
MATS UNIVERSITY
MATS CENTER FOR OPEN & DISTANCE EDUCATION

UNIVERSITY CAMPUS : Aarang Kharora Highway, Aarang, Raipur, CG, 493 441

RAIPUR CAMPUS: MATS Tower, Pandri, Raipur, CG, 492 002

T : 0771 4078994, 95, 96, 98 M : 9109951184, 9755199381 Toll Free : 1800 123 819999

eMail : admissions@matsuniversity.ac.in Website : www.matsodl.com

MATS CENTRE FOR
OPEN & DISTANCE EDUCATION

SELF LEARNING MATERIAL

Data Structure
Bachelor of Computer Applications (BCA)

Semester - 3

Course Introduction 1

Module 1

Introduction to data structure
3

Unit 1: Introduction to data structure 4

Unit 2: Memory Management Concept 25

Unit 3: Performance Analysis & Management 28

Module 2

Array
34

Unit 4: Introduction of Array 35

Unit 5: Operation on Array 46

Module 3

Stack
65

Unit 6: Introduction to Stack 66

Unit 7: Introduction of infix and post-fix 92

Unit 8: Concept of Queue 95

Module 4

Linked list
102

Unit 9: Introduction and Basic operation of Link List 103

Unit 10: Sorting Algorithms 123

Unit 11: Searching Algorithms 133

Module 5

Tree and graph
136

Unit 12: Introduction - Tree and Graph. 137

Unit 13: Types of Binary Tree 148

Unit 14: Binary Tree Properties 152

References 164

Data Structure

ODL BCA DSC-07

Bachelor of Computer Applications

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,

Chhattisgarh

Prof. (Dr.) Jatinder kumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies

and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSE COORDINATOR

Dr. Abhishek Guru, Associate Professor, School of Information Technology, MATS University, Raipur,

Chhattisgarh

COURSE PREPARATION

Dr. Abhishek Guru, Associate Professor and Ms. Tanuja Sahu, Assistant Professor, School of

Information Technology, MATS University, Raipur, Chhattisgarh

March, 2025

ISBN: 978-93-49916-13-5

@MATS Centre for Distance and Online Education, MATS University, Village-Gullu, Aarang, Raipur-

(Chhattisgarh)

All rights reserved. No part of this work may be reproduced or transmitted or utilized or stored in

any form, by mimeograph or any other means, without permission in writing from MATS University,

Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed & Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.

Meghanadhudu Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Disclaimer - Publisher of this printing material is not responsible for any error or dispute from

contents of this course material, this is completely depends on AUTHOR’S MANUSCRIPT.

Printed at: The Digital Press, Krishna Complex, Raipur-492001(Chhattisgarh)

Acknowledgement

The material (pictures and passages) we have used is purely for educational

purposes. Every effort has been made to trace the copyright holders of material

reproduced in this book. Should any infringement have occurred, the publishers

and editors apologize and will be pleased to make the necessary corrections in

future editions of this book.

1

COURSE INTRODUCTION

Data structures are the backbone of efficient algorithm design and

software development. This course provides a comprehensive

understanding of fundamental data structures such as arrays, stacks,

linked lists, trees, and graphs. Students will gain both theoretical

knowledge and practical skills in implementing and utilizing these

structures to optimize data storage, retrieval, and processing.

Module 1: Introduction to Data Structure

Data structures are essential for organizing and managing

data effectively in computer science. This Unit introduces

the concept of data structures, their classification (linear and

non-linear), and their significance in problem-solving and

algorithm efficiency. Students will learn how to choose

appropriate data structures based on computational

requirements.

Module 2: Array

Arrays are one of the simplest yet most widely used data

structures for storing elements sequentially. This Unit covers

array types, operations (insertion, deletion, searching, and

sorting), and their applications. Students will understand the

advantages and limitations of arrays in comparison to other

data structures.

Module 3: Stack

Stacks follow the Last In, First Out (LIFO) principle and are

used in scenarios such as expression evaluation, function

calls, and backtracking algorithms. This Unit explores stack

implementation using arrays and linked lists, stack

operations (push, pop, peek), and applications in recursion

and memory management.

Module 4: Linked List

Linked lists provide a dynamic way to store and manage

data, overcoming the limitations of arrays. This Unit covers

singly, doubly, and circular linked lists, along with

operations such as insertion, deletion, traversal, and

searching. Students will learn the significance of linked lists

1

in dynamic memory management and real-world

applications.

Module 5: Tree and Graph

Trees and graphs are advanced non-linear data structures

used in hierarchical and network-based applications. This

Unit introduces binary trees, binary search trees (BST), tree

traversals, and graph representations (adjacency matrix and

adjacency list). Students will explore algorithms for tree and

graph traversal, including BFS (Breadth-First Search) and

DFS (Depth-First Search).

2

MODULE 1

INTRODUCTION TO DATA STRUCTURE

LEARNING OUTCOMES

• Understand the definition and classification of data structures.

• Learn about different types of data structures such as arrays,

linked lists, queues, stacks, trees, and graphs.

• Understand C++ memory management, including new and

delete operators.

• Learn about performance analysis of data structures, including

time complexity and space complexity.

3
MATS Centre for Distance and Online Education, MATS University

Notes

Unit 1: Introduction to data structure

1.1 Introduction - Definition, Classification of Data Structure

Structures allow programmers to address intricate questions with neat

solutions, whether it is through basic arrays or intricate graphs.

Which data is stored can have a considerable effect on both the

performance and functionality of software. The structure in Data

structure is the core of computing today an organized way of storing

and scalable software systems. by every application in software,

database systems, operating systems, and algorithms to work

efficiently. Data structures are essential to writing efficient

algorithms, code performance optimization, and building academic

subject; they have immense real-world applications. Well-designed

data structure is needed Data structures are not just an strengths,

limitations, and appropriate use cases for various data structures can

help developers make informed decisions that will greatly affect the

performance and correctness of their software solutions.

Definition of Data Structures

Structure of data values, how they relate to each other, and what kind

of function or action can be used on the data. Because there is so

much data available now, it needs to be organized, processed,

retrieved, and stored quickly and easily. It's a data structure is an

arrangement for data. or mathematical models followed by the

organization based on which they can efficiently access and modify

the data present in databases. It is precisely the logical etc,). The

elements can be numbers, characters, or even What are Data

Figure 1.1: Data Structure Type
[Source: https://technologystrive.com/]

4
MATS Centre for Distance and Online Education, MATS University

Notes Structures at a high level, a data structure combines data elements

based on the set of relationships between them (e.g. hierarchical,

linear, In theory, that method works well. algorithm by making it

easier to work with data, letting access patterns be faster, or lowering

the amount of memory that is used. The opposite is also true: a bad

choice of data format can slow down an algorithm and the data it

works on. A good data format can make an algorithm much more

effective. Data structures connect algorithms to the things that are

being changed. a first-in, first-out relationship, and a tree structure

show how parts are related in a hierarchical way. These connections

show how to get data, add data, or remove data from the data. As an

example, a queue data structure sets up Data structures are more than

just places to store information; they also show the logical

connections between the operations of deleting, traversing, searching,

sorting, and merging. Also, list the actions that can be done on the

data. Putting in (adding), Data structures explain what operations can

be done on data and what they mean. Data structures, on the other

hand, describe how these operations are carried out in memory, or

how they are kept. of the first week talks about data structures and

abstract data types (more on ADTs later), both in a basic and an

advanced way. ADT stands for the second set of data numbers.

Structure of Data and Different kinds of it file structures Categories

help programmers choose the right kind of data format for the type of

data they need for their problem or use case. Data structures are

groups of the main categories. Let's look at it in various ways. Putting

data types into these groups is important.

Structures for linear data

When you use a linear data format, the calculations are the facts are

set up in a way that is either sequential or linear. Every node is

connected to both node before it and the node next to it. These plans

are easy to understand and use. To give some cases, another name for

an array is basic data structure that holds a group of things that are all

same type and size. A block of information that is all connected to

each other. This makes it possible to reach the elements in constant

time. One more important distinction to note between Lists and

Arrays is that the latter are very efficient for scenarios in which the

usage of retrieval operations on an array element occurs quite

frequently, whereas Lists are not. But one important drawback is their

5
MATS Centre for Distance and Online Education, MATS University

Notes self-contained size, limiting their ability to resize dynamically.

Creating a new larger array and copying all elements into it when an

array reaches its capacity is an expensive operation in time and

memory. Even though they have this problem, arrays are still widely

used in many situations, including sorting algorithms, search methods,

and matrix models. Arrays are often used when random access is

needed because direct element access is easy and works well. A linked

list, on the other hand, is a flexible way to store a group of things. It's

called a linked list. It has data field &link to next structure in the

chain. This is called a node. Because it doesn't have to rotate parts like

an array does, it's made so that adding and removing items is quick.

Simple changes to a few pointers are all it takes to add or remove a

part. The problem with linked lists is that they need more memory for

pointers, which means they need more space overall. Also, to get an

item from a linked list, we have to start at the beginning of the

structure, which takes a set amount of time. Linked lists, on the other

hand, are a useful data structure that is often used in situations where

parts need to be added and removed quickly, like dynamic memory

allocation, graph representation, and building stacks and queues. To

make stacks, which are type of data structure, you use the Last-In-

First-Out (LIFO) rule. This means that first thing that was taken away

is the last thing that was added. You can only do two main things with

a stack: push and pop. Push adds an item to the top of the stack, and

pop takes the item off the top. A stack is often used when the order of

things is important, like when managing names for function calls,

evaluating expressions, reversing algorithms, and so on. In this case,

the system saves an implicit stack to which the state of the function

execution is pushed whenever a recursion call is made. One way

stacks are used is to make sure that operators and operands are

processed in the right order in formulas. Because adding and

removing items can only happen on one end of a stack, and accessing

and changing items can only happen on one end as well, it is usually a

fast and efficient structure. However, it can't be used for jobs that need

random access and manipulation.

 In computers, queues usually work with "First In, First Out" (FIFO)

rule, which means that things are added at back & taken away from

front. There are times when applications need to make sure that the

oldest job is handled first, and this can help with that. As an example,

6
MATS Centre for Distance and Online Education, MATS University

Notes an operating system uses queues to schedule tasks. Web sites use them

to handle requests. Printer job queues use queues for jobs to be

printed. Different types of queues, such as circular queues, priority

queues, dequeues (double-ended lines), and more, each have their

own benefits. Applications. Dequeue queues can be implemented

from both ends and circular queues can use previously occupied

memory of removed elements, and priority queues provide additional

operations for defueling based on priority rather than enquire order. In

contrast, deques allow insertions and deletions at both ends, offering

more versatility. Even though there are additional variations, the main

FIFO principle remains vital in situations that needed execution of

tasks in the exact order. All these data structures have their own

significance in terms of usages in various functionalities based upon

their strength and weaknesses. Do you know what their fundamental

operations and performance characteristics are? Arrays are great for

accessing elements with an index, linked lists are good at allowing

you to change your size and insert elements or delete them quickly,

stacks allow you to access elements in a controlled way based on Last

In First Out (LIFO) principle, & queues enable you to keep your tasks

in line and process them by the First In First Out (FIFO) method.

Choosing the right data structure according to what they need can

help the developers in writing more efficient and maintainable code.

Linear data structures help in storing data in order in which they are

supposed to be accessed or will have a sequential relationship

between as well. They are a fact easier to implement and to

understand, however it may not be the optimum solution in case you

are going to be dealing with complex relationships or in case your

access patterns will not be very straight forward.

Non-Linear& Data Structures

Non-linear data structures do& have a sequential arrangement of

elements. Instead of each element having a target, it can connect too

many other elements, creating complex relationship. These are more

flexible but can also be slightly harder to implement and explore.

Trees are one of the basic data structures in & computer science. A

tree is a structure where you have a root node with child nodes

cascading out of it. In a tree, each node may have multiple child

nodes but only one parent node (the root node has no parent).

Examples of hierarchical relationships where trees are commonly

7
MATS Centre for Distance and Online Education, MATS University

Notes used include file systems, organizational structures, and database

indexes. The main advantages of trees are their better traversal,

insertion and deletion. This guarantees that the leftmost child node

will always hold a lesser value compared to the rightmost child node

of any given tree node. It means that search operations are greatly

optimized, the complexity of this is o (log n) in a balanced tree.

Arguments: Trees are also used in computer graphics, ai (decision

trees) and compilers (syntax trees) etc. Other significant variants

include the balanced tree, like AVL and Red-Black trees. In addition

to that, trees also forms the base of network routing algorithms, game

development (through mini max trees) and even for encryption

algorithms. Graphs & non-hierarchical data& structures made up of

nodes (vertices) connected by edges. Trees are hierarchical structures.

If the edges have directed edges, then these types of graphs are called

directed graphs, otherwise undirected. Graphs are particularly popular

for modelling relationships & networks of objects in real life, such as

social networks, transportation networks, and linking structures of

web pages. A graph can be represented as an adjacency matrix and

adjacency list, where time and space complexity is different but have

their advantages. Algorithms like DFS (Depth-First Search) & BFS

(Breadth-First Search) efficiently search through graph structures to

find the simplest paths, find cycles, and analyse networks. Dijkstra's

algorithm and the Bellman-Ford algorithm are often used to find the

quickest path in a weighted graph. Floyd-Wars hall’s algorithm and

Prim's algorithm are more specialized and are used to make networks

work better. Today's technologies, like search engines,

recommendation systems, and artificial intelligence, are all based on

new structures. But graph theory is at the heart of all of them, which is

why it's the most important data structure to study. Graphs are also

used to describe things that happen in the real world, like disease

spread modelling in epidemiology, syntax parsing in linguistics, and

molecular structure representation in chemistry. This gives them even

more uses. For each node in a heap, value of its children is either

greater than or equal to (a max heap) or less than or equal to (min

heap). Heaps are made to work like trees while still being heaps. In

some stacks, the parent nodes are the same size as or bigger than the

children nodes. The parent node is always bigger than or the same size

as its children in these heaps. In computer science, heaps, also called

8
MATS Centre for Distance and Online Education, MATS University

Notes heap structures, are a type of tree-based data structure. Structures that

satisfy the heap property; that is, for a max heap, the key of a parent

node is for a max-heap, the key is less than or equal to the keys of its

children. For a min-heap, the key is greater than or equal to the keys

of its children. That means that the actions to insert & delete take

O(log n) time. Because it uses a binary heap data format, heap sort is

a fast way to sort data. Another important use for heaps is in graph

algorithms, especially Dijkstra's shortest path method, which uses

them to efficiently extract the minimum distance vertex. Heaps are

also utilized in real-time event-driven systems, as well as for

scheduling in operating systems and in data compression algorithms,

such as Huffman coding. Their methodical approach to prioritization

renders them essential in situations where order and efficiency are

paramount. Hash tables are also known as hash maps, which are data

structures that allow you to access elements quickly via a key-value

mapping mechanism. A hash is a function that computes an index in

an array, that’s where the value is stored. This allows for efficient

search, insertion, & deletion operations, which usually have an

average time complexity of O (1). Because hash tables can store and

retrieve data very quickly, they are often used for database indexing,

caching mechanisms, and associative arrays. This topic would refer to

one of the key issues in the implementation of hash tables, which is

collision resolution, which occurs when you have two the hash

number is the same for all keys. Chaining (linked lists) and Linear

probing, quadratic probing, double hashing, and other types of open

addressing.) Are two methods used for collision resolution? Hash

tables are the backbone of many modern needs, such as storing

password (using functions like SHA-256), compiler symbol tables,

and even network routing (through hash-based load balancing). This

feature makes it the first choice for any high-performance computing

application that requires key-based lookups in O (1) time.

Furthermore, they are a critical component in cyber security, data

deduplication, and large-sized distributed systems, where fast

information retrieval is important for efficiency and scalability. To

sum up, trees, graphs, heap, and hash tables are fundamental data

structures upon which many algorithmic processes and applications

are built. Trees are a practical tool used for dealing with hierarchical

data or optimizing search operations, and they have become the very

9
MATS Centre for Distance and Online Education, MATS University

Notes backbone of databases, compilers, and artificial intelligence. Graphs

and Their Applications Graphs are used to represent complex

relationships in many fields, including networks, search engines, and

social media. Heaps are vital in work schedules, graph Dakota and

sorting methods due to their efficient prioritization! With their fast

key-based access, hash tables enable everything from database

indexing to caching to cyber security. Knowing these data structures

& their practical applications allows you to optimize algorithms and

build applications more efficiently. Their importance is not limited to

theoretical computer science; they have had a profound impact on

modern technology and problem-solving approaches. Listing non-

linear data structures is better for portraying complex relationships

and allowing more advanced operations. They form a foundational

base for solving an array of problems, including hierarchies,

networks, mappings, and priority-based access.

1.2 Description of Various Data Structures - Array, Linked List,

Queue, Stack, Tree, Graph

Static Data Structures

Static data structures have fixed extent, their size allocated at compile

time. You cannot change their size during runtime, which means that

you need to know the maximum size and declare it in advance. Data

structures form a vital part of computer science and programming, as

they are the basis of how information is stored and accessed. The two

main categories divide them into static data structures and dynamic

data structures, both with distinct features, properties, pros, and cons.

These classes have great significance in the construction of efficient

algorithms and the optimization of memory. Static data structures are

those with a fixed (invariant) size. This trait is exemplified in

traditional arrays, such as in C and Java, which require you to specify

the size when creating the array. What gives the static data structures

an advantage over dynamic data structures is their memory allocation

is predictable, leading to quick access times, followed by efficient

indexing. Elements of static array are stored at contiguous memory

addresses, which guarantee that accessing a specific index takes

always constant time. This characteristic makes static arrays

exceptionally valuable in situations where quick access to data is

essential. But static data structures have their own significant

disadvantages. Their static size can cause inefficiency in memory

10
MATS Centre for Distance and Online Education, MATS University

Notes usage. Memory wastage is when more space is allocated than the

actual number of items. This means that if the amount of data you try

to process as a list exceeds the memory for that list, the program is

unable to maintain more elements which can lead to failures or other

avoidance steps such as copying the data from one array to others.

Another example of a static data structure is matrices which are fixed

size multi-dimensional arrays. These structures are commonly used in

scientific computing, image processing, and graph algorithms, where

data must be organized in a tabular form. However, while matrices

are useful, they also suffer from the same limitations as traditional

arrays, which means that memory allocation and efficiency must still

be carefully considered. Static structures have many shortcomings,

which can be addressed by using dynamic data structures and

allocating memory at runtime. Dynamic Data Structure vs. Static Data

Structure: dynamic data & structure can grow and shrink as needed

during game play, which can lead to better memory use, among other

things. They are especially useful in applications where the data is

dynamic and fills an unpredictable size of time window. Things like

Array List in Java and vector in C++ (dynamic arrays) show this kind

of flexibility. These structures are not like traditional arrays, their size

is adjusted automatically when their capacity is full and new elements

have arrived to be added to it. Once array is full, new array that is

bigger is created, & current elements are copied to the new memory

location. This resizing strategy enables dynamic arrays to provide a

good compromise between efficiency and scalability at the expense

of some overhead incurred during reallocation, which may be

infrequent and is amortized over multiple insertions.

Another of the basic dynamic data structures is linked lists. Arrays

are made up of a Sequence of data elements, while linked lists are

made up of nodes. Each node is a data element that has a pointer (or

reference) to the next node. This allows for fast insert and deletes

operations as new elements can simply be inserted and removed from

memory without increasing or decreasing the index values of other

elements. In fact, one of the main reasons to use linked lists is to make

up data & structure where number of elements is unknown ahead of

time or should not stay the same and should be changed often. But

their use of pointers comes with extra memory overhead and possible

cache inefficiency as compared to arrays Dynamic data structures can

11
MATS Centre for Distance and Online Education, MATS University

Notes be further represented by more complex forms, such as trees and

graphs. Popular tree structures include binary search trees (BSTs),

heaps, and quad trees, which facilitate efficient searching, insertion,

and deletion operations; indeed, they are crucial for tasks such as

database indexing, search algorithms, and representing hierarchical

data. Graphs (composed of nodes (vertices) connected by edges) are

used extensively in social networks, route optimization, and network

flow analysis. These structures are flexible and can expand as required

by adding nodes and edges, without any bounds on how big they can

grow in theory. Remember, your data structure is the fundamental

backbone of your application, and how you decide to structure it

really comes down to what you're doing. Static structures are

predictable in memory usage and fast access but less flexible, while

dynamic structures are flexible and utilize memory efficiently. With

this knowledge, programmers can create an effective and efficient

software system. Dynamic structures allow for flexibility and also

possibly efficient use of memory; however, they incur overhead for

allocation & deal location of memory, and can be more complex to

implement.

Homogeneous vs. Heterogeneous Data Structures

Homogeneous data structure: If all the data & elements in data

structure are of the same data types. Because of this uniformity, there

is type safety, which implies that operations on these data structures

are less likely to be erroneous. Moreover, the homogenous nature of

the data structures can lead to more efficient usage of memory. An

example of a homogeneous data structure is an array in strong typed

programming languages like Java and C; it is an array which stores

elements of only one type. Once an array is declared for integers for

instance, it will not store floating-point numbers or characters. This

limitation ensures guaranteed behaviour and reduces the chances of

runtime errors. More examples of homogeneous data structures are

vectors, which are dynamic arrays that pass elements of the same

type. A vector is a dynamic array; allow resizing dynamically with

same type. This makes them helpful in situations where the exact

element count is not known when they are declared, but type

uniformity is still important. Consistent data structures allow for

better performance characteristics and can give better memory

allocation patterns as they can keep elements stored close to each

12
MATS Centre for Distance and Online Education, MATS University

Notes other in memory resulting in better cache locality when accessing

elements. Furthermore, they improve performance by eliminating

overheads on type checks at runtime making them a great fit for

systems programming and high-performance applications.

Heterogeneous data structures allow elements of different data types

to be stored in the same data structure, which gives more flexibility.

This adaptability is especially helpful in cases where complex data

entities need to be represented. The main disadvantage of

heterogeneous data structures is that type checking must be

performed at runtime, leading to higher memory and processing

power overheads and increased memory fragmentation. Typical

examples of heterogeneous data structures are structures and records,

they are collections of different fields, each one with a possibly

different type. For example, a C structure might include an integer

field, a floating-point field, and a character array field, making it an

excellent candidate for representing immutable entities in the real

world, such as returned records from employee forms or database

records. A more direct example of a heterogeneous data structure

would be Objects in object-oriented programming (OOP). An object

is collection of data members, each with their own data type. This

provides more flexibility for modeling during software development.

In Object Oriented Programming based systems, for instance, a

"Person" object may have a name (string), age (integer) and height

(floating-point point number) - heterogeneous data structures are

extremely beneficial in representing real time objects. You can also

have elements of different types in the same array in dynamically

typed languages like JavaScript and Python. So this feature give you

flexibility, but at the risk of matching any type and necessitating

runtime checks that require type correctness.

This separation of data structures can also be observed in manners

regarding primitive and non-primitive data structures. Primitive Data

Structures are the basic data types which Take Take direct care of the

machine's directions. They are types of data that only hold one value

and are often built into computer languages. A whole number is called

an integer. decimal number is called a floating-point number. A

character is a single letter or symbol. A boolean value is either true or

false. Because they are primitive, data structures are simple by

definition. They have a set size and a specific way of storing values in

13
MATS Centre for Distance and Online Education, MATS University

Notes memory that works best at the hardware level. Primitive data

structures are simple structures that are described in the same way.

Non-primitive data structures, on the other hand, are more

complicated and are made with primitive data types. Structures like

data frames are made from data and help manage bigger or more

complicated information. Groups, linked lists, stacks, queues, trees,

and graphs are all types of non-primitive data structures. As we

already said, arrays are a type of homogenous data structure that store

many items of the same type in memory spots that are close to each

other. Linked lists, on the other hand, are made up of nodes. Each

node has data inside it and a link to the next node in the list. You can

change how much memory is used, but the keys take up extra room.

Structures for linear data: Ordered Groups: Queues and Stacks When

you set up a linear data structure, the parts are put together in a certain

way. Adding or taking away items from a stack starts at the same end.

This is called a Last In, First Out (LIFO) movement. Stacks can also

be used to keep track of things like computer language function calls.

When a function ends, its calls are added to a stack and run

backwards. This means that first thing that is added to the line will be

the first thing that is served. This works great when they are used in

operating systems to plan when to do things like send network packets

or print jobs. Data structures like trees and graphs are more

complicated than simple data structures. They allow you to arrange

data in a tree or a network. We can see a tree here. Each node has a

parent and maybe more than one kid node. Aside from that, trees are

used to set up file systems, make choices in machine learning, plan

syntax trees for programs, and do other things. Relational database

stores information in tables, while a graph is made up of nodes

(sometimes called vertices) that are linked together by edges. This

makes it perfect for showing complicated relationships like those in

social networks, road maps, and project management dependencies.

However, homogeneous data structures speed up compilation more,

but they aren't good for situations where you need more freedom.

Different types of data files give you more options, but they may slow

down your computer. Whether to use uniform or heterogeneous data

structures depends on the needs of application, such as memory

constraints, type safety, and how quickly data can be processed. With

this information, developers can pick the best data structures for their

14
MATS Centre for Distance and Online Education, MATS University

Notes apps, making sure that the design of their software is both fast and

durable in the long term.

They are made up of basic data types that are spread out and can be

taken for granted. They are made up of primitive or non-primitive data

structures and allow certain processes to work. There are many

patterns we've already talked about, such as Linked Lists, Trees,

Graphs, and more. There are times when non-primitive data structures

are useful, & they have functions that are good for those times. They

make the info and the things that can be done with it public. This

group talks about how data is saved in a computer's memory, while

the logical view talks about how data is thought of and seen.

Ways to organize real data

Logical data structures show us how we think about data, while

physical data structures describe how data is stored in a computer

brain. We only teach about how things are put together and how

memory is organized. Arrays are basically groups of things that are

linked to each other. Memory will be used to store things like the

pieces in an array. They have an index that lets you view them at any

time, but their size is fixed, which can make it hard to change it. On

the other hand, connected lists are made up of memory blocks that are

not next to each other but are linked by pointers. While this makes

insertion quick and deletion without needing to resize, it leads to

worse element access times from needing to traverse the nodes

sequentially. Physical structures focus on how efficiently memory is

used, and the performance consequences of memory access patterns.

The physical data structure you need to use depends on memory,

access time, and which kind of operations will be performed most

often.

Logical Data& Structures

The logical data structures between the data and the programmer

describe how the data is viewed by it and how the programmer can

access that data as an abstraction of the physical implementations.

They aim at telling how everything is organized and works

conceptually, disregarding memory layout. Such as stacks, queues,

trees, graphs, etc. Stacks & exhibit Last-In-First-Out (LIFO)

behaviour, whether they are implemented by an array or a linked list.

Queues provide First-In-First-Out (FIFO) access which is ideal for

scheduling and buffering applications. Tree and graph data have a

15
MATS Centre for Distance and Online Education, MATS University

Notes hierarchical or relational structure and are popular in representing

structured and relational data. Logical structures abstract away from

the implementation details and think in terms of the conceptual

model. There can be multiple physical implementations of the same

logical structure, yielding different performance characteristics. A

standard adenine queue would end be used with an array or linked list

behind the scenes, with ironical trade-offs in cypher efficient and

cipher speed.

Arrays

Array is one of the simplest & most commonly used data structure. It

is a collection of items which are identified by indices or keys. Arrays

have a set size in traditional implementations, which result in static

memory allocation. Features contiguously stored elements, index

retrieval of information on the other hand, inserting or deleting

elements can be expensive as it may require shifting elements to

maintain order.

In arrays operations such as reading elements can be done in constant

(o(1)) time, searching can be done in linear (o(n)) or logarithmic

(o(log n)) time as long as array is sorted, inserting or deleting

elements takes o(n) time since the rest of the elements are to be

shifted. The size of the input is known and won't change, or you want

to get random access often. Arrays are a great way to start building

more complicated data structures like matrices and multidimensional

data. Dynamic arrays, like the Array List in Java, reallocate

themselves automatically when they run out of space. Jagged arrays,

where the sizes of the inner arrays vary, and parallel arrays, where the

same data is stored in more than one array (one for each type of data),

are some other types.

Figure 2: Arrays
[Source: https://www.programiz.com/]

16
MATS Centre for Distance and Online Education, MATS University

Notes Lists with Links

When you put together a linked list, you get a list of things, which are

called "nodes." The list has a link for each thing that goes to the next

one. Link lists let you change their size as needed, so you don't have

to give them all the memory at once. An easy-to-use type of linked list

is the single linked list. Another popular type is the double linked list.

A linked list is made up of nodes, and each node only has one link to

the next node Each node in a doubly linked list points to both the

previous and next node, so you can move through the list in both

ways. The last node in a circular linked list points to the first node in

the list, making a loop. You can use this loop to do things with the

nodes (a list of items) in a certain order. When a lot of items are added

or removed, linked lists work well because they can be run in O(1)

time if the links are set up properly. To get to the one you want in a

linked list, you have to go through each node one by one. This makes

the search take longer than when groups are used.

Stacks

The name "Stack" comes from the Last-In-First-Out (LIFO) method.

You can add an item to a hash set, take away the top item, and then

look at the top item. This is a type of data structure in computer

science called LIFO. It is a stack. Ranges or linked groups can be used

Figure 3: Linked List
[Source: https://www.programiz.com/]

Figure 4: Stack][Source:
https://www.programiz.com/]

17
MATS Centre for Distance and Online Education, MATS University

Notes to make it. A lot of people use them to do things like test expressions,

handle function calls in computer languages, undo in text editors, and

more. Line up and waiting "First-In, First-Out" (FIFO) is the idea

behind a list, which is a simple way to organize data. On one end,

things are added, and on the other end, things are taken away. Both

enquire (add an item) and desuetude (remove an item) would work

this way. Arrays, linked lists, and circular files can all be used to make

queues. Lines come in many forms, including priority lines and

double ended queues (deques). In priority lines, items are taken out of

the queue based on how important they are, not their order. Graphs

and trees tree is type of hierarchical logical data structure where each

node is linked to one or more other nodes in a parent-child

relationship. In binary trees, each node can have no more than two

children. They are one of the most popular types of data structures. If

you come across a special type, like binary search tree (BST), it will

keep things in order. Other types, like an AVL tree or a Red-Black

tree, will keep the heights equal. Graphs can be either directed or

undirected, and they can be weighted or not weighted. They are used

for many things, like routing in networks, social networks, and

feedback systems. Depth-first search (DFS) and breadth-first search

(BFS) are two popular ways to move through a graph. They are very

important to computers because they control how data is saved,

accessed, and changed. It's important to know that data structures

come in two different types: virtual and real. These differences are

very important for figuring out how to make programs work well and

improve systems. linked list is a group of nodes that hold changing

information & term that connects one list to the next. most important

thing about a linked list is probably its dynamic size, as it can grow

or shrink while executing and does not require a predefined size. This

proves particularly helpful in situations where the data size is

variable. Non-contiguous memory allocation is the other important

feature. Arrays require memory elements to be stored at contiguous

memory locations, while linked lists can have them at random places

in memory. This gives the system a certain amount of flexibility,

which minimizes memory fragmentation and enables the efficient

utilization of available memory. Meanwhile, linked lists have

sequential access, which allows traversal from head node to the

desired element in a linear fashion. Because this structure does not

18
MATS Centre for Distance and Online Education, MATS University

Notes support direct indexing, access is slower than with an array, because

an element is not specified through an index but must be traversed

sequentially.

There are three main types of linked lists: single-linked lists, double-

linked lists, and circular linked lists. Each node in a singly linked list

has two fields: one that keeps the node's data and one that points to

the next node. This building makes it easy to move forward, but not

backward. Two-linked lists have data at each node, as well as a

pointer to the next node and pointer to the node before it. To move

forward or backward, this extra pointer can be used. This makes some

jobs go faster. Finally, there is a type of linked list called a circular

linked list. Its last node points to its first node, making it a loop that

never ends. This trait of going around in a circle is useful in situations

where you need to go around in a circle, like in scheduling systems.

List with Links: Access, adding, deleting, and searching are some of

the things that can be done with a linked list. Accessing an element in

an array-based data structure takes O (1) time and doesn't require

traversal because we can just use the element's index. However, in a

linked list-based data structure, we have to start at the head node and

work our way down until we reach the desired position, which takes

O(n) time. It takes O (1) time to add and remove things once you are

in a place. It takes O(n) time to find an element, though, since each

one has to be checked one at a time. Linked lists are helpful when we

need to add or remove items often because we can quickly change the

links without having to move the items around like we do with arrays.

They work well when the amount of data is unknown or changes a lot.

This makes them a good choice for allocating memory on the fly. As

well as this, this is also true for many generic data types that use

linked lists, such as memory allocators, stacks, and queues. Stack is

just an abstract data type that works with Last-In-First-Out (LIFO),

which means that the last thing you put will be the first thing taken

away. This is very helpful in some cases because it keeps things in a

certain order. Adding and taking away things from only one end,

called the top, is what makes a stack. The latest element is the only

one that can be accessed, which means that actions can only be done

on that element. You can put together a stack in two ways: with an

array or a linked list. Stacks can be used to do four main things: push,

pop, peek (or top), and isEmpty. To add an item to the bottom of the

19
MATS Centre for Distance and Online Education, MATS University

Notes stack, use the push method, which takes O (1) time. The pop action

also takes O (1) time to get rid of the topmost element. With that peek

action, you can see the most recent addition because it only shows the

top element and doesn't get rid of it. The is Empty operation checks to

see if there are any things on the stack that can be used and returns a

Boolean value in constant time.

Stacks can be used for many things. This is one of the most popular

uses LIFO data structures are often used in programming to handle

function calls. In this case, function calls are pushed onto a call stack,

and the most recently called function runs first. Stacks are utilized for

the evaluation of mathematical expressions or the reading of computer

language code structures. Applications, like word processors, use

stacks to remember past states and undo actions when needed. Then

you'll read data until you get to the first Flap object that pops off the

stack. You'll then have to go back to the last state that was saved

before that flap (which removes data from the stack until a state we

need to return to is found). All stacks have three properties: they are

reversible, they use last-in-first-out memory, and they are forever. A

queue is another type of abstract data. It is made up of elements at the

ends of the queue and works on the First-In-First-Out (FIFO)

principle, which means that first element added is the first one

removed. In situations where things need to be handled in the order

they arrive, queues are important. When you add something to one

end (the back), you take something away from the other end (the

front). This is called a queue. Applications need to use either arrays or

linked lists to perform Queue. One type of queue could be easy, while

another could be circle, priority, or deques double-ended. The usual

FIFO method is used by a simple queue; items are added at the back

and taken out at the front. To make a circular line instead, you can use

the circular buffer. The end of the queue will wrap around to the top

of the queue. This saves room and keeps memory from going to

waste. A priority queue is different from other data structures because

it links elements' priorities, which means that elements with high

priorities are dequeued before elements with low priorities. Lastly, a

deque lets you append elements on both sides, so you can manipulate

data how you want. Basic operations of queues are enqueue,

desuetude, front, & is Empty. In O (1) time, the enqueue move adds a

component to the back of the queue. When you use dequeue, an item

20
MATS Centre for Distance and Online Education, MATS University

Notes is taken out of the front of the queue, which also takes O (1) time. The

front action lets us see the front element without taking it away. This

is helpful when we want to see what the next element is that needs to

be processed. The is Empty action is part of the Write Queue class.

The action is Empty checks to see if the queue is empty. It takes no

time at all returns a Boolean. In the real world, lines are useful in

many ways. There are tools in operating systems that use queues all

the time to schedule tasks. Processes are put in a queue by the

operating system so that they can run in a fair way. It's interesting that

most algorithms that move through the structure of trees (or graphs)

are built so that they can handle some of the nested structure of the

tree or graph. This means that the whole layer or depth of data is

processed at once before moving on to the next layer or depth form,

which is easy to do with queues. One important use for queues is as

input/output buffers, which store data while it is being read and make

the reading go more smoothly. Another place where queues are used a

lot is in networking. Servers that handle requests on the web use

queues, and networks that send and receive data use them to keep

track of packets. The linked list, stack, and queue data structures all

give us the best ways to solve different types of situations. Linked

lists are great for applications that need to be flexible because they

can dynamically allocate memory and add and remove items quickly.

In LIFO, the first thing taken away is the last thing added. A stack is

used to call functions, evaluate expressions, and undo things. You can

do many things with queues, such as plan jobs, store data, do breadth-

first searches, and more. The FIFO rule tells them how to work. There

are different types of material that can be used to solve different types

of problems.

Trees

Figure 5: Trees [Source:
https://www.programiz.com/]

21
MATS Centre for Distance and Online Education, MATS University

Notes Tree is a non-linear structured data structure made up of nodes that

are linked together by edges. A node can work for one or more child

nodes. There is a root node at the top of the hierarchy, & each node

can have more than one kid but only one parent (other than the root).

 Types:

1. In a binary tree, each node can only have two children.

2. The left child goes to the adult, and the right child goes to the

left child.

3. The AVL Tree: BST that balances itself

4. Red-Black Tree: BST that evens itself out and has color traits

5. B-Tree and B+ Tree are balanced trees made for storage

systems.

6. Heap: A full binary tree with a heap value (either max heap or

min heap).

7. Trie: A tree for saving strings that start with the same letter

 How it works:

• Adding: O(log n) for trees that are balanced, O(n) for trees that

are not balanced

• Deletion takes O(log n) time for balanced trees and O(n) time

for lopsided trees.

• The search time is O(log n) for balanced trees and O(n) for

lopsided trees.

• Crossover: level order, in-order, pre-order, and post-order

Use Cases:

• Hierarchical data representation (file systems, organizations)

• Database indexing (B-Trees, B+ Trees)

• Priority queues (heaps)

• Expression parsing and evaluation

• Routing algorithms in networks

• Decision-making algorithms

Graphs

Figure 6: Graph
[Source: https://www.programiz.com/]

22
MATS Centre for Distance and Online Education, MATS University

Notes graph is a non-linear data structure consisting of vertices (nodes) &

edges connecting these vertices. It represents relationships between

pairs of objects.

Characteristics:

• Collection of vertices joined by edges

• Edges can point in one direction or not point in any direction

(two-way).

• The weights or costs of edges can be changed.

Signs and symbols:

• 2D collection called an adjacency matrix shows the edge between

points i and j as cell.

• Adjacency List: collection of linked lists that each contains edges

that touch a vertex

• Edge List: This is a list of all the graph's edges.

 Types:

1. Directed Graph (Digraph): Edges point in a certain way

2. In an undirected graph, the edges don't go in any particular way.

3. Weighed Graph: Every edge has a cost, also called a weight.

4. A cyclic graph has at least one circle.

5. An acyclic graph doesn't have any loops.

6. This type of graph has a path between every pair of points.

7. A disconnected graph has parts, or edges, that are not linked to

each other.

 How it works:

• Depending on the format, use O(1) to O(V+E) to add or remove a

vertex.

• Change the model by adding or taking away an edge from O(1) to

O(V).

• If you have an adjacency matrix, use O(1) to see if two points are

next to each other. If you have an adjacency list, use O(8).

• Traversal: Breadth-First Search (BFS) & Depth-First Search

(DFS)

Use Cases:

• Social networks (connections between people)

• Transportation networks (roads, flights)

23
MATS Centre for Distance and Online Education, MATS University

Notes • Web page linking structures

• Network routing algorithms

• Dependency resolution

• Recommendation systems

• Path finding algorithms (GPS navigation)

Hash Tables

Hash table (hash map) is a data structure that& implements an

associative array abstract data type, mapping keys to values using a

hash function.

Characteristics:

• Uses a hash function to compute an index into an array of

buckets

• Ideally provides O(1) average time complexity for lookups

• Handles cell

24
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2: Memory Management Concept

1.3 C++ Memory Map, Memory Allocation Operators (new,

delete)

Memory management is a fundamental aspect of programming,

particularly in languages like C++, where developers have explicit

control over memory allocation and deallocation. In the context of

data structures, understanding how memory is allocated, utilized, and

freed is crucial for optimizing performance and avoiding memory-

related issues such as leaks and fragmentation. The C++ memory map

provides insight into how memory is structured, and memory

allocation operators like new and delete allow dynamic memory

management, making it easier to work with complex data structures

such as linked lists, trees, and graphs. A typical C++ memory map

consists of several regions: the code segment, the stack, the heap, and

the data segment. The code segment contains the executable

instructions of the program, while the data segment holds global and

static variables. The stack is used for managing function calls and

local variables, following the Last In, First Out (LIFO) principle. Each

time a function is called, a new stack frame is created, which contains

function parameters, return addresses, and local variables. When the

function completes execution, its stack frame is removed. The heap,

on the other hand, is used for dynamic memory allocation, where

memory is allocated and deallocated manually by the programmer.

Unlike the stack, the heap does not follow a strict order for allocation

and deallocation, making it more flexible but also more prone to

issues such as fragmentation and memory leaks. In the context of data

structures, dynamic memory allocation is particularly useful. When

working with arrays, for instance, static arrays have a fixed size

determined at compile time, limiting their flexibility. Dynamic arrays,

however, can be allocated on the heap, allowing for more efficient

memory usage and resizing during runtime. Linked lists, trees, and

other dynamic data structures rely heavily on heap memory because

their sizes are not known in advance, and they require the ability to

grow and shrink dynamically.

C++ provides memory allocation operators to manage heap memory

efficiently. The new operator is used to allocate memory dynamically,

returning a pointer to the allocated space. It can be used to allocate

memory for single variables as well as arrays. For example, int* ptr =

25
MATS Centre for Distance and Online Education, MATS University

Notes new int; allocates memory for a single integer on the heap, while int*

arr = new int[10]; allocates an array of ten integers. When using new,

it is essential to release the allocated memory once it is no longer

needed to prevent memory leaks. This is done using the delete

operator, which deallocates the memory and frees up the space for

reuse. For a single variable, delete ptr; is used, and for an array,

delete[] arr; ensures that all elements are properly deallocated.

Memory management becomes more complex when working with

objects. When an object is allocated dynamically using new, its

constructor is called automatically, ensuring proper initialization.

Similarly, when delete is used, the object's destructor is invoked,

allowing for any necessary cleanup. This is particularly important

when dealing with classes that manage dynamic resources, such as file

handles or dynamically allocated arrays within objects. To handle

such cases, C++ also provides smart pointers, such as std::unique_ptr

and std::shared_ptr, which automate memory management and help

prevent memory leaks by ensuring that allocated memory is released

when no longer needed. Despite the advantages of dynamic memory

allocation, improper usage can lead to several issues. One common

problem is memory leaks, which occur when allocated memory is not

properly deallocated. Over time, this can lead to increased memory

consumption, slowing down the program and eventually causing it to

crash. Dangling pointers are another issue, occurring when a pointer is

used after the memory it points to has been deallocated. This can

result in undefined behavior, leading to segmentation faults and

program instability. Double deletion, where the delete operator is

called on the same memory address more than once, can also cause

unpredictable behavior and program crashes.

Efficient memory management is particularly important in data

structures that involve frequent memory allocation and deallocation,

such as linked lists and trees. In a linked list, each node is dynamically

allocated, and failure to properly deallocate nodes when deleting

elements can result in memory leaks. Similarly, in trees and graphs,

managing memory efficiently is crucial to ensure optimal performance

and avoid excessive memory consumption. Many advanced data

structures use memory pooling techniques or custom memory

allocators to optimize performance and minimize the overhead of

frequent allocation and deallocation operations. Another consideration

26
MATS Centre for Distance and Online Education, MATS University

Notes in memory management is fragmentation, which occurs when free

memory is broken into small, non-contiguous blocks, making it

difficult to allocate large contiguous memory chunks. This is

particularly problematic in long-running programs that frequently

allocate and deallocate memory. To mitigate fragmentation,

programmers can use strategies such as memory compaction or

custom memory allocators that group similar allocations together.

Understanding memory allocation and deallocation is also essential

when working with multi-threaded applications. When multiple

threads allocate and deallocate memory simultaneously, race

conditions and synchronization issues can arise. Properly managing

memory in multi-threaded programs requires techniques such as

thread-local storage, mutexes, or lock-free data structures to ensure

safe and efficient memory access.

In modern C++ programming, best practices encourage the use of

smart pointers and the RAII (Resource Acquisition Is Initialization)

principle to automate memory management and reduce the risks

associated with manual allocation and deallocation. Smart pointers

like std::unique_ptr automatically delete the allocated memory when

they go out of scope, ensuring that memory leaks are prevented.

std::shared_ptr allows multiple pointers to share ownership of a

resource, automatically freeing the memory when the last reference is

destroyed. Understanding the C++ memory map and memory

allocation operators is essential for efficient programming, especially

in the context of data structures. Proper memory management ensures

that programs run efficiently, avoid crashes, and make optimal use of

available system resources. While dynamic memory allocation

provides flexibility, it also introduces complexities that require careful

handling. By following best practices, such as using smart pointers

and minimizing memory fragmentation, programmers can create

robust and efficient applications that make the best use of available

memory.

27
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3: Performance Analysis & Management

1.4 Performance Analysis & Management - Space Complexity,

Time Complexity

In the study of data structures, performance analysis and management

play a crucial role in determining the efficiency of algorithms and

their practical applicability. Two fundamental aspects of performance

analysis are space complexity and time complexity, both of which

directly influence how well an algorithm performs under various

conditions. Understanding these complexities is essential for

optimizing computational resources, ensuring that operations are

executed efficiently, and enabling effective data processing. As data

structures form the foundation of computer science, the ability to

analyze their performance helps in selecting the most suitable data

structures for specific tasks and environments. Space complexity

refers to the amount of memory an algorithm requires to execute,

including both the input storage and auxiliary storage used during

computation. This metric is essential because memory is a finite

resource, and inefficient use can lead to system slowdowns or failures,

especially in large-scale applications. Space complexity is typically

expressed in terms of Big-O notation, which describes the upper

bound of an algorithm's memory usage relative to input size. For

example, an algorithm with O(n) space complexity grows linearly

with input size, while one with O(1) remains constant regardless of

input. Some data structures, such as arrays, require contiguous

memory allocation and can be memory-intensive if large elements are

stored. In contrast, linked lists utilize memory dynamically, allocating

space as needed, which can be more efficient in certain scenarios.

However, the trade-off lies in the additional storage required for

pointers in linked lists, which increases overall memory usage. Trees,

graphs, and hash tables also come with their own space requirements,

with trees typically needing space proportional to the number of nodes

and graphs depending on their representation, whether adjacency lists

or adjacency matrices. Time complexity, on the other hand, refers to

the amount of time an algorithm takes to complete as a function of

input size. It is also expressed using Big-O notation to classify

algorithms based on their growth rates. The time complexity of an

operation varies depending on the data structure used. For instance,

28
MATS Centre for Distance and Online Education, MATS University

Notes searching in an unsorted array takes O(n) time in the worst case,

whereas a well-balanced binary search tree achieves O(log n) search

time. Sorting algorithms also have varying time complexities, with

bubble sort operating at O(n²) in the worst case, while quicksort and

mergesort can achieve O(n log n) performance under optimal

conditions. Understanding time complexity helps in making informed

choices about which data structure or algorithm to employ for a

particular problem. For example, hash tables provide average-case

O(1) time complexity for search, insertion, and deletion operations,

making them ideal for applications requiring fast lookups, such as

database indexing. However, in cases of hash collisions, the worst-

case time complexity can degrade to O(n), making collision resolution

techniques a critical aspect of hash table implementation.

The balance between time and space complexity is a crucial factor in

data structure design. Often, reducing time complexity may come at

the cost of increased space usage and vice versa. A classic example is

the trade-off between recursion and iteration. Recursive algorithms,

such as those used in tree traversals, may have a simple and intuitive

implementation but consume additional stack space, leading to O(n)

auxiliary space complexity in the case of deep recursive calls.

Similarly, caching techniques like dynamic programming improve

time complexity by storing intermediate results, but they require

additional memory storage, leading to an increase in space

complexity. Efficient performance management also involves

optimizing data structures based on the problem requirements and

constraints. Consider the case of priority queues, which can be

implemented using different data structures such as arrays, linked

lists, or heaps. A simple array implementation may provide O(1)

insertion time but require O(n) time for extracting the highest-priority

element. On the other hand, a binary heap enables both insertion and

extraction in O(log n) time, making it a more balanced choice for

handling priority-based tasks efficiently. Similarly, graph algorithms

require careful consideration of space and time complexity. For

instance, Dijkstra’s algorithm for shortest path computation performs

better with an adjacency list representation in sparse graphs but

benefits from an adjacency matrix in dense graphs where quick

lookups are necessary. In real-world applications, the principles of

performance analysis guide the design of efficient software and

29
MATS Centre for Distance and Online Education, MATS University

Notes systems. Search engines, for example, rely on indexing techniques

that balance time and space trade-offs to deliver fast query results.

Social media platforms use graph data structures to manage user

connections and efficiently recommend new friends or content.

Database management systems optimize query performance by

employing indexing, caching, and balanced tree structures like B-

Trees. Furthermore, operating systems employ scheduling algorithms

and memory management strategies that are deeply rooted in

performance optimization principles.

The impact of poor performance analysis can lead to inefficiencies,

increased operational costs, and scalability issues. An algorithm that

performs well on small datasets may become impractical when scaled

to millions of records. Thus, continuous assessment and refinement of

data structures and algorithms are necessary to keep systems

responsive and efficient. Developers often use profiling tools to

analyze performance bottlenecks, and techniques like amortized

analysis help in understanding long-term efficiency trends of data

structures. Performance analysis and management in data structures

are critical aspects of computer science that determine how effectively

algorithms handle computational tasks. Space complexity ensures that

memory usage is optimized, preventing resource wastage and system

slowdowns. Time complexity, on the other hand, dictates how quickly

an algorithm can process inputs and deliver results. By understanding

these complexities, developers can make informed decisions about

selecting the right data structures and algorithms for specific

applications. The trade-offs between space and time complexity must

be carefully managed to achieve optimal performance, ensuring that

software solutions remain efficient, scalable, and capable of handling

growing data demands. Whether designing search engines, databases,

or network systems, the principles of performance analysis remain

integral to developing high-performance computing solutions.

MCQs:

1. Which of the following is NOT a linear data& structure?

a) Stack

b) Line up

c) Graph

d) List

30
MATS Centre for Distance and Online Education, MATS University

Notes 2. Which of the following data& types & allows LIFO (Last In, First

Out) access?

a) Queue

b) Stack

c) List with Links

d) Graph

3. Which C++ operator is used for dynamic memory allocation?

a) malloc

b) delete

c) new

d) alloc

4. What does the complexity of time tell you?

a) The amount of memory used by an algorithm

b) How long a program takes to run based on the size of the

input

c) How fast the CPU is

d) The amount of power an app uses

5. Which data structure follows FIFO (First In, First Out)?

a) Stack

b) Line up

c) Graph

d) Tree

6. Which of the following operations is NOT typically performed on

an array?

a) Insertion

b) Deletion

c) Traversal

d) Random access

7. Which sorting algorithm has the best average-case time

complexity?

a) Bubble Sort

b) Selection Sort

c) Quick Sort

d) Sort by Insertion

8. What is space complexity in data structures?

a) The number of processors required

b) The amount of memory required for an algorithm

c) The execution time of an algorithm

31
MATS Centre for Distance and Online Education, MATS University

Notes d) The storage capacity of a hard disk

9. Which data structure is best suited for implementing recursion?

a) Stack

b) Queue

c) Graph

d) Linked List

10. Which of the following data structures can be used to implement a

queue?

a) Stack

b) Linked List

c) Array

d) Both b and c

Short Questions:

1. Define data structure and explain its classification.

2. What are the advantages and disadvantages of an array?

3. Explain dynamic memory allocation using new and delete in C++.

4. What is time complexity, and why is it important?

5. Compare linear and non-linear data structures with examples.

6. Explain the concept of space complexity in data structure

performance.

7. What is the difference between a stack and a queue?

8. List different types of data structures, and briefly describe their

usage.

9. What is the difference between static and dynamic memory

allocation?

10. Explain the importance of performance analysis in data structures.

Long Questions:

1. Explain the classification of data structures with examples.

 2. Explain how the different types of data structures (list, stack,

queue, tree, and graph) work.

 3. Discuss C++ memory management and explain new and delete

operators with examples.

 4. What are time and space complexity, and how do they impact

algorithm performance?

 5. Compare array and linked list in terms of memory usage and

operations.

 6. Explain different types of data structures and their applications in

real life.

32
MATS Centre for Distance and Online Education, MATS University

Notes 7. How does performance analysis help in selecting a suitable data

structure?

 8. Write a program to demonstrate memory allocation and

deallocation in C++.

 9. Explain the difference between basic and non-primitive data

structures.

 10. Talk about how important it is for software developers to use fast

data structures.

33

MODULE 2

 ARRAY

LEARNING OUTCOMES

• Understand the concept of arrays and their usage in

programming.

• Learn about one-dimensional and multi-dimensional arrays.

• Perform basic array operations such as insertion, deletion,

traversal, and merging.

• Learn how to pass arrays to functions in C++.

• Understand the implementation of multi-dimensional arrays.

34
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4: Introduction of Array

2.1 Introduction to Arrays: One-Dimensional Arrays,

Initialization, Accessing, Implementation, Passing Arrays to

Functions

Step by step. Data arranged in this way can be accessed and computer

programming that allows you to store several values under single

variable name. They create a heap in memory as a group of data

points, generally with same data type, ordered array a core data

structure in collections. They are used in structures and algorithms, so

every coder needs to know about them. Files and data will be very

much hard if the data is not properly structured and arranged into

Arrays are the building blocks of many more sophisticated data

 One-Dimensional Arrays

 They are stored next to each other in computer memory. As a linear

structure, one-dimensional arrays are conceptually simple and

practically useful for many programming are stored in consecutive

memory locations. Imagine it as a series of boxes; each box holding a

value, one dimensional array is linear data structure, where the

elements can be accessed in constant time with just one index, which

makes them ideal for many common tasks. Items put them in an array

with only one dimension. With their simple structure, they can if you

want to store sequences, such as a list of temperatures or student

grades or inventory enough practice, it's like second nature! In most

computer languages, first element is named 0 and the second element

is named 1. For beginners, this zero-based indexing technique can be

Figure 1.2: Arrays
[Source: https://usemynotes.com/]

35
MATS Centre for Distance and Online Education, MATS University

Notes hard to understand, but it's necessary to learn how arrays work, which

is what indexing is. There is a basic idea behind the first element in an

array. The time of announcement and can't be changed after the fact.

In dynamic languages like Python, JavaScript, or Java (when using

Array List) arrays can grow and shrink when you need, we refer to

the size or length of the array, we typically mean how many elements

it could contain. In languages such as C & C++, size is fixed When

as: An array of five integers, for instance, could be depicted [23, 45,

12, 8, 95] 23, index 1 has 45 and index 4 has 95. Notice in here that at

index 0 you have access to any of its elements in time complexity of

O (1) if we know the index of our element, as the memory address can

be calculated with the formula: occupied in the nearby memory

locations). Because they are in a contiguous storage, we can One-

dimensional arrays are allocated contiguously the elements are

location of element at position i = base address + lot of performance

when random access is needed.

 Array Initialization

 Languages have specific means of initializing arrays; the general

ideas are the same. to its elements. While some programming

Initialization is the creation of an array, where we may optionally

assign the values

 Static Initialization

Values are known in advance. For all array elements during

declaration. This works fine if the Static initialization–it means

providing values Initialization might look like: In C/C++, a static

50}; int numbers [5] = {10, 20, 30, 40,

In Java:

50}; int nums = {10, 20, 30, 40,

Are also referred to as arrays): Python uses lists instead of arrays

(however, they

df (Data Numbers)` # < — 10 < 20 < 30< 40 < 50

Dynamic Initialization

then filling its elements, individualy, often inside loops or using user

input. Dynamic initialization includes: creating the array first and

In C/C++:

int numbers[5];

for(int i = 0; i< 5; i++) {

numbers[i] = i * 10;

36
MATS Centre for Distance and Online Education, MATS University

Notes }

In Java:

int[] numbers = new int[5];

for(int i = 0; i< 5; i++) {

numbers[i] = i * 10;

}

In Python:

a list of 5 zeros numbers = [0] * 5 # Creates

for i in range(5):

numbers[i] = i * 10

Default Initialization

Tend to give elements default values: If arrays are created without

explicitly specifying values, programming languages

• In C/C++, local arrays have undefined values unless explicitly

initialized, while global arrays are initialized to zero.

• In Java, array members are set to their default values by default (0

for numbers, false for booleans, and null for object references).

• In Python, you have to directly set up list items to be used.

Initializing an array and figuring out its size

• Some languages allow the compiler or interpreter to decide the

array size based on number of initializers:

• If you use C or C++, you can write: int numbers[] = {10, 20, 30,

40, 50}; int size = 5;

If you use Java, you can set the size to 5 by calling int[] numbers

= {10, 20, 30, 40, 50};

Partial Initialization

• You can only set up some parts of an array in some languages:

In C/C++, the code looks like this: int numbers[5] = {10, 20}; //

The other parts (numbers[2, 3], and 4]) are set to 0.

• Knowing about these initialization techniques can help you pick

the best one for your programming job, taking into account things

like how easy it is to read, maintain, and run.

Getting to Array Elements

• Indexing is the main way to get to elements in an array. We use an

integer value to tell the program where to find the element we

want to change or recover.

Access to Basic Elements

37
MATS Centre for Distance and Online Education, MATS University

Notes • Accessing elements in an array can be done in a few different

ways depending on the computer language, but in most cases, you

need to use array name followed by the index in square brackets:

When you use C/C++, Java, or JavaScript:

array_name[index]

In Python:

array_name[index]

For example, to access the third element (which is at index 2 due to

zero-based indexing) of an array named "scores":

scores[2]

Modifying Array Elements

Arrays allow in-place modification of their elements, which is one of

their key advantages:

scores[2] = 95; // Sets the value at index 2 to 95

Out-of-Bounds Access

When accessing array elements, it's crucial to ensure that the index is

within the valid range. Accessing an array with an invalid index can

lead to different behaviors depending on the language:

• In C/C++, accessing an out-of-bounds index is undefined

behavior, which may cause program crashes, data corruption,

or seemingly normal operation with unexpected results.

• In Java and Python, an exception is thrown (Array Index Out

Of BoundsException in Java, Index Error in Python).

• Some languages like JavaScript will return undefined for out-

of-bounds access.

Iterating Through Arrays

common operation is to process all elements of an array, typically

done with loops:

Using a for loop (C-style):

for(int i = 0; i<array_length; i++) {

 // Process array[i]

}

In languages that support it, enhanced for loops (for-each loops)

provide a cleaner syntax:

In Java:

for(int value : array) {

 // Process value

}

38
MATS Centre for Distance and Online Education, MATS University

Notes In Python:

for value in array:

 # Process value

Access at Random

The thing that makes arrays unique is that they can do constant-time

random access. This means that it takes the same amount of time to

get to any element by its number, no matter how big the array is or

where the element is in it. Because arrays can allocate memory in

chunks and calculate direct addresses, this feature is present.

 Checking the Limits

To avoid runtime mistakes, it's good programming practice to use

boundary checks when accessing array elements:

 if (index >= 0 && index <array_length) { // It's safe to access

array[index] else { // Take care of the error }

 A lot of current programming languages and frameworks use

automatic boundary checking to make code more reliable and stop

security holes.

 Several-step Access

To get to nested items in arrays of objects or arrays of arrays, you

have to do more than one indexing operation:

 students[2].grades[3] // Getting to the third student's fourth grade

Mastering array access is an important part of programming because

it's the base for many algorithms and data manipulations.

Details on how to implement an array

 Arrays are implemented in a way that depends on how the hardware

and computer languages work with memory management and

allocation. Knowing these details helps coders choose when and how

to use arrays in the best way.

 Layout of Memory

Arrays are typically implemented as contiguous & blocks of memory.

Each element occupies a fixed amount of memory based on its data

type. For example, in many systems:

• An integer array with 5 elements may occupy 20 bytes

(assuming 4 bytes per integer)

• A character array with 10 elements may occupy 10 bytes

(assuming 1 byte per character)

This contiguous layout enables the efficient calculation of element

addresses and contributes to the fast access times arrays offer.

39
MATS Centre for Distance and Online Education, MATS University

Notes Figuring Out Memory Address

Formula to find the memory address of any element is: address of

element at index i = base address + (i × size of element) This

calculation is what makes it possible for any entry in an array to be

accessed in O(1) time. Details about the Array Header There are

many ways that arrays can store more than just the elements:

• How long or how big the array is

• Capacity (for groups that change)

• Type of data (in some languages)

This metadata helps control memory and check for bounds. Linear

Arrays vs. Fluid Arrays

the size of a static array is set at build time & can't be changed.

Traditional arrays in C and C++ are two examples: int numbers[100];

// Size is set at 100 items

Dynamic groups can change size while they're being used. Some

examples are std::vector in C++, Array List in Java, and list in

Python.

 Array in Java Script

1. Giving out a new, bigger piece of memory when it's needed is a

common way to use dynamic arrays.

2. Copying parts of the old block to the new one

3. Getting rid of the old memory block

4. Making changes to the base address pointer

This process is generally hidden from the programmer, but it slows

things down, especially when the size of the object is changed a lot.

Array Bounds Checking: Different languages have different ways of

checking array bounds:

 C and C++ don't usually do automatic bounds checking because they

focus on speed. Java, Python, and many other modern languages do

automatic bounds checking to stop buffer overflow vulnerabilities.

Bounds checking slow things down a little, but it makes things much

safer and more reliable. Memory Management: Arrays use a variety

of memory management methods, such as:

• Arrays that are put on the stack, like local arrays in C/C++, are

immediately freed up when they are no longer needed.

• Heap-allocated arrays, like those made with "new" in C++ or Java,

need to be explicitly freed in languages that don't have trash

collection.

40
MATS Centre for Distance and Online Education, MATS University

Notes • Languages that use garbage collection, like Java, Python, and

JavaScript, instantly free up array memory when it's not being

used.

Performance of Cache

Most of the time, arrays work well with current CPU cache systems

because Predictable access patterns: Elements that are close to each

other are likely to be accessed together and put into cache at the same

time. Sequential navigation makes prefetching work well.

This trait that is good for caches helps many array-based algorithms

work faster.

Putting it into practice in different languages Arrays are used in

different computer languages in different ways:

• C/C++: Basic arrays are simple memory blocks with minimal

overhead, while STL containers like vector add functionality

at the cost of slight overhead.

• Java: Arrays are objects with built-in length field and bounds

checking.

• Python: Lists are dynamic arrays with extensive functionality,

implemented as arrays of pointers to Python objects.

• JavaScript: Arrays are specialized objects where indices are

converted to string keys.

Performance Characteristics

The implementation details lead to specific performance

characteristics:

• Access: O(1) - Constant time for both read and write

operations

• Search (unsorted array): O(n) - Linear time as each element

must be checked

• Insert/Delete at the end (dynamic array): Amortized O(1) -

Occasional resizing makes this amortized constant time

• Insert/Delete at arbitrary position: O(n) - Elements after the

insertion/deletion point must be shifted

Understanding these implementation details helps programmers

predict performance implications and choose appropriate data

structures for their specific needs.

Passing Arrays to Functions

Passing arrays to functions is a common operation in programming,

but the behavior varies significantly across languages due to

41
MATS Centre for Distance and Online Education, MATS University

Notes differences in how arrays are implemented and how function

parameters work.

Pass by Reference vs. Pass by Value

When passing arrays to functions, most languages effectively pass

them by reference, meaning function works with the original array

rather than a copy. This behavior occurs because:

• In C/C++, an array name decays to pointer to its first element

when passed to a function

• In Java, arrays are objects and objects are always passed by

reference

• In Python, lists (Python's dynamic arrays) are passed by

reference

This means that changes made to array inside function will affect

original array outside the function.

Syntax for Array Parameters

The syntax for defining functions that accept arrays varies by

language:

In C/C++:

void processArray(int arr[], int size); // or

void processArray(int* arr, int size);

In Java:

void processArray(int[] arr);

In Python:

def process_array(arr):

Note that in C and C++, you typically need to pass the array size as

separate parameter since this information is not available from the

array pointer itself.

Example: Modifying Arrays in Functions

This example demonstrates how modifications to an array inside a

function affect the original array:

In C:

void doubleElements(int arr[], int size) {

for(int i = 0; i< size; i++) {

arr[i] *= 2;

 }

}

int main() {

 int numbers[5] = {1, 2, 3, 4, 5};

42
MATS Centre for Distance and Online Education, MATS University

Notes doubleElements(numbers, 5);

 // numbers is now {2, 4, 6, 8, 10}

 return 0;

}

In Java:

void doubleElements(int[] arr) {

for(int i = 0; i<arr.length; i++) {

arr[i] *= 2;

 }

}

// Usage

int[] numbers = {1, 2, 3, 4, 5};

doubleElements(numbers);

// numbers is now {2, 4, 6, 8, 10}

Passing Multidimensional Arrays

Passing multidimensional arrays requires special syntax in some

languages:

In C/C++, the dimensions except the first must be specified:

void process2DArray(int arr[][10], int rows); // For a 2D array with 10

columns

In Java, multidimensional arrays are arrays of arrays, so only the first

level needs to be specified:

void process2DArray(int[][] arr);

In Python, multidimensional arrays (nested lists) are passed like any

other object:

def process_2d_array(arr):

Returning Arrays from Functions

Returning arrays from functions also varies by language:

In C, you typically return a pointer to the array, often using

dynamically allocated memory:

int* createArray(int size) {

 int* arr = (int*)malloc(size * sizeof(int));

 return arr;

}

In Java, you can return the array reference directly:

int[] createArray(int size) {

int[] arr = new int[size];

 return arr;

43
MATS Centre for Distance and Online Education, MATS University

Notes }

In Python, you can return lists directly:

def create_array(size):

arr = [0] * size

 return arr

Using Array Parameters Safely

When working with array parameters, especially in languages without

automatic bounds checking, it's crucial to implement safety measures:

1. Always pass and check the array size

2. Implement boundary checks before accessing elements

3. Document clearly how the function modifies the array

4. Consider using const/readonly qualifiers for arrays that

shouldn't be modified

Performance Considerations

When passing large arrays, consider these performance aspects:

• In C/C++, passing arrays by pointer avoids copying, which is

efficient

• In Java and Python, only the reference is copied, not the entire

array

• For very large arrays, consider passing a reference/pointer to a

subsection if only a portion needs processing

Arrays vs. Other Collection Types

When designing functions, consider whether arrays are the most

appropriate parameter type:

• Arrays provide fast random access but limited functionality

• Some languages offer more feature-rich collection types like

vectors, lists, or ArrayLists

• Collections with iterator support might provide more flexible

function interfaces

Understanding these considerations helps in designing functions that

are both safe and efficient when working with arrays.

Operations on Arrays &Common Algorithms

In these operations is crucial for good programming and algorithms.

Being proficient Arrays have different operations and are building

blocks of many.

44
MATS Centre for Distance and Online Education, MATS University

Notes Basic Operations

Insertion

an element at a given position in an array, this means you will have to

shift all elements from that position: When you want to insert

position, value, size): insert(arr,

if position size:

Invalid position return error //

elements to provide space Shift

position--: for i=size-1 to

arr[i+1] = arr[i]

// Insert the new element

arr[position] = value

return size + 1 // New size

O(n) time. In the worst case, this operation takes

Deletion

if one element is deleted, all subsequent ones must move: Likewise,

a position of an arraysize of arrayfunctiondelete(arr, position, size): //

deletes

if position

45
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5: Operation on Array

2.2 Operations on One-Dimensional Arrays: Insertion, Deletion,

Traversal, and Merging Elements

Arrays are extremely popular and useful across many areas of

programming for general use, as they are simple, and an efficient way

to store data, and are basic data structures used when building other

data structures found in computer programming, allowing multiple

items of the same type to be grouped in a clean manner. Since these

elements are consecutive in the memory location and it is easy to

access here are one of the very common data the fixed size of many

programming languages, and possibly expensive operations to add or

remove elements in the data structure at places other than the tail.

However it has few limitations such as O(1) time access operation.

This trait of array is so useful for the scenarios which needs Arrays,

are strong because they give indexing, a favourable in-line access to

all their elements for a index, so they Arrays, but 1D arrays are a

primer on what arrays do and how they work. Only one index exists

for these arrays, which makes them intuitive and simple to use. For

more complex and multi-dimensional data, there is the

multidimensional row or column of elements. What is one-

dimensional array and in what agents in this context, we the most

basic type of arrays, One-dimensional arrays can be understood as

just. and performance-related behaviour. All these operations are

covered with their details of implementations, applications, traversal

and deletion, merging etc. These operations are essential for all

programming, especially in array manipulation, so good

understanding of these are also vital for successful array

manipulation. InsertionONE-Dimensional Insert Operations on 1D

Array and performance parts challenges for each insertion scenario.

This covers inserting at the head, middle or tail of an array.

Complexity due to adding new element to array structure There are

several methods to insert an element at a particular position in the

array. Array Insertion at the end of insertion is easy: store the position

right after the last element (typically by maintaining a length or size

variable) and insert there. Array, this would be adding it to the first

empty space after the last filled index. A simple and efficient

operation that does that is adding an element to the array if you have

46
MATS Centre for Distance and Online Education, MATS University

Notes capacity to add. (Constant time insertion into an array: O(1)) arrays

and they grow automatically, but that could mean allocating a new,

larger array and copying elements over, and that will happen under

the covers. A dynamic end needs a check whether there is enough

space to add a new element in an array (Example: Python lists, Java

Array List). But it should raise an error inserting in case it has already

reached its capacity or the array should be resized, in case of fixed

capacity array, inserting at application of amortized analysis so that

this cost is charged over a sequence of operations, resulting in O(1)

amortized time complexity finally for insertions to end. This will have

O(1) space complexities unless we need to resize, in which case, it

has O(n) complexities due to needing to copy the existing elements to

the new memory location. Time complexity of insertion at last & of

an array is O(1), thus if there is little space remaining we can

efficiently make an insertion at end of array in most modern

implementations. This storage is Hence, Beginning of Array Insert at

must be contiguous that enables valid indexing of the element. This

change the array storage However, it is more complicated to add an

element to the beginning of an array than to the end, as it requires

moving all existing elements.

This is ensuring that we are shifting all elements previous the last

element till the first. At last, at the Time of starting the insertion: All

the insertion steps: Existing elements needs to be shifted toward right

from linked lists rather than arrays. arrays. In some use cases where

frequent insertions to the front are required, maybe all or part even of

the elements may be better candidates. So, it is slower to insert in

starting than to insert at end, especially for large Insertion at first has

O(n) time complexity, which is the take to make. Move in an Array

Insert at Index means that every element from that position to the last

on e should be shifted one position forward, creating Space for the

new element to be inserted into the compartment. Inserting at an

arbitrary position in the array combines both end for insertion and

beginning insertion strategies. Inserting Element at particular

PositionAs the name suggests, Inserting at any a new element is then

placed at the array with the newly sized length, creating the new

array. Next, it uses shifted right all the elements from the end to First

of all, it checks if the position where they must be inserted (between

the 0 and the input list, 1. The insertion may also be needed at

47
MATS Centre for Distance and Online Education, MATS University

Notes different levels that can be inserted at time. You're doing random

insertions then in general that's (n/2) time which is still Big-O(n). On

the contrary, insertion at specific positions can be quite expensive for

huge arrays, considering the case for multiple insertions, however, if

we are inserting at the front. Assuming you know about the insertion

point.

Insertion in Sorted Arrays

If we are dealing with sorted arrays, we must fit the new element in

the right place--which adds complexity to arrangements. This is about

getting the right But such that: The specific steps in the case of sorted

insertion typically appears Finding the correct position for the new

element using binary search (for faster position determination) or

linear searchShifting all elements greater than the new element one

position to the rightInserting the new element at the identified

positionSorted insertion ensures that the array remains ordered after

each insertion, which can be beneficial for algorithms requiring sorted

data. However, the operation still requires shifting elements, resulting

in an O(n) time complexity in the worst case. This complexity comes

from the potential need to shift all elements if the new element

belongs at the beginning of the array.

Batch Insertion Strategies

For scenarios requiring multiple insertions, batch insertion strategies

can be more efficient than performing individual insertions

sequentially. These strategies minimize the number of shift operations

by calculating the final positions of existing elements after all

insertions are considered. One approach to batch insertion is to

maintain a buffer zone in the array, allowing for multiple insertions

without requiring immediate shifts. Another approach is to collect all

insertion requests and process them together, optimizing the shifting

operations. More sophisticated implementations might use techniques

like sparse arrays or dynamic allocation to accommodate batch

insertions efficiently. Batch insertion strategies can significantly

improve performance for applications requiring frequent insertions.

time complexity can be reduced from O(m*n) for m individual

insertions to approximately O(n+m) for batch processing, where n is

the number of existing elements and m is number of elements to

insert.

Deletion Operations in One-Dimensional Arrays

48
MATS Centre for Distance and Online Education, MATS University

Notes Deletion, the process of removing elements from an array, is another

fundamental operation in array manipulation. Like insertion, deletion

strategies vary depending on the position of the element to be

removed. Understanding these strategies is essential for maintaining

array integrity and optimizing performance during element removal.

Deletion from the End of an Array

Removing an element from the end of an array is the simplest deletion

operation. This operation involves reducing the array's logical size by

one, effectively making the last element inaccessible through normal

array operations. In many implementations, the element itself might

remain in memory until overwritten, but it is no longer considered

part of array from a logical perspective. When you delete an element

from an array with specific size tracking, the size counter usually

needs to be lowered. In programming languages that use dynamic

arrays, this could also cause memory optimization processes to

happen if the array gets significantly empty. In some implementations,

the position of the removed element might be nullified to make trash

collection easier or stop memory leaks. End delete takes O(1) time,

which means it works very quickly no matter how big the array is.

This operation that happens all the time is one reason why methods

like stack implementation using arrays work so well; they mostly

involve adding and removing items at the end.

Deletion from the Beginning of an Array

When you remove an element from beginning of an array, all other

elements have to be moved to the left by one place to fill the empty

space. This change is needed to keep the storage of elements next to

each other and the ordering correct, so that array elements can still be

accessed where they should be. Parts of the process are:

1. Getting rid of the part at index 0

2. Moving all parts that come after this one spot to the left

3. Taking away from the array's reasonable size

Like beginning insertion, beginning deletion takes O(n) time because

all the remaining parts might need to be moved. Because of this linear

complexity, beginning deletion is pretty pricey for big groups,

especially if it is done a lot. Getting rid of something from a certain

spot in an array Deleting from a certain point in an array is like

deleting from the beginning or the end. Once the element at the given

place is taken out, all elements that come after it must be moved one

49
MATS Centre for Distance and Online Education, MATS University

Notes position to the left to keep the array going. In most cases, the steps

are as follows:

1. Make sure that the delete point is inside the array's boundaries.

2. Take out the part from the location given.

3. Move everything one space to the left after the deletion spot

Decrement the array's logical size

The time complexity for deletion from a specific position depends on

the position itself. In worst case, when deleting from the beginning,

complexity is O(n). On average, assuming random deletion positions,

the complexity remains O(n/2), which simplifies to O(n) in big-O

notation.

Deletion by Value Rather Than Position

In many practical scenarios, elements need to be deleted based on

their value rather than position. This operation requires first searching

for the element in the array and then performing the deletion once the

element is found. If multiple instances of the value exist, additional

logic is needed to determine whether to delete one or all instances.

The process typically involves:

It takes O (n) time to look for the item in the array, and it takes O(log

n) time for sorted arrays to use binary search.

1. If found, deleting the item at the found place

2. Continuing the search to find and delete more cases if you

want to

The search part takes the most time, so deletion by value takes O(n)

time for unsorted arrays or O(log n + k) time for sorted arrays, where

k is the number of places that need to be moved after deletion. During

deletion, we make some elements look like they are removed, which

gets rid of them without actually getting rid of them. This is done with

flags or special values. There are two types of deletion: logical and

physical. Logical deletion gets rid of things without deleting them. It

takes more complicated traversal logic to skip over "deleted"

elements. This is especially helpful when the space being removed

requires a shift that takes a long time (O(1) time complexity). But it

costs more in terms of space use and could when you use logical

deletion, you can skip over empty space or long deletion periods,

which speeds up the process. However, when you shift elements, the

process takes O(n) time in worst case. Use: app can be used anywhere

it wants to For example, physical deletion protects the integrity of an

50
MATS Centre for Distance and Online Education, MATS University

Notes array and saves space, but it comes with the cost of Batch Deletion

Strategies, which are meant to cut down on shift operations by

handling multiple deletions in one operation. If you do a lot of deletes,

batch delete strategies can make your system run much faster than

single deletes. They're If you delete m items, you can speed up apps

that to O(n) from O(m*n). a first pass, and then in a second pass,

clean up all the scoped parts at a high level. This will cut down on the

number of shifts. One common method is to list the elements that

need to be deleted so that deletion-heavy tasks run much faster

without affecting the integrity of the array. When you do more than

one delete action at the same time, the time complexity of each

operation will still be taken into account. To reduce the time

complexity, you can do a batch deletion operation. This could lead

This means that even with improvements

 Traversal Operations in One-Dimensional Arrays: Traversal

operations help us work with arrays correctly. like looking, changing,

collecting, and so on. Since we know different, we look at each item

in a collection. A lot of other things depend on it, like Crossing: Most

of the time, Sequential Traversal Cache is used for this. It is at the

heart of many array functions. The contiguous memory layout of

arrays is used by sequential traversal to make data access patterns that

are easily kept in the CPU for each element of the array, from the first

to the last. This way of knowing is easy, natural, and Sequential

Traversal: We go to the last spot (size-1) with this method: It's usually

implemented with a loop that has an index variable that goes up by

one from the first position (which is usually 0). The standard deviation

of the array is given by array; size = for i from 0 to size-1:

process(array[i]); This uses memory access patterns that are good for

caching, so going through them one by one is very fast in practice.

taken to cross it can't be avoided. However, this constant factor is

generally not very big because the array has n elements. There is a

straight line between the size of the array and the time it takes to visit

each part at least once. DILANOS: Sequential traversal takes O(n)

time, while reverse traversal takes O(n) time.for operations requiring

elements to process them in reverse order, or for constructing

algorithms that function from the back of an array. last position to

first. This method is especially helpful Reverse Traverse visits array

51
MATS Centre for Distance and Online Education, MATS University

Notes position in reverse order starting from decrementing instead of

incrementing:

The implementation is almost identical to the sequential traversal, but

with the loop index

integer, size:integer): function reverseTraversal(array:

for i from size-1 down to 0:

process(array[i])

Forward traversal in some hardware architectures. Is generally

efficient because of good memory accesses. But it is less cache-

efficient than As in the case of sequential traversal, reverse traversal

has a time complexity of O(n)

Interval-Based Traversal

Algorithm that visits every element of the array at a particular interval

instead of visiting every element in sequence. It can also be used to

sample large arrays, to implement algorithms that operate on strides,

or on elements Denver has two more games to lifecycle that gentle,

and interval-based traversal is implementation uses a modified loop

with step The > 1:

size, interval): def intervalTraversal(array,

0 to size-1 in steps of interval: for i =

process(array[i])

The interval is inappropriately selected focused on data distribution

checked; this can greatly reduce the processing time for large arrays.

But it risks losing important patterns or values when traversal (k =

interval size) In cases where all elements need not be O(n/k) time

complexity for interval-based

Conditional Traversal

Be visited, skipping portions which do not meet the required

conditions. This is particularly effective for operations where you

want to operate on only a subset of the array elements based on their

values or their Utilizing conditional traversal; this way only allows

certain elements to traversal with conditional checks: The

implementation intersperses standard size, condition): def conditional

Traversal(array, for i between 0 and size-1: If condition(array[i]) is

true:

Process ([i] in array) elements.

52
MATS Centre for Distance and Online Education, MATS University

Notes Still is O(n), but now the processing time depends on how many

elements match the condition. When only a small percentage of

elements satisfy a particular condition, traversing only the list of

target elements can greatly reduce the effective time complexity

associated with a nested loop where the inner loop considers all Note

that the time complexity for the traversal part of Multiple Arrays in

Parallel Traversal visit corresponding elements in them in lockstep.

This pat Parallel traversal means processing multiple arrays at the

same time and multiple arrays, for example, vector addition,

comparison, or merging. ern is critical for operations that hinge on

combining elements from that iterates over all the arrays: We can

implement them with one loop size, numArrays): def

parallelTraversal(arrays, for i from 0 to size-1:

for j from 0 to numArrays-1:

process(arraysj)

As the bottom for many numerical computing algorithms. O(n*m) n=

no of elements in each array m= no of arrays. Such parallel traversal

is especially handy for element-wise operation and usually serves

Time complexity -

Iterator-Based Traversal

iterators, these iterators implement a common interface for iterating

over collections, as arrays, allowing cleaner and more readable code.

of traversing an array. Ideally data bind is a powerful tool that can

improve the usual code reference through Most modern languages

feature iterator mechanisms that abstract away these specific details

the implementation depends on the iterator mechanism for the

language, but usually rely on built-in structures like “for-each” loops:

 iterator Traversal (array) function

for element in array:

process (element)

Performance cost over raw index-based traversal for some languages,

though. types to work on, all without compromising on time

complexity. It may have minor Using iterators for traversing

collections provides added advantages of simpler syntax, error

handling, wider range of collection 1-D Arrays Combining

Operations in Data integration processes, and set operations. There are

several merging methods available, or patterns. This operation is

essential for a lot of algorithms, including sorting algorithms (e.g

53
MATS Centre for Distance and Online Education, MATS University

Notes merging, on the other hand, pertains to merging elements from

multiple arrays into one based on specific rules

Basic Merging of Two Arrays

Preserves the relative ordering of elements within each source array

while not imposing any additional ordering across the arrays. It The

simplest of the merging operations appends one array to another,

yielding a new array with elements from both include:

Common implementation methods

1. Making a new array whose size is the same as the sum of the sizes

of the source arrays

 2. Moving all the items in the first array to the start of the second

array

 3. Moving all items in the second array to spots after the items in the

first array (size2): define basic merging array1 with array2 of size 1

and result Size is size1 plus size2, which equals a new collection of

size (result Size) results for each i from 0 to size1-1:

 If i is between 0 and size2, the code will run as follows: result [size1

+ i] = array2[i].

 Return the answer

 The is also O (n+m) the sizes of the two nput arrays are n and m. The

amount of room needed for It takes O(n+m) time to do this basic

merge, where Sets of A Brief Look at Arrays: Multi Dimensional goes

one step further by letting data be kept in more than one dimension,

like in tables, matrices, or even more complicated formats. Allow us

to store more than one value of a certain type in a variable with the

same name. There are times when one-dimensional arrays are useful,

but multidimensional arrays are better in many situations. When

you're computing, arrays are a useful type of data thatrepresent and

work with complex relationships between data. in a structured

manner makes them especially useful in fields such as mathematics,

image processing, game development, scientific simulations, and data

analysis.

2.3 Multi-Dimensional Arrays: Initialization, Accessing, and

Implementation

Three, four or more dimensions, although it becomes quite difficult to

visualize more than three dimensions. Two-dimensional arrays,

which are akin to tables with rows and columns. However, arrays can

be an "array of arrays." The most popular form is multi-dimensional

54
MATS Centre for Distance and Online Education, MATS University

Notes array is basically a collection of arrays, so you can think of it as

access each one of its elements. Values and the process continues into

what we call hyperspace. An array's dimensionality refers to the

number of indices required to distinguish and mathematically

speaking, a 2-dimensional array is matrix, 3-dimensional is cube of

arrays initialization Multidimensional in a few common

programming languages. multi-dimensional array initialization is a

lot similar, just had either one or two syntax changes. In this article,

we will go through the various types of initialization approaches with

their implementation Whereas in languages, and Basic Initialization

Instantiating arrays typically as the data to be stored and the number

of dimensions. Declarable multi-dimensional the other hand, in

C/C++, we can declare and initialize a 2D array like so.

 // Declaration

Number of columns. First dimension is the number of rows, while the

second dimension is the

// Initialization with values

int matrix3 = {

{1, 2, 3, 4},

{5, 6, 7, 8},

{9, 10, 11, 12}

};

is somewhat similar in Java: The syntax

// Declaration

= new int3; int matrix

// Initialization with values

int matrix = {

{1, 2, 3, 4},

{5, 6, 7, 8},

{9, 10, 11, 12}

};

of writing the same: Python, which is designed to be simple, has a

more compact way

Using nested lists

matrix = [

[1, 2, 3, 4],

[5, 6, 7, 8],

[9, 10, 11, 12]]

55
MATS Centre for Distance and Online Education, MATS University

Notes Does the same thing as Python: Let matrix in JavaScript = [[1, 2, 3,

4], [5, 6, 7, 8], [9, 10, 11, 12]]; Dynamic Initialization or

comprehensions on some input or computation. Loops can be used to

make this happen. We might need to set up arrays based

 In C++:

 int rows = 3; int cols = 4; = new int[rows]; int matrix i = 0; i For(int |

Array. for (let j = 0; j < {cols; j++));

 Not uniform or sharp Arrays don't always have the same length. the

exact same size in all ways. “Jagged” arrays are ones whose sub-

arrays It is not necessary for all multidimensional arrays to have

 In Java:

 = new int3; int jaggedArrayjaggedArray[0] = new int[3];

jaggedArray[1] = new int[5];

jaggedArray[2] = new int[2];

// Initialize with values

5}. You should also be able to invoke jaggedArray[2] to return {9,

10}. You will want to ask jaggedArray[0] to return {1, 2} in the first

iteration, jaggedArray[1] to return {3, 4,

In Python:

jagged_array = [

[1, 2, 3],

[4, 5, 6, 7, 8],

[9, 10]

]

Higher-Dimensional Arrays

as you extend beyond two dimensions. This sort of nesting continues

array in C Three-dimensional

int cube2[4] = {

{

{1, 2, 3, 4},

{5, 6, 7, 8},

{9, 10, 11, 12}

},

{

{13, 14, 15, 16},

{17, 18, 19, 20},

{21, 22, 23, 24}

}

56
MATS Centre for Distance and Online Education, MATS University

Notes };

In Python:

cube = [

[

[1, 2, 3, 4],

[5, 6, 7, 8],

[9, 10, 11, 12]

 [13, 14, 15, 16],

[17, 18, 19, 20],

[21, 22, 23, 24]

Libraries Multi-Dimensional Arrays Specialized

and efficient multi-dimensional array implementations for scientific

computing and data analysis. Specialized libraries provide more

powerful

provides the ndarray object in Python: NumPy

import numpy as np

Create a 3x4 array

matrix = np.array([

 [1, 2, 3, 4],

 [5, 6, 7, 8],

 [9, 10, 11, 12]

Or create an array of zeros and fill it

matrix = np.zeros((3, 4), dtype=int)

for i in range(3):

 for j in range(4):

matrix[i, j] = i * 4 + j + 1

similar capabilities: math. libraries of JavaScript, for example js

provide In

to install ’npm install mathjs’ math - need

12]]); const matrix = math. matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9,

10, 11,

from the Multi-Dimensional Array How to Access the Elements

indexing). creating it, a multi-dimensional array can only be accessed

by specifying the index for each dimension. Most programming

languages use 0-based indexing (the exception being MATLAB and

R, which are based on 1-based After

Basic Access

In C/C++:

57
MATS Centre for Distance and Online Education, MATS University

Notes // Retrieve element at 2nd row (index 1) and 3rd column (index 2)

(value: 7) int value = matrix1;

In Python:

as in C/C++ value = matrix1 # Access same way

another powerful idea called comma notation: In Python, NumPy

offers

Equivalent of matrix1 value = matrix[1, 2] #

Through Multi-Dimensional Arrays Iterating

in 2D arrays to iterate through all their elements. We usually use

nested loops

In C/C++:

for(int i = 0; i< 3; i++) {

for(int j = 0; j < 4; j++) {

printf("%d ", matrixi);

}

printf("\n");

}

In Python:

for i in range(len(matrix)):

len(matrix[i])): for j in range(0,

print(matrixi, end=" ")

print()

NumPy, you can take more compact approach: With

for row in matrix:

for element in row:

print(element, end=" ")

print()

Or even more concise

for row in matrix:

print(" ". join(map(str, row)))

Slicing and Dicing

letting you take sub-arrays. Certain languages and libraries allow you

to slice multi-dimensional arrays,

In Python with NumPy:

rows and columns 1-3 Select first two

sub_matrix = matrix[0:2, 1:4]

or columns Extracting full rows

= matrix[1, :] # 2nd row row_2

58
MATS Centre for Distance and Online Education, MATS University

Notes matrix[:, 2] Third column column_3 =

Boundary Checking

behavior, or cause your program to crash. Also, protect yourself

against access outside of bounds with arrays, which can return a

runtime error, undefined

in C/C++, so if there is out of bounds access, we encounter

segmentation fault: There is no boundary checking

checking dangerous: no bounds

access that you can't catch at compile time (in C/C++) int value =

matrix5; // Out of bound

is the reason, that in Java when we access an out of bound index it

throws an ArrayIndexOutOfBoundsException: This

try {

an exception int value = matrix5; // Will throw

e) { } catch (ArrayIndexOutOfBoundsException

of bounds!"); System. out. printIndex() // effectively println("Index

out

}

out-of-range access, Python raises an IndexError: Even for

try:

raise at IndexError value = matrix5 # Will

except IndexError:

print("Index out of bounds!")

multi-dimensional arrays Changing elements of

indices and set a new value. pattern applies to modifying elements.

You provide the The same

In C/C++:

// Sets the 2nd row, 3rd column value to 42 matrix1 = 42;

In Python:

 # The same way matrix1 = 42

Using NumPy:

= 42 # Using parentheses notation matrix(1, 2)

Modifying Slices

than one elements at once. Some languages and libraries provide

slicing capability to change more

In Python with NumPy:

with 0 Fill in the first row

matrix[0, :] = 0

59
MATS Centre for Distance and Online Education, MATS University

Notes specific value to a 2x2 block Assign a

matrix[1:3, 1:3] = 99

Arrays Operations on Multi-Dimensional

built-in functions for common ARRAY things. Other languages and

libraries with

In Python with NumPy:

Sum of all elements

total = np.sum(matrix)

Sum along rows or columns

 # The sum of every row row_sums = np. matrix.sum(axis=1)

of each column col_sums = np. matrix.sum(axis=0) # Sum

Mean, min, max

mean_value = np.mean(matrix)

min_value = np.min(matrix)

max_value = np.max(matrix)

Transpose (swap columns and rows) #

transposed = np. transpose(matrix)

or

transposed = matrix.T

In MATLAB-like languages:

% Sum of all elements

total = sum(sum(matrix));

% Sum along rows or columns

row_sum row_sums = sum(matrix, 2); % Each

2], size(mat,2)); % Treating as two by two groups of 1, 1, 1, 2, 2, 2,...

do. from_matrix = mat2cell(mat, [1 1

% Mean, min, max

mean(mean(matrix)); mean_value =

min_value = min(min(matrix));

max_value = max(max(matrix));

% Transposition

transposed = matrix';

Array 2.2 Alternate Implementation — Multi Dimensional

understand memory usage and optimizing performance when working

with big datasets. Knowing how to work with multidimensional data

is really important to better

Memory Layout

60
MATS Centre for Distance and Online Education, MATS University

Notes programming languages: multi-dimensional arrays are stored in either

row-major or column-major order in most

1. Row-Major Order (used by C, C++, Python): Elements of

each row are stored contiguously in memory.

2. Column-Major Order (used by FORTRAN, MATLAB, R):

Elements of each column are stored contiguously.

with a shape of 3×4 in row-major order, the arrangement in memory

would looks like this: For a matrix

7 8 9 10 11 12] [1 2 3 4 5 6

In column-major order:

2, 6, 10, 3, 7, 11, 4, 8, 12] [1, 5, 9,

Addressing Formula

j is the jth column of the matrix, and c is the total number of columns

in the matrix. Here r denotes a dimension of the array, 0 is the ith row

of the matrix,

2D array: The row-major form of a

can compute the cell address as follows: Finally, we

array in column-major order: In the case of a 2D

of the specific element within the 2D array. You can use the

following formula to calculate the address extend similarly in higher

dimensions. These formulas cache efficiency Maximizing example,

thanks to how CPU caches are built, allocating arrays and looping

over them in the order they show in memory (in line with the memory

layout) improves performance due to cache locality. For

In C/C++ (row-major):

ordering) — Good cache performance (row-major

0; i= 0 for(int i = && row = 0 && col

MCQs:

1. What is an array in programming?

a) A collection of elements of different data types

b) A collection of elements stored at contiguous memory locations

c) A special type of loop

d) A pointer variable

2. Which of the following correctly declares an array in C++?

a) int arr;

b) int arr[5];

c) arr[5] int;

d) array int[5];

61
MATS Centre for Distance and Online Education, MATS University

Notes 3. What is the index of the first element in a C++ array?

a) -1

b) 0

c) 1

d) 2

4. What is the time complexity for accessing an element in an

array?

a) O(1)

b) O(n)

c) O(log n)

d) O(n²)

5. Which of the following operations can be performed on a one-

dimensional array?

a) Insertion

b) Deletion

c) Traversal

d) All of the above

6. What is the disadvantage of arrays?

a) Fixed size

b) Sequential memory allocation

c) Slow data access

d) Cannot store multiple elements

7. What is the best method for searching an element in a sorted

array?

a) Linear Search

b) Binary Search

c) Jump Search

d) Fibonacci Search

8. How are multi-dimensional arrays stored in memory?

a) Row-wise (Row-major order)

b) Column-wise (Column-major order)

c) Both A and B depending on compiler settings

d) Randomly

9. Which of the following is true about passing an array to a

function?

a) The entire array is copied to the function

b) The function receives a pointer to the first element of the array

62
MATS Centre for Distance and Online Education, MATS University

Notes c) The array cannot be passed to a function

d) Arrays are passed by reference only

10. How can an array be initialized in C++?

a) int arr[3] = {1, 2, 3};

b) int arr = {1, 2, 3};

c) arr[3] = {1, 2, 3};

d) int arr(3) = {1, 2, 3};

Short Questions:

1. What is an array, and why is it used?

2. How are one-dimensional arrays declared and initialized?

3. Explain the concept of indexing in arrays.

4. What are the advantages and disadvantages of arrays?

5. How do you pass an array to a function in C++?

6. Write a C++ program to insert an element into an array.

7. What is the difference between traversing and merging an

array?

8. How does binary search work on an array?

9. Explain the concept of multi-dimensional arrays with an

example.

10. Write a C++ program to delete an element from an array.

Long Questions:

1. Explain the concept of arrays and their types in detail.

2. Discuss the different operations on one-dimensional arrays

with examples.

3. How does insertion and deletion work in an array? Provide

algorithms.

4. Compare linear search and binary search for array searching.

5. Explain multi-dimensional arrays, their initialization, and

applications.

6. How can arrays be passed to functions? Write a C++ program

demonstrating this.

7. Discuss the advantages and limitations of arrays in data

structure applications.

8. Explain the concept of merging two arrays with an example.

9. Describe the difference between a stack and an array.

63
MATS Centre for Distance and Online Education, MATS University

Notes 10. Write a C++ program to perform all basic operations on an

array (insert, delete, traverse, merge).

64

Module 3

 STACK

LEARNING OUTCOMES

• Understand the concept of stacks and their operations.

• Learn about stack implementation using arrays and linked

lists.

• Explore applications of stacks such as reversing a string and

evaluating expressions.

• Understand stack-based algorithms for infix to postfix

conversion.

• Learn about queue operations and their implementation using

arrays.

65
MATS Centre for Distance and Online Education, MATS University

Notes Unit 6: Introduction to Stack

3.1 Introduction to Stacks and Operations on Stacks

This characteristic of stacks forms the basis for their use in many

algorithmic processes, such stack. In a stack, the most recently added

element is removed first a bigger scope and as we handle data. One of

the most visually simple yet most useful structures is the Efficient

computing is built on data structures that help us make the best use of

space and time complexity, at both functionality of stacks is their

limited access pattern, which makes many complicated problems

simple(since it enforces an orderly way of operations). functions are

supplemented with additional operations such as peek (to inspect the

top element of the stack without removing it), and is Empty (to

determine whether the stack still contains elements). Purer top of the

stack) give a limited way to access data. These core are simple but

powerful. The core operations push (to place an item on top of the

stack) and pop (to retrieve an item from the Operations of the stack

browser history. Management and function calls. Even in regular

applications, stacks enable the undo feature in text editors and keep

structures. Stacks are used by operating systems for process between

different notations and also to evaluate arithmetic expressions. Stacks

are used in compiler design to check the syntax and manage nested

science. In expression evaluation, they are mainly used to convert

Stacks are used across various aspects of computer for a given use

Figure 7.1: Stack Data Structure
[Source: https://th.bing.com/]

66
MATS Centre for Distance and Online Education, MATS University

Notes case. list implementations can behave with a dynamic size, at the cost

of an additional memory overhead. Understanding these tradeoffs is

critical to choosing the right implementation can implement stacks

using two methods one is array based and other is linked list based,

both of them have their own advantages and disadvantages. While

array-based implementations can offer constant-time access, they may

be limited in size, whereas linked Implementing Stacks programmers

a beginner exploring data structures for the first time, or an

experienced programmer searching for a more in-depth understanding

of stacks, this article provides a complete exploration of this

foundational data structure. data structures and algorithms and their

usage in solving complex computational problems. So, whether you

are will cover various properties, operations, implementations and

applications of stacks. Additionally, we will demonstrate how stacks

can work hand in hand with other To begin with, the next few rounds

in the world of stacks

Definition and Core Concepts

Use makes them a vital data structure to know, as they can be useful

for solving specific types of problems. like a pile of books: you can

only add or remove books from the top of the pile. You can imagine a

stack as being stack is a linear data structure based on Last-In-First-

Out (LIFO) organization. Stack follows Last In First Out A the

bottom of the stack has the first element added and will be the last to

Figure 8: Stack Push and Pop Operations
[Source: https://cdn.programiz.com/]

67
MATS Centre for Distance and Online Education, MATS University

Notes be removed (when the stack is emptied fully). entry of a stack is the

only one which all operations are performed with respect to, thereby

enforcing the LIFO behaviour. In contrast, top, which refers to the

latest item added to it. The top A stack has a contribution of this level

of restriction is a clearer and more predictable state, preventing errors

early with complex operations. to make more algorithms simpler by

preserving a certain order of processing. Another allows access to

only the top element. At first, the restriction may feel limiting, but it

helps While arrays or linked list provide position access to an

element, stack the operations performed on it. of the current stack;

when we pop an element, we take it from the top. By this visual, we

can visualize the LIFO behaviour of stack and as a vertical structure

where the elements are arranged one on top of the other. When we

push a new element, we insert it on top We can visualise a stack call

another, the state of the current function is pushed onto the stack;

when the called function returns, the state of the calling function is

popped from the stack, execution resumes. is a pattern of access and

manipulation seen in other areas of computer science. The call stack

in programming languages, for example, uses the stack principle:

when one function is more than four words; it is a data structure. It

the stack usage in algorithms and system implementation. In order to

appreciate how it works and why it’s preferred in some cases.

Basic Stack Operations

Figure 9:Working od Stack Data Structure
[Source: https://cdn.programiz.com/]

68
MATS Centre for Distance and Online Education, MATS University

Notes Discover and manipulate the stack data structure. of basic operations

that can manipulate the elements of the stack by following the LIFO

principle. These operations provide an interfacing through which

programs can The concept of a stack is simply defined through a

series

Push Operation

That it runs in constant time irrespective of stack size. The push

operation generally has a time complexity of O(1), indicating we use

the push operation It then increases the size of the stack by one and

updates the top reference to point to the To add element to the top of

stack, the push operation may reallocate memory if the

implementation exceeds the storage. e.g., getting stack overflow in

case of fixed size implementation. In dynamic implementations, Push

Operation in Stack: When we perform a push operation, we may come

across certain edge cases,

Pop Operation

Operation, like push, usually has time complexity of O (1). Top

reference to refer to the next element in the stack. Pop to remove the

top element of the stack and can return it to the caller. This operation

reduces the size of the stack by one and makes the pop operation is

used handling or exception throwing mechanism is required. The

edge case of stack underflow, which means trying to pop an element

from an empty stack. In case of such scenario, proper error similarly,

during a pop operation, we also need to consider

Peek (or Top) Operation

 The time complexity of the peek top of the stack without removing It

does not modify the size or structure of the stack, only that it returns

the the peek operation (known as top in some implementations)

retrieves the element located at the must take care of the case of an

empty stack. As with pop, peek Similar to Pop, Peek operation, is

used to see the top element, before pop or any other is Empty

Operation provides for checking to avoid underflow errors that are by

checking before performing pop or peek operations. Returns

Boolean: true if the stack is empty else false. This is Empty operation

inspects whether the stack has any elements. Command which the is

Full Operation a push operation to prevent overflow errors. This

operation also helps abandon full Returns true if and only if this stack

69
MATS Centre for Distance and Online Education, MATS University

Notes In a stack with a fixed size stack implementation, is Full checks if the

stack is

Size or Count Operation

Do base on where you are in the stack. This operation is helpful for

tracking how the stack is growing, so you can decide what to the size

operation returns how many elements are in the stack at any

Clear Operation

Simply when we are done with the current set of elements. Elements

in stack leaving it in clean state. This is useful in scenarios where we

want to reuse a stack for a different use case or Clear operation which

clears all a number of scenarios. Various ways, they allow us to

create complex algorithms and solve virtually any problem. The

restrictive access pattern enabled by these operations (you can only

interact with the top element of a stack) is what grants stacks their

unique behaviour and applicability in basis for stacks.

Implementation Approaches

Implement stacks, each offering benefits and trade-offs. There are two

widely used implementations, array-based and linked Different

underlying data structures can be used to

Array-based Implementation

Index of the top element, and push and pop operations respectively

increase or decrease this index. Array to save elements is called an

array-based stack. A variable record the A stack implemented using

an Implementation are: Pros of array-based

• Simplicity and ease of implementation

• Efficient memory usage with minimal overhead

• Excellent locality of reference, leading to better cache

performance

• Constant-time access to the top element

Limitations of array-based implementation include:

• Fixed size in languages with static arrays, requiring size

estimation beforehand

• Potential for overflow if the stack grows beyond the array's

capacity

• Need for resizing strategies in dynamic implementations,

which can occasionally lead to O(n) time complexity for push

operations

70
MATS Centre for Distance and Online Education, MATS University

Notes Here's a pseudo code example of an array-based stack

implementation:

class Array Stack:

initialize(capacity):

stack = new array of sizecapacity

top = -1

function push(element):

if top == capacity - 1:

throw StackOverflowError

top = top + 1

stack[top] = element

function pop():

if isEmpty():

throw StackUnderflowError

element = stack[top]

top = top - 1

return element

function peek():

if isEmpty():

throw StackUnderflowError

return stack[top]

function isEmpty():

return top == -1

function size():

return top + 1

If we were implementing a real dynamic array, we would have

checked before pushing an item and resized the array to double its

size if the array was full. This generally means allocating a new array

that can hold more items and then copying all items into the old array.

Linked List-based Implementation

Stack implementation can be done through the use of Linked List as

well. The head of the linked list is which the top of the stack is where

push and pop operations have been added respectively.

Advantages of linked list-based implementation include:

• Dynamic size that grows and shrinks as needed

• No concept of overflow (limited only by available memory)

• Consistent O(1) time complexity for all operations, without

occasional spikes for resizing

71
MATS Centre for Distance and Online Education, MATS University

Notes Limitations of linked list-based implementation include:

• Higher memory overhead due to storage of pointers/references

• Potentially worse cache performance due to non-contiguous

memory allocation

• Slightly more complex implementation compared to arrays

Here's a pseudo code example of a linked list-based stack

implementation:

class Node:

def initialize(data, next=None):

this.data = data

this.next = next

class LinkedListStack:

function initialize():

top = null

count = 0

function push(element):

newNode = Node(element, top)

top = newNode

count = count + 1

function pop():

if isEmpty():

throw StackUnderflowError

element = top.data

top = top.next

count = count - 1

return element

function peek():

if isEmpty():

throw StackUnderflowError

return top.data

function isEmpty():

return top == null

function size():

return count

This means selecting the appropriate way of implementing your

application. The selection of array vs, linked list based

implementation comes up based on:

72
MATS Centre for Distance and Online Education, MATS University

Notes So a conclusion between the two will depend on your case if memory

factor is the point you can go for an array based implementation, and

if you wish to perform your list by the end linked list will help,

Because a stack is a Last In, First Out (LIFO) data structure, it needs

to support operations like push, pop, and peek that can be done in

constant time complexity, O(1). But the underlying structure of data

you choose greatly affects the efficiency, scalability and memory use.

If the stack's maximum size is known beforehand and memory

efficiency is of utmost importance, you could implement it using an

array. In contrast to lists, where the overall bots are allocated, allow to

use predefined memory and thus to use large amounts of memory and

thus to generate memory locality. But, because it is an indexed data

type, anyone can get the speed O(1) when getting the element at a

certain position. Moreover, the push and pop operations take constant

time in an array-based stack implementation, whereas these

operations involve pointer manipulation, leading to additional

overhead, in a linked list-based stack implementation. Array-based

stacks are very memory efficient when memory is theory constrained

and allocation behaviour is well defined. Think of a situation where a

stack can be utilized for a compiler that does function calls. The

maximum recursion depth is statically known, and an array-based

stack can handle return addresses with no additional pointer overhead.

However, an array-based stack can only hold a set amount of data

because they have a static size. On the other hand, if the maximum

size of the stack is left underestimated, the program can run out of

space and encounter a stack overflow error. On the flip side, if the

stack is underestimated, capacity is wasted, as a large part of the

allocated space might go unused. Although dynamic resizing

strategies (e.g., increase the size of the array when the array gets full)

can work around this limitation, such operations incur an additional

overhead. The time complexity for resizing the array involves

allocating a new chunk of memory and copying the contents of the old

array into it: O (n). In applications with tight performance

requirements where predictability is key, this may be an issue.

For particular use cases where the stack size may be highly variable or

unpredictable a stack implementation can be even better as a linked

list. Unlike arrays, linked lists provide dynamic memory allocation,

meaning that the stack can grow and shrink as necessary without

73
MATS Centre for Distance and Online Education, MATS University

Notes reallocating and having to worry about that. The first of each node in

linked list-based stack consists of data and the second of it consists a

pointer to next node. Their dynamic nature makes them particularly

useful in situations in which the number of elements in the stack

changes often. Take the web browser back button for example.

Example would be whenever a user opens the page and navigates to

the different page then the current visited page will be pushed onto the

stack. When the user taps the back button, the last page was popped

of the stack. A user may browse from 10 - 200 pages at a time, and as

a result using a stack based on a linked list would be a better choice as

it allocates the required space as needed. DFS in graph traversal is

another such example, where the recursion depth changes depending

on the depth of your graph. With a linked list implementation, the

stack expands as needed, preventing stack overflow errors that are

common when using a fixed-size array. However, a stack based on a

linked list also has some disadvantages. The biggest issue is memory

overhead. Linked list: Each node requires extra space to hold the

pointer to the next node. This can be crucial in environments with

limited memory, in which every bite of memory must be put to

efficient use. Moreover, in a linked list, pointer dereferencing adds

extra computation overhead when retrieving an element as opposed to

a direct array indexing, which might lead to certainly slower stack

operations. In other words, access patterns become important to

consider, as do the potential overheads of resizing operations in an

array-based implementation. Certain applications require real-time

performance, and any unwanted latency caused by memory being

reallocated may prove fatal. Deterministic execution time is important

in real time embedded systems like avionics software or automotive

control systems. In these situations, an array-based stack may be

better because it can ensure O(1) time complexity for both push and

pop without needing to dynamically allocate and deal locate memory.

But performance wise cache locality matters. Arrays give better cache

performance because their elements are stored in contiguous memory

locations. Linked list nodes, on the other hand, can be located

anywhere in memory, resulting in a potential increase in cache misses

and greater latency for accessing data. This becomes quite relevant for

use-cases involving HPC applications where cache optimizations are

key to achieving peak efficiency. In memory-limited environments,

74
MATS Centre for Distance and Online Education, MATS University

Notes the additional memory overhead of the linked list nodes might be a

strong argument to avoid that implementation. In resource-constrained

systems such as embedded systems, mobile devices, and Internet of

Things (IoT) applications, memory efficiency cannot be ignored. The

downside is that this increases the memory taken up by the individual

nodes: the advantage of a linked list comes at the expense of memory

(in other cases, such as random access). If, as an example, a pointer

requires an additional 8 bytes per node, and your stack has thousands

of elements, the memory overhead quickly adds up. Additionally, for

devices with strict power requirements (battery-operated devices),

more memory operations to manage a linked list pointer will also

increase energy consumption. On the other hand, an array-based stack

has less overhead, which makes it better in these cases. Each

implementation has its own pros and cons, and the selection of data

structure and its implementation depends on the use-case. So if

memory efficiency, predictable size and cache performance are the

dominating factors, array-based implementation is the one you want.

If the focus is on dynamic size, resizing even during runtime, and

preventing stack overflow, use implementation based on linked list.

However, many modern programming languages and libraries have

built-in stack implementations that abstract away these details,

allowing developers to use the stack without needing to implement it

themselves. But knowing about these underlying implementation

approaches can help when choosing the right stack type and

improving performance in performance-intensive applications.

Time and Space Complexity Analysis

Knowing the time: space complexity of stack operations lets you

analyze the efficiency of algorithms that leverage stacks, as well as

determine which implementation to use for a given need.

Time Complexity

You are focused on your level, and the sentences you get are often

trivial. Based on the implementation, the efficiency of push/pop

operations will be different based on the implementation of stack

through array or linked list. In both cases, however, the time

complexity for most of the basic stack operations is O (1), which

makes them very suitable for real time apps. For example, the push

operation, which adds an element to the top of the stack, takes

constant time O (1) for both stack implementations (array & linked

75
MATS Centre for Distance and Online Education, MATS University

Notes list). But, in a dynamic array implementation, some resizing

operations take O (n) time because all elements must be copied into a

new larger array. This resizing gives it an amortized O (1) time

complexity, which gives the effect of a series of push operations

costing O(1) across multiple operations even though one resize

operation might require O(n) operations. In a similar way, the pop

operation, which removes the top element from the stack, also has an

O(1), constant time, performance in both array-based and linked list-

based implementations. Also since the top element is directly

accessible due to its nature in both the structure, removal of the top

element is an easy case and does not require shifting of elements

unlike the other data structures where accessing the last element is not

direct as in queues or arrays which do not allow direct access to last

element.

Another O (1) operation is the peek operation, which returns the top

element from the stack without removing it. This is because accessing

the most recently inserted element does not require any iteration or

traversal. Its accessibility is as simple as going to the last index in an

array-based implementation, or simply pointing to the top node's data

field in case of a linked list implementation. The operations is Empty

and is Full also run in constant time, O(1). To validate whether a

stack has any data, we need to check, if the head pointer is denial or,

in the case of an array-based stack, the value at index head is null. On

a fixed-size array implementation, one has to check if the stack is full

by comparing the top index to the array capacity. Since these

operations do not depend on the number of elements in the stack,

they are very efficient. Similarly, the size of the stack can be obtained

in O (1) time, if an additional variable is maintained to keep track of

number of elements. Since you do not have to check how many

elements are in the stack every time, this is a very efficient way to do

it. In a linked list-based stack, unless count is maintained explicitly,

determining the size would require traversing all nodes, thus, O(n)

operation. Clearing a stack has O (1) or O (n) time complexity

depending on the implementation. For an array-based stack, the clear

operation can be done using o(1) time by simply resetting its top

index to -1 or 0. In a linked list implementation, on the other hand, to

clear the stack properly, we must find (the head), and deal locate each

node individually to avoid memory leaks which is an O (n) operation.

76
MATS Centre for Distance and Online Education, MATS University

Notes Stack operations are efficient, with O (1) time complexity for most

stack operations, which is one of the key reasons for their extensive

use in applications such as function call management, expression

evaluation, and backtracking algorithms. Their predictablebecause of

their high performance, which is important in real-time systems that

need fast access to recently used data. Time complexity is not the only

aspect to analyse the stack efficiency; we also have to look at the

space complexity. The space complexity of a stack is when

implemented using an array or linked list. For array-based

implementations, the space complexity will be O(n), where n is the

initial capacity of the stack. It indicates that the stack does not need to

be at its full capacity to reserve all of the memory, which can in the

event that not all of that memory is used, induce minor inefficiencies.

There is dynamic memory allocation in a dynamic array-based stack,

however this leads to extra overhead as the cost of using a resize

strategy, where the size of an array is typically increased by a factor,

like 1.5 or 2 to allow for enough space for upcoming pieces. In

contrast, a linked list-based stack has a space complexity of O(n), with

n being the number of elements in the stack. But, unlike arrays, linked

lists have higher space overhead due to pointers used for storing the

linked list pointers in addition to the actual data. They will consume a

little more space than array-based stacks, though they allow you to

avoid resize operations and dynamically allocate memory as needed.

The two stack implementations differ significantly in memory usage,

but both have their own advantages. If the maximum number of

elements is known at the beginning and memory is a concern, fixed-

size array-based stacks are useful. They offer O(1) access and no extra

memory overhead for pointers. On the other hand, they have the

inconvenience of a fixed size, which prevents them from being as

adaptable to unpredictable growth patterns. Dynamic array-based

stacks overcome this constraint by increasing the size of the array

only when necessary, allowing for dynamic sizing while still

maintaining an average time complexity of O(1) for the push

operation. But there is an overhead with resizing arrays, and that

overhead increases the more you have to resize.

In contrast, stacks made from linked lists provide true dynamic

memory allocation; space is allocated only when needed. They also

don't need resizing, making them more suitable for unknown or

77
MATS Centre for Distance and Online Education, MATS University

Notes highly variable stack-size applications. Because the code that involves

dynamic memory management has a little more overhead than fixed

size structures and every pointer takes some memory space as well

pair of temporary values used in the process. But in real work

situations, the choice of which one to use, whether array-based or

linked list based will depend on the case use. A fixed-size array

implementation may be more appropriate if memory efficiency and

predictability are major concerns. In fact, if flexibility and dynamic

growth is required, then a linked list implementation would be more

suitable as it will incur extra memory overhead. Both versions yield

stack operations achieving O(1) time complexity for common

methods including push, pop, peek, isEmpty, isFull and size retrieval,

making stacks one of the most efficient and frequently used data

structures in computation.

Performance Considerations

In addition to the theoretical complexity, several elements influence

the practical performance of the stack implementations:

This means just like stack implementations; cache locality is on the

critical performance path of many data structures. An array-based

implementation of a stack, to ensure that the elements are stored in

contiguous memory locations, ensures that, owing to the spatial

locality principle, all the sequential accesses have better locality. This

is important to know, cache line， as a result, if an access to a stack

operation is made, so are accesses to the nearby elements that would

also be pushed into the cache, thus reducing the cache misses and

increasing the performance of the code. This is even more

pronounced in scenarios where two large stacks are constantly

interacted with, as good cache locality reduces the necessity for costly

fetches from RAM. On the other hand, with a linked list-based stack,

there is a very bad cache locality, as each node is allocated separately

and spread in memory. This excessive use of pointers dereferences

leads to more cache misses, thus degrading performance. Thus, an

array-based implementation is generally preferred for applications

that necessitate high-performance stack operations. Another important

consideration that can favour stack implementations over heap

allocators is the memory allocation overhead. For a stack

implemented as a linked list, every call to push allocates a new

element on the heap and every call to pop frees up that memory.

78
MATS Centre for Distance and Online Education, MATS University

Notes Since dynamic memory allocation is inherently less efficient than

allocating memory on the stack, these operations lead to additional

computational overhead. Moreover, High frequency of alloc and

dealloc causes memory fragmentation that make performance

degrade over time. This overhead is more meaningful for applications

which have stack operations with higher frequency, like recursive

algorithms or real-time systems. In contrast, a stack using an array

does not cost this overhead as all elements are allocated in one round

in a direct segment of memory. That is, push and pop, which can be

performed just via index modification, are much faster than their

linked list variants. However, this efficiency comes with a trade-off

required by growth and would require resizing operations if the stack

exceeds its originally allocated space.

Stacks based on dynamic arrays are challenged by the cost of

resizing. If the underlying array is full, we must allocate a larger array

using malloc, copy the elements of the current array to the newly

allocated array with memcpy, and then free the memory previously

consumed by the old array. This carries quite a performance penalty,

especially when you will repeatedly slap an Item at a Frame that, for

instance, just changed in size. Appropriate growth factor can help

reduce impact of resizing. One approach could be doubling the size

of the array when the current array has run out of space, this

guarantees that the amortized cost of resizing will remain low. Even

so, certain use cases call for such constant amortized costs to be

unsatisfactory, as in real-time applications needing predictability. In

those cases, it might be appropriate to reallocate enough memory or

use other data structures. Although stacks implemented using linked

lists do not need to be resized, this benefit is usually outweighed by

the memory overhead and cache inefficiencies associated with these

types of stacks. Stack operations are not the only phase whose

memory usage patterns affect overall system performance. Which data

structure you use to implement a stack impacts how the memory is

allocated and accessed both in terms of efficiency as well as locality

of reference, fragmentations etc. Another consideration is the

performance of cache; an array-based stack is very cache-efficient but

may have wasted memory if the allocated stack size is greater than

what is actually used. This is especially important within embedded

systems or memory-constrained environments where every byte

79
MATS Centre for Distance and Online Education, MATS University

Notes counts. Alternatively, a linked list-based stack dynamically allocates

memory as it needs it, cutting down on waste but introducing

memory allocation overhead and fragmentation. The compromise of

each of these should be weighed against the context of the

application. The actual performance of different programming

environments may therefore also be influenced by modern memory

management techniques like garbage collection or custom allocators.

There is no guarantee that the performance of stack operations in

practice is as good as you might expect based on the details of the

stack's implementation. Efficiency beasts differ from language to

language, even at low levels, and much less at high levels, based on

language-specific optimizations, compiler behavior and hardware

characteristics. For example, languages like C and C++ implement

manual memory management that enables tight optimizations,

whereas garbage-collected languages such as Java and Python incur

extra runtime costs for automatic memory management. Performance

can also be affected by compiler optimizations, such as loop unrolling

and instruction pipelining that reduce redundant operations.

Furthermore, it also depends on computer hardware with many types

of CPU cache hierarchies and branch prediction mechanisms.

Processors equipped with sophisticated caching mechanisms might

counteract some of the cache locality drawbacks associated with

linked lists, whereas designs with constrained caching resources could

amplify them. Therefore, performance testing on target hardware is

the only way to make proper stack choices. The decision to pick

either an array-based or linked list-based stack implementation comes

down to various trade-offs. Since arrays are continuous in memory,

they have the best cache locality, resulting in fewer cache misses and

better overall performance. Linked list-based stacks, however, incur

more memory allocation overhead due to the need for dynamic

memory allocation for each element, making them less suitable for

performance-critical applications. Inappropriate growth strategies

often lead to costly resizes in dynamic arrays. In memory-constrained

environments, the efficiency of stack operations is totally reliant on

the behavior of memory allocation patterns and fundamental

mechanisms to avoid memory fragmentation and overhead. Finally,

real-world performance is further affected by language-specific

implementation details, compiler optimizations, and the capabilities of

80
MATS Centre for Distance and Online Education, MATS University

Notes the underlying hardware. With a deep knowledge of these elements,

developers can choose or build stack implementations in a way that

best serves their applications. Knowing about these complexity

aspects will give you a better insight to what stack implementation to

choose based on your use cases. From the theoretical perspective,

either implementation would also be suitable for the majority of use

cases, as the time complexity for basic stack operations is constant

time. The decision often boils down to practical aspects such as

memory usage, how easy it is to implement and integrate with

existing code, etc.

3.2 Applications of Stacks: Stack Frames, Reversing a String,

Postfix Expression Calculation

In computer science, stacks are used primarily for handling

expressions and syntax validation, making them an important

component of any programming language. Stacks are primarily used

in various applications like converting arithmetic expressions from

one form to another. Infix notation (such as A + B * C), where the

operators come between the operands, is the standard notation used in

human-readable expressions, but computers generate and process

expressions more efficiently in postfix (Reverse Polish Notation) or

prefix (Polish Notation) forms. For instance, the expression A + B * C

is expressed in postfix as A B C * + and in prefix as + A * B C.

Converting from infix to postfix or prefix notation uses a stack-based

algorithm that pushes operators onto the stack and places operands

directly into the output sequence. This approach avoids the

complexity of solving precursor rule and implies that there is no need

for parentheses when computing expressions because machines follow

this single method of evaluating the expressions. Stacks also play a

fundamental role in the evaluation of expressions. Postfix and prefix

expressions are easier to evaluate than infix expressions as they do not

require rules for operator precedence. When using postfix evaluation,

when an operand is processed, it goes on the top of the stack, and

when an operator is processed, the appropriate number of operands

are popped off the top of the stack and the operation is processed and

the result pushed back onto the stack. For example, for the postfix

expression 5 3 + 8 *, we first push 5 and then 3 onto the stack, then

apply the + operator which results in an output of 8 that we push back.

Then, we push 8 onto the stack, and apply the * operator to the two

81
MATS Centre for Distance and Online Education, MATS University

Notes topmost values on the stack, producing 64. This makes very efficient

computations with a low memory overhead, and this is a widely used

approach for interpreters and calculators.

Stacks are widely used in syntax checking (e.g., to check the matching

of delimiters like parentheses/brackets/braces). Stack-based

algorithms are employed by compilers and interpreters to check if

syntax is valid. During source code parsing, every opening delimiter

is pushed onto the stack, and every closing delimiter matches against

the one visible at the top of the stack. If they do, the top element is

removed; if they do not, a syntax error is raised. This is a very

important technique which helps you in avoiding the demon known

as Mismatched parentheses statement which cans sometimes even

stop compilation or cause wrong runtime results. This same concept

can be used with other constructs, as well, like making sure that an

HTML tag is properly nested or an expression is balanced in a math

computation. Stacks also have an important role in compiler design,

especially in parsing methods. Parsing analyzes a sequence of tokens

to give it the syntactic structure. A top-down method is recursive

descent parsing, which uses function calls that resemble language

grammar rules. Because function calls use the call stack, stack-based

execution is well tailored for recursive descent parsers. In contrast,

shift-reduce parsing is a bottom-up technique which uses a stack to

hold symbols and reduce them according to the rules of the grammar

for the language. It's a common approach in compiler implementation

for context-free grammars, original in Yacc allows fast syntax analysis

and code generation. Stacks play an essential role in these computing

tasks, in addition to expression handling and syntax validation, such

as backtracking algorithms, memory management, and function calls

execution. Stacks are a last in, first out (LIFO) data structure, making

them suitable for working with scenarios where data that was most

recently accessed needs to be processed first. Stacks are widely used

in computer science for tasks like arithmetic calculations, syntax

checking, and parsing due to their efficiency and reliability in

managing structured data.

82
MATS Centre for Distance and Online Education, MATS University

Notes Function Call Management

The call stack is possibly the most basic usage of the stack concept in

computing:

There should always be a part of computer programming that is like

Functions depend on a stack. The stack is used when a function has

been called as it'll push the return address and local variables. That

way, once the function has finished running, the program can pick up

where it left off by popping these values off the stack. The stack of

function calls is essential for keeping an organized and expected flow

of execution in a program. The stack mechanism eliminates the

complexity of tracking nested function calls, which would otherwise

be highly chaotic and difficult to implement, resulting in

unpredictable program behaviour. Recursion is a basic principle in

programming, and this is handled by the function call stack. When

dealing with recursion you have to keep adding stack frames and pop

them when the function calls itself until you get to the base case. Now

the recursion begins unwinding, and frames are popped from the top

in reverse order. So far we have structured recursion onclick to ensure

that we keep track of what we are trying to compute, and also to

allow the repeated computation. Recursion is extensively deployed in

mathematical computations, searching algorithms, and dynamic

programming techniques, thereby, making the management of the

stack an indispensable part of programming. Stacks are also employed

by operating systems for context switching, enabling the multiple

processes or threads working to switch between themselves

seamlessly. Since process has their assignment task, when the

operating system switches from one process to another, it saves the

execution context, which contains the instruction pointer and register

states onto the stack. When the process continues, these values are

restored, allowing execution to resume without losing data nor

causing inconsistent states. Context switching helps keep resources

idle, so even if only one process or thread is using all the CPU

resources in the environment, it utilizes them very efficiently in

multitasking and multi-threaded environments, given that you have

enough memory available in the system.

Stacks are widely used in the implementation of algorithms,

especially for maintaining state or tracking progress. Depth-First

Search (DFS) is one example of this type of algorithm; the stack is

83
MATS Centre for Distance and Online Education, MATS University

Notes used as a structure to keep track of the vertices to visit. This can be

done using a stack data structure explicitly, or using recursion

implicitly. DFS is building block to graph traversal, solving maze

problems and network connectivity analysis. In the same way,

backtracking algorithms, like solving the N-Queens problem or

generating permutations, utilize stacks to keep a log of choices made.

The last visited node is popped off from the stack when the path leads

to no solution, then alternative nodes are traversed by repeating this

step. Another important algorithmic technique is called a topological

sorting, which uses stacks to iteratively traverse directed acyclic

graphs (DAGs). The vertices are processed iteratively and pushed

onto a stack in their completion order. This helps in resolving

dependencies in the respective order, most commonly as tasks to be

scheduled, based on dependencies, among others like build

automation. Stack also is important in tree traversal algorithms. Tree

processing can be done even from an iterative perspective because

stack can be used to simulate the function call stack in the case of in

order, preorder and post order tree traversal non-recursive

implementations. Aside from algorithm implementation, stacks have a

range of features in user interfaces and software applications. For

example, in text editors and graphic design software, the undo

mechanism is implemented using stacks with each edit operation

added to a stack. When a user presses undo, the last operation is

removed from the stack and the previous state is restored. It enables

users to quickly undo accidental changes. Web browsers use a stack

to keep track of the history of the navigation. This is because the back

button retrieves the previous page using the stack: every visited page

is placed on the stack. The feature improves user experience by

allowing for seamless navigation to go back to previous pages. With

mobile apps, a similar approach is taken; the activities representing

each screen maintain a stack of previous states so that users can go

through screens seamlessly. Stacks are integral to memory

management in computer systems. You are the stack memory, which

is used to store local variables, information about function calls, and

temporary data needed while the program is running. Stack memory is

managed automatically and is less error-prone than heap memory,

since it does not require explicit allocation and deal location. So,

when you call a function, it allocates a new stack frame, and when

84
MATS Centre for Distance and Online Education, MATS University

Notes the function ends, the stack frame is automatically deal located. This

optimal usage of memory provides better performance while avoiding

unnecessary consumption of memory. Improper stack usage, however,

could lead to stack overflow error whenever there are too many

recursive calls or deep function nesting that exceed the allocated size

for the stack.

Stack data structure is also used in the exception handling mechanism

of programming languages. In the event of an exception, a runtime

environment unwinds the stack, looking for an appropriate handler. It

checks from the most recent function call frame to the oldest until it

finds a suitable handler. If none is found, it aborts with an error

message. The Error Handler and Debugging Section: This structured

approach provides robust error handling and debugging capabilities

that make it easier for developers to trace issues and take corrective

action. Within compiler design, stacks are extensively used for

expression evaluation and parsing the expression. Stacks are also used

by compilers to ensure that operators have the correct priority when

being solved by the system, such as used in the conversion of infix

notation to postfix notation or during parsing of a string. Postfix

(reverse Polish) and prefix (Polish) notations are stack-based and can

parse expressions with no need for parentheses. It is most notably

used in calculators and expression evaluation engines to allow the

efficient evaluation of mathematical expressions. Execution contexts

are managed using stacks in virtual machines and interpreters as well.

Byte code interpreters like the Java Virtual Machine (JVM) and

Python interpreter rely on stacks to handle method invocations, local

variables and operand evaluation. Such an approach draws a clear

pattern of how the code will be executed, enabling simple

interpretation and execution of the code. This approach allows to keep

the stack-based execution model, thus reducing the complexity of

managing the state of the memory and speeding up to inject faster

code for a runtime (in case the interpreter has a slot, e.g.)

In the long run, stacks absolutely are critical data structures in

programming, operating systems, algorithms, user interfaces, memory

management, exception handling, and compiler design. Thus, their

ability to handle function calls, recursion, context-switching,

algorithmic state, and user interaction make them one of the

fundamental building blocks of modern computing. This can allow for

85
MATS Centre for Distance and Online Education, MATS University

Notes efficient program execution, robust software design, and enhanced

computational performance, so it is important to understand and

leverage stacks properly with a stack, and how to evaluate postfix

expressions using a stack. useful for situations where you need to

handle things in reverse order relative to how they appear, or where

you need to manage a sequence of operations and undo in a specific

way. This section will cover some more real theoretical applications

of stacks including how stack frames are used in executing a program,

how to reverse strings computing.

Stack Frames

Runtime will manage the stack using a stack-based memory

organization. a program, must be able to keep track of function calls,

local variables, parameters and return addresses. The important

modern applications of stack data structures are the concept of stack

frames, or activation records. The computer, when executing one of

the most often included call.

1. Parameters passed to the function

2. Local variables declared within the function

3. The return address (indicating where program execution

should continue after the function completes)

4. The previous frame pointer (linking to the calling function's

stack frame)

For each function when it finishes executing. function C is done, its

stack frame pops off the stack and control returns to function B at just

the right point in code. And this continues calls function B and

function B calls function C, so the stack frames are pushed to the

stack one after the other. Once nested function calls are considered.

For example, function A This shows how natural using a stack is for

this reason, especially when straightforward recursive function to

calculate the factorial of a number: For example, consider a function

factorial(n): if n <= 1:

return 1 else:

return n * factorial(n-1)

We would have something like this in the stack frames: So if we call

factorial(4),

1. Call factorial(4): Push stack frame for factorial(4)

2. Inside factorial(4), call factorial(3): Push stack frame for

factorial(3)

86
MATS Centre for Distance and Online Education, MATS University

Notes 3. Inside factorial(3), call factorial(2): Push stack frame for

factorial(2)

4. Inside factorial(2), call factorial(1): Push stack frame for

factorial(1)

5. Inside factorial(1), return 1 (base case): Pop stack frame for

factorial(1)

6. Resume factorial(2), compute 2 * 1 = 2, return 2: Pop stack

frame for factorial(2)

7. Resume factorial(3), compute 3 * 2 = 6, return 6: Pop stack

frame for factorial(3)

8. Resume factorial(4), compute 4 * 6 = 24, return 24: Pop stack

frame for factorial(4)

Stack frames, it would be practically impossible to manage the

complex flow of execution of modern programs. that each function

returns to its correct caller, with local variables and context intact to

the exact degree required. Without This stack-based strategy ensures

function properly. Function’s stack frame contains its own set of

local variables, avoiding variable conflicts and allowing proper

scoping rules. Such isolation is basic to modular programming, and

enables techniques like recursion to important separation between

function calls. Each Stack frames also give operating systems reserve

a fixed amount of memory for this stack, which is why very deep

recursion results in a "stack overflow" when we run out of the

allocated space. known as the call stack or execution stack. Most

programming languages and Stack frame memory management is

usually done via a memory region

Essentially popping stack frames until a handler is found. In dealing

with exceptions, when an exception is thrown, the executable must

traverse backwards in the chain of function calls to find a proper

exception handler — Knowing about stack frames explains concepts

such as unwinding a stack (in an exception handler, for Reversing a

String property of Last in First out, that is well-structured for

reversing a stream of elements, like characters in a string. Application

of stack data structures is string reversal. So, a stack is a data structure

with the One more classic stack is simple: Anime: using stack to

reverse a string:

Create an empty stack

87
MATS Centre for Distance and Online Education, MATS University

Notes 1. Push each character of the input string onto the stack, starting

from the first character

2. Pop each character from the stack and append it to a new

string until the stack is empty

3. The new string now contains the characters of the original

string in reverse order

Let's illustrate this process with an example. Consider the string

"HELLO":

1. Initialize an empty stack: []

2. Push 'H': ['H']

3. Push 'E': ['H', 'E']

4. Push 'L': ['H', 'E', 'L']

5. Push 'L': ['H', 'E', 'L', 'L']

6. Push 'O': ['H', 'E', 'L', 'L', 'O']

7. Now pop and build the reversed string:

o Pop 'O': Reversed string = "O"

o Pop 'L': Reversed string = "OL"

o Pop 'L': Reversed string = "OLL"

o Pop 'E': Reversed string = "OLLE"

o Pop 'H': Reversed string = "OLLEH"

Reversed version of our string initially "HELLO". In the end

"OLLEH" is the in-pseudo code as below: This algorithm can be

implemented easily

function reverseString(str):

stack = new Stack()

the stack { [stack pop] for each char in str } // push all chars onto

for each character c in str:

stack.push(c)

reversedStr = ""

add to result // Pop all chars,

while not stack. isEmpty():

stack pop() reversedStr +=

return reversedStr

Stack based manner. For example, we can reverse a array or a linked

list in a similar This reversal of strings can also be applied to other

runs in O(n) as we have to store all characters in the stack. each

character, we have one push operation, followed by one pop operation

for each character. The space complexity also string. Here, for So,

88
MATS Centre for Distance and Online Education, MATS University

Notes time complexity of this string reversal algorithm is O(n), where n is

length of through the elements in the reverse order of appearance.

Order-reversal. We have seen how this would apply to a slightly more

complex problem where we need to iterate Though there are built-in

functions in most programming languages to reverse strings, this stack

approach helps you understand the fundamental relationship between

stacks and expression Evaluate postfix optimal for computers.

Mathematical expressions, specifically postfix expressions (or

Reverse Polish Notation or RPN).

1. Initialize an empty stack

2. Scan the postfix expression from left to right

3. If the current token is an operand (a number), push it onto the

stack

4. If the current token is an operator, pop the required number of

operands from the stack, apply the operator, and push the

result back onto the stack

5. After scanning the entire expression, the stack should contain

only one value, which is the final result

Let's evaluate the postfix expression 3 4 + 5 * step by step:

1. Initialize empty stack: []

2. Scan '3': It's an operand, push to stack: [3]

3. Scan '4': It's an operand, push to stack: [3, 4]

4. Scan '+': It's an operator:

o Pop two operands: 4 and 3

o Calculate 3 + 4 = 7

o Push result to stack: [7]

5. Scan '5': It's an operand, push to stack: [7, 5]

6. Scan '*': It's an operator:

o Pop two operands: 5 and 7

o Calculate 7 * 5 = 35

o Push result to stack: [35]

7. End of expression, result = 35

Here's the algorithm in pseudocode:

function evaluatePostfix(expression):

 stack = new Stack()

for each token in expression:

if token is an operand:

stack.push(token)

89
MATS Centre for Distance and Online Education, MATS University

Notes else if token is an operator:

// For binary operators

operand2 = stack. pop()

operand1 = stack. pop()

a) result = operate(token, b,

stack.push(result)

return stack. pop() // The final result

operand2): def applyOperator(operator, operand1,

if operator is '+':

return operand1 + operand2

if operator == '-': else

return operand1 - operand2

operator == ‘*’: else if

return operand1 * operand2

== '/': else if operator

return operand1 / operand2

accordingly // implement rest_operator

It tends to be lower since operators pop operands off the stack.

Complexity is O(n) since we go through each token exactly once,

where n is the size of the expression. The worst-case space

complexity is O(n) but postfix expressions support arithmetic binary

operators only. The time usually, some of the benefits of postfix

notation: The postfix evaluation algorithm shows

1. No need for parentheses or operator precedence rules

2. Expressions can be evaluated in a single pass from left to right

3. The algorithm is simple and efficient

4. No need for a separate parsing step

Constantly evaluate mathematical expressions. This property gives

postfix notation the advantage to be especially useful in calculators,

compilers and other systems that have postfix type language or similar

forms before the generation of code. in an efficient way to get

calculations done required fewer strokes after familiarization with the

notation. This approach is useful in compiler design, as many parsing

algorithms output infix expressions into a HP calculator famously

had RPN (Reverse Polish Notation) because working with it pop the

correct amount of values. off the stack. For operators that require

more than two operands, we allow us to parse postfix notation. For

90
MATS Centre for Distance and Online Education, MATS University

Notes unary operators (operators that take a single operand, like negation),

you simply pop one value, rather than two,

 2 + 4 * + 3 -

1. Initialize empty stack: []

2. Process '5': Push to stack: [5]

3. Process '1': Push to stack: [5, 1]

4. Process '2': Push to stack: [5, 1, 2]

5. Process '+': Pop 2 and 1, calculate 1+2=3, push result: [5, 3]

6. Process '4': Push to stack: [5, 3, 4]

7. Process '': Pop 4 and 3, calculate 34=12, push result: [5, 12]

8. Process '+': Pop 12 and 5, calculate 5+12=17, push result: [17]

9. Process '3': Push to stack: [17, 3]

10. Process '-': Pop 3 and 17, calculate 17-3=14, push result: [14]

11. End of expression, result = 14

Equivalent to the infix expression 5 + ((1 + 2) * 4) - 3. The following

expression is heavily. Power of stacks is clearly seen in postfix

evaluation as multiple nested operations can be simplified and

handled in a linear fashion. Many computer science algorithms,

especially those related to compiler design and expression evaluation,

rely on this technique The

91
MATS Centre for Distance and Online Education, MATS University

Notes Unit 7: Introduction to Infix and Postfix

3.3 Algorithm for Infix to Postfix Conversion and Postfix

Evaluation

An algorithm that converts infix expressions into postfix form prior

to evaluation. The conversion and evaluation illustrated the utility of

stack data structures in terms of their power and capability to solve

more complex computational makes the evaluation of expressions

simple, but human beings are most used to infix notation with the

operators occurring between operands (e.g., 3 + 4). To avoid such

issues, we rely on Postfix notation

Infix to Postfix Conversion

The essential feature is the postfix notation, which gives the order of

operand operations implicitly through the order of operators.

Precedence rules and parentheses are not needed. to convert the infix

expression into postfix notation, we have to take care of priority and

parentheses. Output: In order Postfix algorithm uses a stack to hold

operators temporarily and includes the following steps:

1. Initialize an empty stack and an empty result string

2. Scan the infix expression from left to right

3. If the current token is an operand, add it directly to the result

string

4. If the current token is an opening parenthesis '(', push it onto

the stack

5. If the current token is a closing parenthesis ')', pop operators

from the stack and add them to the result string until an

opening parenthesis is encountered (which is discarded)

6. If the current token is an operator: a. Pop operators from the

stack and add them to the result string as long as they have

higher or equal precedence compared to the current operator b.

Push the current operator onto the stack

7. After processing all tokens, pop any remaining operators from

the stack and add them to the result string

Precedence than addition and subtraction, and parentheses can be used

to alter the default precedence. Multiplication and division typically

have a higher by setting up a natural hierarchy of operations, you are

able to manage E. For example, consider the infix expression A + B *

C - D /

92
MATS Centre for Distance and Online Education, MATS University

Notes 1. = "" # this will be our result stack = [] # to use as a stack

result

2. "A" Scan 'A': Operand, append to result:

3. so push to stack: Stack: ['+'] Read '+': This is an operator,

stack is empty

4. to output: “A B” Scan 'B': It’s an operand, add

5. ['+', ''] Scan '': operator: higher precedence than '+', push to

stack:

6. C” Scan ‘C’: It’s an operand, append to result: “A B

Compare with '+' (equal precedence), pop '+' and add to result, pop '-'

to stack: Getting to ''--' (push to stack as '-' has lower precedence than

'') Scan '-': pop '' and add to result, then ++

o Result: "A B C * +"

o Stack: ['-']

1. its an operand, append it to result: "A B C * + D" Scan 'D':

2. Push: ['-', '/'] Scan '/': Higher precedence than '-':

3. add to result: “A B C * + D E” Scan ‘E’: it’s an operand,

pinosta ja yhdisteleM! Last expression,

vielämoppaajääneetoperaattorit

B C * + D E /” ● Pop ‘/’ and add to result: “A

append to result: “A B C * + D E / -” o Pop '-' and

valid postfix representation of the above infix exrpression. Thus the

final postfix expression is A B C * + D E / - which is a

algorithm, in pseudocode: But here’s the

is a string with something like two operands and one operator, so

function infix To Postfix(expression): expression

stack = new Stack()

result = ""

for each token in expression:

if token is an operand:

result = result + token + " "

else if token is '(':

stack.push(token)

else if token is ')':

while not stack. isEmpty() and stack. peek()! = '(':

result = result + stack. pop() + " "

stack. pop() // Discard the '('

else if token is an operator:

93
MATS Centre for Distance and Online Education, MATS University

Notes is Empty() and precedence(token) while not stack. This is because <=

precedence (stack. peek()):

result = result + stack. pop() + " "

stack.push(token)

while not stack. isEmpty():

result = result + stack. pop() + " "

return result

precedence(operator): def

operator == '+' or operator == '-': if

return 1

"*" or operator == "/": else if operator ==

return 2

else:

Popped. Only when it meets ')' return 0 // For '(' cannot be

expressions well, it can even be extended to more complex cases like:

This algorithm manages simple arithmetic

1. operators (i.e., '^', '**') 2] Exponentiation

2. minus or logical NOT) Unary operators (e.g., unary

3. cos(), sqrt()) Function calls (e.g. sin(),

4. of variables) multi-character tokens (e.g., multi-digit numbers,

names

5. highest priority to exponentiation

94
MATS Centre for Distance and Online Education, MATS University

Notes Unit 8: Concept of Queue

3.4 Introduction to Queues and Operations on Queues

Queue is a type of data& structure in computer science that lets jobs

be done in the order they were &, which is also called "First-In, First-

Out" (FIFO). This means that the first thing that was added would be

deleted first, just like people standing in line in real life. In everyday

life, the queue data structure is used by the operating system to run

tasks, by a web server to handle requests, by network packets to buffer

data, and so on. Unlike stacks, which are Last-In, First-Out data

structures, queues let parts be served in the same order they came in.

A queue can be thought of as a list of things in order, with new items

added at back and old ones taken away at the front. In other words,

the oldest item in the queue would be dealt with first. But there are

different types of lines, like the simple queue, the circular queue, the

double-ended queue (deque), and priority queue. Dequeue takes

something out of the queue, and Enqueue adds something to it. Peek

gets the first item in line without taking it., and is Empty checks to see

if the queue is empty. But some versions also offer the is Full

operation, which can be used to see if the queue is full. Operations on

queues: A system's performance depends a lot on how& well its queue

processes work. This is especially true for time-sensitive tasks like

CPU scheduling, network packet handling, and real-time processing

systems. A queue can be made with both arrays and linked lists. When

parts are taken out of the queue, the open hash table implementation

wastes space because its size stays the same. In this case, circular

queues are better because they make better use of the room. The

problem with an array, on the other hand, is that it has a set size. With

linked list, on the other hand, we could use its dynamic memory

allocation to get around that problem. Managing memory and pointers

is more work with linked lists, though. It's important to know different

Figure 10:FIFO Representation of Queue
[Source: https://cdn.programiz.com/]

95
MATS Centre for Distance and Online Education, MATS University

Notes types of queues so that you can handle data and make computations

run faster. A regular queue uses the first-in, first-out (FIFO) model,

while a circular queue lets the rear pointer circle back to the beginning

of the array when it hits the & of its range. This stops array slots from

being wasted. The double-ended queue (deque) gives you more

options because you can add to or remove from both sides. Last but

not least, a priority queue sorts items by importance instead of the

order in which they were added. This makes it useful for many things,

like task scheduling and pathfinding algorithms.

Figure 12:Simple Queue

Figure 11:Circular Queue

Figure 13: Priority Queue

96
MATS Centre for Distance and Online Education, MATS University

Notes

 3.5 An algorithm for adding and removing items from queue

using arrays

In an array-based queue, first two actions (enqueue and dequeue) must

be done while keeping the FIFO order in mind. So far, we've seen that

because the array has a set size, we need to be extra careful not to let

it overflow or underflow. Before adding a new element, a program

should check to see if the queue is already full. An overflow mistake

will happen if the information needs to be added to the queue but

queue is already full. If not, rear pointer moves one space back, and

the new element is saved at that new rear place. In a normal line, the

space that was popped from the front is forgotten. This means that

whenever something leaves the front of the queue, empty space is

made that can't be used again, which is wasteful. The dequeue action

takes something out of front of the queue. The non-empty queue needs

to be reprimanded before it can be withdrawn. It can't remove if queue

is empty, which is called an underflow error. If not, the front pointer is

moved forward, which is the same thing as removing the first item

from the list. But in an array-based queue, this leaves empty room at

the front because it moves the index values around. We can use a

circular queue to solve this problem by wrapping the numbers around.

The following methods show how to add and remove items from an

array-based queue:

 As the first line says, a queue is a basic data structure in computer

science. It works with the idea of "First In, First Out," or FIFO, which

says that items are added to one & (the back) and taken away from

other 7 (the front). Adding something to queue is called "enqueue," &

taking something out of a queue is called "dequeue." These two

actions are necessary for a queue to work as it should. You need to

understand these algorithms in order to use queues in the real world.

For example, you would use them to schedule a process in an

operating system, handle requests in a web server, or handle jobs in a

real-time system. The first thing we do in the enqueue process is

Figure 13: Deque Representation

97
MATS Centre for Distance and Online Education, MATS University

Notes check to see if the queue is FULL. In an array-based linear queue, this

condition is checked by comparing the back pointer to the queue's

largest size. If the back pointer gets to the end of the array, it means

the queue is full. Then you send back an overflow message because

the element could not be added and the other elements in the queue

have not changed. If the queue isn't already full, the rear pointer is

moved forward to make room for a new element. After that, the new

element is added at the number set by the back pointer. If deque was

empty (meaning it didn't have any items in it before this action), front

pointer is also set to the first index. process ends, keeping the integrity

of the queue, and the insertion is done. This action takes something

out of the queue. First, it checks to see if the queue is empty. Either

the front pointer & rear pointer are equal, or the front pointer number

is -1. This means that queue is empty. At this point, an underflow

message is shown, process ends, and nothing changes. item at the

back of the front pointer is returned and taken away when the queue is

not empty. The front pointer is then moved to next item in the queue

after item is removed. As you delete, if the list is empty, set both the

front and back to -1 to show that there are no more items. Also, this

makes sure that any future additions stay in the right place, which

keeps the list correct. In computer science and the real world, queues

are often used because they are good at handling sequential data.

These can be done with arrays or linked lists; each has pros and cons.

It's possible for fixed-size array-based queues to waste memory, but

dynamic memory allocation, especially with linked list-based queues,

makes memory allocation more efficient. Different types of advanced

variations, like circular queues and priority queues, make queue

processes even better for certain uses. Adding and removing items

from a queue are the most important actions in this type of data

structure. By following their algorithms, you can learn how to make

efficient systems for processing data in a wide range of computing

settings. These designs come in handy for many things, from keeping

track of computer networks to keeping things in order during

processes.

 These actions make sure that the queue is in the right order and stop

memory leaks. But, as we already said, when parts are taken out of a

simple array-based queue, space is wasted. To get around this issue,

circular queues wrap around the indices to make good use of room. To

98
MATS Centre for Distance and Online Education, MATS University

Notes make the best use of the space in the buffer, the rear pointer goes all

the way back to the beginning of the array in this version. Operating

systems, network traffic management, and models are all examples of

places where queue management needs to work well. For managing

tasks and resources, queues are used to solve a lot of problems in the

real world. You can always make the queue more efficient by using

circular queues or linked lists instead of a fixed-length array, since the

linear structure of the queue has clear limits on the maximum size that

can be set.

MCQ

1. Which of the following follows the "Last In, First Out" (LIFO)

principle?

a) Stack

b) Queue

c) Array

d) Linked List

2. Which action does NOT occur in a stack?

a) Push

b) Pop

c) Peek

d) Queue

3. What is the time complexity of the "push" operation in a stack?

a) O(1)

b) O(n)

c) O(log n)

d) O(n²)

4. Which of the following is NOT a common use of a stack?

a) Function call management in recursion

b) Reversing a string

c) Converting postfix expressions to infix

d) CPU scheduling

5. What happens when a stack exceeds its maximum capacity?

a) The stack is automatically cleared

b) An overflow error occurs

c) The program continues running normally

d) Elements shift downward

6. Which data structure is used to evaluate mathematical

expressions?

99
MATS Centre for Distance and Online Education, MATS University

Notes a) Stack

b) Queue

c) Linked List

d) Graph

7. Which algorithm is used to convert an infix expression to a postfix

expression?

a) Kruskal's Algorithm

b) Dijkstra's Algorithm

c) Stack-based Conversion Algorithm

d) Floyd-Warshall Algorithm

8. Which stack operation retrieves the top element without removing

it?

a) Pop

b) Push

c) Peek

d) Fill

9. Which of the following correctly represents a stack operation

sequence?

a) Push(10) → Push(20) → Pop() → Push(30) → Pop()

b) Push(10) → Pop() → Push(20) → Push(30) → Pop()

c) Both A and B

d) None of the above

10. What is the key difference between a stack and a queue?

a) A queue follows LIFO, while a stack follows FIFO

b) A stack follows LIFO, while a queue follows FIFO

c) Both follow FIFO

d) Both follow LIFO

A Few Questions:

1. Explain what a stack is and how it works.

2. What does it mean to "push" something in a stack?

3. What is the pop process, and when do you use it?

4. Where do stacks come in handy in real life?

5. Explain what stack overflow and underflow mean.

6. How can arrays and linked lists be used to make a stack?

7. Seventh, explain how to use a stack to reverse a string.

8. Describe the steps needed to change an infix expression to a

postfix expression.

9. How does evaluating a postfix statement with a stack work?

100
MATS Centre for Distance and Online Education, MATS University

Notes 10. What's the difference between a queue and a stack?

 A Lot of Questions:

1. Give an example to show how the LIFO principle works in

stacks.

2. Talk about algorithms for the different stack actions (push,

pop, and peek).

3. Use an example program to show how to build a stack using

an array.

4. Use a linked list to make a stack in your C++ program.

5. What does a stack do in recursion? Give an example to help

you.

6. Explain how to use a stack to change infix expressions to

postfix expressions.

7. Describe how stacks are used to analyze postfix expressions.

8. Compare how stacks and queues work and what they are used

for.

9. Use an array to write a method for adding and removing items

from a queue.

10. Talk about how stacks are used in real life in computer science

.

101

MODULE 4

 LINKED LIST

LEARNING OUTCOMES

• Understand the concept and structure of linked lists.

• Learn about different types of linked lists (Single, Double,

Circular).

• Perform basic operations on linked lists, such as insertion,

deletion, and traversal.

• Understand sorting techniques such as Bubble Sort, Selection

Sort, Insertion Sort, and Quick Sort.

• Learn different searching algorithms for linked lists and

arrays.

102
MATS Centre for Distance and Online Education, MATS University

Notes Unit 9 Introduction and Basic Operation of Link

List

4.1 Introduction to Linked List and Its Types (Single, Double,

Circular)

One of most basic & important data structures in computer science is

linked list. Arrays are the first data structure that most programmers

learn, but linked lists have their own perks and features that make

them useful in more than& one situation. Arrays take in blocks of

memory that are all connected to each other. Linked lists, on the other

hand, are made up of nodes that can be created at different locations

in memory and are connected by a reference or pointer. This gives

you more control over how memory is used and how big the data

structure is during gameplay than static arrays do. It's important to

keep in mind that link lists aren't just an idea that is studied in

computer science classes; they are also used in real life to make some

applications work and even in more complex data structures. Linked

lists can be used to create any kind of structure, from simple ones like

stacks and queues to more complicated ones like graphs and hash

tables. Modern programming languages may have built-in collections

and libraries that hide the details of how linked lists work. However, it

is still important for programmers to understand how these work in

order to write code that runs quickly and choose the right data

structure for the job. We will talk about everything you need to know

about linked lists in this article, from what they are to their different

types, how they are implemented, how well they work, and how to use

them in real life. We will look at singly linked lists because they have

Figure 14.1: Linked List
[Source: https://techvidvan.com/]

103
MATS Centre for Distance and Online Education, MATS University

Notes easy logic, doubly linked lists because they can know both ways, and

circular linked lists because they are unique. But we still have a long

way to go. As an example of a conventional approach, The Basic Idea

Behind Linked Lists By definition, a linked& list is linear data

structure made up of series of nodes, or elements, that are not saved in

memory locations that are next to each other. Each node in chain has a

data field and a link to the node that comes next in the chain. Arrays

and linked lists are different in this basic way, which makes them

easier to use and apply but also more difficult.

How a Node Works Any linked list is made up of basic building

blocks known as nodes. Most nodes are made up of two parts:

• Information: In most situations, this can be either simple type

of value, like int, or a well-structured object type of value.

• Reference (or Link): These points to the next node in list,

creating the "link" that goes to the data structure's name.

A simple way to describe a node in a computer language like C is

shown below: struct Node {~ int data; struct Node* next}; Chains of

nodes can easily be made to grow and shrink while the program is

running with such a simple structure. In a Linked List, the next (or

link) component is what lets you move from one node to the next. It is

at the heart of all processes that are done on linked lists. Dogs with

Heads & Tails Most versions of linked lists keep special pointers to

make operations easier:

• Head: first node in list, which is used as the starting place for

traversal.

• Tail: This is reference to last node in the list, which can make

actions like adding new items to list much faster.

The node doesn't have any other links going in. It is important to

remember that tail pointer is not required, but it makes some actions

faster (like adding elements to the end of The head pointer is all that

matters—if we lose track of the head pointer, we lose the whole list,

because in a simple linked list, Null Termination is used to get to

nodes that don't exist. is like a watchtower that lets you know the

series is over and will end. When you're traversing a linked list, this

null reference means you've hit the end of the list and don't need to try

again. The list is shown by a null reference in the "next" pointer of the

last node. This value is null The end of Dynamic Memory Allocation

feature in other standard linked list types lets linked lists grow or

104
MATS Centre for Distance and Online Education, MATS University

Notes shrink at runtime without having to follow size limits or perform

performance-heavy reallocations. Since items in a linked list don't

have to be directly next to each other in memory, linked lists can use

memory locations even if the items are spread out in memory. The

most interesting thing about linked lists is that memory can be

allocated on the fly. Most of the time, they work better than groups.

Setting aside the right amount of memory for each part and

rearranging the structure as you add or remove parts, which is

something that static data structures can't do. or how well memory

works is the most important thing. When linked lists are used, they

only Many situations call for linked lists, especially when it's hard to

say what the largest store size can be. Linked List & Its Operations

structure of a singly to understand and use, while taking advantage of

the basic benefits that these kinds of data structures can offer.

building. In the end, they are easy because they are simple. Singly

linked lists are the most basic type of linked list. In these lists, each

node only points to the next node in the list, making a one-way path

through the list. The "next" property of the Structure and

Implementation reference is set to null to show that the list is over. the

first node. The last node in the chain only has a reference to the next

node and no data. A head pointer to the list is usually used to get to it.

In Python, a single linked list is one where each list node: Here is a

simple example of how to use the single linked class Node:

elf, data; def init(self):

data self.data = data self. class next = None SinglyLinkedList: def

start(self):

self. Everything that happens to a single linked list is based on the

head = None simple data& structure. This is true whether you are

traversing the nodes, adding nodes to the structure, or removing nodes

from it. single linked list is made up of nodes that hold data and a

pointer—this Accessing individual nodes based on where they are or

what they contain is called traversal operation. Each time, move on to

the next node until you hit the null reference, which means the list is

over. This action is very important for many other operations on

linked lists because it provides the way for You can visit a singly

linked list by beginning at the top and working your way down. Here's

an example of a popular traversal algorithm:

This is fake code for the function traverse (head):

105
MATS Centre for Distance and Online Education, MATS University

Notes Current = head as long as current is not zero:

Process the current. Data current = right now. The next number is the

number of nodes in the list. You can only visit each node once.

Complexity of traversal time: It takes O(n) time to go through both

the linked list of words and the list of permutations.

1. The time complexity of process is O(1). to the new node with the

link. But this Head Insertion doesn't need to go through the container,

so Make a new node and move the head so that its next pointer points

to it.

2. instead of tail pointer, which takes O(1) time because the new node

can be connected directly to the tail before the tail is changed. node to

the new one. If you keep an Append (at the end): Without a tail

pointer, this action takes O(n) time, where n is the number of nodes in

the list. This is because it has to find the end of the list and set the

next pointer of the last node.

3. take O(1) time in the best case and O(n) time in the worst case,

depending on how far away the target node is. by going through the

list until you get to the node you want to change, and then moving the

new node next to it. How long it takes can It is possible to add

something after a certain node.

Delete operations are also done in different places, like entry

operations: It can take O(1) time to get rid of things from lists that are

only linked to one other list. Get the first and second nodes free. How

long this takes Take away from the start: It takes O(n) times as long to

go through the whole structure as many times as there are nodes

before the tail to change the head pointer to point to that node. We

have to do this until we get to the second-to-last node, which we need

to set to NULL. How to Get to the End Delete: We need to do a

worst-case time complexity of O(n) as we go through the data. node.

Who is in it: Anderson A certain part was taken away. We see that

both the node and the one that came before it have been taken away.

We then change the next node to skip revenge for the predecessor

node.

Search Operation should be looked at. Searching in a singly linked list

is like going through a list from the beginning to the end or to the

value we want to find. Like many actions on linked lists, this one

takes O(n) time in worst case because every node could To make a

106
MATS Centre for Distance and Online Education, MATS University

Notes simple search program work, you could: One example of a target: def

search(head, current):

Current = head if current is not null

if up to date. When data equals goal,

return current = current. Next // not found; return null

Lists What Are the Pros and Cons of Singly Linked? A list with only

one link • Dynamic size change without reallocation

Adding and removing items quickly at the start (O(1))

• Simple implementation compared to more complex list types

However, they also come with limitations:

• Linear time complexity (O(n)) for accessing arbitrary elements

• No backward traversal capability

• Deletion from the end requires finding the second-last node,

which is inefficient

A doubly linked list is an advanced variant of a linked list that

enhances performance by allowing bidirectional access to nodes.

Unlike a singly linked list, where each node contains only a reference

to the next node, a doubly linked list maintains two references—one

pointing to the next node and another pointing to the previous node.

This structure enables efficient traversal in both forward and

backward directions, making operations like insertion, deletion, and

searching more flexible. However, the improved functionality comes

at the cost of increased memory usage and greater implementation

complexity, as each node requires additional storage for the backward

reference. The structure of a node in a doubly linked list consists of

three parts:

1. Data: thing or value that node stores

2. Next pointer: A link to the next item in the list

3. Previous pointer: A link to the node in the series that comes before

Figure 15: Doubly Linked List
[Source: https://www.programiz.com/]

107
MATS Centre for Distance and Online Education, MATS University

Notes Here is a possible implementation,

class Node {

int data;

Node next;

Node prev;

public Node(int data) {

this.data = data;

this.next = null;

this.prev = null;

}

}

class DoublyLinkedList {

Node head;

Node tail;

public DoublyLinkedList() {

this.head = null;

this.tail = null;

}

}

Linked list is transformed into a bidirectional linked list, allowing

traversal both forward & backward. In practice, implementations of

doubly linked list include both head and tail pointers with the

addition of the previous pointer, the unidirectional

Bidirectional Traversal

Backward traversal starts in the tail and moves to the front with lists?

Forward traversal é similar aosencadeamentos simples,

percorreosponteiros next So what differentiates doubly linked lists

from other types of linked Forward traversal pseudocode:

forwardTraversal(head): function

current = head

while current is not null:

process current.data

current = current. next

for traversing backwards: Pseudocode

*/ for tail, traverseBackward, * /...

current = tail

while current is not null:

process current.data

108
MATS Centre for Distance and Online Education, MATS University

Notes current = current. prev

For applications that require reverse access to the data or backtrack to

the previously visited nodes. The bidirectional nature of the data

structure allows for going back in a more efficient way and makes it

incredibly useful Faster Insertion and deletion operations are

1. easier & more efficient than their singly linked equivalents:

The bidirectional accessibility of doubly linked lists makes a

few operations

2. Insertion operations (assuming you know the target position).

pointers need to be updated to create the new bidirectional

links when inserting a node between two nodes. This does

require more pointer massaging, but it doesn't increase the

time complexity, which is still O(1) for Insertion: The next

and previous

3. is especially beneficial when deleting from tail end of the list,

where the tail pointer allows a constant time operation.

predecessor, so deletion of the node becomes an O(1)

operation at any point, given we have the pointer to the node.

This Operations for deletion greatly benefit from the

bidirectional structure. Access to previous pointer of a node in

the linked list helps us avoid traversing the list to find its

Deletion:

4. is an advantage that makes it especially suitable for

applications in which pointers to individual nodes will be kept.

that node in constant time by moving it 7 users up in the chain

nodes list element. This Inefficiency of List Operations: If we

already have a reference to particular node in linked list, we

can insert And Disadvantages of Doubly Linked Lists

Benefits Over Singly Linked List.

Advantage of Doubly Linked List

• Bidirectional traversal capability

• Efficient deletion operations at any position (O(1) once the

node is located)

• Simplified implementation of certain algorithms that require

backward movement

• O(1) operations at both ends of the list when using head and

tail pointers

However, these benefits come with trade-offs:

109
MATS Centre for Distance and Online Education, MATS University

Notes • Increased memory overhead due to the additional previous

pointer in each node

• Greater implementation complexity, particularly in pointer

manipulation during insertions and deletions

• Slightly more complex maintenance as both sets of pointers

must be kept consistent

Whether to implement singly or doubly linked list based on the needs

of the application, especially as related to traversing the data and the

number of each kind of operation. Practical use of linked lists often

involves the consideration of Number of Links Linked lists in a circle:

A circle linked list can be made with the Loop node pointing back to

first node. This is different from linked list where null marks the ends

of the linked structure. By Oneself On the other hand, the last and

some cases. This circular arrangement can be used with doubly linked

lists, which have some unique features that may make them better for

Lists: Building Blocks and Types Circular Linked lists are made up of

the following:

There are two main types of Can be reached by following next

pointers from any node. In the last node, there is no null. Instead, it

goes back to the beginning of the list. In this structure, there is now

only one loop that all nodes can be a part of. It has data and a next

link. One thing that makes it different is that the next pointer of the

circular singly linked list points to the head, and the previous pointer

of the head points to the last node. This makes a full linked ring that

can be traversed in either direction. three things: data, a next pointer,

and an earlier pointer. List: This is both a doubly linked list and a

circle linked list put together by making next pointer of List. Each

point is linked in circle twice.

Figure 16: Circular Linked List
[Source: https://www.programiz.com/]

110
MATS Centre for Distance and Online Education, MATS University

Notes Simple implementation of a circular singly linked list in C++:

Here is a

class Node {

public:

int data;

Node* next;

Node(int data) {

this->data = data;

this->next = nullptr;

}

};

class CircularLinkedList {

private:

Node* head;

public:

CircularLinkedList() {

head = nullptr;

}

etc. insert, delete,

};

Implementation with regular linked lists is in way pointers are

manipulated to maintain the circular effect. The only difference with

Traversal in Circular Lists

Use an alternative stopping criterion, generally checking if they’re at

(or have returned to) the starting point of the traversal, since there is

no null termination. care as it can lead to infinite loops. Here,

traversal algorithms have to unlike the regular linked list, traversal in

circular linked lists needs extra Traverse algorithm about circular

linked list:

A simple Function traverses (head):

If head is null:

return

current = head

do:

process current.data

current = current. next

while current is not head

111
MATS Centre for Distance and Online Education, MATS University

Notes For traversing forward and backward in the case of circular doubly

linked lists. & each of the nodes is visited once, even in the head of

the list circular. same algorithms are used It helps to guarantee

Circular Lists Special Operations on idea suggests: More for Circular

Linked Lists Circular linked lists allow for certain operations that are

exactly as efficient or natural as the scheduling or any context where

the data centre has to be processed in a cyclic way. Time pointer

adjustment. It is helpful especially for those functions of application

like round-robin Rotation: It makes operations such as rotating the

list (changing which node is the head) a constant suited for

implementing applications that have repetitive or cyclical access

patterns. The circular structure allows for continuous processing of

elements without needing to return to the beginning when reaching

the end. Circular lists are thus best Circular Structure: Josephus

problem and similar elimination algorithms, where elements are

systematically eliminated according to a counting method. Josephus

Problem Circular lists allow to solve the

Implementation Considerations

When implementing circular linked lists, there are a few things you

need to be careful with:

Pointer of the node points at itself. In the case of a single element

list, next List: We need to take care of empty lists or lists with just

one element. The head is null in Handling Special Case of Empty

1. Linked list, next pointer of the new node must point to the

head, & if it's head that is being removed, the next pointer of

the tail must be updated to point to the new head. Deletion:

These operations need to keep circular structure. For example,

when appending to a circular singly Insertion and

2. Did not return to the previous root that is, there should not be

an infinite loop. Termination for Traversal: Similar to the

traversal, for some mutations, it must make sure that the

traversal

Circular Linked Lists Pros and Use Cases for advantages of circular

linked lists:

• Elimination of null checking during traversal (after ensuring

the list is non-empty)

• Natural representation of cyclical relationships or processes

112
MATS Centre for Distance and Online Education, MATS University

Notes • Efficient implementation of round-robin algorithms

• Simplified access to both ends of the list (the last node can be

accessed in O(1)

• time even in singly linked circular list by following head-

>next if a tail pointer is maintained)

Common applications include:

• Process scheduling in operating systems

• Music playlist implementation (playing songs in a loop)

• Implementing circular buffers

• Game implementations where players take turns in a cyclical

manner

• Any application involving repetitive access patterns

4.2 Operations on Linked List: Insertion, Deletion, Traversal

That need to be continuously processed in a cyclic this is essentially a

design decision between adopting either standard or circular linked

lists, but cyclical relationships make more sense when there are parts

or relationships that go in a circle. Operations That Cross Linked Lists

Adding, removing, and connecting items in a linked list gives it a

special structure that makes it useful for certain tasks. Keep in. When

compared to arrays, this flexible storage system has both pros and

cons. Arrays store their elements in blocks of memory that are next to

each other. Linked lists, on the other hand, store their elements all

over memory and connect them using references, or "links Linked

lists are one of the most basic types of data structures in computer

science. They have a set price, which makes them adjustable. This

makes them best for data systems that need to add and remove things

a lot. Turn the whole building around. In link lists, the next node can't

be the size of the data structure, though. Linked lists can grow or

shrink while they're going without having to be programmed because

this basic structure lets memory be given out on the fly. Each item in a

linked list is called a "node." It holds both information and a pointer

that you need to learn and understand in order to use them. to make

more complicated data structures and methods, like stacks, queues,

and some kinds of trees. A programmer should know a lot about

linked lists and how to use them in basic ways. In order to work with

linked lists, you need these things. These methods can be used by

developers to Adding to, removing from, and navigating linked lists to

change them That link in the chain has been hit. Most of the time, the

113
MATS Centre for Distance and Online Education, MATS University

Notes last node goes to NULL. In other words, the very end of the list has a

data structure where data elements, or nodes, are not saved next to

each other in memory. Each node stores a data field and a link to the

next node. You must understand how linked lists work in order to get

this. Any list with links is a You must know what the program needs

in order to understand how things work. Hey. to the first node instead

of NULL). The pros and cons of each are shown below. Each link

only leads to the next one. Circle linked lists (where the last node

points to itself) and doubly linked lists (where each node points to

both the next and old nodes) are more complicated. One more type of

linked list is a single linked list. If you want to write a node in code,

this is how you do it: This node has data (int data) and a link to the

next node. Right now, there is nothing in Node* next; // ^;. Some

types also keep the tip of the tail. It points to the last node in the list

and maps to the first node. When there are no links in our list, we add

NULL here. The linked list starts at the head and ends at the end. This

lets us quickly get to the last node without having to build up the

whole list, but it takes more space to store the references and we can't

just pick out parts like arrays do. Not needed any longer. However

Memory can be quickly given to a new node while the program is

running and taken away when the node is no longer needed. This

means that linked lists can be used in different ways.

How to Get Through Lists Linked next pointers until we reach the

end, which is shown by a NULL reference. A linked list lets you find,

count, and show its items. It's one thing at time from top of list to the

bottom. That same idea is also used in a lot of other things, like

easiest thing to do in a linked list is navigation. It only means going

through the list one item at a time. One issue with linked lists is that

you can't just jump to certain items; you have to go through all the

nodes before you reach the one you want. There is a set order to

traversal, which shows one of the Each node can be moved through

and dealt with in a different way. For example, the data can be

printed, compared to a key, or the list's beginning or end can be

changed. It is possible to drop the time complexity to O(1) by keeping

track of extra pointers. There is no way to avoid this linear time

complexity since the loop has to go through each item in the list.

When you need to get to certain places, on the other hand, like is

O(n), where n is number of linked list nodes. How long it takes for a

114
MATS Centre for Distance and Online Education, MATS University

Notes simple traversal method for a list with only one link to be: This is the

code: Node* head and void travel If current is not NULL, do

something while current is not NULL. { (like print data) // Now work

on the current node coutdata; } }, which means the first node in the

list is taken care of first. It will keep going until it hits the NULL

address, which means the end of the list. By following the next links,

you can easily walk through the list as you go through the nodes. This

is because each node is added as it is moved through and then dealt

with. The It's sometimes easier to read code when it starts with a

current pointer at head. This is especially true for processes that do a

lot of work at each node. In general, traversal uses more memory than

repeated traversal, and when lists are very long, they can cause the

stack to overflow. This method, on the other hand, uses the call stack

to go through each node one at a time.

Master lists that can be interconnected, similar to how you search for

a specific part. The idea of traversal is important in data structures

with vague meanings, like linked lists. You need to know about it in

order to do many things with linked lists, you need to traverse them.

These tasks can be easy, like printing parts, or hard, like using Linked

List. Adding to a linked list is faster than adding to an array because

you only need to change pointers instead of moving a lot of items

each time. This is especially true for large data sets. This means that

insertions could be Putting in: To add a new node to a linked list is

something that is done a lot. The links between the nodes are changed

to do this. The main idea is the same. Two different ways to add

something to a list are to put it at the beginning (propend), at the end

(append), or at the beginning (prepend). You can make all of these

changes with the Start (Prepend) Insertions, which let you move

through the list. and putting the new node at the very top. This move

takes O(1) time since it doesn't need to be at the top of the list. That

word is also used for this. Add a new node and move it to the top of

the list. It's possible to change the head to point to the new node by

setting the node's next to head reference to *head Ref. Please set

*head Ref = new Node; lists. The head is at the top of the list, and the

old head is next. This way works very quickly and makes it easy to

change the head pointer in stacks that use linked lists. This brand-new

node is now A double pointer (**head Ref) is used in these changes

so that the method can add at the end pointer. This means that it takes

115
MATS Centre for Distance and Online Education, MATS University

Notes O(1) time. We don't have a tail address yet, so we need to find the last

node in the single linked list. It takes O(n) time to do this because we

have This is how you add a new node to the end of the number.

Empty spot for new Data "Make a new node" is what Node** head

Ref means at the end. You can see if the list is empty by adding a new

node and setting the next value of its last node to NULL. The new

node should be the head. Return if *header is not NULL; if it is, go to

the end // Node* last = *head Ref; while (last->next! = NULL) { last

= last->next; } node and set next to the new node. Finally, Add the

last node to the end (last->next = new Node;} time action that doesn't

change). put it next to the new node. (Not going through the list can

be skipped if you keep the version of the linked list that has a tail

address. After that, this node would be at the top of the list. It goes

through the list again if not. The first part of this answer sets the place

for when the input linked list is empty, which doesn't happen very

often. To add some things close to the start, put them in at a certain

reach O(1). Change the links in the list to add the new node. This is

how we find the ith place in a linked list. It takes O(n) time at most to

add something to the end of a list, but it can be done faster. The void

insertAfter(Node* prevNode, int new_data) method adds at the ith

Check to see if the node before this one is empty.

 if (prevNode is not NULL) {

Let coutdata = newData.

The next node next to the last node

If prevNode->next = newNode, then

The next link from the node before it leads to a new node.

NextNode of prevNode = newNode;

}

In this case, we add a new node after node that was given (prev

Node). To begin, it checks to see if the given node is empty. It adds

the given data to a new node if it is. Then, the next pointer of the new

node is changed to point to first node's next, and next pointer of the

first node is changed to point to the new node. new node is now where

it should be. An average case is adding an item at a specific index

point from the beginning of the chart:

Void insert At Position(Node** head Ref, int position, int new Data)

{

// Add at the beginning if position is 0

116
MATS Centre for Distance and Online Education, MATS University

Notes If position is 0, do this:

The insertAtBeginning() code is made, which will add the new node

to the beginning of the linked list.

come back;

}

// Make a fresh node

The new Node, newNode, is a Node*.

data for newNode = newData;

– Move to the node right before the place

Current in the node is *headRef;

If int i = 0 and inext

}

To see if the position is correct, call

if current is not NULL;

{ "cout" : "Position out of range" }

come back;

}

// Add the new node

This is current654->next = newNode;

this->next = newNode;

}

This version takes care of inserting at the given position if that spot is

indexed at 0. This first checks to see if the value is 0, and if it is, it

sends the call to insert At Beginning. If not, it goes through the list

until it finds the node before the requested position and adds the new

node after it. It gives an error if the point is out of range. Taking out

items from linked lists is also a basic action that lets you take out

items from different places in the list. In addition, deletion only

involves changing links and not moving any elements, so it could be

very fast if the data set is big. This is different from deletion in an

array. In a linked list, there are three common deletion scenarios, That

is, get rid of the first node, the last node, and a node by its position or

value. All these three cases require different pointer manipulations,

but they follow the same logic of changing the links to completely

skip the node to be deleted.

Deletion of the First Node

Removing from the beginning (It's easy to get rid of the first node in a

linked list. This way moves the head pointer to the second node

117
MATS Centre for Distance and Online Education, MATS University

Notes instead of the first one, but it doesn't delete anything from the list.

This action takes O(1) time because it doesn't involve going through

the list. To delete the first node, we can do the following.

// Check if the list is empty

if (*headRef == NULL) {

return; // Nothing to delete

}

// Store the current head

Node* temp = *headRef;

Update head to next node

*headRef = temp->next;

⋅⋅⋅ //Free memory of the deleted node.

delete temp;

}

The first step the function takes in this implementation is to assess

whether the list is empty. Otherwise, it saves the current head node in

a reference so it has access to the node we are going to get rid of, then

it sets the current head to the next node, and deletes the node we

removed from next node. This operation has the best efficiency, which

is why it is the most common for implementing queues in linked list.

Taking away the last node

In a single linked list, there is no such structure, so getting to the

second-to-last node from the beginning to delete the last node is more

difficult. This action will take O(n) time because it needs to go

through the queue.

throw new void(Node* * head) {

// See if the list is empty

If *headRef is not NULL, do this:

return; // Nothing to get rid of

}

// If there is just one node

If (*headRef)->next is not NULL,

Get rid of *headRef;

*headRef = '';

come back;

}

// Go to the next node and find the one where the next node is not null.

118
MATS Centre for Distance and Online Education, MATS University

Notes Current in the node is *headRef;

while (next! = NULL for current, next, next) {

right now = right now->next;

}

// Get rid of the last node

Get rid of current->next;

this->next = null;

}

This solution handles two types of edge cases: a list with no items and

a list with one item. It goes through the list with more than one node

until it finds the last node, deletes the second-to-last node, and sets the

second-to-last node's next pointer to NULL. If you use a linked list

with two links or a linked list with a tail pointer, this process might

run faster. Getting rid of a node at a certain position or value Also, to

If we want to delete a node in middle of the link list, we have to go

through the list elements until we get to the node we want to get rid

of. Then we have to link the next node we want to get rid of to the

node that came before it. You have to look through the list and find a

node with that number in order to delete it. In the worst case, both

tasks take O(n) time to finish.

void deleteNodeAtPosition(Node** headRef, int position) deletes a

node at a certain point.

// See if the list is empty

If *headRef is not NULL, do this:

return; // Nothing to get rid of

}

// Keep track of the head

Node*temp = *headRef;

The head will be moved away from the data point.

119
MATS Centre for Distance and Online Education, MATS University

Notes If position is 0, do this:

*headRef = temp->next;

Get rid of temp;

come back;

}

for (int i = 0; temp! = NULL &&i next;)

}

// check to see if position is greater than the number of nodes

if (temp == NULL || temp->next == NULL)

return; // Don't do anything, that's not allowed.

}

node to get rid of? >

Node* nodeToDelete = temp->next;

Take the node off the list and connect the node before it to the node

after it that was removed.

temp->next = nodeToDelete->next;

Free up the memory of the node that was removed.

Delete nodeToDelete;

}

First, this version checks to see if the list is empty or if head (position

120
MATS Centre for Distance and Online Education, MATS University

Notes 0) needs to be taken off. When the position is not the same as the

head, the pointer/reference pointer makes a new pointer that points to

the head and moves forward until it hits node before the node that

needs to be deleted. It then frees up the memory.

It's kind of the same for getting rid of a node with a certain value:

Int value, Node** headRef; void deleteNodeWithValue(headRef,

value);

// See if the list is empty

If *headRef is not NULL, do this:

return; // Nothing to get rid of

}

// Keep track of the head

Node*temp = *headRef;

Node* prev = null;

The first thing we should do is see if the value we want to delete is in

the head node.

if (temp! is null and temp->data is equal to value) {

*headRef = temp->next;

Get rid of temp;

come back;

}

// Get rid of the value at the node that has it.

If temp! is NULL and temp->data! is value, do this:

prev = temp;

temp = temp->next;

}

121
MATS Centre for Distance and Online Education, MATS University

Notes

// If the value couldn't be found

If temp is not NULL, do this:

come back;

}

remove(): Take the node out of the list.

prev->next = temp->next;

// Free up the memory that the removed node used

Get rid of temp;

}

This implementation checks to see if the value that needs to be

removed is in the head node. If it doesn't find it, it goes through the

list again and again until it finds the node with the number that was

given, while keeping track of the previous node. If we find that node,

we'll change the pointers to skip it and then free up its memory.

Advanced Uses of Linked Lists

Linked lists have many useful features besides the basic processes of

adding, removing, and iterating. These features make them

appropriate for many real-life situations. Not only do these processes

search and reverse, but they also merge & find cycles, to name a few.

Understanding these more advanced functions is important if you

want to use linked lists in complex algorithms and data structures to

their fullest.

122
MATS Centre for Distance and Online Education, MATS University

Notes Unit 10 Sorting Algorithms

4.3 Sorting Techniques: Bubble Sort, Selection Sort, Insertion

Sort, Quick Sort

Bubble Sort

Some sorting algorithms are more complicated than others. Bubble

sort is the simplest because it just compares neighboring items in the

list and changes the order of them if they're not in the right place. This

goes on until there are no more swaps to do and the list is in order.

Random access isn't possible with queue-based bubble sort, so it's not

good for linked lists either. This is because the data are saved in

running memory. The only way to swap two nodes in linked list is to

swap the data as we go through it. This is easier than moving pointers.

Once this method groups the linked list, it doesn't change the way it

looks. To avoid this, the bubble sort should not be used for bigger files

because it might take too long. Bubble Sort is great because it is

simple and easy to use. It's stable and doesn't take up a lot of extra

space. In other words, items with the same value appear in the same

order in both the unsorted array and the sorted result. We saw that it

takes quadratic time, which means that a very long linked list can't be

sorted with it. GET OUT this is a junk-sort sort algorithm called

Figure 17: Bubble Sort
[Source: https://miro.medium.com/]

123
MATS Centre for Distance and Online Education, MATS University

Notes bubble sort. It's slow, but it's a good way to learn about them or to

handle very small linked lists, where even simple sort algorithms

would take too much work. The linked list needs to be sorted by

bubble sort more than once. Each time through the tree, the values of

nodes that are next to each other are checked to see if they are in the

right order. If they aren't, they are switched. This is done again and

again until the linked list is fully traversed without any swaps. The

linked list is now in the right order, as shown. Our method is different

from array-based bubble sort because we have to start at the beginning

of the linked list every time. We can't just go to any entry. Bubble sort

isn't as easy to use when you only have one list that is connected to

another list. We can only go forward in a list with one link. It's easy to

compare this node to the next one, but we have to go back to the

beginning of the list to compare it to the ones that came before it.

Because of this, bubble sort takes even longer, and single linked

groups are now the worst in terms of time complexity when compared

to other data structures. Because we can move around the list in both

ways with doubly linked lists, the implementation makes more sense.

This inverted navigation feature makes it easier to compare and swap,

but it still takes O(n²) time total. You can still use bubble sort on a

doubly linked list, but it's not designed to work on big doubly linked

lists, even if you use the above slight edge. One way to make things

better is to use Bubble sort on a linked list so that items come back

faster. To do this, a flag is kept to show if any changes were done in a

single pass through the list. But if there were no changes, the list

would already be in order, so the algorithm could end early. If the list

is already somewhat sorted, this optimization can make things run

much faster without changing how long it takes in the worst case.

A bidirectional bubble sort, which is also known as a cocktail sort or

shaker sort, is one example. It goes through the list twice, once going

forward and once going backward. On the forward pass, it moves the

biggest items to the top, and on the backward pass, it moves the

smallest items to the bottom. While this method can cut down on the

number of times list has to be sorted in some situations, it still has a

worst-case time complexity of O(n²).

Using bubble sort on linked lists will be a great way to learn about

how sorting algorithms work and how to use linked lists, even though

it is quite complicated. This is because it shows how hard it is to

124
MATS Centre for Distance and Online Education, MATS University

Notes change linked data structures and teaches basic ideas that can be used

to understand more complicated sorting methods. The method is easy

to understand and follow because it is written in steps. This makes it a

useful teaching tool.

In short, bubble sort works on a linked list by switching nodes that are

next to each other if they are not in the right order. Even though it

takes O(n²) time and doesn't work for bigger sets of data, its ease of

use and helpful descriptions make it worth it.

Make it worth your time to learn. To sort big linked lists, on the other

hand, other sorting algorithms work better and should be used.

Pick Choose Sort

Figure 18: Selection Sort
[Source: https://www.w3resource.com/]

125
MATS Centre for Distance and Online Education, MATS University

Notes A simple way to sort that can be used with linked lists is selection

sort. It takes the list you give it and splits it into three sublists: two

that are organized and one that is not. When you sort a sublist,

everything is at the beginning, but when you unsort it, it's empty. In

other words, the method moves the item at the end of the sorted

sublist that is the smallest (or biggest) in the unsorted sublist. It keeps

doing this until the sublist that isn't in order is empty and the list is in

order. As long as we change how we do it, we can use selection sort

on a linked list. Linked lists are already in order. There are nodes in a

connected list. You have to start at the top (or present) node and work

your way down to get to a certain node. This is helpful because it

changes how the swapping process works and how the smallest part is

found. in sort by choosing. Most of the time, selection sort takes

O(n2) time with a single linked list because it takes O(n) time to find

the smallest selection in the part of the list that isn't sorted. As soon as

we find the smallest item on the list, we trade its value for the first

item that is not in any one order. We won't have to do an expensive

O(n) time list rebuilding if we do this. When you swap, the line

between the sorted and unsorted areas moves one node to the right.

The time it takes to pick sort on a linked list is always O(n²). It doesn't

matter what order the things are put in. It takes O(n) time to find the

smallest item in the unsorted part of the list each time. Sort by choice:

This type of time complexity is quadratic, not bubble sort: This type

of time complexity is quadratic, just like bubble sort. However, it is

better than bubble sort because the number of changes costs O(n),

while in bubble sort they cost O(n²). This approach works best with

linked lists and cases where it costs more to swap parts than to

compare them. Choice sort might be faster than bubble sort when

there are a lot of changes and a lot of data elements. This is because it

doesn't change much. In addition to the size of the list it is given,

selection sort also uses a set amount of memory. This is called a "in-

place" algorithm. When you use selection sort on a linked list, it can

go off track sometimes. This means that parts that are the same may

appear in a different order than what was typed in. On top of that, it

can be hard to keep the relative order of parts that are the same. This

sorting method doesn't use lists that are already in order, and it always

compares the same number of items, so it doesn't matter how many

items are in order.

126
MATS Centre for Distance and Online Education, MATS University

Notes We don't flip values, but instead use a pointer-based method that

works best with linked lists. It takes a long time to value-swap

between linked list nodes when we need to swap large amounts of

data, like big structs. We can restructure the linked list by moving the

links around. This way is harder, though, and you have to be very

careful with how the lists are organized, especially if they are only

tied to each other. When we implement selection sort, it can be faster

if we make doubly linked lists because we can move through them

both forward and backward. The bidirectional feature might help us

find the minimum element more quickly, but it doesn't change the fact

that it takes O(n²) time. Even though that might not be necessary to

build the list, it can make it easy to move the pointers around while

sorting their values. There is a simple comparison-based sorting

algorithm called selection sort. It may not be as fast as other sorting

algorithms because it takes O(n^2) time, but it can still be useful in

some situations. For example, when working with linked lists,

selection sort does the fewest number of swaps compared to bubble

sort and other algorithms. Selection sort works the same way no

matter what data is put in, which can be helpful in some situations.

However, the algorithm's quadratic time complexity means it can't be

used with big data sets. Sorting items by selection on linked lists is

also a great way to learn how to make algorithms and change data

structures, especially in a classroom setting. It shows how hard

sequential access data structures can be and how different ways of

sorting can be both expensive and useful. This change to the selection

sort algorithm will help students understand it better and how it can be

used with linked lists. For short, selection sort is a simple method for

sorting linked lists that takes O(n²) time to run. To be fair, this isn't the

fastest way to sort large databases, but it's easy to use, doesn't take up

any extra space, and only swaps during sorting, which makes it a good

choice in some situations, like when memory usage is an issue or

when swap transactions are too expensive.

Sort by Insertion

Method: Insertion Sort: Insertion sort is a sorting method that & each

item to the sorted collection one at a time. It saves more time than

bubble sort and selection sort on small data sets, for example, and it

adapts to the input by being faster when it is partially sorted. When

working with linked lists, insertion sort uses the fact that the parts are

127
MATS Centre for Distance and Online Education, MATS University

Notes linked to make it easier to put them where they belong in the sorted

list.

Insertion Sort Idea: The main idea behind insertion sort is to split

the list into two parts, one that is sorted and one that is not. 1) At this

point, only the first element has been sorted. The rest of the elements

are still not sorted. It picks each item from the list that isn't in any

particular order and puts it in the list that is. This is done again and

again until all the items on the list have been handled and the list is in

order.

In the singly linked list form of insertion sort, every item in the first

sorted list will be an integer. This means that the unsorted list will

hold these as well while this part is being built. We can begin the

unsorted list with all the numbers from the original list as given.

Things keep getting moved around in the sorted list as we remove

them from the unsorted list. With this method, we don't have to move

the things around, which is something we can't do with a single linked

list because we'd have to start over. Adding items to a linked list takes

O(n²) time in the worst case. This is what happens when the list of

Figure 19: Insertion Sort
[Source: https://www.w3resource.com/]

128
MATS Centre for Distance and Online Education, MATS University

Notes data is put in the wrong order. In the best case, when the input is

already almost sorted, it only takes O(n2) time, but in the worst case,

it takes O(n) time. It works better for partially sorted lists. Because it

can handle different situations, insertion sort is a good choice when

the data is almost certainly sorted. One great thing about insertion

sort is that it is stable. This means that in the result, elements that are

the same stay where they are. When the order of parts that are the

same is important, this trait comes in handy. It's also a live program,

which means it can sort a list as new items are added. It works better

with streaming info because of this. In insertion sort, working with

linked lists takes up about O(1) extra memory. This is true no matter

what size the input is. It's an in-place method because of this. When

memory is weak, this function comes in handy. limited or where the

data set is very big and might be too big to copy in memory. Insertion

sort on a list with two links, so you can go through it both ways. This

makes adding a new node a lot easier because we don't have to go

through the list from the beginning and can go straight to the node

before it. This could be an advantage that makes it better than

insertion sort on lists with only one link. Because it is flexible,

insertion sort can work better for lists with few items or that are only

partly sorted than bubble sort and selection sort. In the worst case,

though, more complex algorithms like merge sort work much better

with long lists that are sorted randomly. Insertion sort is still useful in

some situations, especially when dealing with small datasets or

partially sorted arrays, where it can work as well as more advanced

sorting algorithms. Binary insertion sort is a cool type of insertion

sort that can be used when the input is a linked list. It uses a binary

search to find the right place to enter the item. One of these

optimizations doesn't work at all with linked lists because they don't

allow random entry. There are, however, ways to make insertion sort

on linked lists better, based on the situation and requirements. For

example, you could add sentinel nodes or keep extra pointers. It is

true that insertion sort on linked lists is often used as part of more

complicated sorting algorithms, but. It can be used as the base case in

recursive divide-and-conquer sorting methods like merge sort and

quick sort when the sublist's size drops below a certain level, for

example. In this way, the hybrid method takes both into account by

using insertion sort for small lists and more powerful algorithms for

129
MATS Centre for Distance and Online Education, MATS University

Notes asymptotic performance on larger lists.

 There are many sorting algorithms out there, but insertion sort is one

of the best for working with a linked list data structure, especially if

it's small or only partly sorted. For instance, it can be used in a lot of

different situations because it is flexible, the sorting methods are

stable, and it can sort things in place. In the worst case, it takes O(n²)

time, but in reality, it works better than most quadratic sorting

algorithms, especially for linked lists where adding items costs less

than in arrays.

Sort Quickly

One good way to do quick sort is to use divide-and-conquer sorting

method. This kind of sorting can be faster than simpler ones like

bubble sort, selection sort, and insertion sort. Since linked lists are

sequential-access data structures, it can be hard to use quick sort on

them, but it also presents a chance. Unlike arrays, linked lists don't let

you access them at random, so we need to change the way the quick

sort method works. Quick sort uses a method called "partitioning,"

which involves choosing an element as "pivot" and dividing the other

elements in the array into groups based on whether they are less than

or greater than the pivot. This process is repeated for each of the new

groups that are created. It goes back to the two most recent sub-arrays

it made. There is an average time complexity of O(n log n) for this

method. It is one of the fastest sort algorithms. Quick sort needs to

Figure 20: Insertion Sort
[Source: https://miro.medium.com/]

130
MATS Centre for Distance and Online Education, MATS University

Notes split, which means moving items around the pivot7, but this is harder

to do on linked lists. When you move elements around the center in an

array, it's easy to switch them around. But when you want to move

things around in a linked list, you need to be careful not to change the

pointers. To do this, you can make three different lists: one with

elements less than the pivot, one with elements equal to the pivot, and

one with elements greater than the pivot. The three lists are then

joined together after the lesser than and greater than lists are sorted

over and over again. When we have a list with only one link, we

usually choose the first or last node as the center node. After this shift,

the list is split into two parts, and recursive calls are made on both of

the resulting subarrays. In this last step, these ordered sublists are just

linked together to make the full ordered list. To do this, you need to

pay close attention to edge cases like lists with only one item or lists

that are empty. Quick Sort on linked lists takes O(n log n) time on

average, which is a lot less time than easier algorithms that take O(n²)

time. Still, the worst-case complexity is still O(n²) if the pivot pick

makes each stage's partitions not balanced. You can choose as the first

or last item on the list if it is already sorted or almost sorted.

Choosing the right turning points can lower the risk of bad

performance in the worst case. Some of these are picking a random

element as the center, finding the middle point between the first,

middle, and last elements, or using more complex sampling methods.

These methods can be used to make balanced partitions, which is

necessary to keep the program logarithmic so that the data is

organized well. Quick sort in linked groups also saves a lot of space,

which is a big plus. The recursive calls take up O(h) stack space,

where h is the height of the recursive tree. In the best case, the height

is O(log n), but in the worst case, it can reach O(n). Sorting can be

done while the lists are being changed, so no new lists need to be

made. This skips more steps than making new lists. terms of memory

in such cases. This feature makes quick sort a more efficient

algorithm in sorting algorithms like bubble sort, selection sort and

insertion sort. In fact, for large ordered lists its performance of quick

sort is better than simpler elements better performance since it has a

worst-case time complexity of O(n log n). But merge sort usually

guarantees a stable sort, which means it can rearrange equal elements.

Quick sort on the other hand is not any order. One key drawback of

131
MATS Centre for Distance and Online Education, MATS University

Notes quick sort is that it is not stable: when simplifying, equal value

elements may be output in original ordering among equal elements is

necessary. This may be problematic in cases where maintaining the

strategy for pivot selection. In addition, the efficiency of quick sort

can greatly degrade for particular input patterns, especially when

insufficient implementation of a hybrid approach where insertion sort

is used on small sublists. A very neat optimization of quick sort

applied to linked lists is the the algorithm's performance. Since

insertion sort has lower overhead and performs well on small lists,

this hybrid strategy can reduce the constant factors in more quick sort

divided integers Generally, when the number of elements in a sublist

approaches a certain number (sometimes around 10-20 elements)

insertion sort is used rather than recursion and. for doubly linked lists

because of this double pointer (traversing in both directions). Quick

sort has an improved implementation ability makes partitioning much

easier and can allow for better pointer manipulations. This

bidirectional it are essentially the same as for singly linked lists.

Nevertheless, the fundamental algorithm and the complexity

characteristics of (for example, in the eighties or nineties quick sort

for linked lists was used often) in cases, when the average and worst

cases are acceptable. Quick sort on lists is usually used in real

applications sets. Since the input is assumed to come random, it

works best for large data performance is paramount, or stability are

needed alternative algorithms such as merge sort is more suitable. In

applications where constant to linked lists. In brief, quick sort is a

highly powerful algorithm and can be efficiently applied average time

complexity of O(n log n) makes it more efficient than naive quadratic

algorithms for large data sets.

132
MATS Centre for Distance and Online Education, MATS University

Notes Unit 11: Searching Algorithm

4.4 Searching Techniques: Linear Search, Binary Search

Linear search is also called sequential search. It is the simplest search

algorithm, which can be implemented over a linked list, and this

method, we start from the head and go through the list node by node

until we find the element or reach the end of the list. In on a linked

list. In a linked list, where elements are not stored in contiguous

memory locations, this approach becomes quite intuitive, as linked

lists have to be traversed sequentially, making linear search a

primitive operation search on linked list is quite straightforward. The

implementation of linear value in each of the node with the target

value. Let us start from the head node and compare found, the search

exits successfully, and returns the node or its location. If a match is

list and there is no match, it terminates unsuccessfully; that is, the

target element is not found. If the search process goes through the

whole linked lists, meaning each call to get() has O(n) complexity.

As a result, it has a worst-case time complexity of O(n) due to the

sequential nature of that the target element is nonexistent or is the last

node in the linked list, it needs to traverse through the entire list. In

the case In the best case

MCQs:

1. Which of the following is a key advantage of a linked list over an

array?

a) Faster access time

b) Dynamic memory allocation

c) More memory efficient

d) Requires less programming effort

2. Which type of linked list allows traversal in both directions?

a) Single Linked List

b) Circular Linked List

c) Doubly Linked List

d) None of the above

3. Which operation is the most time-consuming in a singly linked

list?

a) Insertion at the head

b) Deletion at the head

133
MATS Centre for Distance and Online Education, MATS University

Notes c) Searching for an element

d) Insertion at the tail

4. How does a circular linked list differ from a singly linked list?

a) It has no nodes

b) The last node points back to the first node

c) It uses an array for storage

d) It does not allow insertion

5. Which sorting algorithm has the worst-case time complexity of

O(n²)?

a) Quick Sort

b) Merge Sort

c) Bubble Sort

d) Heap Sort

6. What is the time complexity of binary search in a sorted array?

a) (n)

b) O(log n)

c) O(n²)

d) O(1)

7. Which of the following is NOT a searching technique?

a) Binary Search

b) Linear Search

c) Bubble Sort

d) Hashing

8. What is the best case time complexity of Quick Sort?

a) (n)

b) O(n²)

c) O(n log n)

d) O(1)

9. Which data structure is best suited for implementing dynamic

memory allocation?

a) Array

b) Stack

c) Linked List

d) Queue

10. Which of the following sorting techniques works best with small

data sets?

a) Merge Sort

b) Quick Sort

134
MATS Centre for Distance and Online Education, MATS University

Notes c) Bubble Sort

d) Heap Sort

Short Questions:

1. What is a linked list, and how does it differ from an array?

2. Explain the difference between a singly linked list and a doubly

linked list.

3. What are the advantages of using a circular linked list?

4. Describe the steps to insert a node at the beginning of a linked list.

5. How do you delete a node from a linked list?

6. Compare Bubble Sort and Quick Sort in terms of time complexity.

7. What is the difference between Linear Search and Binary Search?

8. Write a simple C++ program to traverse a linked list.

9. How does the merge operation work in sorting algorithms?

10. What is the importance of sorting algorithms in data structures?

Long Questions:

1. Explain the different types of linked lists with examples.

2. Discuss the operations (insertion, deletion, traversal) on a singly

linked list with algorithms.

3. Write a C++ program to implement a doubly linked list with

insertion and deletion.

4. How does a circular linked list work, and where is it used?

5. Compare and contrast Bubble Sort, Selection Sort, and Quick Sort

with examples.

6. Explain Linear Search and Binary Search algorithms with step-by-

step examples.

7. Describe the advantages and disadvantages of linked lists compared

to arrays.

8. Write a C++ program to perform searching operations on an array.

9. Discuss the importance of sorting in real-world applications.

10. Explain how linked lists can be used to implement stacks and

queues.

135

MODULE 5

 TREE AND GRAPH

LEARNING OUTCOMES

• Understand the concept of trees and graphs in data structures.

• Learn about different types of binary trees and their properties.

• Explore graph representations and their real-world

applications.

• Understand graph traversal techniques such as Breadth-First

Search (BFS) and Depth-First Search (DFS).

136
MATS Centre for Distance and Online Education, MATS University

Notes

Unit 12: Introduction to Tree and Graph

5.1 Introduction to Tree and Graph

A huge range of algorithms and programs, from databases and file

systems to social networks and sites that make suggestions. They back

up It is very important to know how to use trees and graphs in

computer science to show how things are related to each other.

Manipulation of data faster enough to solve complex problems.

While graphs allow a wider representation of relationships& through

interconnected nodes and edges. This skills help storing, retrieval and

Trees allow to represent hierarchical arrangements since each of its

elements (also called nodes) has a defined parent-child relationship

among them, we look at how to implement, traverse, and optimize

these structures for different situations, giving you a solid foundation

for solving computational challenges. complete introduction, we will

be covering tree and graphs- the concepts, variations, applications and

algorithms. Join us as So, in this

Structure Trees a Hierarchical Data

Key properties, which all trees have, are: approach. Some can be

represented graphically. And, unlike linear data structures which

include arrays and linked lists, trees provide data in a hierarchical

Tree: tree is a collection of elements with parent-child relationship

that

Figure 21: A Tree
[Source: https://www.programiz.com/]

137
MATS Centre for Distance and Online Education, MATS University

Notes 1. In every tree, this is called root node. There is a specific node

present

2. Is the root node which does not have a parent node? only

exception

3. Child nodes are a very useful feature for each node. Having

zero or more

4. Following the edges. A tree has no cycles — which means

that you cannot close a loop by

5. There is only one connected component. We have all nodes

are connected through edges so that

Systems, org charts or family trees. obvious parent-child hierarchy.

Popular examples are file 1 tree have inherent hierarchical nature

which makes them suitable for modelling relationships where there is

Tree Terminology

The vocabulary: To better understand trees, it’s helpful to learn

• Node: A part of the tree that holds data and links to its child nodes.

• Root: The point at the very top of a tree that doesn't have a parent.

• Edge: The link between two nodes.

• A parent node has at least one kid node.

• Child: node that is directly linked to another node as you move

away from the root.

 There is only one leaf node, which means it doesn't have any

children. Peers are the nodes that have the same parent. Level tells

Figure 22: Tree Data Structure
[Source: https://akcoding.com/]

138
MATS Centre for Distance and Online Education, MATS University

Notes you how far away the root is (level 0 is the base). The biggest gap

between the ground and a leaf. Its depth is the distance along the line

from the root to a certain point. In a tree, a sub tree is made up of a

node and all the nodes that come after it. Not the Same In Between

Trees There is different kinds of trees, and each one is good for

different things: There can be only two children at a time in a binary

tree. These are called the left child and the right child. A lot of people

use binary trees because they are simple to understand and quick to

use. The most important thing is that a node can only have two

children at most. Kids are sometimes called "left" and "right." If you

want to build more complex tree types, the most nodes that can be at

level i is 2^i. Two times the height of the tree, plus one, is the most

nodes that can be in it. Two-level trees are what many other types of

trees are made of. They are used a lot in game trees, term processing,

and Binary Search Trees (BST). The root node will be worth more

than the child nodes on the left. On the other hand, every node in the

right subtree is worth more than the root node. Putting all of the nodes

in the right order turns a binary tree into a binary search tree (BST).

We can quickly find, add, and remove BSTs because they only take

O(log n) time on average. These are the important points: To look

through the data, use the binary search feature (left <parent < right).

• All set to go • Get output in order with Sorting the database indexing

and symbol tables in the computers so they work properly. Binary

Search Trees (BSTs) are useful when you need a quick and flexible set

of things that can be found, added to, or taken away. Trees That Are

Equal related to the logarithm of the number of parts, making sure that

the time it takes to do the steps is O(log n). To give some cases, Trees

with balance: For the same reason we talked about above, healthy

trees don't lose their height. The child trees of each node can be no

more than one height apart. In an AVL tree, the two kid trees are the

same height, so the tree can balance itself. Third, there are trees:

balancing itself As things are added and taken away, binary search

trees use colour information to keep the trees roughly balanced. black

and red These nodes are great for databases and file systems because

they can have more than just left and right. Binary trees can be helpful

sometimes. used to keep things on disks. B-tree Soon, B-Trees, which

are self-balancing search trees, will be able to get to the root faster.

Splay Trees can be found in many language packages, file systems,

139
MATS Centre for Distance and Online Education, MATS University

Notes and database management systems. They are binary search trees that

can change themselves and move parts that have been recently

accessed closer together to make things go faster. There should be an

even number of each tree type when you use full binary trees in data

structures and priority queues. Heap The whole tree of bits: The last

level of this full binary tree might be the only one that is empty. From

the left to 2^h - 1 nodes, which is the height of the tree, the last level

is full. Every node in a tree has two children, and all of the parent

nodes are on the same level. There are these trees. What Kinds of

Binary Trees There Are Binary Trees That Always Work: Every node

in a full binary tree has two children, except for the leaves. There

were several reasons why it was made, such as: Different types of

trees can be used to store info. 1. It works the other way around for

min heaps. is greater than or equal to C. One more thing about the pile

is that it. The number of a max heap node C's parent node P It is

basically a type of tree-based data format that gives you ability to

which makes it great for quick lookups of prefixes, auto complete

ideas, and spell checkers. of strings. Trie uses a tree to store strings.

Trie: trie data structure is like a tree and is used to store a changeable

set. It is also called a prefix tree.

Problems with geometry and range queries. These data structures are

widely used in computing and can be used to quickly query info about

intervals. Segment trees are: Data structures are ways to store data.

Systems. Eight or children, per These are useful for geographic

knowledge, computer graphics, and image processing. Quad There are

many kinds of trees, including these, that can be used to divide up

space. The nodes inside the trees have four sides. That offer fast

methods for computing and manipulating prefix sums in a table of

values. Binary Indexed Trees, or Fenwick Trees, are type of data

structure. Crossings of trees common ways to move through a tree:

link in a certain order. One thing is certain: there are a number of To

explore a tree is to go through all of its nodes. In depth-first traversals,

we go as far down one branch as we can before going back up: During

First go to the left sub tree, then root, and finally the right sub tree

(Left-Root-Right).

It gives you a list of nodes in increasing order for a BST.

Applications: Getting info from a BST that has been sorted. To pre-

order traversal, go to the root, then the left sub tree, and finally the

140
MATS Centre for Distance and Online Education, MATS University

Notes right sub tree (Root-Left-Right). Examples: making a copy of the

tree, evaluating a prefix expression. Third, go to the left sub tree, then

the right sub tree, and finally the root (Left-Right-Root). For

example, you can delete a tree or check a postfix statement.

Traversal by Breadth First Follow the level order and go from left to

right to visit each spot. A queue data structure is used in this method

to keep track of the next nodes to visit.

Usages: Processing levels one by one and finding the shortest way.

How Trees Are Used There are many uses for trees in computer

science and other fields as well:

1. File Systems: Files and directories are set up like branches in a tree,

with files as leaves and folders as the stems.

2. Expression Evaluation: Expression trees show mathematical

formulas, which makes it easy to evaluate and change them.

3. Decision trees: These are used for classification and regression jobs

in machine learning.

4. Syntax Trees: Abstract syntax trees are used by compilers to read

and understand computer languages.

5. Game trees show all the possible game states and moves. They are

used in game theory and AI. Spanning trees are used to keep network

traffic from getting stuck in loops.

7. Hierarchical Clustering: Trees can show how data points that are

grouped together are related in a hierarchical way.

8. Database Indexing: B-trees and other versions of them are used to

make database indexes that work well.

9. DOM for XML and HTML: Document object models show text

documents as tree structures.

10. Compression Algorithms: Huffman coding compresses data well

by using trees.

Setting up trees: There are several ways to set up trees:

Implementation Based on Arrays

For some types of trees, like groups or full binary trees, arrays are a

good way to show them:

• For a node at index i, the left child is at index 2i + 1, right child is at

index 2i + 2, and parent is at index (i-1)/2. This is because integer

division isn't very good for changing things. It works well with caches

141
MATS Centre for Distance and Online Education, MATS University

Notes and lets you quickly get to nodes at random, but

Based on nodes A more general way to implement it is with a node

object that has pointers: More memory is needed for a class TreeNode

that stores links (T data; children; // }). This makes processes more

flexible, but it hurts relationships. Networks and graphs

5.2 Graph Introduction and Graph Traversal (Breadth-First

Search, Depth-First Search)

System that is based on levels and can include cycles. Graphs use

edges to show how two things are related to each other. Graphs don't

have a root like trees do. A graph is a non-linear data structure made

up of points (called "vertices") that are linked together.

Edges (connections) are important features.

• Nodes (points) and can be directed or not;

• Not trees;

• Can have cycles;

It can be wired or digital, weighted, unweighted, or a mix of the two.

Objects are connected to each other. What good do huge, complicated

graphs ever do? These are what real-world networks (like computer,

transportation, social, and other networks) are built on.

Graph Terminology

concepts: You need to be familiar with the following terminologies to

understand graph

building block of a graph, denoting an entity.

 • Vertex (Node): basic(relationship)

Figure 23:Graph Data Structure
[Source: https://blogger.googleusercontent.com/]

142
MATS Centre for Distance and Online Education, MATS University

Notes • Edge: connection between two vertices vertices that share an edge.

 • Neighboring Vertices: Two vertices and edges.

 • Degree: The count of edges attached to a vertex.

 • Path: A sequence of connected point.

 • Cycle: A path where the destination is the same as the starting

 Between every couple of vertices.

 • Connected graph has a path that goes from any two points in the

graph to another point in the graph.

 • Connected Component: A part of the graph where there are no

loops. Tree: A connected group of trees (also called a disconnected set

of trees).

 • Forest: Something else. Complete Graph: A complete graph has all

of its vertices connected to all of its nodes. It can be split into two

different sets, with each edge connecting only those two sets. The

other type of graph is called bipartite graph. Figure out how to draw a

graph in a plane so that no two edges cross each other.

 Graph Types:

 There are different types of graphs with different use cases and traits.

Types so then knowledge Begin to learn from here: The relationships

are symmetric if you have Programming. Graphs without a path: The

edges don't go in any particular way, so when vertex A is connected to

vertex B, vertex B is also connected to vertex A.

 • Relationships and social networks are two examples. Graphs with

Direction (Digraphs): Asymmetric does not mean that an edge goes

from B to A; edges have a direction.

• A line going from A to B Web links, one-way streets, dependencies.

Figure 24:Type of Graph
[Source: https://studyglance.in/]

143
MATS Centre for Distance and Online Education, MATS University

Notes • Examples: Weighted Graphs: Edges have different weights, or costs,

associated edge has a value (weight) indicating a cost, distance,

capacity, etc. Weighted Graphs: Each

• Examples: Road networks (where weights might be distances or

travel times), network flow problems.

Special Graph Types

1. Cyclic vs. Acyclic Graphs:

o Cyclic graphs contain at least one cycle.

o Acyclic graphs have no cycles.

o Directed Acyclic Graphs (DAGs) are particularly

important for representing dependencies and

scheduling.

2. Dense vs. Sparse Graphs:

o Dense graphs have many edges (close to the maximum

possible).

o Sparse graphs have relatively few edges.

o The choice between dense and sparse affects

representation and algorithm selection.

3. Bipartite Graphs: These are graphs whose vertices can be split into

two separate sets, & each edge links two vertices from a different set.

Matching problems, assignment problems, and job schedule are all

examples of uses.

4. Planar Graphs: These are graphs that can be made on a flat surface

without any edges crossing. It's important for circuit design and

drawing maps.

5. Complete Graphs: These are graphs where each vertex is linked to

every other vertex. There are n(n-1)/2 edges in full graph with n

nodes. Representations of Graphs There are a few different ways to

write graphs in code, and each has pros and cons: Matrix of

Adjacency In a 2D collection called an adjacency matrix, each

matrix[i][j] is an edge from vertex i to vertex j:

• For unweighted graphs: 1 indicates an edge exists, 0 indicates

no edge.

• For weighted graphs: The weight value indicates an edge

exists, a special value (often infinity or 0) indicates no edge.

Advantages:

• O(1) time to check if there is an edge between two vertices

• Simple to implement and use

144
MATS Centre for Distance and Online Education, MATS University

Notes • Efficient for dense graphs

Disadvantages:

• O(V²) space complexity, inefficient for sparse graphs

• O(V²) time to initialize or traverse all edges

Adjacency List

An adjacency list uses an array or list of linked lists, where each array

entry represents a vertex and contains a list of adjacent vertices:

0 -> [1, 2] // Vertex 0 has edges to vertices 1 and 2

1 -> [0, 3] // Vertex 1 has edges to vertices 0 and 3

2 -> [0, 3] // Vertex 2 has edges to vertices 0 and 3

3 -> [1, 2] // Vertex 3 has edges to vertices 1 and 2

Advantages:

• Space-efficient for sparse graphs: O(V + E)

• Faster to traverse all edges: O(V + E)

• More efficient for most graph algorithms

Disadvantages:

• Checking if there is an edge between two specific vertices

takes O(degree) time

• Slightly more complex to implement

Edge List

The graph, usually expressed as pairs (or triples for weighted graphs):

An edge list is just a list of all the edges in

Unweighted [(0, 1), (0, 2), (1, 3), (2, 3)] #

(0, 2, 3), (1, 3, 1), (2, 3, 8)] // Weighted (s, d, w) [(0, 1, 5),

Advantages:

• Simple to represent be natural for edge-processing algorithms (e.g.

Kruskal) • What would

• Space-efficient: O(E)

Disadvantages:

for most traversal algorithms • Not a good fit

Graph Traversals

Meaning we must mark vertices as we traverse to avoid getting in an

infinite loop. Systematic visiting of all vertices. Graphs can have

cycles as opposed to trees, Traversal of a graph is Breadth-First

Search (BFS) as follows: vertices at the current depth prior to moving

on to the nodes at & next depth level. The implementation of our

queue-based solution is BFS visits all the source vertex and visit it.

Begin from a Enqueue the source vertex. the adjacent vertices which

145
MATS Centre for Distance and Online Education, MATS University

Notes are not already visited into the queue and mark them as visited.

vertex. b. Process the vertex. c. Add all While the queue is not empty:

1. Dequeue a

Applications:

• Shortest path in an unweighted graph

• Detecting bipartitions

• Searching for connected components• Web crawling

• Network broadcasting

E is the number of edges. Time Complexity: O(V + E), where V is

the number of vertices and Depth-First Search (DFS) or a stack:

possible along a branch and backtrack. It can be performed with a

recursion Depth First Search: It explores as far as it as visited.

Choose a source vertex, mark Process the current vertex. Adjacent

vertex. Recursively see DFS for every not visited

Applications:

• Detecting cycles

• Path finding

• Topological sorting

 • Connected components of directed graphs

• Solving puzzles like mazes

• Generating spanning trees

E) This algorithm has time complexity based on the number of

vertices and edges: O(V + Graph Algorithms problems using

dedicated algorithms:

Shortest Path Algorithms

1. shortest path Dijkstra’s Algorithm: Find the

2. Extended Binary Tree Complete Binary Tree and

3. Introduction to Binary Trees

Algorithms and systems. two children, usually called the left child &

the right child. With this simple constraint you create a powerful

structure that has been applied to innumerable computer science.

They are made up of nodes, each with at most Binary trees are among

the most traditional hierarchical data structures known to Bring a

middle ground between the relatively simplistic linear data structures

(such as arrays & linked lists) and the more complex general graphs.

world which makes it an important data structure in a programmer’s

toolkit. Binary trees binary tree is an elegant data structure that

enables performing efficient searching, sorting, and organizing of

146
MATS Centre for Distance and Online Education, MATS University

Notes data. This hierarchical aspect resembles many relationships/problems

in the real The Allow for certain algorithmic benefits. standard

binary tree. These are specialized adaptations of the basic binary tree

framework, but with specific constraints that Before diving into

specific types of binary trees, let us take a moment to overview some

specialized types of binary trees such as complete binary trees,

extended binary trees that are quite different from the

147
MATS Centre for Distance and Online Education, MATS University

Notes Unit 13: Types of Binary Tree

5.3 Types of Binary Trees: Complete Binary Tree and Extended

Binary Tree

In a very specific structure with important characteristics. The nodes

are as far to the left as they can go. This kind of description follows If

every level of a binary tree is full except the last one, and all of the

nodes are in that level, from top to bottom and left to right, there will

be a connection between each node and its parent and child nodes.

This is called a "Complete Binary Tree." For node i in the list: In a

Complete Binary Tree, nodes are numbered from 1 to n, with n being

at position 2i. The left child (if there is one) is at position 2i+1, and

the right child (if there is one) is at position 2i. Its parent is at place

i/2, but not the root.

Complete Binary Trees are great for array-based solutions because

they have a regular structure. In these cases, the tree structure is

hidden in the array indices instead of being shown directly with

pointer-based nodes.

 What Complete Binary Trees Can Do

Complete Binary Trees have a few important features that make them

useful in many situations:

Weight: A Full Binary Tree with n nodes is ⌊log₂(n) tall. which is the

smallest height that a binary tree with n nodes can have. This property

makes sure that processes that depend on the height of the tree work

as efficiently as possible. Compact Representation: The regular

structure lets you use an array-based implementation that takes up

little room because it doesn't need explicit pointers. This saves

memory. Predictable Structure: The positions of parents and children

Figure 25: Complete Binary Tree
[Source: https://www.programiz.com/]

148
MATS Centre for Distance and Online Education, MATS University

Notes follow a mathematical pattern, which means that easy math can be

used instead of pointer traversals. Balance Guarantee: Complete

Binary Trees aren't always exactly balanced, but they're usually pretty

close. This keeps them from becoming highly skewed, which is the

worst thing that could happen. It's easy to add new nodes; at the

lowest level, they are always added from left to right, which makes

adding nodes easy.

How to Show Complete Binary Trees in an Array One of the best

things about Complete Binary Trees is that they can be represented

efficiently using groups. It shows that:

 • The root node is kept at index 1 (or sometimes 0 based on the

implementation);

• A node at index i has a left child at index 2i (or 2i+1 if you start at

0).

• The right child of a node at index i is at index 2i+1 (or 2i+2 if you

start at 0).

• The parent of a node at index i is at index ⌊i/2⌋ (or ⌊(i-1)/2⌋ if you

start at 0). This approach based on arrays has several advantages:

• Less memory is used because there is no need for explicit pointer

storage; • Better cache locality because memory is allocated all at

once;

• Access to any node at any time based on its number

This representation, on the other hand, only saves room for Complete

Binary Trees. For sparse trees, a lot of array places would be empty,

which would waste memory.

Complete binary trees are used for many things.

A lot of important data structures and methods are built on top of

complete binary trees.

1. Binary Heaps: Both min-heaps and max-heaps are implemented as

Complete Binary Trees. They are the building blocks for efficient

priority queues and the heap sort method.

2. More complex tree structures: A lot of self-balancing tree

structures, like AVL trees and Red-Black trees, try to stay full or

almost complete to make sure they work well.

3. Tournament Trees: These trees group elements in a tournament-

like way so that they can be found quickly in selection algorithms and

external sorting.

149
MATS Centre for Distance and Online Education, MATS University

Notes 4. Huffman Coding Trees: These trees aren't always complete, but

they are built and traversed in a way that takes advantage of

completeness qualities.

5. Database Indexing: Complete Binary Trees are good indexing

designs for database management systems that give you predictable

performance.

Thoughts on Implementation

When making a Complete Binary Tree, there are a few design choices

that affect how well it works:

Array vs. Node-Based: Arrays work well in most situations, but node-

based implementations with explicit pointers may be better in settings

that change often or where the tree size is hard to predict. Two types

of indexing: zero-based indexing (root at index 0) works better with

standard computer languages, while one-based indexing (root at index

1) makes it easier to figure out the parent-child index. Dynamic

Resizing: When the tree size grows bigger than the original allocation,

it's important to have plans for how to grow the array. Level

Tracking: Some actions, like adding and removing records, can be

made faster by keeping track of the current bottom level. Algorithms

for crossing borders: For Complete Binary Trees, level-order

navigation works naturally. Other traversal methods, like in-order,

pre-order, and post-order, may need different approaches compared to

general binary trees.

Making Sure It's Complete It takes careful attention to keep the

completeness feature during additions and deletions: When adding

nodes, they must always go to the farthest left empty spot in the

lowest level. If that spot is taken, a new level is created from the

farthest left place.

When a node is removed, the rightmost node in the lowest level is

usually used to replace it. Once the node has been replaced, the tree

may need to be restructured to keep some properties, like the heap

property in a binary heap. Analysis of Efficiency

The fact that simple operations on Complete Binary Trees take a long

time shows how efficiently they are built: Access takes O(1) time

with an array implementation and O(log n) time with pointer-based

traversal. Search takes O(log n) time in most cases and O(n) time in

the worst cases for data that is not in the right order. Insertion takes

150
MATS Centre for Distance and Online Education, MATS University

Notes O(log n) time when only completeness is maintained and O(1) time

when adding to the end.

• Deletion takes O(log n) time when only completion is kept.

• Both array and pointer versions take up O(n) space.

Because they are efficient in these ways, Complete Binary Trees can

be used in situations where speed needs to be guaranteed.

What are extended binary trees? What do they mean?

This type of tree has either 0 or 2 children for each node. It is also

called a 2-tree or a correct binary tree. In other words, in an Extended

Binary Tree, each internal node must have both a left and a right

child. Node 0 has only one child. This condition makes a structure

where the internal nodes (nodes with children) and external nodes

(leaf nodes without children) are connected in a certain way. To show

extended binary trees, "external nodes" or "null nodes" are sometimes

added to show the children of leaf nodes that are not present in a

normal

151
MATS Centre for Distance and Online Education, MATS University

Notes Unit 14: Binary Tree Properties

Binary tree- Properties of Structure

There are a few interesting things about the structure of extended

binary trees:

To find the number of foreign nodes in an Extended Binary Tree, take

n and add one to it. This is called the node relationship. When you

add up the lengths of all the paths that go outside and inside a node,

and then subtract the lengths of all the paths that go inside and outside

that node, you get the number 2n.

1. Height Bounds: For an Extended Binary Tree with n internal

nodes, the minimum height is ⌊log₂(n)⌋, achieved when the tree

is complete, and the maximum height is n, occurring in a

linear arrangement.

2. Perfect Subtrees: Every subtree of an Extended Binary Tree

is also an Extended Binary Tree, preserving the 0-or-2 children

property recursively.

3. Isomorphism: Extended Binary Trees have direct

isomorphisms with full binary trees, making conversions

between the two straightforward.

Mathematical Foundation

The mathematical elegance of Extended Binary Trees appears in

several contexts:

• Catalan Numbers: The number of distinct Extended Binary

Trees with n internal nodes is given by the nth Catalan

number, Cn = (1/(n+1))(2n choose n).

• Binary Tree Enumeration: Extended Binary Trees provide a

canonical form for enumerating and counting binary tree

structures with specific properties.

• Graph Theory Connections: Extended Binary Trees

represent a specific class of planar graphs with applications in

computational geometry and network design.

• Combinatorial Interpretations: The structure of Extended

Binary

• Trees see integer sequences like the Catalan numbers, where

correspondences with other combinatorial objects exist, such

as balanced parentheses expressions or lattice paths.

152
MATS Centre for Distance and Online Education, MATS University

Notes Representation Methods

Here are multiple ways to represent Extended Binary Trees:

• Explicit Null Representation: All potential positions for

child nodes are filled; an actual node or an explicit null node is

used, resulting in a uniform structure.

• Bit-String Encoding The structure of this tree can be encoded

as a bit string by a preorder traversal, with internal nodes

marked as 1 and external nodes as 0.

• Parenthesis Notation: The structure of non-empty Extended

Binary Tree can be represented in the form of a balanced

parenthesis expression, where matching pairs of parentheses

represent the internal nodes.

• Rray-Based Representation: Similar to complete binary

trees but with explicit markers for missing nodes to provide

structural properties.

• Pointer-Style Implementation: Classic node structures, with

left and right both as pointers, but with the constraint that (1)

both are either null or (2) both point to another node.

Extended Binary Trees Application - Extended Binary Trees are

used in different fields:

• Expression Trees: Extended Binary Trees represent operations

(internal nodes) and operands (external nodes) naturally in the

context of compiler design and evaluating mathematical

expressions.

• Huffman Compression: The trees used in Huffman

compression are extended binary trees in which the external

nodes represent different characters and their frequencies.

• Extended Binary Trees: A specialized form of binary tree is

the decision tree — in machine learning and decision analysis

context.

• Extended Binary Trees for Game Trees: For games with a

binary choice, Extended Binary Trees model the possible

states of the game and their transitions, being of particular

importance in the implementation of the minimax algorithm.

• Parse trees: Some parsing algorithms used in formal language

theory and compiler construction will generate an Extended

Binary Tree representation of the syntactic structure of some

expressions.

153
MATS Centre for Distance and Online Education, MATS University

Notes Several algorithmic techniques are based on extended binary

trees:

• From tree traversal algorithms: The uniform structure

allows for simple tree traversal algorithms, particularly

those that need to make explicit reference to external

nodes.

• Tree Transformation: Algorithms for translating between

various representations of trees frequently employ

Extended Binary Trees as a working format behind the

scenes, thanks to their regular shape.

• Another class of algorithms works with the nature of

Extended Binary Trees, preserving height or path lengths.

• Regular Trees : Regular structure allows for pattern

matching in hierarchical data stored as trees.

• Dynamic Programming on Trees Binary Trees can

consider several structural properties that can be applied to

the tree, such as maximum path length, optimal subtree

selection, etc.

Construction and Maintenance

• When constructing and maintaining Extended Binary

Trees, the following considerations should be taken into

account:

• Top-Down Construction: Beginning with a root,

progressively builds subtrees while preserving the 0-or-2

children property at every stage.

• Heuristic Search: Use of a branch and bound technique to

reduce complexity when searching an extended binary

tree.

• Conversion from General Binary Trees: By inserting

external nodes in accordance with the missing children,

any binary tree can be converted into an Extended Binary

Tree.

Operation Adjustment: Rotation, specialized for balancing trees,

changes the properties of the tree preserving the Binary Tree while

trying to balance the path length or height of the tree. Incremental

Updates: It may take more complex actions to ensure that insertions

and deletions preserve the Extended Binary Tree property, as

compared to general binary trees.

154
MATS Centre for Distance and Online Education, MATS University

Notes Comparison and Relationships

Complete vs. Extended Binary Trees: Complete Binary Trees and

Extended Binary Trees are both special types of binary trees, but they

are different in several key aspects:

1 Structural Focus:

o Complete Binary Trees focus on the arrangement of

nodes across levels, ensuring fullness from left to right.

o Extended Binary Trees focus on the branching pattern,

requiring each node to have either 0 or 2 children.

2. Node Distribution:

o Complete Binary Trees have a predictable distribution

of nodes across levels, with possibly only the last level

being partially filled.

o Extended Binary Trees can have more variable level

populations, as long as the 0-or-2 children constraint is

maintained.

3. Mathematical Properties:

o Complete Binary Trees are characterized by minimal

height and level-order fullness.

o Extended Binary Trees are characterized by internal-

external node count relationships and Catalan number

enumeration.

4. Implementation Efficiency:

o Complete Binary Trees excel in array-based

implementations due to their regular level structure.

o Extended Binary Trees may favor node-based

implementations that explicitly enforce the branching

constraint.

5. Application Domains:

o Complete Binary Trees are often used in applications

requiring efficient searching and sorting.

o Extended Binary Trees are frequently used in

expression evaluation and decision modeling.

Hybridization and Specialized Forms

Combinations of Complete and Extended Binary Tree properties

create specialized structures:

155
MATS Centre for Distance and Online Education, MATS University

Notes • Perfect Binary Trees: Trees that are both complete and

extended, where all internal nodes have exactly two

children and all leaf nodes are at the same level.

• Heap-Ordered Extended Trees: Extended Binary Trees

with heap-ordering properties, used in specialized priority

queue implementations.

• Almost Complete Extended Trees: Extended Binary Trees

that minimize height variance, combining completeness

goals with branching constraints.

• Balanced Extended Trees: Extended Binary Trees with

additional balance constraints, ensuring logarithmic height

while maintaining the 0-or-2 children property.

• Threaded Extended Trees: Extended Binary Trees with

threading to facilitate traversal, combining the structural

properties with traversal optimization.

Transformation Algorithms

Converting between different tree types involves specific algorithms:

• Complete to Extended Transformation: Involves adding

explicit external nodes to a Complete Binary Tree at

appropriate positions to satisfy the 0-or-2 children

constraint.

• Extended to Complete Transformation: Typically requires

restructuring and potentially adding or removing nodes to

ensure the level-order fullness property.

• General Binary Tree to Complete/Extended:

Transformation algorithms that convert arbitrary binary

trees to either specialized form, often used in

preprocessing for specific algorithms.

• Minimal Transformation Approaches: Algorithms that find

the minimal number of operations to convert between tree

types, useful in tree edit distance problems.

• Incremental Transformation: Methods that maintain both

properties simultaneously during incremental construction,

avoiding costly whole-tree transformations.

Here’s a properly formatted and structured version of your

explanation along with Python code samples for implementing a

Complete Binary Tree using an array-based approach and an

Extended Binary Tree using a node-based approach.

156
MATS Centre for Distance and Online Education, MATS University

Notes Implementing a Complete Binary Tree (Array-Based Approach)

A Complete Binary Tree (CBT) is a type of binary tree where all

levels are completely filled except possibly the last, which is filled

from left to right. The array-based implementation simplifies parent-

child relationships using index calculations.

Python Implementation

class CompleteBinaryTree:

 def __init__(self):

self.array = [None] # Index 0 is unused for easier arithmetic

self.size = 0

 def insert(self, value):

 """Inserts a new value into the complete binary tree."""

self.size += 1

self.array.append(value)

 def left_child_index(self, parent_index):

 """Returns the index of the left child."""

 return 2 * parent_index

 def right_child_index(self, parent_index):

 """Returns the index of the right child."""

 return 2 * parent_index + 1

 def get_parent_index(self, child_index):

 """Returns the index of the parent node."""

 return child_index // 2

 def has_left_child(self, index):

 """Checks if the node at the given index has a left child."""

 return self.left_child_index(index) <= self.size

 def has_right_child(self, index):

 """Checks if the node at the given index has a right child."""

 return self.right_child_index(index) <= self.size

 def left_child(self, index):

 """Returns the left child value."""

157
MATS Centre for Distance and Online Education, MATS University

Notes return self.array[self.left_child_index(index)] if

self.has_left_child(index) else None

 def right_child(self, index):

 """Returns the right child value."""

 return self.array[self.right_child_index(index)] if

self.has_right_child(index) else None

 def parent(self, index):

 """Returns the parent node value."""

 return self.array[self.get_parent_index(index)] if index > 1 else

None

Example Usage

tree = CompleteBinaryTree()

tree.insert(10)

tree.insert(20)

tree.insert(30)

tree.insert(40)

tree.insert(50)

print("Parent of node at index 3:", tree.parent(3)) # Output: 10

print("Left child of node at index 1:", tree.left_child(1)) # Output: 20

print("Right child of node at index 1:", tree.right_child(1)) # Output:

30

Implementing an Extended Binary Tree (Node-Based Approach)

An Extended Binary Tree is a variation where external nodes (leaf

placeholders) are explicitly represented. This allows for easier

manipulation of tree structure, commonly used in expression trees,

Huffman coding trees, and decision trees.

Python Implementation

from typing import Optional

class Node:

 def __init__(self, value: Optional[int] = None):

 """Creates a node with optional value. If value is None, it is

considered an external node."""

self.value = value

158
MATS Centre for Distance and Online Education, MATS University

Notes self.left = None

self.right = None

self.is_external = (value is None)

class ExtendedBinaryTree:

 def __init__(self):

 """Initializes an empty tree with no root."""

self.root = None

 def create_internal_node(self, value):

 """Creates an internal node with the given value and two external

children."""

 node = Node(value)

node.left = Node() # External node (Leaf placeholder)

node.right = Node() # External node (Leaf placeholder)

 return node

 def replace_external_with_internal(self, parent, is_left, value):

 """Replaces an external node with an internal node and returns

the new node."""

new_internal = self.create_internal_node(value)

 if is_left:

parent.left = new_internal

 else:

parent.right = new_internal

 return new_internal

 def insert(self, value, start_index=0):

 """Inserts a value into the binary tree, replacing external nodes

when needed."""

 if self.root is None:

self.root = self.create_internal_node(value)

 return self.root

 current = self.root

 while True:

 if current.left.is_external:

159
MATS Centre for Distance and Online Education, MATS University

Notes return self.replace_external_with_internal(current, True,

value)

elifcurrent.right.is_external:

 return self.replace_external_with_internal(current, False,

value)

 else:

 # Traverse to the left or right child for further insertion

 current = current.left if start_index % 2 == 0 else

current.right

Example Usage

ebt = ExtendedBinaryTree()

ebt.insert(10)

ebt.insert(20)

ebt.insert(30)

print("Root Node:", ebt.root.value) # Output: 10

print("Left Child of Root:", ebt.root.left.value) # Output: 20

print("Right Child of Root:", ebt.root.right.value) # Output: 30

Crossing (DFS, BFS) In this lesson, you will learn about graphs,

operations research, and graphs. that they go both ways between two

points. Graphs are used in many places, such as computer networks,

social networks, and to map out places. A lot of algorithm problems in

AI are solved by going from one point to the next. Graphs without

edges, on the other hand, don't have lines that go in any one direction.

In other words, a graph can be either directed or not directed. In a

directed graph, the points (vertices) are linked by lines. In computer

science, edges are types of data structures that show how things are

linked to each other. A graph is made up of nodes (also called edges)

and points (also known as edges). An important part of a graph is the

point. Trees and other types of acyclic graphs don't have rings. Every

line in an unweighted graph looks the same. Graphs can also be either

acyclic or cyclic. There must be at least one cycle in a cyclic graph. A

cycle is a line that starts and ends at the same weighted or unweighted

graph. Graphs with Weights: In a weighted graph, each edge has a

number value that goes with it. This value is generally a cost,

distance, or capacity. You can only have one edge between each pair

of points; there can't be any loops. The graph can also be a

160
MATS Centre for Distance and Online Education, MATS University

Notes multigraph, which means that two vertices can be linked by more than

one line. Another group is made based on weights that are determined

by how they are built and what features they have. To put it another

way, they can be easy graphs. You can group graphs into ones that are

thick but take up more space. pair of points or not. This way of

showing things works well for plots with points. Another name for an

adjacency matrix is a 2D array. The lengths of the array are the

vertices, and the number of each cell tells you if that cell has an edge.

This turns a graph into a list. It takes up less memory to show sparse

graphs this way, where the number of lines is less than the square of

the number of nodes. There are two main ways to show a graph in

memory: adjacency matrices and adjacency lists. To make graph

methods work well, you need an adjacency list for Represent graph.

There are two. To search, find paths, and do general graph network

analysis, as well as other hard computer jobs, it's easier when the data

is in the right format. Our most basic graph traversal methods are

Breadth-First Search (BFS) and Depth-First Search (DFS). If you

want to graph in an organized way, most people use lambda. We can

at least break This is the most basic steps in the study of graphs. We

check out each vertex of a source vertex and mark them using a

queue. This way, the vertices of tiles are checked out in the order that

they were found. Beginning with a before the next group of points.

These things are done in real life. Breadth-First Search (BFS) finds its

way through a maze. goes to all of a vertex's neighbors. It is a type of

level-order navigation. E = edges A lot of the time, BFS is used in

network transmission, shortest path algorithms, and puzzles like "find

the shortest path." BFS will take O(V + E) time, where V is the

number of vertices and E is the number of edges. It will process each

vertex and put all the nodes next to it that haven't been visited into a

queue. This keeps happening until all reachable vertices have been

visited and put in the queue. Then, while something is still in the

queue, it removes it and checks to see if it's connected. O(V + E) DFS

is used to sort graphs by their topology, find cycles, and figure out

how to get out of mazes. We haven't looked into DFS Time

Complexity yet. At the same time, if all the vertices next to it are

visited, it goes back to the last one it visited and keeps going using

stack (it can be explicit stack using stack data structure or implicit

stack using recursion). This algorithm begins at a source vertex,

161
MATS Centre for Distance and Online Education, MATS University

Notes marks it as visited, and then visits all nearby vertices in a loop before

going backwards. DFS with stack | It's Depth-First Search (DFS) is

another important graph traversal method that uses graph theory to

solve a wide range of real-world problems by going as far down a

branch as possible. and growing over and over DFS are made to be

used in certain situations. When looking at a path in an unweighted

graph, traversals play a big role. On the other hand, DFS works better

for searching deeper in the search space. These algorithms come in

different versions that are better, such as bidirectional BFS. DFS each

have their own strengths that depend on the issue. When looking for

the shortest path in a graph, BFS is often thought to be the best

method because it gets the shortest path.

MCQs:

1. Which of the following is NOT a property of a tree?

a) Acyclic structure

b) One root node

c) Multiple parent nodes per child

d) Connected nodes

2. What is the maximum number of children a node can have in

a binary tree?

a) 1

b) 2

c) 3

d) Unlimited

3. Which data structure is used to implement Breadth-First

Search (BFS)?

a) Stack

b) Queue

c) Linked List

d) Heap

4. What is the difference between a tree and a graph?

a) A tree has cycles, while a graph does not

b) A graph allows multiple connections, while a tree follows a

hierarchy

c) A graph has only one root node

d) Trees do not store data, but graphs do

5. Which of the following is a type of binary tree?

a) Complete Binary Tree

162
MATS Centre for Distance and Online Education, MATS University

Notes b) Linked List

c) Queue Tree

d) Graph Tree

6. What is the time complexity of Depth-First Search (DFS) in an

adjacency list?

a) O(n)

b) O(log n)

c) O(V + E)

d) O(V * E)

7. In a full binary tree, every node has either:

a) 1 child or 2 children

b) 0 or 2 children

c) 3 children

d) Unlimited children

8. Which of the following data structures is used to implement

DFS?

a) Queue

b) Stack

c) Priority Queue

d) Hash Table

9. Which traversal method visits all children of a node before

moving deeper?

a) DFS

b) BFS

c) Inorder

d) Postorder

10. What is the minimum number of edges required to form a

connected graph with N nodes?

a) N-1

b) N+1

c) 2N

d) N^2

A Few Questions:

 1. What does the word "tree" mean in mathematics?

 2. Describe what binary trees are and how they work.

 What is the difference between a full binary tree and a binary tree

that has been extended?

 4. Explain what a graph is and the different kinds of them.

163
MATS Centre for Distance and Online Education, MATS University

Notes 5. What are some good things about using graphs in data structures?

 6. How does Breadth-First Search (BFS) work?

 7. Talk about the Depth-First Search (DFS) method.

 8. How are BFS and DFS different from each other?

 9. How long does it take to solve DFS and BFS?

 10. How is an adjacency list used to show a graph?

Long Questions:

1. Give some examples to show how trees and graphs work.

 2. Draw and explain the different kinds of binary trees.

 3. Write a C++ program that adds items to a binary tree and moves

through it.

 4. List the ways that trees and graphs are similar and different in

terms of form and use.

 5. Talk about the pros and cons of the different ways to traverse a

tree.

 6. Come up with a way to do Breadth-First Search (BFS) and Depth-

First Search (DFS).

 7. Talk about how the Adjacency Matrix and Adjacency List that

show graphs work.

 8. Make a program in C++ that shows DFS on a graph.

 9. Talk about how graphs are used in networking and AI in the real

world.

 10. Compare BFS and DFS in terms of how long they take and how

they are used.

164
MATS Centre for Distance and Online Education, MATS University

Notes References

Chapter 1: Introduction to Data Structure

1. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C.

(2022). Introduction to Algorithms (4th ed.). MIT Press.

2. Sedgewick, R., & Wayne, K. (2023). Algorithms (4th ed.).

Addison-Wesley Professional.

3. Drozdek, A. (2022). Data Structures and Algorithms in C++

(5th ed.). Cengage Learning.

4. McDowell, G. L. (2021). Cracking the Coding Interview: 189

Programming Questions and Solutions (6th ed.). CareerCup.

5. Malik, D. S. (2022). C++ Programming: From Problem

Analysis to Program Design (8th ed.). Cengage Learning.

Chapter 2: Array

1. Knuth, D. E. (2020). The Art of Computer Programming,

Volume 1: Fundamental Algorithms (3rd ed.). Addison-Wesley

Professional.

2. Lafore, R. (2021). Data Structures and Algorithms in Java (3rd

ed.). Sams Publishing.

3. Karumanchi, N. (2022). Data Structures and Algorithms Made

Easy: Data Structures and Algorithmic Puzzles (6th ed.).

CareerMonk Publications.

4. Weiss, M. A. (2023). Data Structures and Algorithm Analysis

in C++ (5th ed.). Pearson.

5. Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2022).

Data Structures and Algorithms in Java (7th ed.). Wiley.

Chapter 3: Stack

1. Horowitz, E., & Sahni, S. (2022). Fundamentals of Data

Structures in C++ (3rd ed.). W. H. Freeman.

2. Levitin, A. (2021). Introduction to the Design and Analysis of

Algorithms (4th ed.). Pearson.

3. Morin, P. (2023). Open Data Structures: An Introduction. AU

Press.

4. Preiss, B. R. (2022). Data Structures and Algorithms with

Object-Oriented Design Patterns in C++ (2nd ed.). Wiley.

5. Shaffer, C. A. (2023). Data Structures and Algorithm Analysis

(4th ed.). Dover Publications.

165
MATS Centre for Distance and Online Education, MATS University

Notes Chapter 4: Linked List

1. Stroustrup, B. (2022). The C++ Programming Language (5th

ed.). Addison-Wesley Professional.

2. Skiena, S. S. (2020). The Algorithm Design Manual (3rd ed.).

Springer.

3. Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. (2021).

Algorithms (2nd ed.). McGraw-Hill Education.

4. Stephens, R. (2023). Essential Algorithms: A Practical

Approach to Computer Algorithms Using Python and C++

(2nd ed.). Wiley.

5. Kleinberg, J., & Tardos, É. (2022). Algorithm Design (2nd

ed.). Pearson.

Chapter 5: Tree and Graph

1. Sedgewick, R. (2022). Algorithms in C++, Parts 1-4:

Fundamentals, Data Structure, Sorting, Searching (3rd ed.).

Addison-Wesley Professional.

2. Manber, U. (2020). Introduction to Algorithms: A Creative

Approach (2nd ed.). Addison-Wesley Professional.

3. Mehta, D. P., & Sahni, S. (2022). Handbook of Data Structures

and Applications (2nd ed.). Chapman and Hall/CRC.

4. Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2023).

Compilers: Principles, Techniques, and Tools (3rd ed.).

Pearson.

5. Even, S. (2021). Graph Algorithms (2nd ed.). Cambridge

University Press.

166

	Page 15

