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Notes 
COURSE INTRODUCTION 

 

Mathematical statistics provides the foundation for data analysis, 

decision-making, and inference in various fields. This course 

introduces fundamental statistical concepts, probability theory, 

probability distributions, and hypothesis testing. Understanding these 

concepts is essential for statistical modeling, research, and real-world 

applications in science, business, and engineering. 

 

Module I: Probability Theory 

This module covers the definition and various approaches to 

probability, including the addition theorem, Boolean equality, 

conditional probability, multiplication theorem, and independent 

events. Students will also explore mutual and pairwise independence 

of events and applications of Bayes’ theorem. 

Module II: Random Variables and Probability Functions 

Students will learn about random variables, including discrete and 

continuous types, probability mass and density functions, and 

distribution functions. The module also introduces bivariate random 

variables, joint, marginal, and conditional distributions, and 

mathematical expectation, variance, covariance, and moment-

generating functions. 

Module III: Probability Distributions 

This module explores important probability distributions, including 

discrete distributions (Uniform, Bernoulli, Binomial, Poisson, and 

Geometric) and continuous distributions (Uniform, Exponential, and 

Normal), along with their properties and applications. 

Module IV: Hypothesis Testing 

Students will be introduced to statistical hypothesis testing, including 

concepts such as parameters, statistics, sampling distribution, standard 

error, and null and alternative hypotheses. The module also covers 

simple and composite hypotheses. 

Module V: Tests of Significance 

This module focuses on the critical region, level of significance, one-

tailed and two-tailed tests, and two types of errors. Students will study 

large sample tests for single mean, single proportion, and differences 

between two means and two proportions. 
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MODULE I 

 

PROBABILITY THEORY  

UNIT I 

Objectives 

• To understand the concept of likelihood and its different approaches. 

• To learn addition and multiplication theorems of likelihood. 

• To study Boole’s inequality and its applications. 

• To analyze conditional likelihood and its significance. 

• To explore free and mutually free events. 

• To apply Bayes’ theorem in real-world problems. 

1.1. Introduction to Likelihood 

It provides a framework for measuring and quantifying the likelihood of 

events occurring in a given situation. The concept of likelihood is 

fundamental to many fields including statistics, physics, economics, 

computer science, and everyday decision-making. 

Definition of Likelihood 

An event's likelihood is a numerical indicator of how likely it is to happen. 

The number is always in the range of 0 to 1, inclusive:  

• An occurrence is certain when its likelihood is 1.  

• The degree of possibility of the event is indicated by a likelihood 

between 0 and 1.  

Basic Terminology 

Before diving deeper into likelihood theory, it's essential to understand some 

fundamental concepts: 

1. Experiment: Any procedure that can be repeated and has a well-

defined set of possible outcomes.  
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Notes 2. Event (E): representing a collection of outcomes. For example, 

when rolling a die, the event "rolling an even number" would be E = 

{2, 4, 6}. 

3. Elementary Outcome: An individual outcome in the sample space. 

Mathematical Expression of Likelihood 

With n(E) representing number of elements in event E & n(S) representing 

number of elements in sample space S, the likelihood of an event E in finite 

sample space with equally likely outcomes is as follows: P(E) = Number of 

favorable outcomes / Total number of possible outcomes = n(E) / n(S).  

Properties of Likelihood 

1. Additivity: For mutually exclusive events E & F (events that cannot 

occur simultaneously), P(E ∪ F) = P(E) + P(F) 

2. Complement Rule: P(E') = 1 - P(E) 

The Role of Likelihood in Decision Making 

Likelihood is crucial for making informed decisions under uncertainty. 

individuals and organizations can make more rational choices based on 

expected values and risk assessments. 

1.2. Approaches to Likelihood 

There are several fundamental approaches to defining and interpreting 

likelihood, each with its own perspective and applications. These approaches 

provide different ways to understand and calculate probabilities in various 

contexts. 

Classical Approach 

The classical approach, also known as the a priori approach, defines 

likelihood based on equally likely outcomes. 

Definition: equally likely outcomes.  

Definition: The likelihood of event E is P(E) = m/n, which is number of 

favorable outcomes divided by total number of possible outcomes, if event E 

includes m of the n equally likely outcomes of an experiment.  

Presumptions:Every possible scenario has an equal chance of happening. 
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Notes Examples: Coin tosses, dice rolls, card games, and most gambling scenarios 

where the underlying physical mechanisms produce essentially at random 

results. 

Limitations: 

1. It only applies when outcomes are equally likely. 

2. It cannot be applied to infinite sample spaces. 

3. The concept of "equally likely" is somewhat circular in definition. 

Relative Frequency Approach 

The relative frequency approach, also known as the a posteriori approach or 

empirical approach, defines likelihood based on observed data from repeated 

experiments. 

Definition: When an experiment is conducted n times with the same 

parameters and event E happens m times, the relative frequency m/n gets 

closer to the likelihood P(E) as n gets closer to infinity.: 

P(E) = lim (n→∞) (m/n) 

Applications: 

1. Used in statistical studies and data analysis. 

2. Useful when theoretical probabilities are difficult to determine. 

3. Forms the basis for frequentist statistics. 

Limitations: 

1. Requires a large number of repetitions for accuracy. 

2. Cannot be used for one-time events. 

3. Practical constraints may prevent truly identical repetitions. 

Subjective Approach 

The subjective approach defines likelihood as a measure of personal belief 

or confidence in the occurrence of an event. 

Definition: Likelihood is a numerical measure of a person's degree of belief 

that an event will occur, based on their knowledge and experience. 
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Notes  

 

 

 

 

  

 

  

  

  

 

  

  

 

 

 

  

  

 

 

 

 

 

 Each approach has its strengths and contexts where it is most appropriate:

Comparing the Approaches

approaches to likelihood.

theory  as  a  subfield  of  measure  theory  and  unifies  the  many 

strict mathematical base. It allows for the development of likelihood 

 All  other  likelihood  principles  can  be  derived  from  this  method's 

A₂∪...... ) =  P(A₁) + P(A₂) +... 

indicates  the  possibility  that  they  will  come  together:  P(A₁ ∪ 

total  of  probabilities  of  two  mutually  exclusive  events,  A₁,  A₂,..., 3.

entire sample space has a likelihood of 1 (P(S) = 1).2.

P(A) > 0 (non-negativity) for any event A1.

Kolmogorov's Axioms:

theory.

provides  a  mathematical  foundation  for  likelihood  theory  based  on  set 

The  axiomatic  approach,  developed  by  Andrey  Kolmogorov  in  the  1930s, 

Axiomatic Approach

Difficult to validate objectively.2.

Subjective nature may lead to inconsistencies.1.

Limitations:

Bayesian statistical inference.3.

Risk assessment in unique situations.2.

Decision-making in business and policy.1.

Applications:

Used for events that cannot be repeated or where data is limited.3.

(Bayesian approach).

Probabilities can be updated as new information becomes available 2.

event.

Different individuals may assign  different  probabilities to the same 1.

Features:
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Notes • The classical approach works well for simple games of chance with 

known structures. 

• The relative frequency approach is useful for empirical studies and 

statistical analysis. 

• The subjective approach helps with decision-making when data is 

limited or for one-time events. 

• The axiomatic approach provides the mathematical foundation that 

unifies all other approaches. 

In practice, these approaches are often complementary rather than 

competing. The choice of approach depends on the specific problem, 

available information, and the purpose of the likelihood calculation. 

1.3. Addition Theorem of Likelihood 

A key idea in likelihood theory that explains how to determine the likelihood 

of an event joining together is the addition theorem. It offers a way to 

calculate the likelihood that at least one of a number of occurrences will take 

place. 

Applications of the Addition Theorem 

1. Risk Assessment: Calculating the likelihood of system failure when 

there are multiple potential failure points. 

2. Medical Diagnosis: Finding the likelihood that a patient has at least 

one of several possible conditions based on symptoms. 

3. Financial Planning: Assessing the likelihood of achieving financial 

goals through different investment strategies. 

4. Project Management: Calculating the likelihood of project 

completion by a deadline when considering various possible delays. 

The Complement Method 

Using an event's complement can sometimes make calculating its likelihood 

easier, particularly when working with "at least one" scenarios. 

For an event A, the complement method uses: 

P(A) = 1 - P(A') 
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Notes where the complement of A is A'. 

This is particularly useful when calculating the likelihood of "at least one 

success" by first finding the likelihood of "no successes" and then 

subtracting from 1. 

1.4. Boole's Inequality and Its Applications 

An upper bound for the likelihood of the union of occurrences is provided 

by Boole's inequality, sometimes referred to as the union bound. It is a 

fundamental finding in likelihood theory. It bears the name of George Boole, 

a mathematician. 

Statement of Boole's Inequality 

Boole's inequality says that for any finite or countably infinite sequence of 

events A₁, A₂,..., Aₙ, P(A₁ ∪ A₂∪... ∪ Aₙ) < P(A₁) + P(A₂) +... + P(Aₙ) 

 In notation for mathematics: 

P(⋃ᵢ₌₁ⁿ Aᵢ) ≤ ∑ᵢ₌₁ⁿ P(Aᵢ) 

Proof and Intuition 

Boole's inequality follows directly from the inclusion-exclusion principle. 

Terms for every potential intersection are included in the whole inclusion-

exclusion calculation for the likelihood of a union: 

P(⋃ᵢ₌₁ⁿ Aᵢ) = ∑P(Aᵢ) - ∑P(Aᵢ ∩ Aⱼ) + ∑P(Aᵢ ∩ Aⱼ ∩ Aₖ) - ... + (-1)ⁿ⁺¹P(A₁ ∩ 

A₂ ∩ ... ∩ Aₙ) 

Since all likelihood values are non-negative, dropping the negative terms 

yields an upper bound: 

P(⋃ᵢ₌₁ⁿ Aᵢ) ≤ ∑P(Aᵢ) 

If &only if the events are mutually exclusive, then this disparity turns into 

equality. 

Key Properties 

1. Sharpness: The bound is tight (equality holds) when the events are 

mutually exclusive. 

2. Monotonicity: Adding more events can only increase the bound. 
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Notes 3. Conservation of Likelihood Mass: The bound can exceed 1, which 

is impossible for an actual likelihood. This happens when there is 

significant overlap between events. 

4. Relationship to Addition Theorem: Boole's inequality is a 

simplification of the addition theorem when the intersection terms 

are unknown or difficult to calculate. 

Applications of Boole's Inequality 

1. Error Likelihood Bounds: In communication systems, Boole's 

inequality helps establish upper bounds on the likelihood of error 

when multiple types of errors can occur. 

2. Multiple Hypothesis Testing: In statistics, it's used to control the 

family-wise error rate, providing a bound on the likelihood of 

making at least one false discovery among multiple hypotheses. 

3. System Reliability: For complex systems with multiple failure 

modes, Boole's inequality bounds the overall system failure 

likelihood. 

4. Algorithm Analysis: In randomized algorithms, it helps analyze the 

likelihood of failure when multiple failure conditions exist. 

5. Risk Assessment: When evaluating the risk of complex scenarios 

with multiple potential hazards, Boole's inequality provides a 

conservative estimate of the overall risk. 

Bonferroni Correction 

A common application of Boole's inequality is the Bonferroni correction in 

multiple hypothesis testing. If you conduct n free statistical tests at a 

significance level α, the likelihood of at least one false positive (Type I 

error) is bounded by n·α according to Boole's inequality.To maintain an 

overall significance level α for the entire family of tests, each individual test 

should be conducted at a significance level of α/n. This is known as the 

Bonferroni correction. 

Example of Boole's Inequality 

Consider a system with three components, each with the following failure 

probabilities: 
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Notes • Component 1: P(A₁) = 0.05 

• Component 2: P(A₂) = 0.03 

• Component 3: P(A₃) = 0.04 

What is the maximum likelihood that at least one component will fail? 

Using Boole's inequality:  

P(A₁ ∪ A₂∪ A₃) ≤ P(A₁) + P(A₂) + P(A₃) ≤ 0.05 + 0.03 + 0.04 ≤ 0.12 

So, the likelihood of at least one component failing is at most 0.12 or 12%. 

Limitations and Refinements 

While Boole's inequality is simple to apply and requires minimal 

information (just the individual probabilities), it can be quite loose when 

events have significant overlap. In such cases, more refined bounds like the 

Bonferroni inequalities or the Hunter-Worsley bound might provide tighter 

results by incorporating information about pairwise intersections. 

1.5 Conditional Likelihood and Multiplication Theorem 

Conditional likelihood is the likelihood that an event will occur provided 

that another event has already occurred.  This idea is central to likelihood 

theory and serves as the foundation for Bayesian statistics as well as 

numerous applications in engineering, science, and decision-making. 

Definition of Conditional Likelihood 

The conditional likelihood of event B given that event A has taken place, 

denoted by P(B|A), is defined as follows:  

P(B|A) = P(A ∩ B) / P(A), 

where P(A) is the likelihood that event A will occur and P(A) is the 

likelihood that both events A &B will occur. 

.  

• P(A) > 0 This formula can be seen as the percentage of event A outcomes 

that are also event B outcomes.  

Intuitive Understanding 
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Notes A conditional likelihood is a likelihood that has been adjusted in light of 

fresh data. After discovering that event A has taken place, we limit our 

sample space to just the results of A. 

The likelihood of event B in this new limited sample space is denoted by 

P(B|A).  

The Theorem of Multiplication  

The multiplication theorem can be obtained by rearranging Conditional 

likelihood definition:  

P(A) × P(B|A) = P(A) ∩ B 

This theorem allows us to calculate the likelihood of two events occurring at 

the same time by multiplying the chance of one event by the conditional 

likelihood of the second event provided beforehand.  

The multiplication theorem extends to the following for numerous events:  

P(A) × P(B|A) × P(C|A ∩ B) = P(A) ∩ B ∩ C 

Likelihood Chain Rule  

The chain rule is the generic version of the multiplication theorem for n 

events:  

∩ Aₙ) = P(A₁) × P(A₂|A₁) × P(A₃|A₁ ∩ A₂) ×... × P(Aₙ|A₁ ∩ A₂ ∩... ∩ Aₙ₋₁) 

When determining the combined likelihood of a series of events, this rule is 

crucial.  

Separate Occurrences If the likelihood of one event does not change when 

the other occurs, then occurrences A & B are free.  

A and B are mathematically free if & only if P(B|A) = P(B).  

The equivalent expression for independence is P(A ∩ B) = P(A) × P(B).  

Mutual independence for multiple events necessitates the independence of 

each subset of events.  

Rule of Multiplication for Free Events Given the independence of events A₁, 

A₂,..., & Aₙ, P(A₁ ∩ A₂ ∩... ∩ Aₙ) = P(A₁) × P(A₂) ×... × P(Aₙ)  
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Notes  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 1: Classical Likelihood with Playing Cards

Solved Problems

conditional probabilities.

Machine Learning: Algorithms like Naive Bayes classifiers rely on 5.

conditions.

Finance:  Estimating  future  market  movements  based  on  current 4.

specific circumstances.

Risk  Assessment:  Evaluating  the  likelihood  of  accidents  under 3.

conditions.

Weather Forecasting: Predicting tomorrow's weather given today's 2.

prevalence.

Medical  Diagnosis:  Interpreting  test  results  based  on  disease 1.

Applications of Conditional Likelihood

account all potential circumstances.

This  law  assists  in  determining  an  event's  overall  likelihood  by  taking into 

& their union is entire sample space).

B₁, B₂,..., Bₙ constitute partition of sample space (they are mutually exclusive 

A, P(A) = P(A|B₁)P(B₁)+ P(A|B₂)P(B₂) +... + P(A|Bₙ)P(Bₙ) if  events  

Law of Total Likelihood  According to law of total likelihood, for each event 

essential.

probabilities must be adjusted in light of new information, Bayes' theorem is 

In  machine  learning,  medical  diagnosis,  and  numerous  other  fields  where 

• The marginal likelihood, or the overall likelihood of B, is denoted by P(B).

• prior likelihood is P(A), which is initial likelihood of A.

• likelihood, or likelihood of B given, is P(B|A). A

• posterior likelihood, or P(A|B), is likelihood that A given B

P(A|B) = [P(B|A) × P(A)] / P(B) for occurrences A and B, where:

data and is based on the idea of conditional likelihood..

The  Bayes  theorem  provides  a  way  to  update  probabilities  in  light  of  new 

This  makes  figuring  out  combined  likelihood  for  individual  events  easier. 
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Notes 

 

 

 

  

 

 

 

  

   

 

 

 

 

 

 

 

(T+|D') = 0.20

prevalence), P(T+|D) = 0.90 (sensitivity), and P(T-|D') = 0.80 (specificity), P

must be determined. Given the following data, P(D) = 0.05 (disease 

P(D|T+), the likelihood of having the disease in the event of a positive test, 

positive  test. 

Answer:  Let  D  be  the  occurrence  of  the  illness.  Let  T+  be  the  result  of  a 

positive?

What  is  the  likelihood  that  an  individual  truly  has  the  disease  if  they  test 

80%  of  those  who  do  not. 

who have it, and an 80% specificity, which means it can accurately identify 

has a 90% sensitivity, which means it can accurately identify 90% of those 

Five percent of people suffer from a particular ailment. A test for this illness 

Issue 2: Medical Testing's Conditional Likelihood

roughly  0.615. 

Consequently,  the  odds  of  drawing  a  face  card  or  a  red  card  are  8/13,  or 

3/26 = 16/26 = 8/13 P(R ∪ F) = P(R) + P(F) - P(R ∩ F)

Use  the  addition  theorem  in  step  four.  1/2  +  3/13 - 3/26  =  13/26  +  6/26 - 

both red and face cards. 3/26 = 6/52 = P(R ∩ F)

red  card.  Six  cards—the  Jack,  Queen,  King  of  Hearts,  and  Diamonds—are 

Step 3: Determine P(R ∩ F), or the likelihood of drawing a face card and a 

= 3/13

has twelve face cards: four Jacks, four Queens, and four Kings. P(F) = 12/52 

Step 2: Determine the likelihood of drawing a face card, or P(F). The deck 

has 26 red cards (13 diamonds and 13 hearts). P(R) = 26/52 = 1/2

Step  1:  Determine the  likelihood  of  drawing a  red  card,  or  P(R). The  deck 

card drawing event. We must determine P(R ∪ F).

Answer:  Let  R  be  the  occurrence  of  a  red  card  drawing.  Let  F  be  the  face 

card if you pull one card at at random from the deck?

What is the likelihood of drawing a face card (Jack, Queen, or King) or a red 

black cards, whereas diamonds and hearts are red cards.

deck has 13 cards (Ace, 2–10, Jack, Queen, and King). Clubs and spades are 

Each  of  four  suits  (hearts,  diamonds,  clubs,  &  spades)  in  typical  52-card 
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Notes  

 

 

 

 

 

 

 

 

 

   

 

 

 

     

 

      

 

0.015 + 0.001 = 0.076 or 7.6%

P(A ∪ B ∪ C) = 0.03 + 0.04 + 0.02 - 0.005 - 0.004 - 0.006 + 0.001 = 0.09 - 

P(A ∩ B ∩ C).

for P(A ∪ B ∪ C) is P(A) + P(B) + P(C) - P(A ∩ B) - P(A ∩ C) - P(B ∩ C) + 

Three events are examined using inclusion-exclusion principle: The formula 

• 0.001 is P(A ∩ B ∩ C).

C) = 0.004, &P(B ∩ C) = 0.006

values of P(A) = 0.03, P(B) = 0.04, P(C) = 0.02, P(A ∩ B) = 0.005, P(A ∩ 

Given:

following circumstances. We have to determine P(A ∪ B ∯ C).

Solution:  Assume  that  components  A,  B,  and  C  fail  as  a  result  of  the 

at  least  one  component  would fail? 

0.001 chance of failing. In  a  24-hour  period,  what  is  the  likelihood  that  

chance that components B and C will both fail. All three components have a 

0.004  chance  that  components  A  and  C  will  both  fail.  There  is  a  0.006 

There is a 0.005 chance that components A and B will both fail. There is a 

Component C: 0.02

Components A and B:  0.03  and  0.04,  respectively  

period:

make  up  a  software  system  has  the  following odds of failing in a 24-hour 

Issue 3: Multiple Event Addition Theorem Each  of  the  three  parts  that  

this example.

(prevalence)  into  account  when  interpreting  test  results  is  demonstrated  by 

19.15%  if  they  test  positive.  The  significance  of  taking  the  base  rate 

As  a  result,  the  likelihood  that  an  individual  has  the  condition  is  only 

0.045 / 0.235 = 0.1915, or around 19.15%, is the value of P(D|T+).

Step 3: Apply the Bayes theorem to calculate P(D|T+). 0.90 × 0.05 / 0.235 = 

0.90 × 0.05 + 0.20 × 0.95 = P(T+) = P(T+|D) × P(D) + P(T+|D') × P(D').

Step 2: Apply law of total likelihood to find P(T+). 0.045 + 0.19 = 0.235 = 

First,  use  the  Bayes  theorem.  [P(T+|D)  ×  P(D)]  /  P(T+)  =  P(D|T+)
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Notes Consequently, there is a 7.6% chance that at least one component will 

malfunction within a 24-hour period. 

Issue 4: Multiplication Theorem and Free Events  

Three times, fair die is rolled.  

What is likelihood of receiving a number less than four on third roll, an even 

number on second, and six first?  

Answer: Let A represent the chance of receiving a 6 on the first roll. Let B 

represent the chance of receiving an even number on the subsequent roll. Let 

C be the occurrence of a number on the third roll that is less than 4.  

Finding P(A ∩ B ∩ C) is necessary. 

We can apply the multiplication rule for separate events as the three rolls are 

free events: P(A) × P(B) × P(C) = P(A) ∩ B ∩ C  

Step 1: Calculate P(A), or the likelihood of receiving a 6 on the first roll. 

P(A) = 1/6  

Step 2: Determine P(B), or the likelihood that the second roll will provide an 

even number. On a die, the even numbers are 2, 4, and 6 (three possible 

outcomes). P(B) = 3/6 = 1/2  

Step 3: Determine P(C), or the likelihood that the third roll will yield a 

number smaller than 4.  

The numbers 1, 2, and 3 (three outcomes) are fewer than 4. P(C) = 3/6 = 1/2  

Use the multiplication theorem in step four. P(A) × P(B) × P(C) = (1/6) × 

(1/2) × (1/2) = 1/24 or around 0.0417  

Consequently, there is a 1/24 or around 4.17% chance of receiving a 6 on the 

first roll, an even number on the second roll, and a number less than 4 on the 

third roll.  

Conditional Likelihood Chain Rule Problem No. 5  

Three blue and five red balls are in a bag. Without a replacement, two balls 

are drawn.  

What is the likelihood that both balls will be red? 
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Notes  

Answer: When first ball is red, let R₁ = event. Let R₂ be chance that second 

ball turns red.  

Finding P(R₁ ∩ R₂) is necessary.  

Applying the theorem of multiplication: P(R₁) × P(R₂|R₁) = P(R₁ ∩ R₂)  

Step 1: Determine the likelihood that the first ball will be red, or P(R₁). 

P(R₁) = 5/8  

Step 2: Given that the first ball is red, find P(R₂|R₁), the likelihood that the 

second ball is also red. There are four red balls & three blue balls remaining 

after drawing  red ball, for a total of seven balls. P(R₂|R₁) = 4/7  

Use the multiplication theorem in step three. P(R₁ deviates from R₂) = P(R₁) 

× P(R₂|R₁) = (5/8) × (4/7) = 20/56 = 5/14, or roughly 0.357  

Thus, there is a 5/14, or around 35.7%, chance of drawing two red balls.  

Unsolved Problems 

Problem 1: Classical Likelihood 

Five times, a fair coin is tossed. How likely is it that at least three heads will 

appear?  

Second Issue: The Addition Theorem  

Thirty of the fifty students in the class are enrolled in mathematics, twenty-

five are enrolled in physics, and ten are enrolled in both. What is the 

likelihood that a randomly chosen student will be enrolled in either 

mathematics, physics, or both?  

Conditional Likelihood in Problem 3  

Eight blue socks and ten red socks are in a drawer. Two socks are chosen at 

at random and aren't replaced. Given that the first sock drawn was red, what 

is the likelihood that the second sock will be blue? 

Problem 4: Boole's Inequality Application 

A security system has four sensors, each with the following probabilities of 

false alarm: 

• Sensor 1: 0.02 
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Notes • Sensor 2: 0.03 

• Sensor 3: 0.01 

• Sensor 4: 
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Notes UNIT II 

1.6. Free and Mutually Free Events 

Introduction to Free Events 

According to likelihood theory, two events are free if their occurrences have 

no bearing on each other's probabilities.  Put differently, the fact that one 

event has happened doesn't tell us anything more about whether the other 

will. 

Mathematical Definition of Free Events 

A & B are two separate events if and only if:  

P(A) × P(B) = P(A) ∩ B 

 

Where:  

• P(A ∩ B) is likelihood that occurrences A and B will occur.  

• P(A) is likelihood that event A will occur.  

• P(B) is the likelihood that event B will occur.  

This formula serves as both the definition and the test for independence of 

two events. 

Alternative Formulation 

P(A|B) = P(A) is another way to declare independence if P(B) > 0.  

conditional likelihood of given that B has occurred is denoted by P(A|B). 

Likewise, P(B|A) = P(B) if P(A) > 0.  

These formulations highlight that the likelihood of one event remains 

unchanged regardless of whether the other event has occurred. 

Mutually Free Events 

It is possible to apply the idea of independence to more than two occasions. 

If each of three or more occurrences occurs freely of any combination of the 

others, they are said to be mutually free (or jointly free). 

Definition of Mutual Independence in Mathematics  
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Notes If and only if likelihood of intersection for each subset of events A₁, A₂,..., 

Aₙ is equal to product of probabilities of individual events, then these events 

are mutually free.  

For instance, all of the following requirements must be met for three events, 

A, B, and C, to be mutually free:  

1. P(A) × P(B) = P(A) ∩ B  

2. P(A) × P(C) = P(A) ∩ C  

3. P(B) × P(C) = P(B) ∩ C  

4. P(A) × P(B) × P(C) = P(A) ∩ B ∩ C  

It's crucial to remember that mutual independence is not always 

implied by pairwise independence, in which each pair of 

occurrences is free.  

Examples of Free Events 

1. Coin Tosses: The results of separate coin tosses are free events. 

2. Die Rolls: Each roll of a die is free of previous rolls. 

3. At random Selection from Different Groups: Selecting a at 

random male from a population and selecting a at random person 

with blue eyes are free if gender and eye color are free 

characteristics in the population. 

Examples of Dependent Events (Not Free) 

1. Card Draws without Replacement: When drawing cards without 

replacement, each draw depends on the previous draws. 

2. Weather Conditions: Today's weather and tomorrow's weather are 

typically dependent events. 

3. Stock Market Movements: Price movements of related stocks are 

usually dependent. 

4. Health Outcomes: Health outcomes for family members may be 

dependent due to shared genetics and environment. 

Importance of Independence in Likelihood 

The concept of independence is crucial in likelihood theory and statistics for 

several reasons: 
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Notes 1. Statistical Inference: Many statistical methods assume 

independence of observations. 

2. Likelihood Models: Many likelihood models (like the binomial 

distribution) are built on the assumption of independence. 

3. Risk Assessment: In risk analysis, understanding whether risks are 

free is essential for accurate risk aggregation. 
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Notes UNIT III 

1.7. Bayes' Theorem and Its Application 

Introduction to Bayes' Theorem 

A key finding in likelihood theory, Bayes' Theorem explains how to update a 

hypothesis's likelihood in light of fresh data. It offers a mathematical 

guideline for updating preexisting hypotheses or forecasts in light of fresh or 

more data.  

Bayes' Theorem in Mathematical Form  

According to Bayes' Theorem, P(A|B) = [P(B|A) times P(A)] for 

occurrences A and B where P(B) > 0. / P(B)  

Where:  

• posterior likelihood, or P(A|B), is likelihood that event A will occur given 

that B has occurred.  

• The prior likelihood, or starting likelihood of event A, is denoted by P(A).  

A Different Formulation Law of Total Likelihood in Action  

law of total likelihood can be used to enlarge the denominator P(B):  

[P(B|A) × P(A)] = P(A|B)  

The formula is P(B|A) × P(A) + P(B|A^c) × P(A^c)].  

where A^c is event's complement.  

Version of Multiple Hypotheses  

Bayes Theorem can be stated as follows when working with several 

mutually exclusive and exhaustive hypotheses: 

 P(Aᵢ|B) = [P(B|Aᵢ) × P(Aᵢ)] P(B|A⁼) × P(Aⱼ) = [∑ⱼ₌₁ⁿ]  

Key Components of Bayes' Theorem 

1. Prior Likelihood P(A): The initial degree of belief in A before the 

evidence B is considered. 

2. Likelihood P(B|A): How probable the evidence B is, assuming the 

hypothesis A is true. 

Intuitive Understanding of Bayes' Theorem 
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Notes Bayes' Theorem can be understood as a method for updating beliefs based 

on new evidence: 

1. Start with a prior belief P(A) 

2. Observe new evidence B 

3. Consider how likely the evidence would be if A were true P(B|A) 

4. Update the belief to obtain the posterior likelihood P(A|B) 

Applications of Bayes' Theorem 

1. Medical Diagnosis 

Bayes' Theorem is used to calculate likelihood of disease given positive test 

result: 

P(Disease|Positive Test) = [P(Positive Test|Disease) × P(Disease)] / 

P(Positive Test) 

This calculation helps understand the true diagnostic value of medical tests, 

accounting for factors like: 

• true positive rate 

• true negative rate 

• Prevalence of the disease in the population 

2. Spam Filtering 

Email spam filters often use Bayesian methods to classify messages: 

P(Spam|Words) = [P(Words|Spam) × P(Spam)] / P(Words) 

The system learns from training data which words are more commonly 

found in spam versus legitimate emails, and updates its classification 

accordingly. 

3. Machine Learning and AI 

Bayesian methods are foundational in many machine learning algorithms: 

• Naïve Bayes classifiers 

• Bayesian networks 

• Bayesian inference in probabilistic models 
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Notes 4. Risk Assessment and Decision Making 

Bayes' Theorem helps update risk assessments as new information becomes 

available: 

• Financial risk models 

• Insurance pricing 

• Project management risk assessment 

 

5. Forensic Evidence Analysis 

In legal settings, Bayes' Theorem can help evaluate the strength of forensic 

evidence: 

P(Guilty|Evidence) = [P(Evidence|Guilty) × P(Guilty)] / P(Evidence) 

6. Quality Control 

In manufacturing, Bayesian methods help update beliefs about product 

quality based on sample inspections. 

The Bayesian Approach to Likelihood 

Bayes' Theorem reflects a broader philosophical approach to likelihood: 

• Frequentist View: Likelihood represents the long-run frequency of 

events in repeated trials. 

• Bayesian View: Likelihood represents a degree of belief that can be 

updated based on new evidence. 

The Bayesian approach treats likelihood as subjective and allows for: 

• Incorporation of prior knowledge 

• Sequential updating as new data arrives 

• Quantification of uncertainty 

Common Misconceptions and Challenges 

1. Base Rate Fallacy: People often neglect the prior likelihood (base 

rate) when making judgments based on new evidence. 
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Notes 2. Appropriate Prior Selection: Choosing appropriate prior 

probabilities can be challenging and sometimes controversial. 

3. Computational Complexity: For complex problems, the 

calculations required by Bayes' Theorem can be computationally 

intensive. 

Solved Problems 

Problem 1: Free Events - Coin and Die 

A fair six-sided die is rolled, and fair coin is tossed.  How likely is it to 

obtain an even number on the die and a head on the coin? 

Solution: 

Let's define our events: 

• Event A: Getting a head on the coin 

• Event B: Getting an even number on the die 

Step 1: Find P(A) For a fair coin, P(A) = P(Head) = 1/2 = 0.5 

Step 2: Find P(B) Even numbers on a six-sided die are 2, 4, and 6. P(B) = 

P(Even number) = 3/6 = 1/2 = 0.5 

Step 3: We may use the multiplication formula for free events as the coin 

toss and die roll are separate occurrences: The formula for P(A ∩ B) is P(A) 

× P(B) = 0.5 × 0.5 = 0.25  

Consequently, there is a 0.25 or 25% chance of getting a head on the coin 

and an even number on the die.. 

Problem 2: Testing for Independence 

A survey found that among 200 students, 120 play basketball, 80 play 

football, and 40 play both sports. Are the events "playing basketball" and 

"playing football" free? 

Solution: 

Let's define our events: 

• Event A: A student plays basketball 

• Event B: A student plays football 
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Notes Step 1: Find the probabilities P(A) = Number of students who play 

basketball / Total number of students P(A) = 120/200 = 0.6 

P(B) = Number of students who play football / Total number of students 

P(B) = 80/200 = 0.4 

P(A ∩ B) = Number of students who play both sports / Total number of 

students P(A ∩ B) = 40/200 = 0.2 

Step 2: Determine whether P(A ∩ B) = P(A) × P(B) P(A) × P(B) = 0.6 × 0.4 

= 0.24 to test for independence.  

The events "playing basketball" and "playing football" are not free as P(A ∩ 

B) = 0.2 ≠ 0.24 = P(A) × P(B).  

Actually, there is a negative connection between both activities because P(A 

∩ B) < P(A) × P(B).  

This means that students who participate in one activity are less likely to 

participate in the other than we would anticipate if the choices were free. 

Unsolved Problems 

Problem 1: Free Events - Card Drawing 

Each of four suits (hearts, diamonds, clubs, & spades) in typical 52-card 

deck has 13 cards (Ace, 2–10, Jack, Queen, and King). Clubs and spades are 

black cards, whereas diamonds and hearts are red cards. 

The deck is shuffled and two cards are drawn. Given that both cards are face 

cards (Jack, Queen, or King), determine the likelihood that both are kings. 

Problem 2: Testing Independence in a 2×2 Contingency Table 

A study surveyed 500 adults about their coffee and tea consumption habits, 

with the following results: 

  Drinks Coffee Doesn't Drink Coffee Total 

Drinks Tea 120 180 300 

Doesn't Drink 

Tea 
140 60 200 

Total 260 240 500 

Are the events "drinking coffee" and "drinking tea" free? Justify your 

answer with calculations. 

Problem 3: Bayes' Theorem - Email Spam Filter 
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Notes A spam filter has the following characteristics: 

• 98% of spam emails are correctly identified as spam 

(P(Flagged|Spam) = 0.98) 

• 5% of non-spam emails are incorrectly flagged as spam 

(P(Flagged|Not Spam) = 0.05) 

• 40% of all emails received are spam (P(Spam) = 0.4) 

If an email is flagged as spam by the filter, what is the likelihood that it is 

actually spam? 

Problem 4: Bayes' Theorem - Sequential Testing 

A rare genetic condition affects 1 in 10,000 people in a population 

(P(Disease) = 0.0001). A genetic test for this condition has a sensitivity of 

99% (P(Positive|Disease) = 0.99) and a specificity of 99.9% (P(Negative|No 

Disease) = 0.999). 

Problem-Solving Using Likelihood Theorems 

Likelihood theorems provide powerful tools for solving complex problems 

involving uncertainty and randomness. Let's explore these theorems in depth 

with clear explanations, formulas, solved examples, and practice problems. 

Key Likelihood Theorems and Formulas 

1. The Rule of Addition in Likelihood 

P(A or B) = P(A) + P(B) - P(A and B) for any two occurrences A & B.  

For events that are mutually exclusive: P(A) + P(B) equals P(A or B) 

2. The Rule of Likelihood for Multiplication  

For any pair of occurrences A & B: P(A) × P(B|A) = P(A and B)  

For separate occurrences: P(A) × P(B) = P(A and B) 

3. Likelihood under Conditions  

P(A and B) / P(A) = P(B|A)  

4. The Law of Total Likelihood 

If sample space S is divided into events B₁, B₂,..., Bₙ, then P(A) = 

P(A|B₁)P(B₁) + P(A|B₂)P(B₂) +... + P(A|Bₙ)P(Bₙ) 

5. The Bayes Theorem  

[P(A|B) × P(B)] / P(A) = P(B|A)  

As an alternative, apply the law of total likelihood: [P(A|B) × P(B)] = 
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Notes P(B|A) The formula is P(A|B) × P(B) + P(A|B') × P(B') 

6. Complementary Occasions  

P(A') = 1 - P(A)  

7. The likelihood of at least one occurrence  

P(none of the events) - P(at least one of n events) = 1 

Solved Problems 

Solved Problem 1: medical testing  

When administered to an individual with the disease, a medical test has a 

98% chance of producing a positive result; when administered to an 

individual without the ailment, the likelihood is 3%. Assume that the disease 

affects 0.5% of the population.  

Solution: 

Let's define our events: 

• D: Person has the disease 

• D': Person does not have the disease 

• T+: Test result is positive 

• T-: Test result is negative 

We are provided with:  

The test sensitivity is P(T+|D) = 0.98, & false positive rate is P(T+|D') = 

0.03.  

• disease prevalence, P(D), is 0.005.  

• chance of not having disease is P(D') = 0.995.  

P(D|T+), or the likelihood that a person has disease if they tested positive, is 

what we're looking for.  

Applying the Bayes Theorem: [P(T+|D) × P(D)] = P(D|T+) The formula is 

P(T+|D) × P(D) + P(T+|D') × P(D') [  

Changing the values: 0.98 × 0.005 / [(0.98 × 0.005) + (0.03 × 0.995)] = 

P(D|T+) 0.0049 / [0.0049 + 0.02985] is P(D|T+). A = 0.0049 / 0.03475 

P(D|T+) P(D|T+) is approximately 14.1%, or 0.141.  

As a result, there is a 14.1% chance that a randomly chosen individual who 

tests positive indeed has the illness.  

Problem 2: Card Drawing Solved  

A conventional 52-card deck is used, and two cards are drawn consecutively 
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Notes without replacement. How likely is it that both cards are aces?  

Answer:  

Let's specify what our events are:  

• A: An ace is first card.  

• A: An ace is second card.  

Our goal is to locate P(A₁ and A₂).  

Applying the rule of multiplication to dependent events: [A₁ and A₂] = [A₁] 

× [A₂|A₁]  

A normal 52-card deck has four aces. P(A₁) = 4/52 = 1/13  

Three aces remain out of 51 cards after one ace is drawn. 1/17 = 3/51 = 

P(A₂|A₁)  

Consequently, P(A₁ and A₂) = (1/13) × (1/17) = 1/(13×17) = 1/221 ≈ 0.00452 

or almost 0.452%  

resolved Issue 3: Likelihood and Three Friends  

Charlie, Ben, and Alex, three buddies, show up for a party on their own. 

Alex has a 0.7 chance of going, Ben has a 0.6 chance, and Charlie has a 0.8 

chance. How likely is it that: a) All three will be at the party? b) Does at 

least one of them show up for the celebration? c) There are precisely two of 

them at the celebration? 

Solution: 

Let's define our events: 

• A: Alex attends the party, P(A) = 0.7 

• B: Ben attends the party, P(B) = 0.6 

• C: Charlie attends the party, P(C) = 0.8 

We can apply the multiplication rule for free events because arrivals are free.  

a) The likelihood that all three will show up: 0.7 × 0.6 × 0.8 = 0.336 or 

33.6% b) = P(A and B and C) × P(B) × P(C) The likelihood that one or more 

people will attend: The complement of the likelihood that no one shows up 

is this: P(none attend) - P(at least one) = 1. 0.3 × 0.4 × 0.2 = 0.024 P(none 

attend) = P(A' &B' & C') = P(A') × P(B') × P(C') = (1-0.7) × (1-0.6) × (1-

0.8)  

With that in mind, P(at least one) = 1 - 0.024 = 0.976 or 97.6% c The 

likelihood that precisely two will be present: Three things can cause this: (A 

and not B &C) or (not A and B &C) or (A and B and not C)  
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Notes The formula P(exactly two) is P(A and B and C') + P(A and B' and C) + P(A' 

and B and C). P (two precise) (P(A) × P(B) × P(C')) = P(A) × P(B') × P(C) + 

[%] + [A' P(B) × C(C)] P(exactly two) = 0.084 + 0.224 + 0.144 = 0.452 or 

45.2% P(exactly two) = [0.7 × 0.6 × 0.2] + [0.7 × 0.4 × 0.8] + [0.3 × 0.6 × 

0.8]  

Solved Problem 4: Email Spam Filter 

A spam filter is designed to identify unwanted emails. In a large sample of 

emails, it was found that: 

• 30% of all emails are spam 

• The filter correctly identifies spam emails with a likelihood of 0.95 

• The filter incorrectly marks legitimate emails as spam with a 

likelihood of 0.05 

a) What is the likelihood that an email flagged as spam is actually spam? b) 

What is the likelihood that an email that passes the filter is actually 

legitimate? 

Solution: 

Let's define our events: 

• S: Email is spam, P(S) = 0.3 

• L: Email is legitimate, P(L) = 0.7 

• F: Filter flags email as spam 

• P: Email passes the filter (not flagged) 

We are given: 

• P(F|S) = 0.95 (true positive) 

• P(F|L) = 0.05 (false positive) 

• P(P|S) = 0.05 (false negative) 

• P(P|L) = 0.95 (true negative) 

Solved Problem 5: Safety Systems 

A and B are two separate safety systems on a machine. System A detects 

malfunctions with a likelihood of 0.95 and system B detects them with a 
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Notes likelihood of 0.90.  

a) How likely is it that at least one of the systems will notice a malfunction? 

b) How likely is it that both systems will notice a malfunction? c) How 

likely is it that a single system will identify a malfunction? 

Solution: 

Let's define our events: 

• A: System A detects the malfunction, P(A) = 0.95 

• B: System B detects the malfunction, P(B) = 0.90 

a) Likelihood that at least one system detects the malfunction: We can use 

the addition rule: P(A or B) = P(A) + P(B) - P(A and B) 

Since the systems are free: P(A and B) = P(A) × P(B) = 0.95 × 0.90 = 0.855 

Therefore: P(A or B) = 0.95 + 0.90 - 0.855 = 0.995 or 99.5% 

Alternatively, we could compute this as the complement of neither system 

detecting the malfunction: P(A or B) = 1 - P(A' and B') = 1 - [(1-0.95) × (1-

0.90)] = 1 - [0.05 × 0.10] = 1 - 0.005 = 0.995 

b) Likelihood that both systems detect the malfunction: P(A and B) = P(A) × 

P(B) = 0.95 × 0.90 = 0.855 or 85.5% 

c) Likelihood that exactly one system detects the malfunction: P(exactly 

one) = P(A & B') + P(A' and B) P(exactly one) = [P(A) × P(B')] + [P(A') × 

P(B)] P(exactly one) = [0.95 × (1-0.90)] + [(1-0.95) × 0.90] P(exactly one) = 

[0.95 × 0.10] + [0.05 × 0.90] P(exactly one) = 0.095 + 0.045 = 0.14 or 14% 

Applying Likelihood Theorems Strategically 

When solving likelihood problems, consider the following approach: 

1. Clearly identify the events and their probabilities 

2. Determine if events are free, dependent, mutually exclusive, etc. 

3. Choose the appropriate theorem (addition rule, multiplication rule, 

Bayes' theorem, etc.) 

4. Consider using complementary probabilities for "at least one" type 

problems 
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Notes 5. Break complex problems into simpler components 

The Role of Likelihood Trees 

Likelihood trees are visual tools that can help solve complex likelihood 

problems, especially those involving sequential events. Each branch in a tree 

represents a possible outcome, and probabilities are multiplied along paths. 

For example, consider the medical testing problem (Solved Problem 1). We 

could draw a tree with: 

• First branch: Disease (0.005) vs. No Disease (0.995) 

• Second branches from Disease: Positive test (0.98) vs. Negative test 

(0.02) 

• Second branches from No Disease: Positive test (0.03) vs. Negative 

test (0.97) 

The likelihood of testing positive and having disease would be: P(D and T+) 

= P(D) × P(T+|D) = 0.005 × 0.98 = 0.0049 

Geometric Likelihood 

Some problems involve continuous likelihood where outcomes are points in 

space. Geometric likelihood often uses the principle: 

P(E) = Favorable geometric measure / Total geometric measure 

The measure could be length, area, volume, etc., depending on the context. 

Solving Real-World Problems with Likelihood 

Likelihood theory helps us model and make decisions in uncertain 

situations. In real-world applications, the key challenge is correctly 

identifying events, assigning appropriate probabilities, and determining the 

relationships between events. 

Quality control, insurance, medical diagnosis, weather forecasting, and risk 

assessment all rely on likelihood calculations similar to the problems we've 

explored. 

Multiple-Choice Questions (MCQs) 

1. The classical definition of likelihood is based on: 

a) Experimentation 
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Notes b) Equally likely outcomes 

c) Subjective judgment 

d) At random variations 

2. likelihood of at least 1 event occurring is found using: 

a) Addition theorem 

b) Multiplication theorem 

c) Bayes’ theorem 

d) None of the above 

3. Boole’s inequality states that: 

a) P(A∪B)≥P(A)+P(B) 

b) P(A∩B)=P(A)P(B) 

c) P(A∪B)≤P(A)+P(B) 

d) P(A∣B)=P(A∩B)P(B) 

4. The multiplication theorem of likelihood states that: 

a) P(A∩B)=P(A)P(B) 

b) P(A∩B)=P(A∣B)P(B) 

c) P(A∩B)=P(B∣A)P(A) 

d) Both (b) and (c) 

5. Two events A & B are free if: 

a) P(A∣B)=P(A) 

b) P(B∣A)=P(B) 

c) P(A∩B)=P(A)P(B) 

d) All of the above 

6. Bayes’ theorem is used to: 

a) Compute conditional probabilities 

b) Find joint probabilities 

c) Determine prior and posterior probabilities 

d) Both (a) and (c) 

7. likelihood of complement of an event A is given by: 

a) 1−P(A) 

b) P(Ac)=P(A) 

c) P(A)+P(Ac)=0 

d) None of the above 
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Notes 8. If  2 events A & B are mutually exclusive, then: 

a) P(A∩B)=0 

b) P(A∪B)=P(A)+P(B) 

c) P(A∣B)=0 

d) All of the above 

9. law of total likelihoodstates that: 

a) P(B)=P(B∣A1)P(A1)+P(B∣A2)P(A2)+... 

b) P(A∪B)=P(A)+P(B)−P(A∩B) 

c) P(A∩B)=P(A)P(B) 

d) None of the above 

10. A real-life application of Bayes’ theorem is in: 

a) Spam filtering 

b) Weather prediction 

c) Medical diagnosis 

d) All of the above 

Short Answer Questions 

1. Define likelihood and explain its different approaches. 

2. What is the addition theorem of likelihood? Give an example. 

3. Explain Boole’s inequality with a practical application. 

4. What is conditional likelihood? Provide an example. 

5. Differentiate between free and mutually free events. 

6. State and explain Bayes’ theorem with an example. 

7. Define mutually exclusive events and provide an example. 

8. Explain the law of total likelihood with a real-life example. 

9. How does Bayes’ theorem help in medical diagnosis? 

10. What is the importance of likelihood theory in decision-making? 

Long Answer Questions 

1. Explain the three different approaches to likelihood with examples. 

2. Derive and explain the addition theorem of likelihood with an 

example. 



  

32 
 

Notes 3. Discuss Boole’s inequality and its significance in likelihood theory. 

4. Explain conditional likelihood and the multiplication theorem with 

real-life examples. 

5. Discuss the concept of free and mutually free events in likelihood. 

6. Derive Bayes’ theorem and provide a step-by-step example of its 

application. 

7. Solve a real-world problem using Bayes’ theorem (e.g., spam 

filtering or medical diagnosis). 

8. Explain how likelihood theory is used in risk assessment and 

decision-making. 

9. Discuss common misinterpretations of likelihood in everyday life. 

10. How is likelihood theory applied in artificial intelligence and 

machine learning? 
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Notes MODULE II 

RANDOM VARIABLES AND PROBABILITY FUNCTIONS 

 

UNIT IV 

AT RANDOM VARIABLES AND LIKELIHOOD FUNCTIONS 

Objectives 

• To understand the concept of at random variables and their types. 

• To study likelihood mass functions (PMF) and likelihood density 

functions (PDF). 

• To explore distribution functions and their properties. 

• To learn about bivariate at random variables and their distributions. 

• To define mathematical expectation, variance, and covariance. 

• To study moment-generating functions and their applications. 

2.1 Introduction to At random Variables 

What is a At random Variable? 

A at random variable is one whose values are determined by the results 

of a at random event. It gives us a method to assign numerical values to 

results of at random experiments, enabling us to use mathematics to 

evaluate uncertain situations.At random variables serve as a bridge 

between likelihood theory and statistical analysis. While likelihood 

theory deals with the likelihood of events occurring, at random variables 

allow us to quantify and analyze these outcomes. 

Properties of At random Variables 

1. Range: The collection of every numerical result that the at random 

variable could provide  

2. Likelihood Assignment: Each value in the range has an associated 

likelihood, indicating how likely the at random variable is to take 

that value. 

Types of At random Variables 
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Notes At random variables come in two primary varieties:  

1. At random variables that are discrete  

2. At random Variables That Are Continuous  

These types differ in the nature of values they can take and how we 

calculate probabilities associated with them. 

2.2 Discrete and Continuous At random Variables 

Discrete At random Variables 

Only a countable number of different values, such as integers or a finite 

set of values, can be assigned to a discrete at random variable. There 

could be a countably infinite or finite number of potential values. 

Characteristics: 

• Takes distinct, separate values 

• Can be counted 

• Often represents counts, whole numbers, or categories converted to 

numbers 

• Has gaps between possible values 

Continuous At random Variables 

A continuous at random variable can take any value within a range or 

interval. set of possible values is uncountable and forms a continuum. 

Characteristics: 

• Can take any value within a range 

• Cannot be counted, only measured 

• Often represents measurements like time, height, weight, 

temperature 

• Has no gaps between possible values 

Examples: 

• Height of a person 

• Time required to complete a task 
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Notes • Amount of rainfall in a day 

• Weight of a product 

Key Differences 

1. Nature of Values: 

o Discrete: Takes separate, distinct values 

o Continuous: Can take any value within a range 

2. Likelihood Calculation: 

o Discrete: We can assign a likelihood to each specific value 

o Continuous: The likelihood of any exact single value is 

zero; we calculate probabilities for ranges of values 

3. Mathematical Representation: 

o Discrete: Represented by Likelihood Mass Function (PMF) 

o Continuous: Represented by Likelihood Density Function 

(PDF) 

4. Cumulative Distribution: 

o Discrete: The CDF has jumps at the possible values 

o Continuous: The CDF is a smooth curve without jumps 

Mixed At random Variables 

Some at random variables exhibit both discrete and continuous 

properties. These are called mixed at random variables and have both 

discrete and continuous components in their distributions.For example, 

the amount of annual rainfall might be continuous for positive values 

but have a discrete likelihood mass at zero (for regions that might 

experience no rainfall in some years). 
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Notes UNIT V 

2.3 Likelihood Mass Function (PMF) 

Definition 

The likelihood distribution of discrete at random variable is described by 

Likelihood Mass Function (PMF).  PMF provides likelihood that 

discrete at random variable X will take on exact value x. 

 

Notation 

Usually, PMF is written as p(x) or P(X = x), where:  

• chance that at random variable X will take value x is equal to p(x) = 

P(X = x).  

Qualities of a Reputable PMF  

In order for a function p(x) to be a legitimate PMF, it needs to meet:  

1. Non-negativity: for any x, p(x) >= 0. No outcome can have a negative 

likelihood.  

2. Add up to 1: ∑ p(x) = 1, where the total is the sum of all x's potential 

values. All conceivable outcomes must have a total likelihood of 1.  

3. Domain Restriction: for any value x outside of the range of X, p(x) = 

0. The only values with non-zero probabilities are those that can truly 

happen.  

Likelihood Calculation with the PMF  

We add the PMF over each value in A to get the likelihood that X will 

take a value in A: For every x in A, P(X ∈ A) = ∑ p(x).  

To determine the likelihood that a dice roll is even, for instance: P(X is 

even) is equal to 2 + 4 + 6 = 1/6 + 1/6 + 1/6 = 1/2  

Value Expected Using PMF  

When all potential values of discrete at random variable X are added 

together, expected value (mean) is E[X] = ∑ x * p(x).  

Difference Making Use of PMF  

Var(X) = ∑ (x - E[X]) is variance of discrete at random variable X. sum 

of all possible values of x is ² * p(x).  

As an alternative: E[X²] - (E[X])² = ∑ x² * p(x) = Var(X) - (E[X]) ²  

2.4 Likelihood Density Function (PDF) 
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Notes Definition 

likelihood distribution of continuous at random variable is described by 

Likelihood Density Function (PDF).  PDF does not provide probabilities 

directly, in contrast to PMF for discrete at random variables. Rather, the 

integral of the PDF over a given range provides the likelihood that a 

continuous at random variable will fall within that range.  

Notation  

The standard notation for PDF of continuous at random variable X is 

f(x).  

Characteristics of Legitimate PDF  

The following conditions must be met for function f(x) to be a valid 

PDF:  

1. Non-negativity: for any x, f(x) >= 0. Nowhere can the density 

function be negative.  

2. When the integral is taken across the whole domain, the area equals 1: 

∫ f(x) dx = 1. The PDF curve's entire area under the curve must be 1.  

Analysis of the PDF  

The likelihood that X = x is not provided by PDF f(x).likelihood of any 

single point for a continuous at random variable is always zero.  

Rather, the "density" of likelihood close to x is represented by f(x). 

Approximately f(x) times interval width is the likelihood that X falls 

within small interval surrounding x.  

More specifically:  

• P(x ≤ X ≤ x + Δx) = f(x) * Δx for a narrow interval [x, x + Δx].  

• P(a ≤ X ≤ b) = ∫ f(x) dx, where the integral is evaluated from a to b, is 

precise likelihood that X falls in interval [a, b].  

How to Determine Probabilities Making use of PDF  

We integrate PDF throughout the range [a, b] to determine likelihood 

that X takes a value in that range: P(a ≤ X < b) = ∫ f(x) dx, where the 

integral is evaluated from a to b.  

For a uniform distribution across [0, 1], for instance: The expected value 

using PDF is P(0.25 < X ≤ 0.75) = ∫ 1 dx = 0.75 - 0.25 = 0.5.  

If X is continuous at random variable, its expected value (mean) is: E[X] 

is the domain-wide integration of ∫ x * f(x) dx.  

Variance with PDF  

A continuous at random variable X's variance is: ∫ (x - E[X]) = Var(X) 
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Notes domain-wide integration of ² * f(x) dx  

As an alternative: E[X²] - (E[X]) = Var(X) * f(x) dx - (E[X]) = ∫ x² ²  

2.5 Cumulative Distribution Function (CDF) 

Definition 

A at random variable X's Cumulative Distribution Function (or CDF) 

indicates the likelihood that X will take a value that is less than or equal 

to x. Both continuous and discontinuous at random variables are covered 

by CDF.  

Notation  

For at random variable X, the CDF is commonly represented as F(x): 

F(x) = P(X ≤ x)  

Qualities of a Reputable CDF  

To be valid CDF, a function F(x) needs to meet the following 

requirements:  

1. Monotonicity: F(x) is non-decreasing; that is, F(a) ≤ F(b) if a < b. The 

cumulative likelihood cannot fall as x rises.  

2. Range: for any x, 0 < F(x) ≤ 1. The range of probabilities is 0 to 1.  

3. Limits: lim F(x) = 0 when x gets closer to -∞ and lim F(x) = 1 when x 

gets closer to +∞ There is a zero chance that X will be less than negative 

infinity, and a one chance that X will be less than positive infinity.  

4. Right Continuity: F(x) is right-continuous, meaning that as h gets 

closer to 0 from the positive side, limF(x + h) = F(x).  

Discrete At random Variables with CDF  

With PMF p(x) for discrete at random variable X, the CDF is F(x) = ∑ 

p(t), where the total of all values t ≤ x CDF for continuous at random 

variables  

When integral is assessed from -∞ to x, the CDF for a continuous at 

random variable X with PDF f(t) is F(x) = ∫ f(t) dt.  

Partnership Comparing Continuous At randomVariables with PDF 

&CDF  

For a at random variable that is continuous:  

1. The derivative of CDF is PDF: f(x) = d/dx F(x)  

2. The CDF is the PDF's essential component: From -∞ to x, F(x) = ∫ f(t) 

dt  

How to Determine Probabilities Making use of the CDF  
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Notes 1. The likelihood that X ≤ b is P(X ≤ b) = F(b).  

2. The likelihood that X is greater than b: P(X > b) = 1-F(b)  

The likelihood that a < X ≤ b is as follows: P(a < X ≤ b) = F(b) - F(a)  

Quantiles and Percentiles Using the CDF 

A at random variable X's p-th quantile, also known as its 100p-th 

percentile, is value of xp such that F(xp) = P(X ≤ xp) = p.  

The 50th percentile, for instance, is the median (p = 0.5).  

Issues Resolved  

Problem 1: A Discrete At randomVariable's Likelihood Mass Function 

(PMF)  

Issue Remark: Two rolls of fair six-sided die are made. Assume that at 

random variable X is sum of two displayed integers. Determine X's 

PMF.  

Answer: X can have any of the following values: 2, 3, 4,..., 12.  

We must divide total number of possible outcomes by number of ways 

each sum can occur in order to determine the PMF. 

Total number of possible outcomes = 6 × 6 = 36 (since each die can 

show 6 different values) 

For each possible value of X, we count the number of ways it can occur: 

• X = 2: Only possible with (1,1). Count = 1 

• X = 3: Possible with (1,2) or (2,1). Count = 2 

• X = 4: Possible with (1,3), (2,2), or (3,1). Count = 3 

• X = 5: Possible with (1,4), (2,3), (3,2), or (4,1). Count = 4 

• X = 6: Possible with (1,5), (2,4), (3,3), (4,2), or (5,1). Count = 5 

• X = 7: Possible with (1,6), (2,5), (3,4), (4,3), (5,2), or (6,1). Count = 

6 

• X = 8: Possible with (2,6), (3,5), (4,4), (5,3), or (6,2). Count = 5 

• X = 9: Possible with (3,6), (4,5), (5,4), or (6,3). Count = 4 

• X = 10: Possible with (4,6), (5,5), or (6,4). Count = 3 

• X = 11: Possible with (5,6) or (6,5). Count = 2 
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Notes • X = 12: Only possible with (6,6). Count = 1 

Consequently, p(2) = 1/36 p(3) = 2/36 = 1/18 p(4) = 3/36 = 1/12 p(5) = 4/36 

= 1/9 p(6) = 5/36 p(7) = 6/36 = 1/6 p(8) = 5/36 p(9) = 4/36 = 1/9 p(10) = 

3/36 = 1/12 p(11) = 2/36 = 1/18 p(12) = 1/36 is PMF of X.  

We can confirm that sum of the likelihood equals one: 36/36 = 1 = 1/36 + 

2/36 + 3/36 + 4/36 + 5/36 + 6/36 + 5/36 + 4/36 + 3/36 + 2/36 + 1/36  

Issue 2: A Discrete At random Variable's Expected Value &Variance  

Issue Remark: Determine expected value &variance of X using PMF of total 

of two dice rolls from Problem 1.  

Answer: E[X] = ∑ x * p(x) = 2 * (1/36) + 3 * (2/36) + 4 * (3/36) + 5 * 

(4/36) + 6 * (5/36) + 7 * (6/36) + 8 * (5/36) + 9 * (4/36) + 10 * (3/36) + 11 * 

(2/36) + 12 * (1/36) = 2/36 + 6/36 + 12/36 + 20/36 + 30/36 + 42/36 + 40/36 

+ 36/36 + 30/36 + 22/36 + 12/36 = 252/36 = 7.  

We can use the following to find variance: E[X²] - (E[X]) = Var(X) ²  

Let's first compute E[X2]: E[X²] = ∑ x² * p(x) = 2² * (1/36) + 3² * (2/36) + 

4² * (3/36) + 5² * (4/36) + 6² * (5/36) + 7² * (6/36) + 8² * (5/36) + 9² * (4/36) 

+ 10² * (3/36) + 11² * (2/36) + 12² * (1/36) = 4/36 + 18/36 + 48/36 + 100/36 

+ 180/36 + 294/36 + 320/36 + 324/36 + 242/36 + 144/36 = 1974/36 = 54.83  

Next, figure out variance: E[X²] - (E[X]) = Var(X) 54.83-49 = 5.83 ² = 54.83 

- 7²  

As a result, X's variance is 5.83 and its anticipated value is 7.  

Issue 3: Cumulative Distribution Function (CDF) &Likelihood Density 

Function (PDF)  

Statement of the Problem: A certain electrical component's lifetime X 

(measured in years) has the following PDF: When x ≥ 0, f(x) = λe^(-λx), and 

when λ = 0.5, f(x) = 0  

(a) Make sure this PDF is legitimate. (b) Find F(x), the CDF. (c) Determine 

P(1 < X ≤ 3) and P(X > 2). (d) Determine the component's anticipated 

lifespan.  

Answer:  

(a) To confirm that f(x) is a legitimate PDF, we must make sure that:  

1. For every x, f(x) >= 0.  

2. ∫ f(x) dx = 1, in which all values of x are regarded as integrals.  

For condition 1, f(x) = 0 for x < 0 and f(x) = 0.5e^(-0.5x) for x ≥ 0. f(x) ≥ 0 

for all x since e^(-0.5x) > 0 for all x and 0.5 > 0.  

Given that f(x) = 0 for x < 0, condition 2 is as follows: ∫ f(x) dx = ∫ 0.5e^(-
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Notes 0.5x) dx from 0 to ∞ is equal to -e^(-0.5x)|_0^∞ = -e^(-∞) (0 + 1 = 1) = - (-

e^(0))  

Consequently, f(x) is legitimate PDF.  

(b) The CDF is: From -∞ to x, F(x) = ∫ f(t) dt  

If x is less than 0: Since f(t) = 0 for t < 0, F(x) = 0.  

For x ≥ 0: From 0 to x = -e^(-0.5t)|_0^, F(x) = ∫ 0.5e^(-0.5t) dt x = -e^(-0.5x) 

F(x) = 0 for x < 0 because -(-e^(0)) = -e^(-0.5x) + 1 = 1 - e^(-0.5x). For x ≥ 

0 (c), F(x) = 1 - e^(-0.5x) To determine P(X > 2): F(2) = 1 - (1 - e^(-0.5*2)) 

= 1 - (1 - e^(-1)) = e^(-1) = 0.368 P(X > 2) = 1 - P(X ≤ 2) =.  

P(1 ≤ X ≤ 3) can be found by: P(1 ≤ X ≤ 3) = F(3) - F(1) = (1 - e^(-0.53)) - 

(1 - e^(-0.51)) = (1 - e^(-1.5)) - (1 - e^(-0.5)) = e^(-0.5) - e^(-1.5) = 0.607 - 

0.223 = 0.384 (d) E[X] is the anticipated lifetime: From 0 to ∞, E[X] = ∫ x * 

f(x) dx = ∫ x * 0.5e^(-0.5x) dx  

Integration by parts can be used to calculate this: Let dv = 0.5e^(-0.5x) dx 

and u = x. Then v = -e^(-0.5x) and du = dx.  

[x * (-e^(-0.5x))] = E[X] [0 - 0] = _0^∞ - ∫ (-e^(-0.5x)) dx from 0 to ∞ From 

0 to ∞, - ∫ (-e^(-0.5x)) dx = ∫ e^(-0.5x) dx = [-2e^(-0.5x)] [0 - (-2)] = 2 = 

_0^∞  

Consequently, two years is the component's anticipated lifespan.  

Issue 4: Locating a PDF Given a problem statement for CDF: The CDF of a 

at random variable X is as follows: For x < 0, F(x) = 0. For 0 ≤ x < 1, F(x) = 

x² For x ≥ 1, F(x) = 1.  

(a) Locate X's PDF. (b) P(0.3 ≤ X ≤ 0.7) is calculated. (c) Determine X's 

median.  

Answer:  

(a) The PDF is the CDF's derivative: f(x) = d/dx F(x)  

If x is less than 0: f(x) = d/dx (0) = 0.  

For 0 ≤ x < 1: d/dx (x²) = 2x = f(x)  

f(x) = d/dx (1) = 0 for x ≥ 1.  

Since 0 ≤ x < 1, f(x) = 0; f(x) = 2x; and f(x) = 0 for x ≥ 1,  

By determining whether the integral equals 1, we can confirm that this is a 

legitimate PDF: Since f(x) = 0 outside [0,1] = [x²]_0^1 = 1² - 0² = 1 (b), ∫ 

f(x) dx = ∫ 2x dx from 0 to 1 P(0.3≤ X≤ 0.7) can be found by using the 

formula P(0.3≤ X≤ 0.7) = F(0.7) - F(0.3) = 0.7² - 0.3² = 0.49 - 0.09 = 0.4 (c). 

The value m at which F(m) = 0.5 is the median. F(x) = x² for 0 ≤ x < 1. 

Finding m such that m² = 0.5 m = √0.5 m ≈ 0.707 is necessary.  

As a result, X's median is roughly 0.707.  
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Notes Joint Likelihood Distribution is the fifth problem.  

The issue is that two fair dice are rolled. If X and Y are the same, then X = 

Y. Let X be the greater of the two numbers that appear, & Y be tsmaller 

number.  

(a) Determine X and Y's joint PMF. (b) Determine X & Y's marginal PMFs. 

(c) P(X + Y ≤ 5) is calculated. (c) Do X & Y stand alone? Describe. 

Answer:  

(a) The formula for joint PMF is p(x,y) = P(X = x, Y = y).  

We must count the number of outcomes that meet X = x and Y = y for each 

pair of values (x,y), then divide that number by total number of potential 

outcomes.  

Six × 6 = 36 is total number of possible outcomes.  

We have Y ≤ X since X is larger and Y is smaller. There is just a single die 

combination that can produce this if X = Y (both dice display the same 

value). There are two possible dice combinations if X > Y: (X, Y) or (Y, X).  

This is joint PMF p(x,y):  

For y = 1: p(1,1) = 1/36 p(2,1) = 2/36 = 1/18 p(3,1) = 2/36 = 1/18 p(4,1) = 

2/36 = 1/18 p(5,1) = 2/36 = 1/18 p(6,1) = 2/36 = 1/18  

For y = 2, p(2,2) = 1/36 p(3,2) = 2/36 = 1/18 p(4,2) = 2/36 = 1/18 p(5,2) = 

2/36 = 1/18 p(6,2) = 2/36 = 1/18  

p(3,3) = 1/36 p(4,3) = 2/36 = 1/18 p(5,3) = 2/36 = 1/18 p(6,3) = 2/36 = 1/18 

for y = 3.  

p(4,4) = 1/36 p(5,4) = 2/36 = 1/18 p(6,4) = 2/36 = 1/18 for y = (4).  

p(5,5) = 1/36 p(6,5) = 2/36 = 1/18 for y = 5.  

If y = 6, then p(6,6) = 1/36  

p(x,y) = 0 for every other combination.  

(b) p_X(x) = ∑ p(x,y) for all y p_X(1) = p(1,1) = 1/36 p_X(2) = p(2,1) + 

p(2,2) = 2/36 + 2/36 + 3/36 = 1/12 p_X(3) = p(3,1) + p(4,2) + p(4,3) + 

p(4,4) = 2/36 + 2/36 + 2/36 + 1/36 = 5/36 p_X(5) = p(5,1) + p(6,2) + p(5,3) 

+ p(5,4) + p(5,5) = 2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 

2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 

+ 2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 

2/36 + 2/36 + 1/36 = 9/36 = 1/4 p_X(6) = p(6,1)  

p_Y(y) = ∑ p(x,y) for all x p_Y(1) = p(1,1) + p(2,1) + p(3,1) + p(4,1) + 

p(6,1) = 1/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 + 2/36 = 11/36 p_Y(2) = 

p(2,2) + p(3,2) + p(4,2) + p(5,2) + p(6,2) = 1/36 + 2/36 + 2/36 + 2/36 + 2/36 

+ 2/36 = 9/36 = 1/4 p_Y(3) = p(3,3) + p(4,3) + p(5,3) + p(6,3) = 1/36 + 2/36 
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Notes + 2/36 + 2/36 + 2/36 = 7/36 p_Y(4) = p(4,4) + p(5,4) + p(6,4) = 1/36 + 2/36 

= 2/36  

 

 

2.6 Bivariate At random Variables 

Introduction to Bivariate At random Variables 

In many practical situations, we need to study two or more at random 

variables simultaneously. For example, in economics, we might be interested 

in relationship between income &expenditure; in meteorology, we might 

study relationship between temperature and humidity.  

Definition and Notation 

Let's use (X, Y) to represent our bivariate at random variable. A subset of 

R2 (the two-dimensional real plane) is the range or set of values that (X, Y) 

can take on. S(X,Y) represents this set, which is known as support of (X, Y).  

We can list all of the potential values for discrete at random variables: \(x₁, 

y₁), (x₂, y₂),..., (xₙ, yₙ),...} is the formula for S(X,Y).  

An area on the plane could serve as the support for continuous at random 

variables: S(X,Y) = {(x, y): x ∈ A, y ∈ B}, where A &B are subsets of the 

real line.  

Bivariate At random Variable Examples  

1. Dice Rolling: When two fair dice are rolled, let X be number on first die 

and Y be number on second. support S(X,Y) is made up of all 36 possible 

pairs in this case, where both X and Y take values in {1, 2, 3, 4, 5, 6}.  

2. Height and Weight: Assume that randomly chosen individual from a 

population has height X & weight Y. X &Y are both at random variables 

that are continuous.  

3. Weather Conditions: Let Y be discrete at random variable that indicates 

whether it rains (Y = 1) or not (Y = 0), and let X be the temperature on a 

particular day. In this case, Y is discrete and X is continuous.  

2.7 Joint, Marginal, and Conditional Distributions 

Joint Likelihood Distribution  
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Notes The likelihood behavior of two at random variables taken into consideration 

together is described by joint likelihood distribution of bivariate at random 

variable (X, Y).  

For At random Variables That Are Discrete  

joint likelihood mass function (PMF) for discrete at random variables is 

expressed as follows: p(x, y) = P(X = x, Y = y).  

This is the likelihood that X will take the value x and Y will take the value y 

at the same time.  

The joint PMF's characteristics are as follows: 1. p(x, y) ≥ 0 for all (x, y)  

2. The sum of p(x, y) for all feasible (x, y) values is equal to 1: ∑∑ p(x, y) = 

1 x y  

For discrete at random variables, the joint cumulative distribution function 

(or CDF) is as follows: F(x, y) = P(X < x, Y ≤ y) = ∑∑ p(s, t) s≤xt≤y 

For At random Variables That Are Continuous  

The joint likelihood density function (PDF) f(x, y) for continuous at random 

variables fulfills following formula: P(a ≤ X ≤ b, c ≤ Y ≤ d) = ∫ᵇₐ ∫ᵈc f(x, y) 

dy dx  

joint PDF's characteristics are as follows: 1. f(x, y) ≥ 0 for all (x, y)  

2. The sum of the integrals is 1: 1 R² = ∫∫ f(x, y) dx dy 

For continuous at random variables, joint CDF is as follows: F(x, y) = P(X ≤ 

x, Y ≤ y) = ∫⁻∞ˣ ∫⁻∞ʸ f(s, t) dt ds  

Distributions of Marginals  

Even when two at random variables are being studied together, we may still 

be curious about how each variable behaves on its own. Marginal 

distributions are the distributions of the two freeat random variables, X & Y.  

For At random Variables That Are Discrete  

P(X = x) = ∑ p(x, y) y is & marginal PMF of X.  

P(Y = y) = ∑ p(x, y) x is & marginal PMF of Y.  

For At random Variables That Are Continuous  

The formula for f₁(x) = ∫ f(x, y) dy R is marginal PDF of X.  

formula for Y's marginal PDF is f₂(y) = ∫ f(x, y) dx R.  

Distributions Under Conditions  

likelihood behavior of one at random variable given that other has taken a 

certain value is described by conditional distributions.  

For At random Variables That Are Discrete  

If p₁(x) > 0, then conditional PMF of Y given X = x is as follows: p(y|x) = 

P(Y = y | X = x) = p(x, y) / p₁(x).  
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Notes If p₂(y) > 0, then conditional PMF of X given Y = y is as follows: p(x|y) = 

P(X = x | Y = y) = p(x, y) / p₂(y).  

For At random Variables That Are Continuous  

Given X = x, conditional PDF of Y is f(y|x) = f(x, y) / f₁(x), provided that 

f₁(x) > 0.  

Given Y = y, conditional PDF of X is f(x|y) = f(x, y) / f₂(y), provided that 

f₂(y) > 0.  

At random Variables' Independence  

If information about one at random variable, X &Y, has no effect on the 

likelihood distribution of the other, then the two variables are free.  

In terms of mathematics, X & Y are free if & only if one of the  

corresponding conditions listed below is true:  

For At random Variables That Are Discrete  

• For all (x, y), p(x, y) = p₁(x) × p₂(y).  

• For every x such that p₁(x) > 0, p(y|x) = p₂(y).  

• For every y such that p₂(y) > 0, p(x|y) = p₁(x).  

For At random Variables That Are Continuous  

• For all (x, y), f(x, y) = f₁(x) × f₂(y).  

• For every x such that f₁(x) > 0, f(y|x) = f₂(y).  

• For every y such that f₂(y) > 0, f(x|y) = f₁(x).  

X and Y are free with respect to the CDF if & only if: For all (x, y), F(x, y) = 

F₁(x) × F₂(y).  
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Notes UNIT VI 

2.8 Expectation and Variance of a At random Variable 

Expectation (Mean) 

at random variable's "center of mass" or average value is represented by its 

expectation or mean.  

For At random Variable That Is Discrete  

E[X] = μₓ = ∑ x × p(x) x is the expectation of discrete at random variable X 

with PMF p(x).  

Regarding an Ongoing At random Variable  

E[X] = μₓ = ∫ x × f(x) dx is expected value of continuous at random variable 

X with PDF f(x). R  

Expectation Properties  

When c is a constant, E[c] = c  

2. If c is a constant, then E[cX] = c × E[X]. Since E[X] + E[Y] = E[X + Y],  

In the event when X and Y are free, E[XY] = E[X] × E[Y]  

At random Variable Functions  

If X is at random variable and g is a function, then g(X) is likewise at 

random variable. The following is the expected value of g(X) for discrete at 

random variable:  

∑ g(x) × p(x) x = E[g(X)]  

Regarding an Ongoing At random Variable  

∫ g(x) × f(x) dx = E[g(X)] Standard Deviation and R Variance  

A at random variable's dispersion or spread around its mean is measured by 

its variance.  

Var(X) = σ²ₓ = E[(X - μₓ)²] = E[X²] - (E[X]) for at random variable X ²  

The variance's square root is standard deviation:  

σₓ = √Var(X)  

Variance Properties  

1. When c is a constant, Var(c) = 0.  

2. With c as a constant, Var(cX) = c² × Var(X).  

3. Var(X + Y) = Var(X) + Var(Y) if X and Y are equal.  

Correlation and Covariance  

joint variability of two at random variables is measured by covariance. It 

shows which way the variables' linear relationship is going.  

E[(X - μₓ)(Y - μᵧ)] = Cov(X, Y) - E[X] × E[Y] = E[XY]  
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Notes The covariance is normalized to a value between -1 and 1 by correlation 

coefficient:  

Cov(X, Y) / (σₓ × σᵧ) = ρ(X, Y)  

Covariance and correlation properties:  

1. If &only if Y = aX + b with likelihood 1, where a ≠ 0, then -1 ≤ ρ(X, Y) ≤ 

1. 2. ρ(X, Y) = ±1.  

3. Cov(X, Y) = 0 and ρ(X, Y) = 0 if X and Y are free (but the opposite is not 

always true).  

Bivariate Function Expectations  

For two at random variables, X & Y, and function g(X, Y):  

For variables that are discrete, E[g(X, Y)] = ∑∑ g(x, y) × p(x, y) x y  

The formula for E[g(X, Y)] for continuous at random variables is ∫∫ g(x, y) × 

f(x, y) dx dy R².  

Solved Problems 

Problem 1: Joint Likelihood Mass Function 

Two fair dice are rolled. Let X stand for the smaller of the two numbers that 

show up, and Y for the larger one.  

a) Determine the (X, Y) joint PMF. c) Determine X and Y's marginal PMFs. 

c) Determine P(X + Y ≤ 5). d) Do X &Y stand alone?  

Answer:  

a) P(X = x, Y = y) = the joint PMF p(x, y):  

This issue allows X and Y to take values from {1, 2, 3, 4, 5, 6} and {1, 2, 3, 

4, 5, 6}, respectively. But we know that X ≤ Y since X is least &Y is 

greatest.  

When two dice are rolled, there are 36 equally likely outcomes in the sample 

space.  

If either the first die displays x and the second die displays y, or the first die 

displays y and the second die displays x, then for x < y, event (X = x, Y = y) 

takes place. Thus, 2/36 = 1/18 = P(X = x, Y = y).  

If both dice display same number x for x = y, the event (X = x, Y = y) takes 

place. P(X = x, Y = y) = 1/36 as a result.  

Thus, if x = y, x, y ∈ {1, 2, 3, 4, 5, 6}, p(x, y) = 1/36; if x < y, x, y ∈ {1, 2, 3, 

4, 5, 6}, p(x, y) = 2/36 = 1/18; otherwise, p(x, y) = 0.  

b) p(1) = P(X = 1) is marginal PMF of X. = p(1, 1) + p(1, 2) = ∑ₖ₌₁⁶ p(1, k) 

P(X = 2) +... + p(1, 6) = 1/36 + 5(1/18) = 11/36 p₁(2) = 1/36 + 4(1/18) = 
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Notes 9/36 = 1/4 p₁(3) = P(X = 3) = ∑ₖ₌₂⁶ p(2, k) = p(2, 2) + p(2, 3) +... + p(2, 6) = 

p(3, k) = p(3, 3) + p(3, 4) = ∑ₖ₌₃⁶ = 1/36 + 3(1/18) = 7/36 p₁(4) +... + p(3, 6) 

= P(X = 4) = ∑ₖ₌₄⁶ p(4, k) = p(4, 4) + p(4, 5) + p(4, 6) = 1/36 + 2(1/18) = 

5/36 p₁(5) = P(X = 5) = ∑ₖ₌₅⁶ p(5, k) = p(5, 5) + p(5, 6) = 1/36 + 1/18 = 3/36 

= 1/12 p₁(6) = P(X = 6) = p(6, 6) = 1/36  

The marginal PMF of Y: p₂(1) = P(Y = 1) = p(1, 1) = 1/36 p₂(2) = P(Y = 2) = 

p(1, 2) + p(2, 2) = 1/18 + 1/36 = 3/36 = 1/12 p₂(3) = P(Y = 3) = p(1, 3) + 

p(2, 3) + p(3, 3) = 1/18 + 1/18 + 1/36 = 5/36 p₂(4) = P(Y = 4) = p(1, 4) + 

p(2, 4) + p(3, 4) + p(4, 4) = 3(1/18) + 1/36 = 7/36 p₂(5) = P(Y = 5) = p(1, 5) 

+ p(2, 5) + p(3, 5) + p(4, 5) + p(5, 5) = 4(1/18) + 1/36 = 9/36 = 1/4 p₂(6) = 

P(Y = 6) = p(1, 6) + p(2, 6) + p(3, 6) + p(4, 6) + p(5, 6) + p(6, 6) = 5(1/18) + 

1/36 = 11/36 c) P(X + Y ≤ 5):  

For every pair (x, y), we must add up the likelihood so that x + y ≤ 5:  

P(X + Y ≤ 5) = p(1, 1) + p(1, 2) + p(1, 3) + p(1, 4) + p(2, 2) + p(2, 3) = 1/36 

+ 1/18 + 1/18 + 1/36 + 1/18 = 1/36 + 4(1/18) = 1/36 + 4/18 = 1/36 + 8/36 = 

9/36 = 1/4 d) Do X and Y exist freely?  

We must determine whether p(x, y) = p₁(x) × p₂(y) for every (x, y) in order 

to determine whether X & Y are free.  

Let's see if (X = 1, Y = 2) is true. 1/18 p₁(1) × p₂(2) = (11/36) × (1/12) = 

11/432 ≈ 0.0255 p(1, 2)  

Given that p(1, 2) ≠ p₁(1) × p₂(2), we can deduce that X and Y are not 

connected. This makes intuitive sense since knowing minimum value X 

limits range of values that can be assigned to the maximum value Y, and vice 

versa.  

Issue 2: Conditional Independence and Likelihood 

Assume that X and Y are continuous at random variables with a joint PDF of 

f(x, y) = 2 for 0 < x ≤ y ≤ 1 and 0 otherwise.  

a) Confirm that this PDF is legitimate. c) Determine X and Y's marginal 

PDFs. c) Locate f(x|y) & f(y|x), conditional PDFs. d) Do X & Y stand alone?  

Solution: a) For a PDF to be considered legitimate, all (x, y) must have f(x, 

y) ≥ 0 and the whole integral must equal 1.  

The first condition is obviously satisfied as f(x, y) = 2 > 0 in the designated 

region and 0 outside of it.  

Regarding the second circumstance:  

∫∫ f(x, y) dx dy = ∫₀¹ ∫₀ʸ 2 dx dy = ∫₀¹ [2x] ₀ʸ dy = [y²] ∫₀¹ 2y dy ₀¹ = 1.  

Given that both requirements are met, f(x, y) is a legitimate PDF.  

b) f₁(x) = ∫ f(x, y) dy = ∫ₓ¹ 2 dy = [2y] is marginal PDF of X. For 0 < x ≤ 1, ₓ¹ 
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Notes = 2 - 2x  

PDF of Y's marginal: f₂(y) = ∫ f(x, y) dx = ∫₀ϸ [2x] = 2 dx For 0 ≤ y < 1 c, ₀ʸ 

= 2y Given the conditional PDF of Y X = x: for x ≤ y ≤ 1, f(y|x) = f(x, y) / 

f₁(x) = 2 / (2 - 2x) = 1 / (1 - x).  

For 0 < x ≤ y d, conditional PDF of X given Y = y is f(x|y) = f(x, y) / f₂(y) = 

2 / 2y = 1/y. We must confirm whether f(x, y) = f₁(x) × f₂(y) for each (x, y) 

in support in order to check independence.  

f₁(x) × f₂(y) = (2 - 2x) × 2y = 4y - 4xy for 0 < x ≤ y ≤ 1.  

X & Y are not free since, for general values of x& y, f(x, y) = 2 ≠ 4y - 4xy.  

Issue 3: Variance and Expected Value  

likelihood mass function of a at random variable X is as follows: p(x) = c × 

x² if x ∈ {1, 2, 3, 4}, and p(x) = 0 otherwise.  

a) Determine what c is worth. b) Determine E[X]. d) Determine Var(X). d) 

Locate E[1/X].  

Answer:  

a) The sum of all likelihood must equal 1 since p(x) is PMF:  

∑ₓ p(x) = p(1) + p(2) + p(3) + p(4) = c(1² + 2² + 3² + 4²) = c(1 + 4 + 9 + 16) 

= 30c = 1  

Consequently, c = 1/30.  

b) X should have the following value:  

∑ₓ x × p(x) = ∑ₓ x × c × x² = c = E[X] × ∑ₓ x³ = (1/30) (1/30) × (1³ + 2³ + 3³ 

+ 4³) × (10/3 ≈ 3.33 c) = (1/30) × 100 = (1 + 8 + 27 + 64) We first compute 

E[X2] in order to determine the variance:  

∑ₓ x² × p(x) = ∑ₓ x² × c = E[X²] × x² = c × ∑ₓ x⁴ = (1/30) × (1⁴ + 2⁴ + 3⁴ + 

4⁴) = (1/30) × (1 + 16 + 81 + 256) = (1/30) × 354 = 354/30 = 11.8  

We can now determine the variance: E[X²] - (E[X]) = Var(X) ² = 11.8 - 

(10/3) The formula is 11.8 - 100/9 ≈ 11.8 - 11.11 ≈ 0.69 d. To determine 

E[1/X], we compute:  

Since c × ∑ₓ x = (1/30), E[1/X] = ∑ₓ (1/x) × p(x) = ∑ₓ (1/x) × c × x² (1/30) × 

10 = 1/3 ≈ 0.33 × (1 + 2 + 3 + 4)  

Problem 4: Covariance & Correlation 

Let X &Y be discrete at random variables with following joint PMF: 

p(x, y) Y = 1 Y = 2 Y = 3 

X = 0 0.1 0.2 0.1 
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Notes p(x, y) Y = 1 Y = 2 Y = 3 

X = 1 0.1 0.3 0.2 

Two fair dice are rolled. Let X stand for smaller of two numbers that show 

up, and Y for the larger one.  

a) Determine the (X, Y) joint PMF. c) Determine X &Y's marginal PMFs. c) 

Determine P(X + Y ≤ 5). d) Do X & Y stand alone?  

Answer:  

a) P(X = x, Y = y) = the joint PMF p(x, y):  

This issue allows X and Y to take values from {1, 2, 3, 4, 5, 6} and {1, 2, 3, 

4, 5, 6}, respectively. But we know that X ≤ Y since X is least & Y is 

greatest.  

When two dice are rolled, there are 36 equally likely outcomes in the sample 

space.  

If either the first die displays x and the second die displays y, or the first die 

displays y and the second die displays x, then for x < y, the event (X = x, Y 

= y) takes place. Thus, 2/36 = 1/18 = P(X = x, Y = y).  

If both dice display the same number x for x = y, the event (X = x, Y = y) 

takes place. P(X = x, Y = y) = 1/36 as a result.  

Thus, if x = y, x, y ∈ {1, 2, 3, 4, 5, 6}, p(x, y) = 1/36; if x < y, x, y ∈ {1, 2, 3, 

4, 5, 6}, p(x, y) = 2/36 = 1/18; otherwise, p(x, y) = 0.  

b) p(1) = P(X = 1) is marginal PMF of X. = p(1, 1) + p(1, 2) = ∑ₖ₌₁⁶ p(1, k) 

P(X = 2) +... + p(1, 6) = 1/36 + 5(1/18) = 11/36 p₁(2) = 1/36 + 4(1/18) = 

9/36 = 1/4 p₁(3) = P(X = 3) = ∑ₖ₌₂⁶ p(2, k) = p(2, 2) + p(2, 3) +... + p(2, 6) = 

p(3, k) = p(3, 3) + p(3, 4) = ∑ₖ₌₃⁶ = 1/36 + 3(1/18) = 7/36 p₁(4) +... + p(3, 6) 

= P(X = 4) = ∑ₖ₌₄⁶ p(4, k) = p(4, 4) + p(4, 5) + p(4, 6) = 1/36 + 2(1/18) = 

5/36 p₁(5) = P(X = 5) = ∑ₖ₌₅⁶ p(5, k) = p(5, 5) + p(5, 6) = 1/36 + 1/18 = 3/36 

= 1/12 p₁(6) = P(X = 6) = p(6, 6) = 1/36  

The marginal PMF of Y: p₂(1) = P(Y = 1) = p(1, 1) = 1/36 p₂(2) = P(Y = 2) = 

p(1, 2) + p(2, 2) = 1/18 + 1/36 = 3/36 = 1/12 p₂(3) = P(Y = 3) = p(1, 3) + 

p(2, 3) + p(3, 3) = 1/18 + 1/18 + 1/36 = 5/36 p₂(4) = P(Y = 4) = p(1, 4) + 

p(2, 4) + p(3, 4) + p(4, 4) = 3(1/18) + 1/36 = 7/36 p₂(5) = P(Y = 5) = p(1, 5) 

+ p(2, 5) + p(3, 5) + p(4, 5) + p(5, 5) = 4(1/18) + 1/36 = 9/36 = 1/4 p₂(6) = 

P(Y = 6) = p(1, 6) + p(2, 6) + p(3, 6) + p(4, 6) + p(5, 6) + p(6, 6) = 5(1/18) + 

1/36 = 11/36 c) P(X + Y ≤ 5):  

For every pair (x, y), we must add up the likelihood so that x + y ≤ 5:  
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Notes P(X + Y ≤ 5) = p(1, 1) + p(1, 2) + p(1, 3) + p(1, 4) + p(2, 2) + p(2, 3) = 1/36 

+ 1/18 + 1/18 + 1/36 + 1/18 = 1/36 + 4(1/18) = 1/36 + 4/18 = 1/36 + 8/36 = 

9/36 = 1/4 d) Do X and Y exist freely?  

We must determine whether p(x, y) = p₁(x) × p₂(y) for every (x, y) in order 

to determine whether X &Y are free.  

Let's see if (X = 1, Y = 2) is true. 1/18 p₁(1) × p₂(2) = (11/36) × (1/12) = 

11/432 ≈ 0.0255 p(1, 2)  

Given that p(1, 2) ≠ p₁(1) × p₂(2), we can deduce that X and Y are not 

connected. This makes intuitive sense since knowing the minimum value X 

limits the range of values that can be assigned to the maximum value Y, and 

vice versa.  

Issue 2: Conditional Independence and Likelihood 

Assume that X &Y are continuous at random variables with a joint PDF of 

f(x, y) = 2 for 0 < x ≤ y ≤ 1 and 0 otherwise.  

a) Confirm that this PDF is legitimate. c) Determine X and Y's marginal 

PDFs. c) Locate f(x|y) and f(y|x), conditional PDFs. d) Do X and Y 

stand alone?  

Solution: 

a) For a PDF to be considered legitimate, all (x, y) must have f(x, y) ≥ 0 and 

the whole integral must equal 1.  

The first condition is obviously satisfied as f(x, y) = 2 > 0 in the designated 

region and 0 outside of it.  

Regarding the second circumstance:  

∫∫ f(x, y) dx dy = ∫₀¹ ∫₀ʸ 2 dx dy = ∫₀¹ [2x] ₀ʸ dy = [y²] ∫₀¹ 2y dy ₀¹ = 1.  

Given that both requirements are met, f(x, y) is a legitimate PDF.  

b) f₁(x) = ∫ f(x, y) dy = ∫ₓ¹ 2 dy = [2y] is marginal PDF of X. For 0 < x ≤ 1, ₓ¹ 

= 2 - 2x  

PDF of Y's marginal: f₂(y) = ∫ f(x, y) dx = ∫₀ϸ [2x] = 2 dx For 0 ≤ y < 1 c, ₀ʸ 

= 2y Given the conditional PDF of Y X = x: for x ≤ y ≤ 1, f(y|x) = f(x, y) / 

f₁(x) = 2 / (2 - 2x) = 1 / (1 - x).  

For 0 < x ≤ y d, conditional PDF of X given Y = y is f(x|y) = f(x, y) / f₂(y) = 

2 / 2y = 1/y. We must confirm whether f(x, y) = f₁(x) × f₂(y) for each (x, y) 

in support in order to check independence.  

f₁(x) × f₂(y) = (2 - 2x) × 2y = 4y - 4xy for 0 < x ≤ y ≤ 1.  
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Notes X& Y are not free since, for general values of x & y, f(x, y) = 2 ≠ 4y - 4xy.  

Issue 3: Variance and Expected Value  

likelihood mass function of at random variable X is as follows: p(x) = c × x² 

if x ∈ {1, 2, 3, 4}, and p(x) = 0 otherwise.  

a) Determine what c is worth. b) Determine E[X]. d) Determine Var(X). d) 

Locate E[1/X].  

Answer:  

a) The sum of all likelihood must equal 1 since p(x) is a PMF:  

∑ₓ p(x) = p(1) + p(2) + p(3) + p(4) = c(1² + 2² + 3² + 4²) = c(1 + 4 + 9 + 16) 

= 30c = 1  

Consequently, c = 1/30.  

b) X should have the following value:  

∑ₓ x × p(x) = ∑ₓ x × c × x² = c = E[X] × ∑ₓ x³ = (1/30) (1/30) × (1³ + 2³ + 3³ 

+ 4³) × (10/3 ≈ 3.33 c) = (1/30) × 100 = (1 + 8 + 27 + 64) We first compute 

E[X2] in order to determine the variance:  

∑ₓ x² × p(x) = ∑ₓ x² × c = E[X²] × x² = c × ∑ₓ x⁴ = (1/30) × (1⁴ + 2⁴ + 3⁴ + 

4⁴) = (1/30) × (1 + 16 + 81 + 256) = (1/30) × 354 = 354/30 = 11.8  

We can now determine the variance: E[X²] - (E[X]) = Var(X) ² = 11.8 - 

(10/3) The formula is 11.8 - 100/9 ≈ 11.8 - 11.11 ≈ 0.69 d. To determine 

E[1/X], we compute:  

Since c × ∑ₓ x = (1/30), E[1/X] = ∑ₓ (1/x) × p(x) = ∑ₓ (1/x) × c × x² (1/30) × 

10 = 1/3 ≈ 0.33 × (1 + 2 + 3 + 4) 

2.9 Covariance and its Significance 

Introduction to Covariance 

Covariance is a statistical measure that quantifies the degree to which two at 

random variables change together. It indicates both the direction of the linear 

relationship between variables and its magnitude. When two variables tend 

to increase or decrease together, their covariance is positive. Conversely, 

when one variable tends to increase as the other decreases, their covariance 

is negative. If the variables are free or have no linear relationship, their 

covariance will be close to zero. 

Mathematical Definition of Covariance 

covariance between two at random variables, X & Y, is defined as follows:  

E[(X - E[X])(Y - E[Y]) = Cov(X, Y)  
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Notes expected value (mean) of X is denoted by E[X], while expected value of Y is 

denoted by E[Y].  

This can be extended to:  

E[XY] - E[X] = Cov(X, Y) E[Y]  

This turns into the following for discrete at random variables:  

Σ Σ (x - μX)(y - μY)P(X=x, Y=y) = Cov(X, Y)  

When joint likelihood mass function is denoted by P(X=x, Y=y).  

We have following for continuous at random variables:  

∫∫ (x - μX)(y - μY)f(x,y) dx dy = Cov(X, Y)  

where joint likelihood density function is denoted by f(x,y). 

Properties of Covariance 

1. Symmetry: X, Y Cov = Y, X Cov 

2. Cov(X, X) = Var(X) is a specific instance of variance.  

3. Cov(aX + b, Y) = Cov(X, Y) o Cov(X, aY + b) = a Cov(X, Y) o 

Cov(X + Z, Y) = Cov(X, Y) + Cov(Z, Y) are examples of bilinearity.  

4. Implication of independence: Cov(X, Y) = 0 if X& Y are free. 

(Note: Zero covariance does not always indicate independence; the 

opposite is not always true.)  

5. Range: There is no fixed range for covariance values, making it 

difficult to interpret the strength of relationships. 

Covariance Matrix 

For multiple at random variables X₁, X₂, ..., Xₙ, we can organize their 

pairwise covariances into a covariance matrix Σ where: 

Σᵢⱼ = Cov(Xᵢ, Xⱼ) 

This matrix has several important properties: 

• It is symmetric 

• The diagonal elements are variances of individual variables 

• It is positive semi-definite 

• For multivariate normal distributions, it completely characterizes the 

interdependence structure 
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Notes Correlation vs. Covariance 

Covariance does not standardize the strength of a linear relationship between 

variables, but it does show the direction of such relationship. In order to 

overcome this constraint, the correlation coefficient scales covariance to a 

constant range [-1, 1]: 

Cov(X, Y) / (σXσY) = ρ(X, Y)  

where σX&σY are X and Y's respective standard deviations. 

Significance of Covariance 

Covariance is significant in various fields: 

1. Finance: It helps in portfolio theory to understand how different 

assets move together, allowing for diversification and risk 

management. 

2. Machine Learning: It's essential in dimensionality reduction 

techniques like Principal Component Analysis (PCA). 

3. Statistical Inference: It helps model relationships between 

variables in regression analysis. 

4. Signal Processing: It assists in separating signals from noise. 

5. Multivariate Statistics: It forms the foundation for many 

multivariate techniques. 

Limitations of Covariance 

1. Scale Dependency: Changing units can change covariance 

magnitude, making comparisons difficult. 

2. Non-linearity: It only captures linear relationships between 

variables. 

3. Outlier Sensitivity: It can be heavily influenced by outliers. 

4. Interpretation Difficulty: Without context, the raw covariance 

value is challenging to interpret. 

2.10 Moment-Generating Functions and Their Properties 

Introduction to Moment-Generating Functions 
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Notes As the name implies, moment-generating function (MGF), potent 

mathematical tool in likelihood theory, creates moments of a at random 

variable.  When t is a real parameter, moment-generating function for at 

random variable X is defined as expected value of e^(tX): M_X(t) = 

E[e^(tX)] 

The MGF's unique ability to ascertain a likelihood distribution and 

streamline several likelihood computations, particularly those involving 

sums of freeat random variables, is what makes it so beautiful. 

Mathematical Definition and Derivation 

M_X(t) = Σ e^(tx_i) is the MGF for discrete at random variable X with 

likelihood mass function P(X = x_i). P(X = x_i)  

M_X(t) = ∫ e^(tx) f(x) dx is the MGF for continuous at random variable X 

with likelihood density function f(x).  

Not every distribution has the MGF, but when it does, it exists for t in a 

neighborhood of zero.  

Link to Moments  

The derivatives of MGF evaluated at t = 0 provide the moments of 

distribution, hence term "moment-generating function":  

E[X^n] = M_X^(n)(0)  

where the nth derivative of M_X(t) with respect to t is denoted by 

M_X^(n)(t).  

The Taylor series can be used to expand e^(tX) in order to demonstrate this 

relationship: e^(tX) = 1 + tX + (t^2X^2)/2! + (t^3X^3)/3! +...  

Taking the expected value: 

M_X(t) = E[1] + tE[X] + (t^2/2!)E[X^2] + (t^3/3!)E[X^3] + ... 

Differentiating once & evaluating at t = 0: 

M_X'(0) = E[X] 

Differentiating twice &evaluating at t = 0: 

M_X''(0) = E[X^2] 

And so on for higher moments. 

Properties of Moment-Generating Functions 
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Notes 1. Uniqueness: If two at random variables have same MGF, they have 

same likelihood distribution. 

2. Convergence in Distribution: If sequence of at random variables 

converges in distribution, their MGFs converge pointwise. 

Moment-Generating Functions for Common Distributions 

1. Poisson Distribution 

For X ~ Poisson(λ): 

M_X(t) = exp(λ(e^t - 1)) 

2. Binomial Distribution 

For X ~ Binomial(n, p): 

M_X(t) = (pe^t + (1-p))^n 

3. Uniform Distribution 

For X ~ Uniform(a, b): 

M_X(t) = (e^(tb) - e^(ta))/(t(b-a)) 

Applications of Moment-Generating Functions 

1. Proving the Central Limit Theorem: MGFs are instrumental in 

proving this fundamental theorem in likelihood theory. 

2. Distribution Identification: MGFs can help identify unknown 

distributions by comparing them with known forms. 

3. Parameter Estimation: MGFs can be used in method-of-moments 

estimation. 

4. Cumulant-Generating Functions: The natural logarithm of the 

MGF generates cumulants, which have useful statistical properties. 

Limitations of Moment-Generating Functions 

1. Existence: MGFs don't exist for all distributions, particularly those 

with heavy tails. 

2. Computational Complexity: Calculating MGFs can be 

mathematically challenging for complex distributions. 
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Notes 3. Numerical Stability: Computing high-order derivatives numerically 

can lead to instability. 

Use of Random Variables and Distributions in Real-World Applications 

In many different domains, statistical analysis is based on random variables 

and probability distributions. Based on each of the fundamental ideas, the 

following real-world applications exist: 

The Types of Random Variables 

Accurate weather forecasting is made possible by meteorologists using 

continuous random variables to model temperature changes and discrete 

random variables to reflect the number of rainy days in a month. 

Quality Control: To count flaws in product batches, manufacturing 

businesses use discrete random variables. They can optimize production 

processes and establish acceptable thresholds by using probability 

distributions. 

Financial Risk Assessment: To assist them set fair rates and preserve their 

financial stability, insurance companies model claim frequencies as discrete 

random variables and claim amounts as continuous random variables. 

Functions for Probability Density (PDF) and Probability Mass (PMF) 

Epidemiology: To forecast disease spread patterns, health experts utilize 

PMFs to simulate the daily number of new infection cases (discrete) and 

PDFs to depict the distribution of time till recovery (continuous). 

Telecommunications: To optimize bandwidth distribution and lessen 

network congestion, network engineers use PMFs to examine data packet 

counts and PDFs to estimate transmission durations. 

Reliability Engineering: To forecast failure rates and plan preventative 

maintenance to avert expensive malfunctions, engineers utilize exponential 

PDFs to simulate the lifespan of electronic components. 

Functions of Distribution and Their Characteristics 

Investment Strategy: In order to evaluate investment risks and create 

diversified portfolios, financial analysts employ features such as symmetry 

and the 68-95-99.7 rule to predict stock returns using normal distribution 

functions. 
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Notes Load testing: To make sure apps can manage high loads and continue to 

function, software engineers use distribution functions to simulate user 

behavior and system response times. 

Environmental Monitoring: By analyzing pollutant concentrations using 

distribution functions, scientists can spot threshold violations and create 

efficient environmental protection regulations. 

The Distributions of Bivariate Random Variables 

Market research: Based on demographic correlations, businesses create 

customized marketing campaigns by analyzing bivariate distributions 

between consumer age and spending patterns. 

Agricultural Yield Optimization: To guide crop selection and irrigation 

scheduling, farmers utilize bivariate distributions to comprehend the 

connections between rainfall and crop yields. 

Traffic Management: In order to install intelligent traffic signal systems that 

adjust to changing conditions, urban planners research bivariate distributions 

of traffic volume and time of day. 

Covariance, Variance, and Expectation in Mathematics 

Inventory management: In order to minimize storage expenses and prevent 

stockouts, retailers estimate the anticipated demand and variance for 

products. 

Portfolio Optimization: In accordance with Modern Portfolio Theory, 

investment managers construct portfolios that optimize returns while 

lowering risk by utilizing covariance among various assets. 

Healthcare Resource Allocation: To arrange the right staffing levels and 

improve patient care while keeping expenses under control, hospital 

administrators compute anticipated patient arrivals and variance. 

Functions that Generate Moments and Their Uses 

medication Development: To ensure safety and effectiveness in clinical 

trials, pharmaceutical researchers employ moment-generating functions to 

examine the distribution of medication concentrations in the bloodstream. 

Actuarial Science: To calculate reserve requirements and reinsurance needs, 

insurance analysts simulate aggregate claims using moment-generating 

functions. 
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Notes Signal processing: To describe noise patterns in communication networks 

and create better filters for clearer signal transmission, engineers use 

moment-generating functions. 

Integrated Applications in the Real World 

Manufacturing Predictive Maintenance 

IoT sensors are used in modern workplaces to continuously check the 

condition of their equipment. Engineers can perform the following by 

representing vibration levels as random variables with certain distributions: 

• Use mathematical expectations to determine the predicted time to 

failure. 

• Using variance analysis, establish maintenance intervals. 

• Use covariance studies to find relationships between various 

machine parameters. 

• Utilize moment-generating functions to forecast the likelihood of 

catastrophic failure. 

• This all-encompassing strategy increases equipment lifespan and 

decreases downtime by 30–50%. 

Optimizing Treatment and Precision Medicine 

• Healthcare professionals use probability distributions to examine 

patient data in order to: 

• Use a particular PDF to model treatment response as a random 

variable. 

• Determine the variation and projected improvements for various 

dosages of medications. 

• Examine the bivariate relationships between treatment results and 

genetic markers. 

• To forecast the likelihood of an undesirable reaction, use moment-

generating functions. 

• Personalized treatment regimens that increase effectiveness while 

lowering negative effects are made possible by this statistical 

method. 

• Evaluation of Climate Risk to Agriculture 
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Notes Probability theory is used by farmers and agricultural insurance companies 

to: 

• Consider temperature and precipitation as continuous random 

variables. 

• Make bivariate distributions that link crop production with climate 

conditions. 

• Determine the anticipated yields and variations under various 

climatic conditions. 

• Covariance analysis can be used to identify the best crop 

combinations for lowering risk. 

• Despite growing climate variability, these technologies allow for 

data-driven decisions that enhance food security. 

Power utilities use random variable models in smart grid energy 

management to: 

• Display household energy usage using the relevant PDFs. 

• Determine the likelihood of peak usage and anticipated demand. 

• Calculate the bivariate association between consumption and 

weather. 

• Utilize moment-generating routines to forecast instances of high 

demand. 

 

Better grid stability, lower carbon emissions, and effective resource 

allocation are made possible by this statistical methodology. 

Multiple-Choice Questions (MCQs) 

1. at random variableis: 

a) A fixed value 

b) A function that assigns numerical value to each outcome of an 

experiment 

c) A constant 

d) A likelihood distribution 

2. A likelihood mass function (PMF)applies to: 

a) Continuous at random variables 

b) Discrete at random variables 
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Notes c) Both discrete &continuous at random variables 

d) None of the above 

3. likelihood density function (PDF)satisfies condition: 

a) P(a≤X≤b)=∫abf(x)dx 

b) f(x)≥1 

c) ∑f(x)=1 

d) f(x) is always negative 

4. cumulative distribution function (CDF)is defined as: 

a) F(x)=P(X=x) 

b) F(x)=P(X≤x) 

c) F(x)=∫−∞xf(t)dt 

d) Both (b) and (c) 

5. If two at random variables X &Y are free, then: 

a) P(X∩Y)=P(X)+P(Y) 

b) P(X∣Y)=P(X) 

c) P(X,Y)=P(X)P(Y) 

d) Both (b) and (c) 

6. expected value of a at random variable X, E(X), is given by: 

a) ∑xP(x) for discrete variables 

b) ∫xf(x)dx for continuous variables 

c) Both (a) and (b) 

d) None of the above 

7. Variance of X, denoted as Var(X), measures: 

a) The central tendency of X 

b) The spread of X around its mean 

c) likelihood of X 

d) cumulative likelihood of X 

8. moment-generating function (MGF) is given by: 

a) MX(t)=E(etX) 

b) MX(t)=∑etxP(x) for discrete variables 

c) MX(t)=∫etxf(x)dx for continuous variables 

d) All of the above 

9. If covariance between two at random variables X &Y is zero, then: 

a) X and Y are free 
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Notes b) X & Y are uncorrelated 

c) X & Y are same variable 

d) X and Y are negatively correlated 

10. property of expectation states that for any constants a and b: 

a) E(aX+b)=aE(X)+b 

b) E(aX+b)=aE(X) 

c) E(aX+b)=E(X)+b 

d) E(aX+b)=0 

Short Answer Questions 

1. Defineat random variable & give an example. 

2. Differentiate between discrete &continuous at random variables. 

3. What is likelihood mass function (PMF)? Give an example. 

4. Explain the cumulative distribution function (CDF) and its 

importance. 

5. Define joint, marginal, and conditional distributions with examples. 

6. What is the mathematical expectation of a at random variable? 

7. Define variance and covariance. How are they useful? 

8. What is a moment-generating function (MGF)? 

9. Explain how MGFs can be used to find moments of at random 

variable. 

10. Why is covariance important in likelihood theory? 

Long Answer Questions 

1. Explain difference between discrete &continuous at random 

variables with examples. 

2. Discuss likelihood mass function (PMF) and likelihood density 

function (PDF) with graphs. 

3. Derive the properties of cumulative distribution function (CDF) and 

explain its significance. 
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Notes 4. Define joint likelihood distribution and explain its applications in 

statistics. 

5. Explain the concept of expectation and variance with examples. 

6. Describe moment-generating functions (MGFs) and their 

applications in likelihood. 

7. Derive the formula for variance using expectation. 

8. Explain how covariance measures relationship between two at 

random variables. 

9. Solve a numerical problem involving joint distributions and 

conditional probabilities. 

10. How are at random variables and likelihood distributions applied in 

machine learning and AI? 
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Notes MODULE III 

PROBABILITY DISTRIBUTIONS 

UNIT VII 

DISCRETE AND CONTINUOUS LIKELIHOOD DISTRIBUTIONS 

Objectives 

• To study discrete likelihood distributions (Uniform, Bernoulli, 

Binomial, Poisson, and Geometric). 

• To analyze continuous likelihood distributions (Uniform, 

Exponential, and Normal). 

• To explore the properties and applications of these distributions. 

• To learn how to compute mean, variance, and moment-generating 

functions for these distributions. 

3.1 Introduction to Likelihood Distributions 

A mathematical function known as likelihood distribution expresses 

possibility of at random variable taking any of its potential values. Stated 

otherwise, it provides information on the distribution of the total likelihood 

of 1 throughout the at random variable's values.  

The foundation of likelihood theory and statistics is likelihood distributions. 

They offer a method for forecasting unpredictable outcomes and modeling at 

random phenomena. Two primary categories of likelihood distributions 

exist:  

1. Discrete Likelihood Distributions: These explain at random variables, 

like integers, that can only have a countable number of different values.  

2. Continuous Likelihood Distributions: These explain at random 

variables, like real numbers, that can have any value within a given 

range.  

The likelihood mass function (PMF), represented as P(X = x) or f(x), 

provides the likelihood distribution for a discrete at random variable X. It 

indicates likelihood that the at random variable will take exactly value x.  
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Notes The likelihood density function (PDF), represented as f(x), provides 

likelihood distribution for a continuous at random variable X. It indicates 

relative chance that at random variable will have a value close to x. 

In both cases, a likelihood distribution must satisfy two conditions: 

• The likelihood of any outcome must be non-negative 

• The sum (or integral) of probabilities over all possible outcomes 

must equal 1 

3.2 Discrete Likelihood Distributions 

Uniform Distribution 

The discrete uniform distribution assigns equal likelihood to each of finite 

number of possible outcomes. 

P(X = x) = 1/n for x = a, a+1, a+2,..., a+n-1 is Likelihood Mass Function 

(PMF).  

where an is lowest value and n is the number of alternative outcomes.  

Average (Predicted Value): (a + a+n-1)/2 = a + (n-1)/2 = E(X)  

Difference: Var(X) = (n²-1)/12  

Bernoulli Distribution 

One experiment with exactly two possible outcomes—"success" (often 

represented by a letter 1) and "failure" (typically represented by a number 

0)—is modeled by the Bernoulli distribution.  

For x = 0, 1, Likelihood Mass Function (PMF) is P(X = x) = p^x × (1-p)^(1-

x).  

where p is the likelihood of success.  

E(X) = p is the mean (expected value).  

Variance: p(1-p) = Var(X)  

As an illustration, think about tossing fair coin once. Let "heads" be 

represented by X = 1 and "tails" by X = 0. p = 0.5 is likelihood of heads.  

• Mean: E(X) = 0.5; PMF: P(X = 1) = 0.5, P(X = 0) = 0.5  

Var(X) = 0.5 × 0.5 = 0.25 is the variance.  
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Notes UNIT VIII 

Distribution of Binomials  

number of successes in a predetermined number of free Bernoulli trials 

is modeled by binomial distribution.  

P(X = x) = (n choose x) × p^x × (1-p)^(n-x) for x = 0, 1, 2,..., n is 

Likelihood Mass 

Function (PMF).  

Where:  

• n is total number of tries; p is likelihood that each trial will be successful.  

• The binomial coefficient is (n pick x) = n!/[x!(n-x)!].  

E(X) = np is the mean (expected value).  

Variance: np(1-p) = Var(X)  

For illustration, think about tossing fair coin five times. Let X be quantity of 

heads that were acquired. There is a p = 0.5 chance of heads on every flip.  

• PMF: For x = 0, 1, 2, 3, 4, 5, P(X = x) = (5 pick x) × 0.5^x × 0.5^(5-x)  

E(X) = 5 × 0.5 = 2.5 is mean.  

Var(X) = 5 × 0.5 × 0.5 = 1.25 is variance. 

Poisson Distribution  

particular that events happen freely & at constant average rate, Poisson 

distribution represents number of events that take place within particular 

time or space interval.  

For x = 0, 1, 2,..., Likelihood Mass Function (PMF) is P(X = x) = (λ^x × 

e^(-λ))/x*.  

Where:  

• e is the base of the natural logarithm (about 2.71828); • λ (lambda) is 

average number of events in the interval.  

E(X) = λ is the mean (expected value).  

Var(X) = λ is the variance.  

Solved Problems 

Problem 1: Uniform Distribution 

Problem: One roll of fair six-sided die is made. Determine outcome's 

variance, expected value, and likelihood mass function. 
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Notes The answer is that there are six possible outcomes for this discrete uniform 

distribution: 1, 2, 3, 4, 5, and 6. 

First, locate the PMF. Each result has an equal chance because the die is fair: 

For x = 1, 2, 3, 4, 5, and 6, P(X = x) = 1/6. 

Step 2: Determine the mean, or expected value. (1 + 6)/2 = 3.5 is E(X). 

Step 3: Determine the difference. (6²-1)/12 = 35/12 ≈ 2.92 is Var(X). 

Consequently, for x = 1, 2, 3, 4, 5, 6, the PMF is P(X = x) = 1/6, the variance 

is roughly 2.92, and the expected value is 3.5. 

Bernoulli Distribution is the second issue. 

Problem: The odds of a biased coin falling on heads are 70%. One toss of 

the coin occurs. If the result is heads, let X = 1, and if it is tails, let X = 0. 

Determine X's variance, anticipated value, and likelihood mass function. 

Solution: likelihood of success for this Bernoulli distribution is p = 0.7. 

First, locate the PMF. p = 0.7 P(X = 1) = 1 - p = 0.3 P(X = 0) = 0 

For x = 0, 1 we can also write: P(X = x) = 0.7^x × 0.3^(1-x). 

Step 2: Determine mean, or expected value. E(X) = p = 0.7 

Step 3: Determine the difference. 0.7 × 0.3 = 0.21 Var(X) = p(1-p) 

Consequently, variance is 0.21, expected value is 0.7, the PMF is P(X = 1) = 

0.7, and P(X = 0) = 0.3. 

Issue 3: The Binomial Distribution Issue: Ten questions with four alternative 

answers—only one of which is correct—make up multiple-choice exam. For 

every question, student makes a guess. Let X represent how many right 

answers the student receives. Determine X's variance, anticipated value, and 

likelihood mass function. Additionally, determine the likelihood that the 

student will receive precisely three right answers as well as the likelihood 

that they will receive at least eight. 

Answer: With n = 10 trials &a likelihood of success of p = 1/4 = 0.25 for 

each trial, this is an illustration of a binomial distribution. 

First, locate the PMF. For x = 0, 1, 2,..., 10, P(X = x) = (10 pick x) × 0.25^x 

× 0.75^(10-x). 
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Notes Step 2: Determine the mean, or expected value. np = 10 × 0.25 = 2.5 = E(X) 

Step 3: Determine the difference. np(1-p) = 10 × 0.25 × 0.75 = 1.875 Var(X) 

= np 

Step 4: Determine the likelihood that the pupil will provide precisely three 

right responses. 120 × 0.015625 × 0.1335 ≈ 0.2503 = (10 pick 3) × 0.25^3 × 

0.75^7 = P(X = 3). 

Step 5: Calculate the likelihood that the student will provide at least eight 

accurate responses. P(X ≥ 8) = P(X = 8) + P(X = 9) + P(X = 10) = (10 select 

8) × 0.25^8 × 0.75^2 + (10 choose 9) × 0.25^9 × 0.75^1 + (10 choose 10) × 

0.25^10 × 0.75^0 = 45 × 0.000001526 × 0.5625 + 10 × 0.0000000954 × 

0.75 + 1 × 0.0000000095 × 1 ≈ 0.0000386 + 0.00000072 + 0.0000000095 ≈ 

0.0000393 

Thus, for x = 0, 1, 2,..., 10, the PMF is P(X = x) = (10 choose x) × 0.25^x × 

0.75^(10-x). The expected value is 2.5, the variance is 1.875, the likelihood 

that the student receives exactly three right answers is roughly 0.2503, and 

the likelihood that the student receives at least eight right answers is roughly 

0.0000393. 

Issue 4: Poisson Distribution Issue: Two and a half consumers visit a service 

counter every fifteen minutes on average. Determine the likelihood that, in a 

specific 15-minute period, (a) exactly four customers will arrive, (b) at most 

one customer will arrive, and (c) more than three customers will arrive, 

assuming that customer arrivals follow a Poisson distribution. 

Solution: A Poisson distribution with λ = 2.5 is shown here. 

First, locate the PMF. The formula P(X = x) = (2.5^x × e^(-2.5))/x! for x = 

0, 1, 2,... 

Step 2: Determine the likelihood that precisely four clients will show up. 

(2.5^4 × e^(-2.5))/4! = 39.0625 × 0.082085 / 24 ≈ 0.1336 is the value of P(X 

= 4). 

Step 3: Calculate the likelihood that no more than one consumer will show 

up. e^(-2.5) + 2.5 × e^(-2.5) = 0.082085 + 2.5 × 0.082085 = 0.082085 × (1 + 

2.5) = 0.082085 × 3.5 ≈ 0.2873 = P(X ≤ 1) = P(X = 0) + P(X = 1) = (2.5^0 × 

e^(-2.5))/0! + (2.5^1 × e^(-2.5))/1! 
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Notes Step 4: Determine the likelihood that more than three clients will show up. 

e^(-2.5) + 2.5 × e^(-2.5) + (2.5^2 × e^(-2.5))/2! + (2.5^3 × e^(-2.5))/3!] = 1 - 

[0.082085 + 0.205213 + 0.256516 + 0.213763] = 1 - [P(X > 3) = 1 - P(X ≤ 

3) = 1 - [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)] = 1 - 0.757577 ≈ 

0.2424 

Thus, (a) there is a roughly 0.1336 chance that exactly four customers will 

attend, (b) there is a roughly 0.2873 chance that at most one customer will 

arrive, and (c) there is a roughly 0.2424 chance that more than three 

customers will arrive. 

Issue 5: Distribution of Geometry 

Problem: There is a 0.8 chance that a basketball player will make a free 

throw. Until a free throw is made, the player continues to shoot. Let X be 

required number of tries. Determine X's variance, anticipated value, and 

likelihood mass function. Additionally, determine the likelihood that the 

player will require precisely three tries as well as the likelihood that they 

will require more than two. 

Solution: The likelihood of success for this geometric distribution is p = 0.8. 

First, locate the PMF. For x = 1, 2, 3,..., P(X = x) = (1-p)^(x-1) × p = 0.2^(x-

1) × 0.8. 

Step 2: Determine the mean, or expected value. 1/p = 1/0.8 = 1.25 is E(X). 

Step 3: Determine the difference. Var(X) = 0.2/0.64 = 0.3125 = (1-p)/p² 

Step 4: Determine the likelihood that the player will require precisely three 

tries. 0.2^(3-1) × 0.8 = 0.2² × 0.8 = 0.04 × 0.8 = 0.032 is value of P(X = 3). 

Step 5: Determine the likelihood that the player will require more than two 

tries. P(X > 2) = 1 - P(X ≤ 2) = 1 - [P(X = 1) + P(X = 2)] = 1 - [0.8 + 0.2 × 

0.8] = 1 - [0.8 + 0.16] = 1 - 0.96 = 0.04 

Thus, for x = 1, 2, 3,..., the PMF is P(X = x) = 0.2^(x-1) × 0.8, the variance 

is 0.3125, the expected value is 1.25, the likelihood that the player requires 

precisely three tries is 0.032, and the likelihood that the player requires more 

than two efforts is 0.04. 
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Notes Unresolved Issues 

Issue 1: Uniform Distribution 

A fair spinner is divided into eight equal sectors, numbered 1 through 8. The 

spinner is spun once, and the outcome is denoted as XXX. Determine the 

following: 

a) The probability mass function (PMF) of XXX. 

b) The expected value of XXX. 

c) The variance of XXX. 

d) The probability that the spinner lands on an even number. 

e) The probability that the spinner lands on a number greater than five. 

Issue 2: Bernoulli Distribution 

A quality control inspector examines randomly selected computer chips. 

Each chip has a 5% probability of being defective. Define XXX as follows: 

• X=1X = 1X=1 if the chip is defective 

• X=0X = 0X=0 if the chip is not defective 

Determine the following: 

a) The probability mass function (PMF) of XXX. 

b) The expected value of XXX. 

c) The variance of XXX. 

d) The interpretation of the expected value in this context. 

e) The expected number of defective chips if the inspector examines 100 

chips. 

Issue 3: Binomial Distribution 

A biased coin has a 60% probability of landing on heads. The coin is flipped 

15 times, and XXX represents the number of heads obtained. Determine the 

following: 

a) The probability mass function (PMF) of XXX. 

b) The expected value of XXX. 

c) The variance of XXX. 
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Notes d) The probability of obtaining exactly 10 heads. 

e) The probability of obtaining no more than 7 heads. 

f) The probability of obtaining between 8 and 12 heads (inclusive). 

Issue 4: Poisson Distribution 

A website receives an average of 5 comments per hour. Assume the number 

of comments follows a Poisson distribution. Determine the following: 

a) The probability that exactly 7 comments are posted in a given hour. 

b) The probability that no comments are posted in an hour. 

c) The probability that at least 3 comments are posted in an hour. 

d) The probability that the number of comments in an hour falls between 2 

and 6 (inclusive). 

e) The expected number of comments in a 12-hour period. 

Issue 5: Geometric Distribution 

A salesman makes cold calls to potential customers, with each call having a 

15% chance of resulting in a sale. The salesman continues calling until a 

sale is made. Let XXX represent the number of calls needed to close a deal. 

Determine the following: 

a) The probability mass function (PMF) of XXX. 

b) The expected value of XXX. 

c) The variance of XXX. 

d) The probability that exactly 5 calls are needed to close a deal. 

e) The probability that a sale is made within the first 3 calls. 
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Notes UNIT IX 

3.3 Continuous Likelihood Distributions 

Continuous likelihood distributions deal with at random variables that might 

have any value within a given range, whereas discrete likelihood 

distributions deal with countable outcomes. The likelihood that a at random 

variable will take on any given precise value is zero in continuous 

distributions. Rather, we determine likelihood that at random variable will 

fall inside a specific range.  

 (PDF) is a mathematical tool used to characterize continuous likelihood 

distributions.  

∫(a to b) f(x) dx = P(a ≤ X ≤ b)  

Essential characteristics of any legitimate PDF f(x):  

For any x, f(x) ≥ 0 (the function is non-negative).  

2. f(x) dx = 1 (the entire likelihood equals 1) ∫(-∞ to ∞)  

(CDF), represented as F(x), is another crucial function that provides the 

likelihood that a at random variable X is less than or equal to a value x:  

F(x) = ∫(-∞ to x) f(t) dt = P(X ≤ x)  

The three basic continuous distributions—normal, exponential, and 

uniform—will be examined now.  

Even Distribution 

The most basic continuous likelihood distribution is uniform distribution. It 

characterizes a at random variable that has an equal chance of taking any 

value between [a, b].  

Function of Likelihood Density (PDF)  

The uniform distribution's PDF is:  

For ≤ x ≤ b, f(x) = 1/(b-a); otherwise, f(x) = 0.  

Over the range [a, b], this produces a rectangle of height 1/(b-a).  

The CDF, or Cumulative Distribution Function  

The uniform distribution's CDF is:  

For x < a, F(x) = 0. The formula F(x) = (x-a)/(b-a) for a ≤ x ≤ b When x > b, 

F(x) = 1.  
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Notes Properties of the Uniform Distribution 

1. Mean (Expected Value): μ = (a + b)/2 

2. Variance: σ² = (b - a)²/12 

3. Standard Deviation: σ = (b - a)/√12 

4. Median: Median = (a + b)/2 

5. Mode: The uniform distribution has no unique mode; every value in 

[a, b] is equally likely. 

Applications of the Uniform Distribution 

• At random number generators (over a specific range) 

• Rounding errors in measurements 

• Arrival times when no specific time is more likely than another 

• Modeling situations where all outcomes within a range are equally 

likely 

Exponential Distribution 

In a process where events happen freely at a constant average rate, the time 

between occurrences is modeled by the exponential distribution. It is 

frequently applied in survival analysis, queuing theory, and reliability theory.  

Function of Likelihood Density (PDF)  

For x ≥ 0, exponential distribution's PDF is f(x) = λe^(-λx). For x < 0, f(x) = 

0.  

where the rate parameter, λ (lambda), is positive (λ > 0).  

The CDF, or Cumulative Distribution Function  

For x < 0, CDF of exponential distribution is F(x) = 0. For x ≥ 0, F(x) = 1 - 

e^(-λx).  

Properties of Exponential Distribution 

1. Mean (Expected Value): μ = 1/λ 

2. Variance: σ² = 1/λ² 

3. Standard Deviation: σ = 1/λ 

4. Median: Median = ln(2)/λ 
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Notes 5. Mode: Mode = 0 

6. Moment Generating Function: M(t) = λ/(λ-t) for t < λ 

Applications of Exponential Distribution 

• Time between arrivals in Poisson process 

• Time until decay of radioactive particles 

• Length of phone calls 

• Time until equipment failure 

Normal Distribution 

Perhaps most significant likelihood distribution in statistics is normal 

distribution, sometimes referred to as the Gaussian distribution. It is 

symmetrical, bell-shaped, and naturally occurring in a wide range of social 

and physical events.  

Function of Likelihood Density (PDF)  

The normal distribution's PDF is:  

For -∞ < x < ∞, f(x) = (1/(σ√(2π))) * e^(-(x-μ)²/(2σ²))  

Where:  

μ (mu) represents mean.  

• standard deviation is represented by σ (sigma).  

σ² represents variance.  

Normal Distribution Standard  

standard normal distribution, with μ = 0 and μ = 1, is a specific case of the 

normal distribution. Here is its PDF:  

For -∞ < z < ∞, f(z) = (1/√(2π)) * e^(-z²/2).  

following formula can be used to transform any normal at random variable 

X into a standard normal at random variable Z:  

Z = (X - μ)/σ  

The CDF, or Cumulative Distribution Function  

Without a closed-form formula, CDF of normal distribution is typically 

represented as follows: Φ(x) = P(X ≤ x) = ∫(-∞ to x) (1/(σ√(2π))) * e^(-(t-

μ)²/(2σ²)) dt  

standard normal CDF is commonly tabulated and is represented by the 

symbol Φ(z).  

Properties of the Normal Distribution 
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Notes 1. Mean (Expected Value): μ (the parameter in the PDF) 

2. Variance: σ² (the parameter in the PDF) 

3. Standard Deviation: σ (the parameter in the PDF) 

4. Median: Median = μ 

5. Mode: Mode = μ 

6. Moment Generating Function: M(t) = exp(μt + σ²t²/2) 

Applications of the Normal Distribution 

• Heights and weights of populations 

• Measurement errors 

• IQ scores and other standardized test scores 

• Financial returns 

• Many natural phenomena 

3.4 Properties of Distributions 

Common Properties of Likelihood Distributions 

1. Mean Expected Value  

With PDF f(x), the mean, or anticipated value, of continuous at random 

variable X is:  

μ = ∫(-∞ to ∞) x•f(x) dx = E[X]  

The long-term average of the at random variable is represented by the 

expected value.  

2. Standard Deviation and Variance variance quantifies a distribution's 

dispersion or spread:  

E[(X - μ)²] = ∫(-∞ to ∞) (x - μ) = Var(X) = σ² ²•f(x) dx  

An other method of calculating ∫(-∞ to ∞) x²•f(x) dx - μ² = Var(X) = E[X²] - 

(E[X])² 

variance's square root is the standard deviation:  

σ = √Var(X)  
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 quantile of a distribution.

   Percentiles and Quantiles  value x_p such that  F(x_p)  =  p  is  the  p-th 8.

The nth derivative of M(t) evaluated at t = 0 is denoted by M^(n)(0).

E[X^n] = M^(n)(0)

The distribution's moments can be found using the MGF:

∫(-∞ to ∞) e^(tx)•f(x) dx = M(t) = E[e^(tX)]

continuous at random variable X's MGF is:

 Moment Generating Function (MGF)7.

  distribution

• Excess  kurtosis  =  0  (kurtosis  =  3):  similar  tails  to  the  normal

  distribution

• Negative  excess  kurtosis  (<  3):  lighter  tails  than  the  normal

Kurtosis = E[((X - μ)/σ)⁴]

Kurtosis measures the "tailedness" of a distribution:

6. Kurtosis

• Zero skewness: symmetric distribution (like the normal distribution)

• Negative skewness: left-tailed distribution (tail extends to the left)

• Positive skewness: right-tailed distribution (tail extends to the right)

Skewness = E[((X - μ)/σ)³]

Skewness measures the asymmetry of a distribution:

5. Skewness

continuous at random variable with PDF f(x).

f'(x_mode)  =  0  &f''(x_mode)  <  0  are  satisfied  by  the  mode  x_mode  for 

The  value  at  which  the  PDF  reaches  its  maximum  is  known  as  the  mode. 

 Mode4.

F(x) satisfies F(m) = 0.5.

median.  The  median  m  for  continuous  at  random  variable  with  CDF 

  The median The value that splits the distribution in half is called the 3.
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Notes Where F is the CDF. Common quantiles include: 

• Median (p = 0.5) 

• Quartiles (p = 0.25, 0.5, 0.75) 

• Percentiles (p = 0.01, 0.02, ..., 0.99) 

Relationships Between Distributions 

1. Sum of At random Variables 

PDF of Z = X + Y is the convolution if X & Y are freeat random variables 

with PDFs f_X(x) &f_Y(y):  

f_Z(z) = ∫(-∞ to ∞) f_X(z-y) •f_Y(y) Dy  

Particular situations:  

• Total of the normal, freeat random variables: X + Y ~ N(μ_X + μ_Y, σ_X² 

+ σ_Y²) if X ~ N(μ_X, σ_X²) and Y ~ N(μ_Y, σ_Y²).  

• The total of free, parameter-sharing exponential at random variables: More 

intricate, resulting in a gamma distribution  

2. At random Variable Transformation  

If Y = g(X) is a strictly monotonic function and X isat random variable with 

PDF f_X(x), then f_Y(y) = f_X(g^(-1)(y)) is the PDF of Y. • |d/dy g^(-1)(y)|  

where the inverse function of g is g^(-1).  

3. Statistics on Orders  

kth order statistic X₍ₖ₎ has following PDF if X₁, X₂,..., Xₙ are freeat random 

variables from same distribution with CDF F(x) &PDF f(x): f_{X₍ₖ₎}(x) = 

n!/(((k-1)!•(n-k)!)) • [F(x)]^(k-1) [1-F(x)] ^(n-k) • f(x)  

The minimum (k=1) and maximum (k=n) are examples of special situations.  

Solved Examples 

Solved Example 1: Uniform Distribution 

Problem: A bus is scheduled to arrive at a stop between 10:00 AM and 

10:30 AM with equal likelihood for any time in this interval. What is the 

likelihood that, if you arrive at 10:15 AM, you will: a) have to wait longer 

than ten minutes for the bus? c) Is the bus here already? c) If you arrive at 

10:15 AM, how long should you expect to wait? 

Solution: 
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Notes Let X be arrival time of bus in minutes after 10:00 AM. Then X follows a 

uniform distribution on [0, 30]. 

a) You arrive at 10:15 AM, which is 15 minutes after 10:00 AM. You'll wait 

more than 10 minutes if the bus arrives after 10:25 AM, which is 25 minutes 

after 10:00 AM. 

P(X > 25) = 1 - P(X ≤ 25) = 1 - (25 - 0)/(30 - 0) = 1 - 25/30 = 1 - 5/6 = 1/6 

b) The bus has already arrived if it comes before 10:15 AM, which is before 

15 minutes after 10:00 AM. 

P(X ≤ 15) = (15 - 0)/(30 - 0) = 15/30 = 1/2 

The likelihood that the bus has already arrived is 1/2 or 0.5. 

c) If you arrive at 10:15 AM (15 minutes after 10:00 AM), there are two 

cases: 

• Case 1: The bus has already arrived (X ≤ 15). In this case, you 

missed the bus and will have to wait for the next one, but this 

waiting time is not calculated here. 

• Case 2: The bus has not arrived yet (X > 15). In this case, you'll wait 

(X - 15) minutes. 

The expected waiting time given that you haven't missed the bus is: E[X - 

15|X > 15] = ∫(15 to 30) (x - 15)·(1/15) dx = (1/15)·∫(15 to 30) (x - 15) dx = 

(1/15)·[x²/2 - 15x](15 to 30) = (1/15)·[(30²/2 - 15·30) - (15²/2 - 15·15)] = 

(1/15)·[450 - 450 - 112.5 + 225] = (1/15)·[112.5] = 7.5 

So, if you arrive at 10:15 AM and the bus hasn't arrived yet, you can expect 

to wait an additional 7.5 minutes on average. 

Solved Example 2: Exponential Distribution 

Problem:With an average lifespan of 5000 hours, lifespan of a particular 

electrical component follows an exponential distribution. a) What is this 

distribution's rate parameter, λ? b) How likely is it that a component will 

have a lifespan of fewer than 3000 hours? c) What is the likelihood that a 

component will endure a another 2000 hours if it has already been in use for 

4000 hours? d) What is these components' median lifespan? 

Solution: 



 

  79 

Notes a) For an exponential distribution, the mean μ = 1/λ. Given that μ = 5000 

hours: λ = 1/5000 = 0.0002 per hour 

b) The likelihood that the lifetime X is less than 3000 hours: P(X < 3000) = 

1 - e^(-λ·3000) = 1 - e^(-0.0002·3000) = 1 - e^(-0.6) = 1 - 0.5488 = 0.4512 

So the likelihood is approximately 0.4512 or 45.12%. 

c) Due to memoryless property of exponential distribution: P(X > 4000 + 

2000 | X > 4000) = P(X > 2000) = e^(-λ·2000) = e^(-0.0002·2000) = e^(-

0.4) = 0.6703 

So the likelihood is approximately 0.6703 or 67.03%. 

d) The median of an exponential distribution is: Median = ln(2)/λ = 

ln(2)/0.0002 = 0.693/0.0002 = 3465 hours 

So the median lifetime is approximately 3465 hours. 

Solved Example 3: Normal Distribution 

Problem:With mean of 75 kg &standard deviation of 8 kg, weights of adult 

males in given population are normally distributed. a) What proportion of 

male adults weigh over 85 kg? b) What proportion of male adults weigh 

between 70 and 80 kilograms? c) What is the likelihood that five adult males 

chosen at at random will weigh more than 78 kg on average? d) For this 

population, what weight represents the 90th percentile?  

Answer:  

a) Let X be a male adult's weight. We are looking for P(X > 85). Standardize 

first: P(X > 85) = P(Z > 1.25) = 1 - P(Z ≤ 1.25) = 1 - Φ(1.25) Z = (X - μ)/σ = 

(85 - 75)/8 = 10/8 = 1.25  

Using a calculator or the usual normal table: Φ(1.25) ≈ 0.8944  

P(X > 85) = 1 - 0.8944 = 0.1056 

So approximately 10.56% of adult males weigh more than 85 kg. 

b) We want to find P(70 < X < 80). Standardize the endpoints: Z₁ = (70 - 

75)/8 = -0.625 Z₂ = (80 - 75)/8 = 0.625 

P(70 < X < 80) = P(-0.625 < Z < 0.625) = Φ(0.625) - Φ(-0.625) 

Using symmetry of the normal distribution: Φ(-0.625) = 1 - Φ(0.625) 
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Notes P(70 < X < 80) = Φ(0.625) - (1 - Φ(0.625)) = 2·Φ(0.625) - 1 

Φ(0.625) ≈ 0.7339 

P(70 < X < 80) = 2·0.7339 - 1 = 1.4678 - 1 = 0.4678 

So approximately 46.78% of adult males weigh between 70 kg and 80 kg. 

c) Let X̄ be the mean weight of five adult males chosen at random. X̄ has a 

normal distribution according to Central Limit Theorem, which has:  

μX̄ = μ = 75 kg is the mean.  

• σX̄ = σ/√n = 8/√5 = 8/2.236 = 3.578 kg is the standard deviation.  

Our goal is to determine P(X̄ > 78). Standardize: P(X̄ > 78) = P(Z > 0.838) = 

1 - P(Z ≤ 0.838) = 1 - Φ(0.838) Z = (X̄ - μX̄)/σX̄ = (78 - 75)/3.578 = 3/3.578 

= 0.838  

P(X̄ > 78) = 1 - 0.7991 = 0.2009 Φ(0.838) ≈ 0.7991  

Thus, the likelihood is roughly 0.2009, or 20.09%.  

d) Let x₉₀ be the 90th percentile, so P(X ≤ x₉₀) = 0.90. This means that Φ((x₉₀ 

- 75)/8) = 0.90. The z-score corresponding to the 90th percentile is Φ⁻¹(0.90) 

= 1.282. 

So (x₉₀ - 75)/8 = 1.282 x₉₀ - 75 = 8·1.282 = 10.256 x₉₀ = 75 + 10.256 = 

85.256 kg 

The 90th percentile is approximately 85.26 kg. 

Solved Example 4: Distribution Properties 

Problem:When 0 < x ≤ 1, PDF of a at random variable X is f(x) = 3x²; 

otherwise, it is f(x) = 0. a) Confirm that this PDF is legitimate. c) Determine 

X's CDF. b) Determine X's variance and mean. c) Determine X's median. e) 

Is there a bias in this distribution? In what direction, if at all?  

Answer:  

a) Two requirements must be met for a PDF to be considered valid:  

1. For all x (non-negativity), f(x) ≥ 0.  

2. f(x) dx = 1 (total likelihood = 1) ∫(-∞ to ∞)  

Condition 1 is satisfied since f(x) = 3x² ≥ 0 for 0 ≤ x < 1 and f(x) = 0 

elsewhere. 

For condition 2: ∫(-∞ to ∞) f(x) dx = ∫(0 to 1) 3x² dx = 3·∫(0 to 1) x² dx = 

3·[x³/3](0 to 1) = 3·(1/3) = 1 
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Notes Since both conditions are met, this is a valid PDF. 

b) F(x) = P(X < x) = ∫(-∞ to x) f(t) dt is the CDF.  

If x is less than 0: F(x) = 0.  

For 0 ≤ x ≤ 1: F(x) = ∫(0 to x) 3t² dt = 3. • [t³/3] (0 to x) = 3. • (x³/3) = x³  

If x > 1: F(x) = 1.  

Thus, the CDF is: For x < 0, F(x) = 0. For 0 < x ≤ 1, F(x) = x³ For x > 1 c), 

F(x) = 1. Average  

Predicted Value): E[X] = ∫(-∞ to ∞) x • ∫(0 to 1) x = f(x) dx • 3x² dx = 3. • x³ 

dx = 3 ∫(0 to 1) •[x⁴/4](0 to 1) = 3. • (1/4) = 3/4 = 0.75  

We first compute E[X2] in order to determine the variance: E[X2] = ∫(-∞ to 

∞) x² • ∫(0 to 1) x² = f(x) dx •∫(0 to 1) x⁴ dx = 3 • 3x² dx = 3 Between 0 and 

1, [x⁵/5] = 3; (1/5) = 3/5 = 0.6  

Difference: E[X²] = Var(X) - (E[X]) ² = 3/5 - (3/4) (3/5) = ² = 3/5 - 9/16 - 

(9/16) = 3/80 = 0.0375 d (48/80) - (45/80) F(m) = 0.5 is satisfied by the 

median m.  

F(x) = x³ for 0 < x ≤ 1 is known from component (b). 

Thus, we must resolve: m³ = 0.5 Using the cube root: m = ∛0.5 = 0.5^(1/3) ≈ 

0.7937 

The median is approximately 0.7937. 

e) To determine if the distribution is skewed, we can compare the mean 

(0.75) and median (0.7937). 

Since mean < median, the distribution is negatively skewed (skewed to the 

left). 

We can also calculate the skewness coefficient, but the comparison of mean 

and median gives us the direction of skewness. 

Solved Example 5: Mixed Distributions 

Problem:Electronic components having a mean lifespan of 2000 hours and 

an exponential distribution are produced throughout a manufacturing 

process. A box is deemed faulty if more than two components fail within the 

first 500 hours of operation. The components are packed in boxes of ten. a) 
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Notes 

 

 

 

     

 

 

 

We want P(Y > 2) = 1 - P(Y ≤ 2) since a box is faulty if Y > 2.  

C(10,0) = P(Y ≤ 2) = P(Y = 0) + P(Y = 1) + P(Y = 2) [1-p)^10 + C(10,1) + 

p^0 • p^1 • (1-p)^9 + C(10,2) (1) • (p^2•(1-p)^8 = (1) • (0.7788)^10 + (10) • 

(0.2212) • (0.7788)^9 + (45) • (0.2212)^2• (0.7788)^8  

First term: (0.7788)^10 ≈ 0.0858 Second term: 10·0.2212·(0.7788)^9 ≈ 

10·0.2212·0.1102 ≈ 0.2439 Third term: 45·(0.2212)^2·(0.7788)^8 ≈ 

45·0.0489·0.1415 ≈ 0.3112 

P(Y ≤ 2) ≈ 0.0858 + 0.2439 + 0.3112 = 0.6409 

P(Y > 2) = 1 - 0.6409 = 0.3591 

So the likelihood that a box is defective is approximately 0.3591 or 35.91%. 

c) Let Z be the number of defective boxes out of 100. Z follows binomial 

distribution with n = 100 (number of boxes)& p = 0.3591 (likelihood of a 

box being defective). 

The expected number of defective boxes is: E[Z] = n·p = 100·0.3591 = 

35.91 

So we expect approximately 36 defective boxes out of 100. 

failure for each component), Y has binomial distribution.

hours. With  n  = 10 (number  of components)  and  p  =  0.2212  (likelihood  of 

b) Let  Y  represent  how  many  parts  in  a  box  break  down  in  the  first  500 

So the likelihood is approximately 0.2212 or 22.12%.

1 - e^(-λ·500) = 1 - e^(-0.0005·500) = 1 - e^(-0.25) = 1 - 0.7788 = 0.2212

likelihood that a component fails within the first 500 hours is: P(X ≤ 500) = 

hour is the rate parameter.

2000 hours and an exponential distribution. λ = 1/μ = 1/2000 = 0.0005 per 

a) Assume  that  X  is  a  component's  lifetime  in  hours,  with  a  mean  of  μ  = 

Answer:

every 100 is flawed?

expected if 100  boxes are shipped?  d)  How  likely is it that  one  box  out  of 

likely  is  it  that  a  box  is  flawed?  c)  How  many  defective  boxes  should  be 

How likely is it that one part will malfunction in the first 500 hours? b) How 
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Notes d) There is a 1 in 100 chance that at least one box is faulty: P(Z ≥ 1) = 1 - 

P(Z = 0) = 1 - (1-p)^n = 1 - (1-0.3591)^100 = 1 - (0.6409)^100 

(0.6409)^100 is extremely small (approximately 0 for practical purposes). 

Therefore, P(Z ≥ 1) ≈ 1 - 0 = 1 

So the likelihood that at least one box out of 100 is defective is essentially 1 

(or 100%). 

Unsolved Problems 

Problem 1: Uniform Distribution 

A random number generator produces numbers uniformly distributed 

between -3 and 5. 

a) Determine the probability density function (PDF) and cumulative 

distribution function (CDF) of this distribution. 

b) Calculate the probability that a randomly generated number is greater 

than zero. 

c) Find the probability that the generated number falls between -1 and 2. 

d) Compute the mean and variance of the distribution. 

e) Determine the probability that at least one of ten randomly generated 

numbers is less than -2. 

Problem 2: Exponential Distribution 

The time interval between customer arrivals at a bank follows an 

exponential distribution with an average of three minutes. 

a) What is the probability that the next customer arrives within two minutes? 

b) What is the probability that the next customer arrives in five minutes or 

more? 

c) Given that no customer has arrived in the last four minutes, what is the 

probability that the bank will wait at least three more minutes for the next 

arrival? 

d) Determine the waiting time between arrivals at the 75th percentile. 

e) If the bank opens at 9:00 AM, what is the probability that at least five 

customers will arrive by 9:15 AM? 
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Notes Problem 3: Normal Distribution 

The height of adult women in a certain population follows a normal 

distribution with a mean of 165 cm and a standard deviation of 6 cm. 

a) What proportion of women are taller than 175 cm? 

b) If a woman is considered "tall" when her height falls within the top 10%, 

what is the minimum height required to be classified as tall? 

c) What is the probability that a randomly selected woman has a height 

between 160 cm and 170 cm? 

d) If four women are randomly selected, what is the probability that their 

average height exceeds 168 cm? 

e) If a sample of 100 women is randomly selected, what is the probability 

that the sample mean deviates by more than 1 cm from the population mean? 

3.5 Mean and Variance of Distributions 

Two essential metrics that aid in describing likelihood distributions are 

variance and mean (or expected value). They offer crucial details regarding 

the dispersion and central tendency of at random variables.  

Average (Predicted Value) 

A at random variable's "average" value or center of mass of its distribution is 

represented by its mean or anticipated value.  

With likelihood mass function p(x), for discrete at random variables X, E[X] 

= ∑(x * p(x)), where total is computed over all possible values of x.  

The integral is taken across the whole domain of X for continuous at random 

variables X with likelihood density function f(x): E[X] = ∫(x * f(x))dx. 

Difference  

A at random variable's variance quantifies how widely it deviates from its 

mean.  

For every arbitrary variable X:  

E[(X - E[X]) = Var(X) ²]  

This can be expressed differently as follows: Var(X) = E[X²] - (E[X]) ²  

standard deviation variance's square root is all that standard deviation is:  
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The number of attempts required to get r successes is described by the

 Distribution of Negative Binomials5.

• Var(X) = λ is the variance.

E[X] = λ is the mean.

interval is described by Poisson distribution with parameter λ.

The number of events that occur at constant average rate within a specific 

4. The Poisson Distribution

• Var(X) = (1-p)/p² is the variance.

E[X] = 1/p is the mean.

trials is described by geometric distribution with parameter p.

The number of tries required to get first success in series of free Bernoulli 

 Distribution in Geometry3.

• Variance: np(1-p) = Var(X)

E[X] = np is the mean.

described by the binomial distribution with parameters n & p.

number of successes in n free Bernoulli trials, each with a chance of p, is 

 Distribution of Binomials2.

• Var(X) = p(1-p) is the variance.

E[X] = p is the mean.

likelihood (1-p), it takes on the value 0.

With likelihood p, a Bernoulli at random variable takes on value 1, and with 

1. The Bernoulli Distribution

Averaging and Varying Typical Discrete Distributions

Var(X).

3. The translation property states that for each constant a, Var(X + a) = 

Var(X + Y) is equal to Var(X) + Var(Y).

 For at random variables that are free:2.

A²•Var(X) =  Var(aX)

 Scaling characteristic:1.

Variance Properties

2. E[X•Y] = E[X]•E[Y] for freeat random variables

For example, E[X + Y] = E[X] + E[Y]

 E[aX + b] = a •E[X] + b

1. Expectation Linearity:

Expected Value Properties

SD(X) = √Var(X)
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 Characteristics of Functions that Generate Moments

For  at  random  variables  that  are  continuous:  ∫(e^(tx)  *  f(x))  =  M_X(t)  dx 

Regarding distinct at random variables: ∑(e^(tx) * p(x)) = M_X(t)

E[e^(tX)] = M_X(t)

generating function (MGF):

The  following  is  the  definition  of  a  at  random  variable  X's  moment- 

3.6 Moment-Generating Functions of Distributions

Var(X) = αβ/((α+β)²(α+β+1)) is the variance.

E[X] = α/(α+β) is the mean.

The interval [0,1] defines the beta distribution with parameters α and β.

 Distribution of Beta5.

• Variance: αβ² = Var(X)

E[X] = αβ is the mean.

parameters α (shape) and β (scale).

The exponential distribution is generalized by the gamma distribution with 

 Distribution of Gamma4.

• Variance: 1/λ² = Var(X)

E[X] = 1/λ is the mean.

exponential distribution with parameter λ.

The time interval between events in a Poisson process is described by the 

 The Exponential Distribution3.

• Variance: σ² = Var(X)

E[X] = μ is the mean.

parameters μ and σ².

The well-known bell-shaped curve is present in the normal distribution with 

2. Gaussian Normal Distribution

• Var(X) = (b-a) is the variance. ²/12

E[X] = (a+b)/2 is the mean.

take any value within that range.

It is equally likely that a continuous uniform at random variable on [a,b] will 

1. Equitable Dispersion

Common Continuous Distributions: Mean and Variance

• Var(X) = r(1-p)/p² is the variance.

E[X] = r/p is the mean.

negative binomial distribution with parameters r and p.
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Notes 1. Uniqueness: Two at random variables have the same likelihood 

distribution if they have the same MGF.  

2. Moments The formula E[X^k] = M_X^(k)(0) can be used to 

determine the kth moment of X.  

where the kth derivative of M_X(t) assessed at t=0 is denoted by 

M_X^(k)(0).  

3. For X and Y, freeat random variables: M_\X+Y}(t) = M_X(t) • 

M_Y(t)  

4. Linear Transformations: M_Y(t) = e^(bt) • M_X(at) if Y = aX + b  

Functions of Common Distributions that Generate Moments  

Bernoulli Distribution (p) = (1-p) + p•e^t = M_X(t) 

2. Binomial Distribution (n,p) = (1-p + p•e^t)^n M_X(t) 

3. M_X(t) = p•e^t / (1 - (1-p)•e^t) (for t < -ln(1-p)) is the geometric 

distribution (p).  

Fourth, Poisson Distribution (λ) = exp(λ(e^t - 1)) M_X(t)  

5. Even Dispersion on [a,b]  

(e^(tb) - e^(ta)) / (t(b-a)) = M_X(t) (for t ≠ 0) M_X(t) = exp(μt + (σ²t²)/2) is 

the normal distribution (μ, σ²).  

7. For t <λ, the Exponential Distribution (λ) is M_X(t) = λ/(λ-t).  

8. For t < 1/β, the Gamma Distribution (α, β) M_X(t) = (1-βt)^(-α)  

Finding Moments with MGFs  

To determine X's mean (initial moment): M_X'(0) = E[X]  

To determine X's second moment: M_X''(0) = E[X²]  

To determine the difference: Var(X) = M_X''(0) - (M_X'(0)) ²  

Finding Distributions with MGFs  

The distribution of sums of freeat random variables can be found using 

MGFs. The MGF of their sum can frequently be identified as a member of a 

known distribution if X₁, X₂,..., Xₙ are freeat random variables with the same 

distribution. 
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Notes 3.7 Applications of Likelihood Distributions 

1. Quality Control and Manufacturing 

Binomial Distribution: used to simulate the quantity of faulty products in a 

sample.  

As an illustration, a manufacturing process yields products with a 5% fault 

rate. 

• Expected number of defective items: E[X] = np = 100 × 0.05 = 5 

• Variance: Var(X) = np(1-p) = 100 × 0.05 × 0.95 = 4.75 

Modeling the quantity of flaws per unit area or volume is done using the 

Poisson Distribution.  

For instance, a surface's defects have an average of 2.5 per square meter and 

follow a Poisson distribution. P(X=3) = (e^(-2.5) × 2.5^3) / 3! ≈ 0.2138 is 

the likelihood that a given square meter would have precisely three flaws.  

2. Finance and Economics 

Normal Distribution: Used to model returns on investment, price 

fluctuations, and other financial variables. 

Example: A stock's daily returns have mean of 0.001 (0.1%) & standard 

deviation of 0.02 (2%), indicating a normal distribution. This is the 

likelihood that the return on a certain day will be greater than 3%: P(X > 

0.03) = 1 - P(X < 0.03) = 1 - Φ((0.03-0.001)/0.02) = 1 - Φ(1.45) ≈ 0.0735 = 

7.35% 

Exponential Distribution: Used to model the time between financial events, 

such as trades or defaults. 

Log-normal Distribution: Used to model asset prices, as they cannot be 

negative. 

3. Reliability Engineering 

The lifespan of components with a constant failure rate is modeled using the 

exponential distribution.  

For instance, the annual failure rate of an electrical component is λ = 0.05. 

For the component to survive for more than five years, likelihood is P(X > 

5) = e^(-λt) = e^(-0.05 × 5) = e^(-0.25) ≈ 0.7788 = 77.88%.  
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Notes Weibull Distribution: Used to model the lifetime of components with 

increasing or decreasing failure rates. 

4. Queuing Theory 

The number of arrivals within a certain time period is modeled using the 

Poisson Distribution.  

The time interval between arrivals and service times is modeled using the 

exponential distribution.  

Example: Twelve consumers an hour on average arrive at a service counter 

based on a Poisson process. In a one-hour period, the likelihood of precisely 

ten arrivals is P(X=10) = (e^(-12) × 12^10) / 10! ≈ 0.1048 = 10.48%.  

5. Insurance and Risk Assessment 

• Normal Distribution: Used to model aggregate claims in large 

portfolios. 

• Pareto Distribution: Used to model the size of large insurance 

claims. 

6. Biostatistics and Medicine 

Binomial Distribution: Used in clinical trials to model the number of 

successes (e.g., recoveries). 

Poisson Distribution: Used to model rare events like disease occurrences. 

Example: A rare disease has an average of 3.5 new instances every month, 

according to a Poisson distribution. P(X ≤ 2) = P(X=0) + P(X=1) + P(X=2) 

= e^(-3.5) + e^(-3.5) × 3.5 + e^(-3.5) × 3.5² / 2! ≈ 0.0302 + 0.1057 + 0.1850 

= 0.3209 = 32.09% is the chance of having no more than two new cases in a 

given month. 

7. Physics and Engineering 

• Normal Distribution: Used to model measurement errors and 

physical quantities. 

• Maxwell-Boltzmann Distribution: Used to model the speed of 

molecules in a gas. 

8. Computer Science and Networks 
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Notes Geometric Distribution: Used to model the number of attempts until a 

successful transmission. 

Example: The failure likelihood for each packet transmission is 0.2. E[X] = 

1/p = 1/0.8 = 1.25 is the anticipated number of tries required before a 

successful transmission. 

The amount of network events in given time period is modeled using 

Poisson Distribution. 

Issues Resolved 

Issue 1: A Custom Discrete Distribution's Mean and Variance 

Issue: For discrete at random variable X, the likelihood mass function is as 

follows: p(2) = 0.3, p(3) = 0.4, p(4) = 0.1, and p(1) = 0.2. Determine X's 

variance and mean. 

Solution: 

Step 1: Determine the average. 0.2 + 0.6 + 1.2 + 0.4 = 2.4 = 1 × 0.2 + 2 × 

0.3 + 3 × 0.4 + 4 × 0.1 = E[X] = ∑(x * p(x)) 

Step 2: Determine E[X2]. 0.2 + 1.2 + 3.6 + 1.6 = 6.6 = 1² × 0.2 + 2² × 0.3 + 

3² × 0.4 + 4² × 0.1 = E[X²] = ∑(x² * p(x)) 

Compute the variance in step three. E[X²] - (E[X]) = Var(X)(2.4)² = 6.6 - 

5.76 = 0.84 ² = 6.6 

As a result, X's variance is 0.84 and its mean is 2.4. 

Issue 2: Locating Moments with the MGF 

Problem: M_X(t) = (1-2t)^(-3) for t < 1/2 is the moment-generating function 

ofat random variable X. Determine X's third central moment, variance, and 

mean. 

Answer: 

Step 1: Determine the MGF's first derivative. (-3)(1-2t)^(-4)(-2) = 6(1-2t)^(-

4) = M_X'(t) 

Step 2: Determine the MGF's second derivative. 6(-4)(1-2t)^(-5)(-2) = 48(1-

2t)^(-5) = M_X''(t) 
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Notes Step 3: Determine the MGF's third derivative. 48(-5)(1-2t)^(-6)(-2) = 480(1-

2t)^(-6) is M_X'''(t). 

Step 4: To determine the moments, evaluate the derivatives at t = 0. M_X'(0) 

= 6(1) = E[X]^(-4) = 6. 

M_X''(0) = 48(1)^(-5) = 48 E[X²] 

M_X'''(0) = 480(1) = E[X³]^(-6) = 480 

Determine the variance in step five. E[X²] = Var(X) - (E[X])36 - 48 = 12 ² = 

48 - 6 ² 

Determine the third central moment in step six. 3E[X] - E[X³] = E[(X-

μ)³]E[X²] + 2(E[X])3(6)(48) + 2(6) = 480 ³48 = ³ = 480 - 864 + 432 

Consequently, the third central moment is 48, variance is 12, and mean of X 

is 6. 

Issue 3: Using the Normal Distribution 

The issue is that the average height of adult females in a given group is 165 

cm, with a standard deviation of 6 cm. 

a) What is the likelihood that a woman chosen at at random will be 

taller than 175 cm? b) How many women with heights between 160 and 

170 cm are predicted if 100 are chosen at random? 

Answer: 

To ascertain P(X > 175): 

Standardize the value in step one. (175 - 165) / 6 = 1.67 is z. 

Step 2: Use the conventional normal table to get the likelihood. P(Z > 1.67) 

= 1 - P(Z ≤ 1.67) = 1 - 0.9525 = 0.0475 = P(X > 175)). 

Consequently, the likelihood is roughly 4.75%. 

b) To determine how many women should have heights between 160 and 

170 cm, start by calculating the likelihood that one woman will have a 

height between 160 and 170 cm. -0.83 < Z < 0.83) = P(Z < 0.83) - P(Z < -

0.83) = 0.7967 - 0.2033 = 0.5934 = P(160 < X < 170) = P((160-165)/6 < Z < 

(170-165)/6)). 
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Notes Step 2: Determine the anticipated number of women out of 100. The 

anticipated value is 100 × 0.5934, or 59.34 ≈ 59 

As a result, we anticipate that roughly 59 women will be between 160 and 

170 cm tall. 

Issue 4: Poisson and Binomial Approximation 

Issue: Computer chips produced on a production line have a 2% failure rate. 

Four hundred chips are examined as a sample. 

a) What is the likelihood of discovering precisely ten faulty chips using the 

binomial distribution? b) Use the Poisson distribution to approximate this 

likelihood. 

Using the binomial distribution as a solution: P(X = 10) = C(400,10) × 

(0.02)^10 × (0.98)^390 X ~ Bin(400, 0.02) 

Calculating this directly: (400! / (10! × 390!)) × (0.02)^10 × (0.98)^390 ≈ 

0.1122 P(X = 10) 

Consequently, the likelihood is roughly 11.22%. 

b) We utilize λ = np = 400 × 0.02 = 8. X ~ Poisson(8) P(X = 10) = (e^(-8) × 

8^10) / 10! ≈ 0.0992 for a Poisson approximation. 

Consequently, the Poisson approximation yields roughly 9.92%. 

Since p is tiny (0.02) and n is high (400), the approximation is fairly near to 

the binomial likelihood. 

Issue 5: Function that Generates Moments for the Total of FreeAt 

random Variables 

The issue is that X₁, X₂, and X₃ are freeat random variables that all have 

exponential distributions with parameter λ = 2. Determine the distribution of 

Y and the moment-generating function of Y = X₁ + X₂ + X₃. 

Answer: 

First Step: Determine the MGF for every single X_i. M_X(t) = λ/(λ-t) for t < 

λ is the MGF of an exponential distribution with parameter λ. 

For t < 2, the MGF for X_i ~ Exp(2) is M_{X_i}(t) = 2/(2-t). 
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Notes Step 2: Determine Y = X₁ + X₂ + X₃'s MGF. The MGF of their sum is the 

product of their individual MGFs because X₁, X₂, and X₃ are free: 

M_Y(t) = [2/(2-t)] × M_{X₁}(t) × M_{X₂�(t) × M_{X₃�(t)For t less than 2, 

³ = 8/(2-t)³ 

Step 3: Determine Y's distribution. One may identify the MGF of a Gamma 

distribution with parameters α = 3 and β = 1/2 as M_Y(t) = 8/(2-t)³. 

M_X(t) = (1-βt)^(-α) for t < 1/β is the generic form of the MGF for a 

Gamma distribution with parameters α and β. 

This is contrasted with M_Y(t) = 8/(2-t)³: 

• Let's revise: One × (1-t/2)^(-3) = 1 × (1-t/2)^(-3) = 8 × (2-t)^(-3) = 8 × 

(2)^(-3) = M_Y(t) = 

• This corresponds to the form (1-βt)^(-α) where β = 1/2 and α = 3. 

Consequently, Y has a Gamma distribution with α = 3 and β = 1/2. f_Y(y) = 

(1/β^α) × (y^(α-1) × e^(-y/β)) / Γ(α) = (1/(1/2)³ is the PDF of Y. If y > 0, 

then × (y^(3-1) × e^(-y/(1/2))) / Γ(3) = 8 × (y² × e^(-2y)) / 2 = 4y² × e^(-2y). 

Unresolved Issues 

Issue 1: Discrete Random Variable 

For a discrete random variable X, the probability mass function (PMF) is 

given as: 

p(x)=k(x+2),for x=0,1,2,3,4 

where k is a constant. 

a) Determine the value of k. 

b) Compute the mean and variance of X. 

c) Derive the moment-generating function (MGF) of X. 

Issue 2: Continuous Random Variable 

The probability density function (PDF) of a continuous random variable X is 

given by: 
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Notes f(x)=3x2,0<x≤1,0 otherwise.  

a) Calculate the mean and variance of X. 

b) Find the probability P(X>0.8)  

c) Derive the moment-generating function (MGF) of X. 

d) Compute the first three moments using the MGF. 

Issue 3: Normal Distribution 

IQ scores in a given population follow a normal distribution with a mean of 

100 and a standard deviation of 15. 

a) What proportion of the population has an IQ greater than 130? 

b) What is the probability that a randomly selected person has an IQ 

between 85 and 115? 

c) If 25 individuals are randomly selected, what is the probability that their 

average IQ is greater than 105? 

d) Determine the 90th percentile of the IQ distribution. 

Issue 4: Binary Communication System 

A communications system transmits messages as a series of bits. Due to 

noise, each bit has a 10% chance of flipping (changing from 0 to 1 or from 1 

to 0). Errors occur independently. 

a) What is the probability that exactly 3 out of 20 transmitted bits are 

flipped? 

b) In a 20-bit message, what is the probability that at least one bit is flipped? 

c) How many flipped bits should be expected in a 100-bit message? 

d) For a critical application, no more than 5% of the bits in a message should 

be flipped. What is the maximum message length that ensures this 

requirement is met with at least 95% confidence? 

Issue 5: Sum of Uniformly Distributed Random Variables 

Let X1,X2,…,X20be independent random variables, each uniformly 

distributed on [0,1]. 

Define: 
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Notes Y=X1+X2+⋯+X20.  

a) Compute the mean and variance of Y. 

b) Using the Central Limit Theorem, identify an appropriate approximation 

for the distribution of Y. 

c) Estimate P(9<Y<11) using this approximation. 

d) Derive the moment-generating function (MGF) of a single uniform 

random variable Xi. 

e) Use the result from part (d) to derive the MGF of Y. 

Application of Discrete and Continuous Probability 

Distributions in Real-World Scenarios 

Discrete Probability Distributions 

1. Uniform Distribution 

• Quality Control: Used in manufacturing when defects are equally 

likely across different production batches. 

• Randomized Clinical Trials: Ensures unbiased group assignment 

in medical experiments. 

• Cryptography: Forms the basis of secure random number 

generators. 

• Gaming: Governs fair outcomes in lotteries and dice rolls. 

2. Bernoulli Distribution 

• A/B Testing: Used in digital marketing for testing variations of 

emails or website layouts. 

• Medical Diagnostics: Models test results as positive/negative. 

• Risk Assessment: Helps insurers estimate the probability of claims. 

• Quality Assurance: Used for pass/fail testing in electronics 

manufacturing. 

3. Binomial Distribution 

• Political Polling: Models the probability of survey respondents 

supporting a candidate. 
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Notes • Manufacturing Defect Analysis: Estimates the likelihood of a 

certain number of defective products. 

• Epidemiology: Used to model the spread of infections within 

populations. 

• Finance: Binomial pricing models are used in options trading. 

4. Poisson Distribution 

• Call Centers: Predicts the number of incoming calls to optimize 

staffing. 

• Network Traffic: Helps analyze data packet arrivals and 

congestion. 

• Emergency Services: Models hospital emergency room patient 

arrivals. 

• Retail Inventory: Estimates demand for irregularly selling items. 

5. Geometric Distribution 

• Quality Control: Predicts the number of inspections needed before 

a defect is found. 

• Reliability Engineering: Models system failures after repeated 

cycles. 

• Cybersecurity: Estimates the number of attempts before a system is 

breached. 

• Customer Acquisition: Determines how many interactions are 

needed to convert a lead into a customer. 

Continuous Probability Distributions 

1. Uniform Distribution 

• Signal Processing: Simulates quantization errors in digital 

conversion. 

• Computer Simulations: Used in Monte Carlo methods. 

• Scheduling: Models arrival times when there are no peak periods. 

• Queueing Theory: Helps optimize resource allocation in service 

industries. 

2. Exponential Distribution 



 

  97 

Notes • Reliability Engineering: Models machine failure times. 

• Customer Service: Estimates waiting times. 

• Telecommunications: Models call durations. 

• Nuclear Physics: Describes radioactive decay processes. 

3. Normal Distribution 

• Financial Markets: Models stock returns and risk assessments. 

• Manufacturing Tolerances: Predicts variations in product 

dimensions. 

• Educational Testing: Standardized test scores often follow a 

normal distribution. 

• Biometrics: Models human height, weight, and blood pressure 

distributions. 

Computing Statistical Measures in Real-World 

Applications 

1. Expected Value and Mean 

• Inventory Management: Helps retailers optimize stock levels. 

• Project Planning (PERT): Estimates realistic activity durations. 

• Insurance Actuarial Science: Used to price policies based on 

expected claims. 

• Portfolio Management: Helps investors calculate expected returns. 

2. Standard Deviation and Variance 

• Quality Control: Ensures product consistency in manufacturing. 

• Financial Risk Management: Measures investment volatility. 

• Clinical Trials: Quantifies variability in treatment effects. 

• Weather Forecasting: Assesses uncertainty in predictions. 

3. Moment-Generating Functions (MGF) 

• Option Pricing: Used in risk-neutral pricing models. 

• Reliability Engineering: Models failure rates over time. 

• Econometrics: Helps estimate economic indicators with 

uncertainty. 



  

98 
 

Notes Multiple-Choice Questions (MCQs) 

1. TheBernoullidistributionis used for: 

a) Multiple trials 

b) A single trial with two possible outcomes 

c) Continuous at random variables 

d) None of the above 

2. Binomial distributionmodels number of: 

a) Successes in fixed number of trials 

b) Failures in an infinite number of trials 

c) Continuous outcomes 

d) Free events with varying probabilities 

3. Poisson distributionis used to model: 

a) number of occurrences in fixed interval of time & space 

b) Continuous data 

c) The likelihood of an event occurring in a single trial 

d) Data that follows a normal distribution 

4. mean of binomial distributionB(n,p) is: 

a) np(1−p) 

b) np 

c) p(1−p) 

d) n2p 

5. geometric distributionmodels: 

a) number of failures before first success 

b) total number of successes in fixed number of trials 

c) The likelihood of success in one trial 

d) The distribution of continuous variables 

6. exponential distributionis used to model: 

a) The time between events in a Poisson process 

b) number of successes in fixed trials 

c) distribution of binary data 

d) sum of free variables 

7. normal distributionis also called: 

a) Poisson distribution 

b) Gaussian distribution 
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Notes c) Bernoulli distribution 

d) Binomial distribution 

8. If normal distribution has mean of 0 and standard deviation of 

1, it is called a: 

a) Standard normal distribution 

b) Skewed normal distribution 

c) Poisson distribution 

d) Geometric distribution 

9. The moment-generating function (MGF) for normal distribution 

helps find: 

a) Mean & variance 

b) Likelihood mass function 

c) Cumulative distribution function 

d) None of above 

10. The Poisson distribution is an approximation of the binomial 

distribution when: 

a) n is large, and p is small 

b) p is large, and n is small 

c) p is close to 0.5 

d) The number of trials is small 

Short Answer Questions 

1. Define likelihood distribution with an example. 

2. What is a Bernoulli distribution, and where is it used? 

3. Explain the Binomial distribution and its parameters. 

4. Define Poisson distribution and state its properties. 

5. What is the Geometric distribution, and what does it model? 

6. How is the Exponential distribution related to the Poisson process? 

7. What are the key properties of the Normal distribution? 

8. Why is the Normal distribution important in statistics? 

9. How does a moment-generating function (MGF) help in likelihood 

distributions? 
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Notes 10. Compare discrete and continuous likelihood distributions with 

examples. 

Long Answer Questions 

1. Explain the Bernoulli and Binomial distributions with real-world 

examples. 

2. Derive mean &variance of a Binomial distribution. 

3. Explain Poisson distribution and derive its likelihood mass function. 

4. Discuss the Geometric distribution and find its expectation. 

5. Derive mean &variance of Exponential distribution. 

6. Explain Normal distribution and prove its properties. 

7. How does Poisson distribution approximate Binomial distribution? 

8. Explain moment-generating function (MGF)& use it to find 

moments of the normal distribution. 

9. Compare and contrast Binomial, Poisson, and Normal distributions. 

10. How are likelihood distributions applied in real-world scenarios, 

such as quality control, reliability engineering, and risk analysis?  
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Notes MODULE IV 

HYPOTHESIS TESTING 

UNIT X 

TESTING OF HYPOTHESIS 

Objectives 

• To understand the concept of hypothesis testing. 

• To define parameters and statistics in hypothesis testing. 

• To learn about null and alternative hypotheses. 

• To study sampling distributions and standard errors. 

• To analyze critical regions, significance levels, and errors in 

hypothesis testing. 

• To apply large sample tests for mean and proportions. 

4.1 Introduction to Hypothesis Testing 

Hypothesis testing is a fundamental procedure in statistical analysis that 

allows us to make decisions about populations based on sample data. It 

provides a framework for determining whether experimental results contain 

enough evidence to reject a null hypothesis.The basic idea behind hypothesis 

testing is to state a hypothesis about a population parameter, collect sample 

data, and then use that data to determine whether there is enough evidence to 

suggest that the hypothesis is incorrect. 

The Process of Hypothesis Testing 

1. Formulate the hypotheses (null and alternative) 

2. Choose a significance level (α) 

3. Collect sample data 

4. Calculate the test statistic 

5. Determine the p-value or critical region 

6. Make a decision about the null hypothesis 

7. Interpret the results in context 
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Notes Types of Hypothesis Testing Errors  

There are two kinds of mistakes that might happen when performing a 

hypothesis test:  

• Type I Error (α): False positive, or rejecting a valid null hypothesis  

• Type II Error (β): Neglecting to reject a false negative null hypothesis  

The test's significance level, α, represents the likelihood of a Type I mistake. 

The power of the test is 1-β, and β represents the likelihood of a Type II 

mistake. 

One-Tailed vs. Two-Tailed Tests 

Hypothesis tests can be either one-tailed or two-tailed: 

• One-tailed test: The alternative hypothesis specifies a direction 

(either greater than or less than) 

• Two-tailed test: The alternative hypothesis specifies a difference in 

either direction (not equal to) 

4.2 Parameters and Statistics 

Population Parameters 

Since examining an entire population is often impractical, parameters are 

usually unknown and need to be estimated. Common population parameters 

include: 

• μ (mu): Population mean 

• σ² (sigma squared): Population variance 

• σ (sigma): Population standard deviation 

• p: Population proportion 

• ρ (rho): Population correlation coefficient 

Sample Statistics 

A sample's numerical properties that are utilized to estimate the associated 

population parameter are called statistics. Common sample statistics include: 

• x̄ (x-bar): Sample mean 

• s²: Sample variance 
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Notes • s: Sample standard deviation 

• p̂ (p-hat): Sample proportion 

• r: Sample correlation coefficient 

Relationship between Parameters and Statistics 

Point estimators for population parameters are provided by sample statistics. 

Since we utilize sample statistics to draw conclusions about population 

parameters, the link between parameters and statistics is essential to 

hypothesis testing.  

For instance:  

• The population mean (μ) is estimated using the sample mean (x̄).  

• The population proportion (p) is estimated using the sample proportion (p̂).  

4.3 Null and Alternative Hypotheses 

The Null Hypothesis (H₀) 

The null hypothesis, represented by the letter H₀, asserts that there is no 

relationship, no effect, or no difference in the population. It stands for the 

current situation or the assertion that has to be verified. Until there is 

evidence to the contrary, the null hypothesis is taken to be true. 

Examples of null hypotheses: 

• H₀: μ = 100 (The population mean equals 100) 

• H₀: p = 0.5 (The population proportion equals 0.5) 

• H₀: μ₁ - μ₂ = 0 (There is no difference between two population 

means) 

The Alternative Hypothesis (H₁ or Hₐ) 

The alternative hypothesis, denoted as H₁ or Hₐ, is a statement that 

contradicts the null hypothesis. It represents what we are trying to establish 

or prove. 

Examples of alternative hypotheses: 

• H₁: μ ≠ 100 (The population mean does not equal 100) - Two-tailed 

• H₁: μ > 100 (The population mean is greater than 100) - One-tailed 
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Notes • H₁: p < 0.5 (The population proportion is less than 0.5) - One-tailed 

Formulating Hypotheses 

When formulating hypotheses, consider the following guidelines: 

1. The null hypothesis should always contain an equals sign (=, ≤, or 

≥) 

2. The alternative hypothesis should never contain an equals sign (≠, >, 

or <) 

3. The hypotheses should be mutually exclusive (they cannot both be 

true) 

4. The hypotheses should be collectively exhaustive (one of them must 

be true) 

Directional vs. Non-directional Hypotheses 

• Non-directional hypothesis: States that there is a difference but 

does not specify the direction (H₁: μ ≠ 100) 

• Directional hypothesis: States that there is a difference in a specific 

direction (H₁: μ > 100 or H₁: μ < 100) 
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   √(s₁²/n₁ + s₂²/n₂)

o When population standard deviations are unknown: sx̄ ₁-x̄ ₂ =

o Free samples: σx̄ ₁-x̄ ₂ = √(σ₁²/n₁ + σ₂²/n₂)

Standard Error of the Difference Between Two Means:3.

o When p is unknown, we use p̂ to estimate: sp̂ = √[p̂ (1-p̂ )/n]

o σp̂ = √[p(1-p)/n]

Standard Error of the Proportion:2.

o Population unknown: sx̄ = s/√n

o Population known: σx̄ = σ/√n

(SEM):1.

Typical standard errors:

error. It gauges a statistic's precision or variability.

The standard deviation of a sample distribution is known as the standard 

Standard Error

≥ 30).

roughly normal if the population is not normal but the sample size is high (n 

• According to the Central Limit Theorem, the sampling distribution is 

• The sample distribution is normal if the population is normally distributed.

σ/√n.

• The sample distribution's standard deviation, or standard error, is equal to 

equivalent.

• The population mean (μx̄ = μ) and the sample distribution mean are 

 Important characteristics of the mean's sample distribution:

hypothesis testing.

distribution  of  the  mean  is  the  most  often  utilized  sampling  distribution  in 

the  population  is  known  as  the  sampling  distribution.  The  sampling 

The likelihood distribution of a statistic derived from a at random sample of 

Sampling Distribution

4.4 Sampling Distributions and Standard Errors

UNIT XI
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Notes 4. Standard Error of the Difference Between Two Proportions: 

o σp̂₁-p̂₂ = √[p₁(1-p₁)/n₁ + p₂(1-p₂)/n₂] 

o When population proportions are unknown: sp̂₁-p̂₂ = √[p̂₁(1-

p̂₁)/n₁ + p̂₂(1-p̂₂)/n₂] 

The Central Limit Theorem (CLT) 

According to the Central Limit Theorem, regardless of the initial population 

distribution's shape, if you collect large enough at random samples from any 

population, the sampling distribution of the sample mean will be roughly 

normally distributed.  

Important ramifications of the CLT for testing hypotheses:  

• We can presume that the sampling distribution is about normal for large 

samples (n ≥ 30).  

• For small samples (n < 30), the population should be regularly distributed 

in order to employ t-tests; this enables us to use z-tests for big samples even 

when the population distribution is unknown or not normal.  

The t-Distribution  

The t-distribution is used in place of the normal distribution when the 

population standard deviation (σ) is unknown and needs to be calculated 

using the sample standard deviation (s).  

The t-distribution's characteristics:  

• Symmetric and bell-shaped, similar to the typical distribution  

• More dispersed (heavier tails) than the average distribution  

Degrees of freedom (df), which are correlated with sample size, determine 

the form. The t-distribution gets closer to the conventional normal 

distribution as df rises.  

• The t-distribution is roughly equivalent to the conventional normal 

distribution when df> 30.  

Z-Scores and t-Scores 

In hypothesis testing, test statistics are often calculated as z-scores or t-

scores: 

• Z-score (used when σ is known): z = (x̄ - μ) / (σ/√n) 

• t-score (used when σ is unknown): t = (x̄ - μ) / (s/√n) 
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Notes These test statistics measure how many standard errors the sample statistic is 

from the hypothesized parameter value. 

Solved Problems 

Solved Problem 1: One-Sample Z-Test for Population Mean 

According to a researcher, adult males in a particular area are taller than 175 

cm on average. The average height of 100 adult males from the area selected 

at at random is 177.5 cm. Test the researcher's assertion at a 5% significance 

level, assuming that the population standard deviation is 8 cm. 

Solution: 

Step 1: Set up the hypotheses. H₀: μ = 175 cm (The average height is 175 

cm) H₁: μ > 175 cm (The average height is greater than 175 cm) 

This is a one-tailed test because the researcher's claim is directional. 

Step 2: Determine the significance level. α = 0.05 

Step 3: Calculate the test statistic. z = (x̄ - μ) / (σ/√n) z = (177.5 - 175) / 

(8/√100) z = 2.5 / 0.8 z = 3.125 

Step 4: Determine the p-value, or critical value. The critical value for a one-

tailed test with α = 0.05 is z_α = 1.645. P(Z > 3.125) = 0.00089 is the p-

value.  

Step 5: Choose a choice. We reject the null hypothesis because z = 3.125 > 

1.645 (or p-value = 0.00089 < 0.05). 

Step 6: Evaluate the findings. The researcher's assertion that the average 

height of adult males in the area is more than 175 cm is sufficiently 

supported by the available data.  

Resolved Issue 2: Population One-Sample t-Test Mean 

500 grams of product are meant to be filled into containers by a machine. 25 

containers are chosen at at random by a quality control inspector, who 

discovers that each one has an average of 495 grams with a standard 

deviation of 10 grams. Is there proof that the containers are being underfilled 

by the machine? Employ a significance level of 1%. 

Solution: 
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Notes Step 1: Set up the hypotheses. H₀: μ = 500 grams (The machine is filling 

properly) H₁: μ < 500 grams (The machine is underfilling) 

This is a one-tailed test because we're specifically concerned with 

underfilling. 

Step 2: Determine the significance level. α = 0.01 

Step 3: Determine the test statistic. We choose a t-test because the sample 

size is limited (n < 30) and the population standard deviation is unknown.  

(x̄ - μ) / (s/√n) = t t is equal to (495-500) / (10/-25). t = -5 / 2 t = -2.5  

Step 4: Determine the p-value, or critical value. Freedom of degrees = n - 1 

= 25 - 1 = 24 The critical value for a one-tailed test with df = 24 and α = 

0.01 is around t_α = -2.492. The value of p is equal to P(t < -2.5) ≈ 0.0096.  

Step 5: Choose a choice. We reject the null hypothesis because t = -2.5 < -

2.492 (or p-value = 0.0096 < 0.01).  

Step 6: Evaluate the findings. There is enough data to draw the conclusion 

that the containers are being underfilled by the machine.  

Resolved Issue 3: Z-Test for Difference in Population Proportions in Two 

Samples  

The goal of the study is to ascertain whether the percentage of smokers in 

two cities differs. Out of 400 randomly chosen adults in City A, 120 smoke. 

Ninety of the 350 randomly chosen adults in City B smoke. Determine 

whether there is a difference in the percentage of smokers between the two 

cities at a 5% significance level. 

Solution: 

Step 1: Set up the hypotheses. H₀: p₁ = p₂ (There is no difference in the 

proportion of smokers) H₁: p₁ ≠ p₂ (There is a difference in the proportion of 

smokers) 

This is a two-tailed test because we're interested in any difference, regardless 

of direction. 

Step 2: Determine the significance level. α = 0.05 

Step 3: Calculate the sample proportions. p̂₁ = 120/400 = 0.3 (City A) p̂₂ = 

90/350 ≈ 0.257 (City B) 
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Notes Step 4: Determine the pooled proportion, which is applied in the null 

hypothesis. (120 + 90) / (400 + 350) = 210/750 = 0.28 is the value of p̂ = (x₁ 

+ x₂) / (n₁ + n₂).  

Determine the test statistic in step five. z = √[p̂(1-p̂)(1/n₁ + 1/n₂)] / (p̂₁ - p̂₂) 

To calculate z, divide (0.3 - 0.257) by √[0.28(1-0.28)(1/400 + 1/350)]. 

[0.2016(0.0025 + 0.00286)] = 0.043 / √ [0.2016 × 0.00536] = 0.043 / √ z = 

0.0329 / 0.043 Z ≈ 1.31  

Step 6: Determine the p-value, or critical value. The critical values for a 

two-tailed test with α = 0.05 are z_α/2 = ±1.96. 2 × P(Z > 1.31) ≈ 2 × 0.0951 

≈ 0.19 is the p-value.  

Make a choice in step seven. Given that |z| = 1.31 < 1.96 (or p-value = 0.19 

> 0.05), the null hypothesis cannot be ruled out. 

Step 8: Evaluate the findings. There is not enough data to draw the 

conclusion that the two cities' smoking rates are different. 

Solved Problem 4: One-Sample Z-Test for Population Proportion 

A polling organization claims that more than 60% of adults support a new 

environmental policy. In a at random sample of 1000 adults, 650 expressed 

support for the policy. Test the polling organization's claim at a 1% 

significance level. 

Solution: 

Step 1: Set up the hypotheses. H₀: p = 0.6 (60% of adults support the policy) 

H₁: p > 0.6 (More than 60% of adults support the policy) 

This is a one-tailed test because the claim is directional. 

Step 2: Determine the significance level. α = 0.01 

Step 3: Calculate the sample proportion. p̂ = 650/1000 = 0.65 

Step 4: Determine the test statistic. z = √[p(1-p)/n] / (p̂ - p) z = 

√[0.6(0.4)/1000] / (0.65 - 0.6) 0.05 / √[0.24/1000] is z. z = 0.05 / 0.0155 Z ≈ 

3.23  

Step 5: Determine the p-value, or critical value. The critical value for a one-

tailed test with α = 0.01 is z_α = 2.326. P(Z > 3.23), the p-value, is 0.0006 
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Notes Make a choice in step six. We reject the null hypothesis because z = 3.23 > 

2.326 (or p-value = 0.0006 < 0.01). 

Step 7: Evaluate the findings. The polling group's assertion that over 60% of 

adults favor the new environmental policy is well supported by the available 

data.  

Resolved Issue 5: Two-Sample t-Test for Population Mean Difference  

A researcher wishes to evaluate the efficacy of two distinct teaching 

strategies. A mean test score of 78 with a standard variation of 12 is obtained 

when 30 students employ Method A. A mean test score of 85 with a standard 

deviation of 15 is obtained when Method B is used to 25 pupils. Examine 

whether there is a difference in the mean test scores between the two 

approaches at a 5% significance level, assuming that the populations have 

identical variances. 

Solution: 

Step 1: Set up the hypotheses. H₀: μ₁ = μ₂ (There is no difference in mean 

test scores) H₁: μ₁ ≠ μ₂ (There is a difference in mean test scores) 

This is a two-tailed test because we're interested in any difference, regardless 

of direction. 

Step 2: Determine the significance level. α = 0.05 

Step 3: Determine the standard deviation of the pooled data. To calculate 

s_p, divide ((n₁-1)s₁² by (n₂-1)s₂²) by (n₁ + n₂ - 2) ((30-1)12² + (25-1)15²) / 

(30 + 25 - 2) = √[s_p] ((29)(144) + (24)(225)) / 53 = √[s_p] [(4176 + 5400) / 

53] = √[s_p] s_p = √[9576 / 53] s_p ≈ 13.44 s_p = √180.68 

Step 4: Calculate the test statistic. t = (x̄₁ - x̄₂) / (s_p × √(1/n₁ + 1/n₂)) t = (78 

- 85) / (13.44 × √(1/30 + 1/25)) t = -7 / (13.44 × √(0.0333 + 0.04)) t = -7 / 

(13.44 × √0.0733) t = -7 / (13.44 × 0.2708) t = -7 / 3.64 t ≈ -1.92 

Step 5: Find the critical value or p-value. Degrees of freedom = n₁ + n₂ - 2 = 

30 + 25 - 2 = 53 For α = 0.05 in a two-tailed test with df = 53, the critical 

values are approximately t_α/2 = ±2.006. The p-value = 2 × P(t < -1.92) ≈ 2 

× 0.03 ≈ 0.06 

Step 6: Decide on something. Given that |t| = 1.92 < 2.006 (or p-value = 0.06 

> 0.05), the null hypothesis cannot be ruled out. 
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Notes Step 7: Evaluate the findings. There is not enough data to draw the 

conclusion that the two teaching strategies differ in terms of mean test 

results. 

Unresolved Problems 

Problem 1: 

A manufacturer claims that its light bulbs have an average lifespan of at 

least 1000 hours. A random sample of 36 light bulbs shows an average 

lifespan of 980 hours, with a standard deviation of 120 hours. Test the 

manufacturer's claim at a 5% significance level. 

Problem 2: 

The effectiveness of a new medication in reducing cholesterol levels is 

under investigation. A study of 20 individuals who took the medication 

recorded an average cholesterol reduction of 25 mg/dL, with a standard 

deviation of 12 mg/dL. Test whether the medication effectively lowers 

cholesterol at a 1% significance level. 

Problem 3: 

A survey suggests that the proportion of adults who exercise regularly has 

increased from 40% five years ago. In a random sample of 500 individuals, 

220 report exercising regularly. Test whether the percentage has increased at 

a 5% significance level. 

Problem 4: 

The effects of two different fertilizers on crop yield are being compared. A 

sample of 40 plots treated with Fertilizer A shows an average yield of 25 

bushels per acre, with a standard deviation of 4 bushels. A sample of 45 

plots treated with Fertilizer B shows an average yield of 27 bushels per acre, 

with a standard deviation of 5 bushels. Test whether the mean yields of the 

two fertilizers differ at a 1% significance level. 

Problem 5: 
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Notes A researcher aims to determine whether support for a new municipal policy 

differs between men and women. In a random sample of 300 men, 165 

support the policy, while in a random sample of 350 women, 175 express 

support. Test for a significant difference in support between men and 

women at a 5% significance level. 

4.5 Critical Region and Level of Significance 

Introduction to Critical Region 

The set of test statistic values that result in the null hypothesis being rejected 

is known as the critical zone (or rejection region) in hypothesis testing. We 

compute a test statistic from our sample data and compare it with a crucial 

value while doing a hypothesis test. The null hypothesis is rejected if the test 

statistic is within the crucial zone; if not, it is not rejected.  

The vital area is dependent upon:  

1. The employed test statistic  

2. The test's selected significance threshold (α)  

3. Is the test two-tailed or one-tailed?  

4. Significance Level (α)  

The chance of rejecting the null hypothesis when it is true is represented by 

the level of significance, which is represented by α (alpha). Another name 

for this is the likelihood of making a Type I error.  

Typical values for α consist of: 

• 0.10 (10%) 

• 0.05 (5%) 

• 0.01 (1%) 

• 0.001 (0.1%) 

fields where errors can have serious consequences (e.g., medical research), 

smaller values of α like 0.01 or 0.001 are often used. 

Determining the Critical Region 

To determine the critical region, we need to: 

1. Choose the significance level (α) 
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Notes 2. Determine the test statistic's distribution under the null hypothesis.  

3. Identify the crucial value or values that divide the non-rejection region 

from the rejection area.  

For a z-test (when the normal distribution applies): 

• For a two-tailed test with significance level α: 

o Critical values: ±z(α/2) 

o Critical region: z < -z(α/2) or z > z(α/2) 

• For a right-tailed test with significance level α: 

o Critical value: z(α) 

o Critical region: z > z(α) 

• For a left-tailed test with significance level α: 

o Critical value: -z(α) 

o Critical region: z < -z(α) 

The z-score with an area of α to its right under the conventional normal 

curve is denoted by the symbol z(α). 

The connection between the p-value and the critical region  

The critical region and the p-value are directly correlated:  

• Assuming the null hypothesis is correct, the p-value is the likelihood of 

receiving a test statistic at least as extreme as the one observed.  

• If α is less than or equal to the p-value, we reject the null hypothesis.  

• The p-value will be less than or equal to α if the test statistic is within the 

critical zone.  

Critical Value Examples for Various Levels of Significance  

Regarding the z-distribution, or standard normal distribution:  

Two-Tailed Test: 

• For α = 0.10: Critical values = ±1.645 

• For α = 0.05: Critical values = ±1.96 

• For α = 0.01: Critical values = ±2.576 
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Notes   

 

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 Test Power

P(Fail to reject H₀|H₀ is false) = β.

guilty).  This  can  be  expressed  symbolically  as  follows:  P(Type  II  Error)  = 

reject  the  null  hypothesis  of  innocence  when  the  individual  is  actually 

In  a  criminal  trial,  a  Type  II  error  is  acquitting  a  guilty  person  (failing  to 

• Type II error likelihood = β (beta)

there is.

another  way,  we  assume  that  there  is  no  difference  or  effect  when,  in  fact, 

Failure  to  reject  a  faulty  null  hypothesis  is  a  Type  II  mistake.  To  put  it 

Error Type II (False Negative)

the null hypothesis of innocence when the individual is in fact innocent.

instance,  convicting  an  innocent  person  in  a  criminal  trial  entails  rejecting 

•  In  a  symbolic  sense,  P(Type  I  Error)  =  P(Reject  H₀|H₀  is  true)  =  α  For 

• Type I error likelihood = α (significance level)

exists.

get  the  conclusion  that  there  is  an  effect  or  difference  when,  in  fact,  none 

Rejecting a correct null hypothesis is a Type I mistake. Stated differently, we 

Type I (False Positive)

in hypothesis testing:Error 

There are two kinds of mistakes that might happen when making decisions 

4.6 Types of Errors in Hypothesis Testing

freedom.

For  the  t-distribution,  critical  values  depend  on  both  α  and  the  degrees  of 

• For α = 0.001: Critical value = ±3.09 (sign depends on direction)

• For α = 0.01: Critical value = ±2.33 (sign depends on direction)

• For α = 0.05: Critical value = ±1.645 (sign depends on direction)

• For α = 0.10: Critical value = ±1.28 (sign depends on direction)

One-Tailed Test:

• For α = 0.001: Critical values = ±3.291
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Notes The likelihood of successfully rejecting a false null hypothesis is known as a 

statistical test's power. It's equivalent to 1 minus β.  

• P(Reject H₀|H₀ is false) = 1 - β = Power 

A Type II error is unlikely to occur in a test with high power.  

Type I and Type II Error-Related Factors 

1. Sample Dimensions:  

Greater sample numbers lower the likelihood of both kinds of errors.  

Power increases (β lowers) as sample size grows. 

2. Significance Level (α): o Type I errors are less likely when α is decreased.  

Nevertheless, lowering α raises the possibility of Type II error (decreases 

power) for a fixed sample size.  

3. Effect Size: o Greater deviations from the null hypothesis are associated 

with larger effect sizes. boost power  

Power is reduced by smaller effect sizes (increasing β).  

4. Variability: o Both kinds of errors are more likely to occur when data 

variability is higher. 

Power rises when variability decreases.  

The Connection Between α and β  

Both Type I and Type II errors have a trade-off:  

• It is easier to miss a real effect when α is decreasing, which makes it harder 

to reject H₀; conversely, when α is increasing, which makes it easier to reject 

H₀, β is decreasing, which makes it less likely to miss a real effect. 

Increasing the sample size is the only method to concurrently reduce both 

kinds of mistakes. 

Error Types in Decision Table Format 

  H₀ is True H₀ is False 

Reject H₀ Type I Error (α) 
Correct Decision (1-β) 

(Power) 

Fail to Reject H₀ Correct Decision (1-α) Type II Error (β) 

4.7 One-Tailed and Two-Tailed Tests 
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Notes Depending on the alternative hypothesis's shape, hypothesis testing can be 

classified as either one-tailed (directed) or two-tailed (non-directional).  

Test with Two Tails  

When the alternative hypothesis asserts, without indicating a direction, that 

the parameter of interest differs from the value given in the null hypothesis, 

a two-tailed test is employed. 

Form of hypotheses: 

• H₀: Parameter = specified value 

• H₁: Parameter ≠ specified value 

Example: 

• H₀: μ = 100 

• H₁: μ ≠ 100 

The critical region in a two-tailed test is divided between the distribution's 

two tails, each of which contains α/2 of the area. 

When to use: 

• When you want to detect a difference in either direction 

• When there is no prior expectation about the direction of the effect 

• When you're equally interested in deviations above or below the 

value specified in H₀ 

One-Tailed Test 

When the alternative hypothesis indicates a direction for the difference from 

the value in the null hypothesis, a one-tailed test is employed. 

Right-Tailed Test 

Form of hypotheses: 

• H₀: Parameter ≤ specified value 

• H₁: Parameter > specified value 

Example: 

• H₀: μ ≤ 100 
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Notes • H₁: μ > 100 

In a right-tailed test, the entire critical region (α) is in the right tail of the 

distribution. 

Left-Tailed Test 

Form of hypotheses: 

• H₀: Parameter ≥ specified value 

• H₁: Parameter < specified value 

Example: 

• H₀: μ ≥ 100 

• H₁: μ < 100 

In a left-tailed test, the entire critical region (α) is in the left tail of the 

distribution. 

When to use one-tailed tests: 

• When you have a specific direction of interest based on theory or 

prior research 

• When you're only concerned with detecting an effect in one 

direction 

• When detecting an effect in the opposite direction would lead to the 

same decision as no effect 

Comparison of Critical Values 

For the same significance level (α), the critical value for a one-tailed test is 

less extreme than for a two-tailed test: 

• For α = 0.05:  

o Two-tailed test critical z-value: ±1.96 

o One-tailed test critical z-value: ±1.645 (sign depends on 

direction) 

This makes one-tailed tests more powerful for detecting effects in the 

specified direction, but they have no power to detect effects in the opposite 

direction. 
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Notes Choosing Between One-Tailed and Two-Tailed Tests 

Consider using a one-tailed test when: 

1. You have a clear directional hypothesis based on theory or prior 

research 

2. You're only interested in detecting an effect in one specific direction 

3. An effect in the opposite direction would be treated the same as no 

effect 

Consider using a two-tailed test when: 

1. You have no prior expectation about the direction of the effect 

2. You want to detect any deviation from the null hypothesis value 

3. An effect in either direction would be meaningful and lead to 

different conclusions 

Many researchers prefer two-tailed tests because: 

1. They protect against unexpected findings in the opposite direction 

2. They are more conservative and generally more accepted in 

scientific publications 

3. They allow for the possibility that your directional hypothesis might 

be wrong 

Solved Problems 

Solved Problem 1: Critical Region for a Z-Test 

Problem:A researcher is examining whether a novel approach to instruction 

raises student achievement. The new method's mean test score is 75, the 

same as the old method's, according to the null hypothesis. The mean score 

is different from 75, according to the alternative hypothesis. Assume that 36 

students will be chosen at at random and that the population standard 

deviation is 15. Find the two-tailed test's crucial region when α = 0.05. 

Solution: 

1. The hypotheses are: 

o H₀: μ = 75 
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Notes o H₁: μ ≠ 75 

2. This is a two-tailed test with α = 0.05. 

3. For a z-test, the critical values are ±z(α/2) = ±z(0.025) = ±1.96. 

4. The test statistic is: z = (x̄ - μ₀)/(σ/√n) = (x̄ - 75)/(15/√36) = (x̄ - 

75)/2.5 

5. The critical region is: z < -1.96 or z > 1.96 

6. In terms of the sample mean: 

o (x̄ - 75)/2.5 < -1.96 or (x̄ - 75)/2.5 > 1.96 

o x̄ < 75 - (1.96 × 2.5) or x̄ > 75 + (1.96 × 2.5) 

o x̄ < 70.1 or x̄ > 79.9 

Therefore, the critical region in terms of the sample mean is: x̄ < 70.1 or x̄ > 

79.9. 

Solved Problem 2: Type I and Type II Errors 

Problem:A quality control engineer checks to see if the manufactured 

bearings' mean diameter is 10 mm. H₀: μ = 10 mm is the null hypothesis, 

whereas H₁: μ ≠ 10 mm is the alternative. Clearly state the meaning of Type 

I and Type II errors in this situation. 

Solution: 

Type I Error (Rejecting a true H₀): 

• This occurs if the engineer concludes that the mean diameter is not 

10 mm when it actually is 10 mm. 

• This might lead to unnecessary adjustments to the manufacturing 

process, wasting time and resources. 

• The likelihood of this error is α (the significance level chosen for the 

test). 

Type II Error (Failing to reject a false H₀): 

• This occurs if the engineer concludes that the mean diameter is 10 

mm when it actually is not 10 mm. 
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Notes • This might lead to continued production of bearings with incorrect 

diameters, potentially causing problems in applications where these 

bearings are used. 

• The likelihood of this error is β, which depends on the true value of 

μ, the sample size, and the significance level. 

In quality control, both errors have consequences: 

• Type I error leads to false alarms and unnecessary adjustments. 

• Type II error allows defective products to pass inspection. 

The engineer must balance these risks by choosing an appropriate 

significance level and ensuring adequate sample size for sufficient power. 

Solved Problem 3: One-Tailed vs. Two-Tailed Test 

Problem:A new medication, according to a pharmaceutical company, lowers 

blood pressure by at least 10 mmHg on average. The likelihood that the 

reduction is less than 10 mmHg is something that a researcher want to test 

against this assertion. Set up the appropriate hypotheses and determine 

whether a one-tailed or two-tailed test is appropriate. Explain your 

reasoning. 

Solution: 

The claim is that the drug reduces blood pressure by at least 10 mmHg. 

Let μ = the mean reduction in blood pressure due to the drug. 

The claim is μ ≥ 10 mmHg. 

The researcher wants to test against the possibility that the reduction is less 

than 10 mmHg. 

Appropriate hypotheses: 

• H₀: μ ≥ 10 mmHg (The drug reduces blood pressure by at least 10 

mmHg) 

• H₁: μ < 10 mmHg (The drug reduces blood pressure by less than 10 

mmHg) 

This is a left-tailed test because: 
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Notes 1. The alternative hypothesis specifies a direction (less than 10 

mmHg). 

2. The critical region will be entirely in the left tail of the distribution. 

3. The researcher is only interested in detecting if the drug's effect is 

less than claimed. 

Reasoning: 

• The company claims a reduction of at least 10 mmHg, which forms 

our null hypothesis. 

• The researcher's concern is specifically about the drug not meeting 

this claim (i.e., having a smaller effect than claimed), not about it 

exceeding the claim. 

• Since there's a specific directional concern, a one-tailed test is 

appropriate. 

• Specifically, it's a left-tailed test because the alternative hypothesis 

involves values less than the null hypothesis value. 

Solved Problem 4: Calculating Type II Error Likelihood 

Problem:According to the manufacturer, their light bulbs have a typical 

lifespan of at least 1000 hours. A researcher wishes to use a at random 

sample of twenty-five bulbs to test this assertion. It is known that the 

population standard deviation is 200 hours. For a left-tailed test, the 

researcher will employ a significance level of α = 0.05. Determine the 

likelihood of a Type II error in the event that the actual mean lifetime is 950 

hours.. 

Solution: 

1. For a z-test with α = 0.05, the critical value is -z(α) = -z(0.05) = -

1.645. 

2. The critical region is: z < -1.645 

3. In terms of the sample mean: 

o (x̄ - 1000)/(200/√25) < -1.645 

o (x̄ - 1000)/40 < -1.645 
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Notes o x̄ < 1000 - (1.645 × 40) 

o x̄ < 934.2 

4. Calculate β, the likelihood of Type II error when μ = 950: 

o β = P(Fail to reject H₀|μ = 950) 

o β = P(x̄ ≥ 934.2|μ = 950) 

5. Standardize this likelihood: 

o β = P((x̄ - 950)/(200/√25) ≥ (934.2 - 950)/(200/√25)) 

o β = P(z ≥ (934.2 - 950)/40) 

o β = P(z ≥ -0.395) 

o β = 1 - P(z < -0.395) 

o β = 1 - 0.3464 

o β = 0.6536 or approximately 65.36% 

Consequently, the likelihood of failing to reject the null hypothesis 

(committing a Type II error) is roughly 65.36% if the true mean lifetime is 

950 hours. 

Solved Problem 5: Comparing One-Tailed and Two-Tailed Tests 

Problem:A researcher is examining the potential effects of a novel 

medication on heart rate. The mean change in heart rate is zero beats per 

minute, according to the null hypothesis. Calculate the critical regions and 

critical values for: A test with two tails and α = 0.05, a test with a right tail 

and α = 0.05, and a test with a left tail and α = 0.05  

Presume that the test statistic has a normal distribution. What is the 

comparison of the critical regions? 

Solution: 

a) Two-tailed test with α = 0.05: 

• H₀: μ = 0 

• H₁: μ ≠ 0 

• Critical values: ±z(α/2) = ±z(0.025) = ±1.96 
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Notes • Critical region: z < -1.96 or z > 1.96 

b) Right-tailed test with α = 0.05: 

• H₀: μ ≤ 0 

• H₁: μ > 0 

• Critical value: z(α) = z(0.05) = 1.645 

• Critical region: z > 1.645 

c) Left-tailed test with α = 0.05: 

• H₀: μ ≥ 0 

• H₁: μ < 0 

• Critical value: -z(α) = -z(0.05) = -1.645 

• Critical region: z < -1.645 

Comparison of critical regions: 

1. The two-tailed test has critical values that are more extreme (±1.96) 

than the one-tailed tests (±1.645). 

2. The two-tailed test divides the significance level between both tails 

(0.025 in each tail), while the one-tailed tests place the entire 

significance level (0.05) in one tail. 

3. The one-tailed tests have more power to detect effects in the 

specified direction but no power to detect effects in the opposite 

direction. 

4. If the true effect is in the direction specified by the alternative 

hypothesis, a one-tailed test is more likely to detect it than a two-

tailed test at the same significance level. 

Unsolved Problems 

Problem 1: 

The objective of the study is to determine whether a new fertilizer enhances 

plant growth. The null hypothesis states that the mean growth with the new 

fertilizer is 25 cm, the same as the conventional fertilizer. The alternative 
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Notes hypothesis asserts that the mean growth exceeds 25 cm. A random sample of 

16 plants is selected, with a population standard deviation of 4 cm. 

a) Identify the critical region for a right-tailed test at a significance level of α 

= 0.01. 

b) Compute the test statistic and determine whether to reject the null 

hypothesis if the sample mean is 27.5 cm. 

c) Calculate and interpret the p-value. 

Problem 2: 

A company claims that its batteries have an average lifespan of at least 30 

hours. A consumer group seeks to test this claim using a sample of 40 

batteries, given that the population standard deviation is 5 hours. 

a) Formulate the null and alternative hypotheses. 

b) Determine the critical region for a left-tailed test at α = 0.05. 

c) Calculate the probability of making a Type II error if the true mean 

lifespan is 28 hours. 

d) Discuss how increasing the sample size to 60 batteries would affect the 

probability of a Type II error. 

Problem 3: 

A researcher is investigating the effect of a new teaching method on student 

performance. The null hypothesis states that the mean test score using the 

new method is 70, which is the historical average for the traditional method. 

The researcher is interested in any deviation from this historical average. 

a) Determine whether a one-tailed or two-tailed test is appropriate by setting 

up the correct hypotheses. Justify your choice. 

b) Identify the critical values if the researcher uses α = 0.05 and the test 

statistic follows a t-distribution with 24 degrees of freedom. 

c) If the researcher later decides that only an improvement in test scores is of 

interest, how would the hypotheses and critical region change? 

Problem 4: 
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Notes A quality control engineer is evaluating whether the average package weight 

on a production line is 500 grams. The null hypothesis is H₀: μ = 500 grams, 

while the alternative hypothesis is H₁: μ ≠ 500 grams. The significance level 

is set at α = 0.05. 

a) Explain the meaning of Type I and Type II errors in this context. 

b) Calculate the probability of a Type II error if a sample of 25 packages is 

taken, the true mean weight is 505 grams, and the standard deviation is 10 

grams. 

c) Discuss how the probability of a Type II error would change if the 

significance level were increased to α = 0.10. 

Problem 5: 

A medical researcher is examining whether a new treatment lowers 

cholesterol levels. The null hypothesis states that the mean reduction is 0 

mg/dL (no effect), while the alternative hypothesis asserts that the treatment 

is effective if the mean reduction is greater than 0 mg/dL. 

a) Compute the test statistic for a right-tailed test at α = 0.05, given a sample 

size of 30, a sample mean reduction of 8 mg/dL, and a sample standard 

deviation of 15 mg/dL. Determine whether to reject the null hypothesis. 

b) Calculate and interpret the p-value. 

c) Explain how the results would differ if the researcher had used a two-

tailed test instead. 

d) Given a population standard deviation of 15 mg/dL, a true mean reduction 

of 5 mg/dL, and α = 0.05, determine the required sample size to achieve a 

power of 0.90. 

Formula Sheet 

Critical Values 

For z-tests (standard normal distribution): 

Two-tailed test (α): 

• The crucial variables are ±z(α/2).  

Test with a right tail (α):  
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Notes • z(α) is the critical value.  

Test with a left tail (α):  

• Critical value: -z(α) 

Common critical z-values: 

For α = 0.10: 

• Two-tailed: ±1.645 

• One-tailed: 1.28 (right) or -1.28 (left) 

For α = 0.05: 

• Two-tailed: ±1.96 

• One-tailed: 1.645 (right) or -1.645 (left) 

For α = 0.01: 

• Two-tailed: ±2.576 

• One-tailed: 2.33 (right) or -2.33 (left) 

For α = 0.001: 

• Two-tailed: ±3.291 

• One-tailed: 3.09 (right) or -3.09 (left) 

Test Statistics 

Z-test (known population standard deviation): z = (x̄ - μ₀)/(σ/√n) 

T-test (unknown population standard deviation): t = (x̄ - μ₀)/(s/√n) 

Where: 

• x̄ = sample mean 

• μ₀ = hypothesized population mean 

• σ = population standard deviation 

• s = sample standard deviation 

• n = sample size 

Likelihood of Type II Error (β) 
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Notes For a right-tailed z-test with alternative μ = μ₁ > μ₀: β = P(z < z(α) - (μ₁ - 

μ₀)/(σ/√n)) = Φ(z(α) - (μ₁ - μ₀)/(σ/√n)) 

For a left-tailed z-test with alternative μ = μ₁ < μ₀: β = P(z > -z(α) - (μ₁ - 

μ₀)/(σ/√n)) = 1 - Φ(-z(α) - (μ₁ - μ₀)/(σ/√n)) 

When using the alternative μ = μ₁ ≠ μ₀ for a two-tailed z-test: (z(α/2) - |μ₁ - 

μ₀|/(σ/√n)) = Π + Φ The value of Φ(-z(α/2) - |μ₁ - μ₀|/(σ/√n))  

where 

•  Φ(z) is the standard normal distribution's cumulative distribution 

function.  

• μ₁ = true value of the population mean 

• μ₀ = hypothesized value in the null hypothesis 

Power Calculation 

Power = 1 - β 

Sample Size Determination 

To achieve a specific power (1-β) for detecting a difference of size |μ₁ - μ₀|: 

For a two-tailed test: n = [(z(α/2) + z(β))²σ²]/(μ₁ - μ₀)² 

For a one-tailed test: n = [(z(α) + z(β))²σ²]/(μ₁ - μ₀)² 

Where: 

• z(α) = critical value for significance level α 

• z(β) = critical value corresponding to β (Type II error likelihood) 

• σ = population standard deviation 

• μ₁ - μ₀ = effect size (difference to be detected) 

4.8 Large Sample Tests for Mean and Proportion 

The Central Limit Theorem, which asserts that regardless of the population 

distribution's form, the sampling distribution of the sample mean approaches 

a normal distribution, can be used when working with large samples (usually 

n ≥ 30). Our hypothesis testing processes are made simpler by this potent 

theorem, which enables us to execute statistical inference using the normal 

distribution as an approximation.  
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Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

  

 

 

 

   

 

 o Dismiss H₀ if |z| > z_{α/2} or if p-value < α

For a two-tailed test (H₀: μ = μ₀, H₁: μ ≠ μ₀) at a significance threshold of α:

Rule of Decision

 (x̄ - μ₀)/(s/√n) = z

which is frequently unknown:

When  n  is  big,  we  can  use  the  sample  standard  deviation  s  in  place  of σ, 

• The sample size is n.

mean (derived from H₀).

σ  is  the  population  standard  deviation,  and  μ₀  is  the  estimated  population 

x̄ represents the sample mean.

Where:

(x̄ - μ₀)/(σ/√n) = z

mean μ with a large sample: 

The  following  test  statistic  is  used  for  testing  hypotheses  on  a  population 

Large Sample Test for Population Mean

rejecting H₀.

Critical  Region: The set  of  values for the test  statistic  that  lead to 4.

determine whether to reject H₀.

Test  Statistic:  A  value  calculated  from  sample  data  used  to 3.

null hypothesis.

Alternative Hypothesis  (H₁  or  Hₐ):  The  claim  that  challenges  the 2.

aim to test.

Null Hypothesis (H₀): The default assumption or status quo that we 1.

hypothesis testing:

Before  diving  into  specific  tests,  let's  review  the  fundamental  concepts  of 

Key Concepts in Hypothesis Testing

medicine.

of  disciplines,  such  as  the  social  sciences,  psychology,  economics,  and 

parameters. These assessments are reliable and broadly relevant in a number 

sample  tests  are  employed  to  draw  conclusions  regarding  population 

When the sample size is large enough, statistical procedures known as large 
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Notes 
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Conditions for Validity 

 

 

 

 

 

 

 

 

 

  

 

 

 

•  n  is  the  sample  size;  •  p₀  is  the  estimated  population  proportion  (derived

The sample proportion is denoted by p̂ .

proportion p with a large sample. Where:

We  utilize  z  =  (p̂ - p₀)/√[p₀(1-p₀)/n]  to  test  hypotheses  on  a  population 

Test of Population Proportion with a Large Sample

normal  distribution  are  denoted by z_{α/2} and z_α.

the p-value is less than α. where the  critical  values from the  standard  

When a test is left-tailed (H₀: μ ≥ μ₀, H₁: μ < μ₀), reject H₀ if z < -z_α or if 

the p-value is less than α.

• For a test with a right tail (H₀: μ ≤ μ₀, H₁: μ > μ₀), reject H₀ if z > z_α or if 

Two-tailed hypothesis tests and confidence intervals are directly related:

z_{α/2} × √[p̂ (1-p̂ )/n].

For  a  population  proportion  p,  the  (1-α)×100% confidence  interval  is p̂ ± 

z_{α/2} × (s/√n) x̄ ±

Alternatively, if σ is unknown:

a population mean μ.

The formula x̄ ± z_{α/2} × (σ/√n) yields a (1-α)×100% confidence range for 

The Connection Between Hypothesis Testing and Confidence Intervals

value.

against  α  or comparing  the  computed  z-statistic  with  the  relevant  critical 

The  choice  criteria  are  the  same  as  for  the  mean,  evaluating  the  p-value 

Rule of Decision

5.

  The sample size needs to be sufficiently big so that both np₀ and n(1-p₀) > 2.

 The sample needs to be chosen at random.1.

To ensure the validity of the large sample proportion test:
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Notes H₀ is rejected if the hypothesized value μ₀ (or p₀) lies outside the confidence 

interval; if it lies inside the confidence interval, H₀ is not rejected. 

Errors of Type I and Type II  

There are two kinds of mistakes that might happen in hypothesis testing:  

1. Type I Error: False positive, or rejecting H₀ when it is true  

Likelihood = α (level of significance)  

2. Failure to reject H₀ when it is incorrect (false negative) is a Type II error.  

Test power = 1 - β (likelihood of successfully rejecting a fake H₀) o 

Likelihood = β  

A test's power can be impacted by the following factors:  

• Sample size (n): Power rises with larger samples.  

• Significance level (α): raising α raises the possibility of Type I error while 

also increasing power.  

• Effect size: Power increases with more discrepancies between the actual 

parameter value and the predicted value.  

• Variability: Power rises with less variability (smaller σ).  

4.9 Hypothesis Testing in Real-Life Applications 

Applications in Medicine and Healthcare 

Hypothesis testing is fundamental in clinical trials and medical research. 

Researchers use these statistical methods to determine whether new 

treatments, drugs, or medical procedures are effective. 

Application: COVID-19 Vaccine Efficacy 

During the COVID-19 pandemic, large-scale clinical trials used hypothesis 

testing to evaluate vaccine efficacy. For instance: 

• H₀: Vaccine efficacy ≤ 50% (FDA threshold for approval) 

• H₁: Vaccine efficacy > 50% 

Researchers calculated: Efficacy = 1 - (Infection rate in vaccinated 

group)/(Infection rate in placebo group) 
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Notes Statistical significance in these trials provided evidence for vaccine approval 

and distribution. 

Applications in Business and Economics 

Market Research 

Companies use hypothesis testing to make data-driven decisions about 

products, services, and marketing strategies. 

A/B Testing Example 

A company testing two different website designs might use: 

• H₀: There is no difference in conversion rates between designs A and 

B 

• H₁: There is a difference in conversion rates between designs A and 

B 

After collecting data, they can calculate: z = (p̂ₐ - p̂ᵦ)/√[p̂(1-p̂)(1/nₐ + 1/nᵦ)] 

Where p̂ = (xₐ + xᵦ)/(nₐ + nᵦ) is the pooled proportion. 

Economic Policy Analysis 

Economists apply hypothesis testing to evaluate policy effectiveness: 

• Analyzing unemployment rates before and after policy 

implementation 

• Comparing economic growth across different regions with different 

policies 

• Assessing the impact of interest rate changes on inflation 

Applications in Quality Control 

Manufacturing companies employ statistical quality control to maintain 

product standards. Hypothesis testing helps monitor production processes 

and detect deviations. 

Example: Production Line Monitoring 

Consider a process producing components with a target diameter of 10 mm: 

• H₀: The mean diameter = 10 mm (process is in control) 



  

132 
 

Notes • H₁: The mean diameter ≠ 10 mm (process needs adjustment) 

Regular sampling and testing allow for timely intervention when the process 

drifts out of specification. 

Applications in Social Sciences 

Hypothesis testing helps researchers in psychology, sociology, and education 

validate theories and evaluate interventions. 

Example: Educational Method Comparison 

When comparing traditional teaching methods with a new approach: 

• H₀: There is no difference in student performance between methods 

• H₁: The new method results in different student performance 

Test scores or other performance metrics can be analyzed using appropriate 

statistical tests to guide educational policy. 

Environmental Applications 

Scientists use hypothesis testing to monitor climate change, pollution 

effects, and conservation efforts. 

Example: Climate Data Analysis 

Testing whether average temperatures have increased: 

• H₀: The mean annual temperature has not changed 

• H₁: The mean annual temperature has increased 

Long-term temperature data can be analyzed to detect significant trends that 

inform environmental policy. 

4.10 Examples and Case Studies 

Solved Problems 

Solved Problem 1: Large Sample Test for Population Mean 

Problem: According to a manufacturer, the average lifespan of its light 

bulbs is at least 1000 hours. After testing 100 bulbs, a consumer advocacy 

group discovers that the sample mean lifespan is 985 hours, with a sample 

standard variation of 120 hours. Does the manufacturer's assertion have 

evidence to refute it at a 5% significance level? 
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Notes Solution: 

Step 1: Define the hypotheses 

• H₀: μ ≥ 1000 (manufacturer's claim) 

• H₁: μ < 1000 (consumer group's suspicion) 

 

The test is left-tailed.  

Step 2: Determine that z = (x̄ - μ₀)/(s/√n) z = (985 - 1000)/(120/√100) z = -

15/(120/10) z = -15/12 z = -1.25 by computing the test statistic.  

Step 3: Determine the critical value For α = 0.05 in a left-tailed test, z_α = -

1.645 

Step 4: Make a decision Since -1.25 > -1.645, we do not reject H₀. 

Step 5: Give the conclusion. There is not enough data to refute the 

manufacturer's assertion that the average lifespan of their light bulbs is at 

least 1000 hours at the 5% significance level. 

Solved Problem 2: Large Sample Test for Population Proportion 

Problem: A political analyst claims that more than 60% of voters support a 

new policy. In a at random sample of 500 voters, 325 express support for the 

policy. Test the analyst's claim at a 1% significance level. 

Solution: 

Step 1: Define the hypotheses 

• H₀: p ≤ 0.60 

• H₁: p > 0.60 

This is a right-tailed test. 

Step 2: Check the conditions for using the normal approximation 

• np₀ = 500 × 0.60 = 300 ≥ 5 

• n(1-p₀) = 500 × 0.40 = 200 ≥ 5 

The conditions are satisfied. 

Step 3: Calculate the sample proportion p̂ = 325/500 = 0.65 
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Notes Step 4: Determine z = (p̂ - p₀)/√[p₀(1-p₀)/n] z = (0.65 - 

0.60)/√[0.60(0.40)/500] as the test statistic. 0.05/0.022 z = 2.27 z = 

0.05/√0.00048 z 

Step 5: Determine the critical value For α = 0.01 in a right-tailed test, z_α = 

2.33 

Step 6: Make a decision Since 2.27 < 2.33, we do not reject H₀. 

Step 7: Explain the conclusion. There is not enough data to back up the 

analyst's assertion that over 60% of voters like the new policy at the 1% 

significance level. 

Solved Problem 3: Confidence Interval and Hypothesis Testing 

Relationship 

Problem: According to one study, college students read 300 words per 

minute on average. With a standard deviation of 48 words per minute, the 

mean reading speed of 64 pupils selected at at random is 312 words per 

minute. To test the researcher's claim, create a 95% confidence interval for 

the mean reading speed.  

Answer:  

First Step: Determine what the 95% confidence interval is. z_{α/2} = 1.96 x̄ 

± z_{α/2} × (s/√n) 312 ± 1.96 × (48/√64) 312 ± 1.96 × (48/8) 312 ± 1.96 × 6 

312 ± 11.76 at a 95% confidence level  

The range of the 95% CI is [300.24, 323.76]. 

Step 2: Use the confidence interval to test the hypothesis 

• H₀: μ = 300 

• H₁: μ ≠ 300 

At the 5% significance level, we do not reject H₀ because 300 is (very 

barely) included in the confidence interval.  

Step 3: Provide a conclusion The researcher's assertion that the average 

reading speed is 300 words per minute cannot be refuted due to the lack of 

proof. . 

Solved Problem 4: Comparing Two Population Proportions 
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Notes Problem: A new teaching method is being evaluated. Of 200 students taught 

using the traditional method, 140 passed the exam. Of 250 students taught 

using the new method, 195 passed. At a 5% significance level, is there 

evidence that the new method has a higher pass rate? 

Solution: 

Step 1: Define the hypotheses 

• H₀: p₁ ≥ p₂ (traditional method's pass rate is greater than or equal to 

the new method's) 

• H₁: p₁ < p₂ (new method has a higher pass rate) 

This test is left-tailed. 

Step 2: Calculate sample proportions p̂₁ = 140/200 = 0.70 p̂₂ = 195/250 = 

0.78 

Step 3: Calculate the pooled proportion (assuming H₀ is true) p̂ = (140 + 

195)/(200 + 250) = 335/450 = 0.744 

Step 4: Determine z = (p̂₁ - p̂₂)/√[p̂(1-p̂)(1/n₁ + 1/n₂)] as the test statistic. 0.70 

- 0.78 / √[0.744(0.256)(1/200 + 1/250)] is z. [0.190464(0.005 + 0.004)] = -

0.08/√ [0.190464 × 0.009] z = -0.08/√= -0.08/√0.001714 Z is equal to -

0.08/0.0414 z = -1.932 

Step 5: Determine the critical value For α = 0.05 in a left-tailed test, z_α = -

1.645 

Step 6: Make a decision Since -1.932 < -1.645, we reject H₀. 

Step 7: Give the conclusion. There is enough data to draw the conclusion 

that the new teaching strategy outperforms the conventional one in terms of 

pass rate at the 5% significance level. 

Solved Problem 5: Hypothesis Testing in Real-Life Application 

ProblemA pharmaceutical company creates a novel cholesterol-lowering 

medication. The medication was administered to 45 high-cholesterol 

individuals for three months during clinical trials. Their mean cholesterol 

level was 240 mg/dL prior to therapy. The mean level was 218 mg/dL with a 

standard variation of 25 mg/dL following treatment. Check to see if the 

medication lowers cholesterol at a 1% significance level. 
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Notes Solution: 

Step 1: Define the hypotheses 

• H₀: μd ≥ 0 (drug does not lower cholesterol) 

• H₁: μd< 0 (drug lowers cholesterol) 

Where μd is the mean difference (after - before). 

Step 2: Calculate the mean difference and test statistic Mean difference = 

218 - 240 = -22 mg/dL 

Since we're testing the mean difference: z = (-22 - 0)/(25/√45) z = -

22/(25/6.71) z = -22/3.73 z = -5.90 

Step 3: Determine the critical value For α = 0.01 in a left-tailed test, z_α = -

2.33 

Step 4: Make a decision Since -5.90 < -2.33, we reject H₀. 

Step 5: Give the conclusion. There is enough data to draw the conclusion 

that the medication lowers cholesterol at the 1% significance level. 

Unsolved Problems 

Problem 1: Large Sample Test for Population Mean 

A corporation claims that its employees work an average of 45 hours per 

week. However, a labor union suspects that this number is higher. A random 

sample of 100 employees shows an average weekly work time of 47.2 hours 

with a standard deviation of 8.5 hours. 

a) Formulate the null and alternative hypotheses. 

b) Compute the test statistic. 

c) Draw a conclusion at a 5% significance level. 

d) Determine and interpret the p-value. 

Problem 2: Test of Population Proportion with a Large Sample 

A quality control manager asserts that no more than 5% of manufactured 

products are defective. However, in a random sample of 400 products, 30 

are found to be defective. 
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Notes a) Define the null and alternative hypotheses. 

b) Calculate the sample proportion. 

c) Identify the appropriate statistical test. 

d) Make a conclusion at a 1% significance level. 

e) Construct a 99% confidence interval to estimate the actual proportion of 

defective products. 

Problem 3: Comparing Two Population Means 

A researcher is comparing the effectiveness of two different standardized 

test preparation methods. A sample of 60 students using Method A achieves 

an average score of 78.5 with a standard deviation of 8.2, while a sample of 

75 students using Method B attains an average score of 82.1 with a standard 

deviation of 9.5. 

a) Establish the null and alternative hypotheses to test if the mean scores 

differ between the two methods. 

b) Compute the test statistic. 

c) Make a conclusion at a 5% significance level. 

d) Construct a 95% confidence interval for the difference in mean scores. 

Problem 4: Application in Marketing 

A company wants to determine whether a new advertising campaign has 

increased daily sales. Before the campaign, the average daily sales were 

$12,000. After 50 days of the campaign, the average daily sales increased to 

$13,200, with a standard deviation of $1,800. 

a) Set up the null and alternative hypotheses to evaluate the campaign’s 

effectiveness. 

b) Compute the test statistic. 

c) Determine if there is sufficient evidence to conclude that the campaign 

increased sales at a 5% significance level. 

d) Discuss the possible errors in this hypothesis test and their consequences. 

Problem 5: Case Study in Public Health 

A public health authority wants to assess whether a new health education 

program has increased the community’s vaccination rate. Before the 
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Notes program, the vaccination rate was 65%. After implementation, a random 

sample of 300 community members reveals that 210 have received the 

vaccine. 

a) Define the null and alternative hypotheses. 

b) Identify the appropriate statistical test. 

c) Evaluate the conclusion at a 1% significance level. 

d) Compute and interpret the p-value. 

e) Explain the implications of committing a Type I error in this context. 

Additional Considerations in Hypothesis Testing 

Practical Significance vs. Statistical Significance 

It's important to distinguish between statistical significance and practical 

significance: 

• Statistical Significance: shows that it is unlikely that the observed 

findings happened by accident.  

• Practical Significance: Shows that the effect is significant enough 

in a real-world setting. 

With large samples, even small differences can be statistically significant but 

may lack practical importance. Researchers should consider the magnitude 

of the effect and its real-world implications. 

Effect Size Measures 

Effect size measures quantify the magnitude of the difference between 

groups or the strength of a relationship. 

Common effect size measures include: 

1. Cohen's d for comparing means: d = |μ₁ - μ₂|/σ 

Where σ is the pooled standard deviation. 

Interpretations: 

o d = 0.2: Small effect 

o d = 0.5: Medium effect 

o d = 0.8: Large effect 
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Notes 2. Correlation coefficient (r) for measuring association: Values range 

from -1 to 1, with the magnitude indicating the strength of 

association. 

3. Odds ratio for comparing proportions: The ratio of the odds of an 

event occurring in one group to the odds of it occurring in another 

group. 

Multiple Testing Problem 

The likelihood of producing at least one Type I error rises while performing 

numerous hypothesis tests. This is referred to as the multiplicity problem or 

the numerous testing problem. 

Methods to address this issue include: 

1. Bonferroni Correction: Adjust the significance level by dividing α 

by the number of tests. α' = α/m, where m is the number of tests. 

2. False Discovery Rate (FDR) Control: Controls the expected 

proportion of false discoveries among all discoveries. 

3. Family-Wise Error Rate (FWER) Control: Controls the 

likelihood of making one or more Type I errors. 

Assumptions and Robustness 

The Central Limit Theorem, which permits a normal distribution to 

approximate the sampling distribution, is the foundation of large sample 

tests. Other presumptions, nevertheless, might still be relevant: 

1. Independence: Observations should be free of each other. 

2. At random Sampling: The sample should be randomly selected 

from the population. 

3. Large Sample Size: The sample size should be sufficiently large 

(generally n ≥ 30). 

Tests are considered robust if moderate violations of assumptions still yield 

reliable results. 

Power Analysis and Sample Size Determination 
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Notes Power analysis helps determine the sample size needed to detect an effect of 

a specific size with a given level of confidence. 

The power of a test (1 - β) depends on: 

• Sample size (n) 

• Significance level (α) 

• Effect size 

• Variability in the population 

For a test of a population mean: n = (z_α + z_β)² × σ²/Δ² 

Where: 

• z_α is the critical value for Type I error 

• z_β is the critical value for Type II error 

• σ is the population standard deviation 

• Δ is the minimum detectable difference 

Sequential and Adaptive Testing 

In some applications, especially clinical trials, sequential or adaptive testing 

approaches may be used. These methods allow for interim analyses and 

potential early stopping of a study based on accumulated data. 

Benefits include: 

• Ethical considerations (stopping a trial early if treatment shows clear 

benefit or harm) 

• Efficiency in resource allocation 

• Flexibility in study design 

However, these approaches require careful planning and appropriate 

statistical adjustments to maintain the integrity of the analysis.Large sample 

tests for means and proportions form the foundation of many statistical 

analyses in research and real-world applications. Understanding the 

principles of hypothesis testing, interpreting results correctly, and 

recognizing the limitations and assumptions of these methods are essential 

skills for making data-driven decisions.The examples and case studies 
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Notes presented in this document illustrate how these statistical techniques can be 

applied across various fields to answer important questions and guide 

decision-making processes.By combining theoretical knowledge with 

practical applications, researchers and professionals can effectively utilize 

hypothesis testing to extract meaningful insights from data and make 

informed conclusions about populations based on sample evidence. 

Practical Applications of Hypothesis Testing 

Hypothesis testing forms the backbone of inferential statistics across 

numerous fields. Here are practical applications based on the key concepts 

you've outlined: 

Banking and Finance 

Credit Scoring Models: Banks develop hypothesis tests to determine if new 

scoring algorithms significantly improve default prediction rates. The null 

hypothesis might state that the new algorithm performs no better than the 

existing one.Investment Strategies: Portfolio managers test hypotheses about 

whether certain investment approaches yield significantly higher returns. 

They define parameters (like mean return) and calculate statistics from 

market data to test claims about performance. 

Fraud Detection: Financial institutions analyze transaction patterns using 

hypothesis testing to identify anomalous behaviors. Critical regions are 

established where unusual activity triggers additional verification, balancing 

false positives (legitimate transactions flagged as fraud) against false 

negatives (missed fraud). 

Healthcare 

• Pharmaceutical Trials: Drug developers test whether new 

medications produce significant improvements over placebos or 

existing treatments. The alternative hypothesis typically suggests the 

new drug is more effective, while the null hypothesis indicates no 

difference. 

• Medical Screening: Hospitals analyze the sensitivity and specificity 

of diagnostic tests through hypothesis testing. They carefully 

monitor Type I errors (false positives) and Type II errors (false 

negatives), adjusting significance levels based on the severity of 

missing a diagnosis versus unnecessary treatment. 
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Notes • Public Health Monitoring: Health departments use proportion tests 

to determine if disease rates in specific populations differ 

significantly from baseline levels, helping identify emerging 

outbreaks early. 

Manufacturing 

• Quality Control: Manufacturers implement statistical process control 

using hypothesis testing to monitor if production remains within 

acceptable parameters. Sampling distributions help them understand 

expected variation in measurements. 

• Product Reliability: Engineers test whether design improvements 

significantly extend product lifespan. Using standard error 

calculations, they determine if observed differences in durability are 

statistically meaningful or due to random variation. 

• Supply Chain Optimization: Companies analyze whether new 

logistics approaches significantly reduce delivery times, using large 

sample tests when working with historical shipment data. 

• Marketing and Retail 

• A/B Testing: E-commerce sites test whether different webpage 

designs significantly impact conversion rates. Null hypotheses 

typically assume no difference between designs, with critical 

regions determined by desired significance levels. 

• Pricing Strategy: Retailers test hypotheses about optimal price 

points by analyzing sales data across different store locations. The 

parameter of interest is usually mean revenue or profit, with 

statistics calculated from sample data. 

• Customer Retention: Subscription businesses test whether new 

engagement programs significantly improve retention rates, using 

proportion tests to determine if differences are statistically 

meaningful. 

Agriculture 

• Crop Yield Improvement: Farmers test whether new fertilizers or 

farming techniques significantly increase yields. Sampling 

distributions help account for natural variation in growing 

conditions. 
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Notes • Pest Resistance: Agricultural researchers use hypothesis testing to 

determine if certain crop varieties show significantly improved 

resistance to pests, defining parameters like infestation rates. 

• Soil Quality Management: Land managers test hypotheses about 

whether soil amendment practices significantly improve nutrient 

content, using appropriate significance levels to guide investment 

decisions. 

Environmental Science 

• Climate Change Analysis: Researchers test whether observed 

temperature changes differ significantly from historical patterns. 

The null hypothesis typically represents natural variation, while the 

alternative suggests human influence. 

• Water Quality Monitoring: Environmental agencies use hypothesis 

testing to determine if pollutant levels exceed regulatory thresholds, 

carefully defining significance levels to balance environmental 

protection against false alarms. 

• Conservation Efforts: Wildlife biologists test whether population 

management strategies significantly increase endangered species 

numbers, using appropriate statistical methods to account for 

sampling challenges in wildlife counts. 

Technology 

• Algorithm Performance: Software engineers use hypothesis testing 

to determine if new algorithms significantly improve processing 

speed or accuracy. Critical regions help them decide when 

improvements are substantial enough to implement. 

• User Experience: Product designers test whether interface changes 

significantly improve user satisfaction or task completion rates, 

drawing conclusions from sample data to infer population-wide 

effects. 

• Network Reliability: Telecommunications companies test 

hypotheses about whether infrastructure upgrades significantly 

reduce outage rates, using large sample tests to analyze performance 

data. 
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Notes Education 

• Teaching Methods: Educators test whether new instructional 

approaches significantly improve student outcomes. The parameter 

of interest is typically mean test scores, with statistics calculated 

from class samples. 

• Admissions Criteria: Universities analyze whether certain admission 

factors significantly predict student success, using hypothesis testing 

to evaluate the predictive power of various metrics. 

• Resource Allocation: School districts test hypotheses about whether 

additional funding in specific areas significantly improves 

educational outcomes, guiding budget priorities based on statistical 

evidence. 

Academic Research 

• Psychology Studies: Researchers test whether experimental 

conditions produce significant differences in human behavior or 

cognitive processing, carefully defining null and alternative 

hypotheses to align with research questions. 

• Social Science Research: Social scientists use hypothesis testing to 

determine if demographic factors significantly influence social 

outcomes, employing appropriate statistical methods based on 

sampling distributions. 

• Scientific Discoveries: Researchers across disciplines test whether 

observed phenomena differ significantly from theoretical 

predictions, using significance levels to determine when findings 

warrant publication and further investigation. 

In all these applications, practitioners must carefully: 

• Define clear parameters and measurable statistics 

• Formulate appropriate null and alternative hypotheses 

• Understand the underlying sampling distributions 

• Select appropriate significance levels based on the consequences of 

Type I and Type II errors 

Apply the correct statistical tests based on sample size and data 

characteristics 
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significance 

By mastering these fundamentals of hypothesis testing, professionals across 

diverse fields can make more informed, evidence-based decisions while 

properly accounting for uncertainty and random variation. 

Multiple-Choice Questions (MCQs) 

1. A hypothesis is a: 

a) Conclusion based on data 

b) Statement about a population parameter 

c) At random guess 

d) Statistical test 

2. The null hypothesis (H₀) represents: 

a) The claim being tested 

b) The opposite of the research hypothesis 

c) A sample statistic 

d) A confirmed conclusion 

3. The alternative hypothesis (H₁) is: 

a) The hypothesis we seek evidence for 

b) The same as the null hypothesis 

c) Always accepted 

d) A parameter of the population 

4. The likelihood of rejecting a true null hypothesis is known as: 

a) Type I error 

b) Type II error 

c) Confidence level 

d) Significance level 

5. The likelihood of accepting a false null hypothesis is called: 

a) Type I error 

b) Type II error 

c) Level of significance 

d) Power of test 

6. The level of significance (α) represents: 

a) likelihood of making Type I error 



  

146 
 

Notes b) likelihood of making Type II error 

c) The acceptance region 

d) The sampling error 

7. A one-tailed test is used when: 

a) We are testing for an extreme deviation in one direction 

b) The population mean is unknown 

c) sample size is large 

d) hypothesis is two-sided 

8. two-tailed test is applied when: 

a) population standard deviation is unknown 

b) critical region is in both tails of the distribution 

c) sample size is large 

d) likelihood is greater than 1 

9. The Z-test is used when: 

a) sample size is small 

b) population variance is known 

c) sample variance is unknown 

d) data is not normally distributed 

10. A large sample test for single mean is conducted using: 

a) Chi-square test 

b) Z-test 

c) t-test 

d) F-test 

Short Answer Questions 

1. Define hypothesis testing and explain its purpose. 

2. Differentiate between null and alternative hypotheses. 

3. What are Type I and Type II errors? Provide an example. 

4. Explain one-tailed and two-tailed tests with examples. 

5. What is the level of significance, and why is it important? 

6. How do sampling distributions affect hypothesis testing? 

7. What is a critical region, and how is it determined? 
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Notes 8. Explain the concept of standard error in hypothesis testing. 

9. Describe the Z-test and its applications. 

10. When should a large sample test for a single proportion be used? 

Long Answer Questions 

1. Explain the steps involved in hypothesis testing with an example. 

2. Derive the standard error formula for mean and proportion. 

3. Discuss one-tailed and two-tailed tests with real-life applications. 

4. Explain Type I and Type II errors and their impact on decision-

making. 

5. How is Z-test used for hypothesis testing of means and proportions? 

Provide examples. 

6. Discuss the role of significance level (α) and confidence intervals in 

hypothesis testing. 

7. Explain critical region and p-value with an example. 

8. How can hypothesis testing be applied in business and healthcare? 

9. Compare and contrast parametric and non-parametric tests in 

hypothesis testing. 

10. Solve a numerical problem involving large sample test for a mean or 

proportion. 
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Notes MODULE V 

TESTS OF SIGNIFICANCE 

 

Objectives 

• Understand the fundamental concepts of hypothesis testing as a 

systematic method for making decisions about population 

characteristics based on sample information. 

• Learn to formulate null and alternative hypotheses that represent 

competing statements about population parameters. 

• Comprehend the significance level (α) and its role in determining 

the probability of committing a Type I error. 

• Distinguish between critical regions, critical values, and their 

importance in hypothesis testing decision-making. 

• Differentiate between one-tailed and two-tailed tests and understand 

appropriate contexts for each. 

 

UNIT XII 

 

5.1 Fundamentals of Hypothesis Testing 

Hypothesis testing is one of the foundations of statistical inference — the 

formal framework used by statisticians and researchers to make general 

statements about populations based on information contained in the sample. 

At its core, hypothesis testing is a systematic method for making decisions 

about population characteristics based on limited information. This starts by 

creating a pair of hypotheses that contradict each other on a single 

characteristic of the population; these are usually on a parameter (mean, 

proportion, or variance). The competing statements are hypotheses regarding 

two different views of the population, and the evidence from our sample will 

help us determine which hypothesis better explains our observed evidence. 

Hypothesis testing is so beautiful. Using a systematic approach, hypothesis 

testing applies the principles of mathematics to establish if the difference 

observed is significant or can be explained by chance resulting from random 

sampling. We will discuss the key notions that form the basis of hypothesis 

testing to help the reader gain insight on critical regions, significance levels, 
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Notes types of tests and errors in statistical decisions (i.e., false positive and false 

negative). Some of these may seem a bit technical, they help readers 

understand how statistical decisions are made and how to assess the 

reliability and limitations of these decisions. 

The Framework Beyond Statistical Hypotheses 

Before examining the details of hypothesis testing, we need to understand 

what statistical hypotheses are. Hypothesis TestingA statistical hypothesis is 

a formal statement about a population parameter (such as mean, proportion, 

variance, …etc) or about the distribution of a population. However, in our 

statistical context, a hypothesis has to be defined in a way so that we can 

test it using statistical procedures based on mathematics and probability. 

Hypothesis testing always involves working with two alternative hypotheses 

representing potential realities. The null hypothesis (H₀) is the default 

position, the status quo, the statement that there is no effect, no difference, 

no relationship. In general, it represents the existing belief or the fact to be 

challenged. In medicinal trials, the null hypothesis may state that “a drug has 

no effect on recovery time” or that “recovery time on the drug is equal to 

recovery time without the drug.” The statement being directly tested in the 

statistical procedure is known as the null hypothesis. The alternative 

hypothesis (denoted as H₁ or Hₐ) is the position that stands in direct 

opposition to the null hypothesis. The alternative hypothesis is often the one 

that the researcher believes is true or hopes to show. In our medication 

example, the alternative hypothesis would say something like, “the 

medication decreases recovery time,” or “the recovery time for the 

medication is different from that of the recovery time without it.” We cannot 

directly test the alternative hypothesis; we obtain acceptance through 

default by rejecting the null hypothesis if the evidence suggests doing so. 

These competing hypotheses provide a decision framework such that our 

statistical procedure will either result in our rejection of the null hypothesis 

(thereby accepting the alternative) or fail to reject the null hypothesis (and 

maintain our position of the status quo). 

B: Critical Region:  

H0 is said to be rejected if and only if the test statistic takes a value in a so-

called critical set (or rejection region) associated with the null hypothesis. 

Critical region is the collection of the values of the test statistic that cause 
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Notes rejection of the null. That is to say, if our calculated test statistic from the 

sample lies in this critical region we reject the null, otherwise we do not 

reject. Critical region is the region whose determination depends on many 

factors First, it relies on the theory of the distribution of the test statistic 

under the null hypothesis. There are various test statistics (z, t, chi-square or 

F) that follow different distributions, and the shapes of these distributions 

dictate the location and size of the critical region. Second, the critical region 

size is affected by the level of significance (α); a larger α means a larger 

critical region, i.e., more likely to reject the null hypothesis. Third, whether 

or not the test is one-tailed or two-tailed influences the distribution of the 

critical region on the tails of the distribution. Critical values are the 

thresholds separating the rejection region from the acceptance region in 

hypothesis testing. Those are the location measures of the test statistic; 

These values are the points on the distribution where the critical region is 

separated from the non-critical region. Critical values for commonly used 

distributions such as normal, t, chi-square, and F distributions hand in hand 

can be looked up in statistical tables or be computed using statistical 

software. Learn how to calculate and interpret critical values is an important 

skill for correctly applying hypothesis tests and interpreting the results. 

P-Value: One Number To Rule Them All 

The comparison of observed to expected frequencies leads to the calculation 

of p-values and significance levels, where significance level (α (alpha)) is 

the accepted level of probability for rejecting a null hypothesis that is true 

(Type I Error) in hypothesis testing. To summarize, α is the probability of 

falsely claiming an effect or difference exists when it does not. For example, 

if a researcher desires their overallα set at 0.05, this means they are 

accepting an error rate of 5% to reject the null when in fact it is true. 

Consequently, the choice of a significance level has far-reaching 

implications for hypothesis-testing actions and interpretations made on its 

outcomes. Values of α often used are 0.10, 0.05, and 0.01, with 0.05 being 

most typically used across scientific fields. A significance level of 0.05 

represents a compromise between the risks of Type I error (which is 

rejecting, when we should not) and Type II error (which is do not reject, 

when we should). In more stringent fields or applications, a lower α value 

may be required, such as 0.01, thus only allowing a 1% risk of false 

rejection. In contrast, exploratory research or pilot studies could use a more 
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Notes liberal α such as 0.10 to obtain a 10% risk of false rejection to avoid missing 

an effect that could be substantial enough to warrant further testing. The 

critical region depends on the chosen significance level. Increasing α 

produces a wider critical region, making null hypothesis rejection easier and 

therefore requiring less evidence, while decreasing α produces a narrower 

critical region, making rejection harder and thus requiring greater evidence. 

This reflects the qualitative trade-off in hypothesis testing; as the risk of one 

kind of mistake (Type I) goes down, the other type (Type II) goes up. 

Researchers need to evaluate the trade-off between type I and type II errors 

in their specific research questions, contexts, and design in a context tailored 

to their work. 

Directing Our Focus: One-Tailed vs Two-Tailed Tests 

Based on the direction of the alternative hypothesis, the hypothesis test can 

be classified as one-tailed (directional) or two-tailed (non-directional), 

which affects the definition of the critical region and how the results are 

interpreted. This difference indicates whether the researcher wants to detect 

only a direction of difference (one-tailed) or any difference regardless of 

direction (two-tailed). The alternative hypothesis in a one-tailed test 

represents the directionality of the effect, stating that the population 

parameter is either less than or greater than the value stated in the null 

hypothesis. For instance, a researcher may suspect that using a new 

pedagogy raises test scores (H₁: μ > μ₀) or that using a new medication 

decreases recovery time (H₁: μ < μ₀). The critical region is thus completely 

within one tail of the distribution—the upper (right) tail, for a "greater than" 

alternative, or the lower (left) tail, for a "less than" alternative. If theory, 

previous research, or logical constraints suggest that an effect or difference 

can only exist in one direction, then the one-tailed test is appropriate and 

provides greater statistical power for detecting the effect compared to the 

two-tailed test using the same level of significance. A two-tailed test uses an 

alternative hypothesis that is not directional; it states only that the 

population parameter is not equal to the null hypothesis value (H₁: μ ≠ μ₀). 

For example, a researcher may hypothesize that a new drug has an effect on 

recovery time, but they may not specify whether that effect decreases or 

increases recovery time. Here, the rejection region or critical region is 

divided into two tails in each of which, we have placed α2 as our critical 

value. On the other hand, two-tailed tests are more conservative and should 
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Notes be used when there is not a strong theoretical reason to predict the effect to 

be positive or negative or when the researcher wishes to detect any 

departure from the null hypothesis, regardless of its direction. 

The implications of choosing one-tailed versus two-tailed tests are critical 

both in terms of statistical power and interpretation. However, one-tailed 

tests have the advantage of providing more power to detect an effect in the 

specified direction, but they are unable to detect effects in the opposite 

direction. While two-tailed tests are less powerful at detecting an effect in a 

particular direction, they protect against the loss of power to detect 

unanticipated effects in the opposite direction. Deciding which of the two 

approaches is more appropriate for a particular context, researchers need to 

think through their research questions, the theoretical underpinnings, and 

what a potential Type I or Type II error entails. 

5.2 Recognizing the Two Types of Errors: An Essential part of Decision-

Making 

Hypothesis testing is a fundamental concept in statistics and researchers 

must be able to effectively mitigate the risks of making an error when 

drawing conclusions based on sample data. There are two types of 

hypothesis testing errors: First, when a false null hypothesis is rejected, and 

the second when the null hypothesis is not rejected despite true null 

hypothesis. 

Type I error: Finding a difference in the null hypothesis when that null 

hypothesis is true: A false positive finding. Thus, α — the significance level 

you choose for the test — is the probability of committing a Type I error. 

Type I error occurs who make a Type I error: A drug company grows a 

clinical trial and incorrectly concludes that their drug is effective when it is 

not (the drug is useless), in this case they used α = 0.05. Type I errors can 

result in the adoption of ineffective treatments (including drugs), 

inappropriate process changes, or misguided research being published as 

valid evidence. In medicine, for instance, erroneous positive results may 

result in prescribing harmful treatments to patients, which could be 

extremely damaging.On the other hand, a Type II error occurs when the null 

hypothesis is not rejected when it is actually false, a “false negative” 

finding. The Type II error probability (β) is a function of several parameters 

(α, sample size, effect size, and population variability). FTA-MultIX (Type 2 
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Notes error detection) If a medical screening test fails to diagnose a disease that is 

present, there is happened the Type II error. Type II errors may lead to 

missed treatment opportunities, failure to adopt beneficial changes, or failing 

to recognize real effects that warrant further inquiry. The power of a 

statistical test (1 − β) describes the likelihood of rejecting a false null 

hypothesis and as such is the capacity of a test to detect a true effect (when 

one exists). There is an underlying tension between Type I and Type II 

errors, in that for a given sample size, decreasing the risk of one type of 

error generally increases the risk of the other. Lowering α (requiring more 

evidence to reject the null when that is false) increases β (increasing the 

chance of missing a real effect), whereas increasing α (requiring less 

evidence to reject the null when that is false) reduces β (upper bound to 

detect a real effect when it exists). This interplay highlights the need for 

careful research design and, where appropriate, sample size determination 

via power analysis so that these opposing risks are weighed against one 

another relative to the situation and the implications associated with either 

decision in a given research context. 
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Notes Unit – XIII 

 

Hypothesis Testing Steps: A Systematic Procedure 

This is a systematic process developed to obtain objectivity and reliability 

to the result deduct from sample data. Such systematic thinking lays out a 

clear roadmap for exploring research inquiries and taking empirically 

justified actions. This journey starts with the creation of a null and 

alternative hypothesis. The competing statements must be clearly defined, 

mutually exclusive, and focused on the research question. The null 

hypothesis usually represents the existing state of affairs or a proposition of 

no statistical difference, whereas the alternative hypothesis represents the 

researcher’s hypothesis, or the position that is contrary to the null. In the 

case of a test to see if a new medication reduces blood pressure, for 

example, the null might be "the medication has no effect on blood pressure" 

(H₀: μ = μ₀) and the alternative might be "the medication reduces blood 

pressure" (H₁: μ < μ₀) After formulating the hypotheses, the researcher 

chooses a suitable significance level (α), this is a probability threshold that 

the researcher is willing to accept for rejecting the null hypothesis when it 

is, in fact, true. This should be determined prior to conducting data 

collection and analysis, based on the implications of Type I and Type II 

errors in the particular research context. Five percent, one percent, and ten 

percent are common values for levels of significance, but five percent is 

used most broadly across disciplines. The next step is to choose the test 

statistic, a mathematical tool used to assess the evidence against the null 

hypothesis. When deciding on which test statistic to use, one has to take into 

account factors such as if the data is independent or paired data, the sample 

size and the type of parameter being tested (mean, variance, proportion etc.) 

and assumptions made about the distribution of the population. Examples of 

test statistics include the z-statistic, t-statistic, chi-square statistic and F-

statistic, which are used in specific circumstances. Once the test statistic is 

selected, the investigator establishes the critical region, that is the collection 

of values of the test statistic that would cause rejection of the null 

hypothesis. Whether or not you can reject a null hypothesis is determined by 

the significance level, the distribution of the test statistic under the null 
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Notes hypothesis, and whether the test is one-tailed or two-tailed. A hypothesis 

test-related term, the critical region sets the decision rule. 

Next, the researcher computes the value of the test statistic from the sample 

data using the relevant formula associated with the selected test statistic. As 

in hypothesis testing, a decision is then made by comparing the value to the 

critical region: if the test statistic is in the critical region the null hypothesis 

is rejected in favor of the alternative. In the last stage, the results are 

interpreted based on the original research question. This interpretation 

should balance the limitations of the test, describe what the decision means 

in practice, and address common misinterpretations, such as confusing a 

failure to reject H₀ with proving H₀ to be true. Also, a full interpretation 

takes into account the practical import of the findings as well as their 

statistical significance and may include effect size measures that quantify the 

extent of the observed differences or relationships. 

Solved Problems:  

 Problem 1: Testing a Claim About a Population Mean 

A manufacturer claims their light bulbs have a mean lifetime of at least 

1,000 hours. A quality control engineer tests this claim by randomly 

sampling 36 bulbs, which have a mean lifetime of 950 hours with a 

standard deviation of 120 hours. The engineer needs to verify the 

manufacturer's claim at a 5% significance level. 

Step 1: State the Hypotheses 

 H₀: μ ≥ 1000 hours (the manufacturer's claim) 

 H₁: μ < 1000 hours (the alternative hypothesis) 

This is a lower-tailed test since we're testing whether the true mean lifetime 

is less than the claimed value. 

Step 2: Select the Significance Level 

- α = 0.05 

Step 3: Calculate the Test Statistic 

Since our sample size is large (n = 36), we can use the z-statistic: 

z = (x̄ - μ₀)/(s/√n) 
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Notes z = (950 - 1000)/(120/√36) 

z = -50/20 

z = -2.5 

Step 4: Determine the Critical Value 

For a lower-tailed test with α = 0.05, the critical value is -1.645. 

The critical region is z < -1.645. 

Step 5: Make a Decision 

Since our test statistic z = -2.5 is less than the critical value -1.645, it falls in 

the critical region. Therefore, we reject the null hypothesis. 

Step 6: State the Conclusion 

There is sufficient evidence at the 5% significance level to reject the 

manufacturer's claim. The data suggests that the mean lifetime of the light 

bulbs is less than the claimed 1,000 hours. Based on our sample, the average 

lifetime is approximately 950 hours, which is statistically significantly lower 

than the advertised value. 

Problem 2: Testing for a Difference from a Known Value 

A psychologist wants to determine if students in an experimental 

educational program have an average IQ different from the national 

average of 100. A random sample of 25 students from this program 

yields a mean IQ score of 104 with a standard deviation of 12. The 

psychologist will test this hypothesis at the 1% significance level. 

Step 1: State the Hypotheses 

H₀: μ = 100 (The mean IQ equals the national average) 

H₁: μ ≠ 100 (The mean IQ differs from the national average) 

This is a two-tailed test since we're interested in detecting a difference in 

either direction. 

Step 2: Select the Significance Level 

- α = 0.01 

Step 3: Calculate the Test Statistic 
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Notes Since the population standard deviation is unknown and we have a small 

sample size (n = 25), we use the t-statistic: 

t = (x̄ - μ₀)/(s/√n) 

t = (104 - 100)/(12/√25) 

t = 4/2.4 

t = 1.667 

Step 4: Determine the Critical Values 

For a two-tailed test with α = 0.01 and degrees of freedom df = n - 1 = 24, 

the critical values are ±2.797. 

The critical regions are t < -2.797 or t > 2.797. 

Step 5: Make a Decision 

Since our test statistic t = 1.667 falls between -2.797 and 2.797, it is not in 

the critical region. Therefore, we fail to reject the null hypothesis. 

At the 1% significance level, there is insufficient evidence to conclude that 

the mean IQ of students in the experimental educational program differs 

from the national average of 100. While the sample mean (104) is 

numerically higher than 100, this difference is not statistically significant 

given our small sample size and strict significance level. The psychologist 

might consider using a less stringent significance level (e.g., 5%) or 

gathering a larger sample to detect a potentially meaningful difference. 

Problem 3: Testing a Claim About a Population Proportion 

A manufacturing company claims that at most 5% of their production is 

defective. A quality assurance manager randomly selects 200 items and finds 

15 defective items. The manager wants to test the company's claim at a 5% 

significance level. 

Step 1: State the Hypotheses 

H₀: p ≤ 0.05 (The company's claim that the defect rate is at most 5%) 

H₁: p > 0.05 (The defect rate exceeds the company's claim) 

This is an upper-tailed test since we're examining whether the true 

proportion exceeds the claimed maximum. 
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Notes Step 2: Select the Significance Level 

- α = 0.05 

Step 3: Calculate the Test Statistic 

Since we're testing a proportion with a large sample size (n = 200), we use 

the z-statistic: 

Sample proportion: p̂ = 15/200 = 0.075 (7.5%) 

Claimed proportion: p₀ = 0.05 (5%) 

z = (p̂ - p₀)/√[p₀(1-p₀)/n] 

z = (0.075 - 0.05)/√[0.05(0.95)/200] 

z = 0.025/0.0154 

z = 1.623 

Step 4: Determine the Critical Value 

For an upper-tailed test with α = 0.05, the critical value is 1.645. 

The critical region is z > 1.645. 

Step 5: Make a Decision 

Since our test statistic z = 1.623 is less than the critical value 1.645, it does 

not fall in the critical region. Therefore, we fail to reject the null hypothesis. 

Step 6: State the Conclusion 

At the 5% significance level, there is insufficient evidence to contradict the 

company's claim that at most 5% of their production is defective. Although 

the observed defect rate (7.5%) is numerically higher than the claimed 

maximum (5%), this difference is not statistically significant and could be 

attributed to sampling variation. 

However, the test statistic (1.623) is very close to the critical value (1.645), 

indicating that the result is borderline. The quality assurance manager might 

want to continue monitoring the production process or collect a larger 

sample to reach a more definitive conclusion. 

Problem 4: Testing the Effectiveness of a New Teaching Method 
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Notes An educational researcher has developed a new teaching method that she 

claims increases students' test scores. The traditional teaching method yields 

a mean score of 70 points. The researcher tests her new method on a random 

sample of 20 students and finds a mean score of 75 points with a standard 

deviation of 10 points. She wants to test if the new method is effective at the 

1% significance level. 

Step 1: State the Hypotheses 

H₀: μ ≤ 70 (The new method does not increase scores) 

H₁: μ > 70 (The new method increases scores) 

This is an upper-tailed test since we want to determine if the new method 

produces higher scores. 

Step 2: Select the Significance Level 

- α = 0.01 

Step 3: Calculate the Test Statistic 

Since we have a small sample size (n = 20) and the population standard 

deviation is unknown, we use the t-statistic: 

t = (x̄ - μ₀)/(s/√n) 

t = (75 - 70)/(10/√20) 

t = 5/2.236 

t = 2.236 

Step 4: Determine the Critical Value 

For an upper-tailed test with α = 0.01 and degrees of freedom df = n - 1 = 

19, the critical value is 2.539. 

The critical region is t > 2.539. 

Step 5: Make a Decision 

Since our test statistic t = 2.236 is less than the critical value 2.539, it does 

not fall in the critical region. Therefore, we fail to reject the null hypothesis. 

Step 6: State the Conclusion 
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Notes At the 1% significance level, there is insufficient evidence to support the 

researcher's claim that the new teaching method increases test scores. 

Although the sample mean (75) is higher than the traditional method's mean 

(70), this difference is not statistically significant at the strict 1% level. It's 

worth noting that the test statistic (2.236) is relatively close to the critical 

value (2.539), suggesting that there might be a meaningful effect. The 

researcher could consider: 

1. Testing at a less stringent significance level (e.g., 5%) 

2. Increasing the sample size to gain more statistical power 

3. Evaluating whether the 5-point increase has practical significance, even if 

it's not statistically significant at the 1% level 

Statistical Hypothesis Tests Solutions 

Problem 8.5: Problem Statement: A manufacturer claims that the mean 

weight of their product is 500 grams. A random sample of 50 products has a 

mean weight of 495 grams with a standard deviation of 15 grams. Test 

whether the manufacturer's claim is valid at a 5% level of significance. 

Solution: 

1. State the hypotheses: 

 H₀: μ = 500 (The mean weight is 500 grams) 

          H₁: μ ≠ 500 (The mean weight is not 500 grams) 

          Determine the significance level: 

 α = 0.05 

3. Calculate the test statistic: 

 x̄ = 495 

 μ₀ = 500 

 s = 15 

 n = 50 

Z = (x̄ - μ₀) / (s/√n) = (495 - 500) / (15/√50) = -5 / (15/7.071) = -5 / 2.121 = -

2.36 
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Notes 4. Find the critical values (two-tailed test): 

 For α = 0.05, Z₍α/2₎ = Z₍0.025₎ = ±1.96 

 Critical values are -1.96 and 1.96 

5. Make a decision: 

 |Z| = |-2.36| = 2.36 > 1.96 

 Therefore, we reject the null hypothesis. 

6. Interpret the results: There is sufficient evidence at the 5% 

significance level to conclude that the mean weight of the product is not 500 

grams as claimed by the manufacturer. The sample data suggests that the 

actual mean weight is different from the claimed value. 

Problem 8.6 

Problem Statement: A medical researcher claims that a new treatment 

reduces the recovery time compared to the standard treatment, which has a 

mean recovery time of 14 days. A sample of 15 patients treated with the new 

method has a mean recovery time of 12.5 days with a standard deviation of 

2.8 days. Test the researcher's claim at a 5% level of significance. 

Solution: 

1. State the hypotheses: 

 H₀: μ = 14 (The mean recovery time is equal to 14 days) 

 H₁: μ < 14 (The mean recovery time is less than 14 days) [Left-

tailed test since we're testing if it "reduces" recovery time] 

2. Determine the significance level: 

 α = 0.05 

3. Calculate the test statistic: 

 x̄ = 12.5 

 μ₀ = 14 

 s = 2.8 

 n = 15 
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Notes Since n < 30, we should use the t-distribution instead of Z-distribution: 

t = (x̄ - μ₀) / (s/√n) = (12.5 - 14) / (2.8/√15) = -1.5 / (2.8/3.873) = -1.5 / 0.723 

= -2.07 

Degrees of freedom = n - 1 = 15 - 1 = 14 

4. Find the critical value (left-tailed test): 

 For α = 0.05 with df = 14, t₍α₎ = t₍0.05₎ = -1.761 

5. Make a decision: 

 t = -2.07 < -1.761 

 Therefore, we reject the null hypothesis. 

6. Interpret the results: There is sufficient evidence at the 5% 

significance level to support the researcher's claim that the new treatment 

reduces the recovery time compared to the standard treatment. The sample 

data suggests that the new treatment is effective in reducing recovery time. 

Problem 8.7 

Problem Statement: A quality control engineer wants to test whether the 

proportion of defective items in a production process exceeds 3%. In a 

random sample of 300 items, 12 are found to be defective. Conduct the 

appropriate hypothesis test at a 1% level of significance. 

Solution: 

1. State the hypotheses: 

 H₀: p = 0.03 (The proportion of defective items is 3%) 

 H₁: p > 0.03 (The proportion of defective items exceeds 3%) [Right-

tailed test] 

2. Determine the significance level: 

 α = 0.01 

3. Check the conditions: 

 np₀ = 300(0.03) = 9 ≥ 5 

 n(1-p₀) = 300(0.97) = 291 ≥ 5 
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Notes  Conditions are satisfied for using the Z-test for proportions. 

4. Calculate the test statistic: 

 p̂ = 12/300 = 0.04 

 p₀ = 0.03 

 n = 300 

Z = (p̂ - p₀) / √[p₀(1-p₀)/n] = (0.04 - 0.03) / √[(0.03)(0.97)/300] = 0.01 / 

√[0.0291/300] = 0.01 / √0.000097 = 0.01 / 0.00985 = 1.02 

5. Find the critical value (right-tailed test): 

 For α = 0.01, Z₍α₎ = Z₍0.01₎ = 2.33 

6. Make a decision: 

 Z = 1.02 < 2.33 

 Therefore, we fail to reject the null hypothesis. 

7. Interpret the results: There is insufficient evidence at the 1% 

significance level to conclude that the proportion of defective items exceeds 

3%. The observed proportion of 4% defective items is not statistically 

significantly higher than the 3% threshold at the 1% significance level. 

Problem 8.8 

Problem Statement: An educational psychologist claims that the mean score 

of students who receive tutoring is different from the mean score of students 

who do not receive tutoring, which is 65. A random sample of 30 students 

who received tutoring has a mean score of 68.5 with a standard deviation of 

8.2. Test the psychologist's claim at a 5% level of significance. 

Solution: 

1. State the hypotheses: 

 H₀: μ = 65 (The mean score of tutored students is equal to 65) 

 H₁: μ ≠ 65 (The mean score of tutored students is different from 65) 

[Two-tailed test] 

2. Determine the significance level: 

 α = 0.05 
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Notes 3. Calculate the test statistic: 

 x̄ = 68.5 

 μ₀ = 65 

 s = 8.2 

 n = 30 

Since n = 30, we can use the Z-test: 

Z = (x̄ - μ₀) / (s/√n) = (68.5 - 65) / (8.2/√30) = 3.5 / (8.2/5.477) = 3.5 / 1.497 

= 2.34 

4. Find the critical values (two-tailed test): 

 For α = 0.05, Z₍α/2₎ = Z₍0.025₎ = ±1.96 

 Critical values are -1.96 and 1.96 

5. Make a decision: 

 |Z| = |2.34| = 2.34 > 1.96 

 Therefore, we reject the null hypothesis. 

6. Interpret the results: There is sufficient evidence at the 5% 

significance level to support the psychologist's claim that the mean score of 

students who receive tutoring is different from the mean score of students 

who do not receive tutoring (65). The sample data suggests that tutoring 

does have an effect on student scores. 

Problem 8.9: A company claims that at least 80% of its customers are 

satisfied with its service. In a random survey of 150 customers, 112 reported 

being satisfied. Test the company's claim at a 5% level of significance. 

Solution: 

1. State the hypotheses: 

 H₀: p = 0.80 (The proportion of satisfied customers is 80%) 

 H₁: p < 0.80 (The proportion of satisfied customers is less than 80%) 

[Left-tailed test since we're testing if it's less than the claimed "at least 

80%"] 

2. Determine the significance level: 
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Notes  α = 0.05 

3. Check the conditions: 

 np₀ = 150(0.80) = 120 ≥ 5 

 n(1-p₀) = 150(0.20) = 30 ≥ 5 

 Conditions are satisfied for using the Z-test for proportions. 

4. Calculate the test statistic: 

 p̂ = 112/150 = 0.747 

 p₀ = 0.80 

 n = 150 

Z = (p̂ - p₀) / √[p₀(1-p₀)/n] = (0.747 - 0.80) / √[(0.80)(0.20)/150] = -0.053 / 

√[0.16/150] = -0.053 / √0.00107 = -0.053 / 0.0327 = -1.62 

5. Find the critical value (left-tailed test): 

 For α = 0.05, Z₍α₎ = Z₍0.05₎ = -1.645 

6. Make a decision: 

 Z = -1.62 > -1.645 

 Therefore, we fail to reject the null hypothesis. 

7. Interpret the results: There is insufficient evidence at the 5% 

significance level to conclude that the proportion of satisfied customers is 

less than 80%. The company's claim that at least 80% of its customers are 

satisfied with its service cannot be rejected based on the available sample 

data. 

Problem 7.5 

A company claims the mean salary is $60,000 per year, but a labor union 

suspects it's less. A sample of 50 employees shows a mean of $58,500 with 

standard deviation $5,000. Test at 1% significance level. 

Solution: 

1. Hypotheses: 

 H₀: μ = $60,000 (The mean salary is $60,000) 
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Notes  H₁: μ < $60,000 (The mean salary is less than $60,000) 

2. Significance level: α = 0.01 

3. Test statistic: 

 x̄ = $58,500 

 μ₀ = $60,000 

 s = $5,000 

 n = 50 

Z = (x̄ - μ₀) / (s/√n) = ($58,500 - $60,000) / ($5,000/√50) = -$1,500 / 

$707.11 = -2.121 

4. Critical value (left-tailed test): 

 For α = 0.01, Z₍α₎ = Z₍0.01₎ = -2.33 

5. Decision: 

 Z = -2.121 > -2.33 

 Therefore, we fail to reject the null hypothesis. 

6. Interpretation: There is insufficient evidence at the 1% significance 

level to conclude that the mean salary of employees is less than $60,000. 

Problem 7.6 

The mean height of a plant species is claimed to be 25 cm. A botanist 

believes a new fertilizer can increase this height. After application, a sample 

of 40 plants has mean height 26.2 cm with standard deviation 3.8 cm. Test at 

5% significance level. 

Solution: 

1. Hypotheses: 

 H₀: μ = 25 cm (The fertilizer does not increase height) 

 H₁: μ > 25 cm (The fertilizer increases height) 

2. Significance level: α = 0.05 

3. Test statistic: 



 

  167 

Notes  x̄ = 26.2 cm 

 μ₀ = 25 cm 

 s = 3.8 cm 

 n = 40 

Z = (x̄ - μ₀) / (s/√n) = (26.2 - 25) / (3.8/√40) = 1.2 / 0.601 = 1.997 

4. Critical value (right-tailed test): 

 For α = 0.05, Z₍α₎ = Z₍0.05₎ = 1.645 

5. Decision: 

 Z = 1.997 > 1.645 

 Therefore, we reject the null hypothesis. 

6. Interpretation: There is sufficient evidence at the 5% significance 

level to conclude that the fertilizer is effective in increasing the mean height 

of the plants. 

Problem 7.7 

A factory manager claims the defect rate is at most 3%. In a sample of 500 

items, 20 are defective. Test at 5% significance level. 

Solution: 

1. Hypotheses: 

 H₀: p = 0.03 (The defect rate is 3%) 

 H₁: p > 0.03 (The defect rate is greater than 3%) 

2. Significance level: α = 0.05 

3. Check conditions: 

 np₀ = 500 × 0.03 = 15 ≥ 5 

 n(1-p₀) = 500 × 0.97 = 485 ≥ 5 

 Conditions are satisfied. 

4. Test statistic: 

 p̂ = 20/500 = 0.04 
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Notes  p₀ = 0.03 

 n = 500 

Z = (p̂ - p₀) / √[p₀(1-p₀)/n] = (0.04 - 0.03) / √[0.03(0.97)/500] = 0.01 / 

0.00762 = 1.312 

5. Critical value (right-tailed test): 

 For α = 0.05, Z₍α₎ = Z₍0.05₎ = 1.645 

6. Decision: 

 Z = 1.312 < 1.645 

 Therefore, we fail to reject the null hypothesis. 

7. Interpretation: There is insufficient evidence at the 5% significance 

level to conclude that the defect rate is greater than 3%. 

Problem 7.8 

A phone manufacturer claims mean battery life is 15 hours. A consumer 

organization tests 64 phones and finds mean battery life of 14.6 hours with 

standard deviation 1.6 hours. Test at 5% significance level. 

Solution: 

1. Hypotheses: 

 H₀: μ = 15 hours (The mean battery life is 15 hours) 

 H₁: μ ≠ 15 hours (The mean battery life is not 15 hours) 

2. Significance level: α = 0.05 

3. Test statistic: 

 x̄ = 14.6 hours 

 μ₀ = 15 hours 

 s = 1.6 hours 

 n = 64 

Z = (x̄ - μ₀) / (s/√n) = (14.6 - 15) / (1.6/√64) = -0.4 / 0.2 = -2 

4. Critical values (two-tailed test): 
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Notes  For α = 0.05, Z₍α/2₎ = Z₍0.025₎ = ±1.96 

 Critical values are -1.96 and 1.96 

5. Decision: 

 |Z| = 2 > 1.96 

 Therefore, we reject the null hypothesis. 

6. Interpretation: There is sufficient evidence at the 5% significance 

level to conclude that the manufacturer's claim about the mean battery life is 

not valid. 

Problem 7.9 

A polling organization wants to determine if the proportion of voters 

supporting a candidate differs from 45%. In a sample of 1200 voters, 510 

support the candidate. Test at 1% significance level. 

Solution: 

1. Hypotheses: 

 H₀: p = 0.45 (The proportion is 45%) 

 H₁: p ≠ 0.45 (The proportion differs from 45%) 

2. Significance level: α = 0.01 

3. Check conditions: 

 np₀ = 1200 × 0.45 = 540 ≥ 5 

 n(1-p₀) = 1200 × 0.55 = 660 ≥ 5 

 Conditions are satisfied. 

4. Test statistic: 

 p̂ = 510/1200 = 0.425 

 p₀ = 0.45 

 n = 1200 

Z = (p̂ - p₀) / √[p₀(1-p₀)/n] = (0.425 - 0.45) / √[0.45(0.55)/1200] = -0.025 / 

0.01436 = -1.741 
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Notes 5. Critical values (two-tailed test): 

 For α = 0.01, Z₍α/2₎ = Z₍0.005₎ = ±2.576 

 Critical values are -2.576 and 2.576 

6. Decision: 

 |Z| = 1.741 < 2.576 

 Therefore, we fail to reject the null hypothesis. 

6. Interpretation: There is insufficient evidence at the 1% significance 

level to conclude that the proportion of voters supporting the 

candidate differs from 45%. 
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Notes Unit – XIV 

 

5.3 Two Types of Comparative Studies 

1. Independent Samples: Two separate groups being compared (like 

men vs. women) 

2. Paired Samples: Same subjects measured twice (like before/after 

treatment) 

Comparing Two Independent Means 

When comparing means from two separate populations, we're testing 

whether the difference μ₁ - μ₂ is significant. 

For equal variances: 

 Use pooled variance: s²p = [(n₁-1)s₁² + (n₂-1)s₂²] / (n₁ + n₂ - 2) 

 Test statistic: t = (x̄₁ - x̄₂) / √[s²p × (1/n₁ + 1/n₂)] 

 Degrees of freedom: df = n₁ + n₂ - 2 

For unequal variances (Welch's t-test): 

 Standard error: SE = √(s₁²/n₁ + s₂²/n₂) 

 More complex df calculation using Welch-Satterthwaite 

approximation 

Paired Samples 

For before/after or naturally matched pairs: 

 Analyze the differences between pairs 

 Test statistic: t = d̄ / (sd/√n) where d̄ is mean difference 

 Degrees of freedom: df = n - 1 (n = number of pairs) 

Comparing Two Proportions 

When comparing success rates or percentages between two groups: 

 Test statistic: z = (p̂₁ - p̂₂) / √[p̂(1-p̂)(1/n₁ + 1/n₂)] 

 Where p̂ = (x₁ + x₂) / (n₁ + n₂) is the pooled proportion 
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Notes Worked Example Analysis 

The first solved problem demonstrates testing the efficacy of two training 

methods: 

 Method A: n=35, x̄=82, s=8 

 Method B: n=40, x̄=78, s=7 

 Using pooled variance t-test (assuming equal variances) 

 t = 2.31 > critical value 1.99 

 Result: Method A produces significantly higher scores 

The second example compares blood pressure medications: 

 Drug X: n=25, x̄=15, s=6 

 Drug Y: n=30, x̄=12, s=3 

 95% CI for difference: (0.32, 5.68) 

 Since CI doesn't include zero, Drug X is significantly more effective 

Problem 1: Comparing Two Independent Means (Confidence Interval) 

Region A: n₁ = 45, x̄₁ = 2450, s₁ = 320 Region B: n₂ = 50, x̄₂ = 2320, s₂ = 

280 

Step 1: Calculate the standard error. SE = √(s₁²/n₁ + s₂²/n₂) 

 SE = √((320²/45) + (280²/50)) 

 SE = √(2275.56 + 1568)  

SE = √3843.56 

 SE = 62.00 

Step 2: Find the critical value for 90% confidence interval. α = 0.10, so α/2 

= 0.05 Using Welch-Satterthwaite approximation for df:  

df = (s₁²/n₁ + s₂²/n₂)² / [(s₁²/n₁)²/(n₁-1) + (s₂²/n₂)²/(n₂-1)]  

df = (3843.56)² / [(2275.56²/44) + (1568²/49)]  

df ≈ 89 

For 90% CI with df = 89, t₀.₀₅ ≈ 1.662 
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Notes Step 3: Calculate the confidence interval. CI = (x̄₁ - x̄₂) ± t(α/2) × SE CI = 

(2450 - 2320) ± 1.662 × 62.00 CI = 130 ± 103.04 CI = (26.96, 233.04) 

 

With 90% confidence, the difference in mean daily caloric intake between 

Region A and Region B is between 26.96 and 233.04 calories, with students 

from Region A consuming more calories on average. 

Problem 2: Comparing Paired Means 

Let me calculate the differences between before and after scores: 

Student 1 2 3 4 5 6 7 8 9 10 11 12 

Before 72 68 74 77 82 79 65 63 88 76 71 84 

After 78 73 77 81 85 82 68 66 91 79 75 87 

Diff 

(d) 

6 5 3 4 3 3 3 3 3 3 4 3 

Step 1: Calculate mean difference. d̄ = (6 + 5 + 3 + 4 + 3 + 3 + 3 + 3 + 3 + 3 

+ 4 + 3) / 12 d̄ = 43 / 12 d̄ = 3.58 

Step 2: Calculate standard deviation of differences.  

s_d² = Σ(d - d̄)² / (n - 1)  

s_d² = [(6-3.58)² + (5-3.58)² + (3-3.58)² + (4-3.58)² + (3-3.58)² + (3-3.58)² + 

(3-3.58)² + (3-3.58)² + (3-3.58)² + (3-3.58)² + (4-3.58)² + (3-3.58)²] / 11 

 s_d² = [5.86 + 2.02 + 0.34 + 0.18 + 0.34 + 0.34 + 0.34 + 0.34 + 0.34 + 0.34 

+ 0.18 + 0.34] / 11 s_d² = 10.96 / 11  

s_d² = 0.996 s_d = 0.998 

Step 3: Formulate hypotheses. H₀: μ_d = 0 (no improvement in test scores) 

H₁: μ_d > 0 (there is improvement in test scores) 

Step 4: Calculate the test statistic.  

t = d̄ / (s_d/√n) 

 t = 3.58 / (0.998/√12) 

 t = 3.58 / 0.288  

t = 12.43 
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Notes Step 5: Find critical value. For α = 0.05, one-tailed test with df = 11: t₀.₀₅,₁₁ = 

1.796 

Step 6: Make decision. Since t = 12.43 > 1.796, we reject H₀. 

There is significant evidence at α = 0.05 that the new teaching method 

improves test scores. The average improvement was 3.58 points. 

Problem 3: Comparing Two Proportions (Confidence Interval) 

Urban: n₁ = 500, x₁ = 320, p̂₁ = 320/500 = 0.64 Rural: n₂ = 500, x₂ = 280, p̂₂ 

= 280/500 = 0.56 

Step 1: Calculate the standard error.  

SE = √[p̂₁(1-p̂₁)/n₁ + p̂₂(1-p̂₂)/n₂]  

SE = √[0.64(0.36)/500 + 0.56(0.44)/500]  

SE = √[0.00046 + 0.00049]  

SE = √0.00095  

SE = 0.0308 

Step 2: Find critical value for 95% CI. For 95% confidence, z₀.₀₂₅ = 1.96 

Step 3: Calculate the confidence interval. CI = (p̂₁ - p̂₂) ± z(α/2) × SE CI = 

(0.64 - 0.56) ± 1.96 × 0.0308 CI = 0.08 ± 0.0604 CI = (0.0196, 0.1404) 

With 95% confidence, the difference in proportion of supporters between 

urban and rural residents is between 0.0196 (1.96%) and 0.1404 (14.04%), 

with urban residents showing more support. 

Problem 4: Comparing Two Proportions (Hypothesis Test) 

Design A: n₁ = 1000, x₁ = 85, p̂₁ = 85/1000 = 0.085 Design B: n₂ = 1000, x₂ 

= 110, p̂₂ = 110/1000 = 0.11 

Step 1: Formulate hypotheses. H₀: p₁ = p₂ (no difference in conversion rates) 

H₁: p₂ > p₁ (Design B has higher conversion rate) 

Step 2: Check conditions. 

 n₁p̂₁ = 1000(0.085) = 85 ≥ 5  

n₁(1-p̂₁) = 1000(0.915) = 915 ≥ 5   



 

  175 

Notes n₂p̂₂ = 1000(0.11) = 110 ≥ 5  

n₂(1-p̂₂) = 1000(0.89) = 890 ≥ 5  

Step 3: Calculate pooled proportion. p̂ = (x₁ + x₂) / (n₁ + n₂) p̂ = (85 + 110) / 

(1000 + 1000) p̂ = 195 / 2000 p̂ = 0.0975 

Step 4: Calculate standard error. 

 SE = √[p̂(1-p̂)(1/n₁ + 1/n₂)]  

SE = √[0.0975(0.9025)(1/1000 + 1/1000)]  

SE = √[0.0975(0.9025)(0.002)]  

SE = √0.000176  

SE = 0.0133 

Step 5: Calculate test statistic. z = (p̂₂ - p̂₁) / SE z = (0.11 - 0.085) / 0.0133 z 

= 0.025 / 0.0133 z = 1.88 

Step 6: Find critical value. For α = 0.01, one-tailed test: z₀.₀₁ = 2.33 

Step 7: Make decision. Since z = 1.88 < 2.33, we fail to reject H₀. 

At the 1% significance level, there is insufficient evidence to conclude that 

Design B has a higher conversion rate than Design A, despite an observed 

difference of 2.5 percentage points. 

Problem 5: Comparing Two Independent Means (Unequal Variances) 

Treatment X: n₁ = 28, x̄₁ = 42, s₁ = 12 Treatment Y: n₂ = 32, x̄₂ = 38, s₂ = 8 

Step 1: Formulate hypotheses. H₀: μ₁ = μ₂ (no difference between 

treatments) H₁: μ₁ ≠ μ₂ (there is a difference between treatments) 

Step 2: Calculate standard error.  

SE = √(s₁²/n₁ + s₂²/n₂) 

SE = √((12²/28) + (8²/32))  

SE = √(5.14 + 2)  

SE = √7.14  

SE = 2.67 
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Notes Step 3: Calculate degrees of freedom using Welch-Satterthwaite 

approximation.  

df = (s₁²/n₁ + s₂²/n₂)² / [(s₁²/n₁)²/(n₁-1) + (s₂²/n₂)²/(n₂-1)]  

df = (7.14)² / [(5.14²/27) + (2²/31)]  

df = 51.0 / [0.98 + 0.13]  

df = 51.0 / 1.11  

df ≈ 46 

Step 4: Calculate test statistic.  

t = (x̄₁ - x̄₂) / SE  

t = (42 - 38) / 2.67 

 t = 4 / 2.67 

 t = 1.50 

Step 5: Find critical value. For α = 0.05, two-tailed test with df = 46: t₀.₀₂₅,₄₆ 

≈ 2.01 

Step 6: Make decision. Since |t| = 1.50 < 2.01, we fail to reject H₀. 

At the 5% significance level, there is insufficient evidence to conclude that 

there is a significant difference between Treatment X and Treatment Y in 

reducing cholesterol, despite Treatment X showing a 4 mg/dL greater 

average reduction. 

Multiple-Choice Questions (MCQs) 

1. The null hypothesis (H₀) in statistical testing is best described as: 

a. The hypothesis the researcher hopes to prove 

b. The statement about population parameters that assumes no 

effect or difference 

c. The statement claiming a significant difference exists 

d. A hypothesis that can never be directly proven true 

2. A researcher conducts a hypothesis test with α = 0.01 and calculates 

a p-value of 0.025. The correct conclusion is: 

a. Reject the null hypothesis 

b. Fail to reject the null hypothesis 
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Notes c. Accept the alternative hypothesis with 97.5% confidence 

d. There is a 2.5% chance the null hypothesis is true 

3. Which of the following represents a Type II error? 

a. Rejecting a true null hypothesis 

b. Failing to reject a false null hypothesis 

c. Incorrectly accepting the alternative hypothesis 

d. Correctly rejecting the null hypothesis 

4. In hypothesis testing, the power of a statistical test is: 

a. The probability of rejecting the null hypothesis when it is 

true 

b. The probability of failing to reject the null hypothesis when 

it is false 

c. The probability of rejecting the null hypothesis when it is 

false 

d. Equal to the significance level (α) 

5. The critical region in hypothesis testing is: 

a. The collection of values where we accept the null 

hypothesis 

b. The range of values where the test statistic must fall to 

reject the null hypothesis 

c. The difference between sample and population parameters 

d. The uncertainty associated with the test statistic 

6. Which formula correctly represents the test statistic for testing a 

single population mean with known population standard deviation? 

a. t = (x̄ - μ₀)/(s/√n) 

b. z = (x̄ - μ₀)/(σ/√n) 

c. z = (p̂ - p₀)/√[p₀(1-p₀)/n] 

d. F = s₁²/s₂² 

7. For paired samples testing, the degrees of freedom for the t-test is: 

a. n₁ + n₂ - 2 

b. n - 1, where n is the number of pairs 

c. (n₁ - 1) + (n₂ - 1) 

d. The larger of (n₁ - 1) or (n₂ - 1) 

8. Which statement about p-values is correct? 

a. A smaller p-value indicates stronger evidence against the 

null hypothesis 

b. The p-value is the probability that the null hypothesis is true 
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Notes c. If p > α, we should accept the alternative hypothesis 

d. The p-value equals the significance level in a well-designed 

study 

9. In a two-tailed test with α = 0.05, the null hypothesis is rejected if: 

a. The test statistic is greater than the critical value 

b. The test statistic is less than the critical value 

c. The absolute value of the test statistic is greater than the 

critical value 

d. The p-value is greater than 0.05 

10. When comparing two independent population means with unequal 

variances, the appropriate test is: 

a. Pooled variance t-test 

b. Paired samples t-test 

c. Welch's t-test (separate variance t-test) 

d. One-way ANOVA 

 

SHORT QUESTIONS 

1. Define statistical hypothesis testing and explain its primary purpose 

in research. 

2. What is the difference between a null hypothesis and an alternative 

hypothesis? Provide an example of each. 

3. Explain what a p-value represents and how it is used in making 

statistical decisions. 

4. Describe the difference between one-tailed and two-tailed tests. 

When would you use each? 

5. What are Type I and Type II errors in hypothesis testing? Give a 

practical example of each. 

6. Explain the concept of significance level (α) and how it relates to 

the critical region. 

7. What factors affect the power of a statistical test and how can 

researchers increase it? 

8. Describe the key differences between independent samples and 

paired samples tests. 

9. What are the assumptions that must be met for a valid t-test? 

10. Explain how confidence intervals relate to hypothesis testing results. 
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LONG QUESTIONS 

1. What are the fundamental concepts of hypothesis testing, and how 

does it serve as a framework for statistical inference within the 

scientific method? 

2. How do critical regions function in hypothesis testing, and in what 

ways are they mathematically determined based on significance 

levels and test statistics such as z, t, F, and chi-square? 

3. What is the relationship between Type I and Type II errors in 

hypothesis testing, and how can researchers balance these errors 

when designing studies across fields like medicine, law, and 

business? 

4. How do one-tailed and two-tailed testing approaches differ in terms 

of theoretical justification, statistical power, ethical considerations, 

and their impact on research conclusions? 

5. What is the role of p-values in modern scientific research, and how 

have issues like the replication crisis and significance threshold 

controversies influenced their interpretation? 

6. How can effect sizes complement p-values in hypothesis testing, and 

what methods are used to determine practical significance in 

different disciplines such as psychology, medicine, and economics? 

7. How does statistical power influence experimental design, and what 

is the mathematical relationship between power, effect size, sample 

size, and significance level in hypothesis testing? 

8. What are the major statistical methods for testing differences 

between means—such as independent samples tests, paired samples 

tests, and one-way ANOVA—and how should researchers choose 

among them based on assumptions and data characteristics? 

9. How does the frequentist approach to hypothesis testing compare 

with Bayesian alternatives in terms of philosophical foundations, 

interpretation, and practical application? 

10. What is a comprehensive framework for comparing two populations 

in applied research, and how should statistical methods for 

comparing means, proportions, variances, and distributions be 

selected and interpreted in real-world contexts? 
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