

Master of Computer Applications

MCA-208

Software Testing

Course Introduction 5

Module 1
Introduction To Software Testing

7

Unit 1: Definition of Software Testing 8
Unit 2: Software Development Life Cycle (SDLC) 20
Unit 3: Types of Testing 31
Unit 4: Levels of Testing 39

Module 2
Testing Process and Life Cycle

86

Unit 5: Testing Process 87
Unit 6: Test Levels 102
Unit 7: Test Documentation 119
Unit 8: Defect Life Cycle 138

Module 3
Test Design Techniques

170

Unit 9: Black-box Testing 171
Unit 10: White-box Testing 183
Unit 11: Experience-based Testing 187

Module 4
Types Of Testing

213

Unit 12: Functional Testing 214
Unit 13: Non-Functional Testing 231
Unit 14: Regression Testing 253

Module 5
Automated Testing

271

Unit 15: Automation Introduction 272
Unit 16: Framework for Automation Solution 294
Unit 17: Automated Test Script Design 311

Glossary
References 343

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,

Chhattisgarh

Prof. (Dr.) Jatinderkumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies

and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSE COORDINATOR

Prof. (Dr.) K. P. Yadav, Vice Chancellor, School of Information Technology, MATS University, Raipur,

Chhattisgarh

COURSE PREPARATION

Prof. (Dr.) K. P. Yadav, Vice Chancellor and Mrs. Shraddha Doye, Assistant Professor, School of

Information Technology, MATS University, Raipur, Chhattisgarh

March, 2025

ISBN: 978-93-49916-09-8

@MATS Centre for Distance and Online Education, MATS University, Village- Gullu, Aarang, Raipur-

(Chhattisgarh)

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in any

form, by mimeograph or any other means, without permission in writing from MATS University,

Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed & Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.

Meghanadhudu Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Disclaimer-Publisher of this printing material is not responsible for any error or dispute from

contents of this course material, this is completely depends on AUTHOR’S MANUSCRIPT.

Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

Acknowledgement

The material (pictures and passages) we have used is purely for educational

purposes. Every effort has been made to trace the copyright holders of material

reproduced in this book. Should any infringement have occurred, the publishers and

editors apologize and will be pleased to make the necessary corrections in future

editions of this book.

5
MATS Centre for Distance and Online Education, MATS University

COURSE INTRODUCTION

Software testing is an essential phase of the software development life

cycle, ensuring that applications meet quality standards and function as

expected. This course provides a comprehensive understanding of

software testing principles, processes, and techniques. Students will

explore various testing methodologies, test design techniques, and

automation tools to enhance software reliability and performance. By

combining theoretical concepts with practical applications, learners

will develop the skills required for effective software testing in real-

world scenarios.

Module 1: Introduction to Software Testing

This Unit introduces the fundamental concepts of software

testing, its importance in software development, and its role in

delivering high-quality software. Students will learn about key

testing objectives, defect detection, verification and validation,

and different levels of testing.

Module 2: Testing Process and Life Cycle

Software testing follows a structured process to ensure

comprehensive evaluation of software products. This Unit

explores the software testing life cycle (STLC), phases of

testing, and test planning. Students will understand test case

design, execution, defect tracking, and reporting, ensuring a

systematic approach to software quality assurance.

Module 3: Test Design Techniques

Test design techniques help in identifying test scenarios and

ensuring effective test coverage. This Unit covers black-box

testing, white-box testing, boundary value analysis, equivalence

partitioning, and exploratory testing. Students will learn how to

apply these techniques to develop efficient test cases and

improve software quality.

Module 4: Types of Testing

Different types of testing are used to validate various aspects of

a software application. This Unit covers functional testing, non-

functional testing, performance testing, security testing, and

usability testing. Students will gain insights into selecting

6
MATS Centre for Distance and Online Education, MATS University

appropriate testing methods based on software requirements

and business needs.

Module 5: Automated Testing

Automation plays a crucial role in modern software testing by

improving efficiency and reducing manual effort. This Unit

introduces automated testing tools, frameworks, and scripting

techniques. Students will explore automation strategies for

regression testing, unit testing, and continuous integration,

gaining hands-on experience with industry-standard tools.

7
MATS Centre for Distance and Online Education, MATS University

MODULE 1

INTRODUCTION TO SOFTWARE TESTING

LEARNING OUTCOMES

• To understand the definition, importance, and objectives of

software testing.

• To explore the Software Development Life Cycle (SDLC) and

its relationship with testing.

• To analyze different levels of testing, including unit testing,

integration testing, system testing, and acceptance testing.

• To compare manual and automated testing methodologies.

• To differentiate between error, fault, and failure in the software

testing process.

8
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1: Definition of Software Testing

1.1 Definition of Software Testing: Importance and objectives

Software testing is the process to verify and validate that a software

application or system meets the specified requirements and identifies

any gaps, errors, or missing requirements. This means running

programs or applications to try and find bugs and confirming that the

software product is fit for purpose. This is a systematic process

designed to ensure quality by finding defects, verifying functionality,

and verifying that software application is made in accordance with the

specified requirements before end-users even see it. Generally

speaking, software testing is an important part of quality assurance for

developers, ensuring the software provided is functional, effective and

secure. It covers anything from testing an individual unit of code to an

entire system to ensure it meets user specifications. Testing checks for

differences between the locales of expectation and reality, through

careful observation and discussion. Software testing has never been so

crucial as it is right now in the digital landscape. With our reliance on

software systems inevitably increasing in almost every industry from

healthcare to finance to transportation and entertainment the reliability

and security of these systems is second place concern. Low quality

software can produce a multitude of bad effects: lost revenue, tarnished

company image, violation of user privacy, threat to human life (for

critical systems). A structured testing approach helps alleviate these

risks by identifying and fixing them upfront, before putting the system

in the hands of end-users. It protects from the disasters that can lead to

from software failure on mission-critical apps.

Additionally, proper testing leads to improved user experience,

guaranteeing that software products do what they are meant to do,

provide a simple way to perform that function, and bring value for the

target market. From the industry’s perspective, this approach to test

economies makes a lot of sense. Although it does necessitate some

initial circuit concentration (time, talent, and maybe specialized

hardware), finding and Rewriting errors early in the improvement

lifecycle costs a fraction of the price of dealing with them after

deployment. According to industry studies, it is estimated that the cost

of fixing bugs increases exponentially the further they are introduced

into the development pipeline with fixes available after release costing

9

Notes 100 times more than those found in the requirements/ design phase.

Effective testing encompasses more than cost efficiency – it also leads

to a better quality product, faster time to market, and increased

customer satisfaction. Testing helps to ensure that products meet needs

and expectations of users by systematically validating software with

regards to requirements. The success of a software market heavily relies

on this alignment since it impacts the adoption, retention, and

conversion rates, which in turn define the return on investment (ROI)

for software development projects. Software testing has goals other

than simply finding defects. While detecting defects is still a primary

objective, contemporary test strategies focus on larger quality

assurance issues. An effective testing approach increasingly seeks to

confirm that the software fulfills its functional requirements and

specifications; validate it against the needs and expectations of users;

ensure alignment with industry standards and regulations; confirm its

compatibility with an array of environments, platforms, and devices;

and assess performance, security, NFRs, usability, and other non-

functional areas vital to user satisfaction. Testing goals also involve

providing stakeholders with trustworthy information about product

quality to make informed decisions. Testing helps generate metrics and

insights about software behavior that allow project managers, business

analysts, and executives to assess project health, understand risks, and

make sound release decisions.

This knowledge is extremely useful for planning and resource

allocation during the entire software development lifecycle. Building

confidence in the software product is another important purpose of

testing. Testing confirms, through rigorous validation, that the software

will behave as expected for normal cases and in edge cases will fail

gracefully. This not only fosters confidence in development teams,

who can now rest assured that their implementation matches the design

they follow, but also in end-users, who need reliable tools to perform

their jobs quickly and efficiently. Testing is usually a structured process

that involves practically decided planning and preparation phases that

decide what needs to be tested, when to test, and how to test. Test

design is the process of designing test cases based on different

algorithm-coding techniques, and test execution is the actual running

and documentation of test cases. Defect reporting initiates corrective

measures, which is based on test outcome analysis. This process loops

10
MATS Centre for Distance and Online Education, MATS University

Notes repeatedly during development until the software passes certain

quality criteria.

Static testing only tests artifacts of the software, not the software itself,

by looking at documentation, requirements, and design specifications

to prevent problems as early as possible. Dynamic Testing: Executing

the code and testing its behavior under various scenarios. As you can

see, these approaches are complementary and cover different

dimensions of the software quality. Testing can be categorized on the

level it is done at. Unit testing focuses on isolated implementation of

single components or functions Integration testing actually checks the

interactions of the integrated units. Because system testing tests the

whole, integrated system against the requirements. Acceptance testing

to ensure the software meets user needs and business specifications

and usually participants are real end-users. From a functional

perspective, testing confirms that software features function as

intended. Such testing includes valid testing to verify functioning when

valid inputs are supplied, and invalid testing to check if invalid inputs

or scenarios are correctly handled. Functional testing focuses on

specific functional activities and is related to whether or not the

application does what we expect it to do, while non-functional testing

is more about performance, security, usability and compatibility

aspects that affect the user experience but do not relate specifically to

how the functional behaviors of the application work. Knowledge of

the internal structure of a system can also influence the testing

approach. Black-box testing evaluates functionality without knowledge

of internal code implementation, using only inputs and outputs. White-

box testing uses knowledge about internal code structures to create

tests that cover all code paths and decision points. Gray-box testing is

a secondary level of testing, it uses little knowledge of internals and

combines features of both black-box and white-box testing methods.

Manual testing depends on human testers who run test cases and

compare outcomes against their knowledge and experience. Although

this method leverages human intuition and adaptation, it is slow and

prone to inconsistency. Specialized tools and scripts are used to run

test cases, compare the results with the expected outcomes and provide

the reports without human intervention, which is Automated testing.

Automation is great for repetitive work, regression tests, or use cases

that require timing precision or huge amounts of data. Software

11

Notes development methodologies have evolved drastically Meanwhile, the

testing hasn't been as consistent. The sequential models leave testing

as a separate phase after development, which results in different phases

of testing being performed for the product and leads to delay in finding

defects which are the costliest to fix. Currently, both agile and DevOps,

a modern software development methodologies involve integrating

testing as part of the software development lifecycle, with a model of

early and continuous testing processes — allowing defects to be

detected when they are the least expensive to fix. These changes have

led to the emergence of practices such as Test-Driven Development

(TDD), where writing automated tests predates writing the actual code

it tests to help drive development activity, and Behavior-Driven

Development (BDD), which highlights the need for behavior

specification to define requirements accepted as suitable candidates for

testing. It encourages a better collaboration between developers,

testers, and business stakeholders, while also ensuring that testing

activities are aligned with business goals. This led to further evolution

of testing with Continuous Integration and Continuous Delivery

(CI/CD) pipelines, which automate the execution of tests within the

build and deployment process. These CI/CD pipelines are responsible

for running automated tests every time code changes are "committed,"

allowing developers to get feedback on potential breaking changes as

soon as possible. Having this rapid feedback loop empowers teams to

deliver software updates faster while ensuring high quality levels.

Testing code in complex, distributed systems has presented new

problems. These architectural paradigms include: microservices

architectures, cloud-based deployments, or Internet of Things (IoT)

ecosystems, and all of them demand tailored testing strategies that

consider service interactions, network dependencies, and

environmental variations. Testing in these scenarios frequently includes

service virtualization, containerization, and infrastructure-as-code

practices to establish reproducible test environments that mimic

production conditions.

And the testing landscape has also been influenced by machine

learning and artificial intelligence. AI can be incorporated into testing

tools which can automatically create test cases based on user

interactions, predict what functionalities are most likely to fail, and

extract and analyze test results and defect info to find patterns and

12
MATS Centre for Distance and Online Education, MATS University

Notes trends over time, allowing testers to focus on areas most likely to

produce defects. Testing AI systems on the other hand comes with its

own set of difficulties, such as their behaviour can be probabilistic and

not deterministic, and so conventional testing techniques do not come

into play here. Emerging special techniques like data validation, model

verification, and ethical testing frameworks are being developed to

tackle these challenges. Why it Matters: As cyber threats continue to

evolve in complexity and impact, security testing has focused more

attention. Common applications are penetration testing, vulnerability

scanning, and security code reviews, all of which are useful in revealing

possible vulnerabilities before malicious actors can exploit them. For

applications that handle sensitive data, regulatory requirements such

as GDPR, HIPAA and PCI-DSS have created an additional emphasis

for rigorous security testing. Software Development Life-cycle (SDLC)

is a process that analyzes the entire software development and delivery

process. System Architecture (SA) is potentially responsible for system

accessibility and is responsible for life-cycle creation along with

ensuring access. This testing checks adherence to accessibility

standards, including WCAG (Web Content Accessibility Guidelines),

and assesses interaction with assistive technologies, including screen

readers, voice recognition software, and alternative input devices. An

accessibility test helps developers not just meet regulatory compliance,

but also design inclusively for all users. Another important type of

software testing that you need to make sure to include is usability

testing. This typically means watching real users try to use the

application, getting their feedback on pain points and potential areas

for improvement. Lessons on usability help inform iterative

improvements in interface design, workflow organization and user

satisfaction. Performance testing explores how software performs

under varying load conditions, including response time, throughput,

resource usage, and stability under stress. Load testing ensures the

behavior of the system under the typical user loads, whereas stress

testing fries the system by exceeding the normal operational capacity

to find the limit. Performance engineering gathers these findings into

the development process to ensure that software meets performance

requirements in a reliable manner. In regulated industries like

healthcare, finance, and aerospace, compliance and validation will

come up when testing. The following industries usually demand a

13

Notes significant amount of documentation, traceability between

requirements and test cases, and formal verification processes that

comply with domain-specific standards. Regulatory testing serves as a

checkpoint to ensure that software not only performs as expected, but

also complies with rigorous quality and safety standards set by

regulatory organizations. Exploratory testing acts as a balance to more

scripted approaches, allowing testers to learn, design a test, and then

execute it in parallel, building upon what they learn from a software

application. This is designed to exploit human creativity and critical

thinking to uncover problems that might not otherwise be found by

pre-written test cases. Test data management is how to solve the

problem of creating, maintaining, and securing data to be used for

testing. This includes creating test data that accurately reflects most of

the scenarios, masking sensitive production data to protect privacy, and

providing test data consistency across test environments. Effective

test data management also enhances testing, while complying with data

privacy regulations. Testing found its way to automated scripts and

requires both skills and knowledge in making them seamless in the

process itself and a new discipline evolved around quality assurance.

Modern testing professionals add value throughout the development

lifecycle, from validating requirements to monitoring in the wake of

deployment. They remind you of the quality setters, giving feedback to

help steer what consumes resources of the team to balance technical

debt with business needs. It is where you (manage)Plan, Schedule, and

Track testing activities to make sure that enough testing is covered

within timelines and other constraints. They define metrics to track the

progress of testing, defect trends, and quality metrics, and use this data

to make informed decisions regarding release readiness. It also

facilitates communication between testing teams and other stakeholders

to align around quality goals and expectations.

Test automation frameworks refer to a set of utilities and conventions

designed to help developers implement and maintain automated tests.

These frameworks usually incorporate modules for test creation,

execution, reporting, and integration with development and deployment

pipelines. A well-structured framework facilitates reusability,

maintainability, and scalability of tests, all while minimizing the

technical debt of automation. Testing Centers of Excellence (TCoEs)

have sprung up across the organizations as the center of excellence for

14
MATS Centre for Distance and Online Education, MATS University

Notes test strategy, execution, and governance. These centres set standardized

methodologies, tools and metrics to ensure consistency between

different projects and teams. They also offer training, mentoring, and

deep test services to improve the overall quality capability of the

organization. Outsourcing test service is an option for the

organizations, who can plan to engage a test service for standards of

knowledge, or capacity, without holding in-house resources. These can

be anything from fully managed testing functions to on-demand testing

on a particular project or technology. Standards and best practices can

help guide effective testing processes for it is community.

ISO/IEC/IEEE 29119 provides a detailed framework encompassing

software testing concepts and processes, and ISTQB (International

Software Testing Qualifications Board) certification program standards

define common terminology and methodologies. A real example is the

industry-specific standards like DO-178C for aviation software which

defines very in-depth testing requirements for safety-critical systems.

Testing is still riddled with issues despite the tech advancements and

this means innovation and adaptation is needed constantly. While the

need to deliver software quicker and remain high quality puts a strain

on being both thorough and efficient. Modern applications are being

built with many integrations and dependency which also adds to the

complexity of testing. In light of these challenges, testing professionals

have no choice but to constantly adjust their strategies. Future of

software testing is trending in few directions. The Shift-left testing

practices keep pushing testing activities further left in the development

lifecycle from detection of defects to prevention of defects. Cloud-

based Testing as a Service (TaaS) models offer scalable and flexible

testing capabilities. The era of AI-powered applications has

empowered testing with innovation such as intelligent test generation

along with execution and analysis. Testing in production is being

embraced as organizations understand that even in test environments,

certain failures can only be experienced in real production systems.

Feature flags, canary releases and A/B testing provide ways to limit

exposure of new functionality to select user segments, giving teams the

chance to measure performance and receive feedback before deploying

it more widely. Advanced monitoring and alerting, along with fast

rollback capabilities, help to minimize the risk of this approach. The

management of test environments has evolved to be more

15

Notes sophisticated due to the adoption of infrastructure as code,

containerization, and cloud computing. It allows to build reliable,

consistent test environments and replicating restricted settings. Test

environments as code allows organizations to version, automate, and

scale their testing infrastructure more effectively, ultimately

minimizing the environment-related failures in the tests and increasing

test reliability. Testing an application in a mobile environment comes

with its own challenges with different devices, OS, and network

conditions. Mobile applications are tested for area compatibility,

usability with a touch interface, performance across different network

environments, and mobile-based security. In this domain, tools which

provide access to real devices or with emulators for various mobile

environments help to address the fragmentation challenges.

You are uplifted on information extending to the precise checking

point of the Internet of Things (IoT) traversing not essentially software

program configuration test but moreover hardware interactions, sensor

data validation, and communication standards. Test conditions for IoT

systems must take into account power consumption, resistance to

disconnection and how the systems behave in physically difficult

environments. Testing of distributed systems like IoT also adds a layer

of complexity due to their real-time processing needs which often

require custom testing approaches & tools. Your approach to testing

will drastically change due to the mechanics in place to create a

functioning blockchain application. In addition to this, testing a

blockchain typically includes validating the underlying decentralized

structure and distributed transaction integrity, verifying consensus

mechanisms, testing whether a smart contract does what it is supposed

to do under various conditions. Because blockchain transactions are

immutable, testing before going live is especially important, as

mistakes can be costly and potentially unfixable. DevSecOps testing

integrates security testing throughout the environment used for

continuous integration and delivery pipelines, so that security is a

shared responsibility across development, operations and security

teams. This methodology involves integrating automated security

scanning, code analysis and compliance checks into the standard build

and deployment pipeline. By spotting security vulnerabilities as early

and as frequently as possible, such checks can then remediate them

more effectively without a hinderance on development velocity.

16
MATS Centre for Distance and Online Education, MATS University

Notes Although these platforms can prevent certain types of defects as

components are largely standardised and built-in validations can solve

for some of those as well, they bring in challenges in terms of testing

customizations, integrations and performance with the specific use

case. Best practices for low-code application testing must strike a

balance between using the testing capabilities provided with the

platform and employing traditional testing approaches wherever

applicable. Chaos engineering has become more actionable as

organizations have sought to adopt the practice of deliberately

injecting failures into systems into order to be more assured that their

applications can endure the unexpected. Teams can identify and fix

weaknesses before their users are impacted by testing how systems

respond to adverse conditions like service outages, network delays or

resource constraints in a systematic manner. This kind of proactive

reliability testing goes hand in hand with other functional and

performance testing activities.

The relationship between testing and product management has matured,

and testing insights are having a greater influence on product

decisions. These may include some of the testing activity metrics like

feature stability, defect density and automated test coverage which

serve as useful heuristics for product health and guide for prioritization

and release planning. Closer collaboration with the testing and the

product teams ensures that quality criteria align more closely with

business objectives and user expectations. A recent trend is that of the

Quality Engineer, an evolution of the traditional testing role that

promotes the instilling of quality from the ground up. Quality engineers

involve themselves in architecture and design decisions, enforces the

quality gates in an automated fashion and helps in establishing metrics

that create a climate for continuous improvement. Through this

expanded scope, quality professionals can have an even greater

influence over product quality by going after root causes versus

symptoms of quality issues. Test data privacy and protection is a hot

topic, especially for organizations needing to comply with laws like

GDPR, CCPA, HIPAA, etc. For non-production data, testing teams

should appropriately anonymize, mask, or synthesize production-

derived test data, such that no personally identifiable information or

other sensitive information is leaked as a result of testing. How that’s

17

Notes done needs to be carefully considered, all the way across the testing

lifecycle, as far as generating and managing the data.

As organizations increasingly move toward more collaborative

development approaches, cross-functional testing skills have grown in

importance. The testers who have knowledge of programming,

database concepts, network architecture, and security principles can

add more value to quality objectives. Likewise, developers familiar

with testing can write more testable code and contribute towards

quality assurance activities more effectively, thereby creating a culture

where quality is collective responsibility. The era of remote and

distributed testing teams are here to stay, spurred on by the distribution

of global talent of late and the prior seismic shift to working from home.

Effective testing conducted remotely relies on strong communication

tools, clear documentation, and collaborative test management

systems. Teams that deploy distributed testing models for faster CQA

(Continuous Quality Assurance) invest time to define common

processes, use automation to ensure consistent execution of common

testing approaches and regular synchronization with customers on

quality goals. The connection between testing and user feedback has

only grown stronger, with many organizations embedding their user

feedback channels directly into their testing workflows. Traditional

testing approaches are complemented by valuable insights derived

from beta testing programs, user acceptance testing, and production

monitoring. By integrating real user perspectives as early and as

commonly as possible, teams can ensure that whatever quality they

drive for in testing, it is on the points that will actually matter to their

audience. In an approach which focuses on optimal resource allocation,

test optimization techniques, help organizations achieve the maximum

testing efficacy within prevailing constraints. Techniques like risk-

based testing focus test effort on items where business impact is likely

and test selection strategies specify the "most important" subset of tests

to execute, given some set of prospective changes. Advanced analytics

can flag redundant or low-value tests, allowing teams to reduce costs

while still maintaining complete coverage. Software development

continues to evolve and subsequently affecting the testing aspects of

the different forms of software development as well. Since

organizations are increasingly embracing serverless architectures, edge

computing, and other recent technological advancements, testing

18
MATS Centre for Distance and Online Education, MATS University

Notes methods must evolve as well. Testing professionals need to be in a

constant state of learning and innovation to meet these changes and

stay relevant as a valuable and inherent part of the software

development value chain. In summary, software testing is a diverse

field that navigates the intersection of technical rigor and business

pragmatism. Software testing is a quality assurance practice that

identifies correctness failures caused by software through a process of

comparing the behavior of software to requirements, and in doing so, it

prevents potential negative impacts of software from altering society,

organizations, and users. From web-based systems to mobile

applications, effective testing is only rising in importance, and with

this, its role in ensuring that these software systems are trusted, reliable

and valuable.

Example:

Scenario:

Imagine a team developing a mobile banking application.

 Before release, they do:

• Static testing: Reviewing requirements and design docs to

check if login, fund transfer, and balance check are clearly

specified.

• Dynamic testing: Running the app on real devices and

emulators to see if transferring money actually works as

expected.

 Types of testing applied:

• Unit testing: A developer tests the login function separately to

ensure username/password validation works.

• Integration testing: QA checks that login + account summary

+ transaction history work together smoothly.

• System testing: The whole app is tested end-to-end to ensure

it meets all requirements.

• Acceptance testing: Real end-users test whether the app is

easy to use and meets their banking needs.

 Non-functional checks:

• Performance testing: Simulate 10,000 users logging in

simultaneously to see if the app remains stable.

• Security testing: Run penetration tests to ensure sensitive data

(like PIN codes) are not leaked.

19

Notes • Usability testing: Ask a group of users to transfer money and

gather feedback on any confusion.

• Accessibility testing: Check if screen readers correctly read

out menu options for visually impaired users.

 Modern approaches:

• CI/CD pipeline: Every code change triggers automated unit

and integration tests before deployment.

• TDD/BDD: Developers write test cases before coding features

(e.g., “Given valid credentials, when user logs in, then show

balance.”)

• IoT/Blockchain (if applicable): If the banking app integrates

with a hardware payment terminal or blockchain ledger,

special tests ensure hardware communication and smart

contracts work correctly.

Fig 1.1 Mobile Banking Application

20
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2: Software Development Life Cycle (SDLC)

1.2 Software Development Life Cycle (SDLC)

The Software Development Life Cycle (SDLC) is a formal model that

describes the stages in the development of a software application.

Fundamentally, SDLC encompasses a methodical process, allowing

businesses to develop software that is trustworthy, effective, and meets

quality standards. Testing is a central aspect of each of these

development paradigms, being a critical form of quality assurance

validating the functionality, performance, and reliability of the

software. Over the years, different software development

methodologies have emerged, each advancing their own Software

Development Life Cycle models, with different properties, strengths,

and testing approaches. Software engineers, quality assurance

professionals, and project managers all need to know the different

types of these philosophies and methodologies and how testing plays a

nuanced part in each.

Fig 1.2 SDLC

21

Notes Common SDLC Models

Several SDLC models have evolved over time, each with its own

strengths and weaknesses. Here are some of the most prevalent

models:

1. Waterfall Model

The Waterfall model is a linear, sequential approach where each phase

must be completed before the next one begins. The phases typically

include:

• Requirements Gathering: Defining the project's goals and

scope.

• Design: Creating the software architecture and specifications.

• Implementation: Writing the code based on the design.

• Testing: Verifying the software's functionality and

performance.

• Deployment: Releasing the software to users.

• Maintenance: Providing ongoing support and updates.

Fig 1.3 Waterfall Model

22
MATS Centre for Distance and Online Education, MATS University

Notes Testing in the Waterfall Model: Testing is typically performed at

the end of the development cycle, after the implementation phase.

This can lead to late discovery of defects, which can be costly and

time-consuming to fix. Testing is often comprehensive, covering all

aspects of the software.

Strengths: Simple to understand and implement, well-defined stages,

suitable for projects with stable requirements.

Weaknesses: Inflexible, difficult to accommodate changes, late defect

detection, long development cycle.

2. V-Model

The V-Model is an extension of the Waterfall model that emphasizes

the relationship between each development phase and its

corresponding testing phase. For each stage in the development cycle,

there is a directly associated testing stage.

• Requirements Analysis: User acceptance testing.

• System Design: System testing.

• Architectural Design: Integration testing.

• Module Design: Unit testing.

• Coding: Code review.

Testing in the V-Model: Testing is planned and executed in parallel

with development. Each development phase has a corresponding

testing phase, ensuring that testing is integrated throughout the entire

process.

Strengths: Early testing, clear mapping of development and testing

activities, improved defect detection.

Weaknesses: Relatively inflexible, difficult to handle changes,

requires thorough planning.

3. Iterative Model

The Iterative model involves developing the software in small,

incremental cycles. Each iteration includes planning, design,

implementation, testing, and evaluation. The software is refined and

improved with each iteration.

Testing in the Iterative Model: Testing is performed at the end of

each iteration. This allows for early and frequent feedback, enabling

developers to identify and fix defects quickly. Testing can be focused

on specific features or functionalities added in each iteration.

Strengths: Flexible, allows for changes, early feedback, reduced risk.

23

Notes Weaknesses: Requires careful planning, can be complex to manage,

potential for scope creep.

4. Spiral Model

The Spiral model combines elements of the Waterfall and Iterative

models. It involves a series of iterations, with each iteration including

planning, risk analysis, engineering, and evaluation. The Spiral model

is particularly well-suited for complex and high-risk projects.

Testing in the Spiral Model: Testing is performed at the end of each

spiral (iteration). Risk analysis plays a crucial role in determining the

scope and depth of testing. Testing can be tailored to address specific

risks identified in each iteration.

Strengths: High flexibility, risk management, suitable for complex

projects.

Weaknesses: Complex to manage, requires expertise in risk analysis,

can be costly.

5. Agile Model

Agile methodologies are a set of iterative and incremental

development approaches that emphasize collaboration, flexibility, and

customer satisfaction. Popular Agile frameworks include Scrum,

Kanban, and Extreme Programming (XP).

Fig 1.4 Agile Model

24
MATS Centre for Distance and Online Education, MATS University

Notes Testing in Agile: Testing is an integral part of the Agile development

process. It is performed continuously throughout each iteration

(sprint). Agile teams often use test-driven development (TDD) and

behavior-driven development (BDD) to ensure high-quality code.

Automation is heavily used to enable continuous integration and

continuous delivery.

Strengths: Highly flexible, customer-focused, rapid development,

early and frequent feedback.

Weaknesses: Requires strong collaboration, can be challenging to

manage large projects, requires experienced team members.

Testing Methodologies in Agile

Within Agile, several testing methodologies are commonly employed:

• Test-Driven Development (TDD): Writing tests before

writing the code. This helps to ensure that the code meets the

specified requirements.

• Behavior-Driven Development (BDD): Defining the

behavior of the software in a clear and concise manner. This

helps to ensure that the software meets the needs of the users.

• Continuous Integration (CI): Automating the process of

building, testing, and deploying the software. This helps to

ensure that the software is always in a working state.

• Continuous Delivery (CD): Automating the process of

releasing the software to users. This helps to ensure that the

software is delivered quickly and efficiently.

Waterfall Model: Testing is done in a sequential manner

The Waterfall model is the classical, linear sequential approach to

software development. This model is linear in nature, which means the

development process flows in stages, each of which is different:

requirements, design, implementation, testing, maintenance. Each

phase has to be finished before starting the next making a cascading

flow similar to a waterfall.

Waterfall Model Testing Characteristics

In Waterfall, the testing pretty much becomes a separate phase after the

whole implementation of the software. This has profound benefits and

also challenges in the Quality assurance process. In this model testing

phase is detailed and organized phase of the development, as multiple

levels of testing are performed on the system to ensure its integrity.

25

Notes Waterfall Model Testing Characteristics

The Waterfall model, a sequential software development approach,

features a distinct testing phase that occurs after the complete

implementation of the software. This separation of testing offers both

advantages and disadvantages in the quality assurance process. The

testing phase in this model is typically structured and comprehensive,

involving multiple levels of testing to guarantee the system's integrity

and adherence to requirements.

Testing in the Waterfall Model

In the Waterfall model, testing is a late-stage activity, typically

occurring after the development phase is complete. This approach has

several key characteristics:

1. Sequential and Phase-Based

Testing is performed as a distinct phase, following requirements

gathering, design, implementation, and integration. Each phase must

be completed before the next one can begin. This sequential nature

means that testing cannot start until the entire system is built.

2. Comprehensive Test Planning

Due to the late-stage nature of testing, detailed test plans are created

early in the development cycle. These plans outline the testing scope,

objectives, resources, and schedule. Test cases are designed based on

the requirements documentation, ensuring that all functionalities are

thoroughly tested.

Fig:1.5 Testing in the waterfall model

26
MATS Centre for Distance and Online Education, MATS University

Notes 3. Multiple Levels of Testing

The Waterfall model typically involves multiple levels of testing,

including:

• Unit Testing: Individual components or modules are tested in

isolation to verify their functionality.

• Integration Testing: Integrated modules are tested to ensure

they interact correctly and data flows seamlessly between

them.

• System Testing: The entire system is tested as a whole to

verify that it meets the specified requirements and performs as

expected.

• Acceptance Testing: The system is tested by the end-users or

stakeholders to ensure it meets their needs and expectations.

4. Formal Documentation

All testing activities, including test plans, test cases, test results, and

defect reports, are meticulously documented. This documentation

provides a clear audit trail of the testing process and helps in

identifying and resolving issues.

5. Emphasis on Requirements

Testing is heavily focused on verifying that the system meets the

requirements defined in the initial phase. Test cases are designed to

cover all aspects of the requirements, ensuring that the system

functions as intended.

Benefits of Waterfall Testing

The Waterfall model's approach to testing offers several benefits:

27

Notes

Fig:1.6 Benefits of waterfall model

1. Structured and Organized

The sequential nature of the Waterfall model provides a structured

and organized approach to testing. The testing phase is well-defined,

with clear objectives and deliverables.

2. Comprehensive Testing

The multiple levels of testing ensure that the system is thoroughly

tested from individual components to the entire system. This helps in

identifying and resolving defects early in the testing phase.

3. Clear Documentation

The emphasis on documentation provides a clear audit trail of the

testing process. This documentation is valuable for future

maintenance and enhancements.

28
MATS Centre for Distance and Online Education, MATS University

Notes 4. Focus on Requirements

Testing is aligned with the requirements defined in the initial phase,

ensuring that the system meets the needs of the stakeholders.

Challenges of Waterfall Testing

Despite its benefits, the Waterfall model's approach to testing also

presents several challenges:

Fig: 1.7 Challenges of Waterfall model

1. Late Defect Detection

Defects are typically detected late in the development cycle, during

the testing phase. This can be costly and time-consuming to fix, as it

may require significant rework of the system.

2. Limited Flexibility

The sequential nature of the Waterfall model makes it difficult to

accommodate changes or new requirements during the testing phase.

Any changes may require restarting the development process from an

earlier phase.

29

Notes 3. Lack of User Involvement

End-users are typically not involved in the testing process until the

acceptance testing phase. This can lead to a mismatch between the

system and the users' needs, resulting in dissatisfaction.

4. Time-Consuming

The comprehensive testing approach can be time-consuming,

especially if defects are detected late in the development cycle. This

can delay the release of the system.

5. Difficult to Adapt to Changing Requirements

The Waterfall model is not well-suited for projects with rapidly

changing requirements. The sequential nature of the model makes it

difficult to incorporate changes during the development process.

Mitigation Strategies

To address the challenges of Waterfall testing, several mitigation

strategies can be employed:

Fig 1.5 Mitigation strategies for waterfall model

1. Early Verification and Validation

Perform early verification and validation activities, such as reviews

and inspections, to identify defects early in the development cycle.

30
MATS Centre for Distance and Online Education, MATS University

Notes 2. Prototyping

Develop prototypes to gather feedback from end-users and

stakeholders early in the development process.

3. Risk-Based Testing

Prioritize testing efforts based on the risk associated with different

functionalities. Focus on testing high-risk areas to minimize the

impact of potential defects.

4. Automated Testing

Automate repetitive testing tasks, such as regression testing, to

improve efficiency and reduce the time required for testing.

5. Continuous Integration

Implement continuous integration practices to integrate and test code

changes frequently. This helps in detecting and resolving defects early

in the development cycle.

31

Notes Unit 3: Types of Testing

Types of Testing in Waterfall

Fig: 1.8 Types of Testing Waterfall

Requirements Validation Testing: Testers validate documented

requirements before actual system development to ensure that all

requirements are complete, and internally and externally consistent,

and that each requirement is implementable and testable. This early

stage of testing is significant to outline potential problems in the

requirement specification phase.

Unit Testing: Involves developers testing the individual parts or units

of an application to ensure that each unit works as expected

independently. Such granular testing approach identifies and rectifies

localized defects at an early stage of the development process.

Integration Testing: The next phase after unit testing, where you

verify all your modules are communicating properly. Testers make

sure that integrated components properly communicate and resulting

output matches these components when combined.

System Testing: System testing is a complete software system

evaluation, and also checks software adherence to specified

requirements. This phase includes a wide range of testing methods,

such as functional, performance, stress, and compatibility testing.

32
MATS Centre for Distance and Online Education, MATS University

Notes Acceptance Testing: The last phase of testing is to make sure that the

software provided to the customer satisfies the user requirements and

business objectives. User Acceptance testing (UAT) doubles checks

that the devised solution aligns with the original project objectives and

stakeholder expectations.

The Importance of Testing in Agile Methodology:

Test-Driven Development (TDD): Tests are written before the code!

Developers write test cases based on what the desired functionality

should be, and then write code designed to pass those tests. Well, this

approach helps writing code that is testable by design and fulfills

requirement guarantees.

TDD, or Behavior-Driven Development (BDD): BDD is an extension

of TDD that emphasizes a software's behavior and features from the

end-user's perspective. Test cases are written more like a story helping

bridge communication between the tech & non-tech folks.

Continuous Integration Testing: Automated testing which is

performed every time the code is committed to a shared repository.

This technique enables immediate problem detection and resolution

during integration while maintaining a high code quality level during

development.

Exploratory Testing: Testers actively explore the software, designing

and executing tests in parallel. Such an approach enables a less scripted

testing methodology while also fostering creative and intuitive

problem identification.

Sprint-Based Testing: Testing at the end of each sprint ensures that

the incremental developments are tested at the end of each iteration.

Advantages of Agile Testing

There are several advantages of Agile testing, such as early defect

discovery, better collaboration, faster feedback proprioception, and

being more receptive to changing the requirements. Using the

continuous testing approach ensures that serious problems do not crop

up late in the development cycle.

V-Model Fundamentals

End as always, the V-Model is special of Waterfall. The unique V-

diagram of the model captures a balancing relationship between the

development and testing phases.

Thorough Testing Strategy

33

Notes This creates a detailed verification and validation framework, as each

system development phase corresponds to a specific testing level in the

V-Model. It makes sure testing is treated as part of the development

process and not just an afterthought.

Testing Levels in the V-Model

Fig 1.7 Testing Levels

• Unit Testing: This relates with component level development

also to verify the individual software unit.

• Integration Testing: Tests the functionality of integrated

modules or subsystems.

• System Testing: Verifies the overall functionality and

performance of the software system.

• Acceptance Testing: Verifies that the software meets user

requirements and business objectives.

Features that Distinguish This Test

Because of the structure of the V-Model, there is clear traceability

between requirements, design elements, and testing artifacts. Every

testing phase has set exit criteria and by following this systematic and

34
MATS Centre for Distance and Online Education, MATS University

Notes thorough quality assurance, the quality of the software greatly

improves.

Spiral Model: Risk Driven Testing Approach

Spiral model: Iterative development combined with systematic risk

assessment — makes it a good fit for large, complex and high-risk

software projects. The continuous analysis and mitigation of risks and

vulnerabilities throughout the development lifecycle is the core of this

model.

Fig: 1.9 Spiral Model

Testing in the Spiral Model – Testing in the spiral model is a risk

driven process where it is driven by testing strategies as a function of

the identified risk of the project. Every evolution spiral contains

multiple iterations of planning, risk assessment, engineering,

evaluation, etc.

Test Strategies Related to Risk:

• Prototype-Based Testing: Early development iterations

focuses on prototypes to validate key functionalities of the

system and analyze the risk involved.

• Testing Through Each Iteration: As the project moves into

several spirals, testing is progressively more comprehensive

and detailed.

35

Notes • Risk Mitigation Testing: This is specific testing techniques

which focus on the identification and validation of mitigation of

the identified project risks.

Disadvantages of Spiral Model Testing

You cannot have your bricks and use them too – Data collection, testing

approach & scope: Spiral model testing approach provides constant risk

assessment which makes it easier to resolve problems manually, also

testing changes according to the complexities of the project.

Testing Approaches: A Comparative Study

Testing Efficiency

• Waterfall: Defect detection later in the game, feature

comprehensive

• Agile: Testing is performed continually, collaboratively, and

with immediate feedback

• V-Model: Each testing phase is associated with a stage of

development

• Spiral: Adaptive, risk-driven testing approach

Resource Requirements: Each SDLC model necessitates a certain level

of testing resources, expertise, and investment. The decision to choose

an appropriate development and testing methodology should be made

based on the organizations project nature, team skills, and budget.

Latest Advancements in Software Testing

Automated and AI-Powered Testing

AI and machine learning technologies are revolutionizing the field of

software testing. These technologies are enabling the development of

automated testing tools that can generate test cases, predict failure risks,

and provide intelligent insights into software quality.

Benefits of AI-Powered Testing:

Increased Efficiency: AI-powered tools can automate repetitive

testing tasks, freeing up human testers to focus on more complex and

strategic testing activities.

Improved Accuracy: AI algorithms can analyze large datasets to

identify patterns and anomalies that might be missed by human testers,

leading to more accurate and reliable test results.

Reduced Costs: By automating testing processes and improving

accuracy, AI-powered testing can help reduce the overall costs of

software development.

36
MATS Centre for Distance and Online Education, MATS University

Notes

Faster Time to Market: Automated testing allows for faster feedback

cycles, enabling developers to identify and fix bugs earlier in the

development process, which can significantly reduce the time to market

for new software products.

Examples of AI-Powered Testing Tools:

Test Case Generation Tools: These tools use AI algorithms to

automatically generate test cases based on software requirements and

specifications.

Defect Prediction Tools: These tools use machine learning models to

predict the likelihood of defects in different parts of the software code.

Test Optimization Tools: These tools use AI to optimize test suites,

ensuring that the most important tests are run first and that redundant

tests are eliminated.

DevOps and Continuous Testing

The integration of development and operations (DevOps) has amplified

the need for continuous and integrated testing. Continuous Testing is

37

Notes the process of running automated tests as part of the software delivery

pipeline to obtain immediate feedback on the business risks associated

with a software release candidate.

Key Principles of Continuous Testing:

Automation: Automate as many testing tasks as possible, including

unit tests, integration tests, and system tests.

Integration: Integrate testing into the development pipeline, so that

tests are run automatically whenever code is changed.

Collaboration: Foster collaboration between developers, testers, and

operations teams to ensure that everyone is working towards the same

goals.

Feedback: Provide rapid feedback to developers on the results of tests,

so that they can quickly identify and fix bugs.

Benefits of Continuous Testing:

Faster Feedback: Continuous Testing provides developers with

immediate feedback on the quality of their code, allowing them to

identify and fix bugs earlier in the development process.

Improved Quality: By running automated tests continuously,

Continuous Testing helps to ensure that software is of high quality and

meets the needs of users.

Reduced Risk: Continuous Testing helps to reduce the risk of releasing

software with defects, which can lead to customer dissatisfaction and

financial losses.

Faster Time to Market: Continuous Testing enables faster release

cycles, allowing organizations to deliver new software features and

updates to users more quickly.

Iterative and Integrated Testing Processes

Software testing has evolved from a linear, independent process to a

more iterative and integrated process within software development.

Modern software development methodologies, such as Agile and

Scrum, emphasize the importance of testing throughout the entire

development lifecycle.

Key Characteristics of Iterative and Integrated Testing:

Early Testing: Testing is started early in the development process,

rather than waiting until the end.

38
MATS Centre for Distance and Online Education, MATS University

Notes Frequent Testing: Tests are run frequently, often multiple times per

day.

Collaboration: Developers and testers work closely together to ensure

that testing is effective.

Feedback: Feedback from testing is used to improve the software and

the development process.

Benefits of Iterative and Integrated Testing:

Improved Quality: By testing early and often, iterative and integrated

testing helps to ensure that software is of high quality.

Reduced Costs: By identifying and fixing bugs early in the

development process, iterative and integrated testing can help reduce

the overall costs of software development.

Faster Time to Market: Iterative and integrated testing enables faster

release cycles, allowing organizations to deliver new software features

and updates to users more quickly.

Increased Customer Satisfaction: By delivering high-quality

software that meets the needs of users, iterative and integrated testing

can help increase customer satisfaction.

39

Notes Unit 4: Levels of Testing

1.3 Levels of Testing: Unit testing, Integration testing, System

testing, and Acceptance testing

It is a test level hierarchy that plays an important role in the validation

process, and together they form the basis of a good quality assurance

strategy. Unit testing, integration testing, system testing, and

acceptance testing are levels of evaluation, with the scope increasing

from individual components to the software system as a whole, as it

will be experienced by end users. Thereby building a progressive

verification framework that helps discover defects at the right point in

most cost-effective manner. Level 0 in the testing hierarchy is unit

testing, where individual software components are tested in isolation

from the whole. Every application is composed of several components

that are generally considered the smallest testable parts of an

application functions, methods, classes, or modules that carry out

specific operations, which are together called as "units". The main goal

of unit test is to guarantee every component is working properly as

described in its specification and handles possibly valid/invalid inputs

accordingly and gives expected outputs or state changes. The more

granular these tests, the more likely developers can catch and fix things

early — when they’re cheapest and easiest to fix. Unit tests are

normally written and run by the developers at the time of development,

often even before or alongside the implementation of the actual code.

Test-Driven Development (TDD) is a practice using tests as guide for

a design that makes definite requirements for your implementation.

Unit tests are short, fast, and independent of external dependencies

(databases, file system, network services, other components, etc.). If

your code depends on some external systems and you want to test it,

you need to replace these with test doubles stubs, mocks or fakes —

code which provides the same behaviour, but not the complexity and

possible instability of a real external system.

Unit tests follow the isolation principle that test failures can only be

attributed to specific components, enabling focus on the code under

test, allowing automatic tests to be run, part of continuous integration

pipelines and enhances parallel developement. Well crafted unit tests

offer developers within immediate feedback of the accuracy of their

implementations, document expected component behavior in the form

40
MATS Centre for Distance and Online Education, MATS University

Notes of executable specifications, and act as guards against regression as

code is updated or refactored. Most unit test suites have high code

coverage goals, usually expressed in some kind of a percentage of code

lines, branches, or paths exercised by the tests during test execution, to

ensure that component behavior has been thoroughly validated. There

are unit testing frameworks, like JUnit for Java, NUnit for. Examples

of such tools include NUnit for C#, pytest for Python, and Jest for

JavaScript. These frameworks provide mechanisms for test discovery,

execution, result reporting, and assertion validation, which streamline

the process of creating and maintaining effective test suites. In more

advanced unit-testing paradigms, you can find property-based testing,

which automatically creates test cases based on conditions your code

should meet, or mutation testing, which achieves better unit-test quality

by artificially causing "mutations" in your codebase and checking

whether your tests can capture these deviations. Unit testing is

important but has its own limitations. It checks single components in a

vacuum but does not identify problems that crop up from a combination

of components working together, confirm system-wide behaviors, or

say whether the software satisfies user requirements. Overusing test

doubles can also lead to a false sense of security if the behavior of the

simulated dependencies doesn't mirror the real-world systems being

used. These limitations underline why additional levels of testing that

take into account other aspects of software quality are needed.

Unit testing is the foundation for integration testing, where the

interactions between multiple software components are explored after

they have been unit-tested. Unit testing tests components in their

isolated environment, while integration testing ensures that they play

nicely when combined into larger parts of the system, e.g. subsystems,

or features. This form of testing looks for problems in where

components meet, verifying that information is exchanged correctly,

spotting timing or synchronization issues as well as testing behaviour

that is a result of component interaction as opposed to single units.

Integration testing can differ in its scope, as it can involve the

integration of two components or validating complex subsystems made

up of many components that are interdependent. Integration tests

usually exercise real implementations of the components being tested,

although external dependencies, which aren’t part of the current

integration, will likely retain their test double replacement. Unlike unit

41

Notes tests, integration tests are connected to real resources like databases,

file systems, or network-based services, which can complicate their

setup, slow their execution time, and render their results less

predictable. There are different strategies that guide the integration

testing process, each with advantages regarding when to use them

according to the context of your project. The "big bang" method

integrates everything at once, ideal for less complex systems, but in a

big application makes problem isolation a challenge. For the actual

integration, incremental strategies, such as bottom up (integrating

lower-level components and extending towards implement the next

higher level), top down (where high-level components are developed

first and lower-level implementations are brought next), and sandwich

or hybrid (a combination of both approaches) present more systematic

pathways through the integration process.

Integration testing often uncovers faults that unit testing cannot,

including mismatched interface, incorrect assumptions about the

behavior of components, misunderstood requirements, or components

interacting in an incorrect manner when both components work

correctly in isolation. These issues can result in corrupted data,

deadlocks, race conditions, or unhandled exceptions that only happen

when various components intermix in an uncommon way. Because you

catch these integration-specific defects early enough that they can be

fixed before they reach higher testing levels or, even worse, production

environments. integration testing in the context of modern software

architectures Microservices architectures need extensive testing of

service-to-service communication, the contracts via APIs and

distributed system behaviors. Component-based frameworks and

dependency injection systems make integration testing easier since you

can configure component relationships explicitly. Service

virtualization tools can make more reliable testing possible as they

simulate the behavior of external services that could be missing in

action, unstable, or expensive when called in the testing process.

Consumer-driven contract testing is an example of a contract testing

approach that specifically facilitates validating the contractual

agreements between service providers and their consumers, so that they

can both interact with each other seamlessly between distributed system

boundaries.

42
MATS Centre for Distance and Online Education, MATS University

Notes The last testing level is integration testing, which is more extensive

than unit testing but still has its drawbacks. It usually centers on

technical interfaces rather than business capability, it may not

completely emulate the production environment, and it cannot assess

as an entire system against user needs or expectations. These limitations

require additional levels of tests that analyze the software at a broader

level. A thorough assessment of the fully integrated software system to

ensure that it meets all defined requirements. In contrast to unit and

integration testing that inspect implementation details and individual

component interactions, system testing upholds the application from an

external view and verifies end-to-end functionality, performance

properties, security features, and other application-wide qualities. This

phase of testing verifies that the software fulfills its functional and non-

functional requirements as a complete product that functions in

settings very similar to production used in practice. System testing

covers all parts of the application, from user interfaces and business

logic to data processing and external integrations, as well as supporting

infrastructure. System tests assess end to end features and flows once

they’ve been built and run, ensure the system responds as expected in

different scenarios. We run the application as it would run in

production, interacting through its defined interfaces—user interfaces,

APIs or whatever out of program access point(s)—and validating

behaviors against the documented requirements. Functional system

testing ensures the application correctly implements all specified

features and functionality. Positive testing to check the handling of

valid inputs & operations, negative testing to check the response to

invalid conditions, boundary testing to check behavior on the edges of

valid ranges, equivalence partitioning to cover different input

scenarios in an efficient manner, etc While such structured techniques

become easier when they are combined with exploratory approaches,

where testers use their know-how rather than written scripts to find out

the unexpected issues by exercising the systems and their behavior in a

creative manner.

Additional system testing which does not concern itself with functional

tests, rather, covers checks on quality not by correctness of features,

rather by characteristics directly related to the usability, reliability and

grounds for the operational effectiveness of the software are called

non-functional tests. Performance tests measure response time,

43

Notes throughput, and resource utilization at different load conditions.

Security testing discovers weaknesses that can threaten the

confidentiality, integrity and availability of data. Usability testing

checks how user-friendly and functional the system is. This is the

process of validating that an application works across various

platforms, browsers, or devices. Reliability testing evaluates behavior

over longer terms or in stressful situations. These dimensions together

provide a holistic view of the quality attributes of the system. By

default, system testing takes place under a dedicated environment,

configured as closely as possible to the production, with realistic data

sets and configurations. This allows for a fully isolated environment for

tests and tests can be run without affecting operational systems or

users, providing fairly meaningful results in terms of how the app will

behave when deployed. This is where automated testing tools come into

play, running a suite of repeatable test scenarios that would be

infeasible to execute manually, particularly for regression testing that

ensures existing functionality is maintained after changes to the system.

The most crucial relationship is between system testing and

requirements. Meanwhile, effective system testing relies on clear,

testable requirements that describe what the system is meant to do

under set conditions. Functional testing Traceability» Test cases are

derived directly from these requirements, the traceability makes sure

that not even a single specified functionality remains untested.

Unidirectionally, since system testing often uncovers ambiguities or

inconsistencies in requirements, this provides a feedback loop which

makes the quality of the requirements better throughout the

development lifecycle.

For system testing, though, a specialized team of testing professionals

are involved, which is mostly independent of the development team,

and thus, brings a fresh perspective in terms of how to evaluate the

quality of the software. Having this independence can help mitigate the

confirmation bias that affects many developers testing their own work,

as it would allow for an objective perspective can spot things that might

get missed otherwise. System testers often have domain knowledge

and a business perspective that helps them verify whether the product

meets real business problems rather than just the specifications. Though

comprehensive, system testing isn't without its limits. It usually

happens at a later stage of the development cycle when it is more costly

44
MATS Centre for Distance and Online Education, MATS University

Notes and time-consuming to fix defects. System-level tests, however, are

much more complex than lower-level tests, both in terms of

maintaining and executing them, which makes them slower to run and

harder to maintain. And most importantly, system testing validates the

software to whether it meets specified needs but it may not examine if

those needs are actually what users want and expect. This limitation

naturally leads us to the highest level of testing: acceptance testing.

This type of testing examines the software from the point of view of

its end-users and stakeholders and verifies whether it satisfies the

business needs and is prepared for deployment and operational usage.

In contrast, while system testing verifies technical correctness against

specifications, acceptance testing evaluates whether the software adds

value for its users and supports business goals. This level of testing is

the last of the quality gates, providing stakeholders the information to

approve the software for production use, or requesting further

refinements. The most well-known type of acceptance testing is User

Acceptance Testing (UAT), where you have real end-users performing

real world use cases based on common usage patterns. Evaluating the

software through the lens of their domain and operational experience,

these users determine if the software supports their workflows, closely

meets their needs, and aligns with their expectations. So, during UAT,

these all types of usability issues, workflow problems, or missing

features that were not apparent from the previous level of testing comes

to light as the users use the system in a way in which they explore the

system that might not have been predicted by the developers and testers.

Getting users directly involved helps with ownership and adoption, as

this will expose them to the system early on and give them opportunities

to provide feedback and influence the final product. There are several

special types of acceptance testing discussions that depend on the

domain of application and the particular needs of stakeholders. Alpha

testing happens in the development organization but users, or

representatives of users, are involved, rather than just the development

team. One way to evaluate the software with real users in real

environments is called beta testing where the software is used in

environments outside our own and the feedback is collected from the

external users a wider audience before public release. Operational

acceptance testing is to make sure that operational procedures such as

backup, recovery and maintenance can be done effectively.

45

Notes Confirming compliance with relevant laws, standards, or industry

regulation. Contractual acceptance testing verifies that the software

fulfills the terms outlined in client contracts or statements of work.

Acceptance criteria usually come from business needs, user stories, or

contracts rather than technical specifications. These criteria frequently

comprise both objective metrics (e.g. performance metrics, feature

completeness) and subjective evaluations in terms of usability,

workflow optimization, or value addition. Acceptance test cases

should typically represent entire business processes involving multiple

functions — not just test independent functions, and hence, these types

of tests represent the way users truly interact with a system to achieve

their objectives. This business-focused viewpoint ensures that

whatever is technically correct, is also practically useful. Acceptance

testing environments should be as close to production as possible, in

terms of the volume of data, user load, and integration with other

systems. This environmental fidelity augments confidence that passing

acceptance tests also predicts full production operation success. For

some high-risk systems, acceptance testing may happen in production

environments with user access controlled to allow some evaluation

under completely configurational conditions prior to full release.

Acceptance testing does differ in phase and scope based on

development methodology. In traditional sequential approaches,

acceptance testing is a separate activity that occurs after system testing

and before deployment. Acceptance testing in agile contexts usually

happens incrementally through development, where stakeholders

inspect and accept the working features after each iteration. This is

common practice in Behavior-Driven Development (BDD), which

encourages writing acceptance criteria in collaboration with

stakeholders using shared domain language and bridging technical and

business domains to create a shared understanding of expected

behavior.

Acceptance testing gives us very important confidence from a user

perspective, but there are some practical restrictions on it. It happens

generally at a later phase in the development cycle when major

adjustments might be pricey or interruptive. In particular, for

specialized applications, it can be logistically challenging to find

appropriate user representatives. And some acceptance criteria are

meant to be subjective, which can turn into an inconsistent evaluation

46
MATS Centre for Distance and Online Education, MATS University

Notes of whether you have met the acceptance criteria or not, or worse

become a moving target for what a user wants. These restrictions

highlight the necessity for user engagement during the development

process as opposed to the final formal acceptance testing phase alone.

Unit, integration, system, and acceptance tests are a balance that

answers different questions about software quality at different points

during development. Units tests are an excellent tool to get quick

feedback on the correctness of the given component, which helps in

detecting defects at an early stage of development process and allowing

to develop in iterations. Component interactions are validated with

integration testing to ensure that interfaces do not have any issues, and

subsystems behave as intended. As for system testing, it assesses the

entire solution from technical requirements perspective and confirms

that an entire solution works together correctly and that all the required

attributes of quality are present. Acceptance testing validates the core

purpose of the software by confirming business value and user

satisfaction.

This adds a layer of quality assurance that becomes the backbone of the

subsequent stages, forming a triage for the quality of all future work.

This proactive strategy aligns with a “shifting-left” approach whereby

defects are found as early in the development lifecycle as possible,

when they are cheapest and least disruptive to fix. So there is always

the chance of catching something that missed one level of testing by

being tested at another level, thereby lessening the chances of defects

making it to production environments where their impact and cost to

remediate would be much higher. The details of testing effort across

these levels varies from project to project and is reliant on factors like

project type, development methodology, risk profile, resource

constraints, etc. In safety-critical systems, complete verification at all

levels is likely – formal methods and thorough coverage criteria.

Continuous testing, or testing early and often, is an integral part of

Agile projects, with automated tests at all levels allowing for

continuous integration and deployment. Regulatory-driven projects

might emphasize documented system and acceptance testing to be able

to show compliance. One must balance these considerations to generate

the right testing strategy for their particular context. These testing

levels have also been impacted by modern development practices.

Continuous Integration (CI) practices perform unit and integration

47

Notes tests automatically each time code changes are committed and thus give

feedback to a developer promptly. In essence, due to test automation,

tests can be executed in a much more efficient way at any application

level, thus allowing thorough testing to become feasible within a

shortened development timeline. Size and Sybil maybe-through again

the team of ability development the way of development and the more

whole experience the DevOps may okay development-experience

development, testing focused on testing, which of before the in

operation, in the operational should necessarily apply. These evolutions

augment rather than supplant the core evaluation tiers.

In these contexts, especially in repetitive and progressive approaches,

the lines between testing levels can be a bit vague. One test may

examine more than one of these levels or parts of activities could be

combined, given the practical considerations involved. As an example,

an automated end-to-end test checks system functionality and

acceptance criteria at the same time. The Traditional Testing Levels in

the V-1 Model include:Feature Validation between the code and docs at

the component level, System Validation between the code and docs at

the end-to-end level (integration end to end) Full System Verification if

valid whole Systems — to be decided. After identifying the critical

areas that need incremental change/rework, and not representing with

processes are invalidated. Tests are automated by default —

redundancy is eliminated where code and docs are comparable.

Visualisation of test results across all testing levels proves results at

every stage (app testing -> endpoint testing). This helps team change

the paradigm of breaking tests only at detection level, and rather test at

all levels with properly integrated (lower defect, higher customer

satisfaction). Additionally associativity will allow similar tests to be

grouped, bringing in accessibility to such tests and result. Here, the

levels are flexible to the model used. The four testing levels describe

the larger overall framework, but many additional specialized testing

activities are often performed within a modern development lifecycle.

Performance engineering is the discipline of putting performance into

practice across the development lifecycle rather than considering it as

a separate concern. Security testing also covers all levels, from secure

coding to unit testing to penetration testing of the final solution.

Accessibility testing makes sure that the software can be effectively

used by people with disabilities. And these forms help in augmenting

48
MATS Centre for Distance and Online Education, MATS University

Notes existing core testing levels, delving deep into focused quality aspects

rather than replacing any of them. Level of communication &

collaboration across testing levels and how far testing has been

automated greatly impacts overall effectiveness of testing. Clearly

documented assumptions of unit tests allow integration testers to

predict where things may go wrong when components interact with

each other. Informs system testing strategy and Technical risk areas

based on Integration test results. Observations during system test help

inform acceptance test planning, highlight features that might require

extra attention from users. This workflow helps to ensure that one

layer of testing is informed by the other, adding value and minimizing

time/cost duplication.

Test management, in turn, organizes activities within and between

testing levels, allowing for adequate coverage, optimal resource

utilization and defect management. Each level is based on project

characteristics and quality objectives — test planning outlines scope,

approach, and resource requirements. Test management is monitoring

progress through planned work, providing visibility and identifying

deviations that you should pay attention to. The purpose of reporting

on tests is to communicate the results to our stakeholders in ways that

match their needs, informing them about the product quality and its

readiness for release. These management activities help add structure

and visibility to testing at all levels. Automation approaches are

generally driven by technical characteristics and execution frequency

across testing levels. The relation between code, providing

predictability, separation, and granularity makes unit tests easy to

automate. Integration tests are usually a mix of manual and automated

elements: interfaces and typical user scenarios are automated, while

complex interactions are assessed manually. System testing is usually

performed to enable the automation of critical path verification but is

still largely a manual testing phase for exploratory and subjective

quality checks. Pivot in acceptance testing using automation to check

for regression, but new functionality gets the human touch. The

pyramid model of testing has guided how we usually distribute our

automated tests on different levels in modern software development

environments. The idea behind it, is that the lower you go in your tests,

the more fine grained they get (for a few lines of code), but the less

tests there are to cover (at least in a traditional application) the higher

49

Notes you get, the more tests to cover your application, but they become less

fine-grained (when it comes to integration with third party vendors),

but the less granular and less numerous they are the more time it will

take, for example when testing an entire flow that involve several

systems (and various point of failure). This distribution keeps

thoroughness in line with ability to execute, running automation in the

places that will give you the most payback in fast feedback and sure-

fire verification of core functionality. The percentages certainly vary

depending on the project, but the guiding principle of more targeted

tests at lower levels is hugely beneficial.

At each test level, test data management throws its own set of

challenges. Unit testing usually employs small, synthetic data sets

designed specifically for testing independent functionality. Integration

tests involve coordinated data that preserves referential integrity across

components. System tests require complete sets of data that cover all

possible scenarios and edge case conditions. Realistic production-like

data further supporting real user workflows benefits acceptance tests.

So what do a good test data strategies looks like and how do we balance

all these different requirements that keep our tests independent,

reproducible and compliant with data privacy? Defect management

processes cover all levels of testing and provide reporting, tracking,

and resolution mechanisms for issues identified. These processes

generally involve severity and priority categorisation — to help

determine the order of resolution — root-cause analysis to avoid such

problems resurfacing, and verification processes to validate successful

fixes. Defect trends through the levels of testing offer great insights into

patterns of quality, whether that’s components or functionality that

require more attention, or process improvements that could reduce

problems in the future. The correlation of testing level with some

development stage completely depends on the selected methodology.

Sequential approaches correlate testing levels to development phases:

unit testing with implementation, integration testing with module

combination, system testing with system verification, and acceptance

testing with validation and deployment. Iterative methodologies

shorten the cycles of these activities so that all testing levels are

exercised in a single iteration of new features and regression on what

had already been implemented. The holistic product quality and

development effectiveness derived from quality metrics collected at

50
MATS Centre for Distance and Online Education, MATS University

Notes various levels of testing. Unit-level coverage metrics indicate

thoroughness of verifying components. Defect detection efficiency

measures how many issues were found at each level, to see if defects

are being found at the most efficient points in the lifecycle. Then derive

defect density metrics in relation to quality between system

components. Test execution trends reflect stability in existing

functionality during ongoing development. These metrics inform

tactical decisions related to current testing activities and enable

strategic improvements to development and testing processes. While

the evolution of testing practices has refined the details of

implementation of each of these levels, their basic purpose remains the

same irrespective of implementation methods or tools. New approaches

like shift-left testing, continuous testing, and quality engineering

emphasize earlier, more continuous quality activities across

development, and still deal with the core concerns represented by the

traditional testing levels. Testing toolchains become more integrated

and automated, but they also promote the increasingly progressive

validation of software components and subsystems to the ultimate

whole-system scale needed for effective quality assurance.

The four levels of testing providing a holistic view and acknowledging

that software quality has multiple dimensions. Unit testing ensures

technical correctness at the component level. Integration Testing: It

verifies interactions between components. System testing verifies the

end-to-end system specifications. Acceptance testing ensures that

value has actually been delivered to both users and stakeholders. All

together these addresses the both dimension of software one is on

technical implementation side the other one is on business purpose

side. Generally, unit, integration, system, and acceptance testing levels

form a healthy hierarchy for end-to-end software quality assurance. The

levels serve different but complementary purposes that together

validate software at different angles through all parts of the

development lifecycle. Although specific ways of performing them

evolve with development methodologies and technologies, the core

principles reflected in these levels of testing are necessary to deliver

quality software that fits technical needs and users' expectations.

Development teams that recognize and correctly use these testing levels

develop sound validation strategies that catch defects in the right

51

Notes stages, leading to software that works, integrates well, is accurate, and

ultimately meets user needs.

1.4 Types of Testing: Manual vs Automated Testing

There are two main types of software testing methodologies:

automated testing and manual testing. These methods are two different

philosophies and techniques for validating the quality of software,

each with pros, cons, and their best usage scenarios. Having a clear

understanding of the merits and challenges of manual and automated

testing will enable us to create successful testing strategies that ensure

quality is always factored in while providing a balance between time,

expertise, and resources spent at all stages of the software development

lifecycle. As the name implies, manual testing is performed by human

testers interacting with the software directly to discover defects,

validate functionality, and evaluate user experience. Test expert jobs are

those types of jobs where the tester gets to know the application and the

business scenarios and use his or her dummy work experience to flow

through the application, execute the test cases, and validate the results

with expected behavior. Manual testing is performed based on some

pre-defined test plans and scenarios, but also on critical thinking to test

for unusual paths and edge cases that cannot always be predicted in test

documentation. By its very nature, manual testing involves the human

element, which comes with cognitive abilities capable of identifying

subtle problems concerning user-interface design, content presentation

and general usability, which would otherwise prove difficult to identify

with automation. Manual testing is usually initiated by the tester going

through requirements and specifications in order to fully understand the

expected behavior that software under test must exhibit. Testers then

write test cases based on this knowledge which defines the specific

conditions to be tested (scenarios), inputs for the tests, and expected

results. In the execution of a test, the tester exercises the application by

using its user interface or other relevant interfaces as defined in the test

cases, and records any behavior not matching the expected result. When

defects are found, testers report the issues with precise reproduction

steps, expected vs actual results, environment details, and more

relevant context that aid developers in understanding and resolving the

issues. Inherent flexibility and adaptability are some of the key

advantages of manual testing. While testing, human testers could

tweak their approach based on what they observe, probing any

52
MATS Centre for Distance and Online Education, MATS University

Notes unexpected behavior and exploring areas that seem most bug ridden.

This exploratory aspect enables manual testing to detect defects that

may be unforeseen in well-defined test cases, especially relevant in

complex applications where all possible use cases cannot be

exhaustively documented or programmatically verified. A human

perspective also allows for manual testing to be used to measure

subjective aspects of software quality like user experience, its aesthetic

appeal, and the intuitiveness of interface design qualities that

automated tests cannot meaningfully measure.

Manual testing is the winner in situations that call for domain

expertise, contextual insight, or subjective opinion. Usability testing,

for example, benefits greatly from human evaluation of whether an

interface is intuitive and efficient enough to complete user tasks. In

order to evaluate the usability and accessibility of our applications, it is

important for accessibility testing to have a knowledge of how users

with disabilities are able to use applications with assistive technologies

not just for technical conformance but for allowing users meaningful

access. Ad hoc and exploratory testing strategies utilize the creativity

and deductive reasoning of the tester to expose defects via unscripted

exploration instead of following a template. These form of testing

leverage capabilities that only humans possess and that cannot be

sufficiently emulated by automated tools. However, manual testing,

while advantageous, is extremely limited in efficiency and scalability

in today software development settings. It's a lengthy process; each test

case has to be run thoroughly, and outcomes need to be recorded

formally. The investment of time needed renders comprehensive

manual testing of large applications costly —especially for regression

tests, which necessitate running the same tests repeatedly over several

development cycles. The manual nature also opens up room for human

errors in test execution, inconsistencies in test coverage by different

testers, and oversights due to fatigue in tasks of repetitive testing

activities.

Manual testing is highly dependent on the knowledge, skills, and

experience of the individual testers. Testers who possess knowledge of

the domain are more likely to detect functional discrepancies that a

novice may miss if they have little experience to actual business needs.

They help design and execute tests efficiently while maximizing

coverage and minimizing redundancy. Testers use experience — having

53

Notes worked with similar software before to be able to recognize patterns

and areas that are more prone to problems. Since manual testing

depends heavily on human ability, the level of quality of the test is

highly dependant on the people involved in testing, which creates the

risk for inconsistency in quality assurance actions. These two aspects

make it hard to document and reproduce manual tests. Test cases need

to be very detailed and well-maintained to allow for consistent testing

across numerous execution cycles as well as in the hands of various

testers. Detailed test results must be documented as evidence of test

activity and assist in resolution of defects. Not only it takes extra time

to document which could have otherwise have been used in the

execution of the test. Furthermore, inferring the exact conditions that

lead to the production of defects can be sometimes hard to log and

reproduce, especially for intermittent bugs or those that are time- or

state-dependent. In modern development environments, which

prioritize speed and continuous delivery, this limits the flexibility of

manual testing. These include Agile methodologies, DevOps

practices, and continuous integration/continuous deployment (CI/CD)

pipelines, which necessitate frequent verification of software changes

— sometimes multiple times a day. Comprehensive manual testing

requires significant time and can become a bottleneck for these fast-

paced workflows, potentially putting teams in the trap of either testing

thoroughly or delivering on time. This tension has led to the growing

use of automated testing strategies that can enable rapid feedback loops

while preserving the same dispute of the essential behavior of the

system under test.

Automated testing refers to the process of using dedicated tools and

scripts to run tests, compare the actual results with the expected results

and report discrepancies without human involvement. In this approach

software is employed to verify other pieces of software by using a

software programmatic representation of test cases that can effectively

and instantly be executed by a computer for overall minimization of

human involvement. There are various types of automated tests, from

simple unit tests checking specific functions or methods, to complex

end-to-end tests simulating user interaction across entire workflows.

Automated testing is defined as the automated execution of the

verification steps of the testing process, which allows the testing to be

performed more quickly and at a higher frequency. Automated testing

54
MATS Centre for Distance and Online Education, MATS University

Notes is usually started by deciding the test cases from a set of test cases that

are stable, executed frequently, technical feasibility, etc. The test

engineers then write automated test scripts using suitable frameworks

and tools pertinent to the technology stack involved. These scripts

consist of setup instructions for preparing the initial state, execution

instructions that engage with the application being tested, chains of

verification instructions that assert expected results, and tear down

instructions that reset the system to a clean slate state. When you

develop these automated tests they become assets that can run over and

over as part of a regular test cycle, or as part of a continuous integration.

Automation testing is one of the most favored advantages in software

testing process, especially for repeated testing processes like

regression testing. After they’re created, automated tests can run with

no human intervention, executing hundreds or thousands of test cases

in the time that it would take a manual tester to perform a handful. This

is why more thorough testing within limited in-time is possible, and in

that way makes it possible to test more functionality more often during

development. In CI environments, such tests can be executed

automatically every time code is committed, allowing developers to

receive immediate feedback on the effect of their code changes without

needing to dedicate time solely for test purposes. Another major

advantage is the consistency of automated testing. Automated tests

perform the identical action the same way every time they run,

removing the variability that can happen with other manual testers —

or even the same tester at different times. On top of this, the benefit is

that this consistency guarantees the tests are performed the same way

each time a test cycle is run, eliminating the potential for skipped steps

or differences in evaluation criterion. Automated tests are also

unaffected by time pressure or tester tiredness, which means they keep

checking every single verification point even when running extensive

test suites that would be mentally exhausting for human testers to fully

focus on for the entire duration. This ensures that results are reliable —

automation that removes the chance for human error during test

execution and results interpretation. Automated tests compare things

with precision, letting us know when the actual results differ from

expected results, even in trivial ways that a human tester may have

missed. Such precision is particularly important for regression testing,

where slight behavioral changes can signal unintended consequences

55

Notes from code changes. Automated test reports allow to keep objective

evidence of the execution and the actual results, providing an audit trail

of the verification process and facilitating quality assurance activities

throughout the life cycle of development.

Automation testing improves the test coverage you have, allowing you

to test more functionality, with more conditions, than would ever be

possible manually. “Performance testing, for instance, lets us simulate

hundreds or thousands of users at the same time to see how a system

behaves under that load — something we can’t do manually,” he says.

Data-driven testing methods are capable of executing the same test

case with many different combinations of inputs, systematically

verifying the system's treatment of various data scenarios. However,

this potential for greater coverage allows for more edge cases and

boundary condition work that might not be addressed as thoroughly in

more focused manual testing efforts. Automated tests usually cost time

and money to create but are cheaper to execute — which means the

return on investment (ROI) of automated tests increases over time as

the same tests, originally created and executed once, are amortized.

Although writing automated tests takes more initial work than

performing a similar manual test, the cost is offset through the

efficiencies gained in running a test multiple times. Finally, for stable

functionality that needs to be verified at regular intervals over the

development, automation can be a huge long-term cost-saver over

repeated verification manually. This economic benefit stays special

when we discuss stage of upkeep of the software system because

regression testing props up a large chunk of quality assurance

exercises. However, it is important to be aware of the challenges and

constraints of test automation when developing test strategies. This

may involve significant upfront expenditure for automation tools, test

environment setup, framework development and training or hiring

staff with the necessary technical expertise. This lies in the ability to

put up a barrier to entry for automation, especially if you are working

on a small team or for an organization where additional resources are

scarce. Automation in itself offers rewards in the long run as the same

test cases are executed multiple times over the course of time, but the

repayment of investment for functionality that changes often or requires

very few reworks to test can be tough to justify.

56
MATS Centre for Distance and Online Education, MATS University

Notes Another challenge in the context of automated testing is the technical

complexity. Test automation, on the other hand, employs programming

skills that are necessary for writing the automated tests and their

maintenance, like snap-acting response to the various responses

received from the application interfaces or programmatically verifying

results. As the application evolves, this gives an ongoing technical

overhead in maintaining these tests as it requires modifying the test

script whenever there is a change in the functionality it is related to. On

rapidly changing applications, this maintenance burden can sometimes

be greater than the work needed to make equivalent manual testing

work. Automated testing is limited in what it can truly verify.

Automated tests are great for verifying functional correctness and

repeatable behaviors but not so great on subjective quality aspects that

require human judgment. User experience testing, for instance,

measures how intuitive and satisfying an interface is to use

characteristics that are hard to measure programmatically. Automatic

test scripts do not scale well to exploratory testing, in which potentially

interesting paths are explored through creative work. These constraints

make it impossible for automated testing, however it is strong, to fully

address the human perspective in quality assurance. Test Automation

is only as good as test design and implementation Shoddily designed

automated tests can lead to either false positives (reporting problems

when everything is functioning perfectly) or false negatives (not

catching existing bugs), compromising the integrity of the test

procedure. If you are testing against implementation details rather than

functional requirements, then your tests are likely to break often as the

application changes, resulting in an increase in maintenance cost

without a corresponding increase in value. Automation complicates the

situation further; it’s crucial to have test data creation, management,

and refresh mechanisms across test environments and execution cycles.

Automated testing, particularly for end-to-end tests which touch many

system components, is challenged by test environment stability issues.

Automated tests tend to be less forgiving of discrepancies in the

environment than humans, who may work well with slight differences

in system functioning or look and feel. Environmental issues, defect not

in application but intermittent failures in automation can erode trust in

automation and have high troubleshooting overhead. Stability and

reliability of the test environments play a pivotal role for achieving

57

Notes successful test automation where dedicated infrastructure and support

resources usually come into the picture. The application of test

automation differs greatly depending on what level of testing you're

talking about, and what theory, standards and tools are relevant in that

context. The most utilized automation level, unit testing, is available

for just about every programming language and development

environment. Automation of integration tests mainly deals with API

testing and interactions at a service level to ensure accurate data

interaction and communication between various components. System

and end-to-end testing automation refers to tools that simulate user

interaction with application interfaces, but due to the nature of these

tests — they're typically more complex to set up and manage than

lower-sourced automation. Unit test automation is all about verifying

single components in isolation, which is usually a part of the first

developers work. These tests run fast, give immediate feedback, and act

as documentation for how components behave and what their

requirements are. JUnit (for Java), NUnit (for.NET), pytest (for

Python), and Jest (for JavaScript) are examples of such frameworks

that offer structured environments to define, organize, and execute unit

tests across various programming languages. Mocking frameworks

assist unit testing by providing replaceable components that simulate

the behavior of more complex components, allowing components to be

tested in isolation, even if they are interacting with other components

in the system. Unit tests are the most low-level type of tests you can

have in your project, making their maintainability and stability

relatively high, as they usually target internal APIs, which are less

likely to change than the user interface.

Integration Test Automation emphasizes interaction between

components, covering aspects like data transfer, communication

protocols, and collaborative interactions. API testing tools allow you to

automate verification of the interaction between a web service,

microservice, or other interface-based integration including handling

of incoming requests, formatting of outbound response, management

of errors and other features of the interaction. Database integration

testing is responsible for verifying data persistence, retrieval, and

manipulation operations and is often managed through specialized

frameworks that allow managing transactions and cleaning data before

and after test executions. These automation approaches ensure that

58
MATS Centre for Distance and Online Education, MATS University

Notes individually developed components work as expected when integrated

into broader subsystems. System test automation deals with end-to-end

functionality from a user perspective and the automation interacts with

the application using its user interface (UI) or external interfaces.

Selenium, Cypress, Playwright – web application test tooling allows for

automation of user interaction with browser-based interfaces, including

mouse clicks, key presses, and page following. Mobile application

testing Frameworks such as Appium provides similar possibilities, but

for iOS and Android platforms. API-driven automation techniques

directly engage with application back ends, testing business logic and

data processing without getting mired down in user interfaces, resulting

in more efficient testing. System-level automated tests confirm full

features and flows work as expected from an external point of view on

the integrated application. Performance test automation simulates load

conditions and measures the behavior of the system under different

usage scenarios. Load testing tools will create virtual users that

execute common operations, calculating response times and

throughput, resource use and other performance metrics as concurrency

increases. Loss of power or overheating during normal operation,

system failures, potential operator errors, undetected sensor noise — all

of these can be simulated using stress testing. When conducting

endurance testing, moderate load is maintained over long periods of

time to identify resource leaks or degradation over time. These

automated methods allow for performance tests that could never be

completed manually, giving critical information on how systems will

perform when operating in production conditions.

These of potential security vulnerabilities and verifying compliance

with security requirements using specialized tools. Static application

security testing (SAST) evaluates source code in a non-run context for

potential security weaknesses like SQL injection points, cross-site

scripting vulnerabilities, or sensitive data exposure. Dynamic

application security testing (DAST) analyzes running applications and

interacts with them to find security problems at runtime. The growth of

automated security scanning has led to the integration of more security

controls in development pipelines, allowing repeatable and frequent

verification of security controls during the development process.

Automation of accessibility testing helps to find out that what are the

barriers that are holding back users with disabilities from proper usage

59

Notes of the application. Automated accessibility tools, which validate against

standards (like WCAG) and ensure that elements are semantically

marked up, have text alternatives for images, follow keyboard

navigation best practices, and can check for color contrast ratios. An

automated tool can never tell you if your site is truly accessible in the

same way that a human can assess (although automation does a

fantastic job of helping to fulfil certain requirements as part of regular

testing cycles). Automated testing will require reporters with different

training and expertise from the testers needed for manual testing. They

should be familiar with programming concepts, scripting languages,

and automation frameworks related to their technology stack. They

have to test framework that is robust and maintainable, which means

building abstraction layer between test logic and implementation

details thus making sure that when application changes, only a small

part of test code needs to be updated. Skills in database management

aid in the creation and administration of test data and knowledge of

continuous integration helps with efficient integration of automated

tests into development pipelines. These technical requirements also

imply that building effective automation capabilities usually requires

dedicated resources with specialized expertise. DevOps perspectives

have become a standard and the modern test practices place even more

emphasis on building automation at the beginning of the project

instead of bolting it on later. This “shift-left” strategy integrates test

automation into early development activities, writing automated tests

simultaneously to or even before implementation code. There’s a

philosophy of development that you almost always see in enterprise-

level development which is called Test Driven Development (TDD),

which goes beyond the traditional requirements gathering process and

treats tests as specifications that can be referred to during

implementation as well as used for immediate verification that the

implemented code actually works as it should. Resulting in Behavior-

Driven Development (BDD), which is very similar but has its own

domain-specific languages where the tests can be expressed in business

terminology and will then act as requirements while being treated as

executable specifications acting as automated tests. This is important

because, if you're not careful, it can triple the technical effort to build

testable code to begin with, rather than automating tests on top of

functioning applications.

60
MATS Centre for Distance and Online Education, MATS University

Notes Modern development environments have moved towards a Continuous

Integration and Continuous Deployment (CI/CD) model, which

increased the need and role of automated testing tremendously. CI/CD

pipelines automatically build, test, and sometimes deploy applications

when code modifications are committed to the repository, enabling fast

feedback about the impact of such changes. These pipelines usually

have multiple layers of automatic tests, from unit tests to more

extensive integration and system tests. Such real-time validation

allows teams to quickly discover problems and fix them while ensuring

high standards of quality when deploying code changes to production.

The automated tests should follow the pyramid model, as this model

helps determine the number of automated tests to put in each layer and

has optimal proportions for each layer so that you achieve

thoroughness with minimum execution time and minimum keep cost.

This model prescribes a lot of unit tests along the bottom, fewer

integration tests in the middle, and the fewest number of end-to-end

tests at the top. Unit tests describe component behavior in granular

detail, execute quickly, and are relatively inexpensive to maintain.

Component interactions with medium to high complexity and runtime

are verified with integration tests. End-to-end tests asserts full

workflows, but they often run slower and need more maintenance as a

user interface changes. This root-cause approach also ensures the most

effective tests are run, whilst ensuring maximum use of resources at

differnet levels of automation. AI powered test automation methods

make use of Artificial Intelligence and Machine learning for more

enhanced testing of applications that takes it beyond the scripted

verification. Ai-assisted test generation generates test cases through

analysis of your application and more creative scenarios than human

testers might think of. Self-healing Automation — This automatically

adapts to minor changes in the interface and reduces maintenance

overhead in a scenario where the applications evolve. That memory is

visual testing visual testing utilizes comparison and pattern recognition

of images to check what your interface looks like and the layout,

making it able to identify visual regressions that do not affect functional

behavior. Predictive analytics finds patterns in test results and failure

data, enabling teams to concentrate testing efforts in areas with

potential higher defect risk. These emerging technologies provide

61

Notes automation capabilities beyond the mere running of scripts and quite a

few of their traditional limitations with automated testing.

In fact, the tools and techniques for testing often combine manual and

automated testing approaches, taking advantage of the strengths of

automation while balancing the limitations of both methodologies.

This complimentary synergy acknowledges the fact that neither method

can address all aspects of testing effectively on its own, and that the

best quality assurance possible is achieved through applying the

parallel techniques for each testing situation, respectively. Grasping

the strengths and weaknesses of manual and automated testing equips

teams to devise strategies that align quality goals with the effective use

of resources across the development lifecycle. This type of exploratory

testing, where testers interact with an application, without set direction

or expectations, is still highly valuable to applications, and manual

testing thrives here. This method uses human curiosity intuition and

critical thinking skills to mind what might not be caught in a scripted

tests manual or automated. Seasoned testers can recognize patterns

indicating potential issues, track investigative trails from what they see

during testing, and take advantage of domain knowledge to identify

functionality problems that might escape notice purely from a technical

perspective. This exploratory capability is an area of human strength

that serves complementary to the consistency and efficiency of

automated verification. Human evaluation is invaluable when it comes

to user experience testing and many times, human-only interactions are

required to inspect the truly subjective qualities that characterize

satisfying and intuitive interfaces. Usability testers watch users interact

with applications and comment on confusion, inefficiencies, or

frustrations that don’t violate functional requirements but do reduce the

user experience. I am not going to get into the detail of aesthetic

evaluation such as visual design, word layout, and so on which are

important factors in determining the quality perceived by the user.

Emotional response how users feel when using an application provides

critical insights into engagement, trust, and satisfaction among other

things that automated tools cannot quantify effectively. Automated

verification of technical requirements needs to be performed, but

practical usability for people with disabilities should also be evaluated.

Automated tools can flag improper markup and improper usage of

accessibility attributes, however there is no comparing their output with

62
MATS Centre for Distance and Online Education, MATS University

Notes the real experience of the user, whether it be with the tabbing method

or the scrolled approach used for testing with a screen reader. This

human insight ensures that implementation of accessibility work

enables real-world use, not simply a checkbox for technical

requirements that may be verified automatically. Before you invest in

automation consider using manual testing if you want to ensure the

new functionality is working as expected. If requirements are still being

developed or implementation approaches are changing, a high degree

of flexibility in manual testing enables it to accommodate changing

specifications without requiring adjustments to automated test scripts.

This agility is especially valuable in the early development phase,

when changes can occur frequently, resulting in considerable

automation maintenance overhead. Once the functionality is stable,

automation can then be applied for continuous regression verification,

and resources can be concentrated where they contribute maximum

value in the long term.

The defect investigation and reproduction usually utilizes both

automated and manual approaches to identify and resolve issues

efficiently. Automated tests can help identify defects by continually

checking for expected behaviors, but fully understanding the source

and scope of those issues often requires human investigation.

Experienced testers are able to investigate many contexts around the

defects they report, determining when and how issues can be

manifested, boundary conditions, interaction effects, etc. This detective

work lets developers know not only that something is wrong, but also

why it’s wrong and what may be needed to fix it properly. Automated

testing is great at regression confirmation, systematically validating

that the existing functions still work properly when applications are

changing. I made sure that we run the same tests consistently in every

development cycle on the automated regression suites, to quickly detect

if changes affect previously working functionality. Automated testing

can run complete regression tests in whatever short window of time

exists (usually between code completion and the code's

implementation), which inherently confirms more functionality than

would be practical by manual testing alone. This feature is especially

useful in continuous integration (CI) scenarios where code changes

might be checked in several times a day, and timely feedback on

unintended changes related to those commits is critical in maintaining

63

Notes quality. Data-driven testing uses automation to validate application

behavior in a structured manner against multiple combinations of

inputs and scenarios. You can even parameterize your automated tests

to run the same test against multiple data points, quickly checking if

different types of inputs, edge cases, or error scenarios are being

handled correctly. This lifecycle-extremity is too time-consuming to

manually to verify, but it is sensibly achievable through automation,

where hundreds and thousands of test variations can be executed

autonomously. A systematic approach ensures that the edge cases and

corner cases will be appropriately exercised, with less risk of

undocumented failures in deployed environments. Performance and

load testing heavily depend on automation tools to create usage

patterns and user loads that would be unfeasible to build by hand. Well,

as part of its work, automated performance tests refine load profiles

consistently to assess response times, throughput, and resource

utilization at different loading states. Load testing tools simulate

hundreds or thousands of concurrent user using a prototype to perform

normal operations to create realistic stress conditions to detect

performance bottlenecks and scalability limits. These automated

methods allow teams to confirm that applications will perform

adequately under anticipated production workloads, catching issues

before they impact real users.

Security testing is progressively a combination of automated scanning

and manual penetration testing and code review. In this context,

automated security tools that detect widespread vulnerabilities and

audit against security requirements offer wide coverage that would be

impossible to achieve manually. This automation is supplemented with

manual security testing which allows for creative Avsim which utilizes

human expertise to determine new ways of exploitation that the

automation tools cannot catch. Such a hybrid model strikes a careful

balance between the efficiency of verifying known security

requirements and the specialized knowledge needed to discover

advanced threats that may slip past an automated detection process.

Over the years, test automation frameworks have improved

significantly to overcome challenges that were originally faced in

creating and carrying out automated tests. Test logic is separated from

implementation details using page object models and other abstraction

patterns, which reduces maintenance overhead if interfaces change. The

64
MATS Centre for Distance and Online Education, MATS University

Notes flexibility they afford allows test creation to be done with domain terms

that people without deep technical knowledge can understand and

work with if desired. The behavior-driven development frameworks

describe tests in a natural language that connects the technical and

business areas, forming executable specifications that are both a

requirement and an automated test. These improvements have helped

to make automation easier to use and maintain in different

development contexts. Along with that, the relation shared between

development and testing teams greatly define if manual or automated

testing will be more effective. But DevTestOps practices focus on

collaboration between development, testing, and operations roles

across the software lifecycle, eliminating traditional silos that

compartmentalized these functions. Testers work closely with

developers, creating automated frameworks together, while developers

write their unit tests within their development process. In the testing

world, things are quite different, testers are brought in earlier in

development to evaluate requirements and designs to catch potential

problems prior to implementation. By doing so, it enables the use of

varied perspectives and skill sets to maximize quality assurance across

all testing activities both manual and automated. When deciding on

which testing types fit a specific context, different aspects like project

attributes, risk profile, resource constraints, and business priorities

should be taken into account. You might have critical functionality

where you do automation and comprehensive regression testing to

avoid regressions, while your rapidly changing features can do without

that degree of automation during such an unstable period.

(Commercial) user-facing interfaces are generally going to need a

manual usability and experience evaluation alongside automated

functional verification tests, whereas backend services would lean more

heavily towards automated API tests. Highly sensitive components can

combine genenic scanning with specific manual pentesting by security

expert. Such careful decisions serve to maximize testing efficiency

while working within the constraints of available resources.

Test management practices coordinate activities for manual and

automated testing, resulting in adequate coverage across testing types

and levels. A test plan sets up what is going to be tested manually and

what is going to be tested through automation, balancing between

coverage and efficiency while taking into consideration risk and

65

Notes availability of the resource Test case management systems act as

repositories of manual test cases and automated test specs, providing

visibility into testing coverage and execution status. Defect tracking

systems record status and track issues found during both manual and

automated testing, helping resolution workflows and providing

trending of issues across testing approaches. These management

practices ensure manual and automated testing to be working together

as balanced parts of a single quality strategy. Testers are no longer only

manual or only automation testers — the development of testing skills

for testing professionals includes both categories as they find

themselves contributing in a multitude of testing types. Finally, manual

testing skills incorporate critical thinking, domain knowledge, usability

testing and exploration techniques that can find problems that are

outside a defined test case. Automation skills are programming,

designing frameworks, configuring continuous integration, and test

architecture practices that allow effective automated verification. By

cross-training in both areas, testing professionals prepare themselves to

face the ever-shifting landscape of the project environment, driving

them towards adding valuable contribution insights across various

testing contexts, thereby ensuring a mutually beneficial outcome in

career development as well as expertise. Testing will undergo a

transformation through effective integration of manual and automated

approaches using emerging technologies to complement both testing

types. Some examples of its use are automatically generating test cases

by analyzing the application, prioritizing test execution by assessing

risk or identifying patterns in defect data to focus testing efforts. Test

automation becomes more accessible for testers without extensive

programming background with low-code or no code automation

platforms, allowing more people to participate in the authoring and

execution of automated tests. Visual testing tools leverage image

recognition and comparison techniques to ensure interface appearance

correctness, bridging a gap inherent in traditional automated functional

verification and manual visual testing.

Codeless test automation is the next evolution that seeks to provide the

balance of the efficiency of automation, with the accessibility of

manual testing. These approaches allow testers to build automated

tests by using visual interfaces and recording capabilities instead of

writing code, thus making automation easier to access to those team

66
MATS Centre for Distance and Online Education, MATS University

Notes members who are not strong programmers. These tools are generally

less capable than code-based automation frameworks for complex

scenarios, but serve to increase the scope of automation benefits to new

testing environments and personnel within organizations. This

democratization of automation capabilities is breaking down centuries

old barriers between how manual and automated testing have been

approached historically. Mobile and IoT testing have specific

challenges that lead us to different balances between manual and

automated. Different type of devices, varying screen sizes and

operating system versions result in complexity of testing both types.

Automated tests assist in verifying functionality on a wide range of

device configurations that it would not be feasible to test manually.

These tools are capable of simulating various network conditions,

battery levels, and other environmental factors that affect mobile and

IoT. While some aspects of testing are automated (e.g., using Appium

to test on different screens in real time), manual testing ensures device

interaction, gesture recognition, and other factors that sometimes

behave differently on real hardware than via simulator are effective.

When it comes to economic aspects of the manual vs automated testing

process, it is not about measuring performance in terms of both

execution time and resources needed. There are many other factors that

go into a proper cost benefit analysis including the development cost,

time and resources required, maintenance requirements, how often the

functionality is executed, how stable the requirements are, and how

much you risk introducing defects. For example, High-frequency

Regression Testing justifies automation investment by several

successions. Usually, the exploratory testing of new features can be

done in a more economical way manually. Best-in-class systems with

high failure impact should be fully automated and manually verified

after every run if the joint cost is outweighed by risk mitigation

benefits. Finally, manual and automated testing are complementary

approaches addressing distinct aspects of our software quality

assurance practice. Manual testing is dependent on human brainwork,

where we use our thinking and out of the box capability to test a

software, use well-designed requirements to validate usability,

investigate unforeseen problems, and consider things that affect the

quality of the software behavior. Efficiency, consistency and

comprehensive coverage: These are essential features for repetitive

67

Notes verification, regression testing, and scenarios that require high

precision or a lot of data variations. Automated testing delivers them

all. Neither strategy alone is sufficient for full quality assurance;

effective testing strategies involve implementing both approaches

according to the specific needs of the project, risk profiles, and resource

limitations. It enables organizations to strike a balance between manual

and automated testing to achieve the highest quality software possible

whilst minimizing required time, expertise, and resources spent

throughout the development process.

1.5 Error, Fault, and Failure: Understanding the differences

between them

Software testing and quality assurance are two of the exciting and

meaningful domains of software engineering where precise terms are

critical to communicate with different stakeholders and accurately

describe problems in software. Error, fault, and failure are the three

basic concepts that form a causal chain that describes how defects in

software are introduced, how the defect makes its way into code, and

the effect of the defect on the users of that software. While these term

Fig 1.8 Understanding between Error, Fault, failure

68
MATS Centre for Distance and Online Education, MATS University

Notes are sometimes used interchangeably in casual discussion, they describe

different phenomena at different points in software development and

operation. Errors, faults, and failures are more than just terms they are

keywords because their exact meanings and their relationships will

provide you a lasting insight when it comes to defect prevention, defect

detection, and defect resolution, thus getting your intended purpose

with a quality software.

Basically, an error is a human mistake made during the production of

the software. Mistakes are the starting point for the majority of software

bugs, and tend to happen in the minds of those working on software —

not in the software itself. During requirements elicitation, design

development, coding implementation, or other project activities, they

as actions, decisions, or misunderstanding that is incorrect. An error

essentially refers to a human action or behavior that yields some

deviation from the desired state, where these software artifacts merely

reflect the effects of this violation. Mistakes are not about missing

pseudo-code requirements, incorrect logic implementation,

misspellings, or any other divergence from what is mathematically,

logically, or effectually expected to produce an outcome. Mistakes can

originate from many parts of the software development lifecycle.

Stakeholders may miscommunicate their needs during requirements

analysis, analysts may misinterpret what users say, and documentation

may ambiguously describe a desired piece of functionality. During

design, architects may choose the wrong patterns, mis-divide

components in the system, or define interfaces that do not adequately

support interactions that are required. At the time of implementation,

programmers can simply misinterpret design specifications, or utilize

incorrect algorithms, or make a simple typographical error in

programming code. Neither are testing activities immune to errors —

test designers may produce test cases that do not verify requirements

correctly, or testers may execute test procedures incorrectly or

misinterpret results. We learn from these patterns of errors and what

they tell us about psychology and cognitive savvy related to generating

errors. Due to confirmation bias, developers tend to interpret

ambiguous information such that their current understanding is not

altered and misconceptions are potentially reinforced. Our minds

juggling many things at once leads to failure to notice salient

69

Notes information during the repetitive process. Knowledge gapsCreate bugs

when developers are working with new, unfamiliar technologies or

domains and do not spend enough time planning these tasks or do not

have sufficient knowledge about them. Deadline-driven pressure can

lead to stress that raises error rates and lowers attention to detail. These

psychological factors provide a basis for practices that mitigate error

frequency—through communication, knowledge sharing, tool support,

and work environments that reduce cognitive burden on clinicians.

Not every error leads to a visible issue in software—syntax errors are

usually caught by the author immediately, in review, or those that may

not lead to functional problems. But, if these errors are not caught and

corrected, they often result in defects being injected into software

artifacts. Error → Fault: This transformation from error to fault is the

first major transition in the defect chain; it is where human errors

become “materialized” into work products that comprise or

characterize the software system. By understanding this transition,

organizations are able to conduct verification activities at appropriate

points in the process to avoid propagating errors further out into the

development process. A fault, also called a defect or bug, is an incorrect

step, process, or data definition in a software product. DevOps defines

an error as a mistake in human cognition or action, while a fault is a

defect in an actual project deliverable—requirements document, a

design specification, source code, configuration files, or any other

system component. A fault is always a static attribute of these artifacts

in terms of what is correct or expected state. Moreover, faults are

properties of the software itself and not of the execution of the program;

they pose a dormant potential for incorrect behavior, which may or

may not result in an observable failure in the execution of the software,

depending on whether the execution conditions cause the fault to

manifest. Faults in source code take multiple forms that mirror the

different kinds of mistakes that can arise during the process of

development. The faults are algorithmic in nature (meaning they

implement erroneous computational steps that generate incorrect

results on execution). Logic errors involve the wrong conditional

expressions being applied and so lead to a wrong route of execution

through a program. An interface fault happens when two modules

interact in a way not anticipated by their developers, such as passing

an incompatible data type or calling a function with an incorrect

70
MATS Centre for Distance and Online Education, MATS University

Notes parameter order. Resource management errors allocate or free system

resources (e.g., memory, file handles or network connections)

inappropriately. Race conditions or deadlocks are caused by timing

and synchronization faults in concurrent systems. Different types of

faults show unique patterns related to the detection and prevention

methods. There are different dimensions along which faults can be

characterized, which helps prioritize detection and correction efforts.

Severity explains the impact of the fault if triggered, with the lowest

levels dealing with cosmetic stuff and the highest levels regarding

catastrophic system failures. Complexity describes how hard it is to

find, understand, and fix the fault — some faults simply require some

plain-vanilla coding error and some arise from subtle interaction

between many components. If you submit multiple tickets, they could

manifest in different ways based on timing, resources available and

other variables. Age is a signal of how long a fault has been present in

the codebase; older faults tend to become more entrenched, and

possibly more difficult to correct, as surrounding code changes around

them.

That means even if a fault is present in the software, it may not lead to

observable incorrect behavior during operation. Most faults remain

dormant forever since the conditions required to invoke them never

actually happen in use. For example, a division-by-zero fault in an

infrequently used calculation can be present without causing visible

trouble if the divisor never equals zero during normal operations. Other

bugs could be present in error-handling code that is invoked only when

abnormal conditions occur. Relationship between faults and observable

incorrect behaviour is complex — a single fault can lead to multiple

distinct failures in different scenarios and some failures may arise from

multiple faults interacting that individually would not lead to incorrect

behaviour. These conditions are a central part of the fault activation

model which defines when latent faults become observable failures. In

order for a fault to result in a failure, some execution must reach the

location of the fault and establish a state which causes the fault's

effects. Both of these dimensions must be explored: reachability: The

erroneous code must be executed; necessity: The program state must be

such that the fault affects the results of the computation. Test case

design techniques like equivalence partitioning and boundary value

analysis generate conditions that will maximize the chances of

71

Notes activating a fault, and the code coverage metrics help make sure the test

sufficiently activates fault locations. Knowledge of how activation

conditions work allows testers to design better test cases, and enables

developers to use defensive programming techniques that stop faults

from becoming failures — even if they exist in the code. The

prevention, determination, and elimination of faults are major goals of

software quality assurance processes applied throughout the

development lifecycle. Requirements reviews discover ambiguities and

inconsistencies ahead of time to prevent implementation faults. Design

reviews assess architectural decisions with respect to quality attributes

as well as validate the interface specifications prior to the actual coding.

Pattern matching and formal verification techniques help identify

potential faults without executing the software, used in code

inspections and static analysis tools. In dynamic testing we set up

execution environment for the software to run under controlled

conditions in a hope to induce faults and see the effects. They draw their

minds lined to faults in varying stages of development, and all are

designed to identify and eliminate those faults before they can escalate

into operational failures.

When software runs and presents behavior that doesn't meet

requirements or expectations we call it a failure. From a conceptual

perspective, faults are static defects present in software artifacts, while

failures are dynamic manifestations that happen at runtime as a fault is

activated under specific input conditions, system state, or

environmental conditions. Failures take the form of observable

incorrect behavior—returning incorrect outputs, taking incorrect

actions, breaking security constraints, being slow to perform, or

crashing completely. A failure is a definitive occurrence of incorrect

behavior during execution, as opposed to a fault, which can be thought

of as the potential (the possibility) of the incorrect behavior. Failures

can be described by a set of qualities that guide how to manage and

treat them. Visibility refers to how apparent a failure is to users

immediately, or whether it fails silently in background operations.

Field timing shows whether this failure is consistent or sporadic;

sporadic failures are usually more difficult to reproduce and diagnose.

Impact specifies what would happen to the user, business processes, or

system’s integrity—a little inconvenience, data corruption, etc.

Recoverability is the ability to return to a normal, working state after a

72
MATS Centre for Distance and Online Education, MATS University

Notes failure (which may range from a simple restart of a process or service

to a complex data restoration mechanism, depending on the causes and

tools in place to prevent them). There is not a one-to-one mapping

between faults and failures — a single fault can lead to a variety of

different failures depending on context of execution, and multiple faults

can interact in ways that produce failures that cannot be triggered by

just a single fault. Such failures can be apparent immediately after the

conditions for causing them are met, or they may surface later or in

unrelated system functions — hyperscience diagnostic puzzles. The

key here is understanding how all of these are interrelated so you can

create relevant debug strategies that take the eye off the symptom of

the fire to the sources in the bottom. Beyond this generic

understanding, there are also defensive programming techniques aided

by the explanatory mechanism that makes software more robust. FMEA

(failure modes and effects analysis) offers a systematic way to locate

potential failures and their effects on how the system operates. This

method systematically analyzes components to understand how they

could fail, what impacts those failures would have on the behavior of

the system, how severe those impacts would be, and what mechanisms

might be in place to detect or prevent the failures themselves. FMEA

was initially developed for hardware systems; however, FMEA has

since been adapted for software engineering to proactively identify

critical failure scenarios before they arise in operation. Design stage

failure analysis enables redundancy and graceful degradation

mechanisms are also developed at that point to ensue faults do not lead

to catastrophic failures, as well as ensures comprehensive error

catching and error handling.

All deployed software systems require some quality management —

failure detection and failure reporting mechanisms are key elements of

it. Monitoring systems track application activity in real time, checking

it against expected norms and notifying operators of departures from

the baseline. Logging frameworks provide logs of execution events and

state information that helps with forensic analysis in case of failures.

Crash reporting tools automatically collect contextual information

when applications crash, making it easier for developers to reproduce

and diagnose the root causes of such crashes. Some failures are

subjective in nature or in use cases that the automated systems have not

had the opportunity to cover-your users should have channels for

73

Notes providing feedback on these types of failures. All of these serve to

allow high speed detection and action for failures in production

environments. Errors, faults and failures are not created equal, nor do

they occur in isolation from each other — the causal relationship

between them is developmental, tracing the path from concept to

manifestation of software problems. This progression usually starts

with a human error like misunderstanding, oversight, or mistake during

development activities. This error, if not detected, causes a fault to a

software artifact, such as the requirements, design documents, or

source code. When the software runs with an input that stimulates the

fault conditions a failure is manifested as some observable incorrect

behavior. This cause and effect chain, called the error-fault-failure

model, gives us a way to think about how defects arise, become

embedded in software, and, eventually, affect system behavior from a

user viewpoint. The error-fault-failure transition model has important

practical implications about quality assurance strategies across the

software development lifecycle. Early-stage activities are properly

focused on how to be error free; how to do this when information is

clear, training is deep, knowledge can be managed well and

collaboration is the order of the day with peer checking and line of best

fit for different ideas. Isolation of defects is implemented on mid-stage

of the process by checking reviews of each artefact due to inspection

and static methods that find defects before the software code is

executed. In later-stage activities, dynamic testing with various inputs

is used to detect inappropriate behavior as a result of a latent fault that

was not identified in earlier checks. This multi-phased process tackles

quality at every step of the defect lifecycle, resulting in a higher

probability of delivering fit-for-purpose software. As problems advance

through this causal chain, relative costs of correcting errors, faults, and

failures increase geometrically. Correcting an error at its source — at

the point where a misunderstanding or oversight first occurs — usually

costs very little in the way of time and effort, as you may just be

clarifying requirements or revising a design decision prior to the start

of implementation. Finding and correcting a defect introduced in

artifacts requires much more work to locate the defect, comprehend its

impact, correct it and validate that the repair has taken effect.

Mitigating a failure when it is discovered during operation comes with

the highest price tag, from diagnosis of the failure, finding the fault,

74
MATS Centre for Distance and Online Education, MATS University

Notes fixing it, validation of the fix, shipping the update, and potentially data

recovery or compensation to affected users. This increase in cost

illustrates the economic benefit of early detection and preventive

measures.

Defect prevention practices seek to disconnect the error-fault-failure

cycling as soon as possible by minimizing human errors during

develop- ment. Formal methods apply tools of mathematics to formally

specify requirements and to get a proof that the design satisfies those

specifications, removing ambiguities that render misinterpretation

possible. Two iterative programming techniques, pair programming

and collaborative development practices, leverage peer review in the

implementation phase to detect errors as they arise before they can be

assimilated as faults. The cognitive load that contributes to error rates

is reduced by design patterns which offer proven solutions to common

problems. Automated tools like code generators, linters, and type

checkers help to detect potential problems as the developers are

working, giving instant feedback, allowing for the problems to be

corrected prior to the mistakes becoming more cemented faults.

Verification activities in general are geared towards detecting and

eliminating faults prior to when they could lead to operational failures.

Static verification is a means to examine the software artifact without

executing it and without any deployment or running of the system

IP/software, adopting techniques such as software inspection, software

review, and static analysis. Static analysis automates the process to

uncover bugs by recognizing patterns and defining the rules of

elimination based on formal proofs and other formal logic principles.

Dynamic verification is achieved by executing software in a controlled

environment and comparing its actual behavior with expected behavior

to identify deviations from the expected results that a fault may

indicate. These complementary approaches target distinct classes of

errors: static verification is effective at identifying structural aspects of

the software that are incorrect or at least questionable (including

common patterns of errors), while dynamic verification can identify

behaviors that do not manifest until execution. Combined, they provide

overall fault detection capabilities that make failures in delivered

software very unlikely. Validation activities are concerned with whether

the software meets user needs and expectationsthe relationship between

requirements and observable behavior (as opposed to the presence of

75

Notes a particular fault). User acceptance testing, beta testing, and usability

evaluation are performed using actual or representative users of the

product who interact with the software to observe gaps between users

requirements and functionality of system. Such activities may discover

requirements errors that were introduced and propagated throughout

development—which is to say, times when the software is correctly

implementing requirements, but the requirements did not accurately

convey user needs. Validation complements verification by checking

if the software indeed solves those problems, regardless of it being

technically correct.

Defensive programming techniques are intended to eliminate failures,

even if the buggy code exists. Input validation checks are used to verify

that input data meets specific expected constraints before processing it

to ensure that invalid inputs do not trigger fault conditions. Error

handling mechanisms handle exceptions and other unusual situations,

implementing graceful recovery strategies instead of allowing failures

to propagate. Assertion statements validate assumptions in a running

program, throwing an explicit failure if a condition is violated instead

of returning to an invalid state that could lead to nondeterministic

execution. These techniques together improve software robustness (i.e.

their ability to contain the effects of faults) as they allow a system to

continue performing correctly (albeit at a reduced capacity) when one

of its components contains a defect. Failure analysis processes examine

operational incidents to understand root causes and avoid recurrence.

Root cause analysis collects failure symptoms and retraces them

through paths of execution to discover the fault that caused the failure,

then continues on to explain why that fault was introduced and why it

escaped detection during development. Whereas corrective actions

remedies the specific fault to resolve the immediate problem,

preventive actions modifies the development processes in an effort to

prevent the fault from occurring again. Focusing on both the correction

of one-time issues and the prevention of future ones leads to a learning

cycle that advances the quality of each piece of software, as well as the

process of development itself. Post-mortem reviews, five-whys

analysis, and fishbone diagrams are techniques that structure these

investigations so that technical origins and organizational factors alike

are thoroughly explored. We look at software failures from a

quantitative perspective — failures are statistical events, not just

76
MATS Centre for Distance and Online Education, MATS University

Notes deterministic events — as do other software reliability engineering

(SRE) practices. Reliability models are used to predict failure rates

from historical data and complexity measures, allowing for an objective

evaluation of software quality and release readiness. Mean time

between failures (MTBF) or similar metrics define operational

reliability in user and business stakeholder relevant terms. Reliability

growth models show how failure rates decrease over time as faults are

found and fixed during testing and early deployment, and use that data

to project future reliability based on past behavior. The quantitative

assessment methods described in this handbook complement

qualitative assessment, providing a more objective basis for release

decisions and quality management.

Roughly speaking, the distribution of errors, faults, and failures in

software components follows a few recognizable patterns that can

inform quality assurance strategies. Defect clustering is a phenomenon

named because empirical studies have shown (time and time and time

again) that the vast majority of faults typically reside in a tiny fraction

of the components. Usually this clustering has some relation to criteria

like complexity, size, frequency of changes, dependency relationship,

etc. This approach allows organizations to direct their quality

assurance resources more efficiently by having stricter verifications for

high-risk components that have evidence of more errors based on the

metrics and data they possess. TAQA’s risk-based approach ensures the

targeted allocation of quality investments by focusing effort in the areas

that impact overall system reliability the most. This error-fault-failure

cycle can also be observed in maintenance activities, where similar

dynamics affect software’ evolution. When developers misinterpret

existing code behavior, misread requirements for changes, or overlook

dependencies between components, these mistakes happen. As errors

propagate down to faults due to changes, it potentially reaches a point

where it causes previously working functionality to fail, or a regression.

It leverages change impact analysis to pinpoint impacted regions in the

system, so we can focus the regression testing on finding those failures

before they reach clients. Configuration management efforts enable the

reversal of changes by preserving historical information about changes

to configuration — essentially a change log, which can become useful

for fault diagnosis in the event of a failure after a change: we can

compare our configuration to what we had previously. Security

77

Notes vulnerabilities are a unique class of error-fault-failure trait, possessing

their own behaviors and implications. "Security errors are failures to

consider potential attack vectors, known threat models, or to develop

appropriate protective measures during development. These errors take

the form of security faults — software vulnerabilities that can be

exploited by malicious actors. When these vulnerabilities are exploited

the security failures that occur include unauthorized access, modified

data, data loss, the denial of service to users, etc. In security as a domain

the focus is really on prevention with things like secure coding

principles, threat modeling approaches and security requirements

augmented by special testing techniques like penetration testing and

fuzzing that seek to force security failures in controlled ways before an

attacker can force them in production. In distributed systems, where

components are aged on network boundaries and have rendezvous

visibility (limited knowledge of internal states), the relationship

between errors, faults, and failures is much more complicated. In these

scenarios, partial failures where some of the components will fail and

others will continue operating leads to difficult diagnostic scenarios as

the system tries to operate even with degraded capabilities. Graceful

degradation techniques like redundancy, replication and circuit

breakers strive to ensure that failures remain confined to a single

component and do not propagate throughout the system. Observability

tools expose information about how a distributed system is functioning

by gathering metrics, logs, and traces across component boundaries to

aid in diagnosis when things do fail. These approaches are based on the

idea that failures are inevitable in complex distributed systems and

focus on resilience instead of trying to eradicate all faults.

For machine learning systems it is also important to understand that

they face some special challenges of the classic error-fault-failure

framework because machine learning has mostly probabilistic and data-

driven behavior. Mistakes in these systems typically include poor

algorithm selection, insufficient feature engineering, or improper

training data curation. These errors appear in the model as model errors

like underfitting, overfitting or biased predictions. In production use,

this would be referred to as a failure — when a model makes an invalid

prediction or classification, and in domains like healthcare, finance, or

autonomous systems, this failure may have critical implications.

Standard testing methods fall short of the needed confidence in ML

78
MATS Centre for Distance and Online Education, MATS University

Notes systems, calling for distilled attention to techniques such as, but not

limited to, data validation, model validation, and concept drift

monitoring, to ensure adequate ongoing operation. MLOps (machine

learning operations) is the maturing of the possibility of aligning

practices associated with constantly focusing on the soft engineering as

it applies in the machine leaning world. For software systems that last

for long periods of time, the relationship between these three concepts

(error, fault, and failure) is substantially more complex when the time

dimension is considered. Some defective behaviors lie dormant for long

periods of time before failures are triggered, requiring rare conditions

or data patterns that are not exercised in the testing ramp, to be

activated.] Other faults develop gradually as external conditions shift

— in other words, as data volumes increase beyond levels anticipated

at design time, as application usage patterns change, or as external

dependencies are altered. In a time-delayed failure, diagnosing the

failure is particularly difficult as the link between the failure and the

initial cause may be hidden behind the events that take place before

failure occurs. Long-term monitoring, comprehensive logging, and

robust change management practices are important over time to ensure

we maintain enough traceability to diagnose these problems when they

do rear up. The terms error, fault, and failure differ slightly in meaning

depending on the specific standard, methodology, or organization,

which can create confusion when discussing software quality. Formal

definitions of these terms can be found in the IEEE Standard Glossary

of Software Engineering Terminology (IEEE 610.12) with terminology

and concepts aligned to those discussed here, while different

terminology is used in other standards like ISO/IEC/IEEE 29119 for

software testing to express similar concepts. Some quality management

methods use the term "defect" as an umbrella term for faults and

failures; others differentiate "bugs" (implementation faults) from

"defects" (any deviation from a requirement, some of which are caused

by errors in requirements). Notwithstanding these nuances, this basic

practical causal nexus among human error, software issues, and

operation issues is a stable element across the various terms.

The management of error comes from the psychology that has a very

pivotal part in rightly managing and maintaining the quality of software

in the organizations. Cultures that blame individuals and look to see

who to pin mistakes on in general, force errors underground with team

79

Notes members afraid to report problems because of potential fall out.

Conversely, just cultures appreciate the difference between accidental

error versus negligent behavior and therefore provide the psychological

safety to report mistakes but hold individuals accountable to

professional norms. The key here is that blameless post-mortems take

bad incidents and use them as constructive learning experiences,

removing punishment or blame and encouraging open dialogue of

what went wrong or how to avoid repeating the same mistakes in the

future. Cultural factors have a significant impact on organizations'

ability to learn from mistakes and develop systems to prevent them

from recurring. In Summary, Cognitive biases influence developers and

testers perception and response to errors, faults and failures at various

stages of development. When evidence is ambiguous, confirmation bias

means people will interpret events in ways that confirm their

preconceived notions of how the code functions, and that can lead them

to miss signs of faults that conflict with how they think code should

behave. Developers are generally overoptimistic and underestimate the

odds of errors within their very own work, thus reducing the attention

given to verification tasks. Availability bias diverts attention away from

less common fault categories, focusing technicians on those they have

already seen or recently. By knowing these cognitive leanings,

organizations can better plan reviews, testing, and quality assurance

that balance natural human predispositions. How we communicate

about errors, faults, and failures matters a lot to our quality outcomes.

Defining such terms allows teams to talk about quality issues clearly —

minimizing miscommunication about what the issues are and how

serious they are. Standardised defect reporting formats guarantee

collection of essential information for efficient diagnosis and

resolution, such as reproduction steps, expected and actual behavior,

and environmental context. Having regular defect triage meetings can

help cement this understanding of prioritization and resolution of

issues. In this way, feedback loops send the lessons learned from

failures back to the previous stages of development, allowing

continuous improvement of the practices of preventing errors and

detecting faults. When quality problems become palpable, effective

communication changes the conversation from one that pertains to

individual actions to organizational learning. However, tooling support

for error, fault, and failure management has greatly advanced with more

80
MATS Centre for Distance and Online Education, MATS University

Notes recent development practices. Integrated development environments

offer developers real-time feedback on potential faults as they write

code, allowing many problems to be fixed on the spot. To identify

possible faults, static analysis tools conduct advanced examination of

code using pattern matching as well as control flow analysis. Dynamic

analysis tools instrument the executing code to find memory leaks,

race conditions, and other runtime problems that could lead to failures.

Defect tracking systems are use to record and manage information

regarding known faults and failures, assists in prioritization,

assignment, and verification tasks. These tools assist humans in

identifying and addressing quality-related problems throughout the

design lifecycle.

There are certain practices in modern development methodologies to

address errors, faults, and failure at different levels. Agile approaches

support frequent interaction between developers and stakeholders to

clarify requirements to avoid the cost of the incorrect requirements

propagating through development. Continuous integration practices

use the automatic build and test of code changes to quickly catch any

problems that being introduced into the code base before they are

buried deep within it. DevOps practices are about automating this even

further, through deployment and adding monitoring and observability

tooling to immediately surface failures in production systems. Another

approach to reliability is site reliability engineering (SRE), which

defines error budgets and reliability targets that formalize acceptable

failure rates, recognizing that there is such a thing as perfect reliability

— it just doesn’t exist, and deciding when enough is enough can help

teams balance their development of features with quality improvement

activities.

Effective test strategies rely on the relationship quality assurance

activities have to the error-fault-failure chain. Unit testing focuses on

single pieces where a good number of bugs are generally introduced,

thus catching bugs early on in the implementation process. Notably,

integration testing also facilitates checking the interactions between

components, as errors are likely to occur between interfaces due to team

members failing to understand each other. System testing tests

whether the end-to-end behavior satisfies the requirements, which may

expose requirement errors that were hidden when the components not

integral. Functional testing in the actual conditions in which a sensor

81

Notes must operate can induce faults that occur only in particular

environmental conditions. This progression of testing activities makes

sense when you consider how software defects evolve over time, and

each testing level tackles the error-fault-failure chain in the software.

The economic impacts of the path from error to fault to failure have

been widely researched, showing consistently that errors that become

faults, become failures with exponential increases in defect costs as

development progresses. Quantification of these relationships has been

performed by several organizations including IBM, TRW, and NIST,

and have shown a 5 to 10 ratio for defects fixed during requirements or

design phase as opposed to the same defect being fixed in the field

following release. These studies give some empirical support to

investing in early error prevention and fault detection activities as the

investments tend to result in net-positive pay offs through

rework/recovery costs avoided. Organizations can benefit from

understanding these economics and helped make better investments in

quality assurance and process improvements to address defects where

it is most cost-efficient. Risk management techniques utilize

knowledge of chain of error-fault-failure to better target quality

assurance where it is most effective. Risk identification takes into

account both the likelihood of failures happening, as well as the

consequences of those failures for users, business operations, or other

stakeholders. When it comes to critical parts, with catastrophic failure

repercussions, testing is much more strenuous than in less essential

components. The approach is risk-based and takes into account that

quality assurance resources are limited while aiming to deploy these

resources strategically to avoid extensive consequences of major

failure rather than trying to remove all faults, regardless of its

significance. Reviewing risk periodically makes sure that quality

efforts align with evolving system characteristics and business

priorities. Software engineering is part of a rapidly changing

environment that continues to change the nature of errors, faults, and

failures. Reduce implementation errors by abstracting complex

technical details would introduce new fault categories related to their

own constraints and assumptions. DevOps practices speed up the

feedback loop between development and operation, making it possible

to find and fix failures faster, though also accelerating the introduction

of new faults through change. One approach is to leverage artificial

82
MATS Centre for Distance and Online Education, MATS University

Notes intelligence techniques that can automatically identify potential defects

through pattern recognition and historical data, and even subtle issues

that would go undetected by human reviewers; these efforts are

developing methods based on an ever-strengthening appreciation of

how software defects are created, introduced, and experienced by users.

Outcomes are out of control, and we will explain this issue. While

some errors may arise when human cognition comes up with incorrect

results while developing artifacts, if they are not detected and corrected

would be called as faults in an artifact. A fault is an residual

imperfection of software, and can cause a failure to occur while the

software is executing for a certain input/output state. This causal chain

furnishes a model for understanding the lifecycle of software defects,

from their inception to their appearance, and types of quality assurance

which effectively address the problems at each stage of this process.

Recognizing and relating these concepts can enable software

professionals to describe quality concerns more accurately, thereby

applying better prevention and detection measures to those concerns,

as well as to build more reliable software systems that will serve their

purposes better.

Summary:

Module 1 introduces the fundamental concepts of software testing,

emphasizing its importance in ensuring the quality and reliability of

software products. It begins with the definition of software testing as

the process of evaluating a system to detect and fix defects. The module

also explains the Software Development Life Cycle (SDLC),

highlighting how testing fits into each stage from planning to

maintenance. Various types of testing, including manual, automated,

functional, and non-functional, are outlined to show the range of testing

approaches. Additionally, the module covers different levels of

testing—unit, integration, system, and acceptance—each targeting

specific phases or components of the software. Overall, the module lays

the groundwork for understanding how testing contributes to delivering

error-free and efficient software solutions.

Multiple Choice Questions (MCQs)

1. What is the primary objective of software testing?

a) To find bugs

b) To improve performance

83

Notes c) To add new features

d) To make software expensive

(Answer: a)

2. Which of the following is NOT a level of testing?

a) Unit Testing

b) System Testing

c) Hardware Testing

d) Integration Testing

(Answer: c)

3. The V-Model of SDLC is also known as:

a) Verification and Validation Model

b) Waterfall Model

c) Agile Model

d) Spiral Model

(Answer: a)

4. Manual testing is performed by:

a) Automated scripts

b) Human testers

c) AI systems

d) None of the above

(Answer: b)

5. Which type of testing ensures the system meets business

requirements?

a) Unit Testing

b) System Testing

c) Acceptance Testing

d) Integration Testing

(Answer: c)

6. Which of the following SDLC models is iterative?

a) Waterfall

b) Spiral

c) V-Model

d) Big Bang Model

(Answer: b)

7. What is the key difference between error, fault, and failure?

a) Error is a human mistake, fault is in the code, failure is at

runtime

b) Error is in the code, fault is in testing, failure is in design

84
MATS Centre for Distance and Online Education, MATS University

Notes c) Error, fault, and failure mean the same

d) None of the above

(Answer: a)

8. In which level of testing is individual module testing performed?

a) Unit Testing

b) System Testing

c) Acceptance Testing

d) Integration Testing

(Answer: a)

9. Agile testing is performed in:

a) Phases

b) Iterations

c) Only after development

d) None of the above

(Answer: b)

10. Which of the following is an automated testing tool?

a) Selenium

b) Notepad

c) MS Word

d) Paint

(Answer: a)

Short Answer Questions

1. What is the purpose of software testing?

2. Define Unit Testing and its significance.

3. What are the key phases of the Software Development Life Cycle

(SDLC)?

4. Differentiate between manual and automated testing.

5. What is the role of system testing in software development?

6. Explain the Agile model in the context of testing.

7. What is Integration Testing and why is it necessary?

8. Differentiate between error, fault, and failure in software testing.

9. What are the advantages of automated testing?

10. How does Acceptance Testing help in software development?

Long Answer Questions

1. Explain the importance and objectives of software testing in

software development.

2. Discuss different Software Development Life Cycle (SDLC)

models and their testing approaches.

85

Notes 3. Describe the different levels of software testing with examples.

4. Compare and contrast Manual Testing and Automated Testing with

examples.

5. What is the V-Model in SDLC? Explain how testing is performed

in this model.

6. How do errors, faults, and failures impact software quality? Provide

examples.

7. Describe the role of Agile Testing in modern software development.

8. Explain how Integration Testing is performed and its importance in

software projects.

9. What challenges are faced in System Testing and how can they be

overcome?

10. Discuss Acceptance Testing with real-world examples and its

impact on software delivery.

86
MATS Centre for Distance and Online Education, MATS University

MODULE 2

TESTING PROCESS AND LIFE CYCLE

LEARNING OUTCOMES

• To understand the software testing process, including

requirement analysis, test planning, test design, test execution,

defect reporting, and closure.

• To explore different levels of testing, including unit testing,

integration testing, system testing, and user acceptance testing

(UAT).

• To examine test documentation, including test plans, test case

design, test scripts, and test reports.

• To analyze the defect life cycle from defect detection to closure.

• To develop effective test cases using various test case design

techniques.

87

Notes Unit 5: Testing Process

2.1 Testing Process: Requirement analysis, Test planning, Test

design, Test execution, Defect reporting, and Closure

The process of software testing includes several organized, methodical

steps that all contribute to providing software applications with the

quality and reliability required for use by end-users. This optimal flow

not only contributes to the delivery of high-quality software that aligns

with stakeholder needs and exhibits reliability across different

perspectives but also sets the stage for a systematic approach to

software creation where each phase leverages the previous one in a

synchronised process. The arms of this process uncover flaws but also

reveal information that gives insight into how the software functions,

reacts and meets requirements. As such, requirement analysis provides

the basis on which the testing process is built as no test activity can

begin without an agreed parameter of what the software should do. In

this initial phase of the testing process, for example, testing teams

scrutinize the software requirements specification, user stories, use

cases, business rules and any other documentation that will give them

an understanding of how the system is meant to work. Its main purpose

is to define what should be tested according to the requirements

defined in the documentation and to identify ambiguities,

inconsistencies, or gaps which could influence the testing effort. This

analysis has two functions, the results can inform what is tested next,

and it provides feedback to the developers about issues in the

requirements, which if caught early enough, can prevent more

expensive defects in the rest of the development lifecycle. To be able to

analyze requirements effectively, a tester needs to think critically and

challenge assumptions and consider possibilities that have not been

covered in the documentation. Testers need to assess every requirement

for its testability and that it is, Specific, Measurable, Achievable,

Relevant, and Time-bound — core characteristics also known as

SMART. If requirements do not have these properties, they may

require repeated clarification before effective tests can be devised.

Analysis is often conducted in direct collaboration with business

analysts, product owners, developers and other stakeholders to clarify

ambiguities and reach consensus about what the software should do.

This collaborative approach helps bridge the gap between business

88
MATS Centre for Distance and Online Education, MATS University

Notes expectations and technical implementation, reducing the risk of

misalignment between user expectations and software deliverables.

A key component of this phase is requirements traceability, where a

clear connection is made from requirements to the test cases that will

verify them. These relationships are documented in traceability

matrices or similar tools, providing visibility that every requirement is

covered by at least one test case and every test case has direct mapping

to a specific requirement. Mapping allows for analysis of the coverage

of every set of test cases, prioritization of testing based upon criticality

of a requirement, impacts analysis in case the requirements change, etc.

For regulated industries or mission-critical applications, requirements

traceability is often required for regulatory compliance purposes, as it

gives assurance to the assessor that all required functionality has been

sufficiently tested. In these less regulated environments, however,

traceability can improve project visibility and aid in showing

stakeholders that the testing was comprehensive. While analyzing the

requirements, testers also start determining the types of testing required

to completely validate the system. Functional requirements often

require testing specific features to ensure the software works as

expected under both normal and exceptional circumstances. Quality

attributes besides functionality are constrained by non-functional

requirements—performance, security, usability, or reliability

expectations, for example—and they govern specialized testing

strategies. Regulatory or compliance requirements may add extra

testing needs specific to the industry or application domain. By

identifying these various testing needs early on, teams can ensure that

proper expertise, tools, and environments will be on hand when it

comes time to test. Upfront requirement analysis forms the bedrock for

all that follows in terms of testing, leaving a lasting impact on the

efficacy of the overall testing process. As the next stage in the series of

software testing life cycle, test planning is established, where the

analysis of the requirements acquired are analysed and translated into

a structured approach defining how the testing process will be

conducted. Planning Testing Phase: Defining the overall test strategy,

scope, objectives, resources, schedule, and deliverables for the testing

activity The creation of a test plan is the deliverable of this critical

phase—a detailed document that outlines how testing will be

approached and is shared with stakeholders. The trick of planning tests

89

Notes well enough is to exercise due diligence without getting into overkill

territory, it is important to assert a level of coverage for important

functionality, compounded by the realities of time, budget, and the

resources afforded to every project ecosystem.

The first step of the test planning process is to define the goals of the

testing, including the overall objectives that are in line with the larger

project goals and quality expectations. These goals articulate what

success looks like for the testing work — finding defects, confirming

compliance against requirements, performance under load, security

hardening, etc. Test scope defines the in-scope and out-scope of testing

that helps in providing boundaries to prevent over exploitation of

resources and manage expectations. Risk analysis is important in this

scoping process, identifying potential failure points or areas where

defects would have a bigger impact. Since only some amount of testing

can potentially be done, a risk-based approach helps to structure what

testing is performed to ensure that high-risk functionality is verified

with greater thoroughness than less critical aspects if time or resource

limits mean everything cannot be tested exhaustively. Another key

component of test planning is resource planning, which specifies the

people, environments, tools, and infrastructure required to successfully

implement the testing strategy. These include determining the skills

necessary for various testing tasks and assigning task members or

scheduling for additional resources as necessary. Test environment

requirements define the hardware, software, network settings and data

necessary to perform tests that mirror the production environment

accurately. Tool selection evaluates what automation, management, or

reporting tools will facilitate the testing effort while weighing the

benefits of specialized tools versus their cost and learning curve. By

aligning capabilities well in advance with testing needs through careful

resource planning, bottlenecks and delays during test execution are

avoided. Planning creates a test schedule, which aligns testing activities

with the overall project timeline, and sets specific start and end dates

for different phases of testing. It takes into account dependencies on

other project activities (e.g., when builds will be available for testing

or when environments will be available) and allocates time for the

design, execution, defect resolution, and retesting of tests. Entry and

exit criteria clearly state what must be satisfied before we will start

testing (e.g., build quality thresholds, environment readiness) and what

90
MATS Centre for Distance and Online Education, MATS University

Notes must be satisfied before we can say testing is complete (e.g., test

coverage targets, maximum acceptable defect densities). The objective

criteria used as quality gates throughout the development process can

also help prevent prematurely moving forward to the next stage of

development before issues are fully resolved. In planning, the roles and

responsibilities of the various individuals participating in the testing

process are defined, creating the communication channels required

during the testing process and providing escalation paths for problems

found in testing. The plan sets forth the protocols for reporting,

tracking, and managing defects through resolution, including

classification of severity and priority that drive response times and

order of resolution. People determine how testing work/reports will be

reported to the different stakeholders. Test planning allows such a

systematic approach to organizational issues, thus creating a structured

background that supports effective collaboration of testing with all

other project participants during the testing process.

Test design translates the what and how defined during requirement

Analysis and test planning into specific tests that will be executed

against software. This is a work on test cases and procedures that can

confirm the software runs as expected and meets specified requirements

under expected conditions — otherwise known as being functional. In

summary, Test design tries to provide maximum coverage, reduced

redundancy by coming up with wound up test cases that exercise all

relevant components of the system while minimizing the redundancy

of testing one component multiple times. Good test design addresses

the trade-off between the breadth of coverage across different

functionality that is likely to be touched through an iteration and the

depth of testing done within each area of functionality, where more

heavyweight test approaches are applied to more complex or critical

features, and lighter-weight approaches applied to simpler or lower-risk

components. In most practical test design processes, the identification

of test conditions, i.e. the what (specific, scenarios/situations) to be

tested which is usually? These conditions are the different ways this

software might be used, the different inputs it will get, the different

states it might be in, the different environments it may have to run in.

Testers use these testing scenarios to write up detailed test cases that

outline exactly what conditions need to be set, what inputs need to fed

in and what outputs are expected, and what prerequisites need to be

91

Notes made in order for tests to be executed. 105 Well-written test cases are

crisp and unambiguous, ensuring that we have enough information to

execute them repeatedly to the same conclusion and can be changed as

software does. Different test design approaches are available to ensure

functional and requirement coverage. In equivalence partitioning, the

possible input values are divided into groups or "partitions" that are

handled in the same manner by the software; this makes it possible to

choose a value for testing from each group, rather than test all input

values. Boundary Value Analysis tests the edges of these partitions

where defects are likely to occur due to incorrect processing of

minimum, maximum or transition values. Decision tables are used to

document complex combinations of conditions and the expected

corresponding actions. State transition testing is a dynamic testing

technique that focuses on analyzing the sequence of states that the

application goes through based on certain input events.

For more complex test cases, use case testing group your testing into

end-to-end workflows, simulating how users would interact with the

system to achieve certain goals. This ensures that we’re not just testing

isolated bits of functionality, but that they work together to deliver

meaningful user journeys. Exploratory testing serves as an excellent

complement to these structured approaches, as it allows testers to

actively explore the application and its behavior based on their

knowledge and intuition to identify potential problems without

following strict steps. This combination of using a high-level,

structured approach that can ensure coverage and an exploratory

approach that will help find bugs because it is not as constrained by a

plan, ensures coverage, whilst also utilizing the creativity of humans to

discover bugs that may never have been planned for. The preparation

of test inputs forms a crucial component of test design, creating the data

sets that are necessary to execute tests. This includes mutating both

valid data that should be processed, correctly and invalid data that

should be rejected or otherwise handled as exceptions. The test data

should provide coverage of different scenarios such as common usage

patterns, edge cases, boundary conditions, and error conditions. For

production data used in testing environments, this might involve

anonymizing or masking the data for privacy reasons, which some data

privacy regulations or business requirements may require. In

performance or load testing scenarios, the amount of test data may also

92
MATS Centre for Distance and Online Education, MATS University

Notes be crucial as they will try to replicate realistic usage patterns at large

scale. Test data is purposefully created data that allows us to test our

code effectively by allowing us to check the code with different test

cases that mimicks the real world use case. During the test design, the

link between the requirements and the test cases gets constantly

updated, making sure that no requirement has been left uncovered by

suitable tests and that all the test cases fulfill a certain verification need.

Bidirectional traceability preserves test coverage as requirements

change, indicating when new tests are required or when existing tests

may no longer be relevant due to the modification of requirements. Test

Automation: In automated testing contexts, the process of test design

also involves deciding which test cases are suitable candidates for

automation and writing the scripts, or code, that will perform these tests

programmatically. The product of the test design phase is a

comprehensive suite of tests developed using systematic design

techniques, with clear traceability back to requirements, which serves

as the foundation for the test execution activities that follow.

Execution of the tests is the operational stage of test process, during

which the plans and designs are put into action, which is done by

running tests against software. In this phase, testers execute the steps

defined in test cases, provide inputs according to what is specified in

test cases, and compare the actual system behavior against expected

results to uncover any discrepancies, which indicate defects. Test

execution can be manual, where human testers interact with the

application and perform test actions, or automatic, where scripts or

tools automate actions that mimic user inputs, or both, based on the type

and strategy of tests. In this phase, the main purpose is to verify

software functionality and the quality characteristics consistently and

document the behavior deviance from expected behavior, for

investigation and resolution. The preparations step includes proper

setup and validation of the test environment before executing the test at

scale, and to do this, we need to ensure the environment will reflect

production as closely as possible. This includes installing the right

versions of the application under test and all dependent systems,

configuring the environment according to certain parameters, and

loading the required test data. Seeing just seeing that everything and

environment will not cause undos that would look like application

sacrifices. Such cautious setup allows the test results to faithfully

93

Notes represent the behavior of the software under test and not

misconfigurations of the test environment. During test planning phase,

test cases are prioritized based on the critical functionality or high risk

areas. We often run some smoke tests or build verification tests to check

if the build is not so broken that further testing would be a waste of

time. Once stability is confirmed on the basic level, testers run the full

test suite and in the specified priority. During implementation, testers

record the results of each test in detail whenever it does not match the

expectations (pass or fail). Such detailed documentation establishes an

audit trail that proves testing completeness and gives background

information for any defects found. Testers executing the test, generally

come across such situations which are not dealt in the predefined test

cases especially during exploratory testing, or while investigating the

unexpected behavior of the system in question. These scenarios

necessitate testers to exercise their intelligence and make a call on

whether the behavior in question qualifies as a defect, or an

undocumented yet acceptable aspect of the system's functionality. This

investigative component of test execution demonstrates the value of

some experience among testers who can spot subtle issues that might

not lead to the active failure of test cases, but could impede users in

production. Careful execution of planned tests and exploratory

investigation of unplanned behavior can be decorated into effective

test execution, making the best use of the tests executed to achieve as

many meaningful defects identified as possible within limited (human)

resources. Test Execution Metrics are the metrics that help Reporting

the progress of testing as testing moves forward. Because it measures

the tests planned versus what has been executed, and the coverage of

requirement tested versus completed in the same dimension, Coverage

metrics. Defect metrics measure how many and how severe the issues

are that are found and use trend analysis to evaluate whether quality is

improving or declining over time. These metrics allow data-based

decisions regarding when to keep testing, when to release code, or when

to backtrack some additional work before testing again. These metrics

provide regular status reporting to stakeholders throughout the testing

process, helping them to understand the state of testing progress and

any high priority issues discovered, and weave timely development

decisions regarding project direction based on objectively measurable

quality rather than subjective opinion. Testing is a methodical approach

94
MATS Centre for Distance and Online Education, MATS University

Notes until the execution of test cases against the built software leads to a

comparison of expected behavior with actual behavior for the system

being tested. An effective defect report aims to furnish all the

information needed for the developer to be able to understand,

reproduce, and solve the defect without needing to ask for further

clarification or do additional investigation. The overview of the

relationship of seats between testing and development teams becomes

a communication bridge through which defects have to be resolved in

an effective, timely, and as well as, effective manner; unfortunately this

ultimately decides how swiftly quality issues get resolved. Effective,

detailed defect reports prevent misunderstandings and reduce the back

and forth that slows down getting to resolution, making sure teams can

stay in motion toward quality targets. While a complete defect report

generally contains a few important sections that, in total, create a

complete view of the defect. The defect summary is a short description

that helps identify the defect, while the detailed reproduction steps

provide information on how to reproduce the defect, preconditions

required, inputs needed, action to take in order to reproduce the defect

summary. It describes what was supposed to happen versus what

actually happened, highlighting the difference. Environment

information captures the precise hardware, software versions,

configurations and data state that exist in the environment where the

issue was found, and it allows developers to understand the

environment in which the defect is reported. To assist in building a

picture of how the incident occurred, a report may include screenshots,

videos, log files, or other artifacts providing more evidence of the

incident or diagnostic information that may help track down the cause

of an incident.

Defect severity and priority levels provide development teams a sense

of both, the impact of the issue and the urgency of resolution. Severity

usually correlates with the technical impact of the defect—its impact

on system functionality, data integrity or user experience—with

categories ranging from critical (system crash, data loss) to minor

(cosmetic) with little impact on functionality. Priority is the measure of

how quickly the defect should be addressed versus other defects, based

on business considerations, such as customer visibility, compliance

implications, or release schedule constraints. Related but different is

severity and priority; a high-severity defect may receive low priority if

95

Notes it’s effecting infrequently used functionality; similarly, a low-severity

issue may receive high priority if it’s affecting key customer-facing

features or is blocking subsequent testing activities. The defect life

cycle tracks an issue's progress from initial reporting, through

verification, and finally to closure, with a series of status values

indicating where each defect is currently in the resolution process. A

defect is usually marked as "new" or "open" when it is initially

identified. An initial review may assign that defect to a particular

developer to resolve, or determine it is not a valid defect and reject it.

One activity that can lead to such a record can be managed by

development work where whose statuses transitions from development

activities "in progress" during development work, then "fixed" when

the change has been made, then "ready for testing" when the change is

available for confirmation, and finally "closed" or "verified" when

confirmation testing for the fix has passed. This structured life cycle

holds accountability and increases visibility of defect status to the

stakeholders throughout the resolution process. These defect

management systems offer centralized repositories for storing,

tracking, and managing defects throughout their lifecycle. These

systems store a history of all the reported issues, along with a

description, status, assignment and resolution details. Beyond basic

tracking, they often enable workflow automation that routes defects to

the right team members, triggers notifications at critical status

transitions and enforces process requirements such as mandatory fields

or approval stages. Reporting features produce metrics and trends that

assist in identifying problematic areas, assessing quality progress, and

informing release decisions. Such systems improve collaboration

between testing and development teams and provide a rich audit trail

of quality-related issues encountered and addressed during a project

lifecycle by centralizing defect information and standardizing the

defect reporting process. Defect triage meetings enable testing,

development, and product management representatives to assess

newly- reported defects and decide on action. During these meetings,

the team goes through each defect to validate its existence, assign

severity & priority level, define the responsible person to fix, and to

decide which release/sprint to fix it in. In best practice triage

conversations, decisions typically include a combination of impact to

real users, the complexity of possible changes, dependencies on other

96
MATS Centre for Distance and Online Education, MATS University

Notes development, and the fit with release schedule or business goals.

Defects need to be triaged, a process that includes determining whether

a defect needs to be fixed, determining where you are resolving defects,

and planning the location of defects on the development backlog.

Regular triage meetings ensure defects are given the appropriate level

of attention and also help ensure that any resolution efforts are focused

on the biggest problems first, allowing the development resources to be

used effectively and the greatest improvement in quality to be made in

the time available.

A root cause analysis looks at defects not only to correct them but also

to identify the issues contributing to the problems, which can become

the stepping stone to preventing entire categories of similar defects

from occurring in the future. This analysis goes beyond the symptoms

and reveals how the defect made it into the code, and how and why it

was missed earlier in the development process. Common preventing

causes include misunderstanding of requirements, design flaws, coding

errors, inadequate testing coverage, or process failures that allowed

defects to slip through. By recognizing these root causes, teams are able

to make more sweeping improvements—more rigorous requirements

reviews, additional training for developers, feeding back into improved

coding standards and wider test coverage—that help to address the root

of the issues rather than just their symptoms. This preventative

approach incrementally improves product quality and process

efficiency by minimizing defects introduction rates instead of just

defect discovery and repair. Verification testing ensures that, when

defects have been fixed, the implemented solution satisfactorily

resolves the reported defect without introducing other issues. This is

usually done by running the same test case that first exposed the defect

again, with the same input and environmental conditions to prove that

the behavior now falls within those expected. Regression testing can

then ensure that the fix hasn’t inadvertently broken anything else,

especially in areas that share code with or interact with the modified

components. The extent of regression testing can vary depending on

what has changed and to what degree — it can be as narrow as verifying

closely related pieces of functionality through to a broader verification

of the entire application for changes to core components. This allows

for useful validation that defect fixes actually enhance overall quality

97

Notes on the product and do not simply transfer one issue to a less critical

domain.

The final phase of the testing process, test closure is entered once

planned testing activities have been completed, defects have been

addressed per defined criteria and stakeholders have enough

information to make release decisions. This phase formally wraps up

the testing effort, capturing what was accomplished, what was learned,

and what could be done better in future testing cycles. End to end

activities of test closure generates an exhaustive reference point of the

complete test execution leading up till now and its associated

outcomes, thus acting as a very useful reference information point for

maintenance activities, future release planning and process

improvement activities. Many times, due to lack of time, test closure is

overlooked with an approach to rush to new projects but this actual

process helps in organizational learning and in improving the testing

practices. Initial closure Audit Checklist on Exit Criteria is evaluated

which was defined in test planning (i.e. whether what is supposed to

be done) exit criteria met or not, indeed, making sure TESTING

fulfilled its full purpose. These metrics usually include things like the

overall percentage of test coverage, the defect density, the rate of fixing

critical defects, and the success of running high-priority test cases.

Once exit criteria are met, testing can therefore conclude to the

confident assurance of the quality objectives being met. In case there

are still gaps the team should choose if based on the information

gathered it is better to continue testing for the identified areas, whether

to relax the given criteria level if the gaps are now beyond threshold

levels, or to go ahead by accepting the current quality level with an

understanding of potential risks. By quantifying quality, and specifying

what quality is achieved in which areas and when, it allows testing to

conclude on objective quality accomplishments — not on arbitrary

timelines or resource constraints.

The Test Summary report is the main deliverable of the closure phase,

indicating the entire test effort and its outcome. It often contains an

executive summary that outlines key results and recommendations,

along with information about the scope and objectives of the testing,

metrics summarizing test execution and defect status, analysis of major

quality issues encountered during and analysis of some quality-related

issues, and recommendations to improve future testing. It combines

98
MATS Centre for Distance and Online Education, MATS University

Notes factual information about completeness of testing and current status of

defects with interpretive analysis which places these facts in proper

context that provides useful information to the stakeholders to make

informed release decisions. For regulated industries or in contractual

situations, this report may be used as a formal record of adequacy and

quality of testing.

They collect and archive test artifacts to give persistent access to vital

test documentation, typically for a retrospective and for compliance

purposes. The archiving process would typically consist of all test

plans, test cases, test results, defect reports, and any additional

documentation created during the course of the testing process. With

this process in place, these artifacts will be properly organized and

preserved for future purposes: maintenance teams can refer back to test

cases when looking for details on re-creating a production issue; audit

processes may request information to verify the level of testing; and

future testing efforts may be able to repurpose test assets where

applicable rather than build them from scratch all over again. You’re

recording the way the world looked whenever you happened across the

right information and resource; some of it temporarily useful and will

have little in the way of long-term value and often quickly becoming

redundant artifacts — also, you make sure you keep or archive what

you already know you need, while not saving too much of the stuff you

may need but never do, and throwing away what’s just temporary.

Retrospectives / Lessons learnt sessions — Testing teams get the

opportunity to reflect on what went as planned, what were their

challenges and what can be improved in future testing cycles. These

are organized sessions focusing on process, follow of tools,

collaboration among various teams, clarity of requirement, and other

factors, contributing to the speed and effectiveness of testing. By

collapsing repeated successes and to be learned lessons into stories,

these sessions translate personal experience into organizational

learning that informs both process improvements. These discussions

yield insights that translate into actions that contribute to improving

future tests, establishing a cycle of continuous improvement that

matures and make the tests more relevant over time. The process here

transforms the "lessons learned" from the present testing execution

cycle into improvements for future test activity; this process is known

99

Notes as test process improvement, the forward-looking portion of the test

closure process. Commonly, improvement starts with looking at testing

metrics, defect trend as well as feedback from team members to

identify areas of opportunity to improve efficiency or effectiveness of

the QA team. These improvements may involve introducing new testing

methods, adding more automation, enforcing better documentation

practices, conducting focused training programs, or changing the

testing process based on identified bottlenecks or quality gaps. This

will usually log instruction systems that are concrete and actionable in

the course of future testing cycles, causing that testing process to evolve

and mature over time.

Knowledge transfer activities are actions that are taken to ensure that

stakeholders share what has been learned during testing with others in

the organization who may benefit from it. This may mean formal

handover sessions with maintenance teams that will carry the software

in production, documentation updates that encapsulate new

understanding of system behavior, or, as we will discuss next, cross-

training among team members to share specialized knowledge. For

some organizations practicing continuous delivery in the context of

persistent teams, this knowledge transfer may be informal and

continuous, not closing activity. Regardless of format, effective

knowledge transfer ensures valuable context is not lost as project

teams disband or individual team members shift to different

assignments, preserving institutional knowledge that improves long-

term product quality and support capacity. The release of testing

resources not needed after the end of testing is also part of the test

100
MATS Centre for Distance and Online Education, MATS University

Notes closure phase. This entails returning or redistributing hardware and

software used for the testing environment, formally closing access to

test systems no longer intended for modification, and reassigning team

members to other projects or activities. Releasing leads frees up system

resources for reuse and limits the access to test efforts that have already

finished their cycles tightly from active or upcoming tasks. While

others may keep specific resources around with the hope of reusing

them later, such as configured testing environments that could be used

to aid the development of some emergency fixes, or ensure some

critical testing personnel are on hand during the first production

deployment periods to react to any unforeseen problems. Although the

testing process has been described as a linear flow from analysis

through closure, modern development methodologies often adopt

iterative or incremental approaches to modify this model. Agile

methodologies, for instance, shorten the testing cycle into iterative

timeframes (sprints), but all levels occur at the same time in each

iteration yet on a smaller scale. To this end, DevOps practices advocate

for testing continuously in the development pipeline — automated tests

are run very frequently, whenever a bit of code is integrated. But

despite all these differences, at the core of any good testing process we

still find the activities of requirements understanding, test planning, test

design, test execution, defect reporting/fixing, and test closure —

regardless of the methodology adopted. Effective communication at all

stages of the test process is a key success factor that ensures testing

efforts are aligned with the overall project goals. QAs/artisans need to

communicate effectively with business stakeholders to clarify

requirements and quality expectations, with developers to report

defects and verify fixes, with project managers to coordinate schedules

and resources, and with other testers to exchange insights and sync up

efforts. These include updates and feedback through formal writtens,

meetings, casual chats, reminders, and progress reports, all of which

serve different purposes in the grand scheme of communication. This

approach not only enhances collaboration but also enables testing teams

to demonstrate their contributions and impact on the overall project in

a continuous manner. To sum up, software testing process is a

systematic approach for validating the quality from the initial

requirement comprehension to the final reporting of the execution

results. Following the steps of requirement analysis, test planning, test

101

Notes design, test execution, defect reporting, and test closure ensures that

testing teams build a complete process to guarantee the software

quality, functionality, performance, and reliability before it is released

to end users. Although individual implementations may differ

according to certain methodologies, organizational practices, or

application domains, these core phases are a solid basis for valuable

testing no matter the situation. The test process not only finds and helps

fix defects, when done with due diligence, it also develops confidence

in the quality of the software and leads to products that are successful

in fulfilling user needs and meet business goals.

Example:

A company is developing an online food delivery app.

• Requirement Analysis:

Testers review user stories (e.g., "User can add items to cart")

and identify ambiguities such as unclear payment gateway

rules. They create a traceability matrix mapping each feature

to test cases.

• Test Planning:

Team defines objectives like “validate payment workflow,”

plans resources (3 testers, automation tool), and sets entry/exit

criteria (build ready, defect density < 2%).

• Test Design:

Testers design cases:

 Valid inputs (adding food items)

 Invalid inputs (empty cart checkout)

 Boundary cases (max cart size)

Prepare test data with various addresses and payment options.

• Test Execution:

Run designed tests on multiple devices (Android, iOS) and

record results. Perform regression testing after every new

build.

• Defect Reporting:

Found bug: “Promo code not applying correctly.” Reported

with steps, screenshots, severity = High, priority = Urgent.

Developer fixes, testers retest and close.

• Test Closure:

Generate a Test Summary Report with coverage metrics,

lessons learned, and archive all test artifacts for future

reference.

102
MATS Centre for Distance and Online Education, MATS University

Notes Unit 6: Test Levels

2.2 Test Levels: Unit testing, Integration testing, System testing,

User acceptance testing (UAT)

Software testing is a multi-tiered, two-faceted method with various

levels that serve multiple different purposes throughout the verification

and validation process. Each level—unit, integration, system, and user

acceptance testing—builds upon the test levels before it, providing a

layered approach to assessing software quality from individual

components to the entire system as perceived by end users. Each level

addresses different aspects of the software, different techniques,

different participants and different stages in the development lifecycle.

Combined, they form an inclusive quality assurance strategy that

targets both technical correctness and business value: It confirms that

the software performs as expected while also meeting users' needs and

expectations. Unit testing is the lowest level of the testing pyramid

where we test single software components separately from the rest of

the application. These parts, known as “units,” are the smallest testable

parts of an application, which can be functions, methods, procedures,

classes, or modules that perform a specific task given a particular input

and yield a specific outcome as output. The main purpose of unit testing

is to ensure that each unit operates as intended according to its

specification, treating all normal and edge cases correctly before these

components are utilized and incorporated into bigger structures.

Leveraging GAU enables early defect detection at the stage in which a

defect was injected, when the cost and effort required to resolve it are

at their lowest. Unit tests are usually written by the developer as part of

the development process, where the tests are written before or alongside

the implementation code. This practice is called Test-Driven

Development (TDD) in which tests drive development as specifications

and immediate evidence that code works as required. Unit tests are

small and designed to execute quickly and in isolation of other

dependencies, including databases, file systems, network services, or

other components. If such dependencies are needed to test behavior we

replace them with test doubles — it could be a stub, mock, or a fake

that simulates the behaviour of the dependency without the complexity

and instability of an actual external system. The isolation principle of

unit tests serves more than the purpose of verifying each functional

103

Notes aspect in isolation to facilitate and simplify test execution. It also

ensures that failures of individual units can be traced directly to a

specific part of the code, doing away with the diagnostic headaches that

come from errors that might propagate from many parts of a program.

They also allow for parallel development and testing, as teams can work

independently on their own components, secure in the knowledge that

the tests will fail if the issues lie in their code, rather than shared

dependencies. It also makes it easy to run automated tests as part of

continuous integration pipelines, quickly validating changes without a

complicated set-up or external resources that can take time to configure

or might get flaky in an automated context. Unit testing frameworks

provide the structure to define, organize, and execute unit tests, and

different programming languages and platforms offer various unit

testing frameworks. There are a number of such frameworks e.g. JUnit

for Java, NUnit for . NET, pytest (for Python), Jest (for JavaScript),

and similar frameworks for other languages provide consistent

mechanisms for the discovery, execution, assertion validation, and

reporting of the results of tests. These often include test fixtures for

creating initial conditions (the names of object instances) for tests,

parameterized tests to apply the same test logic to multiple variants of

the input, and test suites to group similar tests into logical subsystems.

Such frameworks lowers the barrier in creating and maintaining a

working set of unit tests, as it will encourage the developer to test "to

the limits" as it reduces the technical overhead associated with

implementing such tests.

Unit tests are most commonly associated directly with finding defects.

Well-written unit tests act as executable documentation, showing how

components interact and what sort of behavior they should exhibit

under various conditions. This documentation is always correct

because it is not static like typical documentation which will age as the

code changes. Unit tests allow developers to refactor confidently as

they get immediate feedback on whether the changes broke any

existing functionality, which provides the assurance one needs to

improve code structure or performance without fear of regressions.

They also facilitate collaborative development by defining a clear

contract on component behavior that can be assumed by team members

building interacting parts of the system. Despite its importance, unit

testing inherently falls short and testing at higher levels is also needed.

104
MATS Centre for Distance and Online Education, MATS University

Notes It only checks individual parts, so it can't find bugs caused by parts

interacting with each other, test system-wide actions, or confirm that

the software actually does what users want it to do. If the test doubles

do not behave like the systems they are simulating, then you may get

a false sense of security from that. Unit tests can also generally cover

the technical side of things, but not necessarily user experience or

business value, so they are required but not sufficient for the complete

quality assurance process. The availability of these tools is in no way a

substitute for integration, system and acceptance testing which deliver

end to end confidence in software quality. Integration testing takes the

groundwork laid by unit testing to the next step ensuring components

that individually passed unit tests do in fact work together the way they

should. Unit testing verifies a component in isolation, integration

testing verifies how those components talk to each other, exchanging

data, properly implementing interfaces, and interacting appropriately.

Such test can detect issues which cannot be detected through unit

testing, e.g., interface mismatches, incorrect assumptions about

components behavior, misunderstanding of requirements, timing issues

that only emerge when components interact in through certain

conditions.

While the scope of integration testing may vary enormously depending

on the type of architecture on which system has been built and the

integration testing strategy. Component integration testing deals with

the interaction of modules within a single application or subsystem, it

is executed by the development team as part of the implementation.

System integration testing looks at interaction between separate

subsystem or application (point to point testing, essentially), and is

done by dedicated testing teams after different subsystems have been

separately developed and tested. External integration testing validates

system under test interactions with external systems like legacy

applications, third-party services, and partner systems. The coverage

for each scope would vary based on the risks of integration involved

and hence the testing needs to be organized accordingly to approach the

verification. There are different strategies which can guide us how

integration testing is done. Each has its advantages and disadvantages

depending on how the project is. In the "big bang" method, all

components are added at once and tested holistically,without

incremental steps. Although successful paves the way to be efficient, it

105

Notes makes it hard to isolate defects if something goes wrong; it could be

coming from any component or any interactions between different

components. If you are more into structured approaches, incremental

integration strategies can be used where there is gradual integration that

allows defect isolation and parallel development. Bottom-up

integration testing can be defined as a software integration process that

begins with the assembling of low-level components and works its way

toward more complex high-level components; the top-down integration

process instead starts with the high-level components and integrates

lower-level system implementations into the top-down structure, using

stub segments or stubs to mimic the components that have not yet been

integrated. Sandwich or hybrid approaches: combining elements of

bottom-up and top-down approaches, integrating them from both

directions at the same time. Most defects are found in integration

testing, which cannot be identified in unit testing. Interface Defects:

Occur when expectations about parameters (order, meaning) and data

(size, type, shape) differ between connected components (i.e. one

provides parameters in a different order to that expected). The

assumption defect occurs when developers assume that certain high-

level components are going to work exactly the same way when you

shoot them in the foot, when in fact, the low-level components are

behaving differently. End-to-End processing defects occur when data

transformations happen across multiple components and the final

output is not what we expected, even though when tested in isolation,

each transformation worked as expected. Absence of performance

problems can be apparent only at integration stage where the

cumulative consumption of resources by multiple components outstrip

available capacity. Timing and synchronization issues (race conditions,

deadlocks) generally can become visible only when components

interact concurrently instead of in the constrained sequential execution

familiar to unit tests.

There are a few notable differences in the technical implementation of

integration tests compared to unit tests. So, whereas unit tests will

usually substitute in test doubles for their external dependencies,

integration tests will typically drive real implementations of the

systems under test (and potentially some other external systems that are

not the subject of the current integration). This makes integration tests

more realistic but also more complicated to set up and potentially less

106
MATS Centre for Distance and Online Education, MATS University

Notes deterministic in their results. Unlike unit tests which only validate the

correctness of a single component, integration tests generally touch real

resources including databases, file systems, or network services thus

need meticulous management of test data and environment state for

providing consistent and reliable test executions. Tools used at this

level often have specialized capabilities for monitoring interactions

between components, tracking test data across components, and

validating complex data transformations that cross multiple processing

stages. Modern software architectures have their own challenges and

opportunities for integration testing. Testing of service-to-service

communication, contracts and distributed system behaviors such as

partial failures and eventual consistency is also needed in microservice

architectures. In recent years, consumer-driven contract testing has

been established as a specialized way to work with these architectures,

specifically geared towards validating the contracts between service

providers and their consumers in order to confirm compatibility across

distributed system boundaries. In an event-driven architecture, we need

to test how one component produces events and how other components

consume those events and process them, and these components

communicate in asynchronous ways that make tests much harder to

design and run. These architectural trends have led to specialized

testing approaches and tools specifically made to test more effectively

modern integration patterns.

Integration tests — just a step up from unit testing, but still at the

technical layer of the application, mostly validating that the technical

parts of a system are at least working, but rarely validating if the

business functionality or user flow works as expected. It generally

verifies that components interact as per their technical specs but does

not check whether these interactions cumulatively provide the

promised business value or user experience. This limitation calls for

more layers of testing that look at the software from wider angles —

not only how well components work with each other under the hood,

but whether or not the assembled system meets real business needs and

user expectations. System testing, external to the software, assesses a

fully integrated software application against specified requirements,

covering functional and non-functional attributes. Unit/Integration

testing is done on internal structures and interaction of the components

in the application, while system testing takes an external perspective

107

Notes and treats the application as a black box validating its behavior as a

whole rather than individual components. This validation testing

ensures that the system's specified requirements are met, end-to-end

functionality works as expected, and necessary quality attributes are

observed for it to operate successfully within its intended environment.

System testing is the first level where the software is assessed as a

cohesive unit, playing a vital role in validating the entire application

before it undergoes user acceptance testing. System testing includes

end-to-end testing of all the system components or subsystems, such

as user interfaces, backend business logic, data processing, external

integrations, and supporting system infrastructure → System tests

validate complete features and end-to-end workflows in accordance

with their expected results in different scenarios and conditions. This

holistic perspective guarantees that not only do components work

correctly in isolation and work adequately together, but that the

assembled system provides the typical capabilities specified by its

specifications. System testing is usually done in environments akin to

production environments that has realistic data as well as

configurations that clearly reflect the actual usage scenario as practical

for the purpose of testing.

Functional system testing evaluates whether the application correctly

implements the necessary features and capabilities specified, and

focuses on the functionality of the system itself (what the system does)

rather than its implementation (how the system does what it does).

These include positive testing, which ensures your system responds

correctly to valid data and actions, negative testing, which checks that

it gracefully fails on invalid states or conditions, boundary testing,

which observes how it behaves at the limits of allowed inputs, and

equivalence partitioning, which uses a small number of control cases

to ensure a wide range of possibilities are covered. A system-level

functional test was done based on requirements, where test cases were

derived directly from functional specifications to cover the functional

capabilities that were identified. Storing requirements in a test tool also

enables a direct link to test cases that provide bidirectional traceability

to show testing completeness and requirements coverage. Non-

functional System Testing is the assessment of quality attributes other

than feature correctness, focusing on an aspect of correctness that is

vital for the software to work correctly, reliably, and efficiently in its

108
MATS Centre for Distance and Online Education, MATS University

Notes environment. The goal of performance testing is to ensure that the

system meets the performance requirements by measuring the response

times, throughput, and resource usage under different load conditions.

Security testing detects potential threats that may undermine data

confidentiality, integrity, or availability, confirming that protection

mechanisms work correctly as intended. Usability testing checks that

the system is intuitive and facilitates user processes, assuring that it

does not help or hinder the execution of user tasks. Compatibility

testing checks if they work on different platforms, browsers or devices.

Reliability testing looks at behavior over long periods of time or under

stressful conditions. Expand on this to create a holistic representation

of quality attributes beyond functional correctness in the system.

System testing usually uses dedicated testers who are primarily

responsible for testing (verification and validation) rather than for

development. This lack of bias by separating the responsibility for

writing code and testing them helps mitigate the issues of confirmation

bias that make it difficult for developers to test their own work, as

independent testers are more likely to spot issues that developers will

gloss over due to their familiarity with the code and assumptions

surrounding its behavior. Domain knowledge is often within reach of

system testers who deliver business apps. They evaluate the application

in terms of how well it meets real underlying business needs, not just

how well it meets technical specs. The more business view adds to the

unit and integration testing, which is more painted on the technical

painting of the software, but season variety still from different axis

given much understanding before the release.

This connection between requirements and system testing is vital for

validating that the software actually delivered meets the needs of end

stakeholders. Above the manual test case level: Manual test cases at this

level are derived from requirements, allowing a verification of whether

or not the actual system implementation conforms to specified

requirements. The fact that tests are driven by requirements means that

they cover all the required functionality as specified in the requirements

may uncover ambiguities or inconsistencies in the requirements. If

such differences between actual behavior and requirements arise in

results from system tests, this discovery leads to important

conversations about whether the implementation should be adjusted to

what the requirements state or whether the requirements need

109

Notes clarification or modification based on something we have learnt while

developing. Related to (but different than) unit or integration level is

the role of automation in system testing; this role becomes increasingly

important. It is applied to the scenarios which simulates the user actions

on the application through its external interface (User Interfaces, API

or any access point) hence is mainly related to end to end scenarios.

Frameworks like Selenium, Cypress, Playwright for web applications,

Appium for mobile applications, or dedicated API testing frameworks

for service-based systems help you run complex testing scenarios in an

automated manner that would take a lot of time and be less prone to

human error if done manually, especially for regression testing that

ensures that previously working features are still functional after

changes were made. System Test Automation is powerful, but typically

involves more complex frameworks and heavier maintenance than

lower-level automation because end-to-end scenarios can be complex

and user interfaces and external integrations can be prone to instability.

Integration tests are relatively broad but still not completely exhaustive,

which requires also taking extra steps to verify the software before it

reaches the end-users. It checks the software against the stated

requirements but usually does not go to the lengths of determining

whether those requirements truly fulfill the needs and expectations of

the user." While system testing environments are built to emulate

production, they can never be production, and problems that only crop

up in actual operational settings can be missed. Even when testing

professionals have domain knowledge, they don't fully encapsulate the

experience of actual users and all of their diverse perspectives,

priorities, and usage patterns. These limitations bring us naturally to the

final level of testing, user acceptance testing, which fills in these gaps

through the active involvement of the target users in the verification

process. User Acceptance Testing (UAT) is the last level of testing

performed before the software is released which is performed to

validate that the system meets the business requirements and is ready

for operational use from the end user's perspective. Although previous

stages of testing confirm that the software is technically correct and

functionally complete, as well as meeting quality attributes, none

guarantee that the software delivers value for the user or meets business

objectives: this is the point of UAT. This type of testing means actual

end-users who execute real-world scenarios typical for this type of

110
MATS Centre for Distance and Online Education, MATS University

Notes software use, making sure the software covers their workflow and that

what it does is what they need and expect. UAT delivers final

confirmation that the software will perform its intended function in

production because it relies on actual user input and feedback

incorporated before release. UAT differs from earlier levels of testing

primarily in its goals and who is involved. Though earlier testing levels

mainly ensure that the software has been built correctly, and to the

stipulated functional and technical specifications (technical correctness

and functional coverage against documented requirements). UAT

demonstrates that the software does what it is supposed to do for its

users at a high level, but does not necessarily verify the overall

business problem it was designed to solve is actually solved. Earlier

levels of testing tend to involve technical folks who have expertise in

testing or development; UAT, on the other hand, involves real end-

users who have experience with business processes and what a real-

world use case looks like. Having users involved in verifying that the

software is badged means not only is the technical quality thing going

to be reassessed but also for real-world utility, impact, and business

value. Depending on the domain of the application and the needs of the

stakeholders, UAT may take various specialized forms. Alpha tests are

conducted in the development organization by users (or

representatives of users), giving the development organization its first

taste of what its customers will be experiencing, while keeping tight

control over the testing process. Beta testing extends evaluation of the

software to external users in their own environments, bringing in

feedback from a larger number of users than could be realistically tested

internally before offering the software to a wider audience, allowing

issues to be found that wouldn’t be present in more controlled testing

environments. The operational acceptance testing verifies that we are

able to carry out operational procedures including backup, recovery,

and maintenance. Regulatory acceptance testing is ensuring

compliance of the developed software with relevant laws, standards,

or industry regulations. Contract acceptance testing ensures that the

software has met the requirements specified in client agreements or

statements of work.

Acceptance criteria are usually based on business requirements, user

stories, or contracts, not technical specifications. These criteria can be

both objective, e.g. performance benchmarks or feature completeness

111

Notes and also subjective with respect to usability, workflow efficiency, or

value delivery. Related posts acceptance criteria are settled in the early

stages of a project, laying out defined targets for development and

earlier quality testing levels to work towards. That means: these criteria

are stored as the formal definition of «done» for the project — these

are the criteria that need to be satisfied for the implemented piece of

software to be accepted for production use. Technical testing may aim

to report as many defects as possible, but UAT checks whether the

software meets specific acceptance criteria, confirming if the software

is ready to be released, as minor issues may still lurk. Another common

characteristic is closely mirroring production conditions, including

real-world data volumes, user loads, and integrations with other

systems. Because this environmental fidelity improves the confidence

that acceptance tests that pass when run in test are strongly correlated

with successful operation in production, we mitigate risk associated

with surprise operational issues following deployment. Especially for

high-risk systems, however, UAT may be carried out in production (but

with controlled user access), enabling evaluation under fully authentic

circumstances before deployment at full scale. However, this

"production verification testing" approach gives the greatest degree of

confidence in the software readiness but must be carefully managed to

defend against test activities that could affect operational systems or

expose external users to test activities. UAT Approach and

implementation varies widely based on project methodology and org

practices. In traditional sequential development methods, UAT is a

separate phase after system testing but before deployment, usually with

formal test plans, scripts and sign-off. For agile methodologies,

acceptance testing may occur incrementally during development, with

stakeholders reviewing and accepting functionality when it is

delivered at the end of each iteration, rather than deferring acceptance

until a formal acceptance phase at the end of the project. Whatever

approach is adopted, the UAT process must be planned, involving

training of users in the test procedures, building meaningful test

scenarios based on business processes, preparing suitable test data and

designing mechanisms to capture and address user feedback. There is

more to user involvement in UAT than just checking if the software

works. It allows users to get a feel for the system before it is fully

deployed (which makes for less resistance to change down the road),

112
MATS Centre for Distance and Online Education, MATS University

Notes gives users a sense of what to expect from a system, and gives users

time to adjust (their process or expectations) to what the system can

actually do. It gives the user community ownership and buy-in because

user feedback directly impacts the final product and their participation

is a signal that their perspectives matter. It offers a training ground for

users to learn in isolation, giving them a chance to explore the system

before relying on it for their everyday tasks. The secondary benefits

derived from formal verification accordingly often prove just as

important as the primary purpose of verification, playing an important

role in the successful adoption and use of the system once it has been

deployed.

Users, as we know, view the system differently than internal testers, and

as a result, the nature of defects uncovered at this level are qualitatively

different from those uncovered at lower levels of testing. Technical

testing may be more concerned with functional correctness or

performance statistics, but users consistently highlight issues revolving

around workflow efficiency, terminology confusion, failure to cater for

edge case functionality or usability frustrations that development

teams may not have noticed. Users judge software not on how well it

implements specified requirements, but how well it supports what they

actually do in the world, often indicating differences between

documented requirements and user needs that hadn’t been uncovered

before. Such insights are also critical for the last-minute tweaks before

a project is actually released, and frequently influence feature roadmaps

even if it cannot be addressed in the current release. UAT management

requires a delicate balance between quality, timeline, and scope, which

may sometimes compete. Not all user acceptance testing (UAT) issues

prevent acceptance; some are simply minor issues that do not prevent

the code from working properly, and will be documented for fixing

later, rather than stalling promotion. Discovered issues need to be

weighed against business priorities, delivery timelines, and

decommission costs. This is a broad evaluation and usually involves

stakeholders beyond the technical team, such as business owners,

product managers, and sometimes executive sponsors who must make

informed decisions on when the software delivers enough value to

mitigate the costs of release, despite acknowledging limitations. These

acceptance criteria for the UAT process should include clear decision

criteria and escalation paths for these determinations, ensuring that

113

Notes acceptance decisions reflect business priorities, not just technical

considerations. The efficiency of the entire testing process is heavily

dependent on the quality of UAT and its relationship to lower levels of

testing. A successful UAT should primarily confirm that the software

works to the same extent the business needs rather than finding a slew

of new defects. On the other hand, if UAT exposes a lot of fundamental

functional problems that should have been caught in previous tests, it

indicates weaknesses in earlier tests that should be rectified in future

projects. Each level is independent but complements the others, so

technical tests give developers fast feedback on functional correctness

and quality attributes while UAT verifies business value and user

satisfaction. When used in conjunction, this enables the testing

capabilities to be powerful overall by being able to expose different

issues at the least invasive and cheapest phases of the development

lifecycle. The level of testing is progressive, unit, integration, system,

and user acceptance test where each layer builds on the last to create a

comprehensive verification framework that assesses software quality

from all angles. Unit testings , test the individual components in

isolation, giving the developer quickly feedback on their

implementation. Integration testing ensures that these components

interact as expected and be able to find inconsistency at the interface

and in interactions. System testing validates the end to end features of

the complete application along with their functional requirements and

it is also responsible for validating if the application is working as

intended when integrated as a whole with the desired quality attributes.

User acceptance testing ensures that the software provides value to its

users and aligns with business goals. This means that there are many

opportunities to identify and correct defects in development, and this

reduces the risk that serious problems will reach production.

The levels of testing take place at various stages of development with

corresponding tradeoffs on the cost and effect of fixing defects. Unit

testing should run in the phase where implementation takes place and

while developers are working on that part of the code and can directly

fix things that are found. Soon thereafter comes integration testing, as

components come together into larger and larger subsystems. System

testing is carried out when the application is fully developed, with the

majority of the functionality in place and ready for thorough

verification. User acceptance testing is the final verification step before

114
MATS Centre for Distance and Online Education, MATS University

Notes release; the software is basically done and making changes is costly

and risky. This progression follows the classic saying that defects

further down in the process are exponentially more costly to fix, thereby

highlighting the need for extensive testing at each stage to catch the

defects as early as possible. Different levels of testing are often

performed by other participants using different skills by other

participants which verify quality comprehensively. Unit testing is done

by developers who are best acquainted with implementation details

and programming skills. Integration tests, usually carried out by either

the dev team or dedicated integration testers, require a solid grasp of

technical understanding but also knowledge of the larger system.

Typically, research workers familiarised in testing alone perform

system testing, ideally with a testing perspective and quality assurance

philosophy separate from development issues. End users are involved

in acceptance testing, where they provide valid business knowledge as

well as experience perspectives. Because each group has its own

motives, attracting them leads to more perspectives on the software,

and these views and insight will work together to deliver more

comprehensive verification than a single party could provide. Different

levels of testing are performed with different techniques and

approaches according to their goals and limitations. Unit testing uses

white-box techniques that rely on knowledge of the internal structure

of the code to create tests that achieve complete code coverage. Some

knowledge of component internals is the basis for gray-box approaches

used by many integration testing approaches that focus on the

interfaces between the components and their interaction System testing

usually uses black-box methods, which assess the application

externally without regard to implementation details. Then, user

acceptance testing focuses on workflows and business processes, with

real usage scenarios instead of technical test cases. You are still

expecting that each level will have adequately accounted for their

aspects of quality and so you need verification in both technical and

business areas. Test levels have differing characteristics, execution

frequencies which results in differing automation potential and

approaches. Unit tests are easy to automate — they have narrow scope,

have no external dependencies, and are often run during development.

Integration tests generally consist of a mixture of manual and

automated tests, where its interfaces and usual scenarios can be

115

Notes automated, while complex interactions still require human evaluation.

Because system testing usually automates the verification of core

functionality, and reserves manual testing for more exploratory

scenarios and subjective quality checks. Automated regression

verification vs. acceptance testing with manual validation of new

features Despite automation woes, this approach to balancing

maximizes efficiency while providing adequate checks and balances at

each level of testing.

For instance, the testing pyramid model commonly employed in

contemporary software development contexts typically provides a

distribution of tests across levels, recommending the proportions of

tests that should be allocated to balance thoroughness and efficient

execution across the types of tests. The model suggests introducing

many fine-grained unit tests at the bottom, somewhat fewer, but

broader integration tests in the middle, and a smaller number of big

ticket end-to-end tests at the top. This allows for a balanced execution

that ensures thorough verification while respecting the realistic

limitations of execution time and maintenance effort, and provides the

delivery of testing efforts focused at levels where tests are fast, fail

precisely, and require less maintenance when requirements change.

Although exact ratios differ from project to project, the principle of

having more specific tests aiming at lower levels is meaningful in my

experience to help skew any testing strategy towards inexpensive, low-

maintenance and good coverage. The combination of these two aspects

heavily defines the practical implementation of testing. Traditional

sequential or “waterfall” approaches usually have testing as separate

phases that mirror development phases: unit testing during

implementation, integration testing as modules are assembled, system

testing after development, and acceptance testing prior to deployment.

Agile methodologies shorten these activities into shorter cycles or

sprints, where all levels of testing can happen in each iteration, but on

a smaller scale reflecting the features developed in that iteration.

DevOps practices focus on continuous testing during the development

pipeline, where automation tests ranging from unit level to system

level execute automatically whenever code changes are merged. Note

that while the timing and types of testing vary from one methodology

to another, the primary purposes of each testing level are consistent

regardless of the methodological approach. The importance of test data

116
MATS Centre for Distance and Online Education, MATS University

Notes management in testing is different at each level and it must be tackled

differently with appropriate strategies. Unit tests tend to cover only

small, synthetic data sets forged to test a single portion of logic in

isolation and often generated programmatically with test setup.

Integration tests need data with referential integrity across components,

which is generally done via test fixtures or boilerplate setup

procedures. System tests require full datasets that drive varied scenarios

and edge cases for the system, and such datasets are typically extracted

from production and anonymized to keep the realism level while

preventing sensitive information leakage. Production-like data

supporting genuine user workflows (including production data, with all

necessary precautions) is the ideal for acceptance tests to maximize

fidelity with usage conditions. The corresponding data needs for each

level of testing is ensured with these variable approaches while

retaining the independence and repeatability of the tests. Defect

tracking processes are not limited to unit testing, but they are one of the

resources that are used across all tests to report, track, and resolve

issues found during testing. Defect treatment is often different between

levels, as they have different working materials and different aims with

different actors. Because unit-level defects occur after

implementation, developers often fix them on the spot, and they are

not formally tracked if resolved immediately. Integration and system-

level defects normally get fed into formal tracking systems with

severity classifications, assignment flows, and verification processes.

Defects found during user acceptance testing are given especially close

attention, and business impact assessments decide if defects must be

fixed prior to acceptance, or can be scheduled on a subsequently

release. Even though techniques and processes may differ, effective

defect management at all levels ensures that defects are documented,

prioritized, and resolved as necessary with respect to impact to overall

software quality.

The coordination of levels of testing has a large role in overall effective

and efficient testing. Data flows between levels also ensure that

findings from one stage populate inputs at other stages. Results of the

unit tests point to specific components that may require special focus

while doing integration testing. Due to interaction of two or more

components integration cause an issue, this guides for testing strategy

of the system. Observations from system tests create the basis for

117

Notes intelligent acceptance test planning, helping the users to focus on the

features to be exercised in detail. This bidirectional information flow

from level to level ensures that testing activities are built on one

another, with everything building on what the others found to focus

effort where you get the most bang for the buck. Good coordination

elevates those separate layers from disconnected efforts to an

integrated quality assurance process that maximizes defect detection

and minimizes resource utilization. Quality metrics collected over the

different levels of testing build a holistic picture of the product quality

and development efficiency. Unit Coverage Metrics Provide

Completeness of Component Verification It analyzes defect detection

efficiency by comparing how many of each defect is found at every

level, it helps determine if defects are being found at the most efficient

points in the lifecycle. Defect density metrics show the quality

differences among the various components of the system. Test

execution trends provide insights into how well existing functionality

is holding up during active development. These metrics enable tactical

decisions about current testing activities as well as strategic

improvements to the development and testing process. When

investigating trends at various levels of testing, organizations are able

to explore their quality challenges and opportunities in more depth

than metrics from any one level could offer them. Although the specific

levels of testing evolved over the years, their general purpose is still

applicable. Shift left testing practices push testing work to the left,

leading to activities like requirements validation, testability analysis,

and test planning to be done before implementation happens.

Continuous testing embeds automated tests at every level into

development pipelines for instant feedback on code changes with unit

and integration tests, while orchestrating longer-running tests of the

system at appropriate intervals. Testing in production serves to

complement the practice of testing before releases, and practices like

feature flags, canary releases, and A/B testing have allowed teams to

gradually release new functionality to small slices of users to test under

real usage conditions. These new techniques bridge traditional testing

levels with current developments, providing a similar quality assurance

function without compromising quality.

These four main testing levels — unit, integration, system and user

acceptance tests — continue to provide a regime that works combining

118
MATS Centre for Distance and Online Education, MATS University

Notes technological and methodological evolutions. The three levels each

cover different aspects of quality, ranging from the technical

correctness of individual components through to the business value of

the entire system. The process happens at distinct stages of

development, involves different players, and adopts different

techniques suited to its particular objectives. This forms several

verification layers that gradually instills technical and business

confidence in an established software quality. Software quality is a

broad concept that can be explored through the lens of different types

of tests, including unit tests, integration tests, system tests, and user

acceptance tests. Unit tests- test a small isolated piece of code and gives

feedback to developers when they are doing implementation right

Integration testing ensures that components work together properly,

finding IDEs and other interaction problems that won’t manifest in

isolation testing. System testing tests the entire application against the

requirement - thereby, verifying if the application is working as it

should, in its entirety and with the required level of quality attributes.

User Acceptance Testing is the only way to prove that the software

provides value to its users and to the business, and thus the final

confirmation before being released to production. This process forms a

holistic quality assurance approach that successfully addresses

technical and business aspects of software quality, as well as minimizes

the risk of defects entering production while ensuring that released

software truly satisfy the needs of end users.

119

Notes Unit 7: Test Documentation

2.3 Test Documentation: Test plan, Test case design, Test scripts,

Test reports

Test documentation is the backbone of well-structured testing

activities in software projects, serving as a roadmap for quality

assurance throughout the software development lifecycle. So

comprehensive test documentation includes multiple artifacts test plans

that set a strategic direction test cases that define verification

procedures test script that describes detailed execution instructions and

test reports to inform results and quality status to stakeholders.

Altogether, these documents provide an audit trail that verifies the

rigor of testing, aligns with regulatory justification, enhances transfer

of knowledge and helps streamline ongoing process improvements.

Though commonly misunderstood as administrative bloat, effective

test documentation turns testing from an ad hoc into a systematic,

repeatable, measurable process that dramatically improves software

quality and reliability. Test plan — the master document that specifies

the strategy, scope, approach, resources, schedule, and deliverables to

be carried out in testing activities. It serves as a master planning

document, offering a high-level guiding document for all testing works,

and a way for the testing objectives and targets to be conveyed to

project stakeholders. A good test plan relates the testing activities that

will be taken to the goals of the project and the quality that is required,

reminding testing to validate only the critical functionality, as limited

by time, budget and resources available in a performance environment.

The test plan is an actionable derivation of high-level quality goals into

specific testing actions that can be planned, assigned, tracked and

evaluated over the development lifecycle. A test plan usually starts with

introductory sections, setting the context for the testing effort,

background information about the project, quality objectives,

references to related documents like requirements specifications, and

definitions of key terms used throughout the plan. This context aligns

which business needs will be your basis for testing across your

stakeholders. Such introductory elements also define how the test plan

fits in relation to other project documentation and creates an integrated

framework for ensuring that testing accurately reflects and validates

documented requirements and design specifications, as opposed to

120
MATS Centre for Distance and Online Education, MATS University

Notes taking place in isolation of broader project goals. The scope section of

the test plan defines what is covered within the realms of testing as

well as what is not, serving as a boundary to help manage expectations

as well as direct attention where it matters. This section usually

enumerates the particular features, modules, or functionality that will

undergo testing or aspects excluded from current testing cycles. When

items are excluded, the plan usually explains why they were omitted

including deferral to future releases, coverage by separate special or

focused testing effort, or an assessment of low risk that does not warrant

formal testing. It is this explicit scoping that can help avoid some of the

misunderstandings that can arise about what testing coverage we

actually have and make sure that stakeholders have a realistic view of

which aspects of quality we will do our best to verify for them before

release. Assessing risks and addressing them is crucial in architecting

test plans that lay the foundation for efficient resource utilization and

effective testing. The High-Level Risk Assessment defines potential

failure points or other areas of defect which would have the highest

impact to Users, Business, or other Stakeholders. This analysis

normally entails assessing technical complexity, novelty of

implementation, business function criticality, security implications of

the change, performance sensitivity or impact of the change and

complexity of system integration. The plan proposes testing

approaches for each identified risk that are supposed to detect the

potential problem along with contingency plans if issues are

discovered. Taking a risk-based approach allows you to focus testing

where it matters most, providing greater assurance for high-risk

functionality than less critical features when time or resource

constraints prevent testing everything exhaustively.

The plan for resourcing within the test plan addresses people,

environments, tools, and infrastructure needed to operate the testing

strategy successfully. The human resources section addresses the

people-related aspects, specifying the roles and responsibilities

including who will perform which testing activities, what skills and

experience are needed to perform these roles. Environmental

requirements specify the hardware, software, network configurations,

and data necessary for executing tests that appropriately mimic

production scenarios. Tool selection determines which automation,

management or reporting tools will support the testing effort (which

121

Notes should include both existing tools and future acquisitions). By

allocating all these resources, we can avoid availability bottlenecks

and delays in test execution. The testing schedule defined in the plan

aligns testing activities with the overall project timeline, detailing when

each testing phase will start and when it will be completed. This is

based upon dependencies on other project activities—when builds will

be available for testing; when environments will be ready for use—and

factoring in enough time to allow for test design, execution, defects to

be fixed, and retesting. Most test plans consist of milestone definitions,

serving as checkpoints for when testing progress will be assessed and

go/no-go decisions will be made to proceed to further phases. Ensures

that the elements of scheduling within testing activities integrate with

the development activities, providing quality feedback at appropriate

points so that the overall project momentum is ready. Timing is

addressed in a test plan using entry and exit criteria. Entry criteria may

include things like "all high-priority defects from previous testing must

be resolved" or "test environment must be configured according to

specifications". Exit criteria generally defines quality thresholds like

“all critical test cases should pass” or “No severity 1 or 2 reported

defects should be open.” Such objective criteria serve as quality gates

across the life of the process, ensuring that one does not advance to the

next phase of development until quality issues have been addressed and

providing a clear, measurable, and achievable definition of when the

testing objectives have been met.

A test deliverables specified in the plan defines all of the artifacts

which are to be generated during testing in the testing process

forecasting documentation and reporting during the maturity of its

testing process. These deliverables usually comprised of test cases, test

scripts, test data, defect reports, test execution logs, test execution

status reports, format, content and delivery schedule. As part of the

plan, for each deliverable, it may define how and when the deliverable

is reviewed and approved to ensure quality and accuracy before

disseminating to stakeholders. A complete listing of deliverables

ensures that every testing activity ultimately results in suitable

documentation that can be used for both current quality evaluation, and

for awards and for maintenance or enhancement activities in the future.

In the test approach section, the overall strategies and methods

intended to drive testing effort are described to have a consistent

122
MATS Centre for Distance and Online Education, MATS University

Notes framework for the design and execution of test, You should cover in

this section the types of testing being conducted (e.g., functional

testing, performance testing, security testing, or usability testing), the

levels on which testing will take place (unit testing, integration testing,

system testing, or acceptance testing), and the trade-off between

manual or automated testing approaches. It also sets the guiding

principles for test prioritization, defect management, regression

testing, and other important testing processes. Moreover, by

documenting these strategic decisions, the test approach section ensures

that testing activities are consistent and overall testing philosophies are

communicated to all parties involved in or impacted by the testing

exercise. Suspension and resumption criteria within the test plan define

the circumstances under which testing activities may be temporarily

paused and later restarted. Triggers for the suspension may include

discovery of critical defects that render further testing not useful,

environment instability affecting reproducibility of test outcomes, or

reassignment of resources when competing projects are more weighty.

Then resumption criteria define the conditions that need to be true in

order for testing to continue in a meaningful way, such as blocking

defects being resolved or stable test environments being restored. These

criteria enable testing teams to make a consistent decision about when

testing activities would be futile and should be paused, and when

conditions are sufficiently improved allowing for effective testing

once again, thus preventing wasted efforts while ensuring thoroughness

of testing.

The process of change management within the test plan addresses how

changes to testing scope, approach or deliverables will be addressed

over the life of the project. These processes will usually define who

can make a request for change, how those requests will be assessed,

who has the right to sanction a change, and how approved changes will

be recorded & communicated to stakeholders. Effective change

management helps ensure that testing activities are aligned with project

priorities as they change but also that appropriate controls are in place

to avoid scope creep or uncoordinated changes that could jeopardize

the effectiveness of testing. This balanced approach recognizes the

normalcy of evolving requirements and priorities over the course of

development while also providing systematic processes for reacting to

changes in testing activities.

123

Notes Approval processes formalize stakeholder alignment with the testing

strategy, often via signatures or other recorded outreaches from

essential participants, which often include project management,

development lead, quality assurance lead, and occasionally clients for

external projects. This gives the test plan formal approval and it is the

best kind—it moves the proposed plan into an approved project artifact

that defines binding commitments with respect to testing activities. This

process typically involves multiple review cycles allowing stakeholders

to provide input prior to finalization; accounting for a range of

perspectives and requirements in the plan. After, it gets approved, the

test plan would act as a contract between all the project associates on

their expectations, responsibilities, and the deliverables that become

due for them. Comprehensive test plans provide valuable structure for

testing activities, but the level of detail and formality can differ based

on project methodology, organization culture, and regulatory

requirements. In more traditional projects (often referred to as waterfall

projects), test plans (sometimes with hundreds of pages) are prepared

and formally approved before the start of testing. More agile

methodologies may take the form of lighter-weight planning documents

that evolve incrementally as development progresses, often replacing a

stub or phased approach with varying combinations of test strategies

(which could be seen as stable, high-level guidance) and iteration-

specific test plans (more detailed, shorter-term planning). For certain

industries like healthcare, finance or aerospace, compliance needs drive

a long, heavily approved test plan [regardless of whether dev is agile

or not]. This tailored approach to implementation enables various

organizations to contextualize test planning to suit their unique

environments, retaining only the foundational planning functions

required to conduct effective testing. Test case design is the next logical

step after test planning – it translates the plans you laid out into

concrete procedures to verify the software quality, identifying defects

and determining validation against requirements. Test cases turn more

general testing goals into specific, executable tests that precise which

aspects of a system will be tested, how the system will be tested, and

what results mean successful vs. unsuccessful verification. That means

that your test cases are worth it, they're not just checking boxes for

everything, nor just compromising their complexity for the sake of

passing. The test cases together for a project define what will be

124
MATS Centre for Distance and Online Education, MATS University

Notes verified at a fine level of granularity, thus constituting a project-specific

operational back end to the work repeated in the project test plan.

Generally, a test case has multiple components and these components

collectively provide detailed information to execute a test case and

access the test execution results. Test case identifier — Helps to track

and report the testing process. For each verification activity, a clear

purpose is set up in objective or descriptive form, which explains the

functionality or requirement that the test case verifies. So,

preconditions define the state of the system, data, or conditions that

must be present before the test is executed. Test steps describe specific

actions that need to be executed, sometimes with input values for each

action. Expected results explain what behavior or results should

happen when the software works. Postconditions may describe the

expected system state after execution of a test. Adhering to these

structural elements guarantee that test cases have all the information

required to execute them consistently and evaluate the results

objectively. Traceability between test cases and requirements is a

significant aspect of the design of test cases, with bidirectional links

connecting each test case with the specific requirement it validates.

This traceability works in both ways the whole testing process. It

provides full test coverage by verifying that all requirements have

associated test cases. This helps analyze the impact of any changes in

requirements by knowing which test cases need to be updated to make

sure specifications are in accordance with test cases. It aids in

regulatory compliance for industries that require showing complete

verification of requirements. It gives context for defect analysis too,

allowing one to understand if issues are due to requirements non-

conformance or implementation problems. Such traceability

relationships turn groups of individual test cases into formal

verification frameworks that can be aligned with project constraints.

Some test design techniques aid testers in generating efficient test cases

that find defects significantly while dealing with the combinatorial

explosion of possible test cases. The equivalence partitioning

technique splits possible input values into clusters, also referred to as

"partitions", which should each be processed in identical manner by the

software, allowing testers to only select a single representative value

from each partition instead of testing all available inputs. Boundary

value analysis is a method that emphasizes testing extreme values

125

Notes within the partitions where defects frequently arise from improper

handling of minimums, maximums, or other transition values.

Decision tables are a good way to document complex combinations of

conditions and potential outcome(s), and check that you have tested

them all. State transition testing focuses on testing how the system

transitions from one state to another based on different events or inputs,

ensuring that the state change process is happening correctly and that

invalid transitions are properly prevented.

For scenarios of higher complexity, case testing considers end-to-end

workflows mirroring the manner users indeed interact with the system

to realise specific goals. This not only validates functions in isolation

but also validates their combination to form cohesive user experiences.

Your knowledge and intuition allow you to try an approach outside of

the defined steps of structured test cases, and that gives you the

opportunity to find problems not predicted in the test cases. Data-driven

test executes the same test procedure with several data sets to validate

behavior under different scenarios, where test logic and test data are

separated. These diverse methods allow testers to create robust test

suites that cover a wide range of software functionality and quality

concerns. When time or resource limitations prevent full testing,

prioritization mechanisms applied during test case design guide testing

efforts on the most urgent verification requirements. Normally, priority

classifications would include things like how important the

functionality is to the business, how often it is used in production,

complexity/risk to implement it, potential impact of failures, etc. High-

priority test-cases validate features without which the software would

be unusable, and lower-priority test-cases deal with almost-irrelevant

or edge cases that only fall into the category of barely conceivable

usage scenarios. By prioritizing verification, if it is necessary to reduce

testing effort as a result of project constraints, the more critical

verification will still be carried out, maximizing the risk mitigation

return on investment possible given the resource environment. These

review processes help ensure that test cases are of high-quality,

complete, and align with the project requirement before they are

executed. A technical review checks the correctness of requirements

against behavior of test cases. We use peer reviews which utilize

different perspectives to find potential holes or areas of improvement

in the test coverage. Confirmation of test cases against business

126
MATS Centre for Distance and Online Education, MATS University

Notes priorities and user expectations occur through stakeholder reviews

(typically performed with business analysts or product owners). It

detects wrong test case design early in the process and corrects it

before execution of the test case. Data used for the purpose of the

review translates single test design efforts into collectively verified

verification approaches that capture multiple facets of quality. The

importance of maintaining test cases is increasing as software goes

through several cycles of development or version releases. As

requirements evolve so do the test cases that must keep them aligned

with new expectations. If defects are found, new test cases can also be

written to validate certain fixes and ensure they do not regress. Since

test cases frequently need to be modified due to changes in software

architecture or implementation approaches, even when requirements

stay constant. Test case management best practices involve version

control, change tracking, and periodic reviews to ensure that test assets

are in sync with current versions of software and requirements. This

maintenance is an exercise in transforming test cases from a static

document into a living verification asset that grows and evolves with

the software it verifies.

Test case format and structure differ remarkably depending on the

organization standards, tools, and methodologies. Standardized

templates used in formal environments ensure that the testing is

consistent between different testers and projects, enabling reuse and

comparability. All the standard components (identifier, description,

preconditions, steps and expected results) are there and in consistent

format. In an agile environments, we may find that more recent or

flexible formats might be used, like acceptance criteria within a user

story, behavior driven development or BDD scenarios expressed in

Gherkin syntax as well as exploratory testing charters that lend

themselves to investigation more than they do writing down steps. The

format of test case design is flexible, so that organizations can

contextually realize the necessary verification functions. Test scripts

are the detailed, step-by-step instructions that build on test cases to

provide guidance for test execution, either manually by humans or

automatically by testing tools. Test cases tell us what to test and how to

know if we are successful; whereas, test scripts tell us exactly how we

will perform the testing (exact inputs, precise navigation paths, and

specific verification steps). They allow verification steps to be repeated

127

Notes reliably by different testers, in different environments, or at different

points in the project—all of which contribute to greater test availability

and, ultimately, higher quality. This detail can be more or less

depending on the needs of the tests; more complex functionality

generally requires more detailed documentation than simple scenarios

or testers with substantial experience. Manual test scripts serve as step-

by-step guides for the human testers when executing a test, ensuring a

consistent verification process independent of individual tester

experience or application knowledge. These scripts usually build on the

individual test case steps by specifying how to carry out each action,

which specific data values to fill out, which app elements to interact

with and which expected results to verify at each stage. Manual scripts

with decent design include both the actions that need to be performed

and the verification points that confirm that correct behavior occurs

before proceeding on to the next steps. They might also document

remediation steps for frequent problems or decision points that handle

conditional paths when the system responds differently. This specific

guidance leads to thorough validation consistent with specifications

and allows testers with limited knowledge of the application to perform

effective verification where it counts.

These written automated test scripts (close equivalents of procedures),

encode test procedures, in the form of highly specific code or

configurations, that can be run by testing tools without human impact.

Test scripts are typically written using specialized programming

languages or domain-specific languages (DSLs) offered by testing tools

to mimic user actions, provide inputs, and validate system responses.

In addition to the simple test steps, automated scripts really are setups

that include initialization routines for establishing preconditions for the

test, verification constructs to compare actual results with expected,

error handling logic for dealing with unexpected states, and cleanup

code to return the system to some baseline state after tests are

complete. Hence automated scripts can run through complex test

scenarios repeatedly and consistently, and hence are efficient for such

verification, only regression tests should be run during each interval of

development. You are focused on finding the right amount of detail to

include in your test scripts so that the script can execute the same steps

as you in a consistent fashion but without being so detailed that it needs

to be updated constantly as the application is being developed and

128
MATS Centre for Distance and Online Education, MATS University

Notes features are added. A modular script design approach assists in

achieving this balance by creating reusable components of test

instructables that can be used in building test scenarios through

combinations of such instructables. When it comes down to common

functionality: login methods, data preparation scripts, verification

sequences, etc. — these things can be written once and referenced in

multiple test scripts, saving duplication and making maintenance easier

when anything about those common elements changes. Since scripts

can be written in a modular way, i.e. get the basic functionality up and

running first, and verify/add functionality (additional features/edge

cases) as the development progresses. Data separation is another key

principle of test script design with respect to automated testing. In this

way, separating the test logic (the sequence of actions that are to be

performed on the application and the verifications that follow after each

action) from the test data (the values of the input fields and the

expected outputs) makes the scripts more reusable and less rigid.

Separation of data from test logic allows multiple executions of a single

script using different data sets, to test application behavior with a

variety of input combinations, without replicating the test logic. These

test data sets are usually stored in external data sources like

spreadsheets, databases or configuration files that can be easily updated

by someone who is not a programmer to change a test scenario without

changing script code. Separating data from the script makes it easier to

maintain scripts and improve testing coverage by allowing for more

variation in data without changing the script. Environment

independence is another important consideration in test script design,

especially with automated testing that may run in different

environments over the course of development. Hardcoded scripts :

Scripts with elements specific to the environment they were developed

in, e.g., server addresses, file paths, or user credentials, need to be

updated whenever any of those elements change. This creates a lot of

overhead in tests done in multiple environments. More comprehensive

strategies involve configuration settings, environment variables or

external configuration files, allowing you to run the same scripts in

different environments while only modifying that external

configuration and not the scripts itself. Environment independence also

leads to significant reduction in maintenance effort and consistent

129

Notes verification from development, testing, staging, and production

environment.

The use of version control for test scripts guarantees that the

appropriate script versions are utilized for testing different software

releases and that script evolution is adequately monitored across the

development lifecycle. Just as we place our application code or other

code under version control to manage changes, we need to consider

putting our test scripts under similar management to ensure that our

test assets remain aligned to the software they are there to verify. Where

does the unpaid work happen in between script and application, and

when changes are made is this governed by something like a version

control system that can track changes to scripts that facilitate

comparative differences in the way that scripts are modified, what

version you are on, and if you need to revert back to a previous version

of a script as well as the ability to correlate versions of the script and

versions of the application? This versioning is particularly crucial for

regression testing, as scripts need to be aligned against the relevant

software version to yield meaningful verification. Version control

creates dynamic test scripts; they become managed assets that change

with the application under test.

Similar to test cases, review process also exists for test scripts helping

to ensure quality measure and test effectiveness before execution.

Technical reviews ensure scripts properly automate the relevant test

cases, leverage test data appropriately, have accurate verification

points, account for different error scenarios, etc. Readability

reviewsensure manual scripts provide clear, unambiguous instructions

that can be interpreted consistently by different testers. For automated

scripts, performance evaluations considered execution efficiency, with

potential optimizations that would allow tests to run faster or consume

fewer resources. These reviews ensure that there are no script related

issues that could impact the effectiveness of execution to results

thereby helping to ensure that any issues with execution point at an

actual application defect and not a test implementation concern.

Maintenance considerations heavily drive how we write and execute

scripts, as test assets must regularly be revisited and updated

throughout the software lifecycle. Application interfaces change, new

features get introduced, existing things need changes, defects are

found in your scripts themselves, etc, and thus scripts need to be

130
MATS Centre for Distance and Online Education, MATS University

Notes maintained whenever anything is changed in your application. This is

because we will rely on design practices that improve maintainability

such as modular structure, meaningful naming conventions, thorough

documentation, and abstraction layers that separate scripts from

implementation details which are most likely to change. This

specifically helps minimize the grunt work needed to maintain scripts

as the application matures, so testing assets are useful throughout the

development life cycle rather than becoming worthless when software

changes. These scripts yield results that should be captured, analyzed,

and reported in order to evaluate the quality of the software. Execution

worksheets (or their digital equivalents) serve as structured outlets for

this, recording pass/fail status (or equivalent), observed vs. expected

result, evidence (e.g. screen shots) and any questions or anomalies that

arise during testing. Most automated testing tools provide execution

logs containing information about each action taken, verification

results, how long it takes to run, and what exceptions/errors are

encountered. These artifacts of the result are what the subsequent

reporting and analysis are based on — objective proof of testing effort

and its resulting consequence that those with a vested interest can use

to analyze the quality of the software. Test reports turn the raw data

generated from executing tests into standardized format used by

stakeholders to learn quality status and make decisions about the

software. Test cases and test scripts describe how testing will be done,

execution results document what did happen during testing, and the test

report puts this information in context, emphasizing important results,

trends, and suggestions to steer the project focus. These reports are a

vital communications mechanism that interprets technical testing

activities into business-wise quality insights. Test outcome report: The

end to end report that provides a summary of the testing activities

undertaken (which actually is called the test summary report), detailing

the results, test cycle/project phase, etc. An executive summary follows,

summarizing major discoveries, quality appraisal, and

recommendations in business language all stakeholders can understand.

The testing scope section explains what was tested and what was

excluded, so that results can tell you the right story. Summary of test

execution statistics overview activity metrics like planned vs. executed

test cases, pass/fail rates, and coverage achievements. Defect metrics

are used to analyze defects found during testing, typically comprising

131

Notes severity distribution, status summaries, and trend analysis (over test

cycles). Risk assessment helps understand the quality risks based on

testing results and emphasizes any major concerns that could impact

release decisions. Based on the results, recommendations guide

whether you can move forward with your release, if you need to do

further testing, or if you need to fix quality issues before deploying.

Status or progress reports offer interim updates during testing activities;

they keep stakeholders in the loop on the progress of testing without the

need to wait for whole cycles of tests to complete. These reports are

usually activity-centric reports such as the % test cases executed, %

Requirements/Features covered, time spent against planned test effort,

etc. They recapitulate present defect status, including new discoveries,

recent fixes, and general defect patterns that are flagging whether

quality is improving or declining. There is a particular focus on

blocking issues, i.e. issues that prevent forward progress on testing, as

well as mitigation plans or help needed to overcome these issues. The

benefit of having this information regularly is the ability to adapt testing

strategy or project plan before we hit a major milestone and discover

we have significant quality concerns—by complying with emerging

quality information that (theoretically) advises us when to correct

course before it becomes too difficult or costly to do so. Test case

reports document a particular quality issue in detail, reporting and

requesting a specific type of work to be carried on by the dev teams.

This categorization can be used to filter bugs based on factors like

when they were discovered, how serious they are, or how reproducible

they are. These reports often come with supporting evidence, such as

screenshots, video recordings, log excerpts, data samples, etc. A well-

structured defect report speeds up the cycles of clarifications between

testing and development groups allowing a prompt resolution of

quality issues in the iterative development cycle itself.

Specialized test reports deal with specific quality dimensions, which go

beyond functional testing, to detail measurements and analytical

results of identified quality attributes. Performance test reports

summarize the system behavior under different loads, providing

response times, throughput rates, resource utilization patterns, and

scalability characteristics for different usage scenarios. Security test

reporting is a crucial element of a comprehensive security program,

documenting vulnerabilities identified during the security testing

132
MATS Centre for Distance and Online Education, MATS University

Notes process typically including risk assessments, exploitation potential,

and remediation recommendations for each identified issue. Usability

test reports provide a summary of the user experience with the

application, gathering key points of difficulty and confusion during the

interaction, as well as recommendations for user interface or process

flow improvements. Ad-hoc reports on specific quality aspects not

covered by functional test reporting. Metrics and visualizations

transform test data into actionable information, which allows

stakeholders to quickly gauge status and trends in quality. Testing

Execution Charts show how testing is progressing over time, and

compare whether planned and actual completion rates align, to

determine whether testing is moving forward as intended. Coverage

graphs show what percentage of requirements, features, or code have

been validated by testing activities. Defect trend charts show the

number of issues discovered and addressed over time, making it

possible to assess whether quality is improving as development

proceeds. Analyses of defect distribution demonstrate how the issues

are distributed by, for instance, application components (such as the

graphical user interface (GUI), database, business logic, etc.), defect

severity, or defect type, and can signal areas that may need more

development or testing focus. By translating complex testing

information into visual formats, such reports help stakeholders of the

project gain access to and action on quality-related information to

make better evidence based decisions. For this reason, who is going to

read a test report drives what gets included and to what level of detail

— people need different information depending on their role. Executive

stakeholders usually require high-level overviews that are oriented to

business impact, risk assessment, and go/no-go recommendations for

potential releases. Project Management needs: KPIs with low level of

detail (e.g. Progress metrics, resource utilization data, and schedule

implications of test results.) Static code analysis is used by many teams,

but it often doesn't give developers the details they require, such as

particular reproduction steps and diagnostics data, about issues they

find. Metrics also he help testing teams as a whole to identify

improvement areas in both the process and effectiveness of testing.

Well-constructed reporting methods meet these different requirements

through layered presentation of information, so that summary-level

133

Notes content can be extended to more general audiences, with technical

detail being held available for those interested in deeper understanding.

Certain compliance and audit requirements dictate the need for

specific test reporting requirements and this is perhaps more than ever

in regulated industries (healthcare, finance, aerospace, etc). There may

also be requirements detailing mandatory content, required approval or

retention periods or format constraints for the documentation

concerning the test. In these scenarios, it's common to require

traceability matrices that show all requirements have been validated

via testing. Mandatory test evidences like logs showing who did the

testing, when was it done, what was the results are very useful for audit

purposes. Before authorizing release, sign-off procedures showing

formal approval of the test results by designated stakeholders might be

required. These compliance considerations help to demonstrate that test

reporting communicates the quality status as well satisfies any

regulatory obligations that impact software development in regulated

domains. Technical reviews ensure that the data used for testing is

accurately reflected and that the conclusions made from the data are

justified based on actual testing activities. Peer reviews take into

account several views that may be instrumental in spotting gaps or

misinterpretations or supplementary information that the author needs

to address. Review by stakeholders, including project management and

business representatives, validates that reports respond to key business

questions and provide actionable information for decision-making.

Such reviews ensure that there are no misconceptions regarding quality

status, preventing erroneous release decisions that compromise release

objectives and targeted improvement efforts. As a next step, the

individual observations from testing are transformed into collective

ones, where testing efforts by diverse teams across geographies lead to

quality assessment on the software, a measure on the Readiness.

Distribution and accessibility considerations make sure that test

reports are delivered to relevant audiences in digestible formats.

enforcing structure Distribution lists help determine who will receive

which reports; this way, relevant stakeholders receive targeted reports

and are not subject to ‘report spam’ (reports that do not apply to their

needs). Access controls also safeguard sensitive testing details,

especially for security testing that might report vulnerabilities that are

not yet remediated. Format options reflect the target users’ value in their

134
MATS Centre for Distance and Online Education, MATS University

Notes info consumption; some value detailed document formats while others

benefit more from a dashboard view or presentation format. Proper

archival processes allow a snapshot of the historical test report to be

kept for reference purposes, aiding in trend analysis across releases (for

discovering regression) or being used as evidence for future audit

activities. Transforming test reports from a standalone document into

meaningful communication asset that drives quality-focused decision-

making throughout the organization. Automation of test reporting may

build the effort required to generate consistent and timely reports;

however, it may also lead to higher accuracy and completeness of

reports. Most test management tools have reporting capabilities that

generate standard reports automatically using the execution data

captured during testing activities. These systems offer real-time

visibility into the testing status without the need of generating any

manual reports. For example, integration between testing tools and

project management or defect tracking systems allows project status to

be automatically updated based on testing results. Such automated

approaches help testing teams to be less bogged down with the

administrative side of testing, and focus more on testing while

providing stakeholders with enough information to know the quality

status and the power to make an informed decision. Test documentation

elements, including plans, cases, scripts, and reports, are to interact in

a way that creates an integrated framework that will support the entire

test lifecycle. Test plans define the what & how of testing, providing a

roadmap for the creation of further documents. Test cases describe

specific verification objectives based on guidance from the plan, and

they form the verification framework that will be implemented by

scripts. Test scripts: provide execution instructions based on the

specifications of the test cases, ensuring the same verification methods

are used for each implementation. Simulated tests report results by

executing scripts that illustrate how well your software met the quality

goals defined during the test planning process. Such interconnected

documentation structure ensures that the testing strategy, testing

implementation, and testing reporting are all aligned, creating a

coherent quality assurance approach rather than isolated testing

activities.

These best practices help manage and maintain test artifacts so that

they are both organized, accessible and project-aligned throughout the

135

Notes project lifecycle. Supporting formatted tools and versioned documents

are used to track changes to test documentation, which also allows for

comparing versions and correlation with software releases.

Configuration management also guarantees that the appropriate

documentation versions are utilized for testing different software

versions. This ensures that the test assets are in sync with the

applications they are verifying as requirements of the applications or

their implementation rattles; such scope (requirement) and application

implementation change is governed by change management process

and is directly proportional to documentation update. So, it works

collaboratively with the individual processes of test strategy, design,

development, and execution to create an updated documentation

ecosystem that has been integrated into a central repository over the

course of the software development life-cycle, thereby empowering

the end-to-end support of overall quality management during the entire

project. Test documentation can come with a varying degree of

formality and detail, depending on project methodology, organization

culture, regulatory requirements, etc. Waterfall has long led to

comprehensive formal documentation signing off on design and test,

after its submission being reviewed and the process for formally

updating such available and followed, very structured — with clear

dependencies between the various artifacts. Agile methodologies use

less heavy-weight documentation usually being created incrementally

over the course of development, mainly for the purpose of just-in-time

creation of testing assets used in current testing activities. In regulated

industries, documentation must often be more formal, detailed, and

include specific content and approval processes as dictated by

regulatory standards regardless of development methodology. You're

taught how to use the new system with documents that preserve the

general aspects of planning, specification, and reporting that you need

for test work, but you have the flexibility in how you implement it to

suit the context by which your organization operates.

The way you document your tests in a quality assurance process hasn't

really changed despite all the advancements in technology and

methodologies. Test plans outline a plan of action which helps to ensure

that testing is aligned with project goals and stakeholder expectations.

Summary level of test cases contains instructions for verification,

which transform requirements into conditions suitable for testing.

136
MATS Centre for Distance and Online Education, MATS University

Notes Execution instruction is what is provided in the test script that ensure

the test is performed consistently regardless of the tester. After

executing, the test reports these results in a way that allows to make

decisions about software quality and possible release. For all of this to

be really meaningful, however, all of these documentation pieces move

testing from a one-off effort into a systematic, repeatable process that

allows for a much higher quality of software and provides all

stakeholders with real evidence of the thoroughness of verification. In

the modern development environment, quality test documentation is a

well-balanced mix of comprehensive presence and practical utility that

provides just enough structure and detail to aid quality goals without

adding frills that incur administrative overhead hampering

development agility. Doc development — Lean documentation

approaches focus on what’s needed, but nothing more which is usable

for the reason of testing purposes. Learn more: Template approaches

uniformizes document layout making it customizable to a specific

project but brings consistency with flexibility. Tool-supported

documentation is based on dedicated test management systems that

combine planning, case management, execution monitoring, and

reporting functions into combined platforms, which decreases

documentation effort while increasing traceability and accessibility.

These types of compromises have illustrated that there is a need for

test documentation, one that should be driven to reach objectives of the

test and not as an end goal on the test, bringing necessary infrastructure

without bogging down the testing exercise it complements. Test

documentation also fulfill relevant organizational knowledge

management purposes beyond direct need for tests. It preserves testing

expertise and application knowledge that would otherwise reside solely

in the minds of individual testers building up an institutional memory

that endures over the life of the test, even as team members come and

go. It offers new team members on boarding resources to get them up

to speed with how we test and how an application typically behaves. It

who defines precedents and patterns that we can reuse in similar

projects to avoid reinventing the wheel for test approaches for common

scenarios. It generates historical quality metrics that can be analyzed

for trends across releases/projects, facilitating continual improvement

opportunity identification based on observed trends rather than

anecdotal impressions. The benefits of knowledge management that

137

Notes fosters organizational testing capabilities over time helps convert

individual testing experiences into collective testing wisdom that

improves software quality at the enterprise level.

As software development practices have evolved, so have the ways test

documentation is applied, but its essential purposes are still applicable

across any methodology or technology. With the advent of DevOps,

the focus on testing in the CI/CD pipelines moves well beyond test

documents to the automated test assets which both specified and

verified correct behavior. In this approach the requirements are

expressed as executable specifications through the use of a domain-

specific language, narrowing the gap between paperwork and

execution and blurring the line between requirements and test cases.

Testing as Code is a framework for treating test assets as software

artifacts and with the same development practices as application code

(version control, code review and integration), thus promoting quality

earlier in the process. Note that these evolutions have been adaptations

of traditional test documentation concepts to modern development

contexts and do not replace the core planning, specification, and

reporting functions which are still essential to effective quality

assurance. As a final thought, test documentation like test plan, test

cases, test scripts, test reports, etc., provides organizational structure to

make sure that software testing tailored for effective lifecycle

development activities. In the sense of product development quality

assurance Test plans provide strategic direction as it describes what we

are going to test, how we are going to test, what resources will be there

to support the testing efforts Jawadi will describes test cases as a more

precise set of conditions that can be tested, they convert test conditions

into test requirements and familiar more uh deterministic expected

principles. Test scripts outline execution instructions to follow, to

maintain the consistency in testing implementation no matter who

performs the verification. Test reports convey results that help

determine software quality and readiness for release. Different projects

have different contexts, very much both of their methodology and the

regulatory environment they fit in that govern implementation

approaches, but well-structured test documentation takes testing away

from ad hoc activity to a systematic, repeatable state that builds on the

quality of the software while providing tangible evidence of the

thoroughness of verification to a multitude of stakeholders.

138
MATS Centre for Distance and Online Education, MATS University

Notes Unit 8: Defect Life Cycle

2.4 Defect Life Cycle: Steps from defect detection to closure

Defect life cycle — also referred to as bug life cycle — is a systematic

process that facilitates the monitoring of a software defect from its

initial discovery to the final confirmation and resolution of the defect.

Systematically this process captures issues that need to be identified,

tracked with wrong owners, remediation to be scheduled and verified

in the software development life cycle. Formalized defect management

promotes quality awareness and prevents issues from getting

overlooked, ensuring nothing gets lost in the mix, while also allowing

all stakeholders to stay informed of the quality of software products

during development. An ideal defect life cycle consists of several stages

such as detection, reporting, analysis of defect, prioritization of defect

based on severity and impact, assignment to a concerned team,

resolution, verification of defect and finally closure of defect, each

having associated activities, ownership and output to properly govern

the quality problems. Defect detection is the first step of the defect life

cycle where the difference between expected and actual behavior of the

software is detected. Different types of issues are revealed at different

stages of development, and this critical discovery phase can happen at

various activities across the development lifecycle, with different

detection methods. The phases that follow depend heavily on defect

detection quality, in terms of defect identification completeness and

accuracy, to ensure the best-fit resolution. However, detection is not

just the front-end of the defect life cycle, it is an elaborate technical,

but systematic process, and sometimes recognition of abnormal

behaviour with/without empirical evidence, that the software product

might be failing or will fail.

The most formal defect detection activities involve testers executing

defined test cases in a very structured fashion and comparing actual

results with expected results. Unit tests run by developers catch bugs

within small pieces of functionality before they are used as part of

bigger systems. Integration test shows interface mismatch and

interaction problems between components that work perfectly in

isolation. It detects end-to-end functional defects, performance

bottlenecks, or usability issues in the entire application. It identifies

mismatches between functionality developed and the expectations of

139

Notes users/business requirements. Formal testing methodologies

systematically exercise every capability a piece of software has,

increasing the chances of catching a defect before it gets released to

production systems. Aside from formal testing, there are many different

activities during development and operation that can result in the

discovery of defects. Static analysis through code reviews and code

inspections may reveal potential defects before the code has ever run,

often catching problems that may be hard to find through dynamic

testing methods alone. Automated analysis tools examine code for

common error patterns, security vulnerabilities, performance

inefficiencies or compliance violations and flag those that should be

investigated further. Production monitoring can uncover problems that

testing didn't catch, especially ones simply due to scale, atypical usage,

or environmental variables difficult to replicate with a test harness.

Actual use customer complaints reveal challenges that may not have

been part of the initial use case development plan, but have an outsized

impact on business or user outcomes. One critical fact about defect

detection is the environments in which the software is assessed have a

contribution on the defect detection rate while the software has various

types of issues when tested in different environments. Development

environments facilitates early identification and isolation during the

coding phase, however they often lack realistic usage scenarios.

Dedicated test environments enable systematic verification under

controlled conditions that mirror production configurations. Testing in

staging environments that are a replica of the production environment

aids in the detection of issues arising due to environment differences

prior to release. A production environment is a true gauge of how

software will operate under real usage scenarios, and some issues may

not be catchable in simulated testing The people who work on defect

detection come with varying backgrounds that shape which kinds of

problems they notice. Technical issues, coding inefficiencies, or

implementation concerns that non-technical members of teams might

overlook are often noticed by developers. Testers use systematic

verification techniques and look specifically for gaps between

requirement and realization. Business analysts point out misalignments

between implemented functionality and business goals or user needs.

End users find usability issues, workflow inefficiencies or functional

gaps that affect their ability to perform real-world tasks. The security

140
MATS Centre for Distance and Online Education, MATS University

Notes specialists identify weaknesses or compliance issues that might be

missed by team members focused on functionality. Each of these

perspectives offers unique insights, and when combined they offer a

holistic capability to detect defects that is greater than any one

perspective alone, demonstrating the benefits of diverse participation

in quality-focused activities.

If you notice any potential defects, you generally investigate it

informally before formally reporting it, to ensure that any problems

you observe are indeed defects and not misunderstanding,

environmental issue, or valid behavior. This may involve reproducing

the problem to ensure it is repeatable, taking measurements of the

environment in which the problem occurs and comparing actual

behavior with a known requirement or specification to confirm that it

is in fact a genuine deviation. In cases of complex issues, this

investigation may involve collaboration with developers, architects, or

business analysts to determine what was intended to happen before the

defect is formally documented. This first step towards validating issues

helps avoid saturating the defect management system with issues that

don’t depict a software defect, and helps direct the focus of the team’s

attention to the issues that are actual quality problems. Once confirmed,

the reported defects enter the reporting stage, where they are officially

recorded in a defect tracking system to facilitate the resolution process.

We're a little out of order here, but the key to effective defect reporting

is documentation — in other words, it should always be clear, complete,

and succinct enough for developers to reproduce, and fix, the issue

without needing to come back for more details. That documentation

typically consists of a short but descriptive title that conveys the heart

of the issue, clear, step-by-step instructions that allow others to

reproduce the problem, expected vs. actual results that specify the exact

difference between what is desired and what is occurring, environment

details that set the scene for the equipment where the issue was

observed, and further diagnostic details such as screenshots, error

messages or logs that will help clarify the issue. Quality of defect

reports plays a great role in the efficiency and effectiveness of the

activities in the later stages of resolution. Well written ones provide all

necessary information for the developers to start working on the issue

immediately, and vague or incomplete ones need several clarification

cycles that slow down the fix time and hog neck resources for both

141

Notes testing and development teams. A good defect report provides enough

information so that the reader does not have to guess but refrain from

including redundant facts. This distinction is especially important for

testers as it allows developers to fix quality issues by focusing on things

that they can see and measure, and ignore things that are merely

subjective impressions that they might have. Every report contains

exact steps to reproduce that work every single time, so developers can

induce the problem on demand when working to understand and

resolve it.

Defect reporting systems offer dedicated tools for logging, tracking,

and managing defects during their lifecycle. These systems typically

have detailed templates that help in capturing a consistent and

comprehensive set of information for any reported defect. Thanks to

issue trackers, or issue tracking systems, every issue has a unique

identifier, allowing for a uniform way to refer to the issue in blog posts,

documentation, and even comments in the source code. They maintain

audit trails of every action taken on every defect to hold the

development process accountable and transparent. They can include

file attachments for screenshots, video, log files, or any other artifacts

that provide visualization data or diagnostic information. These

capabilities change defect observations into managed assets that can be

addressed systemically throughout the development process. Analysis

comes after reporting and involves evaluating any newly reported

defects to ascertain their validity, significance, and what an appropriate

response is. This stage involves initial triage of reported issues to

determine whether they actually indicate defects needing developer

attention or some other state such as enhancement requests, user

misunderstandings or expected behaviors that would be treated

differently. Afterwards Valid defects are evaluated to identify their

technical configuration, business effect, and resolution complication.

Analyzing this information can provide an important context when

prioritizing later, so that resolution efforts are directed first towards the

worst, managing lower risk issues according to the respective

drawbacks and objectives of the project. Not to mention that defect

analysis often goes on in a few angles to truly appreciate and understand

the problem making waves. Technical analysis looks at the defect from

the implementation plane: What components of the application are

affected? What are the possible root causes? How does this defect

142
MATS Centre for Distance and Online Education, MATS University

Notes relate to other known issues? How technically complex are the possible

fixes? Business analysis analyzes the defect as a end user or

stakeholder: does that affect end user experience, business concern,

data creation or any other value prospect. Risk analysis takes into

account what could potentially happen if the defect remains unresolved,

which can include financial loss, reputation impact, and even security

threats or compliance violations. These analyses can be tied together

to determine the appropriate action for each defect or the degree of

response that is appropriate, both technically and as a business decision.

Often part of the initial defect assessment, root cause analysis works

to look past symptoms to determine why a defect was introduced, and

why it wasn’t caught earlier in the development pipeline. This study

explores the reasons behind failing to catch a bug, whether it be due to

misunderstandings of requirements, design flaws, coding mistakes,

specifications that were not thoroughly tested, or systems and

processes that were allowed to fail. Teams can then implement wider

ranging improvements—like better requirements reviews, more

developer training, more rigorous code standards, or more thorough test

coverage—that address the root cause of problems versus symptoms of

the problem. By stopping defect introduction rates instead of just

improving defect doorstep detection and correction, this preventative

approach progressively boosts product quality and process efficiency.

Classification of defects during analysis helps in logically grouping the

defects so as to map them to tracking, reporting and process

improvement efforts. Concerns to be considered for classification

dimensions may include defect class (functional, performance,

usability, security, etc.), affected component or module, detection phase

(requirements, design, coding, testing, production), possible reason

(correctness in requirement, design error, coding error, etc.),

environmental characteristics (particular platforms, browsers,

configurations, etc.). These categorizations allow teams to highlight

patterns and trends — components that have higher defect rates,

common types of errors that may signal certain vulnerabilities in the

process. These insights help target improvement initiatives that tackle

systemic quality issues rather than discrete defects which then raise

overall development effectiveness over the long run. This is where you

determine the relative importance of each defect and the order in which

issues will be resolved when it is simply not possible to fix everything

143

Notes immediately. This prioritization usually takes severity or impact and

priority as separate but related entities. Severity is a measure of the

technical impact of the defect — how much it affects system

functionality, data integrity, or user experience — where the most

severe level is critical (system crash or data loss) and the least severe

level is minor (cosmetic issues with low functional impact). Priority is

a business value consideration that ranks issues by how soon the defect

needs to be fixed relative to other defects based on customer visibility,

compliance ramifications, or release schedule constraints. The

classifications help direct resources and schedule activities so that the

team addresses the most important problems first.

Severity classification is an objective way to assess the technical impact

of a defect and usually happens according to standard definitions that

guarantees consistent evaluation of different issues and team member.

Critical severity generally means defects that lead to total (system)

failure, data corruption, security breach, or make high-level

functionality unusable. High severity indicates a serious functional

impairment, calculation error or major performance degradation

seriously affecting the usability of the respective system but not making

it completely non usable. The medium severity encompasses partial

functional restriction, usability or performance issues, something that

may cause inconvenience for the user but they can still accomplish

their critical tasks with possible workarounds. Low severity refers to

non-critical defects like cosmetic defects, vague messages, minor

deviations from specs that do not impact functionality or usability

significantly at all. These definitions provide a level playing field,

helping teams determine defect impact without letting business or

scheduling concerns influence the assessment. As that priority

classification combines the business context and project restraints that

impact prioritisation of the resolution scheduling, this sits in parallel

with severity. This is typically only reserved for defects that need to be

fixed before any other work can begin, like production issues

impacting multiple customers, or blocking defects preventing

development or testing on critical activity. High priority means it

should be fixed in this development iteration, before fixing anything

else that is less important. Medium priority means that the issue get

scheduled for the current release, albeit with somewhat less urgency

than high-priority items. Low priority is assigned to defects which can

144
MATS Centre for Distance and Online Education, MATS University

Notes be passed on future releases without a major business impact. Such

prioritization helps teams process their workload — when there is

insufficient resource bandwidth to address all known defects

immediately, teams can focus their efforts on defects that can yield the

highest potential business value if/once resolved.

Defect triage meetings involve stakeholders from development, testing,

and product management who evaluate all newly reported defects and

decide on possible upcoming actions separately. In these sessions

participants go through each defect to verify its validity, classify its

severity and priority, identify who should be responsible for fixing it

and which release or sprint a fix should be implemented. Such

discussions involve input from multiple vectors such as user usage

impact, fix complexity, dependency on other dev work, release

schedules or business priorities. Regular triage meetings help the team

to properly vet defects and prioritize where time spent on resolution

will have the most impact, allowing the firm to make the best use of

development resources and improve quality in a specified time box. In

the assignment phase, the responsibility of resolving the defect is

assigned to team members as per the technical domain knowledge of

the team members, ownership of the component, load considerations,

etc. The formal assignment creates clarity about who owns what issue,

so nothing falls between the cracks due to fuzzy accountability. The

assignment tends to take into account an overview of who is most

familiar with the affected code, who has relevant technical skill set

required to address the bug, who has what is the current workload

balance within the team to maintain productivity based on other

considerations, and whether there exists any dependency across

defects, indicating potential for grouping of defects for collective

resolution. This cost-conscious distribution of defect ownership

facilitates the effective resolution of defects while utilizing team

resources in the most efficient manner by assigning problems to the

most relevant resources. Assignment is often including the target dates

or timeframes for resolution, to set the estimate for fixing defect

respecting defect priority and project timelines. Specific completion

dates create accountability for high priority issues and facilitate

management of dependencies with other development activities. For

things that matter less, wider windows or release targets would be

adequately informative but give you more freedom in when you make

145

Notes it happen. This allows teams to balance their defect backlogs with the

work that they can accomplish each iteration, relative to their capacity

and other high-priority work. Periodically reviewing overdue due

dates enables detection of risks to resolution commitments before they

can significantly affect schedules or quality goals.

So communication is an important piece of good defect assignment

ensuring that developers know what has been assigned to them, why

it’s important, and when it needs to be addressed. Notification systems

notify developers of new defect assignment which makes them

instantly aware of new pending work to be addressed. Comments on a

defect assignment could add contextual information beyond the

minimal defect description, providing justifications for priority,

recommending possible solutions, or correlating to other problem

reports or development activity. Read this simple saying for nature of

assignment will harmony it from a series of mechanical process of task-

allocation mechanism to a coordination function, linked individual

activity to later teams quality objectives as well as project agenda. The

phase of resolution is where the real work of fixing the manifest defects

occurs, making changes to the behavior that was causing the issues.

So, the troubleshooting phase usually starts with investigation, such as

figuring out what caused the problem in the first place, identifying

which piece of code or configuration has to be changed to fix the

problem. Once that is understood, the developer applied the right

changes — simple fixes for simple issues and complex changes for

more complex problems. This process involves a number of verification

activities prior to being accepted as complete, ensuring that the

modifications address the root cause of the problem but do not present

problems of their own. Concrete improvements to the software arise

from this technical core of the defect life cycle, which is the resolution

phase that turns understanding of quality problems into actual software

improvements. There are diverse strategies that can be implemented

depending on the nature of the defect, as well as the context in which it

occurs. For simple, localized defects, direct correction of the code may

be sufficient — simple fixes for the logic error, incorrect calculation, or

improper validation responsible for the problem. Complexer problems

can need architectural refactoring, rewrite of large sections of the code

or even rethinking of features that have failed to deliver on

requirements from the get go. There are certain defects which require

146
MATS Centre for Distance and Online Education, MATS University

Notes not only code changes, but also data fixes — this is particularly true in

cases where data has been corrupted during execution leading to

incorrect information being recorded in databases or configuration

files. Security vulnerabilities are special cases where fixing the

specific issue might involve auditing related code to check for the same

issue or where additional protections against similar vulnerabilities are

put in place.

There are typically several verification steps in the resolution process,

after which the change is considered complete. Unit tests ensure that

the modified components still work fine by themselves. Integration

tests validate that changes behave correctly when integrated with other

components. While unit tests verify a small part of the app, regression

tests guarantee that changes do not break functionality that previously

worked. Unlike on-git-trick, peer review and code review stages

provide more validation, catching issues before they even make it into

the integrated main code. These verification activities assure

confidence that implemented fixes indeed resolve the original issues

without introducing new problems such that the probability that

defects will be reopened after having been fixed is also minimized.

Resolution activities are documented capturing what was changed, why

the selected methods were used, and how the change fixed the original

defect. This documentation usually consists of comments in the actual

code, where the developer explains what was done and why, especially

in complex fixes or workarounds. It also provides fixes/updates for the

defect tracking system which lists out the technical solution and on

specific tests would be recommended to verify the fix. For larger

issues, further documentation might be architectural decision records,

updated design documents, or technical notes for maintainability down

the line. Such comprehensive documentation molds single defect

resolutions into collective understanding from which future

development and maintenance activities benefit. During the resolution

process, communicating the status of progress and roadblocks helps to

ensure key stakeholders are informed. Investigating: Developers are

investigating the issue and inspecting root causes and possible fixes. In-

progress status means that real implementation work on the chosen

solution has begun. Resolved/Fix: Developers have implemented the

fix and believe that the issue has hired, but verification remains

pending. This progressive status updates offers visibility into

147

Notes resolution activity, allowing project managers, testers, and other

stakeholders to track the quality improvement progress and adjust if

there are any critical impact during resolution efforts. Accountability

comes after resolution — ensuring implemented changes do, indeed,

resolve the reported defect without creating new issues. Most often this

stage would include testers repeating the test case or scenario that

reported the defect, with the same inputs and environmental conditions

to confirm that the behavior is now what is expected. Depending on

the issue, verification may extend beyond initial conditions, especially

in cases where a fix may affect wider functionality. Being independent,

this serves as an assurance that the identified defects have really been

fixed in terms of the end user certainly not superficial or code-wise and

serves as a neutral validation that quality concerns have been duly

resolved before signing defects as closed.

Verification testing: They follow a defined process to make sure of

the bugs in action. Reproduction testing validates first that testers can

still reproduce the original issue in the previous version of the software;

it verifies that verification work will target the right behavior.

Confirmatory testing then checks that the same sequence of

reproduction steps no longer produces the defect on the new version

with the fix, confirming that the specific problem has been addressed.

Regression testing is conducted on the product functionality with

shared code or business logic to ensure modification in a component

hasn’t affected other features. For solution edge case testing, go out to

the edges for bounds and exceptional conditions related to the fix,

checking that the solution works more broadly across different

scenarios and not just the specific case where the issue was first

identified. The environment in which you are verifying plays a huge

role in how effectively you can test something (and the confidence you

can have in validation of a fix) — due to the fact that all environments

vary. Development environments allow for rapid initial validation, but

not all elements of production configurations may be visible. Dedicated

test environments facilitate comprehensive validation in a controlled

environment that mimics production environments. Closer

reproduction of the production environment in staging gives more

confidence that you can fix something in staging and it will work once

deployed. A small number of high-risk changes can be deployed and

verified under production conditions before being fully rolled out,

148
MATS Centre for Distance and Online Education, MATS University

Notes potentially causing significant impact on users or business operations

if an issue arises. These progressive verification environments

combine exhaustive reasoning with time and resource accessibility.

Success in verification dictates future behavior in the defect lifecycle.

Once verification indicates that the defect has been completely fixed,

and no new ones introduced, the defect can be confidently closed with

the assurance that quality has been improved. If the original issue is still

present even after devs have tried to remedy it, verification returns the

defect to devs, giving detailed information on what all is still a problem

— initiating another loop of the resolution phase while providing

slightly more insight on what specifically needs to change. If the

verification finds additional problems introduced by the fix, these

might be reported as a separate defect or folded into reopening the

original defect, depending on how they relate to the original issue. By

linking these outcome-based workflows to the results of verification,

organisations remain adequately focused on quality improvement and

not just passing through workflow steps. During verification, a close

communication between the testers and the developers is very

important, because both need to understand each other with respect to

the implementation of the fix and the results of the verification. In

implementing complex fixes developers might help a bit by noting

down specific testing that needs to be done including scenarios or

conditions that need to be verified based on what they changed that is

known to work prior to changes made. Testers deliver the verification

results in terms of detailed information, such as specific observations,

the test data used, and environmental conditions that impact their

conclusion. This two-way communication aids in clearing up any

ambiguities regarding the effectiveness of a fix, where complex issues

may not have a straightforward interpretation of results. The activity of

verification now evolves from a mindless checking process into a

collaborative quality assurance process that draws on both developer

and tester skills. The closure phase is the last phase in the life cycle of

a defect which is to be closed after the successful verification has

confirmed that the defect has been fixed. In this phase, the status of the

defect is updated to mark as completely resolved, final resolutions are

documented, and the defect record is archived for future reference and

analysis for process improvements. Though often treated as a quick

admin task, closure is a vital part of the process, as it helps document

149

Notes quality improvements, report back into the organization to share

knowledge, and offer data for further process re-engineering. Closure

acts an important moment because it formalises the end of this defect

resolution cycle, ensuring that status remains visible and accountability

for quality is distributed across the software development lifecycle.

During closure, a summary of the complete defect history is

documented, which contains objective information, which includes the

details of the defect, its fix, and the verification process before closure.

This document usually describes the problem and cause, what is

changed to fix it, any restrictions and limitations on the solution, and

what the verification steps were that proved the solution worked. For

major defects, closure documentation may also address lessons learned

that could help prevent similar issues in the future (e.g., certain testing

approaches that worked, or development practices to avoid). It takes

individual defect experiences and turns them into organizational

knowledge to guide development and testing efforts in the future.

Closure is often coupled with metrics collection, gathering the data

points that aid in process improvement and analyses of quality trends.

These could include resolution time from its reporting to being closed,

effort needed to investigate and implement solutions, number of

attempts to fix before successfully resolving, defect lifetime across

severity or priority levels, root cause distribution across categories, and

others. These metrics can provide patterns and trends to identify

improvement areas with development practices, testing strategies or

defect management processes when consolidated over multiple

defects. By putting in the groundwork for data collection during

closure, organizations can then build the basis for quality improvement

being driven by data, not subjective impressions or anecdotal

experiences. As defects are resolved, notifying stakeholders is helpful

to validate cleanliness, which is especially true for high-visibility

issues that have impacted many users or blocked critical path activities.

These notifications will typically include information on the

availability of fixes in particular environments, user action necessary to

leverage the fix (cache clearing, configuration changes) and known

limitations or caveats of the fix. Closure often generates external

communication to introduce similar content to impacted users for

micro-response on quality improvements with reported issues. This

makes defect resolution not just an internal technical problem but a

150
MATS Centre for Distance and Online Education, MATS University

Notes visible quality improvement activity that reinforces user and

stakeholder confidence. Closure approvals also formalized the end of

the defect lifecycle this is particularly important for major defects in a

regulated environment or mission-critical systems. These may include

quality assurance leads who verify that testing has been adequate,

product managers who confirm that the solution meets the business

requirements, and security officers who validate that vulnerability

remediation meets compliance standards. Formal sign-offs may be

required in highly regulated industry (e.g., healthcare law, finance law,

aerospace law) for compliance reasons to document that quality issues

were properly handled in accordance with pre-defined procedures.

These approval functions stop defect closure from being only a

procedural checkbox and make sure that it is significant quality

validation. Tracking bug status through the lifecycle gives you insight

into where each bug stands in the resolution cycle, allowing you to

coordinate and track your quality improvement efforts. Upon

identification, a defect is usually labelled "new" or "open,"meaning

that it has been discovered, reported, but the issue has not been

addressed. It can be "open" after a review, then move to "assigned" if a

developer is assigned to it to be fixed, and "in progress" if development

is underway, then "fixed"/"resolved" when a fix has been

implemented, "verified" if testing is done and a fix confirmed, and

"closed" when everything is done. Some organizations also introduce

other statuses — "deferred" for issues that will be part of future

releases, "duplicate" for issues that were already logged through other

defect records, or "rejected" when an issue does not reflect an actual

defect after investigation. These status values establish a foundation for

communicating defect progress and allow systematic tracking of

quality improvement work across development. This analysis often

looks into metrics like average time to fix by severity level, count of

defects that are open beyond target time limits and distribution of

currently open defects by status and age intervals. Frequent

examination of this aging data highlights problems that may be

slipping through the cracks or things in which the resolution process is

taking longer than expected, allowing intervention to occur before

quality or schedule problems grow serious. These aging analyses shift

the effort from single issue response-based defect management to one

151

Notes of an ongoing quality management effort that ensures the defect

inventory moves into appropriate status.

Defect aggregation and trends analysis investigates aggregated data

across different issues to uncover underlying aspects that might not be

visible with individual defect management activity. The analyses

usually seek concentration of defects in selected components, common

root causes of the same root cause across different modules,

correlations between defect classification, defect characteristics and

development practices, and defect introduction and detection trend over

time. Such inferences proto-systematic issues with regard to which

specific parts/components of the system might need refactoring, which

development practices lead to same set of defects over a period of time

or which testing strategy that missed out a certain category of problems.

Such insights inform focused quality improvement efforts that target

root causes, which, over time, not only improve overall product quality

or reduce development effort, but do so in a way that is not possible if

developers were to simply track defect counts or search/find and

remove defects individually. Defect Lifecycle activities like release

management integration links defect activities with other software

delivery processes to ensure that quality enhancements are well planned

and integrated with product releases. This integration often involves

mapping defect fixes to releases/sprints and observing which defects

are set to be included in which version and ensuring fixes that are

planned are included in release candidates prior to deployment.

Summary of important defects fixed in each version is usually

documented in release notes to provide transparency to users regarding

quality improvements they can rely on. Verification of these fixes can

happen post-release, ensuring they work correctly when deployed and

close the loop on QA. This integration ensures that activities from

defect management are showing as actual quality improvements for

users rather than internal technical exercises disconnected from

software delivery. Improvement of the defect lifecycle itself is an

ongoing meta-process to improve quality management efficiency,

effectiveness, and quality over time. Regular retrospectives look back

at how well the defect process is performing, helping to isolate

bottlenecks in the process, gaps in communication, limitations of the

tools or anything else arising that detracts from being efficient or

effective. Adjusting processes accommodate known weaknesses by

152
MATS Centre for Distance and Online Education, MATS University

Notes modifying steps in a workflow, refining documentation templates or

triage procedures, or adopting new tools that better support team needs.

Training occasionally ensures that everyone who does participate is up

to speed on current processes and tools, especially as teams develop or

processes change. These improvement activities turn the defect

lifecycle into an evolving capability to manage quality effectively from

a static process. The defect lifecycle in modern development

methodologies exhibits adaptations for specific contexts and continues

to serve the core functions of identification, resolution, verification, and

closure. In agile approaches, defects tend to be managed in the same

frameworks as everything else, as a backlog item on which we prioritize

alongside features and technical debt throughout iteration planning.

DevOps practices focus on speedy feedback and remediation using

automated testing, continuous integration, and smooth workflows that

minimize handovers between different people. These workflows for

regulated environments in which more rigorous processes with clearly

articulated steps for approvals and thorough documentation are

deployed to meet compliance mandates. These methodological

differences are simply adaptations to given contexts and do not reflect

radical shifts in defect management's underlying aims, which still hold

true irrespective of their specific implementation methods.

Defect lifecycle tools have matured to such an extent that the

specialized defect tracking systems available today have a full set of

capabilities for managing quality issues all the way through their

lifecycles. Defect management systems generally provide structured

templates for defect reporting, workflow automation to route issues to

relevant stakeholders based on status transitions, notification systems

for stakeholders to notify them about significant changes in an issue's

status, query and reporting functionality to show visibility into quality

status, and integration with other development tools like version

control systems, continuous integration tools, and test management

tools. Modern tools are increasingly embedding AI functionality for

tasks like auto-duplicate detection, severity recommendations,

developer assignment suggestions, or estimating the time it may

require to create a fix based on historical patterns. While the principles

of identifying, solving, validating, and tracking quality issues across the

lifecycle remain the same, these technological advancements make

defect management activities more efficient and effective. The defect

153

Notes lifecycle is closely related to other processes in quality, which together

form a holistic quality management environment in software

development. That helps prevent defects instead of just detecting them

and fixing them.” A review of requirements can identify potential issues

before implementation starts. Architectural decisions are assessed

against quality attributes during design reviews, which help mitigate

design flaws that if are not fixed early, can cause multiple bugs. A code

review is an opportunity to review implementation details for

underlying issues, frequently catching problems that others will have

trouble discovering through testing alone. Testing processes rigorously

check software behaviour against expectations, which is the main

mechanism available for defect detection. The complementary nature

of these two processes serves to help ensure quality from multiple

perspectives throughout development, with the defect lifecycle

providing the substantive framework for managing the issue once

discovered, regardless of which corrective process identified the

problem element first. The defect lifecycle offers a systematic

approach to handling quality problems from the point of discovery

through confirmation and into resolution. Defect management is a

process that defines the phases, responsibilities, and deliverables for

managing defects, ensuring that issues are properly addressed, issues

don't get dropped, and stakeholders have visibility into the quality of

the product throughout the development process. Value is added to the

quality process at every stage from detection and reporting through

analysis, prioritization, assignment, resolution, verification, and

closure. Implementation details on how this might be set up will vary

depending on "How do we develop?" (development methodology),

"What do we not want to jeopardize?" (company culture), "What else

is targeted?" (project context), but really, the core objectives to identify

defects, decide what to do about them, take action, prove that the defect

has been addressed, and document quality improvements are common

across the board. In this way, the IPDSHE defect management roadmap

ensures that quality defects are not seen as isolated issues but as

actionable insights that contribute to the continuous improvement of

the software product, thereby driving software reliability, enhancing

user satisfaction, and maximising business value during the entire

lifecycle of software development.

154
MATS Centre for Distance and Online Education, MATS University

Notes 2.5 Test Case Design: Writing effective test cases and using test case

design techniques

Test case design represents a critical discipline within software testing

that transforms general testing objectives into specific verification

procedures. Effective test cases provide clear, precise instructions for

validating software functionality while ensuring comprehensive

coverage of requirements and potential defect scenarios. The process of

developing these test cases involves both art and science—combining

systematic design techniques with domain knowledge, technical

understanding, and testing expertise to create verification procedures

that efficiently detect defects. Well-designed test cases balance

thoroughness with efficiency, enabling testers to identify problems

effectively without excessive testing costs. Through carefully

structured test case design, testing teams create valuable assets that

guide verification activities, document expected system behavior,

provide evidence of testing coverage, and ultimately contribute to

delivering high-quality software products. At its core, a test case is a set

of conditions or variables under which a tester will determine whether

a system under test satisfies requirements and functions correctly. Each

test case typically includes a unique identifier, a description of what is

being tested, preconditions that must exist before the test can be

executed, specific steps to perform during testing, expected results that

define correct behavior, and postconditions that describe the system

state after test execution. This structured format ensures that test cases

contain all information necessary for consistent execution and objective

evaluation, regardless of who performs the testing. By specifying

inputs, actions, and expected outcomes, test cases transform general

quality objectives into concrete verification procedures that can be

systematically executed, measured, and tracked throughout

development. The structure of effective test cases typically follows

standardized formats that ensure completeness and clarity. The test case

identifier provides a unique reference for tracking and reporting, often

following organizational conventions that indicate related requirement

areas or functionality. The title or summary offers a concise description

that clearly identifies what functionality or requirement the test case

verifies. Preconditions detail the system state, data, or environmental

conditions that must exist before the test can be executed, such as "user

must be logged in" or "customer record must exist in the database." Test

155

Notes steps enumerate the specific actions to be performed, typically in

sequential order with explicit inputs for each action. Expected results

define precisely what behavior or outcomes should occur if the software

functions correctly. Postconditions may describe how the system state

should appear after test execution. Additional fields might include

priority or severity indicators, automation status, related requirements,

and traceability information that links the test case to specific

requirements or specifications. Test case writing begins with a thorough

understanding of the requirements or specifications being verified.

Testers must carefully analyze documentation such as requirements

specifications, user stories, use cases, design documents, and business

rules to identify what functionality needs validation. This analysis

includes not only explicit requirements but also implicit expectations

about how the system should behave under various conditions. Testers

must also consider the context in which the application will be used,

the characteristics of its users, and any constraints or limitations that

might affect functionality. This comprehensive understanding enables

testers to develop test cases that validate not just technical compliance

with specifications but also practical usability and value delivery from

the user perspective. Requirements traceability ensures that every

requirement has appropriate test coverage and that every test case

serves a specific verification purpose related to documented

requirements.

Test case design must account for both positive and negative testing

scenarios to provide comprehensive verification. Positive test cases

verify that the system performs correctly under valid inputs and

expected conditions, confirming that it delivers required functionality

when used as intended. Negative test cases evaluate how the system

handles invalid inputs, error conditions, or unexpected usage patterns,

ensuring appropriate error handling, data validation, and system

stability under adverse conditions. Both types are essential for thorough

verification—positive testing confirms that the software works

correctly when used properly, while negative testing ensures that it fails

gracefully and provides helpful feedback when users make mistakes or

unexpected conditions arise. This balanced approach addresses both the

"happy path" of intended usage and the diverse error scenarios that

inevitably occur in real-world environments. The level of detail in test

cases significantly influences their effectiveness and usability. Highly

156
MATS Centre for Distance and Online Education, MATS University

Notes detailed test cases specify exact inputs, precise actions, and specific

expected results for each step, leaving little room for interpretation or

variation during execution. This explicit approach ensures consistent

testing across different testers or execution cycles but requires

substantial development and maintenance effort. Less detailed test

cases provide more general guidance that relies on tester knowledge

and judgment during execution, offering greater flexibility but

potentially less consistency between different test executions. The

appropriate level of detail depends on various factors including tester

experience, application complexity, regulatory requirements, and

whether tests will be executed manually or automatically. Many

organizations adopt a balanced approach with moderate detail for most

test cases, reserving highly detailed documentation for critical

functionality, complex scenarios, or tests that will be executed by less

experienced testers. The use of clear, unambiguous language represents

a fundamental principle in test case writing. Effective test cases use

precise terminology that leaves no doubt about what actions should be

performed or what outcomes are expected. They avoid vague phrases

such as "check that the system works correctly" in favor of specific

statements like "verify that the confirmation message 'Order #12345

has been successfully submitted' appears on the screen." They use

consistent terminology throughout, particularly for technical terms,

feature names, or interface elements. They describe actions from the

user perspective rather than internal system operations, making test

cases accessible to both technical and non-technical stakeholders. This

clarity ensures that test cases can be executed consistently by different

testers and that results can be evaluated objectively against explicit

expectations. Test data management forms a crucial aspect of test case

design, specifying what information will be used during test execution.

Test cases may include specific test data values embedded within the

steps, reference external data sources that should be used during testing,

or provide guidelines for generating appropriate data during execution.

Effective test data management considers both the diversity of data

needed for comprehensive testing and the practicality of managing that

data across testing cycles. Test cases may require various data

categories including valid inputs that represent typical usage, boundary

values at the edges of acceptable ranges, invalid inputs that should be

rejected, and special values that trigger specific processing rules. By

157

Notes specifying appropriate test data within or alongside test cases, testers

ensure that verification activities accurately reflect real-world usage

scenarios while maintaining consistency and reproducibility across test

executions.

Dependencies between test cases require careful management to ensure

efficient execution sequencing without excessive redundancy. Some

test cases naturally build upon others, requiring that certain

functionality be verified first before subsequent features can be tested.

For example, user registration functionality might need verification

before tests for user profile management can execute meaningfully. Test

case design addresses these dependencies through various approaches:

explicit prerequisites that reference other test cases that should be

executed first, test suites that group related test cases in logical

execution sequences, or modular designs that separate reusable setup

procedures from specific verification steps. By managing these

dependencies effectively, test case designers create efficient testing

workflows that minimize redundant setup activities while ensuring that

all verification occurs in logical sequences that reflect actual usage

patterns. The origin of test cases varies across different development

and testing methodologies, influencing their format, content, and

relationship to other project artifacts. In traditional development

approaches, test cases typically derive from formal requirements

specifications or detailed design documents, with explicit traceability

between specific requirements and the test cases that verify them. Agile

methodologies often develop test cases from user stories or acceptance

criteria, sometimes using formats like Behavior-Driven Development

(BDD) that express tests in domain-specific language accessible to both

technical and business stakeholders. Exploratory testing approaches

might generate test cases dynamically during testing sessions,

documenting them retrospectively to capture effective verification

procedures for future regression testing. These different origins

influence how test cases are structured, managed, and integrated with

other development activities, though the fundamental purpose of

providing specific verification procedures remains consistent across

methodologies. Maintenance considerations significantly influence test

case design, as test suites typically require ongoing updates throughout

the software lifecycle. Test cases must be maintained when application

interfaces change, when new features are added, when existing

158
MATS Centre for Distance and Online Education, MATS University

Notes functionality is modified, or when defects are discovered and fixed.

Design practices that enhance maintainability include modular

structure that isolates components likely to change together, abstraction

layers that separate stable business logic from volatile interface details,

descriptive naming conventions that clearly indicate test purposes, and

comprehensive documentation that explains the rationale behind

specific verification approaches. By considering future maintenance

needs during initial design, testing teams create more sustainable test

assets that remain valuable throughout development rather than

becoming obsolete when the software evolves. Several formal test case

design techniques provide systematic approaches for developing

effective test cases across different testing contexts. These techniques

help testers create test suites that achieve comprehensive coverage of

functionality and potential defect scenarios while minimizing

redundancy and testing costs. Each technique addresses different

aspects of test coverage and applies most effectively to particular types

of testing challenges. By combining these techniques appropriately

based on the specific characteristics of the software under test, testing

teams develop more thorough and efficient verification procedures than

ad hoc approaches would typically produce. These systematic methods

transform testing from intuitive exploration into disciplined

engineering practices that maximize defect detection while optimizing

resource utilization.

Equivalence partitioning represents a fundamental test case design

technique that divides possible input values into groups or "partitions"

expected to be processed similarly by the software. The underlying

principle asserts that if one value in a partition produces a particular

result, other values in the same partition will likely produce the same

result; conversely, if one value reveals a defect, other values would

probably reveal the same defect. By testing representative values from

each partition rather than exhaustively testing every possible input,

testers achieve efficient coverage of functionality while minimizing

redundant test cases. For example, when testing an age field that

accepts values between 18 and 65, equivalence partitioning might

identify three partitions: invalid values below 18, valid values between

18 and 65, and invalid values above 65. Testing one representative

value from each partition provides efficient verification without testing

every possible age value. Boundary value analysis complements

159

Notes equivalence partitioning by focusing on values at the edges of

partitions, where defects frequently occur due to off-by-one errors,

incorrect comparison operators, or imprecise validation logic. This

technique tests values directly at the boundaries between partitions and

immediately on either side of those boundaries. For the age field

example accepting values between 18 and 65, boundary value analysis

would test exactly at the boundaries (18 and 65) and just outside them

(17 and 66). Some more thorough implementations also test one value

inside each boundary (19 and 64) to verify correct handling of values

adjacent to the limits. By systematically testing these boundary

conditions, testers efficiently identify common programming errors

that might not be revealed by testing only typical values within each

partition. This focused approach significantly enhances defect

detection while adding only a few additional test cases beyond basic

equivalence partitioning. Decision table testing provides a systematic

approach for testing functionality with complex logical conditions or

combinations of inputs. A decision table documents all relevant

combinations of conditions and their expected outcomes, ensuring that

all logical paths receive appropriate testing coverage. This technique

proves particularly valuable for business rules, calculation logic, or

conditional processing where multiple factors influence system

behavior. The decision table structure includes condition rows that list

the factors affecting the outcome, action rows that specify what should

happen for each combination, and rule columns that enumerate the

various combinations being tested. By methodically working through

these combinations, testers verify that the system correctly implements

complex decision logic across all possible scenarios, identifying defects

that might be missed by less systematic approaches that fail to consider

all relevant combinations. State transition testing focuses on systems

that behave differently depending on their current state and the events

or inputs they receive. This technique models the system as a finite state

machine with distinct states, events that trigger transitions between

states, and actions that occur during those transitions. Test cases verify

that the system correctly transitions between states in response to

various events and that appropriate actions occur during these

transitions. This approach proves particularly valuable for testing

workflow-driven applications, multi-step processes, or systems with

distinct operational modes. By systematically testing state transitions,

160
MATS Centre for Distance and Online Education, MATS University

Notes including both valid paths and attempts at invalid transitions, testers

verify that the system maintains proper state management throughout

complex operational sequences, preventing defects related to incorrect

state tracking or inappropriate actions during state changes.

Use case testing approaches verification from the user perspective,

developing test cases that validate end-to-end workflows representing

how users accomplish specific goals with the system. These test cases

typically follow the structure of use cases or user stories, verifying that

complete business processes function correctly rather than focusing

narrowly on individual functions or features. Basic flow test cases

verify the primary scenario where everything proceeds normally

without exceptions or alternative paths. Alternative flow test cases

verify variations where the process follows different paths based on

user choices or system conditions. Exception flow test cases verify

proper handling of error conditions or unexpected situations that might

arise during process execution. This comprehensive approach ensures

that the system not only provides necessary functionality but integrates

that functionality into coherent user experiences that support actual

business operations. Error guessing leverages tester experience and

domain knowledge to identify potential problem areas that might not

be covered by more systematic techniques. Based on intuition, previous

experience with similar applications, or knowledge of common

programming mistakes, testers develop test cases specifically designed

to trigger potential defects. These might include unusual input

combinations, unexpected usage sequences, or edge cases that formal

techniques might not explicitly identify. While less structured than

other methods, error guessing provides valuable complementary

coverage by addressing scenarios that systematic approaches might

miss. This technique becomes particularly effective when performed by

experienced testers familiar with both the application domain and

common implementation pitfalls, allowing them to target verification

toward areas where defects are most likely to lurk. Combinatorial

testing addresses the challenge of testing functionality affected by

multiple variables or configuration options, where testing all possible

combinations would be impractical. Rather than exhaustive testing of

every combination, this technique uses mathematical algorithms to

generate a smaller set of test cases that ensures all pairwise or higher-

order combinations of variables receive coverage. For example, rather

161

Notes than testing a feature with 10 binary options (requiring 1,024 test cases

for exhaustive coverage), pairwise combinatorial testing might

generate just 10-20 test cases that collectively cover all combinations

of any two options together. Research indicates that many defects

involve interactions between just two or three variables, making this

approach highly efficient at detecting most combination-related defects

while dramatically reducing the number of test cases required

compared to exhaustive testing.

Data-driven testing separates test logic from the data used during

execution, enabling the same test procedure to be executed multiple

times with different input sets. This approach typically involves

creating a test script or procedure that performs a sequence of actions,

then executing that procedure repeatedly using data values from

external sources such as spreadsheets, databases, or data files. Each

data set represents a different test scenario, allowing comprehensive

verification across numerous variations without duplicating the basic

test logic. This technique proves particularly valuable for testing

functions that must handle diverse inputs correctly, such as calculation

engines, data processing routines, or forms with multiple fields. By

separating test procedures from test data, testers create more

maintainable assets while achieving broader coverage across different

scenarios than would be practical with hard-coded test cases.

Exploratory testing complements structured techniques by encouraging

testers to investigate the application dynamically, using their

knowledge and intuition to discover potential issues without

predetermined steps. Rather than following explicit test cases,

exploratory testers simultaneously learn about the application, design

tests, and execute them based on what they discover. This approach

leverages human creativity and adaptive thinking to identify issues that

structured testing might miss, particularly usability problems, unclear

workflows, or inconsistent behaviors that become apparent during

actual usage rather than abstract analysis. While sometimes perceived

as unstructured, effective exploratory testing follows disciplined

approaches such as session-based testing that provide structure and

documentation while maintaining flexibility. This balanced approach

captures the benefits of human insight while ensuring sufficient rigor

and documentation to support quality objectives. Risk-based testing

prioritizes verification activities based on the probability of defects and

162
MATS Centre for Distance and Online Education, MATS University

Notes the potential impact if those defects occur. This approach recognizes

that not all functionality carries equal importance or risk, and testing

resources should focus where they will provide the greatest quality

benefit. The process typically begins with risk analysis that evaluates

various factors for each feature or component: criticality to business

operations, complexity of implementation, frequency of use, impact of

failures, and prior defect history. Based on this analysis, testers allocate

more comprehensive testing to high-risk areas while applying more

streamlined verification to lower-risk functionality. This prioritization

ensures optimal use of limited testing resources, maximizing defect

detection in areas where quality issues would have the greatest

consequences while accepting reasonable quality trade-offs in less

critical areas. Test case design for different testing levels requires

tailored approaches that address the specific characteristics and

objectives of each level. Unit test cases typically focus on isolated

functions or methods, verifying specific behaviors with clearly defined

inputs and outputs. Integration test cases emphasize interactions

between components, data exchange across interfaces, and

collaborative behaviors. System test cases validate end-to-end

functionality from external perspectives, often following user

workflows or business processes. Acceptance test cases confirm that

the software meets business requirements and user expectations,

typically expressed in business language rather than technical terms.

Each level requires appropriate design techniques that align with its

scope and purpose, collectively providing comprehensive verification

across different dimensions of software quality.

The balance between positive and negative test cases requires careful

consideration during test design. Positive testing verifies that the

system works correctly under valid inputs and expected conditions,

confirming required functionality when used as intended. These test

cases typically follow "happy path" scenarios where users perform

operations correctly and the system responds appropriately. Negative

testing evaluates how the system handles invalid inputs, error

conditions, or unexpected usage patterns, ensuring appropriate error

handling, data validation, and system stability under adverse

conditions. Effective test suites include both types in appropriate

proportions based on risk assessment, application complexity, and

quality objectives. Critical functionality often warrants more extensive

163

Notes negative testing to verify proper handling of exceptional conditions,

while straightforward features might focus more on positive

verification of required behavior. Test case design for different

application types requires specialized approaches that address their

unique characteristics and quality concerns. Web application test cases

must consider browser compatibility, responsive design across different

screen sizes, session management, and security aspects such as input

validation and protection against common web vulnerabilities. Mobile

application testing addresses device fragmentation, touch interface

interactions, offline functionality, and efficient resource usage. API

testing focuses on request validation, response formatting, error

handling, and performance under varying loads. Database testing

verifies data integrity, transaction management, and query

performance. By adapting design techniques to the specific technology

being tested, testers develop more effective verification procedures that

address the most relevant quality attributes for each application type.

Security testing requires specialized test case design approaches that

identify potential vulnerabilities and verify protection mechanisms.

These test cases typically follow attack-based thinking, attempting to

circumvent security controls or exploit weaknesses rather than

verifying intended functionality. Common security test scenarios

include authentication bypass attempts, authorization testing to verify

proper access controls, input validation testing to detect injection

vulnerabilities, session management testing to identify session

hijacking opportunities, and encryption verification to ensure sensitive

data protection. Security test cases often employ techniques such as

boundary testing with malicious inputs, forced browsing to access

restricted resources, or manipulation of client-side controls to submit

unauthorized data. This adversarial approach helps identify security

weaknesses before malicious actors can exploit them in production

environments. Performance test case design differs significantly from

functional testing, focusing on system behavior under various load

conditions rather than feature correctness. These test cases specify

workload models that represent expected usage patterns, including

transaction mixes, user concurrency levels, data volumes, and timing

distributions. They define specific scenarios such as steady-state load

testing to verify performance under normal conditions, stress testing to

identify breaking points under extreme loads, endurance testing to

164
MATS Centre for Distance and Online Education, MATS University

Notes detect resource leaks or degradation over time, and spike testing to

evaluate recovery from sudden load increases. Performance test cases

also specify relevant metrics to capture during execution, such as

response times, throughput rates, resource utilization, and error rates.

This specialized approach ensures comprehensive evaluation of non-

functional performance characteristics critical to user satisfaction and

operational reliability.

Usability test case design emphasizes user experience evaluation rather

than technical functionality verification. These test cases typically

describe realistic scenarios that represent actual user goals rather than

isolated feature testing, focusing on how effectively users can

accomplish tasks rather than whether features technically work. They

often include evaluation criteria such as task completion rates, time

required to complete operations, error frequency, and subjective

satisfaction ratings. Unlike most functional test cases, usability testing

frequently involves actual end-users rather than professional testers,

capturing authentic user perspectives rather than technical evaluations.

The test design typically allows for exploration and observation of

natural user behavior rather than prescribing exact steps, providing

insights into intuitive understanding and potential confusion points that

structured testing might miss. Automation considerations increasingly

influence test case design, as organizations seek to improve testing

efficiency through automated execution. Test cases destined for

automation often require additional attributes beyond those needed for

manual testing, such as automation feasibility classifications, technical

identifiers for interface elements, verification method specifications,

and data parameterization approaches. They may employ specific

design patterns such as Page Object Models for web applications or

Keyword-Driven Frameworks that separate test logic from

implementation details. Cases written for automation typically avoid

unstable verification points such as exact screen positions or timing-

dependent behaviors that might cause false failures. By designing test

cases with automation in mind from the beginning, testing teams create

more sustainable assets that support both immediate verification needs

and long-term regression testing requirements. The writing style and

presentation of test cases significantly influence their usability and

effectiveness. Clear, concise language ensures that testers understand

exactly what actions to perform and what results to expect. Consistent

165

Notes formatting makes test cases easier to scan and understand, particularly

when testers must execute numerous cases during testing cycles. Step

numbering provides clear execution sequence and reference points for

defect reporting. Visual elements such as screenshots, diagrams, or

formatting enhancements can clarify complex interactions or expected

results that might be difficult to describe textually. Well-designed test

case documents or repositories make information easily accessible

through logical organization, effective categorization, and searchable

content. These presentation considerations transform test cases from

mere instructions into effective communication tools that support

efficient and accurate testing execution. Traceability between test cases

and requirements provides crucial linkage that demonstrates testing

completeness and facilitates impact analysis when requirements

change. This bidirectional traceability connects each test case to the

specific requirements it verifies, while also showing which test cases

cover each requirement. Forward traceability (from requirements to test

cases) helps ensure comprehensive test coverage by confirming that

every requirement has associated verification procedures. Backward

traceability (from test cases to requirements) validates that each test

case serves a specific verification purpose related to documented

requirements. This traceability supports various testing activities

including coverage analysis, change impact assessment, requirement

verification reporting, and regulatory compliance documentation.

Modern test management tools typically provide specialized features

for maintaining and visualizing these traceability relationships

throughout the development lifecycle.

Review processes for test cases help ensure their quality, completeness,

and alignment with project requirements before execution begins.

Technical reviews evaluate whether test cases correctly reflect system

behavior and adequately verify requirements. Peer reviews leverage

multiple perspectives to identify potential gaps or improvements in test

coverage. Stakeholder reviews, particularly with business analysts or

product owners, confirm that test cases appropriately reflect business

priorities and user expectations. Review considerations typically

include coverage completeness (whether all requirements and scenarios

are adequately addressed), technical accuracy (whether steps and

expected results correctly reflect system behavior), clarity and usability

(whether instructions are clear enough for consistent execution), and

166
MATS Centre for Distance and Online Education, MATS University

Notes maintainability (whether design approaches will support efficient

updates as the application evolves). These reviews help detect and

correct issues in test case design before execution, preventing wasted

testing effort and improving verification effectiveness. Test case

management tools provide specialized environments for creating,

organizing, and managing test cases throughout the development

lifecycle. These tools typically offer structured templates for test case

creation, hierarchical organization for logical grouping, version control

for tracking changes, execution tracking for monitoring testing

progress, and reporting features for communicating status to

stakeholders. They often support advanced capabilities such as

requirements integration with traceability mapping, parameterized

testing for data-driven approaches, reusable components for common

procedures, and automation integration for executing automated tests.

Modern tools increasingly incorporate collaboration features that

enable distributed teams to work effectively on shared test assets,

maintaining consistency and coordination across different locations or

time zones. These specialized capabilities enhance test case

management efficiency compared to generic document management

systems or spreadsheets, particularly for larger projects with extensive

test suites. The evolution of test case design continues as development

methodologies and technologies advance, though fundamental

principles remain relevant regardless of specific implementation

approaches. Agile methodologies have influenced test case formats,

with many teams adopting more lightweight documentation that

evolves incrementally throughout development. Behavior-Driven

Development approaches express test cases in structured natural

language that bridges technical and business domains, creating

executable specifications that serve both as requirements and tests.

Testing as Code treats test cases as software artifacts managed through

the same development practices as application code, including version

control, code review, and continuous integration. These evolutions

represent adaptations of traditional test case concepts to modern

development contexts rather than replacements for the fundamental

purpose of providing specific verification procedures to validate

software quality.

In conclusion, effective test case design transforms general testing

objectives into specific, executable verification procedures that

167

Notes efficiently detect defects while providing comprehensive coverage of

software functionality. Through structured formats, clear instructions,

and expected results, test cases create consistent testing approaches that

can be executed reliably regardless of who performs the testing.

Systematic design techniques such as equivalence partitioning,

boundary value analysis, decision table testing, and state transition

testing provide methodical approaches for developing test cases that

maximize defect detection while minimizing redundant testing effort.

Considerations such as positive versus negative testing, appropriate

detail levels, clear language, and effective organization further enhance

test case effectiveness and usability. While specific formats and

implementation approaches vary based on project context,

development methodology, and organizational practices, the

fundamental purpose of providing specific, repeatable verification

procedures remains central to effective quality assurance in software

development.

Summary:

Module 2 focuses on the testing process and its life cycle, providing a

structured approach to how testing is planned, executed, and managed

throughout a software project. It begins with the testing process, which

includes activities such as test planning, analysis, design,

implementation, execution, and test closure. The module also explains

the different test levels—component, integration, system, and

acceptance testing—each designed to validate specific parts or

functions of the software. Test documentation is introduced as a key

element for ensuring clarity and traceability, including documents like

test plans, test cases, and test reports. Additionally, the defect life cycle

is discussed, describing the journey of a software defect from its

identification and reporting to resolution and closure. This module

emphasizes the importance of a systematic and well-documented

testing process in achieving high-quality software outcomes.

Multiple Choice Questions (MCQs)

1. What is the first step in the software testing process?

a) Test execution

b) Requirement analysis

c) Defect reporting

168
MATS Centre for Distance and Online Education, MATS University

Notes d) Test closure

(Answer: b)

2. Which testing level is performed by developers before integration

testing?

a) System Testing

b) User Acceptance Testing

c) Unit Testing

d) Regression Testing

(Answer: c)

3. What is the purpose of a Test Plan?

a) To track defects

b) To define the scope, objectives, and strategy of testing

c) To write code for software

d) To replace test cases

(Answer: b)

4. In which phase of the testing process are test cases written?

a) Test execution

b) Test design

c) Test closure

d) Defect reporting

(Answer: b)

5. The defect life cycle begins with:

a) Defect closure

b) Defect reporting

c) Test execution

d) Requirement analysis

(Answer: b)

6. Which of the following is NOT a part of test documentation?

a) Test plan

b) Test script

c) System architecture

d) Test report

(Answer: c)

7. User Acceptance Testing (UAT) is primarily conducted by:

a) Developers

b) Testers

c) End users or clients

169

Notes d) Project managers

(Answer: c)

8. Which of the following is NOT a phase of the defect life cycle?

a) Defect identification

b) Defect resolution

c) Defect elimination

d) Defect closure

(Answer: c)

9. What is the main goal of test execution?

a) To execute test cases and identify defects

b) To write test cases

c) To develop the software

d) To finalize test documentation

(Answer: a)

10. What is the purpose of test case design techniques?

a) To improve the effectiveness of test cases

b) To increase the development speed

c) To find the number of bugs

d) To reduce testing time

(Answer: a)

Short Answer Questions

1. What are the key steps in the software testing process?

2. Explain the significance of Requirement Analysis in testing.

3. What is the role of a Test Plan in the testing life cycle?

4. Differentiate between Unit Testing and Integration Testing.

5. What is System Testing, and why is it important?

6. Define User Acceptance Testing (UAT) with an example.

7. What are test scripts, and how are they used in software testing?

8. Explain the stages of the Defect Life Cycle.

9. What are the key characteristics of an effective test case?

10. Why is Test Case Design essential in software testing?

Long Answer Questions

1. Describe the software testing process, explaining each phase in

detail.

2. Explain different test levels with real-world examples.

3. Discuss the importance of test documentation and describe its key

components.

170
MATS Centre for Distance and Online Education, MATS University

Notes 4. Explain the Defect Life Cycle with a detailed step-by-step

approach.

5. Compare and contrast System Testing and User Acceptance

Testing.

6. How does test planning contribute to the success of a software

project?

7. Describe the role of test execution in the software development

process.

8. What are the best practices for writing effective test cases? Provide

examples.

9. Explain the significance of defect tracking and management in

software testing.

10. Discuss different test case design techniques and their applications.

171
MATS Centre for Distance and Online Education, MATS University

MODULE 3

TEST DESIGN TECHNIQUES

LEARNING OUTCOMES

• To understand black-box testing techniques, including

equivalence partitioning, boundary value analysis, decision

tables, and state transition testing.

• To explore white-box testing techniques, such as statement

coverage, branch coverage, and path coverage.

• To examine experience-based testing methods, including

exploratory testing, error guessing, and ad-hoc testing.

• To analyze test case design techniques for writing effective test

cases based on requirements and use cases.

• To compare and apply different test design techniques to

improve software quality and test coverage.

172
MATS Centre for Distance and Online Education, MATS University

Notes Unit 9: Black-box Testing

3.1 Black-box Testing Techniques

Black-box testing is a software testing methodology where the internal

structure, design, or implementation of the item being tested is not

known to the tester. Instead, tests are based solely on the requirements

and specifications. This approach is called "black-box" testing because

the software program, from the tester's perspective, is like a black

box—you cannot see inside it, but you can observe its behavior by

providing inputs and examining outputs. Black-box testing focuses on

the functional requirements of the software without peering into the

internal code structure. It is primarily concerned with validating that

the software behaves according to its specifications, making it

particularly valuable for detecting issues related to user interface,

external hardware, performance, and security. This method is also

known as specification-based testing, behavioral testing, or functional

testing. The main advantages of black-box testing include its simplicity

(no knowledge of programming or implementation details required),

objectivity (tests based purely on specifications), and efficiency in

identifying high-level, user-facing issues. Additionally, black-box tests

are typically more resilient to code changes, allowing for continued

testing even as the software evolves internally. In this comprehensive

exploration, we will examine four fundamental black-box testing

techniques: equivalence partitioning, boundary value analysis, decision

tables, and state transition testing. Each technique offers unique

approaches to test case design, aiming to maximize test coverage while

minimizing the number of test cases required.

Equivalence Partitioning

Equivalence partitioning is a black-box testing technique that divides

the input domain of a program into classes or groups of data from which

test cases can be derived. The fundamental principle behind this

technique is that if one condition in a partition passes, all other

conditions in that same partition would also pass. Similarly, if one

condition in a partition fails, all other conditions in that partition would

fail as well.

Principles of Equivalence Partitioning

The core concept of equivalence partitioning is based on the

assumption that inputs within the same partition will be processed

173

Notes similarly by the software. This allows testers to select a representative

sample from each partition rather than testing every possible input

value, significantly reducing the number of test cases while maintaining

effective test coverage.

For example, consider a field that accepts ages between 18 and 65.

Using equivalence partitioning, we would identify three partitions:

1. Values less than 18 (invalid partition)

2. Values between 18 and 65 (valid partition)

3. Values greater than 65 (invalid partition)

Rather than testing every possible age value (which would be

impractical), we can select one representative value from each partition

for testing.

Steps in Equivalence Partitioning

The process of applying equivalence partitioning typically involves the

following steps:

1. Identify the input parameters or fields to be tested.

2. Determine the valid and invalid equivalence classes for each

input.

3. Create test cases that cover at least one value from each

equivalence class.

4. Execute the test cases and verify the results.

Types of Equivalence Classes

Equivalence classes are typically categorized as either valid or invalid:

• Valid Equivalence Classes: These represent inputs that should

be accepted by the system. For example, if a field accepts

integers between 1 and 100, the range 1-100 forms a valid

equivalence class.

• Invalid Equivalence Classes: These represent inputs that

should be rejected by the system. Continuing with the previous

example, values less than 1 and greater than 100 would form

two separate invalid equivalence classes.

Boundary Value Analysis

Boundary Value Analysis (BVA) is a black-box testing technique that

focuses on testing at the boundaries of input domains. This technique

is based on the observation that errors tend to occur more frequently at

the boundaries of input ranges rather than in the center. BVA

complements equivalence partitioning by specifically targeting

boundary conditions, which are often prone to defects.

174
MATS Centre for Distance and Online Education, MATS University

Notes Principles of Boundary Value Analysis

The fundamental principle of boundary value analysis is that errors are

more likely to occur at the extreme edges of input domains. These

edges, or boundaries, represent transition points where the behavior of

the system may change, making them particularly susceptible to

defects. For example, if a field accepts values between 1 and 100, the

boundaries are at 1 and 100. BVA would focus on testing values at and

around these boundaries, such as 0, 1, 2, 99, 100, and 101.

Types of Boundary Values

In boundary value analysis, we typically consider the following types

of boundary values:

1. On-Point Values: These are values exactly at the boundary. For

example, if the valid range is 1-100, the on-point values are 1

and 100.

2. Off-Point Values: These are values just outside the boundary.

For the range 1-100, the off-point values would be 0 and 101.

3. In-Point Values: These are values just inside the boundary. For

the range 1-100, the in-point values would be 2 and 99.

Some approaches to BVA only test on-point and off-point values, while

more thorough approaches include in-point values as well.

Two-Value vs. Three-Value Approach

Two approaches are commonly used in boundary value analysis:

1. Two-Value Approach: Tests only the on-point and off-point

values. For a range of 1-100, this would mean testing 0, 1, 100,

and 101.

2. Three-Value Approach: Tests the on-point, off-point, and in-

point values. For a range of 1-100, this would mean testing 0, 1,

2, 99, 100, and 101.

The three-value approach provides more thorough coverage but

requires more test cases.

Steps in Boundary Value Analysis

The process of applying boundary value analysis typically involves:

1. Identify the input parameters or fields to be tested.

2. Determine the boundaries of each parameter based on the

requirements.

3. Create test cases for values at and around these boundaries.

4. Execute the test cases and verify the results.

Decision Tables

175

Notes Decision table testing is a black-box technique that provides a

systematic way to model complex business rules and conditions. It is

particularly useful when the system's behavior depends on multiple

inputs or conditions that can interact in various combinations. Decision

tables help visualize and test these combinations efficiently.

Principles of Decision Table Testing

The core concept of decision table testing is to represent all possible

combinations of inputs (conditions) and their corresponding outputs

(actions) in a tabular format. This allows testers to ensure that all

possible combinations are tested, which is especially important in

systems with complex business logic.

A decision table typically consists of four parts:

1. Conditions: The inputs or criteria that affect the outcome

2. Condition alternatives: The possible values for each condition

(typically true/false or yes/no)

3. Actions: The expected outcomes or system responses

4. Action entries: The specific actions to take for each

combination of conditions

Example of Decision Table Testing

Scenario:

An online shopping cart applies a discount depending on two

conditions:

• Condition 1: Is the customer a member? (Yes/No)

• Condition 2: Is the purchase amount greater than $100?

(Yes/No)

Actions:

• Apply 10% discount, or

• Apply no discount.

Conditions /

Actions
Member?

Amount >

$100?

Action: Apply

Discount?

Rule 1 No No No

Rule 2 No Yes Yes (10%)

Rule 3 Yes No Yes (10%)

Rule 4 Yes Yes Yes (10%)

176
MATS Centre for Distance and Online Education, MATS University

Notes How it works:

• Each row (rule) is a combination of conditions.

• Testers ensure all 4 rules are tested, validating that discounts

are applied correctly according to membership and amount.

Types of Decision Tables

Decision tables can be categorized based on their structure:

1. Limited Entry Decision Tables: These use simple Boolean

values (true/false, yes/no) for conditions and actions.

2. Extended Entry Decision Tables: These allow for a wider

range of values for conditions and actions, not just Boolean

values.

3. Mixed Entry Decision Tables: These combine elements of

both limited and extended entry tables.

Steps in Creating and Using Decision Tables

The process of applying decision table testing typically involves:

1. Identify all conditions (inputs) and actions (outputs) from the

requirements.

2. Determine the number of possible combinations of conditions.

3. Create the decision table with all possible combinations.

4. Eliminate impossible or irrelevant combinations (if applicable).

5. Fill in the expected actions for each combination.

6. Create test cases based on each column of the decision table.

7. Execute the test cases and verify the results.

Rule Reduction Techniques

To manage the complexity of decision tables, several rule reduction

techniques can be applied:

1. Default Rules: Using default actions for certain combinations

of conditions.

2. Rule Collapsing: Combining rules with similar actions.

3. Don't Care Conditions: Using "don't care" values (often

represented as '-') when a condition doesn't affect the outcome

for certain combinations.

4. Decision Tree Conversion: Converting the decision table into

a decision tree for simplified visualization.

State Transition Testing

State transition testing is a black-box technique that focuses on testing

the behavior of a system as it transitions between different states in

response to events or inputs. This technique is particularly valuable for

177

Notes systems that exhibit state-dependent behavior, where the current state

determines how the system responds to inputs.

Principles of State Transition Testing

The fundamental concept of state transition testing is based on the idea

that a system can be in one of several states, and that specific events or

inputs cause the system to transition from one state to another. By

modeling these states and transitions, testers can design test cases that

verify the correctness of the system's behavior during state changes.

State transition testing typically uses state transition diagrams or state

tables to model the system's behavior, showing:

• The states the system can be in

• The events or inputs that trigger transitions

• The transitions between states

• The actions or outputs that occur during transitions

State Transition Modeling Techniques

Several techniques can be used to model state transitions:

1. State Transition Diagrams: Visual representations showing

states as nodes and transitions as arrows between nodes.

2. State Transition Tables: Tabular representations showing

states, events, and the resulting transitions.

3. State Transition Matrices: Two-dimensional matrices

showing current states in rows, events in columns, and the

resulting states in cells.

4. UML State Machine Diagrams: Standardized diagrams that

can include additional elements like guard conditions and

actions.

Types of State Transition Test Coverage

Different levels of coverage can be achieved in state transition testing:

1. 0-Switch Coverage: Tests each state at least once.

2. 1-Switch Coverage: Tests each transition at least once.

3. 2-Switch Coverage: Tests all pairs of consecutive transitions.

4. N-Switch Coverage: Tests all sequences of n consecutive

transitions.

5. All-Round-Trip Coverage: Tests all cycles in the state model,

starting and ending at the same state.

Most commonly, 1-switch coverage is used as it provides a good

balance between coverage and the number of test cases.

178
MATS Centre for Distance and Online Education, MATS University

Notes Example of State Transition Testing Coverage

Scenario:

An ATM Machine with these states and transitions:

• States: Idle → Card Inserted → PIN Entered → Transaction

Selected → Idle

• Transitions:

1. Idle → Card Inserted

2. Card Inserted → PIN Entered

3. PIN Entered → Transaction Selected

4. Transaction Selected → Idle

Coverage Examples:

• 0-Switch Coverage:

 Test at least once in each state (Idle, Card Inserted, PIN

Entered, Transaction Selected).

• 1-Switch Coverage:

 Test each transition at least once:

o Idle → Card Inserted

o Card Inserted → PIN Entered

o PIN Entered → Transaction Selected

o Transaction Selected → Idle

• 2-Switch Coverage:

 Test all pairs of consecutive transitions:

o Idle → Card Inserted → PIN Entered

o Card Inserted → PIN Entered → Transaction Selected

Fig 1.9 Coverage Example

o PIN Entered → Transaction Selected → Idle

179

Notes • N-Switch Coverage (e.g., 3-Switch):

 Test all sequences of 3 consecutive transitions:

o Idle → Card Inserted → PIN Entered → Transaction

Selected

• All-Round-Trip Coverage:

 Test all cycles, like completing a full transaction cycle:

o Idle → Card Inserted → PIN Entered → Transaction

Selected → Idle.

Steps in State Transition Testing

The process of applying state transition testing typically involves:

1. Identify all possible states of the system.

2. Identify the events or inputs that cause state transitions.

3. Create a state transition model (diagram, table, or matrix).

4. Determine the desired level of test coverage.

5. Design test cases based on the model and coverage criteria.

6. Execute the test cases and verify the results.

Integration of Black-box Testing Techniques

While each black-box testing technique has its strengths, they are most

effective when used in combination. In real-world testing scenarios,

these techniques complement each other, addressing different aspects

of software quality.

Complementary Nature of Black-box Techniques

Each technique focuses on different aspects of testing:

• Equivalence Partitioning: Reduces the number of test cases by

grouping similar inputs.

• Boundary Value Analysis: Focuses on boundary conditions

where defects often occur.

• Decision Tables: Addresses complex business rules and

condition combinations.

• State Transition Testing: Concentrates on state-dependent

behavior and transitions.

By combining these techniques, testers can create a comprehensive test

strategy that addresses various aspects of the software's functionality.

Integrated Approach to Black-box Testing

An integrated approach might follow these steps:

1. Use equivalence partitioning to identify the main input domains

and reduce the initial set of test cases.

2. Apply boundary value analysis to further refine test cases,

focusing on boundary conditions.

180
MATS Centre for Distance and Online Education, MATS University

Notes 3. Employ decision tables for features with complex business rules

and multiple conditions.

4. Utilize state transition testing for components with distinct

states and state-dependent behavior.

5. Combine the test cases derived from each technique into a

cohesive test suite.

Example of Integrated Black-box Testing

Consider an online shopping system with the following features:

• User registration (age must be 18-99)

• Product browsing and selection

• Shopping cart management

• Checkout and payment processing

• Order status tracking

An integrated black-box testing approach might involve:

1. Equivalence Partitioning:

➢ For user age: <18 (invalid), 18-99 (valid), >99 (invalid)

➢ For payment amounts: ≤0 (invalid), >0 (valid)

2. Boundary Value Analysis:

➢ For user age: 17, 18, 19, 98, 99, 100

➢ For cart items: 0, 1, maximum allowed

3. Decision Tables:

➢ For discount calculations based on user type, purchase

amount, and special promotions

➢ For shipping options based on location, weight, and

delivery speed

4. State Transition Testing:

➢ For order status transitions: Placed → Processing →

Shipped → Delivered

➢ For payment processing states: Initiated → Authorized

→ Completed

Best Practices for Black-box Testing

Regardless of the specific techniques used, certain best practices can

enhance the effectiveness of black-box testing:

Requirements Analysis

Thorough understanding of requirements is crucial for effective black-

box testing. Testers should:

• Analyze requirements carefully before designing tests

• Clarify ambiguous requirements with stakeholders

181

Notes • Prioritize requirements based on risk and importance

Test Case Design

Well-designed test cases are essential for effective testing:

• Each test case should have a clear purpose and expected

outcome

• Test cases should be traceable to requirements

• Test data should be carefully selected to maximize coverage

• Test cases should be reviewed for completeness and correctness

Test Execution

Effective test execution practices include:

• Following a systematic approach to test execution

• Documenting actual results and comparing them to expected

results

• Maintaining detailed records of test execution

• Reporting defects clearly and accurately

Test Coverage Analysis

Analyzing test coverage helps identify gaps in testing:

• Regular review of test coverage metrics

• Identification of untested or undertested areas

• Adjustment of test strategy based on coverage analysis

Tool Selection and Usage

Appropriate tools can enhance black-box testing efficiency:

• Test management tools for organizing and tracking tests

• Test execution tools for automating repetitive tests

• Defect tracking tools for managing identified issues

• Coverage analysis tools for assessing test effectiveness

Automation of Black-box Testing

While black-box testing is often associated with manual testing, many

aspects can be automated to improve efficiency and repeatability.

Automation Candidates

Not all black-box tests are suitable for automation. Good candidates

include:

• Tests that need to be run frequently

• Tests with stable requirements and expected outcomes

• Tests requiring large amounts of data

• Performance and load tests

Automation Challenges

Automating black-box tests can present challenges:

182
MATS Centre for Distance and Online Education, MATS University

Notes • Initial development of automated tests can be time-consuming

• Maintaining automated tests as the application evolves

• Handling dynamic elements and unexpected conditions

• Validating complex outputs and behaviors

Automation Frameworks

Various frameworks support the automation of black-box tests:

• Data-driven frameworks for testing with multiple data sets

• Keyword-driven frameworks for more business-focused test

definitions

• Hybrid frameworks combining different approaches

• Record and playback tools for simpler automation needs

Continuous Integration and Testing

Integrating automated black-box tests into continuous integration

processes:

• Automating test execution as part of build processes

• Regular execution of automated tests

• Quick feedback on potential issues

• Trend analysis of test results over time

Coverage Assessment

Determining test coverage in black-box testing can be challenging:

• Difficulty in measuring code coverage directly

• Reliance on requirements coverage as a proxy

• Uncertainty about untested functionality

Complex Systems

Testing complex systems using black-box methods presents challenges:

• Large number of possible input combinations

• Complex interactions between components

• Difficulty in creating realistic test environments

Evolving Requirements

As requirements change, black-box tests must be updated:

• Impact of requirement changes on existing test cases

• Need for continuous review and update of test assets

• Challenges in maintaining traceability

Black-box testing remains a cornerstone of software quality assurance,

offering a user-centric perspective on software behavior without

requiring detailed knowledge of internal implementations. The four

techniques explored in this analysis—equivalence partitioning,

boundary value analysis, decision tables, and state transition testing—

183

Notes provide systematic approaches to designing effective test cases. When

applied thoughtfully, these techniques enable testers to achieve

comprehensive test coverage while managing the number of test cases,

focusing testing efforts on areas where defects are most likely to occur.

By integrating these techniques and following best practices, testing

teams can significantly enhance the effectiveness of their black-box

testing efforts. As software systems continue to grow in complexity, the

importance of well-designed black-box testing strategies will only

increase. Embracing emerging trends and technologies while

maintaining a solid foundation in these fundamental techniques will

position testing teams to meet the challenges of ensuring software

quality in an ever-evolving landscape. The ultimate goal of black-box

testing is not merely to find defects but to provide confidence that the

software will meet user needs and expectations. By systematically

examining the software's behavior from the user's perspective, black-

box testing plays a vital role in delivering high-quality software that

functions correctly, reliably, and securely in real-world usage scenarios.

184
MATS Centre for Distance and Online Education, MATS University

Notes Unit 10: White-Box Testing

3.2 White-Box Testing

White-box testing represents a critical approach to software quality

assurance that delves deep into the internal structure, design, and

coding of software applications. Unlike black-box testing, which

examines software functionality from an external perspective, white-

box testing provides an intricate, code-level analysis that allows testers

to design test cases based on the internal path, branches, and statements

within the source code. This methodology demands a profound

understanding of programming languages, software architecture, and

implementation details. The fundamental premise of white-box testing

lies in its transparency. Testers have complete access to the source code,

internal structure, and implementation details of the software. This

visibility enables a comprehensive examination of the code's logic,

control flow, data flow, and error-handling mechanisms. By

understanding the internal workings of the software, testers can create

more targeted, precise, and exhaustive test cases that validate not just

the output, but the entire computational process.

Fundamental Principles of White-Box Testing

At its core, white-box testing is predicated on several key principles

that distinguish it from other testing methodologies. First and foremost

is the principle of code coverage, which seeks to ensure that the

maximum possible amount of code is exercised during testing. This

goes beyond mere functionality testing, focusing instead on how

thoroughly the code itself is explored and validated. The primary

objectives of white-box testing include identifying hidden errors in the

code's structure, verifying the internal logic of the software, improving

design and usability, and optimizing the code's performance. Testers

must possess a deep understanding of programming languages,

algorithms, and software design principles to effectively implement

white-box testing strategies.

Statement Coverage: Examining Every Line of Code

Statement coverage represents the most basic and fundamental white-

box testing technique. The primary goal of statement coverage is to

ensure that every executable statement in the source code is executed

at least once during testing. This approach provides a baseline measure

of code verification, attempting to exercise each line of code to identify

185

Notes potential issues that might remain hidden during superficial testing. To

achieve comprehensive statement coverage, testers must design test

cases that trigger the execution of every single line of code. This means

creating input scenarios that cause each statement to be processed,

including both positive and negative test cases. For instance, in a

function with multiple conditional statements, testers must create test

cases that cause each condition to be evaluated, ensuring no statement

remains untested.

The calculation of statement coverage is relatively straightforward. It

is typically expressed as a percentage:

Statement Coverage = (Number of Executed Statements / Total Number

of Statements) × 100%

While statement coverage provides a basic level of code verification, it

is not without limitations. A high statement coverage percentage does

not guarantee the absence of bugs or complete code quality. Some code

paths may remain unexplored, and complex logical conditions might

not be fully tested.

Branch Coverage: Exploring Conditional Paths

Branch coverage represents a more sophisticated approach to white-

box testing, extending beyond simple statement execution. This

technique focuses on testing each possible branch or decision point

within the code, ensuring that all conditional statements are thoroughly

evaluated. Unlike statement coverage, which merely checks if a line is

executed, branch coverage examines whether all possible outcomes of

a conditional statement are tested. In practical terms, branch coverage

requires creating test cases that exercise both the true and false branches

of conditional statements. For example, in an if-else block, testers must

design scenarios that trigger both the if condition and the else condition.

This approach helps identify potential logical errors, missing

conditions, and incomplete conditional logic.

The calculation of branch coverage follows a similar percentage-based

approach:

Branch Coverage = (Number of Executed Branches / Total Number of

Branches) × 100%

Branch coverage provides a more comprehensive analysis compared to

statement coverage. It ensures that not just the code is executed, but

that all decision points are thoroughly tested. This technique is

186
MATS Centre for Distance and Online Education, MATS University

Notes particularly crucial in identifying complex logical errors that might

remain undetected through simpler testing approaches.

Path Coverage: The Most Comprehensive Testing Approach

Path coverage represents the most exhaustive and complex white-box

testing technique. It aims to test every possible path through a

program's source code, including all combinations of branches and

logical conditions. This approach goes beyond statement and branch

coverage, seeking to create test cases that traverse every unique path

within the software's computational graph. The complexity of path

coverage increases exponentially with the number of conditional

statements and branches in the code. In real-world software

applications, the number of potential paths can be astronomical, making

complete path coverage often impractical or impossible. Testers must

therefore employ strategic approaches to maximize path coverage

while managing computational complexity.

To implement path coverage effectively, testers typically use techniques

such as:

1. Control Flow Graph (CFG) Analysis: Creating a graphical

representation of all possible paths through the code.

2. Cyclomatic Complexity Calculation: Determining the number

of independent paths through a program.

3. Linear Independent Path Generation: Designing test cases that

cover unique computational paths.

The primary advantage of path coverage is its potential to uncover

intricate logical errors and edge cases that might remain hidden through

less comprehensive testing techniques. However, the computational

and time resources required make it challenging to implement in large,

complex software systems.

Tools and Technologies

Modern software development leverages various tools to facilitate

white-box testing:

1. Code Coverage Tools: Tools like JaCoCo, Istanbul, and gcov

provide detailed coverage reports.

2. Static Analysis Tools: SonarQube, Coverity, and similar

platforms offer comprehensive code analysis.

3. Integrated Development Environment (IDE) Plugins: Many

IDEs offer built-in code coverage and analysis features.

187

Notes White-box testing represents a critical component of comprehensive

software quality assurance. By providing an intricate, code-level

examination of software systems, it offers insights that go far beyond

surface-level functionality testing. Statement coverage, branch

coverage, and path coverage each contribute unique perspectives to the

testing process, helping developers identify and address potential issues

at the source code level. While challenging and resource-intensive,

white-box testing remains an invaluable technique in creating robust,

reliable software. As software systems become increasingly complex,

the need for thorough, code-level testing will only continue to grow.

Developers and testers who master these techniques will be better

equipped to deliver high-quality, dependable software solutions. The

future of white-box testing lies in continued technological

advancement, with machine learning and artificial intelligence

promising to revolutionize how we approach code-level testing. As

development methodologies evolve, so too will the techniques and

tools used to ensure software quality at its most fundamental level.

188
MATS Centre for Distance and Online Education, MATS University

Notes Unit 11: Experience-based Testing

3.3 Experience-based Testing

Experience-based testing represents a critical approach in the software

testing landscape that leverages the tester's skills, intuition, and domain

knowledge. Unlike specification-based or structure-based testing

techniques that follow predefined procedures, experience-based testing

relies on the expertise and creativity of testing professionals. This

approach encompasses three primary methodologies: exploratory

testing, error guessing, and ad-hoc testing. Each method contributes

uniquely to identifying defects that might otherwise remain undetected

through more formalized testing approaches. The effectiveness of

experience-based testing stems from its flexibility and its ability to

uncover issues that structured testing might miss due to its predefined

nature. As software systems grow increasingly complex, the value of

experience-based testing continues to rise, providing crucial insights

that complement systematic testing methodologies.

The Foundation of Experience-based Testing

Experience-based testing stands on the foundation of human expertise

and cognitive abilities. It recognizes that testing professionals

accumulate valuable knowledge throughout their careers, developing

an intuitive understanding of where defects are likely to lurk. This

approach acknowledges that while systematic testing methods are

valuable, they cannot entirely replace the human element in quality

assurance. The cognitive processes involved in experience-based

testing include pattern recognition, analogical thinking, and heuristic

reasoning—skills that develop over time through exposure to diverse

software systems and failure modes. The historical development of

experience-based testing parallels the evolution of software

development methodologies. As development processes shifted from

rigid waterfall models toward more agile approaches, testing

methodologies likewise evolved to accommodate faster delivery cycles

and changing requirements. Experience-based testing gained

prominence as organizations recognized the limitations of purely

scripted testing in dynamic environments. This approach proved

particularly effective in contexts where comprehensive documentation

was lacking or where rapid feedback was essential. Experience-based

testing also draws from cognitive psychology principles, particularly

189

Notes those related to problem-solving and decision-making under

uncertainty. Testers develop mental models of software behavior that

allow them to anticipate potential issues based on past experiences with

similar systems. This cognitive framework helps testers navigate

complex software landscapes efficiently, focusing their attention on

areas with higher risk potential.

Exploratory Testing: Definition and Principles

Exploratory testing represents a sophisticated approach where test

design and execution occur simultaneously, guided by the tester's

critical thinking and continuous learning. Unlike scripted testing, which

follows predetermined steps, exploratory testing evolves dynamically

as the tester gains insights into the system's behavior. James Bach, a

pioneer in this field, defines exploratory testing as "simultaneous

learning, test design, and test execution." This definition emphasizes

the cognitive engagement required from testers, who must constantly

analyze findings and adjust their testing strategy accordingly.

The core principles of exploratory testing include:

Fig: 1.10 Exploratory Testing Principle

1. Parallel Test Design and Execution: Rather than separating

test planning from execution, exploratory testing merges these

activities, allowing immediate adaptation based on

observations.

190
MATS Centre for Distance and Online Education, MATS University

Notes 2. Learning-Driven Approach: The tester continuously builds

knowledge about the system, using each interaction to inform

subsequent testing activities.

3. Critical Thinking: Exploratory testing demands active

intellectual engagement, challenging assumptions and

investigating unexpected behaviors.

4. Freedom with Responsibility: While exploratory testing

provides freedom to investigate, it requires disciplined note-

taking and session management to ensure traceability.

5. Purpose-Driven Investigation: Effective exploratory testing

focuses on specific objectives or areas of concern rather than

random interaction with the system.

The philosophical underpinning of exploratory testing acknowledges

the impossibility of anticipating all potential issues through pre-

scripted test cases. It embraces uncertainty and leverages the human

capacity for adaptation and discovery. This approach recognizes that

software systems, particularly complex ones, may exhibit emergent

behaviors that become apparent only through dynamic interaction and

observation.

Exploratory Testing Techniques and Approaches

Exploratory testing encompasses various techniques that testers can

employ based on the context and objectives. These techniques provide

frameworks for structuring exploratory sessions while maintaining the

flexibility that characterizes this approach.

Session-Based Test Management (SBTM)

Developed by Jonathan and James Bach, SBTM introduces structure to

exploratory testing through time-boxed sessions with clear charters.

Each session typically lasts 60-120 minutes and focuses on a specific

testing mission. The tester documents findings in a session report that

includes:

• Charter: The mission or objective of the testing session

• Areas Tested: Features or components investigated

• Test Notes: Observations, questions, and issues identified

• Bugs Found: Detailed description of defects discovered

• Issues/Questions: Concerns or uncertainties that arose during

testing

• Test Ideas Generated: Potential areas for future investigation

191

Notes SBTM provides accountability and traceability while preserving the

creative aspects of exploratory testing. It creates a balance between

structure and freedom, making exploratory testing more palatable in

organizations that require documented testing activities.

Tour-Based Testing

Cem Kaner introduced the concept of "tours" as a metaphor for

different exploratory testing approaches. Each tour represents a specific

perspective or focus area:

• Feature Tour: Exploring each feature systematically to

understand its functionality

• Scenario Tour: Testing end-to-end workflows that simulate

real user activities

• Claims Tour: Evaluating marketing claims and documentation

against actual functionality

• Configuration Tour: Investigating the system under different

configuration settings

• User Tour: Adopting personas of different user types to

uncover usability issues

• Negative Tour: Deliberately attempting to break the system

through unexpected inputs or actions

Tours provide cognitive frameworks that help testers maintain focus

while exploring different dimensions of the software. They can be

combined or customized based on the specific testing objectives and

the nature of the application under test.

Testing Heuristics

Heuristics in exploratory testing serve as mental shortcuts or rules of

thumb that guide testing decisions. These include:

• Boundary Analysis: Testing at and around boundary values

where defects often cluster

• State-Transition Coverage: Exploring different state

transitions in the application

• Input Combinations: Testing various combinations of inputs,

particularly those likely to interact

• Interruption Heuristic: Testing system behavior when

operations are interrupted

• CRUD: Ensuring Create, Read, Update, and Delete operations

work correctly for data entities

192
MATS Centre for Distance and Online Education, MATS University

Notes • Consistency Heuristic: Checking for consistent behavior

across similar features

Elisabeth Hendrickson's "Test Heuristics Cheat Sheet" provides a

comprehensive collection of such heuristics that testers can apply

during exploratory sessions. These heuristics represent distilled

experience that helps testers identify areas of higher risk or potential

defect clusters.

Implementing Effective Exploratory Testing

Implementing exploratory testing effectively requires careful

consideration of several factors, including team skills, testing context,

and organizational culture. While exploratory testing emphasizes

freedom and creativity, successful implementation often depends on

thoughtful preparation and management.

Planning and Preparation

Effective exploratory testing begins with preparation, even though the

specific test cases remain undefined. Key preparation activities include:

1. Defining Objectives: Establishing clear goals for exploratory

sessions, whether investigating specific risks, evaluating new

features, or following up on reported issues

2. Understanding Requirements and Design: Gaining sufficient

knowledge about the system's intended behavior to recognize

deviations

3. Environment Setup: Ensuring appropriate test environments,

data, and tools are available

4. Test Charter Development: Creating charters that guide each

session while allowing freedom to explore

5. Risk Analysis: Identifying areas of higher risk that deserve

more thorough exploration

This preparation phase sets the stage for productive exploratory

sessions without constraining the tester's creativity. It provides

necessary context while leaving room for discovery.

Execution Strategies

During exploratory testing execution, several strategies can enhance

effectiveness:

1. Time Boxing: Allocating fixed time periods for exploration to

maintain focus and prevent diminishing returns

2. Note-Taking: Documenting observations, actions, and

questions in real-time to ensure traceability

193

Notes 3. Diversifying Approaches: Varying testing techniques, data,

and user perspectives to broaden coverage

4. Pairing: Conducting pair testing where two testers work

together, combining their experience and insights

5. Debriefing: Reviewing findings and insights after each session

to extract maximum value

Execution strategies should adapt based on the testing context and

objectives. For instance, exploratory testing of a mature, stable system

might focus on edge cases and unusual scenarios, while testing a new

feature might emphasize core functionality and integration points.

Documentation and Reporting

While exploratory testing emphasizes dynamic interaction rather than

detailed documentation, some level of documentation remains essential

for:

1. Traceability: Connecting defects to the testing activities that

revealed them

2. Knowledge Transfer: Sharing insights and observations with

the broader team

3. Evidence of Testing: Demonstrating testing coverage for

compliance or audit purposes

4. Regression Prevention: Documenting scenarios that revealed

issues for future verification

Documentation approaches range from lightweight session notes to

more structured test charters and session reports. Tools designed

specifically for exploratory testing, such as Rapid Reporter or

Exploratory Testing Chrome Extension, can facilitate documentation

without disrupting the testing flow.

Error Guessing: Leveraging Experience to Predict Defects

Error guessing represents a testing technique where testers leverage

their experience and intuition to predict where defects might lurk in a

system. Unlike more systematic approaches, error guessing relies on

the tester's accumulated knowledge about common programming

mistakes, typical defect patterns, and domain-specific vulnerabilities.

This technique acknowledges that some defects follow recognizable

patterns across different software systems, and experienced testers

develop an intuitive sense for these patterns.

Principles of Effective Error Guessing

Effective error guessing builds on several key principles:

194
MATS Centre for Distance and Online Education, MATS University

Notes 1. Pattern Recognition: Identifying similarities between the

current system and previously encountered systems where

specific types of defects occurred

2. Defect Clustering: Understanding that defects tend to cluster

in particular components or under specific conditions

3. Historical Awareness: Leveraging knowledge of past defects

in similar systems or previous versions of the same system

4. Technical Empathy: Understanding the developer's

perspective to anticipate potential coding oversights

5. Context Sensitivity: Adapting guessing strategies based on

technology stack, development methodology, and team

characteristics

These principles form the cognitive foundation for error guessing,

enabling testers to make educated predictions rather than random

attempts to break the system.

Common Error-Prone Areas

Experienced testers develop mental catalogs of areas where defects

frequently occur. These include:

1. Boundary Conditions: Values at or near the limits of

acceptable ranges often reveal defects

2. Error Handling: Exception handling code typically receives

less testing during development

3. Integration Points: Interfaces between components or systems

frequently harbor defects

4. Concurrency Scenarios: Race conditions and timing issues

emerge under specific concurrency patterns

5. State Management: Maintaining correct state across complex

operations challenges many systems

6. Resource Management: Memory allocation, file handles,

database connections, and other resources require careful

management

7. Security Vulnerabilities: Input validation, authentication, and

authorization represent common weak points

8. Backward Compatibility: Changes that inadvertently break

compatibility with older versions or data formats

Focusing error guessing efforts on these areas typically yields higher

defect discovery rates than random testing.

Building Error Guessing Skills

195

Notes Error guessing effectiveness improves with experience, but

organizations can accelerate skill development through:

1. Defect Taxonomies: Cataloging and classifying discovered

defects to identify patterns

2. Root Cause Analysis: Thoroughly understanding why defects

occurred rather than merely fixing symptoms

3. Cross-Team Learning: Sharing defect insights across different

teams and projects

4. Technology-Specific Knowledge: Deepening understanding of

common pitfalls in specific programming languages or

frameworks

5. Post-Release Defect Analysis: Studying defects that escaped to

production to improve future error guessing

Organizations can formalize this knowledge sharing through defect

workshops, retrospectives, and knowledge bases that document

common error patterns and their manifestations.

Ad-hoc Testing: Unstructured yet Valuable

Ad-hoc testing represents the most unstructured form of experience-

based testing, characterized by its improvisational nature and minimal

planning. Unlike exploratory testing, which maintains a purposeful

focus despite its dynamic nature, ad-hoc testing often proceeds without

predefined objectives or documentation requirements. This approach

relies heavily on the tester's intuition, domain knowledge, and system

understanding to guide testing activities.

Characteristics of Ad-hoc Testing

The defining characteristics of ad-hoc testing include:

1. Minimal Documentation: Little or no documentation of test

cases before execution

2. Improvisational Approach: Tests evolve spontaneously based

on the tester's observations and instincts

3. Non-sequential Execution: Testing follows the tester's instinct

rather than a predetermined sequence

4. Limited Traceability: The connection between testing

activities and requirements may remain implicit

5. Rapid Execution: Ad-hoc testing typically proceeds quickly

without elaborate setup procedures

These characteristics make ad-hoc testing particularly suitable for

certain contexts while limiting its applicability in others.

196
MATS Centre for Distance and Online Education, MATS University

Notes Appropriate Contexts for Ad-hoc Testing

Despite its limitations, ad-hoc testing provides value in specific

scenarios:

1. Smoke Testing: Quick verification that basic functionality

works before more rigorous testing

2. Familiarization: Gaining initial understanding of a new system

or feature

3. Supplementary Testing: Complementing more structured

approaches to find overlooked issues

4. Rapid Feedback: Providing immediate insights during

development without test case preparation overhead

5. Resource Constraints: When time or personnel limitations

prevent more formal testing approaches

6. Regression Verification: Quick checks of previously

functional areas after changes

Organizations often employ ad-hoc testing as part of a broader testing

strategy rather than as the primary approach, recognizing both its

strengths and limitations.

Improving Ad-hoc Testing Effectiveness

While ad-hoc testing inherently lacks structure, several practices can

enhance its effectiveness:

1. Post-execution Documentation: Recording testing activities

and findings after execution

2. Defect-driven Learning: Using discovered defects to guide

subsequent testing efforts

3. Time Boxing: Allocating specific time periods for ad-hoc

testing to maintain focus

4. Knowledge Sharing: Discussing ad-hoc testing findings with

the team to spread insights

5. Tool Support: Using screen recording or automated logging to

capture testing activities

These practices help organizations extract maximum value from ad-hoc

testing while mitigating its inherent limitations in traceability and

repeatability.

Comparing Experience-based Testing Approaches

Experience-based testing encompasses three distinct approaches—

exploratory testing, error guessing, and ad-hoc testing—each with

unique characteristics and applications. Understanding their differences

197

Notes and appropriate contexts helps organizations deploy them effectively as

part of a comprehensive testing strategy.

Structural Comparison

The three approaches differ primarily in their level of structure and

formality:

1. Exploratory Testing: Balances freedom with structure through

session-based management, charters, and documented findings.

It represents a disciplined approach to discovery-based testing.

2. Error Guessing: Provides moderate structure through targeted

testing of error-prone areas based on experience and heuristics,

but typically lacks the session management framework of

exploratory testing.

3. Ad-hoc Testing: Offers minimal structure, proceeding

primarily through improvisation with limited documentation or

predefined objectives.

This structural continuum allows organizations to select approaches

based on their process maturity, documentation requirements, and

testing objectives.

Coverage and Effectiveness

The approaches also differ in their coverage characteristics and defect-

finding effectiveness:

1. Exploratory Testing: Provides broad coverage guided by the

tester's evolving understanding of the system. Its effectiveness

derives from the continuous learning that informs testing

decisions.

2. Error Guessing: Delivers targeted coverage of error-prone

areas, potentially missing issues in areas not identified as high-

risk. Its effectiveness depends heavily on the tester's experience

with similar systems.

3. Ad-hoc Testing: Offers unpredictable coverage determined by

the tester's spontaneous decisions. Its effectiveness varies

widely based on the tester's intuition and system knowledge.

Research suggests that while structured testing approaches provide

more consistent coverage, experience-based approaches often identify

different types of defects, particularly those related to complex

interactions, usability, and edge cases.

Resource Requirements

Resource requirements also differentiate these approaches:

198
MATS Centre for Distance and Online Education, MATS University

Notes 1. Exploratory Testing: Requires skilled testers capable of

designing tests dynamically and interpreting results. It also

demands time for session planning, execution, and reporting.

2. Error Guessing: Depends heavily on experienced testers with

domain knowledge and familiarity with common defect

patterns. It typically requires less planning time than

exploratory testing.

3. Ad-hoc Testing: Can be performed by testers with varying

experience levels, though its effectiveness increases with tester

expertise. It requires minimal planning time but may result in

duplicate effort or missed areas.

Organizations must consider these resource implications when

selecting experience-based testing approaches, particularly in

environments with constrained testing resources or tight deadlines.

Integrating Experience-based Testing with Other Approaches

Experience-based testing approaches deliver maximum value when

integrated with other testing methodologies rather than used in

isolation. This integration creates a comprehensive testing strategy that

leverages the strengths of each approach while compensating for their

limitations.

Risk-based Integration Framework

A risk-based framework provides an effective structure for integrating

various testing approaches:

1. High-Risk Areas: Combining specification-based, structure-

based, and experience-based approaches for comprehensive

coverage

2. Medium-Risk Areas: Applying specification-based testing

complemented by targeted exploratory sessions

3. Low-Risk Areas: Utilizing primarily specification-based

testing with limited ad-hoc verification

This framework allocates testing resources according to risk levels,

ensuring critical functionality receives appropriate attention from

multiple testing perspectives.

Tools and Technologies Supporting Experience-based Testing

While experience-based testing primarily relies on human skills and

judgment, various tools can enhance its effectiveness and address

challenges like documentation and traceability. These tools range from

199

Notes specialized exploratory testing platforms to general-purpose

productivity applications repurposed for testing.

Exploratory Testing Tools

Specialized tools for exploratory testing provide features designed to

support this dynamic approach:

1. Session Management Tools: Applications like Rapid Reporter,

SessionTester, and Exploratory Testing Assistant that facilitate

session-based test management

2. Note-taking and Evidence Capture: Tools that streamline

documentation through screenshots, annotations, and structured

notes

3. Test Idea Generation: Platforms that suggest test scenarios

based on heuristics and patterns

4. Mind Mapping Software: Applications like XMind and

MindMeister that help testers visualize test coverage and

relationships between areas

These tools aim to reduce the administrative overhead of exploratory

testing while preserving its creative and adaptive nature.

Defect Pattern Databases

Systems that catalog common defect patterns support error guessing by

providing reference information:

1. Common Weakness Enumeration (CWE): A community-

developed list of software weakness types

2. Defect Taxonomies: Organizational or industry-specific

classifications of common defects

3. Historical Defect Databases: Systems that analyze past defects

to identify patterns and trends

4. Bug Pattern Analysis Tools: Applications that identify

recurring defect patterns in code or testing results

These resources help testers develop more effective error guessing

strategies by systematizing knowledge about common defects and their

manifestations.

Capture and Replay Tools

Tools that record testing sessions provide support for documentation

and reproducibility:

1. Screen Recording Software: Applications that capture video

of testing activities

200
MATS Centre for Distance and Online Education, MATS University

Notes 2. Test Automation Recorders: Tools that generate automation

scripts from manual testing actions

3. Event Loggers: Systems that record user interactions at a

technical level for precise reproduction

4. Session Replay Tools: Platforms that recreate user sessions for

analysis and debugging

These tools help address one of the primary challenges of experience-

based testing: documenting the exact conditions under which issues

occur to facilitate reproduction and verification.

Experience-based Testing in Different Development Methodologies

Experience-based testing adapts differently across various

development methodologies, with its implementation shaped by each

methodology's principles, timeframes, and documentation

requirements.

Agile and Scrum Environments

In Agile environments, experience-based testing aligns naturally with

iterative development principles:

1. Sprint Integration: Exploratory testing sessions often occur

toward the end of sprints, after user stories meet their definition

of done

2. Three Amigos Collaboration: Testers bring experience-based

perspectives to requirement discussions with developers and

business analysts

3. Continuous Feedback: Rapid insights from experience-based

testing feed directly into the backlog for future sprints

4. Testing Spikes: Dedicated time boxes for exploratory testing of

complex features or architectural changes

5. Automation Balance: Experience-based approaches

complement automated testing by addressing areas difficult to

automate

Agile teams typically emphasize exploratory testing over ad-hoc

approaches due to its balance of flexibility and structure.

DevOps and Continuous Delivery

In DevOps environments characterized by frequent releases,

experience-based testing adapts to compressed timeframes:

1. Continuous Exploration: Ongoing exploratory testing

integrated into the delivery pipeline

201

Notes 2. Focused Sessions: Time-constrained exploratory sessions

targeting changed areas or high-risk functionality

3. Production Monitoring Integration: Using production

telemetry to guide experience-based testing efforts

4. Feature Toggle Testing: Exploring behavior with different

feature flag configurations

5. Canary Testing Support: Experience-based approaches

applied to limited production deployments

DevOps environments typically require lightweight documentation for

experience-based testing, focusing on quick feedback rather than

comprehensive reporting.

Traditional Waterfall Projects

In traditional waterfall environments, experience-based testing

typically occurs during later testing phases:

1. Supplementary Testing: Experience-based approaches

complementing comprehensive test cases

2. Specialized Testing Phases: Dedicated periods for exploratory

testing after requirements-based testing completes

3. Formalized Reporting: More detailed documentation of

experience-based testing activities

4. Risk Mitigation: Targeted error guessing focused on high-risk

areas identified during earlier testing phases

5. Acceptance Testing Support: Experience-based approaches

supporting user acceptance testing

Waterfall projects often incorporate more structured forms of

experience-based testing, like session-based test management, to

maintain alignment with documentation requirements.

Measuring and Improving Experience-based Testing Effectiveness

While experience-based testing presents measurement challenges,

organizations can implement approaches to evaluate and enhance its

effectiveness.

Performance Indicators

Several indicators help assess the performance of experience-based

testing:

1. Defect Discovery Rate: Number of defects found per hour of

testing effort

2. Unique Defect Types: Percentage of defects found exclusively

through experience-based approaches

202
MATS Centre for Distance and Online Education, MATS University

Notes 3. Customer-Impact Prevention: Number of potentially

customer-impacting issues identified before release

4. Coverage Expansion: Identification of scenarios not covered

by specification-based test cases

5. Knowledge Generation: New test ideas and risk areas

identified during experience-based sessions

These indicators provide a multidimensional view of effectiveness

beyond simple defect counts, acknowledging the diverse contributions

of experience-based approaches.

Quality Improvement Cycles

Continuous improvement processes enhance experience-based testing

effectiveness:

1. Debriefing Sessions: Reviewing exploratory sessions to extract

lessons and patterns

2. Defect Root Cause Analysis: Analyzing whether experience-

based approaches find specific defect types more effectively

3. Test Idea Cataloging: Building organizational knowledge

bases of effective test approaches

4. Heuristic Refinement: Continuously updating testing

heuristics based on project experiences

5. Cross-team Learning: Sharing insights and approaches across

different testing teams

These improvement cycles transform individual experiences into

organizational knowledge, enhancing the collective effectiveness of

testing teams.

Case Studies and Real-world Applications

Examining real-world applications of experience-based testing

provides valuable insights into its practical implementation and

benefits.

Microsoft's Exploratory Testing Practice

Microsoft has integrated exploratory testing into its development

processes, particularly for Windows and Office products:

1. Integration with Development: Exploratory testing occurs

throughout development rather than only at designated testing

phases

2. SBET Implementation: Session-Based Exploratory Testing

provides structure while maintaining flexibility

203

Notes 3. Tool Development: Microsoft developed specialized tools to

support exploratory testing, eventually incorporating features

into Azure DevOps

4. Metrics Program: Developed metrics specifically for

evaluating exploratory testing effectiveness

5. Balanced Approach: Combination of automated testing,

scripted manual testing, and exploratory testing

Microsoft's experience demonstrates that large, complex software

projects benefit significantly from structured exploratory testing

approaches that complement automated testing efforts.

Financial Services Compliance Testing

A major financial services organization incorporated experience-based

testing into its compliance-focused testing strategy:

1. Regulatory Context: Operating in a highly regulated

environment with strict documentation requirements

2. Risk-based Integration: Using risk assessments to determine

where exploratory testing would provide maximum value

3. Enhanced Documentation: Developing specialized session

templates that satisfied regulatory requirements

4. Defect Pattern Analysis: Systematically analyzing defects to

improve error guessing effectiveness

5. Audit-friendly Process: Creating an experience-based testing

framework that satisfied both regulatory and quality objectives

This case demonstrates that experience-based approaches can be

successfully implemented even in highly regulated environments when

properly structured and documented.

Mobile Application Development

A mobile application development company embraced experience-

based testing to address platform fragmentation challenges:

1. Device Matrix Challenges: Using experience-based

approaches to efficiently test across numerous device/OS

combinations

2. User Behavior Simulation: Employing exploratory testing to

simulate diverse user interaction patterns

3. Performance Discovery: Identifying performance issues

through experience-based approaches before they appeared in

metrics

204
MATS Centre for Distance and Online Education, MATS University

Notes 4. Competitive Analysis Integration: Incorporating competitor

application analysis into exploratory testing sessions

5. Rapid Release Adaptation: Tailoring experience-based

approaches to support weekly release cycles

This case highlights how experience-based testing adapts effectively to

contexts with diverse user environments and rapid release cadences.

Experience-based testing—encompassing exploratory testing, error

guessing, and ad-hoc testing—represents a vital component of

comprehensive software quality assurance. These approaches leverage

human intuition, creativity, and domain knowledge to uncover defects

that might escape detection through more structured testing

methodologies. The effectiveness of experience-based testing stems

from its adaptability, its ability to address emerging issues in dynamic

environments, and its capacity to complement specification-based and

structure-based testing approaches. The evolution of experience-based

testing continues as organizations adapt these approaches to changing

development methodologies, from traditional waterfall processes to

agile and DevOps environments. While challenges remain in areas such

as documentation, traceability, and measurement, emerging practices

and tools are addressing these limitations while preserving the essential

flexibility and cognitive engagement that characterize experience-

based approaches. As software systems grow increasingly complex and

development cycles accelerate, the value of experience-based testing

will likely increase. The human elements of intuition, pattern

recognition, and creative thinking remain indispensable in quality

assurance, even as automation expands. Organizations that effectively

integrate experience-based testing into their quality strategies position

themselves to deliver software that not only meets specifications but

also satisfies the evolving expectations of users in increasingly

competitive markets. The future of experience-based testing will be

characterized by greater integration with automated approaches,

enhanced by artificial intelligence, and adapted to continuous delivery

environments—yet it will remain fundamentally grounded in human

expertise and the irreplaceable value of experienced testing

professionals applying their judgment to complex software systems.

3.4 Test Case Design Techniques

Test case design is a critical process in software quality assurance that

involves creating detailed test scenarios to verify that a software

205

Notes application meets its specified requirements and functions as expected.

The primary goal of test case design is to systematically identify test

conditions that will provide the most comprehensive coverage of the

software's functionality while uncovering potential defects and

ensuring the highest possible quality. The process of designing test

cases is both an art and a science, requiring a deep understanding of the

software requirements, use cases, and potential user interactions.

Effective test case design goes beyond simply checking if the software

works; it involves anticipating how users might interact with the

system, identifying potential edge cases, and ensuring that the software

behaves correctly under various conditions.

Fundamental Principles of Test Case Design

Before delving into specific techniques, it is essential to understand the

fundamental principles that guide effective test case design:

1. Comprehensive Coverage: Test cases should aim to cover all

functional and non-functional requirements specified in the

software requirements document. This means examining both

the expected behavior and potential error conditions.

2. Traceability: Each test case should be traceable to specific

requirements or use cases. This ensures that all requirements are

tested and provides a clear link between the testing effort and

the original software specifications.

3. Repeatability: Test cases should be designed to be repeatable,

meaning they can be executed multiple times under the same

conditions and produce consistent results.

4. Simplicity and Clarity: Test cases should be written in a clear,

concise manner that is easy to understand and execute. They

should include precise steps, expected results, and any

necessary preconditions or test data.

5. Efficiency: While aiming for comprehensive coverage, test

cases should also be efficient, avoiding unnecessary

redundancy and focusing on the most critical and high-risk

areas of the software.

Requirements-Based Test Case Design

Requirements-based test case design is a systematic approach that

derives test cases directly from the software requirements specification

(SRS). This technique ensures that the testing process covers all

specified functionality and meets the stakeholders' expectations.

206
MATS Centre for Distance and Online Education, MATS University

Notes Key Steps in Requirements-Based Test Case Design

1. Requirement Analysis The first step in requirements-based test

case design is a thorough analysis of the software requirements

specification. This involves:

• Carefully reading and understanding each requirement

• Identifying functional and non-functional requirements

• Clarifying any ambiguous or unclear requirements with

stakeholders

• Breaking down complex requirements into testable components

2. Identifying Test Conditions For each requirement, identify

specific test conditions that need to be verified:

• Positive test conditions (expected behavior)

• Negative test conditions (error handling and invalid inputs)

• Boundary conditions

• Performance and usability requirements

3. Test Case Development Create detailed test cases that cover:

• Specific test scenarios

• Precise input data

• Expected outcomes

• Detailed steps to execute the test

• Preconditions and postconditions

Example of Requirements-Based Test Case Design

Consider a simple login functionality with the following requirements:

• Users must enter a valid username and password

• Passwords must be at least 8 characters long

• Maximum of 3 login attempts allowed

• Successful login redirects to the dashboard

• Failed login attempts display an error message

Sample Test Cases:

1. Valid Login

➢ Input: Correct username and password

➢ Expected Result: Successful login, redirect to dashboard

2. Invalid Password

➢ Input: Correct username, incorrect password

➢ Expected Result: Error message, login attempt count

incremented

3. Password Length Validation

➢ Input: Password less than 8 characters

207

Notes ➢ Expected Result: Error message preventing login

4. Exceeded Login Attempts

➢ Input: Multiple incorrect login attempts

➢ Expected Result: Account temporarily locked, display

lockout message

Use Case-Based Test Case Design

Use case-based test case design focuses on creating test scenarios that

verify the software's functionality from an end-user perspective. This

approach ensures that the software meets the functional requirements

by testing various user interactions and scenarios defined in the use

cases.

Characteristics of Use Case-Based Test Case Design

1. User-Centric Approach Test cases are designed around the

typical and alternative paths a user might take when interacting

with the system. This approach ensures that the software is

tested from a user's perspective, covering both primary and

secondary user flows.

2. Scenario-Driven Testing Use case-based test design involves

creating test cases that cover:

• Main success scenarios

• Alternative scenarios

• Exception scenarios

• Error handling paths

Steps in Use Case-Based Test Case Design

1. Use Case Analysis

• Review and understand each use case thoroughly

• Identify all possible paths and interactions

• Break down use cases into specific scenarios

2. Scenario Mapping For each use case, map out:

• Primary success scenario

• Alternative scenarios

• Exception scenarios

• Error handling paths

3. Test Case Creation Develop detailed test cases that cover:

• Specific user interactions

• Input variations

• Expected system responses

• Error handling and recovery mechanisms

208
MATS Centre for Distance and Online Education, MATS University

Notes Example of Use Case-Based Test Case Design

Consider a use case for an online shopping cart system:

Use Case: Purchase Product

• User searches for a product

• User adds product to cart

• User proceeds to checkout

• User enters shipping information

• User makes payment

• System confirms order

Sample Test Cases:

1. Successful Product Purchase

➢ Search for product

➢ Add to cart

➢ Complete checkout process

➢ Verify order confirmation

2. Cart Modification Scenarios

➢ Add multiple products

➢ Remove products from cart

➢ Update product quantities

➢ Verify cart calculations

3. Checkout Process Variations

➢ Apply discount code

➢ Change shipping address

➢ Select different payment methods

➢ Verify system handles variations correctly

Advanced Test Case Design Techniques

Boundary Value Analysis

Boundary value analysis is a powerful technique that focuses on testing

the values at the edges of input ranges. This method is particularly

effective in identifying off-by-one errors and handling of extreme input

values.

Key Principles:

• Test minimum and maximum allowed values

• Test just inside and just outside boundary values

• Verify handling of edge cases

Example: For an age verification system with a valid age range of 18-

65:

• Test inputs: 17, 18, 19

209

Notes • Test inputs: 64, 65, 66

Equivalence Partitioning

Equivalence partitioning divides input data into valid and invalid

partitions, allowing for more efficient test case design by reducing the

number of test cases while maintaining comprehensive coverage.

Implementation:

• Divide input domain into classes of equivalent inputs

• Select representative test cases from each partition

• Ensure coverage of both valid and invalid partitions

Example: For a temperature conversion system:

• Valid partition: -50°C to 100°C

• Invalid partitions: Below -50°C, Above 100°C

• Select test cases representing each partition

Decision Table Testing

Decision table testing is ideal for complex business logic with multiple

input conditions and corresponding actions. This technique helps

ensure comprehensive coverage of various input combinations.

Process:

• Identify all input conditions

• Determine possible combinations

• Create a decision table

• Develop test cases covering all table entries

Example Decision Table: Loan Approval System Conditions:

• Credit Score

• Annual Income

• Existing Debt

Actions:

• Approve Loan

• Reject Loan

• Request Additional Information

State Transition Testing

State transition testing is crucial for systems with multiple states and

complex state changes. This technique verifies that the system behaves

correctly as it transitions between different states.

Key Considerations:

• Identify all possible system states

• Map state transitions

• Test valid and invalid state changes

210
MATS Centre for Distance and Online Education, MATS University

Notes • Verify error handling during transitions

Test Case Design Best Practices

1. Comprehensive Documentation

• Clearly document each test case

• Include purpose, preconditions, steps, and expected results

• Maintain traceability to requirements and use cases

2. Automation Readiness

• Design test cases with automation in mind

• Use consistent naming conventions

• Create modular and reusable test cases

3. Continuous Refinement

• Regularly review and update test cases

• Incorporate lessons learned from previous testing cycles

• Adapt to changes in requirements and system architecture

4. Collaborative Approach

• Involve developers, business analysts, and stakeholders

• Conduct peer reviews of test cases

• Seek clarification on ambiguous requirements

Test case design is a critical process that requires a systematic,

thorough, and flexible approach. By leveraging techniques such as

requirements-based and use case-based test case design, teams can

create comprehensive test suites that ensure software quality, reliability,

and user satisfaction. The key to successful test case design lies in

understanding the software requirements, anticipating user interactions,

and maintaining a holistic view of the system. It is an iterative process

that demands continuous learning, collaboration, and adaptation.

Effective test case design goes beyond mere verification; it is about

building confidence in the software's ability to meet user needs, handle

various scenarios, and provide a robust and reliable user experience. As

software systems become increasingly complex, the importance of

sophisticated test case design techniques continues to grow. Testers

must remain adaptable, continuously update their skills, and embrace

new methodologies to ensure the highest standards of software quality.

Summary:

Module 3 covers various test design techniques used to create effective

test cases that ensure comprehensive validation of software

applications. It introduces black-box testing, where the tester evaluates

the software based on inputs and expected outputs without knowledge

211

Notes of internal code or logic. In contrast, white-box testing involves testing

the internal structures or workings of an application, including code

paths, conditions, and loops, requiring knowledge of the source code.

The module also includes experience-based testing, which relies on the

tester’s intuition, domain expertise, and past experience to identify

potential problem areas. These techniques help ensure thorough

coverage of both functional and structural aspects of the software,

improving defect detection and overall software quality.

Multiple Choice Questions (MCQs)

1. Which of the following is a Black-box testing technique?

a) Statement Coverage

b) Equivalence Partitioning

c) Path Coverage

d) Code Inspection

(Answer: b)

2. Boundary Value Analysis is used to:

a) Test internal program logic

b) Check boundary conditions for input values

c) Test non-functional aspects of software

d) Measure software performance

(Answer: b)

3. In White-box testing, which technique ensures that all paths in a

program are tested?

a) Statement Coverage

b) Branch Coverage

c) Path Coverage

d) Decision Table Testing

(Answer: c)

4. Which of the following is NOT a White-box testing technique?

a) Code coverage

b) Decision table testing

c) Statement coverage

d) Branch coverage

(Answer: b)

5. Exploratory Testing is:

a) Performed with predefined test cases

b) A formal testing method

c) Based on tester’s intuition and experience

212
MATS Centre for Distance and Online Education, MATS University

Notes d) Used only for security testing

(Answer: c)

6. Decision Table Testing is useful when:

a) The software has simple input conditions

b) The software has complex business rules

c) The software has no decision-making logic

d) The software is based on a sequential process

(Answer: b)

7. In Error Guessing, test cases are designed based on:

a) Test scripts

b) Past experiences and intuition

c) Systematic documentation

d) Mathematical calculations

(Answer: b)

8. Path coverage ensures that:

a) All test cases are automated

b) All possible paths in the code are executed at least once

c) Only the most critical paths are tested

d) The user interface is fully tested

(Answer: b)

9. The primary goal of Test Case Design Techniques is to:

a) Reduce software development time

b) Improve test effectiveness and efficiency

c) Eliminate all software defects

d) Ensure manual testing is replaced by automation

(Answer: b)

10. State transition testing is most useful for:

a) Applications with different user roles

b) Systems with a finite number of states and transitions

c) Static web applications

d) Database performance testing

(Answer: b)

Short Answer Questions

1. What is the purpose of Black-box testing?

2. Define Equivalence Partitioning with an example.

3. Explain Boundary Value Analysis and its importance.

4. What is Decision Table Testing, and where is it used?

5. Describe the key techniques of White-box testing.

213

Notes 6. How does Statement Coverage help in White-box testing?

7. What is Exploratory Testing, and when is it used?

8. Define Error Guessing and give an example of its application.

9. How does State Transition Testing work in software testing?

10. What are the key characteristics of an effective test case?

Long Answer Questions

1. Explain the concept of Black-box testing and discuss different

techniques used in it.

2. Describe White-box testing techniques with real-world examples.

3. Compare and contrast Black-box and White-box testing.

4. Discuss the importance of Equivalence Partitioning and Boundary

Value Analysis in testing.

5. Explain how Decision Table Testing helps in testing complex

business logic.

6. Describe the role of Experience-based Testing techniques in

software quality assurance.

7. Explain Path Coverage and how it differs from Statement and

Branch Coverage.

8. Discuss the significance of Test Case Design Techniques and their

role in software testing.

9. What are the best practices for writing effective test cases? Provide

examples.

10. Describe how State Transition Testing can be applied in real-world

applications.

214
MATS Centre for Distance and Online Education, MATS University

MODULE 4

TYPES OF TESTING

LEARNING OUTCOMES

• To understand functional testing and its role in verifying system

functionality as per requirements.

• To explore various types of non-functional testing, including

performance, load, stress, scalability, and security testing.

• To analyze the importance of non-functional testing in

evaluating software performance, security, and usability.

• To compare functional and non-functional testing

methodologies in ensuring overall software quality.

• To apply functional and non-functional testing techniques to

assess software reliability and efficiency.

215

Notes Unit 12: Functional Testing

4.1 Functional Testing: Ensuring system functionality as per

requirements

Functional testing is also an important subfield within the larger

domain of software testing, where the goal is to ensure that software

systems comply with functional requirements and meet user

expectations. This testing methodology focuses on the system's

external behavior — what it does as opposed to how it does it — to

verify that all required capabilities exist, function correctly, and provide

expected outputs in intended use cases and conditions. Functional

testing, unlike non-functional testing which covers things like how

well the software performs in performance, usability, or security, is

solely focused on verifying that the software does what it’s supposed to

do. Whether it’s the simple functions or more complex business

processes, functional testing verifies that the software does what it’s

designed to do. Functional testing is a validation of system behaviors

against requirements that provides critical quality assurance needed to

ship software that does the right thing for users while preventing as

many boundary breaches as possible from reaching production. Based

on a black-box approach, functionality testing focuses on the software's

response to particular canonical inputs without worrying about the

internal application working or code. Testers ask the system to do

things through the interfaces it has defined—user interfaces, APIs, or

some other point of access—and check that it does them as specified;

they’re not required to go underneath the covers and see how those

results are produced internally. This view from the outside in is closely

aligned with the end users experience with the application, helping to

drive verification efforts towards simple behaviours and outcomes that

correlate more closely with the users satisfaction that with the technical

implementation. Functional testing is a semi-black-box approach

towards testing which enables QA professionals to efficiently perform

testing with business understanding rather than technical know how.

Requirements are a step towards functional testing requirements

specifications, and they are also used to verify system behaviour. They

can take the form of formal requirements documents, user stories, use

cases, acceptance criteria, business rules or functional specifications,

but all of them capture expectations about what the software should and

216
MATS Centre for Distance and Online Education, MATS University

Notes should not do under certain circumstances. Functional testing can be

done if and only if you have clear requirements that are sufficiently

testable in that it describes in enough detail what input to use, what

action to take and what output to expect so that there is a concrete basis

for objective verification. Unclear or incomplete requirements create

complexity in test efforts leaving room for interpretation if the expected

or actual behavior represents correctness or a defect. Requirements and

functional testing have a close relationship and form a bridge which is

a verification framework — it determines whether the implemented

functionality indeed provides the specified and expected behavior.

Functional testing spans all system capabilities, from simple functions

to complex end-to-end business processes. Jumping up to a very

granular level, this checks basic functionality around performing

fundamental operations on data (creating, retrieving, updating, and

deleting it) across various components of an application. Intermediate

level, it can validate more complex type of functions such as

calculation, transformations, workflow progressions and

implementation of business rules. At the highest level, it assesses end-

to-end business processes that cut across multiple functions and

components to ensure these holistic capabilities work together to

deliver the desired business value.

Functional testing approaches range from scripted, pre-defined test

cases to exploratory techniques that react to information learned while

testing the system. Specification-based testing, on the other hand, is

based on test case designs that are pre-defined in line with the

requirements and are intended to ensure that each behavior specified in

the requirements is being performed correctly under different

conditions. Scenario Testing Scenario-based testing allows testing to

check how the system reacts to real-world usage scenarios, and as

users go through their regular workflows to test end-to-end workflows.

Decision-based testing: This approach to testing involves creating test

cases based on the logical decisions within the code, focusing on

handling conditions and ensuring the expected behavior of the code

when one decision is taken over another. Exploratory testing can

provide significant value on top of these structured approaches by

allowing testers to explore the application organically and use their

knowledge and intuition to identify issues with no predefined steps.

This is a summary of effective functional testing strategies that

217

Notes converge to sufficient approach, optimization of systematic

verification, creativity, structural tests. There are many specialized

types of functional testing, each serving a unique verification purpose

in the software development lifecycle. Smoke testing is the most basic

level of testing: it quickly checks that important functions work okay,

enough to allow deeper testing to go ahead. Sanity testing is a subset of

functional tests that is performed to assess whether a specific function

or bug fix works as expected. Regression testing ensures that

unchanged aspects of your codebase, remain unchanged (i.e. that they

still work correctly) after you made your changes, in order to prevent

your modifications from inadvertently breaking other functionality.

User acceptance testing verifies that the system conforms to business

requirements from the user's point of view, which is usually performed

by real end users who validate that the system is functioning properly.

Integration testing is about the interaction between components

specifically. This suite of targeted measures ensures full functional

verification during entire development, targeting distinct quality harms

at the correct moment in the pipeline. Smoke testing, which is often

referred to as the first line of defense in functional testing, performs a

shallow, quick validation on the system's critical functions to assess

whether it is stable enough for more in-depth testing. This initial

evaluation usually takes place right after a new build has been moved

to the testing environment, with an emphasis on core functionalities

namely startup of the application, login flow, base navigation, and a few

minimum basic operations without thorough verification of every

aspect of the application or edge cases. The primary reason for that is

not to catch all the defects, but to quickly identify if the build has

enough of a basic functionality and stability that merits further, more

thorough testing. Similar to checking if a freshly repaired appliance

smokes out when powered on (hence its name), smoke testing reveals

critical failures that would render future testing pointless or infeasible,

and conserves precious testing resources by preventing the wasted

effort on in-depth testing of a completely broken build.

You are typically tested by running a few hundred smoke test cases that

cover the key functionality required for the application, the most

important core user workflows, and any critical business processes that

need to work correctly for the application to be considered minimally

functional. Unit tests are quick to run, sometimes taking only minutes,

218
MATS Centre for Distance and Online Education, MATS University

Notes and can quickly provide feedback about the quality of the build.

Because smoke tests are run so often with every new build they are an

excellent candidate for automation to enable quicker verification with

little manual intervention. On failure of smoke tests, The build is

typically rejected and sent back to develop for fixing before additional

testing begins. When they pass, testing moves to more detailed

verification, with the confidence that at least the basic functionality

works. It saves effort by automatically ruling out any builds that are too

unstable to test meaningfully, and helps to ensure that you only run

tests on versions at a usable quality level. Sanity testing is a geared-

down version of functional testing which allows you to verify that a

specific functionality works after changes have been made to the code

or a bug has been fixed. Smoke testing is a high-level check of general

application stability, whereas sanity testing focuses on specific areas

impacted by recent changes to confirm they are working rationally,

making it a wise investment before moving on to detailed regression

testing. It’s similar to a “sanity check” that confirms the system acts

reasonably in modified areas, verifying that alterations accomplished

what it set out to do without creating an obvious new problem. Such

focused validation allows teams to quickly have the most critical issues

located in the impacted functionality and subsequently provide

developers with early feedback on whether the changes they made had

the desired effect, while also allowing teams to gauge whether the

quality of the build is warranting more intricate testing efforts. Sanity

testing involves the selection of test cases that are most relevant to

recent code changes, including the features directly affected as well as

related features that might experience ultimate ripple effects as a result

of the code changes. When a defect is fixed, a sanity test ensures that

the particular defect was addressed while also making sure that the fix

does not break other modules. With new features, this assures that

basic operations function correctly without validating every potential

scenario. It ensures that functional behavior stays correct even as the

implementation is improved and refactored. Instead of re-testing all the

components which could easily result in more effort/time, sanity testing

focuses only on those components that were subject to that change,

thus, offering a quick quality feedback without going through the

exhaustive process of verifying every single unit which has remained

unchanged. Senity testing help in life cycle of rapid development

219

Notes whereby small things are changing often of which sanity need highest

priority. Regression testing solves one of the most serious problems

when developing software: how can one be sure that the

changes/additional features don’t break existing functionality? With

thisplete verification methodolodgy, we ensure that any features fixed

that were working since the last made changes from features added,

defects fixed, performance and infrastructure changes continue to

work. "The term regression describes a phenomenon where a

feature/functionality moves back to a previously defective state, or

creates new defects in areas that were previously functional." So by

systematically re-verifying what we already know to be there,

regression testing gives us assurance that bugs introduced by changes

won't present themselves to the user, preserving software quality and

reliability as development and improvement activities continue.

Regression testing scope varies depending on project context, risk

assessment, or resource constraints. Full regression testing would test

all of the existing functionality irrespective of what has been changed

which gives maximum confidence but takes months and a lot of effort.

Partial regression testing is focused on specific areas that are expected

to be impacted by work recently completed — informed by impact

analysis that considers potential ripple effects through code

dependencies, shared components, or related business processes. Based

on this component-based analysis, regional regression is done on

modified content and the direct interactions around it. In risk-based

regression, test case selection is determined based on business

criticality of the functionality, complexity of the functionality, defect

history and frequency of usage to ensure that the important

functionality is verified even when the time to execute tests is limited

leading to non-exhaustive testing. And those diverse approaches equip

teams to prioritize thoroughness vs efficiency based on their particular

quality goals and practical limitations. Regression test selection is a

challenging problem, especially with the growth of applications along

with their test suites. The number of tests are going to increase, and

executing every possible test case after every change is going to be

impractical, therefore there are many strategic approaches we can

follow to identify which tests would add most value for specific

changes. Code-based selection relies on change impact analysis to

know which components were modified and which test cases exercise

220
MATS Centre for Distance and Online Education, MATS University

Notes those components. Alignment-based selection (which is a very efficient

form of requirements-based selection) finds out which features or

stories have changed and selects tests associated with those

requirements. Because regression testing is by nature repetitive (the

same tests are run over and over again to ensure that the behavior is

consistent), automation is particularly valuable when it comes to this

type of testing. With automated regression tests you can execute huge

suites of tests swiftly and reliably, verifying hundreds or thousands of

test cases in a fraction of the time and labor that manual execution

would entail. This automation allows for more robust regression testing

and testing coverage than would be possible if done manually,

especially in CI-type environments where the code at times can change

multiple times a day. Although the first development of automated

regression tests takes a lot of time and energy, this effort is compensated

for after multiple cycles of execution, resulting in very significant time

savings for tests that must be executed continuously in the course of

development. Automated execution ensures consistency, eliminating

the risk of differences among individual manual testers and making sure

the regression verification is the same at each pass through the test

cycle. When and how often to do regression testing depends on the

development methodology and project context. Of course it was a

sequential development, Regression Testing is usually performed

between major mile-stones in a traditional approach, when big changes

are in, sometimes multiple rounds on testing before releases. In agile

and iterative methods, small regression suites can run in each iteration

or sprint to verify that new functionality hasn't break existing features.

In continuous integration environments, proven multi-tiered regression

strategies are often used, where small, fast-running regression suites

run automatically on every code commit, and larger suites run nightly

or weekly to provide wider verification. These different patterns allow

projects to get immediate feedback on possible regressions while

ensuring that all functionality is given its due diligence, adapting the

frequency of tests to the particular cadence and risk profile of their

development processes. User acceptance testing (UAT) is the last

validation gate before software launches to production, and focuses on

ensuring that the system meets business requirements and user

expectations — rather than solely technical requirements. This test uses

real end-users or their representatives on real-world scenarios that make

221

Notes up actual usage patterns to see if the software supports their specific

workflow, fills their requirements, or meets their needs. While previous

testing stages may have been more focused on technical correctness or

conformance to requirements, UAT is truly about whether the software

provides practical value in realistic usage contexts to its intended users.

After implementation but before release, UAT incorporates direct user

feedback and serves as the final validation that the software will meet

its intended need in production environments. The model for

conducting UAT and its execution varies widely depending on the

project methodology and organization. In traditional sequential

development UAT typically has been a formal phase after systems

testing and before deployment with formal test plans, scripts, and sign-

off even. But in agile contexts acceptance testing is often done

incrementally in development, with stakeholders accepting features, at

the end of every iteration, as they are ready, rather than waiting for a

final acceptance phase at the end of the project. UAT needs to be

structured, regardless of method, and this is where user training on test

protocols, realistic business-process based test cases, relevant data to

test against and an obvious feedback loop to identify and resolve user

comments — all become important.

Those are special forms of acceptance testing that narrow user

participation just prior to general release, known as alpha and beta

testing. Alpha testing takes place in the development organization, but

uses one or more users (or their representatives) instead of the

development team, providing the best of both worlds as we can gain

early user perspective while keeping the test close to home. Such

sessions usually happen in a controlled environment so that testers can

directly watch the users, respond quickly to their feedback, and

respond rapidly to any major problems found. Beta testing expands the

reach of the evaluation by putting it into the hands of users, in their

own environments, and looking for feedback from a diverse user

population ahead of general release. This strategy uncovers challenges

that may not show up in more laboratory or laboratory-like testing

environments, especially those involving diverse usage patterns,

different configurations, or integration between different systems that

users touch every day in their jobs. These progressive levels of testing

increase confidence in software readiness while limiting the risk of

quality issues impacting vast populations of users. In contrast, defects

222
MATS Centre for Distance and Online Education, MATS University

Notes identified during UAT are qualitatively different from those found in

previous levels of testing with both the level of specificity and the

perspective utilized by users in examining the product. Although

technical testing may center on whether it works or how fast it does,

users frequently discover problems with workflow, terminology,

missing features for edge cases, or usability issues that were invisible

to teams that developed the software. Users assess software using the

lens of its fit with their real work, rather than predicted requirements,

often exposing gaps between explicit requirements and real user

requirements which had previously gone unnoticed. These insights are

critical for final fixes prior to release, and many shape plans for future

enhancements even if they won't be tackled in the current release.

Integration testing specifically ensures that different components

function together correctly as a part of a whole. Unit tests alone do not

tell us about the interactions, inputs, outputs, and general behaviors

that happen when we combine those units into larger subsystems or full

applications, which is why we need integration tests. At this level of

testing, we find problems that cannot be uncovered by unit testing on

its own, like misaligned interfaces, wrong assumptions about

component behavior, misunderstood requirements, and timing

problems that only arise when components interact under given

circumstances. Integration testing acts as a bridge between low-level

unit validation and high-level system validation, ensuring that correctly

working individual units work correctly when put together.

Component integration testing is focused on checking the interaction of

module in an application or subsystem, and it verifies the internal

interface and data flows. However, this testing is usually performed

very early in the development process as individual constituent parts

are developed and tested by development teams as they work through

their implementation. System integration testing tests how separate

subsystems or applications work together, ensuring that these more

significant units interact and function together correctly. This wider

integration usually takes place later in the development process,

especially after the individual subsystems have been developed and

tested separately. External Integration tests validate how the system

under test interacts with external systems, such as third-party services,

legacy applications, or partner systems. This confirms that the

application functions properly as part of a larger system, managing

223

Notes outside dependencies effectively in different scenarios. Here are some

strategies that can help guide the implementation of integration testing,

each with its own benefits for different project contexts. The "big bang"

way combines all of them at once, testing them all as a whole system

rather than through baby steps. This is efficient when it works, but it

complicates the isolation of defects when things fail because the

problem could come from any component or any interaction.

Incremental integration strategies offer more systematic approaches,

enabling defect isolation and parallel development. In bottom-up

integration, lower-level components are integrated first and higher-

level components are progressively added; top-down integration

combines high-level components early and integrates the lower-level

implementations incrementally, and is often done with the use of stubs

(which simulate components that are not yet integrated). The sandwich

or hybrid approaches include bottom-up & top-down in a blended

manner, including both the ways together to exploit the merits of both

the approaches at the same time with reducing the demerits of both the

approaches. Interface testing is a type of functional testing, but it is

distinctly focused on the interfaces themselves that connect the various

components, ensuring data flows correctly and appropriately across

those interface boundaries with correct formats, validation, and error

handling. This is to ensure that the interfaces correctly implement their

specifications, assume the proper data scenarios, and properly handle

exceptional conditions. When it comes to user interfaces, we need

testing to verify if input validations are working properly, whether error

messages are displayed as expected and if the UI is a correct

representation of system state. Utterly Orchestrated provides a two-

tiered design structure that ensures that everything is orchestrated

internally. Debugging ci-cd pipelines takes forever, this generally

happens due to misconfiguration in the pipeline. For external interfaces

(e.g., APIs), testing checks for request validation, response formatting,

authentication, and error handling. It targets the necessary

communication paths to efficiently expose the integration issues that

can later become a more complex system-level problem.

An end-to-end testing process tests entire business process flows, from

start to finish, verifying that systems function together through all the

different components to make sure the overall process stays intact. This

testing strategy mirrors user journeys that often cross several functions,

224
MATS Centre for Distance and Online Education, MATS University

Notes components, and possibly external systems and ensures that these

interdependent capabilities work together as expected to provide the

desired business value. Unlike unit testing, which mainly checks for

individual functionalities, end-to-end testing verifies how current

system interface executes complete user visits including customer

onboarding, order processing or financial transactions from A to Z. This

view uncovers problems that would be invisible when testing individual

functions in isolation—for example, disconnections in human

workflows, data consistency issues across one step of a process to the

next, or integration gaps between features that work correctly in

isolation, but when combined do not support a business process as it

should. Functional testing just on the basis of data takes care of solving

the problem of system behaviour verification across multiple data

scenarios without the need to create duplicate test cases. This approach

decouples the test procedures from the data used at execution time,

describing test workflows capable of executing with multiple data sets

representing different test scenarios. This allows for test variation and

validation with low duplication of test logic and ensures covering all

cases across multiple tests, since each data set defines the input and

expected output. From simple parameterized tests that run the same

process using different numbers through to full frameworks that drive

entire sets of tests from external data sources such as spreadsheets or

databases. This can be particularly useful for testing a function that

needs to correctly process a wide range of inputs, like calculation

engines, data processing routines, or forms with multiple fields, as it

allows you to verify functionality across a wide range of inputs with

relatively low maintenance overhead for your tests. Boundary value

testing looks at the edge of the ranges of acceptable inputs, where errors

often occur due to off by one errors, the wrong comparison operator or

imprecise validation logic. Boundary-value testing is a thorough

approach, which makes sure the values at the boundaries of valid and

invalid inputs (as well as a value just below/above the boundary) works

as intended. In this context, boundary testing would ensure that when

a field accepts values between 1 and 100, supply values at the limits as

though testing would be with 0, 1, 100 and 101. This focus effectively

detects common programming errors that are likely to be hidden by

testing just normal values within acceptable ranges. It's important for

every first as well as lower and upper bounds. Boundary testing is

225

Notes useful in several functional scenarios such as numeric inputs or date

ranges, the length of strings, sizes of files, and number counts, ensuring

that specific limits are tested for, confirming that the limits are handled

on the range for different features of the app. Equivalence partitioning

(EP) balances boundary testing, partitioning values of the possible

input into groups or "partitions" that you expect the software will

process similarly. The rationale behind that is: if one value in a partition

yields a certain result, the other values in the same partition will yield

the same result, otherwise if one value reveals a defect, the other values

would also reveal that defect. We collect extra test cases without

expanding the number of inputs tested. Rather than testing all the

possible values, testers conduct the test of representative values from

each partition instead. If you consider the example of testing an age

field that accepts values between 18 and 65, then equivalence

partitioning would identify three partitions: invalid. Using

representative value from each partition to test (in this case: 17, 35, 66)

will efficiently confirm the validity of the common age without

exhausting all the possible age.

The decision table testing has a systematic way to test a functionality

having complex logical conditions or combinations of inputs. The

decision table describes all combinations of dependent conditions and

their expected results, which ensures that all the branches in the logical

path are adequately covered by test cases. This technique is especially

helpful for business rules, calculation logic, or anything that is

conditional in nature because several different inputs can impact how

the system behaves. The structure of a decision table consists of

condition rows enumerating the deciding factors, action rows defining

what happens for each if a condition is true and rule columns

enumerating the combinations being tested. By systematically

examining these combinations, testers ensure that the system is

accurately implementing complex decision logic in every conceivable

case — catching defects that a less disciplined approach might sweep

under the rug, missing combinations that don’t account for every

relevant pair (or triple, or quadruple) of conditions. State Transition

Testing is done on systems whose behaviour differs based on their

current states or the events/inputs they receive. The system is modeled

as a finite state machine with states, events triggering transitions

between states, and actions that occur during the transitions. The test

226
MATS Centre for Distance and Online Education, MATS University

Notes cases check that the state transitions correctly occur based on the

events fired and that appropriate actions occur with state transitions.

This can be very useful for testing applications driven by a workflow,

processes that take multiple steps, or systems that have different states

of operation. With exhaustive state transitions, including valid

transitions, and invalid transitions (to ensure the system is fully tested),

testers can confirm that the system effectively manages its state and

behaves as expected as it navigates through complex operations,

addressing the risks of entering an undetermined state. Exploratory test

efforts are in its essence complementary to structured functional testing

approaches. Testers get to explore the application dynamically using

knowledge, intuition and experience to identify potential problem

areas without depending on a written set of steps. Exploratory testers

learn about the application, design tests, and execute them based on

what they discover — all of which is done concurrently instead of

following test cases documented beforehand. It relies on human

creativity and adaptive thought to catch issues that structured testing

isn't likely to pick up, specifically usability challenges, unclear flow

paths, or inconsistent actions that only reveal themselves when an app

is in use rather than being assessed abstractly. Although exploratory

testing is sometimes viewed as lacking structure, effective exploratory

testing uses disciplined approaches, such as session-based testing,

which provide structure and documentation while allowing for

flexibility. This approach not only preserves the value of human

intuition but also holds enough rigor and documentation to provide

substantiative for quality goals.

It focuses on errors that have occurred due to invalid input, exceptional

conditions, and unexpected situations, and examines whether an

adequate error response has been received. This testing deliberately

introduces error conditions to ensure that the system detects issues

accurately, generates informative error messages that guide users in

identifying and rectifying problems, safeguards data integrity or system

stability under error conditions, and recovers smoothly to stable states

following error scenarios. If you are working on a modern product, your

test scenarios must contain the following: invalid data inputs (like

invalid strings as usernames), resource unavailability scenarios (like

database connection failures), timeout, race conditions and user actions

which are not expected like canceling operations midway or submitting

227

Notes forms multiple times. An extensive testing lifecycle that methodically

checks error handling across multiple functions and conditions ensures

that the system becomes more robust and user-friendly even when

things do not work. API functional testing is testing application

programming interfaces for adherence to the specified implementation

and the expected functional behavior. You test request handling,

response formatting, error management, authentication, authorization,

and any other interface behavior that is important when integrating

with other systems or components. As a start, test cases validate that a

system works properly with valid requests, that appropriate errors are

returned with invalid requests, that various data types and quantities are

handled properly, and that the defined open network protocols and

payload formats are maintained. API testing usually uses specialized

tools that allow testers to make requests with different parameters,

inspect responses in detail, and automate verification across thousands

of test scenarios. This targeted test helps make sure APIs as integration

points for different systems deliver the expected service to application

clients and properly validates and processes incoming requests.

Functional testing for the database ensures that your application

interacts with its underlying database correctly, storing, retrieving,

updating, and removing data without jeopardizing data integrity and

consistency. These tests ensure that the operations you perform on your

database yield the expected results, properly enact your business rules

governing data processing, manage transactions as appropriate,

maintaining consistency across operations consisting of multiple steps,

and manage the relationships between the different data entities you

store. Some examples of test cases are creating a new record, updating

a record, deleting a record, querying all records with different

parameters, and concurrent processing by different users. Ensuring the

proper functioning of the application's data layer involves testing its

correct data storage, retrieval and protection against data loss,

corruption, or inconsistency that will cause the application to become

unreliable or unusable.

Cross-browser / cross-platform functional testing ensures that web

applications or multi-platform software works perfectly across

browsers, operating systems, devices, or environments while being

accessed by users. The testing process detects compatibility problems

that can prevent features from working uniformly for everyone–for

228
MATS Centre for Distance and Online Education, MATS University

Notes example rendering differences, functionality variations, or

performance discrepancies between various platforms. Test cases

validate that the same actions to be performed have the same outcome

regardless of where the application runs. The scope generally

corresponds to the environments that the application has designated as

officially supported, by concentrating verification on platforms with a

substantial number of users, and, in some cases, conducting smoke test

on uncommon configurations. This testing confirms that functional

capabilities are available across users, regardless of technology choice,

eliminating scenarios where features work for some users but fail for

others based on their specific environment. Functional testing

Automation – a riddle with ensuing opportunities and challenges that

affects the testing strategy. Many functional tests are amenable to

automation especially if the tests involve frequent verification of stable

functionality that will change infrequently over the course of

development. The most simple automation candidate is regression

testing, as it is about running the same tests multiple times to verify that

the behavior remains the same after a change. Well-designed

automated functional tests can run large test suites in a short time and

repeatable manner, validating hundreds or thousands of test cases

much more quickly and without the time and effort that would have

been required by manual execution. Of course, not all functional testing

automation delivers the same value—tests that run often, verify high-

value functionality, or encompass complex data scenarios generally

deliver greater automation ROI than rarely-executed tests or those

targeting volatile features that require heavy test maintenance. Test

cases should sanity check on all requirements to ensure that each

desired behavior has been sufficiently verified. Tests should cover

positive cases, to ensure correct behavior in the presence of valid

inputs, and negative cases, to ensure proper handling of invalid

conditions. At this stage, test planning ensures that there is

prioritization towards areas that are most risky, as any api defect at

these points would risk the user experience and, as such, business

operations. These approaches optimize testing coverage, minimizing

duplicate verification. The combination of techniques enables

comprehensive functional coverage with a reasonable resource scope,

guiding testing towards the areas that will contribute the most to

quality, within reasonable costs and time to market.

229

Notes Test data management is a key success factor for functionality testing,

as proper verification relies on appropriate data that serves a variety of

scenarios and conditions. There are a few essential requirements for

creating test data: they need to be of enough size to carry out realistic

testing, they also need the right variety to be able to be used in different

test cases, they need to be correlated together to maintain referential

integrity and need to follow the business rules and constraints.

Strategies vary from generating synthetic test data that is optimized for

tests to sampling production data that resembles real usage (with proper

anonymization for any sensitive data). The most powerful approaches

utilize both strategies simultaneously, leveraging production-derived

data for realistic testing of baselines, but supplementing with synthetic

data for edge cases or edge scenarios that may be hard to find in

production. Robust test data management puts you in a position to

conduct functional testing that validates system behavior across the

entire range of usage scenarios someone might encounter in

production. Functional testing is performed at some point throughout

the development lifecycle; while the timing and integration of

functional testing varies from methodology to methodology, the

objective is always to detect defects as early in the process as possible,

when they are also least expensive to remediate. In traditional

sequential approaches, functional testing is “done” in different phases

following development — unit testing while implementing, integration

testing as modules combine, system testing after development, then

acceptance testing before deployment. Agile methods take these

processes and condense them into short cycles, or sprints, during which

functional testing happens within each iteration for newly developed

features. In DevOps practices, continuous testing is an integral part of

deployment pipelines, where automated functional tests run

automatically every time code changes are merged. No matter how

these methodologies are different among themselves, fundamentally

the idea to make sure that a software system meets the requirement does

not change. Defect management practices facilitate functional testing

by enabling structured processes for documenting, tracking, and

resolving issues found during verification. As testers discover

discrepancies between expected and actual behavior, they create defects

that clearly state the steps to reproduce, what was expected, what was

seen, context in terms of the environment, and how severe the defect is.

230
MATS Centre for Distance and Online Education, MATS University

Notes Defect triage analyzes raised issues, verifying their legitimacy and

categorizing their resolution priority level according to their

manifestation and urgency. Developers troubleshoot and address

verified bugs, documenting their resolutions and supplying the

updated code for reassessment. Fixes are then validated by testers to

check that the issue has been adequately resolved and that no new issues

were created in the process. Improving organizational product quality

requires improving individual product quality, but functional defects

are varied and inconsistent — so the structured defect management

process ensures that functional issues are given the attention and

tracking they deserve until resolved, ensuring quality improvement

accountability and providing invaluable metrics that help assess overall

product quality.

Bidirectional traceability between functional requirements and test

cases enables coverage analysis of testing and verification of

requirements. Therefore, test cases should usually reference the

requirements they test, setting out a clear linkage between app

specified functionality and the provision of its testing. Reasons: it helps

in achieving complete test coverage as it verifies that all the

requirements are having test cases that cover them; it aids in impact

analysis of changes in requirements where we can find that the updated

specification has what test case being updated or has new test cases that

needs to be created; for industries that support regulatory compliance,

it helps in proving that the complete requirements were verified by

tests; it assists in the root cause analysis of defects when they are found,

to figure out whether the defects indicate requirements not being

followed by implementation or simply an issue with the different

implementation stages. Your outputs are now domestic verification

frameworks that correlate individual test cases into the guidelines of

your project requirements. While non-functional testing addresses

quality attributes such as performance, security or usability, functional

testing only concerns itself with whether the software does what it is

supposed to do — surfing to its features and capabilities. Functional

testing simply asks “does it work” according to specifications (while

non-functional testing asks “how well” the system performs — how

fast, how secure, how intuitive). Together, these complementary

approaches tackle different facets of software quality that add up to user

satisfaction and business value. Functional correctness is the baseline

231

Notes — a feature needs to work correctly before you even care about its

performance, security or usability. But software that works (or doesn’t),

and that is slow, insecure, or irritating as hell to use because of bad UI

— still doesn’t produce suitable value. Functional and non-functional

testing are, therefore, essential to comprehensive quality assurance to

verify that software solves the right problem and with the right quality

attributes in the target environment. In summary, functional testing

ensures software systems work as intended and that end-user

requirements are fulfilled. Testing eliminates gaps between expected

and actual behavior before they reach users in production

environments by systematically validating all requirements. Different

validation needs across the stages of the development life-cycle are

serviced by different specialized approaches—smoke testing, sanity

testing, regression testing, acceptance testing, integration testing, and

more—thereby providing the right kind of quality assurance when it is

needed. Simple black box test design techniques like boundary value

analysis, equivalence partitioning, decision table testing, and state

transition testing help in developing optimum test suites to maximize

defect detection with a minimum cost for testing. Functional testing

ushers software quality, verifying that software meaningfully performs

what is supposed to be done, confirming delivery of expected

capabilities for users on varied networks, frameworks and application

conditions.

232
MATS Centre for Distance and Online Education, MATS University

Notes Unit 13: Non-Functional Testing

4.2 Non-Functional Testing: Evaluating software performance,

security, usability, and other non-functional aspects (Performance

Testing, Load Testing, Stress Testing, Scalability Testing, and

Security Testing)

Non-functional testing is a vital area of software quality assurance that

goes beyond just what a system does, but how well it performs its

functions under various conditions. Functional testing is to verify that

the features of the software works as defined but non functional testing

verifies that how the operations quality attributes that, whether the

system is delivering an acceptable user experience as well as meeting

some of the business requirements that goes beyond the functionality.

Quality attributes are evenly divided into seven categories that express

each essential feature of a product in the software development life

cycle: performance efficiency, reliability, security, usability,

compatibility, maintainability, and portability, all of which have their

distinct role to play in ensuring user satisfaction and operational

effectiveness as well as business success, even in the case of a

functional product. Non-functional testing systematically validates that

software meets desired speed, security, usability, reliability, and voltage

parameters to meet stakeholders and business goals in a production

environment. Functional and non-functional software quality

characteristics can be understood in practical terms regarding how

users interact with software. All of the necessary features — product

browsing, shopping cart management, checkout processing — could be

correctly implemented in an e-commerce application, but if pages load

too slowly during peak shopping periods, security vulnerabilities

expose customer data, or the interface proves too confusing for

customers to complete purchases easily, then the application still does

not meet user needs. Non-functional testing involves themselves

critically dimensions of quality, specifying whether functionally correct

software provides any value in actual usage contexts. This range of

testing includes performance testing, load testing, stress testing,

security testing, usability testing, compatibility testing, and other

approaches that test quality attributes beyond functional correctness.

Performance Testing: Performance testing evaluates the

responsiveness, throughput, resource utilization, and stability of a

233

Notes software system under a particular workload. Concerned with verifying

that the system provides appropriate speed, scalability, and stability to

meet business needs and user expectations in runtime environments.

While functional testing checks for correct values of outputs,

performance testing quantifies behavior of systems such as response

times, transaction rates, resource consumption, and throughput

capacity. Systematic measurement and analysis under controlled

conditions, performance testing reveals bottlenecks, capacity limits,

degradation patterns, and other performance problems before they

affect users in production. This proactive assessment empowers teams

to rectify performance issues in the development phase, where

remediation is less expensive and less disruptive than post-deployment.

There are a number of specialized subtypes included under the umbrella

of performance testing, each designed to measure a specific aspect of

how a system behaves in different conditions. Testing for response

times ensures that users feel that their interactions are responsive for

the context (if my watch tells me to stop moving, it better respond

quickly). This maximal rate at which the system can handle transactions

or operations with sufficient performance is referred to as throughput

testing, used for capacity baselining to be considered for further

planning. Resource utilization testing focuses on sistema resource

consumption like CPU, memory, disk I/O, and network bandwidth

during operations for potential bottlenecks or areas of inefficiency.

Reliability testing assesses a system's long-term stability and its ability

to remain stable during sustained operations, catching the problems

that only arise -- such as memory resource leaks or resource exhaustion

-- after running the tests for longer than 24 hours. These abilities allow

you to gain a comprehensive picture of system performance

characteristics on multiple axes and in various use cases. Generally,

performance testing methodology is a structured process which

delivers you reliable, meaningful results. Identify performance

requirements and acceptance criteria (define measurable goals for

things like response times or throughput rates according to business

needs and user expectations). Preparation of test environment creates

controlled conditions that adequately mimic production configurations

and facilitate system instrumentation to measure performance.

Workload modeling describes realistic usage patterns, transaction

mixes, and data volumes that simulate expected production use. Test

234
MATS Centre for Distance and Online Education, MATS University

Notes execution: running the defined workloads against the system, while

collecting detailed performance metrics. Analysis compares results

with requirements, finds bottlenecks or issues, and establishes causes

of performance problems. Reporting conveys findings to stakeholders

and draws attention to areas that are meeting expectations and areas

down to improve. This methodology converts performance evaluation

from subjective impressions to objective, data-driven assessment

against key measurables.

Load Testing: Load testing is about testing the behavior of an

application under anticipated production load, it is rigorous enough to

ensure performance remains acceptable as user concurrency and

transaction throughput starts to reach expected normal peak conditions.

This type of testing slowly ramps up the load while monitoring related

performance metrics, determining the relationship between response

times, throughput, and resource utilization as demand increases. In

other words, the key is to ensure that the system performs as expected

under regular production environments, giving the assurance that it will

provide enough user experience strings once deployed. Load testing

simulates steady-state operation at the percentage of the peak load you

expect during sustained usagepatterns, allowing the end-user to stress

the application over time, as opposed to short bursts. This testing

systematically evaluates performance across a range of load levels to

determine when performance characteristics become degraded and to

confirm that the system will meet requirements in production

conditions. Data for all the above is available, and also needs to be

filtered and prepared for effective load testing These models define the

set of different transactions or operations users will execute, the

relative frequency of each operation type, the volumes of the data

elements involved, and the anticipated levels of concurrency over time.

An e-commerce application workload may detail browsing products

(60% of transactions), searching (20%), adding things to the cart (15%),

and completing purchases (5%); data reveals peak concurrency at

2,000 concurrent users during promotional events. Such models are

created by examining usage data from existing systems, conducting

market research for new applications, or through business projections

based on anticipated growth. The closer these models match the actual

production usage, the more insightful the load testing results are, in

terms of real-world performance.

235

Notes These are normal functionalities that any load testing tools should have

as it is responsible for generating virtual users with realistic behaviors

along with accurate metrics under these loads. Such tools often include

virtual user generation that generates hundreds or thousands of virtual

users that interact with the app, load distribution to coordinate virtual

users across many load generation servers, transaction recording and

playback to record and play back user interaction, parameterization to

vary the input data across test runs, and monitoring sections to capture

performance metrics during test runs. Common tools are Apache

JMeter, LoadRunner, Gatling, k6, and cloud-based solutions such as

BlazeMeter or Flood. io. These tools allow teams to generate and

execute complex load scenarios that no amount of manual effort can

make possible, giving reliable, repeatable performance evaluation in a

controlled environment. Load testing involves collecting various

metrics to gain insights into how the system behaves under different

levels of demand. Response time measurements are used to monitor

how quickly the system is processing different types of transactions—

collecting metrics such as averages, minimums and maximums, and

percentile distributions to gain insight into the user experience under

varying conditions. Throughput metrics measure how many

transactions the system can handle per time unit by varying the load,

identifying a system throughput ceiling and demonstrating

bottlenecks. You also need resource utilization monitoring, which

tracks CPU, memory, disk I/O, network bandwidth, and database

connections across application servers, databases and other

infrastructure components. Error rates measure how often transactions

(APM Transactions) fail under load, giving indications on stability

problems or where capacity is getting limited. This comprehensive set

of measurements allows you to analyze performance patterns, identify

bottlenecks, and perform capacity planning based on hard numbers

instead of guesswork.

Stress Testing: Stress testing goes past the anticipated production

scenario and examines how the system behaves under big load (or

stress). The aim of this is to identify breaking points, failure methods,

and to verify the recovery capabilities. Where load testing aims to

confirm that a system performs as expected under nominal conditions,

stress testing intentionally exercise a system beyond its design

capacity to determine how it behaves in overload scenarios. This

236
MATS Centre for Distance and Online Education, MATS University

Notes includes applying more stress than anticipated peak loads, applying

additional resource limits (limited memory or database connections),

applying transaction rates that are higher than you expect the normal

peak to be, or mixing stressors together at once. The main purposes

are to discover the maximum capacity limits before failure, to

understand the behavior of the system under overload conditions, to

verify that it degrades gracefully rather than catastrophically under

extreme conditions and to assess recovery capabilities after stress has

been reduced. This knowledge enables organizations better

preparedness for unpredictable demand surges or resource constraints

in production environments. Response to stress conditions reveals

critical quality attributes of the system that would not be visible in

normal operation. Good systems implement graceful degradation that

maintains minimum functionality but may be slower or have disabled

features when resources are limited. Under overload, they queue or

deny less critical operations in preference of the most important

transactions. Instead of generic failure notifications, they offer

significant error messages to avoid confusion about temporary

restrictions. When the stress conditions return to normal, they recover

on their own without any human intervention and become fully

functional again. Stress testing, for example, assesses these

capabilities and identifies systems that collapse catastrophically under

pressure and those robust enough to keep operational continuity with

even the most extreme situations. These insights are invaluable when

things go sideways in production environments, helping to predict in

advance how systems will react and what operational remediation will

need to take place. The different forms of stress testing focus on

different areas of system resilience under extreme conditions. Volume

stress testing implements extremely large data sets or transaction

volumes for maximum identification of processing limitations or

performance degradation with large data handling. Spike testing creates

sudden, sudden increases in load to see how quickly the system can

scale resources and adapt to changes in demand. In component stress

testing, certain resources like memory, CPU, disk space, or database

connections are limited so the behavior of the system under such

constraints can be tested. Stress Test Running under Stress is one HW

endurance(commonly used for nondestructive testing) can be done

under continuous load for an extended period to check for memory

237

Notes leaks or ensure that there is no resource exhaustion occurring over the

testlapping more than 30 seconds in practice. Chaos engineering is the

art of intentionally injecting failures or disruptions into production-like

environments to test and ensure that resilience and recovery processes

are in place. These diverse methodologies form an integrated view of

broader system performance under distinct axes of stress, which in turn

not only inform designs but also operational readiness.

Scalability Testing: As the name suggests, scalability testing checks

how well a system’s performance scales as resource devices are added

or the workload increases and if the application can handle business

growth or varying demand by adding resources. This testing is done in

a systematic manner by measuring performance metrics at scale such

as increasing the user load to see how well the system copes with a

growing user population, adding server instances to check for

horizontal scaling, provisioning larger server resources to see the

benefits of vertical scaling, or increasing the volume of data to validate

the scalability of your database. The main objective is to find scaling

behavior—linear scaling that means that performance scales linearly

with available resources, diminishing returns that comes into play once

we are past a certain threshold where performance benefits from

additional resources are reduced, or scaling limits where the limit has

been reached when more resources do not lead to further improvements

in performance. With this knowledge, capacity planning, optimizing

architectures, and making infrastructure decisions can be performed

that maximize company growth in a financially responsible manner.

Each of the different scaling dimensions will need specialized testing

methods to test specific types of system scaling. Horizontal scaling tests

confirm that you can get better performance by just adding more

servers or instances of application components, and evaluating load

balancing efficiency, stateful management across instances, and

coordination communication costs between components. Vertical

scaling tests advance their servers (CPU, memory, disk), to determine

which benefit from moving to bigger resources. User load scaling tests

work based on increasing the count of virtual users, but keeping the

workload per user static, so that they can be tuned to understand how

user experience behaves as population scales. Data volume scaling

tests scale a database or a transaction history, judging how

performance changes as data stores become larger. Geographic scaling

238
MATS Centre for Distance and Online Education, MATS University

Notes tests spread load over multiple regions, and are designed to measure

the effects on latency and the overhead of synchronisation. These

multidimensional assessments aid in gaining holistic insights into the

scaling characteristics under diverse expansion paths, enabling optimal

growth strategies that align with the specific application architecture

and business requirements.

Scalability Metrics of Systems: Scalability metrics quantify how

efficiently systems scale with increasing demand. Scaling efficiency is

the ratio of theoretical performance gain to actual performance gain

when adding resources; a scaling efficiency of 100% would mean that

adding twice the resources provides twice the capacity, corresponding

to perfect linear scaling. Cost per transaction estimates how much the

infrastructure spending for each operation costs, and tracks how it

evolves as the system grows. Maximum effective capacity is known as

the point at which adding resources does not proportionally increase

performance―a sign of architectural limitations. Scaling points show

how resources are utilized at various scaling points. However,

translating abstract concepts such as scalability to a measurable quality

characteristic remains a challenge, and quantitative measures such as

the Palmer-Low model help the practitioner to ground decisions on the

architecture and scaling strategies on real system behavior rather than

theorical assumptions. Cloud environments changed scalability testing

by making resources available as needed, allowing for more thorough

testing of capacity without the cost of permanent infrastructure. Test

teams can deploy large server farms on demand to test massive scale

use cases, fine-tune different instance types or configurations to

optimize resource allocation, simulate geo-distribution across multiple

regions, or simulate auto-scaling groups that automatically adjust

capacity with load conditions. Such capabilities allow organizations to

validate scalability at a fraction of the cost it would take to do so with

owned infrastructure, providing valuable insight into behavior at scale,

without being restricted to current scale. Secondly, testing on the cloud

also provides for testing of specific cloud scaling features such as auto-

scaling policies, load balancer configurations and containerized

deployment models that are integral to today’s scalable architectures.

Security Testing: This type of testing conducts a systematic evaluation

of software applications to determine if there are vulnerabilities or

weaknesses in the application which might be expected through an

239

Notes attack intending to compromise the confidentiality, integrity, or

availability of the application. In contrast to functional testing, which

verifies that something behaves as intended, security testing takes on

an adversarial perspective, seeking to bypass protections, misuse

function, or exploit vulnerabilities to gain access or perform an action

that is not allowed. To ensure that an application complies with a

secure software development lifecycle, extensive testing through

vulnerability scanning, penetration testing, security code review, and

compliance testing is carried out. Security testing helps to ensure that

security issues can be addressed before deployment, when it is less

expensive and less impactful to implement fixes than when they have

manifested into breaches once in production. These measures play a

crucial role in safeguarding sensitive data, preserving user trust,

ensuring compliance with regulations, and avoiding the high costs and

lasting impact of security events.

Authentication and authorization testing: Authentication and

authorization testing validates that systems correctly control access to

protected resources and functionality. Authentication testing involves

trying to bypass login mechanisms using methods such as brute force

attacks, credential stuffing, session hijacking, or manipulating the

authentication workflow. It validates that password policies restrict

sufficient complexity, account lockout mechanisms limit subsequent

guessing attempts, multi-factor authentication functions properly and

credential transmission is done securely. Authorization testing explores

whether users can only access the resources they should by trying

horizontal privilege escalation (reading data owned by other users with

the same permission level) and vertical privilege escalation (reading

data above their permission level). It ensures authorization checks are

performed uniformly for all entry points, such as direct URL access,

API calls, or modified clients. These tests ensure that identity

verification and access control which are deployed as a fundamental

security control in most of the applications works as intended against

several forms of the attack vectors.

Injection testing: Injection testing discovers vulnerabilities where

untrusted data might be perceived as commands or code (the data input

is not considered as normal input). SQL injection testing is about

injecting data to modify database queries and expose sensitive data or

manipulate database content. Command Injection Testing: This type of

240
MATS Centre for Distance and Online Education, MATS University

Notes command injection testing attempts to run OS commands via

application interfaces that pass user input to system functions. CSS

testing works to insert malicious JavaScript that will execute in the

browsers of other users when viewing compromised content. As an

example of this type of testing, XML or JSON injection testing is

performed by manipulating for exploiting parser vulnerabilities or to

inject unauthorized content into structured data formats. Such tests

confirm that applications appropriately validate, sanitize, and encode

user inputs before embedding them in commands, queries, and rendered

content. Injection testing helps to secure our application against the

most common attack patterns and types of vulnerabilities that reappear

in OWASP Top Ten security risks decade after decade.

Data protection testing: Data protection testing ensures that sensitive

data is handled securely in processing, storage, and transmission.

Encryption testing ensures that sensitive information is securely

encrypted during transmission (using protocols such as TLS) and at

rest (in databases or files) with appropriate key management practices.

Data leakage testing checks for the accidental exposure of sensitive

information in application responses, error messages, logs, and cache

files. 2- Access Control Testing: Validate that sensitive information is

appropriately separated and protected using the right authorization

mechanisms. This guarantees that data corruption and manipulation

does not occur, and business rules and integrity constraints are applied

properly. Backup and recovery testing verifies loss or corruption free

data restoration after incidents. Such thorough reviews ascertain that

the applications deploy the technical measures required to safeguard

sensitive data during its entire lifecycle, preserving its confidentiality,

integrity, and availability even in challenging situations.

Security configuration testing: Security configuration testing is the

process of testing system settings, component configurations, and

infrastructure elements for security vulnerabilities. This test reviews the

configuration of web servers for appropriate security headers,

unnecessary information disclosure, or weak settings. It looks into

framework configurations to verify that security features are turned on

and correctly configured. It checks that default credentials have been

updated, that debugging options are disabled in production, and that

administrative UIs are properly protected. It looks for unnecessary open

ports, running service permissions that are too high, or vulnerable

241

Notes versions of protocols that could serve as attack vectors. Such

assessments cover misconfiguration issues that threaten to make

otherwise secured applications insecure, based on the environment in

which they are deployed. Configuration testing responds to the fact that

security is only as good as its lowest implementation, covering risks

across the entire technology stack rather than superficial application

code. The application is tested for compliance with applicable security

standards, regulations, and industry requirements. Depending on the

industry and the type of data, some of those standards may include PCI

DSS for payment card processing, HIPAA for healthcare information,

GDPR for personal data of European citizens, SOX for financial

reporting systems, ISO 27001 for general information security

management, etc. Compliance testing validates that the required

controls have been implemented, security practices and governance

structures are adequately documented, and monitoring capability

exists, as needed, per applicable regulations. Compliance testing,

however, is often much more than simply ensuring the organisation

achieves a specific legal or contractually-required function — both

audits and testing incorporate industry best practices and control

frameworks that have emerged from lessons learned across the board.

This helps increase the likelihood of aligning with established standards

and benefiting from security knowledge developed throughout the

organization and not just based on its own security expertise.

Penetration testing: Penetration testing is an advanced security

assessment method that integrates several of the previously mentioned

testing types and incorporates those into an extensive, scenario-driven

evaluation that mimics real-world attack vectors. Pen testing is

methodical—unlike more isolated security tests which may not capture

the complete picture of how a system truly holds up against external

threat actors, a pen test follows a methodology based on

reconnaissance, vulnerability scanning, exploitation, privilege

escalation, lateral movement, and persistence. This holistic view shows

how individual weaknesses can integrate into complete attack paths

that threaten the security of the system. Penetration testing validates

your security posture against current threat methodologies by

simulating sophisticated attacks in controlled conditions and

demonstrates complex vulnerability paths that may be missed by more

targeted testing approaches. Demonstrating the importance of

242
MATS Centre for Distance and Online Education, MATS University

Notes automated security testing with security tools within a comprehensive

security testing program. Automated vulnerability scanners monitor

applications and infrastructure for known security issues, missing

patches or misconfigurations. Static application security testing

(SAST) tools search for potential security defects in source code

without execution, such as injection attacks and improper use of

cryptography. Dynamic application security testing (DAST) tools

make calls to running applications in order to find runtime

vulnerabilities like XSS, CSRF, or authentication weakness. Interactive

application security testing (IAST) is the combination of aspects from

both approaches, monitoring application execution during testing,

yielding more relevant vulnerability detection in context. These are

specialized tools that focus on specific security domains, such as API

security, container security, or cloud configuration security. These

tools provide tremendous value to the testing process but supplement

rather than replace the need for security expertise as only a human can

adequately assess risk context, false positives and more complex

combinations of vulnerabilities.

Usability Testing: Usability testing focuses on how well users can

utilize software to achieve their goals, emphasizing ease of learning,

efficiency of use, memorability, error prevention/recovery, and

subjective satisfaction over technical functionality. This type of

application testing puts real people in real-world situations with the

application, watching how they use it to find points of confusion or

inefficiencies, errors, or frustration that developers or conventional

testers may not be aware of. While most other types of testing focus on

how well the software meets technical specifications, usability testing

sees to the quality of the user experience itself —whether the interface

is intuitive, the workflow responds to user expectations, the

terminology is meaningful to the target audience, and the interaction is

generally pleasant rather than frustrating. Performing usability testing

incorporates user feedback into development prior to release, resulting

in software that not only functions correctly but also provides a positive

experience, improving user adoption and productivity while increasing

user satisfaction. Usability test methodologies vary depending on the

goals of the test, resources available, and where in the development

cycle you testing. In moderated testing sessions, facilitators lead users

through scenarios, asking follow-up questions for clarity and further

243

Notes insights, while observing interactions. Unmoderated remote testing

simply gives users some tasks to complete on their own, capturing

screen recordings and user commentary without any direct observation.

A/B testing compares two designs by measuring performance metrics

across two different groups of users who use either version. Guerrilla

testing sessions are quick informal sessions in the wild with

participants to rapidly collect feedback on particular design elements.

Eye-tracking research involves the use of specialized equipment to

track precisely where users look when interacting with content,

providing insight into patterns of attention and visibility issues. These

approaches offer a range of balances between depth, breadth and

resource requirements, allowing teams to choose appropriate methods

given their specific usability questions and constraints. You learn that

task analysis is the key to good usability testing and that task analysis

breaks user goals down into specific things that can be measured and

observed. User-testing scenarios are realistic situations that a user

might experience, using personas to complete regular tasks like

creating account, finding specific information, completing transactions,

or configuring system options. When users go through these tasks, the

testers monitor and gather different metrics: task completion rates

indicate whether users can successfully achieve goals; time-on-task

quantifies how efficiently users achieve their goals; error rates identify

which elements of your interface cause confusion; assistance

requirements tell you exactly where users require help to achieve tasks;

and navigation paths tell you how your user moves through your

application against your expected flows. These measures come together

with participants’ subjective feedback about their experience to form a

holistic view of usability strengths and weaknesses that leads to better

interfaces.

One of the most effective usability testing methods is think-aloud

protocols, in which subjects state their thoughts, expectations, and

reactions while using a given piece of software. This technique has been

useful to gain insights in to the users mental model—how they see the

system working and how it is supposed to respond to their actions.

User verbalizations show confusion (I don’t know what this button

does), expectations (I’m looking for a search box at the top),

frustrations (Why can’t I just click here instead?) —and satisfaction

(“That was easier than I expected). Hearing these spoken thoughts

244
MATS Centre for Distance and Online Education, MATS University

Notes allows observers to not only know what users do, but to know why they

do what they do — helping to identify whether problems were due to

the interface or to user error, where there were mismatches in

terminology between the application and the user’s perspective, and

what assumptions a designer made which users did not share. Beyond

what observation alone can reveal, this rich qualitative data

complements quantitative metrics to yield a holistic view of the user

experience around a healthcare interface.

Accessibility testing: Accessibility testing refers to a type of usability

evaluation that aims at determining how well people with disabilities

can use the application. This testing ensures that your website is

compatible with assistive technologies like screen readers for those

who are visually impaired, voice recognition for those who are motor

limited or alternate input devices for those with other disabilities. It

checks things like if the interface adheres to certain prescribed

accessibility standards (such as WCAG — Web Content Accessibility

Guidelines) as in whether there is keyboard navigation, sufficient color

contrast, appropriate text alternatives to images, and proper semantic

markup. Accessibility testing often requires real users with legitimate

disabilities to offer true perspective on real-world usability for your

population. This kind of testing can help ensure that software does its

job for all potential users, regardless of their physical or cognitive

limitations, improving a software product’s accessibility to reach a

wider user base, and deliver on social responsibility, in addition to

complying with legal requirements that often make accessibility a

must-have.

Compatibility Testing: Compatibility testing ensures that software

functions properly in different environments in which users access the

software, such as different operating systems, browsers, devices, or

network configurations. This is done to highlight mismatches or defects

that may occur if the application runs in an environment with

alternative technical parameters, providing that all users are able to

utilize the same functionality regardless of their technical options. In

the case of web applications it studies rendering, functionality and

performance in various browsers (Chrome, Firefox, Safari, Edge) in

various versions. As part of your device compatibility testing you need

to ensure that your app is working properly on different hardware –

desktops, laptops, tablets, and smartphones; large, medium and small

245

Notes form factors. OS compatibility ensures your code works correctly on

cross-platform systems (Windows, macOS, Linux, iOS, or Android).

The network compatibility assesses performance across various

connection types and speeds. Teams can confirm that user experiences

are consistent regardless of how customers choose to use the app by

testing systematically across this environmental matrix.

Forward and backward compatibility testing: Forward and

backward compatibility testing takes into account the time dimension

of compatibility across software versions. Forward compatibility

verification ensures that software sourced from previous application

versions can work correctly with the data, files, or protocols of future

versions without crashing when end-users share content across version

boundaries. Backward compatibility testing is to verify that newer

application versions correctly handle data, files, and functionality from

earlier versions, allowing users to still access data generated in older

versions and allowing for preservation of user workflows from one

release build to the next. Such tests become most important with

applications that have long lifecycles, large installed bases or file

formats that may be used interchangeably between different versions of

the product. This avoids upgrade friction, helps prevent data loss

during the upgrade, and does not force all users to upgrade to new

versions at once, which allows for more flexible deployment strategies

while maintaining ecosystem coherence.

Compatibility Testing: It measures how well applications work with

other systems, services, or components that the applications interact

with in plain usage. 4This test ensures that everything looks good when

you connect your app to payment processors, identity providers,

mapping services, social media platforms, analytics tools, or other such

external dependencies. It also ensures that data exchanges occur in

expected formats, that authentication flows are tightly controlled, that

error conditions are appropriately handled, and that integrations

continue to function when third-party services update their interfaces.

This testing may include interaction with production and sandbox

environments for integrated services as well as testing on failure

conditions to verify graceful degradation in response to failure of

external systems. This prevents shortcomings in the applications they

are responsible for due to compliance with other dependent software

systems in the technology space.

246
MATS Centre for Distance and Online Education, MATS University

Notes Reliability Testing: During Reliability testing, the consistency of the

software performing correctly over time and under different conditions

is checked to ensure that it is delivering reliable operation throughout

its expected lifecycle. This testing looks at failure rates, recovery

capabilities, and stability during prolonged usage periods or repeated

operations. Recovery testing confirms that the system is capable of

handling failures such as crashing, abasing, network failure, or

database failure, and then recovering successfully. A failover test

verifies to see that redundant systems activate properly when primary

systems fail. Validation testing ensures that the system behaves in

accordance with its specifications and desired quality attributes, such

as performance and error-handling capabilities. These assessments

serve to quantify certain reliability metrics like mean time between

failures (MTBF) or availability percentages that can be articulated in

service level agreements. If teams are able to methodically assess

reliability attributes they can catch stability issues before they reach

users in production settings.

Endurance testing: Endurance testing, also known as soak testing,

assesses system stability over prolonged operational periods, revealing

issues that may not manifest during shorter testing cycles. This testing

subjects the application to prolonged operation for long time—days or

weeks— while servicing its normal flows and monitoring its

performance, resource utilization, or functionality degradation. This

did help to identify resource leaks that took a long time to produce,

gradual performance degradation, data corruption in long running

processes, or even long running processes that pile on a cumulative

error that did not show itself immediately but fairly quickly over time.

Exposure testing (or endurance testing) offers important affirmation for

systems meant to run continuously in production that they can remain

in a stable state for the duration they are requested to run, without an

explicit restart or progressive degradation during expected uptime

intervals. This testing is particularly useful for mission-critical systems

where unexpected downtime would have a major operational or

financial impact.

Recoverability testing: Recoverability testing is dedicated to assessing

systems' responses during failures, data corruption, and other

exceptional conditions. Backup and restore testing ensures that data

backup and recovery systems function as intended, allowing systems to

247

Notes be restored from these backups without any loss or corruption of data.

Transaction recovery testing validates that database transactions

preserve data integrity if interrupted by system failures, guaranteeing

that all operations are either completed or rolled back entirely,

preventing partial updates that would compromise data relationships.

State recovery testing checks if applications recover user sessions,

ongoing operations, or system state correctly post disruptions. Disaster

recovery testing confirms processes to restore an entire system after

significant failures, including the failover to backup data centers or

cloud regions. These tests help confirm that when failures are

inevitable, systems are able to resume normal operations quickly and

without data loss — all while ensuring business continuity during

adverse events.

Documentation Testing: Documentation testing assesses if user

manuals, online help, tutorials, and other support materials are true to

the system and help the users achieve their purposes. This testing

confirms that documented procedures will work as described, that

screenshots in the documentation match what is presented in a live

build, that descriptions of a feature are aligned with what has been

implemented, and that error messages appear according to description.

It evaluates completeness by verifying that all important features have

extractive documentation, that common user questions are answered,

and that any context required to understand complex operations is there.

It judges on usability factors like searchability, structure, clarity of

writing, and quality of examples or illustrations. Documentation testing

acknowledges that well-written software needs documentation to

persuasively guide users toward the understanding of capabilities and

workflows, especially for complex applications (diverse functionality,

specialized domain concepts).

Installation Testing: Installation testing ensures software can be

correctly installed, configured, and uninstalled on all supported

environments. This testing checks the installation under different

various new installation scenarios, upgrades from prior versions, and

installations with alternate configuration options or components. It

checks that installation procedures are successful, files and

dependencies are installed correctly, permissions are correctly set, and

services start correctly after the installation process. Upgrade testing is

a specialized form of functional testing that verifies the preservation of

248
MATS Centre for Distance and Online Education, MATS University

Notes data, settings, and customization during updates: Uninstall test verify

that uninstall procedures fully cleanup application files, registry

entries and configurations without leaving any residue or corrupting

common elements. The tests help ensure that users can deploy the

software successfully in their environments — the very first step in

their run of the application, which in turn has an outsized effect on

perceptions of quality.

Localization Testing: It is a kind of testing that configured for different

languages, region or culture and how the software is working after its

adaptation. This testing ensures that translated text displays as intended

(it isn’t truncated, overlapping or encoding incorrectly), dates, times,

numbers and currencies are localised, cultural references and examples

are appropriate for the target markets and the functionality behaves

correctly with localised content. It focuses not only on the correctness

of translation but also cultural relevance, making sure that imagery,

colors, symbols and examples is relevant and has no negative

connotation to target audiences. Technical aspects include checking

support for required character sets, whether bi-directional text

rendering works (important for languages like Arabic or Hebrew),

correct sorting of localized content and locale-specific data (like postal

codes or phone numbers). Designed for testing through to visual and

experience similarities that provide international users equal

experiences within their language and cultural context, leading to a

global market availability but with opportunity for region-appropriate

context.

Volume Testing: Sometimes systems need to accommodate huge data

volumes; volume testing assesses how the system behaves when the

volume of data processed is very high. The goal is to validate that

performance, functionality, and stability are acceptable for the highest

data volumes. This validation check tests everything for a database in

terms of having to process large record sets, for file systems handling

many files or large files, for handling memory with large data

structures, or processing of transactions/calculations at scale. It

highlights possible problems like high memory footprint, slow response

time for large data sets, timeout failures for long-running processes, or

storage constraints that would impact production operation. Volume

testing, on the other hand, is orthogonal to load testing; while load

testing is limited to concurrent users or transactions, volume testing

249

Notes puts the spotlight on the data volume and examines how the data

volume impacts system behaviour. We recommend these tests in

particular for long lived projects that will be expected to ingest a lot of

data over their lifetime, which ensures that your code stays performant

and stable as your data grows from a handful of records with fresh

deployment to years old and production ready.

Recovery Testing: Recovery testing caters to the ability of systems to

recover from failures or crashes, thus enabling them to resume normal

operation while facing minimal disruptions or data loss. This form of

testing deliberately causes failures like terminating processes,

rebooting servers, disconnecting networks or shutting down databases

and then observes how the application recognizes these failures,

executes recovery processes and gets back into an operational-ready

state. These include verifying transaction integrity in failures,

persistence of sessions through interruptions, error notification in case

of issues, automatic reconnection support, and data consistency post

recovery. These tests ensure that applications implement appropriate

resilience mechanisms to handle the inevitable failures that occur in

production environments, maintaining business continuity and data

integrity despite adverse events. Validating recovery capabilities in

controlled environments provides organizations with the assurance

that their environments will survive disruptions without catastrophic

outcomes when faced with a similar situation in production.

Configuration Testing: The configuration testing is all about the

system behavior with different configuration settings, in this testing

users verify that the application acts appropriately with different

combinations of configuration. And also ensure that all configuration-

dependent features are implemented correctly. This testing check if it

work with other database systems, web servers, or middleware

components that might be selected during deployment. It tests

functionality with different feature flags or optional modules on or off.

It verifies behavior on different hardware configurations, virtualization

platforms, or cloud providers the application would be running on. It

assesses administration interfaces that manage configurations,

verifying they correctly enforce and site persist configuration changes.

These tests guarantee that applications operate correctly within the full

spectrum of configuration choices they offer, allowing for deployment

250
MATS Centre for Distance and Online Education, MATS University

Notes flexibility while ensuring all functionality behaves similarly across the

entire implementation configuration space.

Internationalization Testing: Internationalization testing checks that

your software architecture follows proper processes to adapt for

different languages and regions without requiring code changes.

Internationalization testing is different than localization testing, which

examines specific adaptations for specific markets. The

internationalization testing ensures that your application is properly

handling international character sets, that you are separating

translatable strings from code to prepare for localization, that you are

formatting dates, numbers, and currencies in a locale-aware manner,

and whether text direction is handled correctly in right-to-left

languages. It analyzes if the application architecture supports

expanding text (translations typically require more screen real-estate

than the original text) and region-specific features or even content when

needed. These tests are designed to confirm that the basic design of the

application allows environment localization for multiple countries with

a reasonable programming effort, and does so without leaving behind

country-specific defects in the course of the localization.

Non-Functional testing: Non-Functional testing is also known as

performance testing or scalability testing. Risk-based approaches

prioritize what and how much to test based on what is most likely to

impact the business, thus putting more intensive testing on those things

that are most responsible for application success. For example, if you

work with a financial trading platform, a testing strategy may focus

heavily on performance and security testing because they have a direct

impact on core functionality, but if you were responsible for an internal

knowledge management system, your strategy may prioritize usability

and compatibility testing since those would drive employee adoption.

Context driven strategies adjust the testing focus according to

application characteristics, usage patterns, and stakeholder priorities

instead of applying a generic test suite uniformly across various

projects. Providing sensible coverage for non functional areas with

limited testing resources, on achieving the right balance of business

value with each focus area. When it comes to non-functional testing,

the timing considerations affect the effectiveness of these tests

significantly throughout the development lifecycle. Evaluating the

effects of architecture and design in the early stages can identify

251

Notes potential non-functional issues beforehand, and fixing them at that

point requires much less rework compared to changes in already-

developed code. Performance profiling during development catches

these issues while the owners of competing components can address

the problems in a less costly manner (at the time). Integrated throughout

the development process, security testing finds vulnerabilities when

remediation can be accomplished without impacting other

functionality or requiring expensive regression testing. Non-functional

testing on a full scale with production-like volumes of data and user

load happens mostly later in development, when the application is

mature enough for realistic assessment. In this progressive orientation,

non-functional requirements are part of development; they are not just

late verification items used to catch high-level non-functional issues

that may require intensive rework if discovered late.

As many a quality attribute bears a high correlation to infrastructure

properties and configuration, the testing environment has a

considerable impact on non-functional testing validity. For

performance, scalability, and reliability testing, production-like test

environments are the most accurate reflections of the results that will

be delivered in actual deployment conditions. They enable easy setup

of suitable configurations and scale resources per testing required and

the associated costs with integrating such a permanent infrastructure

are avoided. Security test environments are special environments that

include intentional vulnerabilities or monitoring tools that would not be

suitable in production systems.

Usability testing: Usability testing often takes place in on-site

environments, during which participants interact with simulated

contexts of product use, like business applications in an office setting,

or consumer software in a home setting. Test and production

environments must be particularly well aligned for non-functional tests

where aspects like performance or availability are influenced not only

by the application itself but its entire operational environment.

Choosing appropriate tools that match the various quality dimensions

of non-functional testing is vital for successful non-functional testing.

Controlled loads are created by performance testing tools like JMeter,

LoadRunner, or Gatling to measure response times and resource usage.

Security testing uses tools like OWASP ZAP, Burp Suite, or static code

analyzers to detect potential vulnerabilities. During usability testing

252
MATS Centre for Distance and Online Education, MATS University

Notes interactions can be recorded as screen activity, eye movements, or

through dedicated user experience platforms. Browser farms, device

labs, or virtualization tools enable efficient testing for compatibility

testing. Once available, such special purpose tools extend what can be

achieved through manual approaches, enabling measurement by

automated means, systematic coverage and analytics that support

objective assessment of non-functional properties. Depending on use

cases, strategic tool selection based on specifics of the testing

objectives allows organizations to achieve complete non-functional

testing, while still being within practical resource constraints. Metrics

and acceptance criteria offer objective measures for comparing non-

functional test outputs to requirements. Performance requirements

may define upper bounds on response times for important transactions,

minimum throughput rates under certain loads, or limits on resource

usage during operation. Security is usually a requirement: compliance

with standards, no high-severity vulnerabilities, or no weaknesses

against specific attack vectors. Usability metrics can include task

completion rates, time-on-task ratios, or minimum levels of user-testing

satisfaction. These are quantitative attributes that make a quality

concept concrete, measurable, and directly evaluated, hence making it

distinct whether the non-functional requirements have been fulfilled or

not. The detail within these criteria has a major impact on testing

efficacy—requirements such as “the system should be user friendly”

provide poor justification for either testing or evaluation, but metrics

such as “users should be able to complete the registration process in

less than 2 minutes with at most 1 error” provide targets for testing and

acceptance criteria.

The ideal approach is to integrate functional and non-functional testing

to achieve the highest effectiveness of overall testing, since these

dimensions of quality strongly interact with each other in real-life

usage. If you want to make a real performance improvement,

performance testing must confirm behavior with realistic functional

scenarios that mirror how the system will be used in practice. Security

testing should evaluate protection mechanisms as part of entire

functional workflows rather than as isolated components. Usability

testing is focused on how well interfaces support functional tasks,

rather than on isolated design elements. These integrations reflect the

acknowledgment that users experience software holistically — a

253

Notes functionally correct feature has little value if it operates slowly and

introduces security vulnerabilities and user confusion with bad

interface design. Therefore, comprehensive testing strategies align

functionality and non-functionality testing efforts to verify what the

software does and how well it does so, ensuring that all dimensions of

quality are appropriately accounts on the area of development.

254
MATS Centre for Distance and Online Education, MATS University

Notes Unit 14: Regression Testing

4.3 Regression Testing

Regression testing is regarded as such a quality assurance activity that

helps to validate change being resulted to software (new, modified,

defect fixes or environment) making sure they do not affect previously

working functionality. The work of “regression” suggests the

susceptibility of functionality to regress to a dead state whenever you

modify it, and it cuts to the heart of the software experience dilemma:

how do you ensure this advance in one area is not a breach somewhere

else? Such testing approach involves re-executing test cases for

previously tested features systematically to ensure that they are still

functioning properly after the modification. Regression testing plays an

essential role in protecting an application when code changes can

trigger a ripple effect and ensures that the quality of the product is

preserved throughout the development and enhancement cycles.

Because any software system consists of interdependent components

that share dependencies, access shared resources, use common

libraries, or communicate over interfaces, any changes typically require

performing regression testing. These connections establish multiple

routes by which a modification in one area could unintentionally affect

seemingly unrelated behavior in other parts of the system. A simple

change — say, a data validation routine, a shared utility function, a

database schema, or a third-party library — can ripple outside of its

small context and affect parts of the code that don’t appear to be related

to each other. From a development standpoint, that seems to be a single-

point change, however from functionality standpoint, it impacts

multiple features creating a risk for unintended defects in previously

stable space. Regression testing exercises these potential impacts in a

systematic way, catching unintended consequences before they have a

chance to reach users. The business impact of regression testing

becomes extremely clear once you take into account the cost and

ramifications of regression defects getting to production environments.

Users are thrown off balance, losing their trust in the reliability of the

software, when formerly functional operations stop working after an

update. Customer service find themselves overwhelmed with featuring

complaints that worked right before. Development teams must take

away resources that were allocated to future enhancements to fix

255

Notes regression issues on emergency basis. Regression defects can lead to

financial loss, damage to the organization's reputation, or legal

liabilities, especially when they impact critical business functions or

data integrity. In doing so, effective regression testing prevents the

negative consequences of those pitfalls, maintaining user satisfaction

and business continuity, while also allowing for confident, continuous

evolution of software for years to come.

The scope of regression testing will greatly depend on project context,

risk assessment, and resource restrictions. Full regression testing is the

most complete form of regression testing, re-running all existing test

each existing test case, regardless of what changes were made. This

gives you the most confidence at the cost of a lot of time and effort,

especially if you have a large application with a significant test suite.

Subsequent to the initial verification, code changes can be subject to

partial regression testing, which passes only those portions of the

codebase that are most likely to be affected by the changes, based upon

impact analysis that can sometimes identify potential ripple effects

across code dependencies, shared code components or related business

processes. Regional regression only treats the changed components

and its direct associates. We perform risk-based regression, meaning

that we identify test cases that need to be run (but can't run the whole

suite) based on the business criticality, complexity, defect history, and

how recently a feature has been used so that we can ensure business

critical functionality is verified when we have a limited amount of time

to run our tests. These different fronts allow teams to weigh depth vs

speed depending on both their quality goals and real-world constraints.

Regression test selection is an important problem, especially as

applications and their corresponding test suites become larger. This

means executing each possible test case every time a small change

occurs becomes unpractical, and hence leads you to a more strategic

approach of determining which test cases would give you the best bang

for the buck for particular changes. In code-based selection, change

impact analysis drives the identification of modified components and

the identification of which test cases exercise those components. The

selection based on requirements identifies the affected features and user

stories caused by the changes and selects the tests belonging to those

requirements. His type of analysis, known as history-based selection,

summarizes past defect patterns and test effectiveness to promote tests

256
MATS Centre for Distance and Online Education, MATS University

Notes that previously found defects in similar modules. It is a risk-based

selection method that targets functionality with the highest business

impact or the greatest technical complexity. These strategies enable you

to reach optimum regression testing, focusing the testing on the

modules in which the risk of regression defects is the highest and

minimize time spent testing portions of code that are unlikely to be

impacted by the latest changes. Systematic change impact analysis will

help identify where code may need to be tested as a result of some

specific change, and can help drive the selection and prioritization of

regression tests. This analysis looks at a series of types of dependencies

to explore potential ripple effects — code dependencies where

components either directly invoke or otherwise depend on modified

code; data dependencies where components share database tables or

files or other data structures that have changed; interface dependencies

where components communicate via interfaces which have been

modified; and environmental dependencies where components depend

on updates to configuration settings, third-party libraries or

infrastructure elements. Impact analysis maps these relationships,

which allows it to identify the “blast radius” of changes — the set of

components that could potentially be affected (even if not actually

modified) by any given change. This analysis allows regression testing

to go from re-verifying everything under the sun to specifically

targeting components which may be affected, substantially improving

the efficacy of the testing while keeping the effectiveness high.

Different projects contexts and quality requirements called for

different regression testing strategies. Classic testing runs regression

tests for each major change or at specific milestones, which are usually

as stand-alone testing phases prior to release. Continuous regression

uses a reduced scope, targeted regression suites executed

automatically every time code is integrated, to quickly identify existing

code breakage, while permitting longer, slower regression runs less

frequently. There are multiple stages in progressive regression

approach. It starts with smoke tests to confirm basic stability, followed

by tests on core functionality, and lastly utilizes complete regression if

earlier ones pass. Progressive regression broadens the testing scope as

per the results of preceding stages. Unlike traditional tests, where each

input must also have a defined expected result, A/B regression

compares application behavior before and after changes, automatically

257

Notes flagging differences. By employing these varied approaches, teams can

tailor regression testing to their exact development methodology,

release cadence, and risk tolerance, finding the right balance between

fast feedback and comprehensive verification. Which is also the time

and frequency of regression test should depend on different type of

developmet methodologies and project contexts. Traditional sequential

development conducts regression testing iteratively but usually only

when major milestones have been performed, and changes have

accumulated, often as a separate testing phase before releases. In agile

and iterative methodologies, smaller regression suites may run for

every iteration or sprint, ensuring that the newly implemented

functionality does not break what is already working. Continuous

integration environments often utilize multi-tired regression strategies

with small, fast-running regression suites running automatically on

every code commit while more elaborate suites are run on a nightly or

weekly basis to provide further verification. These different patterns

allow projects to avoid the Ágora Problem by balancing the need for

quick feedback on potential regressions with being able to double

check everything works, tuning testing rates to the pace and risk of their

implementation flows. Because regression testing involves running the

same tests repeatedly to ensure consistent behavior, automation is

especially valuable when it comes to this type of testing. Automated

regression tests can run extensive test suites quickly and consistently,

validating hundreds or thousands of test cases without the time and

effort working would require. This allows much more rapid and

thorough regression testing when compared to manual techniques

which would be impractical in the face of continuous integration

environments where code is changing multiple times each day. It is true

that writing automated regression tests initially requires high

investment; however, this cost amortizes over multiple executions,

providing substantial efficiency gain for tests that need to be executed

multiple times throughout the development lifecycle. Also, the

homogeneity of automated execution reduces discrepancies possibly

arising in various manual testers and makes sure that confirmatory

checks are consistent for your test cycles.

The distribution of automated tests across the levels is defined by the

regression testing pyramid model to balance coverage, execution speed,

and maintenance costs. This model would suggest an implementation

258
MATS Centre for Distance and Online Education, MATS University

Notes of a lot of unit-level regression tests at the base, then less integrations

tests in the middle, and the least number of end-to-end tests at the top.

This is because unit tests isolate individual components, running fast,

identifying failures accurately, but testing only limited interactions

between components. Integration tests provide assurance that the

components work in conjunction, take moderate time to execute, and

entail more complicated setup. End-to-end tests confirm full business

scenarios from a user perspective and have more complete coverage

but with a slower run time and higher maintenance costs if an interface

changes. This balanced approach provides maximum regression

coverage within the bounds of what is practical, both in terms of

prevalence of failure and time needed to run tests while it focuses most

testing at levels where the tests run very fast, complete with accurate

failures and require low maintenance, and still cover system-level

needs for critical workflows. This is because automation test

frameworks form the required base infrastructure you need for effective

automated regression testing. In contrast with data-driven frameworks,

test logic is decoupled from test data, allowing the same test procedures

to be run with multiple data sets for thorough verification, all without

the need to duplicate test code. Keyword-driven framework abstracts

test steps into reusable actions and non-technical members of the team

can create Test scenarios from these actions without coding skills. Page

object models and other similar design patterns decouple the “what the

user sees” from the test itself, leading to decreased maintenance effort

due to UI updates. These frameworks streamline testing processes and

improve maintainability, reusability, and scalability, allowing teams to

build sustainable regression suites that remain valuable throughout

product lifecycles rather than becoming cumbersome maintenance

liabilities that get tossed aside. Automation has greatly improved

regression approach but there are still certain scenarios better suited for

manual regression. Using human intuition and flexibility, exploratory

regression testing enables testing to examine areas affected by

changes, but without any scripts to follow. This technique is especially

useful for complex changes where automated tests could miss subtly

broke things or you can’t know for sure exactly where the tests could

even go before running them. Visual regression testing manually

inspects how the UI looks and is laid out while identifying unintended

changes in the positioning of elements, numerous styles as well as

259

Notes overall presentation using it on automated functional tests that may

have not caught it. Even if a change is technically functional, usability

regression can ensure that the user experience hasn’t faltered. That's

why these manual approaches help balance automation as they focus

on those dimensions of quality that are more difficult to automate,

ensuring not only the functional correctness but also the qualitative

aspects of user experience are thoroughly verified across both manual

and automated testing efforts.

Visual regression testing is a specialized technique that focuses solely

on detecting unintended changes in application appearance, not

functionality. Traditional functional regression focuses on functional

correctness, while visual regression detects changes in the layout of an

interface, the position of the elements, styling, the rendering of fonts,

etc., that may not affect functionality but can affect the user

experience. This is commonly done by taking screenshots before and

after changes and then using automation tools to compare images to

detect visual differences between versions. The tools pinpoint pixel-

level changes between images, marking potential problems that a

human can inspect to see if the differences reflect intentional design

changes or unintended visual regressions. This method is especially

useful for apps that consider visual consistency and brand presentation

as important quality attributes so that the product functional aspects do

not disturb the pages that were carefully designed and developed.

Managing the test environment poses unique challenges to regression

testing, with consistency and reproducibility of the environment

playing an important role in determining test reliability. Because of the

differences in configuration, inconsistent test environments can

produce false positives (failing tests that erroneously detect

regressions) or false negatives (passing tests that miss actual

regressions). Regression testing ideally should be performed in stable,

consistent environments that minimize any influence of external

variables that may affect the results. Provisioning tools build consistent

configurations using infrastructure-as-code, which makes sure that test

environments will meet the anticipated specifications. Containerization

technologies (such as Docker) enable packaging applications with their

dependencies, which reduces environment discrepancies across

development, testing, and production. As a solution, cloud as a service

testing environment provides on demand resources with uniform

260
MATS Centre for Distance and Online Education, MATS University

Notes settings with capability of running multiple regression in parallel

without environment conflicts. Overall these techniques contribute to

the reliability of regression testing by assuring that observed behavioral

changes do correspond to code changes as opposed to environmental

changes. Another key success factor for effective regression testing is

management of test data. To have high fidelity regression you need

relevant test data that touches on scenarios that you need to test, and

also need the same consistency across tests enables a comparison that

you can trust. Between these blocks of data, a flexible block is required

to actually separate it, Test data life must meet various conditions:

With enough data, that is, through appropriate data to create a constant

volume Test Variety, Meaning all the data must in line Test Data. In a

variety of scenarios for application testing Test such Test Relation,

Need to consider, Test Data And system data linkage to maintain

kinship integrity Test Data. The integrity must be followed Test

Business rules, Business limitations and so on. Depending on your use

case, approaches can range from synthetic test data that is created

specifically for testing, to subsetting production data that mirrors real

usage patterns (with appropriate anonymization applied to protect

sensitive information). With version-controlled test data, each test

execution can start from the same point in the repository, making it

easily verifiable whether the behavioral changes observed are a result

of code changes or data changes. Comprehensive test data management

ensures regression tests can confirm systems behave correctly in all

combinations of scenarios that users might see in production.

There are various application architectures, and regression testing

approaches vary based on these architectures as they all have different

characteristics. Microservices architectures have unique challenges

associated with independent lifecycles across distributed components,

and necessitate additional service-oriented regression that tests both

individual services and their behavior as a composite. Commonly used

to ensure that service interfaces are backwards-compatible even when

implementations diverge, contract testing prevents integration

regressions without enforcing the need to run through all the end-to-

end tests every time you make a change in your code. Database

regression testing makes sure that any changes made to the schema,

modifications made to the queries or changes made to stored

procedures do not negatively impact the data integrity or the

261

Notes performance of the query. The division of mobile apps into their own

level of regression is due to the fact that fragmentation of platforms can

be addressed by checking for behavior across devices, operating

system versions, and form factors. The goal of API regression testing is

to ensure that changes to an interface use proper implementation of

new capabilities while maintaining backward compatibility for existing

consumers. This means how the regression testing is performed is

adjusted depending on the architectural context, which is particularly

relevant here because different types of architecture architectures

present different regression risks, and a tailored testing strategy can be

applied to deal with those diverse challenges. Continuous

integration/continuous delivery (CI/CD) pipelines have revolutionized

how regression testing is executed — no longer do we only run tests

manually on an ad hoc basis, instead we now verify functionality as

part of our development > review > deployment workflows. These

pipelines automatically run regression tests every time the code

changes are committed, which gives developers some early feedback

about potential problems before the changes get merged into common

code bases. Multi-stage pipelines are where progressive regression

testing takes place: fast-running smoke tests run, verify basic stability,

and provide immediate feedback, while fuller regression suites run later

to provide a thorough verification. Parallel execution is the distribution

of test cases over multiple machines or containers, reducing the overall

execution time, especially for large regression suites. This can include

immediate visibility into test results through pipeline visualization

dashboards so teams can quickly identify and heal regression

problems. This integration turns regression testing from an isolated

quality assurance step into an integral development practice that

continually checks the stability of the code throughout development.

When running all tests is infeasible, test selection techniques help

regression testing provide the most value for time constraints. These

strategies condition test execution for a variety of reasons so that the

utmost critical tests are executed upfront, all be it, suite execution

cannot be entirely managed due to time constraints. Value-based

prioritization orders tests based on the business importance of the

functionality being verified to ensure that critical features are validated

before less important capabilities. Risk-based prioritization takes into

account complexity, defect history, and recent changes to determine

262
MATS Centre for Distance and Online Education, MATS University

Notes where greatest regression is likely to occur. The feedback-driven

prioritization analyzes the past test results to identify all tests, which

detect issues, most frequently, there prioritizing the ones with highest

effectiveness regarding defect detection. Balanced verification of all

functional areas instead of focusing on individual components is

achieved through requirements coverage prioritization. The integration

of these prioritisation strategies means that “pure” regression testing is

no longer a head-to-tail execution of test scenarios, but a strategically

ordered verification effort, which yields significant return on

investment by raising the probability of defect detection, given an

available budget (in resources) that does not cover the entire scope of

testing systems.

Understanding regression defect patterns is likely to help improve

testing as well development practices. Common regression categories

include: ⇒ Reintroduced defects: previously resolved issues that

reoccur after code changes ⇒ Feature interaction defects: changes to

one feature inadvertently affecting other features ⇒ Environmental

regression: when changes to configuration, libraries, or platforms have

a negative impact on functionality ⇒ Data-dependent regression:

behavior changes only with certain combinations of data

Organizational learning through examination of these trends highlights

areas for targeted preventative action: version control policies that limit

accidentally rolling back to known bad code; design that minimizes

unintended component coupling; test data strategies that account for

every permutation of data used; and more elaborate change impact

analysis to improve the ability to highlight suspected areas of concern

behind changes. Teams can leverage regression patterns to enhance

detective controls (i.e., the testing of code for regression defects) and

preventive controls (i.e, software development practices) that

ultimately lower the rate of regression defects throughout the

development lifecycle. Regression testing metrics and reporting give

you crucial visibility into the effectiveness of testing as well as trends

in quality. Coverage metrics indicate how much of the existing

functionality has been verified through regression testing, exposing

areas left uncovered by verification. Execution metrics track the rate of

test passing, the distribution of failures, and execution times that can

highlight trouble spots or performance bottlenecks in the testing

process. Defect metrics break down regression issues by type, severity,

263

Notes and impacted components to expose quality trends that could point to

underlying process or architectural problems. Trend analysis looks at

how these metrics evolve over time, indicating if the quality is

improving or degrading as the development advances. These

measurements turn regression testing from just a "passed/failed"

activity into rich information that drives continuous improvement in

both testing approaches and in development practices, allowing data-

driven decisions to be made about quality and release readiness.

By using cost-benefit analysis for regression testing, organizations can

ensure that they are spending their limited resources effectively while

still getting thorough testing done. Create and maintain test effort,

length of execution leading to delay including potential for loss in

revenue based on total costs of regression testing, infrastructure costs

for developing your test environment, and opportunity costs (where

testing resources can be used in other activities). Early detection of

regression defects (regression defects are typically much cheaper to fix

when detected early) Prevention of issues in production which can

affect users and business operationsReduced support costs through the

detection of issues before users receive themGreater build/upgraded

confidence to enable faster innovation Normally, this analysis indicates

that initial investments into regression testing pay off enormously in

terms of lower cost for remediating defects and avoiding disruption of

business, with the optimal level of testing depending upon application

criticality, changability, and user impact. And by quantifying these,

organizations can make data-driven decisions about the right regression

test scope to pursue depending on what would bring value to the

business, instead of blindly following coverage targets. Maintainability

is a key success factor for sustainable regression testing as applications

and their test suites will develop over time. With a lack of focus on

maintainability, regression suites often tend to have a familiar

lifecycle: initial creation is beneficial, gradual growth improves

coverage, maintenance effort grows as the application changes, and in

due course abandonment happens as keeping tests up-to-date becomes

costlier than checking manually. There are a few practices for

increasing maintainability of regression tests: designing tests that are

modular and isolate components that are likely to change at the same

time, building layers of abstraction to keep business logic and the

interfaces separate, using data driven approaches to separate test logic

264
MATS Centre for Distance and Online Education, MATS University

Notes from test data itself, cleansing use of naming conventions to indicate

the purpose of a test, documenting thoroughly what the intention behind

a test was and how to maintain it. Building maintainability from the

ground up, and incorporating it throughout products' evolution, leads to

sustainable regression assets that remain usable and beneficial during

products' lifetimes as opposed to becoming unwanted technical debt.

Different development methodologies necessitate modified

approaches for regression testing that respect their individual nature

and limitations. In traditional sequential development, there are often

extensive regression periods before major releases, where all

functionality is thoroughly checked as the size of changes mounts over

time. Agile methodologies embed smaller-scale regression into every

iteration, checking that new features don’t have a negative effect on

existing capabilities in a shorter period of time. With continuous

integration in place, DevOps practices leverage version control to

implement continuous regression throughout the automated pipeline,

giving feedback if each code change may potentially break something.

A hybrid approach may integrate all or some of these approaches

depending on the project context, using continuous regression for core

behaviors and periodic regression for comprehensive testing ahead of a

major release. Instead of treating regression regression as a one-size fits

all endeavor, effective strategies tailor testing scope, frequency, and

implementation to the pertinent development rhythm(s), release

cadence(s), and risk profiles of each project. Mobile application

regression testing faces distinct challenges due to device fragmentation,

platform diversity, and frequent operating system updates. Device

compatibility regression ensures features work properly on different

screen sizes, hardware, manufacturer customizations and more,

assuring functionality remains consistent regardless of device

differences. OS version regression checking confirms compatibility

with various versions of operating systems that may still be active long

after newer versions are released. Network Condition Testing —

ensures that the App behaves accurately in a variety of network

conditions: Wi-Fi, cellular data, offline and poor-connectivity. Battery

optimization regression verifies that application patches do not

negatively impact power consumption behaviors. These specialized

approaches recognize that mobile environments raise unique challenges

because applications must operate correctly through far more varied

265

Notes conditions than the traditional desktop software environment, hence

correspondingly higher requirements for quality across this

complexity in how to regression strategies.

Regular testing of browser-based applications, which is web

application regression testing, has unique challenges since browsers run

in a variety of client environments. “Cross-browser testing ensures that

an application is functioning properly on different browsers (Chrome,

Firefox, Safari, Edge) and versions and that it is behaving as expected.

Though browsers may render and implement JavaScript differently, this

service verifies consistent behavior throughout.” Responsive design

regression ensures that web interfaces respond accordingly across

various screen dimensions and orientations, avoiding layout errors or

lack of essential functionality. Client side performance regression

monitors the execution times of scripts, rendering performance and

memory usage to ensure that performance does not degrade as features

are added. Progressive enhancement verification confirms that the

baseline functionality is still usable if enhanced features are

unsupported by certain browsers or are turned off in user preferences.

This intricate landscape of web environments, where an application

must be operational against hundreds of browser and device

combinations, with differing capabilities, limitations, and user

expectations, is handled by these specialized approaches. Database

regression testing usually targets the changes made to database

structures like tables, indexes, and stored procedures or queries that

may negatively impact functional behavior or data integrity or query

performance. Schema change testing is a vital process to ensure that

your schema changes will migrate existing data correctly without any

loss or invalidation. Query Performance Regression: It tracks execution

times and resource usage looking for efficiency degradation after data

model or UI changes. The integrity of the transaction tests enables to

ensure that even after updating the database logic, the ACID

(Atomicity, Consistency, Isolation, Durability) properties are still

implemented correctly. This is often referred to as data migration

verification Ensuring that processes to migrate data from one version

of a system to another or from one environment to another do not lose

any data, or any relationships, or even any data transformations

between different representations of data. And these more nuanced

testing strategies take into account the fact that a database is shared

266
MATS Centre for Distance and Online Education, MATS University

Notes across many applications — which means every change has the

potential to affect multiple parts of a system in unpredictable ways,

making it easier to argue for deep verification that goes beyond

application-level functional testing.

API regression testing helps keep these interface changes compatible

to existing consumers of the API while also implementing new features

accurately. Such testing confirms a number of important elements of

API behavior; backwards compatibility ensures existing client

applications continue working without code changes as APIs evolve;

contract compliance ensures responses remain as per documentation in

terms of applicable formats and definitions of fields; error handling

confirms that exceptional conditions are treated consistently; security

controls confirm that authentication and authorization mechanisms

continue to function as intended; and performance characteristics are

measured to ensure response times and throughput are not degraded.

In distributed architectures, where multiple systems communicate over

stable interfaces, these verification activities become all the more

important: it is common for a change breaking compatibility to affect

many consuming applications developed by different teams,

departments or even organizations. This enables interfaces to evolve

with full confidence whilst maintaining a level of stability that's

imperative to distributed ecosystems. As organizations have come to

understand that some issues can only be discovered in production with

real transactional volumes, user behavior profiles, and environmental

variables, regression testing in production environments has become a

norm. Feature flags, canary releases, and A/B testing are methods that

permit limited users a controlled exposure to changes so that teams can

monitor user behavior and collect feedback before the change is used

everywhere. Shadow testing runs modified code paths alongside the

existing production logic and compares the results, allowing you to

verify the new behavior without impacting users until you have

confirmed that it behaves as intended. Synthetic transaction monitoring

runs all core workflows constantly against production environments

and alerts teams of regressions surfacing after deployments. These

methods play a supportive role along with pre-deployment regression

as they enhance confidence through confirmation in real use, and

advanced tracking and expedited rollbacks address failures by covering

and fixing problems that get out in production despite tests before.

267

Notes Intelligent analysis is applied to challenges like prioritization, test

selection, and test execution to bring about the transformation of

regression testing strategies into machine learning approaches.

Utilizing historical data regarding which tests identified problems for

specific code changes, test impact analysis dynamically selects subsets

of tests most likely to discover defects for particular modifications.

Predictive test selection learns from historical effectiveness in order to

identify the most relevant tests to run given the set of changes to code,

thus leading to dynamically-selected test suites that are based on the

type of changes made rather than static suites. Anomaly detection

points out unusual behavior of the application – this might mean that

there is a regression, even when you did not hit the tests explicitly, it

raises the red flags in front of the deployment It automatically adapts

to minor interface changes, reducing maintenance overhead in times of

UI evolution. Such AI-enhanced approaches significantly boost

regression testing efficiency by concentrating where verification effort

is most likely to find problems, which in turn makes for a more

comprehensive testing process that can be better fitted into a reasonable

resource envelope.

Shift-left regression testing techniques push verification processes

earlier in development life cycles so regression problems are prevented

rather than simply identified after the fact. Continuous regression

testing entails running fast executables on each code change, providing

quick feedback before changes are committed to a shared code

repository. They serve as a deterrent to developers that stop them from

triggering unit-level regression tests every time a commit is attempted,

so that no code capable of breaking any existing code gets integrated.

Thus, peer code reviews are more closely scrutinizing the possible

regression impacts of changes, utilizing human intuition to pinpoint

non-trivial side-effects that automated testing might overlook. These

preventative controls alongside traditional detective controls help with

regression risk at the first point of touch when the code is changed

rather than isolating the defect in the dedicated testing underpass. These

practices validate defects as they are introduced into the development

pipeline, with regression verification occurring as part of normal

development workflows, thus making the cost to remediate is far lower

as well as impact to schedule. Due to the catastrophic consequences

that faulty behavior in domains such as medical devices, automotive

268
MATS Centre for Distance and Online Education, MATS University

Notes systems, aerospace applications, or industrial controls could incur,

safety-critical systems implement particularly stringent approaches to

regression testing. In these environments, full regression needs to be

verified regardless of how small the change is, as a most insiduous

change design can induce a catastrophic failure in a safety critical

system that will be a part of a whole. Formal regression methods use

mathematics verification methods to prove when changes do not affect

critical properties rather than just testing sample scenarios. In

requirements-based regression, all safety requirements are traceably

mapped to tests, ensuring that all functionality claimed to be safety-

critical has been verified. There is more confidence than developer

testing alone — independent verification by separate consumer teams.

These are stringent approaches, reflecting a special responsibility that

systems with outcomes that can endanger human lives come with,

undertaking verification in accordance with the size of the potential

downsides brought by regression defects. AI-driven testing claims

smarter test selections, self-maintaining test suites that adapt to

application changes, and anomaly detection which determines potential

problems without plain test cases. Visual AI can understand the

elements of an application semantically rather than by brittle selectors

or coordinates, making interface testing more reliable. So quantum

computing could one day change the whole testing for complex

algorithms by allowing to verify over a combination of inputs that

would be infeasible to do on classic computing. Low-code and no-code

platforms are transforming the creation and maintenance of regression

tests, enabling team members without programming knowledge to

automate their workload. There will still be new technologies on the

horizon, but the most simple definition of regression testing will never

cease, which is to help ensure that software changes intended for one

area don’t break something people depend on somewhere else.

Regression testing guards against potentially disastrous knock-on

effects for the end user, protecting product stability and reliability

while the software is in motion and getting better. It can catch

unintended side effects introduced by changes before they affect users,

sparing users from disruption and software reliability from diminished

trust. Teams use several approaches—from formal proof of every piece

of functionality to risk-based testing of high-impact areas—to prioritize

completeness with the practicalities of time and cost. In particular,

269

Notes automation is extremely valuable for regression testing because full

coverage is difficult to achieve when testing manually. Regression

testing is a key aspect of any quality practice that empowers an

organization to safely and confidently evolve while avoiding the loss

of stability, and as software systems grow they become increasingly

interconnected creating a more complex ecosystem where regression

testing is never more important to ensure that the enhancements being

added do not trade their reliability that users use and expect.

Summary:

Module 4 focuses on the different types of software testing that ensure

various aspects of a software application function correctly and

efficiently. It begins with functional testing, which verifies that the

software performs according to specified requirements by testing

features and user interactions. Next, it covers non-functional testing,

which evaluates attributes such as performance, scalability, usability,

and reliability to ensure the software behaves well under various

conditions. The module also explains regression testing, a critical

process used to confirm that recent changes or enhancements have not

adversely affected existing functionalities. Together, these testing types

provide a comprehensive evaluation of both what the software does and

how well it performs.

Multiple Choice Questions (MCQs)

1. What is the main purpose of Functional Testing?

a) To test non-functional aspects like performance

b) To check if the software meets specified requirements

c) To evaluate the hardware of the system

d) To measure code execution time

(Answer: b)

2. Smoke Testing is performed to:

a) Check if critical functionalities of software are working

b) Test the system under heavy load

c) Ensure security vulnerabilities are addressed

d) Evaluate usability of an application

(Answer: a)

3. Which type of testing ensures that changes in the code do not

affect existing functionalities?

a) Performance Testing

b) Security Testing

270
MATS Centre for Distance and Online Education, MATS University

Notes c) Regression Testing

d) Stress Testing

(Answer: c)

4. Load Testing is used to:

a) Identify system vulnerabilities

b) Check system performance under expected workload

c) Test UI design quality

d) Verify user acceptance

(Answer: b)

5. What is the main goal of User Acceptance Testing (UAT)?

a) To find and fix coding errors

b) To evaluate how the software functions in production-like

conditions

c) To ensure the software meets business requirements and is

ready for deployment

d) To analyze system performance under extreme conditions

(Answer: c)

6. Which testing type focuses on system responsiveness and stability

under different conditions?

a) Functional Testing

b) Performance Testing

c) Usability Testing

d) Smoke Testing

(Answer: b)

7. Security Testing primarily aims to:

a) Improve software design

b) Prevent unauthorized access and data breaches

c) Reduce software costs

d) Increase software speed

(Answer: b)

8. Sanity Testing is performed to:

a) Verify a small section of the application after minor changes

b) Test the full functionality of an application

c) Evaluate application security

d) Conduct hardware compatibility testing

(Answer: a)

9. Scalability Testing measures:

a) System’s ability to scale under increased workload

271

Notes b) Code readability

c) Software installation process

d) Data integrity in databases

(Answer: a)

10. Retesting is done to:

a) Validate a defect after fixing it

b) Check system performance

c) Ensure security of data

d) Test system under load

(Answer: a)

Short Answer Questions

1. What is Functional Testing? Give an example.

2. How does Smoke Testing differ from Sanity Testing?

3. Explain the significance of User Acceptance Testing (UAT).

4. What is Regression Testing, and why is it important?

5. Define Load Testing and its role in performance testing.

6. What are the key differences between Performance Testing and

Stress Testing?

7. Explain how Security Testing protects software applications.

8. What is Scalability Testing, and when should it be performed?

9. How does Interface Testing help in software development?

10. What is Retesting, and how is it different from Regression Testing?

Long Answer Questions

1. Explain Functional Testing in detail, including different types such

as Smoke Testing, Sanity Testing, Regression Testing, and UAT.

2. Describe Non-Functional Testing and its importance in software

quality assurance.

3. Compare and contrast Load Testing, Stress Testing, and Scalability

Testing.

4. Discuss Regression Testing, its significance, and the challenges in

implementing it effectively.

5. What are the major components of Security Testing? Explain with

real-world examples.

6. How do Performance Testing techniques ensure that a system can

handle different levels of load?

7. Describe the importance of User Acceptance Testing (UAT) and its

role in software deployment.

272
MATS Centre for Distance and Online Education, MATS University

Notes 8. Explain the key differences between Smoke Testing and Sanity

Testing with examples.

9. What are the major considerations while designing test cases for

Interface Testing?

10. Discuss the best practices for implementing effective test strategies

in large software projects.

273
MATS Centre for Distance and Online Education, MATS University

MODULE 5

AUTOMATED TESTING

LEARNING OUTCOMES

• To understand the importance, benefits, and challenges of

automated testing.

• To explore various automation testing tools, including

Selenium, QTP, JUnit, TestNG, and Appium.

• To analyze the process of designing automated test scripts for

efficient test execution.

• To examine the role of continuous integration and continuous

testing in CI/CD pipelines.

• To compare automated testing with manual testing to evaluate

its impact on software development efficiency.

274
MATS Centre for Distance and Online Education, MATS University

Notes Unit 15: Automation Introduction

5.1 Automation Introduction: Importance, benefits, and challenges

Automation is one of the greatest technological advancements in the

history of mankind, changing the way we work, live, and interact with

the world around us. Fundamentally, automation is the use of

technology to complete tasks with minimal human intervention,

ranging from simple mechanical devices to complex artificial

intelligence systems. Automation is at the heart of virtually all areas of

human activity — manufacturing, transportation, healthcare, finance,

agriculture and more — so its importance can hardly be overstated.

With each passing year in the 21st century, automation becomes

broader in reach and deeper in complexity, offering unparalleled

opportunities but also challenges that should be examined closely.

Automation Automation is pushed by a variety of components similar

to financial incentive to be environment friendly, market(s)

competitors, labour scarcity, security via automation and at last the

ever-advancing limits of expertise. These drivers promise that

automation will be a significant aspect of our socioeconomic

environment for the foreseeable future, which will mean that fully

understanding automation – including its significance, benefits, and

challenges – will be key for individuals, organizations, and societies

that will be navigating this quicklychanging landscape. The history of

automation shows long-standing human innovation. The Industrial

Revolution brought us the first forms of automation – mechanized

production systems which enabled vastly greater throughput and

diminished the need for human labor. The 20th century opened the door

to assembly lines, automated control systems, and primitive computers

that connived to transform productivity growth across industries. This

new era of automation was made possible by the digital revolution of

the last few decades, including advanced software systems, robotics,

artificial intelligence, and machine learning techniques. The learning

from this has led to the automation of not only robotic physical tasks

but also cognitive complex tasks like interpreting data, taking

decisions, processing language, recognising patterns, etc. This

progression isn't just a quantitative growth of automation, but a

qualitative change that is nature of automation and possible uses.

Realizing this historical context provides a lens through which to

275

Notes comprehend the status of automation today, and predict where we are

likely headed down the road as technologies mature and continue to

converge in ways that compound on their effects. The productivity

benefits of automation are a major reason why it is being a driving

force behind adoption across industries. The most important economic

benefit is an increase in productivity — machines can work extra hours

without fatigue, can deliver consistent quality standards, and can

process information far faster than humans can. Cost reduction is

another, courtesy of reduced labour costs, less material waste, lower

error rates and better resource allocation. Additionally, improved

quality and accuracy also adds economic value to the best lean

manufacturing. An advantage over their competitors emerges as

businesses use the power of automation to deliver better

products/services, react more quickly to shifts in the market or be more

agile and efficient at scale than competitors. Automation also

accelerates innovation by freeing up human resources from routine

tasks and allowing more attention to be paid to creative problem-

solving, strategic thinking and product development. These economic

advantages collectively reason why organizations across sectors

continue investing heavily into automation technologies, despite the

challenges in implementation and up-front costs. These investments

will ultimately prove highly economically-calculable, as we

demonstrated in the previous section; the technologies in question will

always drop in price and availability over time.

For more than just their economic implications, automation brings

various operational advantages that revolutionize the way people

work. The fact that machines follow commands as programmed makes

operational consistency a fundamental strength of automation; unlike

humans, machines don’t suffer from fatigue, distraction or differing

skill sets that can cause a loss of performance. By processing more

transactions, manufacturing more products or serving more customers

in the same time period, speed and throughput improvements give

organizations the potential for growth without corresponding increases

in resources. Scalability becomes more attainable through automated

systems that can typically scale up to serve larger volumes with less

incremental investment, all in support of favorable economics to

achieve business growth. Most automated systems are born with data

capture and analytics capabilities that deliver unparalleled insight to

276
MATS Centre for Distance and Online Education, MATS University

Notes our operations for fact-based optimization and continuous

improvement efforts. Another operational benefit is risk reduction,

since process automation can limit access to sensitive information,

help organizations comply with regulations and ensure documentation

consistency, and give less space for human error or malpractice. These

operational strengths do not just change what organizations may be

able to do; they can fundamentally change how they operate — often

enabling entirely new models for business that would simply not be

sustainable or possible in a less automated world. The heightening

anxiety over automation's workplace implications run much deeper

than those labor displacement fears, however; they signal a seismic

shift in the nature of work itself. Safety improvements are arguably one

of the most unequivocally positive workplace impacts, because

automation reduces human exposure to dangerous environments,

repetitive motion injuries, and heavy machinery. Instead of vanishing

altogether, many jobs evolve; automation replaces some of the routine

elements of those jobs, but new elements that require distinctly human

traits—such as empathy, artistry, and moral reasoning—take their

place. As automation requires constant learning and adaptation, people

will need more agile thinking, more comfort with technology, more

interdisciplinary working, and more equal measures of creativity, social

skill and analytical ability. This changing nature of work leads to a

transformation of workplace culture as automation also transforms

team constructions, models of supervision, methods of measuring

performance, and even the physical space itself. Wedermans for that

(machines need to learn, both from their mistakes and currently

untaught tasks quickly and able to process new information to

dynamically create new collaborations). The workplace variations are

wide and will have significant implications for education systems, labor

policies, and organizational development practices that seek to make

this transition successfully. Automation silhouettes the whole society

not only organizations. Concerns about economic displacement are at

the top of the public agenda too: talks of job losses, wage dislocation,

and geographic inequality brought about by automation. The dynamics

of inequality get special focus as automation could speed up wealth

accumulation among economic elites—especially those that own

capital—while putting certain types of workers at risk. As automation

lowers the cost of and increases the availability of goods and services,

277

Notes consumption patterns shift, which has resulted in living standards

increasing at the same time as sustainability challenges emerging.

School systems are fast-tracked to change to make sure students are

becoming ready for an ever more automated economy, focusing on

skills that emphasise adaptability, technological fluency, and uniquely

human traits that humanise rather than compete with automated

systems. This brings us to public policy issues like universal basic

income, robot taxes, data ownership, algorithmic transparency and

retraining to alleviate the blowback from automation. These socio-

technological dimensions point out that automotion is not solely a

technological matter, but rather a societal transformation that needs

careful governance, stakeholder dialogue and just approaches for

equitable distribution of its profits and costs.

Despite the advanced abilities of automated systems, the technological

challenges however face their own challenges that must be addressed

in implementation and application of automation technology in varying

contexts. Automation systems are becoming more advanced, and

driving this at an organizational level introduces technical complexity

which requires expert knowledge to design, implement and maintain

that transcends the overall organization. Integration challenges, when

trying to interface automated systems with on-premise infrastructure,

legacy technologies, or simply other automated systems, can lead to

“islands” of automation that fail to provide complete benefits. Concerns

about reliability and resilience remain as automated systems encounter

unpredicted scenarios, variations in the environment, and failure of

components that can cause costly disruptions. As seen previously in the

adoption of automation and security vulnerabilities, the stakes become

higher as automation becomes more widespread, creating attack vectors

for malicious actors who want to gain access to critical systems or

sensitive data. These boundaries shift over time, of course — but

automation cannot yet compete in processes that involve advanced

perception, context awareness, emotional intelligence and/or physical

dexterity in structured environments. These technological challenges

address why accommodation to automation tends to be more

incremental than predicted models have postulated, especially in

environments that are complex, high-stakes, and highly variable, where

the costs of a failure greatly eclipse those of the potential benefits.

Implementation issues are often less technical and bigger than the

278
MATS Centre for Distance and Online Education, MATS University

Notes technical barriers that exist when organizations initiate automation

initiatives. Financial factors — high upfront fixed costs, long lead times

for return on investment, continuing maintenance costs and risk of

obsolescence — can deter or delay adoption, particularly at smaller

organizations without the capital resources. Resistance of the

organization originates internally from shareholders worried about job

loss, shifting skills, changing power dynamics, or disruption to the

process and relationships. However, the increased complexity of

implementing both process redesign and RPA at many organizations

makes process redesign a necessity, as many organizations find that

automating existing processes leads to non-optimal output, compared

to more foundational redesign-based approaches that rethink

workflows based on the automation capabilities they are building.

Change management is in serious need of focus, as implementation

requires systematic approaches to communication, training, incentive

alignment and cultural adaptation that are too often underappreciated

by organizations. The integration with human workers poses persistent

challenges in interface design, role definition, supervision models, and

adapting levels of trust between human workers and automated agents.

These challenges of implementation can help explain so much of why

automation has not brought much of the benefits that were expected,

even when it was technically feasible, reinforcing the fact that

automation is as much a sociotechnical problem as it is a technological

one. As automation technologies have gained new capabilities and

made their way into increasingly consequential domains, their ethical

dimensions have been demanding more attention. The need for

transparency of decision-making arises in cases where relevant

decisions are made or influenced by automated systems, particularly

when such decisions have a significant impact on the opportunities,

rights, or welfare of individuals, and draw attention to issues of

explainability, accountability, and appeal. Bias and fairness concerns

stem from the knowledge that automated systems may reproduce or

even exacerbate existing biases within our society embedded in the

training data or assumptions used for their design, possibly resulting in

discriminatory consequences. Privacy challenges accepting as

automated systems collect, process, and react to and on data at scales

never before seen, stressing existing models of consent and regulation.

Ethics and accountability issues arise as to the responsibilities

279

Notes associated with machines' decisions, the consequences of those

decisions, and whether machines should have a role in making such

decisions in the first place. In human-machine systems in which

multiple parties (e.g., designers, operators, owners, users) might be

jointly responsible for outcomes, the challenge of assigning liability

grows more complicated. Such ethical issues around automation go

beyond technocratic matters, and will require multidisciplinary

perspectives, including sociological, philosophical, policy and legal

ones, to ensure that governance frameworks and ethics guidelines are

appropriate.

Automation, powered by AI, IoT, and other emerging technologies,

will converge in potentially simpler systems with the ability to sense,

reason, learn, and act in chaotic worlds with little human guidance. As

impractical band-aid solutions in the form of skill/population rescaling

emerge, industry expansion beyond traditional manufacturing and

routine service use cases will likely ramp up — automating knowledge

work, creative industries, healthcare, education, and other areas of the

knowledge economy that were once thought resistant to automation.

We will probably see new forms of regulatory frameworks emerging in

response to the social impacts of automation, which might lead to new

standards or approaches in terms of data governance, algorithmic

accountability, labor protections and distributional issues. As the

workforce rolls more towards automation and the nature of work

changes, education systems, professional development programs, and

labor market structures will morph to meet new demands. How

humans, organizations, and society prepare to successfully navigate

the automation landscape has become the new strategy. One of the key

approaches is educational adaptation, cultivating lifelong learners,

deep fluency with technology, knowledge spanning multiple

disciplines, and a set of distinctly human capabilities unlikely to be

automated anytime soon. Managing how people and machines

interoperate is about reshaping operating models so that the strengths

of both can be maximized, and that requires systematic approaches to

technology assessment, workforce planning, process redesign, and

change management. To ameliorate these disruptive effects, however,

it will require evolving policy frameworks, which might include re-

designing social safety nets, labor market programs, tax structures, and

the regulatory oversight of automated systems. Investment decisions

280
MATS Centre for Distance and Online Education, MATS University

Notes must strike a balance between technological development as well as in

human capital, physical infrastructure, and inclusive growth to share

the dividends of automation widely. Research funding, public-private

partnerships, making standards, and creating environments where

technologies can be tested and refined before large-scale

implementation are needed to nurture the innovation ecosystems that

underpin automation. Such preparation strategies emphasize that

effectively realizing the potential of automation while reducing its

challenges demand active, multifaceted responses rather than passive

adjustment or resistance to technological change. The economic value

of automation goes beyond the walls of an organization; it creates new

value pools, and reshapes entire industries and economic systems.

Macro level productivity increases can lead to economic growth and

increased living standards as more goods and services are produced per

capita. Emerging new business model possibilities include mass

customization, micro-services, platform economies, and new

producer/consumer interactions that were not practical — or possible

— in labor intensive eras, driven by automation. Market expansion

often comes after automation adoption—greater efficiency lowers

prices, hence products and services can now reach previously unserved

populations or entirely new offerings can listen to the market. The

prowess of a country, region, or city in application of advanced

automation has now become a competitive advantage in export markets

along with foreign direct investment. These benefits come with

challenges of economic transition, however, because automation has

the potential to upend existing industries, occupational categories and

regional economies before the new jobs have fully materialized. These

macroeconomic dynamics also help explain why at the national policy

level we see so much focus on automation, with governments seeking

to develop industrial strategies, research agendas and workforce

development initiatives explicitly targeting the building of automation

capabilities, as a clear priority, while also managing transitional

consequences.

The efficiency advantages of automation increasingly cover complex

decision-making processes once thought to be the exclusive purview

of human judges. One of the better established applications of growing

automation, is decision support systems analytic systems that analyze

massive data sets (big data) to find patterns, predict things and suggest

281

Notes the best actions based on evidence, rather than intuition or small

personal experience. Automated methods capable of taking hundreds of

variables and constraints into account (well beyond the limits of

human cognition) can thus make resource optimization across complex

systems tractable. IO capabilities are inherent in automated systems

capable of obtaining performance data, Selecting ineffxx and

optimising without disrupting operations. The second of these

secondary effects, enhancing resilience, is another consequence of

automation—automated systems tend to enable organizations to

respond and adapt more readily to disruptions via programmable (semi-

)automated processes, pooled processing, and redundant capabilities.

Automation of documentation, training, and information sharing

processes leading to systematic capture and transfer of knowledge

ensures that organizational learning can be sustained over time even

with people turnover. This deep operational advantage shows how

automation is merging from mere efficiency, into something much

closer to organizational intelligence; systems that learn, adapt and

improve over time in ways that human-only organizations find it

exceedingly difficult to replicate. Automation entails not just

considerable implication in terms of workplace productivity, but also

psychological and social aspects which play a central role in affecting

employee experience, organizational culture, and work quality. But

many jobs are comprised of tedious and sometimes dangerous tasks

that have been successfully automated, leaving valued workers satisfied

with their roles overall. Here, automation transforms inter-team

collaboration patterns, communication requirements, and structures of

accountability abandoning the rigidities of the past — allowing for

more flexible and adaptive working arrangements. Automation that

increases scheduling flexibility, reduces overtime requirements and

allows remote work opportunities can be a boon to work-life balance.

Psychological adaptation challenges occur when workers

accommodate to their new role definitions, skills, and relationships

with technology, sometimes experiencing stress or identity disruption

in transitional periods. This is because organizational power dynamics

are changing with automation, where technical expertise, authority over

systems design, and access to data are becoming the most important

sources of influence. These psychological and social dimensions

contribute to understanding why more or less similar approaches to

282
MATS Centre for Distance and Online Education, MATS University

Notes automation lead to very different outcomes across organizations,

depending on whether these human factors are taken into account in the

change process.

Automation effects are not merely economic but also reshape

demographic structures, neighborhood communities, and culture. As

certain regions become more conducive to automation — in terms of

infrastructure, regulatory environment, and talent ecosystems —

economic activity is geographic redistributed. To foster speculation,

demographic effects result from changes in migration patterns,

decisions regarding family formation, and timing of retirement — all

of which are affected by the impact of automation on employment

opportunities and financial security. Societal norms surrounding

automation will be best developed through gradual cultural evolution

at this new human-machine interface, as people navigate their

relationships with evolving systems and their expectations, identities,

and ethical values around these systems change over time. As

automation changes the ways where and when people work, learn, shop

and interact, the patterns of social connection change potentially

isolating individuals and providing them new forms of community. The

construction of identity now contining in relation to technology, we

have individuals whose notions of self are partly defined by the extend

of their relationship between them and their automated systems as

either users, creators or complementary workers. These broader

contexts highlight that automation is not just an economic or

technological paradigm shift but a cultural transition that shapes the

basic structures of human life and the organizations of society. The

technological challenges of automation increasingly focuses on

building systems that can perform well in unpredictable, unstructured,

non-isomorphic environments that resist full formalization. Despite

some advances in machine learning, the limits of adaptability remain,

as should be expected as many automated systems still have difficulty

reacting to new situations, unexpected variations or when the operating

environment is very different from the training setting. Automated

systems can understand pattern detections in data but do not yet

possess the capabilities to understand situational dynamics, cultural

factors, and contextual variables that inform human judgment. While

advancements in robotics have been made, manipulation issues remain

a challenge in real-world applications that require fine manipulation, a

283

Notes versatile grip, or working with non-standard or fragile objects. The

more automated systems of decision-making and control an

organization deploys, the more complex system integration becomes,

since they must operate together coherently although their designs, data

structures and operating parameters may vary widely. As technology

advances, so does dependence on mechanics, and where there are

mechanics, there are usually automated systems to operate them. These

longstanding technological challenges partly account for the uneven

state of automation adoption, with some areas moving quickly while

others are growing more slowly, even though there are clear economic

incentives. “The debates about automation implementation become

less technical and more about human and organizational factors.” Skills

gaps are a major implementation challenge, as many organizations do

not have or have difficulty recruiting, developing, or retaining

personnel with the specialized skills required to design, implement,

maintain, and govern automated systems. Governance frameworks are

usually insufficient for automation initiatives that extend across

traditional organizational boundaries, involve multiple stakeholders,

and require continued alignment of technical capabilities with business

goals. Cultural inertia stems from well-entrenched work practices,

professional identities, and social contracts that can be at odds with the

imperatives of automation. Many automation plans are set up to fail

because of data quality issues: systems designed to run on clean,

structured information, stumble over messy, partial or inconsistent real-

world data. Uncertainties about return on investment add to decision-

making challenges, as benefits can be hard to quantify, may appear

more slowly than predicted, or may rely on complementary changes in

other parts of the organization. These implementation challenges are

one reason why technological feasibility alone seldom explains the

patterns that describe automation adoption, as organizational readiness,

cultural factors, and governance capabilities tend to be far more

decisive in practice than purely technical considerations.

Issues that are more fundamentally ethical, and which involve human

dignity, agency and wellbeing in technological environments, are

increasingly overlapping with the ethical dimensions of automation.

Meaningful human control becomes a key ethical issue, referring to the

extent to which decision-making should be completely transferred to

automated systems, especially in sensitive domains that are relevant to

284
MATS Centre for Distance and Online Education, MATS University

Notes human well-being, rights, or safety. Value Alignment Challenges: Many

situations involve competing ethical principles or cultural values, and

therefore are not easy to formalize or achieve consensus on. A

correlated element of dignity preservation must be confronted as

automation may initiate an existential crisis in people about their sense

of purpose in society, social recognition, and economic security, all of

which are sacrificed in disappearing work roles. Questions of

distributional justice come to the fore as benefits and costs of

automation might accrue unevenly to different segments of the

population, regions or generations unless governance pays attention.

The rise of automation has led to growing concerns for the

technological sovereignty of communities, organizations, and nations

as the dependencies upon automation affect resiliency, autonomy, and

self-determination. These ethical dimensions highlight the need for

inclusive, multidisciplinary approaches to automation governance that

integrate diverse perspectives and explicitly grapple with normative

questions alongside technical and economic ones. The evolution of

automation suggests increasingly advanced mixtures of physical and

digital systems that cut across conventional lines between hardware and

software, products and services, and even human and machine

capabilities. Speaker and Instructor Summary: Embodied intelligence

is an emerging frontier in which automated systems are now equipped

with sophisticated sensing, physical manipulation, mobility, and

environmental awareness capabilities that let them operate in complex,

unstructured environments. Exciting human augmentation approaches

come to the fore, as we move into an era of automation technologies,

which target human augmentation through exoskeletons, brain-

computer interfaces, sensory augmentation, and cognitive assistance

tools, rather than human replacement. Distributed autonomous systems

that can coordinate the activities of multiple units without centralized

control have the potential to provide novel solutions to complex

problems in fields from transportation to environmental monitoring.

This line of regenerative automation tackles environmental challenges

by encouraging closed-loop processes that ensure the further efficiency

of resources and the inherent principles of the circular economy.

Democratic models of governance for technology emerge to address the

extensive consequences of automation, prioritizing transparency,

accountability, and inclusion in automation's development and

285

Notes deployment. These future directions indicate that automation will be

exploited not as a distinct technological domain but as an integrated

dimension of sociotechnical systems I, 51 that will necessitate holistic

approaches to design, implementation, and governance.

These four approaches that focus on nurturing those uniquely human

capabilities prioritize cultivation of those skills that will augment,

rather than come up against, the strengths of machines. Thus, cognitive

flexibility can be an important human asset as increased automation

tends to increase change velocity, which in turn means that people and

organizations must adapt mental models, learn new skills and apply

knowledge in new ways more quickly than ever before. With

automation taking over basic information processing tasks, expertise in

socio-emotional intelligence is becoming more invaluable and

empathy, negotiation, persuasion and other unique human strengths are

giving basis for their critical value despite becoming increasingly hard

to automate. Systems thinking capabilities allow appreciating and

understanding the complex interplay of technological, organizational,

and social elements of automated systems that cannot be reduced to

technological considerations alone. Critical technological literacy

combines beyond basic digital skills to comprehension of algorithmic

reasoning and data interpretation as well as the capacity to understand

to assess the capabilities as well as limits of automated systems. Need

ethical reasoning skills to find effective balance between degree of

automation, control, and welfare. These preparation strategies highlight

that preparing for an automated future will not involve competing with

machines to do things faster or harder but instead developing

complementary human competencies that work in tandem with

technological systems to tackle complex challenges neither could

address on their own. Automation economic impact by two to three

orders of magnitude, when viewed in terms of positive externalities

and second-order effects. As automation releases resources for creative

activity, lowers the barriers to experimentation, and makes it possible

to iterate through ideas rapidly, innovation takes off. Market creation

comes next as automation makes previously cost prohibitive products

or services now economically viable, creating whole new categories of

economic activity. Improvements in resource efficiency enhance

sustainability objectives by minimizing the amount of waste, energy

used, and environmental impacts per unit of economic output.

286
MATS Centre for Distance and Online Education, MATS University

Notes Automated systems can also lead to increased physical asset utilization

rates through continuous operation, predictive maintenance, and

optimized scheduling, all of which increase capital productivity. In that

vein, automations that result in the creation of new roles, foster the

creation of new businesses, and promote flexibility in work can

potentially lead to greater labor market dynamism, despite short-term

dislocations in displaced industries. These wider economic benefits

help explain why the vast majority of economic analyses show that

automation has a net positive effect overall, despite valid concerns

about transitional costs and distributional impacts — and those benefits

are not guaranteed to occur automatically, without the right policies,

investments, and governance approaches to manage the transition well.

The operational advantages of automation have increasingly come to

include improved responsiveness to turbulent environments once

deemed unfit for automated methods. Real-time responsiveness allows

systems to identify and respond to conditions changing faster than a

human decision cycle would allow, yielding benefits in fast-changing

conditions. The scenario planning capabilities will be enhanced, as

automated systems will be able to run hundreds of possible futures

ahead of events and build mitigation plans ahead of time. Micro-

segmentation becomes possible at previously unthinkably granular

levels, enabling extremely personalized treatments of customers,

employees, or other stakeholders based on granular attributes instead

of broad categories. Automation that coordinates activities across

geographically dispersed locations and keeps consistency and quality

standards makes the distributed operations easier to handle. Dynamic

distribution of human, physical, logistics and energy resources and

assets across intertwined systems ensures placement of people, tools,

stock and power based on current status instead of a pre-determined

strategy. These adaptability advantages show how automation is

increasingly adding value not only through efficiency in stable, static

environments but through resilience and effectiveness in volatile and

uncertain settings that previously appeared to favor human flexibility

over machine consistency. As technology becomes ever more capable,

the implications of automation for workgo beyond the workplace to

fundamental questions around the purpose and meaning, organization

andcollaboration of work. The evolution of professional identity

unfolds with delineations around traditional roles increasingly fuzzy,

287

Notes new specialties being created, and workers defining themselves more

in terms of their uniquely human contributions, as opposed to tasks that

may be automated. Automation often comes with flattened

organizational structure, as information flows directly to where

decisions need to be made without multiple management layers to

move data through and interpret it. As society transitions from an

industrial era-style measurement of performance, acceptance of other

contributions — creativity, judgment, collaboration, etc. — that are

harder to quantify using traditional productivity metrics also emerges.

New modes of interaction between humans and machines require new

landscape forms, which, in turn, will drive a transformation not just in

our digital experiences but in our physical ones, too, focusing on spaces

for collaboration, creativity, and complex problem-solving rather than

routine production. Learning ecosystem aligns to work processes for

automating skills development as performance instead of isolated

skill-building events. These far-reaching implications for the workplace

indicate that the organizations that will thrive in an age of automation

will completely redefine work — not merely adapt new technology to

existing job structures, processes and modes of management that were

designed for an industrial rather than an automated economy. The more

the impact of automation branches into human experience as a whole,

the more it falls out of the realm of office work. At the same time, the

greater potential for earning money — and the greater output of the

economy in general that sustains recreational activity — means that,

while less work hours may be required, the activity of the leisure

economy will rise exponentially if productivity gains are well

distributed. With global market muscle and Nimby policies colliding

over human contribution in place of community, individual and

community framework to define human importance needs to emerge.

Some replies are more brittle, or based on the response-output they

were trained, making them harder to change over generations, taking

after the new and increasingly difficult to automate skills cycles. The

communities of STEM professionals transform in the wake of

evolving work arrangements, shifting economic geographies &

changing patterns of social connection propelled by automation

technologies. As automated systems increasingly mediate significant

aspects of civic participation, public service delivery, and democratic

processes, the need is for governance system adaptation. These are such

288
MATS Centre for Distance and Online Education, MATS University

Notes fundamental implications for society that it is crucial to understand

automation as more than just a technical or economic phenomenon —

automation is remaking the experience of being human and the way we

organize ourselves as humans, and it is therefore right that we think

about the ends we are seeking as opposed to merely the technical or

economic costs or benefits.

In the future of automation, technological challenges are less often

about developing systems that can operate independently in controlled

environments than about wPhow to measure and manage the ways in

which they will need to function in concert with people in integrated

environments. Many advanced systems either work acceptably well or

do not, but they cannot explain their reasoning processes in terms

significantly relevant to make their human colleagues or supervisors

understand why this or that happened. Handling of uncertain

information is still hard for automated systems that usually work in

terms of probabilities but must take discrete decisions in uncertain

situations where the consequence can be costly. Value alignment

challenges emerge when encoding human likes, morals, and priorities

into automated methods, particularly once these incorporate subjective

judgments or opponents issues. This limitation is a function of transfer

learning and constrains the extent that capabilities created in one

context can just be reused in a new domain without extensive

retraining/redesign. Despite this tremendous progress, human-

machine interface challenges remain, especially for complex

collaborative activities that demand natural interaction, common

situational awareness, and mutual predictability. Such technological

challenges underline the persistence of the significance of

sociotechnical views of automation that bring together human and

technical elements as an integrated system rather than separate domains

of activity, acknowledging that effective automation is more and more

a byproduct not of its performance standing alone but of its successful

integration into the practices of its human collaborates. Once

organizations move past the initial spadework of automating

individual processes, it becomes abundantly clear that automation

success increasingly hinges on ecosystem factors spanning suppliers,

partners, customers, regulators and other stakeholders. Standards and

lack of interoperability introduce friction when trying to execute

automated systems crossing organization boundaries or trying to link

289

Notes several systems developed independently. Uncertain regulation around

liability, data usage, security requirements, performance standards, etc.

makes it difficult to make decisions about investment and

implementation. For example, differences in ecosystem capabilities

pose a challenge when automation requires cross-boundary adoption

among supply chains or partner networks that have different

technology readiness levels. Issues with public perception and trust

impact adoption timelines—especially for highly visible automated

systems that speak directly to customers or work out in open space.

Automation may be constrained by infrastructure limitations (e.g.

connectivity, power reliability, and physical facilities) in some regions

or contexts even when technically feasible. These are the

implementation challenges inherent in the ecosystem which lay the

groundwork for why, despite the same technological possibilities,

automation has a patchy tendency to develop across different regions,

industries, and type of organization, because successful implementation

increasingly relies on factors in the wider context — forces no one

organization can control. The ethics of automation have branched out

to address the long-term challenge of humanity’s relationship with

technology and how we might develop collectively as a species moving

forward. When automation seems to be moving forward according to

technical possibilities rather than human values, technological

determinism concerns arise — through path dependency effects, future

choices may be constrained in ways that are difficult to undo. As

societies review the implications of the jet engines of automation,

human flourishing considerations supplant purely economic judgments

and become the measure of whether automation is a contribution to

meaningful work, personal development, community wellbeing or is

otherwise a complement to other meaningful human experiences. There

are questions of intergenerational equity about how choices made by

current generations about automation will affect future generations, in

terms of opportunities, constraints, and the relationship with

technology they get as inheritances rather than choices. As automation

capabilities, benefits and governance influence spread unevenly across

regions with varying resource, infrastructure and technological

readiness, global equity issues loom large. Such diverse perspectives

and deliberative processes also increasingly demand collective

intelligence approaches to tackle these complex ethical questions that

290
MATS Centre for Distance and Online Education, MATS University

Notes no single organization or discipline can tackle alone. These deep ethical

dimensions reinforce the understanding that there is no such thing as a

purely technical or regulatory challenge where automation governance

is concerned; instead, there is a core question of human self-

determination within technological society that will call for ongoing

democratic engagement, value articulation and collective choice, rather

than passive adaptation to technological change.

Future trends in automation suggest growing invisibility of automated

capabilities across physical, digital, and social domains, rather than as

clear, visible technological manifestations of automated systems.

Ambient intelligence — automation technologies permeate our

surroundings to hinder proactive decision-making by predicting the

future and helping users without an explicit command or attention. The

pace of biological-technological convergence accelerates with

advances in biologically inspired computing, neural interfaces,

synthetic biology, and other biological and technological areas that

increasingly cross the traditional boundaries distinguishing natural and

artificial systems. Rather than being defined by fixed roles,

collaborative intelligence frameworks emerge in the drive to

dynamically allocate tasks between humans and machines on the basis

of complementarity of strengths, learning patterns and situational

parameters. Systems with minimal human oversight increasingly tell

autonomous infrastructures — systems managing energy,

transportation, water and communication networks — how to optimize

for efficiency, resilience and sustainability. Given the far-reaching

implications of recent changes in automation, democratic approaches

to the evaluation of technologies are increasingly important where the

processes of assessing potential applications, building governance

frameworks, and ensuring alignment with shared values are inclusive.

These new arenas suggest a world in which automation is increasingly

perceived not just as an aggregation of stand-alone technologies but as

ubiquitous capabilities woven throughout social and technical

systems, demanding the principles of responsible design, governance

and dynamic reassessment as the range of those capabilities expands

and changes. In preparation for surviving and thriving in an ever-more

automated world, the strategies stress that we need to build our

collective capacities, not just our individual skills or organizational

competencies. Anticipatory governance frameworks seek to

291

Notes preemptively spot potential automation implications for human society,

and create malleable regulatory structures ahead of time rather than in

the rosy afterglow of wide adoption. Relevant research funding, public-

private partnerships, testbeds, and other mechanisms can support the

responsible development of beneficial automation applications, and

help manage associated risks. The transformation of the education

system does not just mean education in technical skills: it should guide

creativity, as well as critical thinking, ethical reasoning, and other

human capabilities that adapt to automated systems. Economic

relationship development is the process of determining how we will

share the benefits of increased productivity due to automation, which

mutual obligations we have regarding each other as parties, and how

the social support system will change to suit the new working patterns.

Taking the automation-induced economic transition as an example, the

process of building community resilience is necessary for the regions

to develop diverse strategies, skills development programs, better

infrastructure, and other adaptive capacity approaches to mitigate its

impact. Such collective preparation approaches understand that to

succeed in the transformative use of automating technologies while also

mitigating its challenges will require concerted action across many

different domains and stakeholders rather than just an individual or

institutional effort, and highlight the need for common vision,

collaborative responses and inclusive processes in managing this

significant technological transition.

5.2 Tools for Automation: Selenium, QTP, JUnit, TestNG, Appium,

etc.

The tools are software applications that are essentially the base

infrastructure on which automation solutions run across various types

of testing situations, including web applications, mobile, API, and

desktop. Automation tools have lost a lot of their building blockness as

the past two decades have given rise to sophisticated frameworks with

all-in-one capabilities for test creation, execution, reporting, and deeper

integration with the greater AD life cycle. The evolution of software

testing is a response to the growing complexity of contemporary

software systems, which frequently span multiple platforms,

technologies, and architectural styles that would be virtually impossible

to test manually within a reasonable time frame. Capturing this

diversity, organizations must now determine which tools make the most

292
MATS Centre for Distance and Online Education, MATS University

Notes sense in a diverse ecosystem and factor in the type of applications they

are building, their technology stack, their team's abilities, costs and

long-term maintainability. As such, the architecture and deployment of

these automation frameworks have emerged as an essential success

factor of testing, impacting deeper product quality, delivery speed, and,

ultimately, business value in the era of increasing competition in the

market. The historical rise of automation tools has gone along with the

general evolution of software development methods and technologies.

Early automation tools of the 90s were variations of high-level record-

and-playback utilities with very little programming, resulting in brittle

scripts that needed a lot of maintenance. In the 2000s, we saw the

emergence of stronger commercial solutions like HP QuickTest

Professional (QTP, later renamed UFT) which brought object-based

recognition and framework modularity, adding significantly to the

resilience and reusability of our scripts. The mid-2000s saw a shift in

the landscape with the emergence of open-source alternatives such as

Selenium, which allowed a wider range of users to leverage powerful

automation capabilities and sponsor community-driven innovation. The

Agile movement and the DevOps movement of the 2010s propelled

automation adoption in a much faster pace emphasizing continuous

testing as part of the delivery pipeline, as well as driving the

development of tools tailored to facilitate collaboration between

developers and testers. If we look back over the years, AI and machine

learning have been integrated to solve the traditional automation

challenges like identifying dynamic elements, maintaining the test

cases, prioritizing the test cases, etc. As a result of this historical

evolution, there is now a wide range of tools which all with have

different philosophies, capabilities and appropriate use cases that

testers need to be conscious of as they explore. Familiarity with this

evolution is an important context for evaluating modern tools and

understanding their conceptual roots, their limitations, and the direction

of their future growth in a rapidly changing world of technology. All

in all, Selenium is the most commonly used open-source framework for

web application testing, with a collection of tools that together

automate browsers, giving the capability to do functional and

regression testing across various platforms and programming

languages. Selenium primarily works using an API that enables testers

and developers to programmatically control web elements, simulating

293

Notes user actions like clicking buttons, entering text, selecting options, and

confirming page content. The Selenium suite of tools includes

Selenium WebDriver, which is an API that allows for a browser to be

controlled using specific programming languages, Selenium Grid,

which provides the ability to run tests distributed across machines and

browsers, and Selenium IDE, which is a record-and-playback tool for

building a Selenium test. Another key benefit of the framework is its

cross-browser compatibility, supporting all major browsers (Chrome,

Firefox, Safari, Edge, Internet Explorer), helping to ensure that it works

consistently across different user environments. Furthermore, with

official bindings for Java, C#, Python, Ruby, JavaScript, and other

popular programming languages, Selenium's language flexibility

improves its usefulness further.

Since its first implementation, Selenium architecture has undergone

drastic changes, leading to WebDriver becoming the dominant

component used today for automation. The Selenium WebDriver

follows a client-server architecture wherein the client libraries, written

in multiple programming languages, communicate with language-

specific drivers that interact with browser instances via the browser's

native automation interfaces. This overcomes the JavaScript security

limitations from the earlier versions, allowing for more reliable

interaction with complex web applications. Quoting from their website,

the advantages of the WebDriver architecture are as follows: 1) A

direct communication with the browser, unlike JavaScript injection

methods, which results in more robust and stable execution, 2) The

native support for the automation of the browser enables advanced

scenarios, like the handling of alerts, file uploads, and the opening of

new browser tabs, 3) The W3C WebDriver standardization means the

same code works across implementations. WebDrive, which is an

object-oriented design, with the main interfaces being the browser

(WebDriver), individual HTML elements (WebElement), and

individual strategies for selection (By). It continues to be a palatable

architecture even in the face of rapid change of the web landscape —

like progressive web apps, implementations of shadow DOM and such

JavaScript frameworks that can make automation feel like a cat and

mouse game. It is this powerful architecture — providing just enough

abstraction level — that allows Selenium to maintain compatibility

with evolving technologies while not compromising on a stable

294
MATS Centre for Distance and Online Education, MATS University

Notes interface for test developers that has made Selenium so widely adopted

over the years. Selenium's technical prowess issues a powerful signal

across the testing domain, but its importance extends far beyond test

cases, tech docs, and open-source projects. Being open-source, a rich

ecosystem of extensions, wrappers, and supporting libraries exists to

cover specialized needs like visual validation, performance

monitoring, accessibility testing, and improved reporting. Many

automation libraries are built on top of Selenium, like Protractor for

Angular apps, WebDriverIO for JavaScript environments, Robot

Framework for keyword-driven testing, etc., providing different vendor

independence while using the same browser automation engine.

Selenium has also made a considerable impact on industry standards,

with W3C standardization of the WebDriver protocol–a truly

impressive accomplishment for a testing tool which should ensure

future compatibility and support from browser vendors. By aligning so

closely with these established interaction patterns, the framework itself

has become widely adopted to the point that WebDriver-style

interaction patterns are now the de facto choice for web automation,

creating a common conceptual model for the tools and teams, thus

GTK. Selenium has brought web automation testing to a broad

audience, leveling its addition to organizational arsenals from

advanced capabilities down to the practical implementations for

organizations of nearly all sizes, but also playing a leading role in the

general evolution of software quality as a whole in the industry.

Although Selenium has a lot of advantages, it has several disadvantages

that led both to the development of tools complementary to the one you

would love to work with, as well as ongoing enhancements to the

framework itself. Dynamic web applications have always been one of

the most fragile ones when it comes to dependency on end-to-end tests,

as there is a constant need to synchronize with unpredictable page

loading, Ajax requests, and whatever is happening inside a JavaScript

dominating DOM, and communication failures can lead to flaky tests

when not handled properly. Another challenge owing to the

anthropogenic aspect of UI is element identification stability, such as

dynamic IDs, complex shadow DOM, and frequent layout changes

breaking static selectors. Test maintenance consumes a significant

amount of time as scripts must be kept up to date with web application

changes, as well as with new browser or WebDriver versions that can

295

Notes break existing functionality. Large test suites can suffer performance

issues due to the overhead of launching browsers, network latency, and

a fundamental serialness of UI testing that can lead to long execution

times. The initial setup for Selenium projects can be intimidating,

requiring drivers, dependencies, and supporting infrastructure, which

involves more than just core libraries. As a response to these challenges,

many solutions have emerged in the ecosystem, from explicit and

implicit wait strategies to more sophisticated selector strategies to page

object design patterns, from parallel execution frameworks to

containerized execution environments, and the resultant combination

of these solutions not only helps mitigate the constraints but preserves

the core principles of Selenium.

So, what’s been going on with the Selenium ecosystem? Selenium 4

brought major features such as the full W3C WebDriver protocol

compliance, improved documentation, improved grid support and

relative locators which find page elements based on human-readable

strategy. Finally, with the integration of CDP (Chrome DevTools

Protocol), another significant milestone provides fine-grained control

over browsers — everything from network activity to performance

profiling to geolocation and mobile device emulation can be achieved

without resorting to third party tools. The evolution of Selenium aligns

with the rise of testing frameworks, including JUnit, TestNG, NUnit,

and Mocha—ensuring that specialized adapters and plugins facilitate

integration and reporting with these frameworks and indeed strengthen

the testing ecosystem. The increasing use of Selenium as part of CI/CD

pipelines has led to better support for containers, cloud service

integrations, and orchestration to facilitate true continuous testing

practices. Selenium is actively developed under the umbrella of the

Selenium project, which is dedicated to ensuring backward

compatibility with existing test codebases while focusing on

performance improvements, stability enhancements, and further

expanding browser automation capabilities. These improvements

guarantee that Selenium stays competitive with the new challengers on

the block and solidifies its position as the bedrock of web automation

testing for the foreseeable future.

296
MATS Centre for Distance and Online Education, MATS University

Notes Unit 16: Framework for Automation Solution

QTP/UFT: Framework for Automation Solution

HP QuickTest Professional (QTP), which was later rebranded as

Unified Functional Testing (UFT) following the acquisition of HPE by

Micro Focus, is considered the top commercial automation tool for

functional and regression testing of web, desktop, and mobile

applications. In contrast to potential open-source substitutes, UFT

delivers a tailored integrated development environment for test

automation, with robust recording functionality, visual design tools,

comprehensive object repositories, and packaged reporting capabilities

that minimize the technical difficulties involved in design and upkeep

of automated tests. Back to top The tool's core programming interface

is VBScript, and it offers a rich object model that exposes application

elements and test actions as meaningful abstractions. UFT itself stands

for Unified Functional Testing, a feature of which is its powerful object

recognition engine that utilizes various identification properties to

identify and work with interface elements — even if some of their

attributes have changed since devising your tests. Its architecture is

designed to reuse shared object repositories, reusable functions, and

recovery scenarios so that it can scale automation to large application

portfolios efficiently. In fact, UFT's broad and unified scope makes it

particularly suited for enterprise deployments with heterogeneous

technology stacks, complex business applications, and formalized

testing and development processes that can all leverage more

formalized approaches to automation. The technological core behind

UFT is an unprecedented object recognition paradigm, characterized by

much reflected selector-based approach adopted by the majority of

open-source tools. Our solution utilizes an advanced object

identification method collecting multiple properties from every

interface element including name, class, index and array of technology-

specific properties storing it into a structured object repository which is

the building block of the test scripts. But when UFT fails due to an

application change by matching the properties. Then during execution,

UFT dynamically counts these properties to find the correct element

plus by using the configurable smart identification algorithms. Such an

approach provides fantastic resilience against interface changes that

would break selectors, which is why CSS selectors have been used to

297

Notes implement automation even for a long time—platforms do not break

automation with cosmetic changes, localization changes, or slight

restructuring of the structure. UFT goes a step further by adding

specialized add-ins that grant technology-specific identification

properties and methods for technologies like SAP, Oracle, NET, Java,

and Web technologies, allowing uniform automation strategies across

heterogeneous application environments. The object repository

architecture allows for shared definitions by multiple test scripts, so

they do not need to be embedded in the test scripts directly; this

significantly reduces duplication and maintenance overhead compared

to embedded identification approaches.

UFT's functionality reaches far beyond web automation and provides

a full stack capability for desktop applications, packaged enterprise

software, and modern mobility platforms. UFT has native support for

Windows applications developed on different frameworks for desktop

testing including. NET, WPF, Java, Visual Basic, PowerBuilder,

automation of complex business software that remains out of reach of

web-centric tools. Enterprise application testing: Not many vendors

throw in support for enterprise systems like SAP, Oracle, Siebel, and

PeopleSoft; however, in addition to what other vendors do, this solution

offers preconfigured object recognition strategies and specialized

action-oriented methods that complement the unique architectural

patterns these enterprise systems have. For Mobile, UFT integrates with

the application Mobile Center to execute device-based and emulator-

based automation on Android and iOS with device-specific, gestures,

and sensor and other functionalities via a unified automation interface.

Alongside these interface-specific features are API capabilities that

enable validation of the service layer in standalone or combined form

with UI tests for complete coverage. The breadth of the technology

also allows organizations to standardize on a single automation

platform for different applications, driving common practices, common

reporting, and the transfer of skills that would be hard to cover with a

specific tool for each platform. UFT's orchestration capabilities are a

big benefit for organizations implementing holistic ALM (Application

Lifecycle Management) strategies and formal testing processes. The

test management module integrates deeply with Micro Focus

ALM/Quality Center to provide bi-directional traceability between

requirements, test cases and the automation scripts while granting

298
MATS Centre for Distance and Online Education, MATS University

Notes support for intricate reporting on coverage, defects and execution

trends. Integration with Micro Focus LoadRunner allows for shared

functional and performance tests, empowering organizations to

validate both accuracy and scalability through cross-functional test

strategies. You have complex execution orchestration powered up to

support parallel runs, add condition paths, or switch the configuration

on environment that meets complicated testing needs on your system

beyond a simple script execution. Camera Hyde: The traceability of

automation assets is implemented by tracking each change made, which

can be easily connected with the integrated version control for

collaborative development and maintenance, which supports most of

the major systems (Git, Subversion, TFS). Custom integrations with

existing third-party tools and proprietary systems are enabled by the

open API and COM interfaces provided by the solution, extending its

utility within the diversity of technology ecosystems. UFT's integration

capabilities make it especially valuable in regulated industries and large

enterprises where end-to-end traceability, documentation, and

instrumented process compliance are significant must-haves for

testing infrastructures.

RUFT is very full fledged, however it has various restrictions that

businesses need to weigh when assessing automating strategies. The

costlier licensing features are the most apparent barrier, especially to

smaller organizations or budget-controlled teams who might find that

open-source alternatives become far more cost-justifiable options even

as they realize they do differ somewhat technically. The underlying

VBScript is relatively simple to learn, even for users with limited

programming skill, but this simplicity comes at the cost of features,

library availability, and developer tooling that are prevalent with more

modern languages, such as Java, C#, or Python. Environmental

dependencies result in deployment challenges, as UFT has large

installation footprints, needs administrative permissions, and demands

supported Windows operating systems that complicate the

containerization and cloud executable methods utilized throughout

modern testing techniques. The IDE itself, while powerful, is still pretty

much a traditional desktop app, as opposed to modern editor

workflows, which could be a turn-off for anyone using cloud-based

code editors, such as Visual Studio Code, JetBrains IDEs, et cetera, for

their everyday use. It is a closed-source platform therefore community

299

Notes extensions are limited in their range and importance compared to open

frameworks in which the users can build on and edit core functionality.

These limitations also explain why many organizations use hybrid

strategies, UFT for complex desktop applications, and open source

alternatives for web testing where technology differences are less

meaningful. UFT evolves with regular updates with new capabilities

while preserving the existing automation assets. Also, dependencies on

older versions have improved with the inclusion of support for over a

dozen new web technologies such as HTML5, Angular, Reacts, and

some challenges faced with conventional automation solutions in

JavaScript frameworks. The introduction of artificial intelligence

capabilities, such as AI-based object recognition, self-healing test

mechanisms, and intelligent test generation, has proven itself to

significantly enhance test artifact maintainability and reliability.

LeanFT capabilities can offer a developer-oriented interface to UFT's

core engine; They provide the ability to access the UFT engine

programmatically using modern languages (Java, C#, JavaScript) and

also allow integration with developer tools / practices. "UFT

Developer takes this a step further by offering a code-first automation

experience that fills the gap between UFT's traditional workflows and

current development processes. Mobile testing features keep growing

with better support for latest versions of iOS, Android, cloud device

farms and advanced mobile-specific functionality. Overall, these

evolutionary steps show that Micro Focus is trying to keep UFT up to

date with still necessary capabilities of automation, while not

discarding what has been successful in the past thereby ensuring the

solution will remain part of the testing framework despite the

popularity of open-source automation tooling and changing

development practices.

QUnit and TestNG: Framework Testing in Java

JUnit is the core Java testing framework that freed unit testing from

the pits of despair and birthed the test-driven development (TDD)

practice that would go on to impact modern software engineering in

ways we still benefit today. Developed in the late 1990s by Kent Beck

and Erich Gamma, JUnit brought a well-defined structure for automatic

testing via straightforward annotations, assertions and test runners,

putting verification front and centre within Java development. The

framework's main design is based on concepts like simplicity and

300
MATS Centre for Distance and Online Education, MATS University

Notes convention over configuration, with simple annotations like @Test,

@Before, and @After allowing a declarative syntax for specifying test

methods and their setup/teardown needs. Assert feature of JUnit

provides a wide range of assertion methods that express clearly what

the expected result is and what the failure message should look like

when expectation doesn't meet the output. From the architectural level,

the framework's fine-grained execution model allows you to run test

folks before you check in the code, but also very useful for the

Continuous Integration teams who can expose a configurable ant-like

setup to run tests over different execution strategies. The low coupling

of Junit and its easy integration with build tools such as Maven and

Gradle play an important role in its almost universal adoption on Java

projects, and helped to make automated tests a standard part of the Java

development process rather than an optional extra. JUnit has evolved

over major versions based on an increasing awareness of testing

requirements and the capabilities of the Java language. JUnit 3

popularized the first convention-based approach with TestCase

inheritance and naming conventions for test methods. JUnit 4

introduced annotations that remove the requirements of inheritance

and allow more flexible configuration while providing backward

compatibility. JUnit 5, which released in 2017, was a complete

architecture overhaul, a modular system consisting of JUnit Platform

(test discovery and execution API), JUnit Jupiter (modern

programming model), JUnit Vintage (backward compatibility layer).

With this release came many updates that included nested tests to

represent relationships between test groups, parameterized tests for a

data-driven approach, conditional test execution based on environment,

and extension points allowing customizations without requiring

inheritance. The architecture of JUnit 5 explicitly supports running both

classic and new programming models together within the same project.

It showcases how JUnit continuously evolved to fit the demands of

modern software development while still serving its original purpose as

the de facto testing framework for Java applications, serving as the

basis for numerous other testing frameworks in various programming

languages.

An alternative Java testing framework – TestNG – was developed as an

alternative to JUnit to overcome some of its shortcomings, specifically

in the context of complex testing scenarios that exceed simple unit

301

Notes tests. TestNG ("Next Generation") test framework was originated in

2004 by Cédric Beust as a response to unit-focused JUnit design being

considered as inadequate for integration, functional, and end-to-end

testing needs. Key features of the framework were flexible

configuration of tests via XML files and annotations, complex

mechanisms for grouping tests for narrow execution of subsets,

advanced dependency management between test methods and the built-

in capability for parallel execution to boost performance. TestNG really

brought a step forward with support for parameterization, allowing

data-driven testing with data providers that can dynamically or

externally create test inputs. So, the execution model supports complex

workflows: soft assertions that collect multiple failures before

reporting, partial runs that carry on in the presence of failures, and

configurable retry logic for handling intermittent issues. These features

were useful for integration with selenium and other automation tools

where testing scenarios involved complex interactions, external

dependencies, and performance considerations that went beyond what

was covered in unit testing in a controlled environment. This

philosophical difference shows most clearly when comparing the

architecture of JUnit architecture to that of TestNG. JUnit focuses on

simplicity and convention, offering an effortless core that addresses

common testing patterns well, and leaves others to extensions for

special capabilities. TestNG takes a more integrated approach with

powerful features directly tied to the API, avoiding the need for external

libraries to enable complex testing scenarios that would be more

challenging to implement in JUnit. JUnit's execution model is primarily

focused on independent test methods, with predetermined setup and

teardown, whereas TestNG gives you much more flexibility when it

comes to the configuration of method dependencies, groups, and

sophisticated execution ordering. The extension model of JUnit 5 sits

on top of a service-oriented architecture model, which has well-defined

extension points and composable behaviors, in contrast, TestNG relies

on listeners and custom annotations to achieve similar customization

scenarios. JUnit heavily integrates itself with the Java module system

and modern language features, while TestNG has more generalized

compatibility with various Java ecosystems. These architectural

differences do not make one side better or worse than the other, but put

forth different priorities and assumptions about what testing is

302
MATS Centre for Distance and Online Education, MATS University

Notes necessary; so developers choose the one that better suits the needs

based on their specific project requirements and testing paradigm.

Evaluating the usefulness of JUnit and TestNG in real-world testing

scenarios also requires consideration of how they incorporate into

broader automation ecosystems. These frameworks provide the

execution foundation for collective testing tools that implement the

infrastructure necessary for test discovery, configuration, and reporting

and domain-specific libraries that implement specific testing

capabilities. These frameworks automate test lifecycle, configuration,

and assertions for Selenium automation, and WebDriver interacts with

the browser, so their capabilities in conjunction work as a single

complete testing solution. Frameworks such as Cucumber work with

both JUnit and TestNG to allow behavior-driven development and to

run scenarios specified in Gherkin syntax on top of these testing

foundations. API testing libraries such as REST-assured and Karate

use JUnit or TestNG for execution control but include specific methods

for making HTTP requests & validations on the response. Performance

testing tools such as JMeter can export results to these frameworks for

reporting from functional and performance test suites in one platform.

Spring Framework provides specialized support for testing Spring

applications with JUnit and also with TestNG, providing coherent

facilities to test Spring code under both test frameworks. JUnit and

TestNG are two of the most popular Java testing frameworks, focusing

heavily on unit testing and providing powerful capabilities, as well as

extensive support for integration with other tools (like mocking

frameworks), to help users execute more complex test scenarios beyond

unit tests. The choice between JUnit and TestNG ultimately comes

down to assessing their individual strengths and limitations in

comparison to your own project needs and team preferences.

Advantages of JUnit over TestNG include better adoption (more

documentation and community support), it is lighter in weights with

fewer dependencies, better integration with development tools, and a

more modern, flexible extension architecture in JUnit 5 that supports

specialized testing needs. Some advantages that TestNG brings to the

table are better configuration flexibility using XML and annotations,

better built-in support for parallel test executions, better support for

dependency among tests, and enhanced built-in support for data-driven

testing without requiring additional libraries. For reference some of the

303

Notes common aspects considered during the selection process include

existing experience within the team, level of complexity of the project,

who’s tests you are testing (unit vs integration vs e2e), needs for

parallelisation and integration with other tools in the testing ecosystem.

It is common practice for large organizations to use JUnit for developer-

focused tests (where its simplicity and tooling integration have clear

advantages) and to use TestNG for complex integration and UI

automation scenarios (where its advanced features add significant

value). This practical perspective is based on the fact that testing

frameworks can offer value at different levels, and neither is an

exclusive choice; instead, it enables teams to use the best approach for

the given testing need while assuring they can have a pipeline testing

strategy in-line with the overarching testing portfolio.

Alternative Mobile Automation Framework: Appium

As the dominant open source testing framework for mobile

applications, frequent user feedback has been uncovered to provide a

common vehicle for automation across iOS, Android & Windows

applications in a single WebDriver-compatible API. Created to solve

the fragmentation issues in mobile testing, Appium allows testers to

write native tests for mobile web, native, and hybrid platforms, reusing

their tests across different mobile operating systems without

modifying them or recompiling the application code. The framework

architecture is based on WebDriver but expands into the mobile space

with mobile-specific commands to support interactions like gestures,

accepting device orientation changes, and biometric authentication.

Appium can be used to test native applications built in native

technologies as well as hybrid applications that use web components

within a native container and mobile web applications that run in the

browser on a device. This holistic approach provides a consistent

automation strategy across multiple mobile technologies, so there is

less necessity for multiple niche tools and organizations can leverage

existing WebDriver knowledge and skills for mobile automation

programs. Client-server architecture of framework enables remote

execution, where the tests can be run on physical devices, emulators or

simulators and the actual test scripts running on a separate developer

machines or continuous integration servers. The Appium architecture

is driven by creative solutions to challenges unique to cross-platform

mobile automation. Fundamentally speaking, Appium is a server that

304
MATS Centre for Distance and Online Education, MATS University

Notes listens for WebDriver commands over HTTP and forwards them as

native automation commands to the appropriate testing framework on

the device (XCUITest for iOS devices, UiAutomator/Espresso for

Android devices, and WinAppDriver for Windows applications). This

layer of translation protects the test scripts from the differences of a

given platform so that identical code can run in one or many

environments by simply changing the appropriate configuration. The

bootstrap process manages the complexities associated with different

simulator/emulator configurations, device connections, and other

dependencies by dynamically initializing, jars, sockets, and anything

else that may be required to communicate with the target platform.

During test execution, the framework's session management takes care

of application install, launch and termination while retaining

communication between client libraries and device automation

frameworks. For hybrid apps, Appium supports context switching,

allowing tests to switch between native and web views and issuing the

relevant commands accordingly. This advanced architecture effectively

hides the performance discrepancies between mobile platforms,

allowing for a uniform automation experience even when the

underlying teknoloji is diverse.

Beyond automated UI interaction, Appium offers advanced features

that cater to the complex needs of comprehensive mobile application

testing. With device management features you can automate device-

specific functionality like responding to system dialogs, managing

application permissions, simulating an incoming call or message and

controlling system settings like location services or network

conditions. Gesture support are simple actions like tap, swipe, and

scroll through to more complex multi-touch actions such as pinch,

zoom and custom gesture tracks that also challenge sophisticated UI

patterns. Duohui: It does indeed have working capabilities of image

testing, which is the basis of identifying the visual element through

image recognition, so the traditional way of identifying elements is

used to identify these elements, but if the traditional locator strategy is

unable to work can use image based testing capabilities to supplement,

so that applications can be interacted with through the images. It uses

biometric authentication simulation which allows testing of fingerprint

and face unlock functionality without interacting with physical sensor.

Mobile Web testing support allows you to handle mobile browsers

305

Notes specifically and validate responsive designs against different screen

sizes and orientations. These all-in-one features facilitate mobile

applications to be tested extensively on functional, usability, and

compatibility aspects providing coverage for various tests that modern

mobile software development demands. Hence, Appium serves

comprehensive quality assurance strategies when integrated with

broader testing ecosystems. WebDriver compatibility of Appium and

its integration with existing Selenium-based frameworks allow

organizations to extend their web testing methodologies to mobile

platforms with minimal changes. Integration with Language-Specific

Testing Frameworks: The framework supports popular programming

languages such as Java, Python, JavaScript, Ruby, and C#, making it

easier to work with language-specific testing frameworks such as JUnit,

TestNG, pytest, Mocha, and NUnit. Cloud testing services such as

BrowserStack, Sauce Labs, and AWS Device Farm provide access to

Appium execution environments with a wide device library, making it

easy to access different hardware configurations without managing

them locally. Continuous integration platforms, such as Jenkins,

GitHub Actions and CircleCI, couple with Appium via industry-

standard automation interfaces allowing mobile testing as part of a

complete CI/CD pipeline. Test management systems like TestRail,

Zephyr, and qTest allow Appium test results to be integrated through

adapters that ensure traceability between requirements and test cases,

and automation results. These affiliations illustrate Appium as not just

another specific tool but an underpinning ingredient within integrated

testing tactics reaching across platforms, methodologies, and

organizational workflows. However, while Appium has a lot to offer, it

does also come with certain challenges that businesses need to resolve

when considering mobile automation strategies. Complex setup is a

serious initial pain, since the dependencies you need to set up (platform

SDKs/virtual device managers/driver components) take more effort,

time, fiddling and troubleshooting than the average web automation

tools. Its client-server architecture and translation layer output can slow

its speed down compared to native automation frameworks, especially

in large test suites or complex interactions. -A few device-application

combinations have stability issues, especially with new devices, OS

versions, and apps that implement UI in a non-standard, non-

automatable manner. In dynamic interfaces, apps that do not

306
MATS Centre for Distance and Online Education, MATS University

Notes implement right properties for accessibility (or any interface at all), or

custom UI components which do not expose standard properties which

can be used as location strategies, identifying elements can be difficult.

Frequent changes in the mobile operating system and fragmentation of

devices lead to increased maintenance requirements, as automation

scripts need validation again when platforms change, and need

adjustment in some cases. The these challenges are why many

organizations supplement Appium testing with additional approaches

such as manual exploration, platform specific automation of high-

priority features, and careful prioritization of which automated

scenarios to create in order to optimize coverage against maintenance

overheads.

With active development to address historical limitations and to

expand capabilities for emerging mobile technologies, Appium's

evolution continues. Appium 2.0 is a complete architectural overhaul,

with modular drivers, a powerful plugin system, and a new extensibility

model that helps you customize Appium to suit the specialized testing

needs. An improved overall execution performance for large suites is

achieved through optimizations on communication protocols,

command executions, and overhead during test runs. You can use

accessibility ID, predicates, class chains and even image recognition

now covering more complex and dynamical interfaces making test less

brittle. Real improvements in device management are handling of

device connections, application installations and system interactions

that make setup less complex and execution fail-proof. The integration

with mobile device management (MDM) solutions allows for testing in

enterprise environments where security policies, managed

configurations, and controlled application distribution mirror how these

applications are deployed in the real world. Vitamin E is important for

cellular function and plays an important role in the skin, eyes, and

immune system.

Other Powerful Automation Tools

Cypress has evolved into a modern JavaScript-centric testing

framework built for web applications, providing a different

perspective on conventional Selenium automation with advancements

in architecture and developer experience. Unlike webdriver-based

solutions operating externally to the browser, Cypress executes inside

the browser environment itself, allowing native access to all browser

307

Notes objects, events and network activity and avoiding the network

communication latency introduced when using a webdriver-based

solution. The architectural choice allows for a much better alignment

with actual app behavior since Cypress waits for elements to be

presented and animations to complete and XHRs to settle without

explicit waits or timeouts that bloat traditional automation scripts. All

of that built-in debugging goodness, all the way back to time within the

framework, as it takes a snapshot the DOM and stores it at every step

of the application, so the tester can re-trigger the exact state in the

application when it fails. It already has built-in mocking and stubbing

for network requests, so you can test how your application behaves

based on the requests you make to servers or nearby APIs without your

tests having dependencies on those servers. Click on this image to learn

moreThe developer-centric design features hot reloading during test

development, an intuitive chaining syntax, and an extensive

documentation that drastically reduces the learning curve as opposed

to much more complex frameworks. However, these unique features of

Cypress have made it ever more prevalent among front-end developers

looking for powerful testing tools that conform into modern JavaScript

testing ecosystems. Playwright is Microsoft's cross-browser

automation library with innovative cross-browser testing features that

simplify typical automation issues. The framework provides a single

API and supports a variety of browsers in validation, including

Chromium, Firefox and WebKit (Safari) for comprehensive cross-

browser serialization with minimal code changes. Playwright's

architecture prioritizes reliability by waiting by default based on smart

browser events, network calls, and DOM changes, rather than the

manual creation of waits. For example, the isolation capabilities include

so-called browser contexts, which enable multiple independent test

sessions in the same browser instance and thus an efficient

parallelisation of tests without the overhead of launching your own

browser. The efficient interception of all APIs warrants control over

API responses, assisting in testing multiple scenarios consistently –

access testing feature can also validate the application against

inclusivity standards. Playwright key features enables testing of

modern web applications including support checks of shadow DOM

elements, iframes, multiple tabs, and other challenging patterns that

traditional automation-based techniques struggle against. Support for

308
MATS Centre for Distance and Online Education, MATS University

Notes many programming languages such as JavaScript, TypeScript,

Python,. NET, and Java allows this tool to connect with multiple

development teams. Playwright is a strong alternative to the

established frameworks and is especially suited for teams looking for

modern automation solutions with built-in answers to common

reliability problems.

For instance, Robot Framework: Robot Framework is an open-source

test automation framework that uses a keyword-driven approach, which

makes it easy to read, re-use and allows it to be used by non-

programmers as well. Its framework uses a tabular syntax where tests

are described in high-level keywords representing automation logic and

serves as a domain-specific language for testing that links

troubleshooting with business needs. This extensibility makes Robot

Framework very powerful because its architecture is built by separating

the core engine from implementation libraries, allowing their

integration into multiple automation technologies like Selenium (web

testing), Appium (mobile automation), database tools, API clients, and

even custom keyword implementations in either Python or Java. Built-

in comprehensive reporting generates detailed HTML output with

execution statistics, error information, and optional screenshots that

assist with failure analysis and status communication. Resource and

variable files help share common things across the test suites, thus

leading to sharing of common things and avoiding duplication in large

automation portfolios. It integrates with popular continuous

integration systems via command-line execution and standardized

output formats that remain compatible with more extensive

development workflows. This broadens the key benefits of Robot

Framework for those organizations looking for a single automation

strategy across different technologies with input from various

stakeholders, such as business analysts, manual testers and developers.

As the leader of behavior-driven development (BDD) waste test

automation, Cucumber integrates a framework that ensures a common

vocabulary between technical and non-technical stakeholders by

writing executable specifications in the most natural language. The

framework adopts Gherkin syntax with Given-When-Then statements

that articulate test scenarios in business speak while mapping to

underlying automation code that enacts the reported behavior. It results

in living documentation that is also your requirements, test cases and

309

Notes automation scripts and ensures that your expected behaviour is aligned

with the functionality you write. Multiple programming languages:

Cucumber supports multiple programming languages like Java, Ruby,

JavaScript, Python, and so on. NET, enabling teams to write step

definitions in their own favorite technology while reusing the same

business-readable scenario across any of them. Acceptance Criteria —

This ties into that aspect of the framework that promotes collaboration

between product owners, business analysts and quality assurance

specialists, leading to the establishment of acceptance criteria before

development commencing, to ensure that everyone is on the same page

and that work is not wasted due to misunderstood requirements. Its

integration with legacy testing frameworks such as JUnit and TestNG

allows execution as part of established automation frameworks, and

reporting plug-ins provide documentation appropriate for different

stakeholders. It's these capabilities that make Cucumber so useful for

organizations using BDD or looking to establish closer alignment

between business requirements and automated validation, in particular,

in complex domains where communication of expected behavior is

crucial to success in development.

Katalon Studio provides an all-in-one test solution that integrates the

best of both open-source automation frameworks with the commercial

support, drivers, and easier configuration efforts that organizations

often long to reduce the complexities of implementation. This

foundation allows Katalon to provide a common interface for web,

mobile, desktop and API testing, without needing extensive installation

or programming experience. Jammy: TestStudio has its own dual-

mode IDE where one can create a record-and-playback test (which is

quick to get running), and switch to script view if you want finer control

and customization, hence works for teams of various skills. Element

identification among applications is managed through built-in object

repositories, while test case management capabilities organize

scenarios into structured hierarchies containing reusable components.

The execution engine provides support for local execution, remote

execution, and cloud testing services with complete scheduling and the

ability to run parts of the test in parallel to increase performance.

Integration with well-known development tools is established via links

to Git for version control, JIRA for defect management, and Jenkins for

continuous integration; this aligns automation with larger development

310
MATS Centre for Distance and Online Education, MATS University

Notes workflows. Data-driven decisions: Insights from testing analytics

dashboards about the coverage, execution trends, failure trends, help in

deciding on quality improvement initiatives. This integrated capability

attracts organizations who want commercial-grade testing without the

need for framework assembly or the high costs of enterprise testing

platforms. Now, Postman has transitioned from a simple API client to

a complete API development and testing platform that helps practice

structured and organized validation of service interfaces during the

entire application lifecycle. The tool has an easy-to-use interface and

you can set up HTTP requests with headers, authentication, query

parameters, and request body in multiple formats. Organizing the

collection allows you to group related requests together into structured

test suites with common environment, variable, and authentication

information that promotes consistency and reusability. Postman

supports comprehensive testing evaluating response status codes,

headers, body content, performance characteristics, etc., using a

JavaScript-based assertion framework, and allowing for complex test

scenarios using pre-request and post-request scripts. Automation

features such as running collections through the command-line

Newman utility facilitates triggering collections to run on continuous

integration Collaboration features like shared workspaces, team

libraries, and documentation generation promote knowledge sharing

across development and testing teams using any API service. In this

course, you will expand your REST API skills and learn about mock

server capabilities that allow for frontend development and testing

against the API contract prior to the backend being complete; speeding

up parallel development processes. With these abilities, Postman has

become the de facto industry standard tool for API testing, which is

particularly beneficial as modern application architectures are

evermore reliant on service interfaces for both internal and external

integration.

LoadRunner and JMeter are specialized automation tools for

performance testing, used to validate that application behavior remains

consistent (in terms of functional correctness) when subjected to load

beyond that of normal usage. Micro Focus LoadRunner is a commercial

tool that offers extensive traffic simulation capabilities for simulating

realistic user loads on web, mobile, and enterprise applications using

its advanced virtual user technology, which emulates browser behavior,

311

Notes network conditions, and think times. The instrument itself runs through

a controller which executes tests across the generators managing

thousands of virtual clients collecting detailed performance metrics

from both the client and server sides. Analysis features take care of

visualisation and correlation of response times, throughput, error rates,

and resource usage identifying performance bottlenecks, and capacity

constraints. An open-source alternative to LoadNinja, JMeter supports

a wide variety of protocols, including HTTP, HTTPS, SOAP, REST,

JMS, JDBC, LDAP testing. - Your tool pyramid test plans are built on

tree datatype elements to support multiple complex scenarios. - All

about scenarios, encapsulate parameterization, assertions and logic

controllers that generate real time simulation patterns. Distributed

testing allows for load generation from multiple machines to increase

the number of concurrent users, and the multiple listeners capture and

visualize performance data as it is executed. So these performance

testing tools are another level of tools other than a functional

automation framework which are big enough to address the scalability

validation as it cannot be handled and verified through any functional

testing tools. Emerging solutions are addressing historical limitations

and new paradigms of technology usage. Low-code automation

platforms such as TestProject, Ghost Inspector, and Testim employ AI

capabilities to automate test creation and maintenance through machine

learning for robust element identification, self-healing tests, and

intelligent test generation, which help to mitigate the technical

challenges associated with adopting automation. Visual testing

solution: Automating user interface verification implies not only

functional behavior but also UI validation so visual testing tools like

Applitools, Percy, and Screenster focus on spotting visual regressions,

layout and rendering issues across a range of different browsers and

devices. TestComplete, Ranorex, and Unified Functional Testing are

some of the codeless automation solutions that provide advanced

recording capabilities and visual editors that allow for automation

without programming skills, filling the gap between manual testing

practices and automated testing practices. Microservices

verification(evangelized in tools such as Pact and Spring Cloud

Contract) provides a solution to these challenges: using executable

specifications to verify that service providers and consumers maintain

compatible interfaces. Shift-left testing tools like static analysis,

312
MATS Centre for Distance and Online Education, MATS University

Notes mutation testing, and property-based testing frameworks shift the

validation of your code earlier in the development pipeline, adding

detection of problems ahead of traditional phases of test execution.

Such evolutionary developments also showcase how the automation

tool ecosystem continuously expands as per transforming application

architectures, development methodologies, and organizational

competencies, broadening the scope for specialized solutions specific

to various testing requirements.

313

Notes Unit 17: Automated Test Script Design

5.3 Automated Test Script Design: Automated Test Script Design

Blocks of test automation that either appear to fulfill a need to validate

a business requirement but fail to address long-term maintainability

concerns, or that are overly rigid and/or complex can hinder or prevent

test automation success. Test script design is not just about getting the

functional test cases correct; it is also about getting the architecture

right for the longterm sustainability of the application. A major

advantage of maintainable automation is that at its core it does not just

address requirements as a reactive measure, it addresses the inevitable

changers in the system with a strategic approach to automating the

process. This progressive view asserts that applications are in a constant

state of flex, any interface changes, functionality improvements, or

technology transitions can render brittle automation implementations

obsolete in short order. Not only do these reusable test components

save a lot of time (the amount of time spent developing similar test

scenarios again), but they also help to maintain uniformity, once

developed these reusable components can be reused over various

similar test scenarios and you only need to change a few lines of code

if the underlying application changes. The approach to writing

effective test scripts is similar to the principles practiced in software

engineering, wherein modularity, abstraction, encapsulation, and the

separation of concerns work together to deliver durable automation

assets. These principles translate into concrete forms of design patterns,

coding practices, and organizational strategies by which test scripts can

survive changes in the applications they target and remain assets for

quality assurance rather than liabilities of ongoing maintenance.

Companies that prioritize good test design early on see serious return

on investment by way of lower maintenance costs, faster test

development, and more reliable automation with a consistent value

proposition throughout product evolution cycles. Test script design in

history reflects a growing understanding of challenges in the

sustainability of automation in the industry. X is a checkbox or similar

element that is checked under specific conditions generated by the

current states of the application, the properties of the selected elements,

and/or the execution paths of the execution from the scripts. However,

these implementations turned out to be fragile, breaking with even

314
MATS Centre for Distance and Online Education, MATS University

Notes small application changes, and adding a substantial maintenance

burden that eroded automation's efficiency gains. The realization of

these limitations of standard shell scripts gave rise to frameworks for

structured scripting, which could finally provide elementary modularity

through reusable functions, making a more maintainable alternative for

middleware, but still holding a lot of unnecessary duplication and

application-specific implementation details. The development of data-

driven frameworks was a huge step forward because test inputs and

validation criteria could now be defined and run independently of the

implementation logic, allowing the same application code to support

many test cases with common implementation aspects. The keyword

driven approaches took abstraction a step further, converting human

friendly commands into technical implementation details resulting in

domain specific testing languages that made it easier for wider groups

of stakeholders. They utilize the concepts from both the approaches and

object-oriented principles to help build a continuous and powerful

automation architecture by enabling maximum reusability with

minimum maintenance. This evolutionary development reflects the

realization of the industry that test automation is a thoughtful design in

the solution space, not just a technical implementation to write scripts

and run them, leading to even more sophisticated script architecture to

modern-day sustainability risks that posed a threat to automation's

return on investment in the first place.

Test scripts that are maintainable and reusable not only make sense

from an engineering elegance perspective — but have real benefits to

the organization that justify investment in proper design approaches.

Maintenance efficacy is the most immediate business benefit, as well-

constructed scripts require far less work to alter the design of

applications, thus better allocation of resources to keep automation

assets up and running, and teams dedicated to testing new features

rather than repairing scripts. As the scripts age, test development

accelerates, comprehensive components, patterns, and utilities provide

reusable pieces that allow the rapid development of new test cases that

utilize existing infrastructure instead of needing to be developed from

scratch. The right test designs can be abstracted and shared between

many people with different levels of technical skills, leading to more

efficient use of resources by enabling contributions from people with

disparate technical expertise and reducing reliance on specialist

315

Notes automation engineers who may be stretched thin. That said, the

repetitive nature of implementation patterns and shared utilities that

standardize the approaches for validation across the application should

lead to better quality since it reduces variation in how similar features

are validated. All these combined advantages ensure improved return

on investment, as better design requires more upfront investment, but

ends up saving you a huge long-term cost compared to faster but brittle

approaches that necessitate continuous maintainance or eventual

rewrite. Such business considerations highlight how quality of script

design should be evaluated as a strategic input rather than just an

implementation detail.

Building Maintainable Automation — Architecture Patterns

A widely adopted architectural approach for maintainable web test

automation emerges as the Page Object Model (POM), a pattern that

encapsulates interaction details of a web interface, segregating these

from the test logic itself. Each application screen or UI segment is

represented by a separate class that contains the elements, operations,

and behaviors associated with the relevant interface, forming a clean

separation between what is being tested and how it interacts with the

application. You expose meaningful business methods in page objects,

like login As Administrator() or search For Product (itemName)

instead of exposing implementation details like finding element

locators or interaction sequences. This abstraction allows for a domain-

specific language for tests that clearly states what we want to validate

without exposing all the technical mumbo jumbo. Changes are

confined within the page objects but are not propagating to many test

scripts, like, when the interface changes, which significantly reduces

the maintenance cost. If we consider the page objects as individual

classes, the communication between them usually mimics the

navigation flows in the target application, where methods return new

instances of a page. This structure ensures good practices like

encapsulating element locators, single point of handling waits and

synchronization, and uniform implementation of common operations

across similar elements. The Page Object Model has done so well

serving the needs of web testing that it has inspired similar approaches

for other UI-based platforms, like mobile apps (Screen Objects),

desktop apps (Dialog Objects), and service testing (Service Objects),

confirming its fundamental validity beyond any specific kind of

316
MATS Centre for Distance and Online Education, MATS University

Notes automation effort. While the implementation of Page Object patterns

will differ greatly depending on the programming languages and

frameworks being used, there are several key principles that hold

regardless of the technical environment being leveraged. One of those

fundamental characteristics is encapsulation of element locators, where

selectors need to be defined once, in the page object, instead of being

in multiple test scripts, thus having a single point of maintenance in

case identification properties are altered. At the level of methods,

granularity involves careful balancing of atomic functions, which allow

maximum flexibility, against higher-level composite operations, which

simplify readability and more efficient maintenance. Any of the

previous page methods usually would return a next page object for

navigation actions or a domain data for fetching functions, easy to chain

out fluent interfaces identifying what follows. These patterns usually

initialize the page in the constructor and verify if the page has

completely opened and is ready for interaction before the operations.

Inheritance hierarchies may arise naturally for connected pages that

have common behavior or elements; however, composition with

delegate objects or utility classes normally provide a more viable way

of extension. Then, error handling strategies that should be followed

inside page objects must be balanced with meaningful information

about failures against keeping desirable abstraction levels that must not

leak internal details that shouldn't be known. This implementation

aspect has a major effect for maintainability in the long term, where

trivial design decisions can result in severe impacts on the robustness

of the scripts as applications change over time.

The Screenplay Pattern (or Actor Pattern) — This is an evolution of

Page Objects that further improves maintainability by encouraging an

even more strict separation of concerns in line with domain driven

design. This architectural approach organizes test automation in

alignment with the idea of actors that carry out tasks comprised of

interactions with the system, a direct correlation between the way

business stakeholders articulate application usage scenarios.

Screenplay, on the other hand, is a design that organizes code around

goals and activities from the perspective of the end-user, providing a

higher level of abstraction that can cope well with the inevitable

changes to the interface. The pattern identifies several essential

concepts: Actors represent users of the system with specific skills and

317

Notes attributes, Tasks represent high-level actions that accomplish a business

objective, Interactions represent concrete operations against the system

(e.g., click a button / enter text), Questions represent information to be

extracted from the system to verify something, and Abilities represent

the skills actors need to perform tasks such as go to a website or invoke

APIs. The decomposition gives us highly reusable components,

assembled into readable test scenario what strongly expresses business

intent, while technical encapsulation is kept very high. The Screenplay

Pattern shines in scenarios involving complex applications with

multiple user types, diverse interfaces, and intricate business processes

where the Page Objects approach can lead to unwieldy code or fail to

encapsulate the key concepts of the domain at stake. While needing

more up-front investment than simpler patterns, Screenplay provides

enhanced maintainability for enterprise-scale automation through the

establishment of a sustainable architecture that is immune to

implementation churn. The Layered Architecture approach is a higher-

level architecture for test automation projects, in which components are

grouped into layers of functionality, in a way consistent with the

separation of concerns, that enables maximum reusability across the

entire test automation portfolio. Having business readable language

which returns true or false helps to convey Intention of validation

among non-technical stack holders. The Business Workflow layer

encapsulates domain processes and activities that consist of multiple

lowlevel steps, offering reusable higher-order operations that represent

end-to-end user journeys or system capabilities. The Application

Interface layer or Page Object or Screenplay components deal with

interactions directly with the system under test, shielding any technical

details about locating an element, performing an action, and a

visualisation of the interface Utility (common services used across the

framework such as data generation, system configuration, logging,

reporting, etc.) The Driver layer handles technical communication

with the system under test behind the scenes: browser automation,

mobile drivers, API clients, or another interface mechanism. This

systematic design ensures defined responsibility boundaries,

consistent implementation patterns, and makes it possible to reuse

components through different test scenarios. It works for projects

ranging from small business projects to enterprise-scale automation

efforts using a layered architecture — turning it into an easily

318
MATS Centre for Distance and Online Education, MATS University

Notes understood but structured approach to deployment allowing for

growing complexity between layers while allowing for efficient tea

5.4 Continuous Integration/Continuous Testing: Integration of

automated testing in CI/CD pipelines

CI and CT are evolutionary trends in the software revolution, reflecting

a radical change in how products are developed with respect to quality

throughout the delivery lifecycle. Fundamentally, these approaches

displace the erstwhile siloed development, late integration, and late

testing in favor of put code in together often, and automate verification

of this immediately afterwards. Continuous Integration (CI) creates a

discipline of integrating developer changes into a shared repository

several times a day, so that automated builds can test potential

integration problems that might have otherwise slipped through until

late in the project. This philosophy is amplified in Continuous Testing,

where modern tooling can run user-defined automated test suites as a

seamless part of the integration process, ensuring the code not only

builds but also works according to expectations and does not alter

existing behavior negatively. These practices together form a quality

feedback loop that shrinks the time it takes to introduce a defect and

then discover it, moving testing left in the software development

process and allowing for an earlier course-correcting solution — when

fixes are still inexpensive and low-impact. This paradigm necessitates

significant modifications to conventional development and testing

processes, including the need for increased automation, rapid

execution, and stronger integration between formerly siloed tasks.

Organizations that implement these practices successfully are able to

reap fantastic competitive and tactical advantages in terms of speed of

delivery, quality, integration pains and assurance of stability being far

less on release but throughout the course of its development.

Understanding the importance of continuous testing can only be done

when we get some historical context of how testing evolved in the

development process. In traditional waterfall methodologies, testing

was treated as a separate phase that occurred after development was

complete, resulting in long feedback loops in which defects identified

during testing could require considerable rework and cause delays.

With the rise of iterative and agile methodologies, testing activities

were propogated earlier, but they were still "mini-waterfalls" echoing

the previous silos, mostly separate from development. In the early

319

Notes 2000s, ongoing integration also became a movement, with goals of

integrating the code as often as possible and building it automatically,

but their implementations more focused on successful compilation,

rather than launch and complete testing. The DevOps movement

accelerated this by removing systemic barriers to sharing between

development and operations, and increasing the emphasis on

automation end-to-end through the delivery pipeline. Continuous

testing evolved from this and organizations realized that build

verification alone was not giving them enough quality guarantees and

passing builds could still mean having huge functional defects. Through

the inclusion of automated testing in CI pipelines, organizations

extended the definition of quality verification beyond technical

integration by validating functional correctness, performance

characteristics, security posture, and other consequential quality

dimensions. This shift is transformative in that it necessitates a critical

evolution of testing from being a lagging step following development,

to becoming an integrated, holistic, continuous set of activities that

deliver instantaneous feedback on the process of development itself—

which can have a fundamental effect on team composition, tooling,

testing design, and delivery approach.

The business reasons for embracing automated testing as a part of

CI/CD pipelines are well beyond technology, addressing profound

problems confronting modern software organizations. Accelerated

feedback loops may be the most immediate benefit, with defects being

noticed in minutes after their introduction instead of days or weeks

later, greatly minimizing the context-switching and diagnostic efforts

necessary to resolve problems. Given that automated testing prevents

defects from piling up, as the code quality is better maintained, quality

improvements will surely follow as, instead of the code degrading to

the point where everything needs to be refactored before a release

where a mountain of defects will need remediation, releases will

become normal and costly work, versus punishing the code into taking

lunch money. Lowered integration risk tackles one of the oldest

problems in software dev, where “integration hell” scenarios bring

together components that have worked great in isolation but struggle to

work together although they met specs individually. Consistent passing

of comprehensive test suites provide objective evidence of readiness

instead of subjective assessments or arbitrary quality gates, resulting in

320
MATS Centre for Distance and Online Education, MATS University

Notes increased confidence for deployment. This confidence pays dividends

in terms of development velocity, allowing more frequent releases with

the same degree of risk and verification overhead (or even less). Defect

detection as early as possible is a widely established principle, as it

allows for cost-efficient defect fixes — the same bug to fix is typically

at least 100 times more expensive as it follows through release stages.

The business rationale behind continuing to test has convincingly

legitimized its evolution from a strictly technical task towards a

strategic affair for those organizations that want to gain competitive

edge with their software enterprise, where success on this journey can

be measured in both efficiency and effectiveness in terms of the

development organization.

The Architecture of Continuous Testing

The effective architecture of continuous testing spans components that

work together to produce end-to-end quality feedback throughout the

development lifecycle. Source control systems provide the foundation,

creating a shared code repository where all developer changes are

committed and tracked, with modern distributed version control

systems like Git opening the doors for complex branching patterns to

manage the balance between the need for frequent integration and

stabilization concerns. Build automation tools take source code and

turn it into executable artifacts, managing compilation, dependency

management, and packaging while providing a consistent, repeatable

process and removing environment-specific build problems. So, CI

servers manage the whole process, listening for changes to repositories

and triggering the desired build and test workflows, reporting to the

appropriate stakeholders via notifications and dashboards. The test

execution engines execute different kinds of tests from unit tests to end-

to-end validations interfacing with the CI server and providing detailed

results, which include failure details, coverage and performance. Test

environment management systems provide and configure the required

infrastructure, creating the right conditions for test execution while

isolating parallel testing activities. Artifact repository is where all

application components (including test assets) will be stored in a

versioned manner and help deploy exact combinations, in different

environments. An advanced system further leverages the results

through its reporting and analytics components by aggregating them

across many builds and tests, discovering trends, flaky tests, and

321

Notes potential quality issues that need attention. Together, these architectural

pieces convert testing from a manual, random activity into a

coordinated, automatic system that delivers ongoing quality feedback

throughout development. Defining continuous testing workflows

means orchestrating these elements into a rational workflows that

constrains the level of detail or analysis to balance depth of coverage

against speed to execute. The commit stage is the first quality gate,

running within a few minutes of code being submitted, which allows

for fast-running validations — compilation if available, lint checks, unit

tests and light-weight static analysis are run that validate basic

correctness without a lot of environmental dependencies. Followers of

commits that pass initial validation are acceptance testing build, which

performs further validation, including integration tests, API validation,

and component-level testing that verifies components are working

properly when used in isolation and in do-nothing combinations.

Deployment verification takes the validation a step further, running

system tests, performance tests, security scans, and other checks for

things that can only be verified against whole applications that are

fully deployed rather than isolated components. Production monitoring

closes the feedback loop by tracking application behavior during real-

world use, catching issues missed by pre-production testing while also

informing future test improvement. These workflow stages are

arranged in a progressive validation sequence, with each subsequent

stage having greater rigor and execution time, allowing for balanced

trade-offs between feedback speed and verification depth. The best

implementations enforce strict discipline about stage separation, so that

fast-running tests stay in early stages and provide fast feedback to

developers, while the very slow, long-running validations are shifted to

later stages, where slow execution is tolerable. Developers are instantly

informed of minor issues while also achieving validation of changes

before they get to production environments — a balanced strategy.

The concept of test pyramids is a structural concept that shares how to

evenly distribute your testing effort into various types of validations as

a best practice to achieve a greater coverage while balancing run costs

in continuous testing scenarios. The classical test pyramid has unit

tests at the bottom, giving us a large base of fast running, well-defined

tests that verify a piece of code in isolation with as few dependencies

as possible and the fastest turnaround when running them. Integration

322
MATS Centre for Distance and Online Education, MATS University

Notes tests provide the middle layer, testing component interactions through

small scenarios that ensure limited interface contract interactions and

do not execute and assert workflows through the entire system. End-to-

end tests occupy the top of the pyramid, offering complete validation

of entire user journeys through the fully integrated application, albeit

using more complex setup, taking longer to execute and requiring

higher maintenance effort. This is a pyramidal distribution, where the

bulk of tests go to the fastest executing categories, reserving the more

expensive validations for edge cases not covered by lower-level

approaches. The model inherently knows that tests at higher levels are

more certain but they cost significantly more in terms of execution

time, environmental requirements, and maintenance burden. Modern

implementations often extend this idea to other categories like contract

tests for service interface coverage, visual tests for user interface

coverage, performance tests for response time validation, security tests

for vulnerability detection, chaos tests for resilience verification, etc.

This broader pyramid recognizes that effective quality assurance is

about testing in a variety of ways, around many different quality

attributes, but still adheres to the original principle of preferring

quicker, narrower tests where feasible. Management of infrastructure

and environment is one of the keys to success for continuous testing as

it allows the test to be executed consistently and reliably in multiple

contexts and configurations. Containerization tools such as Docker

fundamentally changed test environments by bundling applications and

their dependencies into portable containers that can be executed

consistently regardless of the underlying infrastructure, removing the

"works on my machine" problems that had plagued testing reliability

throughout history. IaC (Infrastructure as Code) methods with tools

such as Terraform, Ansible or CloudFormation allow you to define

your test environments programmatically, guaranteeing the same

configuration for each instance, in addition to providing version control

and audit capability for environmental definitions. Cloud based testing

utilizes elastic compute resources, allowing for dynamic scaling of

your test infrastructure and providing capacity on demand to execute

tests in parallel without having to maintain persistent resources to

accommodate peak loads. Automating the provisioning of such test

environments allows self-service creation of compliant, pristine

environments, minimizing dependencies on operation teams and

323

Notes guaranteeing the same clean slate the tests execute on for each

invocation. Testing of components with external dependencies is often

a challenge; service virtualization provides configurable stub/mocks to

simulate various external dependencies so that components interacting

with third-party services, databases, or other third-party systems which

may not be available or are very expensive or difficult to run as part of

automated test environments. With database management strategies

like schema migration tools, data generation utilities, and snapshot

mechanisms, particular data availability is ensured without any manual

intervention. Towards that end, these infrastructure principles in

tandem need to shift environment management from being a bottleneck

impeding continuous testing to a facilitator that offers consistent, on-

demand execution contexts that enable the automation and

parallelization you need to achieve your fast feedback cycles.

Within the various aspects of continuous testing, managing your test

data can present its own challenges that require approaches that either

balance realism with both repeatability and execution isolation. Test

data generation methods create statically suited content through utility

calls to generate realistic but synthetic names, addresses, product

information, and other necessary data within the test runs without

relying on per-existing databases. Data as Code: This approaches

suggest we treat test data as versionable assets in the same sense as

source code; reference datasets are maintained (probably in the same

repository) where they can undergo the same review processes and

version control as application code itself. Anonymization tools replace

sensitive information in production data with realistic data distributions

and relationships to make it appropriate for testing, enabling the

company to test functionality in the way that a customer would without

exposing protected information. Containerized databases combine data

with schema definitions, allowing the same data to be initialized in test

environments and allowing isolated instances to run in parallel. Reset

mechanisms, which restore environment states after each test between

executions, interpolate a boundary preventing test interdependencies,

where the output of one test becomes the precondition for a subsequent

validation. Master data management also establishes governance

around shared reference information across tests, including source

information such as product catalogs, configuration settings, user roles,

and other information referenced across test cases, where your tests that

324
MATS Centre for Distance and Online Education, MATS University

Notes may be referencing the same source need to have consistency. These

data management strategies collectively solve some of continuous

testing’s toughest problem, assuring that tests run against relevant,

consistent information without imposing massive maintenance

overheads or execution bottlenecks that would negate the rapid

feedback that is the key component of continuous integration.

CI/CD Pipeline Integration

Later in this article, I'll describe more details about how pipeline

architecture design affects the efficiency of how effectively automated

testing fits the entire CD process. Pipeline schemas on the stage basis

are organized in a way so that different groups of activities belong to

different stages with their entry and leaving criteria, most of the time

starting with verification of builds and finishing with deployment

activities, and each of them giving a certain guarantee of quality before

proceeding to the next stage. Pilot Parallel Executions balance being

thorough and providing feedback in a timely manner by executing

independent categories of tests concurrently instead of in series:

drastically reducing the total time the pipeline takes while still covering

all aspects of the functionality! With conditional execution paths, we

shape validation according to the characteristics of change and apply

the right mix of tests to a change based on its type, instead of running

everything regardless of the change size or impact. Failure handling

strategies dictate the behavior of the pipeline when tests identify issues,

defining whether a pipeline failure should block progress entirely or

just return warnings and allow the subsequent steps to continue with

the right alerts for stakeholders. Retry mechanisms deal with transient

environmental instability and flaky tests by automatically re-running

failed tests (this helps separate true application problems from ones

due to test infrastructure) without having to fully intervene manually.

Having a timeout configuration avoids situations where a single test

blocks progress through a pipeline indefinitely, setting reasonable

maximum times based on normal speeds of execution, and failing tests

that exceed these thresholds. Pipeline visualization allows

stakeholders to receive clear status information and progression

tracking, giving engineers very detailed technical data and managers

and product owners summary information. These architectural

principles result in whether testing supports or impedes the delivery

pipeline as a whole: A well-designed pipeline serves to validate

325

Notes thoroughly without introducing unnecessary bottlenecks to dev speed,

or to CI/CD goals.

The continuous testing effectiveness is greatly influenced by the ability

to integrate tools. With source control integration, each commit

triggers an automated build and test, providing the first step towards

continuous validation with traceability from code to tests. Connections

to build tools ensure that any tests are run against properly constructed

artifacts, not simply from source code, which, as you have seen in our

examples, does not necessarily represent what will get deployed to

production as other developer configurations can exist. The result

reporting of test framework adapters is standardized across different

testing tools, even when unit, integration, UI, and special testing types

use different technologies, to provide consistent reporting formats,

status codes, and failure information. Integrating artifact management

enables proper versioning and storage of application components

along with test assets, ensuring consistency between tested and

deployed versions and the ability to reproduce specific test executions

when required. By the way, environment provisioning automation

allows laying out the proper test infrastructure without requiring any

manual configuration, extending to independent and de-contaminated

execution contexts across single build-run, which ensure no cross-

contamination between tests while facilitating parallel execution.

Notification systems keep stakeholders informed about testing results

even without their active monitoring, and should send appropriate

information over Slack, chat applications, email, dashboard

integrations, ticketing systems and etc. It is these integration

capabilities that ultimately decide if continuous testing works as a

system or a bunch of isolated tools, with frictionless connections

helping to ensure the automation and reliability needed for continuous

delivery practices to be sustainable.

So, the area of results management and reporting helps convert the raw

test execution data into informatics, which can guide the development

activities while providing different stakeholders appropriate visibility.

Most classification systems group failures into higher-level buckets that

identify them as either application defects, test bugs, environment

issues, or known limitations — all of which help to guide remediation

and mitigate concern by indicating expected behavior. Traceability

mechanisms link a test result back to the originating requirements, user

326
MATS Centre for Distance and Online Education, MATS University

Notes stories, or code changes, offering context that speeds up the

understanding of failures while enabling impact analysis of potential

changes. Systems with access to the outcomes of multiple executions

also conduct trend analysis to identify patterns like performance

degradation, rising failure rates or growing flakiness that may point to

systemic issues, rather than isolated defects. Dashboards and

visualization tools display testing status and history tailored to various

audiences, from fine-grained technical data for engineers to summary

quality metrics for management and stakeholders. As historical

archives preserve the execution records beyond the results at each step,

we could compare across versions to find out where things went wrong

or were fixed along with supporting root cause analysis of flaky

failures. Notification rules decide what results you need immediate

attention to and what results you can look at later — (no notification

fatigue) and routing important issues to be addressed immediately.

These reporting capabilities convert test execution from a quality gate

into an informative source that influences development decisions, with

effective implementations delivering actionable insights that enhance

both product quality and development process, rather than just

highlighting an issue post-factum. How failures are managed in

development workflows has a huge impact on whether continuous

testing adds effective signal to development efforts or simply creates a

frustrating bottleneck. Root Cause Analysis (RCA) procedures-

practices implementing RCA processes systematically question failures

to differentiate between true application defects, test implementation

flaws, infrastructure conditions, environment irregularities that

facilitate remediation activities and ensures it is carried out rather than

simply assuming every failure relates to a code defect. Based on failure

characteristics and affected components, the ownership assignment

routes the issue to the appropriate team, thus saving resolution time by

involving only the most qualified people, and it eliminates ambiguity

about responsibility. Severity categorization allows to identify critical

failures that should halt the process of progress and less critical, but still

attention-worthy issues that are addressed without the need to stop all

work, thus preventing quality enforcement from interfering with

development velocity in adequate proportions. Flaky test management

helps to identify and handle tests that are flaky, meaning they produce

different results each time they are run and address any root causes

327

Notes causing flakiness, or isolates occasional tests that are bringing down

overall confidence in the test suite from otherwise good tests. Failure

Tracing Systems preserved eventos (up to 12 months) between

executions, allowing you to observe the same problems appearing

repeatedly and therefore requiring a more holistic approach instead of

solving symptoms. Problem resolution verification ensures the fix

actually resolves the underlying issue, not just the symptom, so that

tests are passing before applying resolution. A single loosely or poorly

defined failure management process can mean the tester is annoyed, the

developer is scared and nobody is learning insane insanity of even

worse(style) than unit test for this, given that unit test should never be

treated with such carelessly yet they are very critical however they are

easy to fix however it should be as much as possible be in harmony

with each other, because how easily a validation error can lead to abrupt

breaks like ie. missing packages may force the developer experience

even worse than previously with very vast unacceptable noises that can

cause disruption in team peace, however balancing act of efficiently

this all can be the deciding factor between how these failures become

quality signals or quality noise, and if the noise is less and the signals

lead to improvement that is a ideal situation, continuous quality

building and without hampering the development progress however

avoiding broken relationship between testing and development teams.

The need to systematically validate security and compliance aspects has

become even more critical with evolving regulatory mandates and

threat landscape, making functional correctness alone inadequate.

SAST (Static Application Security Testing) scans the source code for

potential security issues like injection defects, poor encryption or

authentication methods and finds security issues earlier in the

development process, and providing developer with opportunities for

early fixes. Dynamic Application Security Testing, or DAST, queries

applications in operation for vulnerabilities by replicating attack

patterns against hosted processes, thus finding issues that may not

reflect by looking into the code only, like misconfigurations or runtime

vulnerabilities. Software Composition Analysis (SCA) analyzes third-

party components and dependencies to identify known vulnerabilities

or license compliance issues, a response to supply chain risks which

have grown more critical as applications contain more third-party code.

Access validation provides automated checks against compliance

328
MATS Centre for Distance and Online Education, MATS University

Notes obligations to accessibility heuristics, privacy regulations, industry

guidelines, and corporate governance policies, reducing the need for

manual validation checkpoints to ensure all policies are being adhered

to. What infrastructure security scanning does, is evaluate your

environment configurations against known best practices in order to

identify any hardening deficiencies, unintended access or

misconfigurations that can allow unauthorized access to your

applications or data. It also supports secrets management integration,

which keeps sensitive information such as credentials, certificates, and

API keys secure during a DevOps pipeline, helping to prevent

inadvertent exposure through logs, reports, and artifacts. These security

and compliance capabilities shift these concerns from independent,

often late-stage activities to fully integrated pieces of the continuous

validation puzzle, enabling “shift left” security that detects and

addresses issues sooner in the development cycle when remediation is

easier and less expensive.

Continuous Testing Strategies & Practices

The fundamental tension between end-to-end validation and execution

speed in continuous testing environments is addressed by test selection

and prioritization strategies. A risk-based approach approaches the

testing effort towards those areas which are more prone to defects or

those areas whose defects would have a greater potential impact.

Moreover, her selection based on changes only executes tests impacted

by certain changes using approaches like static analysis of code

dependencies, dynamic tracing of execution paths, or coverage

mapping with tests that exercise layered parts. Tests are assigned

different frequencies of execution based on their time, running critical

validations on every commit while scheduling more comprehensive but

slower tests at periodic intervals like hourly, daily, or weekly executions

of varied durations, ensuring thoroughness is not compromised with

timely feedback. History-based prioritization makes use of prior

execution information to order tests based on some combination of

historical failure rates, defect detection effectiveness or execution

duration, executing tests that are most likely to fail early to provide

faster feedback if problems are present. Coverage-based approaches

aim at systematically identifying subsets of the overall test set that can

achieve a certain coverage of code or functional behaviors, while

minimizing the total compilation and execution time. The selection

329

Notes and prioritization methods will help achieve an adequate trade-off

between the degree of validation and the execution time, ensuring that

the organization maintains high-quality verification without

introducing a bottleneck in the pipeline, causing failure of the

continuous delivery goals or developer productivity.

Parallel execution is a test architecture enabling remarkable decrease of

total execution time by running several tests across a distributed

infrastructure in parallel, converting what would take hours performing

sequential validation into minutes (or even seconds) using adequate

parallelization. Test segmentation-> It segregates the test suites into

independent units that can run simultaneously. It can be run by the type

of test, application module, or functional area giving the logical

separation of the test cases making sure that the execution of any

segment does not depend on other segments. Infrastructure

orchestration provisions and manages the infrastructure needed to run

the tests, reserving the right number of resources for each part of the

test, and performing provisioning, configuration and cleanup activities

to ensure a truly independent execution. Concurrent tests accessing the

data layer simultaneously can lead to data conflicts; data isolation

mechanisms avoid such by implementing one of separate databases,

transaction boundaries, or isolated data subsets, restarting each test (or

test stages) to ensure independence across different tests even when

they run concurrently. Results aggregation is the process of collecting

outcomes from distributed test executions, consolidating reports from

localized executions into unified dashboards and status indicators that

give an overall view of quality despite the disparity in the execution.

Resource optimization optimally trade-offs the throughput introduced

by parallelizing test runs against the infrastructure heavy lifting it

requires -- dynamically distributing computing resources to deliver the

most test completion using the least system capacity, instead of

committing to a hefty fixed capacity on a server farm that is often

underutilized (as we saw in the peaks-then-plummets test load

distributions that most projects follow). This ability to run a vast

number of tests in parallel and reuse common execution elements is one

of the key technical enablers of continuous testing, allowing end-to-end

systems to be validated over timescales aligned to continuous delivery,

and supporting the frequent, incremental development methodologies

that are at the core of contemporary software activity. Shift-left testing

330
MATS Centre for Distance and Online Education, MATS University

Notes practices push validation earlier in the development lifecycle,

identifying issues when they are still simpler and cheaper to fix and

providing developers with immediate feedback on their work. This

common developer testing practice goes beyond writing functional

code to developing automated tests that prove the software works —

often starting with unit and component tests that ensure individual

units work before integration occurs. In contrast to conventional

development practices, Test-Driven Development (TDD) uses a reverse

order by writing tests first (the pieces of code that confirm that the

designed functionality works) and then proceeding with functionality

implementation, where tests act as specification and validation

mechanisms guiding your implementation and preserving the

functionality for testing every time. Behavior-Driven Development

(BDD) takes this a step further by writing tests in a business-readable

language used for shared understanding between technical and non-

technical stakeholders that confirms implementation meets business

needs as opposed to mere technical requirements. Pre-commit hooks

are quality gates that run before code ever lands in shared repositories,

validating it in seconds — linting and formatting checks with linters

and formatters, unit tests — on developers’ workstations before it can

ever land in shared codebases. Peer review processes to share testing

approaches across team members covering perspectives outside of code

examination, such as evaluating the completeness of implementation

and the validity of validation. Testing is inherently part of pair

programming, as pairs always work on both implementation and test

code together throughout development, enabling real time peer review.

All of these shift-left practices represent a concerted effort to make

testing an integral part of the development process as opposed to a

separated step that happens after development, reducing feedback loops

and enhancing quality and developer productivity through earlier

detection and fixing of issues.

Continuous testing test in production shifts quality validation out of the

pre-production environment and into real operating conditions, under

the understanding that some problems only surface when they are using

real workloads, real volumes, real data and real environmental

conditions that mode cannot be fully reproduced or activated in test

environments. Regularly provisioning scripted user journeys against

production systems, synthetic transaction monitoring asserts that

331

Notes critical functionality is still operating correctly while measuring

performance and availability of the approaches regardless of actual user

activity. A canary deployment exposes the new versions to small

volume production traffic side-by-side with existing versions over time

and then compares behaviors and performance-measurements with

baseline measurements to check for regressions or unexpected

behaviors under production workloads. Your A/B testing infrastructure

helps you in that it serves all or part of your testing traffic to one of

multiple implementations, allowing for data-driven decisions based on

actual behavior and preferences rather than time-limited predictions.

By decoupling deployment from feature activation, you can deploy

code that does nothing until you enable that code, which is useful for

rolling out features to users progressively and also in quickly disabling

bad features without enforcing a complete code redeployment. In a

nutshell, chaos engineering is the deliberate side effects of introducing

faults into production environments to ensure resilience, help

illuminate the boundaries of where fault tolerance, recovery, and

operational processes may fail before unplanned outages occur. Blue-

green deployments involve two production environments running in

parallel, allowing new versions to be tested in production before

redirecting users at will — giving both a chance to validate and an easy

way to roll back when things are broken. These production testing

methodologies complement legacy pre-deployment validation efforts,

recognizing that some scenarios simply cannot be simulated

sufficiently, as well as providing final proof of authenticity to

operating characteristics under actual operating conditions.

Some approaches for performance validation might procure challenges

for execution at continuous pipelines as they have their own challenges

and opportunities. Early performance feedback incorporates

fundamental performance verification into the development pipeline

and performs selective tests against the individual components or the

critical transactions for each build instead of waiting for dedicated but

infrequent testing phases for performance testing. The Baseline

comparison will automatically assess how the current performance

compares against historical measurements and notify you of

degradation as it happens rather than allowing things to slowly decline

until critical thresholds have been reached. The progressive

performance testing strategy, applies progressively increasing load

332
MATS Centre for Distance and Online Education, MATS University

Notes levels across the stages of the pipeline starting with light smoke testing

in the early validation phase, and then evolving to heavier stress testing

on the latter stages appropriate to the available execution time. All

performance test parameters can be parameterized enabling you to test

for varying duration and load levels based on the pipeline context;

quick feedback from short tests enabling you to validate comprehensive

runs at scheduled intervals. Profiling Integration gathers fine-grained

performance data at test runtime, allowing you to pinpoint exact code

paths, DB queries, or external service calls responsible for your

performance issue instead of just reporting symptoms. You can always

monitor resource utilization to verify both efficiency and raw

performance, spotting high memory usage, connection leaks or other

resource management problems that don’t impact response times right

away but that might be a concern in production under longer-term

sustained load. These continuous performance testing practices

redefine performance validation not as an independent, retrospective

event, but rather as an integrated part of a continuous quality validation

process that detects and corrects problems when they first manifest,

rather than lumping them all together and finding together before

release.

The management of test environments, with a focus on Continuous

testing is a somewhat advanced challenge as it demands a consistent

set of available execution contexts without creating, within the testing

pipeline, a potential bottleneck in terms of availability or excess cost in

terms of infrastructure. Environmental component as code explicitly

details the infrastructure requirements alongside the application code,

offering benefits that include verifying tests against well-configured

environments and sustaining discipline on correct application code

version coupled with relevant environmental changes. Containerization

encapsulates applications and their dependencies into lightweight,

standards-based containers that run accurately in any environment,

allowing for consistent execution and eliminating the “it works on my

machine” syndrome while enabling parallel execution through separate

copies. Test execution is done using ephemeral environments, which

means creating and destroying environments on the fly for each

execution where previous runs are not interfering with current ones,

providing clean starting conditions. Service virtualization provides a

way to define and configure mock implementations of external

333

Notes dependencies so that you can test components that interact with third-

party services, payment processors and any other systems which are

difficult, expensive or impossible to have in an automated test

environment. While most essential data management strategies have

been implemented to provide relevant information without manual

preparation and maintenance (such as anonymized production data,

synthetic data generation, and database snapshots). Cloud

infrastructure utilizes elastic computing resources, with provisioning

capacity on demand, allowing for parallel testing during peak periods,

while avoiding potentially unsustainable overhead of permanent

infrastructure to meet maximum capacity needs. These environment

management strategies work together to provide the consistency,

availability, and isolation required for dependable continuous testing

while managing costs and complexity, which could otherwise sabotage

long-term viability.

Scaling and Wrapping Continuous Testing

1. Organizational Alignment for Continuous Testing

Successful continuous testing requires cross-functional collaboration—

among development, testing, operations, and business stakeholders.

Rather than treating testing as a separate phase owned solely by QA,

continuous testing embraces a "shift-left" philosophy, where quality

becomes a shared responsibility across the delivery team.

Integrated Teams: Developers and testers collaborate closely,

enabling faster feedback cycles, fewer handovers, and shared

ownership of quality.

Skill Development: Developers are expected to understand testing

fundamentals, while testers are encouraged to build automation and

technical expertise to thrive in a continuous testing environment.

Aligned Incentives: Success is measured by shared outcomes—like

release frequency, customer satisfaction, and defect escape rates—

rather than siloed, role-specific KPIs.

Leadership commitment is critical: allocating resources, recognizing

the value of quality assurance, and communicating clear quality

expectations even under delivery pressure.

334
MATS Centre for Distance and Online Education, MATS University

Notes

The greatest challenge is often cultural transformation, requiring a shift

from traditional processes to collaborative, quality-first practices

throughout the development lifecycle.

2. Test Automation and Maintenance Discipline

Without proper maintenance, automation efforts deteriorate, leading to

reduced test reliability and increased technical debt. Key practices to

sustain test automation include:

Framework Cleanup: Regular efforts to eliminate redundant code and

update libraries prevent bloat and maintain efficiency.

Architectural Reviews: Periodic assessments ensure frameworks

remain aligned with current technical needs and don’t just treat

symptoms of larger issues.

Retrospectives: After major releases, teams evaluate what worked and

what didn't, identifying improvements and sharing lessons across the

organization.

Systematic Modernization: Updating outdated tests to align with

current tools and practices preserves maintainability and relevance.

Flaky Test Remediation: Address or remove unreliable tests that erode

confidence in automation suites.

Up-to-date Documentation: Maintains organizational knowledge,

avoiding reliance on undocumented practices or "tribal knowledge."

Organizations that invest in disciplined test maintenance realize long-

term benefits. Conversely, neglecting maintenance leads to degraded

automation and costly overhauls.

3. Measurement and Metrics in Continuous Testing

Effective metrics guide both tactical improvements and strategic

decisions in continuous testing. These metrics fall into several

categories:

335

Notes

Coverage Metrics: Assess test coverage across code paths,

requirements, user journeys, and risk areas—identifying validation

gaps.

Execution Analysis: Evaluates resource usage, test performance, and

maintainability to identify bottlenecks and areas for optimization.

Defect Metrics:

Defect Detection Ratio (pre-production)

False Incident Ratio

Mean Time to Detect Issues

Business Impact Metrics: Connect testing efforts to key outcomes—

like time-to-market, customer satisfaction, release frequency, and

warranty cost.

Trend Analysis: Tracks metrics across releases to identify patterns in

efficiency, coverage, and quality trends—pinpointing systemic

problems.

Benchmarking: Comparing results across teams or against industry

benchmarks provides perspective on performance and highlights

improvement opportunities.

Robust metrics elevate testing from a checkbox activity to a strategic

asset, enabling continuous refinement and justifying investment.

4. Evolving Maturity in Continuous Testing

Continuous testing maturity progresses through distinct stages, each

building on technical and cultural capabilities:

Basic Automation: Limited to build verification or unit testing, with

most validation done manually.

336
MATS Centre for Distance and Online Education, MATS University

Notes Expanded Automation: Covers multiple types (e.g., API, UI,

integration) with integrated pipelines and sequencing.

Optimized Execution: Utilizes parallelization, selective execution,

and infrastructure efficiency for faster feedback.

Quality Analytics: Moves beyond pass/fail to analyze test

effectiveness, coverage adequacy, and quality trends.

Predictive Quality: Uses historical data and code changes to anticipate

defect-prone areas and target testing.

Self-Healing Automation: Employs AI to autonomously adapt scripts

to changes in application behavior or structure.

Maturity levels vary across teams due to differing contexts, challenges,

and areas of focus, requiring tailored improvement paths.

5. Continuous Learning and Feedback Loops

To avoid stagnation, testing practices must adapt continuously to

evolving applications, tools, and business needs:

Retrospectives and Postmortems: Identify what worked, what failed,

and what to improve after major releases.

Production Feedback: Real-world issues inform better test coverage

and detection of edge cases.

Cross-Team Knowledge Sharing: Helps replicate effective practices

and avoid redundant efforts.

External Learning: Conferences, research, and vendor engagement

expose teams to emerging trends and innovations.

Experimentation Support: Enables small-scale pilots of new tools

and methods without excessive compliance burdens—fostering

innovation while containing risk.

337

Notes These learning mechanisms ensure continuous testing evolves,

becoming more effective and relevant over time.

6. Tool and Framework Evolution

Testing tools and frameworks must adapt to changing technologies,

applications, and organizational needs. This requires:

Periodic Re-evaluation: Assess whether tools still meet current

requirements or need replacement.

Incremental Modernization: Gradual updates to components without

disrupting the entire ecosystem.

Proof-of-Concept (PoC) Pilots: Validate tool capabilities in controlled

environments before wide rollout.

Migration Planning: Develop phased transition strategies, including

parallel usage and impact minimization.

Vendor Management: Maintain relationships to stay informed about

product roadmaps and get adequate support.

Build vs. Buy Decisions: Evaluate whether to develop in-house

solutions or use commercial tools based on strategic needs, complexity,

and resources.

Strategic evolution of tools balances stability and innovation, ensuring

continuous testing remains aligned with fast-moving delivery cycles.

Special Topics and Cutting-Edge Trends

The use of Artificial Intelligence and Machine Learning in continuous

testing, is an evolutionary capability set to address historical challenges

and enabling new ways of validating quality. AI techniques are used to

automatically generate test cases between application analysis, user

behavior patterns, or historical defect data, leading to generation of

extensive test scenarios without painstaking manual specification.

Automatically adapting test case automation, self-healing test

automation recognizes application changes through visual recognition,

338
MATS Centre for Distance and Online Education, MATS University

Notes DOM analysis, or heuristic algorithms ensuring that the identifying

elements or paths are used to automate the workflow. Predictive test

selection uses historical data from test execution and changes made in

modules to prioritize tests that have the most probability of passing or

failing when making code changes, while keeping overall execution

fast and still effective. Anomaly detection finds abnormal application

behavior that is a sign of defects even when no tests fail; it detects

changes in performance, atypical data patterns and abnormal user

expediencies that need diagnosis.

Fig: 1.11 Special Topics

On this platform, the visual validation checks the application

appearance with the baseline images and it uses intelligent comparison

algorithms that can distinguish meaningful differences from acceptable

variations, like animation effects, dynamic content, and rendering

variations in between the different browsers. Natural language

processing allows us to create tests from requirements or user-stories in

plain language, generating executable tests from business

specifications without their manual fusion in technical

339

Notes implementations. These AI features target foundational continuous

testing pain points like maintenance effort, execution efficiency, and

comprehensive validation that can radically change the economics of

testing by minimizing humans' effort necessary for real quality

assurance while increasing the chances of catching latent or nuanced

defects that traditional methods could miss.

The opportunity and challenges of continuous testing practices with

containerization and microservices architectures With microservice

architectures, you can isolate components that allow for focused

testing of individual services, which enables truly continuous delivery

of discrete components (as opposed to bundled delivery of large stacks

of the application). Contract testing (with your NUPE) is a solution that

ensures services adhere to their internal interface commitments even

when the provider and consumer develop independently; this is a way

to ensure that the consumer and the service they consume are still

compatible without having multiple end to end tests for every change

in the world. Chaos engineering is an approach that methodically

injects failure, be it service unavailability, network latency, resource

exhaustion, etc., to validate that resilience mechanisms function as

designed so systems don't just go down in a cataclysmic fashion but can

handle quagmire situations seamlessly. Container orchestration

facilitates dynamic environment provisioning, creating test

environments on-demand that match specific versions of the

application, enabling parallel-testing of multiple changes with no

competition for environments or conflicting configurations.

Observability integration brings together testing and observability: The

network of distributed tracing, powerful logging, and metrics

understanding of behavior across service boundaries will work together

between the testing phases and the production operation phases.

Deployment confirmation goes beyond functional verification to check

operational properties like appropriate configuration, secure

deployment and adequate service betrothment impacting production

stability more than functional correctness. Combined, these approaches

fundamentally change how we can perform continuous testing across

distributed architecture, making complexity and scale of coverage

challenges that have ultimately limited the realization of end-to-end

validation possible, even as we support the independent delivery cycles

that underpin microservice advantages.

340
MATS Centre for Distance and Online Education, MATS University

Notes With evolving threat landscapes and increased regulatory requirements,

it's crucial to establish consistent security validation as part of

continuous pipelines, rather than as a final stage before deploying into

production. Automated vulnerability scanning leverages tools like

static analysis, dependency checking, and dynamic application

security testing across your pipelines, automatically flagging common

security problems during each run without needing a specialized

security expert involved for every review process. Security unit testing

takes the principles of traditional testing, and applies them to security-

related issues while creating detailed test cases for authentication

controls, authorization rules, input validation and other security

mechanisms to verify whether the protection performs as expected. In

addition, during the application build phase, compliance verification

help you match regulatory requirements from various sources like data

protection standards, industry mandates, and your organization’s

security policies, not only ensuring compliance but providing

automated validation of compliance, which easily can be adopted

through the development cycle preventing discovering of compliance

issues at end of delivery cycles. Automated threat modeling checks

each application change against known attack patterns and

vulnerabilities to elevate security implications of changes that may not

immediately come through testing. Security regression testing

establishes a systematic way of verifying that previously identified

issues are still remediated, making sure that security issues do not get

re-introduced by following modifications that accidentally remove

protections. Penetration testing integration infuses security-centric

validation attempting to exploit potential vulnerabilities, either by

automated tools or time-continuated manual testing that considers

adversarial perspectives about applications. Consider these practices

security tests turn the cybersecurity exercise which addresses

cybersecurity in silos and is carried out in periodic surges into a part of

the vollied continuous health checking of quality making sure security

issues are found, identified and remediated before their ability to be

remediated has past and instead of finding vulnerabilities in shipped

goods which requires expensive rework or emergency patching.

Low-code and no-code testing methodologies fill the skills gap that

often inhibits the adoption of continuous testing and allow us to draw

upon team members who would not typically consider themselves

341

Notes programmers. Scriptless automation tools such as QARA have visual

interfaces for creating tests, allowing test creation by recording, point

and click operations, or using logical flow chart composition and

eliminating the requirement of coding for building automation. Also

known as ‘test specifications’, these allow test scenarios to be described

in normal business language, and frameworks automatically translate

these specifications into executable tests without manual coding or

technical implementation. Using the application's unique attributes and

testing best practices, AI-assisted test creation proposes test cases, data

variations or validation points, augmenting tester capacity beyond

manual specification capabilities. Visual modeling tools model tests as

diagrams, process flows, or state models — with the models describing

testing intent in graphical form — and frameworks generate

corresponding executable implementations. Keyword driven approach

actually defines the testing vocabulary that is domain specific and it

bridges the gap between technical implementation and business

concepts allowing users to create the tests using the keywords that are

kept structured so that the underlying complexity is abstracted. RPA

frameworks (rpa stands for Robotic Process Automation) for business

process automation are using those tools also for testing situations,

enabling tests to be created with a demonstration and visual

programming rather than those dev-oriented means. Such low-code

testing strategies exponentially broaden the pool of people who can

plan and contribute to test automation, solving resource constraints but

also allowing subject matter experts to directly create automated

validation — without relying on specialized automation engineers or

developers — with the possibility of upending the economics of testing

while improving the coverage of business scenarios that technical

teams aren’t always best placed to understand or prioritise.

Summary:

Module 5 explores the concept of automated testing, which involves

using software tools to execute tests automatically, reducing manual

effort and improving testing efficiency. It begins with an introduction

to automation, explaining its importance in speeding up repetitive test

cases, increasing test coverage, and improving accuracy. The module

then discusses the framework for automation solutions, which provides

a structured environment with reusable components, tools, and

guidelines to streamline the testing process. Lastly, it covers automated

342
MATS Centre for Distance and Online Education, MATS University

Notes test script design, where testers create scripts that simulate user actions

and validate software behavior automatically. This module highlights

how automation enhances productivity and consistency in software

testing, especially in large and complex projects.

Multiple Choice Questions (MCQs)

1. What is the primary advantage of automated testing?

a) It eliminates the need for test planning

b) It reduces the time required for repetitive test execution

c) It completely replaces manual testing

d) It requires no maintenance

(Answer: b)

2. Which of the following is an open-source automation testing tool?

a) Selenium

b) QTP

c) LoadRunner

d) WinRunner

(Answer: a)

3. Which tool is commonly used for mobile application automation?

a) TestNG

b) JUnit

c) Appium

d) Postman

(Answer: c)

4. In an automated test script, what is the purpose of using

assertions?

a) To execute scripts in parallel

b) To verify expected vs actual outcomes

c) To capture screenshots of the test execution

d) To enhance the speed of execution

(Answer: b)

5. Continuous Integration (CI) helps in:

a) Automating deployment after every test cycle

b) Identifying defects earlier in the development process

c) Running only manual test cases

d) Eliminating software development cycles

(Answer: b)

6. Which of the following is NOT a challenge in automated testing?

a) High initial setup cost

343

Notes b) Easy maintenance of scripts

c) Requires skilled resources

d) Test script flakiness due to UI changes

(Answer: b)

7. What is a key feature of TestNG?

a) It supports parameterized testing

b) It is used only for performance testing

c) It does not support parallel execution

d) It cannot generate test reports

(Answer: a)

8. Which testing approach integrates automated testing with software

development workflows?

a) Manual Testing

b) Continuous Testing

c) Ad-hoc Testing

d) Monkey Testing

(Answer: b)

9. What is the role of version control in CI/CD automation?

a) It helps maintain test scripts but not the codebase

b) It allows collaboration and tracking of changes in code and test

scripts

c) It ensures that all tests pass without failure

d) It is not necessary for CI/CD pipelines

(Answer: b)

10. Which framework is primarily used for unit testing in Java?

a) JUnit

b) Selenium

c) Cypress

d) Appium

(Answer: a)

Short Answer Questions

1. What are the key benefits of automated testing?

2. Mention two major challenges faced in automation testing.

3. Name at least three popular automation testing tools.

4. What is Selenium primarily used for?

5. Explain the purpose of TestNG in automation.

6. How does Continuous Integration (CI) improve software quality?

7. What is the significance of reusable test scripts?

344
MATS Centre for Distance and Online Education, MATS University

Notes 8. What is the difference between functional and automated testing?

9. How does Appium help in mobile test automation?

10. Define Continuous Testing and its role in CI/CD pipelines.

Long Answer Questions

1. Explain the importance of automated testing and its benefits in

software development.

2. Discuss the different tools available for automation testing and

compare their features.

3. How do you design maintainable and reusable test scripts? Provide

best practices.

4. Describe the process of integrating automated testing in CI/CD

pipelines.

5. Explain the role of Selenium in web automation testing with a

sample test case.

6. What are the key challenges of automation testing, and how can

they be addressed?

7. Compare TestNG and JUnit in terms of features and usability.

8. Discuss how automation testing contributes to Agile and DevOps

practices.

9. What is Continuous Testing, and how does it differ from traditional

testing approaches?

10. Explain how automated testing helps improve software efficiency

and reliability.

345

Notes Glossary:

• Software Testing: The process of evaluating a software

application to detect differences between given and expected

outputs.

• SDLC (Software Development Life Cycle): A structured

approach to software development, including stages like

planning, designing, coding, testing, and maintenance.

• Types of Testing: Different ways of testing software including

manual, automated, functional, non-functional, etc.

• Levels of Testing: The stages of testing, such as unit testing,

integration testing, system testing, and acceptance testing.

• Testing Process: The set of activities conducted to test software

including planning, analysis, design, implementation,

execution, and closure.

• Test Levels: Hierarchical testing activities like component,

integration, system, and acceptance tests.

• Test Documentation: Formal records such as test plans, test

cases, test scripts, and test summary reports.

• Defect Life Cycle: The journey of a software bug from

identification to resolution and closure.

• Black-box Testing: Testing based on inputs and outputs without

knowing the internal code structure.

• White-box Testing: Testing based on internal logic, code paths,

and structure of the software.

• Experience-based Testing: Testing based on the tester’s

intuition, experience, and domain knowledge.

• Functional Testing: Validates the software system against the

functional requirements/specifications.

• Non-Functional Testing: Evaluates performance, usability,

reliability, and other non-functional aspects of a system.

• Regression Testing: Re-testing software after changes to

ensure existing functionalities are unaffected.

• Automation Testing: The use of tools and scripts to automate

software testing tasks, reducing manual effort.

346
MATS Centre for Distance and Online Education, MATS University

Notes • Automation Framework: A set of rules, guidelines, and tools

used to automate test cases efficiently and consistently.

• Automated Test Script: A programmed script that simulates

the actions of a human tester to perform automated tests.

347

Notes References

Module 1: Introduction to Software Testing

1. Ammann, P., & Offutt, J. (2016). Introduction to Software

Testing (2nd ed.). Cambridge University Press.

2. Myers, G. J., Sandler, C., & Badgett, T. (2021). The Art of

Software Testing (4th ed.). Wiley.

3. Spillner, A., Linz, T., & Schaefer, H. (2021). Software Testing

Foundations (5th ed.). Rocky Nook.

4. Patton, R. (2005). Software Testing (2nd ed.). Sams

Publishing.

5. Black, R. (2017). Pragmatic Software Testing: Becoming an

Effective and Efficient Test Professional. Wiley.

Module 2: Testing Process and Life Cycle

1. Black, R., van Veenendaal, E., & Graham, D. (2020).

Foundations of Software Testing: ISTQB Certification (4th

ed.). Cengage Learning.

2. Crispin, L., & Gregory, J. (2014). More Agile Testing:

Learning Journeys for the Whole Team. Addison-Wesley

Professional.

3. Koirala, S., & Sheikh, S. (2014). Software Testing: Interview

Questions. CreateSpace Independent Publishing.

4. Desikan, S., & Ramesh, G. (2007). Software Testing:

Principles and Practices. Pearson Education.

5. Graham, D., Veenendaal, E. V., & Evans, I. (2008).

Foundations of Software Testing: ISTQB Certification.

Cengage Learning EMEA.

Module 3: Test Design Techniques

1. Copeland, L. (2004). A Practitioner's Guide to Software Test

Design. Artech House.

2. Jorgensen, P. C. (2021). Software Testing: A Craftsman's

Approach (5th ed.). CRC Press.

3. Kaner, C., Bach, J., & Pettichord, B. (2008). Lessons Learned

in Software Testing: A Context-Driven Approach. Wiley.

348
MATS Centre for Distance and Online Education, MATS University

Notes 4. Buwalda, H., Janssen, D., & Pinkster, I. (2001). Integrated

Test Design and Automation: Using the TestFrame Method.

Addison-Wesley Professional.

5. Whittaker, J. A. (2009). Exploratory Software Testing: Tips,

Tricks, Tours, and Techniques to Guide Test Design. Addison-

Wesley Professional.

Module 4: Types of Testing

1. Meier, J. D., et al. (2007). Performance Testing Guidance for

Web Applications. Microsoft Press.

2. Stuttard, D., & Pinto, M. (2021). The Web Application

Hacker's Handbook: Finding and Exploiting Security Flaws

(2nd ed.). Wiley.

3. Dustin, E., Garrett, T., & Gauf, B. (2009). Implementing

Automated Software Testing: How to Save Time and Lower

Costs While Raising Quality. Addison-Wesley Professional.

4. Hendrickson, E. (2021). Explore It!: Reduce Risk and Increase

Confidence with Exploratory Testing. Pragmatic Bookshelf.

5. Nguyen, H. Q. (2001). Testing Applications on the Web: Test

Planning for Internet-Based Systems. Wiley.

Module 5: Automated Testing

1. Colantonio, J. (2020). Selenium Framework Design in Data-

Driven Testing. Apress.

2. Gundecha, U. (2015). Selenium Testing Tools Cookbook (2nd

ed.). Packt Publishing.

3. Humble, J., & Farley, D. (2010). Continuous Delivery:

Reliable Software Releases through Build, Test, and

Deployment Automation. Addison-Wesley Professional.

4. Fewster, M., & Graham, D. (1999). Software Test Automation:

Effective Use of Test Execution Tools. Addison-Wesley

Professional.

5. Continuous Testing for DevOps Professionals: A Practical

Guide from Industry Experts (2018). Createspace Independent

Publishing Platform.

349
MATS Centre for Distance and Online Education, MATS University

