reshaping and Reorganizing
	Concatenating and Padding
	Array Manipulation with Indices

	Array Analysis Functions

	1.4 Basic MATLAB Commands for Arithmetic Operations
	Element-wise Operations
	Element-wise Arithmetic

	Matrix Operations
	Statistical Operations
	Rounding Functions
	Special Arithmetic Functions

	Solved Problems
	Problem 1: Matrix Manipulation and Operations
	Problem 2: Element-wise Operations vs Matrix Operations
	Problem 3: Creating Special Matrices and Arrays
	Problem 4: Statistical Analysis of Data
	Problem 5: Matrix Manipulation and Solving Linear Equations

	Unsolved Problems
	Problem 1
	Problem 2
	Consider two vectors x = [1, 3, 5, 7, 9] and y = [2, 4, 6, 8, 10]. Calculate dot product of vectors x and y. b. Compute element-wise product of x and y. c. Construct a matrix C such that C(i,j) = x(i) * y(j). d. Calculate mean and standard de...
	Problem 3
	Problem 4
	Problem 5

	2.1 Overview to Script Documents in MATLAB
	What Are Script Documents?
	A script file is fundamentally a plain text file that comprises a sequence of MATLAB commands. When executing a script file, MATLAB processes commands in a sequential manner, akin to entering them directly at command prompt.Primary distinction is th...
	1. Preserve your work for subsequent utilization.
	2. Execute numerous commands with a singular operation.
	3. Disseminate your code to somewheres
	4. Record your efforts with annotations.
	Characteristics of Script Documents
	• Script documents function within base workspace, allowing access to and modification of variables present in current MATLAB session.
	• They lack an independent workspace.
	• They do not accept input arguments nor return output arguments.
	• They execute in current context without establishing a new function scope.
	• They generally possess a .m file extension (e.g., myscript.m)
	Benefits of Using Script Documents
	When to Use Script Documents

	2.2 Creating and Running Script Documents
	Creating a Script File
	Method 1: Using MATLAB Editor
	Method 2: Using Command Window

	Script File Structure
	Running a Script File
	Method A: From Editor
	Method B: From Command Window
	Method C: Using run Command

	Important Considerations When Running Scripts
	Debugging Script Documents
	Best Practices for Script Documents

	UNIT V
	2.3 Overview to Functions in MATLAB
	What Are Functions in MATLAB?
	Anatomy of a MATLAB Function
	Creating a Function
	Example of a Simple Function
	Function vs. Script: Key Differences
	Types of Functions in MATLAB
	Named Functions
	Anonymous Functions
	Nested Functions
	Local Functions
	Function Handles
	Input and Output Arguments
	Variable Number of Arguments
	Function Documentation
	Best Practices for Functions

	Solved Problems
	Problem 1: Creating a Basic Script for Data Analysis
	Problem 2: Script for Matrix Operations
	Problem 3: Creating a Basic Temperature Conversion Function
	Problem 4: Creating a Function to Analyze a Dataset
	Problem 5: Script to Simulate and Analyze Random Walks

	2.4 Built-in Functions vs. User-Defined Functions
	Built-in Functions
	Characteristics of Built-in Functions:
	Examples of Common Built-in Functions:
	Using Built-in Functions:
	Getting Help for Built-in Functions:

	User-Defined Functions
	Characteristics of User-Defined Functions:
	Creating User-Defined Functions:
	Simple Example of a User-Defined Function:

	Comparing Built-in and User-Defined Functions
	Key Differences:
	When to Use Each Type:
	Efficiency Considerations:

	2.5 Writing Function Documents in MATLAB
	Function File Structure
	Components of a Function File:

	Types of Functions in MATLAB Documents
	1. Primary Function:
	2. Local Functions:
	3. Nested Functions:
	4. Anonymous Functions:

	Function File Documentation
	Components of Good Documentation:

	Best Practices for Writing Function Documents
	1. Naming Conventions:
	2. Input Validation:
	3. Handling Optional Arguments:
	4. Using varargin and varargout:
	5. Error Handling:
	6. Function File Organization:

	2.6 Passing Arguments and Returning Values in Functions
	Basic Parameter Passing
	Pass by Value vs. Pass by Reference:

	Passing Different Data Types
	1. Numeric Data:
	2. Strings and Character Arrays:
	3. Cell Arrays:
	4. Structures:

	Advanced Argument Passing Techniques
	1. Default Parameter Values:
	2. Name-Value Pair Arguments:
	3. Using inputParser for Robust Argument Handling:

	Returning Values from Functions
	1. Single Return Value:
	2. Multiple Return Values:
	3. Returning Complex Data Structures:
	4. Returning Variable Number of Outputs:

	Passing Functions as Arguments
	1. Using Function Handles:
	2. Creating Custom Operations:
	3. Advanced Function Handle Usage:

	Solved Problems
	Problem 1: Creating a Function to Calculate Compound Interest
	Problem 2: Creating a Function with Multiple Output Options
	Problem 3: Function to Process Different Data Types

	2.7 Scope of Variables in Functions
	Variable Scope Categories in MATLAB
	Local Variables
	Global Variables
	Persistent Variables

	Workspace Interaction
	Nested Functions and Variable Scope
	Function Handles and Variable Capture
	Best Practices for Variable Scope
	Practical Examples of Variable Scope
	Example 1: Local Variable Isolation
	Example 2: Using Persistent Variables for Caching
	Example 3: Global Variables for Configuration

	Debugging Variable Scope Issues

	2.8 Advantages of Using Functions in MATLAB
	Code Organization and Modularity
	Code Reusability
	Improved Maintenance
	Error Handling and Debugging
	Performance Optimization
	Documentation and Readability
	Collaboration Benefits
	Algorithm Development and Testing
	Encapsulation and Data Hiding
	Integration with MATLAB Environment
	Advanced Function Capabilities
	Solved Problems on Variable Scope and Functions
	Solved Problem 1: Understanding Local vs. Global Variables
	Solved Problem 2: Persistent Variables
	Solved Problem 3: Function Handles and Closures
	Solved Problem 4: Nested Functions and Shared Variables
	Solved Problem 5: Global Variables for Configuration

	Unsolved Problems on Variable Scope and Functions
	Unsolved Problem 1
	Unsolved Problem 2
	Unsolved Problem 3
	Unsolved Problem 4
	Unsolved Problem 5

	3.1 Overview to Plotting in MATLAB
	Basic Plot Commands
	Handle Graphics
	Graphics Objects Hierarchy

	UNIT VII
	3.2 Creating Two-Dimensional Plots
	Line Plots (plot)
	Scatter Plots (scatter)
	Bar Charts (bar)
	Stem Plots (stem)
	Somewhere 2D Plot Types

	3.3 Customizing 2D Plots
	Adding Titles and Labels
	Grid Lines
	Legends
	Axis Control
	Line and Marker Properties
	Text Annotations
	Arrows and Lines
	Color Control
	Fonts and Text
	Figure Size and Position

	3.4 Multiple Plots in a Single Figure
	Subplot Function
	Tight Subplot Layout
	Multiple Y-Axes (plotyy/yyaxis)
	Hold Command
	Tiling Layouts (tiledlayout)
	Combining Different Plot Types
	Global Figure Adjustments

	Formulas for Common Plot Types
	Solved Problems
	Problem 1: Creating a Basic Sine Wave Plot
	Problem 2: Comparing Multiple Functions
	Problem 3: Creating a Scatter Plot with Size and Color Mapping
	Problem 4: Creating a Bar Chart with Error Bars
	Problem 5: Creating Multiple Subplots with Different Plot Types

	Unsolved Problems
	Problem 1: Temperature Variation Plot
	Problem 2: Population Growth Comparison
	Problem 3: Data Visualization Dashboard

	3.5 Subplots and Figure Management
	Overview to Subplots
	Basic Subplot Creation
	Advanced Subplot Management
	Figure Management

	Solved Examples for Subplots and Figure Management
	Example 1: Basic 2×2 Subplot Grid
	Example 2: Subplots with Different Sizes
	Example 3: Subplots with Shared Axes
	Example 4: Custom Subplot Positions
	Example 5: Multiple Figures with Management

	Unsolved Problems for Subplots and Figure Management
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

	3.6 Creating Three-Dimensional Plots
	Overview to 3D Plotting
	Types of 3D Plots
	Data Formats for 3D Plotting

	Surface and Mesh Plots
	Surface Plots with surf
	Mesh Plots with mesh
	Surface with Edges using surfc

	Contour Plots
	2D Contour Plots with contour
	Filled Contour Plots with contourf
	3D Contour Plots with contour3

	Line Plots in 3D Space
	3D Line Plots with plot3
	Scatter Plots in 3D with scatter3

	Generating Data for 3D Plots
	Creating Gridded Data with meshgrid
	Computing Function Values

	Solved Examples for 3D Plots
	Example 1: Basic Surface Plot
	Example 2: Comparing Mesh and Surface Plots
	Example 3: Contour Plots in 2D and 3D
	Example 4: 3D Parametric Curve
	Example 5: Multiple 3D Visualization Techniques

	Unsolved Problems for 3D Plots
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

	3.7 Customizing 3D Plots
	Overview to 3D Plot Customization
	Importance of Customization

	View and Camera Control
	Setting Viewpoint with view
	Default Views
	Rotating and Zooming

	Shading and Lighting
	Shading Options
	Lighting Effects

	Colormap Selection and Control
	Setting Colormap
	Creating Custom Colormaps
	Color Scaling

	Axis Control and Appearance
	Axis Properties
	Axis Labels and Title
	Grid Lines

	Additional Customization
	Transparency
	Colorbar
	Text Annotations

	Solved Examples for 3D Plot Customization
	Example 1: View Angle and Shading
	Example 2: Lighting and Material Properties
	Example 3: Colormap Selection
	Example 4: Advanced Axis Control and Annotation

	4.1 Overview to MATLAB Programming
	Basic MATLAB Interface
	Variables in MATLAB
	UNIT IX
	Data Types
	UNIT X
	Basic Operations
	Functions in MATLAB
	Creating Your Own Functions
	Scripts vs. Functions
	Input and Output
	Plotting in MATLAB

	4.2 Conditional Statements (if, else, switch)
	If-Else Statements
	Logical Operators
	Comparison Operators
	Nested If Statements
	Switch-Case Statements
	Shorthand If-Else (Ternary Operator)
	Best Practices for Conditional Statements

	4.3 Looping Structures (for, while, break, continue)
	For Loops
	While Loops
	Break Statement
	Continue Statement
	Loop Control Patterns
	Avoiding Common Loop Pitfalls

	4.4 Vectorized Operations vs. Loops
	Understanding Vectorization
	Element-wise Operations
	Loops vs. Vectorized Operations: Examples
	Vectorization Functions
	Logical Indexing
	find Function
	Vectorizing More Complex Operations
	When to Use Loops vs. Vectorization
	Performance Comparison

	Solved Problems
	Problem 1: Matrix Manipulation with Conditional Logic
	Problem 2: Fibonacci Sequence
	Problem 3: Image Processing with Conditional Logic
	Problem 4: Statistical Analysis with Switch-Case
	Problem 5: Finding Prime Numbers with Nested Loops and Break

	Unsolved Problems
	Problem 1: Matrix Spiral Traversal
	Problem 2: Conway's Game of Lifetime

	4.5 Handling User Input and Output in MATLAB
	Basic Input Functions
	input() Function
	keyboard Command
	menu() Function

	Basic Output Functions
	disp() Function
	fprintf() Function
	warning() and error() Functions

	GUI Input and Output
	Dialog Boxes
	Building Customized GUIs

	4.6 File Handling: Reading and Writing Documents
	Working with Text Documents
	Reading Text Documents
	Writing Text Documents

	Working with CSV Documents
	Reading CSV Documents
	Writing CSV Documents

	Working with Excel Documents
	Reading Excel Documents
	Writing Excel Documents

	Working with MAT Documents
	Saving Variables to MAT Documents
	Loading Variables from MAT Documents

	File and Directory Management

	4.7 Debugging and Error Handling
	Debugging Tools in MATLAB
	Setting Breakpoints
	Conditional Breakpoints
	Debugger Interface
	Using disp() for Debug Output
	MException Object
	Creating Custom Errors
	Input Validation
	Using assert()

	4.8 Best Practices in MATLAB Programming
	Code Organization
	File and Function Organization
	Script vs. Function Documents
	Function Headers

	Coding Style
	Variable Naming
	Indentation and Spacing
	Comments

	Performance Optimization
	Efficient Indexing
	Profiling Code

	Memory Management
	Clearing Variables
	Using sparse() for Sparse Matrices
	Managing Memory with onCleanup()

	Robustness and Testing
	Input Validation
	Unit Testing
	Defensive Programming

	Documentation
	Help Comments
	Publishing Reports

	Solved Problems
	Problem 1: Temperature Converter with Input Validation
	Problem 2: CSV Data Analysis with File Handling
	Problem 3: GUI-Based Matrix Calculator

	5.1 Overview to Polynomials in MATLAB
	What are Polynomials?
	Polynomial Applications
	MATLAB Polynomial Representation
	Examples:

	Creating and Manipulating Polynomials

	5.2 Polynomial Representation and Operations (poly, roots, polyval)
	Key MATLAB Functions for Polynomials
	1. poly Function
	2. roots Function
	3. polyval Function
	4. polyder Function
	5. polyint Function

	Polynomial Operations and Applications
	Polynomial Arithmetic
	Solving Polynomial Equations
	Finding Critical Points

	UNIT XIII
	5.3 Curve Fitting Methods (polyfit, fit, Least Squares Method)
	Polynomial Curve Fitting with polyfit
	Curve Fitting with fit Function
	Custom Fitting Functions
	Evaluating Goodness of Fit

	5.4 Interpolation Techniques (interp1, interp2, spline)
	One-Dimensional Interpolation with interp1
	Cubic Spline Interpolation with spline
	Two-Dimensional Interpolation with interp2

	Solved Examples
	Example 1: Finding Roots of a Polynomial
	Example 2: Polynomial Curve Fitting to Noisy Data

	Types of Curve Fitting
	Exponential Fitting
	Power Law Fitting

	Evaluating Fit Quality
	Physics and Engineering
	Medicine and Biology
	Environmental Science

	Solved Problems in Curve Fitting
	Problem 1: Linear Regression Application
	Problem 2: Polynomial Curve Fitting
	Problem 3: Exponential Curve Fitting
	Problem 4: Power Law Curve Fitting
	Problem 5: R² Calculation for Fit Quality

	Unsolved Problems in Curve Fitting
	Problem 1: Linear Regression Analysis
	Problem 2: Polynomial Regression for Climate Data
	Problem 3: Exponential Growth in Investment
	Problem 4: Power Law Relationship in Physics
	Problem 5: Logistic Growth Model
	Numerical Differentiation
	Solution of Differential Equations
	Collocation Methods
	Boundary Value Problems

	Function Approximation
	Table Lookup with Interpolation
	Computer Graphics

	Data Compression

	Applications in Specific Fields
	Engineering
	Physics
	Computer Science
	Finance

	MSC MATH SEM II MSC MATH SEM II MATLAB

	Corrected MSC MATH SEM II MATLAB FINAL

	final backpage
	Page 1

