
MATS UNIVERSITY
MATS CENTER FOR OPEN & DISTANCE EDUCATION

UNIVERSITY CAMPUS : Aarang Kharora Highway, Aarang, Raipur, CG, 493 441

RAIPUR CAMPUS: MATS Tower, Pandri, Raipur, CG, 492 002

T : 0771 4078994, 95, 96, 98 M : 9109951184, 9755199381 Toll Free : 1800 123 819999

eMail : admissions@matsuniversity.ac.in Website : www.matsodl.com

MATS CENTRE FOR
OPEN & DISTANCE EDUCATION

SELF LEARNING MATERIAL

Database Management System
Bachelor of Computer Applications (BCA)

Semester - 1

Course Introduction 1

Module 1

Introduction to database management system
3

Unit 1: Inserting Content to Webpage 4

Unit 2: Database Languages 12

Unit 3: Database architecture 18

Unit 4: Introduction to Data Mining and Data Warehousing 66

Module 2

Data modeling and database design
71

Unit 5: Database Design 74

Unit 6: Fundamentals of E-R Model 80

Unit 7: Understanding Entity Set 93

Module 3

Relational database design
98

Unit 8: Generalization and Specialization 99

Unit 9: Relational Model 114

Unit 10: Concept of Keys in Database System 124

Module 4

Managing database and table
136

Unit 11: Fundamental SQL Commands 137

Unit 12: Datatypes in DBMS 141

Unit 13: Manipulation of data in database 143

Unit 14: Integrity Constraints 146

Module 5

Data manipulation
152

Unit 15: Select, Order by and where Clause 153

Unit 16: JOIN Operations 170

Unit 17: Mastering Aggregate Functions 176

References 189

Database Management System

ODL BCA DSC 03

Bachelor of Computer Applications

COURSE DEVELOPMENT EXPERT COMMITTEE

Prof. (Dr.) K. P. Yadav, Vice Chancellor, MATS University, Raipur, Chhattisgarh

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

Prof. (Dr.) Sanjay Kumar, Professor and Dean, Pt. Ravishankar Shukla University, Raipur,

Chhattisgarh

Prof. (Dr.) Jatinder kumar R. Saini, Professor and Director, Symbiosis Institute of Computer Studies

and Research, Pune

Dr. Ronak Panchal, Senior Data Scientist, Cognizant, Mumbai

Mr. Saurabh Chandrakar, Senior Software Engineer, Oracle Corporation, Hyderabad

COURSE COORDINATOR

Prof. (Dr.) Omprakash Chandrakar, Professor and Head, School of Information Technology, MATS

University, Raipur, Chhattisgarh

COURSE PREPARATION

Prof. (Dr.) Omprakash Chandrakar, Professor and Head and Mrs. Shraddha Doye, Assistant

Professor, School of Information Technology, MATS University, Raipur, Chhattisgarh

March, 2025

ISBN: 978-81-986955-2-9

@MATS Centre for Distance and Online Education, MATS University, Village-Gullu, Aarang, Raipur-

(Chhattisgarh)

All rights reserved. No part of this work may here produced or transmitted or utilized or stored in any

form, by mimeograph or any other means, without permission in writing from MATS University,

Village- Gullu, Aarang, Raipur-(Chhattisgarh)

Printed & Published on behalf of MATS University, Village-Gullu, Aarang, Raipur by Mr.

Meghanadhudu Katabathuni, Facilities & Operations, MATS University, Raipur (C.G.)

Disclaimer - Publisher of this printing material is not responsible for any error or dispute from

contents of this course material, this is completely depends on AUTHOR’S MANUSCRIPT.

Print date: The Digital Press, Krishna Complex, Raipur – 492001 (Chhattisgarh)

Acknowledgement

The material (pictures and passages) we have used is purely for educational

purposes. Every effort has been made to trace the copyright holders of material

reproduced in this book. Should any infringement have occurred, the publishers and

editors apologize and will be pleased to make the necessary corrections in future

editions of this book.

1
MATS Centre for Distance and Online Education, MATS University

COURSE INTRODUCTION

Database Management Systems (DBMS) are essential for organizing,

storing, and managing data efficiently. This course provides a

comprehensive understanding of database concepts, data modeling,

relational models, and database operations. Students will gain

theoretical knowledge and practical skills in designing databases,

managing tables, and performing data manipulation tasks. The course

aims to equip learners with the foundational principles needed for

effective database administration and development.

Module 1: Introduction to Database Management System

A Database Management System (DBMS) is a crucial

technology that allows for efficient data storage, retrieval, and

management. This Module introduces the fundamental concepts

of databases, types of database systems, and their applications

across various industries. Students will understand the role of

DBMS in modern data-driven environments.

Module 2: Data Modeling and Database Design

Data modeling is a vital step in designing structured and efficient

databases. This Module covers Entity-Relationship (ER)

modeling, normalization techniques, and schema design

principles. Understanding data modeling ensures proper database

structuring, reducing redundancy and enhancing data integrity.

Module 3: Relational Model

The relational model is the foundation of most modern databases,

defining how data is organized and accessed using tables. This

Module explores key relational concepts such as primary keys,

foreign keys, integrity constraints, and relational algebra.

Students will learn how relational databases facilitate data

consistency and efficient query execution.

Module 4: Managing Database and Table

Effective database management involves creating, modifying,

and maintaining databases and tables. This Module covers SQL

commands for database creation, table structures, indexing, and

constraints. Understanding these techniques is essential for

efficient database organization and maintenance.

2
MATS Centre for Distance and Online Education, MATS University

Notes Module 5: Data Manipulation

Data manipulation allows users to retrieve, insert, update, and

delete records within a database. This Module focuses on SQL

commands such as SELECT, INSERT, UPDATE, and DELETE,

as well as advanced data retrieval techniques like joins and

subqueries. Mastering data manipulation ensures efficient

handling and analysis of stored information.

3
MATS Centre for Distance and Online Education, MATS University

MODULE 1

INTRODUCTION TO DATABASE MANAGEMENT

SYSTEM

1.0 LEARNING OUTCOMES

• Understand the fundamental concepts and purpose of a

Database Management System (DBMS).

• Learn about data abstraction, instances, schemas, and data

models.

• Understand the different database languages (DDL and DML).

• Learn about database architecture (Two-tier and Three-tier).

• Identify the roles of database users and administrators.

• Get an introduction to Data Mining, Data Warehousing, Big

Data, and Data Analytics.

4
MATS Centre for Distance and Online Education, MATS University

Notes Unit 1: Introduction to Database

1.1 Introduction and Purpose of Database

Integrated relationship jammed the data as it never been handled before.

Manipulation. This introduced a completely new way to manage data

allowing thousands of with hierarchical and network models leading

to the relational model, which is still the dominant paradigm today.

Shorthand for the idea of one table storing information in the form of

rows and columns, allowing for versatile querying and data rise of

database systems. The first database management systems (DBMS)

were developed in the 1960s, were just simple text files that had little

organizing or retrieval features. With the quantity of data growing,

requirements from flat files became limiting and the data, with a never-

ending growing need for better data management. Data storage had a

humble beginning back when computers were in their infancy flat files,

which book to complex ERP (Enterprise Resource Planning) systems.

Database history is the history of how people find and use a big deal

of information that can be accessed, updated or deleted quickly. Their

purpose being to be the digital backbone for hundreds of applications -

from a basic address definition can only begin to half justice to their

degree of influence on contemporary civilization. In short, very

typically a database is an efficient mechanism of storing nonetheless,

this basic the heart of organizations, allowing them to flourish in a data-

centered world. And report data, giving great insights about business

performance and trends. Databases are work from the same

information. In addition, database helps to analyze throughout the

organization. They also facilitate data sharing and collaboration,

allowing different departments to businesses as they enable

organizations to manage their data effectively. However, in capable

hands, databases allow for the organization of data in a consistent and

accurate way make data-driven decisions, streamline operations, and

improve customer service. Databases are crucial to databases have in

modern-day organizations. They play a crucial role in storing and

managing vital business data, allowing companies to There is no

overstating the degree of importance made them well-suited for

applications to analyze complicated networks — for instance social

networks and recommendation systems edges—also known as

relationships between nodes to represent connections between entities.

5

Notes The same has them. For example, graph databases like Neo4j and

Amazon Neptune store data as nodes and databases: Examples of

object-oriented databases include Objected and Versant. Applications

that require complex relationships and data structures are well-matched

for stuff like web applications, big data analytics, etc. Object Monod,

Cassandra, Reds) are designed to accommodate unstructured or semi-

structured data (e.g., documents, key-value pairs, graphs). They scale

broadly and offer flexibility, which is what makes them perfect for fit.

Nasal databases (e.g., Microsoft SQL Server). For applications that

"need" structured data and complex SQL queries, they remain a natural

based on their benefits and drawbacks. The most widely used type of

database is relational databases, which use tables to organize

information and SQL (Structured Query Language) to retrieve and

modify information (Myself, Oracle, But no databases are identical

and can be broadly organized into a few categories records, tax

administration, and public services to make sure that the government

functions in transparency and in an efficient manner. Information

systems, libraries, and online learning platforms that provide quality

education services. Databases in the government sector are used in

citizen used in telecommunications (for call data records CDRs,

network management and customer billing), contributing to the

reliability and efficiency of telecommunication services. In education,

databases help in managing student their operations and improve

customer experience. They are and integrity of transactions are top

priority. Databases play a critical role in many sectors including retail,

where they are employed for inventory management, customer

relationship management (CRM), and e-commerce, helping retailers

optimize providers to deliver personalized care and improve patient

outcomes. Examples include transaction processing, fraud detection,

and risk management in the financial sector where security have a

plethora of applications across multiple sectors and domains.

Examples: In the health domain, databases provide storage for patient

records, medical images, and clinical data, allowing healthcare

Databases.

The role of databases in modern organizations extends beyond data

storage and retrieval. They are integral to business intelligence (BI) and

data warehousing, enabling organizations to analyze large volumes of

data and gain valuable insights. Data warehouses, such as Amazon

6
MATS Centre for Distance and Online Education, MATS University

Notes Redshirt and Snowflake, are designed to store and analyze historical

data, providing a comprehensive view of business performance. BI

tools, such as Tableau and Power BI, connect to databases and data

warehouses, allowing users to create interactive dashboards and

reports. Databases also play a crucial role in application development,

serving as the backend for web applications, mobile apps, and

enterprise systems. Developers use database management systems

(DBMS) to create and manage databases, ensuring data integrity and

performance. The choice of DBMS depends on the specific

requirements of the application, such as scalability, performance, and

data consistency. Furthermore, databases are essential for data security

and compliance. Organizations must protect their sensitive data from

unauthorized access, ensuring compliance with regulations such as

GDPR, HIPAA, and CCPA. Database security measures include access

control, encryption, and auditing. Access control ensures that only

authorized users can access specific data. Encryption protects data from

unauthorized access, even if it is intercepted. Auditing tracks user

activity, providing a record of who accessed what data and when.

Databases also support data backup and recovery, ensuring that data

can be restored in the event of a system failure or data loss. Regular

backups and disaster recovery plans are essential for maintaining

business continuity. The evolution of database technology continues to

shape the landscape of data management. Cloud databases, such as

Amazon RDS, Azure SQL Database, and Google Cloud SQL, offer

scalability, flexibility, and cost-effectiveness, enabling organizations to

manage their data in the cloud. Database as a service providers handle

database administration tasks, such as provisioning, patching, and

backups, allowing organizations to focus on their core business. In-

memory databases, such as Reds and SAP HANA, store data in RAM,

providing extremely fast data access. They are well-suited for

applications that require real-time data processing and analysis. New

database technologies, such as block chain databases, are emerging,

offering decentralized and immutable data storage. Block chain

databases can enhance data security and transparency, making them

suitable for applications such as supply chain management and digital

identity. In conclusion, databases are fundamental to modern

organizations, serving as the cornerstone of data management and

enabling a wide range of applications. From storing and managing

7

Notes critical business information to supporting data analysis and application

development, databases play a vital role in driving innovation and

improving operational efficiency. The diverse types of databases,

including relational, Nasal, object-oriented, and graph databases, cater

to different data requirements and application needs. The applications

of databases span across various industries, impacting healthcare,

finance, retail, and telecommunications, education, and government

sectors. As database technology continues to evolve, cloud databases,

in-memory databases, and block chain databases are shaping the future

of data management, offering scalability, performance, and security.

Organizations must embrace these advancements to remain competitive

in the data-driven world, ensuring they can effectively manage,

analyze, and protect their valuable data assets.

1.2 View of Data – Abstraction, Instances, Schemas, and Models

Abstraction helps demystify the complexities of data management and

offers a user-friendly environment to work in while developing data-

centric applications. Features and relationships those are not always

important for any user or application. This the data. This is important

because real global data can be highly complicated, with lots of

schemas, and data models that are important for designing and

implementing a separate database system. At its heart, data abstraction

is the hiding of unnecessary details from users in order to provide a

simplified view of with data at various granularities. This Module

discusses the fundamental aspects of this concept data abstraction,

instances, of information in databases and other information systems,

data management concepts and processes, and what, if any, is

accessible as a view of data to the end-user. It helps abstract the

complexity of the data, allowing users and applications to interact The

term "View of Data" refers to the perspective configured for a specific

purpose so the user only sees the data they need to see, rather than being

overwhelmed via complexity in the entire database. Applications or

business functionalities. And they can be describes a portion of the

database. It presents user specific view for concerned with this level.

The view level, the most abstract level of the database the structure of

the data, without caring about how the data is stored physically.

Database designers and application developers are most what data is

stored in the database and the relationships among those data. Instead,

it describes administrators and system programmers. The logical level

8
MATS Centre for Distance and Online Education, MATS University

Notes is the next level of abstraction and with file organization, indexing, and

data compression. This level is mainly relevant to database physically

stored in the storage devices. This involves dealing varying levels of

detail. The physical level is the lowest level of abstraction, representing

how the data abstraction happens at different levels with. Data that this

database would hold, for example a specific list of books, authors, and

borrowers at a specific point in time. And borrowers and the relations

between these. The a database for a library. E.g., the schema would

describe tables for books, authors, constantly changing as records are

inserted, updated, or deleted. Here is an example of and relationships

exist, and any constraints. The schema remains relatively constant,

whereas the instance is whole database. It defines the structure of the

data, including which types of data snapshot of the database,

displaying the actual values of the data elements. A schema is, however,

a design for the as a database state) is the data that the database holds

at a specific point in time. It is a instance and the schema. Overall, an

instance (often referred to The two main concepts that are barely

thinking about abstraction are the database structure helps in improving

understanding and communication which is what the ER model

provides using diagrams. links between entities, e.g. “writes” between

authors and books. A visual representation of name for books, or

borrower ID in the case of borrowers. Relationships are Borrower.

Examples are title and author proposed in 1976 as a means of

expressing more complex data relationships than the common

hierarchical or network models of the day.

Entities are real-world objects or concepts. Books. Book, Author, and

are Multiple Types of Data Models with their perspectives. The entity-

relationship (ER) model was first database and communicate with

database designers, application developers, and users. Features of Data

Figure 1: Data Model
[Source: https://th.bing.com/]

9

Notes Models There show a synopsis of the data as we focused on the

application domain entities, attributes, and relationships. Data models

are used to help design the is very close to the concept of data models.

These this concept.

it is not only flexible but also simpler than earlier models (such as

hierarchical models or network models). Relationships. The relational

model has grown in popularity since parent-child relationship with the

records, meaning there's a hierarchy. Another older data model, the

network model, depicts data in terms of a graph, in which records can

have multiple parent-child structure. The record has a versatile and

functional model for accessing and modifying the database. The

hierarchical model is an older data model that represents data in a tree-

like made up of rows and columns, wherein rows indicate records and

columns indicate attributes. It leverages relational algebra and

relational calculus for data manipulation, allowing for a very model,

which defines a data set in the form of multiple tables. Tables are

another data model that we see a lot is the relational out, whereas a

library manager would have a view that encompassed every book in the

library. the data they need without being bombarded with the

complexity of the entire sorrow database. An example of this could be

a librarian having a view that includes only books that are checked

needing to understand how the data is stored physically. Data

abstraction enables the users at view level to see only of data storage

and retrieval. For instance, an application dev can run SQL queries to

extract data from a relational DB without developer’s room. It enables

developers to concentrate on the application logic without being

concerned about low-level system details device, In that case logical

and view level of abstraction is not change. On logical level data

abstraction minimizes the complexity of the data structures that

underpin the displayed data in application leverage the storage and

retrieval without affecting each other's logical structure of the data. For

example, Assume a database administrator wants to change one storage

device with other storage on devices, indexing techniques, etc.). It

enables the database administrators to with databases by making it

easier to do so. Data abstraction provides a way to hide the details

regarding how data is physically stored (e.g., what storage devices are

used, organization of files Data abstraction helps us to interact has

defined while the instance is the data itself. of students, courses and

10
MATS Centre for Distance and Online Education, MATS University

Notes professors at a specific moment. The schema validates the structure of

the data and keeps them in the structure it schema for a college. One

example of this database is the data itself stored in these tables like the

list you could take a database for university. You have stuff like -- this

would be a simple database when the database server is first created,

and does not change too often (e.g. schema migrations in a web app)

whereas the instance changes frequently (or quite constantly) as data is

inserted, updated or deleted. As an example, data, while an instance

refers to the combination of the actual data that is present in the

database at a given time. The schema usually gets defined define a

database structure and state. A schema is the database structure that

defines the organization of Patterns can work together to diagram,

relationships like “places” between customers and orders, and

“includes” between orders and books would be represented. This

diagram will be guide to create relational schema, it will contain tables

like Customers, Boo may have entities like customer, book and order

and then attributes like customer name, book title or order date. In the

ER sample database of an online book store. The ER and high-level

view of the data that can be easily communicated. Let's take a a

database are defined cave data models. The entity-relationship (ER)

model-based data model is specifically used for conceptual database

design; the ER model provides a concise the design and

implementation of relationships. ski and Orders along with their

columns and a multitude of applications. 'Sales', or update database

data with UPDATE Employees SET Salary = Salary * WHERE

Department = 'Marketing'. These properties lead to the relational model

becoming the dominant data model in Department, and Salary

columns. For example, you can retrieve data with SQL queries like

SELECT * FROM Employees WHERE Department = a relational

database for company's employees. For example, the Employees table

could have Employee, First Name, Last Name, calculus which allows

users to construct arbitrary queries and updates on the data using a set

of operators. Consider, for example, stores and retrieves information

in tabular format, minimizing data redundancy. For data manipulation,

we have Relational algebra and Relational model used by modern

database systems is the relational model. It the popular data user-

friendly and support diverse applications and user requirements.

Models provide the plans for designing robust and efficient database

11

Notes systems. Together, these concepts allow us to design and maintain

information systems that are powerful, complexity of the

environments used and remain self-sufficient when dealing with the

data, making sure that the data is consistent, indexing is happening, the

consistency of the data, etc. Schemas and instances provide the basis

for data storage and retrieval, and data foundational concepts are

important for designing effective database systems that can efficiently

store, retrieve, and manipulate data. To alleviate complexities, we

remove the how the data is stored and accessed. These the complexity

of the stored data. Data abstraction is a process to hide unnecessary

details, representations are how we store the data now, schemas are the

description of the structure of the data, and data models are a conceptual

structure that governs Data" is key to organizing and accessing data

within contemporary information systems. Schemas, data models,

instances and data abstraction collectively aim to reduce to summarize,

the idea of a "View of.

Figure 2: Relational Table Example
[Source: https://www.learncomputerscienceonline.com/]

12
MATS Centre for Distance and Online Education, MATS University

Notes Unit 2: Database Languages

1.3 Database Languages: DDL and DML

Database; tools used to create and handle these views are: Database

languages (DDL and DML). They enable us to create the structure of

data, define relationships between data, and manipulate the data itself,

thus influencing what users see and how they view the data, and allows

restricting access to certain users. Some of the major user thinks about

the database, which can be very different from the actual storage of

data. This abstraction makes it easier to deal with complexity, protects

against losing sensitive relations) in a simplified manner. It is what a

The V view of data is the backbone of database management, allowing

users to access complex database structures (tables, should not impact

on logical level (view) or on another level. Other levels. For instance,

if we change on physical level (FS_DN), that of users at different

levels of the organization. This separation of levels facilitates data

independence as changes to one level does not have to affect the level,

as discussed previously, generates analytical views of data for

particular users or applications. These are logical level derived views

and can be customized based on the needs form, without regard to how

they are actually stored. The view it needs to be structured and

organized into which data needs to be stored in the data warehouse. At

this level, data is presented in a logical usually handled by the DBMS

itself. Data warehouse logical level: After data is captured in process of

data warehouse, the way of physically storing data in the storage

elements of computers such as file organizations, indexing, and data

compression. This layer deals with the physical storage of data and is

abstraction that is common in any DBMS: Physical level, Logical level,

and View level. The physical level shows basic architecture of a

database management system (DBMS). There are three levels of In

order to get the concept of the “view of data“, it is important to

understand the read data stored in the database. DDL and DML are both

growing topics used for the development and management of the

databases itself in the database. The SQL language offers statements

to add, modify, remove, and and constraints. While the DDL is used to

define or modify Database schema, DML is a syntax that allows you to

manipulate or update the data logical structure of the database. It issues

commands to create, edit, and remove database objects like tables,

13

Notes indexes, Levels in Database Language Implementation Explanation

Database languages are important in the definition and manipulation of

data at these levels. DDL defines Different & used to interact with

data. are also employee ID, name, department, and salary, create the

schematic for a table. For instance, consider the following DDL

statement used to create a table "Employees" with columns for data

integrity. The CREATE TABLE statement is a basic DDL command

used to structure of a database. It encompasses the process of creating

tables, specifying essentially designed data types for every column,

constructing indexes that allow for faster data retrieval, and enforcing

different constraints that preserve Data Definition Language (DDL)

The language for creating and modifying the

SQL

CREATETABLE Employees (

Employee ID INTPRIMARY KEY,

Name VARCHAR(255),

Department VARCHAR(255),

Salary DECIMAL(10, 2)

Condition that has to be satisfied in order for a value to be valid. Other

data integrity rules. As an example, NOT NULL can be used to indicate

that column cannot contain null values, UNIQUE can be used to

indicate that all the values in column must be unique, and CHECK can

be used to specify a column and ensures it isn't null. Other constraints

(e.g., NOT NULL, UNIQUE, CHECK) can enforce types that specify

the type of data that can be stored in each column. PRIMARY KEY is

a constraint that enforces uniqueness for the Employee INT,

VARCHAR, and DECIMAL are data holds the Hire Date. Add,

modify or delete columns in a table. For instance, the following DDL

statement could be used to add a new column to the Employees table

that tables. The ALTER TABLE statement is used to Data

Manipulation Language Edit In addition to creation, DDL has several

commands for modifying existing

ALTER TABLE Employees

ADD Hire Date DATE;

To modify the data type of an existing column, the following DDL

statement could be used:

14
MATS Centre for Distance and Online Education, MATS University

Notes ALTERTABLE Employees

ALTERCOLUMN Salary DECIMAL(12, 2);

To delete a column, the following DDL statement could be used:

ALTERTABLE Employees

DROPCOLUMN Department;

DDL also provides commands for creating and managing indexes.

Indexes are data structures that improve the speed of data retrieval by

creating a sorted copy of one or more columns in a table. The CREATE

INDEX statement is used to create an index. For example, to create an

index on the "Name" column of the "Employees" table, the following

DDL statement could be used:

CREATE INDEX Name Index ON Employees (Name);

Indexes are particularly useful for speeding up queries that involve

searching or sorting data based on the indexed columns. However,

indexes can also slow down data modification operations, such as

inserting, updating, and deleting data, because the index also needs to

be updated. Therefore, it's important to carefully consider which

columns to index and to avoid creating too many indexes.DML is the

language used to manipulate the data stored in a database. It provides

commands for inserting, updating, deleting, and retrieving data. The

INSERT statement is used to add new rows to a table. For example, to

add a new employee to the "Employees" table, the following DML

statement could be used,

INSERTINTO Employees (EmployeeID, Name, Salary)

VALUES (1, 'John Doe', 50000.00);

The UPDATE statement is used to modify existing rows in a table. For

example, to update the salary of an employee, the following DML

statement could be used:

UPDATE Employees

SET Salary =55000.00

WHERE EmployeeID=1;

The DELETE statement is used to remove rows from a table. For

example, to remove an employee from the "Employees" table, the

following DML statement could be used:

15

Notes

DELETEFROM Employees

WHERE EmployeeID=1;

The SELECT statement is the most commonly used DML command

and is used to retrieve data from a table. It allows users to specify which

columns to retrieve, which rows to select, and how to sort and group

the results. For example, to retrieve the names and salaries of all

employees in the "Employees" table, the following DML statement

could be used:

SELECT Name, Salary

FROM Employees;

To retrieve the names and salaries of employees whose salary is greater

than 50000, the following DML statement could be used:

SELECT Name, Salary

FROM Employees

WHERE Salary >50000;

To retrieve the names and salaries of employees sorted by salary in

descending order, the following DML statement could be used:

SELECT Name, Salary

FROM Employees

ORDERBY Salary DESC;

DML also provides commands for grouping and aggregating data. The

GROUP BY clause is used to group rows based on the values in one or

more columns. The HAVING clause is used to filter groups based on

aggregate functions. Aggregate functions, such as COUNT, SUM,

AVG, MIN, and MAX, are used to perform calculations on groups of

rows. For example, to retrieve the average salary for each department

in the "Employees" table, the following DML statement could be used,

SELECT Department, AVG(Salary)

FROM Employees

GROUPBY Department;

To retrieve the average salary for each department where the average

salary is greater than 50000, the following DML statement could be

used,

16
MATS Centre for Distance and Online Education, MATS University

Notes

SELECT Department, AVG(Salary)

FROM Employees

GROUPBY Department

HAVINGAVG(Salary) >50000;

Views are virtual tables that are derived from the logical level of the

database. They provide a customized view of the data for specific users

or applications, simplifying complex queries and enhancing data

security. Views are created using the CREATE VIEW statement. For

example, to create a view that shows the names and salaries of

employees in the "Employees" table, the following DDL statement

could be used:

CREATEVIEW Employee Salaries AS

SELECT Name, Salary

FROM Employees;

Once a view is created, it can be queried just like a regular table. For

example, to retrieve the names and salaries of employees from the

"Employee Salaries" view, the following DML statement could be

used:

SELECT Name, Salary

FROM Employee Salaries;

Views can also be used to simplify complex queries by encapsulating

them into a single view. For example, to create a view that shows the

names and average salaries of employees in each department, the

following DDL statement could be used:

CREATEVIEW Department Salaries AS

SELECT Department, AVG(Salary) AS Average Salary

FROM Employees

GROUPBY Department;

Views can also be used to enhance data security by restricting access to

certain columns or rows in a table. For example, to create a view that

shows only the names of employees in the "Employees" table, the

following DDL statement could be used:

CREATEVIEW Employee Names AS

17

Notes SELECT Name

FROM Employees;

By granting users access only to the "Employee Names" view, the

DBMS can prevent them from accessing the salary information in the

18
MATS Centre for Distance and Online Education, MATS University

Notes Unit 3: Database architecture

1.4 Database Architecture: Two-Tier and Three-Tier Systems

Real world use cases. is important in designing and implementing

efficient and effective database systems. In this Module, we care for

these classic architectures two tier and three-tier, examining concepts,

implementations and can be. Learning about the different database

architectures organization of a database system, especially the

components and their associations. It is a major factor in defining how

well, how scalable, and how maintainable a database application the

database architecture specifies the structure and user interface and

application logic is used on the client-side whereas the database

management system (DBMS) and data storage is used on the server-

side. It has the Client has 2 major parts, a client and a server. Hence,

the architecture is the most basic and also the most conventional

database architecture. This the two-tier Server increases and the

complexity of the application grows. Ideal for small scale applications

with a small set of users. It makes the application more fragile and

difficult to manage and maintain as the number of users a server

machine. Simple in design, two-tier architecture can be implemented

easily, making it Client model. It typically involves an application on

the user's computer and access to DBMS on can easily lead to

performance bottleneck and security vulnerabilities, particularly in a

Figure 3: Two-Tier and Three-Tier Systems
[Source: https://th.bing.com/]

19

Notes large scale application. Database server via structured query language

(SQL) queries to either read or write data. However, in these cases, you

can no longer rely on a direct communication between the client and

server, which inventory management application can have a client-side

user interface that allows entering and viewing the inventory details and

a database server that stores all the actual records for the inventories.

The ABD would directly communicate with the database server

directly are common two-tier architecture examples. For example, an

Desktop applications that communicate with a run, and processed the

results. Here is a simplified example: database using the myself.

Connector library. The client application connected to the database

server, sent SQL queries to A two-tier architecture can be

demonstrated by a Python application that connects to a MySQL

Python

import mysql.connector

def get_inventory_data(product_id):

try:

mydb = mysql.connector.connect(

host="localhost",

user="your_user",

password="your_password",

database="inventory_db"

)

mycursor = mydb.cursor()

sql = "SELECT * FROM products WHERE product_id = %s"

mycursor.execute(sql, (product_id,))

result = mycursor.fetchone()

mydb.close()

return result

except mysql.connector.Error as err:

print(f"Error: {err}")

return None

product_data = get_inventory_data(123)

if product_data:

print(f"Product Data: {product_data}")

else:

20
MATS Centre for Distance and Online Education, MATS University

Notes print("Product not found.")

In this example, the get inventory data function acts as the client

application, connecting directly to the MySQL database server. It

executes a SQL query to retrieve product data based on the provided

product ID. This direct connection and query execution exemplify the

two-tier architecture. Separation of concerns makes the application

more scalable, maintainable, and secure. The application server, which

talks to the db server. Such storage. The client talks to components

that are a client, an application server, and a database server. The client

handles the user interface, the application server handles application

logic and business rules, and the database server handles the DBMS

and data overcomes the limitations of the two-tier model by adding an

additional layer in between: the application server. The Three-Tier-

architecture consists of three main the three-tier architecture, or multi-

tier architecture, code reusability. by the web server to the client. It

enables improved load-balance, security, and get or store data. The

response is sent back requests to the web server. Web server handles

the requests, runs the application logic, and interacts with the database

server to tire architecture where web server is used as application

server. The web browser, which acts as the client, makes HTTP Web

application is a typical example of three hits a Flask application in the

AWS cloud where we run our LIW solution, which interacts with a

database server, and send back an HTTP response with the result. Here

is a simplified example: from the client-web browser. The first request

can set up a three-tier architecture using a simple Python web

application with the Flask framework. As the application server, the

Flask application serves HTTP requests Here’s an example of how you

Python

from flask import Flask, jsonify

import mysql.connector

app = Flask(__name__)

def get_product_data_from_db(product_id):

try:

mydb = mysql.connector.connect(

host="localhost",

user="your_user",

21

Notes password="your_password",

database="inventory_db"

)

mycursor = mydb.cursor()

sql = "SELECT * FROM products WHERE product_id = %s"

mycursor.execute(sql, (product_id,))

result = mycursor.fetchone()

mydb. Close ()

return result

except mysql.connector.Error as err:

print (f"Error: {err}")

return None

@app.route('/products/<int:product_id>', methods=['GET'])

def get_product(product_id):

product_data = get_product_data_from_db(product_id)

if product_data:

return jsonify({"product": product_data})

else:

return jsonify({"error": "Product not found"}), 404

if __name__ == '__main__':

app.run(debug=True)

The presentation logic (client), application logic (Flask application) and

data access logic (database server). as a JSON response. This

architecture also separates MySQL. Route get productgets the product

data using product ID and returns the response In this case, the Flask

app is the application server which receives HTTP requests and

performs operations on the reuse, as the business logic encapsulated in

the application server can be used across different applications. it helps

to bolster security. It also increases code logic. Since it restricts direct

access to the database server from the client, scalability. It results in

better maintainability by decoupling the application logic from

presentation and data access three-tier architecture over two-tier

architecture. It allows the application server to serve large amount of

concurrent requests so it improve There are many benefits of default,

and supports a great number of customers, plus hundreds of thousands

of transactions. are returned on HTML or JSON format. The result is

a powerful, installed architecture that is scalable by requests to a web

22
MATS Centre for Distance and Online Education, MATS University

Notes server (applications server like Apache or Nginx). Requests are handled

using a web server and a database server (e.g. MySQL or PostgreSQL),

and results e-commerce platform, in a web application that saves the

user information in a 3-tier architecture. A web browser is a client that

will send For example, in an preferred for large scale applications with

complex business logic and a large number of concurrent users. Base,

two-tier architecture might work. However, a three tier architecture is

usually is selected. For limited-scope applications with a low user

Each application has specific requirements, depending on which

architecture (four) make different trade-offs, such as performance,

scalability, and maintainability. to have additional layers. There are

different types of architectures that Besides two-tier and three-tier

architectures, there are also n-tier architecture in databases, that takes

the three-tier architecture and expands it layer can manage

asynchronous tasks like sending emails or processing background jobs

to query with db server again. A message queue with performance and

scalability by reducing database load. For example, caching layer stores

the retrieved data in its memory for reuse which the application uses

instead of trying queuing. It also helps For instance, n-tier architecture

may introduce a separate layer like data caching or message yet can

induce added complexity and require prudent service dependency

management each one is responsible for a given business capability.

The microservices approach provides for much flexibility and scale,

into a suite of small, self-contained services. They can be deployed and

scaled independently and This is a variation of the microservices

architecture which breaks an application down is based on the needs of

the application and other architectures including n-tier and

microservices architecture can be chosen for challenging and effective

applications. and effective database uses case. The selection of

architecture models with various performance, scalability, and

maintainability trade-off. Knowing these architectures is key to

creating maximal high-performance architecture is an essential aspect

when it comes to the designing and implementing of a database system.

In contrast, the two-tier and three-tier architectures are basic To

summarize, database.

23

Notes 1.5Navigating the Digital Vault - Database Users and

Administrators: Functions and Roles

Overview for a general audience who can make some sense of database

concepts to do next in terms of the users and databases we are

managing: these roles are important to comprehend as they help us

know how these systems function and how they work best. This Module

seeks to demystify these roles, offering a high-level a wide range of

applications from social media platforms and e-commerce websites to

financial institutions and healthcare systems. Knowing where we are

and what with applications ranging from small systems to massive

server farms. Databases are essential for Databases are the gold

standard for storing data in the computers today,

The Foundation: What is a Database?

Oracle and Microsoft SQL Server and using tools to create, maintain

and query databases. Examples of DBMS include MySQL,

PostgreSQL, a Database Management System (DBMS) is responsible

for managing a database, it is a software which interacts between a user,

application and the database itself. A DBMS is software that handles

the storage and retrieval of data within databases, making sure that the

data is accurate and secure, retrieve and manipulate data easily.

Usually ease its access, management and updating. A database is more

than just a simple spreadsheet or document it gives you the structure,

consistency, and security to review what a database is, in its original

sense. This is basically an organized collection of Data that is stored in

a way to Before jumping into specific roles, it is important to

The Users: Interacting with the Data

privileges determine how a user can interact with and use the data; the

applications determine the extent of that interaction. audience from

casual users, who just want to lookup things they see, to advanced

analysts that perform complex queries. Access that access the database

to get, change, or analyze data. They cover a broad Database users are

the people or applications.

24
MATS Centre for Distance and Online Education, MATS University

Notes Types of Database Users:

End Users

query their account balance, transfer money and look at transactions

through an online portal without direct interaction with the DBMS cart

for purchase and complete checkouts, quite devoid of knowledge of

SQL queries that retrieve and update availability in some database. In

banking, for example, an end user cans the intricacies of the underlying

database. In a typical e-commerce situation, for instance, an end user

may view products, add them to a via various applications that are

configured or set up by one of the rest of the IT team to allow for easy

interaction with data. These users do not need technical skills in DBMS

(Database Management Systems (DBMS)) but use applications that

abstract the most common category of database users are end users

who can consume the database interfaces to the databases ensure that

users can do what they need to do without needing to know a lot about

databases. to apply for services, track application status, or pay taxes.

These visual structures. At the same time, government agencies also

serve end users through online portals for citizens through an EHR

(electronic health record) system, using it to review information, note

observations in the charts, order tests, etc. Such systems allow them to

update patient information, schedule appointments, and retrieve

medical history without having to dive deep into database For instance,

in healthcare; end users are physicians, nurses and administrative staff

that interact with the records of a patient frustration. Emerged as tools

for ease of data retrieval and input due to this necessity for user-friendly

Figure 4: Types of Database Users
[Source: https://d3e8mc9t3dqxs7.cloudfront.net/]

25

Notes interfaces. When database designers evaluate systems in light of

database end users, they also build systems that help the user become

more efficient without accidentally adding unnecessary load that only

creates more work or will dictate how databases are constructed and

configured to ensure the best query performance and usability.

Graphical user interfaces (GUIs), mobile applications, and web-based

dashboards have they typically have very limited access to the DBMS.

How you use data End users have an important effect (positive and

negative) on the performance and design of the database, even though.

Application Programmers

Data by end users. Business analytics. Their main purpose is to provide

interfaces that can be used to efficiently fetch, update, and manage by

creating programs that interact with the database. They develop

applications for finance, healthcare, education, and in accordance with

the rules above. They are the expert users, bridging the gap between the

end users and the database they need to ensure that they interact with

the database effectively, efficiently, and displayed in a way that makes

sense to each logical entity. Functional methods that let the store

managers evaluate sales reports, inventory tracking, customer

purchasing records, etc. Combining SQL with the application logic,

programmers make sure that data is fetched and embed SQL

statements within programming languages like as Java, Python, C, and

PHP to help queries execution and data manipulation. For example, in

a retail management application, the application programmer might

implement Language) is the language most often used by application

programmers to communicate with databases. Most libraries SQL

(Structured Query (e.g., Hibernate for Java, Entity Framework

for.NET) that enable more straightforward database interaction with an

object-oriented perspective instead of writing raw SQL queries.

Connectivity) for general-purpose database connectivity. They also

utilize ORM (Object-Relational Mapping) frameworks Along with

SQL, for application programmers, there are database connectivity

frameworks as JDBC (Java Database Connectivity) for Java

applications and ODBC (Open Database to form robust applications

that help make the data more accessible and usable enterprise

applications that they create so that performance can be made better,

26
MATS Centre for Distance and Online Education, MATS University

Notes latency can be reduced to a minimum, and scalable solutions can be

created. Application programmers condense data using best practices

of both software development and database integration may also use

encryption, validation and error handling to protect the integrity and

confidentiality of the records contained within the database. The

application programmers also team up closely with database

administrators (DBAs) in the sure that only the people who are allowed

to access the data preview or update in the system. They security. Such

as programmers must use authentication and authorization like to make

another fundamental facet of application programming is.

Database Analysts

In areas such as business intelligence, finance, healthcare, and

marketing. Patterns, and make recommendations. They are critical are

responsible for analyzing the data sets and extracting useful

information out of them to create reports that help in decision-making.

While end users interact with databases passively, database analysts

query databases using SQL and advanced analytical tools to create

reports, identify they the healthcare industry, analysts sift through

patient records to find correlations between treatment protocols as well

as patient outcomes, thereby enabling the doctors to make data-driven

medical decisions. Banking database to report on spending trends,

credit risk analysis, or fraud detection. In a similar vein, in to design

and run sophisticated queries that aggregate and summarize data. For

instance, a financial analyst may write SQL code to pull customer

transaction data from a One of the major functions of database analysts

is trained to use statistical programming languages such as R, Python,

and SAS in conjunction with SQL to conduct advanced data analysis,

machine learning, and predictive modeling. Predictive models on

visual dashboards. Database analysts are also present findings in a

consumable format. These enable analysts to show real-time statistics,

comparative analyses and Database analysts also use data visualization

tools like Tableau, Power BI and Google Data Studio to base on

accurate and dependable information. Structured for analytics.

Database analysts also ensure data consistency and integrity, allowing

organizations to make data-driven decisions and advanced querying

and reporting functionalities. Analysts define schemas, optimize

indexing strategies, and create Extract, Transform, Load (ETL)

27

Notes workflows to ensure that the data is warehousing. They assist in the

design and management of data warehouses consolidated storage

facilities for integrated data from different sources that allow for quick

another area where database analysts shine is with data.

Power Users

Power users are in enterprise environments, research facilities and

technical support. Over database interactions than end users and

typically collaborate with database administrators to set up, tune, and

troubleshoot database systems. Usually with the DBMS and have

technical expertise to perform their work. These users have greater

control they are highly knowledgeable business plans and refine

inventory management. Query writing for things like: understanding

seasonal sales trends, identifying high performing products, or tracking

customer loyalty metrics. Such reports allow management teams to

formulate strategic complex SQL queries to retrieve specific datasets

and generating custom reports. For example, in a retail organization,

data scientists can be power users of Power users are primarily

responsible for writing and PCI-DSS. Sensitive data is kept secure. In

industries with a lot of confidential information (think finance,

healthcare), power users collaborate closely with compliance teams to

ensure that the database work they do everything that we built, enabled,

and scanned here aligns with regulatory requirements like GDPR,

HIPAA, and access controls are also key tasks of power users. They

set up user permissions, assign roles, and monitor access logs to ensure

that Managing database security query optimization to ensure

performance metrics such as response times and resource utilization

improve significantly. To improve performance. In case of large

databases owned by organizations, they also work together with DBA

to apply tuning techniques including partitioning, caching, and another

critical responsibility, which is diagnosing database performance

problems. They observe the performance of queries, evaluate indices,

and fine-tune database configuration the power users have the

application of advanced knowledge. And help onboard users so that

they know how to ask the database to do things. Power users ensure the

seamless functioning of database-driven applications, helping

organizations derive maximum value from their data assets through

liaison between technical teams and end users. They train users, write

documentation, These users are often a are meant for programmers

28
MATS Centre for Distance and Online Education, MATS University

Notes develop applications to help information users profile them, and

database analysts analyze and extract data insights, while power users

help optimize and manage the database functionality. Better

comprehend, together, to avoid databases from diverging from what

they four examples of how Database Users are categorized based on

their interactions with databases. End users query the data using user-

friendly front-end applications, and application End Users,

Application Programmers, Database Analysts, and Power Users are

just.

Functions of Database Users:

1. Data Retrieval

Improve data accessibility, including full-text search; machine

learning-based recommendations, and predictive analytics. Quicker

access time for frequently queried data, and materialized views

recomputed and store the results of common queries, significantly

speeding up data retrieval. The explosion of large-scale datasets has

made these data retrieval techniques even more critical to of Data.

Caching mechanisms store recently accessed data items closer to the

service, allowing will search for products, and analysts will run SQL

queries to find out the best-selling products in a region of interest. The

5 V's of big data; Volume, Velocity, Variety and Veracity Focus on

Efficient Retrieval retrieve specific data. An example of this would be

an e-commerce platform where customers tasks, be it informed

business decisions, running applications or research. The data itself is

extracted by end users via user-friendly applications, but it is also

available to analysts and developers for descriptive analysis using

structured query languages such as SQL to Of a Database The

fundamental operation of a database. It enables users to access stored

data in order to be used for different Retrieving Data.

2. Data Modification

And safe. Data. In summary, effective data modification methods

guarantee that databases stay correct, trustworthy, reliably. Versioning

and logging mechanisms help with this, as they keep the history of

modifications, which are crucial for data integrity in multi-user

systems. Triggers and stored procedures further facilitate the

automation of data modification processes, ensuring that business rules

are applied compliance to avoid conflicts and data corruption.

Concurrency control mechanisms manage simultaneous data address,

29

Notes or an application may insert a new order into an order management

system. Transaction management maintains data integrity during

updates using ACID (Atomicity, Consistency, Isolation, and

Durability) users to modify data, keeping it up to date and relevant. For

example, a customer service representative may update a customer's of

new records, updating current records, and destroying useless database

information. It allows authorized Data modification: This entails the

creation.

3. Data Analysis

By enabling data-driven decision-making, leading to higher operational

efficiency and customer satisfaction. Hardtop and Spark allow for the

efficient processing of large datasets. Utilizing data analysis helps

businesses have a competitive advantage customer experiences.

Additionally, big data technologies such as and historical trend

tracking. More sophisticated analytical tools, including machine

learning and predictive modeling, enable organizations to predict future

trends, identify outliers and customize with business intelligence tools

(examples: Tableau, Power BI and Python-based data analysis

libraries). By aggregating data from multiple sources, data warehouses

and data lakes enable holistic analyses data to chisel out seasonal

buying behavior which might help it in besiege- marketing and

inventory strategies. Only with reports and dashboards or ad-hoc

reporting to extract essential patterns and trends. One example could

be that of a retail company that can analyze sales to be extracted from

stored data to aid in decision making and strategic planning. Reporting,

data visualization or statistical analysis is some of the techniques used

by the analysts Data analysis allows for meaningful insight.

4. Application Usage

Care of the distance between the users and the databases. and

optimization of application performance. Shortly speaking, good

applications take also provide scalability and reliability, enabling

applications to efficiently process large volumes of data and user

requests. Ensure responsiveness and a smooth user experience through

the continued monitoring from unauthorized access and cyber threats

by implementing security measures (authentication, authorization,

encryption, etc. Cloud-based database solutions to interact and

communicate, which improves the functionality and scalability of the

integration. This protects sensitive data design these interfaces to be

30
MATS Centre for Distance and Online Education, MATS University

Notes user-friendly, secure, and efficient through different back-end logic and

database connections. Data (Application Programming Interfaces)

allow applications and databases for instance, lets users view their

account balance, send money, and view transaction history. Application

developers limited to web portals, mobile apps, and enterprise

software that allow users to browse, search, and update records. A

mobile banking app, end users. These applications can be but are not

Applications provide meaningful access to data stored in databases for.

(DBAs) The Guardians: Database Administrators

DBMS, database structure, and underlying hardware and operating

system. Reliable and most importantly, secure to meet the

requirements of all users and applications. DBAs have a thorough

knowledge of the rare figures of the database, managing database

design, implementation, maintenance, and security. These

professionals monitor the database to ensure that it is available (not

down), Behind the scenes, Database Administrators (DBAs) are.

Responsibilities: DBA Roles and View of Data

 (DBAs) in Creating Role of Database Administrators & anomaly and

guarantee data consistency. to design a database structure that meets

business goals with scalability and reliability. Normalization

techniques are also implemented by them to eliminate the data the

DBMS, performing initial configuration, and connecting the DB to a

few programs is the phase of implementation. DBAs collaborate with

developers and system architects would help retrieve, store data

efficiently, reducing data redounding and enhancing integrity. It may

be more appropriate for you to encounter the changes in your DBMS's

database, as installing and configuring performance and integrity. If

the database schema is organized well, it types, and relationships. They

optimize and secure database Implementing Databases as per

Organization Needs: This is where you will define your database

schema, which includes defining your tables, data.

Database Maintenance

Health checks, proactive maintenance strategies to minimize downtime

contributes to high availability. Smooth operations and troubleshoot

issues by identifying and fixing errors like deadlocks, transaction

failures, or hardware failures. Routine in primary storage class; others

are archived regularly based on access frequency. DBAs ensure as

indexes become fragmented and performance suffers. This reduces the

31

Notes storage and retrieval time as only frequently required information stays

time of a query and improving slow-performing queries. Rebuilding of

index is another important activity which is scheduled conducting

system updates. Performance monitoring refers to tracking the

execution of a database. DBAs carry out day-to-day activities like

monitoring database performance, backing up data, and Database

maintenance involves a set of tasks necessary for continued high

performance.

Database Security

Risks. With the relevant industry regulations like GDPR, HIPAA, or

PCI DSS. The integrity and confidentiality of the database is ensured

by regular security audits and vulnerability assessments to identify and

mitigate potential fire walls. They implement security policies that

help comply is secured using encryption methods. Collision detection

and mortals are used for do certain operations. Data held at rest and in

transit the risk of unauthorized access, DBAs use robust access control

mechanisms. As such, they define user roles and rights so that only

authorized people can tend to hold sensitive and confidential data. To

mitigate Security is a critical part of DBA duties as databases.

Database Performance Tuning

Applications running in a smooth manner on a workload. Users. This

is where Performance tuning plays its role to have connection

pooling). DBAs can also use system metrics (e.g. CPU usage, disk I/O,

and network latency) to proactively detect performance bottlenecks

before they impact speed up the process. DBAs optimize resource

utilization by fine-tuning the database parameters (like memory

allocation and and provide indexing suggestions to accelerate data

retrieval. Query optimizations like caching them, partitioning them, and

materialized views are done to any DBA. They examine the execution

plan of the query to pinpoint sub-optimal queries, Database

performance optimization is one of the never-ending jobs of.

Database Backup and Recovery

To ensure minimal data loss and downtime. Restore the database to its

last-known good state using reliable recovery mechanisms to recover

from system failures, cyber attacks, or accidentally deleted data. This

includes the establishment of disaster recovery strategies that leverage

failover systems, replication techniques and business continuity plans

data integrity as well as ensure recovery processes perform correctly.

32
MATS Centre for Distance and Online Education, MATS University

Notes DBAs scheduled and stored securely. Regular validation of backup

instances must be performed to guarantee backups. They also verify

that backups are performed as strategy to prevent the critical damage

that data loss can inflict on an organization. DBAs are responsible for

planning and executing backup strategies including full, incremental,

and differential Database backup and recovery is the most vital.

User Management

User roles and access levels, which creates security and simplifies

operations. Perform forensic investigations to detect and mitigate

threats. DBAs improve a database system with well-organized security

and usage. In the event of a security breach or unauthorized access

attempt, they those data and operations relevant to their role.

Additionally, DBAs train users on appropriate database needed.

Security policies are enforced using role-based access control (RBAC),

allowing user’s access only to rights. They set up user accounts, grant

correct permissions, and remove access as DBAs also need to manage

database users and their access.

 Patching Software Upgrading

Threat risk, as we is another important component, because vendors

often send out patches to address security vulnerabilities. Immediate

patching mitigates cyber also maintain compatibility with existing

applications and data structures. Patch management in a sandbox

environment, and schedule updates to minimize disruption. They bug

fixes, and new features. DBAs assess new software versions, test

upgrades Database software must be updated frequently to mitigate

security vulnerabilities, work closely with IT teams and stakeholders to

manage software upgrades in derecognition of service availability. as

enhancing system stability.

Capacity Planning

Effective management of storage and performance requirements in

advance, DBAs protect against resource shortages and help to ensure

musical response of the database as the organization scales.

Techniques such as database shading or scaling horizontally. Through

optimizations. They monitor database workload stratagems to manifest

scaling needs and apply handle the present and future requirements.

DBAs monitor trends in storage utilization, project future data growth,

and advice on hardware upgrades or Proper capacity planning makes

sure that the database infrastructure can.

33

Notes Documentation

The chance of mistakes and promotes operational efficiency. of

documentation also takes on an important role in compliance audits,

confirming that normalization of database operations takes place

according to regulatory requirements. Maintaining records also reduces

processes can help bridge a team and on-board new DBAs. The purpose

knowledge transfer. Well documented and security policies. The

purpose of this documentation is to use as the guidance for trouble

shooting, system upgrade and is essential for a good documentation.

DBAs also maintain comprehensive databases on database schemas,

configurations, maintenance procedures, The following process

Types of DBAs:

Systems DBAs

Of the database and optimizing system resources for effective

performance. Have a profound understanding of the DBMS, the

operating system, and the infrastructure of the hardware. They are

responsible for ensuring the efficient availability performance tuning,

and ensuring that backup and recovery mechanisms are reliable. Since

the database works on complex systems, a Systems DBA needs to

database administration. Their main responsibility involved installing

and configuring database management systems (DBMS), DBA

(Systems Database Administrator) – A Systems DBA is a database

administrator that is responsible for managing the technical aspects of

patches and updates to ensure database security and stability. Consume

excess resources, therefore increasing the performance of the database.

They are also tasked with implementing establishing data source

examples, i.e., data warehouse occasions, composing

memory/allocation offices, tuning database settings, and so forth. In

addition, configuration is done correctly so as to not roles of a Systems

DBA is to install and comfit. They make sure that the DBMS has been

installed properly, such as one of the main performance tuning

methods. to how resources are allocated to guarantee the smooth

functioning of the database. Utilizing Execution plan analysis,

Investigation of system logs, and Built-in performance tuning tools in

DBMS are different query execution times. It involves implementing

indexing strategies, optimizing queries, and making adjustments

performance tuning. It allows them to monitor the performance system,

identify bottlenecks, and make changes to achieve favorable Another

34
MATS Centre for Distance and Online Education, MATS University

Notes key function of a Systems DBA is Backup & continuity. Automated

backup schedules, and test recovery procedures to minimize downtime

during disaster recovery scenarios. They implement full, incremental,

and differential backup strategies to protect data integrity and maintain

business hardware failures, human errors, or cyber attacks. They set up

process. Systems DBAs also create backups so they can restore data

lost on Recovery It is a standard database management protect an

organization's data from cyber threats by configuring rules on firewalls,

monitoring database logs, and ensuring adherence to security policies.

To ensure that unauthorized individuals cannot access sensitive data.

They help in database security as well. They develop access controls,

authentication mechanisms, and encryption techniques (A Systems

DBA needs to have expertise.

Application DBAs

For application performance. query optimization, and application

integration are some of their responsibilities. While Systems DBAs are

more focused on general infrastructure, Application DBAs partner with

application developers to optimize databases DBAs help ensure

databases meet the requirements of particular applications. Schema

design, As the name suggests, Application is employed to improve

read performance. Well-Formed Schema: A well-formed schema

guarantees uniformity of data, diminishes redundancy, and augments

the performance of manage queries. Normalization is a process

executed that reverts the duplicated data and renormalization is the

other process that rules, which facilitate application functionality.

Create a a major responsibility of schema designing. They work with

developers to create database schemas, sets of Application DBA This

role involves patterns and provide scalability. Mechanisms to ensure

that application response times are minimized. They optimize query

performance based on the application's data access reduce execution

time and resource usage. To include indexing strategies, query

rewriting, and appropriate caching another role that is important to an

Application DBA. You have to analyze and optimize SQL queries to

Optimizing queries is perform data migration efforts when applications

are being moved to newer database systems. Negatively impacting an

application's performance. They also APIs, stored procedures, and

triggers. By sharing this information, applications can read and write

data efficiently without application integration. They facilitate smooth

35

Notes data transfer between the database and applications using Application

DBAs also focus on enforce data privacy and compliance with industry

regulations, including GDPR and HIPAA, by incorporating encryption

and auditing features. Depending on user roles by imposing role-based

access controls (RBAC). They of the most important factors for

Application DBAs is security and compliance. They limit database

access One.

Development DBAs

Database solutions tailored to business needs. Performance, etc. They

primarily aim to help developers create efficient, scalable are

responsible for database design, testing and deployment. During the

development lifecycle, they concentrate on the schema design, query

optimization, testing for Development DBAs in data redundancy.

Data integrity. A normalized schema provides better performance and

decrease adjust database schemas to meet changing application needs.

Such structure involves defining some tables, relationships, constraints

and indexes to keep the core administrator responsibilities of

Development DBAs is schema design. They design and one of the

performing efficient database query externalization by closely working

with developers. Such as indexing, query restructuring, and

partitioning. They minimize latency and enhance application

responsiveness by job is Query optimization. They examine SQL

queries to detect performance bottlenecks and use optimization

techniques An equally important part of a Development DBA’s poor

indexing strategies, resource-hungry operations, etc. test real-world

scenarios by simulating them, pinpointing performance hiccups and

applying optimizations before deployment. Performance testing can

also identify slow queries, and load tests and benchmarking to measure

databases under various pressure scenarios. They testing. They run

stress Development DBA is a part, Performance limit till Oct

environments. You are stuck in the 2020 and trained on data

management. They keep scripts to change database schemas, such as

synchronization between developing, testing, and production

Development DBAs also help in version control and change practices

makes applications immune to data breach and cyber threats. Use

encryption for data, access controls, and data masking to secure

sensitive information during development and testing. Developers who

36
MATS Centre for Distance and Online Education, MATS University

Notes comply with security best is a key consideration. They Security: As

Development DBAs Security.

Data Warehouse DBAs

Tools. Decision-making processes. They have knowledge of data

warehousing concepts, ETL (Extract, Transform, and Load) processes,

and business intelligence business intelligence applications on a range

of large-scale data repositories. They are responsible for data loading,

data transformation and query optimizations that facilitate Data

Warehouse DBAs are designed to work for analytical and Data

Loading: Data loading is the process of extractor critical business

insights. Data Warehouse DBAs is designing and implementing

Extract, Transform, Load (ETL) pipelines that involve extracting data

from the transactional databases, transforming it into an acceptable

format, and loading it into the data warehouse. In this way, efficient

data loading strategies reduce latency and allow timely access data

from various sources and putting it in the data warehouse. One of the

key responsibilities of ting techniques for cleanliness by removing the

noise and error from data before analysis. Elimination and data

aggregation to allow better analyzing capability. They use data cleaning

Data Transformation Furthermore, Data Warehouse DBAs ensure data

consistency through redundancy A Key Principle of Data

Warehousing Is improve complex queries and enable insights to be

retrieved quickly and effectively from large data sets. DBAs create

index strategies, partition tables, and use materialized views that help

minimize the size of query execution time. Data engineers collaborate

closely with data analysts to data warehouse queries is imperative.

Data Warehouse Query optimization and improving the performance

of accessible. (Online Analytical Processing) cubes to allow users to

extract insightful information from data. They help organizations with

key strategic decision making by making analytical data readily

available and easily important responsibilities in an integration of

Business Intelligence. They set up reporting tools, dashboards, and

OLAP Data Warehouse DBAs also have other for your data

warehouse. This is to say that your training data dates as of a data

warehouse. You can then choose the data warehousing Security and

compliance are essential in.

In modern organizations, and the landscape of data-driven decision

making is evolving rapidly. the function, security and reliability of

37

Notes your databases DBAs play a critical role analytical data repositories.

Different types of DBA will come with their own trained experts who

can help deliver the right audits for maintaining and optimizing

databases to meet diverse business requirements. You have learned that

systems DBAs up with infrastructure and technical aspects while

Application DBAs check that everything integrates seamlessly with

application, Development DBAs help with the lifecycle of application

development and Data Warehouse DBAs with Database

administrators are responsible for.

Administrator the Synergy: Collaboration of User

Application usability, and performance issues; administrators ensure

that the database serves the needs of users and applications. User and

Admin Cooperation is Necessary for Database Success Hands-on users

provide feedback on data quality,

User-Administrator Collaboration Best

Regular Communication

Strategies optimize transparency, ensure efficient workflows, and

contribute to a well functioning database system aligned with user

needs. Request assistance. User-Centric Approach: User-centric

communication for security updates, best practices, and maintenance

schedules are great ways to control what information and avoid the

noise. Interactive landscape features, including cooperating between

tools like online collaboration tools (Slack, Microsoft Teams, dedicated

forums), allow users to enter a constant conversation on the topic,

automatically creating context that allows for consideration so that

users can be an occasion for talking about barriers to success, for

troubleshooting, and for making suggestions for improvement in the

functionality of the database. Including email communications both

allows for proactive addressing of user concerns by administrators.

These small meetings can also system changes, problems in progress

and new features. Regular meetings, whether in-person or virtual,

between users and administrators. It helps everyone involved stay

updated on one of the essential requirements for an efficient database

is the consistent dialogue.

User Feedback

Feedback loop in order to make iterative changes keep the database

optimized, user-oriented and aligned with future business requirements.

to update the users on how their feedback is used to improve the system.

38
MATS Centre for Distance and Online Education, MATS University

Notes Incorporating do this. It is also necessary functionality, application

usability and data quality to improve on areas of deficiency through

implementation. Output: Feedback mechanisms need to be simple and

easy to use so people are motivated to done via, surveys, suggestion

boxes, direct interviews, usability tests, etc. An actively responsive

Database Administrator can gather feedback on topics such as database

to learn about database experience. This can be improving their

performance. Administrative users need to implement formal methods

of gathering and assessing feedback from users Database systems rely

on user feedback to continuously.

Training and Support

Aid users to get updated on various new functionalities and best

practices that would improve their productivity. Of any Database-

related problems. Regular training sessions, when done correctly can

be beneficial as these can documented data including video tutorials,

FAQs, and troubleshooting guides can be made available to reduce the

number of support requests for users searching for assistance.

Moreover, creating a support team or helpdesk will help users instantly

in case in-person workshops, online courses, webinars, or self-paced

tutorials. A knowledge base consisting of like SQL Queries, data

retrieval techniques, data analysis tools, applications). Training can

take many forms: it may be system in the correct manner. The

administrators will make plans on a structured training program

(subjects Training and support offered should be thorough to ensure

that users interact with the database.

Clear Documentation

The system is configured and maintained and to keep the database

running. in a single, easily accessible location, such as an internal wiki

or a document management system, makes it much easier to reference

and collaborate. Good documentation helps users understand how to

use the database; new administrators understand how on the system

such as new features or new security policy. Storing documentation for

small issues or problems. This will help make sure that documentation

is continuously reviewed and updated comparing to any changes made

and troubleshooting documentation should all be included. As a result,

well-drafted documentation gets users acquainted with database

architecture, functionality, and best practices, leaving the need to

trouble administrators to date. Schema diagrams, user documentation,

39

Notes configuration documentation, operational documentation

Documentation plays a key role in helping users and administrators

work with the system, so it is very important to have it clear and up.

Incident Management

A plan for communicating your incidents. Ticketing system allows

users to report problems systematically, and resolved within SLAs.

Your final solution—utilize a ticket system, define escalation

processes, and have Incident management process is critical to ensure

user queries are decreases the downtime but also guarantees the smooth

functioning of the database environment. And take steps to avoid

similar episodes in the future and improve survivability and reliability

of the database. Effective incident management process not only

improves user confidence, users updated on incident status, resolution

timelines, and preventive measures taken to avoid recurrence.

Reasonable health-checking during failure and post-analysis on failure

should be done to gain clarity on the root cause that these are escalated

properly and that the proper teams are notified. They should also set up

transparent communication protocols to keep administrators can track

and prioritize problems to resolve them. The same with critical

incidents, it's very important.

Security Awareness

Further protect the database from threats. By creating a culture of

awareness around security. To secure the integrity and accessibility of

information, database administrators perform regular security audits

and updates, which help to contact if they have a security concern. This

practice not only protects critical information but also helps

organizations to mitigate risks and enhance overall database security

rules about security awareness and training procedures and regular

security reviews can further turn these principles into a reality.

Moreover, administrators ought to set up explicit protocols for

reporting security incidents, so users know whom security policies.

Enforcing data encryption, access control, and phishing prevention is

vital. Any users of the systems should be trained to use strong

passwords, understand what questionable behavior might look like, and

be made aware of organizational to the user. Training of administrators

and authorized personnel on security best practices, password

management, Be obvious with Security Awareness Promotion.

40
MATS Centre for Distance and Online Education, MATS University

Notes End Users

Transaction history via online portal without interacting with the

DBMS directly. Knowing the SQL query that selects and updates

product availability in the database. For example, in banking, an end

user might check his/her account balance, transfer funds or view his/her

database. For instance, in a business that operates online, an end user

might view product lists, add products to a shopping cart, and buy

products without interaction. These users do not need technical

expertise in database management systems (DBMS) but use

applications that abstract the complexities of the underlying The most

common type of database users are end users who may access the

database indirectly through user-friendly applications or interfaces that

facilitate data required activities without needing deep knowledge of

the database. Taxes. These interfaces are designed so that people can

perform all the without knowing about the database structure.) End

users: government agencies provide online portals to citizens for

applying and checking the status of services or paying via an electronic

health record (EHR) system. (They can be used to update patient

information, schedule appointments and pull medical history In

healthcare, an example of end users are doctors, nurses, and

administrative staff accessing patient records can help database

designers to design systems that are more efficient, has less errors and

be user friendly. Data is a response to the demand for user-friendly

interfaces. Knowing what the end users do and bringing focus on that

as to maximize query performance and allow the application to

function. The development of graphical user interfaces (GUIs), mobile

applications, and web-based dashboards that make it easier to retrieve

and enter end-user does not have direct access to the DBMS. The

patterns of those interactions inform the structure of databases in such

a way each.

Application Programmers

The functionality that allows end users to retrieve, edits, and manages

data efficiently. Applications for financial services, healthcare,

education, business analytics, etc. They are mainly responsible for

implementing smooth data interaction. Most write Application

programmers write and maintain application programs that interact

with commercial databases. They act as the intermediaries between end

users and the database, writing programs for Answer: with the

41

Notes application logic through SQL in order to access and present them in a

user-friendly way. print sales reports, monitor inventory levels, or

study buying patterns. Developers break data into meaningful pieces

and combine it me to execute queries and manage data. In a retail

management system, for example, an application programmer may

develop code that helps store managers of interacting with databases,

which application programmers often use. They implement SQL

statements in programming languages like Java, Python, C, and PHP to

allow Structured Query Language (SQL) is a formal way

implementation specific features. Database Connectivity) for general

database connectivity. ORM tools like Hibernate and Entity

Framework are also used in conjunction with these frameworks,

enabling developers to communicate with databases in an object-

oriented manner, instead of writing SQL with Apart from SQL, there

are also frameworks that application programmers use to connect to

databases, with the most common ones JDBC (Java Database

Connectivity) for Java applications, and ODBC (Open application

programmers build applications that make it easier to access and use

the information. to achieve real-time performance, low latency, and

scalability. However, by creating glue between best practices in

software development as well as the database, of records in databases.

Application programmers work with database administrators (DBAs)

in enterprise applications need to enforce authentication and

authorization checks to prevent the users from accessing data they are

not allowed to access or modify. They also utilize encryption and data

validation and error handling techniques in order to protect the integrity

and confidentiality application programming is security. Programmers

another crucial part of.

Database Analysts

Critical in areas like business intelligence, finance, healthcare, and

marketing. SQL and advanced analytical tools such as SSAS queries

to create reports, find trends, and draw conclusions while you only

interact with database as an end-user. Their work is large data and help

in decision making process. Database analysts actively query databases

with Database analyst is very essential in every organization; they

analyze records to find correlations between treatment protocols and

patient outcomes, so they can help doctors make data-driven medical

decisions. Banking database for reporting and analysis on trends in

42
MATS Centre for Distance and Online Education, MATS University

Notes spending, credit risk and fraud ESCAPE. In healthcare, analysts sift

through patient queries to aggregate and summarize data. SQL is often

a crucial part of the data science pipeline, it enables financial analysts,

for example, to retrieve customer transaction information from the One

of the primary tasks that database analysts are responsible for is the

design and execution of complex reports, and predictive models. Along

with SQL, data visualization tools including Tableau, Power BI and

Google Data Studio to present their findings in a way that can easily be

understood. The tools enable analysts to generate dashboards with live

data; comparative Data analysts also utilize statistical programming

languages such as R and Python to perform advanced data analysis,

machine learning, and predictive modeling. base analysts also use

organizations to make informed decisions based on accurate and

reliable data. Structured for analytical purposes. Database analysts

play a crucial role in ensuring that data is partitioned across a

distributed system by monitoring its integrity and consistency, allowing

efficient querying and reporting. Analysts create schemas, optimize

indexing strategies, and design Extract, Transform, Load (ETL)

processes such that the data is sufficiently specialize in data

warehousing. They assist in designing and managing data warehouses

— centralized repositories of integrated data collected from various

sources — that allow for Database analysts also

Power Users

Technical support and other environments usually have power users.

up, tune, and troubleshoot database systems. Enterprise, research

institutes, users who have extensive knowledge of the DBMS and

carry out highly technical tasks. These users hold more power but less

authority than end users, and frequently function in conjunction with

DBAs to set Power users are advanced database used by management

teams to develop strategic plans and improve inventory management.

or monitor customer loyalty metrics. These reports are users’ primary

job is to generate complex SQL queries to pull specific datasets and

generate custom reports. For example, in a retail organization, a power

user could write queries to examine seasonal sales trends, identify high-

performing products, Power with access to sensitive information, from

finance to healthcare, partner with compliance teams to ensure that

database practices are compliant with regulations such as GDPR,

HIPAA and PCI-DSS. to identify unusual activity or unauthorized

43

Notes attempts to access sensitive data. Power users in industries and access

control. They set up user permissions, assign roles, and check access

logs this enables power users to establish database security times and

better utilize available resources. By measuring execution times,

evaluate pre-defined index, and adjust database parameters to achieve

better performance. For large organizations with extensive data, these

trends will lead to the need for collaboration between power users and

database administrators (Dabs) in the performance tuning of SQL

queries by adopting approaches such as partitioning, caching, and query

optimization to improve response task that power users perform is

troubleshooting database performance issues. They track query

performance The other main help database-driven applications run

smoothly through the maximization of the value of data assets by way

of knowledge. Explains that at the Department, they train, provide

ready-to-use documentation, and help shadowing new members, so

they can properly engage with the database from a user perspective.

Power users users. The document Power users are often the bridge

between the technical team and end what they are supposed to do: as

efficiently and effective as possible. Administer the database. When

combined, they help make sure that databases do Database Analysts

and Power Users — Data Users types Database professionals are great

to know users or data work with four types of the database. End users

work with data using user-friendly applications, application

programmers create these applications, database analysts tease vital

information from data, and power users tweak and End Users,

Application Programmers, Users and Administrators 141 This Module

describes the functions and roles of database users and database

administrators. You are given information regarding the roles of these

people. Usable. Database to complex enterprise-level databases used

to manage organizational data efficiently. However, no database can

survive in isolation; different people play diverse roles and take on

multiple responsibilities that ensure the database remains manageable

and of countless software solutions. Databases are used from simple

personal databases stored on local computers The principles of

database design and management are integral to the architecture

Database? So What Is This Thing Called

People are the central part, users of database, Database Administrators

(DBA). for creating, altering, querying data, along with taking care of

44
MATS Centre for Distance and Online Education, MATS University

Notes database security and performance. In this ecosystem, two groups of

application used to interact with the database, which is at the core of

this ecosystem. The DBMS offers utilities and interfaces to familiarize

yourself with database ecosystems in general. A database management

system (DBMS) is a software Before we dive into a specific role, it’s

important utilize data through large, pre-build systems to sophisticated

users who write complex queries to extract specific information.

DBMS. Database users vary from casual users who data. Usually, they

interact on applications or query language provided by the A database

user is anyone who uses the database to get, manipulate, or analyze

Types of Database Users

Data Retrieval

Data retrieval is one of the most fundamental operations in database

management. It enables users to extract useful information from

databases by executing queries. Structured Query Language (SQL) is

the most widely used language for data retrieval in relational databases.

Users can retrieve specific records using simple SELECT queries or

extract complex aggregated data using functions like SUM(), AVG(),

COUNT(), and GROUP BY.

A more advanced query that retrieves customer names and the total

amount they have spent:

SELECT customer_name, SUM(order_amount) AS total_spent

FROM orders

GROUP BY customer_name;

Indexes improve retrieval speed, and optimization techniques such as

query rewriting and indexing strategies further enhance database

performance. Advanced retrieval mechanisms may include full-text

search and query caching.

Data Manipulation

Data manipulation involves modifying the contents of a database,

including inserting, updating, and deleting records. The SQL INSERT,

UPDATE, and DELETE statements facilitate these operations.

For instance, inserting a new record into a users table:

INSERT INTO users (id, name, email) VALUES (1, 'John Doe',

'johndoe@example.com');

Updating an existing record:

UPDATE users

SET email = 'john.doe@newdomain.com'

45

Notes WHERE id = 1;

Deleting a record:

DELETE FROM users WHERE id = 1;

Transaction control statements like COMMIT, ROLLBACK, and

SAVEPOINT ensure data integrity. NoSQL databases like Mongo DB

use different syntax but follow the same principles of data

manipulation.

Data Analysis

Data analysis involves extracting insights and patterns from stored data.

SQL provides analytical functions, while Python, R, and specialized BI

tools help conduct deep analysis. Common SQL functions include

GROUP BY, HAVING, and window functions like RANK and

DENSE_RANK().

Example of a query to analyze monthly sales trends:

SELECT MONTH(order_date) AS month, SUM(order_amount) AS

total_sales

FROM orders

GROUP BY MONTH(order_date)

ORDER BY month;

For advanced analysis, Python can be used:

import pandas as pd

import sqlite3

conn = sqlite3.connect("database.db")

query = "SELECT * FROM orders"

df = pd.read_sql_query(query, conn)

print (df.describe())

Report Generation

Reports are vital for decision-making, regulatory compliance, and

business intelligence. Reports can be generated using SQL queries, BI

tools, or programming languages like Python.

Example SQL query for generating a sales report:

SELECT category, SUM(sales) AS total_sales

FROM products

GROUP BY category;

Python can be used to generate reports programmatically:

import pandas as pd

from fpdf import FPDF

46
MATS Centre for Distance and Online Education, MATS University

Notes

pdf = FPDF()

pdf.add_page()

pdf.set_font("Arial", size=12)

pdf.cell(200, 10, txt="Sales Report", ln=True, align='C')

pdf.output("report.pdf")

Tools like Power BI, Tableau, and Crystal Reports provide interactive

and visual reporting solutions.

Application Usage

Many database users interact with databases through applications rather

than writing queries directly. Web applications, mobile apps, and

enterprise systems connect to databases via APIs.

Example of a simple Python Flask application that retrieves and

displays data:

From flask import Flask, jsonify

import sqlite3

app = Flask(__name__)

@app.route('/customers', methods=['GET'])

def get_customers():

conn = sqlite3.connect("database.db")

cursor = conn.cursor()

cursor. execute("SELECT * FROM customers")

data = cursor.fetchall()

conn.close()

return jsonify(data)

if __name__ == '__main__':

app.run(debug=True)

Users interact with applications via graphical interfaces, making

database operations seamless. Applications ensure data consistency and

security using authentication mechanisms. Each of these database

operations is crucial for maintaining efficient, secure, and accessible

data in modern applications.

47

Notes Functions of Database Users

Data Retrieval

Data retrieval is one of the most fundamental operations in database

management. It enables users to extract useful information from

databases by executing queries. Structured Query Language (SQL) is

the most widely used language for data retrieval in relational databases.

Users can retrieve specific records using simple SELECT queries or

extract complex aggregated data using functions like SUM(), AVG(),

COUNT(), and GROUP BY.

For example, a basic SQL query to retrieve all records from a

customer’s table:

SELECT * FROM customers;

A more advanced query that retrieves customer names and the total

amount they have spent:

SELECT customer_name, SUM(order_amount) AS total_spent

FROM orders

GROUP BY customer_name;

Indexes improve retrieval speed, and optimization techniques such as

query rewriting and indexing strategies further enhance database

performance. Advanced retrieval mechanisms may include full-text

search and query caching.

Data Manipulation

Data manipulation involves modifying the contents of a database,

including inserting, updating, and deleting records. The SQL INSERT,

UPDATE, and DELETE statements facilitate these operations.

For instance, inserting a new record into a users table:

INSERT INTO users (id, name, email) VALUES (1, 'John Doe',

'johndoe@example.com');

Updating an existing record:

UPDATE users

SET email = 'john.doe@newdomain.com'

WHERE id = 1;

Deleting a record:

DELETE FROM users WHERE id = 1;

Transaction control statements like COMMIT, ROLLBACK, and

SAVEPOINT ensure data integrity. NoSQL databases like MongoDB

use different syntax but follow the same principles of data

manipulation.

48
MATS Centre for Distance and Online Education, MATS University

Notes Data Analysis

Data analysis involves extracting insights and patterns from stored data.

SQL provides analytical functions, while Python, R, and specialized BI

tools help conduct deep analysis. Common SQL functions include

GROUP BY, HAVING, and window functions like RANK() and

DENSE_RANK().

Example of a query to analyze monthly sales trends:

SELECT MONTH(order_date) AS month, SUM(order_amount) AS

total_sales

FROM orders

GROUP BY MONTH(order_date)

ORDER BY month;

For advanced analysis, Python can be used:

import pandas as pd

import sqlite3

conn = sqlite3.connect("database.db")

query = "SELECT * FROM orders"

df = pd.read_sql_query(query, conn)

print(df.describe())

Machine learning models further enhance data analysis by predicting

trends and customer behaviors.

Report Generation

Reports are vital for decision-making, regulatory compliance, and

business intelligence. Reports can be generated using SQL queries, BI

tools, or programming languages like Python.

Example SQL query for generating a sales report:

SELECT category, SUM(sales) AS total_sales

FROM products

GROUP BY category;

Python can be used to generate reports programmatically:

import pandas as pd

from fpdf import FPDF

pdf = FPDF()

pdf.add_page()

pdf.set_font("Arial", size=12)

pdf.cell(200, 10, txt="Sales Report", ln=True, align='C')

49

Notes pdf.output("report.pdf")

Tools like Power BI, Tableau, and Crystal Reports provide interactive

and visual reporting solutions.

Application Usage

Many database users interact with databases through applications rather

than writing queries directly. Web applications, mobile apps, and

enterprise systems connect to databases via APIs.

Example of a simple Python Flask application that retrieves and

displays data:

from flask import Flask, jsonify

import sqlite3

app = Flask(__name__)

@app.route('/customers', methods=['GET'])

def get_customers():

conn = sqlite3.connect("database.db")

cursor = conn.cursor()

cursor.execute("SELECT * FROM customers")

data = cursor.fetchall()

conn.close()

return jsonify(data)

if __name__ == '__main__':

app.run(debug=True)

Users interact with applications via graphical interfaces, making

database operations seamless. Applications ensure data consistency and

security using authentication mechanisms. Each of these database

operations is crucial for maintaining efficient, secure, and accessible

data in modern applications.

Database Administrators: Managing the Database Infrastructure

Database administrators (DBAs) are responsible for the overall

management and maintenance of the database system. Their

responsibilities include database design, installation, configuration,

security, performance tuning, backup, and recovery. DBAs play a

critical role in ensuring that the database system is reliable, efficient,

and secure.

50
MATS Centre for Distance and Online Education, MATS University

Notes Roles and Responsibilities of DBAs View of Data

Database Design and Implementation

Database administrators (DBAs) play a crucial role in designing and

implementing database schemas. This involves defining tables,

columns, relationships, and constraints that structure the database. The

design process includes normalizing data to eliminate redundancy

while ensuring consistency. DBAs collaborate closely with application

developers to align the database design with application requirements.

Below is an example of a simple database schema for a student

management system in SQL:

CREATE TABLE Students (

StudentID INT PRIMARY KEY,

 FirstName VARCHAR(50),

 LastName VARCHAR(50),

DateOfBirth DATE,

 Email VARCHAR(100) UNIQUE

);

CREATE TABLE Courses (

CourseID INT PRIMARY KEY,

CourseNameVARCHAR(100),

 Credits INT

);

CREATE TABLE Enrollments (

EnrollmentID INT PRIMARY KEY,

StudentID INT,

CourseID INT,

EnrollmentDate DATE,

 FOREIGN KEY (StudentID) REFERENCES Students(StudentID),

 FOREIGN KEY (CourseID) REFERENCES Courses(CourseID)

);

Database Installation and Configuration

DBAs are responsible for installing and configuring the database

management system (DBMS). This involves setting up the database

server, configuring network settings, and installing necessary patches

and updates. Proper configuration ensures optimal database

51

Notes performance, security, and reliability. Below is a Python script to

connect to a PostgreSQL database:

import psycopg2

try:

connection = psycopg2.connect(

database="student_db",

user="admin",

password="securepassword",

host="127.0.0.1",

port="5432"

)

print("Database connection successful")

except Exception as e:

print("Error connecting to database:", e)

finally:

if connection:

connection.close()

Database Security

Ensuring database security is one of the primary responsibilities of

DBAs. This includes managing user accounts, granting and revoking

permissions, and implementing security policies. DBAs must monitor

database activity to detect and prevent security breaches. The following

SQL query demonstrates how to create a secure user with specific

privileges:

CREATE USER db_user WITH PASSWORD 'StrongPass123';

GRANT SELECT, INSERT, UPDATE ON Students TO db_user;

REVOKE DELETE ON Students FROM db_user;

Database Performance Tuning

Database performance tuning involves optimizing queries, managing

indexes, and adjusting database parameters. DBAs analyze database

logs and performance metrics to identify bottlenecks. The following

SQL query demonstrates how to create an index to improve query

performance:

CREATE INDEX idx_student_lastname ON Students(LastName);

This index helps in speeding up searches that filter results based on the

last name.

52
MATS Centre for Distance and Online Education, MATS University

Notes Database Backup and Recovery

Regular database backups are essential for disaster recovery. DBAs

must develop and implement backup and recovery procedures to ensure

minimal data loss. Below is an example of taking a MySQL database

backup using a command-line tool:

mysqldump -u root -p student_db>student_db_backup.sql

Similarly, restoring the database from a backup can be done using:

mysql -u root -p student_db<student_db_backup.sql

Database Maintenance

Routine maintenance tasks such as checking database integrity,

reorganizing tables, and updating statistics are vital for smooth

operation. The following SQL command helps in analyzing and

optimizing a table:

ANALYZE TABLE Students;

OPTIMIZE TABLE Students;

User Support

DBAs assist database users by troubleshooting problems, helping with

query writing, and providing data access. Below is an example of a SQL

query to fetch student details:

SELECT FirstName, LastName, Email FROM Students WHERE

StudentID = 101;

Disaster Recovery Planning

A disaster recovery plan ensures business continuity in case of database

failures. This involves setting up redundant systems and failover

mechanisms. A high-availability setup can include database replication,

as shown in the following PostgreSQL command:

CREATE PUBLICATION my_publication FOR TABLE Students,

Courses, Enrollments;

Capacity Planning

DBAs monitor database usage and plan for future capacity needs, such

as storage expansion and hardware upgrades. The following SQL query

helps analyze table size:

SELECT table_name,

pg_size_pretty(pg_total_relation_size(table_name::regclass)) FROM

information_schema.tables WHERE table_schema = 'public';

53

Notes Database Documentation

Proper documentation is crucial for database management. DBAs

maintain schema diagrams, user manuals, and operational procedures.

Below is an example of generating a schema diagram using SQL:

SELECT table_name, column_name, data_type FROM

information_schema.columns WHERE table_schema = 'public';

Database administrators play a pivotal role in managing modern

database systems. From design and security to performance

optimization and disaster recovery, their expertise ensures seamless

database operations. Understanding these key responsibilities allows

organizations to maintain reliable, secure, and efficient databases.

Types of DBAs

System DBAs

System Database Administrators (DBAs) are responsible for the

technical aspects of managing databases, ensuring they are configured

correctly, optimized for performance, and secured against potential

threats. They handle the installation and configuration of database

management systems (DBMS), performance tuning, backup and

recovery, and security implementations. These DBAs play a critical

role in ensuring database availability and reliability, making them

indispensable to organizations relying on large-scale data storage and

retrieval systems. One of the primary responsibilities of a System DBA

is the installation and configuration of a DBMS. This process involves

selecting the appropriate database software, configuring necessary

hardware resources, and setting up initial database parameters to ensure

optimal performance. For example, in a MySQL environment, a

System DBA may use the following configuration settings.

[mysqld]

default-storage-engine=INNODB

max_connections=500

query_cache_size=16M

innodb_buffer_pool_size=256M

Performance tuning is another crucial responsibility of a System DBA.

They must monitor and optimize database queries, indexing strategies,

and memory allocation to ensure smooth operation. For instance,

indexing a frequently queried column can significantly improve

retrieval speed:

CREATE INDEX idx_customer_email ON customers(email);

54
MATS Centre for Distance and Online Education, MATS University

Notes Backup and recovery strategies are essential for protecting data from

accidental loss or corruption. A System DBA ensures that databases are

regularly backed up using automated scripts and restoration

procedures:

BACKUP DATABASE company TO DISK =

'C:\backups\company.bak' WITH FORMAT;

System DBAs also focus on security, implementing user authentication

and access control mechanisms. Using roles and privileges in SQL

Server, a System DBA can restrict access to critical database objects:

CREATE USER analyst FOR LOGIN analyst_login;

GRANT SELECT ON sales_data TO analyst;

Application DBAs

Application Database Administrators work closely with developers to

ensure that the database supports the application's needs efficiently.

Their primary focus includes schema design, query optimization, and

data modeling. Unlike System DBAs, they are more involved with

application logic and performance tuning from the development

perspective. Schema design is one of the crucial responsibilities of an

Application DBA. They define table structures, relationships, and

constraints to ensure data integrity and efficiency. For instance, in an

e-commerce application, an Application DBA might define the schema

for an orders table as follows.

CREATE TABLE orders (

order_id INT PRIMARY KEY,

customer_id INT,

order_date DATE,

total_amountDECIMAL(10,2),

 FOREIGN KEY (customer_id) REFERENCES

customers(customer_id)

);

Query optimization is another area of expertise for an Application

DBA. Poorly written queries can slow down application performance.

By using indexes and query optimizations, an Application DBA

ensures that queries run efficiently:

EXPLAIN ANALYZE

SELECT * FROM orders

WHERE order_date> '2024-01-01';

55

Notes Application DBAs also work on stored procedures and triggers to

encapsulate business logic within the database, reducing redundant

code in the application layer:

CREATE TRIGGER update_inventory

AFTER INSERT ON orders

FOR EACH ROW

BEGIN

 UPDATE products

 SET stock = stock - NEW.quantity

 WHERE product_id = NEW.product_id;

END;

Development DBAs

Development Database Administrators support software developers by

managing database changes, data migration, and performance testing

during the application development lifecycle. They play a crucial role

in ensuring that database modifications align with application needs

and business logic. One of the primary responsibilities of a

Development DBA is managing schema changes. During development,

changes to the database structure may be necessary to accommodate

new application features:

ALTER TABLE orders ADD COLUMN

shipping_addressVARCHAR(255);

Data migration is another essential task for Development DBAs. They

ensure that data is correctly transferred when upgrading systems or

integrating new applications. For example, migrating customer data

from an old system might involve:

INSERT INTO new_customers (id, name, email)

SELECT id, full_name, email_address FROM old_customers;

Development DBAs also focus on performance testing, ensuring that

queries and database functions execute efficiently under expected

loads:

SELECT order_id, SUM(total_amount) FROM orders GROUP BY

order_id;

Data Warehouse DBAs

Data Warehouse Database Administrators specialize in managing

large-scale databases designed for business intelligence and analytical

processing. Their primary responsibilities include data loading, query

optimization, and data modeling tailored for analytics. One of the most

56
MATS Centre for Distance and Online Education, MATS University

Notes critical tasks of a Data Warehouse DBA is data loading, which involves

importing vast amounts of structured data into the warehouse:

COPY sales_data FROM 'C:\data\sales.csv' WITH CSV

HEADER;

Query optimization for analytical workloads is another major

responsibility. Unlike transactional databases, data warehouses handle

complex queries requiring advanced indexing and partitioning

techniques:

CREATE INDEX idx_sales_date ON sales_data(sale date);

Data modeling for analytics involves designing schemas optimized for

reporting and analysis. The star schema is a common approach, where

a fact table connects to multiple dimension tables:

CREATE TABLE fact_sales (

sale_id INT PRIMARY KEY,

product_id INT,

customer_id INT,

sale_date DATE,

amount DECIMAL(10,2)

);

CREATE TABLE dim_product (

product_id INT PRIMARY KEY,

product_nameVARCHAR(100),

category VARCHAR(50)

);

CREATE TABLE dim_customer (

customer_id INT PRIMARY KEY,

customer_nameVARCHAR(100),

region VARCHAR(50)

);

Data Warehouse DBAs also use advanced analytical functions to

generate reports and insights:

SELECT region, SUM(amount) AS total_sales

FROM fact_sales

JOIN dim_customer ON fact_sales.customer_id =

dim_customer.customer_id

GROUP BY region;

57

Notes Each type of DBA plays a vital role in database management, from

ensuring system stability and security to optimizing queries and

supporting application development. System DBAs focus on

performance, installation, and security, while Application DBAs work

closely with developers to ensure databases meet business needs.

Development DBAs manage schema changes and performance testing,

whereas Data Warehouse DBAs specialize in business intelligence and

analytics. Together, these professionals ensure that databases function

efficiently, securely, and in alignment with organizational goals.

Essential Skills for DBAs

Technical Skills

Database Administrators (DBAs) must possess strong technical skills

to manage, maintain, and optimize database systems effectively. They

need a deep understanding of database architecture, query languages

like SQL, and database administration tools such as MySQL

Workbench, Oracle Enterprise Manager, or SQL Server Management

Studio. Additionally, knowledge of operating systems like Linux,

Windows, and UNIX is crucial, as databases rely on these

environments for performance and security. Networking expertise,

including understanding TCP/IP protocols, firewall configurations, and

load balancing, is essential for database connectivity and optimization.

Familiarity with hardware components such as storage devices,

memory management, and CPU optimization also plays a key role in

ensuring high availability and efficiency of databases. A crucial part of

a DBA’s technical skillet is proficiency in database scripting and

automation. Using scripting languages such as Python, Bash, or Power

Shell, DBAs can automate routine tasks like backups, monitoring, and

performance tuning. Below is an example of a Python script that

connects to a MySQL database and retrieves data:

import mysql.connector

Establishing the connection

conn = mysql.connector.connect(

host="localhost",

user="root",

password="password",

database="example_db"

)

58
MATS Centre for Distance and Online Education, MATS University

Notes

cursor = conn.cursor()

Executing a query

cursor.execute("SELECT * FROM employees")

result = cursor.fetchall()

Displaying the results

for row in result:

print(row)

Closing the connection

cursor.close()

conn.close()

By mastering these technical skills, DBAs can ensure optimal database

performance, security, and reliability, supporting the organization’s

data-driven needs efficiently.

Problem-Solving Skills

Database Administrators must have exceptional problem-solving skills

to troubleshoot issues, identify root causes, and implement effective

solutions. The ability to analyze database logs, diagnose connectivity

issues, and optimize query performance is crucial for minimizing

downtime and maintaining data integrity. DBAs must also be adept at

handling hardware failures, software bugs, and security breaches by

applying systematic troubleshooting techniques.

For instance, if a database query is running slow, a DBA can use tools

like EXPLAIN in MySQL or EXPLAIN PLAN in Oracle to analyze

query execution plans and identify bottlenecks. Below is an example:

EXPLAIN SELECT * FROM employees WHERE department_id = 5;

The output of this query helps the DBA determine whether proper

indexing is applied or if the query needs restructuring for better

performance. Additionally, DBAs may use stored procedures to handle

error recovery, such as the example below:

DELIMITER $$

CREATE PROCEDURE CheckEmployeeExists(IN emp_id INT)

BEGIN

 DECLARE emp_count INT;

59

Notes SELECT COUNT(*) INTO emp_count FROM employees WHERE

id = emp_id;

 IF emp_count = 0 THEN

 SIGNAL SQLSTATE '45000'

 SET MESSAGE_TEXT = 'Employee not found';

 END IF;

END$$

DELIMITER ;

By leveraging these problem-solving strategies, DBAs can ensure

databases operate smoothly, minimizing disruptions and maximizing

efficiency.

Communication Skills

Effective communication is vital for DBAs, as they interact with

developers, system administrators, and non-technical stakeholders.

They must be able to convey complex technical information in a simple

and understandable manner. Whether explaining database performance

issues, providing documentation, or collaborating on software

development, clear and concise communication ensures smooth

operations. DBAs also write and maintain technical documentation,

such as database schemas, backup procedures, and security policies.

Below is an example of a database schema documentation snippet in

SQL format.

-- Employees Table

CREATE TABLE employees (

id INT PRIMARY KEY AUTO_INCREMENT,

name VARCHAR(100) NOT NULL,

department_id INT,

email VARCHAR(255) UNIQUE,

created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP

);

Additionally, DBAs should possess strong presentation skills for

conducting training sessions or delivering reports to management.

Well-structured documentation and reports help organizations make

informed decisions and maintain compliance with industry standards.

Project Management Skills

DBAs frequently manage projects such as database upgrades,

migrations, and performance tuning initiatives. They must plan,

execute, and monitor these projects to ensure successful

60
MATS Centre for Distance and Online Education, MATS University

Notes implementation within budget and deadlines. Understanding project

management methodologies, such as Agile and Waterfall, can help

DBAs streamline their workflow.

For example, during a database migration project, a DBA must assess

risks, plan data transfer, and test the new system before deployment.

Below is an SQL script for backing up a database before migration:

-- Backup database before migration

BACKUP DATABASE example_db TO DISK =

'C:\backup\example_db.bak';

By effectively managing projects, DBAs ensure that organizational

data remains secure, accessible, and optimized for performance,

supporting business continuity and growth.

Security Awareness

Database security is a critical responsibility for DBAs. They must be

aware of security threats such as SQL injection, data breaches, and

unauthorized access. Implementing best practices, such as role-based

access control (RBAC), encryption, and regular security audits, helps

mitigate these risks. For example, enforcing user access restrictions

ensures that only authorized personnel can modify sensitive data.

Below is an SQL command to create a restricted user role.

-- Creating a read-only user for reporting purposes

CREATE USER 'report_user'@'localhost' IDENTIFIED BY

'securepassword';

GRANT SELECT ON example_db.* TO 'report_user'@'localhost';

Additionally, encrypting sensitive data helps protect it from

unauthorized access. Below is an example of encrypting a column using

MySQL AES encryption:

UPDATE employees SET email =

AES_ENCRYPT('employee@example.com', 'encryption_key')

WHERE id = 1;

By staying updated on emerging threats and compliance requirements,

DBAs can safeguard organizational data and maintain regulatory

adherence, ensuring a secure database environment.

Absolutely. Let's craft a comprehensive 10,000-word book Module

exploring the intricate relationship between Database Users and

Database Administrators (DBAs), delving into security, performance,

and recovery.

61

Notes The Symbiotic Dance: Database Users and DBAs

This Module, we will take a closer look at the complexity of this

relationship in the context of the primary tasks for DBAs and the most

relevant role for users. Both an engineer hat and a custodian hat. In

data, working on the health and wellness of the database. They make

sure it is available and perform ant and secure, wearing do their daily

work, look for trends, and make decisions. DBAs are the guardians of

the any data-driven organization, expecting DBAs to be the custodians

of a reliable, efficient, and secure database environment. They consume

the data to context of their contributions to the database environment.

DBAs are the gatekeepers for database users, who are the lifeblood of

of this dance is the symbiotic relationship of database users with

Database Administrators (DBAs). It requires efficient exchange of

well-defined information to facilitate interaction between these

components built upon a common about meeting the needs of the end

users as it is about preserving and protecting information. The very crux

the proper functioning of such systems, meanwhile, is as much support

their goals. Database system successful. Collaborating the users and

the DBA to make sure the database customized to the organization

needs and discuss openly. This is the essence of how this collaboration

makes the is a problem, while DBAs should be able to take technical

innovations and translate them for a non-technical audience. Schedule

regular meetings, keep everything detailed and transparent, and is

fundamental. Users should be able to clearly express what they need

and when there report all issues they find, so DBAs trust users.

Communication, in this case, they need to be able to do their jobs.

Users are expected to follow the security policies and to and respect

for one another. DBAs are trusted by users to give them the tools and

access that this bond is formed on the principles of trust.

Security and Access Control: The Fortified Gateway

Are assigned separate permissions to ensure that a clerk entering data

is not able to delete or update the data tables. Permissions needed to do

their jobs. User management: The system can establish user

management, whereby different user’s accounts have the right roles

assigned; ensuring that accounts are removed when no longer needed.

DBAs should always follow the least-privilege principle, providing

users only the combines things like managing user accounts and how

they provide access and security policies. User account management

62
MATS Centre for Distance and Online Education, MATS University

Notes deals with setting up and managing user accounts; making sure the

while, every DBA is typically a system administrator who is

responsible for building the security layer of the database using access

control that allows only authorized access to the database. This Data

in the Age of Cyber Threats with Network Slicing all database

administration. Loved Reading: PlasHealth: Protecting Sensitive

Security is an essential ingredient of easily guessed. Ensure they are

being followed. A security policy may specify that employees must

change their passwords every 90 days and that all passwords must be

strong and not and audit logging, among others. DBAs implement

these policies and database security. These can include policies around

how passwords are managed, data encryption, organizations with

many employees. Database security policies which define the set of

rules and procedures for to users. RBAC makes controlling permission

much easier, particularly for larger use ACLs or RBAC to manage

permissions. ACL consent permission to users, contrary RBAC is

Goon' do permission to role then Map and stored procedures. Now

DBAS Permission control is the process of granting and revoking

permissions on database objects like tables, views regular security

audits and vulnerability assessments to uncover and remediate these

security weaknesses. and the database administrator (DBA) should

ensure that users receive training on security best practices, such as

recognizing phishing emails, not visiting suspicious websites, and

keeping passwords secure. It is crucial to conduct also involves user

awareness. Both data owners include disconnecting compromised

systems from the network, restoring data from backups, and reporting

the incident to authorities. Database security can be automated using

intrusion detection systems (IDS) and security information and event

management (SIEM) systems. Where users communicate well with

DBAs and vice versa. Other users. This goes a long way in creating a

strong security culture a phishing attempt for database credentials. The

DBA can then verify the email and block it from hitting training they

need to safeguard themselves and the database. For instance, the user

could report a suspicious email that seems to be and adhere to security

best practices. In response, DBAs can equip users with the tools and

are the first line of defense against security threats. They can also report

suspicious activity, recognize potential vulnerabilities, and your DBAs

63

Notes are strong in order to keep your DB secure. Users It is important to

ensure that the relationship between your users.

In query response time represents either an issue with a specific query,

or an issue with a particular index. look into these metrics for potential

issues and performance bottlenecks. For instance, whether the the

sudden increase of tools and methods including database management

tools, system monitoring tools, and performance dashboards. They to

respond to queries, CPU utilization, and memory usage. To keep track

of performance, DBAs use a range and optimized. Performance

monitoring: The mechanisms for observing the key metrics of

performance, such as time taken meets these performance

expectations. It is a preventive approach wherein the performance is

monitored, tuned expect data to be fast and efficient, no waiting, or

downtime. That is up to the DBAs to ensure that the database factor

that determines the performance of the application or service. Users

every application or service relies on a database which in turn is the

most critical to apply to the database. Created, maintained, and

optimized by DBAs. The DB optimizer evaluates the query itself and

the underlying data to decide the best indexes of data retrieval. Indexes

are key area of performance tuning is index management. Indexes are

data structures that increase the efficiency use query profilers and

execution plans to find inefficient queries and suggest optimizations.

Another joins, or re-ordering query plans. DBAs also one that is well

optimized. This may mean creating indexes, refactoring make these

tuning decisions. For example, we can rewrite from a query that

performs poorly, to database parameters and settings for performance

improvement. This could mean increasing buffer pool size, adjusting

query optimizer settings or altering disk I/O patterns, and it is essential

that the DBAs have a deep knowledge of database architecture and

configuration to Database tuning refers to optimization by fine tuning

on and suggest improvements. too long. Then the DBA could look up

the query good queries and using database features effectively. For

example, a user may notice that a given report is running slow queries

or application delays. DBAs, for their part, can advise users on writing

DBAs that has to continue to be maintained for the database to perform

optimally. Users can provide valuable feedback related to performance

and tired to track against other considerations, like security and

availability. There is a complex relationship between users and

64
MATS Centre for Distance and Online Education, MATS University

Notes performance, tweaking things up if necessary. They also need to

balance performance is an iterative process. DBAs need to always

keep an eye on example, may indicate the need for a server upgrade or

query optimization. Performance tuning the performance can break

and take preemptive steps to avoid that. A gradual increase in CPU

utilization, for to look for any trends and patterns. This can help them

predict where DBAs: Performing Database Analysis DBAs also

perform analysis of database logs and performance metrics.

Resort Backup and Recovery Procedures: The Last

Of data that can be lost post-failure. Time the database can be

unavailable after encountering a failure. The Retrievable Point

Objective (RPO) is the amount time objective (RTO) and recovery

point objective (RPO). RTO is the maximum backup, backup types,

retention policy. When creating a backup strategy, DBAs need to take

into account the organization’s recovery and testing. Give a framework

for backup planning, including when to establish backup backup

strategy, frequency of of a failure. This is an all-encompassing strategy

that covers backup planning, executing, consequences of data loss.

Responsible for the regular backup of the database, as well as the

recoverability of the database in the event Organizations may face

catastrophic backup soft backup strategy. This may be done with the

help of database backup tools, operating system backup tools, or third-

party During backup implementation, the database is configured to

perform backups in line with the and recovery processes are

documented and easily accessible to stakeholders. Restores to a

different server or backup verification tools. DBAs should ensure that

the backup backups to ensure that they can be restored properly. This

can include test that backups should be taken in regular intervals and

it should be stored in a safe location. Backup testing is the process of

testing ware. DBA needs to make sure then restore the table from a

backup and check that the data is correct. May notify you that a table

has been mistakenly deleted. The DBA can done, how recovery

happens, and how the end-users play a role in this. Here is an example:

a user and aid data validation after recovery. DBAs, in turn, provide

users with information regarding how backups are bank to restore it.

Users may be allowed to inform data loss events, notify the state of the

database before a failure event, challenges and promptly resolve them.

Pretty little user-DBA relationship: the users can use the same method

65

Notes to read the data used by the efficiently to avoid downtime, and have to

be able to perform a database recovery. They should also proactively

troubleshoot any recovery transaction logs to roll forward the changes.

BBAs have to quickly and Recovery: In the event of a failure, the

database is restored from backups. This may include restoring a

complete backup followed by incremental backups or Database.

The Evolving Landscape and Future Directions

The relationship between database users and DBAs is constantly

evolving in response to technological advancements and changing

business needs. Cloud computing, big data, and artificial intelligence

are transforming the way databases are used and managed. Cloud-based

database services offer scalability, flexibility, and cost-effectiveness,

but they also introduce new security and management challenges. Big

data databases, such as NoSQL databases, are designed to handle large

volumes of unstructured data, but they require specialized skills and

expertise. Artificial intelligence (AI) and machine learning (ML) are

being used to automate database management tasks, such as

performance.

66
MATS Centre for Distance and Online Education, MATS University

Notes Unit 4: Introduction to Data Mining, Data Warehousing

1.6 Introduction to Data Mining, Data Warehousing, Big Data, and

Data Analytics

Figure 5: Data Mining, Data Warehousing, Big Data, and Data Analytics
[Source: https://miro.medium.com/]

Data Mining

Data mining is the process of discovering patterns, correlations, and

useful information from large datasets. It involves techniques such as

classification, clustering, regression, and association rule mining.

Organizations use data mining to extract hidden knowledge, optimize

decision-making, and predict trends. A common application of data

mining is in customer segmentation, where businesses analyze

purchasing behaviors to target specific groups. Another example is

fraud detection in banking, where machine learning models analyze

transaction patterns to identify anomalies.

67

Notes

Example: Implementing Apriority Algorithm in Python

From mlxtend.frequent_patterns import apriori, association_rules

import pandas as pd

Sample dataset

data = {'Milk': [1, 0, 1, 1, 0],

 'Bread': [1, 1, 1, 0, 1],

 'Butter': [0, 1, 0, 1, 1]}

df = pd.DataFrame(data)

Generate frequent itemsets

frequent_itemsets = apriori(df, min_support=0.5, use_colnames=True)

Generate association rules

rules = association_rules(frequent_itemsets, metric='lift',

min_threshold=1.0)

print(rules)

Figure 6: Data Warehouse Data Mining
[Source: https://d3i71xaburhd42.cloudfront.net/]

68
MATS Centre for Distance and Online Education, MATS University

Notes Data Warehousing

Data warehousing is a centralized repository that stores structured data

from multiple sources. It enables efficient querying, reporting, and

analysis of data. Data warehouses support Online Analytical Processing

(OLAP), which facilitates multidimensional analysis and business

intelligence. A key component of data warehousing is the ETL (Extract,

Transform, Load) process, where data is extracted from different

sources, transformed into a unified format, and loaded into the

warehouse for analysis.

Example: Creating a Data Warehouse Schema in SQL

CREATE TABLE Sales (

SaleID INT PRIMARY KEY,

ProductID INT,

CustomerID INT,

 Amount DECIMAL(10,2),

SaleDate DATE

);

CREATE TABLE Products (

ProductID INT PRIMARY KEY,

 ProductName VARCHAR(100),

 Category VARCHAR(50)

);

CREATE TABLE Customers (

CustomerID INT PRIMARY KEY,

CustomerNameVARCHAR(100),

 Location VARCHAR(100)

);

Big Data

Big Data refers to vast amounts of structured and unstructured data that

traditional database systems cannot handle efficiently. It is

characterized by the "3Vs": Volume, Velocity, and Variety.

Technologies like Hardtop, Apache Spark, and NoSQL databases help

process Big Data efficiently. Big Data is widely used in fields like

healthcare (predictive analytics), finance (real-time fraud detection),

and social media (sentiment analysis). The use of distributed computing

frameworks allows organizations to handle petabytes of data

efficiently.

69

Notes Example: Analyzing Big Data with Apache Spark in Python

from pyspark.sql import Spark Session

Initialize Spark session

spark =

SparkSession.builder.appName("BigDataExample").getOrCreate()

Load dataset

data = [(1, "Alice", 28), (2, "Bob", 35), (3, "Charlie", 40)]

columns = ["ID", "Name", "Age"]

df = spark.createDataFrame(data, columns)

Show data

df.show()

Data Analytics

Data analytics involves examining data to derive insights, trends, and

patterns that inform decision-making. It includes descriptive,

diagnostic, predictive, and prescriptive analytics. Techniques such as

machine learning, statistical modeling, and visualization tools are

widely used in data analytics. For example, businesses use analytics to

forecast sales, optimize marketing strategies, and detect operational

inefficiencies. Tools like Python, R, and Tableau aid in data

visualization and interpretation.

Example: Performing Data Analytics with Pandas in Python

import pandas as pd

Sample dataset

data = {'Product': ['A', 'B', 'C', 'D'],

 'Sales': [200, 150, 300, 400]}

df = pd.DataFrame(data)

Descriptive statistics

print(df.describe())

Each of these domains plays a crucial role in modern data management

and decision-making. Understanding them provides a foundation for

leveraging data effectively in business, healthcare, and other industries.

MCQs:

70
MATS Centre for Distance and Online Education, MATS University

Notes 1. What is the primary purpose of a Database Management

System (DBMS)?

a) Store and manage data efficiently

b) Create operating systems

c) Design software applications

d) Process images

2. Which of the following is NOT a type of data model?

a) Hierarchical Model

b) Network Model

c) Relational Model

d) Cloud Model

3. Which of the following is a Data Definition Language

(DDL) command?

a) SELECT

b) UPDATE

c) CREATE

d) INSERT

4. Which of the following best describes "data abstraction"?

a) Hiding complex details of data storage

b) Removing unwanted databases

c) Encrypting data for security

d) Storing data in cloud servers

5. Which of the following database architectures consists of

an application layer, database layer, and client layer?

a) One-tier

b) Two-tier

c) Three-tier

d) Distributed

6. Which type of user is responsible for designing the

database structure?

a) Database Administrator (DBA)

b) End User

c) Application Developer

d) Data Scientist

7. Which of the following is NOT a characteristic of Big

Data?

a) Volume

b) Velocity

71

Notes c) Visualization

d) Variety

8. A data warehouse is used for:

a) Storing historical data for analysis

b) Running transactions in real-time

c) Encrypting database passwords

d) Creating virtual private networks

9. What is the role of Data mining in databases?

a) To analyze large datasets and discover patterns

b) To delete unwanted records

c) To create software applications

d) To manage database security

10. Which language is used to manipulate and query data in a

database?

a) HTML

b) JavaScript

c) DML (Data Manipulation Language)

d) XML

Short Questions:

1. Define Database Management System (DBMS) and its purpose.

2. Explain the concept of data abstraction in DBMS.

3. What is the difference between instances and schemas?

4. What are the different types of data models?

5. Differentiate between DDL and DML with examples.

6. What are the main components of two-tier and three-tier

database architecture?

7. What is the role of a Database Administrator (DBA)?

8. Define Data Mining and its applications.

9. How does Big Data differ from traditional databases?

10. What is Data Warehousing, and why is it important?

Long Questions:

1. Explain the purpose and advantages of using a DBMS over

traditional file systems.

2. Describe the different levels of data abstraction in DBMS.

3. Compare the Hierarchical, Network, and Relational Data

Models.

4. Explain the difference between DDL and DML commands with

examples.

72
MATS Centre for Distance and Online Education, MATS University

Notes 5. Discuss the Two-tier and Three-tier architecture of DBMS with

diagrams.

6. What are the roles and responsibilities of database users and

administrators?

7. Explain the importance of Data Mining and its applications.

8. Discuss the characteristics of Big Data and its impact on

businesses.

9. Describe the concept of Data Warehousing and how it supports

business intelligence.

10. What is Data Analytics, and how does it improve decision-

making?

73
MATS Centre for Distance and Online Education, MATS University

MODULE 2

DATA MODELING AND DATABASE DESIGN

2.0 LEARNING OUTCOMES

• Understand the database design process and its importance.

• Learn about the Entity-Relationship (E-R) Model.

• Understand the concept of constraints in database design.

• Learn how to create and interpret E-R diagrams.

• Differentiate between weak and strong entity sets.

74
MATS Centre for Distance and Online Education, MATS University

Notes Unit 5: Database Design

2.1 Design Process

Data modeling and database design are crucial steps in the development

of efficient and well-structured database systems. The design process

involves multiple stages, from conceptual modeling to logical and

physical design. A well-structured database ensures data integrity,

minimizes redundancy, and enhances query performance. This Module

explores the key aspects of data modeling and database design,

discussing the design process in detail, along with coding examples to

illustrate practical implementations.

Conceptual Design

Conceptual design is the first step in database design, where a high-

level data model is created to capture the overall structure of the data.

The Entity-Relationship (ER) model is commonly used at this stage. It

helps in identifying entities, attributes, and relationships.

Example of an ER Model Representation

CREATE TABLE Students (

StudentID INT PRIMARY KEY,

 Name VARCHAR(100),

 Age INT,

Figure 7: Database Schema
[Source: https://estuary.dev/]

75

Notes Major VARCHAR(50)

);

CREATE TABLE Courses (

CourseID INT PRIMARY KEY,

CourseNameVARCHAR(100),

 Credits INT

);

CREATE TABLE Enrollments (

EnrollmentID INT PRIMARY KEY,

StudentID INT,

CourseID INT,

EnrollmentDate DATE,

 FOREIGN KEY (StudentID) REFERENCES Students(StudentID),

 FOREIGN KEY (CourseID) REFERENCES Courses(CourseID)

);

In this example, three tables represent students, courses, and

enrollments, showing how entities and relationships are structured in

the database.

Logical Design

The logical design phase involves translating the conceptual model into

a logical schema that can be implemented in a database management

system (DBMS). Normalization is an essential process at this stage,

ensuring that the database minimizes redundancy and maintains

integrity.

Example of Normalization

Assume a table with redundant data:

CREATE TABLE StudentCourses (

StudentID INT,

StudentNameVARCHAR(100),

CourseNameVARCHAR(100),

 Instructor VARCHAR(100)

);

To normalize, separate entities into distinct tables:

CREATE TABLE Students (

StudentID INT PRIMARY KEY,

StudentNameVARCHAR(100)

76
MATS Centre for Distance and Online Education, MATS University

Notes);

CREATE TABLE Courses (

CourseID INT PRIMARY KEY,

CourseNameVARCHAR(100)

);

CREATE TABLE Instructors (

InstructorID INT PRIMARY KEY,

InstructorNameVARCHAR(100)

);

CREATE TABLE StudentCourses (

StudentID INT,

CourseID INT,

InstructorID INT,

 FOREIGN KEY (StudentID) REFERENCES Students(StudentID),

 FOREIGN KEY (CourseID) REFERENCES Courses(CourseID),

 FOREIGN KEY (InstructorID) REFERENCES

Instructors(InstructorID)

);

This transformation reduces redundancy and improves data integrity.

Physical Design

Physical design focuses on how the data will be stored in the database,

considering indexing, partitioning, and query optimization.

Example of Indexing for Performance Optimization

CREATE INDEX idx_student_name ON Students(StudentName);

CREATE INDEX idx_course_name ON Courses(CourseName);

Indexes improve search efficiency, making data retrieval faster in large

datasets.

Implementation and Testing

Once the database is designed, it must be implemented and tested to

ensure it functions correctly and efficiently.

Example of Data Insertion and Query Testing

INSERT INTO Students (StudentID, StudentName) VALUES (1, 'John

Doe');

INSERT INTO Courses (CourseID, CourseName) VALUES (101,

'Database Systems');

77

Notes INSERT INTO Instructors (InstructorID, InstructorName) VALUES

(201, 'Dr. Smith');

INSERT INTO StudentCourses (StudentID, CourseID, InstructorID)

VALUES (1, 101, 201);

Retrieving data using JOIN operations:

SELECT s.StudentName, c.CourseName, i.InstructorName

FROM StudentCoursessc

JOIN Students s ON sc.StudentID = s.StudentID

JOIN Courses c ON sc.CourseID = c.CourseID

JOIN Instructors i ON sc.InstructorID = i.InstructorID;

Data modeling and database design are fundamental to building reliable

database systems. The process involves conceptual design, logical

design, physical design, and implementation. Properly structured

databases enhance efficiency, minimize redundancy, and ensure data

integrity. By understanding these principles and implementing best

practices, database administrators and developers can create optimized

and scalable database solutions.

Data Modeling and Database Design: Constraints

Data modeling and database design play a crucial role in structuring

data efficiently to meet business and application needs. Constraints are

essential components of database design as they enforce rules that

maintain data integrity and consistency. Constraints ensure that the data

adheres to specific conditions, preventing invalid data entries and

preserving relationships between tables. There are several types of

constraints in database systems, including primary key constraints,

foreign key constraints, unique constraints, not null constraints, check

constraints, and default constraints.

Primary Key Constraint

A primary key constraint ensures that each row in a table has a unique

identifier. This constraint prevents duplicate records and ensures that

the key column(s) cannot have null values. In SQL, a primary key is

defined using the PRIMARY KEY keyword.

CREATE TABLE Students (

StudentID INT PRIMARY KEY,

 Name VARCHAR(100),

 Age INT,

 Email VARCHAR(100)

);

78
MATS Centre for Distance and Online Education, MATS University

Notes In the above example, the StudentID column is defined as the primary

key, ensuring that each student has a unique identifier.

Foreign Key Constraint

A foreign key constraint maintains referential integrity between two

tables. It ensures that a column’s values correspond to values in another

table, preventing orphaned records.

CREATE TABLE Courses (

CourseID INT PRIMARY KEY,

CourseNameVARCHAR(100)

);

CREATE TABLE Enrollments (

EnrollmentID INT PRIMARY KEY,

StudentID INT,

CourseID INT,

 FOREIGN KEY (StudentID) REFERENCES Students(StudentID),

 FOREIGN KEY (CourseID) REFERENCES Courses(CourseID)

);

Here, StudentID and CourseID in the Enrollments table reference the

Students and Courses tables, ensuring only valid student-course

associations.

Unique Constraint

A unique constraint prevents duplicate values in a column, ensuring

data integrity. Unlike primary keys, unique constraints allow null

values unless explicitly restricted.

CREATE TABLE Users (

UserID INT PRIMARY KEY,

 Username VARCHAR(50) UNIQUE,

 Email VARCHAR(100) UNIQUE

);

In this example, the Username and Email columns must have unique

values.

Not Null Constraint

The NOT NULL constraint ensures that a column cannot have null

values. This is useful for required fields.

CREATE TABLE Employees (

EmployeeID INT PRIMARY KEY,

 Name VARCHAR(100) NOT NULL,

79

Notes Salary DECIMAL(10,2) NOT NULL

);

Here, Name and Salary cannot be left empty when inserting data.

Check Constraint

A check constraint enforces a condition on a column’s values.

CREATE TABLE Orders (

OrderID INT PRIMARY KEY,

 Quantity INT CHECK (Quantity > 0),

 Price DECIMAL(10,2) CHECK (Price >= 0)

);

This ensures that Quantity is always greater than 0 and Price is non-

negative.

Default Constraint

A default constraint assigns a default value to a column if no value is

specified.

CREATE TABLE Customers (

CustomerID INT PRIMARY KEY,

 Name VARCHAR(100) NOT NULL,

RegistrationDate DATE DEFAULT CURRENT_DATE

);

Here, if no RegistrationDate is provided, it defaults to the current date.

Constraints are essential in database design to maintain data integrity

and enforce business rules. By using constraints like primary keys,

foreign keys, unique constraints, not null constraints, check constraints,

and default constraints, databases can ensure data accuracy and

consistency. These constraints prevent anomalies, enhance data

reliability, and improve database performance by reducing redundant

or invalid data. Applying these constraints appropriately is crucial for

effective database management and long-term data consistency.

80
MATS Centre for Distance and Online Education, MATS University

Notes Unit 6: Fundamentals of E-R Model

2.2 E-R Model

Data modeling and database design are fundamental aspects of

structuring data to ensure consistency, efficiency, and scalability in

database systems. The Entity-Relationship (E-R) model provides a

conceptual framework for representing data and its relationships within

a database. It serves as a blueprint for designing relational databases,

ensuring data integrity and logical organization.

Understanding the E-R Model

The E-R model is a high-level data model that describes data in terms

of entities, attributes, and relationships. It helps designers visualize the

structure of a database and its components before implementation. The

key components of the E-R model include:

Foundations of Database Design: Entities, Attributes,

Relationships, Keys, and Cardinality

The bedrock of any robust database system lies in its ability to

accurately model real-world information. This modeling process hinges

on understanding and implementing key concepts: entities, attributes,

relationships, primary keys, and cardinality. These elements form the

Figure 8: E-R Model
[Source: https://assets.isu.pub/]

81

Notes vocabulary of database design, enabling the creation of structured and

efficient data repositories. In the context of an academic database, these

concepts become particularly relevant, as they allow us to represent

students, courses, teachers, and their intricate interactions.

Entities: The Cornerstones of Data Modeling

Idea of a student and "Alice Smith" with her specific student ID is an

example, or instance, of the Student entity. Called an entity instance

and is unique. That is to say, "Student" as an entity represents the

abstract describes a unique object. Each instance of an entity is

Classrooms, etc. An entity is not just a single data point but a structured

set of related data that are active representation of real-world things,

independent and possess identity. Entities in an academic database

could be "Student," "Course," "Teacher," "Department," a database.

They Entities are the core elements that form "Enrollment" record is

useless. Can be defined as a weak entity, as the identity of the

"Enrollment" entity denotes as weak, depending on the entities

"Student" and "Course" to define it. So without knowledge of which

student is in which course, the identified without a relation to another

(owner) entity. In this case, "Enrollment" and "Course" as strong

entities. Conversely, weak entities cannot be uniquely identified

without having to rely on other entities. In our academic database, we

have "Student" of entities Strong Entity and Weak Entity. Yes, a strong

entity has its own primary key, which means that each instance of it can

be uniquely There are two types up to database, all the key players

must be identified, including students, teachers, and administrators, and

so will the key resources, including courses, classrooms, and textbooks.

You train on domain that you are trying to model. You will also note

that in an academic database requirements and identifying the main

objects or concepts that need to be stored. This means you need to have

an in-depth understanding of the Discovering entities consists of

studying the.

Properties of Entities Attributes: The

Of the "Major" attribute might be a set of valid department names.

Attribute. The domain of the "Age" attribute, for instance, might be the

set of positive integers, while the domain "Student," "Name," "Age,"

"Major" and "GPA." Every attribute possesses a domain that specifies

82
MATS Centre for Distance and Online Education, MATS University

Notes the allowable values for that the entity, allowing you to have multiples

of the same entity. For instance, in the case of a "Student" entity, fields

can include that define the entity. They are very specific to Attributes:

The properties from other attributes and thus we don't need to store

them specifically, for example: "Age" can be derived from "Date of

Birth". Instance, like "Phone Numbers." Derived attributes are

computed entity instance (e.g., "Student"). Some attributes can take

more than one value per entity Code". Single-valued attributes have a

single value for a given into sub-components and have atomic values,

e.g., "Age." For example, an attribute called "Address" can be broken

down into sub-sub-attributes "Street", "City" and "Zip types: simple,

composite, single-valued, multi-valued, and derived attributes. Simple

attributes do not need to be divided Attributes are two consumers. The

database is analyzed to determine which properties of the input need to

be included as components of the corresponding entities. This is a

process that requires deep understanding of both the subject area being

modeled as well as the goals of the database inefficiencies. Attribute

Selection: The requirement of relevant to the entity and meaningful

information. Avoiding redundancy is also important, which would lead

data inconsistencies and describe the entities in your system. Each

attribute should be Then it is very important that you select the right

attributes to.

 Defining Interactions Relationships — Connecting Entities

To many and many too many Relationships. And "Department offers

Course." There are mainly types of Relationships such as, one to one,

one with each other in the real world. In an academic database

example, relationships may include "Student enrolls in Course,"

"Teacher teaches Course," specify the links between entities. They

encapsulate the ways in which the various entities interact

Relationships multiple Courses, and Courses can have multiple

Students enrolled, for example. And each instance of the second entity

is associated with multiple instances of the first entity. Students can

enroll in multiple "Courses," while each "Course" is offered by only

one "Department." Many-To-Many: A many-to-many relationship

exists when each instance of one entity is associated with multiple

instances of another entity, entity but for every one entry in the other

entity, you have 1 maximum entry in the first entity. For instance, one

83

Notes "Department" can offer "Student." In a one-to-many relationship, for

every one entry in one entity, there can be many linked entries in the

second relationship; each instance of one entity is associated with at

most one instance of another entity. Example;"Student" has one

"Student ID Card," and one "Student ID Card" associated with one In

the one–to–one referential integrity and ensure data consistency. And

Course entity, respectively. These foreign keys create the associations

between related entities, allowing the database to maintain of another

entity. The Enrollment entity could have foreign keys "Student" and

"Coursed", which are references to the primary keys of the Student

entity foreign keys. Foreign Key An attribute of one entity that

references the primary key now relationships in a database are

represented through for the database to accurately capture the mappings

of real-world interactions among objects. Users. These relationships

should be well defined and documented, in order those entities relate

to one another and which relationships will exist in the database. It is

not just a matter of knowing the domain being modeled and the needs

of the database step is the definition of relationships. The second part

is to figure out how do when defining relationships, the Of Uniqueness

First Keys; Making Identity not null so that each row can be identified

from all other rows. key, as each student have an unique student id.

You can specify a primary key on a set of columns by adding a

PRIMARY KEY constraint to the table definition (01:23) The primary

key must be unique and components of databases and play a significant

role in ensuring data integrity and efficiency in data retrieval. For

example, in "Student" entity, "Student" could be the primary to

Primary Keys − Primary key is an attribute(s) which is a unique

identifier for each record in the table. Indexes are vital Introduction

can have multiple students enrolled. serve as a unique identifier,

composite primary keys are useful. An example is, the "Enrollment"

entity could have a composite primary key called "Student" and

"Coursed," since a student can enroll in multiple courses and a course

A Simple Primary Key contains one attribute, and the Compound

Primary Key contains multiple attributes. Where an attribute alone

cannot keys can either be simple or composite. SIMPLE AND

COMPOUND PRIMARY KEY Primary identifier for a database

entity and can They should also be minimal (the fewest possible

attributes) Primary keys are the most used a primary key that changed

84
MATS Centre for Distance and Online Education, MATS University

Notes over time. Minimal: data integrity and performance. I don't just mean

"no null value"; I've also never had Choosing the right primary keys is

essential for maintaining understand the domain you are trying to

model thoroughly and to be aware of the needs of the consumers of the

database. Take many forms. I

Cardinality: Defining the Number of Instances in Relationships

Cardinality defines the number of instances in one entity that are related

to the number of instances in another entity. It specifies the constraints

on the number of related instances, ensuring that the relationships are

accurately represented in the database. Cardinality is typically

expressed using symbols, such as "1," "M," and "N," representing one,

many, and an unspecified number, respectively. Cardinality is closely

related to the types of relationships, such as one-to-one, one-to-many,

and many-to-many. In a one-to-one relationship, the cardinality is 1:1,

meaning that each instance of one entity is related to at most one

instance of another entity. In a one-to-many relationship, the cardinality

is 1: M, meaning that each instance of one entity is related to multiple

instances of another entity, but each instance of the second entity is

related to at most one instance of the first entity. In a many-to-many

relationship, the cardinality is M: N, meaning that each instance of one

entity is related to multiple instances of another entity, and each

instance of the second entity is related to multiple instances of the first

entity. The representation of cardinality in a database involves the use

of constraints and foreign keys. Constraints are rules that define the

permissible values and relationships in the database. Foreign keys

establish the links between related entities, enabling the database to

enforce referential integrity and maintain data consistency. The

identification of cardinality is a critical step in database design. It

involves analyzing the interactions between entities and determining

the constraints on the number of related instances. This requires a

thorough understanding of the domain being modeled and the specific

needs of the users of the database. The cardinality should be clearly

defined and documented, ensuring that the database accurately reflects

the real-world interactions between entities. The E-R diagram visually

represents the E-R model, illustrating entities as rectangles,

relationships as diamonds, and attributes as ovals. Consider the

following simple example of an E-R diagram for a university database.

85

Notes +------------+ +------------+

| Student | | Course |

 +------------+ +------------+

 | |

 | Enrolls |

 |-------------------------|

Implementing the E-R Model in SQL

Once the E-R model is designed, it is translated into a relational schema

using SQL. Below is an example of how an E-R model can be

implemented in SQL:

CREATE TABLE Student (

StudentID INT PRIMARY KEY,

 Name VARCHAR(50),

 Age INT

);

CREATE TABLE Course (

CourseID INT PRIMARY KEY,

CourseNameVARCHAR(100)

);

CREATE TABLE Enrollment (

StudentID INT,

CourseID INT,

EnrollmentDate DATE,

 PRIMARY KEY (StudentID, CourseID),

 FOREIGN KEY (StudentID) REFERENCES Student(StudentID),

 FOREIGN KEY (CourseID) REFERENCES Course(CourseID)

);

In this example:

• The Student table contains unique students with attributes

StudentID, Name, and Age.

• The Course table contains different courses with a CourseID

and CourseName.

• The Enrollment table represents the many-to-many relationship

between Student and Course, linking them with StudentID and

CourseID.

86
MATS Centre for Distance and Online Education, MATS University

Notes Normalization in E-R Model

Normalization is an essential process in database design that ensures

data integrity and minimizes redundancy. The E-R model assists in

normalization by clearly defining relationships and entity

dependencies.

For instance, consider a case where student contact details are stored

within the Student table. If multiple contact numbers exist, redundancy

may arise. To normalize:

CREATE TABLE StudentContact (

StudentID INT,

ContactNumberVARCHAR(15),

 PRIMARY KEY (StudentID, ContactNumber),

 FOREIGN KEY (StudentID) REFERENCES Student(StudentID)

);

The E-R model is a powerful tool for designing structured and well-

organized databases. By defining entities, attributes, and relationships,

database designers can create logical schemas that optimize data

storage and retrieval. The implementation of E-R models in SQL

ensures efficient database management, paving the way for scalable

and high-performance database systems. As technology evolves,

advanced techniques such as automated E-R modeling tools and AI-

assisted design methodologies continue to enhance the efficiency of

database design processes.

2.3 Enforcing Constraints

Enforcing constraints is a vital aspect of maintaining data consistency

and integrity in relational databases. Constraints are rules that define

the valid values for data in a table. They ensure that data adheres to

specific requirements, preventing inconsistencies and errors. Foreign

keys, a type of constraint, play a crucial role in ensuring consistency

between related tables. Understanding weak and strong entity sets is

fundamental in designing an effective database schema. Strong entities

exist independently, while weak entities rely on strong entities for

identification. Using relational constraints and proper entity

relationships ensures data consistency and integrity. With the help of

SQL and Python-based implementations, we can efficiently model

these entities in real-world applications, ensuring robust and scalable

database designs. By following best practices in entity modeling,

87

Notes database architects can create efficient and maintainable systems that

support business needs effectively.

2.4 ER Diagram Representation

In an Entity-Relationship (ER) diagram:

• Strong entities are represented using a single rectangle.

• Weak entities are represented using a double rectangle.

• The identifying relationship is shown using a double diamond.

• The primary key of a weak entity includes the foreign key from

the strong entity and a discriminator attribute.

Implementing Weak and Strong Entities in Python

We can also implement these entity sets using Python and

SQLAlchemy:

from sqlalchemy import create_engine, Column, Integer, String,

ForeignKey

from sqlalchemy.ext.declarative import declarative_base

from sqlalchemy.orm import relationship, sessionmaker

Base = declarative_base()

class Student(Base):

 __tablename__ = 'student'

student_id = Column(Integer, primary_key=True)

name = Column(String)

age = Column(Integer)

department = Column(String)

dependents = relationship("Dependent", back_populates="student",

cascade="all, delete")

class Dependent(Base):

 __tablename__ = 'dependent'

dependent_name = Column(String, primary_key=True)

student_id = Column(Integer, ForeignKey('student.student_id'),

primary_key=True)

relationship = Column(String)

student = relationship("Student", back_populates="dependents")

Database connection

engine = create_engine('sqlite:///university.db')

88
MATS Centre for Distance and Online Education, MATS University

Notes Base.metadata.create_all(engine)

Session = sessionmaker(bind=engine)

session = Session()

Adding a student

student1 = Student(student_id=1, name="Alice", age=22,

department="Computer Science")

Adding dependents

dependent1 = Dependent(dependent_name="John", student_id=1,

relationship="Brother")

dependent2 = Dependent(dependent_name="Emma", student_id=1,

relationship="Sister")

Committing to the database

session.add(student1)

session.add(dependent1)

session.add(dependent2)

session.commit()

print("Data inserted successfully!")

Importance of Weak and Strong Entities in Database Design

The Foundation of Relational Excellence: Entity Relationships and

Database Design

Integral aspects of entity relations like data integrity, normalization,

constraint enforcement, query efficiency and scalability. Optimal

practice to follow as per the appropriate way of data; this is a matter of

correctness to prevent getting obsolete data, repeated data, and making

faster data retrieval. This Module covers entities. This is not a matter

of entity relationships. The integrity, consistency, and performance of

the database are mainly dependent on these relationships, which are

complex patterns linking different data Well-optimized database

systems are anchored by thoughtfully designed and Ensuring Relational

Cohesion (600-800 words) 2000 words) Data Integrity: Preventing

Orphan Records and weak entities relationship, we can avoid orphan

record scenarios where weak entity records do not point to a valid

strong entity that they reference. the strong entity and weak entity is

89

Notes that the strong entity can exist on its own and also has its own primary

key; however, a weak entity does not have a primary key and cannot

exist without strong entity. Using a strong entities. The main difference

between reliable databases, that data must be accurate and consistent

and trustworthy. Just as it applies to relational databases, this integrity

depends mainly on the correct definition and management of the

relationships between entities, especially between strong and weak

Also, data integrity, which is the fundamental of any department is

deleted without taking care of related courses, the Course table will

have orphan records – courses with a Departmental that does not exist

anymore in the Department table. Departmental, which references the

primary key of the Department table. But if a cannot exits

independently from department. The Course table has a foreign key,

that "Department" is strong entity which has its primary

key(Departmental for example). The Course entity is weak as it think

of a database for a university. Note sparking bad coverage that can turn

to the wrong conclusions and bad choices. For example, serious threat

to data integrity. They embody whims and inaccuracies, But orphan

records can be a of weak entity are dealt with. thus, in various

instances, if we try to delete a record from strong entity table and that

record exists in weak entity table then delete operation from strong

entity table will be prevented using these constraints - ADD "ON

DELETE RESTRICT" / "ON DELETE NO ACTION" explanation. It

makes sure that the strong entity is not deleted all corresponding

records option for you. And deleted, the foreign key in the weak entity

table will be set to NULL. If the relationship is optional, this is the

courses belonging to that department based on a foreign key constraint

preventing orphan records. Alternatively, with a "ON DELETE SET

NULL" constraint, when the record in the strong entity table is entity

"table A", you will automatically delete all the related records in your

weak entity "table B". Note that in the university example, removing a

department would also delete all constraints represent the rules for

preserving several related into consistent tables. A good example of this

would be the "ON DELETE CASCADE" constraint, where when you

delete the record from your are necessary to avoid orphan records.

These Referential Integrity constraints.

The existence of a department by writing a course. Combine to allow

for richer data consistency validation against the needs of your

90
MATS Centre for Distance and Online Education, MATS University

Notes application. For example, a trigger can be set to validate or application

logic. These features to an existing primary key. You can enforce this

validation using database constraints, triggers, table. Likewise, while

updating a foreign key, the new value must point proper data validation

while performing insertion and update operation. If the strong entity is

already formed when inserting a new record in the weak entity table,

the foreign key should be a valid reference to the primary key in the

strong entity Other than the deletion the data can also be made secure

with fails, all operations are rolled back. of database operations are

performed as a single unit of work. This prevents inconsistencies

because if any operation within a transaction need to be updated. This

can be done by using transactions, which guarantee that a group

"Department" entity. If an employee changes department, the relevant

records in both the tables consistency across multiple tables. Let us

consider an example where an "Employee" entity is associated with In

addition to all this, enforcing data integrity means ensuring it is in a

reasonable range. Be used to validate that the incoming data conforms

to the expected format and values. For example, an employee’s salary

can be checked that to select departments so that invalid department

ids are never used. Validation of input (Right SET) It can that prevents

invalid data entry in the database. This can be used as a drop down list

validation rules. It is possible to design user interfaces in a way

Application-level data between multiple tables, and lock the transaction

at application level to avoid orphan records, etc. weak entities can only

be associated with valid strong entities to maintain data integrity. It is

advisable and best practices to implement referential integrity

constraints, check data upon insertion and update operations, ensure

consistency In conclusion, we must enforce that (~ 2500 words)

Normalization: Removing Redundancy and Structuring Similar Data

the database can get up to prevent update anomalies (insertion, deletion,

and modification anomaly). More manageable and creating

relationships with each other. When properly normalized, you will

actually save space from where in data integrity. One of a

normalization is breaking down the tables into smaller tables which are

Normalization is a core principle in relational database design and it's

the process of organizing data up to reduce data redundancy and

improve

91

Notes Can be fixed by putting first and last names in separate columns. 1NF

violates the table is {[A]: {[FirstName, LastName]}} This values.

Normalization 1NF: {[A]: {[a, b]}}, but if there is normal form are the

most common. Explanation: First normal form (1NF) requires that each

column in a table contains atomic (indivisible) the previous one. The

first, second, third normal forms and the Boyce-Codd Normalization

is a design process applied in a number of steps called normal forms,

where each normal form builds on 2NF, we can decompose the table

Tuple ID is now with two relations, the relation "Order Details" would

have two attributes, with its c rows for "Product Name". The process

of achieving 2NF will lead to the decomposition in the table into two

tables, one for the second one called "Products" with the columns and

primary key as given below: To achieve 2NF, the two tables can be

created as follows To make it in 2NF, that table may sometimes

contain redundant data. i.e. same product ordered multiple times will

result in multiple is functionally dependent on "ProductID." If a table

is not attributing A determines the value held by attribute B. For

example, if there is a table with columns "OrderID," "ProductID," and

"Product Name," here column "Product Name" functionally dependent

on the primary key and the table must be in 1NF. We say that a

functional dependency holds between attribute A and attribute B, if the

value of So 2NF defines All the non-key attributes must be

fullyomposite key being "OrderID," "ProductID," and the "Products"

would have the column "ProductID" as a primary key, and "Product

Name" as the attribute. an "Employees" table with "EmployeeID" and

"DepartmentID" as attributes, and "Departments" table with

"DepartmentID" as a primary key attribute and "DepartmentName" as

a non-key attribute. have a table that has "EmployeeID,"

"DepartmentID," and "DepartmentName," then "DepartmentName" is

transitively dependent on "EmployeeID" via "DepartmentID." In 3NF,

the original table can be split into dependency, a non-key attribute is

dependent on another non-key attribute. As an example, if you in 2NF

and all the attributes are non-transitively dependent on primary key. In

a transitive Third Normal Form (3NF) - A table is in 3NF if it is BCNF

we will decompose the relation into two relations-1-- records with

different student IDs but same Course IDs don't have a well defined

primary key, if ProfessorID is depending on CourseID then since

CourseID is not a superkey then this table is not in BCNF. StudentID,

92
MATS Centre for Distance and Online Education, MATS University

Notes CourseID → GradeThis violates BCNF as the composite

key(StudentID, CourseID) does not determine ProfessorID(

ProfessorID does not belong the composite key) To make it in of one

table having multiple candidate keys. For instance take a table with

(StudentID, CourseID, ProfessorID) and StudentID and CourseID can

together form a composite primary key for this table meaning that two

definitions of Candidate Key as the attribute or group of attributes that,

if used as the primary key, will be unique for each record. BCNF is a

special case of 3NF that deals with the scenario candidate key. It

contains 3rd normal form and it is called BCNF. It says that each

determinant of functional dependency must be a This is stricter version

of>StudentCourses{ StudentID, CourseID}[as primary key] 2--

>CourseProfessors {CourseID}[as primary key], ProfessorID[non-

key] minimizing complex joins. a few places to maintain data. It

improves the performance of queries making them swift by it enhances

the integrity of data. It minimizes the need to update data in more than

prevents data redundancy, saving storage and preventing update

anomalies. By allowing separate storage and relationships of related

data, some advantages. It Normalization has of data. with possible

query performance consequences. It can lead to more difficulty in

grasping the associations between various pieces complicated database

schemas with extra tables. It may lead to a higher number of joins

needed to obtain data, some disadvantages too. This may result in But,

normalization comes with to be done judiciously, as demoralization can

lead to data integrity issues. may even need to demoralize the database,

merging tables or adding redundant data, to enhance query

performance. Doing so is needed and what is being traded off. Some

Normalization of a database should always be thoroughly examined

based on what is consideration should be given to the requirements and

trade-offs when choosing a normal form. Allows you to structure your

data in a way that related data is not duplicated and it increases the

overall integrity of the data and maintaining it. A careful final thought

on normalization is that it is an important consideration in relational

database design.

93

Notes Unit 7: Understanding Entity Set

2.5 Weak and Strong Entity Set

Data modeling is a crucial aspect of database design, as it defines how

data is structured, stored, and retrieved efficiently. One of the

fundamental concepts in data modeling is the classification of entity

sets into weak and strong entities. These classifications play a vital role

in defining relationships, constraints, and dependencies within a

database. In this Module, we will explore weak and strong entity sets

in detail, illustrating their significance with examples and practical

coding implementations.

Understanding Strong Entity Sets

A strong entity set is an entity that has a primary key and can exist

independently without relying on another entity. These entities have a

well-defined identity and do not require any supporting entity for their

existence. Each instance in a strong entity set is uniquely identified by

its attributes.

For example, consider a database for a university where Student is a

strong entity. It has a primary key, student_id, which uniquely identifies

each student. Here is how the Student entity is modeled in SQL:

CREATE TABLE Student (

student_id INT PRIMARY KEY,

name VARCHAR(100),

age INT,

department VARCHAR(50)

);

In the above example, student_id is the primary key, ensuring that each

student is uniquely identifiable.

Understanding Weak Entity Sets

A weak entity set is an entity that does not have a sufficient attribute

set to form a primary key. It relies on a strong entity set for its

identification, and it uses a foreign key reference along with a

discriminator attribute (partial key) to distinguish its instances. A weak

entity set always has a total participation constraint with the strong

entity set, meaning that a weak entity cannot exist without a

corresponding strong entity. For example, consider a Dependent entity

that stores information about a student’s dependents. A dependent

cannot exist without a student, and it does not have a unique identifier

94
MATS Centre for Distance and Online Education, MATS University

Notes of its own. Instead, it uses the student_id from the Student table along

with the dependent’s name to form a composite key.

Here is an example SQL implementation:

CREATE TABLE Dependent (

dependent_nameVARCHAR(100),

student_id INT,

relationship VARCHAR(50),

 PRIMARY KEY (dependent_name, student_id),

 FOREIGN KEY (student_id) REFERENCES Student(student_id)

ON DELETE CASCADE

);

In this example, dependent name alone is not unique, so we use

student_id as part of the composite primary key. The ON DELETE

CASCADE ensures that when a student is removed, all associated

dependents are also deleted.

Table 2.1: Differences between Strong and Weak Entity Sets

Feature
Strong Entity

Set
Weak Entity Set

Primary

Key

Has a primary

key
Lacks a sufficient primary key

Existence

Dependency

Independent

existence

Requires a strong entity for

identification

Relationshi

p Type

May have any

relationship

Always has a one-to-many

relationship with a strong entity

Example
Student (with

student_id)
Dependent (needs student_id)

MCQs:

1. What is the first step in database design?

a) Creating tables

b) Identifying requirements and data modeling

c) Writing SQL queries

d) Normalization

2. What does an E-R model primarily represent?

a) Data processing speed

b) Database structure using entities and relationships

c) SQL Queries

d) File management

95

Notes 3. Which symbol is used to represent an entity in an E-R

diagram?

a) Circle

b) Rectangle

c) Diamond

d) Triangle

4. Which of the following is a type of constraint in databases?

a) Logical Constraint

b) Primary Key Constraint

c) Software Constraint

d) Physical Constraint

5. In an E-R diagram, relationships are represented using:

a) Ovals

b) Rectangles

c) Diamonds

d) Lines

6. A weak entity set is an entity that:

a) Does not have any attributes

b) Depends on a strong entity and lacks a primary key

c) Has multiple primary keys

d) Cannot participate in a relationship

7. Which of the following is NOT a type of relationship in an

E-R model?

a) One-to-One

b) One-to-Many

c) Many-to-Many

d) Fixed-to-Variable

8. Which constraint ensures that all values in a column are

unique?

a) Primary Key

b) Foreign Key

c) NOT NULL

d) DEFAULT

9. A strong entity set is an entity that:

a) Requires a foreign key

b) Does not have sufficient attributes

c) Has a primary key and can exist independently

d) Cannot store any data

96
MATS Centre for Distance and Online Education, MATS University

Notes 10. Which of the following helps in improving database

efficiency?

a) Adding redundant data

b) Proper database design using E-R models

c) Using only one large table for all data

d) Avoiding constraints

Short Questions:

1. What is the database design process?

2. Define E-R Model and its purpose.

3. What are the key components of an E-R diagram?

4. Explain the difference between a strong entity and a weak entity.

5. What are cardinalities in an E-R model?

6. Define constraints in a database and provide examples.

7. What is the role of primary and foreign keys in database design?

8. How do one-to-one, one-to-many, and many-to-many

relationships differ?

9. Explain the significance of entity sets in a relational database.

10. What is referential integrity, and why is it important?

Long Questions:

1. Explain the database design process in detail with steps.

2. What is an E-R Model, and how is it used in database design?

3. Describe the different types of relationships in an E-R model

with examples.

4. Discuss the importance of constraints in a relational database.

5. How does an E-R diagram help in designing a database

structure?

6. Compare weak entity sets and strong entity sets with examples.

7. Explain the importance of cardinality and participation

constraints.

8. Discuss different types of constraints (Primary Key, Foreign

Key, NOT NULL, UNIQUE).

9. Describe the steps involved in converting an E-R model into a

relational model.

10. How does a well-designed E-R model improve database

performance?

97

Notes

98
MATS Centre for Distance and Online Education, MATS University

MODULE 3

 RELATIONAL DATABASE DESIGN

3.0 LEARNING OUTCOMES

• Understand the Extended E-R Features such as Generalization

and Specialization.

• Learn about constraints on specialization in relational

databases.

• Understand the Relational Model Structure and Database

Schema.

• Learn about different types of keys (Super, Candidate, Primary,

Foreign).

• Understand how Schema Diagrams are used in database design.

• Learn how to convert an E-R model into a relational model.

99

Notes Unit 8: Generalization and Specialization

3.1 Data Modeling and Database Design: Extended E-R Features:

Generalization and Specialization

Data modeling is a fundamental aspect of database design, enabling

structured storage, retrieval, and manipulation of data. The Extended

Entity-Relationship (EER) model builds upon the standard Entity-

Relationship (ER) model by introducing advanced features such as

generalization and specialization. These features provide a higher level

of abstraction, enhancing data representation and ensuring more precise

modeling of real-world scenarios. This Module delves into the concepts

of generalization and specialization, their implementation in databases,

and their practical applications with coding examples.

Generalization

Generalization is the process of extracting common attributes from two

or more entity sets to create a higher-level, more abstract entity set. This

Figure 9: Generalization and Specialization
[Source: https://th.bing.com/]

100
MATS Centre for Distance and Online Education, MATS University

Notes technique reduces redundancy and improves database efficiency by

grouping similar entities under a unified super class.

For example, in an educational institution, 'Student' and 'Professor'

entities might share attributes like 'Name', 'Address', and 'Date of Birth'.

Instead of repeating these attributes for both entities, generalization

enables the creation of a higher-level entity, 'Person', which

encapsulates the shared attributes. The 'Student' and 'Professor' entities

then inherit the properties from 'Person'.

Example SQL Implementation

CREATE TABLE Person (

PersonID INT PRIMARY KEY,

 Name VARCHAR(100),

 Address VARCHAR(255),

DateOfBirth DATE

);

CREATE TABLE Student (

StudentID INT PRIMARY KEY,

PersonID INT,

 Major VARCHAR(100),

 FOREIGN KEY (PersonID) REFERENCES Person(PersonID)

);

CREATE TABLE Professor (

ProfessorID INT PRIMARY KEY,

PersonID INT,

 Department VARCHAR(100),

 FOREIGN KEY (PersonID) REFERENCES Person(PersonID)

);

Specialization

Specialization is the reverse process of generalization, where a broad

entity is divided into multiple, more specific entities. This technique

enhances the granularity of the data model, allowing for better

organization and constraint enforcement.

For instance, in a corporate environment, the general entity 'Employee'

can be specialized into 'Manager' and 'Developer', each with unique

attributes. Managers might have a 'Bonus' attribute, while Developers

might have a 'Programming Language' attribute. Specialization ensures

101

Notes that each specific entity retains the common attributes of 'Employee'

while also incorporating unique properties.

Example SQL Implementation

CREATE TABLE Employee (

EmployeeID INT PRIMARY KEY,

 Name VARCHAR(100),

 Address VARCHAR(255),

DateOfBirth DATE,

JobTypeVARCHAR(50) CHECK (JobType IN ('Manager',

'Developer'))

);

CREATE TABLE Manager (

ManagerID INT PRIMARY KEY,

EmployeeID INT,

 Bonus DECIMAL(10,2),

 FOREIGN KEY (EmployeeID) REFERENCES

Employee(EmployeeID)

);

CREATE TABLE Developer (

DeveloperID INT PRIMARY KEY,

EmployeeID INT,

ProgrammingLanguageVARCHAR(100),

 FOREIGN KEY (EmployeeID) REFERENCES

Employee(EmployeeID)

);

Table 3.1: Differences between Generalization and Specialization

Aspect Generalization Specialization

Direction Bottom-up Top-down

Purpose

Combine multiple

entities into a single

superclass

Divide a broad entity

into more specific

sub-entities

Data Reduction

Reduces redundancy

by extracting common

attributes

Enhances precision

by enforcing specific

constraints

102
MATS Centre for Distance and Online Education, MATS University

Notes

Example
'Student' and

'Professor' into 'Person'

'Employee' into

'Manager' and

'Developer'

 Modeling Complexity: Generalization and Specialization in

System Design

The art of system design hinges on the ability to manage complexity

effectively. Generalization and specialization, fundamental concepts in

object-oriented modeling, offer powerful tools for this purpose. These

techniques enable designers to create abstract representations of entities

and their relationships, facilitating the development of robust and

adaptable systems. This Module delves into the practical application of

generalization and specialization in three distinct domains: banking

systems, healthcare systems, and e-commerce platforms.

 Systems: The Hierarchy of Accounts and Generalization Banking

Can build on to have specialized types like "Savings Account" and

"Checking Account. where it acts as a super class of all other types of

accounts. This seems like a great abstraction and a base we there are

different accounts with different features. This means we can use

Account as a generalization, to understand the banking system, one

must understand the concept of "Account," which is the financial

relationship between a customer and the bank. The term “Account” is

generic as monetary transactions. In order at their very essence,

banking systems are centers for financial data and acts of "Overdraft

Limit" and "Monthly Fee" and override the "Withdraw" operation to

account for overdraft conditions. Insert an "Apply Interest" operation.

The "Checking Account" subclass, for instance, could add properties

such as attributes "Interest Rate" and "Minimum Balance." It could

also overwrite the "Withdraw" operation in order to impose withdrawal

limits, or could thus providing consistency and reducing redundancy.

This subclass, "Savings Account," which is derived from "Account,"

has the such as Deposit, Withdraw and Check Balance All subclasses

inherit these attributes and operations from the parent class,

"Accountholder", "Balance", and "Date Opened". It also specifies

common operations The super class named "Account" may generally

have fields like "Account Number", the evolving world of finance,

where multi-product and services are constantly being offered, and new

products are emerging. You simply subclass "Account" to add this

103

Notes account specific attributes and behaviors. This extensibility is

important for account types. If you are introducing a new account type,

a high degree of organization for the banking system It also unifies

functionalities common to all account types in the "Account" super

class, simplifying the management of various This hierarchy of

generalizations yields without requiring changes to the existing

"Account" hierarchy. An “Interest-bearing” interface could declare an

“Apply Interest” method, which subclasses that earn interest would

implement. Because of this, new types of interest-bearing accounts can

be added by concrete classes, provides further flexibility and

maintainability. For example the chances of mistakes. Also, the use of

interfaces or abstract classes which can then be implemented/extended

operation such as "Deposit" and "Check Balance" defined under

"Account" super class can be used for every account types. This saves

development time and effort, and reduces generalization leads to the

reusability of the code. All of the Also, a more concise and flexible

code. to know their specific type. This makes to different subclasses

can be operated uniformly due to the concept of polymorphism which

is a direct outcome of generalization. This means that a function to

calculate the total balance of a customer's accounts can be written to

iterate through a collection of "Account" objects, without needing

Objects belonging types of customer relations. we can create

subclasses – such as Individual Customer' and Corporate Customer' to

embody the different characteristics of different types of customer. It

allows efficient management and consistent handling of different for

all customers. And from there also apply to customer relationships

within a banking system. You can also create a "Customer" super class

that captures information that's true Generalization is not limited to

broad classes, but can operation can be overridden to add withdrawal

restrictions. Aforementioned "Account" classes that get the common

functionalities, and add specific properties like "Tiered Interest Rates"

and "Minimum Investment." The "Withdraw" a “Money Market

Account.” Instead of defining an entirely new class, developers can

create a subclass of the this modeling approach. For example, a bank

creates a new product called There are plenty of real-world

applications of is generic which can expand to support joint accounts

in the "Joint Account" sub table. Account" subclass where you can

declare variables like "Co-Account Holder" and methods to handle

104
MATS Centre for Distance and Online Education, MATS University

Notes joint transactions. The "Account Holder" property of "Account" super

table a “Joint Account.” You can derive a "Joint an example of this is

the creation of reduces the difficulty; it helps to understand how it

works. Accounts. This modular based system will help make the

system more maintainable and scalable. It enables easy integration of

new account types and features in the future, allowing the system to

grow with the changing needs of the bank and its Here in the above

banking systems, use of generalization

Specialization Taxonomy Healthcare Systems: The Doctor

Attributes and behaviors. Specialization is an important aspect of the

hierarchical representations of healthcare providers, particularly

doctors. Represent a general medical practitioner with the base class

"Doctor," while subclasses called "Surgeon" and "General Physician"

add their own specific data but also coordinate a multitude of

healthcare professionals. As such, Healthcare systems are inherently

complex and multifaceted, and they must not only manage a wide

spectrum of medical introduce attribute(s) "Primary Care Focus" and

override "Diagnose operation" to focus on general medical conditions.

it adds an “Operate” operation. A subclass "General Physician" might

also specialize from "Doctor," but would traits such as "Surgical

Specialty" and "Operating Room Access." It also overrides the

“Diagnose” operation to add surgical assessments, and "Refer." The

"Surgeon" subclass, specializing in "Doctor," gains targeted attributes

such as "Doctor ID", "Name", "Specialization", and "Contact

Information". It also specifies common functions such as "Diagnose,"

"Prescribe," and The "Doctor" class phrase would have arising. of

doctor that specifies from the Doctor and adds its own properties and

functions to it. Such extensibility is essential in the rapidly-changing

domain of medicine, where new specialties and subspecialties are

constantly allows to keep common characteristics and behaviors of

doctor in the super class only. To add a new type of doctor it can be

done easily with a new subtype within the medical profession. It this

taxonomy of specialization leads to a coherent and organized

representation of the variety of roles present data is only accessible to

needed individuals. Along with the surgical reports whereas a

"General Physician" may have access to patient medical histories and

prescription records. This way, sensitive medical area of expertise, the

system can provide varying degrees of access to medical records and

105

Notes features. For example, a "Surgeon" may have access to the operating

theatre schedules specialization makes role-based access control

easier. Based on the doctor's Also, of surgery without having to change

the existing "Doctor" taxonomical an "Operate" method that

subclasses implement to actually perform surgical procedures. To allow

the addition of new categories work with interfaces or abstract classes

for scalability in flexibility and maintainability. For example, you

might have a "Surgical Procedure" interface that declares Your next

step is to make it tree. Makes the code simpler, easier to adapt to

changes. if you want to write a function to schedule patient

appointments, you can call it with a collection of "Doctor" objects of

any specific type. This uniformly. A doctor is a specialist, so

Polymorphism, which is a natural byproduct of specialization, enables

one to treat objects of different subclasses treat different disease types

in a structured and systematic way. Represent the nuanced differences

between different types of condition. This makes it possible to to

represent the general attributes and behaviors. You can then create

subclasses such as "Infectious Disease" and "Chronic Disease" to

implement in a health care system also reflects in the modeling of the

conditions of its patients. For all medical conditions, we create a super

class with the name "Medical Condition" Part of the specialization

then be overridden by the operation "Operate" to add in the required

surgical techniques. Developers can create a subclass of "Surgeon"

that inherits that common functionality and adds attributes unique to

that profession like "Cardiac Procedures" "Thoracic Procedures." It can

new specialty called “Cardiothoracic Surgeon.” Rather than duplicate

that common functionality by creating a new class from scratch, the

real world are numerous. Just let this marinate for a second: imagine if

a hospital added a The applications of this modeling approach in the

be overridden for specific pediatric medical conditions) as a super

class, we could have a subclass called Pediatric General Physician,

which can have attributes i.e Pediatric Focus and methods like manage

pediatric patient records. Diagnose: (This operation can a "Pediatric

General Physician" specialty. With General Physician another would

be the creation of modularization creates a less complex system that is

easier to comprehend and will ultimately make analysis easier. and

features can be made into the healthcare transactional system easily.

106
MATS Centre for Distance and Online Education, MATS University

Notes This systems makes the system much more maintainable and scalable.

New Feature Application Support: New specialties Specialization in

healthcare the users to take on multiple different roles (e.g. Reader,

Writer, Buyer, Seller, etc.). We found the e-commerce platforms to be

too generalized; they required user roles like "Buyer" and "Seller".

super class that contains the common features and behaviors required

by a class of user roles. From here, this abstraction can be extended to

define custom user roles and functionalities. By means of

generalization, we can model "User" as a Ecommerce platforms enable

the buying and selling of goods and services over the internet and

require management of multiple subclass might look like so: Order.”

A "Seller" Information" and "Shipping Address." It may also add

operations such as “Browse Products,” “Add to Cart” and “Place and

avoids duplication. "Buyer" is another subclass of "User" that contains

particular features including "Payment and "Update Profile," etc. All

subclasses inherit these attributes and operations, maintaining

consistency, "User ID," "Username," "Password," "Email," "Address,"

etc. It also specifies generalized functions, such as "Login," "Logout,"

The super class named "User" usually contains fields like Makes the

database systems more efficient and potent. For more efficient,

maintainable, and performance-aware databases that best represent the

physical domain. They know their use and implementation, which and

optimized performance of the database. These capabilities allow

important concepts called generalization and specialization. This

allows data abstraction, structural clarity, In database design, there are

two

View of Data

Specialization: Data Modeling And Database Design Constraints on

some business rules enforcement (hierarchical structure in a database)

identifying subsets of entities in an entity type based on some

distinguishing characteristics. F) Constraints is an important part of

designing a database, it defines how data is structured, stored, and

managed within a system. Specialization is the process of Data

modeling

Primer on Specialized Data Modeling A

For a university where "Person" is a super class that specialized into

"Student," "Professor," and "Staff" (each with different attributes). on

certain characteristics. You may, for example, have an database It is a

107

Notes top down approach in which a single higher-level entity (super class) is

broken into multiple lower-level entities (subclasses) based.

3.2 Constraints on Specialization

Data Modeling: The Limits of Specialization in Module described the

four specialization constraints; disjoint, overlapping, total, and partial,

that can apply to classes as well as their impact with accompanying

examples. Precise specialization but to keep data integrity and present

a closer view of how the world works, we need to constrain these

specializations. This attributes and relationships defined at a higher

level, whilst enriching them with the specifics. He has a knack for

representing the real world into a structured format that can be stored

into the records is referred here. At the heart of this process is

specialization, where we can define subclasses or subtypes of a super

class, reusing Database Modeling: The art and science of.

Constraint: Mutual Exclusivity of Subclasses Disjoint

Constraint comes into play, enforcing this mutual exclusivity, allowing

for proper referencing of relationships, preventing data table overlaps,

ensuring the integrity of the database remains intact. a motorcycle, a

vehicle cannot be a car and a motorcycle at the same time. This is where

the disjoint super class “Vehicle”, which could be subclasses “Car”,

“Motorcycle” and “Truck”. For instance, a vehicle can only be a car or

that you would train on more than one category, but to enforce mutually

exclusivity. For example, you might have a specialization. Define a

type constraint that only allows single subtypes not the disjoint

constraint is a fundamental concept of specialization, stipulating that an

entity can belong to only one subclass in a given hierarchy of or

conflicting information being created. Have to be a member of

multiple subclasses of a disjoint constraint in order to qualify to belong

to a super class. It also improves data consistency, because it avoids

ambiguous exclusive, that is, the overlapping of the subclass members

should not be permitted. As a result, you don't type, cargo capacity,

etc. It is the responsibility of a database designer to define such

differentiating attributes as mutually what those attributes and

characteristics are that separate the subclasses. In our "Vehicle"

example, subclasses can be differentiated by number of wheels, engine

Using the disjoint constraint involves have some careful consideration

regarding constraints have use cases. Would make more sense than the

108
MATS Centre for Distance and Online Education, MATS University

Notes adjacent one. Disjoint and overlapping some individuals might be both

students and employees who will violate the disjoint condition in these

situations, the overlapping constraint that we will cover later and

"Employee." end-user allows for some overlap in subclasses. For

instance, a super class of "Person" might be divided into "Student" On

the other hand, disjoint constraint might be too strict, because in

practical applications it may be that the knowledge of the.

Constraints: Multiple Memberships of a Subclass Overlapping

Contexts while retaining their identity and the overlapping constraints

are added on top of that. Editor, and reviewer all at once, or some

combination thereof. This allows for the duplicity of structures to be

represented, where an entity may serve multiple roles in different

"Author", "Editor" and "Reviewer". One person can be an author, not

mutually exclusive and an object can have characteristics of more than

one subtype, applying this constraint is necessary. Having a hierarchy

of classes makes life easier, e.g. a super class "Person" can be a super

class to restricts an entity from belonging simultaneously to more than

one subclass within a specialization hierarchy, the overlapping

constraint permits this type of multiple membership. When the

subclasses represent categories that are unlike the disjoint constraint,

which if an entity must belong only one subclass. More complex and

nuanced entities. In addition, it enhances data accuracy by retrieving

the lost information that would be thrown away instances for all

classes; hence the designer of the database must make sure that these

differentiating attributes are not mutually exclusive. From a database

perspective the overlapping constraint increases the expressiveness of

the model by representing example of a "Person" class, subclasses may

be distinguished by what sort of publications they write, their role in

the publications process, or their areas of expertise. Subclass

membership must be able to be the same in some properties a class

possesses in an abstract way. For the In order to apply the overlapping

constraint, one needs to identify well what the features and being

modeled. And relationships. Whether to use disjoint or overlapping

constraint depends on the specific application needs and characteristics

of the data the queries more complex. This introduces a challenge of

maintaining data consistency as it requires dealing with overlapping

attributes the other hand, the overlapping constraint could complicate

retrieving and manipulating data. However, when querying the

109

Notes database, you need to verify multiple subclass memberships for any

single entity, making on.

Membership Total Specialization: Required Subclass

Ambiguous data. Shape can be "not a circle, nor a square, nor a

triangle". This completeness is ensured by the total specialization

constraint, as to not create unclassified or "Shape" and derived classes

called "Circle", "Square", and "Triangle". No that cannot be assigned

to a subclass. For example, you could have a base class called belong

to at least one subclass. However, this constraint is especially valuable

when the subclasses together capture the entire range of meaningful

subtypes of the super class there's no instance of the super class Total

specialization (also referred to as specialization completeness) is a

constraint on a particular specialization hierarchy that mandates every

instance of the super class to strict manner that excludes any other

possibility of the super class. When the total specialization constraint is

in hand, the database remain relationally orphaned. By specifying the

subclass with all its differentiating properties in specialization must

ensure a complete sub classing of the super class class. The database

designer needs to guarantee that the subclasses comprehensively

capture all possible sub classifications of the super class such that none

of the super-class instances Total data consistency because it avoids

the creation of partial, obscure or misleading information. is no need

to check for unclassified instances of the super class. It also improves

retrieval and manipulation is so much simpler since there specialization

will depend on the specific application requirements and the nature of

the data being modeled in each case. this case, we will use more

appropriate partial specialization which we will see later. The decision

between total and partial classify under any of these categories,

including books or food items. In might get specialized into

"Electronics," "Clothing," "Furniture," etc. Certain products that do not

in the real world super class object can exist without being in any

subclasses. So, a super class of "Product" But with this case total

specialization might not be ideal.

With Optional Subclass Membership Data Lineage: Forward

Engineering

By the partial specialization constraint, which permits the inclusion of

instances that are not well categorized into any of the specified

110
MATS Centre for Distance and Online Education, MATS University

Notes subclasses. Personnel. This flexibility is addressed and “Salesperson.”

Others may not be managers or salespeople, like administrative staff or

technical support there could be instances that cannot be classified into

any of the defined subclasses. For instance, think of a super class called

“Employee” that can be specialized into subclasses “Manager” require

this. This restriction is necessary when there are subclasses that do not

account for all possible subtypes of the super class, and While total

specialization involves having instances of a super class that fall only

within each associated subclass, partial specialization does not true

nature. Which in turn adds expressiveness to database designs. It also

helps keep data accurate, because it avoids a situation in which an entity

gets such a subclass enforced upon it, even if it does not reflect its can

allow such subclasses without necessarily covering every possible

variation of the class in question. Partial specialization provides an

additional degree of implicit bundles, of the database must take into

account the fact that the subtypes should not be exhausted: creating new

instances can, and should, leave some objects unclassified (objects not

admitting any type to which they can belong). This is possible when

you it covers. The design Partial specialization is bit of a tricky thing

here because it doesn't really tell you all the subclasses of the data being

modeled. to deal with unclassified instances, as well as their attributes,

with caution. The decision between complete vs partial specialization

depends on the particular needs of the application and the

characteristics there is an instance of the superclass that has not been

classified yet and this can result in expensive queries. This may also

lead to complications relating to data consistency since they might need

through relationships Due to the fact that you query the DB class by

class, you need to check if Create complex queries, Ensure data

integrity Specialization Constraints Modeling Real-World Scenarios

Using a Combination of Disjoint constraint guaranteeing that a

customer is either an Individual or a Corporation, but not both. And

"Salesperson" with the total specialization constraint that every

employee is either a manager or a salesperson. For example, the

"Customer" subclass can be further specialized into "Individual

Customer" and "Corporate Customer," with the constraint permitting

individuals to hold the roles of both an employee and a customer. An

"Employee" subclass may be specialized into "Manager" the data. As

an example, a super class called "Person" could be specialized into

111

Notes "Employee" and "Customer" classes, with the overlapped In practice,

database models may involve more complex combinations of

specialization constraints to capture a richer representation of in terms

of database design, implementation, and maintenance, which need to

be carefully considered along with constraints and their effects making

sure that the data many be correct and reliable. But it also adds

complexities constraints on specialization, one user can interact with a

very unhappy end-of-line feeder and avoid the mess that occurs when

multiple users try to define a similar schematic of a specialty feeder in

a confused manner. The process also improves on data integrity and

consistency, By imposing such.

Practical Examples and Applications

To further illustrate the concepts discussed in this Module, let's

consider a few practical examples and applications of specialization

constraints in database modeling. University Database: A university

database might have a "Person" super class, specialized into "Student,"

"Faculty," and "Staff." The overlapping constraint would allow

individuals to be both students and employees (e.g., teaching

assistants). The "Student" subclass might be further specialized into

"Undergraduate Student" and "Graduate Student," with the disjoint

constraint ensuring that a student is either an undergraduate or a

graduate, but not both. The "Faculty" subclass might be specialized into

"Professor," "Associate Professor," and "Assistant Professor," with the

total specialization constraint requiring every faculty member to be one

of these ranks. E-commerce Database: An e-commerce database might

have a "Product" super class, specialized into "Electronics," "Clothing,"

and "Furniture." The partial specialization constraint would allow for

the existence of products that do not fit into any of these categories.

Implementing Specialization Constraints in SQL

CREATE TABLE Person (

PersonID INT PRIMARY KEY,

 Name VARCHAR(100),

 DOB DATE

);

CREATE TABLE Student (

PersonID INT PRIMARY KEY,

EnrollmentNoVARCHAR(50),

112
MATS Centre for Distance and Online Education, MATS University

Notes FOREIGN KEY (PersonID) REFERENCES Person(PersonID)

);

CREATE TABLE Professor (

PersonID INT PRIMARY KEY,

EmployeeIDVARCHAR(50),

 FOREIGN KEY (PersonID) REFERENCES Person(PersonID)

);

CREATE TABLE Staff (

PersonID INT PRIMARY KEY,

 Department VARCHAR(100),

 FOREIGN KEY (PersonID) REFERENCES Person(PersonID)

);

In the above example, specialization constraints are enforced using

foreign keys, ensuring that only valid references exist between the

super class (Person) and its subclasses (Student, Professor, Staff).

Enforcing Specialization Constraints Programmatically

In programming languages like Java, we can implement specialization

using inheritance. The following example demonstrates specialization

constraints using Java classes.

class Person {

int personID;

 String name;

 String dob;

public Person(int id, String name, String dob) {

this.personID = id;

 this.name = name;

this.dob = dob;

 }

}

class Student extends Person {

 String enrollmentNo;

public Student(int id, String name, String dob, String enrollmentNo) {

super(id, name, dob);

113

Notes this.enrollmentNo = enrollmentNo;

 }

}

class Professor extends Person {

 String employeeID;

public Professor(int id, String name, String dob, String employeeID) {

super(id, name, dob);

this.employeeID = employeeID;

 }

}

class Staff extends Person {

 String department;

public Staff(int id, String name, String dob, String department) {

super(id, name, dob);

this.department = department;

 }

}

Constraints on specialization play a vital role in ensuring data integrity

and consistency in databases. By implementing these constraints using

SQL and programming constructs, we can enforce business rules

effectively. Proper database design using specialization constraints

improves maintainability and prevents redundancy, ensuring efficient

data management.

114
MATS Centre for Distance and Online Education, MATS University

Notes Unit 9: Relational Model

3.3 Relational Model Structure

Data modeling is a crucial step in the database design process that

ensures data is structured and stored efficiently. The relational model

provides a structured framework that organizes data into tables, or

relations, which consist of rows (tulles) and columns (attributes). This

model is based on mathematical set theory and provides a logical

representation of data, making it easier to manage and retrieve

information. A well-designed relational database minimizes

redundancy, maintains data integrity, and improves performance. In the

relational model, data is structured into relations, where each relation

represents a real-world entity. Each relation is defined by a schema,

which outlines the attributes and their data types. A key aspect of

relational modeling is normalization, a process that reduces redundancy

and improves data consistency by organizing data into multiple related

tables. Relationships between tables are established using primary and

foreign keys, ensuring referential integrity.

Consider the following example of a relational database schema for a

university system:

CREATE TABLE Students (

StudentID INT PRIMARY KEY,

 Name VARCHAR(100),

 Age INT,

 Major VARCHAR(50)

);

CREATE TABLE Courses (

CourseID INT PRIMARY KEY,

CourseNameVARCHAR(100),

 Credits INT

);

CREATE TABLE Enrollments (

EnrollmentID INT PRIMARY KEY,

StudentID INT,

CourseID INT,

 Semester VARCHAR(20),

115

Notes Grade CHAR(2),

 FOREIGN KEY (StudentID) REFERENCES Students(StudentID),

 FOREIGN KEY (CourseID) REFERENCES Courses(CourseID)

);

As a primary key, while the Courses table will use the CourseID as a

primary key, and Enrollments will create foreign keys to map students

to courses. Courses table will hold course information, and the

Enrollments table will create a many-to-many relationship between

students and courses. The Students table will use the StudentID In the

previous example, the Students table will hold student information, the

Data Abstraction

Data abstraction; clear and small model of data. The relational model

has three levels of Data abstraction simplifies complex data structures

so that we can have a Level, The View Level The Tripartite

Architecture of Databases; The Physical Level, The Logical it drives

home the point that knowing and understanding these levels is

fundamental for anyone who works with designing, developing, or

administering a database, providing a comprehensive framework that

helps you understand how data is managed through a database system.

Examines the three layers in database architecture: Physical, Logical

and View. And and divide the knotty problems of data management

into different levels of abstraction. The post and preservation. For this,

databases follow a layered architecture, which means that you can

separate Modern databases are complex systems that store and

organize large sets of data for convenient access

Physical Level: The Foundation of Data Storage The

Optimization is essential for performance maximization, integrity

checking, storage saving and other features. Indexing methods, and

storage allocation methods. Physical Level disks, solid state drives, or

cloud-based storage. This level deals with the physical arrangement of

data, like file formats, level of abstraction is Physical Level or internal

level. It addresses the fundamental issues surrounding data storage at

the physical level, where data is stored on storage devices like hard The

lowest

Data Storage Techniques:

use a balanced tree structure to enable efficient searching, insertion, and

deletion of records. to manage when collisions happen. One such

indexing technique is B-tree indexes, which index regimes and random

116
MATS Centre for Distance and Online Education, MATS University

Notes access and sequential access regimes. The world of digits: Hashed files:

where the data are stored by a hash function function that works as an

index and allows random access to the data, but adds a level of

complexity in a linear sequence, which is ideal for batch processing

but not for random access. Indexed sequential file systems are more

sophisticated than sequential file systems because they include both in

different types of structures and each has its own advantages and

disadvantages. Sequential files, for instance, keep records Physical

Level — relates to how data is stored in disk files can use sequential

files. files or B-tree indexes may be more useful for a database that

needs many random accesses to specific records. On the other hand, a

database that does mostly batch processing performance requirements.

As an example, hashed by the application for the database. The choice

of appropriate storage structures depends on various factors, including

access patterns, data volume, and the type of storage technique varies

Indexing Techniques

System (DBMS) can access individual records swiftly from the indexed

values. Storage going to maintaining the index data structure. The

indexes are usually created over one or multiple columns of the table

so the Database Management retrieval operations on a database table.

It does this with the price of additional writes and data can be retrieved.

An index is a data structure that enhances the speed of data Indexing

is a key operation in the Physical Level as it determines the speed at

which the while they provide speed for equality searches, those are just

as limited in supporting ordering queries as B-trees are for non-

equalities. Commonly used for primary and secondary indexes,

allowing for efficient search capabilities. On the flip side of the coin,

hash indexes employ a hash function to direct index values to certain

storage locations, so physical location of the records. B-tree indexes

are of the database table Non-clustering secondary indexes maintain a

separate index structure, with pointers to the Example of clustered

(primary) indexing it sets the records on the physical order possible to

reduce the query execution time considerably and improve database

performance significantly. Could use hash indexes. By creating

meaningful indexes, it is of range queries may want B-tree indexes. On

the other hand, a data base performing mostly equality searches the

insert performance slightly (the performance penalty is compensated

117

Notes with better read performance, no issues there!). As a case in point, a

database that performs a lot this allows for lightning-fast read

operations, but will impact

Allocation Strategies Storage

Providing fast sequential and random access. Down sequential access.

Indexed allocation improves on both contiguous and linked allocation

by using an index to keep track of pointers for non-contiguous blocks,

file is allocated a contiguous block of storage space, allowing for fast

sequential access but raising the risk of external fragmentation. Linked

allocation is another method where storage is allocated in non-

contiguous blocks that are linked in the form of pointers, reducing the

extent of external fragmentation but slowing allocation strategies that

control how much storage space is allocated to a database file or an

index. Contiguous allocation means that each there are a few storage

storage organizations is essential to optimizing storage consumption

and avoiding I/O overhead. a database that does sequential access most

of the time may choose to go with contiguous allocation. Effective

deleting entries, which could potentially be supported with the use of

linked or indexed allocation. On the flip side, resources available will

help determine your storage allocation method An example of this is a

database that is constantly inserting or Different workloads and

storage.

Compression and Encryption Diversity of Data: Data

RSA. Transforming that into unreadable format. They encrypt data

using encryption algorithms such as AES and Huffman coding and

Lempel-Ziv. Whereas data encryption helps prevent unauthorized

access to sensitive data by space, which significantly minimizes

storage and improves I/O performance. Some examples of listlessly

compression algorithms are as data compression and data encryption

are used. Subsequently, Compression is the process of taking up less

At the Physical Level, techniques such to prevent unauthorized usage

of data and adhere to regulatory data encryption. At the Physical Level,

the application of relevant security elements is imperative high volume

of text data. In contrast, a database capturing sensitive financial or

personal data may need and sensitivity of data. For instance, data

compression may be used by a database that contains a Compression

and encryption is generally used depending on the needs of the database

application obligations.

118
MATS Centre for Distance and Online Education, MATS University

Notes Hardware Considerations

Bandwidth: Bandwidth will impact on how fast data can move from the

database server to client applications, which will affect the overall

responsiveness of the database system. Mirroring and redundancy in

case of storage collapse, so data is not lost if there is hardware failure.

Database network input and output (I/O) tremendously compared to a

hard disk drive (HDD) and thus, enhancing the overall performance of

database operations. Redundant array of independent disks (RAID)

provide data Physical Level, which are type of storage devices used,

speed of input/output operations performed, and networking

bandwidth. The introduction of solid-state drives or SSDs increases the

hardware factors also affect the the foundation for improving the

performance and availability of database system. Performance and

scalability needs. The high efficiency of hardware resource allocation

is database system to achieve optimum performance and reliability.

Hardware configurations depend on factors like budget, It is

significant to select the hardware components correctly for the.

Logical Level: Specifying Data Structure and Interrelations

Mechanism. Data modeling. This layer abstracts away the physical

details of the storage, allowing users to work directly on data while

hiding the storage level provides a high-level description of the data

stored in a database. It involves the relationship of various data

elements, data integrity rules, and The logical level also called the

conceptual

Data Models

Graph models, to support a wide range of data structures and access

patterns. Data and behavior into a single logical unit called an object.

First, we generally see two distinct database types in use today

relational databases and NoSQL databases. NoSQL databases use

different data models, such as document-oriented, key-value, and

general presentation of the data as entities and relationships using

diagrams. An object-oriented data model encapsulates columns. In

contrast to the table of contents and entity relationship (ER) model,

which encompasses the Logical Level, where each data model has its

own concepts and notations. One example is the relational data model

that defines data as a set of tables with rows and We use different data

models like these represent user data at the will be used to store the

logical structure. the choice can be a NoSQL database. The data model

119

Notes must be SM because it database needs to record complex relationships

between data elements it may be useful to employ the relational or ER

model. On the other hand, if a database contains mainly semi-structured

or unstructured data, then database systems. As an example, if a There

are different data models used in.

Definition Language (DDL): Data

Is utilized for table deletion. Columns. The DROP TABLE statement

defines the columns in the new table along with their data types. The

ALTER TABLE statement is generally used to modify an existing table

and adding or deleting specified here. For instance, in SQL, a new table

can be created using the CREATE TABLE statement, which

commands to create, update and delete database objects like tables,

indexes and views. Data types, constrains, and relationships between

different data elements are The Logical Level The Logical Level is

specified with a Data Definition Language (DDL), defining of the

application commands also plays an important role in maintaining the

integrity and consistency of the database schema. Application data

designing a database schema to support the data management needs

and manage logical structures in the database. Proper and optimal use

of DDL The DBMS executes DDL statements to create.

Data Relationships and Constraints:

The Logical Level defines the relationships between different data

elements, ensuring data integrity and consistency. Relationships are

typically represented using foreign keys, which establish links between

tables. Constraints, such as primary key constraints, foreign key

constraints, and check constraints, are used to enforce data integrity

rules. Primary key constraints ensure that each record in a table is

uniquely identified. Foreign key constraints ensure that relationships

between tables are maintained. Check constraints enforce specific

conditions on the values of data elements. The definition of appropriate

relationships and constraints is crucial for maintaining data integrity

and ensuring the consistency of the database. For example, a foreign

key constraint can ensure that a customer's order is associated with a

valid customer record. Check constraints can ensure that the values of

data elements fall within a specific range or satisfy certain conditions.

The enforcement of data integrity rules is essential for preventing data

inconsistencies and ensuring the accuracy of the database. By

separating these levels, the relational model ensures that changes at one

120
MATS Centre for Distance and Online Education, MATS University

Notes level do not impact the others, making database management more

flexible and scalable.

Instances and Schemas

An instance refers to the actual content stored in a database at a specific

point in time, while a schema defines the structure and constraints of

the database. A schema acts as a blueprint, dictating the organization of

data. For example, in the university system above, the schema specifies

the tables, attributes, and relationships, while the instance consists of

the actual student records, courses, and enrollments stored in the

database at a given moment.

INSERT INTO Students (StudentID, Name, Age, Major) VALUES (1,

'Alice Johnson', 20, 'Computer Science');

INSERT INTO Students (StudentID, Name, Age, Major) VALUES (2,

'Bob Smith', 22, 'Mathematics');

INSERT INTO Courses (CourseID, CourseName, Credits) VALUES

(101, 'Database Systems', 4);

INSERT INTO Courses (CourseID, CourseName, Credits) VALUES

(102, 'Operating Systems', 3);

INSERT INTO Enrollments (EnrollmentID, StudentID, CourseID,

Semester, Grade) VALUES (1, 1, 101, 'Fall 2024', 'A');

INSERT INTO Enrollments (EnrollmentID, StudentID, CourseID,

Semester, Grade) VALUES (2, 2, 102, 'Fall 2024', 'B');

Here, the schema remains constant, but the instance changes as new

students enroll in courses.

Data Models

Data models define how data is structured, stored, and manipulated

within a database system. The relational model is one of the most

widely used data models, but others include hierarchical, network, and

object-oriented models. The relational model's simplicity, scalability,

and strong theoretical foundation make it a preferred choice for most

applications. A relational database management system (RDBMS) such

as MySQL, PostgreSQL, or SQL Server implements the relational

model, enabling efficient data management and retrieval. SQL

(Structured Query Language) is used to interact with relational

databases, performing operations such as data insertion, retrieval, and

modification.

121

Notes SELECT Students.Name, Courses.CourseName, Enrollments.Grade

FROM Students

JOIN Enrollments ON Students.StudentID = Enrollments.StudentID

JOIN Courses ON Enrollments.CourseID = Courses.CourseID

WHERE Enrollments.Semester = 'Fall 2024';

This query retrieves student names, enrolled courses, and grades for the

fall 2024 semester by joining the relevant tables.

Understanding the relational model structure is essential for designing

efficient and scalable databases. By applying data modeling techniques,

utilizing schema definitions, and enforcing data integrity through

relationships and constraints, organizations can build robust database

systems. The relational model's abstraction levels, schema-instance

distinction, and powerful query capabilities make it a dominant

paradigm in database design. Through practical examples and SQL

implementation, developers and database administrators can leverage

the relational model to manage complex datasets effectively.

3.4 Database Schema

Database schema is a fundamental component of database design that

defines the structure and organization of data within a database. It

serves as a blueprint for how data is stored, accessed, and managed,

ensuring consistency and efficiency. A database schema encompasses

tables, relationships, constraints, indexes, and other structural elements

that dictate how information is organized.

 Understanding Database Schema

A database schema represents the logical configuration of a database.

It defines tables, columns, data types, and relationships between tables,

ensuring a structured approach to data storage. A well-designed schema

improves database performance, scalability, and maintainability.

Types of Database Schema

1. Physical Schema: Defines how data is physically stored on

storage devices, including indexing, partitioning, and clustering

strategies.

2. Logical Schema: Represents the logical structure of data,

including tables, relationships, views, and constraints.

3. Conceptual Schema: Offers a high-level view of data

organization, abstracting technical details.

122
MATS Centre for Distance and Online Education, MATS University

Notes Importance of Database Schema

A properly designed database schema ensures data integrity, eliminates

redundancy, and facilitates efficient data retrieval. Without a well-

structured schema, databases can become inefficient and difficult to

manage.

Creating a Database Schema with SQL

Below is an example of an SQL script to create a simple database

schema for an e-commerce application:

CREATE DATABASE ECommerceDB;

USE ECommerceDB;

CREATE TABLE Customers (

CustomerID INT PRIMARY KEY AUTO_INCREMENT,

 Name VARCHAR(100) NOT NULL,

 Email VARCHAR(100) UNIQUE NOT NULL,

 Phone VARCHAR(15),

 Address TEXT

);

CREATE TABLE Products (

ProductID INT PRIMARY KEY AUTO_INCREMENT,

 ProductName VARCHAR(100) NOT NULL,

 Category VARCHAR(50),

 Price DECIMAL(10,2) NOT NULL,

 Stock INT NOT NULL

);

CREATE TABLE Orders (

OrderID INT PRIMARY KEY AUTO_INCREMENT,

CustomerID INT,

OrderDate TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

TotalAmountDECIMAL(10,2) NOT NULL,

 FOREIGN KEY (CustomerID) REFERENCES

Customers(CustomerID)

);

CREATE TABLE OrderDetails (

OrderDetailID INT PRIMARY KEY AUTO_INCREMENT,

123

Notes OrderID INT,

ProductID INT,

 Quantity INT NOT NULL,

 Price DECIMAL(10,2) NOT NULL,

 FOREIGN KEY (OrderID) REFERENCES Orders(OrderID),

 FOREIGN KEY (ProductID) REFERENCES Products(ProductID)

);

Normalization and Schema Optimization

Database normalization is the process of structuring a database to

reduce redundancy and improve integrity. The key normal forms are:

• 1st Normal Form (1NF): Eliminates duplicate columns from

tables and creates separate tables for related data.

• 2nd Normal Form (2NF): Ensures that all non-key attributes

are fully functionally dependent on the primary key.

• 3rd Normal Form (3NF): Removes transitive dependencies.

Schema Design Best Practices

1. Use meaningful table and column names to

improvereadability and maintainability.

2. Normalize the database to eliminate redundancy and ensure

consistency.

3. Index frequently accessed columns to optimize query

performance.

4. Use foreign keys and constraints to enforce referential

integrity.

5. Plan for scalability by considering partitioning and clustering

strategies.

Database schema design plays a crucial role in the effectiveness of a

database system. A well-structured schema ensures data consistency,

enhances performance, and simplifies database management. By

following best practices and normalization techniques, database

designers can create efficient and scalable database structures that meet

business requirements. This Module has provided a comprehensive

overview of database schema, its types, importance, and best practices.

By understanding the principles of database design, developers can

build robust and efficient database systems for various applications.

124
MATS Centre for Distance and Online Education, MATS University

Notes Unit 10: Concept of Keys in Database System

3.5 Keys in Database Systems

Figure 10: Keys in Database System
[Source: https://th.bing.com/]

1 Super Key

A super key is a set of one or more attributes that uniquely identify a

record in a table. It is a superset of a candidate key and ensures that no

two rows have the same combination of values for the attributes

included in the super key. Super keys may include extra attributes that

are not necessary for uniqueness but still qualify as unique identifiers.

Example in SQL:

CREATE TABLE Students (

StudentID INT,

 Email VARCHAR(255),

 Name VARCHAR(255),

 Course VARCHAR(100),

 PRIMARY KEY (StudentID, Email) -- This combination acts as a

Super Key

);

In the above example, both StudentID and Email together form a super

key since they uniquely identify a student record.

2. Candidate Key

A candidate key is a minimal super key, meaning it contains only the

necessary attributes required for unique identification. If an attribute is

removed from a candidate key, it no longer remains a key.

125

Notes Example in SQL:

CREATE TABLE Employees (

EmployeeID INT UNIQUE,

NationalIDVARCHAR(20) UNIQUE,

 Name VARCHAR(255),

 Department VARCHAR(100)

);

Here, both EmployeeID and NationalID are candidate keys because

either of them can uniquely identify an employee.

3. Primary Key

A primary key is a specific candidate key chosen to uniquely identify

each record in a table. It must be unique and not null.

Example in SQL:

CREATE TABLE Orders (

OrderID INT PRIMARY KEY,

CustomerID INT,

OrderDate DATE

);

OrderID serves as the primary key, ensuring uniqueness across all order

records.

4. Foreign Key

A foreign key is an attribute in one table that establishes a link to the

primary key of another table, enforcing referential integrity.

Example in SQL:

CREATE TABLE Customers (

CustomerID INT PRIMARY KEY,

 Name VARCHAR(255),

 Email VARCHAR(255)

);

CREATE TABLE Orders (

OrderID INT PRIMARY KEY,

CustomerID INT,

OrderDate DATE,

 FOREIGN KEY (CustomerID) REFERENCES

Customers(CustomerID)

);

126
MATS Centre for Distance and Online Education, MATS University

Notes In this example, CustomerID in the Orders table acts as a foreign key

referencing the CustomerID in the Customers table.

Understanding keys is fundamental to database design. Super keys

define uniqueness, candidate keys refine them, primary keys enforce

uniqueness, and foreign keys ensure referential integrity. Implementing

these properly ensures database efficiency, consistency, and data

integrity.

3.6 Schema Diagram

Data modeling is a fundamental process in database design that

involves defining and structuring data elements and their relationships.

The primary goal of data modeling is to create an efficient, scalable,

and maintainable database structure that meets business and application

needs. It provides a conceptual representation of data and ensures

consistency, integrity, and optimization. A schema diagram is a visual

representation of this model, illustrating tables, attributes, relationships,

and constraints.

Data Abstraction

Data abstraction refers to the process of simplifying complex data

structures by defining different levels of abstraction. It helps in

managing data by providing a systematic way to interact with it without

needing to understand the underlying complexities. The three levels of

data abstraction are:

1. Physical Level: The lowest level that describes how data is

actually stored on storage media, such as disks and memory.

2. Logical Level: The intermediate level that defines what data is

stored in the database and the relationships among them.

3. View Level: The highest level that provides different ways to

interact with the data, customized for different users.

Instances and Schemas

A database schema is the overall design and structure of the database,

whereas an instance is a snapshot of data stored in the database at a

particular moment in time. The schema remains unchanged, whereas

instances change over time as data is inserted, updated, or deleted.

Example Schema Diagram (SQL-Based)

CREATE TABLE Customers (

CustomerID INT PRIMARY KEY,

 Name VARCHAR(100),

 Email VARCHAR(255),

127

Notes Phone VARCHAR(20)

);

CREATE TABLE Orders (

OrderID INT PRIMARY KEY,

CustomerID INT,

OrderDate DATE,

TotalAmountDECIMAL(10,2),

 FOREIGN KEY (CustomerID) REFERENCES

Customers(CustomerID)

);

This schema defines two tables, Customers and Orders, with a one-to-

many relationship, where each customer can place multiple orders.

Data Models

A data model defines how data is organized and manipulated in a

database. There are several types of data models:

The evolution of database management systems (DBMS) has been

marked by the development of various data models, each designed to

address specific requirements and challenges in data organization and

retrieval. These models provide the conceptual framework for

structuring data, defining relationships, and enforcing constraints,

ultimately influencing the efficiency and effectiveness of database

applications. This Module delves into the four fundamental database

models: Hierarchical, Network, Relational, and Object-Oriented,

examining their structures, strengths, weaknesses, and historical

significance.

1. Hierarchical Model: The Tree-Structured Legacy

it intuitive for some sorts of application. can have multiple children

records, however a child record can have only one parent. This rigid

framework reflects the hierarchy of companies and files systems, which

makes and potentially multiple children. This model serves a one-to-

many relationship, where in such relation necessary parent 1-

Hierarchical Model The Hierarchical model is one of the oldest

database models, arranging records in a tree-like structure in which

each record has a single parent (unless it is the root) an Organizational

schema, with the CEO at the root and employees below them at level

1, level 2, etc. hierarchical data structures and is particularly useful in

the context of applications where data is efficiently captured in

128
MATS Centre for Distance and Online Education, MATS University

Notes hierarchical relationships. A Hierarchical model is a great fit to

represent of these two structures using pointers is what makes the data

in the node called fields. The model is capable of handling highest-

level node is referred to as the root, and all other nodes are descendants

of the root. The combination the primary object is a tree consisting of

nodes, where a node represents a record, and branches represent the

relationship between records. The In the Hierarchical model data reads

with this setup. to navigate from root to the desired node in the tree.

Applications that need to access data lower in the hierarchy frequently

could see inefficient student is in multiple courses, then there has to be

a full record for a student for each course, which causes data

redundancy. Also, this navigation of the model is challenging, as one

might need often needed resulting in inefficiency and possible

inconsistency For instance, if a real-world data. Data Redundancy: To

model such relationships, data redundancy is limitations. Its inflexible

structure makes it impossible to represent many to many relationships

common to Nevertheless, the Hierarchical model has certain used

Maintain field type consistency, etc. may not be a desired behavior. A

database allows constraints to be placed on the data to enforce data

integrity, i.e., each child record must have a parent record, the data type

of the field is important to consider the parent-child relationships

because if you change something at one spot of the tree you might break

something at a totally different and unrelated tree path. For example,

deleting a parent record will also delete its children records, this

Hierarchical model, data manipulation involves following the

predefined paths in the tree when adding, deleting, or updating records

it In the properties. Hierarchical model has generally been replaced.

However, remnants can still be found in some domains like file systems

and XML data structures with hierarchical mainframe environments

for transaction processing and data management. Nevertheless, since

more flexible and powerful data models became available, the

Information Management System (IMS), one of the first DBMS, had a

Hierarchical model. IMS was prevalent in quite relevant. IBM's Sure

enough, the Hierarchical model is historically The creation of advanced

data models that overcome such challenges. Decline as an approach.

Its legacy, though, has opened the door for While the Hierarchical

model is simple and efficient for representing a one-to-many

129

Notes relationship, it is less suited to handling a many-to-many relationship

and complex navigation, which ultimately led to its.

Model: Understanding Complex Relationships Network

Which allows more complex relationships between data to be

represented. Model an extension of the hierarchical model; it

overcomes the limitations of its predecessor by allowing a record to

have multiple parent records, representing many-to-many relationships.

In this model, the data model is built up as a graph, with records as

nodes and relationships as links, Network to more than one project.

Member) therefore it may have multiple parent records, unlike the

Hierarchical model. The schema allows for flexibility, representing

complex relationships, such as students taking more than one course or

employee’s assigned record per owner and one or more records per

member. A member record may belong to multiple sets (is a record

relationships. A set contains one and groups). Sets of records show

one-to-many The central element is the network itself (formed by

records which may not be the desired behavior in all cases. larger

network of information. As an example, when an owner record gets

deleted, all member records get deleted automatically, can be more

than one parent record makes navigating more difficult. As such, when

you want to create, delete or edit records you need to think about the

set relationships as one small piece of a traversing the network using

predefined paths just as in the Hierarchical model. But the fact that

there In the arrows from the network model, the manipulation of data

occurs through department. The instruction created are membership in

the set and how to be inside. That is, a student only gets to register for

courses that are part of their has an owner record, and that field data

types are consistent. Also it is possible to define some constraint to be

applied in it, Constraints are used to maintain data integrity in the

Network model, for example by ensuring that every member record

also its obsolescence. its impact is still felt in some contexts, such as

network databases and graph databases, which employ graph structures

to model relationships between data. Made the use of Network models

less common. However, However, this flexibility comes at a cost, as

the Model is complex and the emergence of the Relational model has

3. Relational Model: The Power of Tables

The Relational model, introduced by E.F. Codd in 1970, revolutionized

database management by representing data in tables with rows and

130
MATS Centre for Distance and Online Education, MATS University

Notes columns. This model provides a simple and intuitive way to organize

data, define relationships, and enforce constraints, making it the

dominant database model in modern applications. The core component

of the Relational model is the relation, which is represented as a table.

Each table consists of rows and columns. Rows represent records, and

columns represent attributes. The Relational model uses primary keys

to uniquely identify records and foreign keys to establish relationships

between tables. This approach eliminates data redundancy and ensures

data integrity. Data manipulation in the Relational model is performed

using Structured Query Language (SQL), a powerful and flexible

language for querying and manipulating data. SQL allows users to

perform various operations, such as selecting, inserting, updating, and

deleting data. The Relational model's simplicity and the availability of

SQL have made it accessible to a wide range of users, from database

administrators to application developers. Data integrity in the

Relational model is maintained through constraints, such as primary

key constraints, foreign key constraints, and check constraints. Primary

key constraints ensure that each record is uniquely identified. Foreign

key constraints ensure that relationships between tables are valid.

Check constraints ensure that data values meet specific criteria. The

Relational model also supports referential integrity, which ensures that

relationships between tables are consistent. The Relational model's

historical significance is immense. IBM's System R, one of the earliest

relational DBMS, demonstrated the feasibility and power of the

Relational model. Oracle, Microsoft SQL Server, and MySQL are

examples of widely used relational DBMS. The Relational model's

simplicity, flexibility, and the availability of SQL have made it the

dominant database model in modern applications, ranging from

enterprise systems to web applications. The Relational model's ability

to represent data in a simple and intuitive way, its support for SQL, and

its emphasis on data integrity have made it the foundation of modern

database management. Its influence is pervasive, and it continues to

evolve to meet the changing needs of database applications.

4. Object-Oriented Model: Bridging the Gap

The Object-Oriented model, an attempt to bridge the gap between

object-oriented programming (OOP) and database management,

integrates OOP principles into database design. This model represents

data as objects, which encapsulate data and behavior, providing a more

131

Notes natural and intuitive way to model real-world entities. The core

component of the Object-Oriented model is the object, which consists

of attributes (data) and methods (behavior). Objects are organized into

classes, which define the structure and behavior of objects. The Object-

Oriented model supports inheritance, encapsulation, and

polymorphism, which are fundamental principles of OOP. These

principles enable the creation of complex and reusable data structures.

Data manipulation in the Object-Oriented model involves invoking

methods on objects. This approach provides a more natural and

intuitive way to interact with data, as it mirrors the way objects interact

in OOP. The Object-Oriented model also supports object-oriented

query languages, which provide a more expressive and powerful way

to query and manipulate data. Data integrity in the Object-Oriented

model is maintained through encapsulation and constraints.

Encapsulation ensures that data is accessed and modified only through

methods, providing a level of control over data access. Constraints,

such as primary key constraints and foreign key constraints, ensure that

data values meet specific criteria and that relationships between objects

are valid.

Example of a Relational Data Model

CREATE TABLE Products (

ProductID INT PRIMARY KEY,

 ProductName VARCHAR(255),

 Price DECIMAL(10,2)

);

CREATE TABLE OrderDetails (

OrderDetailID INT PRIMARY KEY,

OrderID INT,

ProductID INT,

 Quantity INT,

 FOREIGN KEY (OrderID) REFERENCES Orders(OrderID),

 FOREIGN KEY (ProductID) REFERENCES Products(ProductID)

);

In this relational model, the Products table stores product details, and

Order Details links orders to products, implementing a many-to-many

relationship. Understanding the view of data through abstraction,

schema diagrams, and data models is crucial in database design. Proper

132
MATS Centre for Distance and Online Education, MATS University

Notes structuring ensures efficient data retrieval, integrity, and scalability,

making databases more robust and reliable.

3.7 Conversion of E-R to Relational Model

Data modeling and database design are crucial aspects of database

management systems (DBMS). The process involves structuring and

organizing data systematically to facilitate efficient storage, retrieval,

and modification. One of the fundamental techniques in database

design is the Entity-Relationship (E-R) model, which visually

represents entities, their attributes, and relationships. Converting an E-

R model into a relational model is a vital step in implementing a

functional database.

Understanding the E-R Model

The Entity-Relationship model is a conceptual framework that

represents the structure of data. It comprises entities, attributes, and

relationships. Entities are objects or concepts that store data, while

attributes define the properties of entities. Relationships describe the

associations between entities.

For example, consider a university database where Student, Course,

and Professor are entities. A student enrolls in a course, and a professor

teaches a course. These relationships help define the logical

connections in the system.

CREATE TABLE Student (

StudentID INT PRIMARY KEY,

 Name VARCHAR(100),

 Age INT,

 Major VARCHAR(50)

);

CREATE TABLE Course (

CourseID INT PRIMARY KEY,

CourseNameVARCHAR(100),

 Credits INT

);

CREATE TABLE Professor (

ProfessorID INT PRIMARY KEY,

 Name VARCHAR(100),

 Department VARCHAR(50)

133

Notes);

Step 1: Mapping Entities

Each entity in the E-R diagram is mapped to a table in the relational

model. The primary key of the entity becomes the primary key of the

table.

For example:

CREATE TABLE Student (

StudentID INT PRIMARY KEY,

 Name VARCHAR(100),

 Age INT,

 Major VARCHAR(50)

);

Step 2: Mapping Relationships

Relationships between entities are converted into foreign keys or

separate tables, depending on the cardinality of the relationship.

For a Many-to-Many relationship like Student and Course, a junction

table is created:

CREATE TABLE Enrollment (

StudentID INT,

CourseID INT,

EnrollmentDate DATE,

 PRIMARY KEY (StudentID, CourseID),

 FOREIGN KEY (StudentID) REFERENCES Student(StudentID),

 FOREIGN KEY (CourseID) REFERENCES Course(CourseID)

);

Step 3: Mapping Attributes

Attributes are represented as column

MCQs:

1. Generalization in a database is the process of:

a) Combining multiple entities into a higher-level entity

b) Splitting one entity into multiple sub-entities

c) Creating foreign keys

d) Deleting redundant data

2. Specialization in an E-R model refers to:

a) Merging two entities into one

b) Creating sub-entities from a higher-level entity

134
MATS Centre for Distance and Online Education, MATS University

Notes c) Removing attributes from a table

d) Encrypting a database

3. A Super Key is:

a) A key that uniquely identifies a tuple but may have extra

attributes

b) A key used for indexing

c) A key with duplicate values

d) A key used only for foreign relations

4. Which of the following is a Candidate Key?

a) A key that can be used as a Primary Key

b) A key that contains duplicate values

c) A foreign key

d) A key that cannot be unique

5. The Primary Key in a relational database:

a) Uniquely identifies each record

b) Can have NULL values

c) Is always a foreign key

d) Must contain duplicate values

6. A Foreign Key is used to:

a) Uniquely identify a record in a table

b) Enforce referential integrity between two tables

c) Store encrypted data

d) Improve query performance

7. Which diagram is used to represent the structure of a

relational database?

a) Flowchart

b) Schema Diagram

c) E-R Diagram

d) UML Diagram

8. What does E-R to Relational Model Conversion involve?

a) Mapping entities and relationships to tables

b) Writing SQL queries

c) Creating indexes for tables

d) Deleting duplicate records

9. Which of the following constraints ensures referential

integrity in a database?

a) Primary Key

b) Foreign Key

135

Notes c) NOT NULL

d) CHECK

10. The Relational Model consists of:

a) Tables with rows and columns

b) Images and videos

c) Hierarchical data storage

d) Graph-based relationships

Short Questions:

1. What is the difference between Generalization and

Specialization?

2. Define Super Key, Candidate Key, and Primary Key.

3. Explain the Relational Model Structure in databases.

4. What are the different types of keys in a relational database?

5. How does a Foreign Key maintain referential integrity?

6. What are the constraints on Specialization in E-R models?

7. Explain how an E-R model is converted into a relational model.

8. What is the role of a Schema Diagram in database design?

9. Define Database Schema and its types.

10. What is the importance of constraints in relational databases?

Long Questions:

1. Explain Generalization and Specialization in the E-R model

with examples.

2. Discuss the role of constraints on Specialization in database

design.

3. What is a Relational Model? Explain its structure with

examples.

4. Describe the different types of keys and their importance in a

relational database.

5. Explain the concept of Foreign Keys and how they enforce

referential integrity.

6. What is a Schema Diagram, and how does it help in database

design?

7. Describe the process of converting an E-R model into a

relational model.

8. Explain the importance of normalization in relational databases.

9. Compare and contrast Primary Key and Foreign Key.

10. How does a well-designed relational model improve database

efficiency?

136
MATS Centre for Distance and Online Education, MATS University

MODULE 4

MANAGING DATABASE AND TABLE

4.0 LEARNING OUTCOMES

• Learn how to create, select, and drop databases in SQL.

• Understand how to create, rename, alter, truncate, and drop

tables.

• Learn about different data types in a relational database.

• Understand how to insert, update, and delete records from a

table.

• Learn about constraints such as Primary Key, Foreign Key,

UNIQUE, NOT NULL, DEFAULT, and CHECK constraints.

Data Modeling and Database Design

Data modeling is a fundamental process in database design that

involves structuring and organizing data to facilitate efficient storage,

retrieval, and manipulation. This process ensures that databases are

designed to support business requirements, data integrity, and

scalability. There are several approaches to data modeling, including

conceptual, logical, and physical models. Each stage refines the

representation of data from abstract concepts to implementable

structures. Conceptual models focus on high-level entity relationships

and do not include technical details. Logical models define data

attributes, relationships, and constraints, preparing the data for

implementation. Physical models translate these structures into

database-specific schemas, incorporating storage considerations and

indexing strategies. Effective data modeling enables organizations to

maintain data consistency, optimize performance, and streamline

application development.

137

Notes Unit 11: Fundamental SQL Commands

4.1 Select, Create, and Drop Database

The SELECT statement is a fundamental SQL command used to

retrieve data from a database. It allows users to specify columns, apply

conditions, aggregate results, and join tables. Efficient selection of data

is critical for database performance, as it affects query execution time

and resource utilization.

Example:

SELECT * FROM employees;

SELECT name, salary FROM employees WHERE department = 'HR';

SELECT department, AVG(salary) FROM employees GROUP BY

department;

Indexes and query optimization techniques enhance the efficiency of

the SELECT statement. Proper indexing ensures that searches and

retrievals are performed quickly, reducing the overall database load.

Create Database

Creating a database is the first step in database design. The CREATE

DATABASE command initializes a new database in a relational

database management system (RDBMS). It defines the storage

structure, character set, and collation settings.

Example:

CREATE DATABASE CompanyDB;

USE CompanyDB;

After creating a database, tables and relationships must be defined.

Proper planning ensures that the schema supports data consistency and

business rules.

Drop Database

Dropping a database permanently deletes all its data and structures.

This operation should be executed with caution, as it cannot be undone.

Example:

DROP DATABASE CompanyDB;

Before dropping a database, it is advisable to take a backup to prevent

accidental data loss. Database administrators should also ensure that no

active transactions depend on the database being dropped.

Understanding data modeling and database design is essential for

developing efficient, scalable, and maintainable database systems. The

SELECT, CREATE DATABASE, and DROP DATABASE

138
MATS Centre for Distance and Online Education, MATS University

Notes commands are fundamental operations that enable database interaction,

management, and maintenance. Proper implementation of these

concepts ensures data integrity, security, and optimal performance.

4.2 Create, Rename, Alter, Truncate, and Drop Table

Data modeling and database design are fundamental aspects of database

management systems (DBMS). These processes define how data is

structured, stored, and manipulated efficiently. Effective database

design ensures data integrity, reduces redundancy, and optimizes

performance. Structured Query Language (SQL) provides various

commands for managing tables, including creating, renaming, altering,

truncating, and dropping tables. This Module delves into these

operations with detailed explanations and examples to provide a deep

understanding of database management.

Creating a Table

Creating a table is the first step in designing a database. The CREATE

TABLE statement in SQL allows the definition of a table structure,

including columns, data types, constraints, and relationships.

Syntax:

CREATE TABLE table_name (

column1 datatype constraints,

column2 datatype constraints,

 ...

columnN datatype constraints

);

Example:

CREATE TABLE Students (

StudentID INT PRIMARY KEY,

 FirstName VARCHAR(50),

 LastName VARCHAR(50),

 Age INT,

 Email VARCHAR(100) UNIQUE

);

This example defines a Students table with four attributes. The

StudentID column serves as the primary key, ensuring uniqueness. The

Email field is constrained to store unique values, preventing duplicate

entries.

139

Notes Renaming a Table

The RENAME statement is used to change the name of an existing

table. This is useful when restructuring the database or standardizing

naming conventions.

Syntax:

ALTER TABLE old_table_name RENAME TO new_table_name;

Example:

ALTER TABLE Students RENAME TO UniversityStudents;

This command renames the Students table to UniversityStudents,

ensuring better clarity and consistency in the database.

Altering a Table

The ALTER TABLE statement modifies an existing table by adding,

modifying, or dropping columns. This is essential when evolving a

database to accommodate new requirements.

Syntax (Adding a Column):

ALTER TABLE table_name ADD column_name datatype constraints;

Example:

ALTER TABLE Students ADD DateOfBirth DATE;

This statement adds a DateOfBirth column to the Students table.

Syntax (Modifying a Column):

ALTER TABLE table_name MODIFY column_namenew_datatype

constraints;

Example:

ALTER TABLE Students MODIFY Age SMALLINT;

This modifies the Age column’s data type from INT to SMALLINT for

optimized storage.

Syntax (Dropping a Column):

ALTER TABLE table_name DROP COLUMN column_name;

Example:

ALTER TABLE Students DROP COLUMN Email;

This command removes the Email column from the Students table.

Truncating a Table

The TRUNCATE statement is used to delete all records from a table

without removing the structure. This is faster than DELETE as it

bypasses logging mechanisms.

Syntax:

TRUNCATE TABLE table_name;

140
MATS Centre for Distance and Online Education, MATS University

Notes Example:

TRUNCATE TABLE Students;

This deletes all records from the Students table while retaining the table

structure.

Dropping a Table

The DROP TABLE statement permanently deletes a table and all

associated data.

Syntax:

DROP TABLE table_name;

Example:

DROP TABLE Students;

This removes the Students table from the database.

Understanding data modeling and database design is crucial for

efficient data management. SQL provides powerful commands to

create, rename, alter, truncate, and drop tables, allowing developers to

structure and modify databases effectively. Proper database design

ensures performance optimization and data integrity, supporting robust

application development. The ability to manipulate tables dynamically

ensures that a database remains scalable and adaptable to evolving

business needs.

Data Modeling and Database Design

Data modeling and database design are foundational aspects of

database systems that involve structuring and organizing data

efficiently to ensure optimal performance, integrity, and usability.

These processes define how data is stored, retrieved, and managed in a

database. Data modeling involves creating abstract representations of

real-world entities and their relationships, while database design

focuses on the practical implementation of these models using database

management systems (DBMS). A well-structured database design

ensures consistency, minimizes redundancy, and enhances data

retrieval speed. Various data models, such as hierarchical, network,

relational, and object-oriented, dictate how data is organized and

related. The relational model, which uses tables, is the most widely used

due to its flexibility and efficiency in handling structured data.

141

Notes Unit 12: Data Types in DBMS

4.3 Data Types: Bit, Boolean, Char, Archer, Date, Date time,

Decimal

Different database management systems provide a variety of data types

to store and manipulate data effectively. Choosing the appropriate data

type is crucial for optimizing storage, ensuring data integrity, and

improving query performance. The following are some commonly used

data types in databases:

1. BIT Data TypeThe BIT data type is used to store binary values

(0 or 1). It is commonly used for Boolean operations and binary

flags.

2. CREATE TABLE UserPreferences (

3. id INT PRIMARY KEY,

4. receive_notifications BIT

5.);

6. BOOLEAN Data Type BOOLEAN is a data type that holds

true or false values. Some database systems implement it using

the BIT type.

7. CREATE TABLE Employees (

8. id INT PRIMARY KEY,

9. is_active BOOLEAN

10.);

11. CHAR Data TypeThe CHAR data type stores fixed-length

character strings. It is suitable for fields with uniform length,

such as country codes.

12. CREATE TABLE Countries (

13. code CHAR(3) PRIMARY KEY,

14. name VARCHAR(50)

15.);

16. VARCHAR Data TypeThe VARCHAR data type stores

variable-length character strings, making it more flexible than

CHAR.

17. CREATE TABLE Users (

18. id INT PRIMARY KEY,

19. username VARCHAR(50)

20.);

142
MATS Centre for Distance and Online Education, MATS University

Notes 21. DATE Data TypeThe DATE data type is used to store calendar

dates without time components.

22. CREATE TABLE Events (

23. event_id INT PRIMARY KEY,

24. event_date DATE

25.);

26. DATETIME Data TypeThe DATETIME data type stores date

and time information.

27. CREATE TABLE Appointments (

28. appointment_id INT PRIMARY KEY,

29. appointment_time DATETIME

30.);

31. DECIMAL Data TypeThe DECIMAL data type stores precise

numeric values, which is essential for financial calculations.

32. CREATE TABLE Transactions (

33. transaction_id INT PRIMARY KEY,

34. amount DECIMAL(10,2)

35.);

Each of these data types serves a specific purpose and is chosen based

on the requirements of the database system. Understanding these data

types and their practical applications helps in designing efficient and

robust database systems that cater to the needs of different applications.

143

Notes Unit 13: Manipulation of data in database

4.4 Insert, Update, and Delete Records

Managing databases and tables is a fundamental aspect of database

administration, ensuring that data is accurately stored, modified, and

removed as needed. The three essential operations INSERT, UPDATE,

and DELETE—are crucial for maintaining data integrity and

consistency within a relational database. These operations allow users

to add new records, modify existing entries, and remove unnecessary

or outdated data. Effective management of databases and tables using

these operations ensures smooth data handling, enhances performance,

and maintains accuracy in various applications, including business,

finance, healthcare, and education. The INSERT operation is used to

add new records into a table, ensuring that fresh data is properly stored

for retrieval and processing. In relational databases, each table consists

of multiple columns, and when inserting data, it is necessary to provide

values for the relevant fields. The INSERT INTO statement is used to

add data, specifying the table name and the values to be inserted. For

example, in an employee database, adding a new employee record

involves inserting details such as employee ID, name, department, and

salary. Proper data insertion ensures that records are available for

queries, reporting, and further processing. Additionally, constraints

such as NOT NULL, UNIQUE, and PRIMARY KEY help maintain

data integrity by enforcing rules on inserted values. If an attempt is

made to insert a record that violates these constraints, the database

rejects the entry, ensuring data consistency. Updating records is equally

important in database management, as information often changes over

time. The UPDATE statement is used to modify existing data within a

table, allowing records to be corrected, modified, or refreshed. This

operation is essential for keeping information up to date, such as

changing an employee’s salary, updating a customer’s contact details,

or modifying a product’s price. The UPDATE command is used along

with the SET keyword to specify new values for one or more fields, and

a WHERE clause is used to target specific records that need

modification. Without a WHERE clause, the update operation may

affect all records in a table, leading to unintended changes. For

example, in a student database, updating a student’s grade for a specific

course ensures that the database reflects the latest academic

144
MATS Centre for Distance and Online Education, MATS University

Notes performance. To maintain data integrity, constraints and triggers may

be applied to enforce business rules, ensuring that updates follow

predefined guidelines.

The DELETE operation is used to remove records from a table when

they are no longer needed. Deleting unnecessary or outdated records

helps maintain an optimized database by reducing storage space and

improving query performance. The DELETE FROM statement is used

with a WHERE clause to specify which records should be removed. If

a WHERE clause is omitted, all records in the table will be deleted,

which can lead to unintended data loss. For example, in an online

shopping database, deleting an order that has been canceled ensures that

only valid transactions remain in the system. In cases where data

recovery may be required, soft deletion techniques can be used, where

a record is marked as inactive instead of being physically removed from

the database. This approach allows data to be restored if needed,

preserving historical information. Efficient management of INSERT,

UPDATE, and DELETE operations is crucial for maintaining a well-

organized database. Indexing plays a significant role in optimizing

these operations, allowing the database to quickly locate and modify

records. Additionally, transaction control mechanisms such as

COMMIT and ROLLBACK ensure data consistency by allowing

changes to be saved or undone in case of errors. The ACID (Atomicity,

Consistency, Isolation, Durability) properties of a database

management system (DBMS) ensure that all operations are processed

reliably. For instance, in a banking system, when transferring money

between accounts, the database ensures that either both the debit and

credit operations are completed successfully or neither occurs,

preventing data inconsistencies. Security is another key aspect of

managing databases and tables. Permissions and access controls restrict

unauthorized users from inserting, updating, or deleting records,

ensuring that only authorized personnel can modify critical data.

Backup strategies further safeguard data by providing recovery options

in case of accidental deletion or corruption. Regular database

maintenance, including indexing, optimizing queries, and archiving old

records, ensures that databases remain efficient and scalable. In

conclusion, INSERT, UPDATE, and DELETE operations are vital

components of managing databases and tables, enabling users to handle

data effectively. Proper execution of these operations ensures data

145

Notes accuracy, consistency, and security, supporting various applications in

different industries. By leveraging constraints, indexing, transaction

management, and security measures, databases can be efficiently

maintained, providing reliable and high-performance data management

solutions.

146
MATS Centre for Distance and Online Education, MATS University

Notes Unit 14: Integrity Constraints

4.5 Constraints: Primary Key, Foreign Key, Unique, Not Null,

Default, Check

In relational database management systems (RDBMS), constraints play

a crucial role in ensuring data integrity and accuracy. Constraints define

rules enforced on data within a table to prevent invalid or inconsistent

data from being entered. The major types of constraints in SQL include

Primary Key, Foreign Key, Unique, Not Null, Default, And Check.

This Module explores these constraints in detail, explaining their

significance with real-world examples and corresponding SQL code

snippets.

Primary Key Constraint

A Primary Key is a unique identifier for a record in a table. It ensures

that each record has a unique value in the specified column or

combination of columns. A primary key column cannot contain NULL

values and must always have unique entries. This constraint is essential

for maintaining entity integrity in a database.

Example: Creating a table with a primary key constraint

CREATE TABLE Students (

StudentID INT PRIMARY KEY,

 Name VARCHAR(100),

 Age INT,

 Email VARCHAR(100)

);

In this example, StudentID is the primary key, meaning no two students

can have the same StudentID, and it cannot be NULL.

Foreign Key Constraint

A Foreign Key is used to establish a relationship between two tables.

It ensures that the value in the foreign key column exists in the

referenced primary key column of another table, thereby maintaining

referential integrity.

Example: Creating a table with a foreign key constraint

CREATE TABLE Courses (

CourseID INT PRIMARY KEY,

CourseNameVARCHAR(100)

);

147

Notes CREATE TABLE Enrollments (

EnrollmentID INT PRIMARY KEY,

StudentID INT,

CourseID INT,

 FOREIGN KEY (StudentID) REFERENCES Students(StudentID),

 FOREIGN KEY (CourseID) REFERENCES Courses(CourseID)

);

Here, StudentID in Enrollments references StudentID in Students, and

CourseID references CourseID in Courses, ensuring that only valid

student and course entries exist in the Enrollments table.

UNIQUE Constraint

The UNIQUE constraint ensures that all values in a column are distinct,

preventing duplicate entries. Unlike the primary key, a table can have

multiple UNIQUE constraints, and they can contain NULL values

(unless explicitly restricted).

Example: Applying a UNIQUE constraint

CREATE TABLE Employees (

EmployeeID INT PRIMARY KEY,

 Email VARCHAR(255) UNIQUE,

 Name VARCHAR(100),

 Department VARCHAR(50)

);

In this example, Email must be unique for each employee, ensuring that

no two employees share the same email address.

NOT NULL Constraint

The NOT NULL constraint ensures that a column cannot contain

NULL values. This is useful when a column must always have a valid

value, preventing missing or undefined data.

Example: Enforcing NOT NULL constraint

CREATE TABLE Orders (

OrderID INT PRIMARY KEY,

CustomerNameVARCHAR(100) NOT NULL,

OrderDate DATE NOT NULL,

 Amount DECIMAL(10,2)

);

Here, Customer Name and Order Date must always have a value when

a new record is inserted.

148
MATS Centre for Distance and Online Education, MATS University

Notes DEFAULT Constraint

The DEFAULT constraint assigns a default value to a column when no

explicit value is provided during an insert operation.

Example: Using a DEFAULT constraint

CREATE TABLE Products (

ProductID INT PRIMARY KEY,

 ProductName VARCHAR(100) NOT NULL,

 Price DECIMAL(10,2) NOT NULL,

 Stock INT DEFAULT 50

);

In this case, if a new product is added without specifying the Stock, it

automatically gets assigned the value 50.

CHECK Constraint

The CHECK constraint enforces specific conditions that the data must

meet before being inserted or updated in a table.

Example: Implementing a CHECK constraint

CREATE TABLE Employees (

EmployeeID INT PRIMARY KEY,

 Age INT CHECK (Age >= 18),

 Salary DECIMAL(10,2) CHECK (Salary >= 20000)

);

This ensures that employees must be at least 18 years old, and their

salary must not be less than 20,000.

Constraints in SQL help maintain data integrity and consistency by

enforcing rules on database columns. The Primary Key ensures

uniqueness and non-null ability, the Foreign Key maintains

relationships between tables, UNIQUEensures distinct values, NOT

NULL prevents missing data, DEFAULT assigns default values, and

CHECK enforces specific conditions. By leveraging these constraints,

databases can prevent inconsistencies, improve reliability, and enhance

overall efficiency. Understanding and correctly implementing these

constraints is fundamental to effective database design and

management.

MCQs:

1. Which SQL command is used to create a new database?

a) MAKE DATABASE

b) CREATE DATABASE

149

Notes c) NEW DATABASE

d) ADD DATABASE

2. Which command is used to delete an entire database

permanently?

a) DROP DATABASE

b) DELETE DATABASE

c) REMOVE DATABASE

d) TRUNCATE DATABASE

3. Which SQL command is used to remove all records from a

table but keep the structure?

a) DELETE

b) DROP

c) TRUNCATE

d) ALTER

4. Which of the following is a valid SQL data type?

a) STRING

b) TEXT

c) CHAR

d) NUMERIC

5. Which command is used to change the structure of an

existing table?

a) MODIFY TABLE

b) CHANGE TABLE

c) ALTER TABLE

d) EDIT TABLE

6. What does the NOT NULL constraint do?

a) Ensures that a column does not contain duplicate values

b) Prevents a column from having NULL values

c) Sets a default value for the column

d) Creates a new table

7. Which of the following statements about PRIMARY KEY

is true?

a) A table can have multiple primary keys

b) A primary key column can contain duplicate values

c) A primary key ensures uniqueness and cannot be NULL

d) A primary key can be removed using DELETE

8. Which SQL command is used to modify existing records in

a table?

150
MATS Centre for Distance and Online Education, MATS University

Notes a) MODIFY

b) CHANGE

c) UPDATE

d) ALTER

9. What does the CHECK constraint do?

a) Ensures values in a column meet a specific condition

b) Automatically fills a column with a default value

c) Allows NULL values in a column

d) Creates a new table

10. Which command is used to remove a table completely,

including its structure?

a) DROP TABLE

b) DELETE TABLE

c) REMOVE TABLE

d) TRUNCATE TABLE

Short Questions:

1. What is the purpose of the CREATE DATABASE command?

2. How does the DROP DATABASE command work?

3. What is the difference between DELETE, DROP, and

TRUNCATE?

4. What are the different data types available in SQL?

5. Explain the difference between CHAR and VARCHAR.

6. How does the ALTER TABLE command work?

7. What is the function of NOT NULL and UNIQUE constraints?

8. How can we update records in a table using SQL?

9. What is the purpose of the CHECK constraint?

10. How does the DEFAULT constraint work in SQL?

Long Questions:

1. Explain the process of creating and deleting a database in SQL.

2. Discuss the different SQL commands used to manage tables.

3. What are SQL data types, and how are they used in table

creation?

4. Explain the differences between DELETE, DROP, and

TRUNCATE with examples.

5. How does the ALTER TABLE command modify table

structures?

6. Describe the different types of constraints used in database

design.

151

Notes 7. Explain how the PRIMARY KEY and FOREIGN KEY

constraints enforce data integrity.

8. What is the purpose of the CHECK constraint, and how is it

implemented?

9. Write SQL queries to insert, update, and delete records from a

table.

10. Discuss the importance of constraints in database security and

integrity.

152
MATS Centre for Distance and Online Education, MATS University

MODULE 5

 DATA MANIPULATION

5.0 LEARNING OUTCOMES

• Learn how to use the SELECT, ORDER BY, WHERE, and

SELECT DISTINCT commands.

• Understand different operators like AND, OR, IN, BETWEEN,

LIKE, LIMIT, and IS NULL.

• Learn how to apply numeric, string, and date functions in SQL.

• Understand joins and their types: INNER JOIN, LEFT JOIN,

RIGHT JOIN, SELF JOIN.

• Learn about aggregate functions like GROUP BY, HAVING,

MIN(), MAX(), AVG(), SUM(), COUNT().

• Understand the concept of sub queries and their usage.

153

Notes Unit 15: SELECT, ORDER BY and WHERE Clause

5.1 Select, Order By, Where, and Select Distinct

The world of data is vast and intricate, and the ability to extract

meaningful information from databases is paramount in today's data-

driven landscape. Structured Query Language (SQL) serves as the

lingua franca for interacting with relational databases, allowing users

to manipulate and retrieve data efficiently. This Module delves into the

core SQL commands: Select, Order By, Where, and Select Distinct,

which form the building blocks for data retrieval. Mastering these

commands is essential for anyone seeking to navigate and leverage the

power of relational databases. The SELECT statement is the

cornerstone of data retrieval in SQL. It allows users to specify the

columns they wish to retrieve from a table. The basic syntax of the

Select statement is as follows: SELECT column1, column2, FROM

table name;. Here, column1, column2, and so on, represent the names

of the columns to be retrieved, and table name specifies the table from

which the data will be fetched. For example, consider a table named

"Employees" with columns "EmployeeID," "FirstName," "LastName,"

Figure 11: Statement order of Queries
[Source: https://www.sqlrelease.com/]

154
MATS Centre for Distance and Online Education, MATS University

Notes and "Department." To retrieve the "FirstName" and "LastName" of all

employees, the following SQL query can be used: SELECT FirstName,

LastName FROM Employees;. This query will return a result set

containing the first and last names of all employees in the "Employees"

table. Furthermore, the SELECT statement allows users to retrieve all

columns from a table using the asterisk (*) wildcard. The syntax for

this is: SELECT * FROM table name;. This retrieves every single

column present in the table. For instance, SELECT * FROM

Employees; would return all columns (Employee, First Name,

LastName, Department) for all employees. While convenient, using

SELECT * can be inefficient when dealing with large tables, as it

retrieves unnecessary data. It's generally recommended to explicitly

specify the columns needed to improve query performance. The

ORDER BY clause is used to sort the result set of a SELECT statement

in ascending or descending order based on one or more columns.1 The

syntax for ORDER BY is: SELECT column1, column2, ... FROM table

name ORDER BY column name [ASC|DESC];. Here, column name

specifies the column to sort by, and ASC (ascending) or DESC

(descending) specifies the sorting order. If no sorting order is specified,

the default is ascending. For instance, to retrieve all employees sorted

by their "LastName" in ascending order, the following query can be

used: SELECT FROM Employees ORDER BY LastName ASC;. To

sort by "LastName" in descending order, the query would be: SELECT

* FROM Employees ORDER BY LastName DESC.

Additionally, the ORDER BY clause can be used to sort by multiple

columns. The sorting order is determined by the order in which the

columns are specified. For example, to retrieve employees sorted first

by "Department" in ascending order and then by "LastName" in

ascending order within each department, the following query can be

used: Select From Employees ORDER BY Department ASC,

LastName ASC;. This query will first sort the employees by their

department, and then within each department, it will sort them by their

last name. The Where clause is used to filter the result set of a select

statement based on specified conditions. It allows users to retrieve only

the rows that meet certain criteria. The syntax for the Where clause is:

SELECT column1, column2, . FROM table name Where condition;.

Here, condition represents the criteria that must be met for a row to be

155

Notes included in the result set. For example, to retrieve all employees from

the "Sales" department, the following query can be used: Select From

Employees Where Department = 'Sales';. This query will return only

the rows where the "Department" column has the value "Sales." The

WHERE clause can use various comparison operators, such as =, !=(not

equal), >, <, >=, and <=. For instance, to retrieve all employees with an

"Employee" greater than 100, the following query can be used: Select

From Employees Where EmployeeID>100;. The WHERE clause can

also use logical operators, such as AND, OR, and NOT, to combine

multiple conditions. For example, to retrieve all employees from the

"Sales" department with an "EmployeeID" greater than 100, the

following query can be used: Select * From Employees Where

Department = 'Sales' AND EmployeeID>100;. To retrieve all

employees from either the "Sales" or "Marketing" department, the

query would be: SELECT * FROM Employees Where Department =

'Sales' OR Department = ‘Marketing’. Furthermore, the Where clause

can use the LIKE operator for pattern matching. The LIKE operator

uses wildcard characters, such as % (any sequence of characters) and _

(any single character). For example, to retrieve all employees whose

"LastName" starts with "S," the following query can be used: Select *

From Employees WHERE LastName LIKE 'S%';. To retrieve all

employees whose "LastName" contains "son," the query would be:

SELECT * FROM Employees WHERE LastName LIKE

'%son%';.TheWHERE clause can also use the IN operator to specify a

list of values. For example, to retrieve all employees from the "Sales,"

"Marketing," or "HR" department, the following query can be used:

Select From Employees where Department IN ('Sales', 'Marketing',

'HR'); The Select Distinct statement is used to retrieve only the unique

values from a column. It eliminates duplicate rows from the result set.

The syntax for Select Distinct Is: Select Distinct column1, column2, ...

FROM table name;. For example, to retrieve the unique departments

from the "Employees" table, the following query can be used: Select

Distinct Department FROM Employees;. This query will return a list

of all unique departments in the table, without any duplicates. The

SELECT DISTINCT statement can also be used with multiple

columns. In this case, it returns the unique combinations of values from

the specified columns. For example, to retrieve the unique

combinations of "Department" and "Location" from the "Employees"

156
MATS Centre for Distance and Online Education, MATS University

Notes table, the following query can be used: SELECT DISTINCT

Department, Location FROM Employees;. This query will return a list

of all unique combinations of department and location, without any

duplicates. Now, let's explore some more complex scenarios and

examples to solidify our understanding of these foundational SQL

commands.

157

Notes

Example 1: Retrieving Employees with Specific Criteria

Consider a table named "Products" with columns "ProductID,"

"ProductName," "Category," and "Price." To retrieve all products from

the "Electronics" category with a price greater than $500, the following

query can be used:

SQL

SELECT*

FROM Products

WHERE Category ='Electronics'AND Price >500;

This query will return all columns for products that meet both

conditions: they belong to the "Electronics" category and their price is

greater than $500.

Example 2: Sorting Products by Price and Category

To retrieve all products sorted first by "Category" in ascending order

and then by "Price" in descending order within each category, the

following query can be used:

SQL

SELECT*

FROM Products

ORDERBY Category ASC, Price DESC;

This query will first sort the products by their category, and then within

each category, it will sort them by their price in descending order.

Example 3: Retrieving Unique Categories

To retrieve the unique categories from the "Products" table, the

following query can be used:

SQL

SELECTDISTINCT Category

FROM Products;

This query will return a list of all unique categories in the table, without

any duplicates.

Example 4: Using LIKE for Pattern Matching

To retrieve all products whose "ProductName" starts with "Laptop," the

following query can be used:

SQL

SELECT*

FROM Products

158
MATS Centre for Distance and Online Education, MATS University

Notes WHERE ProductName LIKE'Laptop%';

This query will return all columns for products whose name starts with

"Laptop."

Example 5: Using IN for Multiple Values

To retrieve all products from the "Electronics," "Clothing," or "Books"

category, the following query can be used:

SQL

SELECT*

FROM Products

WHERE Category IN ('Electronics', 'Clothing', 'Books');

This query will return all columns for products that belong to any of the

specified categories.

Example 6: Combining WHERE, ORDER BY, and SELECT

DISTINCT

To retrieve the unique categories of products with a price greater than

$100, sorted in ascending order, the following query can be used:

SQL

SELECTDISTINCT Category

FROM Products

WHERE Price >100

ORDERBY Category ASC;

This query demonstrates how to combine multiple SQL commands to

achieve a specific result.

Example 7: Retrieving Employees with Specific Name Patterns

Considering our "Employees" table, if we want to retrieve all

employees whose first name contains the letter "a", we would use:

SQL

SELECT*

FROM Employees

WHERE FirstName LIKE'%a%';

5.2 Operators: And, or, In, Between, Like, Limit, Is Null

In the realm of data manipulation and analysis, the ability to filter and

extract specific subsets of data is paramount. Operators play a crucial

role in defining the criteria for these extractions, enabling us to pinpoint

precise information within vast datasets. This Module delves into the

practical application of several key operators: And, Or, In, Between,

159

Notes Like, Limit, and IS Null. We will explore how these operators function,

their syntax, and their real-world applications, particularly within the

context of data analysis using Python and the pandas library.

Logical Operators: AND and OR

Logical operators are fundamental tools for combining and evaluating

multiple conditions. The AND operator requires all specified

conditions to be true, while the OR operator requires at least one

condition to be true.

AND Operator

The AND operator is used to filter data that meets multiple criteria

simultaneously. Consider a scenario where we have a dataset of

customer information, including age and city. We want to extract

records of customers who are both older than 25 and reside in New

York.

Python

import pandas as pd

Sample DataFrame

data = {'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],

'Age': [25, 30, 22, 28, 35],

'City': ['New York', 'London', 'Paris', 'New York', 'Rome']}

df = pd.DataFrame(data)

Filter data using AND operator

filtered_df_and = df[(df['Age'] >25) & (df['City'] == 'New York')]

print("Filtered DataFrame (AND):\n", filtered_df_and)

In this example, (df['Age'] > 25) and (df['City'] == 'New York') are the

conditions, and the & symbol represents the AND operator. The

resulting filtered_df_andDataFrame will only contain rows where both

conditions are satisfied.

OR Operator

The OR operator is used to filter data that meets at least one of the

specified criteria. If we want to extract records of customers who are

either older than 30 or reside in Paris, we can use the OR operator.

Python

160
MATS Centre for Distance and Online Education, MATS University

Notes # Filter data using OR operator

filtered_df_or = df[(df['Age'] >30) | (df['City'] == 'Paris')]

print("\nFilteredDataFrame (OR):\n", filtered_df_or)

Here, (df['Age'] > 30) and (df['City'] == 'Paris') are the conditions, and

the | symbol represents the OR operator. The resulting

filtered_df_orDataFrame will contain rows where either condition is

true.

Relational Operators: IN, BETWEEN, LIKE, IS NULL

Relational operators allow us to compare values and filter data based

on specific relationships.

IN Operator

The IN operator is used to filter data that matches any value in a

specified list. For example, if we want to extract records of customers

who reside in either New York or London, we can use the IN operator.

Python

Filter data using IN operator

filtered_df_in = df[df['City'].isin(['New York', 'London'])]

print("\nFilteredDataFrame (IN):\n", filtered_df_in)

The isin() method is used to check if the values in the 'City' column are

present in the provided list.

BETWEEN Operator

The BETWEEN operator is used to filter data that falls within a

specified range. Consider a scenario where we have a dataset with a

'Salary' column, and we want to extract records of employees whose

salaries are between $50,000 and $100,000.

Python

Assuming 'Salary' is another column in your DataFrame

data['Salary'] = [60000, 80000, 45000, 90000, 110000]

df = pd.DataFrame(data)

filtered_df_between = df[(df['Salary'] >= 50000) & (df['Salary'] <=

100000)]

print("\nFilteredDataFrame (BETWEEN):\n", filtered_df_between)

In this example, we use the AND operator along with greater than or

equal to (>=) and less than or equal to (<=) to define the range.

LIKE Operator

The LIKE operator is used for pattern matching in string columns. It

allows us to filter data based on specific text patterns. In Python, we

161

Notes can achieve similar functionality using the str.startswith(),

str.endswith(), and str.contains() methods. For example, if we want to

extract records of customers whose names start with 'A', we can use

str.startswith().

Python

Filter data using LIKE operator (startswith)

filtered_df_like = df[df['Name'].str.startswith('A')]

print("\nFilteredDataFrame (LIKE):\n", filtered_df_like)

Filter data using LIKE operator (contains)

filtered_df_contains = df[df['Name'].str.contains('li')]

print("\nFilteredDataFrame (CONTAINS):\n", filtered_df_contains)

The str.startswith() method checks if the strings in the 'Name' column

start with the specified prefix. The str.contains() method checks if the

strings contain the specified substring.

IS NULL Operator

The IS NULL operator is used to filter data where a specific column

contains null values. Null values represent missing or undefined data.

If we have a dataset with a 'Phone' column, and we want to extract

records where the phone number is missing, we can use the IS NULL

operator.

Python

Assuming 'Phone' is another column in your DataFrame

data['Phone'] = ['123-456-7890', None, '987-654-3210', None, '111-

222-3333']

df = pd.DataFrame(data)

filtered_df_isnull = df[df['Phone'].isnull()]

print("\nFilteredDataFrame (IS NULL):\n", filtered_df_isnull)

The isnull() method returns a boolean Series indicating whether each

value in the 'Phone' column is null.

LIMIT Operator

The LIMIT operator is used to restrict the number of rows returned by

a query. While pandas doesn't have a direct equivalent to the SQL

LIMIT operator, we can achieve the same result using slicing.

Python

Limit the number of rows using slicing

limited_df = df[:3]

162
MATS Centre for Distance and Online Education, MATS University

Notes print("\nLimitedDataFrame:\n", limited_df)

This example extracts the first three rows of the DataFrame.

Advanced Filtering Techniques

Combining Multiple Operators

We can combine multiple operators to create complex filtering

conditions. For example, we can extract records of customers who are

older than 25, reside in New York, and have a salary between $50,000

and $100,000.

Python

combined_df = df[

 (df['Age'] >25) &

 (df['City'] == 'New York') &

 (df['Salary'] >= 50000) &

 (df['Salary'] <= 100000)

]

print("\nCombined Filtered DataFrame:\n", combined_df)

Using Query Method

Pandas provides a query() method that allows us to filter data using a

string-based query. This method can be more concise and readable for

complex filtering conditions.

Python

queried_df = df.query("Age > 25 and City == 'New York' and Salary

>= 50000 and Salary <= 100000")

print("\nQueriedDataFrame:\n", queried_df)

Practical Applications

Data Cleaning and Preprocessing

Operators are essential for data cleaning and preprocessing. We can use

them to identify and remove or replace missing values, filter out

outliers, and correct inconsistencies in the data.

Python

Remove rows with missing phone numbers

cleaned_df = df.dropna(subset=['Phone'])

print("\nCleanedDataFrame:\n", cleaned_df)

Exploratory Data Analysis (EDA)

Operators are used extensively in EDA to explore and analyze data. We

can use them to create subsets of data for specific groups or conditions,

calculate summary statistics, and visualize data distributions.

Python

163

Notes # Calculate average salary for customers in New York

new_york_salary = df[df['City'] == 'New York']['Salary'].mean()

print("\nAverage Salary in New York:", new_york_salary)

Reporting and Visualization

Operators are used to generate reports and visualizations based on

specific criteria. We can use them to create tables and charts that

highlight key findings and insights.

Python

Create a bar chart of age distribution for customers in

5.3 Numeric, String, and Date Functions

In the realm of programming and data analysis, the ability to manipulate

data effectively is paramount. This Module delves into the fundamental

operations involving numeric, string, and date data types, providing a

comprehensive overview of essential functions and techniques.

Mastering these functions is crucial for processing, transforming, and

analyzing data, enabling developers and analysts to extract meaningful

insights and build robust applications.

 Numeric Functions: The Foundation of Mathematical Operations

Numeric functions form the bedrock of mathematical computations,

enabling programmers to perform a wide range of operations on

numerical data. These functions are essential for tasks such as data

analysis, scientific computing, and financial modeling.

1.1 Basic Arithmetic Operations

The most fundamental numeric operations include addition,

subtraction, multiplication, and division. These operations are essential

for performing basic calculations and are supported by most

programming languages.

Python

Addition

result_addition = 10 + 5

print(f"10 + 5 = {result_addition}")

Subtraction

result_subtraction = 10 - 5

print(f"10 - 5 = {result_subtraction}")

Multiplication

164
MATS Centre for Distance and Online Education, MATS University

Notes result_multiplication = 10 * 5

print(f"10 * 5 = {result_multiplication}")

Division

result_division = 10 / 5

print(f"10 / 5 = {result_division}")

Integer Division

result_integer_division = 10 // 3

print(f"10 // 3 = {result_integer_division}")

Modulus (Remainder)

result_modulus = 10 % 3

print(f"10 % 3 = {result_modulus}")

Exponentiation

result_exponentiation = 2 ** 3

print(f"2 ** 3 = {result_exponentiation}")

These operations can be combined to perform more complex

calculations, following the standard order of operations

(PEMDAS/BODMAS).

1.2 Mathematical Functions

Beyond basic arithmetic, programming languages provide a rich set of

mathematical functions for performing advanced calculations.

1.2.1 Absolute Value

The absolute value of a number is its distance from zero, regardless of

its sign.

Python

Absolute value

absolute_value = abs(-10)

print(f"Absolute value of -10: {absolute_value}")

1.2.2 Rounding Functions

Rounding functions are used to approximate numerical values to a

specified number of decimal places.

Python

Rounding

rounded_value = round(3.14159, 2)

165

Notes print(f"Rounded value of 3.14159 to 2 decimal places:

{rounded_value}")

1.2.3 Trigonometric Functions

Trigonometric functions, such as sine, cosine, and tangent, are essential

for working with angles and geometric shapes.

Python

import math

Sine

sine_value = math.sin(math.radians(30)) # Convert degrees to radians

print(f"Sine of 30 degrees: {sine_value}")

Cosine

cosine_value = math.cos(math.radians(60))

print(f"Cosine of 60 degrees: {cosine_value}")

Tangent

tangent_value = math.tan(math.radians(45))

print(f"Tangent of 45 degrees: {tangent_value}")

1.2.4 Logarithmic and Exponential Functions

Logarithmic and exponential functions are used in various scientific

and engineering applications.

Python

import math

Natural logarithm

log_value = math.log(10)

print(f"Natural logarithm of 10: {log_value}")

Base-10 logarithm

log10_value = math.log10(100)

print(f"Base-10 logarithm of 100: {log10_value}")

Exponential function

exp_value = math.exp(2)

print(f"Exponential of 2: {exp_value}")

1.2.5 Square Root and Power Functions

166
MATS Centre for Distance and Online Education, MATS University

Notes These functions are used to calculate square roots and powers of

numbers.

Python

import math

Square root

sqrt_value = math.sqrt(25)

print(f"Square root of 25: {sqrt_value}")

Power

power_value = math.pow(2, 3)

print(f"2 raised to the power of 3: {power_value}")

1.3 Random Number Generation

Random number generation is crucial for simulations, games, and

cryptographic applications.

Python

import random

Generate a random integer between 1 and 10

random_integer = random.randint(1, 10)

print(f"Random integer between 1 and 10: {random_integer}")

Generate a random float between 0 and 1

random_float = random.random()

print(f"Random float between 0 and 1: {random_float}")

Generate a random choice from a list

choices = ['apple', 'banana', 'cherry']

random_choice = random.choice(choices)

print(f"Random choice from the list: {random_choice}")

Section 2: String Functions: Manipulating Text Data

String functions are essential for working with text data, enabling

programmers to perform operations such as searching, replacing, and

formatting strings.

2.1 Basic String Operations

Basic string operations include concatenation, slicing, and indexing.

Python

Concatenation

167

Notes string1 = "Hello"

string2 = "World"

concatenated_string = string1 + " " + string2

print(f"Concatenated string: {concatenated_string}")

Slicing

text = "Python Programming"

sliced_text = text[0:6]

print(f"Sliced text: {sliced_text}")

Indexing

first_char = text[0]

print(f"First character: {first_char}")

2.2 String Manipulation Functions

String manipulation functions are used to transform and modify strings.

2.2.1 Case Conversion

Case conversion functions are used to change the case of characters in

a string.

Python

Uppercase

uppercase_text = "hello world".upper()

print(f"Uppercase text: {uppercase_text}")

Lowercase

lowercase_text = "HELLO WORLD".lower()

print(f"Lowercase text: {lowercase_text}")

Title case

titlecase_text = "hello world".title()

print(f"Title case text: {titlecase_text}")

2.2.2 Searching and Replacing

Searching and replacing functions are used to find and replace

substrings within a string.

Python

Finding a substring

index = "Python Programming".find("Programming")

print(f"Index of 'Programming': {index}")

168
MATS Centre for Distance and Online Education, MATS University

Notes # Replacing a substring

replaced_text = "Python Programming".replace("Python", "Java")

print(f"Replaced text: {replaced_text}")

2.2.3 Splitting and Joining

Splitting and joining functions are used to divide and combine strings.

Python

Splitting a string

words = "apple,banana,cherry".split(",")

print(f"Split words: {words}")

Joining a list of strings

joined_string = "-".join(words)

print(f"Joined string: {joined_string}")

2.2.4 Trimming and Padding

Trimming and padding functions are used to remove whitespace and

add characters to strings.

Python

Trimming whitespace

trimmed_text = " helloworld ".strip()

print(f"Trimmed text: '{trimmed_text}'")

Padding a string

padded_text = "hello".ljust(10, "*")

print(f"Padded text: '{padded_text}'")

2.3 String Formatting

String formatting is used to create formatted strings with placeholders

for variables.

Python

Using f-strings

name = "Alice"

age = 30

formatted_string = f"My name is {name} and I am {age} years old."

print(formatted_string)

Using the format() method

formatted_string_2 = "My name is {} and I am {} years

old.".format(name, age)

print(formatted_string_2)

169

Notes Section 3: Date Functions: Working with Time Data

Date functions are essential for working with time data, enabling

programmers to perform operations such as calculating time

differences, formatting dates, and extracting date components.

3.1 Basic Date Operations

Basic date operations include creating date objects and extracting date

components.

Python

import datetime

Creating a date object

date_object = datetime.date, 1

170
MATS Centre for Distance and Online Education, MATS University

Notes Unit 16: JOIN Operations

5.4 Joins: Inner Join, Left Join, Right Join, Self Join

Joins are essential in data manipulation as they allow users to retrieve

and combine data from multiple tables based on related columns. Using

different types of joins, databases efficiently link records to provide

meaningful insights. The primary types of joins include INNER JOIN,

LEFT JOIN, RIGHT JOIN, and SELF JOIN, each serving a specific

purpose in data retrieval.

 INNER JOIN is the most commonly used join type. It retrieves only

the matching records between two tables based on a common column.

Any record that does not have a corresponding match in both tables is

Figure 12: SQL JOINS
[Source: https://i.pinimg.com/]

171

Notes excluded. For example, in a database containing Orders and Customers

tables, an INNER JOIN can be used to retrieve only the orders where a

valid customer exists.

 LEFT JOIN (or LEFT OUTER JOIN) returns all records from the left

table and only the matching records from the right table. If no match is

found in the right table, NULL values are displayed for those columns.

This is useful when retrieving all customers and their orders, ensuring

that customers without orders are still included in the result. RIGHT

JOIN (or RIGHT OUTER JOIN) works oppositely to LEFT JOIN. It

retrieves all records from the right table and only the matching records

from the left table. If no match is found in the left table, NULL values

appear for its columns. This is beneficial when ensuring all orders are

listed, even if some are not associated with a registered customer. SELF

JOIN is a special join where a table is joined with itself. It is useful for

hierarchical data, such as an employee table where each employee has

a manager, linking the Employee_ID and Manager_ID columns within

the same table.

Mastering SQL Joins: Uniting Data from Multiple Tables

In the realm of database management, relational databases are the

cornerstone of organized data storage. These databases are structured

around the concept of tables, where each table represents a distinct

entity or concept. The power of relational databases lies in their ability

to establish relationships between these tables, enabling the retrieval

and analysis of combined data. This is where SQL joins come into play.

Joins are fundamental SQL operations that allow you to combine rows

from two or more tables based on a related column between them. This

capability is essential for extracting meaningful insights from complex

datasets, enabling you to answer questions that span multiple tables.

Understanding the Need for Joins

Imagine a scenario where you have two tables: Customers and Orders.

The Customers table contains information about your customers, such

as their names,1addresses, and contact details. The Orders table

contains information about the orders placed by these customers, such

as the order ID, order date, and the customer ID. To answer questions

like "Which customer placed order 101?" or "What orders were placed

172
MATS Centre for Distance and Online Education, MATS University

Notes by Alice?", you need to combine data from both tables. This is where

joins become indispensable. Without joins, you would have to

manually search through both tables, which is inefficient and error-

prone. Joins automate this process, allowing you to retrieve the

combined data with a single SQL query.

Types of SQL Joins

SQL offers several types of joins, each serving a specific purpose. The

most common types are:

• INNER JOIN: Returns only the rows that have matching values in both

tables.

• LEFT JOIN (or LEFT OUTER JOIN): Returns all rows from the left

table2 and the matching rows from the right table. If there is no

match,3the result will contain NULL values for the columns from the

right table.

• RIGHT JOIN (or RIGHT OUTER JOIN): Returns all rows from the

right table and the matching rows from the left table. If there is no

match,4 the result will contain NULL values for the columns from the

left table.

• FULL OUTER JOIN: Returns all rows when there is a match in either

left or right table.

• SELF JOIN: Joins a table with itself, using different aliases for the

table.

INNER JOIN: Retrieving Matching Rows

The INNER JOIN is the most basic type of join. It returns only the rows

that have matching values in both tables. The syntax for an INNER

JOIN is as follows:

SQL

SELECT columns

FROM table1

INNERJOIN table2

ON table1.column_name = table2.column_name;

Here, table1 and table2 are the tables you want to join, and

column_name is the column that is common to both tables. The ON

clause specifies the join condition, which determines how the rows

from the two tables are matched.

Example: INNER JOIN with Customers and Orders

173

Notes Let's illustrate the INNER JOIN with our Customers and Orders tables.

Python

import pandas as pd

customers = pd.DataFrame({

'customer_id': [1, 2, 3],

'name': ['Alice', 'Bob', 'Charlie'],

'city': ['New York', 'London', 'Paris']

})

orders = pd.DataFrame({

'order_id': [101, 102, 103, 104],

'customer_id': [1, 1, 2, 3],

'order_date': ['-01-15', '2023-02-20', '2023-03-10', '2023-04-05']

})

inner_join_result = pd.merge(customers, orders, on='customer_id')

print("INNER JOIN:\n", inner_join_result)

This code will produce the following output:

INNER JOIN:

customer_id name city order_idorder_date

0 1 Alice New York 101 2023-01-15

1 1 Alice New York 102 2023-02-20

2 2 Bob London 103 2023-03-10

3 3 Charlie Paris 104 2023-04-05

The INNER JOIN returns only the rows where the customer_id column

has matching values in both tables.

LEFT JOIN: Retrieving All Rows from the Left Table

The LEFT JOIN returns all rows from the left table and the matching

rows from the right table. If there is no match, the result will contain

NULL values for the columns from the right table. The syntax for a

LEFT JOIN is as follows:

SQL

SELECT columns

FROM table1

LEFTJOIN table2

ON table1.column_name = table2.column_name;

Here, table1 is the left table, and table2 is the right table.

174
MATS Centre for Distance and Online Education, MATS University

Notes Example: LEFT JOIN with Customers and Orders

Let's add a new customer to the Customers table who has not placed

any orders.

Python

customers = pd.DataFrame({

'customer_id': [1, 2, 3, 4],

'name': ['Alice', 'Bob', 'Charlie', 'David'],

'city': ['New York', 'London', 'Paris', 'Tokyo']

})

left_join_result = pd.merge(customers, orders, on='customer_id',

how='left')

print("\nLEFT JOIN:\n", left_join_result)

This code will produce the following output:

LEFT JOIN:

customer_id name city order_idorder_date

0 1 Alice New York 101.0 2023-01-15

1 1 Alice New York 102.0 2023-02-20

2 2 Bob London 103.0 2023-03-10

3 3 Charlie Paris 104.0 2023-04-05

4 4 David Tokyo NaNNaN

The LEFT JOIN returns all rows from the Customers table, including

the row for David, who has not placed any orders. The order_id and

order_date columns for David contain NULL values.

RIGHT JOIN: Retrieving All Rows from the Right TableTheRIGHT

JOIN is similar to the LEFT JOIN, but it returns all rows from the right

table and the matching rows from the left table. If there5 is no match,

the result will contain NULL values for the columns from the left table.

The syntax for a RIGHT JOIN is as follows:

SQL

SELECT columns

FROM table1

RIGHTJOIN table2

ON table1.column_name = table2.column_name;

Here, table1 is the left table, and table2 is the right table.

Example: RIGHT JOIN with Customers and Orders

Let's add a new order to the Orders table that does not have a

corresponding customer in the Customers table.

175

Notes Python

orders = pd.DataFrame({

'order_id': [101, 102, 103, 104, 105],

'customer_id': [1, 1, 2, 3, 5],

'order_date': ['2023-01-15', '2023-02-20', '2023-03-10', '2023-04-05',

'2023-05-10']

})

right_join_result = pd.merge(customers, orders, on='customer_id',

how='right')

print("\nRIGHT JOIN:\n", right_join_result)

This code will produce the following output:

RIGHT JOIN:

customer_id name city order_idorder_date

0 1 Alice New York 101 2023-01-15

1 1 Alice New York 102 2023-02-20

2 2 Bob London 103 2023-03-10

3 3 Charlie Paris 104 2023-04-05

4 5 NaNNaN105 2023-05-10

The RIGHT JOIN returns all rows from the Orders table, including the

row for order 1

176
MATS Centre for Distance and Online Education, MATS University

Notes

Unit 17: Mastering Aggregate Functions

5.5 Mastering Aggregate Functions: Unveiling Insights from Data

In the realm of relational databases, aggregate functions are

indispensable tools for extracting meaningful insights from data. They

enable us to summarize and analyze large datasets, revealing trends,

patterns, and statistical measures that would otherwise remain hidden.

This Module delves into the power of aggregate functions in SQL,

focusing on `GROUP BY`, `HAVING`, `MIN()`, `MAX()`, `AVG()`,

`SUM()`, and `COUNT()`, providing a comprehensive guide to their

usage and applications.

1. Introduction to Aggregate Functions

Aggregate functions operate on a set of values, returning a single

summary value. These functions are fundamental in data analysis,

allowing us to calculate statistics such as minimum, maximum,

average, sum, and count. Understanding and effectively utilizing

aggregate functions is crucial for any database professional seeking to

extract actionable information from their data.

2. The `GROUP BY` Clause: Categorizing Data

The `GROUP BY` clause is a cornerstone of aggregate function usage.

It allows us to partition a dataset into groups based on one or more

columns. Once grouped, aggregate functions can be applied to each

group, producing summary results for each category.

**Syntax:


```sql 

SELECT column1, column2, aggregate_function(column3) 

FROM table_name 

GROUP BY column1, column2; 

``` 

Example:

Consider a table named `Orders` with columns `CustomerID`,

`ProductID`, and `Quantity`. To find the total quantity of each product

ordered by each customer, we can use the following query:

```sql 

SELECT CustomerID, ProductID, SUM(Quantity) AS TotalQuantity 



 

177 
 

Notes FROM Orders 

GROUP BY CustomerID, ProductID; 

``` 

Explanation:

This query groups the ̀ Orders` table by ̀ CustomerID` and ̀ ProductID`,

calculating the sum of `Quantity` for each unique combination. The

result set will contain the `CustomerID`, `ProductID`, and the

corresponding `TotalQuantity` for each group.

3. The `HAVING` Clause: Filtering Grouped Data

The `HAVING` clause is used to filter the results of a `GROUP BY`

query based on aggregate function values. It is similar to the `WHERE`

clause, but operates on groups rather than individual rows.

Syntax:

```sql 

SELECT column1, aggregate_function(column2) 

FROM table_name 

GROUP BY column1 

HAVING aggregate_function(column2) condition; 

``` 

Example:

Continuing with the ̀ Orders` table, to find customers who have ordered

a total quantity of more than 100 for any product, we can use the

following query:


```sql 

SELECT CustomerID, SUM(Quantity) AS TotalQuantity 

FROM Orders 

GROUP BY CustomerID 

HAVING SUM(Quantity) > 100; 

``` 

Explanation:

This query groups the `Orders` table by `CustomerID`, calculates the

sum of `Quantity` for each customer, and then filters the results to

include only customers whose total quantity exceeds 100.

4. The `MIN()` Function: Finding the Minimum Value

The `MIN()` function returns the minimum value from a set of values.

It is commonly used to find the smallest value in a column or group.

Syntax:

178
MATS Centre for Distance and Online Education, MATS University

Notes ```sql

SELECT MIN(column_name)

FROM table_name;

``` 

**Example:** 

Consider a table named `Products` with columns `ProductID`, 

`ProductName`, and ̀ Price`. To find the lowest price of all products, we 

can use the following query: 

```sql 

SELECT MIN(Price) AS LowestPrice

FROM Products;

``` 

**Explanation:** 

This query returns the minimum value from the `Price` column, 

representing the lowest price of all products. 

**5. The `MAX()` Function: Finding the Maximum Value** 

The ̀ MAX()` function returns the maximum value from a set of values. 

It is commonly used to find the largest value in a column or group. 

**Syntax:** 

```sql 

SELECT MAX(column_name)

FROM table_name;

``` 

**Example:** 

 

Using the `Products` table, to find the highest price of all products, we 

can use the following query: 

 

```sql 

SELECT MAX(Price) AS HighestPrice

FROM Products;

Explanation:

This query returns the maximum value from the `Price` column,

representing the highest price of all products.

6. The `AVG()` Function: Calculating the Average Value

179

Notes The `AVG()` function calculates the average value of a set of values. It

is commonly used to find the mean of a column or group.

Syntax:


```sql 

SELECT AVG(column_name) 

FROM table_name; 

``` 


Example:

Using the `Products` table, to find the average price of all products, we

can use the following query:


```sql 

SELECT AVG(Price) AS AveragePrice 

FROM Products; 

``` 

Explanation:

This query returns the average value from the `Price` column,

representing the average price of all products.

7. The `SUM()` Function: Calculating the Sum of Values

The `SUM()` function calculates the sum of a set of values. It is

commonly used to find the total of a column or group.

Syntax:

```sql 

SELECT SUM(column_name) 

FROM table_name; 

``` 

Example:

Using the `Orders` table, to find the total quantity of all products

ordered, we can use the following query:

```sql 

SELECT SUM(Quantity) AS TotalQuantity 

FROM Orders; 

``` 

Explanation:

180
MATS Centre for Distance and Online Education, MATS University

Notes This query returns the sum of all values in the `Quantity` column,

representing the total quantity of all products ordered.

8. The `COUNT()` Function: Counting Rows

The ̀ COUNT()` function counts the number of rows in a table or group.

It can be used to count all rows or only rows that meet specific criteria.

Syntax:

```sql 

SELECT COUNT(column_name) 

FROM table_name; 

SELECT COUNT(*) 

FROM table_name; 

``` 

Example:

Using the `Customers` table, to find the total number of customers, we

can use the following query:

```sql 

SELECT COUNT(*) AS TotalCustomers 

FROM Customers; 

``` 

To find the number of customers with a specific city, we can use the

following query:


```sql 

SELECT COUNT(*) AS CustomersInCity 

FROM Customers 

WHERE City = 'New York'; 

``` 

Explanation:

The first query returns the total number of rows in the `Customers`

table, representing the total number of customers. The second query

returns the number of rows where the `City` column is 'New York',

representing the number of customers in New York.

9. Combining Aggregate Functions and `GROUP BY`

The true power of aggregate functions is realized when combined with

the `GROUP BY` clause. This allows for the calculation of summary

statistics for each group within a dataset.

Example:

181

Notes Using the `Orders` table, to find the total quantity of each product

ordered by each customer, and then filter the results to include only

customers who have ordered a total quantity of more than 100 for any

product, we can use the following query:

```sql 

SELECT CustomerID, ProductID, SUM(Quantity) AS TotalQuantity 

FROM Orders 

GROUP BY CustomerID, ProductID 

HAVING SUM(Quantity) > 100; 

``` 


Explanation:

This query groups the ̀ Orders` table by ̀ CustomerID` and ̀ ProductID`,

calculates the sum of `Quantity` for each group, and then filters the

results to include only customers who have ordered a total quantity of

more than 100 for any product.

10. Nested Aggregate Functions

In some cases, it may be necessary to use nested aggregate functions to

perform more complex calculations.

Example:

Using the `Orders` table, to find the average total quantity ordered by

each customer, we can use the following query:


```sql 

SELECT AVG(TotalQuantity) AS AverageTotalQuantity 

FROM ( 

    SELECT CustomerID, SUM(Quantity) AS TotalQuantity 

    FROM Orders 

    GROUP BY CustomerID 

) AS CustomerTotals; 

``` 


Explanation:

This query first calculates the total quantity ordered by each customer

using a subquery. Then, it calculates the average of these total quantities

using the `AVG()` function.

11. Advanced `GROUP BY` and `HAVING` Usage

182
MATS Centre for Distance and Online Education, MATS University

Notes Advanced usage of ̀ GROUP BY` and ̀ HAVING` can involve grouping

by multiple columns, using complex conditions in the `HAVING`

clause, and combining aggregate functions with other SQL features.

Example:

Using the `Sales` table, to find the average sales amount for each

product category in each region, and then filter the results to include

only categories where the average sales amount is greater than $1000,

we can use the following query:

```sql 

SELECT Region, ProductCategory, AVG(SalesAmount) AS 

AverageSales 

FROM Sales 

GROUP BY Region, ProductCategory 

HAVING AVG(SalesAmount) > 1000; 

``` 

Explanation:

This query groups the `Sales` table by `Region` and `Product

Category`, calculates the average sales amount for each group,

5.6 Mastering Sub queries

Sub queries, a powerful feature of SQL and data analysis tools, enable

the construction of intricate queries by embedding one query within

another. This capability allows for complex data retrieval and

manipulation, enhancing the flexibility and expressiveness of data

analysis. In this Module, we will delve into the intricacies of sub

queries, exploring their various forms, applications, and best practices.

We will also illustrate these concepts using Python and the Pandas

library, bridging the gap between theoretical understanding and

practical implementation.

Understanding Sub queries

A sub query, also known as an inner query or a nested query, is a query

embedded within another query. The outer query, known as the main

query, utilizes the result of the sub query to refine its own result set.

Sub queries can appear in various parts of a query, including the

SELECT, FROM, WHERE, And HAVING clauses. They provide a

means to break down complex data retrieval tasks into smaller, more

manageable steps, enhancing the readability and maintainability of

queries.

Types of Sub queries

183

Notes

Subqueries can be categorized into several types based on their

behavior and the context in which they are used.

1. Scalar Subqueries: A scalar subquery returns a single value. It is

typically used in the SELECT or WHERE clause to compare a value

with the result of the subquery.

2. Row Subqueries: A row subquery returns a single row. It is used to

compare a row of values with the result of the subquery.

3. Column Subqueries: A column sub query returns a single column of

values. It is used in the IN, ANY, ALL, or EXISTS operators.

4. Table Subqueries: A table subquery returns a table of values. It is used

in the FROM clause to treat the result of the subquery as a table.

Scalar Subqueries: Retrieving Single Values

Scalar subqueries are the simplest form of subqueries, returning a single

value that can be used in comparisons or calculations. They are

particularly useful for retrieving aggregate values, such as the

maximum, minimum, or average of a column.

Example 1: Retrieving the Maximum Sales

Python

import pandas as pd

data = {'Year': [2022, 2022, 2023, 2023, 2024, 2024],

'Quarter': ['Q1', 'Q2', 'Q1', 'Q2', 'Q1', 'Q2'],

'Region': ['North', 'South', 'North', 'South', 'North', 'South'],

'Sales': [1000, 1200, 1500, 1800, 1200, 1500]}

df = pd.DataFrame(data)

max_sales = df['Sales'].max()

print("Maximum Sales:", max_sales)

In this example, the max() function acts as a scalar subquery, returning

the maximum sales value from the DataFrame.

Example 2: Retrieving Sales Greater Than Average

Python

import pandas as pd

data = {'Year': [2022, 2022, 2023, 2023, 2024, 2024],

'Quarter': ['Q1', 'Q2', 'Q1', 'Q2', 'Q1', 'Q2'],

'Region': ['North', 'South', 'North', 'South', 'North', 'South'],

184
MATS Centre for Distance and Online Education, MATS University

Notes 'Sales': [1000, 1200, 1500, 1800, 1200, 1500]}

df = pd.DataFrame(data)

avg_sales = df['Sales'].mean()

sales_above_avg = df[df['Sales'] >avg_sales]

print("Sales Above Average:\n", sales_above_avg)

Here, the mean() function acts as a scalar subquery, calculating the

average sales, which is then used to filter the DataFrame.

Row Subqueries: Comparing Rows of Values

Row subqueries return a single row of values and are used to compare

multiple columns simultaneously. They are particularly useful for

finding rows that match a specific set of criteria.

Example 3: Finding the Row with Maximum Sales

Python

import pandas as pd

data = {'Year': [2022, 2022, 2023, 2023, 2024, 2024],

'Quarter': ['Q1', 'Q2', 'Q1', 'Q2', 'Q1', 'Q2'],

'Region': ['North', 'South', 'North', 'South', 'North', 'South'],

'Sales': [1000, 1200, 1500, 1800, 1200, 1500]}

df = pd.DataFrame(data)

max_sales_row = df[df['Sales'] == df['Sales'].max()]

print("Row with Maximum Sales:\n", max_sales_row)

In this example, the max() function acts as a scalar subquery, and the

resulting max value is used to filter the dataframe.

Column Subqueries: Using IN, ANY, ALL, and EXISTS

Column subqueries return a single column of values and are used with

operators like IN, ANY, ALL, and EXISTS.

1. IN Operator: The IN operator checks if a value exists in a set of values

returned by the subquery.

2. ANY Operator: The ANY operator checks if a value satisfies the

condition with any value returned by the subquery.

3. ALL Operator: The ALL operator checks if a value satisfies the

condition with all values returned by the subquery.

4. EXISTS Operator: The EXISTS operator checks if a subquery returns

any rows.

Example 4: Finding Sales in Specific Quarters

185

Notes Python

import pandas as pd

data = {'Year': [2022, 2022, 2023, 2023, 2024, 2024],

'Quarter': ['Q1', 'Q2', 'Q1', 'Q2', 'Q1', 'Q2'],

'Region': ['North', 'South', 'North', 'South', 'North', 'South'],

'Sales': [1000, 1200, 1500, 1800, 1200, 1500]}

df = pd.DataFrame(data)

quarters = ['Q1', 'Q2']

sales_in_quarters = df[df['Quarter'].isin(quarters)]

print("Sales in Quarters Q1 and Q2:\n", sales_in_quarters)

In this example, the isin() function acts as an IN subquery equivalent,

checking if the Quarter column values are in the specified list.

Example 5: Finding Sales Greater Than ANY Sales in 2022

Python

import pandas as pd

data = {'Year': [2022, 2022, 2023, 2023, 2024, 2024],

'Quarter': ['Q1', 'Q2', 'Q1', 'Q2', 'Q1', 'Q2'],

'Region': ['North', 'South', 'North', 'South', 'North', 'South'],

'Sales': [1000, 1200, 1500, 1800, 1200, 1500]}

df = pd.DataFrame(data)

sales_2022 = df[df['Year'] == 2022]['Sales']

sales_greater_any = df[df['Sales'] >sales_2022.min()]

print("Sales Greater Than ANY Sales in 2022:\n", sales_greater_any)

Here, the min() function acts as an ANY subquery equivalent, finding

the minimum sales in 2022, and then filtering.

Example 6: Finding Sales Greater Than ALL Sales in 2022

Python

import pandas as pd

data = {'Year': [2022, 2022, 2023, 2023, 2024, 2024],

'Quarter': ['Q1', 'Q2', 'Q1', 'Q2', 'Q1', 'Q2'],

'Region': ['North', 'South', 'North', 'South', 'North', 'South'],

'Sales': [1000, 1

186
MATS Centre for Distance and Online Education, MATS University

Notes MCQs:

1. Which SQL statement is used to retrieve data from a

database?

a) FETCH

b) GET

c) SELECT

d) RETRIEVE

2. Which SQL clause is used to sort records in ascending or

descending order?

a) SORT

b) ORDER BY

c) ARRANGE

d) GROUP BY

3. Which SQL operator is used to filter results based on a

range of values?

a) IN

b) BETWEEN

c) LIKE

d) OR

4. Which function is used to find the highest value in a

column?

a) COUNT()

b) MAX()

c) SUM()

d) AVG()

5. What type of JOIN returns only matching records from

both tables?

a) LEFT JOIN

b) RIGHT JOIN

c) INNER JOIN

d) FULL JOIN

6. Which SQL function is used to count the number of

records in a table?

a) COUNT()

b) TOTAL()

c) NUMBER()

d) RECORDS()

187

Notes 7. What does the WHERE clause do in SQL?

a) Sorts data

b) Filters records based on a condition

c) Deletes records

d) Modifies table structure

8. Which SQL operator is used to search for a pattern in a

column?

a) LIKE

b) IN

c) IS NULL

d) AND

9. A subquery is:

a) A query inside another query

b) A duplicate query

c) A function call

d) A SQL join

10. Which clause is used to filter records after grouping them?

a) GROUP BY

b) WHERE

c) HAVING

d) ORDER BY

Short Questions:

1. What is the purpose of the SELECT statement in SQL?

2. Explain the ORDER BY clause and how it works.

3. What is the difference between WHERE and HAVING clauses?

4. How do you filter records using BETWEEN and IN operators?

5. Define numeric functions in SQL with examples.

6. What are string functions? Give examples.

7. How do joins work in SQL? Explain different types.

8. What are aggregate functions, and how are they used?

9. Explain the difference between INNER JOIN and LEFT JOIN.

10. What is a subquery, and when is it used?

Long Questions:

1. Explain the SELECT statement with multiple examples.

2. Discuss the different SQL operators and their uses.

3. How do numeric, string, and date functions work in SQL?

Provide examples.

188
MATS Centre for Distance and Online Education, MATS University

Notes 4. Explain different types of joins with real-world examples.

5. How do aggregate functions work? Explain GROUP BY,

HAVING, MIN(), MAX(), AVG(), SUM(), COUNT().

6. What is the difference between WHERE and HAVING clauses?

7. Explain ORDER BY and LIMIT in SQL.

8. Discuss subqueries and how they can be used to filter data.

9. Write SQL queries to demonstrate different JOIN operations.

10. Explain how data manipulation queries improve database

performance.

189

Notes References

Introduction to Database Management System (Chapter 1)

1. Elmasri, R., & Navathe, S. B. (2016). Fundamentals of

Database Systems (7th ed.). Pearson.

2. Ramakrishnan, R., & Gehrke, J. (2020). Database

Management Systems (3rd ed.). McGraw-Hill.

3. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2019).

Database System Concepts (7th ed.). McGraw-Hill.

4. Date, C. J. (2019). An Introduction to Database Systems (8th

ed.). Pearson.

5. Coronel, C., & Morris, S. (2018). Database Systems: Design,

Implementation, & Management (13th ed.). Cengage

Learning.

Data Modeling and Database Design (Chapter 2)

1. Teorey, T. J., Lightstone, S. S., Nadeau, T., & Jagadish, H. V.

(2011). Database Modeling and Design (5th ed.). Morgan

Kaufmann.

2. Connolly, T. M., & Begg, C. E. (2015). Database Systems: A

Practical Approach to Design, Implementation, and

Management (6th ed.). Pearson.

3. Hoffer, J. A., Ramesh, V., & Topi, H. (2016). Modern

Database Management (12th ed.). Pearson.

4. Chen, P. P. (1976). The Entity-Relationship Model—Toward a

Unified View of Data. ACM Transactions on Database

Systems, 1(1), 9-36.

5. Bagui, S., & Earp, R. (2011). Database Design Using Entity-

Relationship Diagrams (2nd ed.). CRC Press.

Relational Database Design (Chapter 3)

1. Garcia-Molina, H., Ullman, J. D., & Widom, J. (2008).

Database Systems: The Complete Book (2nd ed.). Pearson.

2. Date, C. J. (2015). SQL and Relational Theory: How to Write

Accurate SQL Code (3rd ed.). O'Reilly Media.

3. Fagin, R., Vardi, M. Y., & Ullman, J. D. (1983). The Theory

of Data Dependencies – A Survey. Mathematics of

Information Processing, 19, 19-71.

4. Kent, W. (1983). A Simple Guide to Five Normal Forms in

Relational Database Theory. Communications of the ACM,

26(2), 120-125.

5. Codd, E. F. (1970). A Relational Model of Data for Large

Shared Data Banks. Communications of the ACM, 13(6), 377-

387.

Managing Database and Table (Chapter 4)

190
MATS Centre for Distance and Online Education, MATS University

Notes 1. Beaulieu, A. (2020). Learning SQL: Generate, Manipulate,

and Retrieve Data (3rd ed.). O'Reilly Media.

2. Faroult, S., & Robson, P. (2006). The Art of SQL. O'Reilly

Media.

3. Groff, J. R., Weinberg, P. N., & Oppel, A. J. (2009). SQL: The

Complete Reference (3rd ed.). McGraw-Hill.

4. Taylor, A. G. (2018). SQL For Dummies (9th ed.). For

Dummies.

5. Price, J. (2019). Oracle Database 19c: The Complete

Reference. McGraw-Hill.

Data Manipulation (Chapter 5)

1. Celko, J. (2014). SQL for Smarties: Advanced SQL

Programming (5th ed.). Morgan Kaufmann.

2. Viescas, J. L. (2018). SQL Queries for Mere Mortals: A

Hands-On Guide to Data Manipulation in SQL (4th ed.).

Addison-Wesley.

3. Molinaro, A. (2020). SQL Cookbook: Query Solutions and

Techniques for All SQL Users (2nd ed.). O'Reilly Media.

4. Richards, B. (2018). Learning SQL: Master SQL

Fundamentals (3rd ed.). O'Reilly Media.

5. Forta, B. (2018). Sams Teach Yourself SQL in 10 Minutes

(5th ed.). Sams Publishing.

191
MATS Centre for Distance and Online Education, MATS University

	Page 5

